
Full Stack Assignment

DAY 4
1. Define a variable named user age and assign it the value of 25. Also, create
an identifier user name and assign it the value "John Doe."

2.Create a variable called pi and assign it the value of the mathematical
constant π (pi). Additionally, define a literal named favourite number and
assign it the value 7.

3.Write a Python while loop that prints the squares of numbers from 1 to 5.

DAY 5

1.Write a Python program to print the following pattern:

1

22

333

4444

55555

2.Create a Java program to generate the following pattern:

A

AB

ABC

ABCD

ABCDE

3.Implement a C++ program to print the following pattern:

**

*

DAY 6

1.Write a C program to find the sum of elements in a 1D array of
integers.

2.Create a Python program to multiply two matrices (2D arrays) and
print the result.

3.Implement a Java program to create a 2D jagged array to store
and display the lengths of words in a sentence.

DAY 7

1.Write a C++ program to initialize and display a 3D array of
integers.

2.Create a Java program to implement a 3D jagged array to store
and display the heights of students in a classroom.

3.Write a Java program using the Arrays class to sort an array of
strings in alphabetical order.

DAY 8

1.Explain the concept of memory segregation on RAM and how it
influences program performance. Provide examples of situations
where proper memory management is crucial.

2.Introduce the concept of Java String and discuss its significance in
Java programming. Explain how strings are stored in memory and
highlight the immutability of Java strings.

3.Explore the concept of immutable strings using the String class in
Java. Discuss the advantages of using immutable strings and
provide examples demonstrating their immutability.

DAY 9

1.Explain the concept of mutable strings in Java using the
StringBuffer class. Compare the String and StringBuffer
classes, highlighting scenarios where mutable strings are
advantageous. Provide code examples to illustrate the mutability of
StringBuffer.

2.Introduce the StringBuilder class in Java and discuss how it
differs from StringBuffer. Provide examples showcasing the
mutability of strings using StringBuilder. Highlight scenarios
where StringBuilder is preferred over StringBuffer.

3.Design practice programs focusing on string manipulation.
Include tasks such as reversing a string, finding the frequency of
characters, and checking for palindromes. Encourage students to
use both immutable and mutable approaches (String and
StringBuilder/StringBuffer) where applicable.

DAY 10

1.Explain the concept of method overloading in Java. Provide
examples to illustrate method overloading with different parameter
types, numbers, and orders. Discuss the benefits and use cases of
method overloading.

2.Discuss the use of static variables in Java. Explain their
significance, initialization, and how they differ from instance
variables. Provide examples demonstrating the behavior of static
variables in both static and non-static contexts.

3.Explain the role of static blocks and static methods in Java.
Provide examples to demonstrate the use of static blocks for
initialization and static methods for utility operations. Discuss when
to use static blocks and methods.

DAY 11

1.Explain the concept of encapsulation in object-oriented
programming. Describe how encapsulation is achieved in Java and
why it is important. Provide examples illustrating the use of access
modifiers to control access to class members.

2.Discuss the significance of constructors in Java. Explain the types
of constructors, including default, parameterized, and constructor
overloading. Provide examples illustrating the use of constructors in
initializing objects.

3.Combine the concepts of encapsulation and constructors to design
a class that encapsulates the details of a bank account. Use private
data members for account details and provide constructors for
object initialization. Include methods for deposit, withdrawal, and
balance inquiry, ensuring proper encapsulation.

DAY 12

1.Explain the concept of inheritance in Java. Discuss how it
promotes code reusability and describe the relationship between
superclasses and subclasses. Provide examples illustrating single
inheritance and multiple inheritance.

2.Discuss the rules of inheritance in Java. Explain concepts such as
method overriding, access modifiers, and the "super" keyword.
Provide examples to illustrate how these rules are applied in
practical scenarios.

3.Explain the types of methods in inheritance, including instance
methods, static methods, and final methods. Discuss how these
methods behave in the context of inheritance and when each type is
appropriate. Provide examples to illustrate their usage.

DAY 13

1.Explain the delegation model in Java. Discuss how delegation is
different from inheritance, and provide examples to illustrate the
use of delegation in designing classes. Highlight scenarios where
delegation is a preferable design choice.

2.Discuss the execution of constructors in inheritance. Explain how
constructors are called in both the superclass and subclass during
object creation. Provide examples to illustrate the sequence of
constructor execution in single and multiple inheritance scenarios.

3.Explore the concept of constructor chaining in inheritance. Discuss
how constructors can call other constructors within the same class
or in the superclass. Provide examples illustrating constructor
chaining and discuss its implications on object initialization.

DAY 14

1.Explain the concept of polymorphism in Java. Discuss the types of
polymorphism, including compile-time (method overloading) and
runtime (method overriding) polymorphism. Provide examples to
illustrate each type and discuss the benefits of polymorphism in
object-oriented programming.

2.Discuss the concept of abstraction in Java. Explain how
abstraction involves hiding complex implementation details and
exposing only relevant features through abstract classes and
interfaces. Provide examples to illustrate the use of abstract classes
and interfaces in achieving abstraction.

3.Explore the concept of runtime polymorphism through interfaces
in Java. Discuss how interfaces allow for multiple inheritance and
how they are used to achieve abstraction. Provide examples
illustrating the implementation of interfaces and their impact on
achieving code flexibility.

DAY 15

1.Discuss the rules of interfaces in Java. Explain the principles and
limitations that govern the use of interfaces. Provide examples to
illustrate how interfaces are declared, implemented, and used in
Java programs.

2.Compare and contrast abstract classes and interfaces in Java.
Discuss the similarities, differences, and scenarios where each is
most appropriate. Provide examples to illustrate the use of abstract
classes and interfaces in different situations.

3.Explain the concept of default methods in interfaces and how they
address the issue of backward compatibility. Discuss the rules and
considerations when using default methods. Provide examples to
illustrate the use of default methods in interfaces.

DAY 16

1.Differentiate between errors and exceptions in Java. Explain the
types of errors and exceptions, and discuss their impact on program
execution. Provide examples to illustrate scenarios where errors and
exceptions may occur.

2.Discuss the mechanisms for exception handling in Java. Explain
the importance of exception handling in maintaining robust and
reliable programs. Describe the key components of the exception
handling mechanism, such as the try-catch block, throw statement,
and the finally block.

3.Explain the try-catch block in Java for handling exceptions.
Discuss the syntax, purpose, and best practices associated with try-
catch blocks. Provide examples illustrating the use of try-catch
blocks to handle different types of exceptions.

DAY 17

1.Explain the concept of "ducking" or "ignoring" exceptions in Java.
Discuss the consequences of ignoring exceptions and situations
where it might be appropriate. Provide examples to illustrate the
concept of ducking exceptions.

2.Discuss the concept of rethrowing exceptions in Java. Explain
when and why rethrowing exceptions might be necessary. Provide
examples illustrating the scenarios where exceptions are caught and
then rethrown.

3.Discuss the concept of custom exceptions in Java. Explain why and
when custom exceptions are useful and how they can be created.
Provide examples of creating and using custom exceptions to
enhance the exception handling mechanism.

DAY 18

1.Explain the concept of a thread in Java. Discuss the advantages
and challenges of using multithreading in a program. Provide
examples illustrating the creation and execution of threads in Java.

2.Discuss the role of the thread scheduler in managing threads in a
multithreaded environment. Explain how the scheduler determines
the execution order of threads and the factors influencing thread
scheduling. Provide examples illustrating the thread scheduling
mechanism in Java.

3.Explain the concept of single-threaded programming. Discuss the
advantages and limitations of single-threaded programming
compared to multithreading. Provide examples illustrating scenarios
where single-threaded programming is appropriate.

DAY 19

1.Explain how to implement multithreading in Java using the
Thread class. Discuss the steps involved in creating and running
multiple threads using the Thread class. Provide examples
illustrating the implementation of multithreading using the Thread
class.

2.Discuss the concept of multithreading in Java using the Runnable
interface. Explain the advantages of implementing multithreading
through the Runnable interface compared to extending the Thread
class. Provide examples illustrating the implementation of
multithreading using the Runnable interface.

3.Compare and contrast the implementation of multithreading
using the Thread class and the Runnable interface in Java. Discuss
the scenarios where each approach is preferable and the benefits of
using one over the other. Provide examples to illustrate the
differences and similarities.

DAY 20

1.Explain the concept of a race condition in multithreaded
programming. Discuss the scenarios where race conditions may
occur, the challenges they pose, and strategies for preventing or
handling race conditions in Java.

2.Discuss the concept of daemon threads in Java. Explain what
daemon threads are, their characteristics, and scenarios where they
are useful. Provide examples illustrating the use of daemon threads
in Java.

3.Discuss the common problems associated with multithreaded
programming in Java. Explain issues such as deadlocks, livelocks,
and resource contention. Provide examples to illustrate each
problem and discuss strategies for avoiding or resolving them.

DAY 21

1.Explain the different states of a thread in Java. Discuss the life
cycle of a thread, including the various states a thread can be in.
Provide examples illustrating the transition between different
thread states.

2.Discuss the concept of a deadlock in multithreaded programming.
Explain what causes a deadlock, the conditions necessary for a
deadlock to occur, and strategies for preventing or resolving
deadlocks in Java.

3.Discuss the Producer and Consumer problem in the context of
multithreading. Explain the challenges involved in designing a
solution for the Producer and Consumer problem and provide
examples illustrating how it can be implemented in Java.

DAY 22

1.Explain the concept of ArrayList in Java. Discuss its characteristics,
advantages, and use cases. Provide examples demonstrating the
creation, modification, and traversal of ArrayLists in Java.

2.Discuss the LinkedList data structure in Java. Explain its
characteristics, advantages over ArrayList in certain scenarios, and
use cases. Provide examples demonstrating the creation,
modification, and traversal of LinkedLists in Java.

3.Compare and contrast ArrayList and LinkedList in Java. Discuss
their differences in terms of performance, memory usage, and
suitability for different use cases. Provide examples illustrating
scenarios where one might be preferred over the other.

DAY 23

1.Explain the concept of ArrayDeque in Java. Discuss its
characteristics, advantages, and use cases. Provide examples
demonstrating the creation, modification, and traversal of
ArrayDeque in Java.

2.Discuss the PriorityQueue data structure in Java. Explain its
characteristics, advantages, and use cases. Provide examples
demonstrating the creation, modification, and traversal of
PriorityQueue in Java.

3.Discuss the TreeSet, HashSet, and LinkedHashSet data
structures in Java. Explain their characteristics, advantages, and use
cases. Provide examples demonstrating the creation, modification,
and traversal of each set implementation in Java

DAY 24

1.Explain the process of sorting complex objects in Java. Discuss the
challenges associated with sorting objects that do not have a natural
ordering. Provide examples illustrating how to implement sorting
for complex objects.

2.Discuss the Comparable interface in Java. Explain its role in
enabling natural ordering for objects. Provide examples
demonstrating how to implement the Comparable interface for
complex objects to support sorting.

3.Discuss the Comparator interface in Java. Explain its purpose in
providing custom sorting logic for objects. Provide examples
illustrating how to implement the Comparator interface for
complex objects to support custom sorting.

DAY 25

1.Explain the Collections class in Java. Discuss its role in
providing utility methods for working with collections. Provide
examples illustrating the use of methods from the Collections
class for sorting, searching, and modifying collections.

2.Discuss the HashMap class in Java. Explain its characteristics,
advantages, and use cases. Provide examples illustrating the
creation, modification, and traversal of HashMaps in Java.

3.Discuss the LinkedHashMap and TreeMap classes in Java. Explain
their characteristics, advantages, and use cases. Provide examples
illustrating the creation, modification, and traversal of
LinkedHashMaps and TreeMaps in Java.

DAY 26

1.Explain the concept of a Functional Interface in Java. Discuss its
characteristics and the role of the @FunctionalInterface
annotation. Provide examples illustrating the creation and use of
functional interfaces, including scenarios involving lambda
expressions.

2.Discuss the process of creating objects of interfaces and abstract
classes in Java. Explain scenarios where creating objects of
interfaces and abstract classes is beneficial. Provide examples
illustrating the creation of objects for both interfaces and abstract
classes.

3.Discuss the Optional class in Java. Explain its role in handling
potentially null values and avoiding null pointer exceptions. Provide
examples illustrating the use of Optional to work with nullable
values in Java.

DAY 27

1.Design a collection-based project in Java. The project should
involve the creation, modification, and retrieval of data using
various collection classes, such as ArrayList, HashMap, or TreeSet.
Implement functionalities that showcase the versatility of
collections in handling different types of data.

2.Create a library management system using Java collections.
Implement classes to represent books, users, and transactions.
Utilize collection classes to efficiently manage the storage and
retrieval of these entities. Implement features like borrowing and
returning books, checking user history, and searching for books.

3.Develop a student enrollment system using Java collections.
Create classes to represent students, courses, and enrollments. Use
collection classes to manage student information, course details,
and enrollment records efficiently. Implement functionalities like
enrolling students in courses, checking course availability, and
generating student transcripts.

DAY 28

1.Develop a collection-based project in Java that manages a task-
tracking system. Create classes for tasks, users, and projects.
Implement functionalities for creating tasks, assigning tasks to users,
and tracking task completion

2.Design a collection-based project in Java for a contact
management system. Implement classes for contacts, groups, and
communication logs. Include functionalities such as adding new
contacts, organizing contacts into groups, and logging
communication activities.

3.Create a collection-based project in Java for a simple inventory
management system. Implement classes for products, inventory,
and transactions. Include functionalities such as adding new
products, updating inventory quantities, and generating sales
reports.

DAY 29

1.Provide a comprehensive introduction to databases. Define what a
database is, and explain its significance in modern computing.
Discuss the primary purposes and advantages of using databases in
various applications.

2.Trace the history of databases, highlighting key milestones and
developments. Discuss the evolution of database systems from early
file-based systems to modern database management systems
(DBMS). Explain how the need for efficient data management led to
the development of database technologies.

3.Explain the concept of a Database Management System (DBMS)
and its key features. Discuss how a DBMS facilitates data
organization, retrieval, and manipulation. Provide examples of
popular DBMS platforms and their applications in real-world
scenarios.

DAY 30

1. Explain the process of creating a database using SQL. Provide a
step-by-step guide on how to create a new database. Include
considerations for specifying the database name, character set, and
collation.

2.Explain how to view existing databases in SQL. Provide SQL
queries to retrieve a list of all databases and information about a
specific database.

3.Explain the process of dropping a database in SQL. Provide a step-
by-step guide on how to drop an existing database, including
considerations for ensuring data integrity.

Day-31:

1. Explain the differences between DDL and DML statements in SQL.
Provide examples for each type of statement.

2. What are three common DDL statements in SQL? Provide a simple
example for each.

3.Explain the basic usage of three DML statements in SQL: INSERT,
UPDATE, DELETE.

Day-32:

1. What is the purpose of the SELECT statement in SQL?

2.Explain three types of operators in MySQL with simple examples

3.What does the ORDER BY clause do in a SELECT statement? Provide a
straightforward example.

Day-33:

1.What is the purpose of the SELECT statement in SQL?

2. Explain three types of operators in MySQL with simple examples.

3.What does the ORDER BY clause do in a SELECT statement? Provide a
straightforward example.

Day-34:

1. Explain the use of the GROUP BY clause in a SELECT statement.
Provide an example demonstrating its usage.

2.Describe the purpose of the HAVING clause in a SELECT statement with
the GROUP BY clause. Provide an example illustrating its use.

3.Explain the usage of the BETWEEN clause in a SELECT statement.
Provide an example demonstrating how it works.

Day-35:

1.Explain the concept of Views in SQL. What are the benefits of using
views, and how are they different from tables?

2.Describe the purpose of Indexes in a database. Provide an example of a
scenario where creating an index would be beneficial.

3.Explain the concept of Stored Procedures in SQL. Provide an example
of a simple stored procedure.

Day-36:

1.Explain the purpose of the <html>, <head>, <title>, and <body> tags in
HTML. Provide a simple example of their usage.

2.Describe the usage of headings, paragraphs, and lists in HTML. Provide
examples for each.

3.Explain the use of the and tags in HTML. Provide an
example to illustrate their usage.

Day-37:

1.Explain the purpose of the <meta> tag in HTML and how it is used to
specify the Unicode character set. Provide an example.

2.Describe the purpose of anchor tags (<a>) and the href attribute.
Provide examples of linking to other websites and linking to pages
within a website.

3.Explain how to open a link in a new browser window or tab using HTML.
Provide an example.

Day-38:

1.Explain the purpose of the tag and the src attribute in HTML.

Provide an example and describe the significance of the alt attribute.

2.Describe how to use the width, height, and alt attributes in the
tag. Provide an example to illustrate their usage.

3.Explain the purpose of the <hr> tag in HTML and how to use it to

create horizontal rules. Introduce the <style> tag and describe its role in
adding CSS to HTML.

Day-39:
1.Explain the purpose of the class attribute in HTML. Provide an example
demonstrating its usage.

2.Describe how CSS class selectors work. Provide an example illustrating
the usage of class selectors.

3.Explain the purpose of the tag in HTML. Provide an example
demonstrating its usage.

Day-40:

1.Explain the purpose of the <div> tag in HTML and how it is used to

divide content. Provide an example illustrating the use of <div>.

2.Describe the purpose of assigning IDs to <div> elements. Provide an
example of how to assign and use IDs in HTML and CSS.

3.Explain the usage of the width and max-width properties in CSS.
Provide an example illustrating how to set these properties.

Day-41:

1.Explain the steps to open the DevTools in Google Chrome. What are the
primary panels available in DevTools?

2.Describe how to edit HTML using the DevTools Elements panel. Provide
an example of making a simple edit.

3.Explain how to enable, disable, and edit CSS using the DevTools.
Provide an example of fine-tuning CSS.

Day-42:

1.Provide a brief overview of JavaScript and its historical background.

2.Explain the relationship between JavaScript and ECMAScript. Why is
ECMAScript significant in the context of JavaScript?

3.Discuss variable declaration, variable scope, and block scope in
JavaScript.

Day-44:

1.Explain the concept of error handling in JavaScript. How can errors be
thrown and caught in JavaScript?

2.Describe the difference between number literals and the Number
object in JavaScript. Provide examples of each.

3.Explain the purpose of the Math object in JavaScript. Provide examples
of methods available in the Math object.

Day-45:
1. Explain the concept of string literals in JavaScript. Provide an example
of using string literals.

2.Describe the purpose of the String object in JavaScript. Provide
examples of methods available in the String object.

3.Explain the process of creating and populating arrays in JavaScript.
Provide an example of an array and how to add elements to it.

Day-46:

1.Explain the process of defining functions in JavaScript. Provide an
example of a simple function.

2.Describe the concept of closures in JavaScript. Provide an example
illustrating the use of closures.

3.Explain the differences between the Set object type and the Map object
type in JavaScript. Provide examples of using both.

Day-47:

1.Explain the document structure in HTML and how it relates to the DOM.
Provide an example of an HTML document structure.

2.Describe how to select document elements using query selectors in
JavaScript. Provide an example.

3.Explain how to create, change, and delete nodes in the DOM using
JavaScript. Provide an example that demonstrates these operations.

Day-48:

1.Explain the concept of event propagation in JavaScript. How do events
propagate through the DOM, and what is event bubbling?

2.Describe the process of registering and invoking event handlers in
JavaScript. Provide an example illustrating the registration of a click
event handler.

3.Explain the concept of the event object in JavaScript. How can it be
used in event handling?

Day-49:

1.Provide an introduction to AngularJS. What is AngularJS, and what are
its key features?

2.Explain the concepts of MVC (Model-View-Controller) architecture and
modular architecture in the context of AngularJS.

3.Describe the steps to set up the environment for AngularJS
development. What tools and dependencies are commonly used?

Day-50:

1.Explain the concept of Number and String Expressions in Angular. How
are expressions used in Angular templates, and provide an example?

2.Describe Object Binding and Expressions in Angular. How can you bind
object properties to the view, and provide an example?

3.Explain the concept of Working with Arrays in Angular. How can you
iterate over an array in the template, and provide an example?

Day-51:

1.Explain the concept of Conditional Directives in Angular. Provide an
example of using the *ngIf directive and describe how it works.

2.Describe Styles Directives in Angular. How can you dynamically apply
styles to elements using the [style] directive? Provide an example.

3.Explain the concept of Mouse and Keyboard Events Directives in
Angular. Provide an example of using (click) and (keyup) events and
describe how they work.

Day-52:

1.Explain the concept of Controllers in Angular. What role do controllers
play in an Angular application, and how are they associated with the
DOM?

2.Describe the programming of controllers and the use of the $scope

object in Angular. How does the $scope object facilitate communication
between controllers and views?

3.Explain how behavior is added to a $scope object in Angular. Provide
an example demonstrating the addition of a method to handle a user
action.

Day-53:

1.Explain the concept of Built-In Filters in Angular. What is the purpose
of filters, and how are they applied to data in the view?

2.Describe the Uppercase and Lowercase Filters in Angular. How can
these filters be applied to text data, and provide an example?

3.Explain the Currency and Number Formatting Filters in Angular. How
can these filters be used to format numeric data, and provide an example?

Day-54:

1.Provide an introduction to JDBC (Java Database Connectivity). What is
the role of JDBC in Java, and how does it facilitate database connectivity?

2.Explain the types of JDBC Drivers. What are the four types of JDBC
drivers, and how do they differ in terms of architecture and
implementation?

3.Describe the PreparedStatement interface in JDBC. What is its purpose,
and how does it differ from a Statement?

Day-55:

1.Explain the concept of CRUD operations in the context of database
interactions. What are the key operations involved in CRUD, and how do
they correspond to SQL statements?

2.Demonstrate the use of the Statement interface for the CRUD
operation "Read" in JDBC. How can you execute a SELECT query using
the Statement interface, and provide an example?

3.Illustrate the use of the Statement interface for the CRUD operation
"Create" in JDBC. How can you execute an INSERT query using the
Statement interface, and provide an example?

Day-56:

1.Explain the significance of the PreparedStatement interface in JDBC.
How does it enhance the execution of CRUD operations compared to the
Statement interface?

2.Illustrate the use of the PreparedStatement interface for the CRUD
operation "Update" in JDBC. How can you execute an UPDATE query
using the PreparedStatement interface, and provide an example?

3.Demonstrate the use of the PreparedStatement interface for the CRUD
operation "Delete" in JDBC. How can you execute a DELETE query using
the PreparedStatement interface, and provide an example?

Day-57:

1.Define the concept of transaction management in the context of
databases. What is a database transaction, and why is it important in
ensuring data consistency?

2.Define the concept of transaction management in the context of
databases. What is a database transaction, and why is it important in
ensuring data consistency?

3.Describe the methods provided by JDBC for transaction management.
How can you use the commit and rollback methods to control
transactions in JDBC?

Day-58:

1.Define Web Application Architecture and its key components. What are
the primary layers in a typical web application, and how do they
collaborate to handle client requests?

2.Explain the concept of Servlet Chaining in a Java web application. How
does servlet chaining allow multiple servlets to process a single client
request, and what are its advantages?

3.Illustrate a scenario where Servlet Chaining can be beneficial. Provide a
practical example of using multiple servlets in a chain to handle a specific
client request.

Day-59:

1.Explain how Servlet Chaining can be implemented using the Model-
View-Controller (MVC) architecture in a Java web application. How do
the components of the MVC pattern collaborate in the context of servlet
chaining?

2.Discuss the role of Sessions in a Java web application. What is the
purpose of sessions, and how do they contribute to maintaining state
information between client and server?

3.Provide a practical example of Servlet Chaining using the MVC
architecture and incorporating session management. How can multiple
servlets collaborate to process a request, and how can sessions be used
to maintain user-specific data?

Day-60:

1.Explain the integration of Servlets and JDBC in a Java web application.
How can Servlets be used to interact with a database using JDBC, and
what are the key steps involved?

2.Discuss the role of Cookies in a web application. How are Cookies used
to store and retrieve information on the client side, and what are their
advantages and limitations?

3.Provide a practical example of using Servlets with JDBC and Cookies in
a web application. How can a Servlet interact with a database to retrieve
information, and how can Cookies be used to store user-specific data on
the client side?

Day-61:

1.Explain the architecture of Hibernate in a Java application. What are
the key components and their roles in the Hibernate framework?

2.Discuss the CRUD operations in Hibernate. What are the four main
operations, and how do they correspond to Create, Read, Update, and
Delete in a database?

3.Illustrate a scenario where Hibernate can be beneficial for CRUD
operations. Provide a practical example, including entity mappings and
database interactions.

Day-62:

1.Explain the concept of mapping in Hibernate. What is the purpose of
mapping, and how does it establish a relationship between Java objects
and database tables?

2.Discuss the different types of associations in Hibernate mapping. What
are the main types of relationships between entities, and how are they
defined in the mapping annotations or XML configuration?

3.Explain the concept of Hibernate Inheritance Mapping. How does
Hibernate handle inheritance in entity classes, and what are the
strategies for mapping inheritance relationships?

Day-63:

1.Explain the concept of Hibernate mapping. What is the purpose of
mapping in Hibernate, and how does it establish a connection between
Java objects and database tables? Provide an example with annotations.

2.Discuss the importance of associations in Hibernate mapping. What are
the different types of associations, and how are they represented in
entity classes using annotations? Provide an example.

3.Explain Hibernate Inheritance Mapping. What are the different
strategies for mapping inheritance relationships, and how are they
implemented using annotations? Provide an example.

Day-64:

1.Design the database schema for an online bookstore using Hibernate.
Define entities such as Book, Author, and Category. Implement
relationships between these entities, and provide annotations for
mapping. Include a one-to-many relationship between Author and Book,

and a many-to-one relationship between Book and Category.

2.Create a Servlet-based web application for the online bookstore project.
Implement servlets for displaying a list of books, details of a specific
book, and a form for adding a new book. Utilize Hibernate to interact
with the database. Implement proper exception handling and error
messages.

3.Implement user authentication and authorization in the online
bookstore project using Servlets and Hibernate. Create a User entity with

roles (e.g., USER and ADMIN). Design servlets for user registration,
login, and logout. Restrict access to certain servlets based on user roles.

Day-65:

1.Explain the architecture of the Spring framework. Describe the key
components and their roles in the Spring architecture. How does Spring
support modularity and extensibility?

2.Compare Spring with Enterprise JavaBeans (EJB). Discuss the
similarities and differences between the two technologies. In what
scenarios would you prefer using Spring over EJB, and vice versa?

3.Explain the concept of Inversion of Control (IoC) in the context of the
Spring framework. How does IoC promote loose coupling and enhance
the testability of applications? Provide a practical example.

Day-66:

1.Explain the concept of Dependency Injection (DI) using setter methods
in the context of the Spring framework. How does this approach enhance
modularity and maintainability in a Java application? Provide an example
with annotations.

2.Discuss the benefits of using Constructor Injection for Dependency
Injection in the Spring framework. How does Constructor Injection
contribute to better testing and why is it considered a recommended
practice in Spring applications? Provide an example with annotations.

3.Compare and contrast Setter Injection and Constructor Injection in the
context of Spring Dependency Injection. What are the scenarios where
one approach might be more suitable than the other? Provide examples
illustrating the use of both Setter Injection and Constructor Injection.

Day-67:

1.Explain the architecture of the Spring MVC framework. Describe the
key components and their roles in the Spring MVC architecture. How
does the Model, View, and Controller interact to handle HTTP requests
and responses in a Spring MVC application?

2.Create a simple Spring MVC application for managing a list of products.
Implement a controller to handle requests for displaying the list of
products. Use Thymeleaf as the view template engine. Provide a step-by-
step explanation of the code and configuration involved.

3.Implement form handling in the Spring MVC application created in
Assignment 2. Create a controller method for displaying a form to add a
new product and another method for processing the form submission.
Use Thymeleaf for rendering the form and display appropriate messages
after form submission.

Day-68:

1.Explain the significance of annotations in Spring. Provide a brief
overview of commonly used annotations in a Spring application, such as
@Component, @Autowired, @RequestMapping, and @Service. How do
these annotations contribute to the development of a well-organized and
modular Spring application?

2.Integrate a Spring Eureka Server into a microservices architecture.
Explain the role of Eureka Server in service registration and discovery.
Provide an example configuration for a simple Eureka Server setup, and
describe how microservices can register themselves with the server.

3.Discuss the use of the @FeignClient annotation in a Spring Cloud
microservices architecture. What is its purpose, and how does it simplify
communication between microservices? Provide an example scenario and
demonstrate how @FeignClient is used.

Day-69:

1. Explain the role of the Spring Boot JDBC template in a Spring Boot
application. Discuss how it simplifies database interactions and provides
a higher-level abstraction over traditional JDBC. Provide an example
scenario demonstrating the use of the JDBC template for querying a
database in a Spring Boot application.

2.Discuss the benefits of using named parameters in Spring Boot JDBC
template. How does the usage of named parameters improve the
readability and maintainability of SQL queries in a Spring Boot
application? Provide an example demonstrating the use of named
parameters in a JDBC template query.

3.Explain how Spring Boot manages transactions with the JDBC template.
Discuss the benefits of using programmatic transaction management and
provide an example demonstrating the use of programmatic transactions
with the JDBC template in a Spring Boot application.

Day-70:

1.Explain the concept of entity relationships in Spring Data JPA. Discuss
the types of relationships supported (e.g., @OneToOne, @OneToMany)
and provide an example scenario illustrating the use of such relationships
in a Spring Boot application.

2.Discuss the concept of auditing in Spring Data JPA. How can you
enable entity auditing to track changes such as creation and modification
timestamps? Provide an example demonstrating the use of auditing
annotations in a Spring Boot application.

3.Explain the use of Spring Data JPA projections. What are projections,
and how do they help in retrieving specific subsets of data from entities?
Provide an example scenario demonstrating the use of projections in a
Spring Boot application.

Day-71:

1.Explain the concept of RESTful web services in the context of Spring.
Discuss the key principles of REST, such as statelessness and uniform
interface, and how Spring facilitates the development of RESTful APIs.
Provide an example scenario illustrating the creation of a simple RESTful
service using Spring.

2.Discuss the use of Spring Boot and the @RestController annotation in
building RESTful web services. How does Spring Boot simplify the
development of RESTful APIs, and how does the @RestController differ
from traditional MVC controllers in Spring? Provide an example
demonstrating the creation of a simple RESTful service using Spring Boot
and @RestController.

3.Explain the concept of HATEOAS (Hypermedia as the Engine of
Application State) in the context of RESTful web services. How does
Spring support HATEOAS, and what benefits does it bring to RESTful
APIs? Provide an example scenario demonstrating the use of HATEOAS in
a Spring RESTful service.

Day-72:

1.Discuss the role of content negotiation in Spring RESTful services. What
is content negotiation, and how does Spring support it? Provide an
example scenario demonstrating the use of content negotiation in a
Spring Boot application.

2.Explain the use of exception handling in Spring RESTful services. How
does Spring handle exceptions in the context of RESTful APIs, and what
mechanisms are available for customizing error responses? Provide an
example scenario demonstrating the implementation of exception
handling in a Spring Boot RESTful service.

Day-73:

1. Design a Spring Boot project for a simple online bookstore.
Implement entity classes for books, authors, and customers.
Utilize JPA for data persistence and retrieval. Include
functionalities such as adding new books, searching for books,
and managing customer orders.

2.Create a Spring Boot project for a task management system.
Use JPA for data persistence and the JDBC template for
database interactions. Implement entities for tasks, users, and
projects. Include functionalities such as creating tasks,
assigning tasks to users, and tracking project progress.

3.Develop a Spring Boot project for a blogging platform.
Utilize JPA for data persistence and JDBC template for
database interactions. Implement entities for posts, users, and
comments. Include functionalities such as creating blog posts,
commenting on posts, and managing user profiles.

Day-74:

1.Design a Spring Boot project for an e-commerce platform.
Utilize JPA for data persistence and the JDBC template for
database interactions. Implement entities for products, orders,
and customers. Include functionalities such as adding products
to a shopping cart, processing orders, and managing customer
accounts.

2.Create a Spring Boot project for a student enrollment system.
Utilize JPA for data persistence and JDBC template for
database interactions. Implement entities for students, courses,
and enrollments. Include functionalities such as enrolling
students in courses, checking course availability, and
generating student transcripts.

Day-75:

1. Design a Spring Boot project for a contact management
system. Utilize JPA for data persistence and JDBC template for
database interactions. Implement entities for contacts, groups,
and communication logs. Include functionalities such as
adding new contacts, organizing contacts into groups, and
logging communication activities.

2.Create a Spring Boot project for a movie rental system using
JPA. Design entities for movies, customers, and rentals.
Implement functionalities such as renting movies, returning
movies, and generating reports on customer rental history.

Day-76:

1.Explain the concept of NoSQL databases. Provide an
overview of what NoSQL is and highlight its key characteristics.
Discuss scenarios where NoSQL databases are suitable
compared to traditional relational databases.

2.Examine the differences between NoSQL and Relational
Database Management Systems (RDBMS). Discuss key
distinctions in terms of data models, schema, scalability, and
use cases.

3.Discuss the benefits of using NoSQL databases. Explain
scenarios where NoSQL databases outperform traditional
relational databases and highlight the advantages they bring
to modern application development.

Day-77:

1.Explain the design goals of MongoDB. Discuss how
MongoDB aims to address the limitations of traditional
relational databases and achieve its objectives.

2.Introduce the MongoDB Shell and its significance in
MongoDB. Discuss how developers can use the MongoDB Shell
to interact with the database, execute queries, and perform
administrative tasks.

3.Introduce JSON (JavaScript Object Notation) and its
significance in MongoDB. Discuss the structure of JSON and
how it is used for representing data in MongoDB.

Day-78:

1.Provide a guide on installing the necessary tools for working
with MongoDB, including the MongoDB server and the
MongoDB Shell. Explain the steps involved in the installation
process.

2.Provide an overview of a blog project built using Node.js,
Express, and MongoDB. Discuss the role of Swig as a template
engine and the significance of Node Packaged Modules (npm)
in managing project dependencies.

3.Explain the CRUD operations (Creating, Reading, and
Updating Data) in MongoDB using the Mongo Shell. Provide
examples of how developers can perform these operations
interactively using the Mongo Shell.

Day-79:

1.Explain how indexes contribute to improving performance in
MongoDB. Discuss the types of indexes available in MongoDB
and how they can be used to optimize query execution.

2.Discuss the importance of monitoring and understanding
performance in MongoDB. Outline the key metrics and tools
available for monitoring MongoDB performance, and explain
how they contribute to maintaining a healthy database system.

3.Examine the challenges and strategies associated with
achieving high performance in sharded environments in
MongoDB. Discuss how sharding impacts database scalability
and how developers can optimize performance in sharded
MongoDB clusters.

Day-80:

1.Discuss the goals of the MongoDB Aggregation Framework.
Explain how the Aggregation Framework enables developers
to perform complex data transformations and manipulations
in MongoDB.

2.Explain the concept of the pipeline in the MongoDB
Aggregation Framework. Discuss the stages that can be
included in a pipeline and their significance in performing data
transformations.

3.Compare the MongoDB Aggregation Framework with SQL
facilities. Discuss how the Aggregation Framework provides
similar functionality to SQL GROUP BY, JOIN, and other
operations, highlighting its advantages in the context of
MongoDB.

