
Bank Marketing
Campaign Analysis

Introduction

In the ever-evolving landscape of marketing, understanding the

factors that drive customer behaviour is crucial for successful

campaign strategies. This article delves into the pivotal role played

by job type, education level, and marital status in shaping an

individual’s decision to subscribe to a term deposit. By analysing

these key demographic variables, we can identify potential customer

segments that show a higher propensity to say ‘yes’ to a term

deposit. Furthermore, we explore the communication preferences of

customers and consider whether alternative modes may prove more

effective in improving conversion rates. Armed with these insights,

marketers can tailor their efforts towards targeted segments and craft

compelling campaigns that resonate with specific demographics,

ultimately maximizing the potential for successful term deposit

subscriptions.

Approach

In order to optimize marketing campaigns with the help of the

dataset, we will have to take the following steps:

1. Import data from dataset and perform initial high-level

analysis: look at the number of rows, look at the missing

values, look at dataset columns and their values respective

to the campaign outcome.

2. Cleaning the data

3. Model Selection and Optimization

4. Model Interpretability and Insights:

Importing the Libraries and the Data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import OneHotEncoder, StandardScaler

from sklearn.metrics import classification_report, accuracy_score

from sklearn.ensemble import RandomForestClassifier

from imblearn.over_sampling import SMOTE

import xgboost as xgb

from sklearn.utils.class_weight import compute_class_weight

from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVC

all_datdata = pd.read_csv("bank-full.csv", delimiter=";")

Data Exploration

Let's take a look at the column types by using pandas shape and

types:

print("The shape is:", data.shape)

print("The column types are:", data.dtypes)

The shape is: (45211, 17)

The column types are: age int64

job object

marital object

education object

default object

balance int64

housing object

loan object

contact object

day int64

month object

duration int64

campaign int64

pdays int64

previous int64

poutcome object

y object

dtype: object

*Missing Attribute Values: None

We can use the columns to distinguish numerical and categorical

columns:

cat = []

num=[]

for col in data.columns:

 if data[col].dtypes == "object":

 cat.append(col)

 else:

 num.append(col)

print("Categorical:",cat)

print("Numerical:", num)

Categorical: ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y']

Numerical: ['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous']

Explore the Categorical Columns

In order to understand the distributions of the categorical columns in

the dataset, we can iterate over each categorical feature. For every

cat feature, a subplot as a countplot is added.

c = len(cat)

rows = (c // 3) + (c % 3 > 0)

print(rows)

plt.figure(figsize=(15,5*rows))

for i, cx in enumerate(cat, start=1):

 plt.subplot(rows, 3, i)

 sns.countplot(x=cx, data=data, palette="Set2")

 plt.title(f"Countplot of {cx}")

 plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

Highlights from the plot:

Job: Most individuals belong to the ‘blue-collar’ and ‘management’

job categories, followed by ‘student’, ‘unemployed’, and ‘unknown’

Marital Status: A majority are married’, followed by ‘single’, and

then a smaller portion of ‘divorced’.

Education: Those with ‘secondary’ education form the largest group,

followed by ‘tertiary’. ‘

Default on Credit: A significant majority have no credit defaults,

with a very small portion having defaulted.

Housing Loan: Most have a housing loan

Personal Loan: The majority do not have a personal loan

Previous Campaign Outcome: For most individuals, the outcome of

the previous campaign remains ‘unknown’. Of those known,

‘failure’ is more common than ‘success’.

y: The client subscribed to a term deposit as the expected majority of

the portion is No.

Explore the Numerical Columns

With the same logic/code let’s take a look at the numerical columns:

n = len(num)

nrows = (n // 3) + (n % 3 > 0)

print(rows)

plt.figure(figsize=(15,5*nrows))

for i,nx in enumerate(num, start=1):

 plt.subplot(nrows, 3, i)

 sns.histplot(x=nx, data=data, bins=15, color="green", kde=False)

 plt.title(f"Countplot of {nx}")

 plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

Highlights from the plot:

Age: The majority of the customers fall within the age bracket of 20

to 60, with a pronounced peak around the late 20s to mid 30s.

Balance: Most customers have a balance in the lower range, with a

few outliers possessing significantly higher balances.

Day: The distribution shows a relatively even spread of days in the

month, with some noticeable peaks around specific days.

Duration: Most of the interactions lasted for a few minutes, with a

small number lasting much longer.

previous: A significant portion of clients (at least 75%) were not

contacted in previous campaigns.

pdays: This indicates the number of days since the customer was last

contacted. The leftmost bar represents -1, which indicates that the

customer was not contacted previously.

Final Observations upon examining the plots from the categorical

and numerical distributions:

Customer Profiles:

There is a concentration of customers in the age group of late 20’s

and mid-30s mostly having a secondary education and being

‘married’. These demographics seem to be the primary targets of

marketing campaigns.

Economic Tokens:

A large proportion of customers do not have any default credit, have

housing loans, and have low balances. This suggests that while many

might have stable financial points, they also have financial

commitments (housing loans).

Contact and Previous Campaigns:

The data shows a pattern of limited engagement in terms of the

duration of contacts and the number of times a customer is

contacted. That may indicate missed opportunities in engaging

recurring customers.

Outliers and Data Cleaning

Taking a closer look at the data:

Last contact duration, attribute highly affects the output target (e.g.,

if duration=0 then y=’no’). Yet, the duration is not known before a

call is performed. Also, after the end of the call y is obviously

known. Thus, this input should only be included for benchmark

purposes and should be discarded if the intention is to have a

realistic predictive model.

data = data.drop('duration', axis=1)

It is seen that even though I have raised the bins up to a decent

number, some values are not represented in the histograms. So it is

clear that we are observing outliers in the Balance, Duration,

Campaign, Pdays, and Previous plots.

#Balance outliers holds a valueable info so I will not touch

data[["duration", "campaign", "pdays", "previous"]].describe()

 duration campaign pdays previous

count 45211.000000 45211.000000 45211.000000 45211.000000

mean 258.163080 2.763841 40.197828 0.580323

std 257.527812 3.098021 100.128746 2.303441

min 0.000000 1.000000 -1.000000 0.000000

25% 103.000000 1.000000 -1.000000 0.000000

50% 180.000000 2.000000 -1.000000 0.000000

75% 319.000000 3.000000 -1.000000 0.000000

max 4918.000000 63.000000 871.000000 275.000000

To detect outliers I will use IQR:

Q1 = data['balance'].quantile(0.25)

Q3 = data['balance'].quantile(0.75)

IQR = Q3 - Q1

Filtering the outliers

outliers = data[(data['balance'] < (Q1 - 1.5 * IQR)) | (data['balance'] > (Q3 + 1.5 * IQR))]

(len(outliers)/len(data))*100

%10.459843843312468 of the Balance column is outliers.

Instead of messing with the data, we will proceed with oversampling

the minority groups.

Analysis of the response column

We can look at the y values among all the categorical columns.

Unlike other subplots, we need to make sure the max values stays in

the plot. For each plot, the y-axis is adjusted based on the maximum

count of the current category.

ed_list = ["job", "education", "marital", "contact", "housing", "loan"]

n_rows = 4

n_cols = 3

plt.figure(figsize=(15, 6 * n_rows))

for index, column in enumerate(ed_list, start=1):

 plt.subplot(n_rows, n_cols, index)

 sns.countplot(data=data, x=column, hue='y', palette="Set2")

 # Get the maximum count for the current column

 max_count = data[column].value_counts().max()

 max_rounded = (max_count // 100) * 100

 plt.yticks(list(range(0, max_rounded + 1, max_rounded // 10)))

 plt.title(f'Distribution of y across "{column}"')

 plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

The job type plays a pivotal role in deciding whether an individual

subscribes to a term deposit. While blue-collar, management, and

technician categories house the most clients, the propensity to say

‘yes’ to a term deposit is noticeably higher among students and

retired individuals. This suggests that marketing efforts might yield a

higher conversion rate if tailored towards these groups.

The education level also correlates with decisions on term deposits.

Those with tertiary education show a pronounced inclination

towards subscribing, hinting at the potential value of crafting

campaigns that resonate with educated demographics.

Marital status showcases that while a vast number of clients are

married, it is the single clients who might have a relatively higher

likelihood to subscribe to a term deposit.

Communication via cellular seems to be dominant, but it’s important

to consider if this mode is also the most effective in terms of

conversion rates or if alternative modes like telephone yield better

results, especially given the high ‘no’ rates seen in the cellular

category.

Lastly, housing decisions also influence term deposit subscriptions.

A significant chunk of clients with housing loans are less inclined to

say ‘yes’, indicating that financial commitments like housing loans

might deter clients from taking on additional financial products.

In sum, for better conversion rates, focusing on demographics like

students, retired individuals, those with tertiary education, and

possibly single clients could be fruitful. Moreover, evaluating the

effectiveness of communication modes and understanding the

financial commitments of clients can further refine the marketing

approach.

Model Selection and Optimization

If you are feeling safe to make some predictions, follow along! It

will be a long journey.

I have planned to implement:

1. Decision Trees and Random Forests

2. XGBoost for Classification

3. Support Vector Machines

1) Decision Trees and Random Forests

Decision Trees break down data by asking questions about specific

features to make the data more organized.

Random Forest uses many of these trees and takes samples from the

data to create them. The randomness comes from the method of

picking different features unpredictably.

1.1. Pre-Processing:

Decision Trees & Random Forests can handle categorical variable

but to be practical we will convert them with One-Hot Encoding.

We do not necessarily do feature scaling, at least for this part

because trees are not sensivite.

We have a class imbalance and since we are dealing with the trees

we are free to apply SMOTE.

We are already clean the missing data so we good to go!

1.1.1 Encoding:

I have used One-hot Encoding as a choice because in some of the

categories we do not have an inherit order. But for the curious heads

I have also applied Label Encoding which I will give the

performance rates.

We will drop the first category in order to avoid duplication and

transform the categorical column. Now they are represented as

individual categories seen as below. Then remove the original

categorical categories and replaced witht the one-hot encoded

counterparts.

1. One-Hot-Encoding Categorical Variables

ohe = OneHotEncoder(drop='first', sparse=False)

encoded_features = ohe.fit_transform(data[cat])

encoded_df = pd.DataFrame(encoded_features, columns=ohe.get_feature_names_out(cat))

data = data.drop(columns=cat)

data = pd.concat([data, encoded_df], axis=1)

After One-hot Encoded, `data.columns` become as below. From now

on our target variable is `y_yes`

Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous',

 'job_blue-collar', 'job_entrepreneur', 'job_housemaid',

 'job_management', 'job_retired', 'job_self-employed', 'job_services',

 'job_student', 'job_technician', 'job_unemployed', 'job_unknown',

 'marital_married', 'marital_single', 'education_secondary',

 'education_tertiary', 'education_unknown', 'default_yes', 'housing_yes',

 'loan_yes', 'contact_telephone', 'contact_unknown', 'month_aug',

 'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun',

 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',

 'poutcome_other', 'poutcome_success', 'poutcome_unknown', 'y_yes'],

 dtype='object')

1.1.2 Oversampling with SMOTE

As the target variable is imbalanced, we need to oversample the

minority class with SMOTE.

Split the dataset: I prefer %80-%20

X1 = data.drop('y_yes', axis=1)

y1 = data['y_yes']

X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size=0.2, random_state=42)

And apply the SMOTE, to the training set:

smote = SMOTE(random_state=42)

X_resampled1, y_resampled1 = smote.fit_resample(X_train1, y_train1)

1.2. Training

We have clean the missing values, convert the categorical valuesfor

better computation handled with the class imbalance for a better

score, we can proceed with the training:

Training Decision Tree

dt_model = DecisionTreeClassifier(random_state=42)

dt_model.fit(X_resampled1, y_resampled1)

dt_predictions1 = dt_model.predict(X_test1)

Training Random Forest

rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

rf_model.fit(X_resampled1, y_resampled1)

rf_predictions = rf_model.predict(X_test1)

1.3. Scores

Evaluation

print("Decision Tree Classifier:")

print("Accuracy:", accuracy_score(y_test1, dt_predictions1))

print(classification_report(y_test1, dt_predictions1))

1.3.1 The results for the One-Hot Encoded,

Reduced Class Imbalance with SMOTE,

Decision Tree Scores:

Decision Tree Classifier:

Accuracy: 0.8281543735486011

 precision recall f1-score support

 0.0 0.91 0.90 0.90 7952

 1.0 0.31 0.33 0.32 1091

 accuracy 0.83 9043

 macro avg 0.61 0.61 0.61 9043

weighted avg 0.83 0.83 0.83 9043

Not bad but we can raise the accuracy score with Random Forests.

So training again:

Evaluation

print("\nRandom Forest Classifier:")

print("Accuracy:", accuracy_score(y_test1, rf_predictions))

print(classification_report(y_test1, rf_predictions))

1.3.2 The results for the One-Hot Encoded,

Reduced Class Imbalance with SMOTE,

Random Forests Scores:

Random Forest Classifier:

Accuracy: 0.8920712153046555

 precision recall f1-score support

 0.0 0.91 0.98 0.94 7952

 1.0 0.63 0.25 0.36 1091

 accuracy 0.89 9043

 macro avg 0.77 0.62 0.65 9043

weighted avg 0.87 0.89 0.87 9043

For the curious talking heads, to get these results I have also applied

feature selection and Label Encoding (instead of One-Hot), as they

poorly scored compared to I haven’t bother myself adding the code.

More interpretability: SHAP

SUMMARY

The Random Forest outperforms the Decision Tree in every metric

for this dataset.

Both models have a challenge with Class 1, which is often the case

when one class is underrepresented in the data (as is typical in binary

classification problems with a class imbalance). However, the

Random Forest does a better job than the Decision Tree.

It’s worth noting that even though the accuracy of both models is

quite high, it’s important to also consider other metrics like

precision, recall, and F1-score, especially when dealing with

imbalanced datasets.

2. Extreme Gradient Boosting-XGBoost

2.1. Preprocessing

I have ensured that there are no missing data in the dataset and have

already applied one-hot encoding. Moving forward, will focus on:

— Data Scaling

— Determining Class Weights

— Selecting Relevant Features

2.1.1. Scaling

We haven’t performed Feature Scaling due to unncecesesaties of the

Decision Trees split on feature values using conditions and are not

sensitive to the scale. However, as we further use on SVM as well, I

have preferred to perform Scaling here (it is not a must for XGBoost

but nice to have)

I will use Standart Scaling due to the performance metrics of the

SVM.

3. Scaling

scaler = StandardScaler()

X_train3 = scaler.fit_transform(X_train3)

X_test3 = scaler.transform(X_test3)

X_train3 = pd.DataFrame(X_train3, columns=data.drop('y_1', axis=1).columns)

X_test3 = pd.DataFrame(X_test3, columns=data.drop('y_1', axis=1).columns)

2.1.2. Class Weights

Since XGBoost itself does not automatically compute class weights,

it would be a We’ll start with computing the class weight due:

class_weights = compute_class_weight('balanced', classes=[0,1], y=y_train3)

weights = {0: class_weights[0], 1: class_weights[1]}

The weights can be interpreted as follows:

1. The clients subscribed to a term deposit, has a weight of

approximately 0.566

2. The clients did not subscribe a term deposit, has a weight

of approximately 4.27

{0: 0.5662397845758838, 1: 4.27416686362562}

Class 0 way underrepresented so we will use the weights to balance

them.

2.2. Traning w/ Weights

Let’s use the weights in the model training.

5. Training with Class Weights

model = xgb.XGBClassifier()

model.fit(X_train3, y_train3, sample_weight=y_train3.map(weights))

Feature Selection

After training the model let’s check the feature importance based on

the F Score. The importance is measured using the F score, which, in

this context, indicates how often a feature is used to split the data.

— Balance:

With the highest F score of 854, the account balance of individuals is

the most significant predictor in the model.

— Age:

The age of the individual is the second most influential feature with

an F score of 730. This could imply that certain age groups might be

more likely to respond in a particular way compared to others.

Features like education_secondary, housing_yes, job_blue-collar,

and loan_yes have relatively lower importance, suggesting they play

a less pivotal role in influencing the outcome. However, their

presence still brings some value to the model so we will not drop any

of the features.

2.3. Score

With the same code we will check the score

y_pred = model.predict(X_test3)

print(accuracy_score(y_test3, y_pred))

print(classification_report(y_test3, y_pred))

Score for the One-Hot Encoded, Scaled, Weight

Trained XGBoost:

0.8247263076412695

 precision recall f1-score support

 0.0 0.94 0.86 0.90 7985

 1.0 0.35 0.58 0.44 1058

 accuracy 0.82 9043

 macro avg 0.65 0.72 0.67 9043

weighted avg 0.87 0.82 0.84 9043

It performed poorly with the inital XGBoost. We can try with

hyperparameter tunig:

Define the hyperparameters and their possible values

param_grid = {

 'learning_rate': [0.01, 0.1, 0.5, 1],

 'max_depth': [3, 5, 7, 10],

 'min_child_weight': [1, 3, 5],

 'subsample': [0.5, 0.7, 1.0],

 'colsample_bytree': [0.5, 0.7, 1.0],

 'n_estimators': [100, 200, 500],

 'objective': ['binary:logistic']

}

Instantiate the grid search model

grid_search = GridSearchCV(estimator=xgb.XGBClassifier(),

 param_grid=param_grid,

 scoring='accuracy',

 cv=3,

 verbose=1,

 n_jobs=-1)

grid_search.fit(X_train3, y_train3)

print("Best hyperparameters:", grid_search.best_params_)

best_xgb_model = grid_search.best_estimator_

After hyperparameter tuning, the model has high precision and recall

for the 0.0 class, which is expected since it’s the majority class.

Score for the One-Hot Encoded, Scaled, Weight

Trained XGBoost and Tuned:

0.9065575583324118

 precision recall f1-score support

 0.0 0.93 0.96 0.95 7985

 1.0 0.64 0.60 0.54 1058

 accuracy 0.91 9043

 macro avg 0.78 0.72 0.74 9043

weighted avg 0.90 0.91 0.90 9043

Next steps could involve evaluating the tuned model on the test set,

checking confusion matrices, and ROC curves.

The AUC value is 0.93, which is close to 1. This is an excellent

result.

3. Support Vector Machine

3.1. Pre-processing

In the earlier processes, we have already:

— Handled missing values

— Scaled the features

— Encoded Categorical Variables

— Checked the Feature Importance

— Handled Class Imbalance with SMOTE and Class Weights

— Checked the Outliers with IQR

There is only one more step for SVM, that is Kernel Choice. As we

are dealing with non-linear data I will choose, Radial Basis Function

(RBF) Kernel.

3.2 Training

When working with Support Vector Machines (SVM) on datasets,

especially imbalanced ones, it’s crucial to select the right

hyperparameters for optimal performance

First, we define the range of values for each hyperparameter that we

want to search. In this example, we’ll search over:

— Regularization parameter

— Kernel type

— Gamma coefficient for the RBF kernel

We’ll use GridSearchCV to automate the process of searching over

the hyperparameters grid. It performs cross-validation for each

combination of hyperparameters and selects the best one based on

the cross-validation results.

Define hyperparameters grid to search

param_grid = {

 'C': [0.01, 0.1, 1, 10],

 'kernel': ['linear', 'rbf'],

 'gamma': [0.01, 0.1, 1, 10]

}

hyperparameters grid, cross-validation folds

grid_search = GridSearchCV(SVC(class_weight='balanced'), param_grid, cv=5, verbose=1,

n_jobs=-1)

Train GridSearchCV

grid_search.fit(X_train4, y_train4)

Get best model

best_svm = grid_search.best_estimator_

Predict using best model

y_pred_best_svm = best_svm.predict(X_test4)

	Introduction
	In the ever-evolving landscape of marketing, understanding the factors that drive customer behaviour is crucial for successful campaign strategies. This article delves into the pivotal role played by job type, education level, and marital status in sh...

	Approach
	In order to optimize marketing campaigns with the help of the dataset, we will have to take the following steps:
	1. Import data from dataset and perform initial high-level analysis: look at the number of rows, look at the missing values, look at dataset columns and their values respective to the campaign outcome.
	2. Cleaning the data
	3. Model Selection and Optimization
	4. Model Interpretability and Insights:
	Importing the Libraries and the Data
	import pandas as pd
	import numpy as np
	import matplotlib.pyplot as plt
	import seaborn as sns
	from sklearn.preprocessing import LabelEncoder
	from sklearn.model_selection import train_test_split
	from sklearn.tree import DecisionTreeClassifier
	from sklearn.preprocessing import OneHotEncoder, StandardScaler
	from sklearn.metrics import classification_report, accuracy_score
	from sklearn.ensemble import RandomForestClassifier
	from imblearn.over_sampling import SMOTE
	import xgboost as xgb
	from sklearn.utils.class_weight import compute_class_weight
	from sklearn.model_selection import GridSearchCV
	from sklearn.svm import SVC
	all_datdata = pd.read_csv("bank-full.csv", delimiter=";")

	Data Exploration
	Let's take a look at the column types by using pandas shape and types:
	print("The shape is:", data.shape)
	print("The column types are:", data.dtypes)
	The shape is: (45211, 17)
	The column types are: age int64
	job object
	marital object
	education object
	default object
	balance int64
	housing object
	loan object
	contact object
	day int64
	month object
	duration int64
	campaign int64
	pdays int64
	previous int64
	poutcome object
	y object
	dtype: object
	*Missing Attribute Values: None
	We can use the columns to distinguish numerical and categorical columns:
	cat = []
	num=[]
	for col in data.columns:
	if data[col].dtypes == "object":
	cat.append(col)
	else:
	num.append(col)
	print("Categorical:",cat)
	print("Numerical:", num)
	Categorical: ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y']
	Numerical: ['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous']

	Explore the Categorical Columns
	In order to understand the distributions of the categorical columns in the dataset, we can iterate over each categorical feature. For every cat feature, a subplot as a countplot is added.
	c = len(cat)
	rows = (c // 3) + (c % 3 > 0)
	print(rows)
	plt.figure(figsize=(15,5*rows))
	for i, cx in enumerate(cat, start=1):
	plt.subplot(rows, 3, i)
	sns.countplot(x=cx, data=data, palette="Set2")
	plt.title(f"Countplot of {cx}")
	plt.xticks(rotation=45)
	plt.tight_layout()
	plt.show()
	Highlights from the plot: Job: Most individuals belong to the ‘blue-collar’ and ‘management’ job categories, followed by ‘student’, ‘unemployed’, and ‘unknown’ Marital Status: A majority are married’, followed by ‘single’, and then a smaller portion o...

	Explore the Numerical Columns
	With the same logic/code let’s take a look at the numerical columns:
	n = len(num)
	nrows = (n // 3) + (n % 3 > 0)
	print(rows)
	plt.figure(figsize=(15,5*nrows))
	for i,nx in enumerate(num, start=1):
	plt.subplot(nrows, 3, i)
	sns.histplot(x=nx, data=data, bins=15, color="green", kde=False)
	plt.title(f"Countplot of {nx}")
	plt.xticks(rotation=45)
	plt.tight_layout()
	plt.show()
	Highlights from the plot: Age: The majority of the customers fall within the age bracket of 20 to 60, with a pronounced peak around the late 20s to mid 30s. Balance: Most customers have a balance in the lower range, with a few outliers possessing sign...

	Final Observations upon examining the plots from the categorical and numerical distributions:
	Customer Profiles: There is a concentration of customers in the age group of late 20’s and mid-30s mostly having a secondary education and being ‘married’. These demographics seem to be the primary targets of marketing campaigns.
	Economic Tokens: A large proportion of customers do not have any default credit, have housing loans, and have low balances. This suggests that while many might have stable financial points, they also have financial commitments (housing loans).
	Contact and Previous Campaigns: The data shows a pattern of limited engagement in terms of the duration of contacts and the number of times a customer is contacted. That may indicate missed opportunities in engaging recurring customers.

	Outliers and Data Cleaning
	Taking a closer look at the data:
	Last contact duration, attribute highly affects the output target (e.g., if duration=0 then y=’no’). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be inclu...
	data = data.drop('duration', axis=1)
	It is seen that even though I have raised the bins up to a decent number, some values are not represented in the histograms. So it is clear that we are observing outliers in the Balance, Duration, Campaign, Pdays, and Previous plots.
	#Balance outliers holds a valueable info so I will not touch
	data[["duration", "campaign", "pdays", "previous"]].describe()
	duration campaign pdays previous
	count 45211.000000 45211.000000 45211.000000 45211.000000
	mean 258.163080 2.763841 40.197828 0.580323
	std 257.527812 3.098021 100.128746 2.303441
	min 0.000000 1.000000 -1.000000 0.000000
	25% 103.000000 1.000000 -1.000000 0.000000
	50% 180.000000 2.000000 -1.000000 0.000000
	75% 319.000000 3.000000 -1.000000 0.000000
	max 4918.000000 63.000000 871.000000 275.000000
	To detect outliers I will use IQR:
	Q1 = data['balance'].quantile(0.25)
	Q3 = data['balance'].quantile(0.75)
	IQR = Q3 - Q1
	# Filtering the outliers
	outliers = data[(data['balance'] < (Q1 - 1.5 * IQR)) | (data['balance'] > (Q3 + 1.5 * IQR))]
	(len(outliers)/len(data))*100
	%10.459843843312468 of the Balance column is outliers.
	Instead of messing with the data, we will proceed with oversampling the minority groups.

	Analysis of the response column
	We can look at the y values among all the categorical columns. Unlike other subplots, we need to make sure the max values stays in the plot. For each plot, the y-axis is adjusted based on the maximum count of the current category.
	ed_list = ["job", "education", "marital", "contact", "housing", "loan"]
	n_rows = 4
	n_cols = 3
	plt.figure(figsize=(15, 6 * n_rows))
	for index, column in enumerate(ed_list, start=1):
	plt.subplot(n_rows, n_cols, index)
	sns.countplot(data=data, x=column, hue='y', palette="Set2")
	# Get the maximum count for the current column
	max_count = data[column].value_counts().max()
	max_rounded = (max_count // 100) * 100
	plt.yticks(list(range(0, max_rounded + 1, max_rounded // 10)))
	plt.title(f'Distribution of y across "{column}"')
	plt.xticks(rotation=45)
	plt.tight_layout()
	plt.show()
	The job type plays a pivotal role in deciding whether an individual subscribes to a term deposit. While blue-collar, management, and technician categories house the most clients, the propensity to say ‘yes’ to a term deposit is noticeably higher among...
	The education level also correlates with decisions on term deposits. Those with tertiary education show a pronounced inclination towards subscribing, hinting at the potential value of crafting campaigns that resonate with educated demographics.
	Marital status showcases that while a vast number of clients are married, it is the single clients who might have a relatively higher likelihood to subscribe to a term deposit.
	Communication via cellular seems to be dominant, but it’s important to consider if this mode is also the most effective in terms of conversion rates or if alternative modes like telephone yield better results, especially given the high ‘no’ rates seen...
	Lastly, housing decisions also influence term deposit subscriptions. A significant chunk of clients with housing loans are less inclined to say ‘yes’, indicating that financial commitments like housing loans might deter clients from taking on addition...
	In sum, for better conversion rates, focusing on demographics like students, retired individuals, those with tertiary education, and possibly single clients could be fruitful. Moreover, evaluating the effectiveness of communication modes and understan...

	Model Selection and Optimization
	If you are feeling safe to make some predictions, follow along! It will be a long journey.
	I have planned to implement: 1. Decision Trees and Random Forests 2. XGBoost for Classification 3. Support Vector Machines

	1) Decision Trees and Random Forests
	Decision Trees break down data by asking questions about specific features to make the data more organized. Random Forest uses many of these trees and takes samples from the data to create them. The randomness comes from the method of picking differen...

	1.1. Pre-Processing:
	Decision Trees & Random Forests can handle categorical variable but to be practical we will convert them with One-Hot Encoding. We do not necessarily do feature scaling, at least for this part because trees are not sensivite. We have a class imbalance...
	1.1.1 Encoding:
	I have used One-hot Encoding as a choice because in some of the categories we do not have an inherit order. But for the curious heads I have also applied Label Encoding which I will give the performance rates. We will drop the first category in order ...
	# 1. One-Hot-Encoding Categorical Variables
	ohe = OneHotEncoder(drop='first', sparse=False)
	encoded_features = ohe.fit_transform(data[cat])
	encoded_df = pd.DataFrame(encoded_features, columns=ohe.get_feature_names_out(cat))
	data = data.drop(columns=cat)
	data = pd.concat([data, encoded_df], axis=1)
	After One-hot Encoded, `data.columns` become as below. From now on our target variable is `y_yes`
	Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous',
	'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
	'job_management', 'job_retired', 'job_self-employed', 'job_services',
	'job_student', 'job_technician', 'job_unemployed', 'job_unknown',
	'marital_married', 'marital_single', 'education_secondary',
	'education_tertiary', 'education_unknown', 'default_yes', 'housing_yes',
	'loan_yes', 'contact_telephone', 'contact_unknown', 'month_aug',
	'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun',
	'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',
	'poutcome_other', 'poutcome_success', 'poutcome_unknown', 'y_yes'],
	dtype='object')

	1.1.2 Oversampling with SMOTE
	As the target variable is imbalanced, we need to oversample the minority class with SMOTE. Split the dataset: I prefer %80-%20
	X1 = data.drop('y_yes', axis=1)
	y1 = data['y_yes']
	X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size=0.2, random_state=42)
	And apply the SMOTE, to the training set:
	smote = SMOTE(random_state=42)
	X_resampled1, y_resampled1 = smote.fit_resample(X_train1, y_train1)

	1.2. Training
	We have clean the missing values, convert the categorical valuesfor better computation handled with the class imbalance for a better score, we can proceed with the training:
	# Training Decision Tree
	dt_model = DecisionTreeClassifier(random_state=42)
	dt_model.fit(X_resampled1, y_resampled1)
	dt_predictions1 = dt_model.predict(X_test1)
	# Training Random Forest
	rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
	rf_model.fit(X_resampled1, y_resampled1)
	rf_predictions = rf_model.predict(X_test1)

	1.3. Scores
	# Evaluation
	print("Decision Tree Classifier:")
	print("Accuracy:", accuracy_score(y_test1, dt_predictions1))
	print(classification_report(y_test1, dt_predictions1))
	1.3.1 The results for the One-Hot Encoded, Reduced Class Imbalance with SMOTE, Decision Tree Scores:
	Decision Tree Classifier:
	Accuracy: 0.8281543735486011
	precision recall f1-score support
	0.0 0.91 0.90 0.90 7952
	1.0 0.31 0.33 0.32 1091
	accuracy 0.83 9043
	macro avg 0.61 0.61 0.61 9043
	weighted avg 0.83 0.83 0.83 9043
	Not bad but we can raise the accuracy score with Random Forests. So training again:
	# Evaluation (1)
	print("\nRandom Forest Classifier:")
	print("Accuracy:", accuracy_score(y_test1, rf_predictions))
	print(classification_report(y_test1, rf_predictions))
	1.3.2 The results for the One-Hot Encoded, Reduced Class Imbalance with SMOTE, Random Forests Scores:
	Random Forest Classifier:
	Accuracy: 0.8920712153046555
	precision recall f1-score support (1)
	0.0 0.91 0.98 0.94 7952
	1.0 0.63 0.25 0.36 1091
	accuracy 0.89 9043
	macro avg 0.77 0.62 0.65 9043
	weighted avg 0.87 0.89 0.87 9043
	For the curious talking heads, to get these results I have also applied feature selection and Label Encoding (instead of One-Hot), as they poorly scored compared to I haven’t bother myself adding the code.

	More interpretability: SHAP
	SUMMARY
	The Random Forest outperforms the Decision Tree in every metric for this dataset.
	Both models have a challenge with Class 1, which is often the case when one class is underrepresented in the data (as is typical in binary classification problems with a class imbalance). However, the Random Forest does a better job than the Decision ...
	It’s worth noting that even though the accuracy of both models is quite high, it’s important to also consider other metrics like precision, recall, and F1-score, especially when dealing with imbalanced datasets.

	2. Extreme Gradient Boosting-XGBoost
	2.1. Preprocessing
	I have ensured that there are no missing data in the dataset and have already applied one-hot encoding. Moving forward, will focus on: — Data Scaling — Determining Class Weights — Selecting Relevant Features
	2.1.1. Scaling
	We haven’t performed Feature Scaling due to unncecesesaties of the Decision Trees split on feature values using conditions and are not sensitive to the scale. However, as we further use on SVM as well, I have preferred to perform Scaling here (it is n...
	I will use Standart Scaling due to the performance metrics of the SVM.
	# 3. Scaling
	scaler = StandardScaler()
	X_train3 = scaler.fit_transform(X_train3)
	X_test3 = scaler.transform(X_test3)
	X_train3 = pd.DataFrame(X_train3, columns=data.drop('y_1', axis=1).columns)
	X_test3 = pd.DataFrame(X_test3, columns=data.drop('y_1', axis=1).columns)

	2.1.2. Class Weights
	Since XGBoost itself does not automatically compute class weights, it would be a We’ll start with computing the class weight due:
	class_weights = compute_class_weight('balanced', classes=[0,1], y=y_train3)
	weights = {0: class_weights[0], 1: class_weights[1]}
	The weights can be interpreted as follows:
	1. The clients subscribed to a term deposit, has a weight of approximately 0.566
	2. The clients did not subscribe a term deposit, has a weight of approximately 4.27
	{0: 0.5662397845758838, 1: 4.27416686362562}
	Class 0 way underrepresented so we will use the weights to balance them.

	2.2. Traning w/ Weights
	Let’s use the weights in the model training.
	# 5. Training with Class Weights
	model = xgb.XGBClassifier()
	model.fit(X_train3, y_train3, sample_weight=y_train3.map(weights))
	Feature Selection
	After training the model let’s check the feature importance based on the F Score. The importance is measured using the F score, which, in this context, indicates how often a feature is used to split the data.

	— Balance:
	With the highest F score of 854, the account balance of individuals is the most significant predictor in the model.

	— Age:
	The age of the individual is the second most influential feature with an F score of 730. This could imply that certain age groups might be more likely to respond in a particular way compared to others.
	Features like education_secondary, housing_yes, job_blue-collar, and loan_yes have relatively lower importance, suggesting they play a less pivotal role in influencing the outcome. However, their presence still brings some value to the model so we wil...

	2.3. Score
	With the same code we will check the score
	y_pred = model.predict(X_test3)
	print(accuracy_score(y_test3, y_pred))
	print(classification_report(y_test3, y_pred))
	Score for the One-Hot Encoded, Scaled, Weight Trained XGBoost:
	0.8247263076412695
	precision recall f1-score support
	0.0 0.94 0.86 0.90 7985
	1.0 0.35 0.58 0.44 1058
	accuracy 0.82 9043
	macro avg 0.65 0.72 0.67 9043
	weighted avg 0.87 0.82 0.84 9043
	It performed poorly with the inital XGBoost. We can try with hyperparameter tunig:
	# Define the hyperparameters and their possible values
	param_grid = {
	'learning_rate': [0.01, 0.1, 0.5, 1],
	'max_depth': [3, 5, 7, 10],
	'min_child_weight': [1, 3, 5],
	'subsample': [0.5, 0.7, 1.0],
	'colsample_bytree': [0.5, 0.7, 1.0],
	'n_estimators': [100, 200, 500],
	'objective': ['binary:logistic']
	}
	# Instantiate the grid search model
	grid_search = GridSearchCV(estimator=xgb.XGBClassifier(),
	param_grid=param_grid,
	scoring='accuracy',
	cv=3,
	verbose=1,
	n_jobs=-1)
	grid_search.fit(X_train3, y_train3)
	print("Best hyperparameters:", grid_search.best_params_)
	best_xgb_model = grid_search.best_estimator_
	After hyperparameter tuning, the model has high precision and recall for the 0.0 class, which is expected since it’s the majority class.
	Score for the One-Hot Encoded, Scaled, Weight Trained XGBoost and Tuned:
	0.9065575583324118
	precision recall f1-score support (1)
	0.0 0.93 0.96 0.95 7985
	1.0 0.64 0.60 0.54 1058
	accuracy 0.91 9043
	macro avg 0.78 0.72 0.74 9043
	weighted avg 0.90 0.91 0.90 9043
	Next steps could involve evaluating the tuned model on the test set, checking confusion matrices, and ROC curves.
	The AUC value is 0.93, which is close to 1. This is an excellent result.

	3. Support Vector Machine
	3.1. Pre-processing
	In the earlier processes, we have already: — Handled missing values — Scaled the features — Encoded Categorical Variables — Checked the Feature Importance — Handled Class Imbalance with SMOTE and Class Weights — Checked the Outliers with IQR
	There is only one more step for SVM, that is Kernel Choice. As we are dealing with non-linear data I will choose, Radial Basis Function (RBF) Kernel.

	3.2 Training
	When working with Support Vector Machines (SVM) on datasets, especially imbalanced ones, it’s crucial to select the right hyperparameters for optimal performance
	First, we define the range of values for each hyperparameter that we want to search. In this example, we’ll search over:
	— Regularization parameter — Kernel type — Gamma coefficient for the RBF kernel
	We’ll use GridSearchCV to automate the process of searching over the hyperparameters grid. It performs cross-validation for each combination of hyperparameters and selects the best one based on the cross-validation results.
	# Define hyperparameters grid to search
	param_grid = {
	'C': [0.01, 0.1, 1, 10],
	'kernel': ['linear', 'rbf'],
	'gamma': [0.01, 0.1, 1, 10]
	}
	# hyperparameters grid, cross-validation folds
	grid_search = GridSearchCV(SVC(class_weight='balanced'), param_grid, cv=5, verbose=1, n_jobs=-1)
	# Train GridSearchCV
	grid_search.fit(X_train4, y_train4)
	# Get best model
	best_svm = grid_search.best_estimator_
	# Predict using best model
	y_pred_best_svm = best_svm.predict(X_test4)

