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Introduction 

In the ever-evolving landscape of marketing, understanding the 

factors that drive customer behaviour is crucial for successful 

campaign strategies. This article delves into the pivotal role played 

by job type, education level, and marital status in shaping an 

individual’s decision to subscribe to a term deposit. By analysing 

these key demographic variables, we can identify potential customer 

segments that show a higher propensity to say ‘yes’ to a term 

deposit. Furthermore, we explore the communication preferences of 

customers and consider whether alternative modes may prove more 

effective in improving conversion rates. Armed with these insights, 

marketers can tailor their efforts towards targeted segments and craft 

compelling campaigns that resonate with specific demographics, 

ultimately maximizing the potential for successful term deposit 

subscriptions. 

Approach 

In order to optimize marketing campaigns with the help of the 

dataset, we will have to take the following steps: 

1. Import data from dataset and perform initial high-level 

analysis: look at the number of rows, look at the missing 

values, look at dataset columns and their values respective 

to the campaign outcome. 



2. Cleaning the data 

3. Model Selection and Optimization 

4. Model Interpretability and Insights: 

Importing the Libraries and the Data 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.preprocessing import OneHotEncoder, StandardScaler 

from sklearn.metrics import classification_report, accuracy_score 

from sklearn.ensemble import RandomForestClassifier 



from imblearn.over_sampling import SMOTE 

 

import xgboost as xgb 

from sklearn.utils.class_weight import compute_class_weight 

from sklearn.model_selection import GridSearchCV 

 

from sklearn.svm import SVC 

all_datdata = pd.read_csv("bank-full.csv", delimiter=";") 

Data Exploration 

Let's take a look at the column types by using pandas shape and 

types: 

print("The shape is:", data.shape) 

print("The column types are:", data.dtypes) 

The shape is: (45211, 17) 

The column types are: age           int64 

job          object 

marital      object 



education    object 

default      object 

balance       int64 

housing      object 

loan         object 

contact      object 

day           int64 

month        object 

duration      int64 

campaign      int64 

pdays         int64 

previous      int64 

poutcome     object 

y            object 

dtype: object 

*Missing Attribute Values: None 

We can use the columns to distinguish numerical and categorical 

columns: 



cat = [] 

num=[] 

 

for col in data.columns: 

   if data[col].dtypes == "object": 

       cat.append(col) 

   else: 

       num.append(col) 

 

print("Categorical:",cat) 

print("Numerical:", num) 

Categorical: ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y'] 

Numerical: ['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'] 

Explore the Categorical Columns 

In order to understand the distributions of the categorical columns in 

the dataset, we can iterate over each categorical feature. For every 

cat feature, a subplot as a countplot is added. 

c = len(cat) 

rows = (c // 3) + (c % 3 > 0) 



print(rows) 

 

plt.figure(figsize=(15,5*rows)) 

 

for i, cx in enumerate(cat, start=1): 

   plt.subplot(rows, 3, i) 

   sns.countplot(x=cx, data=data, palette="Set2") 

   plt.title(f"Countplot of {cx}") 

   plt.xticks(rotation=45) 

 

plt.tight_layout() 

plt.show() 

Highlights from the plot: 

Job: Most individuals belong to the ‘blue-collar’ and ‘management’ 

job categories, followed by ‘student’, ‘unemployed’, and ‘unknown’ 

Marital Status: A majority are married’, followed by ‘single’, and 

then a smaller portion of ‘divorced’. 

Education: Those with ‘secondary’ education form the largest group, 

followed by ‘tertiary’. ‘ 

Default on Credit: A significant majority have no credit defaults, 

with a very small portion having defaulted. 



Housing Loan: Most have a housing loan 

Personal Loan: The majority do not have a personal loan 

Previous Campaign Outcome: For most individuals, the outcome of 

the previous campaign remains ‘unknown’. Of those known, 

‘failure’ is more common than ‘success’. 

y: The client subscribed to a term deposit as the expected majority of 

the portion is No. 



 

Explore the Numerical Columns 

With the same logic/code let’s take a look at the numerical columns: 



n = len(num) 

nrows = (n // 3) + (n % 3 > 0) 

print(rows) 

 

plt.figure(figsize=(15,5*nrows)) 

 

for i,nx in enumerate(num, start=1): 

   plt.subplot(nrows, 3, i) 

   sns.histplot(x=nx, data=data, bins=15, color="green", kde=False) 

   plt.title(f"Countplot of {nx}") 

   plt.xticks(rotation=45) 

 

plt.tight_layout() 

plt.show() 

Highlights from the plot: 

Age: The majority of the customers fall within the age bracket of 20 

to 60, with a pronounced peak around the late 20s to mid 30s. 

Balance: Most customers have a balance in the lower range, with a 

few outliers possessing significantly higher balances. 

Day: The distribution shows a relatively even spread of days in the 



month, with some noticeable peaks around specific days. 

Duration: Most of the interactions lasted for a few minutes, with a 

small number lasting much longer. 

previous: A significant portion of clients (at least 75%) were not 

contacted in previous campaigns. 

pdays: This indicates the number of days since the customer was last 

contacted. The leftmost bar represents -1, which indicates that the 

customer was not contacted previously. 

 



Final Observations upon examining the plots from the categorical 

and numerical distributions: 

Customer Profiles: 

There is a concentration of customers in the age group of late 20’s 

and mid-30s mostly having a secondary education and being 

‘married’. These demographics seem to be the primary targets of 

marketing campaigns. 

Economic Tokens: 

A large proportion of customers do not have any default credit, have 

housing loans, and have low balances. This suggests that while many 

might have stable financial points, they also have financial 

commitments (housing loans). 

Contact and Previous Campaigns: 

The data shows a pattern of limited engagement in terms of the 

duration of contacts and the number of times a customer is 

contacted. That may indicate missed opportunities in engaging 

recurring customers. 

Outliers and Data Cleaning 

Taking a closer look at the data: 

Last contact duration, attribute highly affects the output target (e.g., 

if duration=0 then y=’no’). Yet, the duration is not known before a 

call is performed. Also, after the end of the call y is obviously 



known. Thus, this input should only be included for benchmark 

purposes and should be discarded if the intention is to have a 

realistic predictive model. 

data = data.drop('duration', axis=1) 

It is seen that even though I have raised the bins up to a decent 

number, some values are not represented in the histograms. So it is 

clear that we are observing outliers in the Balance, Duration, 

Campaign, Pdays, and Previous plots. 

#Balance outliers holds a valueable info so I will not touch 

 

data[["duration", "campaign", "pdays", "previous"]].describe() 

      duration     campaign     pdays        previous 

count 45211.000000  45211.000000 45211.000000 45211.000000 

mean  258.163080    2.763841     40.197828    0.580323 

std   257.527812    3.098021     100.128746   2.303441 

min   0.000000      1.000000     -1.000000    0.000000 

25%  103.000000    1.000000     -1.000000    0.000000 

50%  180.000000    2.000000     -1.000000    0.000000 

75%  319.000000    3.000000     -1.000000    0.000000 

max   4918.000000   63.000000    871.000000   275.000000 



To detect outliers I will use IQR: 

Q1 = data['balance'].quantile(0.25) 

Q3 = data['balance'].quantile(0.75) 

IQR = Q3 - Q1 

 

# Filtering the outliers 

outliers = data[(data['balance'] < (Q1 - 1.5 * IQR)) | (data['balance'] > (Q3 + 1.5 * IQR))] 

(len(outliers)/len(data))*100 

%10.459843843312468 of the Balance column is outliers. 

Instead of messing with the data, we will proceed with oversampling 

the minority groups. 

Analysis of the response column 

We can look at the y values among all the categorical columns. 

Unlike other subplots, we need to make sure the max values stays in 

the plot. For each plot, the y-axis is adjusted based on the maximum 

count of the current category. 

ed_list = ["job", "education", "marital", "contact", "housing", "loan"] 

 

n_rows = 4 



n_cols = 3 

 

plt.figure(figsize=(15, 6 * n_rows)) 

 

for index, column in enumerate(ed_list, start=1): 

   plt.subplot(n_rows, n_cols, index) 

   

   sns.countplot(data=data, x=column, hue='y', palette="Set2") 

   

   # Get the maximum count for the current column 

   max_count = data[column].value_counts().max() 

   max_rounded = (max_count // 100) * 100 

   

   plt.yticks(list(range(0, max_rounded + 1, max_rounded // 10))) 

   

   plt.title(f'Distribution of y across "{column}"') 

   plt.xticks(rotation=45) 

 



plt.tight_layout() 

plt.show() 

The job type plays a pivotal role in deciding whether an individual 

subscribes to a term deposit. While blue-collar, management, and 

technician categories house the most clients, the propensity to say 

‘yes’ to a term deposit is noticeably higher among students and 

retired individuals. This suggests that marketing efforts might yield a 

higher conversion rate if tailored towards these groups. 

The education level also correlates with decisions on term deposits. 

Those with tertiary education show a pronounced inclination 

towards subscribing, hinting at the potential value of crafting 

campaigns that resonate with educated demographics. 

Marital status showcases that while a vast number of clients are 

married, it is the single clients who might have a relatively higher 

likelihood to subscribe to a term deposit. 



 

Communication via cellular seems to be dominant, but it’s important 

to consider if this mode is also the most effective in terms of 

conversion rates or if alternative modes like telephone yield better 

results, especially given the high ‘no’ rates seen in the cellular 

category. 

Lastly, housing decisions also influence term deposit subscriptions. 

A significant chunk of clients with housing loans are less inclined to 

say ‘yes’, indicating that financial commitments like housing loans 

might deter clients from taking on additional financial products. 



In sum, for better conversion rates, focusing on demographics like 

students, retired individuals, those with tertiary education, and 

possibly single clients could be fruitful. Moreover, evaluating the 

effectiveness of communication modes and understanding the 

financial commitments of clients can further refine the marketing 

approach. 

Model Selection and Optimization 

If you are feeling safe to make some predictions, follow along! It 

will be a long journey. 

I have planned to implement: 

1. Decision Trees and Random Forests 

2. XGBoost for Classification 

3. Support Vector Machines 

1) Decision Trees and Random Forests 

Decision Trees break down data by asking questions about specific 

features to make the data more organized. 

Random Forest uses many of these trees and takes samples from the 

data to create them. The randomness comes from the method of 

picking different features unpredictably. 

1.1. Pre-Processing: 



Decision Trees & Random Forests can handle categorical variable 

but to be practical we will convert them with One-Hot Encoding. 

We do not necessarily do feature scaling, at least for this part 

because trees are not sensivite. 

We have a class imbalance and since we are dealing with the trees 

we are free to apply SMOTE. 

We are already clean the missing data so we good to go! 

1.1.1 Encoding: 

I have used One-hot Encoding as a choice because in some of the 

categories we do not have an inherit order. But for the curious heads 

I have also applied Label Encoding which I will give the 

performance rates. 

We will drop the first category in order to avoid duplication and 

transform the categorical column. Now they are represented as 

individual categories seen as below. Then remove the original 

categorical categories and replaced witht the one-hot encoded 

counterparts. 

# 1. One-Hot-Encoding Categorical Variables 

 

ohe = OneHotEncoder(drop='first', sparse=False) 

encoded_features = ohe.fit_transform(data[cat]) 

encoded_df = pd.DataFrame(encoded_features, columns=ohe.get_feature_names_out(cat)) 



data = data.drop(columns=cat) 

data = pd.concat([data, encoded_df], axis=1) 

After One-hot Encoded, `data.columns` become as below. From now 

on our target variable is `y_yes` 

Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous', 

      'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 

      'job_management', 'job_retired', 'job_self-employed', 'job_services', 

      'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 

      'marital_married', 'marital_single', 'education_secondary', 

      'education_tertiary', 'education_unknown', 'default_yes', 'housing_yes', 

      'loan_yes', 'contact_telephone', 'contact_unknown', 'month_aug', 

      'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun', 

      'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 

      'poutcome_other', 'poutcome_success', 'poutcome_unknown', 'y_yes'], 

     dtype='object') 

1.1.2 Oversampling with SMOTE 

As the target variable is imbalanced, we need to oversample the 

minority class with SMOTE. 

Split the dataset: I prefer %80-%20 



X1 = data.drop('y_yes', axis=1) 

y1 = data['y_yes'] 

 

X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size=0.2, random_state=42) 

And apply the SMOTE, to the training set: 

smote = SMOTE(random_state=42) 

X_resampled1, y_resampled1 = smote.fit_resample(X_train1, y_train1) 

1.2. Training 

We have clean the missing values, convert the categorical valuesfor 

better computation handled with the class imbalance for a better 

score, we can proceed with the training: 

# Training Decision Tree 

dt_model = DecisionTreeClassifier(random_state=42) 

dt_model.fit(X_resampled1, y_resampled1) 

 

dt_predictions1 = dt_model.predict(X_test1) 

# Training Random Forest 

rf_model = RandomForestClassifier(n_estimators=100, random_state=42) 



rf_model.fit(X_resampled1, y_resampled1) 

 

rf_predictions = rf_model.predict(X_test1) 

1.3. Scores 

# Evaluation 

print("Decision Tree Classifier:") 

print("Accuracy:", accuracy_score(y_test1, dt_predictions1)) 

print(classification_report(y_test1, dt_predictions1)) 

1.3.1 The results for the One-Hot Encoded, 

Reduced Class Imbalance with SMOTE, 

Decision Tree Scores: 

Decision Tree Classifier: 

Accuracy: 0.8281543735486011 

             precision    recall  f1-score   support 

 

        0.0       0.91      0.90      0.90      7952 

        1.0       0.31      0.33      0.32      1091 

 



   accuracy                           0.83      9043 

  macro avg       0.61      0.61      0.61      9043 

weighted avg       0.83      0.83      0.83      9043 

Not bad but we can raise the accuracy score with Random Forests. 

So training again: 

 

# Evaluation 

print("\nRandom Forest Classifier:") 

print("Accuracy:", accuracy_score(y_test1, rf_predictions)) 

print(classification_report(y_test1, rf_predictions)) 

1.3.2 The results for the One-Hot Encoded, 

Reduced Class Imbalance with SMOTE, 

Random Forests Scores: 

Random Forest Classifier: 

Accuracy: 0.8920712153046555 

             precision    recall  f1-score   support 

 

        0.0       0.91      0.98      0.94      7952 



        1.0       0.63      0.25      0.36      1091 

 

   accuracy                           0.89      9043 

  macro avg       0.77      0.62      0.65      9043 

weighted avg       0.87      0.89      0.87      9043 

For the curious talking heads, to get these results I have also applied 

feature selection and Label Encoding (instead of One-Hot), as they 

poorly scored compared to I haven’t bother myself adding the code. 

More interpretability: SHAP 

SUMMARY 

The Random Forest outperforms the Decision Tree in every metric 

for this dataset. 

Both models have a challenge with Class 1, which is often the case 

when one class is underrepresented in the data (as is typical in binary 

classification problems with a class imbalance). However, the 

Random Forest does a better job than the Decision Tree. 

It’s worth noting that even though the accuracy of both models is 

quite high, it’s important to also consider other metrics like 

precision, recall, and F1-score, especially when dealing with 

imbalanced datasets. 



2. Extreme Gradient Boosting-XGBoost 

2.1. Preprocessing 

I have ensured that there are no missing data in the dataset and have 

already applied one-hot encoding. Moving forward, will focus on: 

— Data Scaling 

— Determining Class Weights 

— Selecting Relevant Features 

2.1.1. Scaling 

We haven’t performed Feature Scaling due to unncecesesaties of the 

Decision Trees split on feature values using conditions and are not 

sensitive to the scale. However, as we further use on SVM as well, I 

have preferred to perform Scaling here (it is not a must for XGBoost 

but nice to have) 

I will use Standart Scaling due to the performance metrics of the 

SVM. 

# 3. Scaling 

scaler = StandardScaler() 

X_train3 = scaler.fit_transform(X_train3) 

X_test3 = scaler.transform(X_test3) 

 



X_train3 = pd.DataFrame(X_train3, columns=data.drop('y_1', axis=1).columns) 

X_test3 = pd.DataFrame(X_test3, columns=data.drop('y_1', axis=1).columns) 

2.1.2. Class Weights 

Since XGBoost itself does not automatically compute class weights, 

it would be a We’ll start with computing the class weight due: 

class_weights = compute_class_weight('balanced', classes=[0,1], y=y_train3) 

weights = {0: class_weights[0], 1: class_weights[1]} 

The weights can be interpreted as follows: 

1. The clients subscribed to a term deposit, has a weight of 

approximately 0.566 

2. The clients did not subscribe a term deposit, has a weight 

of approximately 4.27 

{0: 0.5662397845758838, 1: 4.27416686362562} 

Class 0 way underrepresented so we will use the weights to balance 

them. 

2.2. Traning w/ Weights 

Let’s use the weights in the model training. 

# 5. Training with Class Weights 



model = xgb.XGBClassifier() 

model.fit(X_train3, y_train3, sample_weight=y_train3.map(weights)) 

Feature Selection 

After training the model let’s check the feature importance based on 

the F Score. The importance is measured using the F score, which, in 

this context, indicates how often a feature is used to split the data. 

— Balance: 

With the highest F score of 854, the account balance of individuals is 

the most significant predictor in the model. 

— Age: 

The age of the individual is the second most influential feature with 

an F score of 730. This could imply that certain age groups might be 

more likely to respond in a particular way compared to others. 



 

Features like education_secondary, housing_yes, job_blue-collar, 

and loan_yes have relatively lower importance, suggesting they play 

a less pivotal role in influencing the outcome. However, their 

presence still brings some value to the model so we will not drop any 

of the features. 

2.3. Score 

With the same code we will check the score 

y_pred = model.predict(X_test3) 

print(accuracy_score(y_test3, y_pred)) 

print(classification_report(y_test3, y_pred)) 



Score for the One-Hot Encoded, Scaled, Weight 

Trained XGBoost: 

0.8247263076412695 

             precision    recall  f1-score   support 

 

        0.0       0.94      0.86      0.90      7985 

        1.0       0.35      0.58      0.44      1058 

 

   accuracy                           0.82      9043 

  macro avg       0.65      0.72      0.67      9043 

weighted avg       0.87      0.82      0.84      9043 

It performed poorly with the inital XGBoost. We can try with 

hyperparameter tunig: 

# Define the hyperparameters and their possible values 

param_grid = { 

   'learning_rate': [0.01, 0.1, 0.5, 1], 

   'max_depth': [3, 5, 7, 10], 

   'min_child_weight': [1, 3, 5], 



   'subsample': [0.5, 0.7, 1.0], 

   'colsample_bytree': [0.5, 0.7, 1.0], 

   'n_estimators': [100, 200, 500], 

   'objective': ['binary:logistic'] 

} 

 

# Instantiate the grid search model 

grid_search = GridSearchCV(estimator=xgb.XGBClassifier(), 

                          param_grid=param_grid, 

                          scoring='accuracy', 

                          cv=3, 

                          verbose=1, 

                          n_jobs=-1) 

 

grid_search.fit(X_train3, y_train3) 

 

 

print("Best hyperparameters:", grid_search.best_params_) 



best_xgb_model = grid_search.best_estimator_ 

After hyperparameter tuning, the model has high precision and recall 

for the 0.0 class, which is expected since it’s the majority class. 

Score for the One-Hot Encoded, Scaled, Weight 

Trained XGBoost and Tuned: 

0.9065575583324118 

             precision    recall  f1-score   support 

 

        0.0       0.93      0.96      0.95      7985 

        1.0       0.64      0.60      0.54      1058 

 

   accuracy                           0.91      9043 

  macro avg       0.78      0.72      0.74      9043 

weighted avg       0.90      0.91      0.90      9043 

Next steps could involve evaluating the tuned model on the test set, 

checking confusion matrices, and ROC curves. 

The AUC value is 0.93, which is close to 1. This is an excellent 

result. 



 



 

3. Support Vector Machine 

3.1. Pre-processing 

In the earlier processes, we have already: 

— Handled missing values 

— Scaled the features 

— Encoded Categorical Variables 

— Checked the Feature Importance 



— Handled Class Imbalance with SMOTE and Class Weights 

— Checked the Outliers with IQR 

There is only one more step for SVM, that is Kernel Choice. As we 

are dealing with non-linear data I will choose, Radial Basis Function 

(RBF) Kernel. 

3.2 Training 

When working with Support Vector Machines (SVM) on datasets, 

especially imbalanced ones, it’s crucial to select the right 

hyperparameters for optimal performance 

First, we define the range of values for each hyperparameter that we 

want to search. In this example, we’ll search over: 

— Regularization parameter 

— Kernel type 

— Gamma coefficient for the RBF kernel 

We’ll use GridSearchCV to automate the process of searching over 

the hyperparameters grid. It performs cross-validation for each 

combination of hyperparameters and selects the best one based on 

the cross-validation results. 

# Define hyperparameters grid to search 

param_grid = { 



   'C': [0.01, 0.1, 1, 10], 

   'kernel': ['linear', 'rbf'], 

   'gamma': [0.01, 0.1, 1, 10] 

} 

 

# hyperparameters grid, cross-validation folds 

grid_search = GridSearchCV(SVC(class_weight='balanced'), param_grid, cv=5, verbose=1, 

n_jobs=-1) 

 

# Train GridSearchCV 

grid_search.fit(X_train4, y_train4) 

 

# Get best model 

best_svm = grid_search.best_estimator_ 

 

# Predict using best model 

y_pred_best_svm = best_svm.predict(X_test4) 
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	Customer Profiles: There is a concentration of customers in the age group of late 20’s and mid-30s mostly having a secondary education and being ‘married’. These demographics seem to be the primary targets of marketing campaigns.
	Economic Tokens: A large proportion of customers do not have any default credit, have housing loans, and have low balances. This suggests that while many might have stable financial points, they also have financial commitments (housing loans).
	Contact and Previous Campaigns: The data shows a pattern of limited engagement in terms of the duration of contacts and the number of times a customer is contacted. That may indicate missed opportunities in engaging recurring customers.


	Outliers and Data Cleaning
	Taking a closer look at the data:
	Last contact duration, attribute highly affects the output target (e.g., if duration=0 then y=’no’). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be inclu...
	data = data.drop('duration', axis=1)
	It is seen that even though I have raised the bins up to a decent number, some values are not represented in the histograms. So it is clear that we are observing outliers in the Balance, Duration, Campaign, Pdays, and Previous plots.
	#Balance outliers holds a valueable info so I will not touch
	data[["duration", "campaign", "pdays", "previous"]].describe()
	duration     campaign     pdays        previous
	count 45211.000000  45211.000000 45211.000000 45211.000000
	mean  258.163080    2.763841     40.197828    0.580323
	std   257.527812    3.098021     100.128746   2.303441
	min   0.000000      1.000000     -1.000000    0.000000
	25%  103.000000    1.000000     -1.000000    0.000000
	50%  180.000000    2.000000     -1.000000    0.000000
	75%  319.000000    3.000000     -1.000000    0.000000
	max   4918.000000   63.000000    871.000000   275.000000
	To detect outliers I will use IQR:
	Q1 = data['balance'].quantile(0.25)
	Q3 = data['balance'].quantile(0.75)
	IQR = Q3 - Q1
	# Filtering the outliers
	outliers = data[(data['balance'] < (Q1 - 1.5 * IQR)) | (data['balance'] > (Q3 + 1.5 * IQR))]
	(len(outliers)/len(data))*100
	%10.459843843312468 of the Balance column is outliers.
	Instead of messing with the data, we will proceed with oversampling the minority groups.

	Analysis of the response column
	We can look at the y values among all the categorical columns. Unlike other subplots, we need to make sure the max values stays in the plot. For each plot, the y-axis is adjusted based on the maximum count of the current category.
	ed_list = ["job", "education", "marital", "contact", "housing", "loan"]
	n_rows = 4
	n_cols = 3
	plt.figure(figsize=(15, 6 * n_rows))
	for index, column in enumerate(ed_list, start=1):
	plt.subplot(n_rows, n_cols, index)
	sns.countplot(data=data, x=column, hue='y', palette="Set2")
	# Get the maximum count for the current column
	max_count = data[column].value_counts().max()
	max_rounded = (max_count // 100) * 100
	plt.yticks(list(range(0, max_rounded + 1, max_rounded // 10)))
	plt.title(f'Distribution of y across "{column}"')
	plt.xticks(rotation=45)
	plt.tight_layout()
	plt.show()
	The job type plays a pivotal role in deciding whether an individual subscribes to a term deposit. While blue-collar, management, and technician categories house the most clients, the propensity to say ‘yes’ to a term deposit is noticeably higher among...
	The education level also correlates with decisions on term deposits. Those with tertiary education show a pronounced inclination towards subscribing, hinting at the potential value of crafting campaigns that resonate with educated demographics.
	Marital status showcases that while a vast number of clients are married, it is the single clients who might have a relatively higher likelihood to subscribe to a term deposit.
	Communication via cellular seems to be dominant, but it’s important to consider if this mode is also the most effective in terms of conversion rates or if alternative modes like telephone yield better results, especially given the high ‘no’ rates seen...
	Lastly, housing decisions also influence term deposit subscriptions. A significant chunk of clients with housing loans are less inclined to say ‘yes’, indicating that financial commitments like housing loans might deter clients from taking on addition...
	In sum, for better conversion rates, focusing on demographics like students, retired individuals, those with tertiary education, and possibly single clients could be fruitful. Moreover, evaluating the effectiveness of communication modes and understan...


	Model Selection and Optimization
	If you are feeling safe to make some predictions, follow along! It will be a long journey.
	I have planned to implement: 1. Decision Trees and Random Forests 2. XGBoost for Classification 3. Support Vector Machines

	1) Decision Trees and Random Forests
	Decision Trees break down data by asking questions about specific features to make the data more organized. Random Forest uses many of these trees and takes samples from the data to create them. The randomness comes from the method of picking differen...

	1.1. Pre-Processing:
	Decision Trees & Random Forests can handle categorical variable but to be practical we will convert them with One-Hot Encoding. We do not necessarily do feature scaling, at least for this part because trees are not sensivite. We have a class imbalance...
	1.1.1 Encoding:
	I have used One-hot Encoding as a choice because in some of the categories we do not have an inherit order. But for the curious heads I have also applied Label Encoding which I will give the performance rates. We will drop the first category in order ...
	# 1. One-Hot-Encoding Categorical Variables
	ohe = OneHotEncoder(drop='first', sparse=False)
	encoded_features = ohe.fit_transform(data[cat])
	encoded_df = pd.DataFrame(encoded_features, columns=ohe.get_feature_names_out(cat))
	data = data.drop(columns=cat)
	data = pd.concat([data, encoded_df], axis=1)
	After One-hot Encoded, `data.columns` become as below. From now on our target variable is `y_yes`
	Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous',
	'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
	'job_management', 'job_retired', 'job_self-employed', 'job_services',
	'job_student', 'job_technician', 'job_unemployed', 'job_unknown',
	'marital_married', 'marital_single', 'education_secondary',
	'education_tertiary', 'education_unknown', 'default_yes', 'housing_yes',
	'loan_yes', 'contact_telephone', 'contact_unknown', 'month_aug',
	'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun',
	'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',
	'poutcome_other', 'poutcome_success', 'poutcome_unknown', 'y_yes'],
	dtype='object')

	1.1.2 Oversampling with SMOTE
	As the target variable is imbalanced, we need to oversample the minority class with SMOTE. Split the dataset: I prefer %80-%20
	X1 = data.drop('y_yes', axis=1)
	y1 = data['y_yes']
	X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size=0.2, random_state=42)
	And apply the SMOTE, to the training set:
	smote = SMOTE(random_state=42)
	X_resampled1, y_resampled1 = smote.fit_resample(X_train1, y_train1)


	1.2. Training
	We have clean the missing values, convert the categorical valuesfor better computation handled with the class imbalance for a better score, we can proceed with the training:
	# Training Decision Tree
	dt_model = DecisionTreeClassifier(random_state=42)
	dt_model.fit(X_resampled1, y_resampled1)
	dt_predictions1 = dt_model.predict(X_test1)
	# Training Random Forest
	rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
	rf_model.fit(X_resampled1, y_resampled1)
	rf_predictions = rf_model.predict(X_test1)

	1.3. Scores
	# Evaluation
	print("Decision Tree Classifier:")
	print("Accuracy:", accuracy_score(y_test1, dt_predictions1))
	print(classification_report(y_test1, dt_predictions1))
	1.3.1 The results for the One-Hot Encoded, Reduced Class Imbalance with SMOTE, Decision Tree Scores:
	Decision Tree Classifier:
	Accuracy: 0.8281543735486011
	precision    recall  f1-score   support
	0.0       0.91      0.90      0.90      7952
	1.0       0.31      0.33      0.32      1091
	accuracy                           0.83      9043
	macro avg       0.61      0.61      0.61      9043
	weighted avg       0.83      0.83      0.83      9043
	Not bad but we can raise the accuracy score with Random Forests. So training again:
	# Evaluation (1)
	print("\nRandom Forest Classifier:")
	print("Accuracy:", accuracy_score(y_test1, rf_predictions))
	print(classification_report(y_test1, rf_predictions))
	1.3.2 The results for the One-Hot Encoded, Reduced Class Imbalance with SMOTE, Random Forests Scores:
	Random Forest Classifier:
	Accuracy: 0.8920712153046555
	precision    recall  f1-score   support (1)
	0.0       0.91      0.98      0.94      7952
	1.0       0.63      0.25      0.36      1091
	accuracy                           0.89      9043
	macro avg       0.77      0.62      0.65      9043
	weighted avg       0.87      0.89      0.87      9043
	For the curious talking heads, to get these results I have also applied feature selection and Label Encoding (instead of One-Hot), as they poorly scored compared to I haven’t bother myself adding the code.

	More interpretability: SHAP
	SUMMARY
	The Random Forest outperforms the Decision Tree in every metric for this dataset.
	Both models have a challenge with Class 1, which is often the case when one class is underrepresented in the data (as is typical in binary classification problems with a class imbalance). However, the Random Forest does a better job than the Decision ...
	It’s worth noting that even though the accuracy of both models is quite high, it’s important to also consider other metrics like precision, recall, and F1-score, especially when dealing with imbalanced datasets.

	2. Extreme Gradient Boosting-XGBoost
	2.1. Preprocessing
	I have ensured that there are no missing data in the dataset and have already applied one-hot encoding. Moving forward, will focus on: — Data Scaling — Determining Class Weights — Selecting Relevant Features
	2.1.1. Scaling
	We haven’t performed Feature Scaling due to unncecesesaties of the Decision Trees split on feature values using conditions and are not sensitive to the scale. However, as we further use on SVM as well, I have preferred to perform Scaling here (it is n...
	I will use Standart Scaling due to the performance metrics of the SVM.
	# 3. Scaling
	scaler = StandardScaler()
	X_train3 = scaler.fit_transform(X_train3)
	X_test3 = scaler.transform(X_test3)
	X_train3 = pd.DataFrame(X_train3, columns=data.drop('y_1', axis=1).columns)
	X_test3 = pd.DataFrame(X_test3, columns=data.drop('y_1', axis=1).columns)

	2.1.2. Class Weights
	Since XGBoost itself does not automatically compute class weights, it would be a We’ll start with computing the class weight due:
	class_weights = compute_class_weight('balanced', classes=[0,1], y=y_train3)
	weights = {0: class_weights[0], 1: class_weights[1]}
	The weights can be interpreted as follows:
	1. The clients subscribed to a term deposit, has a weight of approximately 0.566
	2. The clients did not subscribe a term deposit, has a weight of approximately 4.27
	{0: 0.5662397845758838, 1: 4.27416686362562}
	Class 0 way underrepresented so we will use the weights to balance them.


	2.2. Traning w/ Weights
	Let’s use the weights in the model training.
	# 5. Training with Class Weights
	model = xgb.XGBClassifier()
	model.fit(X_train3, y_train3, sample_weight=y_train3.map(weights))
	Feature Selection
	After training the model let’s check the feature importance based on the F Score. The importance is measured using the F score, which, in this context, indicates how often a feature is used to split the data.

	— Balance:
	With the highest F score of 854, the account balance of individuals is the most significant predictor in the model.

	— Age:
	The age of the individual is the second most influential feature with an F score of 730. This could imply that certain age groups might be more likely to respond in a particular way compared to others.
	Features like education_secondary, housing_yes, job_blue-collar, and loan_yes have relatively lower importance, suggesting they play a less pivotal role in influencing the outcome. However, their presence still brings some value to the model so we wil...


	2.3. Score
	With the same code we will check the score
	y_pred = model.predict(X_test3)
	print(accuracy_score(y_test3, y_pred))
	print(classification_report(y_test3, y_pred))
	Score for the One-Hot Encoded, Scaled, Weight Trained XGBoost:
	0.8247263076412695
	precision    recall  f1-score   support
	0.0       0.94      0.86      0.90      7985
	1.0       0.35      0.58      0.44      1058
	accuracy                           0.82      9043
	macro avg       0.65      0.72      0.67      9043
	weighted avg       0.87      0.82      0.84      9043
	It performed poorly with the inital XGBoost. We can try with hyperparameter tunig:
	# Define the hyperparameters and their possible values
	param_grid = {
	'learning_rate': [0.01, 0.1, 0.5, 1],
	'max_depth': [3, 5, 7, 10],
	'min_child_weight': [1, 3, 5],
	'subsample': [0.5, 0.7, 1.0],
	'colsample_bytree': [0.5, 0.7, 1.0],
	'n_estimators': [100, 200, 500],
	'objective': ['binary:logistic']
	}
	# Instantiate the grid search model
	grid_search = GridSearchCV(estimator=xgb.XGBClassifier(),
	param_grid=param_grid,
	scoring='accuracy',
	cv=3,
	verbose=1,
	n_jobs=-1)
	grid_search.fit(X_train3, y_train3)
	print("Best hyperparameters:", grid_search.best_params_)
	best_xgb_model = grid_search.best_estimator_
	After hyperparameter tuning, the model has high precision and recall for the 0.0 class, which is expected since it’s the majority class.
	Score for the One-Hot Encoded, Scaled, Weight Trained XGBoost and Tuned:
	0.9065575583324118
	precision    recall  f1-score   support (1)
	0.0       0.93      0.96      0.95      7985
	1.0       0.64      0.60      0.54      1058
	accuracy                           0.91      9043
	macro avg       0.78      0.72      0.74      9043
	weighted avg       0.90      0.91      0.90      9043
	Next steps could involve evaluating the tuned model on the test set, checking confusion matrices, and ROC curves.
	The AUC value is 0.93, which is close to 1. This is an excellent result.

	3. Support Vector Machine
	3.1. Pre-processing
	In the earlier processes, we have already: — Handled missing values — Scaled the features — Encoded Categorical Variables — Checked the Feature Importance — Handled Class Imbalance with SMOTE and Class Weights — Checked the Outliers with IQR
	There is only one more step for SVM, that is Kernel Choice. As we are dealing with non-linear data I will choose, Radial Basis Function (RBF) Kernel.

	3.2 Training
	When working with Support Vector Machines (SVM) on datasets, especially imbalanced ones, it’s crucial to select the right hyperparameters for optimal performance
	First, we define the range of values for each hyperparameter that we want to search. In this example, we’ll search over:
	— Regularization parameter — Kernel type — Gamma coefficient for the RBF kernel
	We’ll use GridSearchCV to automate the process of searching over the hyperparameters grid. It performs cross-validation for each combination of hyperparameters and selects the best one based on the cross-validation results.
	# Define hyperparameters grid to search
	param_grid = {
	'C': [0.01, 0.1, 1, 10],
	'kernel': ['linear', 'rbf'],
	'gamma': [0.01, 0.1, 1, 10]
	}
	# hyperparameters grid, cross-validation folds
	grid_search = GridSearchCV(SVC(class_weight='balanced'), param_grid, cv=5, verbose=1, n_jobs=-1)
	# Train GridSearchCV
	grid_search.fit(X_train4, y_train4)
	# Get best model
	best_svm = grid_search.best_estimator_
	# Predict using best model
	y_pred_best_svm = best_svm.predict(X_test4)




