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In the following script, I will be excavating into the cityscape of Istanbul. 

The threefold objective is to examine the city’s population distribution, the 

geographical spread of coffee shops, and the average Airbnb rental prices 

across various neighbourhood.  

 

Data 

All the data used in this project were obtained from various sources on the 

internet. While some were ready to use, others had to be wrangled and 

cleaned. 

 

-Population & Demographics Data 

The population data obtained from Turkish Statistical Institute: here 

The dataset contained every neighborhood in Turkey. I have narrowed it 

down to İstanbul districts. 

 

-Geographical Data 

To locate the neighborhoods, I leveraged on Nominatim Open Street maps 

project. From the API neighborhood boundaries as polygon coordinates 

which were then converted to geojson files using an API provided by 

geojson.io 

 

-Location Data 

The list of coffee shops was obtained by querying YELP through the API. 

As I use a free-tier account, the results of my query -coffee- were has their 

limits. 

 

 

https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://geojson.io/


   
 

 

 

Listing the cafes in the given coordinates 

The first part involves listing all the cafes in the given coordinates. The 

required libraries will be followed. 

import pandas as pd 

import numpy as np 

import requests 

import json 

import pandas as pd 

import urllib.parse 

import folium 

import geopandas as gpd 

import csv 

import time 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

Leveraging the Yelp API, I have created a query for coffee shops in the 

neighborhoods of Istanbul. 

# Yelp API key 

API_KEY = 'Fill it in with grace' 

 

# Geographic coordinates for Istanbul 

latitude = 40.9819 

longitude = 29.0247 

 

# Setting the stage with a 'coffee' query 

term = 'coffee' 

 



   
 

# URL for Yelp API 

url = 'https://api.yelp.com/v3/businesses/search' 

 

# Headers with API key 

headers = { 

   'Authorization': 'Bearer %s' % API_KEY, 

} 

The script employs requests and JSON libraries to retrieve and process 

data from the Yelp API. Yelp limits the results to 50 per query. However, 

in a city like Istanbul, where cafes are numerous, this limit is insufficient. 

This requires a combination of offset and while loop as well as time library 

to fetch more results and not get banned. 

The while-loop continuously queries the API for cafes until there are no 

more left(990 items). For each cafe, the name, coordinates, category, 

rating, and review count have been extracted. This data is then appended 

to the data frame, which provides us with a structured dataset of 

cafes(dfcafes). 

# A whisper to the oracle 

parsed_data = [] 

offset = 0 

while True: 

   # The treasures 

   params = { 

       'term': term, 

       'latitude': latitude, 

       'longitude': longitude, 

       'offset': offset, 

   } 

   



   
 

   # Send request and get response 

   resp = requests.get(url=url, headers=headers, params=params) 

   data = json.loads(resp.text) 

 

   # More treasures 

   businesses = data.get('businesses', []) 

   if not businesses: 

       break 

 

   # Decoding the cryptic messages 

   for business in businesses: 

       business_name = business['name'] 

       business_lat = business['coordinates']['latitude'] 

       business_lng = business['coordinates']['longitude'] 

       business_category = business['categories'][0]['title'] if business['categories'] else None 

       business_rating = business['rating'] 

       business_review_count = business['review_count'] 

       parsed_data.append([business_name, business_lat, business_lng, business_category, business_rating, 

business_review_count]) 

 

   # Doing very important stuff 

   offset += len(businesses) 

 

   # Paying the homage 

   time.sleep(1) 

   

# Convert to pandas DataFrame 

import pandas as pd 

dfcafes = pd.DataFrame(parsed_data, columns=['Name', 'Latitude', 'Longitude', 'Category', 'Rating', 

'ReviewCount']) 

 



   
 

# Get rid of the incompetence 

dfcafes = dfcafes.dropna() 

The explanatory info of the data: 

Data columns (total 6 columns): 

#   Column       Non-Null Count  Dtype  

---  ------       --------------  -----  

0   Name         1000 non-null   object 

1   Latitude     1000 non-null   float64 

2   Longitude    1000 non-null   float64 

3   Category     1000 non-null   object 

4   Rating       1000 non-null   float64 

5   ReviewCount  1000 non-null   int64  

dtypes: float64(3), int64(1), object(2) 

 

As it is seen dfcafes does not provide neighborhood info. As I will need it 

through my report, I have written I function, which takes the coordinates 

of the cafe and through Nominatim API, find the neighborhood. 

 

def get_neighborhood(lat, lon): 

   url = f"https://nominatim.openstreetmap.org/reverse?lat={lat}&lon={lon}&format=json&zoom=18" 

   response = requests.get(url) 

   data = response.json() 

 

   if neighborhood is not None: 

       neighborhood = neighborhood.replace(" Mahallesi", "") 

 

   return neighborhood 

 

def add_neighborhood(df, lat_col, lon_col): 

   neighborhoods = [] 



   
 

       neighborhood = get_neighborhood(row[lat_col], row[lon_col]) 

       neighborhoods.append(neighborhood) 

   df['Neighborhood'] = neighborhoods 

   return df 

 

#1/3 Cafes in Istanbul 

dfcafes = add_neighborhood(dfcafes, 'Latitude', 'Longitude') 

By neighborhood the cafe counts from YELP, are seen as below. 

 

If we combine all the neighborhoods: 



   
 

 

Shaping the borders of neighborhoods of Istanbul 

 

The next challenge is to identify the boundaries of Istanbul’s 

neighborhoods. Unfortunately, no API or data file provides this 

information. Therefore, I will use the names of the neighborhoods from the 

Turkish Statistical Institution population data and retrieve the geometry 

data that encloses each neighborhood. 

# I have preferred Beşiktaş, Kadıköy, Beyoğlu, Fatih, Üsküdar, you like to proceed with your beloved 

choices 

neighborhood_list = ["Abbasağa, Beşiktaş", 

                    "Akat, Beşiktaş", 

                    "Arnavutköy, Beşiktaş", 

                    "Balmumcu, Beşiktaş", 

                    "Bebek, Beşiktaş", 

                    "Cihannüma, Beşiktaş" 

                    ...] 

 



   
 

The neighborhood loop iterates through every neighborhood name in the 

provided list. The names are formatted to be compatible with the API 

request. The city name, Istanbul, is added to avoid confusion with other 

cities that might have the same neighborhood names. 

The URL is formed to make a search query to the Nominatim API from 

OpenStreetMap. The “q” parameter stands for the neighborhood name + 

city, and polygon_geojson=1 is used to get the JSON format of the 

neighborhood’s geometry. 

If the response exists, the code takes the first element, the most relevant 

one, and constructs a feature dictionary that represents the neighborhood. 

The feature dictionary stores the name and the geometry of the  

neighborhood. 

 

 

for neighborhood in neighborhood_list: 

   request_text = urllib.parse.quote(neighborhood + " Istanbul") 

   request_text = 

f"https://nominatim.openstreetmap.org/search?q={request_text}&polygon_geojson=1&format=json" 

   response = requests.get(request_text) 

 

   response = response.json() 

 

   if response: 

       neighborhood_result = response[0] 

       decoded_name = urllib.parse.unquote(neighborhood_result['display_name'])  

       feature = { 

           "type": "Feature", 

           "properties": { 

               "name": decoded_name  # Use the decoded name here 



   
 

           }, 

           "geometry": neighborhood_result['geojson'] 

       } 

       result_dict[neighborhood] = feature 

   else: 

       print(f"No results for {neighborhood}") 

 

with open('resultv2.json', 'w') as fp: 

   json.dump(geojson_data, fp) 

 

 

The gpd.read_file() function is provided by the GeoPandas library and is 

used to read spatial data. 

 

 

districts = gpd.read_file('resultv2.json') 

print(districts.head()) 

                                              name  \ 

0  Abbasağa Mahallesi, Beşiktaş, İstanbul, Marmar...   

1  Akat Mahallesi, Beşiktaş, İstanbul, Marmara Bö...   

2  Arnavutköy, Bebek Arnavutköy Caddesi, Arnavutk...   

3  Balmumcu Mahallesi, Beşiktaş, İstanbul, Marmar...   

4  Bebek Mahallesi, Beşiktaş, İstanbul, Marmara B...   

 

                                           geometry  

0  POLYGON ((29.00319 41.04803, 29.00321 41.04761...  

1  POLYGON ((29.01997 41.09076, 29.02036 41.08906...  

2                          POINT (29.04327 41.06718)  

3  POLYGON ((29.00983 41.05668, 29.01034 41.05653...  

4  POLYGON ((29.03265 41.07844, 29.03288 41.07817... 



   
 

Next, reading the population data from a CSV file in order to color the 

map by referencşng the density of the population. 

population = pd.read_csv("C:\\Users\...tüiklast2.csv") 

Then I have merged the population data with the GeoDataFrame data. This 

allows us to have both polygon coordinates and the population of the 

neighborhood at the same time. 

 

merged = districts.set_index('name').join(population.set_index('name')).reset_index() 

 

Unfortunately, geojson file does not provide neighborhood name. Yet we 

have the coordinates 

 

def get_neighborhood(lat, lon): 

   url = f"https://nominatim.openstreetmap.org/reverse?lat={lat}&lon={lon}&format=json&zoom=18" 

   response = requests.get(url) 

   data = response.json() 

 

   if neighborhood is not None: 

       neighborhood = neighborhood.replace(" Mahallesi", "") 

 

   return neighborhood 

 

def add_neighborhood(df, lat_col, lon_col): 

   neighborhoods = [] 

       neighborhood = get_neighborhood(row[lat_col], row[lon_col]) 

       neighborhoods.append(neighborhood) 

   df['Neighborhood'] = neighborhoods 

   return df 

 

#1/3 Cafes in Istanbul 



   
 

dfcafes = add_neighborhood(dfcafes, 'Latitude', 'Longitude') 

 

 

For visualizing the data, I have used the folium library to create a map 

centered on Istanbul. Choropleth map uses color shading or patterns to 

represent different values or data for specific geographic regions. The 

parameters are set according to our requirements. 

 

 

m = folium.Map(location=[41.0082, 28.9784], zoom_start=10) 

 

choropleth = folium.Choropleth( 

   geo_data=merged.__geo_interface__, 

   name='choropleth', 

   data=merged, 

   columns=['name', 'TOPLAM'], 

   key_on='feature.properties.name', 

   fill_color='OrRd', 

   fill_opacity=1, 

   line_opacity=0.2, 

   legend_name='Population in Istanbul Districts' 

) 

 

choropleth.add_to(m) 



   
 

 

Next, we add a marker for each coffee shop on the map. 

# Add a marker for each coffee shop 

for lat, lon, name in dfcafes[['Latitude', 'Longitude', 'Name']].values.tolist(): 

   folium.Marker( 

       location=[lat, lon], 

       popup=name, 

       icon=folium.Icon(icon="cloud"), 

   ).add_to(m) 

 

# Save to HTML 

m.save('ist_pop_cafe.html') 

m 



   
 

 

 

 

Airbnb Rental Exploration 

In this section, I will add another layer to the analysis — the average 

Airbnb rental prices for each neighborhood. I will perform some cleaning 

and filtering operations on the data. 

Optionally, filtering further by only including listings that have received 

reviews, and ones that receive more than 0.5 reviews per month. These 

filters could help ensure that we’re only including popular, actively rented 

listings in our analysis. 

# Read the csv file 

df = pd.read_csv('C:\\Users\\...AirbnbIstanbul.csv') 

 

# Manipulate the data 

df = df.drop_duplicates() 



   
 

df = df[df['latitude'] != 'n/a'] 

df = df[df['longitude'] != 'n/a'] 

df = df[df['neighbourhood'].isin(['Kadikoy', 'Fatih', "Üsküdar", "Beyoğlu", 'Besiktas'])] 

df = df[df['room_type'].isin(['Entire home/apt'])] 

df = df[df['price'] < 1000] 

 

#Optinal: 

df = df[df['number_of_reviews'] != 0] 

df = df[df['reviews_per_month'] > 0.5] 

 

# Save the cleaned data to a new csv file 

df.to_csv('final_airbnb.csv', index=False) 

 

df = df.dropna(subset=['neighbourhood']) 

d,name,host_id,host_name,neighbourhood_group,ilce,latitude,longitude,room_type,price,minimum_nights,

number_of_reviews,last_review,reviews_per_month,calculated_host_listings_count,availability_365 

20815,The Bosphorus from The Comfy Hill,78838,Gülder,,Besiktas,4.106.984,2.904.545,Entire 

home/apt,100,30,41,2018-11-07,0.38,2,49 

25436,House for vacation rental furnutare,105823,Yesim,,Besiktas,4.107.731,2.903.891,Entire 

home/apt,211,21,0,,,1,83 

34177,PETIT HOUSE,147330,Ercan,,Besiktas,4.106.901,2.903.882,Entire home/apt,237,30,8,2016-07-

14,0.15,2,357 

47264,Kurucesme stunning seaview peacfull Flat,213410,Evrim,,Besiktas,4.106.486,2.903.473,Entire 

home/apt,395,3,8,2018-09-12,0.08,6,251 

53612,Gorgeous Bosphorus View 3BDR Apt with 

Terrace,250139,Onur,,Besiktas,4.104.439,2.901.266,Entire home/apt,501,30,20,2017-11-27,0.24,1,365 

 

 

In the first plot, Beyoğlu displayed the highest average rental price, 

followed by Beşiktaş, Kadıköy, Fatih, and Üsküdar, in descending order. 

The distribution of prices in Beyoğlu showed a single peak, suggesting a 

unimodal distribution. 



   
 

 

Beşiktaş and Kadıköy demonstrated a bimodal distribution with a 

significant portion of prices at both lower and higher ends. 

Fatih and Üsküdar had their prices leaning towards the lower end with a 

long tail extending towards the higher end, indicating a right-skewed 

distribution. 

 

 

Airbnb data set as it is seen, does also not provide neighborhood values. 

With the same add_neighborhood function, neighborhood values can be 

added to the CSV file as well. 

#2/3 Airbnb data 

 

df_airbnb = add_neighborhood(df_airbnb, 'latitude', 'longitude') 

So, the second plot breaks down the average rental prices within 

neighborhoods in these districts. 



   
 

 

For Beşiktaş, the highest prices are seen in the Bebek neighborhood, 

followed by Levazım and Etiler. In Beyoğlu, the Cihangir neighborhood 

commands the highest prices, followed by Tomtom and Asmalı Mescit. 

For Fatih, the most expensive neighborhood for Airbnb rentals is Sultan 

Ahmet, while in Kadıköy, the highest prices are found in Fenerbahçe. 

Lastly, in Üsküdar, the Kuzguncuk neighborhood has the highest average 

rental prices. 

 

Here are the 

# Average 

average_prices = {semt: sum(price_list) / len(price_list) for semt, price_list in prices.items()} 

 

# Markers for Airbnb location 

for semt, (lat, lon) in locations.items(): 

   average_price = average_prices[semt] 



   
 

 

   # Map string 

   info = f"Semt: {semt}<br>Average Price: {average_price:.2f}" 

 

   # Create a popup 

   popup = folium.Popup(info, max_width=250) 

 

   # Circle marker for the average price 

   folium.CircleMarker( 

       location=[lat, lon], 

       radius=average_price / 20,  # you might need to adjust the division factor to get appropriate circle 

sizes 

       color="darkgrey", 

       fill=True, 

       fill_color="green", 

       fill_opacity=0.6, 

       popup=popup 

   ).add_to(m) 

 

m.save('istanbul_last.html') 

 

m 

And the representaiton of Istanbul 



   
 

 

Finally, the correlation matrix among any potential variable is shown in 

below. 

The number of cafes and population size show a mild positive correlation 

of 0.304, suggesting that districts with larger populations tend to have 

more cafes. This could be due to: 

Demand and Supply: One straightforward explanation for this positive 

correlation might be the basic economic principle of supply and demand. 

In areas with larger populations, there’s likely to be greater demand for 

coffee shops. This demand can sustain a larger number of cafes, allowing 

more to exist in these areas compared to less populated neighborhoods. 

Social Gathering Places: Cafes are often viewed as social gathering places, 

and a larger population might necessitate more such spaces. As population 

density increases, cafes become not just venues for coffee but also 

community hubs for socializing, working, and leisure activities. 

Diversity of Preferences: With a larger population, there’s likely to be a 



   
 

wider variety of preferences and tastes. Different preferences can support a 

larger number of cafes as well. 

 

Higher Foot Traffic: Neighborhoods with larger populations often have 

higher foot traffic, which can benefit cafes. More people passing by can 

mean more potential customers, whether it’s people heading to work in the 

morning, meeting friends during the day, or seeking a late-night coffee fix. 

 

However, both the number of cafes and population size show a negative 

correlation with the mean Airbnb price, -0.237 and -0.296 respectively. 

This suggests that areas with more cafes and larger populations tend not to 

have high Airbnb rental prices. This could be due to: 



   
 

 

Competition: More cafes could mean more competition, which may keep 

prices, including Airbnb rentals in lower degree. 

Type of Neighborhood: Areas with high cafe density might be more 

commercial such people prefer to visit rather than reside. 

 

Demographics: Neighborhoods with a higher population might have more 

varied demographics, including students or younger populations who 

might not have high spending power. 

Preference for Experiences: Airbnb guests sometimes look for ‘authentic’ 

experiences. Areas with a higher concentration of local cafes might be 

perceived as more ‘authentic’ compared to areas with more tourist-centric 

attractions. 
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	The list of coffee shops was obtained by querying YELP through the API. As I use a free-tier account, the results of my query -coffee- were has their limits.
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	# Yelp API key
	API_KEY = 'Fill it in with grace'
	# Geographic coordinates for Istanbul
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	# URL for Yelp API
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	}
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	parsed_data = []
	offset = 0
	while True:
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	params = {
	'term': term,
	'latitude': latitude,
	'longitude': longitude,
	'offset': offset,
	} (1)
	# Send request and get response
	resp = requests.get(url=url, headers=headers, params=params)
	data = json.loads(resp.text)
	# More treasures
	businesses = data.get('businesses', [])
	if not businesses:
	break
	# Decoding the cryptic messages
	for business in businesses:
	business_name = business['name']
	business_lat = business['coordinates']['latitude']
	business_lng = business['coordinates']['longitude']
	business_category = business['categories'][0]['title'] if business['categories'] else None
	business_rating = business['rating']
	business_review_count = business['review_count']
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	# Paying the homage
	time.sleep(1)
	# Convert to pandas DataFrame
	import pandas as pd (2)
	dfcafes = pd.DataFrame(parsed_data, columns=['Name', 'Latitude', 'Longitude', 'Category', 'Rating', 'ReviewCount'])
	# Get rid of the incompetence
	dfcafes = dfcafes.dropna()
	The explanatory info of the data:
	Data columns (total 6 columns):
	#   Column       Non-Null Count  Dtype
	---  ------       --------------  -----
	0   Name         1000 non-null   object
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	As it is seen dfcafes does not provide neighborhood info. As I will need it through my report, I have written I function, which takes the coordinates of the cafe and through Nominatim API, find the neighborhood.
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	url = f"https://nominatim.openstreetmap.org/reverse?lat={lat}&lon={lon}&format=json&zoom=18"
	response = requests.get(url)
	data = response.json()
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	neighborhood = get_neighborhood(row[lat_col], row[lon_col])
	neighborhoods.append(neighborhood)
	df['Neighborhood'] = neighborhoods
	return df
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	dfcafes = add_neighborhood(dfcafes, 'Latitude', 'Longitude')
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	response = requests.get(request_text)
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	result_dict[neighborhood] = feature
	else:
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	with open('resultv2.json', 'w') as fp:
	json.dump(geojson_data, fp)
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	3  Balmumcu Mahallesi, Beşiktaş, İstanbul, Marmar...
	4  Bebek Mahallesi, Beşiktaş, İstanbul, Marmara B...
	geometry
	0  POLYGON ((29.00319 41.04803, 29.00321 41.04761...
	1  POLYGON ((29.01997 41.09076, 29.02036 41.08906...
	2                          POINT (29.04327 41.06718)
	3  POLYGON ((29.00983 41.05668, 29.01034 41.05653...
	4  POLYGON ((29.03265 41.07844, 29.03288 41.07817...
	Next, reading the population data from a CSV file in order to color the map by referencşng the density of the population.
	population = pd.read_csv("C:\\Users\...tüiklast2.csv")
	Then I have merged the population data with the GeoDataFrame data. This allows us to have both polygon coordinates and the population of the neighborhood at the same time.
	merged = districts.set_index('name').join(population.set_index('name')).reset_index()
	Unfortunately, geojson file does not provide neighborhood name. Yet we have the coordinates
	def get_neighborhood(lat, lon):
	url = f"https://nominatim.openstreetmap.org/reverse?lat={lat}&lon={lon}&format=json&zoom=18"
	response = requests.get(url)
	data = response.json()
	if neighborhood is not None:
	neighborhood = neighborhood.replace(" Mahallesi", "")
	return neighborhood
	def add_neighborhood(df, lat_col, lon_col):
	neighborhoods = []
	neighborhood = get_neighborhood(row[lat_col], row[lon_col])
	neighborhoods.append(neighborhood)
	df['Neighborhood'] = neighborhoods
	return df
	#1/3 Cafes in Istanbul
	dfcafes = add_neighborhood(dfcafes, 'Latitude', 'Longitude')
	For visualizing the data, I have used the folium library to create a map centered on Istanbul. Choropleth map uses color shading or patterns to represent different values or data for specific geographic regions. The parameters are set according to our...
	m = folium.Map(location=[41.0082, 28.9784], zoom_start=10)
	choropleth = folium.Choropleth(
	geo_data=merged.__geo_interface__,
	name='choropleth',
	data=merged,
	columns=['name', 'TOPLAM'],
	key_on='feature.properties.name',
	fill_color='OrRd',
	fill_opacity=1,
	line_opacity=0.2,
	legend_name='Population in Istanbul Districts'
	)
	choropleth.add_to(m)
	Next, we add a marker for each coffee shop on the map.
	# Add a marker for each coffee shop
	for lat, lon, name in dfcafes[['Latitude', 'Longitude', 'Name']].values.tolist():
	folium.Marker(
	location=[lat, lon],
	popup=name,
	icon=folium.Icon(icon="cloud"),
	).add_to(m)
	# Save to HTML
	m.save('ist_pop_cafe.html')
	m

	Airbnb Rental Exploration
	In this section, I will add another layer to the analysis — the average Airbnb rental prices for each neighborhood. I will perform some cleaning and filtering operations on the data.
	Optionally, filtering further by only including listings that have received reviews, and ones that receive more than 0.5 reviews per month. These filters could help ensure that we’re only including popular, actively rented listings in our analysis.
	# Read the csv file
	df = pd.read_csv('C:\\Users\\...AirbnbIstanbul.csv')
	# Manipulate the data
	df = df.drop_duplicates()
	df = df[df['latitude'] != 'n/a']
	df = df[df['longitude'] != 'n/a']
	df = df[df['neighbourhood'].isin(['Kadikoy', 'Fatih', "Üsküdar", "Beyoğlu", 'Besiktas'])]
	df = df[df['room_type'].isin(['Entire home/apt'])]
	df = df[df['price'] < 1000]
	#Optinal:
	df = df[df['number_of_reviews'] != 0]
	df = df[df['reviews_per_month'] > 0.5]
	# Save the cleaned data to a new csv file
	df.to_csv('final_airbnb.csv', index=False)
	df = df.dropna(subset=['neighbourhood'])
	d,name,host_id,host_name,neighbourhood_group,ilce,latitude,longitude,room_type,price,minimum_nights,number_of_reviews,last_review,reviews_per_month,calculated_host_listings_count,availability_365
	20815,The Bosphorus from The Comfy Hill,78838,Gülder,,Besiktas,4.106.984,2.904.545,Entire home/apt,100,30,41,2018-11-07,0.38,2,49
	25436,House for vacation rental furnutare,105823,Yesim,,Besiktas,4.107.731,2.903.891,Entire home/apt,211,21,0,,,1,83
	34177,PETIT HOUSE,147330,Ercan,,Besiktas,4.106.901,2.903.882,Entire home/apt,237,30,8,2016-07-14,0.15,2,357
	47264,Kurucesme stunning seaview peacfull Flat,213410,Evrim,,Besiktas,4.106.486,2.903.473,Entire home/apt,395,3,8,2018-09-12,0.08,6,251
	53612,Gorgeous Bosphorus View 3BDR Apt with Terrace,250139,Onur,,Besiktas,4.104.439,2.901.266,Entire home/apt,501,30,20,2017-11-27,0.24,1,365
	In the first plot, Beyoğlu displayed the highest average rental price, followed by Beşiktaş, Kadıköy, Fatih, and Üsküdar, in descending order. The distribution of prices in Beyoğlu showed a single peak, suggesting a unimodal distribution.
	Beşiktaş and Kadıköy demonstrated a bimodal distribution with a significant portion of prices at both lower and higher ends. Fatih and Üsküdar had their prices leaning towards the lower end with a long tail extending towards the higher end, indicatin...
	Airbnb data set as it is seen, does also not provide neighborhood values. With the same add_neighborhood function, neighborhood values can be added to the CSV file as well.
	#2/3 Airbnb data
	df_airbnb = add_neighborhood(df_airbnb, 'latitude', 'longitude')
	So, the second plot breaks down the average rental prices within neighborhoods in these districts.
	For Beşiktaş, the highest prices are seen in the Bebek neighborhood, followed by Levazım and Etiler. In Beyoğlu, the Cihangir neighborhood commands the highest prices, followed by Tomtom and Asmalı Mescit. For Fatih, the most expensive neighborhood f...
	Here are the
	# Average
	average_prices = {semt: sum(price_list) / len(price_list) for semt, price_list in prices.items()}
	# Markers for Airbnb location
	for semt, (lat, lon) in locations.items():
	average_price = average_prices[semt]
	# Map string
	info = f"Semt: {semt}<br>Average Price: {average_price:.2f}"
	# Create a popup
	popup = folium.Popup(info, max_width=250)
	# Circle marker for the average price
	folium.CircleMarker(
	location=[lat, lon],
	radius=average_price / 20,  # you might need to adjust the division factor to get appropriate circle sizes
	color="darkgrey",
	fill=True,
	fill_color="green",
	fill_opacity=0.6,
	popup=popup
	).add_to(m)
	m.save('istanbul_last.html')
	m
	And the representaiton of Istanbul
	Finally, the correlation matrix among any potential variable is shown in below.
	The number of cafes and population size show a mild positive correlation of 0.304, suggesting that districts with larger populations tend to have more cafes. This could be due to: Demand and Supply: One straightforward explanation for this positive co...
	Higher Foot Traffic: Neighborhoods with larger populations often have higher foot traffic, which can benefit cafes. More people passing by can mean more potential customers, whether it’s people heading to work in the morning, meeting friends during t...
	However, both the number of cafes and population size show a negative correlation with the mean Airbnb price, -0.237 and -0.296 respectively. This suggests that areas with more cafes and larger populations tend not to have high Airbnb rental prices. T...
	Competition: More cafes could mean more competition, which may keep prices, including Airbnb rentals in lower degree. Type of Neighborhood: Areas with high cafe density might be more commercial such people prefer to visit rather than reside.
	Demographics: Neighborhoods with a higher population might have more varied demographics, including students or younger populations who might not have high spending power. Preference for Experiences: Airbnb guests sometimes look for ‘authentic’ exper...




