
   
 

 

 

 

Human Resources Analytics - Milestone Report 

 

Human Resources
Analytics -
Milestone Report



   
 

 

"Yeah, they all said that to me...", *Bob replied as we were at Starbucks sipping on our dark roast 

coffee. Bob is a friend of mine and was the owner of a multi-million dollar company, that's right, "m-i-l-l-i-

o-n". He used to tell me stories about how his company's productivity and growth has sky rocketed from 

the previous years and everything has been going great. But recently, he's been noticing some decline 

within his company. In a five month period, he lost one-fifth of his employees. At least a dozen of them 

throughout each department made phone calls and even left sticky notes on their tables informing him 

about their leave. Nobody knew what was happening. In that year, he was contemplating about filing for 

bankruptcy. Fast-forward seven months later, he's having a conversation with his co-founder of the 

company. The conversation ends with, "I quit..." 

That is the last thing anybody wants to hear from their employees. In a sense, it’s the employees who make 

the company. It’s the employees who do the work. It’s the employees who shape the company’s culture. 

Long-term success, a healthy work environment, and high employee retention are all signs of a successful 

company. But when a company experiences a high rate of employee turnover, then something is going 

wrong. This can lead the company to huge monetary losses by these innovative and valuable employees. 

Companies that maintain a healthy organization and culture are always a good sign of future prosperity. 

Recognizing and understanding what factors that were associated with employee turnover will allow 

companies and individuals to limit this from happening and may even increase employee productivity and 

growth. These predictive insights give managers the opportunity to take corrective steps to build and 

preserve their successful business. 

"You don't build a business. You build people, and people build the business." - Zig Ziglar 

 



   
 

 

 

About This Kernel 

 

Feel free to use this kernel as a reference as a template for your analysis :) 

For those that are in or interested in Human Resources and would like a detailed guide on how to 

approach an employee retention problem through a data science point of view, feel free to check this 

notebook out.. 

I will be covering my analysis and approach through different process flows in the data science pipeline, 

which includes statistical inference and exploratory data analysis. The main goal is to understand the 

reasoning behind employee turnover and to come up with a model to classify an employee’s risk of 

attrition. A recommendation for a retention plan was created, which incorporates some best practices for 

employee retention at different risk levels of attrition. 

Hopefully the kernel added some new insights/perspectives to the data science community! If there are any 

suggestions/changes you would like to see in the Kernel please let me know :). Appreciate every ounce of 

help! 

This notebook will always be a work in progress. Please leave any comments about further improvements 

to the notebook! Any feedback or constructive criticism is greatly appreciated!. Thank you guys! 



   
 

 

UPDATE: R Version 

 

R Users: 

Thanks to Ragul, he has created a similar kernel but using R. Check it out if you are an R user! 

https://www.kaggle.com/ragulram/hr-analytics-exploration-and-modelling-with-r 

Business Problem 

 

Bob's multi-million dollar company is about to go bankrupt and he wants to know why his employees are 

leaving. 

Client 

 

Bob the Boss 

Objective 

 

The company wants to understand what factors contributed most to employee turnover and to create a 

model that can predict if a certain employee will leave the company or not. The goal is to create or 

improve different retention strategies on targeted employees. Overall, the implementation of this model 

will allow management to create better decision-making actions. 

OSEMN Pipeline 

 

I’ll be following a typical data science pipeline, which is call “OSEMN” (pronounced awesome). 

1. Obtaining the data is the first approach in solving the problem. 

https://www.kaggle.com/ragulram/hr-analytics-exploration-and-modelling-with-r


   
 

 

2. Scrubbing or cleaning the data is the next step. This includes data imputation of missing 

or invalid data and fixing column names. 

3. Exploring the data will follow right after and allow further insight of what our dataset 

contains. Looking for any outliers or weird data. Understanding the relationship each 

explanatory variable has with the response variable resides here and we can do this with 

a correlation matrix. 

4. Modeling the data will give us our predictive power on whether an employee will leave. 

5. INterpreting the data is last. With all the results and analysis of the data, what 

conclusion is made? What factors contributed most to employee turnover? What 

relationship of variables were found? 

Note: The data was found from the “Human Resources Analytics” dataset provided by Kaggle’s website. 

https://www.kaggle.com/ludobenistant/hr-analytics 

Note: THIS DATASET IS SIMULATED. 

Part 1: Obtaining the Data 

 

In [1]: 

# Import the neccessary modules for data manipulation and visual representation 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as matplot 

import seaborn as sns 

%matplotlib inline 

 

In [2]: 

#Read the analytics csv file and store our dataset into a dataframe called "df" 

df = pd.DataFrame.from_csv('../input/HR_comma_sep.csv', index_col=None) 

https://www.kaggle.com/ludobenistant/hr-analytics


   
 

 

 

Part 2: Scrubbing the Data 

 

Typically, cleaning the data requires a lot of work and can be a very tedious procedure. This dataset from 

Kaggle is super clean and contains no missing values. But still, I will have to examine the dataset to make 

sure that everything else is readable and that the observation values match the feature names 

appropriately. 

In [3]: 

# Check to see if there are any missing values in our data set 

df.isnull().any() 

 

Out[3]: 

satisfaction_level       False 

last_evaluation          False 

number_project           False 

average_montly_hours     False 

time_spend_company       False 

Work_accident            False 

left                     False 

promotion_last_5years    False 

sales                    False 

salary                   False 

dtype: bool 

In [4]: 



   
 

 

# Get a quick overview of what we are dealing with in our dataset 

df.head() 

 

Out[4]: 

 satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident 

0 0.38 0.53 2 157 3 0 

1 0.80 0.86 5 262 6 0 

2 0.11 0.88 7 272 4 0 

3 0.72 0.87 5 223 5 0 

4 0.37 0.52 2 159 3 0 

       

In [5]: 

# Renaming certain columns for better readability 

df = df.rename(columns={'satisfaction_level': 'satisfaction',  

                        'last_evaluation': 'evaluation', 



   
 

 

                        'number_project': 'projectCount', 

                        'average_montly_hours': 'averageMonthlyHours', 

                        'time_spend_company': 'yearsAtCompany', 

                        'Work_accident': 'workAccident', 

                        'promotion_last_5years': 'promotion', 

                        'sales' : 'department', 

                        'left' : 'turnover' 

                        }) 

 

In [6]: 

# Move the reponse variable "turnover" to the front of the table 

front = df['turnover'] 

df.drop(labels=['turnover'], axis=1,inplace = True) 

df.insert(0, 'turnover', front) 

df.head() 

 

Out[6]: 

 turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion 

0 1 0.38 0.53 2 157 3 0 0 

1 1 0.80 0.86 5 262 6 0 0 



   
 

 

2 1 0.11 0.88 7 272 4 0 0 

3 1 0.72 0.87 5 223 5 0 0 

4 1 0.37 0.52 2 159 3 0 0 

Part 3: Exploring the Data 

 

 

3a. Statistical Overview 



   
 

 

 

The dataset has: 

● About 15,000 employee observations and 10 features 

● The company had a turnover rate of about 24% 

● Mean satisfaction of employees is 0.61 

In [7]: 

# The dataset contains 10 columns and 14999 observations 

df.shape 

 

Out[7]: 

(14999, 10) 

In [8]: 

# Check the type of our features.  

df.dtypes 

 

Out[8]: 

turnover                 int64 

satisfaction           float64 

evaluation             float64 

projectCount             int64 

averageMonthlyHours      int64 

yearsAtCompany           int64 

workAccident             int64 

promotion                int64 



   
 

 

department              object 

salary                  object 

dtype: object 

In [9]: 

# Looks like about 76% of employees stayed and 24% of employees left.  

# NOTE: When performing cross validation, its important to maintain this turnover ratio 

turnover_rate = df.turnover.value_counts() / len(df) 

turnover_rate 

 

Out[9]: 

0    0.761917 

1    0.238083 

Name: turnover, dtype: float64 

In [10]: 

# Display the statistical overview of the employees 

df.describe() 

 

Out[10]: 

 turnover satisfaction evaluation 
projectCou

nt 

averageMonthly

Hours 

yearsAtComp

any 

workAccid

ent 
promotion 

cou

nt 

14999.000

000 

14999.000

000 

14999.000

000 

14999.000

000 
14999.000000 

14999.00000

0 

14999.000

000 

14999.000

000 



   
 

 

me

an 
0.238083 0.612834 0.716102 3.803054 201.050337 3.498233 0.144610 0.021268 

std 0.425924 0.248631 0.171169 1.232592 49.943099 1.460136 0.351719 0.144281 

min 0.000000 0.090000 0.360000 2.000000 96.000000 2.000000 0.000000 0.000000 

25

% 
0.000000 0.440000 0.560000 3.000000 156.000000 3.000000 0.000000 0.000000 

50

% 
0.000000 0.640000 0.720000 4.000000 200.000000 3.000000 0.000000 0.000000 

75

% 
0.000000 0.820000 0.870000 5.000000 245.000000 4.000000 0.000000 0.000000 

ma

x 
1.000000 1.000000 1.000000 7.000000 310.000000 10.000000 1.000000 1.000000 

In [11]: 

# Overview of summary (Turnover V.S. Non-turnover) 

turnover_Summary = df.groupby('turnover') 

turnover_Summary.mean() 

 



   
 

 

Out[11]: 

 satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany 
workAcciden

t 
promotion 

turnover        

0 0.666810 0.715473 3.786664 199.060203 3.380032 0.175009 0.026251 

1 0.440098 0.718113 3.855503 207.419210 3.876505 0.047326 0.005321 

3b. Correlation Matrix & Heatmap 

 

Moderate Positively Correlated Features: 

● projectCount vs evaluation: 0.349333 

● projectCount vs averageMonthlyHours: 0.417211 

● averageMonthlyHours vs evaluation: 0.339742 

Moderate Negatively Correlated Feature: 

● satisfaction vs turnover: -0.388375 

Stop and Think: 

● What features affect our target variable the most (turnover)? 

● What features have strong correlations with each other? 

● Can we do a more in depth examination of these features? 

Summary: 



   
 

 

From the heatmap, there is a positive(+) correlation between projectCount, averageMonthlyHours, and 

evaluation. Which could mean that the employees who spent more hours and did more projects were 

evaluated highly. 

For the negative(-) relationships, turnover and satisfaction are highly correlated. I'm assuming that people 

tend to leave a company more when they are less satisfied. 

In [12]: 

#Correlation Matrix 

corr = df.corr() 

corr = (corr) 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

 

corr 

 

Out[12]: 

 
turnove

r 

satisfact

ion 

evaluati

on 

projectCo

unt 

averageMonthly

Hours 

yearsAtCom

pany 

workAcci

dent 

promot

ion 

turnover 
1.0000

00 

-

0.38837

5 

0.0065

67 
0.023787 0.071287 0.144822 -0.154622 

-

0.0617

88 



   
 

 

satisfaction -

0.3883

75 

1.00000

0 

0.1050

21 

-

0.142970 
-0.020048 -0.100866 0.058697 

0.0256

05 

evaluation 
0.0065

67 

0.10502

1 

1.0000

00 
0.349333 0.339742 0.131591 -0.007104 

-

0.0086

84 

projectCount 
0.0237

87 

-

0.14297

0 

0.3493

33 
1.000000 0.417211 0.196786 -0.004741 

-

0.0060

64 

averageMonthly

Hours 
0.0712

87 

-

0.02004

8 

0.3397

42 
0.417211 1.000000 0.127755 -0.010143 

-

0.0035

44 

yearsAtCompany 
0.1448

22 

-

0.10086

6 

0.1315

91 
0.196786 0.127755 1.000000 0.002120 

0.0674

33 

workAccident -

0.1546

22 

0.05869

7 

-

0.0071

04 

-

0.004741 
-0.010143 0.002120 1.000000 

0.0392

45 

promotion -

0.0617

88 

0.02560

5 

-

0.0086

84 

-

0.006064 
-0.003544 0.067433 0.039245 

1.0000

00 



   
 

 

 

3b2. Statistical Test for Correlation 

 

One-Sample T-Test (Measuring Satisfaction Level) 

A one-sample t-test checks whether a sample mean differs from the population mean. Since satisfaction 

has the highest correlation with our dependent variable turnover, let's test to see whether the average 

satisfaction level of employees that had a turnover differs from the those that had no turnover. 

Hypothesis Testing: Is there significant difference in the means of satisfaction level between employees 

who had a turnover and temployees who had no turnover? 

● Null Hypothesis: (H0: pTS = pES) The null hypothesis would be that there is no 

difference in satisfaction level between employees who did turnover and those who did 

not.. 

● Alternate Hypothesis: (HA: pTS != pES) The alternative hypothesis would be that 

there is a difference in satisfaction level between employees who did turnover and those 

who did not.. 

In [13]: 



   
 

 

# Let's compare the means of our employee turnover satisfaction against the employee population 

satisfaction 

#emp_population = df['satisfaction'].mean() 

emp_population = df['satisfaction'][df['turnover'] == 0].mean() 

emp_turnover_satisfaction = df[df['turnover']==1]['satisfaction'].mean() 

 

print( 'The mean satisfaction for the employee population with no turnover is: ' + str(emp_population)) 

print( 'The mean satisfaction for employees that had a turnover is: ' + str(emp_turnover_satisfaction) ) 

 

The mean satisfaction for the employee population with no turnover is: 0.666809590479516 

The mean satisfaction for employees that had a turnover is: 0.44009801176140917 

 

Conducting the T-Test 

 

Let's conduct a t-test at 95% confidence level and see if it correctly rejects the null hypothesis that the 

sample comes from the same distribution as the employee population. To conduct a one sample t-test, we 

can use the stats.ttest_1samp() function: 

In [14]: 

import scipy.stats as stats 

stats.ttest_1samp(a=  df[df['turnover']==1]['satisfaction'], # Sample of Employee satisfaction who had a 

Turnover 

                  popmean = emp_population)  # Employee Who Had No Turnover satisfaction mean 

 

Out[14]: 

Ttest_1sampResult(statistic=-51.3303486754725, pvalue=0.0) 



   
 

 

T-Test Result 

 

The test result shows the test statistic "t" is equal to -51.33. This test statistic tells us how much the 

sample mean deviates from the null hypothesis. If the t-statistic lies outside the quantiles of the t-

distribution corresponding to our confidence level and degrees of freedom, we reject the null hypothesis. 

We can check the quantiles with stats.t.ppf(): 

T-Test Quantile 

 

If the t-statistic value we calculated above (-51.33) is outside the quantiles, then we can reject the null 

hypothesis 

In [15]: 

degree_freedom = len(df[df['turnover']==1]) 

 

LQ = stats.t.ppf(0.025,degree_freedom)  # Left Quartile 

 

RQ = stats.t.ppf(0.975,degree_freedom)  # Right Quartile 

 

print ('The t-distribution left quartile range is: ' + str(LQ)) 

print ('The t-distribution right quartile range is: ' + str(RQ)) 

 

The t-distribution left quartile range is: -1.9606285216 

The t-distribution right quartile range is: 1.9606285216 

 

One-Sample T-Test Summary 



   
 

 

 

T-Test = -51.33 | P-Value = 0.000_ | Reject Null Hypothesis 

Question: How come the P-Value is literally 0.0? Can anybody answer 

this? 

Reject the null hypothesis because: 

● T-Test score is outside the quantiles 

● P-value is lower than confidence level of 5% 

Based on the statistical analysis of a one sample t-test, there seems to be some significant difference 

between the mean satisfaction of employees who had a turnover and the entire employee population. The 

super low P-value of 0.00_ at a 5% confidence level is a good indicator to reject the null hypothesis. 

But this does not neccessarily mean that there is practical significance. We would have to conduct more 

experiments or maybe collect more data about the employees in order to come up with a more accurate 

finding. 

 



   
 

 

3c. Distribution Plots (Satisfaction - Evaluation - AverageMonthlyHours) 

 

Summary: Let's examine the distribution on some of the employee's features. Here's what I found: 

● Satisfaction - There is a huge spike for employees with low satisfaction and high 

satisfaction. 

● Evaluation - There is a bimodal distrubtion of employees for low evaluations (less than 

0.6) and high evaluations (more than 0.8) 

● AverageMonthlyHours - There is another bimodal distribution of employees with 

lower and higher average monthly hours (less than 150 hours & more than 250 hours) 

● The evaluation and average monthly hour graphs both share a similar distribution. 

● Employees with lower average monthly hours were evaluated less and vice versa. 

● If you look back at the correlation matrix, the high correlation between evaluation and 

averageMonthlyHours does support this finding. 

Stop and Think: 

● Is there a reason for the high spike in low satisfaction of employees? 

● Could employees be grouped in a way with these features? 

● Is there a correlation between evaluation and averageMonthlyHours? 

In [16]: 

# Set up the matplotlib figure 

f, axes = plt.subplots(ncols=3, figsize=(15, 6)) 

 

# Graph Employee Satisfaction 

sns.distplot(df.satisfaction, kde=False, color="g", ax=axes[0]).set_title('Employee Satisfaction 

Distribution') 

axes[0].set_ylabel('Employee Count') 

 

# Graph Employee Evaluation 

sns.distplot(df.evaluation, kde=False, color="r", ax=axes[1]).set_title('Employee Evaluation Distribution') 



   
 

 

axes[1].set_ylabel('Employee Count') 

 

# Graph Employee Average Monthly Hours 

sns.distplot(df.averageMonthlyHours, kde=False, color="b", ax=axes[2]).set_title('Employee Average 

Monthly Hours Distribution') 

axes[2].set_ylabel('Employee Count') 

 

Out[16]: 

Text(0,0.5,'Employee Count') 

 

3d. Salary V.S. Turnover 

 

Summary: This is not unusual. Here's what I found: 

● Majority of employees who left either had low or medium salary. 

● Barely any employees left with high salary 

● Employees with low to average salaries tend to leave the company. 

Stop and Think: 

● What is the work environment like for low, medium, and high salaries? 



   
 

 

● What made employees with high salaries to leave? 

In [17]: 

f, ax = plt.subplots(figsize=(15, 4)) 

sns.countplot(y="salary", hue='turnover', data=df).set_title('Employee Salary Turnover Distribution'); 

 

 



   
 

 

 

3e. Department V.S. Turnover 

 

Summary: Let's see more information about the departments. Here's what I found: 

● The sales, technical, and support department were the top 3 departments to have 

employee turnover 

● The management department had the smallest amount of turnover 

Stop and Think: 



   
 

 

● If we had more information on each department, can we pinpoint a more direct cause for 

employee turnover? 

In [18]: 

# Employee distri 

# Types of colors 

color_types = ['#78C850','#F08030','#6890F0','#A8B820','#A8A878','#A040A0','#F8D030',   

                '#E0C068','#EE99AC','#C03028','#F85888','#B8A038','#705898','#98D8D8','#7038F8'] 

 

# Count Plot (a.k.a. Bar Plot) 

sns.countplot(x='department', data=df, palette=color_types).set_title('Employee Department Distribution'); 

  

# Rotate x-labels 

plt.xticks(rotation=-45) 

 

Out[18]: 

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), <a list of 10 Text xticklabel objects>) 



   
 

 

 

In [19]: 

f, ax = plt.subplots(figsize=(15, 5)) 

sns.countplot(y="department", hue='turnover', data=df).set_title('Employee Department Turnover 

Distribution'); 

 

 

3f. Turnover V.S. ProjectCount 



   
 

 

 

Summary: This graph is quite interesting as well. Here's what I found: 

● More than half of the employees with 2,6, and 7 projects left the company 

● Majority of the employees who did not leave the company had 3,4, and 5 projects 

● All of the employees with 7 projects left the company 

● There is an increase in employee turnover rate as project count increases 

Stop and Think: 

● Why are employees leaving at the lower/higher spectrum of project counts? 

● Does this means that employees with project counts 2 or less are not worked hard 

enough or are not highly valued, thus leaving the company? 

● Do employees with 6+ projects are getting overworked, thus leaving the company? 

In [20]: 

ax = sns.barplot(x="projectCount", y="projectCount", hue="turnover", data=df, estimator=lambda x: 

len(x) / len(df) * 100) 

ax.set(ylabel="Percent") 

 

Out[20]: 

[Text(0,0.5,'Percent')] 

 



   
 

 

3g. Turnover V.S. Evaluation 

 

Summary: 

● There is a biomodal distribution for those that had a turnover. 

● Employees with low performance tend to leave the company more 

● Employees with high performance tend to leave the company more 

● The sweet spot for employees that stayed is within 0.6-0.8 evaluation 

In [21]: 

# Kernel Density Plot 

fig = plt.figure(figsize=(15,4),) 

ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'evaluation'] , color='b',shade=True,label='no turnover') 

ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'evaluation'] , color='r',shade=True, label='turnover') 

ax.set(xlabel='Employee Evaluation', ylabel='Frequency') 

plt.title('Employee Evaluation Distribution - Turnover V.S. No Turnover') 

 

Out[21]: 

Text(0.5,1,'Employee Evaluation Distribution - Turnover V.S. No Turnover') 



   
 

 

 

3h. Turnover V.S. AverageMonthlyHours 

 

Summary: 

● Another bi-modal distribution for employees that turnovered 

● Employees who had less hours of work (~150hours or less) left the company more 

● Employees who had too many hours of work (~250 or more) left the company 

● Employees who left generally were underworked or overworked. 

In [22]: 

#KDEPlot: Kernel Density Estimate Plot 

fig = plt.figure(figsize=(15,4)) 

ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'averageMonthlyHours'] , color='b',shade=True, label='no 

turnover') 

ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'averageMonthlyHours'] , color='r',shade=True, 

label='turnover') 

ax.set(xlabel='Employee Average Monthly Hours', ylabel='Frequency') 

plt.title('Employee AverageMonthly Hours Distribution - Turnover V.S. No Turnover') 

 



   
 

 

Out[22]: 

Text(0.5,1,'Employee AverageMonthly Hours Distribution - Turnover V.S. No Turnover') 

 

3i. Turnover V.S. Satisfaction 

 

Summary: 

● There is a tri-modal distribution for employees that turnovered 

● Employees who had really low satisfaction levels (0.2 or less) left the company more 

● Employees who had low satisfaction levels (0.3~0.5) left the company more 

● Employees who had really high satisfaction levels (0.7 or more) left the company more 

In [23]: 

#KDEPlot: Kernel Density Estimate Plot 

fig = plt.figure(figsize=(15,4)) 

ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'satisfaction'] , color='b',shade=True, label='no turnover') 

ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'satisfaction'] , color='r',shade=True, label='turnover') 

plt.title('Employee Satisfaction Distribution - Turnover V.S. No Turnover') 

 



   
 

 

Out[23]: 

Text(0.5,1,'Employee Satisfaction Distribution - Turnover V.S. No Turnover') 

 

3j. ProjectCount VS AverageMonthlyHours 

 

Summary: 

● As project count increased, so did average monthly hours 

● Something weird about the boxplot graph is the difference in averageMonthlyHours 

between people who had a turnver and did not. 

● Looks like employees who did not have a turnover had consistent 

averageMonthlyHours, despite the increase in projects 

● In contrast, employees who did have a turnover had an increase in 

averageMonthlyHours with the increase in projects 

Stop and Think: 

● What could be the meaning for this? 

● Why is it that employees who left worked more hours than employees who didn't, 

even with the same project count? 

In [24]: 

#ProjectCount VS AverageMonthlyHours [BOXPLOT] 



   
 

 

#Looks like the average employees who stayed worked about 200hours/month. Those that had a turnover 

worked about 250hours/month and 150hours/month 

 

import seaborn as sns 

sns.boxplot(x="projectCount", y="averageMonthlyHours", hue="turnover", data=df) 

 

Out[24]: 

<matplotlib.axes._subplots.AxesSubplot at 0x7f941e037cc0> 

 

3k. ProjectCount VS Evaluation 

 

Summary: This graph looks very similar to the graph above. What I find strange with this graph is with 

the turnover group. There is an increase in evaluation for employees who did more projects within the 

turnover group. But, again for the non-turnover group, employees here had a consistent evaluation score 

despite the increase in project counts. 

Questions to think about: 

● Why is it that employees who left, had on average, a higher evaluation than 

employees who did not leave, even with an increase in project count? 



   
 

 

● Shouldn't employees with lower evaluations tend to leave the company more? 

In [25]: 

#ProjectCount VS Evaluation 

#Looks like employees who did not leave the company had an average evaluation of around 70% even with 

different projectCounts 

#There is a huge skew in employees who had a turnover though. It drastically changes after 3 

projectCounts.  

#Employees that had two projects and a horrible evaluation left. Employees with more than 3 projects and 

super high evaluations left 

import seaborn as sns 

sns.boxplot(x="projectCount", y="evaluation", hue="turnover", data=df) 

 

Out[25]: 

<matplotlib.axes._subplots.AxesSubplot at 0x7f941db4cef0> 

 

3l. Satisfaction VS Evaluation 

 

Summary: This is by far the most compelling graph. This is what I found: 



   
 

 

● There are 3 distinct clusters for employees who left the company 

Cluster 1 (Hard-working and Sad Employee): Satisfaction was below 0.2 and evaluations were greater 

than 0.75. Which could be a good indication that employees who left the company were good workers but 

felt horrible at their job. 

● Question: What could be the reason for feeling so horrible when you are highly 

evaluated? Could it be working too hard? Could this cluster mean employees who are 

"overworked"? 

Cluster 2 (Bad and Sad Employee): Satisfaction between about 0.35~0.45 and evaluations below ~0.58. 

This could be seen as employees who were badly evaluated and felt bad at work. 

● Question: Could this cluster mean employees who "under-performed"? 

Cluster 3 (Hard-working and Happy Employee): Satisfaction between 0.7~1.0 and evaluations were 

greater than 0.8. Which could mean that employees in this cluster were "ideal". They loved their work and 

were evaluated highly for their performance. 

● Question: Could this cluser mean that employees left because they found another job 

opportunity? 

In [26]: 

sns.lmplot(x='satisfaction', y='evaluation', data=df, 

           fit_reg=False, # No regression line 

           hue='turnover')   # Color by evolution stage 

 

Out[26]: 

<seaborn.axisgrid.FacetGrid at 0x7f941e32f5f8> 



   
 

 

 

3m. Turnover V.S. YearsAtCompany 

 

Summary: Let's see if theres a point where employees start leaving the company. Here's what I found: 

● More than half of the employees with 4 and 5 years left the company 

● Employees with 5 years should highly be looked into 

Stop and Think: 

● Why are employees leaving mostly at the 3-5 year range? 

● Who are these employees that left? 

● Are these employees part-time or contractors? 

In [27]: 

ax = sns.barplot(x="yearsAtCompany", y="yearsAtCompany", hue="turnover", data=df, estimator=lambda 

x: len(x) / len(df) * 100) 

ax.set(ylabel="Percent") 

 



   
 

 

Out[27]: 

[Text(0,0.5,'Percent')] 

 

3n. K-Means Clustering of Employee Turnover 

 

Cluster 1 (Blue): Hard-working and Sad Employees 

Cluster 2 (Red): Bad and Sad Employee 

Cluster 3 (Green): Hard-working and Happy Employee 

Clustering PROBLEM: 

- How do we know that there are "3" clusters? 

- We would need expert domain knowledge to classify the right amount of clusters 

- Hidden uknown structures could be present 

In [28]: 

# Import KMeans Model 

from sklearn.cluster import KMeans 

 



   
 

 

# Graph and create 3 clusters of Employee Turnover 

kmeans = KMeans(n_clusters=3,random_state=2) 

kmeans.fit(df[df.turnover==1][["satisfaction","evaluation"]]) 

 

kmeans_colors = ['green' if c == 0 else 'blue' if c == 2 else 'red' for c in kmeans.labels_] 

 

fig = plt.figure(figsize=(10, 6)) 

plt.scatter(x="satisfaction",y="evaluation", data=df[df.turnover==1], 

            alpha=0.25,color = kmeans_colors) 

plt.xlabel("Satisfaction") 

plt.ylabel("Evaluation") 

plt.scatter(x=kmeans.cluster_centers_[:,0],y=kmeans.cluster_centers_[:,1],color="black",marker="X",s=10

0) 

plt.title("Clusters of Employee Turnover") 

plt.show() 

 



   
 

 

 

Feature Importance 

 

Summary: 

By using a decision tree classifier, it could rank the features used for the prediction. The top three features 

were employee satisfaction, yearsAtCompany, and evaluation. This is helpful in creating our model for 

logistic regression because it’ll be more interpretable to understand what goes into our model when we 

utilize less features. 

Top 3 Features: 

1. Satisfaction 

2. YearsAtCompany 

3. Evaluation 

In [29]: 

from sklearn import tree 

from sklearn.tree import DecisionTreeClassifier 



   
 

 

from sklearn.model_selection import train_test_split 

plt.style.use('fivethirtyeight') 

plt.rcParams['figure.figsize'] = (12,6) 

 

# Renaming certain columns for better readability 

df = df.rename(columns={'satisfaction_level': 'satisfaction',  

                        'last_evaluation': 'evaluation', 

                        'number_project': 'projectCount', 

                        'average_montly_hours': 'averageMonthlyHours', 

                        'time_spend_company': 'yearsAtCompany', 

                        'Work_accident': 'workAccident', 

                        'promotion_last_5years': 'promotion', 

                        'sales' : 'department', 

                        'left' : 'turnover' 

                        }) 

 

# Convert these variables into categorical variables 

df["department"] = df["department"].astype('category').cat.codes 

df["salary"] = df["salary"].astype('category').cat.codes 

 

# Create train and test splits 

target_name = 'turnover' 

X = df.drop('turnover', axis=1) 

 



   
 

 

 

y=df[target_name] 

 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=123, stratify=y) 

 

dtree = tree.DecisionTreeClassifier( 

    #max_depth=3, 

    class_weight="balanced", 

    min_weight_fraction_leaf=0.01 

    ) 

dtree = dtree.fit(X_train,y_train) 

 

## plot the importances ## 

importances = dtree.feature_importances_ 

feat_names = df.drop(['turnover'],axis=1).columns 

 

 

indices = np.argsort(importances)[::-1] 

plt.figure(figsize=(12,6)) 

plt.title("Feature importances by DecisionTreeClassifier") 

plt.bar(range(len(indices)), importances[indices], color='lightblue',  align="center") 

plt.step(range(len(indices)), np.cumsum(importances[indices]), where='mid', label='Cumulative') 

plt.xticks(range(len(indices)), feat_names[indices], rotation='vertical',fontsize=14) 

plt.xlim([-1, len(indices)]) 



   
 

 

plt.show() 

 

 

4a. Modeling the Data: Logistic Regression Analysis 

 

NOTE: This will be an in-depth analysis of using logistic regression as a classifier. I do go over other 

types of models in the other section below this. This is more of a use-case example of what can be done 

and explained to management in a company. 

Logistic Regression commonly deals with the issue of how likely an observation is to belong to each 

group. This model is commonly used to predict the likelihood of an event occurring. In contrast to linear 



   
 

 

regression, the output of logistic regression is transformed with a logit function. This makes the output 

either 0 or 1. This is a useful model to take advantage of for this problem because we are interested in 

predicting whether an employee will leave (0) or stay (1). 

Another reason for why logistic regression is the preferred model of choice is because of its 

interpretability. Logistic regression predicts the outcome of the response variable (turnover) through a set 

of other explanatory variables, also called predictors. In context of this domain, the value of our response 

variable is categorized into two forms: 0 (zero) or 1 (one). The value of 0 (zero) represents the probability 

of an employee not leaving the company and the value of 1 (one) represents the probability of an employee 

leaving the company. 

Logistic Regression models the probability of ‘success’ as:  

The equation above shows the relationship between, the dependent variable (success), denoted as (θ) and 

independent variables or predictor of event, denoted as xi. Where α is the constant of the equation and, β is 

the coefficient of the predictor variables 

In [30]: 

# Import the neccessary modules for data manipulation and visual representation 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as matplot 

import seaborn as sns 

%matplotlib inline 

#Read the analytics csv file and store our dataset into a dataframe called "df" 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 



   
 

 

from sklearn.metrics import accuracy_score, classification_report, precision_score, recall_score, 

confusion_matrix, precision_recall_curve 

from sklearn.preprocessing import RobustScaler 

df = pd.DataFrame.from_csv('../input/HR_comma_sep.csv', index_col=None) 

 

# Renaming certain columns for better readability 

df = df.rename(columns={'satisfaction_level': 'satisfaction',  

                        'last_evaluation': 'evaluation', 

                        'number_project': 'projectCount', 

                        'average_montly_hours': 'averageMonthlyHours', 

                        'time_spend_company': 'yearsAtCompany', 

                        'Work_accident': 'workAccident', 

                        'promotion_last_5years': 'promotion', 

                        'sales' : 'department', 

                        'left' : 'turnover' 

                        }) 

 

# Convert these variables into categorical variables 

df["department"] = df["department"].astype('category').cat.codes 

df["salary"] = df["salary"].astype('category').cat.codes 

 

 

# Move the reponse variable "turnover" to the front of the table 

front = df['turnover'] 

df.drop(labels=['turnover'], axis=1,inplace = True) 



   
 

 

df.insert(0, 'turnover', front) 

 

# Create an intercept term for the logistic regression equation 

df['int'] = 1 

indep_var = ['satisfaction', 'evaluation', 'yearsAtCompany', 'int', 'turnover'] 

df = df[indep_var] 

 

# Create train and test splits 

target_name = 'turnover' 

X = df.drop('turnover', axis=1) 

 

y=df[target_name] 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=123, stratify=y) 

 

X_train.head() 

# 

 

Out[30]: 

 satisfaction evaluation yearsAtCompany int 

9003 0.59 1.00 3 1 



   
 

 

5697 0.81 0.98 2 1 

10691 1.00 0.93 2 1 

1884 0.87 0.91 5 1 

13572 0.87 0.48 3 1 

Using Logistic Regression Coefficients 

 

With the elimination of the other variables, I’ll be using the three most important features to create our 

model: Satisfaction, Evaluation, and YearsAtCompany. 

Following overall equation was developed: 

Employee Turnover Score = Satisfaction(-3.769022) + Evaluation(0.207596) + 

YearsAtCompany*(0.170145) + 0.181896 

In [31]: 

import statsmodels.api as sm 

iv = ['satisfaction','evaluation','yearsAtCompany', 'int'] 

logReg = sm.Logit(y_train, X_train[iv]) 

answer = logReg.fit() 

 

answer.summary 

answer.params 



   
 

 

 

/opt/conda/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The 

pandas.core.datetools module is deprecated and will be removed in a future version. Please use the 

pandas.tseries module instead. 

  from pandas.core import datetools 

 

Optimization terminated successfully. 

         Current function value: 0.467233 

         Iterations 6 

 

Out[31]: 

satisfaction     -3.769022 

evaluation        0.207596 

yearsAtCompany    0.170145 

int               0.181896 

dtype: float64 

Explanation of Coefficients 

 

Employee Turnover Score = Satisfaction(-3.769022) + Evaluation(0.207596) + 

YearsAtCompany*(0.170145) + 0.181896 

The values above are the coefficient assigned to each independent variable. The constant 0.181896 

represents the effect of all uncontrollable variables. 

In [32]: 

# Create function to compute coefficients 



   
 

 

coef = answer.params 

def y (coef, Satisfaction, Evaluation, YearsAtCompany) :  

    return coef[3] + coef[0]*Satisfaction + coef[1]*Evaluation + coef[2]*YearsAtCompany 

 

import numpy as np 

 

# An Employee with 0.7 Satisfaction and 0.8 Evaluation and worked 3 years has a 14% chance of turnover 

y1 = y(coef, 0.7, 0.8, 3) 

p = np.exp(y1) / (1+np.exp(y1)) 

p 

 

Out[32]: 

0.14431462559738251 

Intepretation of Score 

 

If you were to use these employee values into the equation: 

● Satisfaction: 0.7 

● Evaluation: 0.8 

● YearsAtCompany: 3 

You would get: 

Employee Turnover Score = (0.7)(-3.769022) + (0.8)(0.207596) + (3)(0.170145) + 0.181896 = 0.14431 

= 14% 

Result: This employee would have a 14% chance of leaving the company. This information can then be 

used to form our retention plan. 



   
 

 

Retention Plan Using Logistic Regression 

 

Reference: http://rupeshkhare.com/wp-content/uploads/2013/12/Employee-Attrition-Risk-Assessment-

using-Logistic-Regression-Analysis.pdf 

With the logistic regression model, we can now use our scores and evaluate the employees through 

different scoring metrics. Each zone is explain here: 

1. Safe Zone (Green) – Employees within this zone are considered safe. 

2. Low Risk Zone (Yellow) – Employees within this zone are too be taken into 

consideration of potential turnover. This is more of a long-term track. 

3. Medium Risk Zone (Orange) – Employees within this zone are at risk of turnover. 

Action should be taken and monitored accordingly. 

4. High Risk Zone (Red) – Employees within this zone are considered to have the highest 

chance of turnover. Action should be taken immediately. 

So with our example above, the employee with a 14% turnover score will be in the safe zone. 

 

4b. Using Other Models 

 

NOTE: I'll be using four other models in this section to measure the accuracy of the different models 

The best model performance out of the four (Decision Tree Model, AdaBoost Model, Logistic Regression 

Model, Random Forest Model) was Random Forest! 

Remember: Machines can predict the future, as long as the future doesn't look too different from the past. 

Note: Base Rate 

 

http://rupeshkhare.com/wp-content/uploads/2013/12/Employee-Attrition-Risk-Assessment-using-Logistic-Regression-Analysis.pdf
http://rupeshkhare.com/wp-content/uploads/2013/12/Employee-Attrition-Risk-Assessment-using-Logistic-Regression-Analysis.pdf


   
 

 

● A Base Rate Model is a simple model or heuristic used as reference point for 

comparing how well a model is performing. A baseline helps model developers quantify 

the minimal, expected performance on a particular problem. In this dataset, the majority 

class that will be predicted will be 0's, which are employees who did not leave the 

company. 

● If you recall back to Part 3: Exploring the Data, 24% of the dataset contained 1's 

(employee who left the company) and the remaining 76% contained 0's (employee who 

did not leave the company). The Base Rate Model would simply predict every 0's and 

ignore all the 1's. 

● Example: The base rate accuracy for this data set, when classifying everything as 0's, 

would be 76% because 76% of the dataset are labeled as 0's (employees not leaving the 

company). 

Note: Evaluating the Model 

 

Precision and Recall / Class Imbalance 

This dataset is an example of a class imbalance problem because of the skewed distribution of employees 

who did and did not leave. More skewed the class means that accuracy breaks down. 

In this case, evaluating our model’s algorithm based on accuracy is the wrong thing to measure. We 

would have to know the different errors that we care about and correct decisions. Accuracy alone does not 

measure an important concept that needs to be taken into consideration in this type of evaluation: False 

Positive and False Negative errors. 

False Positives (Type I Error): You predict that the employee will leave, but do not 

False Negatives (Type II Error): You predict that the employee will not leave, but does leave 

In this problem, what type of errors do we care about more? False Positives or False Negatives? 

Note: Different Ways to Evaluate Classification Models 

 

1. Predictive Accuracy: How many does it get right? 

2. Speed: How fast does it take for the model to deploy? 

3. Scalability: Can the model handle large datasets? 



   
 

 

4. Robustness: How well does the model handle outliers/missing values? 

5. Interpretability: Is the model easy to understand? 

 

In [33]: 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, classification_report, precision_score, recall_score, 

confusion_matrix, precision_recall_curve 

from sklearn.preprocessing import RobustScaler 

 

In [34]: 

# Create base rate model 

def base_rate_model(X) : 

    y = np.zeros(X.shape[0]) 

    return y 

 

In [35]: 

# Create train and test splits 

target_name = 'turnover' 

X = df.drop('turnover', axis=1) 

#robust_scaler = RobustScaler() 

#X = robust_scaler.fit_transform(X) 



   
 

 

y=df[target_name] 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=123, stratify=y) 

 

In [36]: 

# Check accuracy of base rate model 

y_base_rate = base_rate_model(X_test) 

from sklearn.metrics import accuracy_score 

print ("Base rate accuracy is %2.2f" % accuracy_score(y_test, y_base_rate)) 

 

Base rate accuracy is 0.76 

 

In [37]: 

# Check accuracy of Logistic Model 

from sklearn.linear_model import LogisticRegression 

model = LogisticRegression(penalty='l2', C=1) 

 

model.fit(X_train, y_train) 

print ("Logistic accuracy is %2.2f" % accuracy_score(y_test, model.predict(X_test))) 

 

Logistic accuracy is 0.77 

 

In [38]: 

# Using 10 fold Cross-Validation to train our Logistic Regression Model 



   
 

 

from sklearn import model_selection 

from sklearn.linear_model import LogisticRegression 

kfold = model_selection.KFold(n_splits=10, random_state=7) 

modelCV = LogisticRegression(class_weight = "balanced") 

scoring = 'roc_auc' 

results = model_selection.cross_val_score(modelCV, X_train, y_train, cv=kfold, scoring=scoring) 

print("AUC: %.3f (%.3f)" % (results.mean(), results.std())) 

 

AUC: 0.793 (0.014) 

 

Logistic Regression V.S. Random Forest V.S. Decision Tree V.S. 

AdaBoost Model 

 

In [39]: 

linkcode 

# Compare the Logistic Regression Model V.S. Base Rate Model V.S. Random Forest Model 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import classification_report 

from sklearn.ensemble import RandomForestClassifier 

 

from sklearn import tree 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.linear_model import LogisticRegression 



   
 

 

from sklearn.ensemble import ExtraTreesClassifier 

from sklearn.ensemble import BaggingClassifier 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.ensemble import VotingClassifier 

 

 

print ("---Base Model---") 

base_roc_auc = roc_auc_score(y_test, base_rate_model(X_test)) 

print ("Base Rate AUC = %2.2f" % base_roc_auc) 

print(classification_report(y_test, base_rate_model(X_test))) 

 

# NOTE: By adding in "class_weight = balanced", the Logistic Auc increased by about 10%! This adjusts 

the threshold value 

logis = LogisticRegression(class_weight = "balanced") 

logis.fit(X_train, y_train) 

print ("\n\n ---Logistic Model---") 

logit_roc_auc = roc_auc_score(y_test, logis.predict(X_test)) 

print ("Logistic AUC = %2.2f" % logit_roc_auc) 

print(classification_report(y_test, logis.predict(X_test))) 

 

# Decision Tree Model 

dtree = tree.DecisionTreeClassifier( 

    #max_depth=3, 

    class_weight="balanced", 



   
 

 

    min_weight_fraction_leaf=0.01 

    ) 

dtree = dtree.fit(X_train,y_train) 

print ("\n\n ---Decision Tree Model---") 

dt_roc_auc = roc_auc_score(y_test, dtree.predict(X_test)) 

print ("Decision Tree AUC = %2.2f" % dt_roc_auc) 

print(classification_report(y_test, dtree.predict(X_test))) 

 

# Random Forest Model 

rf = RandomForestClassifier( 

    n_estimators=1000,  

    max_depth=None,  

    min_samples_split=10,  

    class_weight="balanced" 

    #min_weight_fraction_leaf=0.02  

    ) 

rf.fit(X_train, y_train) 

print ("\n\n ---Random Forest Model---") 

rf_roc_auc = roc_auc_score(y_test, rf.predict(X_test)) 

print ("Random Forest AUC = %2.2f" % rf_roc_auc) 

print(classification_report(y_test, rf.predict(X_test))) 

 

 

# Ada Boost 



   
 

 

ada = AdaBoostClassifier(n_estimators=400, learning_rate=0.1) 

ada.fit(X_train,y_train) 

print ("\n\n ---AdaBoost Model---") 

ada_roc_auc = roc_auc_score(y_test, ada.predict(X_test)) 

print ("AdaBoost AUC = %2.2f" % ada_roc_auc) 

print(classification_report(y_test, ada.predict(X_test))) 

 

---Base Model--- 

Base Rate AUC = 0.50 

             precision    recall  f1-score   support 

 

          0       0.76      1.00      0.86      1714 

          1       0.00      0.00      0.00       536 

 

avg / total       0.58      0.76      0.66      2250 

 

 

 

 ---Logistic Model--- 

Logistic AUC = 0.74 

             precision    recall  f1-score   support 

 

          0       0.90      0.76      0.82      1714 

          1       0.48      0.73      0.58       536 



   
 

 

 

avg / total       0.80      0.75      0.76      2250 

 

 

 

 ---Decision Tree Model--- 

Decision Tree AUC = 0.94 

             precision    recall  f1-score   support 

 

          0       0.97      0.96      0.97      1714 

          1       0.87      0.91      0.89       536 

 

avg / total       0.95      0.95      0.95      2250 

 

 

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: 

Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. 

  'precision', 'predicted', average, warn_for) 

 

---Random Forest Model--- 

Random Forest AUC = 0.97 

             precision    recall  f1-score   support 

 

          0       0.99      0.98      0.99      1714 



   
 

 

          1       0.95      0.96      0.95       536 

 

avg / total       0.98      0.98      0.98      2250 

 

 

 

 ---AdaBoost Model--- 

AdaBoost AUC = 0.90 

             precision    recall  f1-score   support 

 

          0       0.95      0.97      0.96      1714 

          1       0.90      0.82      0.86       536 

 

avg / total       0.93      0.94      0.93      2250 

 

 

ROC Graph 

 

In [40]: 

# Create ROC Graph 

from sklearn.metrics import roc_curve 

fpr, tpr, thresholds = roc_curve(y_test, logis.predict_proba(X_test)[:,1]) 

rf_fpr, rf_tpr, rf_thresholds = roc_curve(y_test, rf.predict_proba(X_test)[:,1]) 

dt_fpr, dt_tpr, dt_thresholds = roc_curve(y_test, dtree.predict_proba(X_test)[:,1]) 



   
 

 

ada_fpr, ada_tpr, ada_thresholds = roc_curve(y_test, ada.predict_proba(X_test)[:,1]) 

 

plt.figure() 

 

# Plot Logistic Regression ROC 

plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc) 

 

# Plot Random Forest ROC 

plt.plot(rf_fpr, rf_tpr, label='Random Forest (area = %0.2f)' % rf_roc_auc) 

 

# Plot Decision Tree ROC 

plt.plot(dt_fpr, dt_tpr, label='Decision Tree (area = %0.2f)' % dt_roc_auc) 

 

# Plot AdaBoost ROC 

plt.plot(ada_fpr, ada_tpr, label='AdaBoost (area = %0.2f)' % ada_roc_auc) 

 

# Plot Base Rate ROC 

plt.plot([0,1], [0,1],label='Base Rate' 'k--') 

 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Graph') 



   
 

 

plt.legend(loc="lower right") 

plt.show() 

 

 

5. Interpreting the Data 

 

Summary: With all of this information, this is what Bob should know about his company and why his 

employees probably left: 

1. Employees generally left when they are underworked (less than 150hr/month or 

6hr/day) 

2. Employees generally left when they are overworked (more than 250hr/month or 

10hr/day) 

3. Employees with either really high or low evaluations should be taken into 

consideration for high turnover rate 

4. Employees with low to medium salaries are the bulk of employee turnover 

5. Employees that had 2,6, or 7 project count was at risk of leaving the company 

6. Employee satisfaction is the highest indicator for employee turnover. 

7. Employee that had 4 and 5 yearsAtCompany should be taken into consideration for 

high turnover rate 

8. Employee satisfaction, yearsAtCompany, and evaluation were the three biggest 

factors in determining turnover. 



   
 

 

"You don't build a business. You build people, and people build the business." - Zig Ziglar 

 

 

Potential Solution 

 

Binary Classification: Turnover V.S. Non Turnover 

Instance Scoring: Likelihood of employee responding to an offer/incentive to save them from leaving. 

Need for Application: Save employees from leaving 

In our employee retention problem, rather than simply predicting whether an employee will leave the 

company within a certain time frame, we would much rather have an estimate of the probability that he/she 

will leave the company. We would rank employees by their probability of leaving, then allocate a limited 

incentive budget to the highest probability instances. 

Consider employee turnover domain where an employee is given treatment by Human Resources because 

they think the employee will leave the company within a month, but the employee actually does not. This 



   
 

 

is a false positive. This mistake could be expensive, inconvenient, and time consuming for both the Human 

Resources and employee, but is a good investment for relational growth. 

Compare this with the opposite error, where Human Resources does not give treatment/incentives to the 

employees and they do leave. This is a false negative. This type of error is more detrimental because the 

company lost an employee, which could lead to great setbacks and more money to rehire. Depending on 

these errors, different costs are weighed based on the type of employee being treated. For example, if it’s a 

high-salary employee then would we need a costlier form of treatment? What if it’s a low-salary 

employee? The cost for each error is different and should be weighed accordingly. 

Solution 1: 

● We can rank employees by their probability of leaving, then allocate a limited incentive 

budget to the highest probability instances. 

● OR, we can allocate our incentive budget to the instances with the highest expected loss, 

for which we'll need the probability of turnover. 

Solution 2: Develop learning programs for managers. Then use analytics to gauge their performance and 

measure progress. Some advice: 

● Be a good coach 

● Empower the team and do not micromanage 

● Express interest for team member success 

● Have clear vision / strategy for team 

● Help team with career development 

Google Docs Report 

 

https://docs.google.com/document/d/1E1oBewdQuX0f_LW26vKV_jcyUCNZqlivICss-

ORZFtw/edit?usp=sharing 

What Now? 

 

https://docs.google.com/document/d/1E1oBewdQuX0f_LW26vKV_jcyUCNZqlivICss-ORZFtw/edit?usp=sharing
https://docs.google.com/document/d/1E1oBewdQuX0f_LW26vKV_jcyUCNZqlivICss-ORZFtw/edit?usp=sharing


   
 

 

This problem is about people decision. When modeling the data, we should not be using this predictive 

metric as a solution decider. But, we can use this to arm people with much better relevant information for 

better decision making. 

We would have to conduct more experiments or collect more data about the employees in order to come up 

with a more accurate finding. I would recommend to gather more variables from the database that could 

have more impact on determining employee turnover and satisfaction such as their distance from home, 

gender, age, and etc. 

Reverse Engineer the Problem 

 

After trying to understand what caused employees to leave in the first place, we can form another problem 

to solve by asking ourselves 

1. "What features caused employees stay? 

2. "What features contributed to employee retention? ** There are endless problems to 

solve! 

What would you do? 

 

Reddit Commentor (DSPublic): I worked in HR for a couple of years and here's a few questions I have: 

People that have HIGH salary and not been promoted, did they leave? If so, could it be a signal that we're 

not developing people or providing enough opportunities? 

How would you define a 'high performer' without using their last evaluation rating? Evaluations tend to be 

inconsistently applied across departments and highly dependent on your relationship with the person doing 

that evaluation. Can we do an Evaluation Vs. Departments (see if there are actual differences)? Once 

defined, did these high performers leave? If so, why? Are we not providing opportunities or recognizing 

these high performers? Is it a lack of salary? 

To add some additional context, 24% turnover rate is high in general but do we know what industry this is 

from? If the industry norm is 50%, this company is doing great! I see you've done Turnover by dept which 

is great. If only we have more info and classify these turnovers. 



   
 

 

We have voluntary and involuntary turnovers as well. Also, who are these employees - is it part timers, 

contract workers that turn over? We don't worry about those, they're suppose to go. I'd like to see Turnover 

vs. Years of service. In real life, we found a cluster / turning point where people 'turn sour' after about 5 

years at the company. Can we see satisfaction vs. years at company? 

Recommended Websites: 

 

Statiscal Concepts: https://www.youtube.com/user/BCFoltz/playlists 

Common Machine Learning Algorithms: https://www.linkedin.com/pulse/machine-learning-whats-inside-

box-randy-lao/ 

Basics of Machine Learning: https://www.linkedin.com/pulse/machine-learning-fresh-bloods-randy-lao/ 

Data Science Pipeline (OSEMN): https://www.linkedin.com/pulse/life-data-science-osemn-randy-lao/ 

Edits: 

 

To Do's: 

1. Define "high performers". It's ambiguous and is normally determined by relationships. 

Could be inconsistent. To verify, do a Evaluation V.S. Department. 

2. Create Expected Value Model. Cost and Benefits. Understand the cost of targeting and 

cost of employee leaving. Known as Cost Matrix. 

3. Create a tableu dashboard for relevant/important information and highlight 

Edit 1: Added Hypothesis testing for employee turnover satisfaction and entire employee satisfaction 

8/29/2017 

Edit 2: Added Turnover VS Satisfaction graph 9/14/2017 

Edit 3: Added pd.get_dummies for 'salary' and 'department' features. This increased the AUC score by 2% 

(76%-78%) 9/23/2017 

https://www.youtube.com/user/BCFoltz/playlists
https://www.linkedin.com/pulse/machine-learning-whats-inside-box-randy-lao/
https://www.linkedin.com/pulse/machine-learning-whats-inside-box-randy-lao/
https://www.linkedin.com/pulse/machine-learning-fresh-bloods-randy-lao/
https://www.linkedin.com/pulse/life-data-science-osemn-randy-lao/


   
 

 

Edit 4: Added Random Forest Model and updated the ROC Curve. Added Base Rate Model explanation. 

Added AdaBoost Model. Added Decision Tree Model 9/27/2017 

Edit 5: Added decision tree classifier feature importance. Added visualization for decision tree. 9/30/2017 

Edit 6: Added more information about precision/recall and class imbalance solutions. Updated potential 

solution section and included a new section: evaluating model. 10/1/2017 

Edit 7: Added an in-depth interpretation of logistic regression model. Using this for a more interpretable 

classifier. Showing how the coefficents are computed and how each variable is presented in the algoirthm. 

Added a retention plan as a metric to evaluate our model. 10/11/2017 

 

 

 

 


	Human Resources Analytics - Milestone Report
	About This Kernel
	UPDATE: R Version
	Business Problem
	Client
	Objective
	OSEMN Pipeline

	Part 1: Obtaining the Data
	Part 2: Scrubbing the Data
	Part 3: Exploring the Data
	3a. Statistical Overview
	3b. Correlation Matrix & Heatmap
	3b2. Statistical Test for Correlation
	One-Sample T-Test (Measuring Satisfaction Level)
	Conducting the T-Test
	T-Test Result
	T-Test Quantile
	One-Sample T-Test Summary
	T-Test = -51.33 | P-Value = 0.000_ | Reject Null Hypothesis


	Question: How come the P-Value is literally 0.0? Can anybody answer this?
	3c. Distribution Plots (Satisfaction - Evaluation - AverageMonthlyHours)
	3d. Salary V.S. Turnover
	3e. Department V.S. Turnover
	3f. Turnover V.S. ProjectCount
	3g. Turnover V.S. Evaluation
	3h. Turnover V.S. AverageMonthlyHours
	3i. Turnover V.S. Satisfaction
	3j. ProjectCount VS AverageMonthlyHours
	3k. ProjectCount VS Evaluation
	3l. Satisfaction VS Evaluation
	3m. Turnover V.S. YearsAtCompany
	3n. K-Means Clustering of Employee Turnover

	Feature Importance
	4a. Modeling the Data: Logistic Regression Analysis
	Using Logistic Regression Coefficients
	Explanation of Coefficients
	Intepretation of Score
	Retention Plan Using Logistic Regression

	4b. Using Other Models
	Logistic Regression V.S. Random Forest V.S. Decision Tree V.S. AdaBoost Model
	ROC Graph

	5. Interpreting the Data
	Potential Solution

	Google Docs Report
	What Now?
	What would you do?
	Recommended Websites:

	Edits:



