
This Python 3 environment comes with many helpful analytics libraries installed

It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python

For example, here's several helpful packages to load

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt # Data visualization library

import seaborn as sns # Data visualization library for creating informative and attractive statistical
graphics

Input data files are available in the read-only "../input/" directory

For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input
directory

import os

for dirname, _, filenames in os.walk('/kaggle/input'):

for filename in filenames:

print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when
you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current
session

/kaggle/input/supermarket-sales-data/annex1.csv

/kaggle/input/supermarket-sales-data/annex3.csv

/kaggle/input/supermarket-sales-data/annex2.csv

/kaggle/input/supermarket-sales-data/annex4.csv

Project Summary
Welcome to the Sectional Project derived from the main KaggleX Mentorship Final Project Report, titled
"Simplifying Data Science: A Comprehensive Retail Business EDA Project Using a Chinese Supermarket
Sales Dataset."

In this comprehensive project, I have deconstructed the primary project into six distinct EDA sections,
each finely tuned to focus on a specific aspect of exploratory data analysis. The rationale behind this
approach is to improve accessibility, allowing you, the reader, to delve into the areas that intrigue you the
most. While the complete project remains available for those who prefer to explore it in a holistic
environment, these individual sections offer a more specialized perspective on different facets of the data
analysis project.

My project goes beyond the traditional scope of conducting an EDA, which is a standard process for
experienced Data Analysts. The central idea here is to illustrate a comprehensive understanding of the
process, specifically tailored to individuals with limited programming skills. Within these sections, you
will discover a wealth of information, insights, and invaluable learning experiences. Each section is
designed to stand independently while contributing to the overarching goal of demystifying data science.

Additionally, this project draws learnings from the activities within each section to identify activities that
are iterable for any retail business. This contribution aims to develop a comprehensive strategic approach
to conducting an EDA on Retail Businesses.

Whether you are a non-technical professional, a seasoned data analyst, a business development expert, or
simply someone with a passion for data science, I have endeavored to dissect the process and activities to
provide written summaries of key points, thought processes, rationale, and the necessity for each activity.
This ensures that, regardless of your background, you will find valuable insights and inspiration throughout
these pages.

The primary objective of this project is to bridge the knowledge gap for individuals with limited
programming skills, offering step-by-step explanations and strategic insights into the realm of Exploratory
Data Analysis.

The sections are structured as follows:

Section 1: Retail Business EDA - Inspect, Prepare, Process Data

Click here to go to Section 1 Project Notebook

Section 2: Retail Business EDA using SQL: Item Category Data (Current Notebook)

Click here to go to Section 2 Project Notebook

Section 3: Retail Business EDA using SQL: Loss Rate Percentage Data

Click here to go to Section 3 Project Notebook

Section 4: Retail Business EDA using SQL: Wholesale Data

Click here to go to Section 4 Project Notebook

Section 5: Retail Business EDA using SQL: Transactions Data

Click here to go to Section 5 Project Notebook

https://www.kaggle.com/code/reaganoc/eda-supermarket-sales-datasets-using-sqlalchemy
https://www.kaggle.com/code/reaganoc/eda-supermarket-sales-datasets-using-sqlalchemy
https://www.kaggle.com/code/reaganoc/retail-business-eda-inspect-prepare-process-data
https://www.kaggle.com/code/reaganoc/retail-business-eda-using-sql-item-category-data
https://www.kaggle.com/code/reaganoc/retail-business-eda-using-sql-loss-rate-data
https://www.kaggle.com/code/reaganoc/retail-business-eda-using-sql-wholesale-data
https://www.kaggle.com/code/reaganoc/retail-business-eda-using-sql-transactions-data

Section 6: Retail Business EDA: SQL Joins - 4 Sales Datasets

Click here to go to Section 6 Project Notebook

I encourage you to explore these sections in an order that best aligns with your interests, needs, and level
of expertise. I hope that the project inspires and equips you with the knowledge and enthusiasm to propel
your journey in the world of data analytics and international development.

Thank you for embarking on this data-driven adventure with me. I wish you a rewarding and insightful
journey through the sectional project.

Reagan R. Ocan
Email: ocanronald@gmail.com
LinkedIn: https://linkedin.com/in/reagan-r-ocan/

About the Author

Let's start by importing the datasets into the python notebook environment.

Query Cell: Data Import from Multiple Files

Summary:

In this query cell, four datasets—'veg_category_df,' 'veg_txn_df,' 'veg_whsle_df,' and 'loss_rate_df'—are
imported from separate CSV files.

These datasets contain information related to supermarket sales and associated data, which will be used
for further analysis and exploratory data analysis (EDA) tasks.

Importing these datasets is the initial step in preparing the data for analysis, and they will be explored,
cleaned, and examined in subsequent steps to extract insights and make data-driven decisions.

veg_category_df = pd.read_csv(r'/kaggle/input/supermarket-sales-data/annex1.csv')

veg_txn_df = pd.read_csv(r'/kaggle/input/supermarket-sales-data/annex2.csv')

veg_whsle_df = pd.read_csv(r'/kaggle/input/supermarket-sales-data/annex3.csv')

loss_rate_df = pd.read_csv(r'/kaggle/input/supermarket-sales-data/annex4.csv')

Inspect, Prepare, and Process Data using Python Notebook

Introduction:

NB: This project is Section 1 of a 6 Section project. Please refer to the project summary above for
details on the complete project

This first section of the project lays the essential foundation for meaningful data analysis. The first and
foundational phase of any data analysis endeavor is the preparation and processing of the dataset. It is
during this crucial stage that the raw data is inspected, refined, organized, and formatted making it
conducive to deriving valuable insights and conducting in-depth analysis.

https://www.kaggle.com/code/reaganoc/retail-business-eda-sql-joins-4-sales-dataset
https://linkedin.com/in/reagan-r-ocan/
https://www.kaggle.com/code/reaganoc/retail-business-eda-inspect-prepare-process-data
https://www.kaggle.com/code/reaganoc/retail-business-eda-inspect-prepare-process-data

The section focuses on data inspection, understanding data types, standardizing column names, cleaning
data types and formatting dates, identifying patterns and anomalies, and iterative data inspection. It aims to
enhance data quality, consistency, and data integrity while maintaining a clear record of the process.

The strategic approach employed in this section ensures that the dataset is not only processed but also
refined, organized, and optimized for insightful analysis, setting the stage for robust and data-driven
decision-making. We lay the groundwork for a methodical and effective exploratory data analysis (EDA).
This process ensures that our data is not just processed but refined, organized, and optimized for insightful
analysis, setting the stage for robust and data-driven decision-making.

NB: Elaborate narratives have also been included in markdown above each query cells or as comments
within each query cell to assist in following along with the queries.

In [4]:

Beginning of Section 1 activities with query 1 below.

Query 1: Initial Data Inspection

The initial step involves a quick glance at the first rows of the dataset. This serves as a "meet and greet"
with the data, enabling us to understand its structure at a high level. By observing the initial entries, we can
gain insights into its format and contents.

In [5]:

Query 1: Inspect the first few rows of a dataframe called `veg_category_df` to gain an overview of its
columns and values.

veg_category_df.head()

Out[5]:

Item Code Item Name Category Code Category Name

0 102900005115168 Niushou Shengcai 1011010101 Flower/Leaf Vegetables

1 102900005115199 Sichuan Red Cedar 1011010101 Flower/Leaf Vegetables

2 102900005115625 Local Xiaomao Cabbage 1011010101 Flower/Leaf Vegetables

3 102900005115748 White Caitai 1011010101 Flower/Leaf Vegetables

4 102900005115762 Amaranth 1011010101 Flower/Leaf Vegetables

Query 2: Data Type Inspection

● Inspecting data types and column names is essential for understanding the dataset's structure.

● By examining the data types, we can differentiate between numerical values, text, and date entries.

● Additionally, understanding column names enhances our awareness of what each piece of data
represents.

Query 2: Define Query to Conduct an EDA on a dataframe to examine the data types and column names.

veg_category_df.dtypes

Using .dtypes() method in python generates the data types for each column as seen below.

Item Code int64

Item Name object

Category Code int64

Category Name object

dtype: object

Query 3: Column Name Standardization

Query 3 implements learnings from query 2 where we queried datatypes and columns for each column in
the 'veg_category_df' and we learned the datatypes are fine but the column names can be cleaned to
remove spaces between words.

Relevance

● Data consistency is paramount.

● By standardizing column names for clarity and uniformity, we facilitate smoother and more
comprehensible data analysis.

● Clear column names are essential for readability and interpretation.

Activities

1. The column name 'Item Code' has been updated to 'item_code' using snake case.

2. The column name 'Item Name' has been transformed to 'item_name' using snake case.

3. The column name 'Category Code' has been modified to 'category_code' using snake case.

4. The column name 'Category Name' has been adjusted to 'category_name' using snake case.

In [7]:

Query 3: assuming the current column names are 'old_name_1', 'old_name_2', etc and the new column
names are 'new_name_1', 'new_name_2', etc.

new_column_names = ['item_code', 'item_name', 'category_code', 'category_name']

rename the columns in place

veg_category_df.rename(columns=dict(zip(veg_category_df.columns, new_column_names)),
inplace=True)

print(veg_category_df)

item_code item_name \

0 102900005115168 Niushou Shengcai

1 102900005115199 Sichuan Red Cedar

2 102900005115625 Local Xiaomao Cabbage

3 102900005115748 White Caitai

4 102900005115762 Amaranth

..

246 106958851400125 Haixian Mushroom (Bag) (4)

247 106971533450003 Haixian Mushroom (Bunch)

248 106971533455008 Haixian Mushroom (Bag) (3)

249 106973223300667 Chinese Caterpillar Fungus Flowers (Box) (2)

250 106973990980123 Hfyg Haixian Mushroom (Bunch)

category_code category_name

0 1011010101 Flower/Leaf Vegetables

1 1011010101 Flower/Leaf Vegetables

2 1011010101 Flower/Leaf Vegetables

3 1011010101 Flower/Leaf Vegetables

4 1011010101 Flower/Leaf Vegetables

..

246 1011010801 Edible Mushroom

247 1011010801 Edible Mushroom

248 1011010801 Edible Mushroom

249 1011010801 Edible Mushroom

250 1011010801 Edible Mushroom

[251 rows x 4 columns]

In [8]:

Query 4: Check dataset columns and values to gain overview

veg_category_df.head()

Out[8]:

item_code item_name category_code category_name

0 102900005115168 Niushou Shengcai 1011010101 Flower/Leaf Vegetables

1 102900005115199 Sichuan Red Cedar 1011010101 Flower/Leaf Vegetables

2 102900005115625 Local Xiaomao Cabbage 1011010101 Flower/Leaf Vegetables

3 102900005115748 White Caitai 1011010101 Flower/Leaf Vegetables

4 102900005115762 Amaranth 1011010101 Flower/Leaf Vegetables

Query 5: Identifying Patterns and Anomalies

In this phase, we begin exploring the dataset for patterns, trends, and anomalies. This step is vital for
detecting irregularities or potential factors that may influence subsequent analyses. Customized queries and
analysis techniques are employed to unveil these insights.

Query 5: Inspect the first few rows of a dataframe called `veg_txn_df` to gain an overview of its columns
and values.

veg_txn_df.head()

Date Time Item Code Quantity Sold
(kilo)

Unit Selling Price
(RMB/kg)

Sale or
Return

Discount
(Yes/No)

0 2020-
07-01

09:15:07.
924

102900005117
056 0.396 7.6 sale No

1 2020- 09:17:27. 102900005115 0.849 3.2 sale No

07-01 295 960

2 2020-
07-01

09:17:33.
905

102900005117
056 0.409 7.6 sale No

3 2020-
07-01

09:19:45.
450

102900005115
823 0.421 10.0 sale No

4 2020-
07-01

09:20:23.
686

102900005115
908 0.539 8.0 sale No

Query 6: Strategic Insights on activity: Data Cleaning and Handling
Anomalies:

Throughout the analysis, data quality issues and anomalies must be identified and addressed as they
surface. This ensures data integrity and guarantees the accuracy of our analysis.

In [10]:

Query 6: Conduct an Exploratory Data Analysis (EDA) on a dataframe to examine the data types and
column names.

A necessary step to understand the dataset's structure and prepare for subsequent data analysis tasks.

print(veg_txn_df.dtypes)

Date object

Time object

Item Code int64

Quantity Sold (kilo) float64

Unit Selling Price (RMB/kg) float64

Sale or Return object

Discount (Yes/No) object

dtype: object

Lessons from Query 6: Data Type and Column Name
Adjustments for the 'veg_txn_df' Dataset

1. Modify the data type of the 'Date' column in 'veg_txn_df' from 'object' to 'Date'.

2. Revise the data type of the 'Time' column in 'veg_txn_df' from 'object' to 'Time'.

3. Transform the data type of the 'Discount' column in 'veg_txn_df' from 'object' to 'Boolean'.

4. Rename the column 'Item Code' in 'veg_txn_df' to 'item_code'.

5. Rename the column 'Quantity Sold (kilo)' in 'veg_txn_df' to 'quant_sold_kg'.

6. Rename the column 'Unit Selling Price (RMB/kg)' in 'veg_txn_df' to 'unit_selling_px_rmb/kg'.

7. Rename the column 'Sale or Return' in 'veg_txn_df' to 'sale/return'.

8. Rename the column 'Date' in 'veg_txn_df' to 'txn_date'.

9. Rename the column 'Time' in 'veg_txn_df' to 'txn_time'.

Query 7: Column Renaming

● Uniform and comprehensible column names are paramount to maintain consistency.

● Refining column names, when necessary, ensures that we maintain clarity and coherence
throughout our analysis.

● In this step, we rename the columns of the 'veg_txn_df' dataset for better clarity and consistency.

Query 7 Activity

● We assume the current column names are 'old_name_1', 'old_name_2', etc and the new column
names are 'txn_date', 'txn_time', 'item_code', 'qty_sold(kg)', 'unit_selling_px_rmb/kg','sale/return',
'discount(%)'.

Query 7: Column Renaming:

Create new_column_names dataframe with the desired column names on the table

new_column_names = ['txn_date', 'txn_time', 'item_code', 'qty_sold(kg)',
'unit_selling_px_rmb/kg','sale/return', 'discount(%)']

rename the columns in place

veg_txn_df.rename(columns=dict(zip(veg_txn_df.columns, new_column_names)), inplace=True)

print(veg_txn_df)

txn_date txn_time item_code qty_sold(kg) \

0 2020-07-01 09:15:07.924 102900005117056 0.396

1 2020-07-01 09:17:27.295 102900005115960 0.849

2 2020-07-01 09:17:33.905 102900005117056 0.409

3 2020-07-01 09:19:45.450 102900005115823 0.421

4 2020-07-01 09:20:23.686 102900005115908 0.539

...

878498 2023-06-30 21:35:13.264 102900005115250 0.284

878499 2023-06-30 21:35:14.358 102900011022764 0.669

878500 2023-06-30 21:35:20.264 102900005115250 0.125

878501 2023-06-30 21:35:21.509 102900011016701 0.252

878502 2023-06-30 21:40:48.248 102900011022764 0.803

unit_selling_px_rmb/kg sale/return discount(%)

0 7.6 sale No

1 3.2 sale No

2 7.6 sale No

3 10.0 sale No

4 8.0 sale No

...

878498 24.0 sale No

878499 12.0 sale No

878500 24.0 sale No

878501 5.2 sale No

878502 12.0 sale No

[878503 rows x 7 columns]

Query 8: Query Insights: Data Type Cleaning and Date Formatting

● Data preparation often includes cleaning data types and standardizing date formats.

● Consistent data types ensure that our analysis proceeds without interruptions, while properly
formatted dates are critical for time-based analyses.

In this step, we clean the data type of the 'veg_txn_df' dataset and format
the date for analysis:

● We convert the 'txn_date' column to the datetime data type.

● We add a new column 'day_of_week' with the formatted day of the week.

● We print the updated dataframe for analysis.

Query 8:

convert the date column to datetime datatype

veg_txn_df['txn_date'] = pd.to_datetime(veg_txn_df['txn_date'])

add a new column with the formatted date

veg_txn_df['day_of_week'] = veg_txn_df['txn_date'].dt.strftime('%A')

print the dataframe with the new column

print(veg_txn_df)

txn_date txn_time item_code qty_sold(kg) \

0 2020-07-01 09:15:07.924 102900005117056 0.396

1 2020-07-01 09:17:27.295 102900005115960 0.849

2 2020-07-01 09:17:33.905 102900005117056 0.409

3 2020-07-01 09:19:45.450 102900005115823 0.421

4 2020-07-01 09:20:23.686 102900005115908 0.539

...

878498 2023-06-30 21:35:13.264 102900005115250 0.284

878499 2023-06-30 21:35:14.358 102900011022764 0.669

878500 2023-06-30 21:35:20.264 102900005115250 0.125

878501 2023-06-30 21:35:21.509 102900011016701 0.252

878502 2023-06-30 21:40:48.248 102900011022764 0.803

unit_selling_px_rmb/kg sale/return discount(%) day_of_week

0 7.6 sale No Wednesday

1 3.2 sale No Wednesday

2 7.6 sale No Wednesday

3 10.0 sale No Wednesday

4 8.0 sale No Wednesday

...

878498 24.0 sale No Friday

878499 12.0 sale No Friday

878500 24.0 sale No Friday

878501 5.2 sale No Friday

878502 12.0 sale No Friday

[878503 rows x 8 columns]

Query 9: Iterative Data Inspection

Data inspection isn't a one-time affair; it's an iterative process. Revisiting the initial data inspection as
needed throughout the analysis keeps our understanding fresh and aligned with the data's evolving context.

In [13]:

Query 9: Check dataset columns and values to gain overview

veg_txn_df.head()

Out[13]:

txn_date txn_time item_code qty_sold(
kg)

unit_selling_px_r
mb/kg

sale/retu
rn

discount(
%)

day_of_w
eek

0 2020-07-
01

09:15:07.9
24

102900005117
056 0.396 7.6 sale No Wednesda

y

1 2020-07-
01

09:17:27.2
95

102900005115
960 0.849 3.2 sale No Wednesda

y

2 2020-07-
01

09:17:33.9
05

102900005117
056 0.409 7.6 sale No Wednesda

y

3 2020-07-
01

09:19:45.4
50

102900005115
823 0.421 10.0 sale No Wednesda

y

4 2020-07-
01

09:20:23.6
86

102900005115
908 0.539 8.0 sale No Wednesda

y

Query 10: Data Type and Column Name Cleaning

In this step, we clean the data types and column names of the 'veg_txn_df' dataset for our final project
presentation: 1) We change the data type of 'txn_date' to 'Date' for proper date representation. 2) We
change the data type of 'txn_time' to 'Time' for accurate time representation. 3) We change the data type of
'discount(%)' to 'Boolean' to represent discounts as True/False. 4) We adjust 'qty_sold' to handle negative
quantities, indicating returns correctly.

In [14]:

Query 10: Data Type and Column Name Cleaning

veg_txn_df = veg_txn_df.astype({'txn_time': 'timedelta64[s]','discount(%)': 'bool'})

veg_txn_df['txn_date'] = pd.to_datetime(veg_txn_df['txn_date'])

veg_txn_df['txn_date'] = veg_txn_df['txn_date'].dt.floor('D')

veg_txn_df['txn_time'] = veg_txn_df['txn_time'].dt.total_seconds()

veg_txn_df['txn_time'] = pd.to_datetime(veg_txn_df['txn_time'],unit='s').dt.strftime('%H:%M:%S')

veg_txn_df.head()

txn_date txn_ti
me item_code qty_sold(

kg)
unit_selling_px_rm
b/kg

sale/retu
rn

discount(
%)

day_of_we
ek

0 2020-07-
01

09:15:
07

102900005117
056 0.396 7.6 sale True Wednesda

y

1 2020-07-
01

09:17:
27

102900005115
960 0.849 3.2 sale True Wednesda

y

2 2020-07-
01

09:17:
33

102900005117
056 0.409 7.6 sale True Wednesda

y

3 2020-07-
01

09:19:
45

102900005115
823 0.421 10.0 sale True Wednesda

y

4 2020-07-
01

09:20:
23

102900005115
908 0.539 8.0 sale True Wednesda

y

Query 11: Analysis of Negative 'qty_sold(kg)' Values in Relation to
'Sale/Return' Data

1. The examination revealed that the presence of negative values in the 'qty_sold(kg)' column is
primarily associated with product returns.

2. The total count of both rows and columns in the dataset remains consistent at 461 rows and 8
columns.

3. This analysis offers a more profound comprehension of the anomaly represented by negative
'qty_sold(kg)' values within the dataset.

In [15]:

Query 11: Understanding Negative Quantity Sold Values

In this step, we explore the negative values in the 'qty_sold(kg)' column within the 'veg_txn_df'
transaction table to identify why qty sold is negative, and identify trends and correlations with returned
items:

1) To identify the negative values in the 'qty_sold(kg)' column, use the condition
veg_txn_df['qty_sold(kg)'] < 0.

negative_qty = veg_txn_df[veg_txn_df['qty_sold(kg)'] < 0]

2) To focus on cases where items are returned (sale/return == 'return') and have negative quantities, use
veg_txn_df[(veg_txn_df['qty_sold(kg)'] < 0) & (veg_txn_df['sale/return'] == 'return').

negative_qty_returned = veg_txn_df[(veg_txn_df['qty_sold(kg)'] < 0) & (veg_txn_df['sale/return'] ==
'return')]

print(negative_qty.describe())

print(negative_qty_returned.describe())

txn_date item_code qty_sold(kg) \

count 461 4.610000e+02 461.000000

mean 2022-01-11 10:18:28.893709568 1.030405e+14 -0.650588

min 2020-07-01 00:00:00 1.029000e+14 -9.082000

25% 2021-09-20 00:00:00 1.029000e+14 -1.000000

50% 2021-10-13 00:00:00 1.029000e+14 -0.489000

75% 2022-10-07 00:00:00 1.029000e+14 -0.318000

max 2023-06-08 00:00:00 1.069715e+14 -0.025000

std NaN 7.419623e+11 0.650815

unit_selling_px_rmb/kg

count 461.000000

mean 9.004338

min 1.900000

25% 5.200000

50% 7.200000

75% 10.000000

max 100.000000

std 6.763735

txn_date item_code qty_sold(kg) \

count 461 4.610000e+02 461.000000

mean 2022-01-11 10:18:28.893709568 1.030405e+14 -0.650588

min 2020-07-01 00:00:00 1.029000e+14 -9.082000

25% 2021-09-20 00:00:00 1.029000e+14 -1.000000

50% 2021-10-13 00:00:00 1.029000e+14 -0.489000

75% 2022-10-07 00:00:00 1.029000e+14 -0.318000

max 2023-06-08 00:00:00 1.069715e+14 -0.025000

std NaN 7.419623e+11 0.650815

unit_selling_px_rmb/kg

count 461.000000

mean 9.004338

min 1.900000

25% 5.200000

50% 7.200000

75% 10.000000

max 100.000000

std 6.763735

In [16]:

Query 12: Conduct an Exploratory Data Analysis (EDA) on a dataframe to examine the data types and
column names.

A necessary step to understand the dataset's structure and prepare for subsequent data analysis tasks.

veg_txn_df.dtypes

txn_date datetime64[ns]

txn_time object

item_code int64

qty_sold(kg) float64

unit_selling_px_rmb/kg float64

sale/return object

discount(%) bool

day_of_week object

dtype: object

Query 13: Inspect the first few rows of a dataframe called `veg_whsle_df` to gain an overview of its
columns and values.

veg_whsle_df.head()

Date Item Code Wholesale Price (RMB/kg)

0 2020-07-01 102900005115762 3.88

1 2020-07-01 102900005115779 6.72

2 2020-07-01 102900005115786 3.19

3 2020-07-01 102900005115793 9.24

4 2020-07-01 102900005115823 7.03

Query 14: Exploratory Data Analysis for Data Type and Column Name Inspection

Conducting an Exploratory Data Analysis (EDA) on the dataframe to examine data types and column
names is a necessary preliminary step to gain a thorough understanding of the dataset's structure,
facilitating the preparation for subsequent data analysis tasks.

Inspect Data Types and Column Names

print(veg_whsle_df.dtypes)

Date object

Item Code int64

Wholesale Price (RMB/kg) float64

dtype: object

Query 14: Learnings from data type and column name inspection:

1. The 'Date' column is of the 'object' datatype.

2. All column names are represented as strings.

Query 15: Required Data Cleaning Actions:

1. Change the data type of veg_whsle_df['Date'] from 'object' to 'Date'.

2. Rename the 'Date' column to 'whsle_date'.

3. Rename the 'Wholesale Price (RMB/kg)' column to 'whsle_px_rmb-kg'.

In [19]:

Query 15: Data Type Enhancement and Date Simplification

In the process of cleaning the 'veg_whsle_df' dataset, we undertake essential data type adjustments and
date simplification to improve the dataset's utility and clarity for analytical purposes.

Data Type Enhancement:

1) Convert the data type of the 'Date' column in 'veg_whsle_df' from 'Object' to 'Date'.

veg_whsle_df['Date'] = pd.to_datetime(veg_whsle_df['Date'])

Date Simplification:

2) Truncate the 'Date' column to retain only the date component without the time information.

veg_whsle_df['Date'] = veg_whsle_df['Date'].dt.floor('D')

Inspect Data Types After Modifications

print(veg_whsle_df.dtypes)

Results:

1) The 'Date' column is now of the 'Date' data type, facilitating accurate date-based operations.

Date datetime64[ns]

Item Code int64

Wholesale Price (RMB/kg) float64

dtype: object

Query 16: Column Name Standardization

As part of the data cleansing process for the 'veg_whsle_df' dataset, we undertake vital actions to
enhance column names, aiming to ensure consistency and clarity in data representation.

Column Name Enhancement:

1) Change the column name 'Date' to 'whsle_date'.

2) Alter the column name 'Wholesale Price (RMB/kg)' to 'whsle_px_rmb-kg'.

Define New Column Names

new_column_names = ['whsle_date', 'item_code', 'whsle_px_rmb-kg']

Apply Column Name Changes

veg_whsle_df.rename(columns=dict(zip(veg_whsle_df.columns, new_column_names)), inplace=True)

Display the Updated DataFrame

print(veg_whsle_df.head())

whsle_date item_code whsle_px_rmb-kg

0 2020-07-01 102900005115762 3.88

1 2020-07-01 102900005115779 6.72

2 2020-07-01 102900005115786 3.19

3 2020-07-01 102900005115793 9.24

4 2020-07-01 102900005115823 7.03

Query 17: Inspect the first few rows of a dataframe called `loss_rate_df` to
gain an overview of its columns and values.

loss_rate_df.head

<bound method NDFrame.head of Item Code Item Name \

0 102900005115168 Niushou Shengcai

1 102900005115199 Sichuan Red Cedar

2 102900005115250 Xixia Black Mushroom (1)

3 102900005115625 Local Xiaomao Cabbage

4 102900005115748 White Caitai

..

246 106971533455008 Haixian Mushroom (Bag) (3)

247 106971563780002 Xianzongye (Bag) (2)

248 106972776821582 Xianzongye (Bag) (3)

249 106973223300667 Chinese Caterpillar Fungus Flowers (Box) (2)

250 106973990980123 Hfyg Haixian Mushroom (Bunch)

Loss Rate (%)

0 4.39

1 10.46

2 10.80

3 0.18

4 8.78

.. ...

246 1.30

247 0.00

248 9.43

249 11.13

250 0.12

[251 rows x 3 columns]>

In [22]:

Query 18: Data Type and Column Name Examination

In the initial phase of the Exploratory Data Analysis (EDA) process, we inspect the data types and
column names within the 'loss_rate_df' dataset to gain a comprehensive understanding of its structure.

This process of refining column names is a critical step in the data preparation process for effective data
analysis and presentation, ultimately enhancing the quality and clarity of the 'loss_rate_df' dataset.

Inspect Data Types and Column Names

print(loss_rate_df.dtypes)

Item Code int64

Item Name object

Loss Rate (%) float64

dtype: object

Query 18: Learnings from exploration data type and column name.

Following an initial exploratory data analysis (EDA) query on 'loss_rate_df,' we have identified specific
actions to enhance the dataset's clarity and consistency.

Query 19: Implementing learnings from query 20.

1. Modify the column name 'Item Code' to 'item_code.'

2. Modify the column name 'Item Name' to 'item_name.'

3. Modify the column name 'Loss Rate (%)' to 'lossrate%.'

In [23]:

Query 19: Column Name Refinement

In the process of cleaning the 'loss_rate_df' dataset, we undertake essential actions to enhance the column
names, aiming to ensure consistency and clarity in data representation.

Column Name Enhancement:

1) Modify the column name 'Item Code' to 'item_code.'

2) Modify the column name 'Item Name' to 'item_name.'

3) Modify the column name 'Loss Rate (%)' to 'loss_rate_%.'

Define New Column Names

new_column_names = ['item_code', 'item_name', 'loss_rate_%']

Apply Column Name Changes

loss_rate_df.rename(columns=dict(zip(loss_rate_df.columns, new_column_names)), inplace=True)

Display the Updated DataFrame

print(loss_rate_df)

Results from EDA Query

The dataset 'loss_rate_df' has undergone these column name alterations for improved data representation
and analysis.

item_code item_name \

0 102900005115168 Niushou Shengcai

1 102900005115199 Sichuan Red Cedar

2 102900005115250 Xixia Black Mushroom (1)

3 102900005115625 Local Xiaomao Cabbage

4 102900005115748 White Caitai

..

246 106971533455008 Haixian Mushroom (Bag) (3)

247 106971563780002 Xianzongye (Bag) (2)

248 106972776821582 Xianzongye (Bag) (3)

249 106973223300667 Chinese Caterpillar Fungus Flowers (Box) (2)

250 106973990980123 Hfyg Haixian Mushroom (Bunch)

loss_rate_%

0 4.39

1 10.46

2 10.80

3 0.18

4 8.78

.. ...

246 1.30

247 0.00

248 9.43

249 11.13

250 0.12

[251 rows x 3 columns]

In [24]:

Drawing lessons from section 1 activities

Strategic Insights: Inspect, Prepare, and Process Data

Drawing lessons project activities.

In the realm of data analysis and preparation, a strategic and standardized approach can significantly
enhance the accessibility and understanding of data for individuals with limited coding experience. This
approach is designed to be iterative and can serve as a foundation for the "Data Exploration and Initial
Data Processing" section.

Section Introduction

Every step of data preparation and processing is meticulously documented. This documentation creates a
clear and organized record of the entire process. These records serve as a reference, allowing for
transparency and reproducibility in our analysis.

The objective of this section is to equip individuals with a systematic approach to exploring and preparing
datasets for analysis. We will employ a step-by-step process to ensure that data is readily accessible and

understandable. This approach is designed to be repeatable for various datasets, making it a valuable tool
for individuals new to data analysis.

Here is a detailed context for each of the activities in the strategic approach for Data Exploration and Initial
Data Processing in the context of an Exploratory Data Analysis (EDA) process:

Activity 1: Initial Data Inspection

● Description: This activity involves looking at the first few rows of the dataset to get a preliminary
understanding of its structure. By displaying the initial rows, you can quickly see what columns
are available and what kind of data is present.

● Rationale: The initial data inspection helps you understand the structure of the data, identify
potential data quality issues, and get a sense of the dataset's content.

● Queries in this project:

■ veg_category_df.head(): This query displays the first few rows of the veg_category_df
dataframe.

■ veg_txn_df.head(): Similar to the previous query but for the veg_txn_df dataframe.

■ veg_whsle_df.head(): Displays the initial rows of the veg_whsle_df dataframe.

■ loss_rate_df.head(): Provides a preview of the initial rows of the loss_rate_df.

Activity 2: Data Type Inspection

● Description: In this activity, you inspect the data types of columns in the dataset. Understanding
data types is crucial because it affects how you perform calculations and operations on the data.

● Rationale: This step helps you understand the dataset's structure and ensures that data types are
appropriate for analysis.

● Queries in this project:

■ veg_category_df.dtypes: This query displays the data types of columns in the
veg_category_df.

■ veg_txn_df.dtypes: Similar to the previous query but for the veg_txn_df.

■ veg_whsle_df.dtypes: Shows the data types of columns in the veg_whsle_df.

■ loss_rate_df.dtypes: Displays the data types of columns in the loss_rate_df.

Activity 3: Column Name Standardization

● Description: This activity focuses on renaming columns in a standardized format (e.g., snake case)
to enhance clarity and consistency.

● Rationale: Standardized column names improve data readability and maintain consistency across
datasets.

● Queries in this project:

■ Renaming columns in each dataframe to follow a consistent naming convention, such as
snake case.

Activity 4: Data Type Cleaning and Date Formatting

● Description: This activity involves cleaning data types and formatting date columns for analysis.
For example, converting date columns to datetime format and extracting additional date-related
information.

● Rationale: Cleaning data types and formatting dates ensure data consistency and prepare the data
for date-based analysis.

● Queries in this project:

■ For veg_txn_df, you convert the date column to datetime format and add a new column
for the day of the week.

■ For veg_whsle_df, you convert the date column to datetime format and remove time
information.

Activity 5: Investigating Negative Values (Data Anomaly Detection)

● Description: This activity is about exploring and analyzing negative values in specific columns to
understand their significance. In this case, you are investigating trends related to negative values,
such as returns.

● Rationale: Identifying and understanding negative values, like returns, is important for data
quality and analysis.

● Queries in this project: (You would perform specific queries to identify and analyze negative
values, such as returns, using appropriate functions and methods for your dataset.)

In this strategic approach, these activities provide a systematic and standardized way to inspect, prepare,
and clean datasets before conducting EDA. Each activity is designed to enhance data accessibility, quality,
and consistency, making it a valuable tool for individuals, especially those new to data analysis, to follow
in their EDA process.

In [25]:

Conclusion:

Conclusion: Inspect, Prepare, and Process Data
In this first section of our comprehensive retail business exploratory data analysis (EDA) project, we
embarked on a journey to lay the essential foundation for meaningful data analysis. Data preparation and
processing represent the foundational phase of any data analysis endeavor, where the raw data is
meticulously inspected, refined, organized, and formatted to pave the way for insightful analysis.

Our focus was on understanding the data structure, identifying potential data quality issues, and preparing
the data for a robust EDA. The strategic approach employed in this section ensured that the dataset was not
only processed but also refined, organized, and optimized for insightful analysis, setting the stage for data-
driven decision-making.

Throughout this section, we systematically explored various facets of data preparation, which included
activities such as initial data inspection, data type inspection, column name standardization, data type
cleaning, date formatting, and investigating negative values. Each of these activities played a crucial role in
enhancing data accessibility, quality, and consistency.

The systematic documentation of every step taken during this section serves as a valuable reference,
offering transparency and reproducibility in our analysis. Whether you are a novice or an experienced data
analyst, the activities presented here provide a structured and standardized approach to inspecting,
preparing, and cleaning datasets, making data accessible and understandable.

As you progress to the subsequent sections of this project, you'll be well-equipped with a strong foundation
to dive deeper into the world of retail data analysis. Whether your interests lie in category management,
pricing strategies, profitability analysis, quality control, or inventory management, the strategic insights
gained in this section will be instrumental in your journey.

I encourage you to explore the remaining sections in an order that aligns with your interests and expertise.
I hope this first section has provided you with valuable insights and inspiration as you continue your
exploration of data analytics for retail businesses.

Thank you for joining me in this data-driven adventure, and I look forward to your continued journey
through the remaining sections of the project.

Reagan R. Ocan
Email: ocanronald@gmail.com
LinkedIn: https://linkedin.com/in/reagan-r-ocan/

Our data-driven journey continues in the next section, where we explore the "Item Category" dataset.

Collaboration and Engagement:

If you're inspired by this journey and have insights to share, we invite you to fork this notebook and
contribute your perspectives. Engage with us through the comments section to provide feedback, share
opinions, and offer valuable advice. Together, we can enhance this notebook and expand its horizons,
demystifying data science and making it more accessible to all.

Let's Work Together:

Beyond contributing to this notebook, we're open to collaborating on data projects. If you have a project in
mind or need data analysis support, don't hesitate to reach out. Whether it's a collaborative effort or data-
driven solutions for your business, we're here to assist. Contact us through the provided email or LinkedIn
for inquiries and discussions.

https://linkedin.com/in/reagan-r-ocan/
https://www.kaggle.com/code/reaganoc/retail-business-eda-using-sql-item-category-data

	Project Summary
	The sections are structured as follows:

	Inspect, Prepare, and Process Data using Python No
	Introduction:
	Query 1: Initial Data Inspection

	Query 2: Data Type Inspection
	Query 3: Column Name Standardization
	Query 5: Identifying Patterns and Anomalies
	Query 6: Strategic Insights on activity: Data Clea
	Lessons from Query 6: Data Type and Column Name Ad
	Query 7: Column Renaming
	Query 7 Activity

	Query 8: Query Insights: Data Type Cleaning and Da
	In this step, we clean the data type of the 'veg_t

	Query 9: Iterative Data Inspection
	Query 10: Data Type and Column Name Cleaning
	Query 11: Analysis of Negative 'qty_sold(kg)' Valu
	Query 14: Learnings from data type and column name
	Query 15: Required Data Cleaning Actions:

	Query 18: Learnings from exploration data type and
	Query 19: Implementing learnings from query 20.
	Strategic Insights: Inspect, Prepare, and Process
	Drawing lessons project activities.
	Section Introduction
	Activity 1: Initial Data Inspection
	Activity 2: Data Type Inspection
	Activity 3: Column Name Standardization
	Activity 4: Data Type Cleaning and Date Formatting
	Activity 5: Investigating Negative Values (Data An

	Conclusion: Inspect, Prepare, and Process Data
	Collaboration and Engagement:
	Let's Work Together:

