

Out[1]:

In depth series 1: SENTIMENT

ANALYSIS, why and how, EDA and

solutions with Transformers

In this study, I explained Sentiment Analysis in detail.

I chose a sample dataset for Sentiment Analysis and embodied the subject I explained on a real example.

Then I made a detailed analysis on the dataset and visualized it.

After preprocessing the data, I tried to complete the Sentimet Analysis task with state-of-the-art models.

I analyzed the results of this model and interpreted its outputs.

I have indicated the sources I used while doing this study at the end of the notebook. Thank you to

everyone who contributed to this field :).

Table of Contents

1. SENTIMENT ANALYSIS

● Types of Sentiment Analysis

■ Emotion Detection

■ Multilingual Sentiment Analysis

■ Graded Sentiment Analysis

■ Aspect-based Sentiment Analysis

■ Intent Analysis

● Why Is Sentiment Analysis Important?

● The overall benefits of sentiment analysis include

■ Sorting Data at Scale

https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#types_of_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#emotion_detection
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#multilingual_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#graded_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#aspect_base_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#intent_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#why_is_sentiment_analysis_important
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include

■ Real-Time Analysis

■ Discovering New Marketing Strategies

● How Does Sentiment Analysis Work?

● Sentiment analysis Approaches

■ Rule-based Approaches

■ Automatic Approaches

2. EDA

● Information of the DATA

● Information of the Problem

● Imports

● Helper Functions

● Read Data

● Visualizations

■ Word Cloud

■ Target Count

■ Token Counts with simple tokenizer

■ Token Counts with BERT tokenizer

■ Characters Count in the Data

■ Reviews Lengths

■ Word Counts

■ Most Common Words

■ Most Common ngrams

3. MODELS

● A brief information about BERT

● A brief information about XLNET

● A brief information about RoBERTa

● Comparison of Transformer Models

https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#how_does_sentiment_analysis_work
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#sentiment_analysis_Approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#rule_based_approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#automatic_approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#eda
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#information_of_the_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#information_of_the_problem
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#imports
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#helper_functions
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#read_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#visualizations
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#word_cloud
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#target_count
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#token_counts_with_simple_tokenizer
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#token_counts_with_BERT_tokenizer
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#characters_count_in_the_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#reviews_lengths
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#word_counts
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#most_common_words
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#most_common_ngrams
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#models
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_Bert
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_XLNET
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_RoBERTa
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#comparison_of_Transformer_Models

● Preprocess for BERT Train

● Train and Validation Split

● BertTokenizer and Encoding the Data

● Creating the Model

● Data Loaders

● Optimizer & Scheduler

● Performance Metrics

● Training Loop

● Test on validation set

4. ERROR ANALYSIS

5. INFERENCE

6. REFERENCES

1. SENTIMENT ANALYSIS

 source = https://d3caycb064h6u1.cloudfront.net/wp-

content/uploads/2021/06/sentimentanalysishotelgeneric-2048x803-1.jpg

Sentiment analysis (or opinion mining) is a natural language processing (NLP) technique used to determine

whether data is positive, negative or neutral. Sentiment analysis is often performed on textual data to help

businesses monitor brand and product sentiment in customer feedback, and understand customer needs.

https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#preprocess_for_BERT_Train
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Train_and_Validation_Split
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#BertTokenizer_and_Encoding_the1_Data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Creating_the_Model
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Data_Loaders
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Optimizer_Scheduler
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Performance_Metrics
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#Training_Loop
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#test
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#error_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#inference
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#references

Sentiment analysis helps data analysts within large enterprises gauge public opinion, conduct nuanced

market research, monitor brand and product reputation, and understand customer experiences. In addition,

companies often develop sentiment analysis systems for customer experience management, social media

monitoring, or workforce analytics platform to about their own customers.

Types of Sentiment Analysis

 source = https://mobcoder.com/blog/sentimental-analysis-how-the-phenomenon-changing-the-

dynamics-of-brand-monitoring/

Sentiment analysis is aimed at determining the general emotional state of a text. One of these cases focuses

on the polarity of a text (positive, negative, neutral) but it also goes beyond polarity to detect specific

feelings and emotions (angry, happy, sad, etc), urgency (urgent, not urgent) and even intentions (interested

v. not interested).

Let's explain them in more detail

Emotion Analysis

 source = https://kids.frontiersin.org/articles/10.3389/frym.2018.00015

The type of emotion analysis in which emotion types(happiness, frustration, anger, and sadness) are

classified is called emotion detection.

There are some difficulties with this classification. Users can express their feelings with many different

words. They can use a word with a bad meaning for happiness. The most difficult examples of

classification models here are; For example, the sentence "I connect to customer service too late, it's killing

me" is a negative sentence, while the sentence "you are killing me" is positive.

Multilingual Sentiment Analysis

It is the version of Sentiment Analysis systems that provides multi-language support. What is mentioned

here is to do sentiment analysis in more than one language.

I usually have two suggestions for this:

My first suggestion is to detect the language of the text with the language classifier and run a sentimen

analysis model suitable for this language. The second method is to develop a Multilingual language model

and finetune this model and make the model work in many languages.

Graded Sentiment Analysis

 source = https://i.pinimg.com/originals/5b/7d/62/5b7d62fb62b03b8142b402cb85644865.png

If the precision of the mood is important, the categories can be further elaborated. A broader classification

can be made, not just positive and negative:

● Very positive

● Positive

● Neutral

● Negative

● Very negative

This classification is often used in reviews and reviews where 5 stars are awarded.

● Very Positive = 5 stars

● Very Negative = 1 star

Aspect-based Sentiment Analysis

 source = https://www.surveysensum.com/wp-content/uploads/2020/02/SENTIMENT-09-1.png

Generally, when analyzing the emotions of the texts, the focus is on determining whether the

comment/opinion is positive or negative. But we do not focus on what is positive or negative in this text.

To put it more clearly, in the expression "I did not like the product at all, the size is too small", the user is

not satisfied with the product and complains about its dimensions. In a normal sentiment analysis, this

sentence is classified as negative, but in aspect-based sentiment analysis, the "the size is too small" part

is also focused on.

Intent Analysis

Intent analysis focuses on what the user wants to do. Understanding what the user wants to do will allow us

to better guide him.

For example, being able to understand that a customer browsing an e-commerce site has a shopping

intention also allows us to offer him the right products.

One of the most used areas is the smart assistant systems in the applications. It allows us to direct users to

the right places within the application in line with their requests and we can offer a better application

experience to the user.

Why Is Sentiment Analysis Important?

 source = https://brand24.com/

People now share their comments/emotions on social media, e-commerce sites and many other sites. A lot

of data is created on these platforms.

Often brands want to know what they are talking about. Brands/companies make great efforts to quickly

identify their customers' expectations and provide them with the right service.It allows their customers to

learn what makes them happy or disappointed so they can tailor products and services to their customers'

needs. In addition, brands want to observe the impact of their advertisements on users.

For these reasons, Sentiment analysis is becoming more important every day.

The overall benefits of sentiment analysis include:

Sorting Data at Scale

Users make a lot of comments about brands, it is almost impossible to process them manually. Sentiment

analysis enables businesses to automatically classify large amounts of raw data.

Real-Time Analysis

Companies can learn the wishes of their customers by analyzing the social media comments about you in

real time. They can identify the angry customer and ensure his satisfaction.

Discovering New Marketing Strategies

With more data and information gathered through sentiment analysis, the organizations could develop an

effective marketing strategy.

The outcome from the strategies can be measured from the customers’ positive or negative key messages.

By observing the customers’ conversations on their social media and detect the specific key messages

related to your brand, specific marketing campaigns can be designed for the target consumers.

How Does Sentiment Analysis Work?

source = https://monkeylearn.com/sentiment-analysis/

Sentiment analysis works to automatically determine emotional tone thanks to natural language processing

(NLP), rule-based methods, and machine learning algorithms.

There are different ways we can do sentiment analysis, depending on how much data you need to analyze,

how accurate your model needs to be, and how many resources you have.

We will talk about some of them below.

Sentiment analysis algorithms fall into one of three buckets:

● Rule-based: these systems automatically perform sentiment analysis based on a set of manually

crafted rules.

● Automatic: systems rely on machine learning techniques to learn from data.

Rule-based Approaches

Usually, a rule-based system tries to help determine the subjectivity of the sentence, the polarity, or the

subject matter of an idea. The most used tool here is "regex".

These rules usually include the following two NLP techniques:

● Stemming, tokenization, part-of-speech tagging and parsing.

● Lexicons (i.e. lists of words and expressions).

The working mechanism of these systems is briefly as follows;

1. Build a list of polarized words (e.g. bad-good, worst-best, ugly-beautiful etc). You can find them

as open source

2. The ratio of positive and positive words in a sentence

Rule-based approaches are now obsolete, not used as much as they used to be. Rule-based approaches fail

to detect ironies, not exactly how users are feeling. For this reason, automated approaches are gaining more

importance now.

Automatic Approaches

These systems don’t rely on manually crafted rules, but on machine learning techniques, such as

classification. Classification, which is used for sentiment analysis, is an automatic system that needs to be

fed sample text before returning a category, e.g. positive, negative, or neutral.

Here’s how a machine learning classifier can be implemented:

Classification Algorithms

The classification step usually involves a statistical model like Naïve Bayes, Logistic Regression, Support

Vector Machines, or Neural Networks:

● Naïve Bayes: are a family of simple "probabilistic classifiers" based on applying Bayes' theorem

with strong (naïve) independence assumptions between the features (see Bayes classifier).

● Linear Regression: is a linear approach for modelling the relationship between a scalar response

and one or more explanatory variables (also known as dependent and independent variables).

● Support Vector Machines(SVM): is a supervised machine learning algorithm that can be used

for classification or regression problems. However, it is mostly used in classification problems.

Support Vector Machine is a boundary that best separates two classes (hyperplane/line)

● Deep Learning: (also known as deep structured learning) is part of a broader family of machine

learning methods based on artificial neural networks with representation learning. Learning can be

supervised, semi-supervised or unsupervised.

We can explain the sentiment analysis in general like this. Now we have determined a data for how

we will apply it next, and we will spread visualizations on that data and train models.

2. EDA

Information of the Data

Hotels play a crucial role in traveling and with the increased access to information new pathways of

selecting the best ones emerged. With this dataset, consisting of 20k reviews crawled from Tripadvisor,

you can explore what makes a great hotel and maybe even use this model in your travels!

How to use

● Predict Review Rating

● Topic Modeling on Reviews

● Explore key aspects that make hotels good or bad

Information of the Problem

Customer satisfaction is very important for the service industry. For this reason, it is necessary to

determine the emotional state of the customer's thoughts. We need to classify the user's emotion in our

hotel reviews data.

Imports

n [2]:

import pandas as pd

from wordcloud import WordCloud

import seaborn as sns

import re

import string

from collections import Counter, defaultdict

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

import plotly.express as px

from plotly.subplots import make_subplots

import plotly.graph_objects as go

from plotly.offline import plot

import matplotlib.gridspec as gridspec

from matplotlib.ticker import MaxNLocator

import matplotlib.patches as mpatches

import matplotlib.pyplot as plt

In [3]:

import warnings

warnings.filterwarnings('ignore')

In [4]:

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

stopWords_nltk = set(stopwords.words('english'))

unfold_lessHide output

[nltk_data] Downloading package stopwords to /usr/share/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

Helper Functions

In [5]:

import re

from typing import Union, List

class CleanText():

 """ clearing text except digits () . , word character """

 def __init__(self, clean_pattern = r"[^A-ZĞÜŞİÖÇIa-zğüı'şöç0-9.\"',()]"):

 self.clean_pattern =clean_pattern

 def __call__(self, text: Union[str, list]) -> List[List[str]]:

 if isinstance(text, str):

 docs = [[text]]

 if isinstance(text, list):

 docs = text

 text = [[re.sub(self.clean_pattern, " ", sent) for sent in sents] for sents in docs]

 return text

def remove_emoji(data):

 emoj = re.compile("["

 u"\U0001F600-\U0001F64F" # emoticons

 u"\U0001F300-\U0001F5FF" # symbols & pictographs

 u"\U0001F680-\U0001F6FF" # transport & map symbols

 u"\U0001F1E0-\U0001F1FF" # flags (iOS)

 u"\U00002500-\U00002BEF"

 u"\U00002702-\U000027B0"

 u"\U00002702-\U000027B0"

 u"\U000024C2-\U0001F251"

 u"\U0001f926-\U0001f937"

 u"\U00010000-\U0010ffff"

 u"\u2640-\u2642"

 u"\u2600-\u2B55"

 u"\u200d"

 u"\u23cf"

 u"\u23e9"

 u"\u231a"

 u"\ufe0f" # dingbats

 u"\u3030"

 "]+", re.UNICODE)

 return re.sub(emoj, '', data)

def tokenize(text):

 """ basic tokenize method with word character, non word character and digits """

 text = re.sub(r" +", " ", str(text))

 text = re.split(r"(\d+|[a-zA-ZğüşıöçĞÜŞİÖÇ]+|\W)", text)

 text = list(filter(lambda x: x != '' and x != ' ', text))

 sent_tokenized = ' '.join(text)

 return sent_tokenized

regex = re.compile('[%s]' % re.escape(string.punctuation))

def remove_punct(text):

 text = regex.sub(" ", text)

 return text

clean = CleanText()

In [6]:

label encode

def label_encode(x):

 if x == 1 or x == 2:

 return 0

 if x == 3:

 return 1

 if x == 5 or x == 4:

 return 2

label to name

def label2name(x):

 if x == 0:

 return "Negative"

 if x == 1:

 return "Neutral"

 if x == 2:

 return "Positive"

Read Data

In [7]:

df = pd.read_csv("../input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv")

In [8]:

show column names

print("df.columns: ", df.columns)

df.columns: Index(['Review', 'Rating'], dtype='object')

In [9]:

head of df

df.head()

Out[9]:

 Review Rating

0 nice hotel expensive parking got good deal sta... 4

1 ok nothing special charge diamond member hilto... 2

2 nice rooms not 4* experience hotel monaco seat... 3

3 unique, great stay, wonderful time hotel monac... 5

4 great stay great stay, went seahawk game aweso... 5

In [10]:

count of ratings

fig = px.histogram(df,

 x = 'Rating',

 title = 'Histogram of Review Rating',

 template = 'ggplot2',

 color = 'Rating',

 color_discrete_sequence= px.colors.sequential.Blues_r,

 opacity = 0.8,

 height = 525,

 width = 835,

)

fig.update_yaxes(title='Count')

fig.show()

123450100020003000400050006000700080009000

Rating42351Histogram of Review RatingRatingCount

In [11]:

basic info

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 20491 entries, 0 to 20490

Data columns (total 2 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Review 20491 non-null object

 1 Rating 20491 non-null int64

dtypes: int64(1), object(1)

memory usage: 320.3+ KB

In [12]:

encode label and mapping label name

df["label"] = df["Rating"].apply(lambda x: label_encode(x))

df["label_name"] = df["label"].apply(lambda x: label2name(x))

In [13]:

clean text, lowercase and remove punk

df["Review"] = df["Review"].apply(lambda x: remove_punct(clean(remove_emoji(x).lower())[0][0]))

In [14]:

df.head()

Out[14]:

 Review Rating label label_name

0 nice hotel expensive parking got good deal sta... 4 2 Positive

1 ok nothing special charge diamond member hilto... 2 0 Negative

2 nice rooms not 4 experience hotel monaco seat... 3 1 Neutral

3 unique great stay wonderful time hotel monac... 5 2 Positive

4 great stay great stay went seahawk game aweso... 5 2 Positive

Visualizations

Word Cloud

Word clouds generators work by breaking the text down into component words and counting how

frequently they appear in the body of text. We can quickly obtain preliminary information about the data.

We can understand what a dataset we don't know is talking about.

In [15]:

def show_wordcloud(data, title = None):

 wordcloud = WordCloud(

 background_color='black',

 max_words=200,

 max_font_size=40,

 scale=1,

 random_state=1

).generate(" ".join(data))

 fig = plt.figure(1, figsize=(15, 15))

 plt.axis('off')

 if title:

 fig.suptitle(title, fontsize=20)

 fig.subplots_adjust(top=2.3)

 plt.imshow(wordcloud)

 plt.show()

In [16]:

show_wordcloud(df["Review"].values)

Target Count

How many targets do we have? Learning this information will give us an idea about the model we will

build. It will also provide guidance on our methods of analyzing data.

In [17]:

fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "bar"}]])

colors = ['gold', 'mediumturquoise', 'lightgreen'] # darkorange

fig.add_trace(go.Pie(labels=df.label_name.value_counts().index,

 values=df.label.value_counts().values), 1, 1)

fig.update_traces(hoverinfo='label+percent', textfont_size=20,

 marker=dict(colors=colors, line=dict(color='#000000', width=2)))

fig.add_trace(go.Bar(x=df.label_name.value_counts().index, y=df.label.value_counts().values,

marker_color = colors), 1,2)

fig.show()

PositiveNegativeNeutral02k4k6k8k10k12k14k73.7%15.7%10.7%

PositiveNegativeNeutraltrace 1

Token Counts with simple tokenizer

Finding out the number of tokens available for each sample will give us information about the length of

our data. The classification algorithm we will use for a long text will not be the same as the algorithm used

for a short text.

In [18]:

tokenize data

df["tokenized_review"] = df.Review.apply(lambda x: tokenize(x))

calculate token count for any sent

df["sent_token_length"] = df["tokenized_review"].apply(lambda x: len(x.split()))

In [19]:

fig = px.histogram(df, x="sent_token_length", nbins=20,

color_discrete_sequence=px.colors.cmocean.algae, barmode='group', histnorm="percent")

fig.show()

05001000150020000102030405060708090

sent_token_lengthpercent

In [20]:

(df.sent_token_length < 512).mean()

Out[20]:

0.989117173393197

Token Counts with BERT tokenizer

Since we will create a Transformers-based model, the value that BERT tokinezer will give us is very

important. With the information here, the value of the seq_len parameter that we will use while encoding

the data will be decided.

In [21]:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',

 do_lower_case=True)

unfold_moreShow hidden output

In [22]:

data tokenize with bert tokenizer

df["sent_bert_token_length"] = df["Review"].apply(lambda x: len(tokenizer(x,

add_special_tokens=False)["input_ids"]))

unfold_moreShow hidden output

In [23]:

fig = px.histogram(df, x="sent_token_length", nbins=20,

color_discrete_sequence=px.colors.cmocean.algae, barmode='group', histnorm="percent")

fig.show()

05001000150020000102030405060708090

sent_token_lengthpercent

In [24]:

Less than 512 covers how many of the data

(df.sent_bert_token_length < 512).mean()

Out[24]:

0.9853106241764678

Characters Count in the Data

Let's look at the frequency of the number of characters. It will give us information about the overall

size of our data

unfold_moreShow hidden code

In [26]:

plot_dist3(df, 'char_count',

 'Characters Count in Data')

Reviews Lengths

When we look at the number of characters per comment, it can give us very striking information about the

data. Here, when we look at the length of the comments made by people according to their feelings,

negative comments are shorter than neutral and positive comments. We can come to the notion that people

simply express negative things :).

unfold_moreShow hidden code

In [28]:

plot_dist3(df[df['label'] == 0], 'Character Count',

 'Characters Count "Negative" Rewiev')

In [29]:

plot_dist3(df[df['label'] == 2], 'Character Count',

 'Characters Per "Positive" Rewiev')

In [30]:

plot_dist3(df[df['label'] == 1], 'Character Count',

 'Characters Per "Neutral" Rewiev')

Word Counts

We see that the situation in the number of characters and the situation in the number of words are the same.

We have seen that people use less word count when expressing negative things.

unfold_moreShow hidden code

In [32]:

plot_word_number_histogram(df[df['label'] == 0]['Review'],

 df[df['label'] == 1]['Review'],

 df[df['label'] == 2]['Review'],

)

In [33]:

remove punk

df['tokenized_review'] = df['tokenized_review'].apply(lambda x: remove_punct(x))

Most Common Words

In [34]:

texts = df['tokenized_review']

new = texts.str.split()

new = new.values.tolist()

corpus = [word for i in new for word in i]

counter = Counter(corpus)

most = counter.most_common()

x, y = [], []

for word, count in most[:30]:

 if word not in stopWords_nltk:

 x.append(word)

 y.append(count)

fig = go.Figure(go.Bar(

 x=y,

 y=x,

 orientation='h', marker=dict(

 color='rgba(50, 171, 96, 0.6)',

 line=dict(

 color='rgba(50, 171, 96, 1.0)',

 width=1),

),

 name='Most common Word',))

fig.update_layout(title={

 'text': "Most Common Words",

 'y':0.9,

 'x':0.5,

 'xanchor': 'center',

 'yanchor': 'top'}, font=dict(

 family="Courier New, monospace",

 size=18,

 color="RebeccaPurple"

))

fig.show()

010k20k30k40k50khotelgreatgoodstayroomsstayednightbeachbreakfastfoodresortplace

Most Common Words

Most Common ngrams

In [35]:

fig = make_subplots(rows=1, cols=3)

title_ = ["negative", "neutral", "positive"]

for i in range(3):

 texts = df[df["label"] == i]['tokenized_review']

 new = texts.str.split()

 new = new.values.tolist()

 corpus = [word for i in new for word in i]

 counter = Counter(corpus)

 most = counter.most_common()

 x, y = [], []

 for word, count in most[:30]:

 if word not in stopWords_nltk:

 x.append(word)

 y.append(count)

 fig.add_trace(go.Bar(

 x=y,

 y=x,

 orientation='h', type="bar",

 name=title_[i], marker=dict(color=colors[i])), 1, i+1)

fig.update_layout(

 autosize=False,

 width=2000,

 height=600,title=dict(

 text='Most Common ngrams per Classes',

 x=0.5,

 y=0.95,

 font=dict(

 family="Courier New, monospace",

 size=24,

 color="RebeccaPurple"

)

),)

fig.show()

02000400060008000hotelroomnstayroomsstaffnightgoodservicedaytimefoodlikeresort2beachstayedgotnic

e3toldpeopledeskplacegreat010002000300040005000hotelroomngoodnicegreatroomsstafflocationstaybeac

hnightfoodcleanservicedaytimelikestayedresortbreakfastpool2small010k20k30khotelroomgreatstaffgoodns

taynicelocationroomsstayedbreakfastcleantimebeachservicedaynightfoodfriendlyreallyplaceexcellentpool

negativeneutralpositiveMost Common ngrams per Classes

In [36]:

def _get_top_ngram(corpus, n=None):

 #getting top ngrams

 vec = CountVectorizer(ngram_range=(n, n),

 max_df=0.9,

).fit(corpus)

 bag_of_words = vec.transform(corpus)

 sum_words = bag_of_words.sum(axis=0)

 words_freq = [(word, sum_words[0, idx])

 for word, idx in vec.vocabulary_.items()]

 words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)

 return words_freq[:15]

In [37]:

unigram

fig = make_subplots(rows=1, cols=3)

title_ = ["negative", "neutral", "positive"]

for i in range(3):

 texts = df[df["label"] == i]['tokenized_review']

 new = texts.str.split()

 new = new.values.tolist()

 corpus = [word for i in new for word in i]

 top_n_bigrams = _get_top_ngram(texts, 2)[:15]

 x, y = map(list, zip(*top_n_bigrams))

 fig.add_trace(go.Bar(

 x=y,

 y=x,

 orientation='h', type="bar",

 name=title_[i], marker=dict(color=colors[i])), 1, i+1)

fig.update_layout(

 autosize=False,

 width=2000,

 height=600,title=dict(

 text='Most Common unigrams per Classes',

 x=0.5,

 y=0.95,

 font=dict(

 family="Courier New, monospace",

 size=24,

 color="RebeccaPurple"

)

))

fig.show()

02004006008001000did notpunta canaroom notstar hotelhotel notnot stayroom servicenot goodcheck inair

conditioningstay hotelnot worthnot recommendcustomer servicecredit card0100200300400500did notgreat

locationstaff friendlypunta cananot badgood locationnot goodroom cleanroom servicecheck inwalking

distancehotel notsan juanstar hotelstayed hotel0500100015002000did notgreat locationstaff friendlygreat

hotelfriendly helpfulhotel greatwalking distancerecommend hotelpunta canahighly recommendhotel staffth

floorjust returnedminute walkstayed hotel

negativeneutralpositiveMost Common unigrams per Classes

In [38]:

#trigram

fig = make_subplots(rows=1, cols=3)

title_ = ["negative", "neutral", "positive"]

for i in range(3):

 texts = df[df["label"] == i]['tokenized_review']

 new = texts.str.split()

 new = new.values.tolist()

 corpus = [word for i in new for word in i]

 top_n_bigrams = _get_top_ngram(texts, 3)[:15]

 x, y = map(list, zip(*top_n_bigrams))

 fig.add_trace(go.Bar(

 x=y,

 y=x,

 orientation='h', type="bar",

 name=title_[i], marker=dict(color=colors[i])), 1, i+1),

fig.update_layout(

 autosize=False,

 width=2000,

 height=600,title=dict(

 text='Most Common trigrams per Classes',

 x=0.5,

 y=0.95,

 font=dict(

 family="Courier New, monospace",

 size=24,

 color="RebeccaPurple"

)

))

fig.show()

020406080100120did not worknot recommend hotelold san juannon smoking roomroom not readyroom

did notnot star hotelno air conditioningnot worth moneyking size bedno hot waternot stay hotelhotel did

notworst hotel stayeddid not want01020304050old san juanstaff friendly helpfulhotel great locationstayed

hotel nightsking size bedgood value moneyhotel good location10 minute walkflat screen tvel san juandid

not likenon smoking roomdid not workla carte restaurantsjust returned week0200400600staff friendly

helpfulhotel great locationhighly recommend hotelgreat place stayold san juanflat screen tvgreat hotel

great10 minute walkking size bedgood value moneyeasy walking distancehotel staff friendlyfree internet

accessstaff helpful friendlyjust returned night

negativeneutralpositiveMost Common trigrams per Classes

We examined and visualized the data, now we can move on to the model building part.

3. MODELS

A brief information about BERT

BERT makes use of Transformer, an attention mechanism that learns contextual relations between words

(or sub-words) in a text. In its vanilla form, Transformer includes two separate mechanisms — an encoder

that reads the text input and a decoder that produces a prediction for the task. Since BERT’s goal is to

generate a language model, only the encoder mechanism is necessary.

BERT is a bi-directional transformer for pre-training over a lot of unlabeled textual data to learn a

language representation that can be used to fine-tune for specific machine learning tasks. While BERT

outperformed the NLP state-of-the-art on several challenging tasks, its performance improvement could be

attributed to the bidirectional transformer, novel pre-training tasks of Masked Language Model and Next

Structure Prediction along with a lot of data and Google’s compute power.

The detailed workings of Transformer are described in a paper by Google.

A brief information about XLNET

XLNet is a large bidirectional transformer that uses improved training methodology, larger data and more

computational power to achieve better than BERT prediction metrics on 20 language tasks.

To improve the training, XLNet introduces permutation language modeling, where all tokens are predicted

but in random order. This is in contrast to BERT’s masked language model where only the masked (15%)

tokens are predicted. This is also in contrast to the traditional language models, where all tokens were

predicted in sequential order instead of random order. This helps the model to learn bidirectional

relationships and therefore better handles dependencies and relations between words. In addition,

Transformer XL was used as the base architecture, which showed good performance even in the absence of

permutation-based training.

XLNet was trained with over 130 GB of textual data and 512 TPU chips running for 2.5 days, both of

which ar e much larger than BERT.

A brief information about RoBERTa

RoBERTa. Introduced at Facebook, Robustly optimized BERT approach RoBERTa, is a retraining of

BERT with improved training methodology, 1000% more data and compute power.

To improve the training procedure, RoBERTa removes the Next Sentence Prediction (NSP) task from

BERT’s pre-training and introduces dynamic masking so that the masked token changes during the training

epochs. Larger batch-training sizes were also found to be more useful in the training procedure.

Importantly, RoBERTa uses 160 GB of text for pre-training, including 16GB of Books Corpus and English

Wikipedia used in BERT. The additional data included CommonCrawl News dataset (63 million articles,

76 GB), Web text corpus (38 GB) and Stories from Common Crawl (31 GB). This coupled with whopping

1024 V100 Tesla GPU’s running for a day, led to pre-training of RoBERTa.

Comparison of Transformer Models

 source = https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82ba5f8

In this table, the models are compared under 5 headings, let's take them all one by one.

1. When we look at the sizes of the models, BERT, RoBERTa and XLNet have the same values,

while the size of the DistillBERT is smaller.

2. The biggest factor that determines Training Times is the size of the models and the data they have.

As you can imagine, the time increases as the size increases :).

3. When we look at the performance, BERT considers the model as the base model. RoBERTa offers

2-20% better performance than BERT. A similar performance applies to XLNet. XLNet performs

2-15% better than BERT model. DisltiBERT, despite its small size, is not equally poor in

performance. It performs only 3% worse.

4. When we look at its data, the model with the largest corpus is ROBERTa. It is followed by

XLNET, then BERT and DistilBERT have the same data. One of the reasons for the higher

performance of RoBERTa and XLNet is that the datasets are so high.

1. As it is known, there are MLM and NSP tasks in the BERT model. The RoBERTa model is the

trained version of the BERT model without the NSP task. DiltilBERT is a reduced number of

parameters of BERT, it maintains 97% performance, but uses only half the number of parameters

(paper). To enhance the training, XLNet offers permutation language modeling where all tokens

are predicted but in random order.

I recommend you to read the articles for more detailed information.

Preprocess for BERT Train

In [39]:

import pandas as pd

import numpy as np

import os

import random

from pathlib import Path

import json

In [40]:

import torch

from tqdm.notebook import tqdm

from transformers import BertTokenizer

from torch.utils.data import TensorDataset

from transformers import BertForSequenceClassification

In [41]:

class Config():

 seed_val = 17

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 epochs = 5

 batch_size = 6

 seq_length = 512

 lr = 2e-5

 eps = 1e-8

 pretrained_model = 'bert-base-uncased'

 test_size=0.15

 random_state=42

 add_special_tokens=True

 return_attention_mask=True

 pad_to_max_length=True

 do_lower_case=False

 return_tensors='pt'

config = Config()

In [42]:

params will be saved after training

params = {"seed_val": config.seed_val,

 "device":str(config.device),

 "epochs":config.epochs,

 "batch_size":config.batch_size,

 "seq_length":config.seq_length,

 "lr":config.lr,

 "eps":config.eps,

 "pretrained_model": config.pretrained_model,

 "test_size":config.test_size,

 "random_state":config.random_state,

 "add_special_tokens":config.add_special_tokens,

 "return_attention_mask":config.return_attention_mask,

 "pad_to_max_length":config.pad_to_max_length,

 "do_lower_case":config.do_lower_case,

 "return_tensors":config.return_tensors,

 }

In [43]:

set random seed and device

import random

device = config.device

random.seed(config.seed_val)

np.random.seed(config.seed_val)

torch.manual_seed(config.seed_val)

torch.cuda.manual_seed_all(config.seed_val)

In [44]:

df.head()

Out[44]:

 Review
Ratin

g

lab

el

label_na

me
tokenized_review

sent_token_leng

th

sent_bert_token_len

gth

char_cou

nt

Characte

r Count

0

nice hotel

expensive

parking got

good deal

sta...

4 2 Positive

nice hotel

expensive

parking got good

deal sta...

88 91 593 593

1

ok nothing

special

charge

diamond

member

hilto...

2 0 Negative

ok nothing

special charge

diamond member

hilto...

258 268 1689 1689

2

nice rooms

not 4

experience

hotel

monaco

seat...

3 1 Neutral

nice rooms not 4

experience hotel

monaco seatt...

237 273 1427 1427

3

unique

great stay

wonderful

time hotel

monac...

5 2 Positive

unique great stay

wonderful time

hotel monaco ...

92 102 600 600

4

great stay

great stay

went

seahawk

game

aweso...

5 2 Positive

great stay great

stay went

seahawk game

awesom...

197 213 1281 1281

Train and Validation Split

In [45]:

#split train test

from sklearn.model_selection import train_test_split

train_df_, val_df = train_test_split(df,

 test_size=0.10,

 random_state=config.random_state,

 stratify=df.label.values)

In [46]:

train_df_.head()

Out[46]:

 Review
Rati

ng

lab

el

label_na

me

tokenized_revi

ew

sent_token_len

gth

sent_bert_token_len

gth

char_cou

nt

Charact

er

Count

8159

central

simple 4

nights

bbvery

small

room no

a...

3 1 Neutral

central simple

4 nights bbvery

small room no

a...

27 37 208 208

1573

8

stay

stayed

flight

cancelled

stranded

3 days ...

5 2 Positive

stay stayed

flight cancelled

stranded 3 days

a...

75 87 487 487

9972

n t want

stay

picked

hotel du

candran

excellen.

..

5 2 Positive

n t want stay

picked hotel du

candran

excellen...

142 162 902 902

7265

best deal

town

reserved

internet

months

advanc...

5 2 Positive

best deal town

reserved

internet months

advanc...

48 48 353 353

8747

nice

place

wife

arrived

usa

10am

offered

choic...

4 2 Positive

nice place wife

arrived usa 10

am offered

choi...

86 91 579 579

In [47]:

train_df, test_df = train_test_split(train_df_,

 test_size=0.10,

 random_state=42,

 stratify=train_df_.label.values)

In [48]:

count of unique label control

print(len(train_df['label'].unique()))

print(train_df.shape)

3

(16596, 9)

In [49]:

count of unique label control

print(len(val_df['label'].unique()))

print(val_df.shape)

3

(2050, 9)

In [50]:

print(len(test_df['label'].unique()))

print(test_df.shape)

3

(1845, 9)

BertTokenizer and Encoding the Data

In [51]:

create tokenizer

tokenizer = BertTokenizer.from_pretrained(config.pretrained_model,

 do_lower_case=config.do_lower_case)

In [52]:

encoded_data_train = tokenizer.batch_encode_plus(

 train_df.Review.values,

 add_special_tokens=config.add_special_tokens,

 return_attention_mask=config.return_attention_mask,

 pad_to_max_length=config.pad_to_max_length,

 max_length=config.seq_length,

 return_tensors=config.return_tensors

)

encoded_data_val = tokenizer.batch_encode_plus(

 val_df.Review.values,

 add_special_tokens=config.add_special_tokens,

 return_attention_mask=config.return_attention_mask,

 pad_to_max_length=config.pad_to_max_length,

 max_length=config.seq_length,

 return_tensors=config.return_tensors

)

Truncation was not explicitly activated but `max_length` is provided a specific value, please use

`truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation

strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy

more precisely by providing a specific strategy to `truncation`.

In [53]:

input_ids_train = encoded_data_train['input_ids']

attention_masks_train = encoded_data_train['attention_mask']

labels_train = torch.tensor(train_df.label.values)

input_ids_val = encoded_data_val['input_ids']

attention_masks_val = encoded_data_val['attention_mask']

labels_val = torch.tensor(val_df.label.values)

In [54]:

dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)

dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val)

Creating the Model

● bert-base-uncased is a smaller pre-trained model.

● Using num_labels to indicate the number of output labels.

In [55]:

model = BertForSequenceClassification.from_pretrained(config.pretrained_model,

 num_labels=3,

 output_attentions=False,

 output_hidden_states=False)

Downloading: 100%

420M/420M [00:10<00:00, 42.8MB/s]

Some weights of the model checkpoint at bert-base-uncased were not used when initializing

BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias',

'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight',

'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight',

'cls.seq_relationship.weight']

- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model

trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification

model from a BertForPreTraining model).

- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a

model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a

BertForSequenceClassification model).

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-

base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and

inference.

Data Loaders

● DataLoader combines a dataset and a sampler, and provides an iterable over the given dataset.

● We use RandomSampler for training and SequentialSampler for validation.

● Given the limited memory in my environment, I set batch_size=64.

In [56]:

from torch.utils.data import DataLoader, RandomSampler, SequentialSampler

dataloader_train = DataLoader(dataset_train,

 sampler=RandomSampler(dataset_train),

 batch_size=config.batch_size)

dataloader_validation = DataLoader(dataset_val,

 sampler=SequentialSampler(dataset_val),

 batch_size=config.batch_size)

Optimizer & Scheduler

In [57]:

from transformers import AdamW, get_linear_schedule_with_warmup

optimizer = AdamW(model.parameters(),

 lr=config.lr,

 eps=config.eps)

scheduler = get_linear_schedule_with_warmup(optimizer,

 num_warmup_steps=0,

 num_training_steps=len(dataloader_train)*config.epochs)

Performance Metrics

We will use f1 score as performance metrics.

In [58]:

from sklearn.metrics import f1_score

def f1_score_func(preds, labels):

 preds_flat = np.argmax(preds, axis=1).flatten()

 labels_flat = labels.flatten()

 return f1_score(labels_flat, preds_flat, average='weighted')

def accuracy_per_class(preds, labels, label_dict):

 label_dict_inverse = {v: k for k, v in label_dict.items()}

 preds_flat = np.argmax(preds, axis=1).flatten()

 labels_flat = labels.flatten()

 for label in np.unique(labels_flat):

 y_preds = preds_flat[labels_flat==label]

 y_true = labels_flat[labels_flat==label]

 print(f'Class: {label_dict_inverse[label]}')

 print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')

Training Loop

In [59]:

def evaluate(dataloader_val):

 model.eval()

 loss_val_total = 0

 predictions, true_vals = [], []

 for batch in dataloader_val:

 batch = tuple(b.to(config.device) for b in batch)

 inputs = {'input_ids': batch[0],

 'attention_mask': batch[1],

 'labels': batch[2],

 }

 with torch.no_grad():

 outputs = model(**inputs)

 loss = outputs[0]

 logits = outputs[1]

 loss_val_total += loss.item()

 logits = logits.detach().cpu().numpy()

 label_ids = inputs['labels'].cpu().numpy()

 predictions.append(logits)

 true_vals.append(label_ids)

 # calculate avareage val loss

 loss_val_avg = loss_val_total/len(dataloader_val)

 predictions = np.concatenate(predictions, axis=0)

 true_vals = np.concatenate(true_vals, axis=0)

 return loss_val_avg, predictions, true_vals

In [60]:

config.device

Out[60]:

device(type='cuda', index=0)

In [61]:

model.to(config.device)

for epoch in tqdm(range(1, config.epochs+1)):

 model.train()

 loss_train_total = 0

 # allows you to see the progress of the training

 progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)

 for batch in progress_bar:

 model.zero_grad()

 batch = tuple(b.to(config.device) for b in batch)

 inputs = {'input_ids': batch[0],

 'attention_mask': batch[1],

 'labels': batch[2],

 }

 outputs = model(**inputs)

 loss = outputs[0]

 loss_train_total += loss.item()

 loss.backward()

 torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

 optimizer.step()

 scheduler.step()

 progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})

 torch.save(model.state_dict(), f'_BERT_epoch_{epoch}.model')

 tqdm.write(f'\nEpoch {epoch}')

 loss_train_avg = loss_train_total/len(dataloader_train)

 tqdm.write(f'Training loss: {loss_train_avg}')

 val_loss, predictions, true_vals = evaluate(dataloader_validation)

 val_f1 = f1_score_func(predictions, true_vals)

 tqdm.write(f'Validation loss: {val_loss}')

 tqdm.write(f'F1 Score (Weighted): {val_f1}');

save model params and other configs

with Path('params.json').open("w") as f:

 json.dump(params, f, ensure_ascii=False, indent=4)

100%

5/5 [1:26:39<00:00, 1038.70s/it]

Epoch 1: 100%

2766/2766 [16:42<00:00, 2.76it/s, training_loss=0.113]

Epoch 1

Training loss: 0.44685599791267866

Validation loss: 0.30867522299747197

F1 Score (Weighted): 0.8787187536388859

Epoch 2: 100%

2766/2766 [16:40<00:00, 2.60it/s, training_loss=0.078]

Epoch 2

Training loss: 0.33569076879218773

Validation loss: 0.44388014650209234

F1 Score (Weighted): 0.8733283050365404

Epoch 3: 100%

2766/2766 [16:40<00:00, 2.78it/s, training_loss=0.113]

Epoch 3

Training loss: 0.26331509235532197

Validation loss: 0.4841138020460596

F1 Score (Weighted): 0.8839202492823627

Epoch 4: 100%

2766/2766 [16:38<00:00, 2.70it/s, training_loss=0.000]

Epoch 4

Training loss: 0.174491831848849

Validation loss: 0.6204505104885426

F1 Score (Weighted): 0.8782044542022744

Epoch 5: 100%

2766/2766 [16:35<00:00, 2.80it/s, training_loss=0.000]

Epoch 5

Training loss: 0.10495032141427339

Validation loss: 0.7065923309128053

F1 Score (Weighted): 0.8772936330208443

Test on validation set

In [62]:

model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))

Out[62]:

<All keys matched successfully>

In [63]:

from sklearn.metrics import classification_report

preds_flat = np.argmax(predictions, axis=1).flatten()

print(classification_report(preds_flat, true_vals))

 precision recall f1-score support

 0 0.82 0.85 0.83 310

 1 0.48 0.46 0.47 227

 2 0.95 0.94 0.95 1513

 accuracy 0.88 2050

 macro avg 0.75 0.75 0.75 2050

weighted avg 0.88 0.88 0.88 2050

4. ERROR ANALYSIS

In [64]:

step by step predictions on dataframe

We do this to view predictions in the pandas dataframe and easily filter them and perform error analysis.

pred_final = []

for i, row in tqdm(val_df.iterrows(), total=val_df.shape[0]):

 predictions = []

 review = row["Review"]

 encoded_data_test_single = tokenizer.batch_encode_plus(

 [review],

 add_special_tokens=config.add_special_tokens,

 return_attention_mask=config.return_attention_mask,

 pad_to_max_length=config.pad_to_max_length,

 max_length=config.seq_length,

 return_tensors=config.return_tensors

)

 input_ids_test = encoded_data_test_single['input_ids']

 attention_masks_test = encoded_data_test_single['attention_mask']

 inputs = {'input_ids': input_ids_test.to(device),

 'attention_mask':attention_masks_test.to(device),

 }

 with torch.no_grad():

 outputs = model(**inputs)

 logits = outputs[0]

 logits = logits.detach().cpu().numpy()

 predictions.append(logits)

 predictions = np.concatenate(predictions, axis=0)

 pred_final.append(np.argmax(predictions, axis=1).flatten()[0])

100%

2050/2050 [00:52<00:00, 41.06it/s]

In [65]:

add pred into val_df

val_df["pred"] = pred_final

In [66]:

Add control column for easier wrong and right predictions

control = val_df.pred.values == val_df.label.values

val_df["control"] = control

In [67]:

filtering false predictions

val_df = val_df[val_df.control == False]

In [68]:

buraları düzenle bbaaaabbaaaaa

label to intent mapping

name2label = {"Negative":0,

 "Neutral":1,

 "Positive":2

 }

label2name = {v: k for k, v in name2label.items()}

val_df["pred_name"] = val_df.pred.apply(lambda x: label2name.get(x))

In [69]:

from sklearn.metrics import confusion_matrix

We create a confusion matrix to better observe the classes that the model confuses.

pred_name_values = val_df.pred_name.values

label_values = val_df.label_name.values

confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))

In [70]:

confmat

Out[70]:

array([[0, 66, 4],

 [27, 0, 68],

 [9, 71, 0]])

In [71]:

df_confusion_val = pd.crosstab(label_values, pred_name_values)

df_confusion_val

Out[71]:

col_0 Negative Neutral Positive

row_0

Negative 0 66 4

Neutral 27 0 68

Positive 9 71 0

In [72]:

save confissuan matrix df

df_confusion_val.to_csv("val_df_confusion.csv")

5. INFERENCE

In [73]:

test_df.head()

Out[73]:

 Review
Rati

ng

lab

el

label_na

me

tokenized_revi

ew

sent_token_len

gth

sent_bert_token_le

ngth

char_cou

nt

Charact

er

Count

229

8

great

location

nice

hotel

family 5

stayed

june...

4 2 Positive

great location

nice hotel

family 5

stayed june...

38 39 260 260

950

3

welcomi

ng

spotless

just

returned

2nd visit

bar...

5 2 Positive

welcoming

spotless just

returned 2 nd

visit ba...

68 77 470 470

147

42

beautiful

resort

beautiful

gardens

friendly

st...

3 1 Neutral

beautiful

resort

beautiful

gardens

friendly st...

81 86 506 506

414

0

cheaply

renovate

d wo n t

going

aside

2 0 Negative

cheaply

renovated wo

n t going aside

beautiful...

104 113 684 684

beautiful.

..

355

2

nothing

spectacul

ar time

dr time

doing

inclusi...

3 1 Neutral

nothing

spectacular

time dr time

doing inclusi...

110 128 719 719

In [74]:

encoded_data_test = tokenizer.batch_encode_plus(

 test_df.Review.values,

 add_special_tokens=config.add_special_tokens,

 return_attention_mask=config.return_attention_mask,

 pad_to_max_length=config.pad_to_max_length,

 max_length=config.seq_length,

 return_tensors=config.return_tensors

)

In [75]:

input_ids_test = encoded_data_test['input_ids']

attention_masks_test = encoded_data_test['attention_mask']

labels_test = torch.tensor(test_df.label.values)

In [76]:

model = BertForSequenceClassification.from_pretrained(config.pretrained_model,

 num_labels=3,

 output_attentions=False,

 output_hidden_states=False)

model.to(config.device)

model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))

_, predictions_test, true_vals_test = evaluate(dataloader_validation)

accuracy_per_class(predictions, true_vals, intent2label)

Some weights of the model checkpoint at bert-base-uncased were not used when initializing

BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias',

'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight',

'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight',

'cls.seq_relationship.weight']

- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model

trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification

model from a BertForPreTraining model).

- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a

model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a

BertForSequenceClassification model).

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-

base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and

inference.

In [77]:

from sklearn.metrics import classification_report

preds_flat_test = np.argmax(predictions_test, axis=1).flatten()

print(classification_report(preds_flat_test, true_vals_test))

 precision recall f1-score support

 0 0.78 0.88 0.83 288

 1 0.56 0.47 0.51 260

 2 0.95 0.95 0.95 1502

 accuracy 0.88 2050

 macro avg 0.76 0.77 0.76 2050

weighted avg 0.88 0.88 0.88 2050

In [78]:

pred_final = []

for i, row in tqdm(test_df.iterrows(), total=test_df.shape[0]):

 predictions = []

 review = row["Review"]

 encoded_data_test_single = tokenizer.batch_encode_plus(

 [review],

 add_special_tokens=config.add_special_tokens,

 return_attention_mask=config.return_attention_mask,

 pad_to_max_length=config.pad_to_max_length,

 max_length=config.seq_length,

 return_tensors=config.return_tensors

)

 input_ids_test = encoded_data_test_single['input_ids']

 attention_masks_test = encoded_data_test_single['attention_mask']

 inputs = {'input_ids': input_ids_test.to(device),

 'attention_mask':attention_masks_test.to(device),

 }

 with torch.no_grad():

 outputs = model(**inputs)

 logits = outputs[0]

 logits = logits.detach().cpu().numpy()

 predictions.append(logits)

 predictions = np.concatenate(predictions, axis=0)

 pred_final.append(np.argmax(predictions, axis=1).flatten()[0])

100%

1845/1845 [00:47<00:00, 39.87it/s]

In [79]:

add pred into test

test_df["pred"] = pred_final

In [80]:

Add control column for easier wrong and right predictions

control = test_df.pred.values == test_df.label.values

test_df["control"] = control

In [81]:

filtering false predictions

test_df = test_df[test_df.control == False]

In [82]:

test_df["pred_name"] = test_df.pred.apply(lambda x: label2name.get(x))

In [83]:

from sklearn.metrics import confusion_matrix

We create a confusion matrix to better observe the classes that the model confuses.

pred_name_values = test_df.pred_name.values

label_values = test_df.label_name.values

confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))

In [84]:

confmat

Out[84]:

array([[0, 53, 19],

 [34, 0, 66],

 [6, 61, 0]])

In [85]:

df_confusion_test = pd.crosstab(label_values, pred_name_values)

df_confusion_test

Out[85]:

col_0 Negative Neutral Positive

row_0

Negative 0 53 19

Neutral 34 0 66

Positive 6 61 0

6. References

1. Hugging Face

2. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

3. RoBERTa: A Robustly Optimized BERT Pretraining Approach

4. XLNet: Generalized Autoregressive Pretraining for Language Understanding

5. Coursera

6. Brand24

7. MonkeyLearn

If you like the notebook, Please don't

forget to UPVOTE and comment :) :)

https://huggingface.co/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237
https://www.coursera.org/projects/sentiment-analysis-bert
https://brand24.com/
https://monkeylearn.com/sentiment-analysis/

	In depth series 1: SENTIMENT ANALYSIS, why and how, EDA and solutions with Transformers
	Table of Contents
	1. SENTIMENT ANALYSIS
	Types of Sentiment Analysis

	2. EDA
	Information of the Data
	Information of the Problem
	Imports
	Helper Functions
	Read Data
	Visualizations
	Word Cloud
	Target Count
	Token Counts with simple tokenizer
	Token Counts with BERT tokenizer
	Characters Count in the Data
	Reviews Lengths
	Word Counts
	Most Common Words
	Most Common ngrams

	3. MODELS
	A brief information about BERT
	A brief information about XLNET
	A brief information about RoBERTa
	Comparison of Transformer Models

	Preprocess for BERT Train
	Train and Validation Split
	BertTokenizer and Encoding the Data
	Creating the Model
	Data Loaders
	Optimizer & Scheduler
	Performance Metrics
	Training Loop
	Test on validation set

	4. ERROR ANALYSIS
	5. INFERENCE
	6. References
	If you like the notebook, Please don't forget to UPVOTE and comment :) :)

