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In depth series 1: SENTIMENT 

ANALYSIS, why and how, EDA and 

solutions with Transformers 

 

In this study, I explained Sentiment Analysis in detail. 

I chose a sample dataset for Sentiment Analysis and embodied the subject I explained on a real example. 

Then I made a detailed analysis on the dataset and visualized it. 

After preprocessing the data, I tried to complete the Sentimet Analysis task with state-of-the-art models. 

I analyzed the results of this model and interpreted its outputs. 

I have indicated the sources I used while doing this study at the end of the notebook. Thank you to 

everyone who contributed to this field :). 

Table of Contents 

1. SENTIMENT ANALYSIS 

● Types of Sentiment Analysis 

■ Emotion Detection 

■ Multilingual Sentiment Analysis 

■ Graded Sentiment Analysis 

■ Aspect-based Sentiment Analysis 

■ Intent Analysis 

● Why Is Sentiment Analysis Important? 

● The overall benefits of sentiment analysis include 

■ Sorting Data at Scale 

https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#types_of_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#emotion_detection
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#multilingual_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#graded_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#aspect_base_sentiment_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#intent_analysis
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#why_is_sentiment_analysis_important
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include


■ Real-Time Analysis 

■ Discovering New Marketing Strategies 

● How Does Sentiment Analysis Work? 

● Sentiment analysis Approaches 

■ Rule-based Approaches 

■ Automatic Approaches 

2. EDA 

● Information of the DATA 

● Information of the Problem 

● Imports 

● Helper Functions 

● Read Data 

● Visualizations 

■ Word Cloud 

■ Target Count 

■ Token Counts with simple tokenizer 

■ Token Counts with BERT tokenizer 

■ Characters Count in the Data 

■ Reviews Lengths 

■ Word Counts 

■ Most Common Words 

■ Most Common ngrams 

3. MODELS 

● A brief information about BERT 

● A brief information about XLNET 

● A brief information about RoBERTa 

● Comparison of Transformer Models 

https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#the_overall_benefits_of_sentiment_analysis_include
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#how_does_sentiment_analysis_work
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#sentiment_analysis_Approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#rule_based_approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#automatic_approaches
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#eda
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#information_of_the_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#information_of_the_problem
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#imports
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#helper_functions
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#read_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#visualizations
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#word_cloud
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#target_count
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#token_counts_with_simple_tokenizer
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#token_counts_with_BERT_tokenizer
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#characters_count_in_the_data
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#reviews_lengths
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#word_counts
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#most_common_words
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#most_common_ngrams
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#models
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_Bert
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_XLNET
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#brief_informartion_about_RoBERTa
https://www.kaggle.com/code/emirkocak/in-depth-series-sentiment-analysis-w-transformers#comparison_of_Transformer_Models


● Preprocess for BERT Train 

● Train and Validation Split 

● BertTokenizer and Encoding the Data 

● Creating the Model 

● Data Loaders 

● Optimizer & Scheduler 

● Performance Metrics 

● Training Loop 

● Test on validation set 

4. ERROR ANALYSIS 

5. INFERENCE 

6. REFERENCES 

1. SENTIMENT ANALYSIS 

 
               source = https://d3caycb064h6u1.cloudfront.net/wp-

content/uploads/2021/06/sentimentanalysishotelgeneric-2048x803-1.jpg 

Sentiment analysis (or opinion mining) is a natural language processing (NLP) technique used to determine 

whether data is positive, negative or neutral. Sentiment analysis is often performed on textual data to help 

businesses monitor brand and product sentiment in customer feedback, and understand customer needs. 
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Sentiment analysis helps data analysts within large enterprises gauge public opinion, conduct nuanced 

market research, monitor brand and product reputation, and understand customer experiences. In addition, 

companies often develop sentiment analysis systems for customer experience management, social media 

monitoring, or workforce analytics platform to about their own customers. 

Types of Sentiment Analysis 

 

           source = https://mobcoder.com/blog/sentimental-analysis-how-the-phenomenon-changing-the-

dynamics-of-brand-monitoring/ 

 

 

Sentiment analysis is aimed at determining the general emotional state of a text. One of these cases focuses 

on the polarity of a text (positive, negative, neutral) but it also goes beyond polarity to detect specific 

feelings and emotions (angry, happy, sad, etc), urgency (urgent, not urgent) and even intentions (interested 

v. not interested). 

Let's explain them in more detail 

Emotion Analysis 



 

       source = https://kids.frontiersin.org/articles/10.3389/frym.2018.00015 

 

 

The type of emotion analysis in which emotion types(happiness, frustration, anger, and sadness) are 

classified is called emotion detection. 

There are some difficulties with this classification. Users can express their feelings with many different 

words. They can use a word with a bad meaning for happiness. The most difficult examples of 

classification models here are; For example, the sentence "I connect to customer service too late, it's killing 

me" is a negative sentence, while the sentence "you are killing me" is positive. 

Multilingual Sentiment Analysis 

It is the version of Sentiment Analysis systems that provides multi-language support. What is mentioned 

here is to do sentiment analysis in more than one language. 

I usually have two suggestions for this: 

My first suggestion is to detect the language of the text with the language classifier and run a sentimen 

analysis model suitable for this language. The second method is to develop a Multilingual language model 

and finetune this model and make the model work in many languages. 

Graded Sentiment Analysis 

 

       source = https://i.pinimg.com/originals/5b/7d/62/5b7d62fb62b03b8142b402cb85644865.png 



 

 

If the precision of the mood is important, the categories can be further elaborated. A broader classification 

can be made, not just positive and negative: 

● Very positive 

● Positive 

● Neutral 

● Negative 

● Very negative 

This classification is often used in reviews and reviews where 5 stars are awarded. 

● Very Positive = 5 stars 

● Very Negative = 1 star 

Aspect-based Sentiment Analysis 

 

   source = https://www.surveysensum.com/wp-content/uploads/2020/02/SENTIMENT-09-1.png 

 

 

Generally, when analyzing the emotions of the texts, the focus is on determining whether the 

comment/opinion is positive or negative. But we do not focus on what is positive or negative in this text. 

To put it more clearly, in the expression "I did not like the product at all, the size is too small", the user is 

not satisfied with the product and complains about its dimensions. In a normal sentiment analysis, this 

sentence is classified as negative, but in aspect-based sentiment analysis, the "the size is too small" part 

is also focused on. 

Intent Analysis 



Intent analysis focuses on what the user wants to do. Understanding what the user wants to do will allow us 

to better guide him. 

For example, being able to understand that a customer browsing an e-commerce site has a shopping 

intention also allows us to offer him the right products. 

One of the most used areas is the smart assistant systems in the applications. It allows us to direct users to 

the right places within the application in line with their requests and we can offer a better application 

experience to the user. 

Why Is Sentiment Analysis Important? 

 

               source = https://brand24.com/ 

 

 

People now share their comments/emotions on social media, e-commerce sites and many other sites. A lot 

of data is created on these platforms. 

Often brands want to know what they are talking about. Brands/companies make great efforts to quickly 

identify their customers' expectations and provide them with the right service.It allows their customers to 

learn what makes them happy or disappointed so they can tailor products and services to their customers' 

needs. In addition, brands want to observe the impact of their advertisements on users. 

For these reasons, Sentiment analysis is becoming more important every day. 

The overall benefits of sentiment analysis include: 

Sorting Data at Scale 

Users make a lot of comments about brands, it is almost impossible to process them manually. Sentiment 

analysis enables businesses to automatically classify large amounts of raw data. 

Real-Time Analysis 

Companies can learn the wishes of their customers by analyzing the social media comments about you in 

real time. They can identify the angry customer and ensure his satisfaction. 

Discovering New Marketing Strategies 

With more data and information gathered through sentiment analysis, the organizations could develop an 

effective marketing strategy. 

The outcome from the strategies can be measured from the customers’ positive or negative key messages. 



By observing the customers’ conversations on their social media and detect the specific key messages 

related to your brand, specific marketing campaigns can be designed for the target consumers. 

How Does Sentiment Analysis Work? 

source = https://monkeylearn.com/sentiment-analysis/  

Sentiment analysis works to automatically determine emotional tone thanks to natural language processing 

(NLP), rule-based methods, and machine learning algorithms. 

There are different ways we can do sentiment analysis, depending on how much data you need to analyze, 

how accurate your model needs to be, and how many resources you have. 

We will talk about some of them below. 

Sentiment analysis algorithms fall into one of three buckets: 

● Rule-based: these systems automatically perform sentiment analysis based on a set of manually 

crafted rules. 

● Automatic: systems rely on machine learning techniques to learn from data. 

Rule-based Approaches 

Usually, a rule-based system tries to help determine the subjectivity of the sentence, the polarity, or the 

subject matter of an idea. The most used tool here is "regex". 

These rules usually include the following two NLP techniques: 

● Stemming, tokenization, part-of-speech tagging and parsing. 

● Lexicons (i.e. lists of words and expressions). 

The working mechanism of these systems is briefly as follows; 

1. Build a list of polarized words (e.g. bad-good, worst-best, ugly-beautiful etc). You can find them 

as open source 

2. The ratio of positive and positive words in a sentence 

Rule-based approaches are now obsolete, not used as much as they used to be. Rule-based approaches fail 

to detect ironies, not exactly how users are feeling. For this reason, automated approaches are gaining more 

importance now. 

Automatic Approaches 

These systems don’t rely on manually crafted rules, but on machine learning techniques, such as 

classification. Classification, which is used for sentiment analysis, is an automatic system that needs to be 

fed sample text before returning a category, e.g. positive, negative, or neutral. 

Here’s how a machine learning classifier can be implemented: 

Classification Algorithms 



The classification step usually involves a statistical model like Naïve Bayes, Logistic Regression, Support 

Vector Machines, or Neural Networks: 

● Naïve Bayes: are a family of simple "probabilistic classifiers" based on applying Bayes' theorem 

with strong (naïve) independence assumptions between the features (see Bayes classifier). 

● Linear Regression: is a linear approach for modelling the relationship between a scalar response 

and one or more explanatory variables (also known as dependent and independent variables). 

● Support Vector Machines(SVM): is a supervised machine learning algorithm that can be used 

for classification or regression problems. However, it is mostly used in classification problems. 

Support Vector Machine is a boundary that best separates two classes (hyperplane/line) 

● Deep Learning: (also known as deep structured learning) is part of a broader family of machine 

learning methods based on artificial neural networks with representation learning. Learning can be 

supervised, semi-supervised or unsupervised. 

We can explain the sentiment analysis in general like this. Now we have determined a data for how 

we will apply it next, and we will spread visualizations on that data and train models. 

2. EDA 

Information of the Data 

Hotels play a crucial role in traveling and with the increased access to information new pathways of 

selecting the best ones emerged. With this dataset, consisting of 20k reviews crawled from Tripadvisor, 

you can explore what makes a great hotel and maybe even use this model in your travels! 

How to use 

● Predict Review Rating 

● Topic Modeling on Reviews 

● Explore key aspects that make hotels good or bad 

Information of the Problem 

Customer satisfaction is very important for the service industry. For this reason, it is necessary to 

determine the emotional state of the customer's thoughts. We need to classify the user's emotion in our 

hotel reviews data. 

Imports 

n [2]: 

import pandas as pd 

from wordcloud import WordCloud 



import seaborn as sns 

import re 

import string 

from collections import Counter, defaultdict 

 

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer 

 

import plotly.express as px 

from plotly.subplots import make_subplots 

import plotly.graph_objects as go 

from plotly.offline import plot 

 

import matplotlib.gridspec as gridspec 

from matplotlib.ticker import MaxNLocator 

import matplotlib.patches as mpatches 

import matplotlib.pyplot as plt 

 

In [3]: 

import warnings 

warnings.filterwarnings('ignore') 

 

In [4]: 

import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

stopWords_nltk = set(stopwords.words('english')) 

 



unfold_lessHide output 

[nltk_data] Downloading package stopwords to /usr/share/nltk_data... 

[nltk_data]   Package stopwords is already up-to-date! 

 

Helper Functions 

In [5]: 

import re 

from typing import Union, List 

 

class CleanText(): 

    """ clearing text except digits () . , word character """  

 

    def __init__(self, clean_pattern = r"[^A-ZĞÜŞİÖÇIa-zğüı'şöç0-9.\"',()]"): 

        self.clean_pattern =clean_pattern 

 

    def __call__(self, text: Union[str, list]) -> List[List[str]]: 

 

        if isinstance(text, str): 

            docs = [[text]] 

 

        if isinstance(text, list): 

            docs = text 

 

        text = [[re.sub(self.clean_pattern, " ", sent) for sent in sents] for sents in docs] 

 

        return text 



     

def remove_emoji(data): 

    emoj = re.compile("[" 

        u"\U0001F600-\U0001F64F"  # emoticons 

        u"\U0001F300-\U0001F5FF"  # symbols & pictographs 

        u"\U0001F680-\U0001F6FF"  # transport & map symbols 

        u"\U0001F1E0-\U0001F1FF"  # flags (iOS) 

        u"\U00002500-\U00002BEF"   

        u"\U00002702-\U000027B0" 

        u"\U00002702-\U000027B0" 

        u"\U000024C2-\U0001F251" 

        u"\U0001f926-\U0001f937" 

        u"\U00010000-\U0010ffff" 

        u"\u2640-\u2642"  

        u"\u2600-\u2B55" 

        u"\u200d" 

        u"\u23cf" 

        u"\u23e9" 

        u"\u231a" 

        u"\ufe0f"  # dingbats 

        u"\u3030" 

                      "]+", re.UNICODE) 

    return re.sub(emoj, '', data) 

 

def tokenize(text): 

    """ basic tokenize method with word character, non word character and digits """ 

    text = re.sub(r" +", " ", str(text)) 



    text = re.split(r"(\d+|[a-zA-ZğüşıöçĞÜŞİÖÇ]+|\W)", text) 

    text = list(filter(lambda x: x != '' and x != ' ', text)) 

    sent_tokenized = ' '.join(text) 

    return sent_tokenized 

 

regex = re.compile('[%s]' % re.escape(string.punctuation)) 

 

def remove_punct(text): 

    text = regex.sub(" ", text) 

    return text 

 

clean = CleanText() 

 

In [6]: 

# label encode 

def label_encode(x): 

    if x == 1 or x == 2: 

        return 0 

    if x == 3: 

        return 1 

    if x == 5 or x == 4: 

        return 2 

     

# label to name 

def label2name(x): 

    if x == 0: 

        return "Negative" 



    if x == 1: 

        return "Neutral" 

    if x == 2: 

        return "Positive" 

     

 

Read Data 

In [7]: 

df = pd.read_csv("../input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv") 

 

In [8]: 

# show column names 

print("df.columns: ", df.columns)  

 

df.columns:  Index(['Review', 'Rating'], dtype='object') 

 

In [9]: 

# head of df 

df.head() 

 

Out[9]: 

 Review Rating 

0 nice hotel expensive parking got good deal sta... 4 

1 ok nothing special charge diamond member hilto... 2 

2 nice rooms not 4* experience hotel monaco seat... 3 



3 unique, great stay, wonderful time hotel monac... 5 

4 great stay great stay, went seahawk game aweso... 5 

In [10]: 

# count of ratings 

fig = px.histogram(df, 

             x = 'Rating', 

             title = 'Histogram of Review Rating', 

             template = 'ggplot2', 

             color = 'Rating', 

             color_discrete_sequence= px.colors.sequential.Blues_r, 

             opacity = 0.8, 

             height = 525, 

             width = 835, 

            ) 

 

fig.update_yaxes(title='Count') 

fig.show() 
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Rating42351Histogram of Review RatingRatingCount 

In [11]: 

# basic info  

df.info() 

 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 20491 entries, 0 to 20490 

Data columns (total 2 columns): 



 #   Column  Non-Null Count  Dtype  

---  ------  --------------  -----  

 0   Review  20491 non-null  object 

 1   Rating  20491 non-null  int64  

dtypes: int64(1), object(1) 

memory usage: 320.3+ KB 

 

In [12]: 

# encode label and mapping label name 

df["label"] = df["Rating"].apply(lambda x: label_encode(x)) 

df["label_name"] = df["label"].apply(lambda x: label2name(x)) 

 

In [13]: 

# clean text, lowercase and remove punk 

df["Review"] = df["Review"].apply(lambda x: remove_punct(clean(remove_emoji(x).lower())[0][0])) 

 

In [14]: 

df.head() 

 

Out[14]: 

 Review Rating label label_name 

0 nice hotel expensive parking got good deal sta... 4 2 Positive 

1 ok nothing special charge diamond member hilto... 2 0 Negative 

2 nice rooms not 4 experience hotel monaco seat... 3 1 Neutral 

3 unique great stay wonderful time hotel monac... 5 2 Positive 

4 great stay great stay went seahawk game aweso... 5 2 Positive 



Visualizations 

Word Cloud 

Word clouds generators work by breaking the text down into component words and counting how 

frequently they appear in the body of text. We can quickly obtain preliminary information about the data. 

We can understand what a dataset we don't know is talking about. 

In [15]: 

def show_wordcloud(data, title = None): 

    wordcloud = WordCloud( 

        background_color='black', 

        max_words=200, 

        max_font_size=40,  

        scale=1, 

        random_state=1 

).generate(" ".join(data)) 

 

    fig = plt.figure(1, figsize=(15, 15)) 

    plt.axis('off') 

    if title:  

        fig.suptitle(title, fontsize=20) 

        fig.subplots_adjust(top=2.3) 

 

    plt.imshow(wordcloud) 

    plt.show() 

 

In [16]: 

show_wordcloud(df["Review"].values) 

 



 

Target Count 

How many targets do we have? Learning this information will give us an idea about the model we will 

build. It will also provide guidance on our methods of analyzing data. 

In [17]: 

fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "bar"}]]) 

colors = ['gold', 'mediumturquoise', 'lightgreen'] # darkorange 

fig.add_trace(go.Pie(labels=df.label_name.value_counts().index, 

                             values=df.label.value_counts().values), 1, 1) 

 

fig.update_traces(hoverinfo='label+percent', textfont_size=20, 

                  marker=dict(colors=colors, line=dict(color='#000000', width=2))) 

 

fig.add_trace(go.Bar(x=df.label_name.value_counts().index, y=df.label.value_counts().values, 

marker_color = colors), 1,2) 

 

fig.show() 

 

PositiveNegativeNeutral02k4k6k8k10k12k14k73.7%15.7%10.7% 

PositiveNegativeNeutraltrace 1 



Token Counts with simple tokenizer 

Finding out the number of tokens available for each sample will give us information about the length of 

our data. The classification algorithm we will use for a long text will not be the same as the algorithm used 

for a short text. 

In [18]: 

# tokenize data 

df["tokenized_review"] = df.Review.apply(lambda x: tokenize(x)) 

# calculate token count for any sent 

df["sent_token_length"] = df["tokenized_review"].apply(lambda x: len(x.split())) 

 

In [19]: 

fig = px.histogram(df, x="sent_token_length", nbins=20, 

color_discrete_sequence=px.colors.cmocean.algae, barmode='group', histnorm="percent") 

fig.show() 
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sent_token_lengthpercent 

In [20]: 

(df.sent_token_length < 512).mean() 

 

Out[20]: 

0.989117173393197 

Token Counts with BERT tokenizer 

Since we will create a Transformers-based model, the value that BERT tokinezer will give us is very 

important. With the information here, the value of the seq_len parameter that we will use while encoding 

the data will be decided. 

In [21]: 

from transformers import BertTokenizer 

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',  



                                          do_lower_case=True) 

 

unfold_moreShow hidden output 

In [22]: 

# data tokenize with bert tokenizer 

df["sent_bert_token_length"] = df["Review"].apply(lambda x: len(tokenizer(x, 

add_special_tokens=False)["input_ids"])) 

 

unfold_moreShow hidden output 

In [23]: 

fig = px.histogram(df, x="sent_token_length", nbins=20, 

color_discrete_sequence=px.colors.cmocean.algae, barmode='group', histnorm="percent") 

fig.show() 
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sent_token_lengthpercent 

In [24]: 

# Less than 512 covers how many of the data 

(df.sent_bert_token_length < 512).mean() 

 

Out[24]: 

0.9853106241764678 

Characters Count in the Data 

Let's look at the frequency of the number of characters. It will give us information about the overall 

size of our data 

unfold_moreShow hidden code 

In [26]: 



plot_dist3(df, 'char_count', 

           'Characters Count in Data') 

 

 

Reviews Lengths 

When we look at the number of characters per comment, it can give us very striking information about the 

data. Here, when we look at the length of the comments made by people according to their feelings, 

negative comments are shorter than neutral and positive comments. We can come to the notion that people 

simply express negative things :). 

unfold_moreShow hidden code 

In [28]: 

plot_dist3(df[df['label'] == 0], 'Character Count', 

           'Characters Count "Negative" Rewiev') 

 



 

In [29]: 

plot_dist3(df[df['label'] == 2], 'Character Count', 

           'Characters Per "Positive" Rewiev') 

 



 

In [30]: 

plot_dist3(df[df['label'] == 1], 'Character Count', 

           'Characters Per "Neutral" Rewiev') 

 



 

Word Counts 

We see that the situation in the number of characters and the situation in the number of words are the same. 

We have seen that people use less word count when expressing negative things. 

unfold_moreShow hidden code 

In [32]: 

plot_word_number_histogram(df[df['label'] == 0]['Review'], 

                           df[df['label'] == 1]['Review'], 

                           df[df['label'] == 2]['Review'], 



                          ) 

 

 

In [33]: 

# remove punk  



df['tokenized_review'] = df['tokenized_review'].apply(lambda x: remove_punct(x)) 

 

Most Common Words 

In [34]: 

texts = df['tokenized_review'] 

new = texts.str.split() 

new = new.values.tolist() 

corpus = [word for i in new for word in i] 

counter = Counter(corpus) 

most = counter.most_common() 

x, y = [], [] 

for word, count in most[:30]: 

    if word not in stopWords_nltk: 

        x.append(word) 

        y.append(count) 

 

fig = go.Figure(go.Bar( 

            x=y, 

            y=x, 

            orientation='h',  marker=dict( 

        color='rgba(50, 171, 96, 0.6)', 

        line=dict( 

            color='rgba(50, 171, 96, 1.0)', 

            width=1), 

    ), 

    name='Most common Word',)) 

 



fig.update_layout( title={ 

        'text': "Most Common Words", 

        'y':0.9, 

        'x':0.5, 

        'xanchor': 'center', 

        'yanchor': 'top'}, font=dict( 

        family="Courier New, monospace", 

        size=18, 

        color="RebeccaPurple" 

    )) 

 

fig.show() 
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Most Common Words 

Most Common ngrams 

In [35]: 

fig = make_subplots(rows=1, cols=3) 

title_ = ["negative", "neutral", "positive"] 

 

for i in range(3): 

    texts = df[df["label"] == i]['tokenized_review'] 

 

    new = texts.str.split() 

    new = new.values.tolist() 

    corpus = [word for i in new for word in i] 

    counter = Counter(corpus) 



    most = counter.most_common() 

    x, y = [], [] 

 

    for word, count in most[:30]: 

        if word not in stopWords_nltk: 

            x.append(word) 

            y.append(count) 

 

    fig.add_trace(go.Bar( 

                x=y, 

                y=x, 

                orientation='h', type="bar", 

        name=title_[i], marker=dict(color=colors[i])), 1, i+1) 

     

fig.update_layout( 

    autosize=False, 

    width=2000, 

    height=600,title=dict( 

        text='<b>Most Common ngrams per Classes</b>', 

        x=0.5, 

        y=0.95, 

        font=dict( 

        family="Courier New, monospace", 

        size=24, 

        color="RebeccaPurple" 

        ) 

    ),) 



 

 

fig.show() 
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In [36]: 

def _get_top_ngram(corpus, n=None): 

    #getting top ngrams 

    vec = CountVectorizer(ngram_range=(n, n), 

                          max_df=0.9, 

                          ).fit(corpus) 

    bag_of_words = vec.transform(corpus) 

    sum_words = bag_of_words.sum(axis=0) 

    words_freq = [(word, sum_words[0, idx]) 

                  for word, idx in vec.vocabulary_.items()] 

    words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) 

    return words_freq[:15] 

 

In [37]: 

# unigram 

fig = make_subplots(rows=1, cols=3) 

 

title_ = ["negative", "neutral", "positive"] 

 

for i in range(3): 



    texts = df[df["label"] == i]['tokenized_review'] 

 

    new = texts.str.split() 

    new = new.values.tolist() 

    corpus = [word for i in new for word in i] 

    top_n_bigrams = _get_top_ngram(texts, 2)[:15] 

    x, y = map(list, zip(*top_n_bigrams)) 

 

 

    fig.add_trace(go.Bar( 

                x=y, 

                y=x, 

                orientation='h', type="bar", 

        name=title_[i], marker=dict(color=colors[i])), 1, i+1) 

     

 

fig.update_layout( 

    autosize=False, 

    width=2000, 

    height=600,title=dict( 

        text='<b>Most Common unigrams per Classes</b>', 

        x=0.5, 

        y=0.95, 

        font=dict( 

        family="Courier New, monospace", 

        size=24, 

        color="RebeccaPurple" 



        ) 

    ))       

fig.show() 
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In [38]: 

#trigram 

 

fig = make_subplots(rows=1, cols=3) 

title_ = ["negative", "neutral", "positive"] 

 

for i in range(3): 

    texts = df[df["label"] == i]['tokenized_review'] 

 

    new = texts.str.split() 

    new = new.values.tolist() 

    corpus = [word for i in new for word in i] 

 

    top_n_bigrams = _get_top_ngram(texts, 3)[:15] 

    x, y = map(list, zip(*top_n_bigrams)) 

 

    fig.add_trace(go.Bar( 

                x=y, 



                y=x, 

                orientation='h', type="bar", 

        name=title_[i], marker=dict(color=colors[i])), 1, i+1), 

 

fig.update_layout( 

    autosize=False, 

    width=2000, 

    height=600,title=dict( 

        text='<b>Most Common trigrams per Classes</b>', 

        x=0.5, 

        y=0.95, 

        font=dict( 

        family="Courier New, monospace", 

        size=24, 

        color="RebeccaPurple" 

        ) 

    )) 

     

fig.show() 

 

020406080100120did not worknot recommend hotelold san juannon smoking roomroom not readyroom 

did notnot star hotelno air conditioningnot worth moneyking size bedno hot waternot stay hotelhotel did 
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helpfulhotel great locationhighly recommend hotelgreat place stayold san juanflat screen tvgreat hotel 
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We examined and visualized the data, now we can move on to the model building part. 



3. MODELS 

A brief information about BERT 

 

BERT makes use of Transformer, an attention mechanism that learns contextual relations between words 

(or sub-words) in a text. In its vanilla form, Transformer includes two separate mechanisms — an encoder 

that reads the text input and a decoder that produces a prediction for the task. Since BERT’s goal is to 

generate a language model, only the encoder mechanism is necessary. 

BERT is a bi-directional transformer for pre-training over a lot of unlabeled textual data to learn a 

language representation that can be used to fine-tune for specific machine learning tasks. While BERT 

outperformed the NLP state-of-the-art on several challenging tasks, its performance improvement could be 

attributed to the bidirectional transformer, novel pre-training tasks of Masked Language Model and Next 

Structure Prediction along with a lot of data and Google’s compute power. 

The detailed workings of Transformer are described in a paper by Google. 

A brief information about XLNET 

 



XLNet is a large bidirectional transformer that uses improved training methodology, larger data and more 

computational power to achieve better than BERT prediction metrics on 20 language tasks. 

To improve the training, XLNet introduces permutation language modeling, where all tokens are predicted 

but in random order. This is in contrast to BERT’s masked language model where only the masked (15%) 

tokens are predicted. This is also in contrast to the traditional language models, where all tokens were 

predicted in sequential order instead of random order. This helps the model to learn bidirectional 

relationships and therefore better handles dependencies and relations between words. In addition, 

Transformer XL was used as the base architecture, which showed good performance even in the absence of 

permutation-based training. 

XLNet was trained with over 130 GB of textual data and 512 TPU chips running for 2.5 days, both of 

which ar e much larger than BERT. 

A brief information about RoBERTa 

RoBERTa. Introduced at Facebook, Robustly optimized BERT approach RoBERTa, is a retraining of 

BERT with improved training methodology, 1000% more data and compute power. 

To improve the training procedure, RoBERTa removes the Next Sentence Prediction (NSP) task from 

BERT’s pre-training and introduces dynamic masking so that the masked token changes during the training 

epochs. Larger batch-training sizes were also found to be more useful in the training procedure. 

Importantly, RoBERTa uses 160 GB of text for pre-training, including 16GB of Books Corpus and English 

Wikipedia used in BERT. The additional data included CommonCrawl News dataset (63 million articles, 

76 GB), Web text corpus (38 GB) and Stories from Common Crawl (31 GB). This coupled with whopping 

1024 V100 Tesla GPU’s running for a day, led to pre-training of RoBERTa. 

Comparison of Transformer Models 



 

       source = https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82ba5f8 

In this table, the models are compared under 5 headings, let's take them all one by one. 

1. When we look at the sizes of the models, BERT, RoBERTa and XLNet have the same values, 

while the size of the DistillBERT is smaller. 

2. The biggest factor that determines Training Times is the size of the models and the data they have. 

As you can imagine, the time increases as the size increases :). 

3. When we look at the performance, BERT considers the model as the base model. RoBERTa offers 

2-20% better performance than BERT. A similar performance applies to XLNet. XLNet performs 

2-15% better than BERT model. DisltiBERT, despite its small size, is not equally poor in 

performance. It performs only 3% worse. 

4. When we look at its data, the model with the largest corpus is ROBERTa. It is followed by 

XLNET, then BERT and DistilBERT have the same data. One of the reasons for the higher 

performance of RoBERTa and XLNet is that the datasets are so high. 

1. As it is known, there are MLM and NSP tasks in the BERT model. The RoBERTa model is the 

trained version of the BERT model without the NSP task. DiltilBERT is a reduced number of 

parameters of BERT, it maintains 97% performance, but uses only half the number of parameters 

(paper). To enhance the training, XLNet offers permutation language modeling where all tokens 

are predicted but in random order. 

I recommend you to read the articles for more detailed information. 

Preprocess for BERT Train 



In [39]: 

import pandas as pd 

import numpy as np 

import os 

import random 

from pathlib import Path 

import json 

 

In [40]: 

import torch 

from tqdm.notebook import tqdm 

 

from transformers import BertTokenizer 

from torch.utils.data import TensorDataset 

 

from transformers import BertForSequenceClassification 

 

In [41]: 

class Config(): 

    seed_val = 17 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    epochs = 5  

    batch_size = 6 

    seq_length = 512 

    lr = 2e-5 

    eps = 1e-8 

    pretrained_model = 'bert-base-uncased' 



    test_size=0.15 

    random_state=42 

    add_special_tokens=True  

    return_attention_mask=True  

    pad_to_max_length=True  

    do_lower_case=False 

    return_tensors='pt' 

 

config = Config() 

 

In [42]: 

# params will be saved after training 

params = {"seed_val": config.seed_val, 

    "device":str(config.device), 

    "epochs":config.epochs,  

    "batch_size":config.batch_size, 

    "seq_length":config.seq_length, 

    "lr":config.lr, 

    "eps":config.eps, 

    "pretrained_model": config.pretrained_model, 

    "test_size":config.test_size, 

    "random_state":config.random_state, 

    "add_special_tokens":config.add_special_tokens, 

    "return_attention_mask":config.return_attention_mask, 

    "pad_to_max_length":config.pad_to_max_length, 

    "do_lower_case":config.do_lower_case, 

    "return_tensors":config.return_tensors, 



         } 

 

In [43]: 

# set random seed and device 

import random 

 

device = config.device 

 

random.seed(config.seed_val) 

np.random.seed(config.seed_val) 

torch.manual_seed(config.seed_val) 

torch.cuda.manual_seed_all(config.seed_val) 

 

In [44]: 

df.head() 

 

Out[44]: 
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0 
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197 213 1281 1281 

Train and Validation Split 

In [45]: 

#split train test 

from sklearn.model_selection import train_test_split 

 

train_df_, val_df = train_test_split(df,  

                                    test_size=0.10,  

                                    random_state=config.random_state,  

                            stratify=df.label.values) 

 

In [46]: 

train_df_.head() 

 

Out[46]: 
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In [47]: 

train_df, test_df = train_test_split(train_df_,  

                                    test_size=0.10,  

                                    random_state=42,  

                            stratify=train_df_.label.values) 

 

In [48]: 

# count of unique label  control  



print(len(train_df['label'].unique())) 

print(train_df.shape) 

 

3 

(16596, 9) 

 

In [49]: 

# count of unique label  control  

print(len(val_df['label'].unique())) 

print(val_df.shape) 

 

3 

(2050, 9) 

 

In [50]: 

print(len(test_df['label'].unique())) 

print(test_df.shape) 

 

3 

(1845, 9) 

 

BertTokenizer and Encoding the Data 

In [51]: 

# create tokenizer 

tokenizer = BertTokenizer.from_pretrained(config.pretrained_model,  

                                          do_lower_case=config.do_lower_case) 

 



In [52]: 

encoded_data_train = tokenizer.batch_encode_plus( 

    train_df.Review.values,  

    add_special_tokens=config.add_special_tokens,  

    return_attention_mask=config.return_attention_mask,  

    pad_to_max_length=config.pad_to_max_length,  

    max_length=config.seq_length,  

    return_tensors=config.return_tensors 

) 

encoded_data_val = tokenizer.batch_encode_plus( 

    val_df.Review.values,  

    add_special_tokens=config.add_special_tokens,  

    return_attention_mask=config.return_attention_mask,  

    pad_to_max_length=config.pad_to_max_length, 

    max_length=config.seq_length,  

    return_tensors=config.return_tensors 

) 

 

Truncation was not explicitly activated but `max_length` is provided a specific value, please use 

`truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation 

strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy 

more precisely by providing a specific strategy to `truncation`. 

 

In [53]: 

input_ids_train = encoded_data_train['input_ids'] 

attention_masks_train = encoded_data_train['attention_mask'] 

labels_train = torch.tensor(train_df.label.values) 

 

input_ids_val = encoded_data_val['input_ids'] 



attention_masks_val = encoded_data_val['attention_mask'] 

labels_val = torch.tensor(val_df.label.values) 

 

In [54]: 

dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train) 

dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val) 

 

Creating the Model 

● bert-base-uncased is a smaller pre-trained model. 

● Using num_labels to indicate the number of output labels. 

In [55]: 

model = BertForSequenceClassification.from_pretrained(config.pretrained_model, 

                                                      num_labels=3, 

                                                      output_attentions=False, 

                                                      output_hidden_states=False) 

 

Downloading: 100% 

420M/420M [00:10<00:00, 42.8MB/s] 

Some weights of the model checkpoint at bert-base-uncased were not used when initializing 

BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 

'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 

'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 

'cls.seq_relationship.weight'] 

- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model 

trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification 

model from a BertForPreTraining model). 

- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a 

model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a 

BertForSequenceClassification model). 

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-

base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight'] 



You should probably TRAIN this model on a down-stream task to be able to use it for predictions and 

inference. 

 

Data Loaders 

● DataLoader combines a dataset and a sampler, and provides an iterable over the given dataset. 

● We use RandomSampler for training and SequentialSampler for validation. 

● Given the limited memory in my environment, I set batch_size=64. 

In [56]: 

from torch.utils.data import DataLoader, RandomSampler, SequentialSampler 

 

dataloader_train = DataLoader(dataset_train,  

                              sampler=RandomSampler(dataset_train),  

                              batch_size=config.batch_size) 

 

dataloader_validation = DataLoader(dataset_val,  

                                   sampler=SequentialSampler(dataset_val),  

                                   batch_size=config.batch_size) 

 

Optimizer & Scheduler 

In [57]: 

from transformers import AdamW, get_linear_schedule_with_warmup 

 

optimizer = AdamW(model.parameters(), 

                  lr=config.lr,  

                  eps=config.eps) 

                   

 



scheduler = get_linear_schedule_with_warmup(optimizer,  

                                            num_warmup_steps=0, 

                                            num_training_steps=len(dataloader_train)*config.epochs) 

 

Performance Metrics 

We will use f1 score as performance metrics. 

In [58]: 

from sklearn.metrics import f1_score 

 

def f1_score_func(preds, labels): 

    preds_flat = np.argmax(preds, axis=1).flatten() 

    labels_flat = labels.flatten() 

    return f1_score(labels_flat, preds_flat, average='weighted') 

 

def accuracy_per_class(preds, labels, label_dict): 

    label_dict_inverse = {v: k for k, v in label_dict.items()} 

     

    preds_flat = np.argmax(preds, axis=1).flatten() 

    labels_flat = labels.flatten() 

 

    for label in np.unique(labels_flat): 

        y_preds = preds_flat[labels_flat==label] 

        y_true = labels_flat[labels_flat==label] 

        print(f'Class: {label_dict_inverse[label]}') 

        print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n') 

 

Training Loop 



In [59]: 

def evaluate(dataloader_val): 

 

    model.eval() 

     

    loss_val_total = 0 

    predictions, true_vals = [], [] 

     

    for batch in dataloader_val: 

         

        batch = tuple(b.to(config.device) for b in batch) 

         

        inputs = {'input_ids':      batch[0], 

                  'attention_mask': batch[1], 

                  'labels':         batch[2], 

                 } 

 

        with torch.no_grad():         

            outputs = model(**inputs) 

             

        loss = outputs[0] 

        logits = outputs[1] 

        loss_val_total += loss.item() 

 

        logits = logits.detach().cpu().numpy() 

        label_ids = inputs['labels'].cpu().numpy() 

        predictions.append(logits) 



        true_vals.append(label_ids) 

         

    # calculate avareage val loss 

    loss_val_avg = loss_val_total/len(dataloader_val)  

     

    predictions = np.concatenate(predictions, axis=0) 

    true_vals = np.concatenate(true_vals, axis=0) 

             

    return loss_val_avg, predictions, true_vals 

 

In [60]: 

config.device 

 

Out[60]: 

device(type='cuda', index=0) 

In [61]: 

model.to(config.device) 

     

for epoch in tqdm(range(1, config.epochs+1)): 

     

    model.train() 

     

    loss_train_total = 0 

    # allows you to see the progress of the training  

    progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False) 

     

    for batch in progress_bar: 



 

        model.zero_grad() 

         

        batch = tuple(b.to(config.device) for b in batch) 

         

         

        inputs = {'input_ids':      batch[0], 

                  'attention_mask': batch[1], 

                  'labels':         batch[2], 

                 }        

 

        outputs = model(**inputs) 

         

        loss = outputs[0] 

        loss_train_total += loss.item() 

        loss.backward() 

 

        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) 

 

        optimizer.step() 

        scheduler.step() 

         

        progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))}) 

          

         

    torch.save(model.state_dict(), f'_BERT_epoch_{epoch}.model') 

         



    tqdm.write(f'\nEpoch {epoch}') 

     

    loss_train_avg = loss_train_total/len(dataloader_train)             

    tqdm.write(f'Training loss: {loss_train_avg}') 

     

    val_loss, predictions, true_vals = evaluate(dataloader_validation) 

    val_f1 = f1_score_func(predictions, true_vals) 

    tqdm.write(f'Validation loss: {val_loss}') 

     

    tqdm.write(f'F1 Score (Weighted): {val_f1}'); 

# save model params and other configs  

with Path('params.json').open("w") as f: 

    json.dump(params, f, ensure_ascii=False, indent=4) 

 

100% 

5/5 [1:26:39<00:00, 1038.70s/it] 

Epoch 1: 100% 

2766/2766 [16:42<00:00, 2.76it/s, training_loss=0.113] 

Epoch 1 

Training loss: 0.44685599791267866 

Validation loss: 0.30867522299747197 

F1 Score (Weighted): 0.8787187536388859 

 

Epoch 2: 100% 

2766/2766 [16:40<00:00, 2.60it/s, training_loss=0.078] 

Epoch 2 

Training loss: 0.33569076879218773 



Validation loss: 0.44388014650209234 

F1 Score (Weighted): 0.8733283050365404 

 

Epoch 3: 100% 

2766/2766 [16:40<00:00, 2.78it/s, training_loss=0.113] 

Epoch 3 

Training loss: 0.26331509235532197 

Validation loss: 0.4841138020460596 

F1 Score (Weighted): 0.8839202492823627 

 

Epoch 4: 100% 

2766/2766 [16:38<00:00, 2.70it/s, training_loss=0.000] 

Epoch 4 

Training loss: 0.174491831848849 

Validation loss: 0.6204505104885426 

F1 Score (Weighted): 0.8782044542022744 

 

Epoch 5: 100% 

2766/2766 [16:35<00:00, 2.80it/s, training_loss=0.000] 

Epoch 5 

Training loss: 0.10495032141427339 

Validation loss: 0.7065923309128053 

F1 Score (Weighted): 0.8772936330208443 

 

Test on validation set 

In [62]: 

model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu'))) 



 

Out[62]: 

<All keys matched successfully> 

In [63]: 

from sklearn.metrics import classification_report 

 

preds_flat = np.argmax(predictions, axis=1).flatten() 

print(classification_report(preds_flat, true_vals)) 

 

             precision    recall  f1-score   support 

 

           0       0.82      0.85      0.83       310 

           1       0.48      0.46      0.47       227 

           2       0.95      0.94      0.95      1513 

 

    accuracy                           0.88      2050 

   macro avg       0.75      0.75      0.75      2050 

weighted avg       0.88      0.88      0.88      2050 

 

 

4. ERROR ANALYSIS 

In [64]: 

# step by step predictions on dataframe 

# We do this to view predictions in the pandas dataframe and easily filter them and perform error analysis. 

 

pred_final = [] 



 

for i, row in tqdm(val_df.iterrows(), total=val_df.shape[0]): 

    predictions = [] 

 

    review = row["Review"] 

    encoded_data_test_single = tokenizer.batch_encode_plus( 

    [review],  

    add_special_tokens=config.add_special_tokens,  

    return_attention_mask=config.return_attention_mask,  

    pad_to_max_length=config.pad_to_max_length,  

    max_length=config.seq_length, 

    return_tensors=config.return_tensors 

    ) 

    input_ids_test = encoded_data_test_single['input_ids'] 

    attention_masks_test = encoded_data_test_single['attention_mask'] 

 

     

    inputs = {'input_ids':      input_ids_test.to(device), 

              'attention_mask':attention_masks_test.to(device), 

             } 

 

    with torch.no_grad():         

        outputs = model(**inputs) 

     

    logits = outputs[0] 

    logits = logits.detach().cpu().numpy() 

    predictions.append(logits) 



    predictions = np.concatenate(predictions, axis=0) 

    pred_final.append(np.argmax(predictions, axis=1).flatten()[0]) 

 

100% 

2050/2050 [00:52<00:00, 41.06it/s] 

In [65]: 

# add pred into val_df 

val_df["pred"] = pred_final 

 

In [66]: 

#  Add control column for easier wrong and right predictions 

control = val_df.pred.values == val_df.label.values 

val_df["control"] = control 

 

In [67]: 

# filtering false predictions 

val_df = val_df[val_df.control == False] 

 

In [68]: 

# buraları düzenle bbaaaabbaaaaa 

# label to intent mapping 

name2label = {"Negative":0, 

              "Neutral":1, 

             "Positive":2 

             } 

label2name = {v: k for k, v in name2label.items()} 

 



val_df["pred_name"] = val_df.pred.apply(lambda x: label2name.get(x))  

 

In [69]: 

from sklearn.metrics import confusion_matrix 

 

# We create a confusion matrix to better observe the classes that the model confuses. 

pred_name_values = val_df.pred_name.values 

label_values = val_df.label_name.values 

confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys())) 

 

In [70]: 

confmat 

 

Out[70]: 

array([[ 0, 66,  4], 

       [27,  0, 68], 

       [ 9, 71,  0]]) 

In [71]: 

df_confusion_val = pd.crosstab(label_values, pred_name_values) 

df_confusion_val 

 

Out[71]: 

col_0 Negative Neutral Positive 

row_0    

Negative 0 66 4 

Neutral 27 0 68 



Positive 9 71 0 

In [72]: 

# save confissuan matrix df 

df_confusion_val.to_csv("val_df_confusion.csv") 

 

5. INFERENCE 

In [73]: 

test_df.head() 

 

Out[73]: 

 Review 
Rati

ng 

lab

el 

label_na

me 

tokenized_revi

ew 

sent_token_len

gth 

sent_bert_token_le

ngth 

char_cou

nt 

Charact

er 

Count 

229

8 

great 

location 

nice 

hotel 

family 5 

stayed 

june... 

4 2 Positive 

great location 

nice hotel 

family 5 

stayed june... 

38 39 260 260 

950

3 

welcomi

ng 

spotless 

just 

returned 

2nd visit 

bar... 

5 2 Positive 

welcoming 

spotless just 

returned 2 nd 

visit ba... 

68 77 470 470 

147

42 

beautiful 

resort 

beautiful 

gardens 

friendly 

st... 

3 1 Neutral 

beautiful 

resort 

beautiful 

gardens 

friendly st... 

81 86 506 506 

414

0 

cheaply 

renovate

d wo n t 

going 

aside 

2 0 Negative 

cheaply 

renovated wo 

n t going aside 

beautiful... 

104 113 684 684 



beautiful.

.. 

355

2 

nothing 

spectacul

ar time 

dr time 

doing 

inclusi... 

3 1 Neutral 

nothing 

spectacular 

time dr time 

doing inclusi... 

110 128 719 719 

In [74]: 

encoded_data_test = tokenizer.batch_encode_plus( 

    test_df.Review.values,  

    add_special_tokens=config.add_special_tokens,  

    return_attention_mask=config.return_attention_mask,  

    pad_to_max_length=config.pad_to_max_length, 

    max_length=config.seq_length,  

    return_tensors=config.return_tensors 

) 

 

In [75]: 

input_ids_test = encoded_data_test['input_ids'] 

attention_masks_test = encoded_data_test['attention_mask'] 

labels_test = torch.tensor(test_df.label.values) 

 

In [76]: 

model = BertForSequenceClassification.from_pretrained(config.pretrained_model, 

                                                      num_labels=3, 

                                                      output_attentions=False, 

                                                      output_hidden_states=False) 

 



model.to(config.device) 

 

model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu'))) 

 

_, predictions_test, true_vals_test = evaluate(dataloader_validation) 

# accuracy_per_class(predictions, true_vals, intent2label) 

 

Some weights of the model checkpoint at bert-base-uncased were not used when initializing 

BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 

'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 

'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 

'cls.seq_relationship.weight'] 

- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model 

trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification 

model from a BertForPreTraining model). 

- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a 

model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a 

BertForSequenceClassification model). 

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-

base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight'] 

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and 

inference. 

 

In [77]: 

from sklearn.metrics import classification_report 

 

preds_flat_test = np.argmax(predictions_test, axis=1).flatten() 

print(classification_report(preds_flat_test, true_vals_test)) 

 

             precision    recall  f1-score   support 

 

           0       0.78      0.88      0.83       288 



           1       0.56      0.47      0.51       260 

           2       0.95      0.95      0.95      1502 

 

    accuracy                           0.88      2050 

   macro avg       0.76      0.77      0.76      2050 

weighted avg       0.88      0.88      0.88      2050 

 

 

In [78]: 

pred_final = [] 

 

for i, row in tqdm(test_df.iterrows(), total=test_df.shape[0]): 

    predictions = [] 

 

    review = row["Review"] 

    encoded_data_test_single = tokenizer.batch_encode_plus( 

    [review],  

    add_special_tokens=config.add_special_tokens,  

    return_attention_mask=config.return_attention_mask,  

    pad_to_max_length=config.pad_to_max_length,  

    max_length=config.seq_length, 

    return_tensors=config.return_tensors 

    ) 

    input_ids_test = encoded_data_test_single['input_ids'] 

    attention_masks_test = encoded_data_test_single['attention_mask'] 

 

     



    inputs = {'input_ids':      input_ids_test.to(device), 

              'attention_mask':attention_masks_test.to(device), 

             } 

 

    with torch.no_grad():         

        outputs = model(**inputs) 

     

    logits = outputs[0] 

    logits = logits.detach().cpu().numpy() 

    predictions.append(logits) 

    predictions = np.concatenate(predictions, axis=0) 

    pred_final.append(np.argmax(predictions, axis=1).flatten()[0]) 

 

100% 

1845/1845 [00:47<00:00, 39.87it/s] 

In [79]: 

# add pred into test 

test_df["pred"] = pred_final 

 

In [80]: 

#  Add control column for easier wrong and right predictions 

control = test_df.pred.values == test_df.label.values 

test_df["control"] = control 

 

In [81]: 

# filtering false predictions 

test_df = test_df[test_df.control == False] 



 

In [82]: 

test_df["pred_name"] = test_df.pred.apply(lambda x: label2name.get(x))  

 

In [83]: 

from sklearn.metrics import confusion_matrix 

 

# We create a confusion matrix to better observe the classes that the model confuses. 

pred_name_values = test_df.pred_name.values 

label_values = test_df.label_name.values 

confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys())) 

 

In [84]: 

confmat 

 

Out[84]: 

array([[ 0, 53, 19], 

       [34,  0, 66], 

       [ 6, 61,  0]]) 

In [85]: 

df_confusion_test = pd.crosstab(label_values, pred_name_values) 

df_confusion_test 

 

Out[85]: 

col_0 Negative Neutral Positive 

row_0    



Negative 0 53 19 

Neutral 34 0 66 

Positive 6 61 0 

6. References 

1. Hugging Face 

2. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 

3. RoBERTa: A Robustly Optimized BERT Pretraining Approach 

4. XLNet: Generalized Autoregressive Pretraining for Language Understanding 

5. Coursera 

6. Brand24 

7. MonkeyLearn 

If you like the notebook, Please don't 

forget to UPVOTE and comment :) :) 

 

 

https://huggingface.co/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237
https://www.coursera.org/projects/sentiment-analysis-bert
https://brand24.com/
https://monkeylearn.com/sentiment-analysis/
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