
Don't forget to upvote if you like it! :)

Titanic

Titanic model

Introduction

In this notebook we examine the Titanic dataset and then we build a model that can predict if a passenger

survived the sinking or not. We start with finding feature types, missing values and we continue with

feature analysis and visualization of the data. Feature engineering is implemented to create new attributes,

encoding and imputation of the missing values. At last we test several classifiers and we evaluate them

with the help of the ROC and CAP curves.

History

RMS Titanic was a British passenger liner operated by the White Star Line that sank in the North Atlantic

Ocean in the early morning hours of 15 April 1912, after striking an iceberg during her maiden voyage

from Southampton to New York City. Of the estimated 2,224 passengers and crew aboard, more than

1,500 died, making the sinking one of modern history's deadliest peacetime commercial marine disasters.

Contents

1. Include Libraries

2. Import DataSet

3. Handle Missing Value

4. EDA(Exploratory Data Analysis)

5. Feature Engineering

Machine learning Model

1. Logistic Regression

2. Random Forest Classifier

3. ROC Curve

4. Final Submittion

Importing Libraries

In [1]:

This Python 3 environment comes with many helpful analytics libraries installed

It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python

For example, here's several helpful packages to load

%matplotlib inline

import pandas as pd # Implemennts milti-dimensional array and matrices

import numpy as np # For data manipulation and analysis

import matplotlib.pyplot as plt # Plotting library for Python programming language and it's numerical

mathematics extension NumPy

import seaborn as sns # Provides a high level interface for drawing attractive and informative

statistical graphics

Input data files are available in the read-only "../input/" directory

For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input

directory

import os

for dirname, _, filenames in os.walk('/kaggle/input'):

 for filename in filenames:

 print(os.path.join(dirname, filename))

You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when

you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current

session

/kaggle/input/titanic/gender_submission.csv

/kaggle/input/titanic/test.csv

/kaggle/input/titanic/train.csv

In [2]:

load dataset

train=pd.read_csv('/kaggle/input/titanic/train.csv')

test=pd.read_csv('/kaggle/input/titanic/test.csv')

gender_submission=pd.read_csv("../input/titanic/gender_submission.csv")

In [3]:

len(train),len(test),len(gender_submission)

Out[3]:

(891, 418, 418)

In [4]:

train.head()

Out[4]:

PassengerI

d

Surviv

ed

Pclas

s
Name Sex

Ag

e

SibS

p

Parc

h
Ticket Fare

Cabi

n

Embark

ed

0 1 0 3
Braund, Mr. Owen

Harris
male

22.

0
1 0 A/5 21171

7.250

0
NaN S

1 2 1 1

Cumings, Mrs.

John Bradley

(Florence Briggs

Th...

fema

le

38.

0
1 0 PC 17599

71.28

33
C85 C

2 3 1 3
Heikkinen, Miss.

Laina

fema

le

26.

0
0 0

STON/O2.

3101282

7.925

0
NaN S

3 4 1 1

Futrelle, Mrs.

Jacques Heath

(Lily May Peel)

fema

le

35.

0
1 0 113803

53.10

00

C12

3
S

4 5 0 3
Allen, Mr. William

Henry
male

35.

0
0 0 373450

8.050

0
NaN S

In [5]:

train.shape

Out[5]:

(891, 12)

In [6]:

train.describe(include='all')

Out[6]:

Passenge

rId
Survived Pclass Name

Se

x
Age SibSp Parch

Tick

et
Fare

Cab

in

Embark

ed

count
891.0000

00

891.000

000

891.000

000
891

89

1

714.000

000

891.000

000

891.000

000
891

891.000

000
204 889

unique NaN NaN NaN 891 2 NaN NaN NaN 681 NaN 147 3

top NaN NaN NaN

Kelly,

Miss.

Anna

Kather

ine

"Annie

Kate"

ma

le
NaN NaN NaN

3470

82
NaN

C23

C25

C27

S

freq NaN NaN NaN 1
57

7
NaN NaN NaN 7 NaN 4 644

mean
446.0000

00

0.38383

8

2.30864

2
NaN

Na

N

29.6991

18

0.52300

8

0.38159

4
NaN

32.2042

08

Na

N
NaN

std
257.3538

42

0.48659

2

0.83607

1
NaN

Na

N

14.5264

97

1.10274

3

0.80605

7
NaN

49.6934

29

Na

N
NaN

min 1.000000
0.00000

0

1.00000

0
NaN

Na

N

0.42000

0

0.00000

0

0.00000

0
NaN

0.00000

0

Na

N
NaN

25%
223.5000

00

0.00000

0

2.00000

0
NaN

Na

N

20.1250

00

0.00000

0

0.00000

0
NaN

7.91040

0

Na

N
NaN

50%
446.0000

00

0.00000

0

3.00000

0
NaN

Na

N

28.0000

00

0.00000

0

0.00000

0
NaN

14.4542

00

Na

N
NaN

75%
668.5000

00

1.00000

0

3.00000

0
NaN

Na

N

38.0000

00

1.00000

0

0.00000

0
NaN

31.0000

00

Na

N
NaN

max
891.0000

00

1.00000

0

3.00000

0
NaN

Na

N

80.0000

00

8.00000

0

6.00000

0
NaN

512.329

200

Na

N
NaN

Some Observations:

● There are a total of 891 passengers in our training set.

● The Age feature is missing approximately 19.8% of its values. I'm guessing that the Age feature is

pretty important to survival, so we should probably attempt to fill these gaps.

● The Cabin feature is missing approximately 77.1% of its values. Since so much of the feature is

missing, it would be hard to fill in the missing values. We'll probably drop these values from our

dataset.

● The Embarked feature is missing 0.22% of its values, which should be relatively harmless.

In [7]:

train.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 PassengerId 891 non-null int64

 1 Survived 891 non-null int64

 2 Pclass 891 non-null int64

 3 Name 891 non-null object

 4 Sex 891 non-null object

 5 Age 714 non-null float64

 6 SibSp 891 non-null int64

 7 Parch 891 non-null int64

 8 Ticket 891 non-null object

 9 Fare 891 non-null float64

 10 Cabin 204 non-null object

 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

Variables

From the data overview of the competition, we have a description of each variable:

● PassengerId - unique identifier

Survived:

 0 = No

● 1 = Yes

Pclass: Ticket class

 1 = 1st, Upper

 2 = 2nd, Middle

● 3 = 3rd, Lower

● Name: full name with a title

● Sex: gender

● Age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

Sibsp: Number of siblings / spouses aboard the Titanic. The dataset defines family relations in this way:

 Sibling = brother, sister, stepbrother, stepsister

● Spouse = husband, wife (mistresses and fiancés were ignored)

Parch: Number of parents / children aboard the Titanic. The dataset defines family relations in this way:

 Parent = mother, father

 Child = daughter, son, stepdaughter, stepson

● Some children travelled only with a nanny, therefore parch=0 for them.

● Ticket: Ticket number.

● Fare: Passenger fare.

● Cabin: Cabin number.

Embarked: Port of Embarkation:

 C = Cherbourg

 Q = Queenstown

● S = Southampton

Handle missing data

Checking Missing value is present or not in our dataset

In [8]:

train.isnull().values.any()

Out[8]:

True

In [9]:

train.isnull().sum()

Out[9]:

PassengerId 0

Survived 0

Pclass 0

Name 0

Sex 0

Age 177

SibSp 0

Parch 0

Ticket 0

Fare 0

Cabin 687

Embarked 2

dtype: int64

In [10]:

test.isnull().sum()

Out[10]:

PassengerId 0

Pclass 0

Name 0

Sex 0

Age 86

SibSp 0

Parch 0

Ticket 0

Fare 1

Cabin 327

Embarked 0

dtype: int64

In [11]:

plt.style.use('default')

total=train.isnull().sum()

percent=train.isnull().sum()/train.isnull().count()

missing_data=pd.concat([total,percent],axis=1, keys=['total', 'percent'])

#missing_data.sort_values(ascending=False)

ax = plt.subplots(figsize=(12, 6))

#plt.xticks(rotation='90')

sns.barplot(x=missing_data.index,y=missing_data['percent'])

plt.xlabel('Features', fontsize=15)

plt.ylabel('Percent of missing values', fontsize=15)

plt.title('Percent missing data by feature', fontsize=15)

plt.show()

Missingno library offers a very nice way to visualize the distribution of NaN values. Missingno is a

Python library and compatible with Pandas.

In [12]:

import missingno as msno

Bar Chart :

This bar chart gives you an idea about how many missing values are there in each column.

In [13]:

msno.bar(train,figsize=(10,6),color="skyblue")

plt.show()

In [14]:

msno.bar(test,figsize=(10,6),color="skyblue")

plt.show()

Heatmap

The missingno correlation heatmap measures nullity correlation: how strongly the presence or absence of

one variable affects the presence of another:

In [15]:

msno.heatmap(train,figsize=(10,6))

plt.show()

Matrix:

Visualising missing values for a sample of 150 Using this matrix you can very quickly find the pattern of

missingness in the dataset.

In [16]:

msno.matrix(train,figsize=(12,8))

plt.show()

In [17]:

msno.matrix(test,figsize=(12,8))

plt.show()

Replacing With Mean/Median/mode

MEAN: Suitable for continuous data without outliers MEDIAN : Suitable for continuous data with outliers

Mode: For categorical feature we can select to fill in the missing values with the most common

value(mode) as illustrated below.

● We are going to deal missing value(in Age) has numeric data by replace its median value

In [18]:

train['Age'].fillna(train['Age'].median(),inplace=True)

test['Age'].fillna(train['Age'].median(),inplace=True)

In [19]:

train['Age']

Out[19]:

0 22.0

1 38.0

2 26.0

3 35.0

4 35.0

 ...

886 27.0

887 19.0

888 28.0

889 26.0

890 32.0

Name: Age, Length: 891, dtype: float64

● We are going to deal missing value(in Cabin & Embarked) has categorical data by replace its by

new category ie. 'unknown'

In [20]:

train['Cabin'].unique()

Out[20]:

array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',

 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',

 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',

 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',

 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',

 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',

 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',

 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',

 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',

 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',

 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',

 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',

 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',

 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',

 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',

 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',

 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',

 'C148'], dtype=object)

In [21]:

train['Cabin'].fillna('Unknown',inplace=True)

train['Embarked'].fillna('Unknown',inplace=True)

test['Cabin'].fillna('Unknown',inplace=True)

test['Fare'].fillna(train['Fare'].median(),inplace=True)

In [22]:

msno.bar(train,figsize=(10,6),color="skyblue")

plt.show()

As we see their is not any missing value

In [23]:

msno.bar(test,figsize=(10,6),color="skyblue")

plt.show()

In [24]:

msno.matrix(train,figsize=(12,6))

plt.show()

Exploratory data analysis

Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main

characteristics, often with visual methods.

1. Survivals(Survived (1) or died (0))

In [25]:

train['Survived'].value_counts(normalize=True)

Out[25]:

0 0.616162

1 0.383838

Name: Survived, dtype: float64

In [26]:

sns.countplot(x='Survived',data=train)

plt.xticks(np.arange(2), ['drowned', 'survived'])

plt.title('Overall survival (training dataset)',fontsize= 18)

set x label

plt.xlabel('Passenger status after the tragedy',fontsize = 15)

set y label

plt.ylabel('Number of passengers',fontsize = 15)

labels = (train['Survived'].value_counts())

for i, v in enumerate(labels):

 plt.text(i, v-40, str(v), horizontalalignment = 'center', size = 14, color = 'w', fontweight = 'bold')

plt.show()

● We have 891 passengers in train dataset, 549 (61,6%) of them drowned and only 342 (38,4%)

survived.

● more people died than survived (38% survived)

1.1 Sex

In [27]:

sns.barplot(x = "Sex", y = "Survived", data=train)

plt.title("Survived/Non-Survived Passenger Gender Distribution", fontsize =10)

labels = ['Female', 'Male']

plt.ylabel("% of passenger survived", fontsize = 8)

plt.xlabel("Gender",fontsize = 8)

plt.show()

In [28]:

print("% of women survived: " , train[train.Sex == 'female'].Survived.sum()/train[train.Sex ==

'female'].Survived.count())

print("% of men survived: " , train[train.Sex == 'male'].Survived.sum()/train[train.Sex ==

'male'].Survived.count())

% of women survived: 0.7420382165605095

% of men survived: 0.18890814558058924

● As predicted, females have a much higher chance of survival than males.

In [29]:

sns.catplot(x='Sex', col='Survived', kind='count', data=train)

plt.show()

In [30]:

train.groupby(['Survived','Sex']).count()

Out[30]:

 PassengerId Pclass Name Age SibSp Parch Ticket Fare Cabin Embarked

Survived Sex

0 female 81 81 81 81 81 81 81 81 81 81

male 468 468 468 468 468 468 468 468 468 468

1 female 233 233 233 233 233 233 233 233 233 233

male 109 109 109 109 109 109 109 109 109 109

1.2 Pclss(Passenger’s class)

In [31]:

train['Pclass'].unique()

Out[31]:

array([3, 1, 2])

In [32]:

plt.subplots(figsize = (8,6))

sns.countplot('Pclass',hue='Survived',data=train)

plt.show()

In [33]:

plt.subplots(figsize = (8,6))

sns.barplot('Pclass','Survived',data=train,hue='Sex',edgecolor=(0,0,0), linewidth=2)

plt.show()

In [34]:

sns.catplot('Pclass','Survived', kind='point', data=train);

In [35]:

plt.subplots(figsize=(8,6))

sns.kdeplot(train.loc[(train['Survived'] == 0),'Pclass'],shade=True,color='r',label='Not Survived')

ax=sns.kdeplot(train.loc[(train['Survived'] == 1),'Pclass'],shade=True,color='b',label='Survived')

labels = ['First', 'Second', 'Third']

plt.xticks(sorted(train.Pclass.unique()),labels)

plt.show()

In [36]:

print("% of survivals in")

print("Pclass=1 : ", train.Survived[train.Pclass == 1].sum()/train.Survived[train.Pclass == 1].count())

print("Pclass=2 : ", train.Survived[train.Pclass == 2].sum()/train.Survived[train.Pclass == 2].count())

print("Pclass=3 : ", train.Survived[train.Pclass == 3].sum()/train[train.Pclass == 3].Survived.count())

% of survivals in

Pclass=1 : 0.6296296296296297

Pclass=2 : 0.47282608695652173

Pclass=3 : 0.24236252545824846

So it clearly seems that,The survival of the people belong to 3rd class is very least. It looks like ...

● 63% first class passenger survived titanic tragedy, while

● 48% second class and

● only 24% third class passenger survived.

1.3 Age

What was the age of passengers, how it correlated with chances to survive

We have 263 missing values:

● 177 missing in the training dataset(which had filled by age mean value)

● 86 in the test dataset Overall age distribution (seaborn distplot) and descriptive statistics:

In [37]:

plt.subplots(figsize=(8,6))

sns.distplot(train.Age)

plt.title('Distrubution of passengers age (all data)',fontsize= 14)

plt.xlabel('Age')

plt.ylabel('Frequency')

plt.show()

In [38]:

bins = [0, 5, 12, 18, 24, 35, 60, np.inf]

labels = ['Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior']

train['AgeGroup'] = pd.cut(train["Age"], bins, labels = labels)

#draw a bar plot of Age vs. survival

sns.barplot(x="AgeGroup", y="Survived", data=train,ci=None)

plt.show()

● Babies are more likely to survive than any other age group.

1.4 Name

In [39]:

train.Name.head()

Out[39]:

0 Braund, Mr. Owen Harris

1 Cumings, Mrs. John Bradley (Florence Briggs Th...

2 Heikkinen, Miss. Laina

3 Futrelle, Mrs. Jacques Heath (Lily May Peel)

4 Allen, Mr. William Henry

Name: Name, dtype: object

linkcode

Each passenger Name value contains the title of the passenger which we can extract and discover. To

create new variable "Title":

1. I am using method 'split' by comma to divide Name in two parts and save the second part

2. I am splitting saved part by dot and save first part of the result

3. To remove spaces around the title I am using 'split' method To visualize, how many passengers

hold each title, I chose countplot.

In [40]:

train['Title'] = train['Name'].str.split(',', expand = True)[1].str.split('.', expand = True)[0].str.strip(' ')

test['Title'] = test['Name'].str.split(',', expand = True)[1].str.split('.', expand = True)[0].str.strip(' ')

plt.figure(figsize=(8, 6))

ax = sns.countplot(x = 'Title', data = train, palette = "hls", order = train['Title'].value_counts().index)

_ = plt.xticks(

 rotation=45,

 horizontalalignment='right',

 fontweight='light'

)

plt.title('Passengers distribution by titles',fontsize= 14)

plt.ylabel('Number of passengers')

calculate passengers for each category

labels = (train['Title'].value_counts())

add result numbers on barchart

for i, v in enumerate(labels):

 ax.text(i, v+10, str(v), horizontalalignment = 'center', size = 10, color = 'black')

plt.show()

In [41]:

plt.figure(figsize=(10, 6))

sns.barplot(x="Title", y="Survived", data=train,ci=None)

plt.xticks(

 rotation=45,

 horizontalalignment='right',

 fontweight='light'

)

plt.show()

1.4 Cabin

In [42]:

train['Cabin']

Out[42]:

0 Unknown

1 C85

2 Unknown

3 C123

4 Unknown

 ...

886 Unknown

887 B42

888 Unknown

889 C148

890 Unknown

Name: Cabin, Length: 891, dtype: object

In [43]:

train['Cabin'].unique()

Out[43]:

array(['Unknown', 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',

 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',

 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',

 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',

 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',

 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',

 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',

 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',

 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',

 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',

 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',

 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',

 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',

 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',

 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',

 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',

 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',

 'C148'], dtype=object)

● From the number of the cabin we can extract first letter, which will tell us about placement of the

cabin on the ship!

● To the passengers without deck information I will imput U letter (as unknown).

In [44]:

train['deck']=train['Cabin'].str.split('',expand=True)[1]

test['deck']=test['Cabin'].str.split('',expand=True)[1]

In [45]:

train['deck'].unique()

Out[45]:

array(['U', 'C', 'E', 'G', 'D', 'A', 'B', 'F', 'T'], dtype=object)

In [46]:

plt.figure(figsize=(12,8))

sns.countplot(x=train['deck'],data=train,hue='Survived',order = train['deck'].value_counts().index)

plt.title('Passengers distribution by deck',fontsize= 16)

plt.ylabel('Number of passengers')

plt.legend(('Drowned', 'Survived'), loc=(0.85,0.89))

plt.xticks(rotation = False)

plt.show()

● Most passengers don't have cabin numbers ('U').

● The largest part of passengers with known cabin numbers were located on the 'C' deck . 'C' deck is

fifth by a percentage of the survivor.

● The largest surviving rate (among passengers with known cabin numbers in training dataset) had

passengers from deck 'D'.

1.5 Parch(Number of Parents/Children Aboard)

In [47]:

#draw a bar plot for Parch vs. survival

plt.figure(figsize=(8,6))

sns.barplot(x="Parch", y="Survived", data=train,ci=None)

plt.show()

● People with less than four parents or children aboard are more likely to survive than those with

four or more. Again, people traveling alone are less likely to survive than those with 1-3 parents or

children.

1.6 SibSp(Number of Siblings/Spouses Aboard)

In [48]:

#draw a bar plot for SibSp vs. survival

sns.barplot(x="SibSp", y="Survived", data=train,ci=None)

plt.show()

In [49]:

train['SibSp'].sort_values().unique()

Out[49]:

array([0, 1, 2, 3, 4, 5, 8])

In [50]:

print("Percentage of SibSp = 0 who survived:", train["Survived"][train["SibSp"] ==

0].value_counts(normalize = True)[1]*100)

print("Percentage of SibSp = 1 who survived:", train["Survived"][train["SibSp"] ==

1].value_counts(normalize = True)[1]*100)

print("Percentage of SibSp = 2 who survived:", train["Survived"][train["SibSp"] ==

2].value_counts(normalize = True)[1]*100)

print("Percentage of SibSp = 3 who survived:", train["Survived"][train["SibSp"] ==

3].value_counts(normalize = True)[1]*100)

print("Percentage of SibSp = 4 who survived:", train["Survived"][train["SibSp"] ==

4].value_counts(normalize = True)[1]*100)

Percentage of SibSp = 0 who survived: 34.53947368421053

Percentage of SibSp = 1 who survived: 53.588516746411486

Percentage of SibSp = 2 who survived: 46.42857142857143

Percentage of SibSp = 3 who survived: 25.0

Percentage of SibSp = 4 who survived: 16.666666666666664

● In general, it's clear that people with more siblings or spouses aboard were less likely to survive.

However, contrary to expectations, people with no siblings or spouses were less to likely to

survive than those with one or two. (34.5% vs 53.4% vs. 46.4%)

1.7 Fare(Passenger Fare)

In [51]:

plt.subplots(figsize=(8,6))

ax=sns.kdeplot(train.loc[(train['Survived'] == 0),'Fare'],color='r',shade=True,label='Not Survived')

ax=sns.kdeplot(train.loc[(train['Survived'] == 1),'Fare'],color='b',shade=True,label='Survived')

plt.title('Fare Distribution Survived vs Non Survived')

plt.ylabel('Frequency of Passenger Survived')

plt.xlabel('Fare')

plt.show()

In [52]:

sns.catplot(x="Pclass", y="Fare",hue='Survived', kind="swarm", data=train)

plt.show()

● We can observe that the distribution of prices for the second and third class is very similar.

● The distribution of first-class prices is very different, has a larger spread, and on average prices are

higher.

Looks like the bigger passenger paid, the more chances to survive he had.

1.8 Embarked(Port of Embarkation)

Titanic had 3 embarkation points before the ship started its route to New York:

● Southampton

● Cherbourg

● Queenstown

Some passengers could leave Titanic in Cherbourg or Queenstown and avoid catastrophe. Also, the point

of embarkation could have an influence on ticket fare and location on the ship.

In [53]:

train['Embarked'].unique()

Out[53]:

array(['S', 'C', 'Q', 'Unknown'], dtype=object)

In [54]:

train['Embarked'].describe()

Out[54]:

count 891

unique 4

top S

freq 644

Name: Embarked, dtype: object

In [55]:

train['Embarked'] = train['Embarked'].replace('Unknown','S')

In [56]:

sns.countplot(train.Embarked)

labels = (train['Embarked'].value_counts())

In [57]:

plt.figure(figsize=(10,6))

sns.countplot(train['Embarked'],hue='Survived',data=train)

plt.legend(('Drowned', 'Survived'), loc=(0.85,0.89))

plt.show()

● Most number of passengers were embarked in Southampton. Also Southampton has the biggiest

proportion of drowned passengers.

● Passengers emarked in Cherbourg and more than 50% of them survived (in the training dataset).

In [58]:

train.head()

Out[58]:

Passenge

rId

Survi

ved

Pcla

ss
Name Sex

A

ge

Sib

Sp

Par

ch
Ticket Fare Cabin

Embar

ked

AgeGr

oup

Ti

tle

de

ck

0 1 0 3

Braund

, Mr.

Owen

Harris

mal

e

22

.0
1 0

A/5

21171

7.250

0

Unkno

wn
S

Studen

t

M

r
U

1 2 1 1

Cumin

gs,

Mrs.

John

Bradle

y

(Floren

ce

Briggs

Th...

fem

ale

38

.0
1 0

PC

17599

71.28

33
C85 C Adult

M

rs
C

2 3 1 3

Heikki

nen,

Miss.

Laina

fem

ale

26

.0
0 0

STON/

O2.

310128

2

7.925

0

Unkno

wn
S

Young

Adult

M

iss
U

3 4 1 1

Futrell

e, Mrs.

Jacque

s Heath

(Lily

May

Peel)

fem

ale

35

.0
1 0 113803

53.10

00
C123 S

Young

Adult

M

rs
C

4 5 0 3

Allen,

Mr.

Willia

m

Henry

mal

e

35

.0
0 0 373450

8.050

0

Unkno

wn
S

Young

Adult

M

r
U

2. Feature Engineering

2.1 Creating Dummies Variables

Dummy variable is a categorical variable that has been transformed into numeric. For example the column

Gender, we have "male" and "female" we will transform these variables into numeric. Creating a new

column just for Men. and Women, where 1 will be set to positive and 0 to negative

In [59]:

total_data=train.append(test)

In [60]:

total_data.head()

Out[60]:

Passenge

rId

Survi

ved

Pcla

ss
Name Sex

A

ge

Sib

Sp

Par

ch
Ticket Fare Cabin

Embar

ked

AgeGr

oup

Ti

tle

de

ck

0 1 0.0 3

Braund

, Mr.

Owen

Harris

mal

e

22

.0
1 0

A/5

21171

7.250

0

Unkn

own
S

Studen

t

M

r
U

1 2 1.0 1

Cumin

gs,

Mrs.

John

Bradle

y

(Floren

ce

fem

ale

38

.0
1 0

PC

17599

71.28

33
C85 C Adult

M

rs
C

Briggs

Th...

2 3 1.0 3

Heikki

nen,

Miss.

Laina

fem

ale

26

.0
0 0

STON/

O2.

310128

2

7.925

0

Unkn

own
S

Young

Adult

M

iss
U

3 4 1.0 1

Futrell

e, Mrs.

Jacque

s Heath

(Lily

May

Peel)

fem

ale

35

.0
1 0 113803

53.10

00
C123 S

Young

Adult

M

rs
C

4 5 0.0 3

Allen,

Mr.

Willia

m

Henry

mal

e

35

.0
0 0 373450

8.050

0

Unkn

own
S

Young

Adult

M

r
U

In [61]:

total_data.shape

Out[61]:

(1309, 15)

In [62]:

total_data['Sex'] =total_data['Sex'].replace('male',0)

total_data['Sex'] =total_data['Sex'].replace('female',1)

total_data['Embarked'] =total_data['Embarked'].replace('S',0)

total_data['Embarked'] = total_data['Embarked'].replace('Q',1)

total_data['Embarked'] = total_data['Embarked'].replace('C',2)

2.2 Adding New Features and Filling the missing values

In [63]:

mapping = {'Mlle': 'Miss', 'Major': 'Rare', 'Col': 'Rare', 'Sir': 'Rare', 'Don': 'Rare', 'Mme': 'Mrs',

 'Jonkheer': 'Rare', 'Lady': 'Rare', 'Capt': 'Rare', 'Countess': 'Rare', 'Ms': 'Miss', 'Dona': 'Mrs',

'Rev':'Rare', 'Dr':'Rare'}

total_data.replace({'Title': mapping}, inplace=True)

total_data['Title'].value_counts(normalize=True)*100

Out[63]:

Mr 57.830405

Miss 20.168067

Mrs 15.202445

Master 4.660046

Rare 2.062643

the Countess 0.076394

Name: Title, dtype: float64

In [64]:

total_data['Title'] = total_data['Title'].map({'Mr':0, 'Miss':1, 'Mrs':2, 'Master':3, 'Rare':4})

total_data['Title'].fillna(total_data['Title'].median(),inplace=True)

In [65]:

cabin_category = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'T':8, 'U':9}

total_data['deck'] = total_data['deck'].map(cabin_category)

In [66]:

total_data['Family_size'] = total_data['SibSp'] + total_data['Parch'] + 1

In [67]:

total_data['Alone'] = 1

total_data['Alone'].loc[total_data['Family_size'] > 1] = 0

/opt/conda/lib/python3.7/site-packages/pandas/core/indexing.py:671: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

 self._setitem_with_indexer(indexer, value)

In this case I will use the age that was provided from our dataset to create the groups to find out if the

passenger was a child, youth, adult, etc. In this case we are doing a Feacture Engineer where we transform

a column to get another one through it

In [68]:

bins = [-1, 0, 18, 25, 35, 60, np.inf]

labels = ['Unknown', 'Child', 'Teenager', 'Young Adult', 'Adult', 'Senior']

total_data['AgeGroup'] = pd.cut(total_data["Age"], bins, labels = labels)

age_mapping = {'Unknown': None,'Child': 1, 'Teenager': 2, 'Young Adult': 3, 'Adult': 4, 'Senior': 5}

total_data['AgeGroup'] = total_data['AgeGroup'].map(age_mapping)

Correlation

Correlation is a statistical technique that can show whether and how strongly pairs of

variables are related

In [69]:

fig,ax=plt.subplots(figsize=(14,6))

sns.heatmap(total_data.corr(),annot=True,annot_kws={'size':12})

Out[69]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f721ae96610>

In [70]:

total_data.head()

Out[70]:

 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 0.0 3

Braund,

Mr. Owen

Harris

0 22.0 1 0 A/5 21171 7.2500 Unknown 0

1 2 1.0 1

Cumings,

Mrs. John

Bradley

(Florence

Briggs

Th...

1 38.0 1 0 PC 17599 71.2833 C85 2

2 3 1.0 3
Heikkinen,

Miss. Laina
1 26.0 0 0

STON/O2.

3101282
7.9250 Unknown 0

3 4 1.0 1

Futrelle,

Mrs.

Jacques

Heath (Lily

May Peel)

1 35.0 1 0 113803 53.1000 C123 0

4 5 0.0 3

Allen, Mr.

William

Henry

0 35.0 0 0 373450 8.0500 Unknown 0

In [71]:

total_data.isna().sum()

Out[71]:

PassengerId 0

Survived 418

Pclass 0

Name 0

Sex 0

Age 0

SibSp 0

Parch 0

Ticket 0

Fare 0

Cabin 0

Embarked 0

AgeGroup 0

Title 0

deck 0

Family_size 0

Alone 0

dtype: int64

Dateset is completely ready now!

2.3 Feature selection

We will now select the features (X) for our model. These features will help our model identify patterns.

The features will be columns.

"When feature engineering is done, we usually tend to decrease the dimensionality by selecting the "right"

number of features that capture the essential."

In [72]:

features = ['Embarked','Fare','Pclass','Sex','Title','Family_size','Alone']

Building Machine Learning Models

In [73]:

#Modelos

from sklearn.ensemble import RandomForestClassifier

#Metrics

from sklearn.metrics import make_scorer, accuracy_score,precision_score

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score ,precision_score,recall_score,f1_score

from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score

#Model Select

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn import linear_model

from sklearn.linear_model import SGDClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC, LinearSVC

from sklearn.naive_bayes import GaussianNB

In [74]:

df_train = total_data[0:891]

df_test = total_data[891:]

X = df_train[features]

y = df_train['Survived'].astype(int)

In [75]:

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=78941)

Now we will train several Machine Learning models and compare their results. Note that because the

dataset does not provide labels for their testing-set, we need to use the predictions on the training set to

compare the algorithms with each other. Later on, we will use cross validation.

Random Forest:

In [76]:

random_forest = RandomForestClassifier(n_estimators=100)

random_forest.fit(X_train, y_train)

Y_prediction = random_forest.predict(X_test)

random_forest.score(X_train, y_train)

acc_random_forest = round(random_forest.score(X_train, y_train) * 100, 2)

Logistic Regression:

In [77]:

logreg = LogisticRegression(solver= 'lbfgs',max_iter=400)

logreg.fit(X_train, y_train)

Y_pred = logreg.predict(X_test)

acc_log = round(logreg.score(X_train, y_train) * 100, 2)

K Nearest Neighbor:

In [78]:

knn = KNeighborsClassifier(n_neighbors = 3)

knn.fit(X_train, y_train)

Y_pred = knn.predict(X_test)

acc_knn = round(knn.score(X_train, y_train) * 100, 2)

Gaussian Naive Bayes:

In [79]:

gaussian = GaussianNB()

gaussian.fit(X_train, y_train)

Y_pred = gaussian.predict(X_test)

acc_gaussian = round(gaussian.score(X_train, y_train) * 100, 2)

Linear Support Vector Machine:

In [80]:

linear_svc = LinearSVC()

linear_svc.fit(X_train, y_train)

Y_pred = linear_svc.predict(X_test)

acc_linear_svc = round(linear_svc.score(X_train, y_train) * 100, 2)

/opt/conda/lib/python3.7/site-packages/sklearn/svm/_base.py:947: ConvergenceWarning: Liblinear failed

to converge, increase the number of iterations.

 "the number of iterations.", ConvergenceWarning)

Decision Tree

In [81]:

decision_tree = DecisionTreeClassifier()

decision_tree.fit(X_train, y_train)

Y_pred = decision_tree.predict(X_test)

acc_decision_tree = round(decision_tree.score(X_train, y_train) * 100, 2)

Which is the best Model ?

In [82]:

results = pd.DataFrame({

 'Model': ['KNN', 'Logistic Regression',

 'Random Forest', 'Naive Bayes',

 ' Support Vector Machine',

 'Decision Tree'],

 'Score': [acc_knn, acc_log,

 acc_random_forest, acc_gaussian,

 acc_linear_svc, acc_decision_tree]})

result_df = results.sort_values(by='Score', ascending=False)

result_df = result_df.set_index('Score')

result_df.head(9)

Out[82]:

 Model

Score

93.54 Random Forest

93.54 Decision Tree

85.11 KNN

81.46 Naive Bayes

80.76 Logistic Regression

72.47 Support Vector Machine

As we can see, the Random Forest classifier goes on the first place. But first, let us check, how random-

forest performs & Logistic_Regression

Logistic_Regression Model

Logistic regression is a supervised learning classification

algorithm used to predict the probability of a target variable. The nature of target or dependent variable is

dichotomous, which means there would be only two possible classes.

In simple words, the dependent variable is binary in nature having data coded as either 1 (stands for

success/yes) or 0 (stands for failure/no).

In [83]:

model= LogisticRegression(solver= 'lbfgs',max_iter=400)

model.fit(X_train, y_train)

predictions = model.predict(X_test)

cm_logit = confusion_matrix(y_test, predictions)

print('Confusion matrix for Logistic\n',cm_logit)

accuracy_logit = accuracy_score(y_test,predictions)

precision_logit =precision_score(y_test, predictions)

recall_logit = recall_score(y_test, predictions)

f1_logit = f1_score(y_test, predictions)

print('accuracy_logistic : %.3f' %accuracy_logit)

print('precision_logistic : %.3f' %precision_logit)

print('recall_logistic : %.3f' %recall_logit)

print('f1-score_logistic : %.3f' %f1_logit)

auc_logit = roc_auc_score(y_test,predictions)

print('AUC_logistic : %.2f' % auc_logit)

Confusion matrix for Logistic

 [[97 18]

 [22 42]]

accuracy_logistic : 0.777

precision_logistic : 0.700

recall_logistic : 0.656

f1-score_logistic : 0.677

AUC_logistic : 0.75

Random_Forest Model

Random forest is a supervised learning algorithm which is used for both classification as well as

regression. But however, it is mainly used for classification problems. As we know that a forest is made up

of trees and more trees means more robust forest. Similarly, random forest algorithm creates decision trees

on data samples and then gets the prediction from each of them and finally selects the best solution by

means of voting. It is an ensemble method which is better than a single decision tree because it reduces the

over-fitting by averaging the result.

I would like to introduce one of the most popular algorithms for classification (but also regression, etc),

Random Forest! In a nutshell, Random Forest is an ensembling learning algorithm which combines

decision trees in order to increase performance and avoid overfitting.

Hyperparameter Tuning

Below we set the hyperparameter grid of values with 4 lists of values:

'criterion' : A function which measures the quality of a split.

'n_estimators' : The number of trees of our random forest.

'max_features' : The number of features to choose when looking for the best way of splitting.

'max_depth' : the maximum depth of a decision tree.

In [84]:

randomForestFinalModel = RandomForestClassifier(random_state = 2,

bootstrap=False,min_samples_split=2,min_samples_leaf= 5, criterion = 'entropy', max_depth = 13,

max_features = 'sqrt', n_estimators = 200)

randomForestFinalModel.fit(X_train, y_train)

predictions_rf = randomForestFinalModel.predict(X_test)

cm_logit = confusion_matrix(y_test, predictions_rf)

print('Confusion matrix for Random Forest\n',cm_logit)

accuracy_logit = accuracy_score(y_test,predictions_rf)

precision_logit =precision_score(y_test, predictions_rf)

recall_logit = recall_score(y_test, predictions_rf)

f1_logit = f1_score(y_test,predictions_rf)

print('accuracy_random_Forest : %.3f' %accuracy_logit)

print('precision_random_Forest : %.3f' %precision_logit)

print('recall_random_Forest : %.3f' %recall_logit)

print('f1-score_random_Forest : %.3f' %f1_logit)

auc_logit = roc_auc_score(y_test,predictions_rf)

print('AUC_random_Forest: %.2f' % auc_logit)

Confusion matrix for Random Forest

 [[101 14]

 [21 43]]

accuracy_random_Forest : 0.804

precision_random_Forest : 0.754

recall_random_Forest : 0.672

f1-score_random_Forest : 0.711

AUC_random_Forest: 0.78

Roc_curve

Another way to evaluate and compare your binary classifier is provided by the ROC AUC Curve. This

curve plots the true positive rate (also called recall) against the false positive rate (ratio of incorrectly

classified negative instances), instead of plotting the precision versus the recall.

In [85]:

a=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

b=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

fig =plt.figure(figsize=(20,12),dpi=50)

fpr, tpr, thresholds = roc_curve(y_test,predictions)

plt.plot(fpr, tpr,color ='orange',label ='Logistic',linewidth=2)

fpr, tpr, thresholds = roc_curve(y_test,predictions_rf)

plt.plot(fpr, tpr,color ='blue',label ='random Forest',linewidth=2)

plt.plot(a,b,color='black',linestyle ='dashed',linewidth=2)

plt.legend(fontsize=15)

plt.xlabel('False Positive Rate',fontsize=15)

plt.ylabel('True Positive Rate',fontsize=15)

Out[85]:

Text(0, 0.5, 'True Positive Rate')

Let's submit our solutions

In [86]:

submission = pd.DataFrame({

 "PassengerId": df_test["PassengerId"],

 "Survived": randomForestFinalModel.predict(df_test[features])

})

In [87]:

submission.head()

Out[87]:

 PassengerId Survived

0 892 0

1 893 1

2 894 0

3 895 0

4 896 1

In [88]:

submission.to_csv("titanic_s.csv",index=False)

	Don't forget to upvote if you like it! :)
	Titanic
	Introduction
	History

	Contents
	Importing Libraries
	Some Observations:

	Variables
	Handle missing data
	Bar Chart :
	Heatmap
	Matrix:

	Replacing With Mean/Median/mode
	Exploratory data analysis
	1. Survivals(Survived (1) or died (0))

	1.1 Sex
	1.2 Pclss(Passenger’s class)
	1.3 Age
	What was the age of passengers, how it correlated with chances to survive

	1.4 Name
	1.4 Cabin
	1.5 Parch(Number of Parents/Children Aboard)
	1.6 SibSp(Number of Siblings/Spouses Aboard)
	1.7 Fare(Passenger Fare)
	1.8 Embarked(Port of Embarkation)
	2. Feature Engineering
	2.1 Creating Dummies Variables
	2.2 Adding New Features and Filling the missing values
	Correlation
	Correlation is a statistical technique that can show whether and how strongly pairs of variables are related

	Dateset is completely ready now!

	2.3 Feature selection
	Building Machine Learning Models
	Which is the best Model ?
	Logistic_Regression Model
	Random_Forest Model
	Hyperparameter Tuning
	Roc_curve
	Let's submit our solutions

