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Introduction 

In this notebook we examine the Titanic dataset and then we build a model that can predict if a passenger 

survived the sinking or not. We start with finding feature types, missing values and we continue with 

feature analysis and visualization of the data. Feature engineering is implemented to create new attributes, 

encoding and imputation of the missing values. At last we test several classifiers and we evaluate them 

with the help of the ROC and CAP curves. 

History 

RMS Titanic was a British passenger liner operated by the White Star Line that sank in the North Atlantic 

Ocean in the early morning hours of 15 April 1912, after striking an iceberg during her maiden voyage 

from Southampton to New York City. Of the estimated 2,224 passengers and crew aboard, more than 

1,500 died, making the sinking one of modern history's deadliest peacetime commercial marine disasters. 
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Importing Libraries 

In [1]: 

# This Python 3 environment comes with many helpful analytics libraries installed 

# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python 



# For example, here's several helpful packages to load 

%matplotlib inline                  

 

import pandas as pd                # Implemennts milti-dimensional array and matrices 

import numpy as np                 # For data manipulation and analysis 

import matplotlib.pyplot as plt    # Plotting library for Python programming language and it's numerical 

mathematics extension NumPy 

import seaborn as sns              # Provides a high level interface for drawing attractive and informative 

statistical graphics 

 

# Input data files are available in the read-only "../input/" directory 

# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input 

directory 

 

import os 

for dirname, _, filenames in os.walk('/kaggle/input'): 

    for filename in filenames: 

        print(os.path.join(dirname, filename)) 

 

# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when 

you create a version using "Save & Run All"  

# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current 

session 

 

/kaggle/input/titanic/gender_submission.csv 

/kaggle/input/titanic/test.csv 



/kaggle/input/titanic/train.csv 

 

In [2]: 

# load dataset 

train=pd.read_csv('/kaggle/input/titanic/train.csv') 

test=pd.read_csv('/kaggle/input/titanic/test.csv') 

gender_submission=pd.read_csv("../input/titanic/gender_submission.csv") 

 

In [3]: 

len(train),len(test),len(gender_submission) 

 

Out[3]: 

(891, 418, 418) 

In [4]: 

train.head() 

 

Out[4]: 
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In [5]: 

train.shape 

 

Out[5]: 

(891, 12) 

In [6]: 

train.describe(include='all') 

 

Out[6]: 
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Some Observations: 

● There are a total of 891 passengers in our training set. 

● The Age feature is missing approximately 19.8% of its values. I'm guessing that the Age feature is 

pretty important to survival, so we should probably attempt to fill these gaps. 

● The Cabin feature is missing approximately 77.1% of its values. Since so much of the feature is 

missing, it would be hard to fill in the missing values. We'll probably drop these values from our 

dataset. 

● The Embarked feature is missing 0.22% of its values, which should be relatively harmless. 

In [7]: 

train.info() 

 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 891 entries, 0 to 890 

Data columns (total 12 columns): 

 #   Column       Non-Null Count  Dtype   

---  ------       --------------  -----   

 0   PassengerId  891 non-null    int64   

 1   Survived     891 non-null    int64   



 2   Pclass       891 non-null    int64   

 3   Name         891 non-null    object  

 4   Sex          891 non-null    object  

 5   Age          714 non-null    float64 

 6   SibSp        891 non-null    int64   

 7   Parch        891 non-null    int64   

 8   Ticket       891 non-null    object  

 9   Fare         891 non-null    float64 

 10  Cabin        204 non-null    object  

 11  Embarked     889 non-null    object  

dtypes: float64(2), int64(5), object(5) 

memory usage: 83.7+ KB 

 

Variables 

From the data overview of the competition, we have a description of each variable: 

● PassengerId - unique identifier 

Survived: 

  0 = No 

●   1 = Yes 

Pclass: Ticket class 

  1 = 1st, Upper 

  2 = 2nd, Middle 

●   3 = 3rd, Lower 



● Name: full name with a title 

● Sex: gender 

● Age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5 

Sibsp: Number of siblings / spouses aboard the Titanic. The dataset defines family relations in this way: 

  Sibling = brother, sister, stepbrother, stepsister 

●   Spouse = husband, wife (mistresses and fiancés were ignored) 

Parch: Number of parents / children aboard the Titanic. The dataset defines family relations in this way: 

  Parent = mother, father 

  Child = daughter, son, stepdaughter, stepson 

●   Some children travelled only with a nanny, therefore parch=0 for them. 

● Ticket: Ticket number. 

● Fare: Passenger fare. 

● Cabin: Cabin number. 

Embarked: Port of Embarkation: 

  C = Cherbourg 

  Q = Queenstown 

●   S = Southampton 

Handle missing data 



 

Checking Missing value is present or not in our dataset 

In [8]: 

train.isnull().values.any() 

 

Out[8]: 

True 

In [9]: 

train.isnull().sum() 

 

Out[9]: 

PassengerId      0 

Survived         0 



Pclass           0 

Name             0 

Sex              0 

Age            177 

SibSp            0 

Parch            0 

Ticket           0 

Fare             0 

Cabin          687 

Embarked         2 

dtype: int64 

In [10]: 

test.isnull().sum() 

 

Out[10]: 

PassengerId      0 

Pclass           0 

Name             0 

Sex              0 

Age             86 

SibSp            0 

Parch            0 

Ticket           0 

Fare             1 



Cabin          327 

Embarked         0 

dtype: int64 

In [11]: 

plt.style.use('default') 

total=train.isnull().sum() 

percent=train.isnull().sum()/train.isnull().count() 

missing_data=pd.concat([total,percent],axis=1, keys=['total', 'percent']) 

#missing_data.sort_values(ascending=False) 

ax = plt.subplots(figsize=(12, 6)) 

#plt.xticks(rotation='90') 

sns.barplot(x=missing_data.index,y=missing_data['percent']) 

plt.xlabel('Features', fontsize=15) 

plt.ylabel('Percent of missing values', fontsize=15) 

plt.title('Percent missing data by feature', fontsize=15) 

plt.show() 

 



 

Missingno library offers a very nice way to visualize the distribution of NaN values. Missingno is a 

Python library and compatible with Pandas. 

In [12]: 

import missingno as msno 

 

Bar Chart : 

This bar chart gives you an idea about how many missing values are there in each column. 

In [13]: 

msno.bar(train,figsize=(10,6),color="skyblue") 



plt.show() 

 

 

In [14]: 

msno.bar(test,figsize=(10,6),color="skyblue") 

plt.show() 

 



 

Heatmap 

The missingno correlation heatmap measures nullity correlation: how strongly the presence or absence of 

one variable affects the presence of another: 

In [15]: 

msno.heatmap(train,figsize=(10,6)) 

plt.show() 



 

 

Matrix: 

Visualising missing values for a sample of 150 Using this matrix you can very quickly find the pattern of 

missingness in the dataset. 

In [16]: 

msno.matrix(train,figsize=(12,8)) 

plt.show() 

 



 

In [17]: 

msno.matrix(test,figsize=(12,8)) 

plt.show() 



 

 

Replacing With Mean/Median/mode 



MEAN: Suitable for continuous data without outliers MEDIAN : Suitable for continuous data with outliers 

Mode: For categorical feature we can select to fill in the missing values with the most common 

value(mode) as illustrated below. 

● We are going to deal missing value(in Age) has numeric data by replace its median value 

In [18]: 

train['Age'].fillna(train['Age'].median(),inplace=True) 

test['Age'].fillna(train['Age'].median(),inplace=True) 

 

In [19]: 

train['Age'] 

 

Out[19]: 

0      22.0 

1      38.0 

2      26.0 

3      35.0 

4      35.0 

       ...  

886    27.0 

887    19.0 

888    28.0 

889    26.0 

890    32.0 

Name: Age, Length: 891, dtype: float64 



● We are going to deal missing value(in Cabin & Embarked) has categorical data by replace its by 

new category ie. 'unknown' 

In [20]: 

train['Cabin'].unique() 

 

Out[20]: 

array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6', 

       'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33', 

       'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101', 

       'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4', 

       'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35', 

       'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19', 

       'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54', 

       'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40', 

       'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44', 

       'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14', 

       'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38', 

       'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68', 

       'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48', 

       'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63', 

       'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30', 

       'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36', 

       'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42', 

       'C148'], dtype=object) 



In [21]: 

train['Cabin'].fillna('Unknown',inplace=True) 

train['Embarked'].fillna('Unknown',inplace=True) 

test['Cabin'].fillna('Unknown',inplace=True) 

test['Fare'].fillna(train['Fare'].median(),inplace=True) 

 

In [22]: 

msno.bar(train,figsize=(10,6),color="skyblue") 

plt.show() 

 



 

As we see their is not any missing value 

In [23]: 

msno.bar(test,figsize=(10,6),color="skyblue") 

plt.show() 

 



 

In [24]: 

msno.matrix(train,figsize=(12,6)) 

plt.show() 

 



 

Exploratory data analysis 

Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main 

characteristics, often with visual methods. 

1. Survivals( Survived (1) or died (0)) 

In [25]: 

train['Survived'].value_counts(normalize=True) 

 



Out[25]: 

0    0.616162 

1    0.383838 

Name: Survived, dtype: float64 

In [26]: 

sns.countplot(x='Survived',data=train) 

plt.xticks( np.arange(2), ['drowned', 'survived'] ) 

plt.title('Overall survival (training dataset)',fontsize= 18) 

# set x label 

plt.xlabel('Passenger status after the tragedy',fontsize = 15) 

# set y label 

plt.ylabel('Number of passengers',fontsize = 15) 

labels = (train['Survived'].value_counts()) 

for i, v in enumerate(labels): 

    plt.text(i, v-40, str(v), horizontalalignment = 'center', size = 14, color = 'w', fontweight = 'bold') 

     

plt.show() 

 



 

● We have 891 passengers in train dataset, 549 (61,6%) of them drowned and only 342 (38,4%) 

survived. 

● more people died than survived (38% survived) 

1.1 Sex 

 

In [27]: 

sns.barplot(x = "Sex", y = "Survived", data=train) 



plt.title("Survived/Non-Survived Passenger Gender Distribution", fontsize =10) 

labels = ['Female', 'Male'] 

plt.ylabel("% of passenger survived", fontsize = 8) 

plt.xlabel("Gender",fontsize = 8) 

plt.show() 

 

 

In [28]: 

print("% of women survived: " , train[train.Sex == 'female'].Survived.sum()/train[train.Sex == 

'female'].Survived.count()) 

print("% of men survived:   " , train[train.Sex == 'male'].Survived.sum()/train[train.Sex == 

'male'].Survived.count()) 

 



% of women survived:  0.7420382165605095 

% of men survived:    0.18890814558058924 

 

● As predicted, females have a much higher chance of survival than males. 

In [29]: 

sns.catplot(x='Sex', col='Survived', kind='count', data=train) 

 

plt.show() 

 

 

In [30]: 



train.groupby(['Survived','Sex']).count() 

 

Out[30]: 

  PassengerId Pclass Name Age SibSp Parch Ticket Fare Cabin Embarked 

Survived Sex           

0 female 81 81 81 81 81 81 81 81 81 81 

male 468 468 468 468 468 468 468 468 468 468 

1 female 233 233 233 233 233 233 233 233 233 233 

male 109 109 109 109 109 109 109 109 109 109 

1.2 Pclss(Passenger’s class ) 

In [31]: 

train['Pclass'].unique() 

 

Out[31]: 

array([3, 1, 2]) 

In [32]: 



plt.subplots(figsize = (8,6)) 

sns.countplot('Pclass',hue='Survived',data=train) 

 

plt.show() 

 

 

In [33]: 

plt.subplots(figsize = (8,6)) 

sns.barplot('Pclass','Survived',data=train,hue='Sex',edgecolor=(0,0,0), linewidth=2) 

plt.show() 



 

 

In [34]: 

sns.catplot('Pclass','Survived', kind='point', data=train); 

 



 

In [35]: 

plt.subplots(figsize=(8,6)) 

sns.kdeplot(train.loc[(train['Survived'] == 0),'Pclass'],shade=True,color='r',label='Not Survived') 

ax=sns.kdeplot(train.loc[(train['Survived'] == 1),'Pclass'],shade=True,color='b',label='Survived' ) 

 

labels = ['First', 'Second', 'Third'] 

plt.xticks(sorted(train.Pclass.unique()),labels) 

plt.show() 

 



 

In [36]: 

print("% of survivals in")  

print("Pclass=1 : ", train.Survived[train.Pclass == 1].sum()/train.Survived[train.Pclass == 1].count()) 

print("Pclass=2 : ", train.Survived[train.Pclass == 2].sum()/train.Survived[train.Pclass == 2].count()) 

print("Pclass=3 : ", train.Survived[train.Pclass == 3].sum()/train[train.Pclass == 3].Survived.count()) 

 

% of survivals in 

Pclass=1 :  0.6296296296296297 

Pclass=2 :  0.47282608695652173 

Pclass=3 :  0.24236252545824846 



 

So it clearly seems that,The survival of the people belong to 3rd class is very least. It looks like ... 

● 63% first class passenger survived titanic tragedy, while 

● 48% second class and 

● only 24% third class passenger survived. 

1.3 Age 

 

What was the age of passengers, how it correlated with chances to survive 

We have 263 missing values: 

● 177 missing in the training dataset(which had filled by age mean value) 

● 86 in the test dataset Overall age distribution (seaborn distplot) and descriptive statistics: 

In [37]: 

plt.subplots(figsize=(8,6)) 



sns.distplot(train.Age) 

plt.title('Distrubution of passengers age (all data)',fontsize= 14) 

plt.xlabel('Age') 

plt.ylabel('Frequency') 

plt.show() 

 

 

In [38]: 

bins = [ 0, 5, 12, 18, 24, 35, 60, np.inf] 

labels = ['Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] 



train['AgeGroup'] = pd.cut(train["Age"], bins, labels = labels) 

#draw a bar plot of Age vs. survival 

sns.barplot(x="AgeGroup", y="Survived", data=train,ci=None) 

plt.show() 

 

 

● Babies are more likely to survive than any other age group. 

1.4 Name 

In [39]: 

train.Name.head() 

 

Out[39]: 



0                              Braund, Mr. Owen Harris 

1    Cumings, Mrs. John Bradley (Florence Briggs Th... 

2                               Heikkinen, Miss. Laina 

3         Futrelle, Mrs. Jacques Heath (Lily May Peel) 

4                             Allen, Mr. William Henry 

Name: Name, dtype: object 

linkcode 

Each passenger Name value contains the title of the passenger which we can extract and discover. To 

create new variable "Title": 

1. I am using method 'split' by comma to divide Name in two parts and save the second part 

2. I am splitting saved part by dot and save first part of the result 

3. To remove spaces around the title I am using 'split' method To visualize, how many passengers 

hold each title, I chose countplot. 

In [40]: 

train['Title'] = train['Name'].str.split(',', expand = True)[1].str.split('.', expand = True)[0].str.strip(' ') 

test['Title'] = test['Name'].str.split(',', expand = True)[1].str.split('.', expand = True)[0].str.strip(' ') 

plt.figure(figsize=(8, 6)) 

ax = sns.countplot( x = 'Title', data = train, palette = "hls", order = train['Title'].value_counts().index) 

_ = plt.xticks( 

    rotation=45,  

    horizontalalignment='right', 

    fontweight='light'   

) 

 

plt.title('Passengers distribution by titles',fontsize= 14) 



plt.ylabel('Number of passengers') 

 

# calculate passengers for each category 

labels = (train['Title'].value_counts()) 

# add result numbers on barchart 

for i, v in enumerate(labels): 

    ax.text(i, v+10, str(v), horizontalalignment = 'center', size = 10, color = 'black') 

 

plt.show() 

 



 

In [41]: 

plt.figure(figsize=(10, 6)) 

sns.barplot(x="Title", y="Survived", data=train,ci=None)  

plt.xticks( 

    rotation=45,  

    horizontalalignment='right', 

    fontweight='light'   

) 



 

plt.show() 

 

 

1.4 Cabin 



 



In [42]: 

train['Cabin'] 

 

Out[42]: 

0      Unknown 

1          C85 

2      Unknown 

3         C123 

4      Unknown 

        ...    

886    Unknown 

887        B42 

888    Unknown 

889       C148 

890    Unknown 

Name: Cabin, Length: 891, dtype: object 

In [43]: 

train['Cabin'].unique() 

 

Out[43]: 

array(['Unknown', 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6', 

       'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33', 

       'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101', 

       'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4', 



       'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35', 

       'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19', 

       'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54', 

       'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40', 

       'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44', 

       'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14', 

       'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38', 

       'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68', 

       'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48', 

       'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63', 

       'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30', 

       'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36', 

       'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42', 

       'C148'], dtype=object) 

● From the number of the cabin we can extract first letter, which will tell us about placement of the 

cabin on the ship! 

● To the passengers without deck information I will imput U letter (as unknown). 

In [44]: 

train['deck']=train['Cabin'].str.split('',expand=True)[1] 

test['deck']=test['Cabin'].str.split('',expand=True)[1] 

 

In [45]: 

train['deck'].unique() 

 



Out[45]: 

array(['U', 'C', 'E', 'G', 'D', 'A', 'B', 'F', 'T'], dtype=object) 

In [46]: 

plt.figure(figsize=(12,8)) 

sns.countplot(x=train['deck'],data=train,hue='Survived',order = train['deck'].value_counts().index) 

plt.title('Passengers distribution by deck',fontsize= 16) 

plt.ylabel('Number of passengers') 

plt.legend(( 'Drowned', 'Survived'), loc=(0.85,0.89)) 

plt.xticks(rotation = False) 

 

 

plt.show() 

 



 

● Most passengers don't have cabin numbers ('U'). 

● The largest part of passengers with known cabin numbers were located on the 'C' deck . 'C' deck is 

fifth by a percentage of the survivor. 

● The largest surviving rate (among passengers with known cabin numbers in training dataset) had 

passengers from deck 'D'. 

1.5 Parch( Number of Parents/Children Aboard ) 



 

In [47]: 

#draw a bar plot for Parch vs. survival 

plt.figure(figsize=(8,6)) 

sns.barplot(x="Parch", y="Survived", data=train,ci=None) 

plt.show() 

 



 

● People with less than four parents or children aboard are more likely to survive than those with 

four or more. Again, people traveling alone are less likely to survive than those with 1-3 parents or 

children. 

1.6 SibSp( Number of Siblings/Spouses Aboard ) 

In [48]: 

#draw a bar plot for SibSp vs. survival 

sns.barplot(x="SibSp", y="Survived", data=train,ci=None) 

plt.show() 

 



 

In [49]: 

train['SibSp'].sort_values().unique() 

 

Out[49]: 

array([0, 1, 2, 3, 4, 5, 8]) 

In [50]: 

print("Percentage of SibSp = 0 who survived:", train["Survived"][train["SibSp"] == 

0].value_counts(normalize = True)[1]*100) 

print("Percentage of SibSp = 1 who survived:", train["Survived"][train["SibSp"] == 

1].value_counts(normalize = True)[1]*100) 

print("Percentage of SibSp = 2 who survived:", train["Survived"][train["SibSp"] == 

2].value_counts(normalize = True)[1]*100) 

print("Percentage of SibSp = 3 who survived:", train["Survived"][train["SibSp"] == 

3].value_counts(normalize = True)[1]*100) 



print("Percentage of SibSp = 4 who survived:", train["Survived"][train["SibSp"] == 

4].value_counts(normalize = True)[1]*100) 

 

Percentage of SibSp = 0 who survived: 34.53947368421053 

Percentage of SibSp = 1 who survived: 53.588516746411486 

Percentage of SibSp = 2 who survived: 46.42857142857143 

Percentage of SibSp = 3 who survived: 25.0 

Percentage of SibSp = 4 who survived: 16.666666666666664 

 

● In general, it's clear that people with more siblings or spouses aboard were less likely to survive. 

However, contrary to expectations, people with no siblings or spouses were less to likely to 

survive than those with one or two. (34.5% vs 53.4% vs. 46.4%) 

1.7 Fare( Passenger Fare ) 

 

In [51]: 

plt.subplots(figsize=(8,6)) 

 

ax=sns.kdeplot(train.loc[(train['Survived'] == 0),'Fare'],color='r',shade=True,label='Not Survived') 

ax=sns.kdeplot(train.loc[(train['Survived'] == 1),'Fare'],color='b',shade=True,label='Survived' ) 

plt.title('Fare Distribution Survived vs Non Survived') 

plt.ylabel('Frequency of Passenger Survived') 

plt.xlabel('Fare') 

plt.show() 



 

 

In [52]: 

sns.catplot(x="Pclass", y="Fare",hue='Survived', kind="swarm", data=train) 

plt.show() 

 



 

● We can observe that the distribution of prices for the second and third class is very similar. 

● The distribution of first-class prices is very different, has a larger spread, and on average prices are 

higher. 

Looks like the bigger passenger paid, the more chances to survive he had. 

1.8 Embarked( Port of Embarkation ) 



Titanic had 3 embarkation points before the ship started its route to New York: 

● Southampton 

● Cherbourg 

● Queenstown 

Some passengers could leave Titanic in Cherbourg or Queenstown and avoid catastrophe. Also, the point 

of embarkation could have an influence on ticket fare and location on the ship. 

In [53]: 

train['Embarked'].unique() 

 

Out[53]: 

array(['S', 'C', 'Q', 'Unknown'], dtype=object) 

In [54]: 

train['Embarked'].describe() 

 



Out[54]: 

count     891 

unique      4 

top         S 

freq      644 

Name: Embarked, dtype: object 

In [55]: 

train['Embarked'] = train['Embarked'].replace('Unknown','S') 

 

In [56]: 

sns.countplot(train.Embarked) 

labels = (train['Embarked'].value_counts()) 

 



 

In [57]: 

plt.figure(figsize=(10,6)) 

sns.countplot(train['Embarked'],hue='Survived',data=train) 

plt.legend(( 'Drowned', 'Survived'), loc=(0.85,0.89)) 

plt.show() 

 



 

● Most number of passengers were embarked in Southampton. Also Southampton has the biggiest 

proportion of drowned passengers. 

● Passengers emarked in Cherbourg and more than 50% of them survived (in the training dataset). 

In [58]: 

train.head() 

 

Out[58]: 
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2. Feature Engineering 



 

2.1 Creating Dummies Variables 

Dummy variable is a categorical variable that has been transformed into numeric. For example the column 

Gender, we have "male" and "female" we will transform these variables into numeric. Creating a new 

column just for Men. and Women, where 1 will be set to positive and 0 to negative 

In [59]: 

total_data=train.append(test) 

 

In [60]: 

total_data.head() 

 

Out[60]: 
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In [61]: 

total_data.shape 

 

Out[61]: 

(1309, 15) 

In [62]: 

total_data['Sex'] =total_data['Sex'].replace('male',0) 

total_data['Sex'] =total_data['Sex'].replace('female',1) 

total_data['Embarked'] =total_data['Embarked'].replace('S',0) 



total_data['Embarked'] = total_data['Embarked'].replace('Q',1) 

total_data['Embarked'] = total_data['Embarked'].replace('C',2) 

 

2.2 Adding New Features and Filling the missing values 

In [63]: 

mapping = {'Mlle': 'Miss', 'Major': 'Rare', 'Col': 'Rare', 'Sir': 'Rare', 'Don': 'Rare', 'Mme': 'Mrs', 

           'Jonkheer': 'Rare', 'Lady': 'Rare', 'Capt': 'Rare', 'Countess': 'Rare', 'Ms': 'Miss', 'Dona': 'Mrs', 

'Rev':'Rare', 'Dr':'Rare'} 

 

total_data.replace({'Title': mapping}, inplace=True) 

 

total_data['Title'].value_counts(normalize=True)*100 

 

Out[63]: 

Mr              57.830405 

Miss            20.168067 

Mrs             15.202445 

Master           4.660046 

Rare             2.062643 

the Countess     0.076394 

Name: Title, dtype: float64 

In [64]: 

total_data['Title'] = total_data['Title'].map({'Mr':0, 'Miss':1, 'Mrs':2, 'Master':3, 'Rare':4}) 

total_data['Title'].fillna(total_data['Title'].median(),inplace=True) 



 

In [65]: 

cabin_category = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'T':8, 'U':9} 

total_data['deck'] = total_data['deck'].map(cabin_category) 

 

In [66]: 

total_data['Family_size'] = total_data['SibSp'] + total_data['Parch'] + 1 

 

In [67]: 

total_data['Alone'] = 1 

total_data['Alone'].loc[total_data['Family_size'] > 1] = 0 

 

/opt/conda/lib/python3.7/site-packages/pandas/core/indexing.py:671: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a DataFrame 

 

See the caveats in the documentation: https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy 

  self._setitem_with_indexer(indexer, value) 

 

In this case I will use the age that was provided from our dataset to create the groups to find out if the 

passenger was a child, youth, adult, etc. In this case we are doing a Feacture Engineer where we transform 

a column to get another one through it 

In [68]: 

bins = [-1, 0, 18, 25, 35, 60, np.inf] 



labels = ['Unknown', 'Child', 'Teenager', 'Young Adult', 'Adult', 'Senior'] 

total_data['AgeGroup'] = pd.cut(total_data["Age"], bins, labels = labels) 

age_mapping = {'Unknown': None,'Child': 1, 'Teenager': 2, 'Young Adult': 3, 'Adult': 4, 'Senior': 5} 

total_data['AgeGroup'] = total_data['AgeGroup'].map(age_mapping) 

 

Correlation 

Correlation is a statistical technique that can show whether and how strongly pairs of 

variables are related 

 

In [69]: 

fig,ax=plt.subplots(figsize=(14,6)) 

sns.heatmap(total_data.corr(),annot=True,annot_kws={'size':12}) 

 

Out[69]: 

<matplotlib.axes._subplots.AxesSubplot at 0x7f721ae96610> 



 

In [70]: 

total_data.head() 

 

Out[70]: 

 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 



0 1 0.0 3 

Braund, 

Mr. Owen 

Harris 

0 22.0 1 0 A/5 21171 7.2500 Unknown 0 

1 2 1.0 1 

Cumings, 

Mrs. John 

Bradley 

(Florence 

Briggs 

Th... 

1 38.0 1 0 PC 17599 71.2833 C85 2 

2 3 1.0 3 
Heikkinen, 

Miss. Laina 
1 26.0 0 0 

STON/O2. 

3101282 
7.9250 Unknown 0 

3 4 1.0 1 

Futrelle, 

Mrs. 

Jacques 

Heath (Lily 

May Peel) 

1 35.0 1 0 113803 53.1000 C123 0 

4 5 0.0 3 

Allen, Mr. 

William 

Henry 

0 35.0 0 0 373450 8.0500 Unknown 0 

In [71]: 

total_data.isna().sum() 

 

Out[71]: 

PassengerId      0 

Survived       418 

Pclass           0 



Name             0 

Sex              0 

Age              0 

SibSp            0 

Parch            0 

Ticket           0 

Fare             0 

Cabin            0 

Embarked         0 

AgeGroup         0 

Title            0 

deck             0 

Family_size      0 

Alone            0 

dtype: int64 

Dateset is completely ready now! 

2.3 Feature selection 



 

We will now select the features (X) for our model. These features will help our model identify patterns. 

The features will be columns. 

"When feature engineering is done, we usually tend to decrease the dimensionality by selecting the "right" 

number of features that capture the essential." 

In [72]: 

features = ['Embarked','Fare','Pclass','Sex','Title','Family_size','Alone'] 

 

Building Machine Learning Models 

In [73]: 

#Modelos 

from sklearn.ensemble import RandomForestClassifier 

 

#Metrics 

from sklearn.metrics import make_scorer, accuracy_score,precision_score 

from sklearn.metrics import classification_report 



from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score ,precision_score,recall_score,f1_score 

from sklearn.metrics import roc_curve 

from sklearn.metrics import roc_auc_score 

 

#Model Select 

from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import  LogisticRegression 

from sklearn.ensemble import RandomForestClassifier 

from sklearn import linear_model 

from sklearn.linear_model import SGDClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.svm import SVC, LinearSVC 

from sklearn.naive_bayes import GaussianNB 

 

In [74]: 

df_train = total_data[0:891] 

df_test =  total_data[891:] 

X = df_train[features] 

y = df_train['Survived'].astype(int) 

 

In [75]: 



X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=78941) 

 

Now we will train several Machine Learning models and compare their results. Note that because the 

dataset does not provide labels for their testing-set, we need to use the predictions on the training set to 

compare the algorithms with each other. Later on, we will use cross validation. 

Random Forest: 

In [76]: 

random_forest = RandomForestClassifier(n_estimators=100) 

random_forest.fit(X_train, y_train) 

 

Y_prediction = random_forest.predict(X_test) 

 

random_forest.score(X_train, y_train) 

acc_random_forest = round(random_forest.score(X_train, y_train) * 100, 2) 

 

Logistic Regression: 

In [77]: 

logreg = LogisticRegression(solver= 'lbfgs',max_iter=400) 

logreg.fit(X_train, y_train) 

 

Y_pred = logreg.predict(X_test) 

 

acc_log = round(logreg.score(X_train, y_train) * 100, 2) 

 



K Nearest Neighbor: 

In [78]: 

knn = KNeighborsClassifier(n_neighbors = 3) 

knn.fit(X_train, y_train) 

Y_pred = knn.predict(X_test)  

acc_knn = round(knn.score(X_train, y_train) * 100, 2) 

 

Gaussian Naive Bayes: 

In [79]: 

gaussian = GaussianNB() 

gaussian.fit(X_train, y_train) 

Y_pred = gaussian.predict(X_test)  

acc_gaussian = round(gaussian.score(X_train, y_train) * 100, 2) 

 

Linear Support Vector Machine: 

In [80]: 

linear_svc = LinearSVC() 

linear_svc.fit(X_train, y_train) 

 

Y_pred = linear_svc.predict(X_test) 

 

acc_linear_svc = round(linear_svc.score(X_train, y_train) * 100, 2) 

 



/opt/conda/lib/python3.7/site-packages/sklearn/svm/_base.py:947: ConvergenceWarning: Liblinear failed 

to converge, increase the number of iterations. 

  "the number of iterations.", ConvergenceWarning) 

 

Decision Tree 

In [81]: 

decision_tree = DecisionTreeClassifier()  

decision_tree.fit(X_train, y_train)   

Y_pred = decision_tree.predict(X_test)  

acc_decision_tree = round(decision_tree.score(X_train, y_train) * 100, 2) 

 

Which is the best Model ? 

In [82]: 

results = pd.DataFrame({ 

    'Model': [ 'KNN', 'Logistic Regression',  

              'Random Forest', 'Naive Bayes',   

              ' Support Vector Machine',  

              'Decision Tree'], 

    'Score': [ acc_knn, acc_log,  

              acc_random_forest, acc_gaussian,   

              acc_linear_svc, acc_decision_tree]}) 

result_df = results.sort_values(by='Score', ascending=False) 

result_df = result_df.set_index('Score') 

result_df.head(9) 



 

Out[82]: 

 Model 

Score  

93.54 Random Forest 

93.54 Decision Tree 

85.11 KNN 

81.46 Naive Bayes 

80.76 Logistic Regression 

72.47 Support Vector Machine 

As we can see, the Random Forest classifier goes on the first place. But first, let us check, how random-

forest performs & Logistic_Regression 

Logistic_Regression Model 



Logistic regression is a supervised learning classification 

algorithm used to predict the probability of a target variable. The nature of target or dependent variable is 

dichotomous, which means there would be only two possible classes. 

In simple words, the dependent variable is binary in nature having data coded as either 1 (stands for 

success/yes) or 0 (stands for failure/no). 

In [83]: 

model= LogisticRegression(solver= 'lbfgs',max_iter=400) 

model.fit(X_train, y_train) 

predictions = model.predict(X_test) 

 

 

cm_logit = confusion_matrix(y_test, predictions) 

print('Confusion matrix for Logistic\n',cm_logit) 

 

accuracy_logit = accuracy_score(y_test,predictions) 

precision_logit =precision_score(y_test, predictions) 

recall_logit =  recall_score(y_test, predictions) 

f1_logit = f1_score(y_test, predictions) 

print('accuracy_logistic : %.3f' %accuracy_logit) 

print('precision_logistic : %.3f' %precision_logit) 



print('recall_logistic : %.3f' %recall_logit) 

print('f1-score_logistic : %.3f' %f1_logit) 

auc_logit = roc_auc_score(y_test,predictions) 

print('AUC_logistic : %.2f' % auc_logit) 

 

Confusion matrix for Logistic 

 [[97 18] 

 [22 42]] 

accuracy_logistic : 0.777 

precision_logistic : 0.700 

recall_logistic : 0.656 

f1-score_logistic : 0.677 

AUC_logistic : 0.75 

 

Random_Forest Model 



Random forest is a supervised learning algorithm which is used for both classification as well as 

regression. But however, it is mainly used for classification problems. As we know that a forest is made up 

of trees and more trees means more robust forest. Similarly, random forest algorithm creates decision trees 

on data samples and then gets the prediction from each of them and finally selects the best solution by 

means of voting. It is an ensemble method which is better than a single decision tree because it reduces the 

over-fitting by averaging the result. 

I would like to introduce one of the most popular algorithms for classification (but also regression, etc), 

Random Forest! In a nutshell, Random Forest is an ensembling learning algorithm which combines 

decision trees in order to increase performance and avoid overfitting. 

Hyperparameter Tuning 

Below we set the hyperparameter grid of values with 4 lists of values: 

'criterion' : A function which measures the quality of a split. 

'n_estimators' : The number of trees of our random forest. 

'max_features' : The number of features to choose when looking for the best way of splitting. 



'max_depth' : the maximum depth of a decision tree. 

In [84]: 

randomForestFinalModel = RandomForestClassifier(random_state = 2, 

bootstrap=False,min_samples_split=2,min_samples_leaf= 5, criterion = 'entropy', max_depth = 13, 

max_features = 'sqrt', n_estimators = 200) 

randomForestFinalModel.fit(X_train, y_train) 

predictions_rf = randomForestFinalModel.predict(X_test) 

 

cm_logit = confusion_matrix(y_test, predictions_rf) 

print('Confusion matrix for Random Forest\n',cm_logit) 

 

accuracy_logit = accuracy_score(y_test,predictions_rf) 

precision_logit =precision_score(y_test, predictions_rf) 

recall_logit =  recall_score(y_test, predictions_rf) 

f1_logit = f1_score(y_test,predictions_rf) 

print('accuracy_random_Forest : %.3f' %accuracy_logit) 

print('precision_random_Forest : %.3f' %precision_logit) 

print('recall_random_Forest : %.3f' %recall_logit) 

print('f1-score_random_Forest : %.3f' %f1_logit) 

auc_logit = roc_auc_score(y_test,predictions_rf) 

print('AUC_random_Forest: %.2f' % auc_logit) 

 

Confusion matrix for Random Forest 

 [[101  14] 

 [ 21  43]] 



accuracy_random_Forest : 0.804 

precision_random_Forest : 0.754 

recall_random_Forest : 0.672 

f1-score_random_Forest : 0.711 

AUC_random_Forest: 0.78 

 

Roc_curve 

Another way to evaluate and compare your binary classifier is provided by the ROC AUC Curve. This 

curve plots the true positive rate (also called recall) against the false positive rate (ratio of incorrectly 

classified negative instances), instead of plotting the precision versus the recall. 

In [85]: 

a=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 

b=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 

fig =plt.figure(figsize=(20,12),dpi=50) 

fpr, tpr, thresholds = roc_curve(y_test,predictions ) 

plt.plot(fpr, tpr,color ='orange',label ='Logistic',linewidth=2 ) 

fpr, tpr, thresholds = roc_curve(y_test,predictions_rf ) 

plt.plot(fpr, tpr,color ='blue',label ='random Forest',linewidth=2 ) 

 

plt.plot(a,b,color='black',linestyle ='dashed',linewidth=2) 

plt.legend(fontsize=15) 

plt.xlabel('False Positive Rate',fontsize=15) 

plt.ylabel('True Positive Rate',fontsize=15) 

 



Out[85]: 

Text(0, 0.5, 'True Positive Rate') 

 

Let's submit our solutions 

In [86]: 

submission = pd.DataFrame({ 

    "PassengerId": df_test["PassengerId"], 

    "Survived": randomForestFinalModel.predict( df_test[features]) 

}) 

 

In [87]: 



submission.head() 

 

Out[87]: 

 PassengerId Survived 

0 892 0 

1 893 1 

2 894 0 

3 895 0 

4 896 1 

In [88]: 

submission.to_csv("titanic_s.csv",index=False) 
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