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1. | Introduction 👋 



   
 

 

 



   
 

Dataset Problems 🤔 

👉 It is required to predict the price of avocado from various regions, types, years, total volumes and many 

more. The price prediction will use regression technique with auto ML library called PyCaret. In addition, 

this notebook will also perform simple data pre-processing before calling PyCaret regression module. 

Objectives of Notebook 📌 

👉 This notebook aims to: 

● Perform EDA on avocado dataset, 

● Perform data pre-processing before using PyCaret module, and 

● Implementing PyCaret regression module to predict avocado price, 

Machine Learning Modules 👨💻 

👉 The model used in this notebook: 

1. PyCaret Regression Module 

Dataset Description 🧾 

👉 There are 14 variables in this dataset: 

● 3 categorical variables, 

● 9 continuous variables, 

● 1 variable contains date of observation, and 

● 1 variable as index of dataset. 

👉 The following is the structure of the dataset. 



   
 

Variable Name Description Sample Data 

... Index 1; 2; ... 

Date 

Observation date 

(yyyy-mm-dd format) 

27-12-2015; 20-12-2015; ... 

AveragePrice Average price of an avocado 1.33; 0.93; ... 

Total Volume Total number of avocados sold 64236.62; 118220.22; ... 

4046 Total number of avocados with PLU 4046 sold 2695; 263807; ... 

4225 Total number of avocados with PLU 4225 sold 80596; 32457; ... 

4770 Total number of avocados with PLU 4770 sold 43; 1390; ... 

Total Bags Total of Small Bags, Large Bags, and XLarge Bags combined 8696.87; 9505.56; ... 

Small Bags Total of Small Bags 8603.62; 9408.07; ... 



   
 

Large Bags Total Large Bags 93.25; 103.14; ... 

XLarge Bags Total XLarge Bags 0; 33.33; ... 

type Conventional or organic avocado conventional; organic 

year Year from date 2015; 2017; ... 

region The city or region of the observation Albany; Boston; ... 

 

📌 Like this notebook? You can support me by giving upvote 😆👍🔼 :. 

👉 More about myself: linktr.ee/caesarmario_ 

 

1.1 | What is PyCaret ❓ 

 

 

 

https://linktr.ee/caesarmario_


   
 

PyCaret is an open-source machine learning package written in low-code 

that enables Data Scientists to automate their machine learning processes. It reduces the model 

experimentation process, allowing for the achievement of specific outcomes with less code. 

1.2 | Why using PyCaret ❔ 

As more businesses shifted their focus to Machine Learning to address challenging issues, data scientists 

were expected to give results faster. This has increased the demand for automating important phases in data 

science projects so that data scientists may focus on the real problem at hand rather than writing 

hundreds of lines of code to identify the optimal model. 

1.3 | A Quick Overview of the PyCaret Regression Module 🔬 

The regression module in PyCaret is pycaret.regression. It is a supervised machine learning module for 

predicting values or outcomes using a variety of methods and methodologies. It includes approximately 25 

algorithms and ten graphs for analyzing the models' performance. PyCaret is another source for all 

machine learning solutions, whether it's assembly, hyper-parameter tweaking, or advanced tuning such as 

stacking. With PyCaret, a data scientist/user can implement various regression modules, such as: 

● Linear Regression, 

● Lasso Regression, 

● Ridge Regression, 

● Elastic Net, 

● Decision Tree Regressor, 

● Support Vector Regressor, 

● AdaBoost Regressor, 

● Gradient Boosting Regressor, 

● Decision Tree Regressor, and many more. 

.: 📖 Further information about PyCaret here. 

2. | Installing and Importing Libraries 📚 

https://pycaret.org/


   
 

👉 Installing PyCaret & other libraries and importing them to be used in this 

notebook. 

In [2]: 

# --- Installing Libraries --- 

!pip install pycaret 

!pip install markupsafe==2.0.1 

!pip jinja2 

 

unfold_moreShow hidden output 

In [3]: 

# --- Importing Libraries --- 

import datetime 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import scipy 

import pycaret 

import warnings 

import jinja2 

 

from sklearn.preprocessing import LabelEncoder 

from scipy import stats 



   
 

from scipy.stats import * 

from pycaret.regression import * 

 

# --- Libraries Settings --- 

warnings.filterwarnings('ignore') 

sns.set_style('whitegrid') 

plt.rcParams['figure.dpi'] = 100 

 

3. | Color Palettes 🎨 

👉 This section will create some color palettes that will be used in this notebook. 

unfold_moreShow hidden code 

 

 

 



   
 

 

4. | Reading Dataset 👓 

👉 After importing libraries, the dataset that will be used will be imported. 

unfold_moreShow hidden code 

Out[5]: 

Unnamed: 

0 
Date AveragePrice Total Volume 4046 4225 4770 Total Bags Small Bags 

0 
2015-

12-27 
1.330000 64236.620000 1036.740000 54454.850000 48.160000 8696.870000 8603.620000 

1 
2015-

12-20 
1.350000 54876.980000 674.280000 44638.810000 58.330000 9505.560000 9408.070000 

         

2 
2015-

12-13 
0.930000 118220.220000 794.700000 109149.670000 130.500000 8145.350000 8042.210000 

3 
2015-

12-06 
1.080000 78992.150000 1132.000000 71976.410000 72.580000 5811.160000 5677.400000 



   
 

4 
2015-

11-29 
1.280000 51039.600000 941.480000 43838.390000 75.780000 6183.950000 5986.260000 

unfold_moreShow hidden code 

.: Imported Dataset Info :. 

****************************** 

Total Rows: 18249 

Total Columns: 14 

****************************** 

 

 

.: Dataset Details :. 

****************************** 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 18249 entries, 0 to 18248 

Data columns (total 14 columns): 

 #   Column        Non-Null Count  Dtype   

---  ------        --------------  -----   

 0   Unnamed: 0    18249 non-null  int64   

 1   Date          18249 non-null  object  

 2   AveragePrice  18249 non-null  float64 

 3   Total Volume  18249 non-null  float64 

 4   4046          18249 non-null  float64 



   
 

 5   4225          18249 non-null  float64 

 6   4770          18249 non-null  float64 

 7   Total Bags    18249 non-null  float64 

 8   Small Bags    18249 non-null  float64 

 9   Large Bags    18249 non-null  float64 

 10  XLarge Bags   18249 non-null  float64 

 11  type          18249 non-null  object  

 12  year          18249 non-null  int64   

 13  region        18249 non-null  object  

dtypes: float64(9), int64(2), object(3) 

👉 It can be seen that dataset has successfully imported. 

👉 In the dataset, there are 14 columns with 18249 observations. 

👉 Also, there are no null values in this dataset. 

👉 The details of each variables also can be seen above. 

5. | Initial Data Exploration 🔍 

👉 This section will focused on initial data exploration before implementing PyCaret regression module. 

5.1 | Categorical Variable 📊 

👉 The first type of variable that will be explored is categorical variable. 

5.1.1 | Type 

unfold_moreShow hidden code 



   
 

**************************************** 

.: Total Avocado based on each Type :. 

**************************************** 

 

Out[7]: 

conventional    9126 

organic         9123 

Name: type, dtype: int64 



   
 

 

👉 The distribution of conventional and organic avocados are equally distributed. 



   
 

5.1.2 | Year 

unfold_moreShow hidden code 

*********************************** 

.: Total Avocado based on Year :. 

*********************************** 

 

Out[8]: 

2017    5722 

2016    5616 

2015    5615 

2018    1296 

Name: year, dtype: int64 



   
 

 

👉 The number of avocados in 2017 is the highest compared to other years (with 31.36%). 



   
 

👉 However, the number of avocados in 2018 is the lowest, only 7.10%. 

5.1.3 | Region 

unfold_moreShow hidden code 

************************************** 

.: Total Avocado based on Regions :. 

************************************** 

 

Out[9]: 

Albany                 338 

Sacramento             338 

Northeast              338 

NorthernNewEngland     338 

Orlando                338 

Philadelphia           338 

PhoenixTucson          338 

Pittsburgh             338 

Plains                 338 

Portland               338 

RaleighGreensboro      338 

RichmondNorfolk        338 

Roanoke                338 

SanDiego               338 



   
 

Atlanta                338 

SanFrancisco           338 

Seattle                338 

SouthCarolina          338 

SouthCentral           338 

Southeast              338 

Spokane                338 

StLouis                338 

Syracuse               338 

Tampa                  338 

TotalUS                338 

West                   338 

NewYork                338 

NewOrleansMobile       338 

Nashville              338 

Midsouth               338 

BaltimoreWashington    338 

Boise                  338 

Boston                 338 

BuffaloRochester       338 

California             338 

Charlotte              338 

Chicago                338 

CincinnatiDayton       338 



   
 

Columbus               338 

DallasFtWorth          338 

Denver                 338 

Detroit                338 

GrandRapids            338 

GreatLakes             338 

HarrisburgScranton     338 

HartfordSpringfield    338 

Houston                338 

Indianapolis           338 

Jacksonville           338 

LasVegas               338 

LosAngeles             338 

Louisville             338 

MiamiFtLauderdale      338 

WestTexNewMexico       335 

Name: region, dtype: int64 

unfold_moreShow hidden code 
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👉 The number of avocados from various regions are equally distributed (with 

percentage of 1.85%). 

👉 However, in WestTexNewMexico, the number of avocados slightly lower (335 avocados). 

5.2 | Numerical Variable 🔢 

👉 The second variable that will be explored is numerical variable. 

5.2.1 | Descriptive Statistics 📏 

👉 This section will show descriptive statistics of numerical variables. 

unfold_moreShow hidden code 

Out[12]: 

  count mean std min 25% 50% 75% max 

AveragePr

ice 

18249.000

000 
1.405978 0.402677 

0.44000

0 
1.100000 1.370000 1.660000 3.250000 

Total 

Volume 

18249.000

000 

850644.013

009 

3453545.355

399 

84.5600

00 

10838.580

000 

107376.760

000 

432962.290

000 

62505646.520

000 

4046 
18249.000

000 

293008.424

531 

1264989.081

763 

0.00000

0 

854.07000

0 

8645.30000

0 

111020.200

000 

22743616.170

000 

4225 
18249.000

000 

295154.568

356 

1204120.401

135 

0.00000

0 

3008.7800

00 

29061.0200

00 

150206.860

000 

20470572.610

000 



   
 

4770 
18249.000

000 

22839.7359

93 

107464.0684

35 

0.00000

0 
0.000000 184.990000 

6243.42000

0 

2546439.1100

00 

Total Bags 
18249.000

000 

239639.202

060 

986242.3992

16 

0.00000

0 

5088.6400

00 

39743.8300

00 

110783.370

000 

19373134.370

000 

Small 

Bags 

18249.000

000 

182194.686

696 

746178.5149

62 

0.00000

0 

2849.4200

00 

26362.8200

00 

83337.6700

00 

13384586.800

000 

Large 

Bags 

18249.000

000 

54338.0881

45 

243965.9645

47 

0.00000

0 

127.47000

0 

2647.71000

0 

22029.2500

00 

5719096.6100

00 

XLarge 

Bags 

18249.000

000 

3106.42650

7 

17692.89465

2 

0.00000

0 
0.000000 0.000000 132.500000 

551693.65000

0 

👉 From the descriptive statistics, it can be seen that Average Price is lack of variation. 

👉 Furthermore, it can be seen that the rest of the columns have more variation. 

📌 Low standard deviation means data are clustered around the mean (lack of variation), and high standard deviation 

indicates data are more spread out (more variation). 

5.2.2 | Continuous Column Distribution 📈 

👉 This section will show the distribution of numerical variables in histogram and boxenplot. 

unfold_moreShow hidden code 



   
 

 



   
 

👉 From the boxenplots and histogram, it can be seen that most of the columns 

has extreme outliers and heavily right-skewed. 

👉 However, in Average Price column, the distribution is moderately skewed to the right and it has outliers. 

5.2.3 | Skewness and Kurtosis 📐 

👉 This section will show the numerical variables skewness and kurtosis value. 

unfold_moreShow hidden code 

.: Continuous Columns Skewness :. 

********************************** 

 

Out[14]: 

AveragePrice     0.580303 

Total Volume     9.007687 

4046             8.648220 

4225             8.942466 

4770            10.159396 

Total Bags       9.756072 

Small Bags       9.540660 

Large Bags       9.796455 

XLarge Bags     13.139751 

dtype: float64 

👉 As can be seen from skewness results, all columns beside Average Price are highly right skewed (the 

skewness value is > 1, and the tail of distribution is on the right side of histogram). 



   
 

unfold_moreShow hidden code 

.: Continuous Columns Kurtosis :. 

********************************** 

 

Out[15]: 

AveragePrice      0.325196 

Total Volume     92.104458 

4046             86.809113 

4225             91.949022 

4770            132.563441 

Total Bags      112.272156 

Small Bags      107.012885 

Large Bags      117.999481 

XLarge Bags     233.602612 

dtype: float64 

👉 From resullts above, it can be seen that all columns beside Average Price is leptokurtic. While 

Average Price itself is platikurtic. 

📌 Kurtosis values used to show tailedness of a column. The value of normal distribution (mesokurtotic) should be equal 

to 3. If kurtosis value is more than 3, it is called leptokurtic. Meanwhile, if kurtosis value is less than 3, then it is cal led 

platikurtic. 

6. | EDA 💹 

👉 This section will perform some EDA to get more insights about dataset. 



   
 

6.1 | Top 5 Regions w/ the Most Sold 🌍🛒 

👉 Bar charts below shows top 5 regions with most sales for each avocado types. In this case, "TotalUS" 

isn't included since it is combination value from different regions in the dataset. 

unfold_moreShow hidden code 

 

👉 From bar charts above, conventional avocado has highest sales compared to organic avocados. In 

conventional avocado, the highest sales is above 6.000.000, while the highest sales in organic avocado is 

only above 200.000 (the sales difference is about 5.800.000). 

👉 Both West and California have the highest number of avocado sold in both types. With West in 1st 

position and California in 2nd position for both avocado types. 



   
 

👉 It also can be seen that conventional avocados in South Central are 

popular (in 3rd place) compared to organic avocados (in 5th place). 

👉 Otherwise, in North East, organic avocados very popular (in 3rd place) compared to conventional 

avocados (in 5th place). 

6.2 | Top 5 Regions w/ Highest Avocado Price 🌏💵 

👉 This section will show the top 5 regions with highest avocado prices for each avocado types. 

unfold_moreShow hidden code 

 

👉 In general, it can be seen that organic avocados are more expensive compared to conventional 

avocados. 

👉 The price differences in conventional avocados are very small compared to organic avocados, which 

indicates that distribution of conventional avocados price is almost the same in every region. 



   
 

👉 Both Hartford Springfield, New York, and San Francisco always become 

regions with highest avocado prices. In addition, Hartford Springfield is in the 1st position for both 

conventional and avocado types. 

👉 However, for New York and San Francisco positions are different in conventional and organic 

avocado types. In conventional avocados, New York placed 2nd, while in organic avocados, New York 

placed 3rd. Similarly in San Francisco, the positions of San Francisco in conventional avocados is in the 3rd 

place, while in organic avocados, San Francisco placed 2nd. 

6.3 | Avocado PLU Sold Comparison between Avocado Types 🛒🥑 

👉 This section will compare total avocado sold based on PLU. There are three PLUs, which are PLU 

4046, PLU 4225, and PLU 4770. 

unfold_moreShow hidden code 

 



   
 

👉 Based on stacked bar chart above, it can be seen that conventional avocado 

with PLU 4046 & PLU 4225 have almost the same quantity of avocado sold. For PLU 4770, the quantity 

of avocado sold is very small compared to other PLU. 

👉 In organic type, the avocado with PLU 4225 is the highest, followed by PLU 4046. 

6.4 | Bag Size Comparison between Avocado Types 💼🥑 

👉 This section will compare total avocado sold based on bags size. There are three size of bags, small 

bags, large bags and extra large bags. 

unfold_moreShow hidden code 

 

👉 From bar above, it can be seen that the number of small bags in both avocado types are the highest, 

followed by large bags. The XLarge bags has the smallest number from all bags. 

6.5 | Average Price Distribution based on Types from 2015-2018 💵📅 



   
 

👉 This section will show box plots to see the price distributions for each 

avocado types from 2015 until 2018. 

unfold_moreShow hidden code 

 

👉 As mentioned in previous section, the price of organic avocados are more expensive compared to 

conventional avocados. 

👉 In general, the price distribution for both avocado types decreased in 2016, then reached its peak 2017 

and finally declined again in 2018. 

👉 The highest price of an organic avocado was in 2016, while the cheapest price was in 2017. Meanwhile 

for conventional avocado, the most expensive price were in 2016 and 2017, while the cheapest price was 

in 2017 too. 

6.6 | Scatter Plot between Total Volume and Total Bags 🛒💼 



   
 

👉 Below will show the scatter plot between total avocados sold and total 

avocado bags in order to determine the heteroscedasticity from these two variables. 

👉 This scatter plot will also seperated with based on avocado types with different colors. 

📌 Heteroscedasticity is a concept that describes to circumstances in which the residual variance is uneven throughout 

a spectrum of measured data. A fan or cone form on a plot of the residuals suggests the existence of heteroscedasticity (as 

the variable values rise, the variance of the residuals increases proportionately). Heteroscedasticity is considered a concern 

in statistics because regressions using ordinary least squares (OLS) presume that the residuals are generated from a population 

with constant variance. 

unfold_moreShow hidden code 



   
 

 

👉 In general, it can be seen that the scatter plot clearly shows heteroscedasticity, since the variable values 

increases, the distribution/residual variance also increases until form a cone shape. 

👉 From this plot, it can be concluded that if the total avocado sold for both types increases, then the 

total bags also increases. 

👉 The distribution for organic avocados relatively lower and congregate at the same spot compared to 

conventional avocados which more spread out. 



   
 

6.7 | Time Series Plot of Total Avocado Sold 🛒⌛ 

👉 Below is times series plot about total avocado sold from 2015-2018 based on avocado type. 

unfold_moreShow hidden code 

 

👉 As previously mentioned in previous EDA, conventional avocado has highest sales compared to organic 

avocados. 



   
 

👉 In further analysis, it can be seen that at the end of the year until February 

the beginning of the following year there is an upward trend in conventional avocado sales. The highest 

sales of conventional avocado was in February 2018 while the lowest sales was in November 2016. 

👉 However, there is no significant increase or decrease in organic avocado sales from 2015 until 

beginning of 2018. 

6.8 | Time Series Plot of Avg. Price 💵⌛ 

👉 Below is average price time series plot of avocado from 2015-2018 based on avocado type. 

unfold_moreShow hidden code 

 

👉 As previously mentioned in previous section, organic avocados are more expensive compared to 

convetional avocados. 

👉 It also can be seen that the avocado price fluctuations for both types are similar. 



   
 

👉 In further analysis, the price of organic avocados always reached its peak 

between August-September for past 3 years (2015-2017). Different case with conventional avocados 

which doesn't have seasonality. 

👉 The highest price of organic and conventional avocados were on September 2017. However, in the next 

month the prices for both types declined. 

6.9 | Heatmap 🔥 

👉 Below is correlation map/heatmap of numerical variables to show correlation level/values for each 

variables with others. 

unfold_moreShow hidden code 

 



   
 

👉 From plot above, Total Volume, 4046, 4225. 4770, Total Bags, Small Bags, 

Large Bags, and XLarge Bags are highly correlated to each other since the correlation value is above 

0.6 (brighter means have high correlation). 

👉 Meanwhile, Unnamed: 0, AveragePrice, and year are low correlated since the correlation value is 

less than 0.1 (darker means have low correlation). 

6.10 | EDA Conclusion 📉👀 

👉 Based on EDAs above, it can be concluded that: 

● Conventional avocados have the lowest price and the most sales with little difference. 

Meanwhile, organic avocados have high prices and the least sales with a significant price 

difference. People are more likely to choose conventional avocados because they are cheap. 

● From the time series plot of avocado prices, the lowest prices for conventional avocados fell in 

February and May 2016 and February 2017. Meanwhile, in the time series plots of avocado sales, 

sales of conventional & organic avocados increased dramatically in those months. It can be 

concluded that the best time to sell conventional avocado is from the end of the year to the 

beginning (February). 

● The price of organic avocado follows the price of conventional avocado, but it does not affect 

the total sales of avocado, which is relatively the same every month. 

● In 2017, the average avocado price for both avocado types became the most expensive compared 

to the previous and following years. 

● West and California had the highest avocado sales rates for both types, followed by South 

Central and North East. 

● The highest prices for both avocado types are in the Springfield, New York, and San Francisco 

regions. 

● Avocado with PLU 4046 and 4225 had the highest average number of avocados compared to 

avocado with PLU 4770. In addition, small avocado bags had the highest average number 

compared to other avocado bags. 

● The higher the whole avocado sold, the more avocado bags available. This is indicated by 

heteroscedasticity between the total volume and total bags in the scatter plot. In addition, the high 

correlation value in the correlation map also indicates a reasonably high correlation between 

these two variables. 

7. | Dataset Pre-processing 🔧 



   
 

👉 This section will pre-process the dataset before implemented into PyCaret 

module. A "month" column will be added into dataframe by extracting month number from "Date" 

column. 

In [25]: 

# --- Change `Date` Format to 'datetime' --- 

ds.Date = pd.to_datetime(ds.Date) 

 

# --- Extracting Month Number from `Date`  --- 

ds['month'] = pd.DatetimeIndex(ds['Date']).month 

 

8. | PyCaret Setup ⚙ 

👉 This section will implement the PyCaret regression module. 

👉 In addition, this section will also do some experiments, including creating another models from the 

module and tuning it. 

8.1 | Setup PyCaret Environment 🔨 

👉 First, it is required to setup the module by defining the target, train size and etc. The configuration are 

as follows: 

● Target variable is average price, 

● Train test size ratio is 80% train and 20% test, 

● Defining the categorical variables (type, year, region, and month), 

● Since there are outliers from previous observation, the normalization method will using robust 

technique, and 

● Low variance features will be ignored. 



   
 

👉 To setup the PyCaret environment, setup() function will be used and the 

configuration will be added inside the bracket. 

In [26]: 

# --- Setup PyCaret Regression Module --- 

avc = setup(data = ds, target = 'AveragePrice', train_size = 0.8, 

            categorical_features = ['type', 'year', 'region', 'month'], normalize = True, normalize_method = 

'robust',  

            silent = True, ignore_low_variance = True, session_id = 123) 

 

  Description Value 

0 session_id 123 

1 Target AveragePrice 

2 Original Data (18249, 15) 

3 Missing Values False 

4 Numeric Features 9 



   
 

5 Categorical Features 4 

6 Ordinal Features False 

7 High Cardinality Features False 

8 High Cardinality Method None 

9 Transformed Train Set (14599, 83) 

10 Transformed Test Set (3650, 83) 

11 Shuffle Train-Test True 

12 Stratify Train-Test False 

13 Fold Generator KFold 

14 Fold Number 10 



   
 

15 CPU Jobs -1 

16 Use GPU False 

17 Log Experiment False 

18 Experiment Name reg-default-name 

19 USI ccb8 

20 Imputation Type simple 

21 Iterative Imputation Iteration None 

22 Numeric Imputer mean 

23 Iterative Imputation Numeric Model None 

24 Categorical Imputer constant 



   
 

25 Iterative Imputation Categorical Model None 

26 Unknown Categoricals Handling least_frequent 

27 Normalize True 

28 Normalize Method robust 

29 Transformation False 

30 Transformation Method None 

31 PCA False 

32 PCA Method None 

33 PCA Components None 

34 Ignore Low Variance True 



   
 

35 Combine Rare Levels False 

36 Rare Level Threshold None 

37 Numeric Binning False 

38 Remove Outliers False 

39 Outliers Threshold None 

40 Remove Multicollinearity False 

41 Multicollinearity Threshold None 

42 Remove Perfect Collinearity True 

43 Clustering False 

44 Clustering Iteration None 



   
 

45 Polynomial Features False 

46 Polynomial Degree None 

47 Trignometry Features False 

48 Polynomial Threshold None 

49 Group Features False 

50 Feature Selection False 

51 Feature Selection Method classic 

52 Features Selection Threshold None 

53 Feature Interaction False 

54 Feature Ratio False 



   
 

55 Interaction Threshold None 

56 Transform Target False 

57 Transform Target Method box-cox 

8.2 | PyCaret Regression Models 🏭 

👉 Now, this section will show list of models that PyCaret regression have. models() will be used to list 

down all the models available. 

In [27]: 

# --- List PyCaret Regression Models --- 

models() 

 

Out[27]: 

 Name Reference Turbo 

ID    

lr Linear Regression sklearn.linear_model._base.LinearRegression True 



   
 

lasso Lasso Regression sklearn.linear_model._coordinate_descent.Lasso True 

ridge Ridge Regression sklearn.linear_model._ridge.Ridge True 

en Elastic Net sklearn.linear_model._coordinate_descent.Elast... True 

lar Least Angle Regression sklearn.linear_model._least_angle.Lars True 

llar Lasso Least Angle Regression sklearn.linear_model._least_angle.LassoLars True 

omp Orthogonal Matching Pursuit sklearn.linear_model._omp.OrthogonalMatchingPu... True 

br Bayesian Ridge sklearn.linear_model._bayes.BayesianRidge True 

ard Automatic Relevance Determination sklearn.linear_model._bayes.ARDRegression False 

par Passive Aggressive Regressor sklearn.linear_model._passive_aggressive.Passi... True 

ransac Random Sample Consensus sklearn.linear_model._ransac.RANSACRegressor False 



   
 

tr TheilSen Regressor sklearn.linear_model._theil_sen.TheilSenRegressor False 

huber Huber Regressor sklearn.linear_model._huber.HuberRegressor True 

kr Kernel Ridge sklearn.kernel_ridge.KernelRidge False 

svm Support Vector Regression sklearn.svm._classes.SVR False 

knn K Neighbors Regressor sklearn.neighbors._regression.KNeighborsRegressor True 

dt Decision Tree Regressor sklearn.tree._classes.DecisionTreeRegressor True 

rf Random Forest Regressor sklearn.ensemble._forest.RandomForestRegressor True 

et Extra Trees Regressor sklearn.ensemble._forest.ExtraTreesRegressor True 

ada AdaBoost Regressor sklearn.ensemble._weight_boosting.AdaBoostRegr... True 

gbr Gradient Boosting Regressor sklearn.ensemble._gb.GradientBoostingRegressor True 



   
 

mlp MLP Regressor sklearn.neural_network._multilayer_perceptron.... False 

xgboost Extreme Gradient Boosting xgboost.sklearn.XGBRegressor True 

lightgbm Light Gradient Boosting Machine lightgbm.sklearn.LGBMRegressor True 

catboost CatBoost Regressor catboost.core.CatBoostRegressor True 

dummy Dummy Regressor sklearn.dummy.DummyRegressor True 

8.3 | Comparing All Models 🔭 

👉 compare_models() will be used to evaluate all models performance after all models successfully 

running. In the table will show the MAE, MSE, RMSE, R2, RMSLE, and MAPE score of each models. It 

also show total of time (in sec) needed to execute the models. 

👉 For this experiment, R2 score will be used to evaluate the model. 

In [28]: 

# --- Comparing All Models --- 

best_models = compare_models(sort='R2') 

 



   
 

  Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec) 

et Extra Trees Regressor 0.0729 0.0116 0.1076 0.9284 0.0432 0.0539 5.7420 

catboost CatBoost Regressor 0.0840 0.0132 0.1146 0.9187 0.0458 0.0615 4.3090 

xgboost Extreme Gradient Boosting 0.0877 0.0147 0.1213 0.9090 0.0484 0.0638 33.1610 

rf Random Forest Regressor 0.0851 0.0150 0.1223 0.9073 0.0492 0.0631 6.2110 

lightgbm Light Gradient Boosting Machine 0.0990 0.0178 0.1332 0.8904 0.0537 0.0732 0.2660 

dt Decision Tree Regressor 0.1169 0.0322 0.1794 0.8010 0.0721 0.0855 0.1230 

knn K Neighbors Regressor 0.1356 0.0353 0.1876 0.7825 0.0768 0.1021 0.6520 

gbr Gradient Boosting Regressor 0.1537 0.0411 0.2025 0.7465 0.0816 0.1155 2.1100 

br Bayesian Ridge 0.1819 0.0582 0.2411 0.6409 0.0974 0.1372 0.0790 



   
 

ridge Ridge Regression 0.1819 0.0582 0.2411 0.6409 0.0974 0.1372 0.0320 

lr Linear Regression 0.1820 0.0583 0.2413 0.6403 0.0975 0.1372 0.5380 

ada AdaBoost Regressor 0.2110 0.0677 0.2602 0.5811 0.1085 0.1683 1.1120 

huber Huber Regressor 0.2101 0.0773 0.2779 0.5227 0.1123 0.1590 0.6530 

omp Orthogonal Matching Pursuit 0.2159 0.0782 0.2796 0.5171 0.1145 0.1663 0.0290 

en Elastic Net 0.3194 0.1584 0.3980 0.0221 0.1636 0.2522 0.0290 

lasso Lasso Regression 0.3217 0.1602 0.4001 0.0114 0.1646 0.2542 0.0270 

llar Lasso Least Angle Regression 0.3243 0.1622 0.4027 -0.0013 0.1655 0.2561 0.4980 

dummy Dummy Regressor 0.3243 0.1622 0.4027 -0.0013 0.1655 0.2561 0.0270 

par Passive Aggressive Regressor 0.7842 18.2459 3.0802 -115.4978 0.3362 0.6811 0.0450 

👉 From the models, it can be seen that the top 3 models based on PyCaret regression models are: 



   
 

● Extra Tree Regressor (0.9284), 

● Random Forest Regressor (0.9073), and 

● Light Gradient Boosting Machine (0.8904). 

👉 Now, let's plot the best model (extra tree regressor) to see the residuals and its performance in train and 

test set. 

In [29]: 

# --- Plot the Residual of Best Model (et) --- 

plot_model(best_models) 

 

 

👉 From the plot, it can be seen that the test set is randomly dispersed around horizontal axis, which 

indicates good fit of model. 



   
 

👉 It also can be seen that the best model can achieve 1.000 R2 score in train 

set, and 0.925 in test set. This means that there is no overfitting/underfitting happened which indicates very 

good performance. 

📌 A residual plot is a graph that shows the residuals on the vertical axis and the independent variable on the horizontal 

axis. If the points in a residual plot are randomly dispersed around the horizontal axis, a linear regression model is appropriate 

for the data; otherwise, a nonlinear model is more appropriate. 

In [30]: 

# --- Plot Error Prediction for Best Model --- 

plot_model(best_models, plot = 'error') 

 

 



   
 

👉 From the error plot, it can be seen that there a little gap between the best fit 

line (predicted values) against the identity line (actual targets). This means that the accuracy of extra tree 

regressor is very good for prediction. 

📌 A prediction error plot shows the actual targets against the predicted values generated by our model from the dataset. 

This allows to see how much variance is in the model. 

In [31]: 

# --- Plot Feature Importance for Best Model --- 

plot_model(best_models, plot = 'feature') 

 

 

👉 In extra tree regressor, the importance features for prediction can be seen above. 

👉 The most importance features from the best model is organic type. 

 

👉 Below will tuned this model to get better performance. 



   
 

In [32]: 

# --- Tuning Best Model --- 

tuned_best = tune_model(best_models) 

 

  MAE MSE RMSE R2 RMSLE MAPE 

Fold             

0 0.2114 0.0771 0.2776 0.5397 0.1111 0.1613 

1 0.2190 0.0795 0.2819 0.5396 0.1136 0.1669 

2 0.2058 0.0687 0.2621 0.5445 0.1095 0.1645 

3 0.2095 0.0756 0.2750 0.5403 0.1112 0.1618 

4 0.2130 0.0738 0.2716 0.5492 0.1105 0.1645 

5 0.2057 0.0702 0.2650 0.5364 0.1096 0.1634 

6 0.2146 0.0762 0.2760 0.5246 0.1138 0.1699 



   
 

7 0.2144 0.0826 0.2874 0.5130 0.1141 0.1612 

8 0.2149 0.0776 0.2785 0.5082 0.1144 0.1688 

9 0.2100 0.0746 0.2731 0.5395 0.1121 0.1664 

Mean 0.2118 0.0756 0.2748 0.5335 0.1120 0.1649 

Std 0.0040 0.0039 0.0071 0.0129 0.0018 0.0029 

In [33]: 

# --- Plot the Residual of Tuned Best Model --- 

plot_model(tuned_best) 

 



   
 

 

In [34]: 

# --- Plot Error Prediction for Tuned Best Model --- 

plot_model(tuned_best, plot = 'error') 

 



   
 

 

In [35]: 

# --- Plot Feature Importance for Tuned Best Model --- 

plot_model(tuned_best, plot = 'feature') 

 



   
 

 

👉 After running the code to tuning the best model, the accuracy is decreased until 0.5335 🤔, which 

means PyCaret failed to optimize extra tree regressor. 

 

👉 In the next section, will do experiments to create another models and then tuning it. 

8.4 | Create Model 💻 

👉 In this section, two regression models will be created, namely: 

● Random Forest Regressor, and 

● Light Gradient Boosting Machine 

8.4.1 | Create Random Forest Regressor Model 💻🌲 

👉 This section will create the Random Forest regressor model first to see the early performance. 

In [36]: 

# --- Create RFR Model --- 

rf = create_model('rf') 



   
 

 

  MAE MSE RMSE R2 RMSLE MAPE 

Fold             

0 0.0855 0.0153 0.1237 0.9086 0.0488 0.0625 

1 0.0866 0.0144 0.1202 0.9164 0.0493 0.0645 

2 0.0846 0.0145 0.1202 0.9041 0.0496 0.0638 

3 0.0833 0.0145 0.1206 0.9116 0.0483 0.0617 

4 0.0797 0.0126 0.1123 0.9230 0.0446 0.0584 

5 0.0820 0.0140 0.1184 0.9075 0.0479 0.0611 

6 0.0870 0.0164 0.1281 0.8976 0.0512 0.0645 

7 0.0872 0.0160 0.1265 0.9057 0.0501 0.0635 



   
 

8 0.0893 0.0164 0.1280 0.8961 0.0521 0.0669 

9 0.0855 0.0157 0.1255 0.9028 0.0505 0.0643 

Mean 0.0851 0.0150 0.1223 0.9073 0.0492 0.0631 

Std 0.0027 0.0011 0.0047 0.0078 0.0020 0.0022 

In [37]: 

# --- Plot the Residual of RFR Model --- 

plot_model(rf) 

 

 

In [38]: 



   
 

# --- Plot Error Prediction for RFR Model --- 

plot_model(rf, plot = 'error') 

 

 

In [39]: 

# --- Plot Feature Importance for RFR Model -- 

plot_model(rf, plot = 'feature') 

 



   
 

 

👉 From the plots, the RF model can achieve 0.988 R2 Score in train set and 0.903 in test, which indicates 

very good performance. However, these numbers are still below the best model (extra tree regressor). 

👉 There gap between the predicted values and the actual targets are slightly bigger compared to extra tree 

regressor. 

👉 The importance features for RF regressor can be seen above. The organic type of avocado still become 

the most importance features in this model. 

8.4.2 | Tuning Random Forest Regressor Model 💻🌲⏫ 

👉 This section will do tuning for Random Forest regressor to achieve better results. 

In [40]: 

# --- Tuning RFR Model --- 

tune_rf = tune_model(rf) 

 



   
 

  MAE MSE RMSE R2 RMSLE MAPE 

Fold             

0 0.1856 0.0597 0.2444 0.6432 0.0974 0.1393 

1 0.1928 0.0613 0.2475 0.6451 0.0994 0.1449 

2 0.1851 0.0547 0.2338 0.6375 0.0974 0.1450 

3 0.1810 0.0557 0.2360 0.6615 0.0953 0.1378 

4 0.1875 0.0576 0.2401 0.6480 0.0975 0.1429 

5 0.1852 0.0564 0.2375 0.6277 0.0976 0.1435 

6 0.1919 0.0613 0.2475 0.6177 0.1014 0.1490 

7 0.1919 0.0650 0.2550 0.6167 0.1011 0.1423 



   
 

8 0.1928 0.0617 0.2485 0.6087 0.1018 0.1490 

9 0.1919 0.0614 0.2478 0.6211 0.1014 0.1498 

Mean 0.1886 0.0595 0.2438 0.6327 0.0990 0.1443 

Std 0.0040 0.0031 0.0064 0.0160 0.0022 0.0039 

In [41]: 

# --- Plot the Residual of RFR Model --- 

plot_model(tune_rf) 

 



   
 

 

In [42]: 

# --- Plot Error Prediction for Tuned RFR Model --- 

plot_model(tune_rf, plot = 'error') 

 



   
 

 

In [43]: 

# --- Plot Feature Importance for Tuned RFR Model --- 

plot_model(tune_rf, plot = 'feature') 

 



   
 

 

👉 After running the code to tuning the RFR model, the accuracy is decreased until 0.629 🤔 (PyCaret 

failed for the 2nd time to optimize RF regressor). 

8.4.3 | Create Light Gradient Boosting Model 💻🚀 

👉 The second model is light gradient boosting. 

👉 This section will create the light gradient boosting model first to see the early performance. 

In [44]: 

# --- Create Light GBM --- 

lgbm = create_model('lightgbm') 

 

  MAE MSE RMSE R2 RMSLE MAPE 



   
 

Fold             

0 0.0989 0.0178 0.1334 0.8936 0.0533 0.0725 

1 0.1015 0.0177 0.1332 0.8972 0.0542 0.0750 

2 0.0977 0.0164 0.1282 0.8911 0.0530 0.0740 

3 0.0953 0.0171 0.1308 0.8961 0.0521 0.0695 

4 0.0954 0.0161 0.1271 0.9014 0.0506 0.0698 

5 0.0978 0.0173 0.1315 0.8859 0.0532 0.0721 

6 0.1014 0.0183 0.1354 0.8856 0.0548 0.0752 

7 0.1037 0.0205 0.1431 0.8794 0.0568 0.0753 

8 0.0999 0.0181 0.1344 0.8855 0.0548 0.0747 



   
 

9 0.0986 0.0182 0.1348 0.8879 0.0544 0.0739 

Mean 0.0990 0.0178 0.1332 0.8904 0.0537 0.0732 

Std 0.0025 0.0011 0.0042 0.0064 0.0016 0.0020 

In [45]: 

# --- Plot the Residual of Light GBM --- 

plot_model(lgbm) 

 

 

In [46]: 

# --- Plot Error Prediction for Light GBM --- 



   
 

plot_model(lgbm, plot = 'error') 

 

 

In [47]: 

# --- Plot Feature Importance for Light GBM -- 

plot_model(lgbm, plot = 'feature') 

 



   
 

 

👉 From the plots, the light gradient boosting model can achieve 0.913 R2 score in train set and 0.879 in 

test. The numbers are still not the best score compared to the best model. 

👉 The importance features for light gradient boosting can be seen above. The total volume of avocado 

become the most importance features for light gradient bosting model. 

8.4.4 | Tuning Light Gradient Boosting Model 💻🚀⏫ 

👉 This section will do tuning for light gradient boosting to achieve better results. 

In [48]: 

# --- Tuning Light Gradient Boost --- 

tune_lgbm = tune_model(lgbm) 

 



   
 

  MAE MSE RMSE R2 RMSLE MAPE 

Fold             

0 0.1194 0.0264 0.1626 0.8421 0.0644 0.0872 

1 0.1309 0.0291 0.1706 0.8315 0.0693 0.0973 

2 0.1242 0.0270 0.1645 0.8207 0.0689 0.0962 

3 0.1184 0.0265 0.1629 0.8386 0.0650 0.0874 

4 0.1205 0.0256 0.1600 0.8435 0.0644 0.0892 

5 0.1234 0.0267 0.1635 0.8235 0.0667 0.0924 

6 0.1244 0.0266 0.1630 0.8343 0.0673 0.0950 

7 0.1298 0.0310 0.1762 0.8171 0.0708 0.0961 



   
 

8 0.1298 0.0295 0.1717 0.8132 0.0704 0.0981 

9 0.1260 0.0280 0.1675 0.8269 0.0692 0.0967 

Mean 0.1247 0.0277 0.1662 0.8291 0.0676 0.0936 

Std 0.0042 0.0016 0.0048 0.0100 0.0023 0.0040 

In [49]: 

# --- Plot the Residual of Tuned Light Gradient Boost --- 

plot_model(tune_lgbm) 

 



   
 

 

In [50]: 

# --- Plot Error Prediction for Tuned Light Gradient Boost --- 

plot_model(tune_lgbm, plot = 'error') 

 



   
 

 

In [51]: 

# --- Plot Feature Importance for Tuned Light Gradient Boost -- 

plot_model(tune_lgbm, plot = 'feature') 

 



   
 

 

👉 There is a slight decrease for both train and test R2 score. 

👉 However, these numbers are still far from extra tree regressor. 

8.4.5 | Comparison of Created Models 💻👀 

👉 Based on experiments from models creation above, below are the summary of train and test R2 score 

in table form: 

Model Name Tuned/Not Tuned 

R2 Score 

Trai

n 
Test 



   
 

Extra Tree Regressor 

Not Tuned 1.000 0.925 

Tuned 0.539 0.534 

Random Forest Regressor 

Not Tuned 0.988 0.903 

Tuned 0.647 0.629 

Light Gradient Boosting 

Not Tuned 0.913 0.879 

Tuned 0.870 0.823 

👉 From table above, it can be seen that all tuned models accuracy (R2 score) are decreasing 🤔. 

👉 Extra tree regressor model still become the best model since it has high accuracy in both train and 

test R2 score. 

8.5 | Prediction on Test Sample 🔮 

👉 This section will used the best experiments from three models to do a prediction in test sample. Those 

predictions are: 

● Normal Extra tree regressor, 

● Normal Random forest regressor, and 

● Normal Light gradient boosting. 

In [52]: 



   
 

# --- Prediction using Best Model --- 

predict_model(best_models) 

 

  Model MAE MSE RMSE R2 RMSLE MAPE 

0 Extra Trees Regressor 0.0719 0.0122 0.1104 0.9247 0.0437 0.0529 

Out[52]: 

 
Unnamed 

0 

Total 

Volume 
4046 4225 4770 Total Bags 

Small 

Bags 
Large Bags XLarge Bags 

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886 

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000 

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000 

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000 

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000 



   
 

... ... ... ... ... ... ... ... ... ... 

          

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364 

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706 

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000 

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000 

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307 

3650 rows × 85 columns 

In [53]: 

# --- Prediction using RFR Model --- 

predict_model(rf) 

 

  Model MAE MSE RMSE R2 RMSLE MAPE 



   
 

0 Random Forest Regressor 0.0850 0.0157 0.1253 0.9031 0.0496 0.0624 

Out[53]: 

 
Unnamed 

0 

Total 

Volume 
4046 4225 4770 Total Bags 

Small 

Bags 
Large Bags XLarge Bags 

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886 

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000 

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000 

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000 

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000 

... ... ... ... ... ... ... ... ... ... 

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364 

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706 



   
 

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000 

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000 

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307 

3650 rows × 85 columns 

In [54]: 

# --- Prediction using Light Gradient Boosting Model --- 

predict_model(lgbm) 

 

  Model MAE MSE RMSE R2 RMSLE MAPE 

0 Light Gradient Boosting Machine 0.1024 0.0197 0.1402 0.8786 0.0556 0.0747 

Out[54]: 

 
Unnamed 

0 

Total 

Volume 
4046 4225 4770 Total Bags 

Small 

Bags 
Large Bags XLarge Bags 

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886 



   
 

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000 

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000 

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000 

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000 

... ... ... ... ... ... ... ... ... ... 

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364 

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706 

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000 

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000 

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307 

3650 rows × 85 columns 



   
 

8.6 | Finalize Model 🏁 

👉 Since in the previous section mentioned that normal extra tree regressor has the best accuracy compared 

to other models and experiments, this section will finalize extra tree regressor model, do prediction on 

the test sample, and save it to pickle file (can be used for future production). 

In [55]: 

# --- Finalize Best Model --- 

final_best = finalize_model(best_models) 

 

# --- Final Best Model Parameters for Deployment --- 

plot_model(best_models, plot='parameter') 

 

 Parameters 

bootstrap False 

ccp_alpha 0.0 

criterion mse 

max_depth None 



   
 

max_features auto 

max_leaf_nodes None 

max_samples None 

min_impurity_decrease 0.0 

min_impurity_split None 

min_samples_leaf 1 

min_samples_split 2 

min_weight_fraction_leaf 0.0 

n_estimators 100 

n_jobs -1 



   
 

oob_score False 

random_state 123 

verbose 0 

warm_start False 

In [56]: 

# --- Prediction using Final Model --- 

predict_model(final_best) 

 

  Model MAE MSE RMSE R2 RMSLE MAPE 

0 Extra Trees Regressor 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Out[56]: 

 
Unnamed 

0 

Total 

Volume 
4046 4225 4770 Total Bags 

Small 

Bags 
Large Bags XLarge Bags 

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886 



   
 

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000 

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000 

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000 

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000 

... ... ... ... ... ... ... ... ... ... 

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364 

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706 

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000 

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000 

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307 

3650 rows × 85 columns 



   
 

In [57]: 

# --- Save Final Model into Pickle File --- 

save_model(final_best,'Final_Best_Model_caesarmario_06May2022') 

 

Transformation Pipeline and Model Successfully Saved 

 

Out[57]: 

(Pipeline(memory=None, 

          steps=[('dtypes', 

                  DataTypes_Auto_infer(categorical_features=['type', 'year', 

                                                             'region', 'month'], 

                                       display_types=False, features_todrop=[], 

                                       id_columns=[], ml_usecase='regression', 

                                       numerical_features=[], 

                                       target='AveragePrice', 

                                       time_features=[])), 

                 ('imputer', 

                  Simple_Imputer(categorical_strategy='not_available', 

                                 fill_value_categorical=None, 

                                 fill_v... 

                  ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, 

                                      criterion='mse', max_depth=None, 

                                      max_features='auto', max_leaf_nodes=None, 

                                      max_samples=None, 



   
 

                                      min_impurity_decrease=0.0, 

                                      min_impurity_split=None, 

                                      min_samples_leaf=1, min_samples_split=2, 

                                      min_weight_fraction_leaf=0.0, 

                                      n_estimators=100, n_jobs=-1, 

                                      oob_score=False, random_state=123, 

                                      verbose=0, warm_start=False)]], 

          verbose=False), 

 'Final_Best_Model_caesarmario_06May2022.pkl') 

9. | References 🔗 

● Kaggle Notebook 📚What Visualizations Should You Use? by Vivek Chowdhury 

● How to Make Your Viz' Stand Out by Dimitri Irfan 

● Statistical Avo: EDA, Analysis and ML by Jaime Becerra Guerrero 

● Price of Avocados || Pattern Recognition Analysis by Janio Martinez Bachmann 

● GitHub Tutorial 💻Demo 2 - Time Series.ipynb by PyCaret 

● PyCaret Regression FIFA Market Value by Ojaas Hampiholi 

● Website 🌏PyCaret documentation - Regression 

● Regression Tutorial (REG101) - Level Beginner 

 

📌 Like this notebook? You can support me by giving upvote 😆👍🔼 

More about myself: linktr.ee/caesarmario_ 
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https://www.kaggle.com/janiobachmann/price-of-avocados-pattern-recognition-analysis
https://github.com/pycaret/pycaret-demo-cymax/blob/main/Demo%202%20-%20Time%20Series.ipynb
https://github.com/pycaret/pycaret/blob/master/examples/PyCaret2-Regression-fifa-MarketValue.ipynb
https://pycaret.readthedocs.io/en/latest/api/regression.html
https://www.pycaret.org/tutorials/html/REG101.html
https://linktr.ee/caesarmario_
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