

🥑💰 Avocado Price

Regression 💹

1. | Introduction 👋

Dataset Problems 🤔

👉 It is required to predict the price of avocado from various regions, types, years, total volumes and many

more. The price prediction will use regression technique with auto ML library called PyCaret. In addition,

this notebook will also perform simple data pre-processing before calling PyCaret regression module.

Objectives of Notebook 📌

👉 This notebook aims to:

● Perform EDA on avocado dataset,

● Perform data pre-processing before using PyCaret module, and

● Implementing PyCaret regression module to predict avocado price,

Machine Learning Modules 👨💻

👉 The model used in this notebook:

1. PyCaret Regression Module

Dataset Description 🧾

👉 There are 14 variables in this dataset:

● 3 categorical variables,

● 9 continuous variables,

● 1 variable contains date of observation, and

● 1 variable as index of dataset.

👉 The following is the structure of the dataset.

Variable Name Description Sample Data

... Index 1; 2; ...

Date

Observation date

(yyyy-mm-dd format)

27-12-2015; 20-12-2015; ...

AveragePrice Average price of an avocado 1.33; 0.93; ...

Total Volume Total number of avocados sold 64236.62; 118220.22; ...

4046 Total number of avocados with PLU 4046 sold 2695; 263807; ...

4225 Total number of avocados with PLU 4225 sold 80596; 32457; ...

4770 Total number of avocados with PLU 4770 sold 43; 1390; ...

Total Bags Total of Small Bags, Large Bags, and XLarge Bags combined 8696.87; 9505.56; ...

Small Bags Total of Small Bags 8603.62; 9408.07; ...

Large Bags Total Large Bags 93.25; 103.14; ...

XLarge Bags Total XLarge Bags 0; 33.33; ...

type Conventional or organic avocado conventional; organic

year Year from date 2015; 2017; ...

region The city or region of the observation Albany; Boston; ...

📌 Like this notebook? You can support me by giving upvote 😆👍🔼 :.

👉 More about myself: linktr.ee/caesarmario_

1.1 | What is PyCaret ❓

https://linktr.ee/caesarmario_

PyCaret is an open-source machine learning package written in low-code

that enables Data Scientists to automate their machine learning processes. It reduces the model

experimentation process, allowing for the achievement of specific outcomes with less code.

1.2 | Why using PyCaret ❔

As more businesses shifted their focus to Machine Learning to address challenging issues, data scientists

were expected to give results faster. This has increased the demand for automating important phases in data

science projects so that data scientists may focus on the real problem at hand rather than writing

hundreds of lines of code to identify the optimal model.

1.3 | A Quick Overview of the PyCaret Regression Module 🔬

The regression module in PyCaret is pycaret.regression. It is a supervised machine learning module for

predicting values or outcomes using a variety of methods and methodologies. It includes approximately 25

algorithms and ten graphs for analyzing the models' performance. PyCaret is another source for all

machine learning solutions, whether it's assembly, hyper-parameter tweaking, or advanced tuning such as

stacking. With PyCaret, a data scientist/user can implement various regression modules, such as:

● Linear Regression,

● Lasso Regression,

● Ridge Regression,

● Elastic Net,

● Decision Tree Regressor,

● Support Vector Regressor,

● AdaBoost Regressor,

● Gradient Boosting Regressor,

● Decision Tree Regressor, and many more.

.: 📖 Further information about PyCaret here.

2. | Installing and Importing Libraries 📚

https://pycaret.org/

👉 Installing PyCaret & other libraries and importing them to be used in this

notebook.

In [2]:

--- Installing Libraries ---

!pip install pycaret

!pip install markupsafe==2.0.1

!pip jinja2

unfold_moreShow hidden output

In [3]:

--- Importing Libraries ---

import datetime

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import scipy

import pycaret

import warnings

import jinja2

from sklearn.preprocessing import LabelEncoder

from scipy import stats

from scipy.stats import *

from pycaret.regression import *

--- Libraries Settings ---

warnings.filterwarnings('ignore')

sns.set_style('whitegrid')

plt.rcParams['figure.dpi'] = 100

3. | Color Palettes 🎨

👉 This section will create some color palettes that will be used in this notebook.

unfold_moreShow hidden code

4. | Reading Dataset 👓

👉 After importing libraries, the dataset that will be used will be imported.

unfold_moreShow hidden code

Out[5]:

Unnamed:

0
Date AveragePrice Total Volume 4046 4225 4770 Total Bags Small Bags

0
2015-

12-27
1.330000 64236.620000 1036.740000 54454.850000 48.160000 8696.870000 8603.620000

1
2015-

12-20
1.350000 54876.980000 674.280000 44638.810000 58.330000 9505.560000 9408.070000

2
2015-

12-13
0.930000 118220.220000 794.700000 109149.670000 130.500000 8145.350000 8042.210000

3
2015-

12-06
1.080000 78992.150000 1132.000000 71976.410000 72.580000 5811.160000 5677.400000

4
2015-

11-29
1.280000 51039.600000 941.480000 43838.390000 75.780000 6183.950000 5986.260000

unfold_moreShow hidden code

.: Imported Dataset Info :.

Total Rows: 18249

Total Columns: 14

.: Dataset Details :.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 18249 entries, 0 to 18248

Data columns (total 14 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Unnamed: 0 18249 non-null int64

 1 Date 18249 non-null object

 2 AveragePrice 18249 non-null float64

 3 Total Volume 18249 non-null float64

 4 4046 18249 non-null float64

 5 4225 18249 non-null float64

 6 4770 18249 non-null float64

 7 Total Bags 18249 non-null float64

 8 Small Bags 18249 non-null float64

 9 Large Bags 18249 non-null float64

 10 XLarge Bags 18249 non-null float64

 11 type 18249 non-null object

 12 year 18249 non-null int64

 13 region 18249 non-null object

dtypes: float64(9), int64(2), object(3)

👉 It can be seen that dataset has successfully imported.

👉 In the dataset, there are 14 columns with 18249 observations.

👉 Also, there are no null values in this dataset.

👉 The details of each variables also can be seen above.

5. | Initial Data Exploration 🔍

👉 This section will focused on initial data exploration before implementing PyCaret regression module.

5.1 | Categorical Variable 📊

👉 The first type of variable that will be explored is categorical variable.

5.1.1 | Type

unfold_moreShow hidden code

**

.: Total Avocado based on each Type :.

**

Out[7]:

conventional 9126

organic 9123

Name: type, dtype: int64

👉 The distribution of conventional and organic avocados are equally distributed.

5.1.2 | Year

unfold_moreShow hidden code

.: Total Avocado based on Year :.

Out[8]:

2017 5722

2016 5616

2015 5615

2018 1296

Name: year, dtype: int64

👉 The number of avocados in 2017 is the highest compared to other years (with 31.36%).

👉 However, the number of avocados in 2018 is the lowest, only 7.10%.

5.1.3 | Region

unfold_moreShow hidden code

.: Total Avocado based on Regions :.

Out[9]:

Albany 338

Sacramento 338

Northeast 338

NorthernNewEngland 338

Orlando 338

Philadelphia 338

PhoenixTucson 338

Pittsburgh 338

Plains 338

Portland 338

RaleighGreensboro 338

RichmondNorfolk 338

Roanoke 338

SanDiego 338

Atlanta 338

SanFrancisco 338

Seattle 338

SouthCarolina 338

SouthCentral 338

Southeast 338

Spokane 338

StLouis 338

Syracuse 338

Tampa 338

TotalUS 338

West 338

NewYork 338

NewOrleansMobile 338

Nashville 338

Midsouth 338

BaltimoreWashington 338

Boise 338

Boston 338

BuffaloRochester 338

California 338

Charlotte 338

Chicago 338

CincinnatiDayton 338

Columbus 338

DallasFtWorth 338

Denver 338

Detroit 338

GrandRapids 338

GreatLakes 338

HarrisburgScranton 338

HartfordSpringfield 338

Houston 338

Indianapolis 338

Jacksonville 338

LasVegas 338

LosAngeles 338

Louisville 338

MiamiFtLauderdale 338

WestTexNewMexico 335

Name: region, dtype: int64

unfold_moreShow hidden code

unfold_moreShow hidden code

👉 The number of avocados from various regions are equally distributed (with

percentage of 1.85%).

👉 However, in WestTexNewMexico, the number of avocados slightly lower (335 avocados).

5.2 | Numerical Variable 🔢

👉 The second variable that will be explored is numerical variable.

5.2.1 | Descriptive Statistics 📏

👉 This section will show descriptive statistics of numerical variables.

unfold_moreShow hidden code

Out[12]:

 count mean std min 25% 50% 75% max

AveragePr

ice

18249.000

000
1.405978 0.402677

0.44000

0
1.100000 1.370000 1.660000 3.250000

Total

Volume

18249.000

000

850644.013

009

3453545.355

399

84.5600

00

10838.580

000

107376.760

000

432962.290

000

62505646.520

000

4046
18249.000

000

293008.424

531

1264989.081

763

0.00000

0

854.07000

0

8645.30000

0

111020.200

000

22743616.170

000

4225
18249.000

000

295154.568

356

1204120.401

135

0.00000

0

3008.7800

00

29061.0200

00

150206.860

000

20470572.610

000

4770
18249.000

000

22839.7359

93

107464.0684

35

0.00000

0
0.000000 184.990000

6243.42000

0

2546439.1100

00

Total Bags
18249.000

000

239639.202

060

986242.3992

16

0.00000

0

5088.6400

00

39743.8300

00

110783.370

000

19373134.370

000

Small

Bags

18249.000

000

182194.686

696

746178.5149

62

0.00000

0

2849.4200

00

26362.8200

00

83337.6700

00

13384586.800

000

Large

Bags

18249.000

000

54338.0881

45

243965.9645

47

0.00000

0

127.47000

0

2647.71000

0

22029.2500

00

5719096.6100

00

XLarge

Bags

18249.000

000

3106.42650

7

17692.89465

2

0.00000

0
0.000000 0.000000 132.500000

551693.65000

0

👉 From the descriptive statistics, it can be seen that Average Price is lack of variation.

👉 Furthermore, it can be seen that the rest of the columns have more variation.

📌 Low standard deviation means data are clustered around the mean (lack of variation), and high standard deviation

indicates data are more spread out (more variation).

5.2.2 | Continuous Column Distribution 📈

👉 This section will show the distribution of numerical variables in histogram and boxenplot.

unfold_moreShow hidden code

👉 From the boxenplots and histogram, it can be seen that most of the columns

has extreme outliers and heavily right-skewed.

👉 However, in Average Price column, the distribution is moderately skewed to the right and it has outliers.

5.2.3 | Skewness and Kurtosis 📐

👉 This section will show the numerical variables skewness and kurtosis value.

unfold_moreShow hidden code

.: Continuous Columns Skewness :.

Out[14]:

AveragePrice 0.580303

Total Volume 9.007687

4046 8.648220

4225 8.942466

4770 10.159396

Total Bags 9.756072

Small Bags 9.540660

Large Bags 9.796455

XLarge Bags 13.139751

dtype: float64

👉 As can be seen from skewness results, all columns beside Average Price are highly right skewed (the

skewness value is > 1, and the tail of distribution is on the right side of histogram).

unfold_moreShow hidden code

.: Continuous Columns Kurtosis :.

Out[15]:

AveragePrice 0.325196

Total Volume 92.104458

4046 86.809113

4225 91.949022

4770 132.563441

Total Bags 112.272156

Small Bags 107.012885

Large Bags 117.999481

XLarge Bags 233.602612

dtype: float64

👉 From resullts above, it can be seen that all columns beside Average Price is leptokurtic. While

Average Price itself is platikurtic.

📌 Kurtosis values used to show tailedness of a column. The value of normal distribution (mesokurtotic) should be equal

to 3. If kurtosis value is more than 3, it is called leptokurtic. Meanwhile, if kurtosis value is less than 3, then it is cal led

platikurtic.

6. | EDA 💹

👉 This section will perform some EDA to get more insights about dataset.

6.1 | Top 5 Regions w/ the Most Sold 🌍🛒

👉 Bar charts below shows top 5 regions with most sales for each avocado types. In this case, "TotalUS"

isn't included since it is combination value from different regions in the dataset.

unfold_moreShow hidden code

👉 From bar charts above, conventional avocado has highest sales compared to organic avocados. In

conventional avocado, the highest sales is above 6.000.000, while the highest sales in organic avocado is

only above 200.000 (the sales difference is about 5.800.000).

👉 Both West and California have the highest number of avocado sold in both types. With West in 1st

position and California in 2nd position for both avocado types.

👉 It also can be seen that conventional avocados in South Central are

popular (in 3rd place) compared to organic avocados (in 5th place).

👉 Otherwise, in North East, organic avocados very popular (in 3rd place) compared to conventional

avocados (in 5th place).

6.2 | Top 5 Regions w/ Highest Avocado Price 🌏💵

👉 This section will show the top 5 regions with highest avocado prices for each avocado types.

unfold_moreShow hidden code

👉 In general, it can be seen that organic avocados are more expensive compared to conventional

avocados.

👉 The price differences in conventional avocados are very small compared to organic avocados, which

indicates that distribution of conventional avocados price is almost the same in every region.

👉 Both Hartford Springfield, New York, and San Francisco always become

regions with highest avocado prices. In addition, Hartford Springfield is in the 1st position for both

conventional and avocado types.

👉 However, for New York and San Francisco positions are different in conventional and organic

avocado types. In conventional avocados, New York placed 2nd, while in organic avocados, New York

placed 3rd. Similarly in San Francisco, the positions of San Francisco in conventional avocados is in the 3rd

place, while in organic avocados, San Francisco placed 2nd.

6.3 | Avocado PLU Sold Comparison between Avocado Types 🛒🥑

👉 This section will compare total avocado sold based on PLU. There are three PLUs, which are PLU

4046, PLU 4225, and PLU 4770.

unfold_moreShow hidden code

👉 Based on stacked bar chart above, it can be seen that conventional avocado

with PLU 4046 & PLU 4225 have almost the same quantity of avocado sold. For PLU 4770, the quantity

of avocado sold is very small compared to other PLU.

👉 In organic type, the avocado with PLU 4225 is the highest, followed by PLU 4046.

6.4 | Bag Size Comparison between Avocado Types 💼🥑

👉 This section will compare total avocado sold based on bags size. There are three size of bags, small

bags, large bags and extra large bags.

unfold_moreShow hidden code

👉 From bar above, it can be seen that the number of small bags in both avocado types are the highest,

followed by large bags. The XLarge bags has the smallest number from all bags.

6.5 | Average Price Distribution based on Types from 2015-2018 💵📅

👉 This section will show box plots to see the price distributions for each

avocado types from 2015 until 2018.

unfold_moreShow hidden code

👉 As mentioned in previous section, the price of organic avocados are more expensive compared to

conventional avocados.

👉 In general, the price distribution for both avocado types decreased in 2016, then reached its peak 2017

and finally declined again in 2018.

👉 The highest price of an organic avocado was in 2016, while the cheapest price was in 2017. Meanwhile

for conventional avocado, the most expensive price were in 2016 and 2017, while the cheapest price was

in 2017 too.

6.6 | Scatter Plot between Total Volume and Total Bags 🛒💼

👉 Below will show the scatter plot between total avocados sold and total

avocado bags in order to determine the heteroscedasticity from these two variables.

👉 This scatter plot will also seperated with based on avocado types with different colors.

📌 Heteroscedasticity is a concept that describes to circumstances in which the residual variance is uneven throughout

a spectrum of measured data. A fan or cone form on a plot of the residuals suggests the existence of heteroscedasticity (as

the variable values rise, the variance of the residuals increases proportionately). Heteroscedasticity is considered a concern

in statistics because regressions using ordinary least squares (OLS) presume that the residuals are generated from a population

with constant variance.

unfold_moreShow hidden code

👉 In general, it can be seen that the scatter plot clearly shows heteroscedasticity, since the variable values

increases, the distribution/residual variance also increases until form a cone shape.

👉 From this plot, it can be concluded that if the total avocado sold for both types increases, then the

total bags also increases.

👉 The distribution for organic avocados relatively lower and congregate at the same spot compared to

conventional avocados which more spread out.

6.7 | Time Series Plot of Total Avocado Sold 🛒⌛

👉 Below is times series plot about total avocado sold from 2015-2018 based on avocado type.

unfold_moreShow hidden code

👉 As previously mentioned in previous EDA, conventional avocado has highest sales compared to organic

avocados.

👉 In further analysis, it can be seen that at the end of the year until February

the beginning of the following year there is an upward trend in conventional avocado sales. The highest

sales of conventional avocado was in February 2018 while the lowest sales was in November 2016.

👉 However, there is no significant increase or decrease in organic avocado sales from 2015 until

beginning of 2018.

6.8 | Time Series Plot of Avg. Price 💵⌛

👉 Below is average price time series plot of avocado from 2015-2018 based on avocado type.

unfold_moreShow hidden code

👉 As previously mentioned in previous section, organic avocados are more expensive compared to

convetional avocados.

👉 It also can be seen that the avocado price fluctuations for both types are similar.

👉 In further analysis, the price of organic avocados always reached its peak

between August-September for past 3 years (2015-2017). Different case with conventional avocados

which doesn't have seasonality.

👉 The highest price of organic and conventional avocados were on September 2017. However, in the next

month the prices for both types declined.

6.9 | Heatmap 🔥

👉 Below is correlation map/heatmap of numerical variables to show correlation level/values for each

variables with others.

unfold_moreShow hidden code

👉 From plot above, Total Volume, 4046, 4225. 4770, Total Bags, Small Bags,

Large Bags, and XLarge Bags are highly correlated to each other since the correlation value is above

0.6 (brighter means have high correlation).

👉 Meanwhile, Unnamed: 0, AveragePrice, and year are low correlated since the correlation value is

less than 0.1 (darker means have low correlation).

6.10 | EDA Conclusion 📉👀

👉 Based on EDAs above, it can be concluded that:

● Conventional avocados have the lowest price and the most sales with little difference.

Meanwhile, organic avocados have high prices and the least sales with a significant price

difference. People are more likely to choose conventional avocados because they are cheap.

● From the time series plot of avocado prices, the lowest prices for conventional avocados fell in

February and May 2016 and February 2017. Meanwhile, in the time series plots of avocado sales,

sales of conventional & organic avocados increased dramatically in those months. It can be

concluded that the best time to sell conventional avocado is from the end of the year to the

beginning (February).

● The price of organic avocado follows the price of conventional avocado, but it does not affect

the total sales of avocado, which is relatively the same every month.

● In 2017, the average avocado price for both avocado types became the most expensive compared

to the previous and following years.

● West and California had the highest avocado sales rates for both types, followed by South

Central and North East.

● The highest prices for both avocado types are in the Springfield, New York, and San Francisco

regions.

● Avocado with PLU 4046 and 4225 had the highest average number of avocados compared to

avocado with PLU 4770. In addition, small avocado bags had the highest average number

compared to other avocado bags.

● The higher the whole avocado sold, the more avocado bags available. This is indicated by

heteroscedasticity between the total volume and total bags in the scatter plot. In addition, the high

correlation value in the correlation map also indicates a reasonably high correlation between

these two variables.

7. | Dataset Pre-processing 🔧

👉 This section will pre-process the dataset before implemented into PyCaret

module. A "month" column will be added into dataframe by extracting month number from "Date"

column.

In [25]:

--- Change `Date` Format to 'datetime' ---

ds.Date = pd.to_datetime(ds.Date)

--- Extracting Month Number from `Date` ---

ds['month'] = pd.DatetimeIndex(ds['Date']).month

8. | PyCaret Setup ⚙

👉 This section will implement the PyCaret regression module.

👉 In addition, this section will also do some experiments, including creating another models from the

module and tuning it.

8.1 | Setup PyCaret Environment 🔨

👉 First, it is required to setup the module by defining the target, train size and etc. The configuration are

as follows:

● Target variable is average price,

● Train test size ratio is 80% train and 20% test,

● Defining the categorical variables (type, year, region, and month),

● Since there are outliers from previous observation, the normalization method will using robust

technique, and

● Low variance features will be ignored.

👉 To setup the PyCaret environment, setup() function will be used and the

configuration will be added inside the bracket.

In [26]:

--- Setup PyCaret Regression Module ---

avc = setup(data = ds, target = 'AveragePrice', train_size = 0.8,

 categorical_features = ['type', 'year', 'region', 'month'], normalize = True, normalize_method =

'robust',

 silent = True, ignore_low_variance = True, session_id = 123)

 Description Value

0 session_id 123

1 Target AveragePrice

2 Original Data (18249, 15)

3 Missing Values False

4 Numeric Features 9

5 Categorical Features 4

6 Ordinal Features False

7 High Cardinality Features False

8 High Cardinality Method None

9 Transformed Train Set (14599, 83)

10 Transformed Test Set (3650, 83)

11 Shuffle Train-Test True

12 Stratify Train-Test False

13 Fold Generator KFold

14 Fold Number 10

15 CPU Jobs -1

16 Use GPU False

17 Log Experiment False

18 Experiment Name reg-default-name

19 USI ccb8

20 Imputation Type simple

21 Iterative Imputation Iteration None

22 Numeric Imputer mean

23 Iterative Imputation Numeric Model None

24 Categorical Imputer constant

25 Iterative Imputation Categorical Model None

26 Unknown Categoricals Handling least_frequent

27 Normalize True

28 Normalize Method robust

29 Transformation False

30 Transformation Method None

31 PCA False

32 PCA Method None

33 PCA Components None

34 Ignore Low Variance True

35 Combine Rare Levels False

36 Rare Level Threshold None

37 Numeric Binning False

38 Remove Outliers False

39 Outliers Threshold None

40 Remove Multicollinearity False

41 Multicollinearity Threshold None

42 Remove Perfect Collinearity True

43 Clustering False

44 Clustering Iteration None

45 Polynomial Features False

46 Polynomial Degree None

47 Trignometry Features False

48 Polynomial Threshold None

49 Group Features False

50 Feature Selection False

51 Feature Selection Method classic

52 Features Selection Threshold None

53 Feature Interaction False

54 Feature Ratio False

55 Interaction Threshold None

56 Transform Target False

57 Transform Target Method box-cox

8.2 | PyCaret Regression Models 🏭

👉 Now, this section will show list of models that PyCaret regression have. models() will be used to list

down all the models available.

In [27]:

--- List PyCaret Regression Models ---

models()

Out[27]:

 Name Reference Turbo

ID

lr Linear Regression sklearn.linear_model._base.LinearRegression True

lasso Lasso Regression sklearn.linear_model._coordinate_descent.Lasso True

ridge Ridge Regression sklearn.linear_model._ridge.Ridge True

en Elastic Net sklearn.linear_model._coordinate_descent.Elast... True

lar Least Angle Regression sklearn.linear_model._least_angle.Lars True

llar Lasso Least Angle Regression sklearn.linear_model._least_angle.LassoLars True

omp Orthogonal Matching Pursuit sklearn.linear_model._omp.OrthogonalMatchingPu... True

br Bayesian Ridge sklearn.linear_model._bayes.BayesianRidge True

ard Automatic Relevance Determination sklearn.linear_model._bayes.ARDRegression False

par Passive Aggressive Regressor sklearn.linear_model._passive_aggressive.Passi... True

ransac Random Sample Consensus sklearn.linear_model._ransac.RANSACRegressor False

tr TheilSen Regressor sklearn.linear_model._theil_sen.TheilSenRegressor False

huber Huber Regressor sklearn.linear_model._huber.HuberRegressor True

kr Kernel Ridge sklearn.kernel_ridge.KernelRidge False

svm Support Vector Regression sklearn.svm._classes.SVR False

knn K Neighbors Regressor sklearn.neighbors._regression.KNeighborsRegressor True

dt Decision Tree Regressor sklearn.tree._classes.DecisionTreeRegressor True

rf Random Forest Regressor sklearn.ensemble._forest.RandomForestRegressor True

et Extra Trees Regressor sklearn.ensemble._forest.ExtraTreesRegressor True

ada AdaBoost Regressor sklearn.ensemble._weight_boosting.AdaBoostRegr... True

gbr Gradient Boosting Regressor sklearn.ensemble._gb.GradientBoostingRegressor True

mlp MLP Regressor sklearn.neural_network._multilayer_perceptron.... False

xgboost Extreme Gradient Boosting xgboost.sklearn.XGBRegressor True

lightgbm Light Gradient Boosting Machine lightgbm.sklearn.LGBMRegressor True

catboost CatBoost Regressor catboost.core.CatBoostRegressor True

dummy Dummy Regressor sklearn.dummy.DummyRegressor True

8.3 | Comparing All Models 🔭

👉 compare_models() will be used to evaluate all models performance after all models successfully

running. In the table will show the MAE, MSE, RMSE, R2, RMSLE, and MAPE score of each models. It

also show total of time (in sec) needed to execute the models.

👉 For this experiment, R2 score will be used to evaluate the model.

In [28]:

--- Comparing All Models ---

best_models = compare_models(sort='R2')

 Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

et Extra Trees Regressor 0.0729 0.0116 0.1076 0.9284 0.0432 0.0539 5.7420

catboost CatBoost Regressor 0.0840 0.0132 0.1146 0.9187 0.0458 0.0615 4.3090

xgboost Extreme Gradient Boosting 0.0877 0.0147 0.1213 0.9090 0.0484 0.0638 33.1610

rf Random Forest Regressor 0.0851 0.0150 0.1223 0.9073 0.0492 0.0631 6.2110

lightgbm Light Gradient Boosting Machine 0.0990 0.0178 0.1332 0.8904 0.0537 0.0732 0.2660

dt Decision Tree Regressor 0.1169 0.0322 0.1794 0.8010 0.0721 0.0855 0.1230

knn K Neighbors Regressor 0.1356 0.0353 0.1876 0.7825 0.0768 0.1021 0.6520

gbr Gradient Boosting Regressor 0.1537 0.0411 0.2025 0.7465 0.0816 0.1155 2.1100

br Bayesian Ridge 0.1819 0.0582 0.2411 0.6409 0.0974 0.1372 0.0790

ridge Ridge Regression 0.1819 0.0582 0.2411 0.6409 0.0974 0.1372 0.0320

lr Linear Regression 0.1820 0.0583 0.2413 0.6403 0.0975 0.1372 0.5380

ada AdaBoost Regressor 0.2110 0.0677 0.2602 0.5811 0.1085 0.1683 1.1120

huber Huber Regressor 0.2101 0.0773 0.2779 0.5227 0.1123 0.1590 0.6530

omp Orthogonal Matching Pursuit 0.2159 0.0782 0.2796 0.5171 0.1145 0.1663 0.0290

en Elastic Net 0.3194 0.1584 0.3980 0.0221 0.1636 0.2522 0.0290

lasso Lasso Regression 0.3217 0.1602 0.4001 0.0114 0.1646 0.2542 0.0270

llar Lasso Least Angle Regression 0.3243 0.1622 0.4027 -0.0013 0.1655 0.2561 0.4980

dummy Dummy Regressor 0.3243 0.1622 0.4027 -0.0013 0.1655 0.2561 0.0270

par Passive Aggressive Regressor 0.7842 18.2459 3.0802 -115.4978 0.3362 0.6811 0.0450

👉 From the models, it can be seen that the top 3 models based on PyCaret regression models are:

● Extra Tree Regressor (0.9284),

● Random Forest Regressor (0.9073), and

● Light Gradient Boosting Machine (0.8904).

👉 Now, let's plot the best model (extra tree regressor) to see the residuals and its performance in train and

test set.

In [29]:

--- Plot the Residual of Best Model (et) ---

plot_model(best_models)

👉 From the plot, it can be seen that the test set is randomly dispersed around horizontal axis, which

indicates good fit of model.

👉 It also can be seen that the best model can achieve 1.000 R2 score in train

set, and 0.925 in test set. This means that there is no overfitting/underfitting happened which indicates very

good performance.

📌 A residual plot is a graph that shows the residuals on the vertical axis and the independent variable on the horizontal

axis. If the points in a residual plot are randomly dispersed around the horizontal axis, a linear regression model is appropriate

for the data; otherwise, a nonlinear model is more appropriate.

In [30]:

--- Plot Error Prediction for Best Model ---

plot_model(best_models, plot = 'error')

👉 From the error plot, it can be seen that there a little gap between the best fit

line (predicted values) against the identity line (actual targets). This means that the accuracy of extra tree

regressor is very good for prediction.

📌 A prediction error plot shows the actual targets against the predicted values generated by our model from the dataset.

This allows to see how much variance is in the model.

In [31]:

--- Plot Feature Importance for Best Model ---

plot_model(best_models, plot = 'feature')

👉 In extra tree regressor, the importance features for prediction can be seen above.

👉 The most importance features from the best model is organic type.

👉 Below will tuned this model to get better performance.

In [32]:

--- Tuning Best Model ---

tuned_best = tune_model(best_models)

 MAE MSE RMSE R2 RMSLE MAPE

Fold

0 0.2114 0.0771 0.2776 0.5397 0.1111 0.1613

1 0.2190 0.0795 0.2819 0.5396 0.1136 0.1669

2 0.2058 0.0687 0.2621 0.5445 0.1095 0.1645

3 0.2095 0.0756 0.2750 0.5403 0.1112 0.1618

4 0.2130 0.0738 0.2716 0.5492 0.1105 0.1645

5 0.2057 0.0702 0.2650 0.5364 0.1096 0.1634

6 0.2146 0.0762 0.2760 0.5246 0.1138 0.1699

7 0.2144 0.0826 0.2874 0.5130 0.1141 0.1612

8 0.2149 0.0776 0.2785 0.5082 0.1144 0.1688

9 0.2100 0.0746 0.2731 0.5395 0.1121 0.1664

Mean 0.2118 0.0756 0.2748 0.5335 0.1120 0.1649

Std 0.0040 0.0039 0.0071 0.0129 0.0018 0.0029

In [33]:

--- Plot the Residual of Tuned Best Model ---

plot_model(tuned_best)

In [34]:

--- Plot Error Prediction for Tuned Best Model ---

plot_model(tuned_best, plot = 'error')

In [35]:

--- Plot Feature Importance for Tuned Best Model ---

plot_model(tuned_best, plot = 'feature')

👉 After running the code to tuning the best model, the accuracy is decreased until 0.5335 🤔, which

means PyCaret failed to optimize extra tree regressor.

👉 In the next section, will do experiments to create another models and then tuning it.

8.4 | Create Model 💻

👉 In this section, two regression models will be created, namely:

● Random Forest Regressor, and

● Light Gradient Boosting Machine

8.4.1 | Create Random Forest Regressor Model 💻🌲

👉 This section will create the Random Forest regressor model first to see the early performance.

In [36]:

--- Create RFR Model ---

rf = create_model('rf')

 MAE MSE RMSE R2 RMSLE MAPE

Fold

0 0.0855 0.0153 0.1237 0.9086 0.0488 0.0625

1 0.0866 0.0144 0.1202 0.9164 0.0493 0.0645

2 0.0846 0.0145 0.1202 0.9041 0.0496 0.0638

3 0.0833 0.0145 0.1206 0.9116 0.0483 0.0617

4 0.0797 0.0126 0.1123 0.9230 0.0446 0.0584

5 0.0820 0.0140 0.1184 0.9075 0.0479 0.0611

6 0.0870 0.0164 0.1281 0.8976 0.0512 0.0645

7 0.0872 0.0160 0.1265 0.9057 0.0501 0.0635

8 0.0893 0.0164 0.1280 0.8961 0.0521 0.0669

9 0.0855 0.0157 0.1255 0.9028 0.0505 0.0643

Mean 0.0851 0.0150 0.1223 0.9073 0.0492 0.0631

Std 0.0027 0.0011 0.0047 0.0078 0.0020 0.0022

In [37]:

--- Plot the Residual of RFR Model ---

plot_model(rf)

In [38]:

--- Plot Error Prediction for RFR Model ---

plot_model(rf, plot = 'error')

In [39]:

--- Plot Feature Importance for RFR Model --

plot_model(rf, plot = 'feature')

👉 From the plots, the RF model can achieve 0.988 R2 Score in train set and 0.903 in test, which indicates

very good performance. However, these numbers are still below the best model (extra tree regressor).

👉 There gap between the predicted values and the actual targets are slightly bigger compared to extra tree

regressor.

👉 The importance features for RF regressor can be seen above. The organic type of avocado still become

the most importance features in this model.

8.4.2 | Tuning Random Forest Regressor Model 💻🌲⏫

👉 This section will do tuning for Random Forest regressor to achieve better results.

In [40]:

--- Tuning RFR Model ---

tune_rf = tune_model(rf)

 MAE MSE RMSE R2 RMSLE MAPE

Fold

0 0.1856 0.0597 0.2444 0.6432 0.0974 0.1393

1 0.1928 0.0613 0.2475 0.6451 0.0994 0.1449

2 0.1851 0.0547 0.2338 0.6375 0.0974 0.1450

3 0.1810 0.0557 0.2360 0.6615 0.0953 0.1378

4 0.1875 0.0576 0.2401 0.6480 0.0975 0.1429

5 0.1852 0.0564 0.2375 0.6277 0.0976 0.1435

6 0.1919 0.0613 0.2475 0.6177 0.1014 0.1490

7 0.1919 0.0650 0.2550 0.6167 0.1011 0.1423

8 0.1928 0.0617 0.2485 0.6087 0.1018 0.1490

9 0.1919 0.0614 0.2478 0.6211 0.1014 0.1498

Mean 0.1886 0.0595 0.2438 0.6327 0.0990 0.1443

Std 0.0040 0.0031 0.0064 0.0160 0.0022 0.0039

In [41]:

--- Plot the Residual of RFR Model ---

plot_model(tune_rf)

In [42]:

--- Plot Error Prediction for Tuned RFR Model ---

plot_model(tune_rf, plot = 'error')

In [43]:

--- Plot Feature Importance for Tuned RFR Model ---

plot_model(tune_rf, plot = 'feature')

👉 After running the code to tuning the RFR model, the accuracy is decreased until 0.629 🤔 (PyCaret

failed for the 2nd time to optimize RF regressor).

8.4.3 | Create Light Gradient Boosting Model 💻🚀

👉 The second model is light gradient boosting.

👉 This section will create the light gradient boosting model first to see the early performance.

In [44]:

--- Create Light GBM ---

lgbm = create_model('lightgbm')

 MAE MSE RMSE R2 RMSLE MAPE

Fold

0 0.0989 0.0178 0.1334 0.8936 0.0533 0.0725

1 0.1015 0.0177 0.1332 0.8972 0.0542 0.0750

2 0.0977 0.0164 0.1282 0.8911 0.0530 0.0740

3 0.0953 0.0171 0.1308 0.8961 0.0521 0.0695

4 0.0954 0.0161 0.1271 0.9014 0.0506 0.0698

5 0.0978 0.0173 0.1315 0.8859 0.0532 0.0721

6 0.1014 0.0183 0.1354 0.8856 0.0548 0.0752

7 0.1037 0.0205 0.1431 0.8794 0.0568 0.0753

8 0.0999 0.0181 0.1344 0.8855 0.0548 0.0747

9 0.0986 0.0182 0.1348 0.8879 0.0544 0.0739

Mean 0.0990 0.0178 0.1332 0.8904 0.0537 0.0732

Std 0.0025 0.0011 0.0042 0.0064 0.0016 0.0020

In [45]:

--- Plot the Residual of Light GBM ---

plot_model(lgbm)

In [46]:

--- Plot Error Prediction for Light GBM ---

plot_model(lgbm, plot = 'error')

In [47]:

--- Plot Feature Importance for Light GBM --

plot_model(lgbm, plot = 'feature')

👉 From the plots, the light gradient boosting model can achieve 0.913 R2 score in train set and 0.879 in

test. The numbers are still not the best score compared to the best model.

👉 The importance features for light gradient boosting can be seen above. The total volume of avocado

become the most importance features for light gradient bosting model.

8.4.4 | Tuning Light Gradient Boosting Model 💻🚀⏫

👉 This section will do tuning for light gradient boosting to achieve better results.

In [48]:

--- Tuning Light Gradient Boost ---

tune_lgbm = tune_model(lgbm)

 MAE MSE RMSE R2 RMSLE MAPE

Fold

0 0.1194 0.0264 0.1626 0.8421 0.0644 0.0872

1 0.1309 0.0291 0.1706 0.8315 0.0693 0.0973

2 0.1242 0.0270 0.1645 0.8207 0.0689 0.0962

3 0.1184 0.0265 0.1629 0.8386 0.0650 0.0874

4 0.1205 0.0256 0.1600 0.8435 0.0644 0.0892

5 0.1234 0.0267 0.1635 0.8235 0.0667 0.0924

6 0.1244 0.0266 0.1630 0.8343 0.0673 0.0950

7 0.1298 0.0310 0.1762 0.8171 0.0708 0.0961

8 0.1298 0.0295 0.1717 0.8132 0.0704 0.0981

9 0.1260 0.0280 0.1675 0.8269 0.0692 0.0967

Mean 0.1247 0.0277 0.1662 0.8291 0.0676 0.0936

Std 0.0042 0.0016 0.0048 0.0100 0.0023 0.0040

In [49]:

--- Plot the Residual of Tuned Light Gradient Boost ---

plot_model(tune_lgbm)

In [50]:

--- Plot Error Prediction for Tuned Light Gradient Boost ---

plot_model(tune_lgbm, plot = 'error')

In [51]:

--- Plot Feature Importance for Tuned Light Gradient Boost --

plot_model(tune_lgbm, plot = 'feature')

👉 There is a slight decrease for both train and test R2 score.

👉 However, these numbers are still far from extra tree regressor.

8.4.5 | Comparison of Created Models 💻👀

👉 Based on experiments from models creation above, below are the summary of train and test R2 score

in table form:

Model Name Tuned/Not Tuned

R2 Score

Trai

n
Test

Extra Tree Regressor

Not Tuned 1.000 0.925

Tuned 0.539 0.534

Random Forest Regressor

Not Tuned 0.988 0.903

Tuned 0.647 0.629

Light Gradient Boosting

Not Tuned 0.913 0.879

Tuned 0.870 0.823

👉 From table above, it can be seen that all tuned models accuracy (R2 score) are decreasing 🤔.

👉 Extra tree regressor model still become the best model since it has high accuracy in both train and

test R2 score.

8.5 | Prediction on Test Sample 🔮

👉 This section will used the best experiments from three models to do a prediction in test sample. Those

predictions are:

● Normal Extra tree regressor,

● Normal Random forest regressor, and

● Normal Light gradient boosting.

In [52]:

--- Prediction using Best Model ---

predict_model(best_models)

 Model MAE MSE RMSE R2 RMSLE MAPE

0 Extra Trees Regressor 0.0719 0.0122 0.1104 0.9247 0.0437 0.0529

Out[52]:

Unnamed

0

Total

Volume
4046 4225 4770 Total Bags

Small

Bags
Large Bags XLarge Bags

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000

...

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307

3650 rows × 85 columns

In [53]:

--- Prediction using RFR Model ---

predict_model(rf)

 Model MAE MSE RMSE R2 RMSLE MAPE

0 Random Forest Regressor 0.0850 0.0157 0.1253 0.9031 0.0496 0.0624

Out[53]:

Unnamed

0

Total

Volume
4046 4225 4770 Total Bags

Small

Bags
Large Bags XLarge Bags

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000

...

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307

3650 rows × 85 columns

In [54]:

--- Prediction using Light Gradient Boosting Model ---

predict_model(lgbm)

 Model MAE MSE RMSE R2 RMSLE MAPE

0 Light Gradient Boosting Machine 0.1024 0.0197 0.1402 0.8786 0.0556 0.0747

Out[54]:

Unnamed

0

Total

Volume
4046 4225 4770 Total Bags

Small

Bags
Large Bags XLarge Bags

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000

...

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307

3650 rows × 85 columns

8.6 | Finalize Model 🏁

👉 Since in the previous section mentioned that normal extra tree regressor has the best accuracy compared

to other models and experiments, this section will finalize extra tree regressor model, do prediction on

the test sample, and save it to pickle file (can be used for future production).

In [55]:

--- Finalize Best Model ---

final_best = finalize_model(best_models)

--- Final Best Model Parameters for Deployment ---

plot_model(best_models, plot='parameter')

 Parameters

bootstrap False

ccp_alpha 0.0

criterion mse

max_depth None

max_features auto

max_leaf_nodes None

max_samples None

min_impurity_decrease 0.0

min_impurity_split None

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0.0

n_estimators 100

n_jobs -1

oob_score False

random_state 123

verbose 0

warm_start False

In [56]:

--- Prediction using Final Model ---

predict_model(final_best)

 Model MAE MSE RMSE R2 RMSLE MAPE

0 Extra Trees Regressor 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

Out[56]:

Unnamed

0

Total

Volume
4046 4225 4770 Total Bags

Small

Bags
Large Bags XLarge Bags

0 0.357143 1.770992 0.749676 1.618697 1.809093 4.169797 5.326726 1.068416 3.828886

1 -0.464286 -0.237191 -0.079796 -0.196736 -0.030364 -0.292676 -0.219610 -0.123732 0.000000

2 0.321429 0.082122 -0.049090 0.292166 -0.030364 0.257952 0.032864 1.636757 0.000000

3 0.035714 0.422099 0.783756 0.593626 2.410570 0.183641 0.400364 -0.098366 0.000000

4 0.285714 -0.237167 -0.079152 -0.188752 -0.030364 -0.304423 -0.301527 0.124106 0.000000

...

3645 0.964286 9.355392 5.424141 14.544580 87.213806 6.352094 5.082823 6.684702 1021.323364

3646 -0.357143 10.996881 15.420648 14.749743 43.922821 4.805529 6.212162 0.672725 40.000706

3647 0.964286 -0.010962 0.158737 -0.155775 -0.030364 0.301584 0.534609 -0.020226 0.000000

3648 -0.107143 0.014786 0.053533 -0.007713 -0.030107 0.304855 0.539354 -0.021873 0.000000

3649 0.071429 0.943723 1.711117 1.297896 3.435804 0.251382 0.494806 -0.119202 0.179307

3650 rows × 85 columns

In [57]:

--- Save Final Model into Pickle File ---

save_model(final_best,'Final_Best_Model_caesarmario_06May2022')

Transformation Pipeline and Model Successfully Saved

Out[57]:

(Pipeline(memory=None,

 steps=[('dtypes',

 DataTypes_Auto_infer(categorical_features=['type', 'year',

 'region', 'month'],

 display_types=False, features_todrop=[],

 id_columns=[], ml_usecase='regression',

 numerical_features=[],

 target='AveragePrice',

 time_features=[])),

 ('imputer',

 Simple_Imputer(categorical_strategy='not_available',

 fill_value_categorical=None,

 fill_v...

 ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0,

 criterion='mse', max_depth=None,

 max_features='auto', max_leaf_nodes=None,

 max_samples=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 n_estimators=100, n_jobs=-1,

 oob_score=False, random_state=123,

 verbose=0, warm_start=False)]],

 verbose=False),

 'Final_Best_Model_caesarmario_06May2022.pkl')

9. | References 🔗

● Kaggle Notebook 📚What Visualizations Should You Use? by Vivek Chowdhury

● How to Make Your Viz' Stand Out by Dimitri Irfan

● Statistical Avo: EDA, Analysis and ML by Jaime Becerra Guerrero

● Price of Avocados || Pattern Recognition Analysis by Janio Martinez Bachmann

● GitHub Tutorial 💻Demo 2 - Time Series.ipynb by PyCaret

● PyCaret Regression FIFA Market Value by Ojaas Hampiholi

● Website 🌏PyCaret documentation - Regression

● Regression Tutorial (REG101) - Level Beginner

📌 Like this notebook? You can support me by giving upvote 😆👍🔼

More about myself: linktr.ee/caesarmario_

https://www.kaggle.com/vivek468/what-visualizations-should-you-use
https://www.kaggle.com/dimitriirfan/how-to-make-your-viz-stand-out-v1-beginners
https://www.kaggle.com/jaimebecerraguerrero/statistical-avo-eda-analysis-and-ml
https://www.kaggle.com/janiobachmann/price-of-avocados-pattern-recognition-analysis
https://github.com/pycaret/pycaret-demo-cymax/blob/main/Demo%202%20-%20Time%20Series.ipynb
https://github.com/pycaret/pycaret/blob/master/examples/PyCaret2-Regression-fifa-MarketValue.ipynb
https://pycaret.readthedocs.io/en/latest/api/regression.html
https://www.pycaret.org/tutorials/html/REG101.html
https://linktr.ee/caesarmario_

	🥑💰 Avocado Price Regression 💹
	EDA & Price Prediction w/ PyCaret
	1. | Introduction 👋
	Dataset Problems 🤔
	Objectives of Notebook 📌
	Machine Learning Modules 👨💻
	Dataset Description 🧾
	1.1 | What is PyCaret ❓
	1.2 | Why using PyCaret ❔
	1.3 | A Quick Overview of the PyCaret Regression Module 🔬

	2. | Installing and Importing Libraries 📚
	3. | Color Palettes 🎨
	4. | Reading Dataset 👓
	5. | Initial Data Exploration 🔍
	5.1 | Categorical Variable 📊
	5.1.1 | Type
	5.1.2 | Year
	5.1.3 | Region

	5.2 | Numerical Variable 🔢
	5.2.1 | Descriptive Statistics 📏
	5.2.2 | Continuous Column Distribution 📈
	5.2.3 | Skewness and Kurtosis 📐

	6. | EDA 💹
	6.1 | Top 5 Regions w/ the Most Sold 🌍🛒
	6.2 | Top 5 Regions w/ Highest Avocado Price 🌏💵
	6.3 | Avocado PLU Sold Comparison between Avocado Types 🛒🥑
	6.4 | Bag Size Comparison between Avocado Types 💼🥑
	6.5 | Average Price Distribution based on Types from 2015-2018 💵📅
	6.6 | Scatter Plot between Total Volume and Total Bags 🛒💼
	6.7 | Time Series Plot of Total Avocado Sold 🛒⌛
	6.8 | Time Series Plot of Avg. Price 💵⌛
	6.9 | Heatmap 🔥
	6.10 | EDA Conclusion 📉👀

	7. | Dataset Pre-processing 🔧
	8. | PyCaret Setup ⚙
	8.1 | Setup PyCaret Environment 🔨
	8.2 | PyCaret Regression Models 🏭
	8.3 | Comparing All Models 🔭
	8.4 | Create Model 💻
	8.4.1 | Create Random Forest Regressor Model 💻🌲
	8.4.2 | Tuning Random Forest Regressor Model 💻🌲⏫
	8.4.3 | Create Light Gradient Boosting Model 💻🚀
	8.4.4 | Tuning Light Gradient Boosting Model 💻🚀⏫
	8.4.5 | Comparison of Created Models 💻👀

	8.5 | Prediction on Test Sample 🔮
	8.6 | Finalize Model 🏁

	9. | References 🔗

