
SQL Cheat Sheet

1. What is SQL? Why Do We Need It?
SQL is a database language that’s used to query and manipulate data in a database,

while also giving you an efficient and convenient environment for database

management.

We can group commands into the following categories of SQL statements:

Data Definition Language (DDL) Commands

● CREATE: creates a new database object, such as a table

● ALTER: used to modify a database object

● DROP: used to delete database objects

Data Manipulation Language (DML) Commands

https://hackr.io/blog/what-is-sql

● INSERT: used to insert a new row (record) in a database table

● UPDATE: used to modify an existing row (record) in a database table

● DELETE: used to delete a row (record) from a database table

Data Control Language (DCL) Commands

● GRANT: used to assign user permissions to access database objects

● REVOKE: used to remove previously granted user permissions for accessing

database objects

Data Query Language (DQL) Commands

● SELECT: used to select and return data (query) from a database

Data Transfer Language (DTL) Commands

● COMMIT: used to save a transaction within the database permanently

● ROLLBACK: restores a database to the last committed state

2. SQL Data Types
Data types specify the type of data that an object can contain, such as numeric data or

character data. We need to choose a data type to match the data that will be stored

using the following list of essential pre-defined data types:

Data Type Used to Store

int Integer data (exact numeric)

smallint Integer data (exact numeric)

tinyint Integer data (exact numeric)

bigint Integer data (exact numeric)

https://en.wikibooks.org/wiki/Structured_Query_Language/Data_Types

decimal Numeric data type with a fixed precision and scale (exact numeric)

numeric Numeric data type with a fixed precision and scale (exact numeric)

float Floating precision data (approximate numeric)

money Monetary (currency) data

datetime Date and time data

char(n) Fixed length character data

varchar(n) Variable length character data

text Character string

bit Integer data that is a 0 or 1 (binary)

image Variable length binary data to store image files

real Floating precision number (approximate numeric)

binary Fixed length binary data

cursor Cursor reference

sql_variant Allows a column to store varying data types

timestamp Unique database that is updated every time a row is inserted or
updated

table Temporary set of rows returned after running a table-valued function
(TVF)

xml Stores xml data

3. Managing Tables
After we’ve created a database, the next step is to create and subsequently manage a

database table using a range of our DDL commands.

Create a Table

A table can be created with the CREATE TABLE statement.

Syntax for CREATE TABLE:

CREATE TABLE table_name
(
col_name1 data_type,
col_name2 data_type,
col_name3 data_type,
…

);

Example: Create a table named EmployeeLeave within the Human Resource schema

and with the following attributes.

Columns Data Type Checks

EmployeeID int NOT NULL

LeaveStartDate date NOT NULL

LeaveEndDate date NOT NULL

LeaveReason varchar(100) NOT NULL

LeaveType char(2) NOT NULL

CREATE TABLE HumanResources.EmployeeLeave
(
EmployeeID INT NOT NULL,

LeaveStartDate DATETIME NOT NULL,
LeaveEndDate DATETIME NOT NULL,
LeaveReason VARCHAR(100),
LeaveType CHAR(2) NOT NULL

);

SQL Table Constraints

Constraints define rules that ensure consistency and correctness of data. A

CONSTRAINT can be created with either of the following approaches.

CREATE TABLE statement;
ALTER TABLE statement;

CREATE TABLE table_name
(Col_name data_type,
CONSTRAINT constraint_name constraint_type col_name(s)

);

The following list details the various options for Constraints:

Constraint Description Syntax

Primary key Columns or columns that uniquely
identifies each row in a table.

CREATE TABLE table_name
(
col_name data_type,
CONSTRAINT constraint_name
PRIMARY KEY (col_name(s))

);

Unique key Enforces uniqueness on
non-primary key columns.

CREATE TABLE table_name
(
col_name data_type,
CONSTRAINT constraint_name
UNIQUE KEY (col_name(s))

);

Foreign key Links two tables (parent & child),
and ensures the child table’s foreign
key is present as the primary key in
the parent before inserting data.

CREATE TABLE table_name
(
col_name data_type,
CONSTRAINT constraint_name
FOREIGN KEY (col_name)
REFERENCES
table_name(col_name)

);

Check Enforce domain integrity by
restricting values that can be
inserted into a column.

CREATE TABLE table_name
(
col_name data_type,
CONSTRAINT constraint_name
CHECK (expression)

);

Modifying a Table

We can use the ALTER TABLE statement to modify a table when:

1. Adding a column

2. Altering a column’s data type

3. Adding or removing constraints

Syntax for ALTER TABLE:

ALTER TABLE table_name
ADD column_name data_type;

ALTER TABLE table_name
DROP COLUMN column_name;

ALTER TABLE table_name
ALTER COLUMN column_name data_type;

Renaming a Table

A table can be renamed with the RENAME TABLE statement:

RENAME TABLE old_table_name TO new_table_name;

Dropping a Table vs. Truncating a Table

A table can be dropped or deleted by using the DROP TABLE statement:

DROP TABLE table_name;

The contents of a table can be deleted (without deleting the table) by using the

TRUNCATE TABLE statement:

TRUNCATE TABLE table_name;

4. Manipulating Data
Database tables are rarely static and we often need to add new data, change existing

data, or remove data using our DML commands.

Storing Data in a Table

Data can be added to a table with the INSERT statement.

Syntax for INSERT:

INSERT INTO table_name (col_name1, col_name2, col_name3…)
VALUES (value1, value2, value3…);

Example: Inserting data into the Student table.

INSERT INTO Student (StudentID, FirstName, LastName, Marks)
VALUES (‘101’, ’John’, ’Ray’, ’78’);

Example: Inserting multiple rows of data into the Student table.

INSERT INTO Student
VALUES (101, ’John’, ’Ray’, 78),
(102, ‘Steve’, ’Jobs’, 89),
(103, ‘Ben’, ’Matt’, 77),
(104, ‘Ron’, ’Neil’, 65),
(105, ‘Andy’, ’Clifton’, 65),
(106, ‘Park’, ’Jin’, 90);

Syntax for copying data from one table to another with the INSERT statement:

INSERT INTO table_name2
SELECT * FROM table_name1
WHERE [condition];

Updating Data in a Table

Data can be updated in a table with the UPDATE statement.

Syntax for UPDATE:

UPDATE table_name
SET col_name1 = value1, col_name2 = value2…
WHERE condition;

Example: Update the value in the Marks column to ‘85’ when FirstName equals ‘Andy’

UPDATE table_name
SET Marks = 85
WHERE FirstName = ‘Andy’;

Deleting Data from a Table

A row can be deleted with the DELETE statement.

Syntax for DELETE:

DELETE FROM table_name
WHERE condition;

DELETE FROM Student
WHERE StudentID = ‘103’;

Remove all rows (records) from a table without deleting the table with DELETE:

DELETE FROM table_name;

5. Retrieving Data
We can display one or more columns when we retrieve data from a table. For example,

we may want to view all of the details from the Employee table, or we may want to view

a selection of particular columns.

Data can be retrieved from a database table(s) by using the SELECT statement.

Syntax for SELECT:

SELECT [ALL | DISTINCT] column_list
FROM [table_name | view_name]
WHERE condition;

Consider the data and schema for the Student table below.

StudentID FirstName LastName Marks

101 John Ray 78

102 Steve Jobs 89

103 Ben Matt 77

104 Ron Neil 65

105 Andy Clifton 65

106 Park Jin 90

Retrieving Selected Rows

We can retrieve a selection of rows from a table with the WHERE clause and a SELECT
statement:

SELECT * FROM Student
WHERE StudentID = 104;

Note: We should use the HAVING clause instead of WHERE with aggregate functions.

Comparison Operators

Comparison operators test for the similarity between two expressions.

Syntax for Comparisons:

SELECT column_list FROM table_name
WHERE expression1 [COMP_OPERATOR] expression2;

Example: Various comparison operations.

SELECT StudentID, Marks FROM Student
WHERE Marks = 90;

SELECT StudentID, Marks FROM Student
WHERE StudentID > 101;

SELECT StudentID, Marks FROM Student
WHERE Marks != 89;

SELECT StudentID, Marks FROM Student
WHERE Marks >= 50;

Logical Operators

Logical operators are used with SELECT statements to retrieve records based on one

or more logical conditions. You can combine multiple logical operators to apply multiple

search conditions.

Syntax for Logical Operators:

SELECT column_list FROM table_name
WHERE conditional_expression1 [LOGICAL_OPERATOR] conditional_expression2;

Types of Logical Operator

We can use a range of logical operators to filter our data selections.

Syntax for Logical OR Operator:
SELECT StudentID, Marks FROM Student
WHERE Marks = 40 OR Marks = 56 OR Marks = 65;

Syntax for Logical AND Operator:
SELECT StudentID, Marks FROM Student
WHERE Marks = 89 AND LastName = ‘Jones’;

Syntax for Logical NOT Operator:
SELECT StudentID, Marks FROM Student
WHERE NOT LastName = ‘Jobs’;

Range Operations

We can use BETWEEN and NOT BETWEEN statements to retrieve data based on a

range.

Syntax for Range Operations:

SELECT column_name1, col_name2… FROM table_name
WHERE expression1 RANGE_OPERATOR expression2 [LOGICAL_OPERATOR expression3…];

Syntax for BETWEEN:
SELECT StudentID, Marks FROM Student
WHERE Marks BETWEEN 40 AND 70;

Syntax for NOT BETWEEN:
SELECT FirstName, Marks FROM Student
WHERE Marks NOT BETWEEN 40 AND 50;

Retrieve Records That Match a Pattern

You can use the LIKE statement to fetch data from a table if it matches a specific string

pattern. String patterns can be exact or they can make use of the ‘%’ and ‘_’ wildcard
symbols.

Syntax for LIKE with ‘%’:

SELECT * FROM Student
WHERE FirstName LIKE ‘Ro%’;

Syntax for LIKE with ‘_’:

SELECT *FROM Student
WHERE FirstName LIKE ‘_e’;

Displaying Data in a Sequence

We can display retrieved data in a specific order (ascending or descending) with

ORDER BY:

SELECT StudentID, LastName FROM Student
ORDER BY Marks DESC;

Displaying Data Without Duplication

The DISTINCT keyword can be used to eliminate rows with duplicate values in a

particular column.

Syntax for DISTINCT:

SELECT [ALL] DISTINCT col_names FROM table_name
WHERE search_condition;

SELECT DISTINCT Marks FROM Student
WHERE LastName LIKE ‘o%’;

6. SQL JOINS
Joins are used to retrieve data from more than one table where the results are ‘joined’

into a combined return data set. Two or more tables can be joined based on a common

attribute.

Consider two database tables, Employees and EmployeeSalary, which we’ll use to

demonstrate joins.

EmployeeID (PK) FirstName LastName Title

1001 Ron Brent Developer

1002 Alex Matt Manager

1003 Ray Maxi Tester

1004 August Berg Quality

EmployeeID (FK) Department Salary

1001 Application 65000

1002 Digital Marketing 75000

1003 Web 45000

1004 Software Tools 68000

Types of JOIN
The two main types of join are an INNER JOIN and an OUTER JOIN.

Inner JOIN

An inner join retrieves records from multiple tables when a comparison operation

returns true for a common column. This can return all columns from both tables, or a set

of selected columns.

Syntax for INNER JOIN:

SELECT table1.column_name1, table2.colomn_name2,…
FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name;

Example: Inner join on Employees & EmployeeSalary tables.

SELECT Employees.LastName, Employees.Title, EmployeeSalary.salary,
FROM Employees
INNER JOIN EmployeeSalary
ON Employees.EmployeeID = EmployeeSalary.EmployeeID;

Outer JOIN

An outer join displays the following combined data set:

● Every row from one of the tables (depends on LEFT or RIGHT join)

● Rows from one table that meets a given condition

An outer join will display NULL for columns where it does not find a matching record.

Syntax for OUTER JOIN:

SELECT table1.column_name1, table2.colomn_name2,… FROM table1
[LEFT|RIGHT|FULL]OUTER JOIN table2
ON table1.column_name = table2.column_name;

LEFT OUTER JOIN: every row from the ‘left’ table (left of the LEFT OUTER JOIN

keyword) is returned, and matching rows from the ‘right’ table are returned.

Example: Left outer JOIN.

SELECT Employees.LastName, Employees.Title, EmployeeSalary.salary
FROM Employees
LEFT OUTER JOIN EmployeeSalary
ON Employees.EmployeeID = EmployeeSalary.EmployeeID;

RIGHT OUTER JOIN: every row from the ‘right’ table (right of the RIGHT OUTER JOIN

keyword) is returned, and matching rows from the ‘left’ table are returned.

Example: Right outer JOIN.

SELECT Employees.LastName, Employees.Title, EmployeeSalary.salary
FROM Employees
RIGHT OUTER JOIN EmployeeSalary
ON Employees.EmployeeID = EmployeeSalary.EmployeeID;

FULL OUTER JOIN: returns all the matching and non-matching rows from both tables,

with each row being displayed no more than once.

Example: Full outer JOIN.

SELECT Employees.LastName, Employees.Title, EmployeeSalary.salary
FROM Employees
FULL OUTER JOIN EmployeeSalary
ON Employees.EmployeeID = EmployeeSalary.EmployeeID;

Cross JOIN

Also known as the Cartesian Product, a CROSS JOIN between two tables (A and B)

‘joins’ each row from table A with each row in table B, forming ‘pairs’ of rows. The joined

dataset contains ‘combinations’ of row ‘pairs’ from tables A and B.

The row count in the joined data set is equal to the number of rows in table A multiplied

by the number of rows in table B.

Syntax for CROSS JOIN:

SELECT col_1, col_2 FROM table1
CROSS JOIN table2;

Equi JOIN

An EQUI JOIN is one which uses an EQUALITY condition for the table keys in a JOIN

operation. This means that INNER and OUTER JOINS can be EQUI JOINS if the

conditional clause is an equality.

Self JOIN

A SELF JOIN is when you join a table with itself. This is useful when you want to query

and return correlatory information between rows in a single table. This is helpful when

there is a ‘parent’ and ‘child’ relationship between rows in the same table.

Example: if the Employees table contained references that links employees to

supervisors (who are also employees in the same table).

To prevent issues with ambiguity, it’s important to use aliases for each table reference

when performing a SELF JOIN.

Syntax for SELF JOIN:

SELECT t1.col1 AS “Column 1”, t2.col2 AS “Column 2”
FROM table1 AS t1
JOIN table1 AS t2
WHERE condition;

7. SQL Subqueries
An SQL statement that is placed within another SQL statement is a subquery.

Subqueries are nested inside WHERE, HAVING or FROM clauses for SELECT,

INSERT, UPDATE, and DELETE statements.

● Outer Query: represents the main query

● Inner Query: represents the subquery

Using the IN Keyword

We can use the IN keyword as a logical operator to filter data for a main query (outer

query) against a list of subquery results. This because a subquery will be evaluated first

due to inner nest position. This filtering is part of the main query’s conditional clause.

Example: run a subquery with a condition to return a data set. The subquery results

then become part of the main query’s conditional clause. We can then use the IN
keyword to filter main query results against subquery results for a particular column(s).

Syntax for IN keyword:

SELECT column_1 FROM table_name
WHERE column_2 [NOT] IN
(SELECT column_2
FROM table_name [WHERE conditional_expression]);

Using the EXISTS Keyword

We can use the EXISTS keyword as a type of logical operator to check whether a

subquery returns a set of records. This means that the operator will return TRUE if the

evaluated subquery returns any rows that match the subquery statement.

We can also use EXISTS to filter subquery results based on any provided conditions.

You can think of it like a conditional ‘membership’ check for any data that is processed

by the subquery statement.

Syntax for EXISTS keyword:

SELECT column FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name [WHERE condition]);

Using Nested Subqueries

Any individual subquery can also contain one or more additionally nested subqueries.

This is similar to nesting conditional statements in traditional programming, which

means that queries will be evaluated from the innermost level working outwards.

We use nested subqueries when the condition of one query is dependent on the result

of another, which in turn, may also be dependent on the result of another etc.

Syntax for Nested Subqueries:

SELECT col_name FROM table_name
WHERE col_name(s) [LOGICAL | CONDITIONAL | COMPARISON OPERATOR]
(SELECT col_name(s) FROM table_name
WHERE col_name(s) [LOGICAL | CONDITIONAL | COMPARISON OPERATOR]
(SELECT col_name(s) FROM table_name
WHERE [condition])

);

Correlated Subquery

A correlated subquery is a special type of subquery that uses data from the table

referenced in the outer query as part of its own evaluation.

8. Using Functions to Customize a Result Set
Various built-in functions can be used to customize a result set.

Syntax for Functions:

SELECT function_name (parameters);

Using String Functions

When our result set contains strings that are char and varchar data types, we can

manipulate these string values by using string functions:

Function Name Example

left SELECT left(‘RICHARD’, 4);

len SELECT len(‘RICHARD’);

lower SELECT lower(‘RICHARD’);

reverse SELECT reverse(‘ACTION’);

right SELECT right(‘RICHARD’, 4);

space SELECT ‘RICHARD’ + space(2) + ‘HILL’;

str SELECT str(123.45, 6, 2);

substring SELECT substring(Weather’, 2, 2);

upper SELECT upper(‘RICHARD’);

Using Date Functions

When our result set contains date and time data, we may want to manipulate it to

extract the day, month, year, or time, and we may also want to parse date-like data into

a datetime data type. We can do this by using date functions:

Function
Name

Parameters Description

dateadd (date part, number,
date)

Adds the ‘number’ of date parts to the date

datediff (date part, date1,
date2)

Calculates the ‘number’ of date parts between
two dates

Datename (date part, date) Returns the date part from a given date as a
character value

datepart (date part, date) Returns the date part from a given date as an
integer value

getdate 0 Returns the current date and time

day (date) Returns an integer to represent the day for a
given date

month (date) Returns an integer to represents the month for
a given date

year (date) Returns an integer to represents the year for a
given date

Using Mathematical Functions

We can manipulate numeric data types within our result set by using mathematical
functions:

Function Name Parameters Description

abs (numeric_expression) Returns the absolute value

acos, asin, atan (numeric_expression) Returns the arc cos, sin, or tan angle in
radians

cos, sin, tan, cot (numeric_expression) Returns the cos, sine, tan or cotangent
in radians

degrees (radians) Returns an angle in degrees converted
from radians

exp (numeric_expression) Returns the value of e raised to the
power of a given number or expression

floor (numeric_expression) Returns the largest integer value less
than or equal a given value

log (numeric_expression) Returns the natural logarithm of a given
value

pi 0 Returns the constant value of pi which
is 3.141592653589793…

power (numeric_expression, y) Returns the value of a numeric
expression raised to to the power of y

radians (degrees) Returns an angle in radians converted
from degrees

rand ([seed]) Returns a random float number
between 0 and 1 inclusive

round (number, precision) Returns a rounded version of a given
numeric value to a given integer value
for precision

sign (numeric_expression) Returns the sign of a given value, which
can be positive, negative or zero

sqrt (numeric_expression) Returns the square root of a given value

Using Ranking Functions

Ranking functions (also known as window functions) generate and return sequential

numbers to represent a rank for each based on a given criteria. To rank records, we use

the following ranking functions:

● row_number() : returns sequential numbers starting at 1, for each row in in a

result set based on a given column

● rank() : returns the rank of each row in a result set based on specified criteria

(can lead to duplicate rank values)

● dense_rank() : used when consecutive ranking values are needed for a given

criteria (no duplicate rank values)

Each ranking function uses the OVER clause to specify the ranking criteria. Within this,

we choose a column to use for assigning a rank along with the ORDER BY keyword to

determine whether ranks should be applied based on ascending or descending values.

Using Aggregate Functions

Aggregate functions summarize values for a column or group of columns to produce a

single (aggregated) value.

Syntax for Aggregate Functions:

SELECT AGG_FUNCTION([ALL | DISTINCT] expression)
FROM table_name;

The table below summarizes the various SQL aggregate functions:

Function
Name

Description

avg Returns the average from a range of values in a given data set or
expression. Can include ALL values or DISTINCT values

count Returns the quantity (count) of values in a given data set or
expression. Can include ALL values or DISTINCT values

min Returns the lowest value in a given data set or expression

max Returns the highest value in a given data set or expression

sum Returns the sum of values in a given data set or expression. Can
include ALL values or DISTINCT values

9. Grouping Data
We have the option to group data in our result set based on a specific criteria. We do

this by using the optional GROUP BY, COMPUTE, COMPUTE BY, and PIVOT clauses

with a SELECT statement.

GROUP BY Clause

When used without additional criteria, GROUP BY places data from a result set into

unique groups. But when used with an aggregate function, we can summarize

(aggregate) data into individual rows per group.

Syntax for GROUP BY:

SELECT column(s) FROM table_name
GROUP BY expression
[HAVING search_condition];

COMPUTE and COMPUTE BY Clause

We can use the COMPUTE clause with a SELECT statement and an aggregate
function to generate summary rows as a separate result from our query. We can also

use the optional BY keyword to calculate summary values on a column–by-column

basis.

Syntax for COMPUTE [BY]:

SELECT column(s) FROM table_name
[ORDER BY column_name]
COMPUTE [BY column_name] AGG_FUNCTION(column_name)

Note: support for this keyword was dropped by MS SQL Server in 2012.

PIVOT Clause

The PIVOT operator is used to transform unique rows into column headings. You can

think of this as rotating or pivoting the data into a new ‘pivot table’ that contains the

summary (aggregate) values for each rotated column. With this table, you can examine

trends or summary values on a columnar basis.

Syntax for PIVOT:

SELECT * FROM table_name
PIVOT (AGG_FUNCTION (value_column)

FOR pivot_column
IN column(s))

AS pivot_table_alias;

10. The ACID Property

The term ACID stands for Atomicity, Consistency, Isolation, and Durability. These
individual properties represent a standardized group that are required to ensure the
reliable processing of database transactions.

Atomicity
The concept that an entire transaction must be processed fully, or not at all.

Consistency
The requirement for a database to be consistent (valid data types, constraints, etc) both
before and after a transaction is completed.

Isolation
Transactions must be processed in isolation and they must not interfere with other
transactions.

Durability
After a transaction has been started, it must be processed successfully. This applies
even if there is a system failure soon after the transaction is started.

11. RDBMS
A Relational Database Management System (RDBMS) is a piece of software that
allows you to perform database administration tasks on a relational database, including
creating, reading, updating, and deleting data (CRUD).

Relational databases store collections of data via columns and rows in various tables.
Each table can be related to others via common attributes in the form of Primary and
Foreign Keys.

