How to Clean Data with Python

Character Sets in Regular Expressions

Regular expression character sets denoted by a pair of
brackets [] will match any of the characters included
within the brackets. For example, the regular expression
con[sc]en[sclus will match any of the spellings
consensus , concensus , consencus , and
concencus .

Optional Quantifiers in Regular Expressions

In Regular expressions, optional quantifiers are denoted
by a question mark ? . It indicates that a character can
appear either O or 1time. For example, the regular
expression humou?r will match the text humour as
well as the text humor .

Literals in Regular Expressions

In Regular expression, the literals are the simplest
characters that will match the exact text of the literals.
For example, the regex monkey will completely match
the text monkey but will also match monkey in text
The monkeys like to eat bananas.

Fixed Quantifiers in Regular Expressions

In Regular expressions, fixed quantifiers are denoted by
curly braces {} . It contains either the exact quantity or
the quantity range of characters to be matched. For
example, the regular expression roa{3}r will match the
text roaaar , while the regular expression roa{3,6}r will
match roaaar, roaaaar, roaaaaar , or roaaaaaar .

Alternation in Regular Expressions

Alternation indicated by the pipe symbol |, allows for the
matching of either of two subexpressions. For example,
the regex baboons|gorillas will match the text

baboons as well as the text gorillas .

Anchors in Regular Expressions

Anchors (hat ” and dollar sign $) are used in regular
expressions to match text at the start and end of a string,
respectively. For example, the regex “Monkeys: my
mortal enemy$ will completely match the text
Monkeys: my mortal enemy but not match Spider
Monkeys: my mortal enemy or Monkeys: my mortal
enemy in the wild . The * ensures that the matched
text begins with Monkeys , and the $ ensures the
matched text ends with enemy .

Regular Expressions

Regular expressions are sequence of characters defining
a pattern of text that needs to be found. They can be
used for parsing the text files for specific pattern,
verifying test results, and finding keywords in emails or
webpages.

Wildcards in Regular expressions

In Regular expression, wildcards are denoted with the
period . and it can match any single character (letter,
number, symbol or whitespace) in a piece of text. For
example, the regular expression will match the
text orangutan , marsupial , or any other 9-character
text.

Regular Expression Ranges

Regular expression ranges are used to specify a range of
characters that can be matched. Common regular
expression ranges include: [A-Z]. : match any uppercase
letter [a-z]. : match any lowercase letter [0-9]. : match
any digit [A-Za-z] : match any uppercase or lowercase
letter.

Shorthand Character Classes in Regular Expressions

Shorthand character classes simplify writing regular
expressions. For example, \W represents the regex range
[A-Za-z0-9], \d represents [0-9], \W represents
[*A-Za-z0-9] matching any character not included by
\w, \D represents [“0-9] matching any character not
included by \d .

Kleene Star & Kleene Plus in Regular Expressions

In Regular expressions, the Kleene star(*) indicates that
the preceding character can occur O or more times. For
example, meo*w will match mew , meow ,

meooow , and Meo000000000000W . The Kleene

plus(+) indicates that the preceding character can occur
1 or more times. For example, meo+w will match

meow , meooow , and MEOO00000000000W , but not
match mew .

Grouping in Regular Expressions

In Regular expressions, grouping is accomplished by open
(and close parenthesis) . Thus the regular expression
I love (baboons|gorillas) will match the text I love
baboons as well as I love gorillas , as the grouping
limits the reach of the | to the text within the
parentheses.

