K-Nearest Neighbors

Regression in KNN Algorithm

K-Nearest Neighbor algorithm uses ‘feature similarity” to
predict values of any new data points. This means that the
new point is assigned a value based on how closely it
resembles the points in the training set. During regression
implementation, the average of the values is taken to be
the final prediction, whereas during the classification
implementation mode of the values is taken to be the
final prediction.

K-Nearest Neighbors Underfitting and Overfitting

The value of k in the KNN algorithm is related to the error
rate of the model. A small value of k could lead to
overfitting as well as a big value of k can lead to
underfitting. Overfitting imply that the model is well on
the training data but has poor performance when new
data is coming. Underfitting refers to a model that is not
good on the training data and also cannot be generalized
to predict new data.

KNN Classification Algorithm in Scikit Learn

Scikit-learn is a very popular Machine Learning library in from
Python which provides a KNeighborsClassifier object

which performs the KNN classification. The

n_neighbors parameter passed to the

KNeighborsClassifier object sets the desired k value

that checks the k closest neighbors for each

unclassified point.

The object provides a .fit() method which takes in

training data and a .predict() method which returns the

classification of a set of data points.

import

Euclidean Distance

The Euclidean Distance between two points can be

computed, knowing the coordinates of those points.

On a 2-D plane, the distance between two points p and q

is the square-root of the sum of the squares of the

difference between their x and y components.

Remember the Pythagorean Theorem: a2 + b*2 =¢c”*2 ¢ 7°d
We can write a function to compute this distance. Let’s

assume that points are represented by tuples of the form
(x_coord, y_coord) . Also remember that computing
the square-root of some value n can be done in a couple

of ways: math.sqrt(n) , using the math library, or n ** P——

0.5 (n raised to the power of 1/2). e

def distance (pl,) s

return (+

Elbow Curve Validation Technique in K-Nearest Neighbor Algorithm

Choosing an optimal k value in KNN determines the
number of neighbors we look at when we assign a value to
any new observation.

For a very low value of k (suppose k=1), the model
overfits on the training data, which leads to a high error
rate on the validation set. On the other hand, for a high
value of k, the model performs poorly on both train and
validation set. When k increases, validation error
decreases and then starts increasing in a “U” shape. An
optimal value of k can be determined from the elbow
curve of the validation error.

K-Nearest Neighbors

The K-Nearest Neighbors algorithm is a supervised
machine learning algorithm for labeling an unknown data
point given existing labeled data.

The nearness of points is typically determined by using
distance algorithms such as the Euclidean distance
formula based on parameters of the data. The algorithm
will classify a point based on the labels of the K nearest
neighbor points, where the value of K can be specified.

KNN of Unknown Data Point

To classify the unknown data point using the KNN (K-
Nearest Neighbor) algorithm:
« Normalize the numeric data
 Find the distance between the unknown data
point and all training data points
« Sort the distance and find the nearest k data
points
 Classify the unknown data point based on the
most instances of nearest k points

Normalizing Data

Normalization is a process of converting the numeric
columns in the dataset to a common scale while retaining
the underlying differences in the range of values.

For example, Min-max normalization converts each value
of the numeric column to a value between 0 and 1 using
the formula Normalized value = (NumericValue -
MinValue) / (MaxValue - MinValue) . A downside of
Min-max Normalization is that it does not handle outliers
very well.

