Clustering

K-Means: Inertia

Inertia measures how well a dataset was clustered by K-
Means. It is calculated by measuring the distance between
each data point and its centroid, squaring this distance,
and summing these squares across one cluster.

A good model is one with low inertia AND a low number
of clusters (K). However, this is a tradeoff because as

K increases, inertia decreases.

To find the optimal K for a dataset, use the Elbow
method; find the point where the decrease in inertia
begins to slow. K=3 is the “elbow” of this graph.

Unsupervised Learning Basics

Patterns and structure can be found in unlabeled data
using unsupervised learning, an important branch of
machine learning. Clustering is the most popular
unsupervised learning algorithm; it groups data points
into clusters based on their similarity. Because most
datasets in the world are unlabeled, unsupervised
learning algorithms are very applicable.
Possible applications of clustering include:
« Search engines: grouping news topics and search
results
» Market segmentation: grouping customers based
on geography, demographics, and behaviors

Inertia

Optimal Number of Clusters

u 0

700 —

600 —

500

400

300

200

100 —

Number of Clusters (k)

K-Means Algorithm: Intro

K-Means is the most popular clustering algorithm. It uses
an iterative technique to group unlabeled data into K
clusters based on cluster centers (centroids). The data in
each cluster are chosen such that their average distance
to their respective centroid is minimized.

1. Randomly place K centroids for the initial clusters.

2. Assign each data point to their nearest centroid.
3. Update centroid locations based on the locations
of the data points.

Repeat Steps 2 and 3 until points don't move between
clusters and centroids stabilize.

K-Means Algorithm: 2nd Step

After randomly choosing centroid locations for K-Means,
each data sample is allocated to its closest centroid to
start creating more precise clusters.

The distance between each data sample and every
centroid is calculated, the minimum distance is selected,
and each data sample is assigned a label that indicates its
closest cluster.

The distance formula is implemented as .distance() and
used for each data point.

np.argmin() is used to find the minimum distance and
find the cluster at that distance.

distance formula

def distance (&,)2
= (a[0] - b[0]) **2
= (a[l] - b[1l]) **2

= +)y ** 0.5

return

Scikit-Learn Datasets

The scikit-learn library contains built-in datasets in its
datasets module that are often used in machine learning
problems like classification or regression.
Examples:

« lIris dataset (classification)

« Boston house-prices dataset (regression)
The format of these datasets are important to their use
with algorithms. For example, each piece of data in the
Iris dataset is a sample (flower type), and each element
within a sample is a feature (i.e. petal width).

K-Means Using Scikit-Learn

Scikit-Learn, or sklearn , is a machine learning library
for Python that has a K-Means algorithm implementation
that can be used instead of creating one from scratch.
To use it:

« Import the KMeans() method from the
sklearn.cluster library to build a model with
n_clusters

- Fit the model to the data samples using .fit()

 Predict the cluster that each data sample belongs
to using .predict() and store these as labels

Cross Tabulation Overview

Cross-tabulations involve grouping pieces of data
together in order to examine their relationship in a
different way. Sometimes correlations within data can be
seen better when not just looking at total responses.

This technique is often performed in Python after running
K-Means; the Pandas method .crosstab() allows for
comparison between resulting cluster labels and user-
defined labels for each data sample. In order to validate
the results of a K-Means model with this technique, there
must be user-defined labels for all data samples.

Petal

Sepal
Iris Versicolor Iris Setosa Iris Virginica
from . import
= (=3)
()
= ()
import as

= . (['pred labels'],

['user labels'])

K-Means: Reaching Convergence

In K-Means, after placing K random centroids, the data
samples are repeatedly assigned to the nearest centroid
and then centroid locations are updated. This continues
until each of the centroids’ coordinates converge, or stop
changing.

This sequence of events can be implemented in Python
using a while loop. The loop continues until the
difference between each element of the updated
centroids and each element of the past centroids_old
is 0. This will mean the centroids have converged and the
clusters are complete!

K-Means Algorithm: 3rd Step

The third step of K-Means updates centroid locations.
After the data are assigned to their respectively closest
centroid in step 2, each cluster center location is
adjusted to be the average of its assigned data points.
The NumPy .mean() function is used to find the average
x and y-coordinates of all data points for each cluster and
store these as the new centroid locations.

sepal width (cm)

4.5
‘:'
@
4.0 A L]
<]
] ° e e
e @@
° ’ e
3.5 e¥e o
® ® 000 © e ee
o0 L] L
e oe] @ [1] e9e @
® oe [] L]
3.04 oo 7L ® o0 eoe *oe oe ee
o e® eeeee 2}
’ °o0e eecee o e o
i e e ® 00
e 8o -]]
2.5 1 e © 1Y ® e
@ o]
@] L] []
e @
2.0 1 L
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

sepal length {cm)

K-Means Algorithm: 1st Step

The first step of the K-Means clustering algorithm
requires placing K random centroids which will become
the centers of the K initial clusters. This step can be
implemented in Python using the Numpy
random.uniform() function; the x and y-coordinates
are randomly chosen within the x and y ranges of the data
points.

sepal width (cm)

4.5

4.0 4

3.5

3.01

2.5+

2.04

[]

®

L
® @
]
D
% o0 L]
Y o0
-0
L
@
5.5 6.0 6.5

sepal length (cm)

