Decision Trees

Information Gain at decision trees

When making decision trees, two different methods are
used to find the best feature to split a dataset on: Gini
impurity and Information Gain. An intuitive interpretation
of Information Gain is that it is a measure of how much
information the individual features provide us about the
different classes.

Gini impurity

When making decision trees, calculating the Gini impurity
of a set of data helps determine which feature best splits
the data. If a set of data has all of the same labels, the
Gini impurity of that set is 0. The set is considered pure.
Gini impurity is a statistical measure - the idea behind its
definition is to calculate how accurate it would be to
assign labels at random, considering the distribution of
actual labels in that subset.

Decision trees leaf creation

When making a decision tree, a leaf node is created when
no features result in any information gain. Scikit-Learn
implementation of decision trees allows us to modify the
minimum information gain required to split a node. If this
threshold is not reached, the node becomes a leaf.



Optimal decision trees

Creating an optimal decision tree is a difficult task. For
example, the greedy approach of splitting a tree based on
the feature that results in the best current information
gain doesn’t guarantee an optimal tree. There are
numerous heuristics to create optimal decision trees, and
each of these methods proposes a unique way to build
the tree.

Decision Tree Representation

In a decision tree, leaves represent class labels, internal
nodes represent a single feature, and the edges of the
tree represent possible values of those features.

Unlike other classifiers, this visual structure gives us great
insight about the algorithm performance.

Decision trees pruning

Decision trees can be overly complex which can result in
overfitting. A technique called pruning can be used to
decrease the size of the tree to generalize it to increase
accuracy on a test set. Pruning is not an exact method, as
it is not clear which should be the ideal size of the tree.
This technique can be made bottom-up (starting at the
leaves) or up-bottom (starting at the root).



Decision Trees Construction

Decision Trees are usually constructed from top to
bottom. At each level of the tree, the feature that best
splits the training set labels is selected as the “question”
of that level. Two different criteria are available to split a
node, Gini Index and Information Gain. The convenience
of one or the other depends on the problem.

Random Forest definition

A Random Forest Classifier is an ensemble machine
learning model that uses multiple unique decision trees to
classify unlabeled data. If compared to an individual
decision tree, Random Forest is a more robust classifier
but its interpretability is reduced.

Random Forest overfitting

Random Forests are used to avoid overfitting. By
aggregating the classification of multiple trees, having
overfitted trees in the random forest is less impactful.
Reduced overfitting translates to greater generalization
capacity, which increases classification accuracy on new
unseen data.

Random Forest feature consideration

When creating a decision tree in a random forest, a
random subset of features are considered as the best
feature to split the data on. By splitting the data in a
random subset of features, all estimators are trained
considering different aspects of the data, which reduces
the probability of overfitting.



Random Forest aggregative performance

A random forest classifier makes its classification by
taking an aggregate of the classifications from all the trees
in the random forest. For classification, this aggregate is a
majority vote. For regression, this could be the average of
the trees in the random forest. This aggregation allows
the classifier to capture complex non-linear relations
from the data. The model performance is far superior
than a linear model.

Bagging at Random Forest

Trees in a random forest classifier are created by using a
random subset of the original dataset with replacement.
This process is known as bagging. Bagging prevents
overfitting, given that each individual tree is trained on a
subset of original data.



