
Java
Cheat Sheet

Basics
Java is one of the most popular programming languages in the world. With Java
you can build various types of applications such as desktop, web, mobile apps and
distributed systems.

The Java compiler takes Java code and compiles it down to Java Bytecode which is
a cross-platform format. When we run Java applications, Java Virtual Machine
(JVM) gets loaded in the memory. It takes our bytecode as the input and translates
it to the native code for the underlying operating system. There are various
implementations of Java Virtual Machine for almost all operating systems.

We have four editions of Java, each used for building a different type of
application:

•Java Standard Edition (SE): the core Java platform. It contains all of the
libraries that every Java developer must learn.
•Java Enterprise Edition (EE): used for building very large scale,

distributed systems. It’s built on top of Java SE and provides additional
libraries for building fault-tolerant, distributed, multi-tier software.

•Java Micro Edition (ME): a subset of Java SE, designed for mobile
devices. It also has libraries specific to mobile devices.
•Java Card: used in smart cards.

We use Java Development Kit (JDK) to build Java applications. JDK contains a
compiler, the Java Runtime Environment (JRE) and a library of classes that we use
to build applications.

Java Editions

Java Development Kit

How Java Code Gets Executed

Architecture of Java Applications

1.Java was developed by James Gosling in 1995 at Sun Microsystems (later
acquired by Oracle).

2.It was initially called Oak. Later it was renamed to Green and was finally
renamed to Java inspired by Java coffee.
3.Java has close to 9 million developers worldwide.

4.About 3 billion mobile phones run Java, as well as 125 million TV sets and
every Blu-Ray player.

5.According to indeed.com, the average salary of a Java developer is just over
$100,000 per year in the US.

The smallest building blocks in Java programs are methods (also called functions
in other programming languages). We combine related methods in classes, and
related classes in packages. This modularity in Java allows us to break down large
programs into smaller building blocks that are easier to understand and re-use.

5 Interesting Facts about Java

http://indeed.com/

Types

Variables

Primitive Types

Declaring Variables

•In Java, we terminate statements with a semicolon.

We use variables to temporarily store data in computer’s memory. In Java, the type
of a variable should be specified at the time of declaration.

In Java, we have two categories of types:

•Primitives: for storing simple values like numbers, strings and booleans.

•Reference Types: for storing complex objects like email messages.

byte age = 30;
long viewsCount =
3_123_456L; float price =
10.99F;
char letter = ‘A’;

boolean isEligible = true;

Type

byte

short

int

long

float

double

char

boolean

Bytes Range

1[-128, 127]

2[-32K, 32K]

4[-2B, 2B]

8

4

8

2A, B, C, …

1true / false

We use comments to add notes to our code.

The String class in Java provides a number of useful methods:

•startsWith(“a”)

•endsWith(“a”)

•length()

In Java we have 8 primitive types. All the other types are reference types. These
types don’t store the actual objects in memory. They store the reference (or the
address of) an object in memory.

To use reference types, we need to allocate memory using the new operator. The
memory gets automatically released when no longer used.

Strings are reference types but we don’t need to use the new operator to
allocate memory to them. We can declare string variables like the primitives
since we use them a lot.

•We enclose characters with single quotes and strings (series of characters) with
double quotes.

•The default integer type in Java is int. To represent a long value, we should add L
to it as a postfix.
•The default floating-point type in Java is double. To represent a float, we should
append F to it as a postfix.

Strings

Comments

Reference Types

Useful String Methods

String name = “Mosh”;

Date now = new Date();

// This is a comment and it won’t get executed.

If you need to use a backslash or a double quotation mark in a string, you need
to prefix it with a backslash. This is called escaping.

Common escape sequences:

•\\

•\”

•\n (new line)

•\t (tab)

We use arrays to store a list of objects. We can store any type of object in an
array (primitive or reference type). All items (also called elements) in an array
have the same type.

•indexOf(“a”)

•replace(“a”, “b”)

•toUpperCase()

•toLowerCase()

Strings are immutable, which means once we initialize them, their value cannot be
changed. All methods that modify a string (like toUpperCase) return a new string
object. The original string remains unaffected.

Arrays

Escape Sequences

// Creating and and initializing an array of 5 elements
int[] numbers = new int[3];
numbers[0] = 10;
numbers[1] = 20;

numbers[2] = 30;

// Shortcut

int[] numbers = { 10, 20, 30 };

The Array class provides a few useful methods for working with arrays.

Constants (also called final variables) have a fixed value. Once we set them,
we cannot change them.

Java arrays have a fixed length (size). You cannot add or remove new items
once you instantiate an array. If you need to add new items or remove existing
items, you need to use one of the collection classes.

By convention, we use CAPITAL LETTERS to name constants. Multiple words can
be separated using an underscore.

Constants

The Array Class

Arithmetic Expressions

Multi-dimensional Arrays

int x = 10 + 3;

final float INTEREST_RATE = 0.04;

// Shortcut
int[2][3] matrix = {

{ 1, 2, 3 },
{ 4, 5, 6 }
};

int[] numbers = { 4, 2, 7 };
Arrays.sort(numbers);
String result =
Arrays.toString(numbers);
System.out.println(result);

// Creating a 2x3 array (two rows, three
columns) int[2][3] matrix = new int[2][3];
matrix[0][0] = 10;

int x = 10 + 3 * 2; // 16 int x
= (10 + 3) * 2; // 26

int x = 1;
x++; // Equivalent to x = x + 1 x-
-; // Equivalent to x = x - 1

int x = 1;
x += 5; // Equivalent to x = x + 5

int x = 10 - 3;
int x = 10 * 3;
int x = 10 / 3; // returns an int
float x = (float)10 / (float)3; // returns a float

int x = 10 % 3; // modulus (remainder of division)

// Implicit casting happens because we try to store a short
// value (2 bytes) in an int (4 bytes).
short x = 1;
int y = x;

Augmented Assignment Operator

Increment and Decrement Operators

Casting

Order of Operations
Multiplication and division operators have a higher order than addition and
subtraction. They get applied first. We can always change the order using
parentheses.

In Java, we have two types of casting:

•Implicit: happens automatically when we store a value in a larger or more
precise data type.
•Explicit: we do it manually.

// Explicit casting
int x = 1;
short y = (short) x;

Scanner scanner = new
Scanner(system.in); double number =
scanner.nextDouble();
byte number = scanner.nextByte();

String name = scanner.next();

String line = scanner.nextLine();

NumberFormat percent =
NumberFormat.getPercentInstance(); String result =
percent(“0.04”); // 4%

NumberFormat currency =
NumberFormat.getCurrencyInstance(); String result =
currency.format(“123456”); // $123,456

To convert a string to a number, we use one of the following methods:

•Byte.parseByte(“1”)

•Short.parseShort(“1”)

•Integer.parseInt(“1”)

•Long.parseLong(“1”)

•Float.parseFloat(“1.1”)

•Double.parseDouble(“1.1”)

Reading Input

Formatting Numbers

http://system.in/
http://system.in/

Control Flow

If Statements

Logical Operators

Comparison Operators
We use comparison operators to compare values.

We use logical operators to combine multiple boolean values/expressions.

•x && y (AND): if both x and y are true, the result will be true.

•x || y (OR): if either x or y or both are true, the result will be true.

•!x (NOT): reverses a boolean value. True becomes false.

Here is the basic structure of an if statement. If you want to execute
multiple statements, you need to wrap them in curly braces.

if (condition1)
statement1
else if (condition2)

statement2

else if (condition3)
statement3

x == y // equality operator
x != y. // in-equality operator x
> y

x >= y

x < y
x <= y

bool hasHighIncome = true;
bool hasGoodCredit = false;
bool hasCriminalRecord = false;
bool isEligible = (hasHighIncome || hasGoodCredit) && !isEligible;

switch (x) {
case 1:
…

break;

case 2:

…

break;

default:

…
}

else
statement4

String className;

if (income > 100_000)
className = “First”;
else

className = “Economy”;

String className = (income > 100_000) ? “First” : “Economy”;

Switch Statements

The Ternary Operator

This is a shorthand to write the following code:

After each case clause, we use the break statements to jump out of the
switch block.

We use switch statements to execute different parts of the code depending on
the value of a variable.

For Loops

While Loops

For-each Loops

Do..While Loops

We use the break statement to jump out of a loop.

For-each loops are useful for iterating over an array or a collection.

For loops are useful when we know ahead of time how many times we want to
repeat something. We declare a loop variable (or loop counter) and in each
iteration we increment it until we reach the number of times we want to execute
some code.

Do..While loops are very similar to while loops but they executed at least once. In
contrast, a while loop may never get executed if the condition is initially false.

While loops are useful when we don’t know ahead of time how many times we want
to repeat something. This may be dependent on the values at run-time (eg what the
user enters).

while (someCondition) {
…

if (someCondition)
break;
}

do {
…
} while (someCondition);

for (int i = 0; i < 5; i++)
statement

int[] numbers = {1, 2, 3,
4}; for (int number :
numbers)

Want to Become a Java Expert?
If you’re serious about learning Java and getting a job as a Java developer, I highly
encourage you to enroll in my Ultimate Java Mastery Series. Don’t waste your time
following disconnected, outdated tutorials. My Ultimate Java Mastery Series has
everything you need in one place:

•More than 10 hours of HD video

•Unlimited access - watch it as many times as you want

•Self-paced learning - take your time if you prefer

•Watch it online or download and watch offline

•Certificate of completion - add it to your resume to stand out

•30-day money-back guarantee - no questions asked

