
01 www.dotnetcurry.com/magazine

AngularJS is an extensible and exciting new JavaScript MVC framework developed by Google for 
building well-designed, structured and interactive single-page applications (SPA). It lays strong 
emphasis on Testing and Development best practices such as templating and declarative bi-directional 
data binding. 

This cheat sheet co-authored by Ravi Kiran and Suprotim Agarwal, aims at providing a quick reference to 
the most commonly used features in AngularJS. It will also make you quickly productive with Angular.

This article is from the Free DNC Magazine for .Net and JavaScript developers. Subscribe to 
this magazine for free  (using only your email address) and download all the editions.

BEGINNER

           Important AngularJS Components and their 
usage: 

•   angular.module() defines a module

•   Module.controller() defines a controller

•   Module.directive() defines a directive

•   Module.filter() defines a filter

•   Module.service() or Module.factory() or 

     Module.provider() defines a service

•   Module.value() defines a service from an existing

     object Module

•   ng-app attribute sets the scope of a module

•   ng-controller attribute applies a controller to the   

     view

•   $scope service  passes data from controller to the   

     view

•   $filter service uses a filter

•   ng-app attribute sets the scope of the module

01  Bootstrapping AngularJS application: 

Bootstrapping in HTML: 
<div ng-app=”moduleName”></div>

Manual bootstrapping: 
angular.bootstrap(document,[“moduleName”])

 Expressions: 

{{ 4+5 }} -> yields 9

{{ name }} -> Binds value of name from current   

scope and watches for changes to name

{{ ::name }} -> Binds value of name from current   

scope and doesn’t watch for change (Added in    

AngularJS 1.3)

02

03

ANGULARJS 
CHEAT SHEET

http://www.dotnetcurry.com/Author.aspx?AuthorName=Ravi%20Kiran
http://www.dotnetcurry.com/Author.aspx?AuthorName=Suprotim%20Agarwal
http://dotnetcurry.com/magazine
http://dotnetcurry.com/magazine


02 www.dotnetcurry.com/magazine

 Module: 

Create a module named myModule1 that depends on   

myModule2 and myModule2:
angular.module(“myModule1”,[“myModule2”,         
“myModule2”])

Get reference to the module myModule1 

angular.module(“myModule1”)

 Defining a Controller and using it:
 

i.   With $scope:

angular.module(“myModule”).    
controller(“SampleController”,     
function($scope,){
  //Members to be used in view for binding        
  $scope.city=”Hyderabad”;
});

In the view:

<div ng-controller=”SampleController”>
  <!-- Template of the view with binding   
  expressions using members of $scope -->  
  <div>{{city}}</div>
</div>

ii.   Controller as syntax:

angular.module(“myModule”).    
controller(“SampleController”, function(){
  var controllerObj = this;
  //Members to be used on view for binding
  controllerObj.city=”Hyderabad”;
});

In the view:

<div ng-controller=”SampleController as ctrl”>
  <div>{{ctrl.city}}</div>
</div>

04

05

 Defining a Service:
 
angular.module(“myModule”).    
service(“sampleService”, function(){
  var svc = this;
  var cities=[“New Delhi”, “Mumbai”,    
  “Kolkata”, “Chennai”];

06

  svc.addCity = function(city){
    cities.push(city);
  };

  svc.getCities = function(){
    return cities;
  }
});

The members added to instance of the service are visible to the 

outside world. Others are private to the service. Services are 

singletons, i.e. only one instance of the service is created in the 

lifetime of an AngularJS application.

 Factory:

angular.module(“myModule”).    
factory(“sampleFactory”, function(){
  var cities = [“New Delhi”, “Mumbai”, 
  “Kolkata”, “Chennai”];
  function addCity(city){cities.push(city);}
  function getCities(){return cities;}
  return{
    getCities: getCities,
    addCity:addCity
  };
});

A factory is a function that returns an object. The members 

that are not added to the returning object, remain private 

to the factory. The factory function is executed once and the 

result is stored. Whenever an application asks for a factory, the 

application returns the same object. This behavior makes the 

factory a singleton.

07

 Value:

angular.module(“myModule”).value(“sampleValue”, {
  cities : [“New Delhi”, “Mumbai”, “Kolkata”,   
  “Chennai”],
  addCity: function(city){cities.push(city);},
  getCities: function(){return cities;}
});

A value is a simple JavaScript object. It is created just once, so 

value is also a singleton. Values can’t contain private members. 

All members of a value are public.

08



03 www.dotnetcurry.com/magazine

 Constant:

angular.module(“myModule”).    
constant(“sampleConstant”,{pi: Math.PI});

A constant is also like a value. The difference is, a constant can 

be injected into config blocks, but a value cannot be injected.

09

 Provider:

angular.module(“myModule”).    
provider(“samplePrd”, function(){
  this.initCities = function(){
    console.log(“Initializing Cities…”);
  };
 
  this.$get = function(){
    var cities = [“New Delhi”, “Mumbai”, 
    “Kolkata”, “Chennai”];
    function addCity(city){
      cities.push(city);
    }
    function getCities(){return cities;}
      return{ getCities: getCities,addCity:addCity
    };
  }

});

A provider is a low level recipe. The $get() method of the 

provider is registered as a factory. Providers are available 

to config blocks and other providers. Once application 

configuration phase is completed, access to providers is 

prevented.

After the configuration phase, the $get() method of the 

providers are executed and they are available as factories. 

Services, Factories and values are wrapped inside provider with 

$get() method returning the actual logic implemented inside 

the provider.

10

 Config block:

angular.module(“myModule”).config(function
(samplePrdProvider, sampleConstant){
  samplePrdProvider.init();
  console.log(sampleConstant.pi);

});

Config block runs as soon as a module is loaded. As the name 

itself suggests, the config block is used to configure the 

11

  Run block:

angular.module(“myModule”).run(function(<any        
services, factories>){
  console.log(“Application is configured. Now inside run  
  block”);
});

Run block is used to initialize certain values for further  

use, register global events and anything that needs to run at 

the beginning of the application. Run block is executed after 

config block, and it gets access to services, values and factories. 

Run block is executed only once in the lifetime of an Angular 

application.

 Filters:

angular.module(“myModule”).    
filter(“dollarToRupeee”,  function(){
  return function(val){
    return “Rs. “ + val * 60;
  };
});

Usage:

<span>{{price | dollarToRupee}}</span>

Filters are used to extend the behavior of binding expressions 

and directives. In general, they are used to format values or to 

apply certain conditions. They are executed whenever the value 

bound in the binding expression is updated.

 Directives:

myModule.directive(“directiveName”, function   
(injectables) {
  return {
    restrict: “A”,
    template: “<div></div>”,
    templateUrl: “directive.html”,
    replace: false,
    transclude: false,
    scope: false,

12

13

14

application. Services, Factories and values are not available 

for config block as they are not created by this time. Only 

providers and constants are accessible inside the config block. 

Config block is executed only once in the lifetime of an Angular 

application.



04 www.dotnetcurry.com/magazine

require: [“someOtherDirective”],
controller: function($scope, $element, 
$attrs, $transclude, otherInjectables) { ... },
link: function postLink(scope, iElement,   

      iAttrs) { ... },
priority: 0,
terminal: false,
compile: function compile(tElement, tAttrs,  

      transclude) {
return {
   pre: function preLink(scope, iElement,   

  iAttrs, controller) { ... },
   post: function postLink(scope,    

  iElement, iAttrs, controller) { ... }
}

     }
   };
});

Directives add the capability of extending HTML. They are the 

most complex and the most important part of AngularJS. A 

directive is a function that returns a special object, generally 

termed as Directive Definition Object. The Directive Definition 

Object is composed of several options as shown in the above 

snippet. Following is a brief note on them:

•  restrict: Used to specify how a directive can be used. Possible 

values are: E (element), A (Attribute), C (Class) and M (Comment). 

Default value is A

•  template: HTML template to be rendered in the directive

•  templateUrl: URL of the file containing HTML template of the 

element

•  replace: Boolean value denoting if the directive element is to 

be replaced by the template. Default value is false

•  transclude: Boolean value that says if the directive should 

preserve the HTML specified inside directive element after 

rendering. Default is false

•  scope: Scope of the directive. It may be same as the scope of 

surrounding element (default or when set to false), inherited 

from scope of the surrounding element (set to true) or an 

isolated scope (set to {})

•  require: A list of directive that the current directive needs. 

Current directive gets access to controller of the required 

directive. An object of the controller is passed into link function 

of the current directive.

•  controller: Controller for the directive. Can be used to 

manipulate values on scope or as an API for the current 

directive or a directive requiring the current directive

•  priority: Sets priority of a directive. Default value is 0. 

Directive with higher priority value is executed before a 

directive with lower priority

•  terminal: Used with priority. If set to true, it stops execution 

of directives with lower priority. Default is false

•  link: A function that contains core logic of the directive. 

It is executed after the directive is compiled. Gets access 

to scope, element on which the directive is applied (jqLite 

object), attributes of the element containing the directive and 

controller object. Generally used to perform DOM manipulation 

and handling events

•  compile: A function that runs before the directive is compiled. 

Doesn’t have access to scope as the scope is not created yet. 

Gets an object of the element and attributes. Used to perform 

DOM of the directive before the templates are compiled and 

before the directive is transcluded. It returns an object with two 

link functions:

  o  pre link: Similar to the link function, but it is executed 

before the directive is compiled. By this time, transclusion is 

applied

  o  post link: Same as link function mentioned above

. Most used built-in directives:

•  ng-app: To bootstrap the application

•  ng-controller: To set a controller on a view

•  ng-view: Indicates the portion of the page to be   

updated when route changes

•  ng-show / ng-hide: Shows/hides the content within   

the directive based on boolean equivalent of value   

assigned

•  ng-if: Places or removes the DOM elements under   

15



05 www.dotnetcurry.com/magazine

 AngularJS Naming Conventions

•  While naming a file say an authentication controller,   

end it with the object suffix. For eg: an authentication   

controller can be renamed as auth–controller.js.   

Similar service can be called as auth-service.js,    

directive as auth-directive.js and a filter as auth-filter.js

•  Create meaningful & short lower case file names that also 

reflect the folder structure. For eg: if we have a login controller 

inside the login folder which is used for creating users, call it 

login-create-controller.js

•  Similar a testing naming convention that you could follow 

is if the filename is named as login-directive.js, call its test file 

counterpart as login-directive_test.js. Similarly a test file for 

login-service.js can be called as login-service_test.js

Use a workflow management tool like Yeoman plugin for 

Angular that automates a lot of these routines and much more 

for you. Also look at ng-boilerplate to get an idea of the project 

and directory structure.

16this directive based on boolean equivalent of value   

assigned

•  ng-model: Enables two-way data binding on any   

input controls and sends validity of data in the input   

control to the enclosing form

•  ng-class: Provides an option to assign value of   

a model to CSS, conditionally apply styles and use   

multiple models for CSS declaratively

•  ng-repeat: Loops through a list of items and copies   

the HTML for every record in the collection

•  ng-options: Used with HTML select element to   

render options based on data in a collection

•  ng-href: Assigns a model as hyperlink to an anchor   

element

•  ng-src: Assigns a model to source of an image   

element

 

•  ng-click: To handle click event on any element

 

•  ng-change: Requires ng-model to be present 

along with it. Calls the event handler or evaluates the   

assigned expression when there is a change to value   

of the model

 

•  ng-form: Works same as HTML form and allows   

nesting of forms

 

•  ng-non-bindable: Prevents AngularJS from    

compiling or binding the contents of the current DOM   

element

•  ng-repeat-start and ng-repeat-end: Repeats top-level 

attributes 

 

•  ng-include: Loads a partial view

 

•  ng-init: Used to evaluate an expression in the current scope

•  ng-switch conditionally displays elements

•  ng-cloak to prevent Angular HTML to load before   

bindings are applied.

 Dependency Injection:

AngularJS has a built-in dependency injector that keeps track 

of all components (services, values, etc.) and returns instances 

of needed components using dependency injection. Angular’s 

dependency injector works based on names of the components.

A simple case of dependency injection:

myModule.controller(“MyController”, function($scope, 
$window, myService){
});

Here, $scope, $window and myService are passed into the 

controller through dependency injection. But the above code 

will break when the code is minified. Following approach solves 

it:

myModule.controller(“MyController”, [“$scope”, 
“$window”, “myService”, 
 function($scope, $window, myService){
}]);

17



06 www.dotnetcurry.com/magazine

 Routes

Routes in AngularJS application are defined using 

$routeProvider. We can define a list of routes and set one of 

the routes as default using otherwise() method; this route 

will respond when the URL pattern doesn’t match any of the 

configured patterns.

18

             Registering routes:

myModule.config(function($routeProvider){
  $routeProvider.when(“/home”,             
  {templateUrl:”templates/home.html”, 
  controller: “HomeController”}) 
  .when(“/details/:id”, {template: 
  “templates/details.html”,    
   controller:”ListController”})
  .otherwise({redirectTo: “/home”});
});

19

Registering services: 

Angular provides us three ways to create and register  our 

own Services – using Factory, Service, and Provider. They are all 

used for the same purpose.  Here’s the syntax for all the three:

Service: module.service( ‘serviceName’, function );
Factory: module.factory( ‘factoryName’, function );
Provider: module.provider( ‘providerName’, function );

The basic difference between a service and a factory is that 

service uses the constructor function instead of returning a 

factory function. This is similar to using the new operator.  So 

you add properties to ‘this’ and the service returns ‘this’.  

With Factories, you create an object, add properties to it and 

then return the same object. This is the most common way of 

creating Services. 

If you want to create module-wide configurable services 

which can be configured before being injected inside other 

components, use Provider. The provider uses the $get function 

to expose its behavior and is made available via dependency 

injection.

20

 Some useful utility functions 

•  angular.copy - Creates a deep copy of source

•  angular.extend - Copy methods and properties from one 

object to another

•  angular.element - Wraps a raw DOM element or HTML string 

as a jQuery element

•  angular.equals - Determines if two objects or two values are 

equivalent

•  angular.forEach - Enumerate the content of a collection

•  angular.toJson - Serializes input into a JSON-formatted string

•  angular.fromJson - Deserializes a JSON string

•  angular.identity - Returns its first argument

•  angular.isArray - Determines if a reference is an Array

•  angular.isDate - Determines if a value is a date

•  angular.isDefined - Determines if a reference is defined

•  angular.isElement - Determines if a reference is a DOM 

element

•  angular.isFunction - Determines if a reference is a Function

•  angular.isNumber - Determines if a reference is a Number

•  angular.isObject - Determines if a reference is an Object

•  angular.isString - Determines if a reference is a String

•  angular.isUndefined - Determines if a reference is undefined

•  angular.lowercase - Converts the specified string to lowercase

•  angular.uppercase - Converts the specified string to 

uppercase

21



07 www.dotnetcurry.com/magazine

 $http:

$http is Angular’s wrapper around XmlHttpRequest. It provides 

a set of high level APIs and a low level API to talk to REST 

services. Each of the API methods return $q promise object. 

Following are the APIs exposed by $http:

•  $http.$get(url): Sends an HTTP GET request to the URL 

specified 

•  $http.post(url, dataToBePosted): Sends an HTTP POST 

request to the URL specified

•  $http.put(url, data): Sends an HTTP PUT request to the URL 

specified

•  $http.patch(url, data): Sends an HTTP PATCH request to the 

URL specified

•  $http.delete(url): Sends an HTTP DELETE request to the URL 

specified

•  $http(config): It is the low level API. Can be used to send 

any of the above request types and we can also specify other 

properties to the request. Following are the most frequently 

used config options:

  o  method: HTTP method as a string, e.g., ‘GET’, ‘POST’, ‘PUT’, etc.

  o  url: Request URL

  o  data: Data to be sent along with request

  o  headers: Header parameters to be sent along with the  

      request

  o  cache: caches the response when set to true

Following is a small snippet showing usage of $http:

$http.get(‘/api/data’).then(function(result){
  return result.data;
  }, function(error){
    return error;
});

22

ANGULARJS
CHEAT SHEET



08 www.dotnetcurry.com/magazine

 Manage Dependencies

Use a package management tool like Bower (bower.io/) to 

manage and update third-party web dependencies in your 

project. It is as simple as installing bower using npm install 

bower; then listing all the dependent libraries and versions in a 

Bower package definition file called bowerconfig.json and lastly 

run bower install or bower update in your project to get the 

latest versions of any web dependencies in your project.

23

INTERMEDIATE - ADVANCED 

  Using AngularJS functions

Wherever possible, use AngularJS versions of JavaScript 

functionality. So instead of setInterval, use the $interval 

service. Similarly instead of setTimeout use the $timeout 

service. It becomes easier to mock them or write unit tests . Also 

make sure to clean it up when you have no use for it. Use the 

$destroy event to do so:

$scope.$on(“$destroy”, function (event) {
    $timeout.cancel(timerobj);
});

24

  Services

If you need to share state across your application, or need a 

solution for data storage or cache, think of Services. Services 

are singletons and can be used by other components such as 

directives, controllers, filters and even other services. Services 

do not have a scope of their own, so it is permissible to add 

eventlisteners in Services using $rootScope.

25

  Deferred and Promise

The $q service provides deferred objects/promises. 

•  $q.all([array of promises]) - creates a Deferred object that is 

resolved when all of the input promises in the specified array 

are resolved in future

•  $q.defer() - creates a deferred object with a promise property 

that can be passed around applications, especially in scenarios 

where we are integrating with a 3rd-party library

26 

 Manipulating $scope

Do not make changes to the $scope from the View. Instead do it 

using a Controller. Let’s see an example. The following piece of 

code controls the state of the dialog property directly from the 

ng-click directive.

<div>
   <button ng-click=”response = false”>Close Dialog
   </button>
</div>

Instead we can do this in a Controller and let it control the 

state of the dialog as shown here:

<div>
   <button ng-click=”getResponse()”>Close Dialog
   </button>
</div>

In dialog-controller.js file, use the following code:
dialog.controller(“diagCtrl”, function ($scope) {
    $scope.response = false;

    $scope.getResponse = function () {
        $scope.response = false;
    }
});

This reduces the coupling between the view and controller

27

              Prototypal Inheritance

Always have a ‘.’ in your ng-models which insures   

prototypal inheritance. So instead of 

<input type=”text” ng-model=”someprop”> 

use
<input type=”text” ng-model=”someobj.someprop”>

28

•  $q.reject(reason) - Creates a promise that is resolved as 

rejected with the specified reason. The return value ensures 

that the promise continues to the next error handler instead of 

a success handler.

•  deferredObject.resolve - Resolves the derived promise with 

the value

•  deferredObject.reject - Rejects the derived promise with the 

reason and triggers the failure handler in the promise.



09 www.dotnetcurry.com/magazine

 jqLite and jQuery

AngularJS uses a lighter version of jQuery called jqLite to 

perform DOM manipulations. The element we receive in 

compile and link functions of directive are jqLite objects. It 

provides most of the necessary operations of jQuery. Following 

snippet shows obtaining a jqLite object for all divs on a page 

using selector:

var divJqliteObject = angular.element(‘div’);

But, if jQuery library is referred on the page before referring 

AngularJS, then Angular uses jQuery and all element objects are 

created as jQuery objects.

If a jQuery plugin library is referred on the page before 

referring AngularJS, then the element objects get capabilities of 

the extended features that the plugins bring in.

32

certain interval. If count is not passed, it defaults to 0, which 

causes the call to happen indefinitely.

$interval(function () {
  //Logic to execute
}, 1000, 10, true);

 ngCookie:

ngCookie is a module from the AngularJS team that wraps 

cookies and provides an easier way to deal with cookies in an 

AngularJS application. It has two services:

i.  $cookieStore: Provides a key-value pair kind of interface to 

talk to the cookies in the browser. It has methods to get value 

of a stored cookie, set value to a cookie and remove a cookie. 

The data is automatically serialized/de-serialized to/from JSON.

ii.  $cookies: An object representing the cookies. Can be used 

directly to get or set values to cookies

33

 Unit testing:

AngularJS is built with unit testing in mind. Every component 

defined in Angular is testable. Dependency injection is the key 

factor behind it. Take any kind of component in Angular, it can’t 

be written without getting some of the external components 

34

 Event Aggregator:

$scope includes support for event aggregation. It is possible to 

publish and subscribe events inside an AngularJS application 

without need of a third party library. Following methods are 

used for event aggregation:

•  $broadcast(eventName, eventObject): Publishes an event 

to the current scope and to all children scopes of the current 

scope

•  $emit(eventName, eventObject): Publishes an event to the 

current scope and to all parent scopes of the current scope

•  $on(eventName, eventHandler): Listens to an event and 

executes logic inside eventHandler when the event occurs.

29

 $resource

$resource is a higher level service that wraps $http to interact 

with RESTful APIs. It returns a class object that can perform 

a default set of actions (get (GET), save (POST), query (GET), 

remove(DELETE), delete (DELETE)). We can add more actions to 

the object obtained.

//A factory using $resource
myModule.factory(‘Student’, function($resource){
    return $resource(‘/api/students’,  null, {
        change: {method: ‘PUT’}
    });

});

The above operation returns a $resource object that has all 

default operations and the change method that performs a PUT 

operation.

30

  $timeout and $interval

$timeout is used to execute a piece of code after certain 

interval of time. The $timeout function takes three 

parameters: function to execute after time lapse, time to wait 

in milliseconds, a flag field indicating whether to perform 

$scope.$apply after the function execution.

$timeout(function () {
    //Logic to execute
}, 1000, true);

$interval is used to keep calling a piece of code repeatedly after 

31



10 www.dotnetcurry.com/magazine

injected in. This gives freedom to programmers to pass any 

object of their choice instead of the actual component object 

while writing tests. The only thing to be taken care is to create 

an object with the same shim as the component.

AngularJS code can be unit tested using any JavaScript Unit 

Testing framework like QUnit, Jasmine, Mocha or any other 

framework. Jasmine is the most widely used testing framework 

with Angular. Tests can be run anywhere, in browser or even in 

console using Karma test runner.

The main difference between application code and unit tests 

is, application code is backed by the framework and browser, 

whereas unit tests are totally under our control. So, wherever 

we get objects automatically injected or created by AngularJS, 

these objects are not available in unit tests. They have to be 

created manually.

 Bootstrapping a unit test:

Just like the case of Angular application, we need to bootstrap 

a module in unit tests to load the module. As the module 

has to be loaded fresh before any test runs, we load module 

while setting up the tests. In Jasmine tests, setup is doe using 

beforeEach block.

beforeEach(function(){
  module(‘myModule’);
});

35

 Creating $scope in unit tests:

$scope is a special injectable in AngularJS. It is unlike other 

objects as it is not already created to pass into a component 

when asked. A $scope can be injected only inside controllers 

and for every request of $scope, a new $scope object is created 

that is inherited from $rootScope. Framework takes care of 

creating the scope when the application is executed. We have 

to do it manually to get a $scope object in tests. Following 

snippet demonstrates creation of $scope:

var scope;
 
beforeEach(inject(function ($rootScope) {
    scope = $rootScope.$new();
}));

36 

 Testing controllers:

In an AngularJS application, we generally don’t need to create 

an object of a controller manually. It gets created whenever 

a view loads or the template containing an ng-controller 

directive loads. To create it manually, we need to use the 

$controller service. To test the behavior of controller, we need to 

manually create object of the controller.

inject(function($controller){
  var controller = $controller(‘myController’,
  { $scope: scope, service: serviceMock });
});

As we see, arguments to the controller are passed using a 

JavaScript object literal. They would be mapped to right objects 

according to names of the services. After this, the scope would 

have all properties and methods that are set in the controller. 

We can invoke them to test their behavior.

it(‘should return 10’, function(){
  var val = scope.getValue();
  expect(val).toEqual(10);
});

37

 Testing services:

Getting object of a service is easy as it is directly available to 

the inject() method.

var serviceObj;
beforeEach(inject(function (myService) {
  serviceObj = service;
}));

Now any public method exposed from the service can be called 

and the result can be tested using assertions.

it(‘should get some data’, function(){
  var data = serviceObj.getCustomers();
  expect(data).not.toBe(null);
  expect(data).not.toBe(undefined);
});

38

  ng-controller outside ng-view:

Though controllers are used with views in general, it doesn’t 

mean that they can’t be used outside a view. A controller can 

be made responsible to load menu items, show toast messages, 

39



11 www.dotnetcurry.com/magazine

and ask Angular’s injector to return the object whenever the 

service is requested.

var mockCustomersSvc;
 
beforEach(function(){
  mockCustomerService = {
    getCustomers: jasmine.createSpy(‘getCustomers’),
    getCustomer: jasmine.createSpy(‘getCustomer’),
    addCustomers: jasmine.createSpy(‘addCustomer’)
  };
 
  module(function($provide){
    $provide.value(‘customersSvc’, mockCustomersSvc);
  });
});

 ngMock

The ngMock module provides useful tools for unit testing 

AngularJS components such as controllers, filters, directives and 

services. 

•  The module function of ngMock loads the module you want 

to test and it’s inject method resolves the dependencies on the 

service to be tested

•  We can mock the backend and test components depending 

on the $http service using the $httpBackend service in ngMocks

•  We can mock timeouts and intervals using $interval and 

$timeout in ngMocks

•  The $log service can be used for test logging

•  The $filter service allows us to test filters

•  Directives are complex to test.  Use the $compile service and 

jqLite to test directives

42

  ng-class:

ng-class can be used in multiple ways to dynamically apply 

one or more CSS classes to an HTML element. One of the very 

good features is, it supports some simple logical operators too. 

Following list shows different ways of using ng-class:

i.  <div ng-class=”dynamicClass”>some text</div>

43

update user when a background task is completed or any such 

thing that doesn’t depend on the view loaded inside ng-view.

<div ng-app=”myModule”>
    <div ng-controller=”menuController”>
        <!-- Mark-up displaying Menu -->
    </div>
    <div ng-view></div>
</div>

 

To avoid controllers from getting too complicated, you can 

split the behavior by creating Nested Controllers.  This lets you 

define common functionality in a parent controller and use 

it one or more child controllers.  The child controller inherits 

all properties of the outside scope and in case of equality, 

overrides the properties.

<body ng-controller=”mainCtrller”>
  <div ng-controller=”firstChildCtrller”>
  </div>

</body>

40

 Mocking services:

Mocking is one of the most crucial things in unit testing. It 

helps in keeping the system under test isolated from any 

dependency that it has. It is very common to have a component 

to depend on a service to get a piece of work done. This work 

has to be suppressed in unit tests and replaced with a mock or 

stub. Following snippet mocks a service:

Say, we have following service:

app.service(‘customersSvc’, function(){
  this.getCustomers = function(){
    //get customers and return
  };
  this.getCustomer = function(id){
    //get the customer and return
  };
  this.addCustomer = function(customer){
    //add the customer
  };
});

To mock this service, we need to create a simple object with 

three mocks with the names same as the ones in the service 

41



12 www.dotnetcurry.com/magazine

Assigns value of dynamicClass from scope to the CSS class. It is 

two-way bound, i.e. if value of dynamicClass changes, the style 

applied on the div also changes.

ii.  <div class=”[class1, class2, class3]”>some text</div>

All classes mentioned in the array are applied

iii.  <div class=”{‘’my-class-1’’:value1, ‘’my-class-

2’’:value2}”>some text</div>

my-class-1 is applied when value1 is assigned with a truthy 

value (other than false, empty string, undefined or null)

iv.  <div ng-class=”value ? ‘my-class-1’:’my-class-
2’”>some text</div>

Value of class applied is based on result of the ternary operator.

v.  <div ng-class=”{true: ‘firstclass’}[applyfirstclass] || 

{true:’secondclass’}[applysecondclass]”></div>

Here, applyFirstClass and applySecondClass are data bound 

variables. The expression applies firstClass if applyFirstClass is 

true. It applies secondClass only if applySecondClass is true and 

applyFirstClass is false.

 Resolve blocks in routing:

Resolve blocks are used to load data before a route is resolved. 

They can be used to validate authenticity of the user, load 

initial data to be rendered on the view or to establish a real-

time connection (e.g. Web socket connection) as it would be in 

use by the view. View is rendered only if all the resolve blocks 

of the view are resolved. Otherwise, the route is cancelled and 

the user is navigated to the previous view.

$routeProvider.when(‘/details’, {
  templateUrl: ‘detailsView.html’,
  controller: ‘detailsController’,
  resolve: {
    loadData: function (dataSvc, $q) {
      var deferred = $q.defer;
      dataSvc.getDetails(10).then(
      function (data) { deferred.reslve(data);},

            function () { deferred.reject();});
            return deferred.promise;
    }
  }});

44

In the above snippet, the route won’t be resolved if the promise 

is rejected. Resolve block can be injected into the controller and 

data resolved from the resolve block can be accessed using the 

injected object.

 $compile

Used to compile templates after the compilation phase. 

$compile is generally used in link function of directives 

or services. But, it should be used with caution as manual 

compilation is an expensive operation.

myModule.directive(‘sampleDirective’, function(){
  return {
    link: function(scope, elem, attrs){
      var compiled = $compile(‘<div>{{person.name}}
      </div>’)(scope);
         elem.html(compiled);
    }
  };
});

45 

 Route change events:

When a user navigates from one page to another,  AngularJS 

broadcasts events at different phases. One can listen to these 

events and take appropriate action like verifying login status, 

requesting for data needed for the page or even to count the 

number of hits on a view. Following are the events raised:

47

 $parse

$parse is used to transform plain text into expression. The 

expression can be evaluated against any object context to 

obtain the value corresponding to the object. Very common 

usage of parse is inside directives to parse the text received 

from an attribute and evaluate it against scope. The expression 

also can be used to add a watcher.

myModule.directive(‘sampleDirective’, function($parse){
  return function(scope, elem, attrs){
    var expression = $parse(attrs.tempValue);
  
    var value = expression(scope);
    scope.$watch(expression, function(newVal, oldVal){
      //Logic to be performed
    });
  };
});

46 



13 www.dotnetcurry.com/magazine

 HTTP Interceptors

Any HTTP request sent through $http service can be 

intercepted to perform certain operation at a given state. The 

state may be one of the following: before sending request, on 

request error, after receiving response and on response error. 

Interceptors are generally used to check authenticity of the 

request before sending to the server or to displaying some kind 

of wait indicator to the user when the user has to wait for the 

data to arrive. The intercepting methods may return either plain 

data or a promise.

myModule.config(function ($provide) {
  $provide.factory(‘myHttpInterceptor’, function () {
    return {
      request: function (req) {
        //logic before sending request
      },
      response: function (res) {
        //logic after receiving response
      },
      requestError: function () {
        //logic on request error
      },
      responseError: function () {
        //logic on response error
      }
    };
  });
});

50

  HTTP Transforms

Transforms allow us to tweak the data before sending to 

an HTTP request or after receiving response at the end of a 

request. It can be applied either globally using a config block or 

on a specific request using the $http config object.

Setting transform in config block:

myModule.config(function ($httpProvider) {
  $httpProvider.defaults.transformRequest.push(function   
  (data) { //Operate on data });
});

In the individual request:

$http({
  url: ‘/api/values’,
  method: ‘GET’,
  transformRequest: function (data) {//Operate on data}
});

51

• $routeChangeStart

• $routeChangeSuccess

• $routeChangeError

• $routeUpdate

 Decorating

It is possible to modify the behavior or extend the functionality 

of any object in AngularJS through decoration. Decoration is 

applied in AngularJS using $provide provider. It has to be done 

in config block. Following example adds a method to the value:

angular.module(‘myModule’,[])
  .config(function($provide) {
    $provide.decorator(‘someValue’, function($delegate)  
    {
      $delegate.secondFn = function(){
        console.log(“Second Function”);
      };
      
      return $delegate;
    });
  })
  .value(‘someValue’,{
    firstFn: function(){console.log(“First Function”);}
  });

Note: Constants cannot be decorated

48

 Exception handling

All unhandled exceptions in an AngularJS application are 

passed to a service $exceptionHandler, which logs the 

error message in the browser’s console. In large business 

applications, you may want to log the error details on the 

server by calling an API. This can be done by decorating the 

$exceptionHandler service.

myApp.config(function ($provide) {
  $provide.decorator(‘$exceptionHandler’, [‘$log’,   
  ‘$http’, ‘$delegate’,
    function ($log, $http, $delegate) {
      return function (exception, cause) {
        $log.debug(‘Modified exception handler’);
        $http.post(‘/api/clientExceptionLogger’,   
 exception);
        $delegate(exception, cause);
      };
    }
  ]);
});

49




