
Git Cheat Sheet

GitHub for Windows
https://windows.github.com

GitHub for Mac
https://mac.github.com

Git for All Platforms
http://git-scm.com

Git distributions for Linux and POSIX systems are available on
the official Git SCM web site.

Install

Configure tooling
Configure user information for all local repositories

$ git config --global color.ui auto
Enables helpful colorization of command line output

$ git config --global user.email "[email address]"
Sets the email you want attached to your commit transactions

$ git config --global user.name "[name]"
Sets the name you want attached to your commit transactions

$ git clone [url]
Clone (download) a repository that already exists on
GitHub, including all of the files, branches, and commits

Create repositories
When starting out with a new repository, you only need to do it
once; either locally, then push to GitHub, or by cloning an
existing repository.

$ git init
Turn an existing directory into a git repository

$ git pull
Updates your current local working branch with all new
commits from the corresponding remote branch on GitHub.
 git pull is a combination of git fetch and git merge

Synchronize changesSynchronize changes
Synchronize your local repository with the remote repository
on GitHub.com

$ git push
Uploads all local branch commits to GitHub

$ git merge
Combines remote tracking branch into current local branch

$ git fetch
Downloads all history from the remote tracking branches

$ git branch -d [branch-name]
Deletes the specified branch

$ git merge [branch]
Combines the specified branch’s history into the
current branch. This is usually done in pull requests,
but is an important Git operation.

$ git checkout [branch-name]
Switches to the specified branch and updates the
working directory

Branches
Branches are an important part of working with Git. Any
commits you make will be made on the branch you're currently
“checked out” to. Use git status to see which branch that is.

$ git branch [branch-name]
Creates a new branch

The .gitignore file
Sometimes it may be a good idea to exclude files from being
tracked with Git. This is typically done in a special file named
 .gitignore . You can find helpful templates for .gitignore
files at github.com/github/gitignore.

Git is the open source distributed version control system that facilitates GitHub activities on
your laptop or desktop. This cheat sheet summarizes commonly used Git command line
instructions for quick reference.

https://github.com
https://github.com/github/gitignore
https://git-scm.com/
https://desktop.github.com/
https://desktop.github.com/

services@github.com
services.github.com

Want to learn more about using GitHub and Git?
Email the Training Team or visit our web site for learning
event schedules and private class availability.

Training

git: an open source, distributed version-control system
GitHub: a platform for hosting and collaborating on Git repositories
commit: a Git object, a snapshot of your entire repository compressed into a SHA
branch: a lightweight movable pointer to a commit
clone: a local version of a repository, including all commits and branches
remote: a common repository on GitHub that all team member use to exchange their changes
fork: a copy of a repository on GitHub owned by a different user
pull request: a place to compare and discuss the differences introduced on a branch with reviews, comments, integrated
tests, and more
HEAD: representing your current working directory, the HEAD pointer can be moved to different branches, tags, or commits
when using git checkout

Glossary

‘master’ branch

Commit changes Submit Pull Request Discuss proposed changes
 and make more commits

Create ‘feature’ branch from ‘master’ Merge ‘feature’ branch into ‘master’

GitHub Flow

$ git commit -m "[descriptive message]"
Records file snapshots permanently in version history

$ git add [file]
Snapshots the file in preparation for versioning

$ git show [commit]
Outputs metadata and content changes of the specified commit

Make changes
Browse and inspect the evolution of project files

$ git diff [first-branch]...[second-branch]
Shows content differences between two branches

$ git log --follow [file]
Lists version history for a file, including renames

$ git log
Lists version history for the current branch

$ git reset --hard [commit]
Discards all history and changes back to the specified commit

Redo commits
Erase mistakes and craft replacement history

CAUTION! Changing history can have nasty side effects. If you
need to change commits that exist on GitHub (the remote),
proceed with caution. If you need help, reach out at
github.community or contact support.

$ git reset [commit]
Undoes all commits after [commit], preserving changes locally

Git Cheat Sheet

mailto:services@github.com
https://services.github.com/

