Iterators

The .reduce() Method

The .reduce() method iterates through an array and
returns a single value.

In the above code example, the .reduce() method will
sum up all the elements of the array. It takes a callback
function with two parameters (accumulator,
currentValue) as arguments. On each iteration,
accumulator is the value returned by the last iteration,
and the currentValue is the current element.
Optionally, a second argument can be passed which acts
as the initial value of the accumulator.

The .foreach() Method

The .forEach() method executes a callback function on
each of the elements in an array in order.

In the above example code, the callback function
containing a console.log() method will be executed 5
times, once for each element.

The .filter() Method

The filter() method executes a callback function on
each element in an array. The callback function for each
of the elements must return either true or false . The
returned array is a new array with any elements for which
the callback function returns true .

In the above code example, the array filteredArray will
contain all the elements of randomNumbers but 4 .

l Smart

.reduce ((accumulator,

currentValue) => {
return + ;
P
-log(); // 10
const = [28, 77, 45, 99, 27];

.forEach (number => {

.log () ;
1)
const = [4, 11, 42, 14, 3971;
const =
.filter(n => {
return > 5;

The .map() Method

The .map() method executes a callback function on
each element in an array. It returns a new array made up
of the return values from the callback function.

The original array does not get altered, and the returned
array may contain different elements than the original
array.

In the example code above, the .map() method is used
to add 'joined the contest.' string at the end of each
element in the finalParticipants array.

Functions Assigned to Variables

In JavaScript, functions are a data type just as strings,
numbers, and arrays are data types. Therefore, functions
can be assigned as values to variables, but are different
from all other data types because they can be invoked.

const

// add string after each final participant

const

return

let plusFive

.log(

return

}s

.map (member => {

+

= (number)

+ 5;

=>

{

// f is assigned the value of plusFive

let

plusFive (3);

// Since f has a function value,

invoked.

£(9);

// 14

’

// 8

it can be

Callback Functions

In JavaScript, a callback function is a function that is const isEven = (n) => {
passed into another function as an argument. This
- . . . return % 2 == 0;
function can then be invoked during the execution of that
higher order function (that it is an argument of). t
Since, in JavaScript, functions are objects, functions can
be passed as arguments. .
let printMsg = (evenFunc, num) => {
const = evenFunc ()
.log(${ }

)

${ o)

// Pass in isEven as the callback function
printMsg (, 4)
// Prints: The number 4 is an even number:

True.

Higher-Order Functions

In Javascript, functions can be assigned to variables in the
same way that strings or arrays can. They can be passed
into other functions as parameters or returned from them
as well.

A “higher-order function” is a function that accepts
functions as parameters and/or returns a function.

JavaScript Functions: First-Class Objects

JavaScript functions are first-class objects. Therefore: //Assign a function to a variable
« They have built-in properties and methods, such .
. originalFunc
as the name property and the .toString()
method. const originalFunc = (num) => { return
 Properties and methods can be added to them. + 2 };
» They can be passed as arguments and returned
from other functions.
- They can be assigned to variables, array elements, //Re-assign the function to a new variable
and other objects. newFunc
const = ;

//Access the function's name property

; //'originalFunc'
//Return the function's body as a string
.toString(); //'(num) => { return
num + 2 }'
//Add our own isMathFunction property to

the function

//Pass the function as an argument

const functionNameLength = (func) => {
return . . }s
functionNameLength (); //12

//Return the function

const returnFunc = () => { return
bi

returnFunc () ; //[Function: originalFunc]

