o
Objects

JavaScript destructuring assignment shorthand syntax

The JavaScript destructuring assignment is a shorthand

const = {
syntax that allows object properties to be extracted into
specific variable values.
It uses a pair of curly braces ({}) with property names ’
on the left-hand side of an assignment to extract values ,
from objects. The number of variables can be less than
the total properties of an object.
}i
const { ’ ’
} = ;
.1log() //
'43,252,003,274,489,856,000'
.log(); // '1974"
.log () // '17x17x17!

shorthand property name syntax for object creation

The shorthand property name syntax in JavaScript allows const - :

creating objects without explicitly specifying the property

~onst = ;
names (ie. explicitly declaring the value after the key). In con {)

this process, an object is created where the property . Llog (); // { activity:
names of that object match variables which already exist 'Surfing' }
in that context. Shorthand property names populate an

object with a key matching the identifier and a value

matching the identifier’s value.

this Keyword

The reserved keyword this refers to a method’s calling
object, and it can be used to access properties belonging
to that object.

Here, using the this keyword inside the object function
to refer to the cat object and access its name
property.

javascript function this

Every JavaScript function or method has a this context.
For a function defined inside of an object, this will refer
to that object itself. For a function defined outside of an
object, this will refer to the global object (window in a
browser, global in Node.js).

const =

8,

whatName () {

return this.

.log (.whatName ()) ;

// Output: Pipey

const = {

45,
100,

availableSeats () {

// this refers to the restaurant

object

// and it's used to access 1its

properties

thi

n

return this. -

JavaScript Arrow Function this Scope

JavaScript arrow functions do not have their own this
context, but use the this of the surrounding lexical
context. Thus, they are generally a poor choice for writing
object methods.

Consider the example code:

loggerA is a property that uses arrow notation to
define the function. Since data does not exist in the
global context, accessing this.data returns undefined .
loggerB uses method syntax. Since this refers to the
enclosing object, the value of the data property is
accessed as expected, returning "abc" .

getters and setters intercept property access

JavaScript getter and setter methods are helpful in part
because they offer a way to intercept property access
and assignment, and allow for additional actions to be
performed before these changes go into effect.

.log (this.)i by
loggerB () { .log(this.)
i
.loggerA () ; // undefined
.loggerB () ; // 'abc'
const = {

get name () {
return this.
I
set name (newName) {
//Verify that newName is a non-empty

string before setting as name property

if (typeof === &&
> 0){
this. = ;
} else {
.log (

) 7

y

javascript factory functions

A JavaScript function that returns an object is known as a
factory function. Factory functions often accept
parameters in order to customize the returned object.

javascript getters and setters restricted

JavaScript object properties are not private or protected.
Since JavaScript objects are passed by reference, there is
no way to fully prevent incorrect interactions with object
properties.

One way to implement more restricted interactions with
object properties is to use getter and setter methods.
Typically, the internal value is stored as a property with an
identifier that matches the getter and setter method
names, but begins with an underscore (_).

// A factory function that accepts 'name',
// 'age', and 'breed' parameters to return

// a customized dog object.

const dogFactory = (name, age, breed) => {
return {
bark () {
.log('Woof!");

}
}s
const = {

'Dottie',

get name () {

return this. ;
I
set name (newName) {

this. =

b

// Reference invokes the getter

.log(.) 7

// Assignment invokes the setter

]

= 'Yankee';

Restrictions in Naming Properties

JavaScript object key names must adhere to some
restrictions to be valid. Key names must either be strings
or valid identifier or variable names (i.e. special
characters such as - are not allowed in key names that
are not strings).

Dot Notation for Accessing Object Properties

Properties of a JavaScript object can be accessed using

the dot notation in this manner: object.propertyName .

Nested properties of an object can be accessed by
chaining key names in the correct order.

Objects

An object is a built-in data type for storing key-value
pairs. Data inside objects are unordered, and the values
can be of any type.

// Example of invalid key names
const =
10, // Invalid because of
the space between words.
40 - 10 + 2: 30, // Expressions cannot
be keys.
+ : // The use of a + sign

is invalid unless it is enclosed in

quotations.
}
const = {
{
bi
.log(. y; // 'Green'
.log(. .); // '$3/kg’

Accessing non-existent JavaScript properties

When trying to access a JavaScript object property that const _
has not been defined yet, the value of undefined will be
returned by default.

.1log (.): //
undefined
JavaScript Objects are Mutable
JavaScript objects are mutable, meaning their contents const = {
can be changed, even when they are declared as const .
New properties can be added, and existing property !
values can be changed or deleted. : 100,
It is the reference to the object, bound to the variable, ,
that cannot be changed. |
-log()
// { name: 'Sheldon', score: 100, grade:
| A] }
delete
-log()

// { name: 'Sheldon', grade: 'F' }

= {}
// TypeError: Assignment to constant

variable.

JavaScript for...in loop

The JavaScript for...in loop can be used to iterate over
the keys of an object. In each iteration, one of the
properties from the object is assigned to the variable of
that loop.

Properties and values of a JavaScript object

A JavaScript object literal is enclosed with curly braces

{} . Values are mapped to keys in the object with a colon
(:), and the key-value pairs are separated by commas. All
the keys are unique, but values are not.
Key-value pairs of an object are also referred to as
properties.

let

for (let

const

2018

38,

Delete operator

Once an object is created in JavaScript, it is possible to const =

remove properties from the object using the delete e g
ViatTllda
operator. The delete keyword deletes both the value of '

the property and the property itself from the object. The 27,
delete operator only works on properties, not on : "knitting",
variables or functions. "learning JavaScript"
bi
delete . ; // or delete

person [hobby] ;

.log () ;
/*

firstName: "Matilda"

age: 27

goal: "learning JavaScript"
}
*/

javascript passing objects as arguments

When JavaScript objects are passed as arguments to const = g;

functions or methods, they are passed by reference, not

~ons — . '"blue' ;
by value. This means that the object itself (not a copy) is const { >lue ')

accessible and mutable (can be changed) inside that

function. const changelItUp = (num, obj) => {
= 7;
= 'red';
b
changeItUp (,) ;

// Will output 8 since integers are passed

by value.
-log() ;

// Will output 'red' since objects are
passed
// by reference and are therefore mutable.

.log(.) 7

JavaScript Object Methods

JavaScript objects may have property values that are
functions. These are referred to as object methods.
Methods may be defined using anonymous arrow function
expressions, or with shorthand method syntax.

Object methods are invoked with the syntax:
objectName.methodName(arguments) .

const = {

// method shorthand, with one argument

start (adverb) |
.log('The engine start
S | I

‘»
I

)]

up

// anonymous arrow function expression

with no arguments

sputter: () => {

.log ('The engine sputters...

.start ('noisily");

.sputter () ;

/* Console output:
The engine starts up noisily...
The engine sputters...

*/

")

