Explore MongoDB =

MongoDB Atlas Offerings

Atlas is a cloud-based database service offered by
MongoDB. Atlas hosts a suite of tools that aid developers
in setting up, deploying, and managing databases. In
addition to these capabilities, Atlas offers additional
integrated features that allow developers to search for,
visualize, and analyze their data.

MongoDB Atlas Clusters

MongoDB Atlas houses data in units of storage called
clusters. Depending on their Atlas plan, developers may
use a shared cluster, where resources for that cluster,
such as hardware and network bandwidth, are shared
amongst multiple users. Alternatively, they may have their
own dedicated cluster where its resources are allocated
solely to them.

Atlas via the MongoDB Shell

In addition to the website interface offered by MongoDB
Atlas, we can also connect to our Atlas cluster and
interact with our databases locally via the MongoDB Shell.
The MongoDB shell allows us to perform database
operations using our computer’s terminal or command
line.

Aggregation Pipeline Stages

A stage in a MongoDB aggregation pipeline performs a
specific operation on the data in the form of filtering or
modifying the data before passing the result to either
another stage or returning the result if there are no more
stages.

The above visual shows data flow from a collection to the
final output via stages.

The s$match Stage

The $match stage in a MongoDB pipeline filters input
documents to pass only the documents that match the
specified condition(s) to the next pipeline stage. This
stage is similar to using the find() method because a
query argument needs to be used to filter documents
based on specific criteria.

The following example uses the $match stage to filter
documents from a movies collection based on having a
rating field with a value of "R":

.aggregate ([

B

Collection

Stages

Output

The g$addrields Stage

The $addFields stage in a MongoDB pipeline adds a
new field to records. In addition to a new field, this stage
also uses an aggregation expression which performs some
type of logic such as arithmetic or comparisons.

Check out the example below where the $addFields
stage is used as the third stage to create a new field
called highest_score .

.aggregate ([
// First stage
s
// Second Stage

{ : 1)

// Third Stage
{

The $sort Stage

The $sort stage in a MongoDB pipeline sorts results in
either ascending order, specified with 1, or descending
order, specified with -1 .

Check the example below where the $sort stage is used
to take the output from the first stage (ie. $match)in
order to sort the results in ascending order based on the
first name field.

.aggregate ([

// First stage

// Second Stage
{ : 1}

Sriart

The .aggregate() Method

Aggregation in MongoDB can be accomplished using an
aggregation pipeline via the .aggregate() method. The
first argument is an array containing the pipeline stages
that will be used.

Check out the following example of the .aggregate()
method used on a students collection with the pipeline
stages $match and $sort :

.aggregate ([

// First stage
6}
s

// Second Stage
{ : 1}

Aggregation Pipeline Stages

A MongoDB aggregation pipeline can be built using stages
such as $match or $sort . Other common stages
include:

.+ S$group

. $addFields
« Sout

« Scount

And many more!

Aggregation Expressions

MongoDB aggregation pipeline stages can utilize different
types of expressions such as field paths, literals, system
variables, expression objects, and expression operators.
Expressions can be nested.

Aggregation Pipelines

Aggregation pipelines allow for data to filter incrementally
through the use of stages, where each stage filters or
modifies the data in a specific way and then passes that
data to the next stage or returns the data if there are no
more stages.

Smart

Referencing Fields Inside Aggregation Expressions

Aggregation expressions use field paths to access fields in

the input documents. To specify a field path, prefix the

field name or the dotted field name (if the field is in the

embedded document) with a dollar sign $.

In the below example, the field path allows us to access

the test _scores field from the document to use with the
$max expression operator:

.aggregate ([

// First stage
6}

by

// Second Stage
{ : 1}

// Third Stage
{
{ : St
}y

The sout Stage

The $out stage can output the final result of a MongoDB
aggregation pipeline to a new database and or a new
collection. When used, it must be the final stage in the
pipeline.

The following example uses a aggregation pipeline with
the $out stage as the final stage:

.aggregate ([

// First stage
{ 1 6}
by

// Second Stage
{ : 1)

by

// Third Stage
{

by

// Fourth Stage

"candidates"

Smart

Aggregation Use Cases

Aggregation is useful when tasks cannot be accomplished
with common CRUD methods easily or when performing
complex analytics on datasets, such as: grouping values
from multiple documents, computations on data, and
analyzing data changes over time.

N, Print o3 Share v

