
The Ultimate MongoDB Cheat Sheet: Mastering NoSQL in One Place

The Ultimate MongoDB Cheat Sheet: Mastering NoSQL in One Place

Maximize your efficiency with our ultimate MongoDB cheat sheet! Covering everything from basic syntax to

advanced functions, this resource is designed to help you streamline your NoSQL workflow and become a

MongoDB master.

Tutorials Linux - Feb 15, 23 - by Susith Nonis - 12 min Read

List of content you will read in this article:

1. Features of MongoDB

2. Pros and Cons of MongoDB

3. Getting started with MongoDB

4. Database Commands

5. Collection Commands

6. Row Commands

7. Document commands

8. Index commands

9. Aggregation commands

10. Conclusion

https://monovm.com/category/tutorials/
https://monovm.com/category/linux/

MongoDB is a data storage platform that uses a similar data model to JSON. It is hosted on multiple servers and

allows users to build quick, real-time applications that access their data. MongoDB is a distributed system which

doesn’t use any specific database software.

MongoDB provides a wide range of analytical tools for data profiling, load analysis, and monitoring. MongoDB can

use these tools to perform data mining, Big Data, and Online Analytic Processing. MongoDB's Replica Management

feature makes scaling up your system easy and cost-effective.

MongoDB is a viable choice for enterprise and internet application developers seeking flexibility and scalability. It’s

particularly helpful for programmers of many disciplines to create scalable applications through agile methods.

This post provides a list of the most popular and widely used MongoDB commands that will come in handy for

beginners. We covered almost all the useful commands, but before we start, let's review MongoDB's features, pros,

and cons.

Features of MongoDB
Before going through the MongoDB cheat sheet, we identify some key features of
MongoDB:

Schema-less Database: In a MongoDB database, any collection can hold multiple
documents. These documents can contain different numbers of fields, sizes, and
content. A schema-less database doesn’t have any prescribed structure. It's possible
to have multiple documents with similar content as MongoDB databases support.
This leads to a wide range of options for database creation because each variation
can be different from the next.
Document Oriented: Data stored in MongoDB tables, or RDBMS, is instead organized
in documents. Each document contains a key-value pair in fields instead of rows and
columns. This makes data stored in documents more accessible and flexible than in
RDBMS tables. Every document also has an individual ID that can't be changed.
Indexing: The database employs two primary indexes to index every field in a
MongoDB document. This speeds up searching and compression significantly. If
indexes aren’t used, documents are searched using a specified query. This process
takes longer and doesn’t perform as well.
Scalability: MongoDB increases its size by dividing data across multiple servers.
Called horizontal scaling, this technique partitions the information into smaller
sections and distributes them across many physical servers. This allows them to
access more resources as new machines are added to the database.
Replication: The MongoDB database offers high availability and redundancy through
replication. It creates copies of the data and sends them to multiple servers so that if
one fails, it can retrieve the data from a different one.
Aggregation: This feature of MongoDB allows performing operations on grouped
data and showing single or computed results like the SQL GROUPBY clause.
High Performance: In addition to its high performance, MongoDB also has features
such as indexing, replication, and scalability, which make it better than other
databases.
File storage: GridFS can replicate and balance data on multiple machines. It uses
MongoDB as a file system. A file will be stored as a grid file system in MongoDB.
Sharding: MongoDB's sharding allows users to split up a collection among many
shards (machines) and let it grow beyond resource limitations. Sharding is the
process of splitting up data among machines. With data distributed across our
machines, we may be able to store and handle more data without upgrading our

machines.

Pros and Cons of MongoDB
All NoSQL databases have some advantages and disadvantages. In this part, we'll take a
quick look at the pros and cons of MongoDB.

Pros of MongoDB

A document can have as many fields as the user wishes in MongoDB, which allows1.
users to store any data.
Most programming languages support documents as native data types, which allows2.
the addition of data to documents.
Like Hadoop Distributed File System (HDFS), MongoDB has its file system called3.
GridFS. As a result, MongoDB's 16 MB per document BSON size limit is mainly used
to store files that exceed the size limit of the file system.
MongoDB is compatible with Hadoop, Spark, and other data processing frameworks4.
like SQL.

Cons of MongoDB

The automatic failover strategy is not instantaneous - it may take up to a minute to1.
switch from one master node to another. However, it promises continuity despite
not being instantaneous. Despite the fast speed of writing data to the database, the
amount of data is limited. So, data must be recorded on the master, and it takes time
to add new information.
Data consistency may be affected by MongoDB's lack of foreign-key integrity.2.
A database administrator must configure network connections to MongoDB3.
databases since user authentication isn't enabled by default in MongoDB databases.
Also, ransomware has forced database administrators to enable this setting4.
following attacks.

Now that you know the features, pros, and cons of MongoDB, you can have the cheat
sheet of MongoDB commands to use when you need it.

Getting started with MongoDB
Before anything, you need to install MongoDB Shell mongoose. After installing, log in
and enter MongoDB Shell mongoose. To do this, use the following command:

$ mongosh

//OR

$ mongosh "mongodb://localhost:27017"

Database Commands
To view all databases:

show dbs

To create a new database or switch databases:

use dbName

To view the current Database:

db

To drop a Database:

db.dropDatabase()

To search in a Database:

db.comments.find({lang:'Python'})

To backup MongoDB database:

$ mongodump -d oldDatabaseName path

To restore the MongoDB database:

$ mongorestore -d newDatabaseName path/oldDatabaseName.bson

Collection Commands
To show Collections:

show collections

To create a collection named 'clo':

db.createCollection('clo')

To delete a collection named 'clo':

db.clo.drop()

To create a statistical structure:

db.docx.stats()

(Note: you can use this command to copy a pointer into a user-specified memory
location)

To find out how much total storage space in bytes is allocated to the document for
document storage:

db.docx.storageSize()

To report the total size used by the indexes in a collection document:

db.docx.totalIndexSize()

To calculate the total size in bytes of the set data plus the size of each index:

db.docx.totalSize()

To list a Collection’s Records:

db.collectionname.find()

To list Records with Matching Values of Specific Fields:

collectionname.find({"field2": "secondmatching value"})

To Match multiple Values:

collectionname.find({"field2": "second matching value", "field3":
"thirdmatchingvalue"})

To find a Single Record:

collectionname.findOne({"field2": "content"})

Row Commands
To show all Rows of a Collection:

db.comments.find()

To show all Rows of a Collection (Prettified):

db.comments.find().pretty()

To find the first row matching the object:

db.comments.findOne({name: 'Harry'})

To insert only one Row:

db.comments.insert({

 'name': 'Harry',

 'lang': 'JavaScript',

 'member_since': 5

 })

To insert multiple Rows:

db.comments.insertMany([{

 'name': 'Harry',

 'lang': 'JavaScript',

 'member_since': 5

 },

 {'name': 'Rohan',

 'lang': 'Python',

 'member_since': 3

 },

 {'name': 'Lovish',

 'lang': 'Java',

 'member_since': 4

}])

To limit the number of rows in the output:

db.comments.find().limit(2)

To count the number of rows in the output:

db.comments.find().count()

To update a row:

db.comments.updateOne({name: 'Shubham'},

{$set: {'name': 'Harry',

 'lang': 'JavaScript',

 'member_since': 51

}}, {upsert: true})

To delete Row:

db.comments.remove({name: 'Harry'})

To sort rows, you can use multiple methods:

 # asc

 db.docx.find().sort({ title: 5 }).pretty()

desc

 db.docx.find().sort({ title: -5}).pretty()

To count the number of Rows:

db.docx.find().count()

To limit the number of rows:

db.docx.find().limit(5).pretty()

Document commands
To find documents using operators:

$gt greater than db.docx.find({class:{$gt:'T'}

$gte greater than equals db.docx.find({class:{$gt:'T'}

$lt lesser than db.docx.find({class:{$lt:'T'}

$lte lesser than equals db.docx.find({class:{$lte:'T'}

$exists does an attribute exist or not db.docx.find({class:{$gt:'T'}

$regex Matching pattern in pearl-style
db.docx.find({name:{$regex:'^USS\\sE'}})

$type search by type of an element db.docx.find({name : {$type:4}})

To delete a document:

db.docx.deleteOne({"_id" : 6})

(Note: you can use both deleteOne and deleteMany commands for this purpose.
Because both of them take a filter document as their first parameter.)

To update one document:

db.docx.updateOne({"_id": 2}, {$set: {"title": 'revised title'}})

(Note: as their first parameter, updateOne and updateMany take a filter document, and
as the second parameter, they take a modifier document that describes changes to
make.)

To update multiple documents:

db.docx.update({"category": "Information"}, {$set: {"category": 'Sports'}})

Increment Operator of Mongodb:

db.comments.update({name: 'Rohan'},

{$inc:{

 member_since: 2

}})

Rename Operator of Mongodb:

db.comments.update({name: 'Rohan'},

{$rename:{

 member_since: 'member'

}})

Less than/Greater than/ Less than or Eq/Greater than or Eq Commands:

db.comments.find({member_since: {$lt: 90}})

db.comments.find({member_since: {$lte: 90}})

db.comments.find({member_since: {$gt: 90}})

db.comments.find({member_since: {$gte: 90}})

Index commands
To list indexes:

db.docx.getIndexes()

To create Index:

db.docx.createIndex({"name": 2}) // single field index

db.docx.createIndex({"name": 2, "date": 2}) // compound index

db.docx.createIndex({foo: "text", bar: "text"}) // text index

db.docx.createIndex({"$**": "text"}) // wildcard text index

db.docx.createIndex({"userMetadata.$**": 1}) // wildcard index

To drop an index:

db.docx.dropIndex("name_3")

To hide or unhide indexes:

db.docx.hideIndex("name_3")

db.docx.unhideIndex("name_3")

To create a compound index:

db.docx.ensureIndex({name : 3, operator : 1, class : 0})

To drop a compound index:

db.docx.dropIndex({name : 3, operator : 1, class : 0})

Aggregation commands
 To sum up values:

db.docx.aggregate([{$group : {_id : "$operator", num_docx : {$sum :
"$value"}}}])

To calculate average values:

db.docx.aggregate([{$group : {_id : "$operator", num_docx : {$avg :
"$value"}}}])

To find min or max values:

db.docx.aggregate([{$group : {_id : "$operator", num_docx : {$min :
"$value"}}}])

To push values to a result array:

db.docx.aggregate([{$group : {_id : "$operator", classes : {$push:
"$value"}}}])

To push values to a result array without duplicates:

db.docx.aggregate([{$group : {_id : "$operator", classes : {$addToSet :
"$value"}}}])

To get the first or last document:

db.docx.aggregate([{$group : {_id : "$operator", last_class : {$last :
"$value"}}}])

Managing commands

To check the MongoDB version:

db.version()

To check if MongoDB is running:

$ pgrep -fa -- -D | grep mongo

To restart MongoDB on Linux:

db.shutdownServer()

$ sudo systemctl start mongodb

To restart MongoDB on Mac OSX:

$ brew services stop mongodb-community@yourMongodbVersionNumber

To restart MongoDB on Windows:

Winkey + R

Type "services.msc"

Search "MondoDb"

Click "restart"

To change the user password:

db.changeUserPassword(username, NewPassword)

To exit from mongosh:

quit()

To list MongoDB roles:

db.getRoles(

 {

 rolesInfo: 1

 }

)

To create a MongoDB user:

db.createUser(

{

user: "userName",

pwd: "userPassword",

roles:[{role: "roleName" , db:"databaseName"}]

}

)

To delete MongoDB user:

db.dropUser(userName)

Conclusion
One of the world's most widely used and popular document databases is MongoDB. Full-
text search, data aggregation, and many other features made MongoDB a powerful data
storage platform. In this post, we identified MongoDB, its features, pros, and cons. We
also provided a useful cheat sheet that will come in handy for different purposes. Now
you're ready to head out with what we covered in this post.

People also read:

Docker Cheat Sheet
MySQL cheat sheet
SQL Cheat Sheet
Python Cheat Sheet

MonoVM Services: Dedicated Server, Domain Services, VPS Hosting, Web Hosting and

SSL Certificate

Follow us on social media:

https://monovm.com/blog/docker-cheat-sheet/
https://monovm.com/blog/mysql-cheat-sheet/
https://monovm.com/blog/sql-cheat-sheet/
https://monovm.com/blog/python-cheat-sheet/
https://monovm.com/dedicated-server/
https://monovm.com/buy-domain/
https://monovm.com/vps-server/
https://monovm.com/web-hosting/
https://monovm.com/buy-ssl-certificate/
https://www.youtube.com/monovmsite
https://www.instagram.com/monovm/
https://facebook.com/monovm
https://twitter.com/monovm
https://www.youtube.com/monovmsite
https://www.instagram.com/monovm/
https://facebook.com/monovm
https://twitter.com/monovm
https://www.linkedin.com/company/monovm-com

