

Chapter	1.	Introduction

“Data!	Data!	Data!”	he	cried	impatiently.	“I	can’t	make	bricks	without	clay.”

Arthur	Conan	Doyle

The	Ascendance	of	Data
We	live	in	a	world	that’s	drowning	in	data.	Websites	track	every	user’s	every	click.	Your
smartphone	is	building	up	a	record	of	your	location	and	speed	every	second	of	every	day.
“Quantified	selfers”	wear	pedometers-on-steroids	that	are	ever	recording	their	heart	rates,
movement	habits,	diet,	and	sleep	patterns.	Smart	cars	collect	driving	habits,	smart	homes
collect	living	habits,	and	smart	marketers	collect	purchasing	habits.	The	Internet	itself
represents	a	huge	graph	of	knowledge	that	contains	(among	other	things)	an	enormous
cross-referenced	encyclopedia;	domain-specific	databases	about	movies,	music,	sports
results,	pinball	machines,	memes,	and	cocktails;	and	too	many	government	statistics
(some	of	them	nearly	true!)	from	too	many	governments	to	wrap	your	head	around.

Buried	in	these	data	are	answers	to	countless	questions	that	no	one’s	ever	thought	to	ask.
In	this	book,	we’ll	learn	how	to	find	them.

What	Is	Data	Science?
There’s	a	joke	that	says	a	data	scientist	is	someone	who	knows	more	statistics	than	a
computer	scientist	and	more	computer	science	than	a	statistician.	(I	didn’t	say	it	was	a
good	joke.)	In	fact,	some	data	scientists	are	—	for	all	practical	purposes	—	statisticians,
while	others	are	pretty	much	indistinguishable	from	software	engineers.	Some	are
machine-learning	experts,	while	others	couldn’t	machine-learn	their	way	out	of
kindergarten.	Some	are	PhDs	with	impressive	publication	records,	while	others	have	never
read	an	academic	paper	(shame	on	them,	though).	In	short,	pretty	much	no	matter	how	you
define	data	science,	you’ll	find	practitioners	for	whom	the	definition	is	totally,	absolutely
wrong.

Nonetheless,	we	won’t	let	that	stop	us	from	trying.	We’ll	say	that	a	data	scientist	is
someone	who	extracts	insights	from	messy	data.	Today’s	world	is	full	of	people	trying	to
turn	data	into	insight.

For	instance,	the	dating	site	OkCupid	asks	its	members	to	answer	thousands	of	questions
in	order	to	find	the	most	appropriate	matches	for	them.	But	it	also	analyzes	these	results	to
figure	out	innocuous-sounding	questions	you	can	ask	someone	to	find	out	how	likely
someone	is	to	sleep	with	you	on	the	first	date.

Facebook	asks	you	to	list	your	hometown	and	your	current	location,	ostensibly	to	make	it
easier	for	your	friends	to	find	and	connect	with	you.	But	it	also	analyzes	these	locations	to
identify	global	migration	patterns	and	where	the	fanbases	of	different	football	teams	live.

As	a	large	retailer,	Target	tracks	your	purchases	and	interactions,	both	online	and	in-store.
And	it	uses	the	data	to	predictively	model	which	of	its	customers	are	pregnant,	to	better
market	baby-related	purchases	to	them.

In	2012,	the	Obama	campaign	employed	dozens	of	data	scientists	who	data-mined	and
experimented	their	way	to	identifying	voters	who	needed	extra	attention,	choosing	optimal
donor-specific	fundraising	appeals	and	programs,	and	focusing	get-out-the-vote	efforts
where	they	were	most	likely	to	be	useful.	It	is	generally	agreed	that	these	efforts	played	an
important	role	in	the	president’s	re-election,	which	means	it	is	a	safe	bet	that	political
campaigns	of	the	future	will	become	more	and	more	data-driven,	resulting	in	a	never-
ending	arms	race	of	data	science	and	data	collection.

Now,	before	you	start	feeling	too	jaded:	some	data	scientists	also	occasionally	use	their
skills	for	good	—	using	data	to	make	government	more	effective,	to	help	the	homeless,
and	to	improve	public	health.	But	it	certainly	won’t	hurt	your	career	if	you	like	figuring
out	the	best	way	to	get	people	to	click	on	advertisements.

http://bit.ly/1EQU0hI
http://on.fb.me/1EQTq3A
http://on.fb.me/1EQTvnO
http://nyti.ms/1EQTznL
http://bit.ly/1EQTGiW
http://bit.ly/1EQTIYl
http://bit.ly/1EQTPTv

Motivating	Hypothetical:	DataSciencester
Congratulations!	You’ve	just	been	hired	to	lead	the	data	science	efforts	at	DataSciencester,
the	social	network	for	data	scientists.

Despite	being	for	data	scientists,	DataSciencester	has	never	actually	invested	in	building
its	own	data	science	practice.	(In	fairness,	DataSciencester	has	never	really	invested	in
building	its	product	either.)	That	will	be	your	job!	Throughout	the	book,	we’ll	be	learning
about	data	science	concepts	by	solving	problems	that	you	encounter	at	work.	Sometimes
we’ll	look	at	data	explicitly	supplied	by	users,	sometimes	we’ll	look	at	data	generated
through	their	interactions	with	the	site,	and	sometimes	we’ll	even	look	at	data	from
experiments	that	we’ll	design.

And	because	DataSciencester	has	a	strong	“not-invented-here”	mentality,	we’ll	be
building	our	own	tools	from	scratch.	At	the	end,	you’ll	have	a	pretty	solid	understanding
of	the	fundamentals	of	data	science.	And	you’ll	be	ready	to	apply	your	skills	at	a	company
with	a	less	shaky	premise,	or	to	any	other	problems	that	happen	to	interest	you.

Welcome	aboard,	and	good	luck!	(You’re	allowed	to	wear	jeans	on	Fridays,	and	the
bathroom	is	down	the	hall	on	the	right.)

Finding	Key	Connectors
It’s	your	first	day	on	the	job	at	DataSciencester,	and	the	VP	of	Networking	is	full	of
questions	about	your	users.	Until	now	he’s	had	no	one	to	ask,	so	he’s	very	excited	to	have
you	aboard.

In	particular,	he	wants	you	to	identify	who	the	“key	connectors”	are	among	data	scientists.
To	this	end,	he	gives	you	a	dump	of	the	entire	DataSciencester	network.	(In	real	life,
people	don’t	typically	hand	you	the	data	you	need.	Chapter	9	is	devoted	to	getting	data.)

What	does	this	data	dump	look	like?	It	consists	of	a	list	of	users,	each	represented	by	a
dict	that	contains	for	each	user	his	or	her	id	(which	is	a	number)	and	name	(which,	in	one
of	the	great	cosmic	coincidences,	rhymes	with	the	user’s	id):

users	=	[

				{	"id":	0,	"name":	"Hero"	},

				{	"id":	1,	"name":	"Dunn"	},

				{	"id":	2,	"name":	"Sue"	},

				{	"id":	3,	"name":	"Chi"	},

				{	"id":	4,	"name":	"Thor"	},

				{	"id":	5,	"name":	"Clive"	},

				{	"id":	6,	"name":	"Hicks"	},

				{	"id":	7,	"name":	"Devin"	},

				{	"id":	8,	"name":	"Kate"	},

				{	"id":	9,	"name":	"Klein"	}

]

He	also	gives	you	the	“friendship”	data,	represented	as	a	list	of	pairs	of	IDs:

friendships	=	[(0,	1),	(0,	2),	(1,	2),	(1,	3),	(2,	3),	(3,	4),

															(4,	5),	(5,	6),	(5,	7),	(6,	8),	(7,	8),	(8,	9)]

For	example,	the	tuple	(0,	1)	indicates	that	the	data	scientist	with	id	0	(Hero)	and	the
data	scientist	with	id	1	(Dunn)	are	friends.	The	network	is	illustrated	in	Figure	1-1.

Figure	1-1.	The	DataSciencester	network

Since	we	represented	our	users	as	dicts,	it’s	easy	to	augment	them	with	extra	data.

NOTE
Don’t	get	too	hung	up	on	the	details	of	the	code	right	now.	In	Chapter	2,	we’ll	take	you	through	a	crash
course	in	Python.	For	now	just	try	to	get	the	general	flavor	of	what	we’re	doing.

For	example,	we	might	want	to	add	a	list	of	friends	to	each	user.	First	we	set	each	user’s
friends	property	to	an	empty	list:

for	user	in	users:

				user["friends"]	=	[]

And	then	we	populate	the	lists	using	the	friendships	data:

for	i,	j	in	friendships:

				#	this	works	because	users[i]	is	the	user	whose	id	is	i

				users[i]["friends"].append(users[j])	#	add	i	as	a	friend	of	j

				users[j]["friends"].append(users[i])	#	add	j	as	a	friend	of	i

Once	each	user	dict	contains	a	list	of	friends,	we	can	easily	ask	questions	of	our	graph,
like	“what’s	the	average	number	of	connections?”

First	we	find	the	total	number	of	connections,	by	summing	up	the	lengths	of	all	the
friends	lists:

def	number_of_friends(user):

				"""how	many	friends	does	_user_	have?"""

				return	len(user["friends"])																			#	length	of	friend_ids	list

total_connections	=	sum(number_of_friends(user)

																								for	user	in	users)								#	24

And	then	we	just	divide	by	the	number	of	users:

from	__future__	import	division																			#	integer	division	is	lame

num_users	=	len(users)																												#	length	of	the	users	list

avg_connections	=	total_connections	/	num_users			#	2.4

It’s	also	easy	to	find	the	most	connected	people	—	they’re	the	people	who	have	the	largest
number	of	friends.

Since	there	aren’t	very	many	users,	we	can	sort	them	from	“most	friends”	to	“least
friends”:

#	create	a	list	(user_id,	number_of_friends)

num_friends_by_id	=	[(user["id"],	number_of_friends(user))

																					for	user	in	users]

sorted(num_friends_by_id,																																#	get	it	sorted

							key=lambda	(user_id,	num_friends):	num_friends,			#	by	num_friends

							reverse=True)																																					#	largest	to	smallest

#	each	pair	is	(user_id,	num_friends)

#	[(1,	3),	(2,	3),	(3,	3),	(5,	3),	(8,	3),

#		(0,	2),	(4,	2),	(6,	2),	(7,	2),	(9,	1)]

One	way	to	think	of	what	we’ve	done	is	as	a	way	of	identifying	people	who	are	somehow
central	to	the	network.	In	fact,	what	we’ve	just	computed	is	the	network	metric	degree
centrality	(Figure	1-2).

Figure	1-2.	The	DataSciencester	network	sized	by	degree

This	has	the	virtue	of	being	pretty	easy	to	calculate,	but	it	doesn’t	always	give	the	results
you’d	want	or	expect.	For	example,	in	the	DataSciencester	network	Thor	(id	4)	only	has
two	connections	while	Dunn	(id	1)	has	three.	Yet	looking	at	the	network	it	intuitively
seems	like	Thor	should	be	more	central.	In	Chapter	21,	we’ll	investigate	networks	in	more
detail,	and	we’ll	look	at	more	complex	notions	of	centrality	that	may	or	may	not	accord
better	with	our	intuition.

Data	Scientists	You	May	Know
While	you’re	still	filling	out	new-hire	paperwork,	the	VP	of	Fraternization	comes	by	your
desk.	She	wants	to	encourage	more	connections	among	your	members,	and	she	asks	you
to	design	a	“Data	Scientists	You	May	Know”	suggester.

Your	first	instinct	is	to	suggest	that	a	user	might	know	the	friends	of	friends.	These	are
easy	to	compute:	for	each	of	a	user’s	friends,	iterate	over	that	person’s	friends,	and	collect
all	the	results:

def	friends_of_friend_ids_bad(user):

				#	"foaf"	is	short	for	"friend	of	a	friend"

				return	[foaf["id"]

												for	friend	in	user["friends"]					#	for	each	of	user's	friends

												for	foaf	in	friend["friends"]]				#	get	each	of	_their_	friends

When	we	call	this	on	users[0]	(Hero),	it	produces:

[0,	2,	3,	0,	1,	3]

It	includes	user	0	(twice),	since	Hero	is	indeed	friends	with	both	of	his	friends.	It	includes
users	1	and	2,	although	they	are	both	friends	with	Hero	already.	And	it	includes	user	3
twice,	as	Chi	is	reachable	through	two	different	friends:

print	[friend["id"]	for	friend	in	users[0]["friends"]]		#	[1,	2]

print	[friend["id"]	for	friend	in	users[1]["friends"]]		#	[0,	2,	3]

print	[friend["id"]	for	friend	in	users[2]["friends"]]		#	[0,	1,	3]

Knowing	that	people	are	friends-of-friends	in	multiple	ways	seems	like	interesting
information,	so	maybe	instead	we	should	produce	a	count	of	mutual	friends.	And	we
definitely	should	use	a	helper	function	to	exclude	people	already	known	to	the	user:

from	collections	import	Counter																							#	not	loaded	by	default

def	not_the_same(user,	other_user):

				"""two	users	are	not	the	same	if	they	have	different	ids"""

				return	user["id"]	!=	other_user["id"]

def	not_friends(user,	other_user):

				"""other_user	is	not	a	friend	if	he's	not	in	user["friends"];

				that	is,	if	he's	not_the_same	as	all	the	people	in	user["friends"]"""

				return	all(not_the_same(friend,	other_user)

															for	friend	in	user["friends"])

def	friends_of_friend_ids(user):

				return	Counter(foaf["id"]

																			for	friend	in	user["friends"]				#	for	each	of	my	friends

																			for	foaf	in	friend["friends"]				#	count	*their*	friends

																			if	not_the_same(user,	foaf)						#	who	aren't	me

																			and	not_friends(user,	foaf))					#	and	aren't	my	friends

print	friends_of_friend_ids(users[3])															#	Counter({0:	2,	5:	1})

This	correctly	tells	Chi	(id	3)	that	she	has	two	mutual	friends	with	Hero	(id	0)	but	only
one	mutual	friend	with	Clive	(id	5).

As	a	data	scientist,	you	know	that	you	also	might	enjoy	meeting	users	with	similar

interests.	(This	is	a	good	example	of	the	“substantive	expertise”	aspect	of	data	science.)
After	asking	around,	you	manage	to	get	your	hands	on	this	data,	as	a	list	of	pairs
(user_id,	interest):

interests	=	[

				(0,	"Hadoop"),	(0,	"Big	Data"),	(0,	"HBase"),	(0,	"Java"),

				(0,	"Spark"),	(0,	"Storm"),	(0,	"Cassandra"),

				(1,	"NoSQL"),	(1,	"MongoDB"),	(1,	"Cassandra"),	(1,	"HBase"),

				(1,	"Postgres"),	(2,	"Python"),	(2,	"scikit-learn"),	(2,	"scipy"),

				(2,	"numpy"),	(2,	"statsmodels"),	(2,	"pandas"),	(3,	"R"),	(3,	"Python"),

				(3,	"statistics"),	(3,	"regression"),	(3,	"probability"),

				(4,	"machine	learning"),	(4,	"regression"),	(4,	"decision	trees"),

				(4,	"libsvm"),	(5,	"Python"),	(5,	"R"),	(5,	"Java"),	(5,	"C++"),

				(5,	"Haskell"),	(5,	"programming	languages"),	(6,	"statistics"),

				(6,	"probability"),	(6,	"mathematics"),	(6,	"theory"),

				(7,	"machine	learning"),	(7,	"scikit-learn"),	(7,	"Mahout"),

				(7,	"neural	networks"),	(8,	"neural	networks"),	(8,	"deep	learning"),

				(8,	"Big	Data"),	(8,	"artificial	intelligence"),	(9,	"Hadoop"),

				(9,	"Java"),	(9,	"MapReduce"),	(9,	"Big	Data")

]

For	example,	Thor	(id	4)	has	no	friends	in	common	with	Devin	(id	7),	but	they	share	an
interest	in	machine	learning.

It’s	easy	to	build	a	function	that	finds	users	with	a	certain	interest:

def	data_scientists_who_like(target_interest):

				return	[user_id

												for	user_id,	user_interest	in	interests

												if	user_interest	==	target_interest]

This	works,	but	it	has	to	examine	the	whole	list	of	interests	for	every	search.	If	we	have	a
lot	of	users	and	interests	(or	if	we	just	want	to	do	a	lot	of	searches),	we’re	probably	better
off	building	an	index	from	interests	to	users:

from	collections	import	defaultdict

#	keys	are	interests,	values	are	lists	of	user_ids	with	that	interest

user_ids_by_interest	=	defaultdict(list)

for	user_id,	interest	in	interests:

				user_ids_by_interest[interest].append(user_id)

And	another	from	users	to	interests:

#	keys	are	user_ids,	values	are	lists	of	interests	for	that	user_id

interests_by_user_id	=	defaultdict(list)

for	user_id,	interest	in	interests:

				interests_by_user_id[user_id].append(interest)

Now	it’s	easy	to	find	who	has	the	most	interests	in	common	with	a	given	user:

Iterate	over	the	user’s	interests.

For	each	interest,	iterate	over	the	other	users	with	that	interest.

Keep	count	of	how	many	times	we	see	each	other	user.

def	most_common_interests_with(user):

				return	Counter(interested_user_id

								for	interest	in	interests_by_user_id[user["id"]]

								for	interested_user_id	in	user_ids_by_interest[interest]

								if	interested_user_id	!=	user["id"])

We	could	then	use	this	to	build	a	richer	“Data	Scientists	You	Should	Know”	feature	based
on	a	combination	of	mutual	friends	and	mutual	interests.	We’ll	explore	these	kinds	of
applications	in	Chapter	22.

Salaries	and	Experience
Right	as	you’re	about	to	head	to	lunch,	the	VP	of	Public	Relations	asks	if	you	can	provide
some	fun	facts	about	how	much	data	scientists	earn.	Salary	data	is	of	course	sensitive,	but
he	manages	to	provide	you	an	anonymous	data	set	containing	each	user’s	salary	(in
dollars)	and	tenure	as	a	data	scientist	(in	years):

salaries_and_tenures	=	[(83000,	8.7),	(88000,	8.1),

																								(48000,	0.7),	(76000,	6),

																								(69000,	6.5),	(76000,	7.5),

																								(60000,	2.5),	(83000,	10),

																								(48000,	1.9),	(63000,	4.2)]

The	natural	first	step	is	to	plot	the	data	(which	we’ll	see	how	to	do	in	Chapter	3).	You	can
see	the	results	in	Figure	1-3.

Figure	1-3.	Salary	by	years	of	experience

It	seems	pretty	clear	that	people	with	more	experience	tend	to	earn	more.	How	can	you
turn	this	into	a	fun	fact?	Your	first	idea	is	to	look	at	the	average	salary	for	each	tenure:

#	keys	are	years,	values	are	lists	of	the	salaries	for	each	tenure

salary_by_tenure	=	defaultdict(list)

for	salary,	tenure	in	salaries_and_tenures:

				salary_by_tenure[tenure].append(salary)

#	keys	are	years,	each	value	is	average	salary	for	that	tenure

average_salary_by_tenure	=	{

				tenure	:	sum(salaries)	/	len(salaries)

				for	tenure,	salaries	in	salary_by_tenure.items()

}

This	turns	out	to	be	not	particularly	useful,	as	none	of	the	users	have	the	same	tenure,
which	means	we’re	just	reporting	the	individual	users’	salaries:

{0.7:	48000.0,

	1.9:	48000.0,

	2.5:	60000.0,

	4.2:	63000.0,

	6:	76000.0,

	6.5:	69000.0,

	7.5:	76000.0,

	8.1:	88000.0,

	8.7:	83000.0,

	10:	83000.0}

It	might	be	more	helpful	to	bucket	the	tenures:

def	tenure_bucket(tenure):

				if	tenure	<	2:

								return	"less	than	two"

				elif	tenure	<	5:

								return	"between	two	and	five"

				else:

								return	"more	than	five"

Then	group	together	the	salaries	corresponding	to	each	bucket:

#	keys	are	tenure	buckets,	values	are	lists	of	salaries	for	that	bucket

salary_by_tenure_bucket	=	defaultdict(list)

for	salary,	tenure	in	salaries_and_tenures:

				bucket	=	tenure_bucket(tenure)

				salary_by_tenure_bucket[bucket].append(salary)

And	finally	compute	the	average	salary	for	each	group:

#	keys	are	tenure	buckets,	values	are	average	salary	for	that	bucket

average_salary_by_bucket	=	{

		tenure_bucket	:	sum(salaries)	/	len(salaries)

		for	tenure_bucket,	salaries	in	salary_by_tenure_bucket.iteritems()

}

which	is	more	interesting:

{'between	two	and	five':	61500.0,

	'less	than	two':	48000.0,

	'more	than	five':	79166.66666666667}

And	you	have	your	soundbite:	“Data	scientists	with	more	than	five	years	experience	earn
65%	more	than	data	scientists	with	little	or	no	experience!”

But	we	chose	the	buckets	in	a	pretty	arbitrary	way.	What	we’d	really	like	is	to	make	some
sort	of	statement	about	the	salary	effect	—	on	average	—	of	having	an	additional	year	of

experience.	In	addition	to	making	for	a	snappier	fun	fact,	this	allows	us	to	make
predictions	about	salaries	that	we	don’t	know.	We’ll	explore	this	idea	in	Chapter	14.

Paid	Accounts
When	you	get	back	to	your	desk,	the	VP	of	Revenue	is	waiting	for	you.	She	wants	to
better	understand	which	users	pay	for	accounts	and	which	don’t.	(She	knows	their	names,
but	that’s	not	particularly	actionable	information.)

You	notice	that	there	seems	to	be	a	correspondence	between	years	of	experience	and	paid
accounts:

0.7	paid

1.9	unpaid

2.5	paid

4.2	unpaid

6			unpaid

6.5	unpaid

7.5	unpaid

8.1	unpaid

8.7	paid

10		paid

Users	with	very	few	and	very	many	years	of	experience	tend	to	pay;	users	with	average
amounts	of	experience	don’t.

Accordingly,	if	you	wanted	to	create	a	model	—	though	this	is	definitely	not	enough	data
to	base	a	model	on	—	you	might	try	to	predict	“paid”	for	users	with	very	few	and	very
many	years	of	experience,	and	“unpaid”	for	users	with	middling	amounts	of	experience:

def	predict_paid_or_unpaid(years_experience):

		if	years_experience	<	3.0:

				return	"paid"

		elif	years_experience	<	8.5:

				return	"unpaid"

		else:

				return	"paid"

Of	course,	we	totally	eyeballed	the	cutoffs.

With	more	data	(and	more	mathematics),	we	could	build	a	model	predicting	the	likelihood
that	a	user	would	pay,	based	on	his	years	of	experience.	We’ll	investigate	this	sort	of
problem	in	Chapter	16.

Topics	of	Interest
As	you’re	wrapping	up	your	first	day,	the	VP	of	Content	Strategy	asks	you	for	data	about
what	topics	users	are	most	interested	in,	so	that	she	can	plan	out	her	blog	calendar
accordingly.	You	already	have	the	raw	data	from	the	friend-suggester	project:

interests	=	[

				(0,	"Hadoop"),	(0,	"Big	Data"),	(0,	"HBase"),	(0,	"Java"),

				(0,	"Spark"),	(0,	"Storm"),	(0,	"Cassandra"),

				(1,	"NoSQL"),	(1,	"MongoDB"),	(1,	"Cassandra"),	(1,	"HBase"),

				(1,	"Postgres"),	(2,	"Python"),	(2,	"scikit-learn"),	(2,	"scipy"),

				(2,	"numpy"),	(2,	"statsmodels"),	(2,	"pandas"),	(3,	"R"),	(3,	"Python"),

				(3,	"statistics"),	(3,	"regression"),	(3,	"probability"),

				(4,	"machine	learning"),	(4,	"regression"),	(4,	"decision	trees"),

				(4,	"libsvm"),	(5,	"Python"),	(5,	"R"),	(5,	"Java"),	(5,	"C++"),

				(5,	"Haskell"),	(5,	"programming	languages"),	(6,	"statistics"),

				(6,	"probability"),	(6,	"mathematics"),	(6,	"theory"),

				(7,	"machine	learning"),	(7,	"scikit-learn"),	(7,	"Mahout"),

				(7,	"neural	networks"),	(8,	"neural	networks"),	(8,	"deep	learning"),

				(8,	"Big	Data"),	(8,	"artificial	intelligence"),	(9,	"Hadoop"),

				(9,	"Java"),	(9,	"MapReduce"),	(9,	"Big	Data")

]

One	simple	(if	not	particularly	exciting)	way	to	find	the	most	popular	interests	is	simply	to
count	the	words:

1.	 Lowercase	each	interest	(since	different	users	may	or	may	not	capitalize	their
interests).

2.	 Split	it	into	words.

3.	 Count	the	results.

In	code:

words_and_counts	=	Counter(word

																											for	user,	interest	in	interests

																											for	word	in	interest.lower().split())

This	makes	it	easy	to	list	out	the	words	that	occur	more	than	once:

for	word,	count	in	words_and_counts.most_common():

				if	count	>	1:

								print	word,	count

which	gives	the	results	you’d	expect	(unless	you	expect	“scikit-learn”	to	get	split	into	two
words,	in	which	case	it	doesn’t	give	the	results	you	expect):

learning	3

java	3

python	3

big	3

data	3

hbase	2

regression	2

cassandra	2

statistics	2

probability	2

hadoop	2

networks	2

machine	2

neural	2

scikit-learn	2

r	2

We’ll	look	at	more	sophisticated	ways	to	extract	topics	from	data	in	Chapter	20.

Onward
It’s	been	a	successful	first	day!	Exhausted,	you	slip	out	of	the	building	before	anyone	else
can	ask	you	for	anything	else.	Get	a	good	night’s	rest,	because	tomorrow	is	new	employee
orientation.	(Yes,	you	went	through	a	full	day	of	work	before	new	employee	orientation.
Take	it	up	with	HR.)

Chapter	2.	A	Crash	Course	in	Python

People	are	still	crazy	about	Python	after	twenty-five	years,	which	I	find	hard	to	believe.

Michael	Palin

All	new	employees	at	DataSciencester	are	required	to	go	through	new	employee
orientation,	the	most	interesting	part	of	which	is	a	crash	course	in	Python.

This	is	not	a	comprehensive	Python	tutorial	but	instead	is	intended	to	highlight	the	parts	of
the	language	that	will	be	most	important	to	us	(some	of	which	are	often	not	the	focus	of
Python	tutorials).

The	Basics

Getting	Python
You	can	download	Python	from	python.org.	But	if	you	don’t	already	have	Python,	I
recommend	instead	installing	the	Anaconda	distribution,	which	already	includes	most	of
the	libraries	that	you	need	to	do	data	science.

As	I	write	this,	the	latest	version	of	Python	is	3.4.	At	DataSciencester,	however,	we	use
old,	reliable	Python	2.7.	Python	3	is	not	backward-compatible	with	Python	2,	and	many
important	libraries	only	work	well	with	2.7.	The	data	science	community	is	still	firmly
stuck	on	2.7,	which	means	we	will	be,	too.	Make	sure	to	get	that	version.

If	you	don’t	get	Anaconda,	make	sure	to	install	pip,	which	is	a	Python	package	manager
that	allows	you	to	easily	install	third-party	packages	(some	of	which	we’ll	need).	It’s	also
worth	getting	IPython,	which	is	a	much	nicer	Python	shell	to	work	with.

(If	you	installed	Anaconda	then	it	should	have	come	with	pip	and	IPython.)

Just	run:

pip	install	ipython

and	then	search	the	Internet	for	solutions	to	whatever	cryptic	error	messages	that	causes.

https://www.python.org/
https://store.continuum.io/cshop/anaconda/
https://pypi.python.org/pypi/pip
http://ipython.org/

The	Zen	of	Python
Python	has	a	somewhat	Zen	description	of	its	design	principles,	which	you	can	also	find
inside	the	Python	interpreter	itself	by	typing	import	this.

One	of	the	most	discussed	of	these	is:

There	should	be	one	—	and	preferably	only	one	—	obvious	way	to	do	it.

Code	written	in	accordance	with	this	“obvious”	way	(which	may	not	be	obvious	at	all	to	a
newcomer)	is	often	described	as	“Pythonic.”	Although	this	is	not	a	book	about	Python,	we
will	occasionally	contrast	Pythonic	and	non-Pythonic	ways	of	accomplishing	the	same
things,	and	we	will	generally	favor	Pythonic	solutions	to	our	problems.

http://legacy.python.org/dev/peps/pep-0020/

Whitespace	Formatting
Many	languages	use	curly	braces	to	delimit	blocks	of	code.	Python	uses	indentation:

for	i	in	[1,	2,	3,	4,	5]:

				print	i																					#	first	line	in	"for	i"	block

				for	j	in	[1,	2,	3,	4,	5]:

								print	j																	#	first	line	in	"for	j"	block

								print	i	+	j													#	last	line	in	"for	j"	block

				print	i																					#	last	line	in	"for	i"	block

print	"done	looping"

This	makes	Python	code	very	readable,	but	it	also	means	that	you	have	to	be	very	careful
with	your	formatting.	Whitespace	is	ignored	inside	parentheses	and	brackets,	which	can	be
helpful	for	long-winded	computations:

long_winded_computation	=	(1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	+	10	+	11	+	12	+

																											13	+	14	+	15	+	16	+	17	+	18	+	19	+	20)

and	for	making	code	easier	to	read:

list_of_lists	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

easier_to_read_list_of_lists	=	[[1,	2,	3],

																																	[4,	5,	6],

																																	[7,	8,	9]]

You	can	also	use	a	backslash	to	indicate	that	a	statement	continues	onto	the	next	line,
although	we’ll	rarely	do	this:

two_plus_three	=	2	+	\

																	3

One	consequence	of	whitespace	formatting	is	that	it	can	be	hard	to	copy	and	paste	code
into	the	Python	shell.	For	example,	if	you	tried	to	paste	the	code:

for	i	in	[1,	2,	3,	4,	5]:

				#	notice	the	blank	line

				print	i

into	the	ordinary	Python	shell,	you	would	get	a:

IndentationError:	expected	an	indented	block

because	the	interpreter	thinks	the	blank	line	signals	the	end	of	the	for	loop’s	block.

IPython	has	a	magic	function	%paste,	which	correctly	pastes	whatever	is	on	your
clipboard,	whitespace	and	all.	This	alone	is	a	good	reason	to	use	IPython.

Modules
Certain	features	of	Python	are	not	loaded	by	default.	These	include	both	features	included
as	part	of	the	language	as	well	as	third-party	features	that	you	download	yourself.	In	order
to	use	these	features,	you’ll	need	to	import	the	modules	that	contain	them.

One	approach	is	to	simply	import	the	module	itself:

import	re

my_regex	=	re.compile("[0-9]+",	re.I)

Here	re	is	the	module	containing	functions	and	constants	for	working	with	regular
expressions.	After	this	type	of	import	you	can	only	access	those	functions	by	prefixing
them	with	re..

If	you	already	had	a	different	re	in	your	code	you	could	use	an	alias:

import	re	as	regex

my_regex	=	regex.compile("[0-9]+",	regex.I)

You	might	also	do	this	if	your	module	has	an	unwieldy	name	or	if	you’re	going	to	be
typing	it	a	lot.	For	example,	when	visualizing	data	with	matplotlib,	a	standard
convention	is:

import	matplotlib.pyplot	as	plt

If	you	need	a	few	specific	values	from	a	module,	you	can	import	them	explicitly	and	use
them	without	qualification:

from	collections	import	defaultdict,	Counter

lookup	=	defaultdict(int)

my_counter	=	Counter()

If	you	were	a	bad	person,	you	could	import	the	entire	contents	of	a	module	into	your
namespace,	which	might	inadvertently	overwrite	variables	you’ve	already	defined:

match	=	10

from	re	import	*				#	uh	oh,	re	has	a	match	function

print	match									#	"<function	re.match>"

However,	since	you	are	not	a	bad	person,	you	won’t	ever	do	this.

Arithmetic
Python	2.7	uses	integer	division	by	default,	so	that	5	/	2	equals	2.	Almost	always	this	is
not	what	we	want,	so	we	will	always	start	our	files	with:

from	__future__	import	division

after	which	5	/	2	equals	2.5.	Every	code	example	in	this	book	uses	this	new-style
division.	In	the	handful	of	cases	where	we	need	integer	division,	we	can	get	it	with	a
double	slash:	5	//	2.

Functions
A	function	is	a	rule	for	taking	zero	or	more	inputs	and	returning	a	corresponding	output.	In
Python,	we	typically	define	functions	using	def:

def	double(x):

				"""this	is	where	you	put	an	optional	docstring

				that	explains	what	the	function	does.

				for	example,	this	function	multiplies	its	input	by	2"""

				return	x	*	2

Python	functions	are	first-class,	which	means	that	we	can	assign	them	to	variables	and
pass	them	into	functions	just	like	any	other	arguments:

def	apply_to_one(f):

				"""calls	the	function	f	with	1	as	its	argument"""

				return	f(1)

my_double	=	double													#	refers	to	the	previously	defined	function

x	=	apply_to_one(my_double)				#	equals	2

It	is	also	easy	to	create	short	anonymous	functions,	or	lambdas:

y	=	apply_to_one(lambda	x:	x	+	4)						#	equals	5

You	can	assign	lambdas	to	variables,	although	most	people	will	tell	you	that	you	should
just	use	def	instead:

another_double	=	lambda	x:	2	*	x							#	don't	do	this

def	another_double(x):	return	2	*	x				#	do	this	instead

Function	parameters	can	also	be	given	default	arguments,	which	only	need	to	be	specified
when	you	want	a	value	other	than	the	default:

def	my_print(message="my	default	message"):

				print	message

my_print("hello")			#	prints	'hello'

my_print()										#	prints	'my	default	message'

It	is	sometimes	useful	to	specify	arguments	by	name:

def	subtract(a=0,	b=0):

				return	a	-	b

subtract(10,	5)	#	returns	5

subtract(0,	5)		#	returns	-5

subtract(b=5)			#	same	as	previous

We	will	be	creating	many,	many	functions.

Strings
Strings	can	be	delimited	by	single	or	double	quotation	marks	(but	the	quotes	have	to
match):

single_quoted_string	=	'data	science'

double_quoted_string	=	"data	science"

Python	uses	backslashes	to	encode	special	characters.	For	example:

tab_string	=	"\t"							#	represents	the	tab	character

len(tab_string)									#	is	1

If	you	want	backslashes	as	backslashes	(which	you	might	in	Windows	directory	names	or
in	regular	expressions),	you	can	create	raw	strings	using	r"":

not_tab_string	=	r"\t"		#	represents	the	characters	'\'	and	't'

len(not_tab_string)					#	is	2

You	can	create	multiline	strings	using	triple-[double-]-quotes:

multi_line_string	=	"""This	is	the	first	line.

and	this	is	the	second	line

and	this	is	the	third	line"""

Exceptions
When	something	goes	wrong,	Python	raises	an	exception.	Unhandled,	these	will	cause
your	program	to	crash.	You	can	handle	them	using	try	and	except:

try:

				print	0	/	0

except	ZeroDivisionError:

				print	"cannot	divide	by	zero"

Although	in	many	languages	exceptions	are	considered	bad,	in	Python	there	is	no	shame
in	using	them	to	make	your	code	cleaner,	and	we	will	occasionally	do	so.

Lists
Probably	the	most	fundamental	data	structure	in	Python	is	the	list.	A	list	is	simply	an
ordered	collection.	(It	is	similar	to	what	in	other	languages	might	be	called	an	array,	but
with	some	added	functionality.)

integer_list	=	[1,	2,	3]

heterogeneous_list	=	["string",	0.1,	True]

list_of_lists	=	[integer_list,	heterogeneous_list,	[]]

list_length	=	len(integer_list)					#	equals	3

list_sum				=	sum(integer_list)					#	equals	6

You	can	get	or	set	the	nth	element	of	a	list	with	square	brackets:

x	=	range(10)			#	is	the	list	[0,	1,	...,	9]

zero	=	x[0]					#	equals	0,	lists	are	0-indexed

one	=	x[1]						#	equals	1

nine	=	x[-1]				#	equals	9,	'Pythonic'	for	last	element

eight	=	x[-2]			#	equals	8,	'Pythonic'	for	next-to-last	element

x[0]	=	-1							#	now	x	is	[-1,	1,	2,	3,	...,	9]

You	can	also	use	square	brackets	to	“slice”	lists:

first_three			=	x[:3]															#	[-1,	1,	2]

three_to_end	=	x[3:]																#	[3,	4,	...,	9]

one_to_four	=	x[1:5]																#	[1,	2,	3,	4]

last_three	=	x[-3:]																	#	[7,	8,	9]

without_first_and_last	=	x[1:-1]				#	[1,	2,	...,	8]

copy_of_x	=	x[:]																				#	[-1,	1,	2,	...,	9]

Python	has	an	in	operator	to	check	for	list	membership:

1	in	[1,	2,	3]				#	True

0	in	[1,	2,	3]				#	False

This	check	involves	examining	the	elements	of	the	list	one	at	a	time,	which	means	that
you	probably	shouldn’t	use	it	unless	you	know	your	list	is	pretty	small	(or	unless	you
don’t	care	how	long	the	check	takes).

It	is	easy	to	concatenate	lists	together:

x	=	[1,	2,	3]

x.extend([4,	5,	6])					#	x	is	now	[1,2,3,4,5,6]

If	you	don’t	want	to	modify	x	you	can	use	list	addition:

x	=	[1,	2,	3]

y	=	x	+	[4,	5,	6]							#	y	is	[1,	2,	3,	4,	5,	6];	x	is	unchanged

More	frequently	we	will	append	to	lists	one	item	at	a	time:

x	=	[1,	2,	3]

x.append(0)						#	x	is	now	[1,	2,	3,	0]

y	=	x[-1]								#	equals	0

z	=	len(x)							#	equals	4

It	is	often	convenient	to	unpack	lists	if	you	know	how	many	elements	they	contain:

x,	y	=	[1,	2]				#	now	x	is	1,	y	is	2

although	you	will	get	a	ValueError	if	you	don’t	have	the	same	numbers	of	elements	on
both	sides.

It’s	common	to	use	an	underscore	for	a	value	you’re	going	to	throw	away:

_,	y	=	[1,	2]				#	now	y	==	2,	didn't	care	about	the	first	element

Tuples
Tuples	are	lists’	immutable	cousins.	Pretty	much	anything	you	can	do	to	a	list	that	doesn’t
involve	modifying	it,	you	can	do	to	a	tuple.	You	specify	a	tuple	by	using	parentheses	(or
nothing)	instead	of	square	brackets:

my_list	=	[1,	2]

my_tuple	=	(1,	2)

other_tuple	=	3,	4

my_list[1]	=	3						#	my_list	is	now	[1,	3]

try:

				my_tuple[1]	=	3

except	TypeError:

				print	"cannot	modify	a	tuple"

Tuples	are	a	convenient	way	to	return	multiple	values	from	functions:

def	sum_and_product(x,	y):

				return	(x	+	y),(x	*	y)

sp	=	sum_and_product(2,	3)				#	equals	(5,	6)

s,	p	=	sum_and_product(5,	10)	#	s	is	15,	p	is	50

Tuples	(and	lists)	can	also	be	used	for	multiple	assignment:

x,	y	=	1,	2					#	now	x	is	1,	y	is	2

x,	y	=	y,	x					#	Pythonic	way	to	swap	variables;	now	x	is	2,	y	is	1

Dictionaries
Another	fundamental	data	structure	is	a	dictionary,	which	associates	values	with	keys	and
allows	you	to	quickly	retrieve	the	value	corresponding	to	a	given	key:

empty_dict	=	{}																									#	Pythonic

empty_dict2	=	dict()																				#	less	Pythonic

grades	=	{	"Joel"	:	80,	"Tim"	:	95	}				#	dictionary	literal

You	can	look	up	the	value	for	a	key	using	square	brackets:

joels_grade	=	grades["Joel"]												#	equals	80

But	you’ll	get	a	KeyError	if	you	ask	for	a	key	that’s	not	in	the	dictionary:

try:

				kates_grade	=	grades["Kate"]

except	KeyError:

				print	"no	grade	for	Kate!"

You	can	check	for	the	existence	of	a	key	using	in:

joel_has_grade	=	"Joel"	in	grades					#	True

kate_has_grade	=	"Kate"	in	grades					#	False

Dictionaries	have	a	get	method	that	returns	a	default	value	(instead	of	raising	an
exception)	when	you	look	up	a	key	that’s	not	in	the	dictionary:

joels_grade	=	grades.get("Joel",	0)			#	equals	80

kates_grade	=	grades.get("Kate",	0)			#	equals	0

no_ones_grade	=	grades.get("No	One")		#	default	default	is	None

You	assign	key-value	pairs	using	the	same	square	brackets:

grades["Tim"]	=	99																				#	replaces	the	old	value

grades["Kate"]	=	100																		#	adds	a	third	entry

num_students	=	len(grades)												#	equals	3

We	will	frequently	use	dictionaries	as	a	simple	way	to	represent	structured	data:

tweet	=	{

				"user"	:	"joelgrus",

				"text"	:	"Data	Science	is	Awesome",

				"retweet_count"	:	100,

				"hashtags"	:	["#data",	"#science",	"#datascience",	"#awesome",	"#yolo"]

}

Besides	looking	for	specific	keys	we	can	look	at	all	of	them:

tweet_keys			=	tweet.keys()					#	list	of	keys

tweet_values	=	tweet.values()			#	list	of	values

tweet_items		=	tweet.items()				#	list	of	(key,	value)	tuples

"user"	in	tweet_keys												#	True,	but	uses	a	slow	list	in

"user"	in	tweet																	#	more	Pythonic,	uses	faster	dict	in

"joelgrus"	in	tweet_values						#	True

Dictionary	keys	must	be	immutable;	in	particular,	you	cannot	use	lists	as	keys.	If	you
need	a	multipart	key,	you	should	use	a	tuple	or	figure	out	a	way	to	turn	the	key	into	a
string.

defaultdict

Imagine	that	you’re	trying	to	count	the	words	in	a	document.	An	obvious	approach	is	to
create	a	dictionary	in	which	the	keys	are	words	and	the	values	are	counts.	As	you	check
each	word,	you	can	increment	its	count	if	it’s	already	in	the	dictionary	and	add	it	to	the
dictionary	if	it’s	not:

word_counts	=	{}

for	word	in	document:

				if	word	in	word_counts:

								word_counts[word]	+=	1

				else:

								word_counts[word]	=	1

You	could	also	use	the	“forgiveness	is	better	than	permission”	approach	and	just	handle
the	exception	from	trying	to	look	up	a	missing	key:

word_counts	=	{}

for	word	in	document:

				try:

								word_counts[word]	+=	1

				except	KeyError:

								word_counts[word]	=	1

A	third	approach	is	to	use	get,	which	behaves	gracefully	for	missing	keys:

word_counts	=	{}

for	word	in	document:

				previous_count	=	word_counts.get(word,	0)

				word_counts[word]	=	previous_count	+	1

Every	one	of	these	is	slightly	unwieldy,	which	is	why	defaultdict	is	useful.	A
defaultdict	is	like	a	regular	dictionary,	except	that	when	you	try	to	look	up	a	key	it
doesn’t	contain,	it	first	adds	a	value	for	it	using	a	zero-argument	function	you	provided
when	you	created	it.	In	order	to	use	defaultdicts,	you	have	to	import	them	from
collections:

from	collections	import	defaultdict

word_counts	=	defaultdict(int)										#	int()	produces	0

for	word	in	document:

				word_counts[word]	+=	1

They	can	also	be	useful	with	list	or	dict	or	even	your	own	functions:

dd_list	=	defaultdict(list)													#	list()	produces	an	empty	list

dd_list[2].append(1)																				#	now	dd_list	contains	{2:	[1]}

dd_dict	=	defaultdict(dict)													#	dict()	produces	an	empty	dict

dd_dict["Joel"]["City"]	=	"Seattle"					#	{	"Joel"	:	{	"City"	:	Seattle"}}

dd_pair	=	defaultdict(lambda:	[0,	0])

dd_pair[2][1]	=	1																							#	now	dd_pair	contains	{2:	[0,1]}

These	will	be	useful	when	we’re	using	dictionaries	to	“collect”	results	by	some	key	and
don’t	want	to	have	to	check	every	time	to	see	if	the	key	exists	yet.

Counter

A	Counter	turns	a	sequence	of	values	into	a	defaultdict(int)-like	object	mapping	keys
to	counts.	We	will	primarily	use	it	to	create	histograms:

from	collections	import	Counter

c	=	Counter([0,	1,	2,	0])										#	c	is	(basically)	{	0	:	2,	1	:	1,	2	:	1	}

This	gives	us	a	very	simple	way	to	solve	our	word_counts	problem:

word_counts	=	Counter(document)

A	Counter	instance	has	a	most_common	method	that	is	frequently	useful:

#	print	the	10	most	common	words	and	their	counts

for	word,	count	in	word_counts.most_common(10):

				print	word,	count

Sets
Another	data	structure	is	set,	which	represents	a	collection	of	distinct	elements:

s	=	set()

s.add(1)							#	s	is	now	{	1	}

s.add(2)							#	s	is	now	{	1,	2	}

s.add(2)							#	s	is	still	{	1,	2	}

x	=	len(s)					#	equals	2

y	=	2	in	s					#	equals	True

z	=	3	in	s					#	equals	False

We’ll	use	sets	for	two	main	reasons.	The	first	is	that	in	is	a	very	fast	operation	on	sets.	If
we	have	a	large	collection	of	items	that	we	want	to	use	for	a	membership	test,	a	set	is	more
appropriate	than	a	list:

stopwords_list	=	["a","an","at"]	+	hundreds_of_other_words	+	["yet",	"you"]

"zip"	in	stopwords_list					#	False,	but	have	to	check	every	element

stopwords_set	=	set(stopwords_list)

"zip"	in	stopwords_set						#	very	fast	to	check

The	second	reason	is	to	find	the	distinct	items	in	a	collection:

item_list	=	[1,	2,	3,	1,	2,	3]

num_items	=	len(item_list)																#	6

item_set	=	set(item_list)																	#	{1,	2,	3}

num_distinct_items	=	len(item_set)								#	3

distinct_item_list	=	list(item_set)							#	[1,	2,	3]

We’ll	use	sets	much	less	frequently	than	dicts	and	lists.

Control	Flow
As	in	most	programming	languages,	you	can	perform	an	action	conditionally	using	if:

if	1	>	2:

				message	=	"if	only	1	were	greater	than	two…"

elif	1	>	3:

				message	=	"elif	stands	for	'else	if'"

else:

				message	=	"when	all	else	fails	use	else	(if	you	want	to)"

You	can	also	write	a	ternary	if-then-else	on	one	line,	which	we	will	do	occasionally:

parity	=	"even"	if	x	%	2	==	0	else	"odd"

Python	has	a	while	loop:

x	=	0

while	x	<	10:

				print	x,	"is	less	than	10"

				x	+=	1

although	more	often	we’ll	use	for	and	in:

for	x	in	range(10):

				print	x,	"is	less	than	10"

If	you	need	more-complex	logic,	you	can	use	continue	and	break:

for	x	in	range(10):

				if	x	==	3:

								continue		#	go	immediately	to	the	next	iteration

				if	x	==	5:

								break					#	quit	the	loop	entirely

				print	x

This	will	print	0,	1,	2,	and	4.

Truthiness
Booleans	in	Python	work	as	in	most	other	languages,	except	that	they’re	capitalized:

one_is_less_than_two	=	1	<	2										#	equals	True

true_equals_false	=	True	==	False					#	equals	False

Python	uses	the	value	None	to	indicate	a	nonexistent	value.	It	is	similar	to	other	languages’
null:

x	=	None

print	x	==	None				#	prints	True,	but	is	not	Pythonic

print	x	is	None				#	prints	True,	and	is	Pythonic

Python	lets	you	use	any	value	where	it	expects	a	Boolean.	The	following	are	all	“Falsy”:

False

None

[]	(an	empty	list)

{}	(an	empty	dict)

""

set()

0

0.0

Pretty	much	anything	else	gets	treated	as	True.	This	allows	you	to	easily	use	if	statements
to	test	for	empty	lists	or	empty	strings	or	empty	dictionaries	or	so	on.	It	also	sometimes
causes	tricky	bugs	if	you’re	not	expecting	this	behavior:

s	=	some_function_that_returns_a_string()

if	s:

				first_char	=	s[0]

else:

				first_char	=	""

A	simpler	way	of	doing	the	same	is:

first_char	=	s	and	s[0]

since	and	returns	its	second	value	when	the	first	is	“truthy,”	the	first	value	when	it’s	not.
Similarly,	if	x	is	either	a	number	or	possibly	None:

safe_x	=	x	or	0

is	definitely	a	number.

Python	has	an	all	function,	which	takes	a	list	and	returns	True	precisely	when	every
element	is	truthy,	and	an	any	function,	which	returns	True	when	at	least	one	element	is
truthy:

all([True,	1,	{	3	}])			#	True

all([True,	1,	{}])						#	False,	{}	is	falsy

any([True,	1,	{}])						#	True,	True	is	truthy

all([])																	#	True,	no	falsy	elements	in	the	list

any([])																	#	False,	no	truthy	elements	in	the	list

The	Not-So-Basics
Here	we’ll	look	at	some	more-advanced	Python	features	that	we’ll	find	useful	for	working
with	data.

Sorting
Every	Python	list	has	a	sort	method	that	sorts	it	in	place.	If	you	don’t	want	to	mess	up
your	list,	you	can	use	the	sorted	function,	which	returns	a	new	list:

x	=	[4,1,2,3]

y	=	sorted(x)					#	is	[1,2,3,4],	x	is	unchanged

x.sort()										#	now	x	is	[1,2,3,4]

By	default,	sort	(and	sorted)	sort	a	list	from	smallest	to	largest	based	on	naively
comparing	the	elements	to	one	another.

If	you	want	elements	sorted	from	largest	to	smallest,	you	can	specify	a	reverse=True
parameter.	And	instead	of	comparing	the	elements	themselves,	you	can	compare	the
results	of	a	function	that	you	specify	with	key:

#	sort	the	list	by	absolute	value	from	largest	to	smallest

x	=	sorted([-4,1,-2,3],	key=abs,	reverse=True)		#	is	[-4,3,-2,1]

#	sort	the	words	and	counts	from	highest	count	to	lowest

wc	=	sorted(word_counts.items(),

												key=lambda	(word,	count):	count,

												reverse=True)

List	Comprehensions
Frequently,	you’ll	want	to	transform	a	list	into	another	list,	by	choosing	only	certain
elements,	or	by	transforming	elements,	or	both.	The	Pythonic	way	of	doing	this	is	list
comprehensions:

even_numbers	=	[x	for	x	in	range(5)	if	x	%	2	==	0]		#	[0,	2,	4]

squares						=	[x	*	x	for	x	in	range(5)]												#	[0,	1,	4,	9,	16]

even_squares	=	[x	*	x	for	x	in	even_numbers]								#	[0,	4,	16]

You	can	similarly	turn	lists	into	dictionaries	or	sets:

square_dict	=	{	x	:	x	*	x	for	x	in	range(5)	}		#	{	0:0,	1:1,	2:4,	3:9,	4:16	}

square_set		=	{	x	*	x	for	x	in	[1,	-1]	}							#	{	1	}

If	you	don’t	need	the	value	from	the	list,	it’s	conventional	to	use	an	underscore	as	the
variable:

zeroes	=	[0	for	_	in	even_numbers]						#	has	the	same	length	as	even_numbers

A	list	comprehension	can	include	multiple	fors:

pairs	=	[(x,	y)

									for	x	in	range(10)

									for	y	in	range(10)]			#	100	pairs	(0,0)	(0,1)	...	(9,8),	(9,9)

and	later	fors	can	use	the	results	of	earlier	ones:

increasing_pairs	=	[(x,	y)																							#	only	pairs	with	x	<	y,

																				for	x	in	range(10)											#	range(lo,	hi)	equals

																				for	y	in	range(x	+	1,	10)]			#	[lo,	lo	+	1,	...,	hi	-	1]

We	will	use	list	comprehensions	a	lot.

Generators	and	Iterators
A	problem	with	lists	is	that	they	can	easily	grow	very	big.	range(1000000)	creates	an
actual	list	of	1	million	elements.	If	you	only	need	to	deal	with	them	one	at	a	time,	this	can
be	a	huge	source	of	inefficiency	(or	of	running	out	of	memory).	If	you	potentially	only
need	the	first	few	values,	then	calculating	them	all	is	a	waste.

A	generator	is	something	that	you	can	iterate	over	(for	us,	usually	using	for)	but	whose
values	are	produced	only	as	needed	(lazily).

One	way	to	create	generators	is	with	functions	and	the	yield	operator:

def	lazy_range(n):

				"""a	lazy	version	of	range"""

				i	=	0

				while	i	<	n:

								yield	i

								i	+=	1

The	following	loop	will	consume	the	yielded	values	one	at	a	time	until	none	are	left:

for	i	in	lazy_range(10):

				do_something_with(i)

(Python	actually	comes	with	a	lazy_range	function	called	xrange,	and	in	Python	3,	range
itself	is	lazy.)	This	means	you	could	even	create	an	infinite	sequence:

def	natural_numbers():

				"""returns	1,	2,	3,	..."""

				n	=	1

				while	True:

								yield	n

								n	+=	1

although	you	probably	shouldn’t	iterate	over	it	without	using	some	kind	of	break	logic.

TIP
The	flip	side	of	laziness	is	that	you	can	only	iterate	through	a	generator	once.	If	you	need	to	iterate	through
something	multiple	times,	you’ll	need	to	either	recreate	the	generator	each	time	or	use	a	list.

A	second	way	to	create	generators	is	by	using	for	comprehensions	wrapped	in
parentheses:

lazy_evens_below_20	=	(i	for	i	in	lazy_range(20)	if	i	%	2	==	0)

Recall	also	that	every	dict	has	an	items()	method	that	returns	a	list	of	its	key-value	pairs.
More	frequently	we’ll	use	the	iteritems()	method,	which	lazily	yields	the	key-value
pairs	one	at	a	time	as	we	iterate	over	it.

Randomness
As	we	learn	data	science,	we	will	frequently	need	to	generate	random	numbers,	which	we
can	do	with	the	random	module:

import	random

four_uniform_randoms	=	[random.random()	for	_	in	range(4)]

#		[0.8444218515250481,						#	random.random()	produces	numbers

#			0.7579544029403025,						#	uniformly	between	0	and	1

#			0.420571580830845,							#	it's	the	random	function	we'll	use

#			0.25891675029296335]					#	most	often

The	random	module	actually	produces	pseudorandom	(that	is,	deterministic)	numbers
based	on	an	internal	state	that	you	can	set	with	random.seed	if	you	want	to	get
reproducible	results:

random.seed(10)									#	set	the	seed	to	10

print	random.random()			#	0.57140259469

random.seed(10)									#	reset	the	seed	to	10

print	random.random()			#	0.57140259469	again

We’ll	sometimes	use	random.randrange,	which	takes	either	1	or	2	arguments	and	returns
an	element	chosen	randomly	from	the	corresponding	range():

random.randrange(10)				#	choose	randomly	from	range(10)	=	[0,	1,	...,	9]

random.randrange(3,	6)		#	choose	randomly	from	range(3,	6)	=	[3,	4,	5]

There	are	a	few	more	methods	that	we’ll	sometimes	find	convenient.	random.shuffle
randomly	reorders	the	elements	of	a	list:

up_to_ten	=	range(10)

random.shuffle(up_to_ten)

print	up_to_ten

#	[2,	5,	1,	9,	7,	3,	8,	6,	4,	0]			(your	results	will	probably	be	different)

If	you	need	to	randomly	pick	one	element	from	a	list	you	can	use	random.choice:

my_best_friend	=	random.choice(["Alice",	"Bob",	"Charlie"])					#	"Bob"	for	me

And	if	you	need	to	randomly	choose	a	sample	of	elements	without	replacement	(i.e.,	with
no	duplicates),	you	can	use	random.sample:

lottery_numbers	=	range(60)

winning_numbers	=	random.sample(lottery_numbers,	6)		#	[16,	36,	10,	6,	25,	9]

To	choose	a	sample	of	elements	with	replacement	(i.e.,	allowing	duplicates),	you	can	just
make	multiple	calls	to	random.choice:

four_with_replacement	=	[random.choice(range(10))

																									for	_	in	range(4)]

#	[9,	4,	4,	2]

Regular	Expressions
Regular	expressions	provide	a	way	of	searching	text.	They	are	incredibly	useful	but	also
fairly	complicated,	so	much	so	that	there	are	entire	books	written	about	them.	We	will
explain	their	details	the	few	times	we	encounter	them;	here	are	a	few	examples	of	how	to
use	them	in	Python:

import	re

print	all([#	all	of	these	are	true,	because

				not	re.match("a",	"cat"),														#	*	'cat'	doesn't	start	with	'a'

				re.search("a",	"cat"),																	#	*	'cat'	has	an	'a'	in	it

				not	re.search("c",	"dog"),													#	*	'dog'	doesn't	have	a	'c'	in	it

				3	==	len(re.split("[ab]",	"carbs")),			#	*	split	on	a	or	b	to	['c','r','s']

				"R-D-"	==	re.sub("[0-9]",	"-",	"R2D2")	#	*	replace	digits	with	dashes

])		#	prints	True

Object-Oriented	Programming
Like	many	languages,	Python	allows	you	to	define	classes	that	encapsulate	data	and	the
functions	that	operate	on	them.	We’ll	use	them	sometimes	to	make	our	code	cleaner	and
simpler.	It’s	probably	simplest	to	explain	them	by	constructing	a	heavily	annotated
example.

Imagine	we	didn’t	have	the	built-in	Python	set.	Then	we	might	want	to	create	our	own
Set	class.

What	behavior	should	our	class	have?	Given	an	instance	of	Set,	we’ll	need	to	be	able	to
add	items	to	it,	remove	items	from	it,	and	check	whether	it	contains	a	certain	value.	We’ll
create	all	of	these	as	member	functions,	which	means	we’ll	access	them	with	a	dot	after	a
Set	object:

#	by	convention,	we	give	classes	PascalCase	names

class	Set:

				#	these	are	the	member	functions

				#	every	one	takes	a	first	parameter	"self"	(another	convention)

				#	that	refers	to	the	particular	Set	object	being	used

				def	__init__(self,	values=None):

								"""This	is	the	constructor.

								It	gets	called	when	you	create	a	new	Set.

								You	would	use	it	like

								s1	=	Set()										#	empty	set

								s2	=	Set([1,2,2,3])	#	initialize	with	values"""

								self.dict	=	{}	#	each	instance	of	Set	has	its	own	dict	property

																							#	which	is	what	we'll	use	to	track	memberships

								if	values	is	not	None:

												for	value	in	values:

																self.add(value)

				def	__repr__(self):

								"""this	is	the	string	representation	of	a	Set	object

								if	you	type	it	at	the	Python	prompt	or	pass	it	to	str()"""

								return	"Set:	"	+	str(self.dict.keys())

				#	we'll	represent	membership	by	being	a	key	in	self.dict	with	value	True

				def	add(self,	value):

								self.dict[value]	=	True

				#	value	is	in	the	Set	if	it's	a	key	in	the	dictionary

				def	contains(self,	value):

								return	value	in	self.dict

				def	remove(self,	value):

								del	self.dict[value]

Which	we	could	then	use	like:

s	=	Set([1,2,3])

s.add(4)

print	s.contains(4)					#	True

s.remove(3)

print	s.contains(3)					#	False

Functional	Tools
When	passing	functions	around,	sometimes	we’ll	want	to	partially	apply	(or	curry)
functions	to	create	new	functions.	As	a	simple	example,	imagine	that	we	have	a	function
of	two	variables:

def	exp(base,	power):

				return	base	**	power

and	we	want	to	use	it	to	create	a	function	of	one	variable	two_to_the	whose	input	is	a
power	and	whose	output	is	the	result	of	exp(2,	power).

We	can,	of	course,	do	this	with	def,	but	this	can	sometimes	get	unwieldy:

def	two_to_the(power):

				return	exp(2,	power)

A	different	approach	is	to	use	functools.partial:

from	functools	import	partial

two_to_the	=	partial(exp,	2)					#	is	now	a	function	of	one	variable

print	two_to_the(3)														#	8

You	can	also	use	partial	to	fill	in	later	arguments	if	you	specify	their	names:

square_of	=	partial(exp,	power=2)

print	square_of(3)																		#	9

It	starts	to	get	messy	if	you	curry	arguments	in	the	middle	of	the	function,	so	we’ll	try	to
avoid	doing	that.

We	will	also	occasionally	use	map,	reduce,	and	filter,	which	provide	functional
alternatives	to	list	comprehensions:

def	double(x):

				return	2	*	x

xs	=	[1,	2,	3,	4]

twice_xs	=	[double(x)	for	x	in	xs]								#	[2,	4,	6,	8]

twice_xs	=	map(double,	xs)																#	same	as	above

list_doubler	=	partial(map,	double)							#	*function*	that	doubles	a	list

twice_xs	=	list_doubler(xs)															#	again	[2,	4,	6,	8]

You	can	use	map	with	multiple-argument	functions	if	you	provide	multiple	lists:

def	multiply(x,	y):	return	x	*	y

products	=	map(multiply,	[1,	2],	[4,	5])	#	[1	*	4,	2	*	5]	=	[4,	10]

Similarly,	filter	does	the	work	of	a	list-comprehension	if:

def	is_even(x):

				"""True	if	x	is	even,	False	if	x	is	odd"""

				return	x	%	2	==	0

x_evens	=	[x	for	x	in	xs	if	is_even(x)]				#	[2,	4]

x_evens	=	filter(is_even,	xs)														#	same	as	above

list_evener	=	partial(filter,	is_even)					#	*function*	that	filters	a	list

x_evens	=	list_evener(xs)																		#	again	[2,	4]

And	reduce	combines	the	first	two	elements	of	a	list,	then	that	result	with	the	third,	that
result	with	the	fourth,	and	so	on,	producing	a	single	result:

x_product	=	reduce(multiply,	xs)											#	=	1	*	2	*	3	*	4	=	24

list_product	=	partial(reduce,	multiply)			#	*function*	that	reduces	a	list

x_product	=	list_product(xs)															#	again	=	24

enumerate
Not	infrequently,	you’ll	want	to	iterate	over	a	list	and	use	both	its	elements	and	their
indexes:

#	not	Pythonic

for	i	in	range(len(documents)):

				document	=	documents[i]

				do_something(i,	document)

#	also	not	Pythonic

i	=	0

for	document	in	documents:

				do_something(i,	document)

				i	+=	1

The	Pythonic	solution	is	enumerate,	which	produces	tuples	(index,	element):

for	i,	document	in	enumerate(documents):

				do_something(i,	document)

Similarly,	if	we	just	want	the	indexes:

for	i	in	range(len(documents)):	do_something(i)					#	not	Pythonic

for	i,	_	in	enumerate(documents):	do_something(i)			#	Pythonic

We’ll	use	this	a	lot.

zip	and	Argument	Unpacking
Often	we	will	need	to	zip	two	or	more	lists	together.	zip	transforms	multiple	lists	into	a
single	list	of	tuples	of	corresponding	elements:

list1	=	['a',	'b',	'c']

list2	=	[1,	2,	3]

zip(list1,	list2)								#	is	[('a',	1),	('b',	2),	('c',	3)]

If	the	lists	are	different	lengths,	zip	stops	as	soon	as	the	first	list	ends.

You	can	also	“unzip”	a	list	using	a	strange	trick:

pairs	=	[('a',	1),	('b',	2),	('c',	3)]

letters,	numbers	=	zip(*pairs)

The	asterisk	performs	argument	unpacking,	which	uses	the	elements	of	pairs	as
individual	arguments	to	zip.	It	ends	up	the	same	as	if	you’d	called:

zip(('a',	1),	('b',	2),	('c',	3))

which	returns	[('a','b','c'),	('1','2','3')].

You	can	use	argument	unpacking	with	any	function:

def	add(a,	b):	return	a	+	b

add(1,	2)						#	returns	3

add([1,	2])				#	TypeError!

add(*[1,	2])			#	returns	3

It	is	rare	that	we’ll	find	this	useful,	but	when	we	do	it’s	a	neat	trick.

args	and	kwargs
Let’s	say	we	want	to	create	a	higher-order	function	that	takes	as	input	some	function	f	and
returns	a	new	function	that	for	any	input	returns	twice	the	value	of	f:

def	doubler(f):

				def	g(x):

								return	2	*	f(x)

				return	g

This	works	in	some	cases:

def	f1(x):

				return	x	+	1

g	=	doubler(f1)

print	g(3)										#	8	(==	(3	+	1)	*	2)

print	g(-1)									#	0	(==	(-1	+	1)	*	2)

However,	it	breaks	down	with	functions	that	take	more	than	a	single	argument:

def	f2(x,	y):

				return	x	+	y

g	=	doubler(f2)

print	g(1,	2)				#	TypeError:	g()	takes	exactly	1	argument	(2	given)

What	we	need	is	a	way	to	specify	a	function	that	takes	arbitrary	arguments.	We	can	do	this
with	argument	unpacking	and	a	little	bit	of	magic:

def	magic(*args,	**kwargs):

				print	"unnamed	args:",	args

				print	"keyword	args:",	kwargs

magic(1,	2,	key="word",	key2="word2")

#	prints

#		unnamed	args:	(1,	2)

#		keyword	args:	{'key2':	'word2',	'key':	'word'}

That	is,	when	we	define	a	function	like	this,	args	is	a	tuple	of	its	unnamed	arguments	and
kwargs	is	a	dict	of	its	named	arguments.	It	works	the	other	way	too,	if	you	want	to	use	a
list	(or	tuple)	and	dict	to	supply	arguments	to	a	function:

def	other_way_magic(x,	y,	z):

				return	x	+	y	+	z

x_y_list	=	[1,	2]

z_dict	=	{	"z"	:	3	}

print	other_way_magic(*x_y_list,	**z_dict)			#	6

You	could	do	all	sorts	of	strange	tricks	with	this;	we	will	only	use	it	to	produce	higher-
order	functions	whose	inputs	can	accept	arbitrary	arguments:

def	doubler_correct(f):

				"""works	no	matter	what	kind	of	inputs	f	expects"""

				def	g(*args,	**kwargs):

								"""whatever	arguments	g	is	supplied,	pass	them	through	to	f"""

								return	2	*	f(*args,	**kwargs)

				return	g

g	=	doubler_correct(f2)

print	g(1,	2)	#	6

Welcome	to	DataSciencester!
This	concludes	new-employee	orientation.	Oh,	and	also,	try	not	to	embezzle	anything.

For	Further	Exploration
There	is	no	shortage	of	Python	tutorials	in	the	world.	The	official	one	is	not	a	bad	place
to	start.

The	official	IPython	tutorial	is	not	quite	as	good.	You	might	be	better	off	with	their
videos	and	presentations.	Alternatively,	Wes	McKinney’s	Python	for	Data	Analysis
(O’Reilly)	has	a	really	good	IPython	chapter.

https://docs.python.org/2/tutorial/
http://ipython.org/ipython-doc/2/interactive/tutorial.html
http://ipython.org/videos.html
http://shop.oreilly.com/product/0636920023784.do

Chapter	3.	Visualizing	Data

I	believe	that	visualization	is	one	of	the	most	powerful	means	of	achieving	personal
goals.

Harvey	Mackay

A	fundamental	part	of	the	data	scientist’s	toolkit	is	data	visualization.	Although	it	is	very
easy	to	create	visualizations,	it’s	much	harder	to	produce	good	ones.

There	are	two	primary	uses	for	data	visualization:

To	explore	data

To	communicate	data

In	this	chapter,	we	will	concentrate	on	building	the	skills	that	you’ll	need	to	start	exploring
your	own	data	and	to	produce	the	visualizations	we’ll	be	using	throughout	the	rest	of	the
book.	Like	most	of	our	chapter	topics,	data	visualization	is	a	rich	field	of	study	that
deserves	its	own	book.	Nonetheless,	we’ll	try	to	give	you	a	sense	of	what	makes	for	a
good	visualization	and	what	doesn’t.

matplotlib
A	wide	variety	of	tools	exists	for	visualizing	data.	We	will	be	using	the	matplotlib
library,	which	is	widely	used	(although	sort	of	showing	its	age).	If	you	are	interested	in
producing	elaborate	interactive	visualizations	for	the	Web,	it	is	likely	not	the	right	choice,
but	for	simple	bar	charts,	line	charts,	and	scatterplots,	it	works	pretty	well.

In	particular,	we	will	be	using	the	matplotlib.pyplot	module.	In	its	simplest	use,	pyplot
maintains	an	internal	state	in	which	you	build	up	a	visualization	step	by	step.	Once	you’re
done,	you	can	save	it	(with	savefig())	or	display	it	(with	show()).

For	example,	making	simple	plots	(like	Figure	3-1)	is	pretty	simple:

from	matplotlib	import	pyplot	as	plt

years	=	[1950,	1960,	1970,	1980,	1990,	2000,	2010]

gdp	=	[300.2,	543.3,	1075.9,	2862.5,	5979.6,	10289.7,	14958.3]

#	create	a	line	chart,	years	on	x-axis,	gdp	on	y-axis

plt.plot(years,	gdp,	color='green',	marker='o',	linestyle='solid')

#	add	a	title

plt.title("Nominal	GDP")

#	add	a	label	to	the	y-axis

plt.ylabel("Billions	of	$")

plt.show()

Figure	3-1.	A	simple	line	chart

http://matplotlib.org/

Making	plots	that	look	publication-quality	good	is	more	complicated	and	beyond	the
scope	of	this	chapter.	There	are	many	ways	you	can	customize	your	charts	with	(for
example)	axis	labels,	line	styles,	and	point	markers.	Rather	than	attempt	a	comprehensive
treatment	of	these	options,	we’ll	just	use	(and	call	attention	to)	some	of	them	in	our
examples.

NOTE
Although	we	won’t	be	using	much	of	this	functionality,	matplotlib	is	capable	of	producing	complicated
plots	within	plots,	sophisticated	formatting,	and	interactive	visualizations.	Check	out	its	documentation	if
you	want	to	go	deeper	than	we	do	in	this	book.

Bar	Charts
A	bar	chart	is	a	good	choice	when	you	want	to	show	how	some	quantity	varies	among
some	discrete	set	of	items.	For	instance,	Figure	3-2	shows	how	many	Academy	Awards
were	won	by	each	of	a	variety	of	movies:

movies	=	["Annie	Hall",	"Ben-Hur",	"Casablanca",	"Gandhi",	"West	Side	Story"]

num_oscars	=	[5,	11,	3,	8,	10]

#	bars	are	by	default	width	0.8,	so	we'll	add	0.1	to	the	left	coordinates

#	so	that	each	bar	is	centered

xs	=	[i	+	0.1	for	i,	_	in	enumerate(movies)]

#	plot	bars	with	left	x-coordinates	[xs],	heights	[num_oscars]

plt.bar(xs,	num_oscars)

plt.ylabel("#	of	Academy	Awards")

plt.title("My	Favorite	Movies")

#	label	x-axis	with	movie	names	at	bar	centers

plt.xticks([i	+	0.5	for	i,	_	in	enumerate(movies)],	movies)

plt.show()

Figure	3-2.	A	simple	bar	chart

A	bar	chart	can	also	be	a	good	choice	for	plotting	histograms	of	bucketed	numeric	values,
in	order	to	visually	explore	how	the	values	are	distributed,	as	in	Figure	3-3:

grades	=	[83,95,91,87,70,0,85,82,100,67,73,77,0]

decile	=	lambda	grade:	grade	//	10	*	10

histogram	=	Counter(decile(grade)	for	grade	in	grades)

plt.bar([x	-	4	for	x	in	histogram.keys()],	#	shift	each	bar	to	the	left	by	4

								histogram.values(),																#	give	each	bar	its	correct	height

								8)																																	#	give	each	bar	a	width	of	8

plt.axis([-5,	105,	0,	5])																		#	x-axis	from	-5	to	105,

																																											#	y-axis	from	0	to	5

plt.xticks([10	*	i	for	i	in	range(11)])				#	x-axis	labels	at	0,	10,	...,	100

plt.xlabel("Decile")

plt.ylabel("#	of	Students")

plt.title("Distribution	of	Exam	1	Grades")

plt.show()

Figure	3-3.	Using	a	bar	chart	for	a	histogram

The	third	argument	to	plt.bar	specifies	the	bar	width.	Here	we	chose	a	width	of	8	(which
leaves	a	small	gap	between	bars,	since	our	buckets	have	width	10).	And	we	shifted	the	bar
left	by	4,	so	that	(for	example)	the	“80”	bar	has	its	left	and	right	sides	at	76	and	84,	and
(hence)	its	center	at	80.

The	call	to	plt.axis	indicates	that	we	want	the	x-axis	to	range	from	-5	to	105	(so	that	the
“0”	and	“100”	bars	are	fully	shown),	and	that	the	y-axis	should	range	from	0	to	5.	And	the
call	to	plt.xticks	puts	x-axis	labels	at	0,	10,	20,	…,	100.

Be	judicious	when	using	plt.axis().	When	creating	bar	charts	it	is	considered	especially
bad	form	for	your	y-axis	not	to	start	at	0,	since	this	is	an	easy	way	to	mislead	people
(Figure	3-4):

mentions	=	[500,	505]

years	=	[2013,	2014]

plt.bar([2012.6,	2013.6],	mentions,	0.8)

plt.xticks(years)

plt.ylabel("#	of	times	I	heard	someone	say	'data	science'")

#	if	you	don't	do	this,	matplotlib	will	label	the	x-axis	0,	1

#	and	then	add	a	+2.013e3	off	in	the	corner	(bad	matplotlib!)

plt.ticklabel_format(useOffset=False)

#	misleading	y-axis	only	shows	the	part	above	500

plt.axis([2012.5,2014.5,499,506])

plt.title("Look	at	the	'Huge'	Increase!")

plt.show()

Figure	3-4.	A	chart	with	a	misleading	y-axis

In	Figure	3-5,	we	use	more-sensible	axes,	and	it	looks	far	less	impressive:

plt.axis([2012.5,2014.5,0,550])

plt.title("Not	So	Huge	Anymore")

plt.show()

Figure	3-5.	The	same	chart	with	a	nonmisleading	y-axis

Line	Charts
As	we	saw	already,	we	can	make	line	charts	using	plt.plot().	These	are	a	good	choice
for	showing	trends,	as	illustrated	in	Figure	3-6:

variance					=	[1,	2,	4,	8,	16,	32,	64,	128,	256]

bias_squared	=	[256,	128,	64,	32,	16,	8,	4,	2,	1]

total_error		=	[x	+	y	for	x,	y	in	zip(variance,	bias_squared)]

xs	=	[i	for	i,	_	in	enumerate(variance)]

#	we	can	make	multiple	calls	to	plt.plot

#	to	show	multiple	series	on	the	same	chart

plt.plot(xs,	variance,					'g-',		label='variance')				#	green	solid	line

plt.plot(xs,	bias_squared,	'r-.',	label='bias^2')						#	red	dot-dashed	line

plt.plot(xs,	total_error,		'b:',		label='total	error')	#	blue	dotted	line

#	because	we've	assigned	labels	to	each	series

#	we	can	get	a	legend	for	free

#	loc=9	means	"top	center"

plt.legend(loc=9)

plt.xlabel("model	complexity")

plt.title("The	Bias-Variance	Tradeoff")

plt.show()

Figure	3-6.	Several	line	charts	with	a	legend

Scatterplots
A	scatterplot	is	the	right	choice	for	visualizing	the	relationship	between	two	paired	sets	of
data.	For	example,	Figure	3-7	illustrates	the	relationship	between	the	number	of	friends
your	users	have	and	the	number	of	minutes	they	spend	on	the	site	every	day:

friends	=	[70,		65,		72,		63,		71,		64,		60,		64,		67]

minutes	=	[175,	170,	205,	120,	220,	130,	105,	145,	190]

labels	=		['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h',	'i']

plt.scatter(friends,	minutes)

#	label	each	point

for	label,	friend_count,	minute_count	in	zip(labels,	friends,	minutes):

				plt.annotate(label,

								xy=(friend_count,	minute_count),	#	put	the	label	with	its	point

								xytext=(5,	-5),																		#	but	slightly	offset

								textcoords='offset	points')

plt.title("Daily	Minutes	vs.	Number	of	Friends")

plt.xlabel("#	of	friends")

plt.ylabel("daily	minutes	spent	on	the	site")

plt.show()

Figure	3-7.	A	scatterplot	of	friends	and	time	on	the	site

If	you’re	scattering	comparable	variables,	you	might	get	a	misleading	picture	if	you	let
matplotlib	choose	the	scale,	as	in	Figure	3-8:

test_1_grades	=	[99,	90,	85,	97,	80]

test_2_grades	=	[100,	85,	60,	90,	70]

plt.scatter(test_1_grades,	test_2_grades)

plt.title("Axes	Aren't	Comparable")

plt.xlabel("test	1	grade")

plt.ylabel("test	2	grade")

plt.show()

Figure	3-8.	A	scatterplot	with	uncomparable	axes

If	we	include	a	call	to	plt.axis("equal"),	the	plot	(Figure	3-9)	more	accurately	shows
that	most	of	the	variation	occurs	on	test	2.

That’s	enough	to	get	you	started	doing	visualization.	We’ll	learn	much	more	about
visualization	throughout	the	book.

Figure	3-9.	The	same	scatterplot	with	equal	axes

For	Further	Exploration
seaborn	is	built	on	top	of	matplotlib	and	allows	you	to	easily	produce	prettier	(and
more	complex)	visualizations.

D3.js	is	a	JavaScript	library	for	producing	sophisticated	interactive	visualizations	for
the	web.	Although	it	is	not	in	Python,	it	is	both	trendy	and	widely	used,	and	it	is	well
worth	your	while	to	be	familiar	with	it.

Bokeh	is	a	newer	library	that	brings	D3-style	visualizations	into	Python.

ggplot	is	a	Python	port	of	the	popular	R	library	ggplot2,	which	is	widely	used	for
creating	“publication	quality”	charts	and	graphics.	It’s	probably	most	interesting	if
you’re	already	an	avid	ggplot2	user,	and	possibly	a	little	opaque	if	you’re	not.

http://stanford.io/1ycOjdI
http://d3js.org
http://bokeh.pydata.org
http://bit.ly/1ycOk1u

Chapter	4.	Linear	Algebra

Is	there	anything	more	useless	or	less	useful	than	Algebra?

Billy	Connolly

Linear	algebra	is	the	branch	of	mathematics	that	deals	with	vector	spaces.	Although	I
can’t	hope	to	teach	you	linear	algebra	in	a	brief	chapter,	it	underpins	a	large	number	of
data	science	concepts	and	techniques,	which	means	I	owe	it	to	you	to	at	least	try.	What	we
learn	in	this	chapter	we’ll	use	heavily	throughout	the	rest	of	the	book.

Vectors
Abstractly,	vectors	are	objects	that	can	be	added	together	(to	form	new	vectors)	and	that
can	be	multiplied	by	scalars	(i.e.,	numbers),	also	to	form	new	vectors.

Concretely	(for	us),	vectors	are	points	in	some	finite-dimensional	space.	Although	you
might	not	think	of	your	data	as	vectors,	they	are	a	good	way	to	represent	numeric	data.

For	example,	if	you	have	the	heights,	weights,	and	ages	of	a	large	number	of	people,	you
can	treat	your	data	as	three-dimensional	vectors	(height,	weight,	age).	If	you’re
teaching	a	class	with	four	exams,	you	can	treat	student	grades	as	four-dimensional	vectors
(exam1,	exam2,	exam3,	exam4).

The	simplest	from-scratch	approach	is	to	represent	vectors	as	lists	of	numbers.	A	list	of
three	numbers	corresponds	to	a	vector	in	three-dimensional	space,	and	vice	versa:

height_weight_age	=	[70,		#	inches,

																					170,	#	pounds,

																					40]	#	years

grades	=	[95,			#	exam1

										80,			#	exam2

										75,			#	exam3

										62]		#	exam4

One	problem	with	this	approach	is	that	we	will	want	to	perform	arithmetic	on	vectors.
Because	Python	lists	aren’t	vectors	(and	hence	provide	no	facilities	for	vector	arithmetic),
we’ll	need	to	build	these	arithmetic	tools	ourselves.	So	let’s	start	with	that.

To	begin	with,	we’ll	frequently	need	to	add	two	vectors.	Vectors	add	componentwise.	This
means	that	if	two	vectors	v	and	w	are	the	same	length,	their	sum	is	just	the	vector	whose
first	element	is	v[0]	+	w[0],	whose	second	element	is	v[1]	+	w[1],	and	so	on.	(If	they’re
not	the	same	length,	then	we’re	not	allowed	to	add	them.)

For	example,	adding	the	vectors	[1,	2]	and	[2,	1]	results	in	[1	+	2,	2	+	1]	or	[3,	3],
as	shown	in	Figure	4-1.

Figure	4-1.	Adding	two	vectors

We	can	easily	implement	this	by	zip-ing	the	vectors	together	and	using	a	list
comprehension	to	add	the	corresponding	elements:

def	vector_add(v,	w):

				"""adds	corresponding	elements"""

				return	[v_i	+	w_i

												for	v_i,	w_i	in	zip(v,	w)]

Similarly,	to	subtract	two	vectors	we	just	subtract	corresponding	elements:

def	vector_subtract(v,	w):

				"""subtracts	corresponding	elements"""

				return	[v_i	-	w_i

												for	v_i,	w_i	in	zip(v,	w)]

We’ll	also	sometimes	want	to	componentwise	sum	a	list	of	vectors.	That	is,	create	a	new
vector	whose	first	element	is	the	sum	of	all	the	first	elements,	whose	second	element	is	the
sum	of	all	the	second	elements,	and	so	on.	The	easiest	way	to	do	this	is	by	adding	one
vector	at	a	time:

def	vector_sum(vectors):

				"""sums	all	corresponding	elements"""

				result	=	vectors[0]																									#	start	with	the	first	vector

				for	vector	in	vectors[1:]:																		#	then	loop	over	the	others

								result	=	vector_add(result,	vector)					#	and	add	them	to	the	result

				return	result

If	you	think	about	it,	we	are	just	reduce-ing	the	list	of	vectors	using	vector_add,	which
means	we	can	rewrite	this	more	briefly	using	higher-order	functions:

def	vector_sum(vectors):

				return	reduce(vector_add,	vectors)

or	even:

vector_sum	=	partial(reduce,	vector_add)

although	this	last	one	is	probably	more	clever	than	helpful.

We’ll	also	need	to	be	able	to	multiply	a	vector	by	a	scalar,	which	we	do	simply	by
multiplying	each	element	of	the	vector	by	that	number:

def	scalar_multiply(c,	v):

				"""c	is	a	number,	v	is	a	vector"""

				return	[c	*	v_i	for	v_i	in	v]

This	allows	us	to	compute	the	componentwise	means	of	a	list	of	(same-sized)	vectors:

def	vector_mean(vectors):

				"""compute	the	vector	whose	ith	element	is	the	mean	of	the

				ith	elements	of	the	input	vectors"""

				n	=	len(vectors)

				return	scalar_multiply(1/n,	vector_sum(vectors))

A	less	obvious	tool	is	the	dot	product.	The	dot	product	of	two	vectors	is	the	sum	of	their
componentwise	products:

def	dot(v,	w):

				"""v_1	*	w_1	+	...	+	v_n	*	w_n"""

				return	sum(v_i	*	w_i

															for	v_i,	w_i	in	zip(v,	w))

The	dot	product	measures	how	far	the	vector	v	extends	in	the	w	direction.	For	example,	if
w	=	[1,	0]	then	dot(v,	w)	is	just	the	first	component	of	v.	Another	way	of	saying	this	is
that	it’s	the	length	of	the	vector	you’d	get	if	you	projected	v	onto	w	(Figure	4-2).

Figure	4-2.	The	dot	product	as	vector	projection

Using	this,	it’s	easy	to	compute	a	vector’s	sum	of	squares:

def	sum_of_squares(v):

				"""v_1	*	v_1	+	...	+	v_n	*	v_n"""

				return	dot(v,	v)

Which	we	can	use	to	compute	its	magnitude	(or	length):

import	math

def	magnitude(v):

				return	math.sqrt(sum_of_squares(v))			#	math.sqrt	is	square	root	function

We	now	have	all	the	pieces	we	need	to	compute	the	distance	between	two	vectors,	defined
as:

def	squared_distance(v,	w):

				"""(v_1	-	w_1)	**	2	+	...	+	(v_n	-	w_n)	**	2"""

				return	sum_of_squares(vector_subtract(v,	w))

def	distance(v,	w):

			return	math.sqrt(squared_distance(v,	w))

Which	is	possibly	clearer	if	we	write	it	as	(the	equivalent):

def	distance(v,	w):

				return	magnitude(vector_subtract(v,	w))

That	should	be	plenty	to	get	us	started.	We’ll	be	using	these	functions	heavily	throughout
the	book.

NOTE
Using	lists	as	vectors	is	great	for	exposition	but	terrible	for	performance.

In	production	code,	you	would	want	to	use	the	NumPy	library,	which	includes	a	high-performance	array
class	with	all	sorts	of	arithmetic	operations	included.

Matrices
A	matrix	is	a	two-dimensional	collection	of	numbers.	We	will	represent	matrices	as	lists
of	lists,	with	each	inner	list	having	the	same	size	and	representing	a	row	of	the	matrix.	If
A	is	a	matrix,	then	A[i][j]	is	the	element	in	the	ith	row	and	the	jth	column.	Per
mathematical	convention,	we	will	typically	use	capital	letters	to	represent	matrices.	For
example:

A	=	[[1,	2,	3],		#	A	has	2	rows	and	3	columns

					[4,	5,	6]]

B	=	[[1,	2],					#	B	has	3	rows	and	2	columns

					[3,	4],

					[5,	6]]

NOTE
In	mathematics,	you	would	usually	name	the	first	row	of	the	matrix	“row	1”	and	the	first	column	“column
1.”	Because	we’re	representing	matrices	with	Python	lists,	which	are	zero-indexed,	we’ll	call	the	first	row
of	a	matrix	“row	0”	and	the	first	column	“column	0.”

Given	this	list-of-lists	representation,	the	matrix	A	has	len(A)	rows	and	len(A[0])
columns,	which	we	consider	its	shape:

def	shape(A):

				num_rows	=	len(A)

				num_cols	=	len(A[0])	if	A	else	0			#	number	of	elements	in	first	row

				return	num_rows,	num_cols

If	a	matrix	has	n	rows	and	k	columns,	we	will	refer	to	it	as	a	 	matrix.	We	can	(and
sometimes	will)	think	of	each	row	of	a	 	matrix	as	a	vector	of	length	k,	and	each
column	as	a	vector	of	length	n:

def	get_row(A,	i):

				return	A[i]													#	A[i]	is	already	the	ith	row

def	get_column(A,	j):

				return	[A_i[j]										#	jth	element	of	row	A_i

												for	A_i	in	A]			#	for	each	row	A_i

We’ll	also	want	to	be	able	to	create	a	matrix	given	its	shape	and	a	function	for	generating
its	elements.	We	can	do	this	using	a	nested	list	comprehension:

def	make_matrix(num_rows,	num_cols,	entry_fn):

				"""returns	a	num_rows	x	num_cols	matrix

				whose	(i,j)th	entry	is	entry_fn(i,	j)"""

				return	[[entry_fn(i,	j)													#	given	i,	create	a	list

													for	j	in	range(num_cols)]		#			[entry_fn(i,	0),	...]

												for	i	in	range(num_rows)]			#	create	one	list	for	each	i

Given	this	function,	you	could	make	a	5	×	5	identity	matrix	(with	1s	on	the	diagonal	and
0s	elsewhere)	with:

def	is_diagonal(i,	j):

				"""1's	on	the	'diagonal',	0's	everywhere	else"""

				return	1	if	i	==	j	else	0

identity_matrix	=	make_matrix(5,	5,	is_diagonal)

#	[[1,	0,	0,	0,	0],

#		[0,	1,	0,	0,	0],

#		[0,	0,	1,	0,	0],

#		[0,	0,	0,	1,	0],

#		[0,	0,	0,	0,	1]]

Matrices	will	be	important	to	us	for	several	reasons.

First,	we	can	use	a	matrix	to	represent	a	data	set	consisting	of	multiple	vectors,	simply	by
considering	each	vector	as	a	row	of	the	matrix.	For	example,	if	you	had	the	heights,
weights,	and	ages	of	1,000	people	you	could	put	them	in	a	 	matrix:

data	=	[[70,	170,	40],

								[65,	120,	26],

								[77,	250,	19],

								#

]

Second,	as	we’ll	see	later,	we	can	use	an	 	matrix	to	represent	a	linear	function	that
maps	k-dimensional	vectors	to	n-dimensional	vectors.	Several	of	our	techniques	and
concepts	will	involve	such	functions.

Third,	matrices	can	be	used	to	represent	binary	relationships.	In	Chapter	1,	we	represented
the	edges	of	a	network	as	a	collection	of	pairs	(i,	j).	An	alternative	representation	would
be	to	create	a	matrix	A	such	that	A[i][j]	is	1	if	nodes	i	and	j	are	connected	and	0
otherwise.

Recall	that	before	we	had:

friendships	=	[(0,	1),	(0,	2),	(1,	2),	(1,	3),	(2,	3),	(3,	4),

															(4,	5),	(5,	6),	(5,	7),	(6,	8),	(7,	8),	(8,	9)]

We	could	also	represent	this	as:

					#					user	0		1		2		3		4		5		6		7		8		9

					#

friendships	=	[[0,	1,	1,	0,	0,	0,	0,	0,	0,	0],	#	user	0

															[1,	0,	1,	1,	0,	0,	0,	0,	0,	0],	#	user	1

															[1,	1,	0,	1,	0,	0,	0,	0,	0,	0],	#	user	2

															[0,	1,	1,	0,	1,	0,	0,	0,	0,	0],	#	user	3

															[0,	0,	0,	1,	0,	1,	0,	0,	0,	0],	#	user	4

															[0,	0,	0,	0,	1,	0,	1,	1,	0,	0],	#	user	5

															[0,	0,	0,	0,	0,	1,	0,	0,	1,	0],	#	user	6

															[0,	0,	0,	0,	0,	1,	0,	0,	1,	0],	#	user	7

															[0,	0,	0,	0,	0,	0,	1,	1,	0,	1],	#	user	8

															[0,	0,	0,	0,	0,	0,	0,	0,	1,	0]]	#	user	9

If	there	are	very	few	connections,	this	is	a	much	more	inefficient	representation,	since	you
end	up	having	to	store	a	lot	of	zeroes.	However,	with	the	matrix	representation	it	is	much
quicker	to	check	whether	two	nodes	are	connected	—	you	just	have	to	do	a	matrix	lookup
instead	of	(potentially)	inspecting	every	edge:

friendships[0][2]	==	1			#	True,	0	and	2	are	friends

friendships[0][8]	==	1			#	False,	0	and	8	are	not	friends

Similarly,	to	find	the	connections	a	node	has,	you	only	need	to	inspect	the	column	(or	the
row)	corresponding	to	that	node:

friends_of_five	=	[i																																														#	only	need

																			for	i,	is_friend	in	enumerate(friendships[5])		#	to	look	at

																			if	is_friend]																																		#	one	row

Previously	we	added	a	list	of	connections	to	each	node	object	to	speed	up	this	process,	but
for	a	large,	evolving	graph	that	would	probably	be	too	expensive	and	difficult	to	maintain.

We’ll	revisit	matrices	throughout	the	book.

For	Further	Exploration
Linear	algebra	is	widely	used	by	data	scientists	(frequently	implicitly,	and	not
infrequently	by	people	who	don’t	understand	it).	It	wouldn’t	be	a	bad	idea	to	read	a
textbook.	You	can	find	several	freely	available	online:
Linear	Algebra,	from	UC	Davis

Linear	Algebra,	from	Saint	Michael’s	College

If	you	are	feeling	adventurous,	Linear	Algebra	Done	Wrong	is	a	more	advanced
introduction

All	of	the	machinery	we	built	here	you	get	for	free	if	you	use	NumPy.	(You	get	a	lot
more	too.)

http://bit.ly/1ycOq96
http://bit.ly/1ycOpSF
http://bit.ly/1ycOt4W
http://www.numpy.org

Chapter	5.	Statistics

Facts	are	stubborn,	but	statistics	are	more	pliable.

Mark	Twain

Statistics	refers	to	the	mathematics	and	techniques	with	which	we	understand	data.	It	is	a
rich,	enormous	field,	more	suited	to	a	shelf	(or	room)	in	a	library	rather	than	a	chapter	in	a
book,	and	so	our	discussion	will	necessarily	not	be	a	deep	one.	Instead,	I’ll	try	to	teach
you	just	enough	to	be	dangerous,	and	pique	your	interest	just	enough	that	you’ll	go	off	and
learn	more.

Describing	a	Single	Set	of	Data
Through	a	combination	of	word-of-mouth	and	luck,	DataSciencester	has	grown	to	dozens
of	members,	and	the	VP	of	Fundraising	asks	you	for	some	sort	of	description	of	how	many
friends	your	members	have	that	he	can	include	in	his	elevator	pitches.

Using	techniques	from	Chapter	1,	you	are	easily	able	to	produce	this	data.	But	now	you
are	faced	with	the	problem	of	how	to	describe	it.

One	obvious	description	of	any	data	set	is	simply	the	data	itself:

num_friends	=	[100,	49,	41,	40,	25,

															#	...	and	lots	more

]

For	a	small	enough	data	set	this	might	even	be	the	best	description.	But	for	a	larger	data
set,	this	is	unwieldy	and	probably	opaque.	(Imagine	staring	at	a	list	of	1	million	numbers.)
For	that	reason	we	use	statistics	to	distill	and	communicate	relevant	features	of	our	data.

As	a	first	approach	you	put	the	friend	counts	into	a	histogram	using	Counter	and
plt.bar()	(Figure	5-1):

friend_counts	=	Counter(num_friends)

xs	=	range(101)																									#	largest	value	is	100

ys	=	[friend_counts[x]	for	x	in	xs]					#	height	is	just	#	of	friends

plt.bar(xs,	ys)

plt.axis([0,	101,	0,	25])

plt.title("Histogram	of	Friend	Counts")

plt.xlabel("#	of	friends")

plt.ylabel("#	of	people")

plt.show()

Figure	5-1.	A	histogram	of	friend	counts

Unfortunately,	this	chart	is	still	too	difficult	to	slip	into	conversations.	So	you	start
generating	some	statistics.	Probably	the	simplest	statistic	is	simply	the	number	of	data
points:

num_points	=	len(num_friends)															#	204

You’re	probably	also	interested	in	the	largest	and	smallest	values:

largest_value	=	max(num_friends)												#	100

smallest_value	=	min(num_friends)											#	1

which	are	just	special	cases	of	wanting	to	know	the	values	in	specific	positions:

sorted_values	=	sorted(num_friends)

smallest_value	=	sorted_values[0]											#	1

second_smallest_value	=	sorted_values[1]				#	1

second_largest_value	=	sorted_values[-2]				#	49

But	we’re	only	getting	started.

Central	Tendencies
Usually,	we’ll	want	some	notion	of	where	our	data	is	centered.	Most	commonly	we’ll	use
the	mean	(or	average),	which	is	just	the	sum	of	the	data	divided	by	its	count:

#	this	isn't	right	if	you	don't	from	__future__	import	division

def	mean(x):

				return	sum(x)	/	len(x)

mean(num_friends)			#	7.333333

If	you	have	two	data	points,	the	mean	is	simply	the	point	halfway	between	them.	As	you
add	more	points,	the	mean	shifts	around,	but	it	always	depends	on	the	value	of	every
point.

We’ll	also	sometimes	be	interested	in	the	median,	which	is	the	middle-most	value	(if	the
number	of	data	points	is	odd)	or	the	average	of	the	two	middle-most	values	(if	the	number
of	data	points	is	even).

For	instance,	if	we	have	five	data	points	in	a	sorted	vector	x,	the	median	is	x[5	//	2]	or
x[2].	If	we	have	six	data	points,	we	want	the	average	of	x[2]	(the	third	point)	and	x[3]
(the	fourth	point).

Notice	that	—	unlike	the	mean	—	the	median	doesn’t	depend	on	every	value	in	your	data.
For	example,	if	you	make	the	largest	point	larger	(or	the	smallest	point	smaller),	the
middle	points	remain	unchanged,	which	means	so	does	the	median.

The	median	function	is	slightly	more	complicated	than	you	might	expect,	mostly	because
of	the	“even”	case:

def	median(v):

				"""finds	the	'middle-most'	value	of	v"""

				n	=	len(v)

				sorted_v	=	sorted(v)

				midpoint	=	n	//	2

				if	n	%	2	==	1:

								#	if	odd,	return	the	middle	value

								return	sorted_v[midpoint]

				else:

								#	if	even,	return	the	average	of	the	middle	values

								lo	=	midpoint	-	1

								hi	=	midpoint

								return	(sorted_v[lo]	+	sorted_v[hi])	/	2

median(num_friends)	#	6.0

Clearly,	the	mean	is	simpler	to	compute,	and	it	varies	smoothly	as	our	data	changes.	If	we
have	n	data	points	and	one	of	them	increases	by	some	small	amount	e,	then	necessarily	the
mean	will	increase	by	e	/	n.	(This	makes	the	mean	amenable	to	all	sorts	of	calculus	tricks.)
Whereas	in	order	to	find	the	median,	we	have	to	sort	our	data.	And	changing	one	of	our
data	points	by	a	small	amount	e	might	increase	the	median	by	e,	by	some	number	less	than
e,	or	not	at	all	(depending	on	the	rest	of	the	data).

NOTE
There	are,	in	fact,	nonobvious	tricks	to	efficiently	compute	medians	without	sorting	the	data.	However,	they
are	beyond	the	scope	of	this	book,	so	we	have	to	sort	the	data.

At	the	same	time,	the	mean	is	very	sensitive	to	outliers	in	our	data.	If	our	friendliest	user
had	200	friends	(instead	of	100),	then	the	mean	would	rise	to	7.82,	while	the	median
would	stay	the	same.	If	outliers	are	likely	to	be	bad	data	(or	otherwise	unrepresentative	of
whatever	phenomenon	we’re	trying	to	understand),	then	the	mean	can	sometimes	give	us	a
misleading	picture.	For	example,	the	story	is	often	told	that	in	the	mid-1980s,	the	major	at
the	University	of	North	Carolina	with	the	highest	average	starting	salary	was	geography,
mostly	on	account	of	NBA	star	(and	outlier)	Michael	Jordan.

A	generalization	of	the	median	is	the	quantile,	which	represents	the	value	less	than	which
a	certain	percentile	of	the	data	lies.	(The	median	represents	the	value	less	than	which	50%
of	the	data	lies.)

def	quantile(x,	p):

				"""returns	the	pth-percentile	value	in	x"""

				p_index	=	int(p	*	len(x))

				return	sorted(x)[p_index]

quantile(num_friends,	0.10)	#	1

quantile(num_friends,	0.25)	#	3

quantile(num_friends,	0.75)	#	9

quantile(num_friends,	0.90)	#	13

Less	commonly	you	might	want	to	look	at	the	mode,	or	most-common	value[s]:

def	mode(x):

				"""returns	a	list,	might	be	more	than	one	mode"""

				counts	=	Counter(x)

				max_count	=	max(counts.values())

				return	[x_i	for	x_i,	count	in	counts.iteritems()

												if	count	==	max_count]

mode(num_friends)							#	1	and	6

But	most	frequently	we’ll	just	use	the	mean.

http://en.wikipedia.org/wiki/Quickselect

Dispersion
Dispersion	refers	to	measures	of	how	spread	out	our	data	is.	Typically	they’re	statistics	for
which	values	near	zero	signify	not	spread	out	at	all	and	for	which	large	values	(whatever
that	means)	signify	very	spread	out.	For	instance,	a	very	simple	measure	is	the	range,
which	is	just	the	difference	between	the	largest	and	smallest	elements:

#	"range"	already	means	something	in	Python,	so	we'll	use	a	different	name

def	data_range(x):

				return	max(x)	-	min(x)

data_range(num_friends)	#	99

The	range	is	zero	precisely	when	the	max	and	min	are	equal,	which	can	only	happen	if	the
elements	of	x	are	all	the	same,	which	means	the	data	is	as	undispersed	as	possible.
Conversely,	if	the	range	is	large,	then	the	max	is	much	larger	than	the	min	and	the	data	is
more	spread	out.

Like	the	median,	the	range	doesn’t	really	depend	on	the	whole	data	set.	A	data	set	whose
points	are	all	either	0	or	100	has	the	same	range	as	a	data	set	whose	values	are	0,	100,	and
lots	of	50s.	But	it	seems	like	the	first	data	set	“should”	be	more	spread	out.

A	more	complex	measure	of	dispersion	is	the	variance,	which	is	computed	as:

def	de_mean(x):

				"""translate	x	by	subtracting	its	mean	(so	the	result	has	mean	0)"""

				x_bar	=	mean(x)

				return	[x_i	-	x_bar	for	x_i	in	x]

def	variance(x):

				"""assumes	x	has	at	least	two	elements"""

				n	=	len(x)

				deviations	=	de_mean(x)

				return	sum_of_squares(deviations)	/	(n	-	1)

variance(num_friends)	#	81.54

NOTE
This	looks	like	it	is	almost	the	average	squared	deviation	from	the	mean,	except	that	we’re	dividing	by	n-1
instead	of	n.	In	fact,	when	we’re	dealing	with	a	sample	from	a	larger	population,	x_bar	is	only	an	estimate
of	the	actual	mean,	which	means	that	on	average	(x_i	-	x_bar)	**	2	is	an	underestimate	of	x_i’s	squared
deviation	from	the	mean,	which	is	why	we	divide	by	n-1	instead	of	n.	See	Wikipedia.

Now,	whatever	units	our	data	is	in	(e.g.,	“friends”),	all	of	our	measures	of	central	tendency
are	in	that	same	unit.	The	range	will	similarly	be	in	that	same	unit.	The	variance,	on	the
other	hand,	has	units	that	are	the	square	of	the	original	units	(e.g.,	“friends	squared”).	As	it
can	be	hard	to	make	sense	of	these,	we	often	look	instead	at	the	standard	deviation:

def	standard_deviation(x):

				return	math.sqrt(variance(x))

standard_deviation(num_friends)	#	9.03

Both	the	range	and	the	standard	deviation	have	the	same	outlier	problem	that	we	saw

http://bit.ly/1L2EapI

earlier	for	the	mean.	Using	the	same	example,	if	our	friendliest	user	had	instead	200
friends,	the	standard	deviation	would	be	14.89,	more	than	60%	higher!

A	more	robust	alternative	computes	the	difference	between	the	75th	percentile	value	and
the	25th	percentile	value:

def	interquartile_range(x):

				return	quantile(x,	0.75)	-	quantile(x,	0.25)

interquartile_range(num_friends)	#	6

which	is	quite	plainly	unaffected	by	a	small	number	of	outliers.

Correlation
DataSciencester’s	VP	of	Growth	has	a	theory	that	the	amount	of	time	people	spend	on	the
site	is	related	to	the	number	of	friends	they	have	on	the	site	(she’s	not	a	VP	for	nothing),
and	she’s	asked	you	to	verify	this.

After	digging	through	traffic	logs,	you’ve	come	up	with	a	list	daily_minutes	that	shows
how	many	minutes	per	day	each	user	spends	on	DataSciencester,	and	you’ve	ordered	it	so
that	its	elements	correspond	to	the	elements	of	our	previous	num_friends	list.	We’d	like	to
investigate	the	relationship	between	these	two	metrics.

We’ll	first	look	at	covariance,	the	paired	analogue	of	variance.	Whereas	variance
measures	how	a	single	variable	deviates	from	its	mean,	covariance	measures	how	two
variables	vary	in	tandem	from	their	means:

def	covariance(x,	y):

				n	=	len(x)

				return	dot(de_mean(x),	de_mean(y))	/	(n	-	1)

covariance(num_friends,	daily_minutes)	#	22.43

Recall	that	dot	sums	up	the	products	of	corresponding	pairs	of	elements.	When
corresponding	elements	of	x	and	y	are	either	both	above	their	means	or	both	below	their
means,	a	positive	number	enters	the	sum.	When	one	is	above	its	mean	and	the	other	below,
a	negative	number	enters	the	sum.	Accordingly,	a	“large”	positive	covariance	means	that	x
tends	to	be	large	when	y	is	large	and	small	when	y	is	small.	A	“large”	negative	covariance
means	the	opposite	—	that	x	tends	to	be	small	when	y	is	large	and	vice	versa.	A
covariance	close	to	zero	means	that	no	such	relationship	exists.

Nonetheless,	this	number	can	be	hard	to	interpret,	for	a	couple	of	reasons:

Its	units	are	the	product	of	the	inputs’	units	(e.g.,	friend-minutes-per-day),	which	can	be
hard	to	make	sense	of.	(What’s	a	“friend-minute-per-day”?)

If	each	user	had	twice	as	many	friends	(but	the	same	number	of	minutes),	the
covariance	would	be	twice	as	large.	But	in	a	sense	the	variables	would	be	just	as
interrelated.	Said	differently,	it’s	hard	to	say	what	counts	as	a	“large”	covariance.

For	this	reason,	it’s	more	common	to	look	at	the	correlation,	which	divides	out	the
standard	deviations	of	both	variables:

def	correlation(x,	y):

				stdev_x	=	standard_deviation(x)

				stdev_y	=	standard_deviation(y)

				if	stdev_x	>	0	and	stdev_y	>	0:

								return	covariance(x,	y)	/	stdev_x	/	stdev_y

				else:

								return	0				#	if	no	variation,	correlation	is	zero

correlation(num_friends,	daily_minutes)	#	0.25

The	correlation	is	unitless	and	always	lies	between	-1	(perfect	anti-correlation)	and	1
(perfect	correlation).	A	number	like	0.25	represents	a	relatively	weak	positive	correlation.

However,	one	thing	we	neglected	to	do	was	examine	our	data.	Check	out	Figure	5-2.

Figure	5-2.	Correlation	with	an	outlier

The	person	with	100	friends	(who	spends	only	one	minute	per	day	on	the	site)	is	a	huge
outlier,	and	correlation	can	be	very	sensitive	to	outliers.	What	happens	if	we	ignore	him?

outlier	=	num_friends.index(100)				#	index	of	outlier

num_friends_good	=	[x

																				for	i,	x	in	enumerate(num_friends)

																				if	i	!=	outlier]

daily_minutes_good	=	[x

																						for	i,	x	in	enumerate(daily_minutes)

																						if	i	!=	outlier]

correlation(num_friends_good,	daily_minutes_good)	#	0.57

Without	the	outlier,	there	is	a	much	stronger	correlation	(Figure	5-3).

Figure	5-3.	Correlation	after	removing	the	outlier

You	investigate	further	and	discover	that	the	outlier	was	actually	an	internal	test	account
that	no	one	ever	bothered	to	remove.	So	you	feel	pretty	justified	in	excluding	it.

Simpson’s	Paradox
One	not	uncommon	surprise	when	analyzing	data	is	Simpson’s	Paradox,	in	which
correlations	can	be	misleading	when	confounding	variables	are	ignored.

For	example,	imagine	that	you	can	identify	all	of	your	members	as	either	East	Coast	data
scientists	or	West	Coast	data	scientists.	You	decide	to	examine	which	coast’s	data
scientists	are	friendlier:

coast #	of	members avg.	#	of	friends

West	Coast 101 8.2

East	Coast 103 6.5

It	certainly	looks	like	the	West	Coast	data	scientists	are	friendlier	than	the	East	Coast	data
scientists.	Your	coworkers	advance	all	sorts	of	theories	as	to	why	this	might	be:	maybe	it’s
the	sun,	or	the	coffee,	or	the	organic	produce,	or	the	laid-back	Pacific	vibe?

When	playing	with	the	data	you	discover	something	very	strange.	If	you	only	look	at
people	with	PhDs,	the	East	Coast	data	scientists	have	more	friends	on	average.	And	if	you
only	look	at	people	without	PhDs,	the	East	Coast	data	scientists	also	have	more	friends	on
average!

coast degree #	of	members avg.	#	of	friends

West	Coast PhD 35 3.1

East	Coast PhD 70 3.2

West	Coast no	PhD 66 10.9

East	Coast no	PhD 33 13.4

Once	you	account	for	the	users’	degrees,	the	correlation	goes	in	the	opposite	direction!
Bucketing	the	data	as	East	Coast/West	Coast	disguised	the	fact	that	the	East	Coast	data
scientists	skew	much	more	heavily	toward	PhD	types.

This	phenomenon	crops	up	in	the	real	world	with	some	regularity.	The	key	issue	is	that
correlation	is	measuring	the	relationship	between	your	two	variables	all	else	being	equal.
If	your	data	classes	are	assigned	at	random,	as	they	might	be	in	a	well-designed
experiment,	“all	else	being	equal”	might	not	be	a	terrible	assumption.	But	when	there	is	a
deeper	pattern	to	class	assignments,	“all	else	being	equal”	can	be	an	awful	assumption.

The	only	real	way	to	avoid	this	is	by	knowing	your	data	and	by	doing	what	you	can	to
make	sure	you’ve	checked	for	possible	confounding	factors.	Obviously,	this	is	not	always
possible.	If	you	didn’t	have	the	educational	attainment	of	these	200	data	scientists,	you

might	simply	conclude	that	there	was	something	inherently	more	sociable	about	the	West
Coast.

Some	Other	Correlational	Caveats
A	correlation	of	zero	indicates	that	there	is	no	linear	relationship	between	the	two
variables.	However,	there	may	be	other	sorts	of	relationships.	For	example,	if:

x	=	[-2,	-1,	0,	1,	2]

y	=	[2,		1,	0,	1,	2]

then	x	and	y	have	zero	correlation.	But	they	certainly	have	a	relationship	—	each	element
of	y	equals	the	absolute	value	of	the	corresponding	element	of	x.	What	they	don’t	have	is	a
relationship	in	which	knowing	how	x_i	compares	to	mean(x)	gives	us	information	about
how	y_i	compares	to	mean(y).	That	is	the	sort	of	relationship	that	correlation	looks	for.

In	addition,	correlation	tells	you	nothing	about	how	large	the	relationship	is.	The
variables:

x	=	[-2,	1,	0,	1,	2]

y	=	[99.98,	99.99,	100,	100.01,	100.02]

are	perfectly	correlated,	but	(depending	on	what	you’re	measuring)	it’s	quite	possible	that
this	relationship	isn’t	all	that	interesting.

Correlation	and	Causation
You	have	probably	heard	at	some	point	that	“correlation	is	not	causation,”	most	likely	by
someone	looking	at	data	that	posed	a	challenge	to	parts	of	his	worldview	that	he	was
reluctant	to	question.	Nonetheless,	this	is	an	important	point	—	if	x	and	y	are	strongly
correlated,	that	might	mean	that	x	causes	y,	that	y	causes	x,	that	each	causes	the	other,	that
some	third	factor	causes	both,	or	it	might	mean	nothing.

Consider	the	relationship	between	num_friends	and	daily_minutes.	It’s	possible	that
having	more	friends	on	the	site	causes	DataSciencester	users	to	spend	more	time	on	the
site.	This	might	be	the	case	if	each	friend	posts	a	certain	amount	of	content	each	day,
which	means	that	the	more	friends	you	have,	the	more	time	it	takes	to	stay	current	with
their	updates.

However,	it’s	also	possible	that	the	more	time	you	spend	arguing	in	the	DataSciencester
forums,	the	more	you	encounter	and	befriend	like-minded	people.	That	is,	spending	more
time	on	the	site	causes	users	to	have	more	friends.

A	third	possibility	is	that	the	users	who	are	most	passionate	about	data	science	spend	more
time	on	the	site	(because	they	find	it	more	interesting)	and	more	actively	collect	data
science	friends	(because	they	don’t	want	to	associate	with	anyone	else).

One	way	to	feel	more	confident	about	causality	is	by	conducting	randomized	trials.	If	you
can	randomly	split	your	users	into	two	groups	with	similar	demographics	and	give	one	of
the	groups	a	slightly	different	experience,	then	you	can	often	feel	pretty	good	that	the
different	experiences	are	causing	the	different	outcomes.

For	instance,	if	you	don’t	mind	being	angrily	accused	of	experimenting	on	your	users,	you
could	randomly	choose	a	subset	of	your	users	and	show	them	content	from	only	a	fraction
of	their	friends.	If	this	subset	subsequently	spent	less	time	on	the	site,	this	would	give	you
some	confidence	that	having	more	friends	causes	more	time	on	the	site.

http://nyti.ms/1L2DzEg

For	Further	Exploration
SciPy,	pandas,	and	StatsModels	all	come	with	a	wide	variety	of	statistical	functions.

Statistics	is	important.	(Or	maybe	statistics	are	important?)	If	you	want	to	be	a	good
data	scientist	it	would	be	a	good	idea	to	read	a	statistics	textbook.	Many	are	freely
available	online.	A	couple	that	I	like	are:
OpenIntro	Statistics

OpenStax	Introductory	Statistics

http://bit.ly/1L2H0Lj
http://pandas.pydata.org
http://bit.ly/1L2GQnc
http://bit.ly/1L2GKvG
http://bit.ly/1L2GJrM

Chapter	6.	Probability

The	laws	of	probability,	so	true	in	general,	so	fallacious	in	particular.

Edward	Gibbon

It	is	hard	to	do	data	science	without	some	sort	of	understanding	of	probability	and	its
mathematics.	As	with	our	treatment	of	statistics	in	Chapter	5,	we’ll	wave	our	hands	a	lot
and	elide	many	of	the	technicalities.

For	our	purposes	you	should	think	of	probability	as	a	way	of	quantifying	the	uncertainty
associated	with	events	chosen	from	a	some	universe	of	events.	Rather	than	getting
technical	about	what	these	terms	mean,	think	of	rolling	a	die.	The	universe	consists	of	all
possible	outcomes.	And	any	subset	of	these	outcomes	is	an	event;	for	example,	“the	die
rolls	a	one”	or	“the	die	rolls	an	even	number.”

Notationally,	we	write	 	to	mean	“the	probability	of	the	event	E.”

We’ll	use	probability	theory	to	build	models.	We’ll	use	probability	theory	to	evaluate
models.	We’ll	use	probability	theory	all	over	the	place.

One	could,	were	one	so	inclined,	get	really	deep	into	the	philosophy	of	what	probability
theory	means.	(This	is	best	done	over	beers.)	We	won’t	be	doing	that.

Dependence	and	Independence
Roughly	speaking,	we	say	that	two	events	E	and	F	are	dependent	if	knowing	something
about	whether	E	happens	gives	us	information	about	whether	F	happens	(and	vice	versa).
Otherwise	they	are	independent.

For	instance,	if	we	flip	a	fair	coin	twice,	knowing	whether	the	first	flip	is	Heads	gives	us
no	information	about	whether	the	second	flip	is	Heads.	These	events	are	independent.	On
the	other	hand,	knowing	whether	the	first	flip	is	Heads	certainly	gives	us	information
about	whether	both	flips	are	Tails.	(If	the	first	flip	is	Heads,	then	definitely	it’s	not	the	case
that	both	flips	are	Tails.)	These	two	events	are	dependent.

Mathematically,	we	say	that	two	events	E	and	F	are	independent	if	the	probability	that
they	both	happen	is	the	product	of	the	probabilities	that	each	one	happens:

In	the	example	above,	the	probability	of	“first	flip	Heads”	is	1/2,	and	the	probability	of
“both	flips	Tails”	is	1/4,	but	the	probability	of	“first	flip	Heads	and	both	flips	Tails”	is	0.

Conditional	Probability
When	two	events	E	and	F	are	independent,	then	by	definition	we	have:

If	they	are	not	necessarily	independent	(and	if	the	probability	of	F	is	not	zero),	then	we
define	the	probability	of	E	“conditional	on	F”	as:

You	should	think	of	this	as	the	probability	that	E	happens,	given	that	we	know	that	F
happens.

We	often	rewrite	this	as:

When	E	and	F	are	independent,	you	can	check	that	this	gives:

which	is	the	mathematical	way	of	expressing	that	knowing	F	occurred	gives	us	no
additional	information	about	whether	E	occurred.

One	common	tricky	example	involves	a	family	with	two	(unknown)	children.

If	we	assume	that:

1.	 Each	child	is	equally	likely	to	be	a	boy	or	a	girl

2.	 The	gender	of	the	second	child	is	independent	of	the	gender	of	the	first	child

then	the	event	“no	girls”	has	probability	1/4,	the	event	“one	girl,	one	boy”	has	probability
1/2,	and	the	event	“two	girls”	has	probability	1/4.

Now	we	can	ask	what	is	the	probability	of	the	event	“both	children	are	girls”	(B)
conditional	on	the	event	“the	older	child	is	a	girl”	(G)?	Using	the	definition	of	conditional
probability:

since	the	event	B	and	G	(“both	children	are	girls	and	the	older	child	is	a	girl”)	is	just	the
event	B.	(Once	you	know	that	both	children	are	girls,	it’s	necessarily	true	that	the	older
child	is	a	girl.)

Most	likely	this	result	accords	with	your	intuition.

We	could	also	ask	about	the	probability	of	the	event	“both	children	are	girls”	conditional
on	the	event	“at	least	one	of	the	children	is	a	girl”	(L).	Surprisingly,	the	answer	is	different
from	before!

As	before,	the	event	B	and	L	(“both	children	are	girls	and	at	least	one	of	the	children	is	a
girl”)	is	just	the	event	B.	This	means	we	have:

How	can	this	be	the	case?	Well,	if	all	you	know	is	that	at	least	one	of	the	children	is	a	girl,
then	it	is	twice	as	likely	that	the	family	has	one	boy	and	one	girl	than	that	it	has	both	girls.

We	can	check	this	by	“generating”	a	lot	of	families:

def	random_kid():

				return	random.choice(["boy",	"girl"])

both_girls	=	0

older_girl	=	0

either_girl	=	0

random.seed(0)

for	_	in	range(10000):

				younger	=	random_kid()

				older	=	random_kid()

				if	older	==	"girl":

								older_girl	+=	1

				if	older	==	"girl"	and	younger	==	"girl":

								both_girls	+=	1

				if	older	==	"girl"	or	younger	==	"girl":

								either_girl	+=	1

print	"P(both	|	older):",	both_girls	/	older_girl						#	0.514	~	1/2

print	"P(both	|	either):	",	both_girls	/	either_girl			#	0.342	~	1/3

Bayes’s	Theorem
One	of	the	data	scientist’s	best	friends	is	Bayes’s	Theorem,	which	is	a	way	of	“reversing”
conditional	probabilities.	Let’s	say	we	need	to	know	the	probability	of	some	event	E
conditional	on	some	other	event	F	occurring.	But	we	only	have	information	about	the
probability	of	F	conditional	on	E	occurring.	Using	the	definition	of	conditional	probability
twice	tells	us	that:

The	event	F	can	be	split	into	the	two	mutually	exclusive	events	“F	and	E”	and	“F	and	not
E.”	If	we	write	 	for	“not	E”	(i.e.,	“E	doesn’t	happen”),	then:

so	that:

which	is	how	Bayes’s	Theorem	is	often	stated.

This	theorem	often	gets	used	to	demonstrate	why	data	scientists	are	smarter	than	doctors.
Imagine	a	certain	disease	that	affects	1	in	every	10,000	people.	And	imagine	that	there	is	a
test	for	this	disease	that	gives	the	correct	result	(“diseased”	if	you	have	the	disease,
“nondiseased”	if	you	don’t)	99%	of	the	time.

What	does	a	positive	test	mean?	Let’s	use	T	for	the	event	“your	test	is	positive”	and	D	for
the	event	“you	have	the	disease.”	Then	Bayes’s	Theorem	says	that	the	probability	that	you
have	the	disease,	conditional	on	testing	positive,	is:

Here	we	know	that	 ,	the	probability	that	someone	with	the	disease	tests

positive,	is	0.99.	 ,	the	probability	that	any	given	person	has	the	disease,	is	1/10,000
=	0.0001.	 ,	the	probability	that	someone	without	the	disease	tests	positive,

is	0.01.	And	 ,	the	probability	that	any	given	person	doesn’t	have	the	disease,	is
0.9999.	If	you	substitute	these	numbers	into	Bayes’s	Theorem	you	find

That	is,	less	than	1%	of	the	people	who	test	positive	actually	have	the	disease.

NOTE
This	assumes	that	people	take	the	test	more	or	less	at	random.	If	only	people	with	certain	symptoms	take
the	test	we	would	instead	have	to	condition	on	the	event	“positive	test	and	symptoms”	and	the	number
would	likely	be	a	lot	higher.

While	this	is	a	simple	calculation	for	a	data	scientist,	most	doctors	will	guess	that	
	is	approximately	2.

A	more	intuitive	way	to	see	this	is	to	imagine	a	population	of	1	million	people.	You’d
expect	100	of	them	to	have	the	disease,	and	99	of	those	100	to	test	positive.	On	the	other
hand,	you’d	expect	999,900	of	them	not	to	have	the	disease,	and	9,999	of	those	to	test
positive.	Which	means	that	you’d	expect	only	99	out	of	(99	+	9999)	positive	testers	to
actually	have	the	disease.

Random	Variables
A	random	variable	is	a	variable	whose	possible	values	have	an	associated	probability
distribution.	A	very	simple	random	variable	equals	1	if	a	coin	flip	turns	up	heads	and	0	if
the	flip	turns	up	tails.	A	more	complicated	one	might	measure	the	number	of	heads
observed	when	flipping	a	coin	10	times	or	a	value	picked	from	range(10)	where	each
number	is	equally	likely.

The	associated	distribution	gives	the	probabilities	that	the	variable	realizes	each	of	its
possible	values.	The	coin	flip	variable	equals	0	with	probability	0.5	and	1	with	probability
0.5.	The	range(10)	variable	has	a	distribution	that	assigns	probability	0.1	to	each	of	the
numbers	from	0	to	9.

We	will	sometimes	talk	about	the	expected	value	of	a	random	variable,	which	is	the
average	of	its	values	weighted	by	their	probabilities.	The	coin	flip	variable	has	an
expected	value	of	1/2	(=	0	*	1/2	+	1	*	1/2),	and	the	range(10)	variable	has	an	expected
value	of	4.5.

Random	variables	can	be	conditioned	on	events	just	as	other	events	can.	Going	back	to	the
two-child	example	from	“Conditional	Probability”,	if	X	is	the	random	variable
representing	the	number	of	girls,	X	equals	0	with	probability	1/4,	1	with	probability	1/2,
and	2	with	probability	1/4.

We	can	define	a	new	random	variable	Y	that	gives	the	number	of	girls	conditional	on	at
least	one	of	the	children	being	a	girl.	Then	Y	equals	1	with	probability	2/3	and	2	with
probability	1/3.	And	a	variable	Z	that’s	the	number	of	girls	conditional	on	the	older	child
being	a	girl	equals	1	with	probability	1/2	and	2	with	probability	1/2.

For	the	most	part,	we	will	be	using	random	variables	implicitly	in	what	we	do	without
calling	special	attention	to	them.	But	if	you	look	deeply	you’ll	see	them.

Continuous	Distributions
A	coin	flip	corresponds	to	a	discrete	distribution	—	one	that	associates	positive
probability	with	discrete	outcomes.	Often	we’ll	want	to	model	distributions	across	a
continuum	of	outcomes.	(For	our	purposes,	these	outcomes	will	always	be	real	numbers,
although	that’s	not	always	the	case	in	real	life.)	For	example,	the	uniform	distribution	puts
equal	weight	on	all	the	numbers	between	0	and	1.

Because	there	are	infinitely	many	numbers	between	0	and	1,	this	means	that	the	weight	it
assigns	to	individual	points	must	necessarily	be	zero.	For	this	reason,	we	represent	a
continuous	distribution	with	a	probability	density	function	(pdf)	such	that	the	probability
of	seeing	a	value	in	a	certain	interval	equals	the	integral	of	the	density	function	over	the
interval.

NOTE
If	your	integral	calculus	is	rusty,	a	simpler	way	of	understanding	this	is	that	if	a	distribution	has	density

function	 ,	then	the	probability	of	seeing	a	value	between	 	and	 	is	approximately	

	if	 	is	small.

The	density	function	for	the	uniform	distribution	is	just:

def	uniform_pdf(x):

				return	1	if	x	>=	0	and	x	<	1	else	0

The	probability	that	a	random	variable	following	that	distribution	is	between	0.2	and	0.3	is
1/10,	as	you’d	expect.	Python’s	random.random()	is	a	[pseudo]random	variable	with	a
uniform	density.

We	will	often	be	more	interested	in	the	cumulative	distribution	function	(cdf),	which	gives
the	probability	that	a	random	variable	is	less	than	or	equal	to	a	certain	value.	It’s	not	hard
to	create	the	cumulative	distribution	function	for	the	uniform	distribution	(Figure	6-1):

def	uniform_cdf(x):

				"returns	the	probability	that	a	uniform	random	variable	is	<=	x"

				if	x	<	0:			return	0				#	uniform	random	is	never	less	than	0

				elif	x	<	1:	return	x				#	e.g.	P(X	<=	0.4)	=	0.4

				else:							return	1				#	uniform	random	is	always	less	than	1

Figure	6-1.	The	uniform	cdf

The	Normal	Distribution
The	normal	distribution	is	the	king	of	distributions.	It	is	the	classic	bell	curve–shaped
distribution	and	is	completely	determined	by	two	parameters:	its	mean	 	(mu)	and	its
standard	deviation	 	(sigma).	The	mean	indicates	where	the	bell	is	centered,	and	the
standard	deviation	how	“wide”	it	is.

It	has	the	distribution	function:

which	we	can	implement	as:

def	normal_pdf(x,	mu=0,	sigma=1):

				sqrt_two_pi	=	math.sqrt(2	*	math.pi)

				return	(math.exp(-(x-mu)	**	2	/	2	/	sigma	**	2)	/	(sqrt_two_pi	*	sigma))

In	Figure	6-2,	we	plot	some	of	these	pdfs	to	see	what	they	look	like:

xs	=	[x	/	10.0	for	x	in	range(-50,	50)]

plt.plot(xs,[normal_pdf(x,sigma=1)	for	x	in	xs],'-',label='mu=0,sigma=1')

plt.plot(xs,[normal_pdf(x,sigma=2)	for	x	in	xs],'--',label='mu=0,sigma=2')

plt.plot(xs,[normal_pdf(x,sigma=0.5)	for	x	in	xs],':',label='mu=0,sigma=0.5')

plt.plot(xs,[normal_pdf(x,mu=-1)			for	x	in	xs],'-.',label='mu=-1,sigma=1')

plt.legend()

plt.title("Various	Normal	pdfs")

plt.show()

Figure	6-2.	Various	normal	pdfs

When	 	and	 ,	it’s	called	the	standard	normal	distribution.	If	Z	is	a	standard
normal	random	variable,	then	it	turns	out	that:

is	also	normal	but	with	mean	 	and	standard	deviation	 .	Conversely,	if	X	is	a	normal
random	variable	with	mean	 	and	standard	deviation	 ,

is	a	standard	normal	variable.

The	cumulative	distribution	function	for	the	normal	distribution	cannot	be	written	in	an
“elementary”	manner,	but	we	can	write	it	using	Python’s	math.erf:

def	normal_cdf(x,	mu=0,sigma=1):

				return	(1	+	math.erf((x	-	mu)	/	math.sqrt(2)	/	sigma))	/	2

Again,	in	Figure	6-3,	we	plot	a	few:

xs	=	[x	/	10.0	for	x	in	range(-50,	50)]

http://en.wikipedia.org/wiki/Error_function

plt.plot(xs,[normal_cdf(x,sigma=1)	for	x	in	xs],'-',label='mu=0,sigma=1')

plt.plot(xs,[normal_cdf(x,sigma=2)	for	x	in	xs],'--',label='mu=0,sigma=2')

plt.plot(xs,[normal_cdf(x,sigma=0.5)	for	x	in	xs],':',label='mu=0,sigma=0.5')

plt.plot(xs,[normal_cdf(x,mu=-1)	for	x	in	xs],'-.',label='mu=-1,sigma=1')

plt.legend(loc=4)	#	bottom	right

plt.title("Various	Normal	cdfs")

plt.show()

Figure	6-3.	Various	normal	cdfs

Sometimes	we’ll	need	to	invert	normal_cdf	to	find	the	value	corresponding	to	a	specified
probability.	There’s	no	simple	way	to	compute	its	inverse,	but	normal_cdf	is	continuous
and	strictly	increasing,	so	we	can	use	a	binary	search:

def	inverse_normal_cdf(p,	mu=0,	sigma=1,	tolerance=0.00001):

				"""find	approximate	inverse	using	binary	search"""

				#	if	not	standard,	compute	standard	and	rescale

				if	mu	!=	0	or	sigma	!=	1:

								return	mu	+	sigma	*	inverse_normal_cdf(p,	tolerance=tolerance)

				low_z,	low_p	=	-10.0,	0												#	normal_cdf(-10)	is	(very	close	to)	0

				hi_z,		hi_p		=		10.0,	1												#	normal_cdf(10)		is	(very	close	to)	1

				while	hi_z	-	low_z	>	tolerance:

								mid_z	=	(low_z	+	hi_z)	/	2					#	consider	the	midpoint

								mid_p	=	normal_cdf(mid_z)						#	and	the	cdf's	value	there

								if	mid_p	<	p:

												#	midpoint	is	still	too	low,	search	above	it

												low_z,	low_p	=	mid_z,	mid_p

								elif	mid_p	>	p:

												#	midpoint	is	still	too	high,	search	below	it

												hi_z,	hi_p	=	mid_z,	mid_p

								else:

http://en.wikipedia.org/wiki/Binary_search_algorithm

												break

				return	mid_z

The	function	repeatedly	bisects	intervals	until	it	narrows	in	on	a	Z	that’s	close	enough	to
the	desired	probability.

The	Central	Limit	Theorem
One	reason	the	normal	distribution	is	so	useful	is	the	central	limit	theorem,	which	says	(in
essence)	that	a	random	variable	defined	as	the	average	of	a	large	number	of	independent
and	identically	distributed	random	variables	is	itself	approximately	normally	distributed.

In	particular,	if	 	are	random	variables	with	mean	 	and	standard	deviation	 ,
and	if	n	is	large,	then:

is	approximately	normally	distributed	with	mean	 	and	standard	deviation	 .
Equivalently	(but	often	more	usefully),

is	approximately	normally	distributed	with	mean	0	and	standard	deviation	1.

An	easy	way	to	illustrate	this	is	by	looking	at	binomial	random	variables,	which	have	two
parameters	n	and	p.	A	Binomial(n,p)	random	variable	is	simply	the	sum	of	n	independent
Bernoulli(p)	random	variables,	each	of	which	equals	1	with	probability	p	and	0	with

probability	 :

def	bernoulli_trial(p):

				return	1	if	random.random()	<	p	else	0

def	binomial(n,	p):

				return	sum(bernoulli_trial(p)	for	_	in	range(n))

The	mean	of	a	Bernoulli(p)	variable	is	p,	and	its	standard	deviation	is	 .	The
central	limit	theorem	says	that	as	n	gets	large,	a	Binomial(n,p)	variable	is	approximately	a
normal	random	variable	with	mean	 	and	standard	deviation	

.	If	we	plot	both,	you	can	easily	see	the	resemblance:

def	make_hist(p,	n,	num_points):

				data	=	[binomial(n,	p)	for	_	in	range(num_points)]

				#	use	a	bar	chart	to	show	the	actual	binomial	samples

				histogram	=	Counter(data)

				plt.bar([x	-	0.4	for	x	in	histogram.keys()],

												[v	/	num_points	for	v	in	histogram.values()],

												0.8,

												color='0.75')

				mu	=	p	*	n

				sigma	=	math.sqrt(n	*	p	*	(1	-	p))

				#	use	a	line	chart	to	show	the	normal	approximation

				xs	=	range(min(data),	max(data)	+	1)

				ys	=	[normal_cdf(i	+	0.5,	mu,	sigma)	-	normal_cdf(i	-	0.5,	mu,	sigma)

										for	i	in	xs]

				plt.plot(xs,ys)

				plt.title("Binomial	Distribution	vs.	Normal	Approximation")

				plt.show()

For	example,	when	you	call	make_hist(0.75,	100,	10000),	you	get	the	graph	in
Figure	6-4.

Figure	6-4.	The	output	from	make_hist

The	moral	of	this	approximation	is	that	if	you	want	to	know	the	probability	that	(say)	a
fair	coin	turns	up	more	than	60	heads	in	100	flips,	you	can	estimate	it	as	the	probability
that	a	Normal(50,5)	is	greater	than	60,	which	is	easier	than	computing	the
Binomial(100,0.5)	cdf.	(Although	in	most	applications	you’d	probably	be	using	statistical
software	that	would	gladly	compute	whatever	probabilities	you	want.)

For	Further	Exploration
scipy.stats	contains	pdf	and	cdf	functions	for	most	of	the	popular	probability
distributions.

Remember	how,	at	the	end	of	Chapter	5,	I	said	that	it	would	be	a	good	idea	to	study	a
statistics	textbook?	It	would	also	be	a	good	idea	to	study	a	probability	textbook.	The
best	one	I	know	that’s	available	online	is	Introduction	to	Probability.

http://bit.ly/1L2H0Lj
http://bit.ly/1L2MTYI

Chapter	7.	Hypothesis	and	Inference

It	is	the	mark	of	a	truly	intelligent	person	to	be	moved	by	statistics.

George	Bernard	Shaw

What	will	we	do	with	all	this	statistics	and	probability	theory?	The	science	part	of	data
science	frequently	involves	forming	and	testing	hypotheses	about	our	data	and	the
processes	that	generate	it.

Statistical	Hypothesis	Testing
Often,	as	data	scientists,	we’ll	want	to	test	whether	a	certain	hypothesis	is	likely	to	be	true.
For	our	purposes,	hypotheses	are	assertions	like	“this	coin	is	fair”	or	“data	scientists	prefer
Python	to	R”	or	“people	are	more	likely	to	navigate	away	from	the	page	without	ever
reading	the	content	if	we	pop	up	an	irritating	interstitial	advertisement	with	a	tiny,	hard-to-
find	close	button”	that	can	be	translated	into	statistics	about	data.	Under	various
assumptions,	those	statistics	can	be	thought	of	as	observations	of	random	variables	from
known	distributions,	which	allows	us	to	make	statements	about	how	likely	those
assumptions	are	to	hold.

In	the	classical	setup,	we	have	a	null	hypothesis	 	that	represents	some	default	position,
and	some	alternative	hypothesis	 	that	we’d	like	to	compare	it	with.	We	use	statistics	to
decide	whether	we	can	reject	 	as	false	or	not.	This	will	probably	make	more	sense	with
an	example.

Example:	Flipping	a	Coin
Imagine	we	have	a	coin	and	we	want	to	test	whether	it’s	fair.	We’ll	make	the	assumption
that	the	coin	has	some	probability	p	of	landing	heads,	and	so	our	null	hypothesis	is	that	the

coin	is	fair	—	that	is,	that	 .	We’ll	test	this	against	the	alternative	hypothesis	

.

In	particular,	our	test	will	involve	flipping	the	coin	some	number	n	times	and	counting	the
number	of	heads	X.	Each	coin	flip	is	a	Bernoulli	trial,	which	means	that	X	is	a
Binomial(n,p)	random	variable,	which	(as	we	saw	in	Chapter	6)	we	can	approximate	using
the	normal	distribution:

def	normal_approximation_to_binomial(n,	p):

				"""finds	mu	and	sigma	corresponding	to	a	Binomial(n,	p)"""

				mu	=	p	*	n

				sigma	=	math.sqrt(p	*	(1	-	p)	*	n)

				return	mu,	sigma

Whenever	a	random	variable	follows	a	normal	distribution,	we	can	use	normal_cdf	to
figure	out	the	probability	that	its	realized	value	lies	within	(or	outside)	a	particular
interval:

#	the	normal	cdf	_is_	the	probability	the	variable	is	below	a	threshold

normal_probability_below	=	normal_cdf

#	it's	above	the	threshold	if	it's	not	below	the	threshold

def	normal_probability_above(lo,	mu=0,	sigma=1):

				return	1	-	normal_cdf(lo,	mu,	sigma)

#	it's	between	if	it's	less	than	hi,	but	not	less	than	lo

def	normal_probability_between(lo,	hi,	mu=0,	sigma=1):

				return	normal_cdf(hi,	mu,	sigma)	-	normal_cdf(lo,	mu,	sigma)

#	it's	outside	if	it's	not	between

def	normal_probability_outside(lo,	hi,	mu=0,	sigma=1):

				return	1	-	normal_probability_between(lo,	hi,	mu,	sigma)

We	can	also	do	the	reverse	—	find	either	the	nontail	region	or	the	(symmetric)	interval
around	the	mean	that	accounts	for	a	certain	level	of	likelihood.	For	example,	if	we	want	to
find	an	interval	centered	at	the	mean	and	containing	60%	probability,	then	we	find	the
cutoffs	where	the	upper	and	lower	tails	each	contain	20%	of	the	probability	(leaving	60%):

def	normal_upper_bound(probability,	mu=0,	sigma=1):

				"""returns	the	z	for	which	P(Z	<=	z)	=	probability"""

				return	inverse_normal_cdf(probability,	mu,	sigma)

def	normal_lower_bound(probability,	mu=0,	sigma=1):

				"""returns	the	z	for	which	P(Z	>=	z)	=	probability"""

				return	inverse_normal_cdf(1	-	probability,	mu,	sigma)

def	normal_two_sided_bounds(probability,	mu=0,	sigma=1):

				"""returns	the	symmetric	(about	the	mean)	bounds

				that	contain	the	specified	probability"""

				tail_probability	=	(1	-	probability)	/	2

				#	upper	bound	should	have	tail_probability	above	it

				upper_bound	=	normal_lower_bound(tail_probability,	mu,	sigma)

				#	lower	bound	should	have	tail_probability	below	it

				lower_bound	=	normal_upper_bound(tail_probability,	mu,	sigma)

				return	lower_bound,	upper_bound

In	particular,	let’s	say	that	we	choose	to	flip	the	coin	 	times.	If	our
hypothesis	of	fairness	is	true,	X	should	be	distributed	approximately	normally	with	mean
50	and	standard	deviation	15.8:

mu_0,	sigma_0	=	normal_approximation_to_binomial(1000,	0.5)

We	need	to	make	a	decision	about	significance	—	how	willing	we	are	to	make	a	type	1
error	(“false	positive”),	in	which	we	reject	 	even	though	it’s	true.	For	reasons	lost	to
the	annals	of	history,	this	willingness	is	often	set	at	5%	or	1%.	Let’s	choose	5%.

Consider	the	test	that	rejects	 	if	X	falls	outside	the	bounds	given	by:

normal_two_sided_bounds(0.95,	mu_0,	sigma_0)			#	(469,	531)

Assuming	p	really	equals	0.5	(i.e.,	 	is	true),	there	is	just	a	5%	chance	we	observe	an	X
that	lies	outside	this	interval,	which	is	the	exact	significance	we	wanted.	Said	differently,
if	 	is	true,	then,	approximately	19	times	out	of	20,	this	test	will	give	the	correct	result.

We	are	also	often	interested	in	the	power	of	a	test,	which	is	the	probability	of	not	making	a
type	2	error,	in	which	we	fail	to	reject	 	even	though	it’s	false.	In	order	to	measure	this,
we	have	to	specify	what	exactly	 	being	false	means.	(Knowing	merely	that	p	is	not	0.5
doesn’t	give	you	a	ton	of	information	about	the	distribution	of	X.)	In	particular,	let’s	check
what	happens	if	p	is	really	0.55,	so	that	the	coin	is	slightly	biased	toward	heads.

In	that	case,	we	can	calculate	the	power	of	the	test	with:

#	95%	bounds	based	on	assumption	p	is	0.5

lo,	hi	=	normal_two_sided_bounds(0.95,	mu_0,	sigma_0)

#	actual	mu	and	sigma	based	on	p	=	0.55

mu_1,	sigma_1	=	normal_approximation_to_binomial(1000,	0.55)

#	a	type	2	error	means	we	fail	to	reject	the	null	hypothesis

#	which	will	happen	when	X	is	still	in	our	original	interval

type_2_probability	=	normal_probability_between(lo,	hi,	mu_1,	sigma_1)

power	=	1	-	type_2_probability						#	0.887

Imagine	instead	that	our	null	hypothesis	was	that	the	coin	is	not	biased	toward	heads,	or

that	 .	In	that	case	we	want	a	one-sided	test	that	rejects	the	null	hypothesis	when
X	is	much	larger	than	50	but	not	when	X	is	smaller	than	50.	So	a	5%-significance	test
involves	using	normal_probability_below	to	find	the	cutoff	below	which	95%	of	the
probability	lies:

hi	=	normal_upper_bound(0.95,	mu_0,	sigma_0)

#	is	526	(<	531,	since	we	need	more	probability	in	the	upper	tail)

type_2_probability	=	normal_probability_below(hi,	mu_1,	sigma_1)

power	=	1	-	type_2_probability						#	0.936

This	is	a	more	powerful	test,	since	it	no	longer	rejects	 	when	X	is	below	469	(which	is
very	unlikely	to	happen	if	 	is	true)	and	instead	rejects	 	when	X	is	between	526	and
531	(which	is	somewhat	likely	to	happen	if	 	is	true).	===	p-values

An	alternative	way	of	thinking	about	the	preceding	test	involves	p-values.	Instead	of
choosing	bounds	based	on	some	probability	cutoff,	we	compute	the	probability	—
assuming	 	is	true	—	that	we	would	see	a	value	at	least	as	extreme	as	the	one	we
actually	observed.

For	our	two-sided	test	of	whether	the	coin	is	fair,	we	compute:

def	two_sided_p_value(x,	mu=0,	sigma=1):

				if	x	>=	mu:

								#	if	x	is	greater	than	the	mean,	the	tail	is	what's	greater	than	x

								return	2	*	normal_probability_above(x,	mu,	sigma)

				else:

								#	if	x	is	less	than	the	mean,	the	tail	is	what's	less	than	x

								return	2	*	normal_probability_below(x,	mu,	sigma)

If	we	were	to	see	530	heads,	we	would	compute:

two_sided_p_value(529.5,	mu_0,	sigma_0)			#	0.062

NOTE
Why	did	we	use	529.5	instead	of	530?	This	is	what’s	called	a	continuity	correction.	It	reflects	the	fact	that
normal_probability_between(529.5,	530.5,	mu_0,	sigma_0)	is	a	better	estimate	of	the	probability	of
seeing	530	heads	than	normal_probability_between(530,	531,	mu_0,	sigma_0)	is.

Correspondingly,	normal_probability_above(529.5,	mu_0,	sigma_0)	is	a	better	estimate	of	the
probability	of	seeing	at	least	530	heads.	You	may	have	noticed	that	we	also	used	this	in	the	code	that
produced	Figure	6-4.

One	way	to	convince	yourself	that	this	is	a	sensible	estimate	is	with	a	simulation:

extreme_value_count	=	0

for	_	in	range(100000):

				num_heads	=	sum(1	if	random.random()	<	0.5	else	0				#	count	#	of	heads

																				for	_	in	range(1000))																#	in	1000	flips

				if	num_heads	>=	530	or	num_heads	<=	470:													#	and	count	how	often

								extreme_value_count	+=	1																									#	the	#	is	'extreme'

print	extreme_value_count	/	100000			#	0.062

Since	the	p-value	is	greater	than	our	5%	significance,	we	don’t	reject	the	null.	If	we
instead	saw	532	heads,	the	p-value	would	be:

two_sided_p_value(531.5,	mu_0,	sigma_0)			#	0.0463

which	is	smaller	than	the	5%	significance,	which	means	we	would	reject	the	null.	It’s	the
exact	same	test	as	before.	It’s	just	a	different	way	of	approaching	the	statistics.

http://en.wikipedia.org/wiki/Continuity_correction

Similarly,	we	would	have:

upper_p_value	=	normal_probability_above

lower_p_value	=	normal_probability_below

For	our	one-sided	test,	if	we	saw	525	heads	we	would	compute:

upper_p_value(524.5,	mu_0,	sigma_0)	#	0.061

which	means	we	wouldn’t	reject	the	null.	If	we	saw	527	heads,	the	computation	would	be:

upper_p_value(526.5,	mu_0,	sigma_0)	#	0.047

and	we	would	reject	the	null.

WARNING
Make	sure	your	data	is	roughly	normally	distributed	before	using	normal_probability_above	to	compute
p-values.	The	annals	of	bad	data	science	are	filled	with	examples	of	people	opining	that	the	chance	of	some
observed	event	occurring	at	random	is	one	in	a	million,	when	what	they	really	mean	is	“the	chance,
assuming	the	data	is	distributed	normally,”	which	is	pretty	meaningless	if	the	data	isn’t.

There	are	various	statistical	tests	for	normality,	but	even	plotting	the	data	is	a	good	start.

Confidence	Intervals
We’ve	been	testing	hypotheses	about	the	value	of	the	heads	probability	p,	which	is	a
parameter	of	the	unknown	“heads”	distribution.	When	this	is	the	case,	a	third	approach	is
to	construct	a	confidence	interval	around	the	observed	value	of	the	parameter.

For	example,	we	can	estimate	the	probability	of	the	unfair	coin	by	looking	at	the	average
value	of	the	Bernoulli	variables	corresponding	to	each	flip	—	1	if	heads,	0	if	tails.	If	we
observe	525	heads	out	of	1,000	flips,	then	we	estimate	p	equals	0.525.

How	confident	can	we	be	about	this	estimate?	Well,	if	we	knew	the	exact	value	of	p,	the
central	limit	theorem	(recall	“The	Central	Limit	Theorem”)	tells	us	that	the	average	of
those	Bernoulli	variables	should	be	approximately	normal,	with	mean	p	and	standard
deviation:

math.sqrt(p	*	(1	-	p)	/	1000)

Here	we	don’t	know	p,	so	instead	we	use	our	estimate:

p_hat	=	525	/	1000

mu	=	p_hat

sigma	=	math.sqrt(p_hat	*	(1	-	p_hat)	/	1000)			#	0.0158

This	is	not	entirely	justified,	but	people	seem	to	do	it	anyway.	Using	the	normal
approximation,	we	conclude	that	we	are	“95%	confident”	that	the	following	interval
contains	the	true	parameter	p:

normal_two_sided_bounds(0.95,	mu,	sigma)								#	[0.4940,	0.5560]

NOTE
This	is	a	statement	about	the	interval,	not	about	p.	You	should	understand	it	as	the	assertion	that	if	you	were
to	repeat	the	experiment	many	times,	95%	of	the	time	the	“true”	parameter	(which	is	the	same	every	time)
would	lie	within	the	observed	confidence	interval	(which	might	be	different	every	time).

In	particular,	we	do	not	conclude	that	the	coin	is	unfair,	since	0.5	falls	within	our
confidence	interval.

If	instead	we’d	seen	540	heads,	then	we’d	have:

p_hat	=	540	/	1000

mu	=	p_hat

sigma	=	math.sqrt(p_hat	*	(1	-	p_hat)	/	1000)	#	0.0158

normal_two_sided_bounds(0.95,	mu,	sigma)	#	[0.5091,	0.5709]

Here,	“fair	coin”	doesn’t	lie	in	the	confidence	interval.	(The	“fair	coin”	hypothesis	doesn’t
pass	a	test	that	you’d	expect	it	to	pass	95%	of	the	time	if	it	were	true.)

P-hacking
A	procedure	that	erroneously	rejects	the	null	hypothesis	only	5%	of	the	time	will	—	by
definition	—	5%	of	the	time	erroneously	reject	the	null	hypothesis:

def	run_experiment():

				"""flip	a	fair	coin	1000	times,	True	=	heads,	False	=	tails"""

				return	[random.random()	<	0.5	for	_	in	range(1000)]

def	reject_fairness(experiment):

				"""using	the	5%	significance	levels"""

				num_heads	=	len([flip	for	flip	in	experiment	if	flip])

				return	num_heads	<	469	or	num_heads	>	531

random.seed(0)

experiments	=	[run_experiment()	for	_	in	range(1000)]

num_rejections	=	len([experiment

																						for	experiment	in	experiments

																						if	reject_fairness(experiment)])

print	num_rejections			#	46

What	this	means	is	that	if	you’re	setting	out	to	find	“significant”	results,	you	usually	can.
Test	enough	hypotheses	against	your	data	set,	and	one	of	them	will	almost	certainly	appear
significant.	Remove	the	right	outliers,	and	you	can	probably	get	your	p	value	below	0.05.
(We	did	something	vaguely	similar	in	“Correlation”;	did	you	notice?)

This	is	sometimes	called	P-hacking	and	is	in	some	ways	a	consequence	of	the	“inference
from	p-values	framework.”	A	good	article	criticizing	this	approach	is	“The	Earth	Is
Round.”

If	you	want	to	do	good	science,	you	should	determine	your	hypotheses	before	looking	at
the	data,	you	should	clean	your	data	without	the	hypotheses	in	mind,	and	you	should	keep
in	mind	that	p-values	are	not	substitutes	for	common	sense.	(An	alternative	approach	is
“Bayesian	Inference”.)

http://bit.ly/1L2QtCr
http://bit.ly/1L2QJ4a

Example:	Running	an	A/B	Test
One	of	your	primary	responsibilities	at	DataSciencester	is	experience	optimization,	which
is	a	euphemism	for	trying	to	get	people	to	click	on	advertisements.	One	of	your	advertisers
has	developed	a	new	energy	drink	targeted	at	data	scientists,	and	the	VP	of
Advertisements	wants	your	help	choosing	between	advertisement	A	(“tastes	great!”)	and
advertisement	B	(“less	bias!”).

Being	a	scientist,	you	decide	to	run	an	experiment	by	randomly	showing	site	visitors	one
of	the	two	advertisements	and	tracking	how	many	people	click	on	each	one.

If	990	out	of	1,000	A-viewers	click	their	ad	while	only	10	out	of	1,000	B-viewers	click
their	ad,	you	can	be	pretty	confident	that	A	is	the	better	ad.	But	what	if	the	differences	are
not	so	stark?	Here’s	where	you’d	use	statistical	inference.

Let’s	say	that	 	people	see	ad	A,	and	that	 	of	them	click	it.	We	can	think	of	each	ad
view	as	a	Bernoulli	trial	where	 	is	the	probability	that	someone	clicks	ad	A.	Then	(if	

	is	large,	which	it	is	here)	we	know	that	 	is	approximately	a	normal	random

variable	with	mean	 	and	standard	deviation	 .

Similarly,	 	is	approximately	a	normal	random	variable	with	mean	 	and	standard

deviation	 :

def	estimated_parameters(N,	n):

				p	=	n	/	N

				sigma	=	math.sqrt(p	*	(1	-	p)	/	N)

				return	p,	sigma

If	we	assume	those	two	normals	are	independent	(which	seems	reasonable,	since	the
individual	Bernoulli	trials	ought	to	be),	then	their	difference	should	also	be	normal	with

mean	 	and	standard	deviation	 .

NOTE
This	is	sort	of	cheating.	The	math	only	works	out	exactly	like	this	if	you	know	the	standard	deviations.	Here
we’re	estimating	them	from	the	data,	which	means	that	we	really	should	be	using	a	t-distribution.	But	for
large	enough	data	sets,	it’s	close	enough	that	it	doesn’t	make	much	of	a	difference.

This	means	we	can	test	the	null	hypothesis	that	 	and	 	are	the	same	(that	is,	that	
	is	zero),	using	the	statistic:

def	a_b_test_statistic(N_A,	n_A,	N_B,	n_B):

				p_A,	sigma_A	=	estimated_parameters(N_A,	n_A)

				p_B,	sigma_B	=	estimated_parameters(N_B,	n_B)

				return	(p_B	-	p_A)	/	math.sqrt(sigma_A	**	2	+	sigma_B	**	2)

which	should	approximately	be	a	standard	normal.

For	example,	if	“tastes	great”	gets	200	clicks	out	of	1,000	views	and	“less	bias”	gets	180
clicks	out	of	1,000	views,	the	statistic	equals:

z	=	a_b_test_statistic(1000,	200,	1000,	180)				#	-1.14

The	probability	of	seeing	such	a	large	difference	if	the	means	were	actually	equal	would
be:

two_sided_p_value(z)																												#	0.254

which	is	large	enough	that	you	can’t	conclude	there’s	much	of	a	difference.	On	the	other
hand,	if	“less	bias”	only	got	150	clicks,	we’d	have:

z	=	a_b_test_statistic(1000,	200,	1000,	150)				#	-2.94

two_sided_p_value(z)																												#	0.003

which	means	there’s	only	a	0.003	probability	you’d	see	such	a	large	difference	if	the	ads
were	equally	effective.

Bayesian	Inference
The	procedures	we’ve	looked	at	have	involved	making	probability	statements	about	our
tests:	“there’s	only	a	3%	chance	you’d	observe	such	an	extreme	statistic	if	our	null
hypothesis	were	true.”

An	alternative	approach	to	inference	involves	treating	the	unknown	parameters	themselves
as	random	variables.	The	analyst	(that’s	you)	starts	with	a	prior	distribution	for	the
parameters	and	then	uses	the	observed	data	and	Bayes’s	Theorem	to	get	an	updated
posterior	distribution	for	the	parameters.	Rather	than	making	probability	judgments	about
the	tests,	you	make	probability	judgments	about	the	parameters	themselves.

For	example,	when	the	unknown	parameter	is	a	probability	(as	in	our	coin-flipping
example),	we	often	use	a	prior	from	the	Beta	distribution,	which	puts	all	its	probability
between	0	and	1:

def	B(alpha,	beta):

				"""a	normalizing	constant	so	that	the	total	probability	is	1"""

				return	math.gamma(alpha)	*	math.gamma(beta)	/	math.gamma(alpha	+	beta)

def	beta_pdf(x,	alpha,	beta):

				if	x	<	0	or	x	>	1:										#	no	weight	outside	of	[0,	1]

								return	0

				return	x	**	(alpha	-	1)	*	(1	-	x)	**	(beta	-	1)	/	B(alpha,	beta)

Generally	speaking,	this	distribution	centers	its	weight	at:

alpha	/	(alpha	+	beta)

and	the	larger	alpha	and	beta	are,	the	“tighter”	the	distribution	is.

For	example,	if	alpha	and	beta	are	both	1,	it’s	just	the	uniform	distribution	(centered	at
0.5,	very	dispersed).	If	alpha	is	much	larger	than	beta,	most	of	the	weight	is	near	1.	And
if	alpha	is	much	smaller	than	beta,	most	of	the	weight	is	near	zero.	Figure	7-1	shows
several	different	Beta	distributions.

So	let’s	say	we	assume	a	prior	distribution	on	p.	Maybe	we	don’t	want	to	take	a	stand	on
whether	the	coin	is	fair,	and	we	choose	alpha	and	beta	to	both	equal	1.	Or	maybe	we	have
a	strong	belief	that	it	lands	heads	55%	of	the	time,	and	we	choose	alpha	equals	55,	beta
equals	45.

Then	we	flip	our	coin	a	bunch	of	times	and	see	h	heads	and	t	tails.	Bayes’s	Theorem	(and
some	mathematics	that’s	too	tedious	for	us	to	go	through	here)	tells	us	that	the	posterior
distribution	for	p	is	again	a	Beta	distribution	but	with	parameters	alpha	+	h	and	beta	+
t.

NOTE
It	is	no	coincidence	that	the	posterior	distribution	was	again	a	Beta	distribution.	The	number	of	heads	is
given	by	a	Binomial	distribution,	and	the	Beta	is	the	conjugate	prior	to	the	Binomial	distribution.	This
means	that	whenever	you	update	a	Beta	prior	using	observations	from	the	corresponding	binomial,	you	will
get	back	a	Beta	posterior.

Figure	7-1.	Example	Beta	distributions

Let’s	say	you	flip	the	coin	10	times	and	see	only	3	heads.

If	you	started	with	the	uniform	prior	(in	some	sense	refusing	to	take	a	stand	about	the
coin’s	fairness),	your	posterior	distribution	would	be	a	Beta(4,	8),	centered	around	0.33.
Since	you	considered	all	probabilities	equally	likely,	your	best	guess	is	something	pretty
close	to	the	observed	probability.

If	you	started	with	a	Beta(20,	20)	(expressing	the	belief	that	the	coin	was	roughly	fair),
your	posterior	distribution	would	be	a	Beta(23,	27),	centered	around	0.46,	indicating	a
revised	belief	that	maybe	the	coin	is	slightly	biased	toward	tails.

And	if	you	started	with	a	Beta(30,	10)	(expressing	a	belief	that	the	coin	was	biased	to	flip
75%	heads),	your	posterior	distribution	would	be	a	Beta(33,	17),	centered	around	0.66.	In
that	case	you’d	still	believe	in	a	heads	bias,	but	less	strongly	than	you	did	initially.	These
three	different	posteriors	are	plotted	in	Figure	7-2.

http://www.johndcook.com/blog/conjugate_prior_diagram/

Figure	7-2.	Posteriors	arising	from	different	priors

If	you	flipped	the	coin	more	and	more	times,	the	prior	would	matter	less	and	less	until
eventually	you’d	have	(nearly)	the	same	posterior	distribution	no	matter	which	prior	you
started	with.

For	example,	no	matter	how	biased	you	initially	thought	the	coin	was,	it	would	be	hard	to
maintain	that	belief	after	seeing	1,000	heads	out	of	2,000	flips	(unless	you	are	a	lunatic
who	picks	something	like	a	Beta(1000000,1)	prior).

What’s	interesting	is	that	this	allows	us	to	make	probability	statements	about	hypotheses:
“Based	on	the	prior	and	the	observed	data,	there	is	only	a	5%	likelihood	the	coin’s	heads
probability	is	between	49%	and	51%.”	This	is	philosophically	very	different	from	a
statement	like	“if	the	coin	were	fair	we	would	expect	to	observe	data	so	extreme	only	5%
of	the	time.”

Using	Bayesian	inference	to	test	hypotheses	is	considered	somewhat	controversial	—	in
part	because	its	mathematics	can	get	somewhat	complicated,	and	in	part	because	of	the
subjective	nature	of	choosing	a	prior.	We	won’t	use	it	any	further	in	this	book,	but	it’s
good	to	know	about.

For	Further	Exploration
We’ve	barely	scratched	the	surface	of	what	you	should	know	about	statistical	inference.
The	books	recommended	at	the	end	of	Chapter	5	go	into	a	lot	more	detail.

Coursera	offers	a	Data	Analysis	and	Statistical	Inference	course	that	covers	many	of
these	topics.

https://www.coursera.org/course/statistics

Chapter	8.	Gradient	Descent

Those	who	boast	of	their	descent,	brag	on	what	they	owe	to	others.

Seneca

Frequently	when	doing	data	science,	we’ll	be	trying	to	the	find	the	best	model	for	a	certain
situation.	And	usually	“best”	will	mean	something	like	“minimizes	the	error	of	the	model”
or	“maximizes	the	likelihood	of	the	data.”	In	other	words,	it	will	represent	the	solution	to
some	sort	of	optimization	problem.

This	means	we’ll	need	to	solve	a	number	of	optimization	problems.	And	in	particular,
we’ll	need	to	solve	them	from	scratch.	Our	approach	will	be	a	technique	called	gradient
descent,	which	lends	itself	pretty	well	to	a	from-scratch	treatment.	You	might	not	find	it
super	exciting	in	and	of	itself,	but	it	will	enable	us	to	do	exciting	things	throughout	the
book,	so	bear	with	me.

The	Idea	Behind	Gradient	Descent
Suppose	we	have	some	function	f	that	takes	as	input	a	vector	of	real	numbers	and	outputs
a	single	real	number.	One	simple	such	function	is:

def	sum_of_squares(v):

				"""computes	the	sum	of	squared	elements	in	v"""

				return	sum(v_i	**	2	for	v_i	in	v)

We’ll	frequently	need	to	maximize	(or	minimize)	such	functions.	That	is,	we	need	to	find
the	input	v	that	produces	the	largest	(or	smallest)	possible	value.

For	functions	like	ours,	the	gradient	(if	you	remember	your	calculus,	this	is	the	vector	of
partial	derivatives)	gives	the	input	direction	in	which	the	function	most	quickly	increases.
(If	you	don’t	remember	your	calculus,	take	my	word	for	it	or	look	it	up	on	the	Internet.)

Accordingly,	one	approach	to	maximizing	a	function	is	to	pick	a	random	starting	point,
compute	the	gradient,	take	a	small	step	in	the	direction	of	the	gradient	(i.e.,	the	direction
that	causes	the	function	to	increase	the	most),	and	repeat	with	the	new	starting	point.
Similarly,	you	can	try	to	minimize	a	function	by	taking	small	steps	in	the	opposite
direction,	as	shown	in	Figure	8-1.

Figure	8-1.	Finding	a	minimum	using	gradient	descent

NOTE
If	a	function	has	a	unique	global	minimum,	this	procedure	is	likely	to	find	it.	If	a	function	has	multiple
(local)	minima,	this	procedure	might	“find”	the	wrong	one	of	them,	in	which	case	you	might	re-run	the
procedure	from	a	variety	of	starting	points.	If	a	function	has	no	minimum,	then	it’s	possible	the	procedure
might	go	on	forever.

Estimating	the	Gradient
If	f	is	a	function	of	one	variable,	its	derivative	at	a	point	x	measures	how	f(x)	changes
when	we	make	a	very	small	change	to	x.	It	is	defined	as	the	limit	of	the	difference
quotients:

def	difference_quotient(f,	x,	h):

				return	(f(x	+	h)	-	f(x))	/	h

as	h	approaches	zero.

(Many	a	would-be	calculus	student	has	been	stymied	by	the	mathematical	definition	of
limit.	Here	we’ll	cheat	and	simply	say	that	it	means	what	you	think	it	means.)

Figure	8-2.	Approximating	a	derivative	with	a	difference	quotient

The	derivative	is	the	slope	of	the	tangent	line	at	 ,	while	the	difference	quotient

is	the	slope	of	the	not-quite-tangent	line	that	runs	through	 .	As	h
gets	smaller	and	smaller,	the	not-quite-tangent	line	gets	closer	and	closer	to	the	tangent
line	(Figure	8-2).

For	many	functions	it’s	easy	to	exactly	calculate	derivatives.	For	example,	the	square
function:

def	square(x):

				return	x	*	x

has	the	derivative:

def	derivative(x):

				return	2	*	x

which	you	can	check	—	if	you	are	so	inclined	—	by	explicitly	computing	the	difference
quotient	and	taking	the	limit.

What	if	you	couldn’t	(or	didn’t	want	to)	find	the	gradient?	Although	we	can’t	take	limits
in	Python,	we	can	estimate	derivatives	by	evaluating	the	difference	quotient	for	a	very
small	e.	Figure	8-3	shows	the	results	of	one	such	estimation:

derivative_estimate	=	partial(difference_quotient,	square,	h=0.00001)

#	plot	to	show	they're	basically	the	same

import	matplotlib.pyplot	as	plt

x	=	range(-10,10)

plt.title("Actual	Derivatives	vs.	Estimates")

plt.plot(x,	map(derivative,	x),	'rx',	label='Actual')													#	red		x

plt.plot(x,	map(derivative_estimate,	x),	'b+',	label='Estimate')		#	blue	+

plt.legend(loc=9)

plt.show()

Figure	8-3.	Goodness	of	difference	quotient	approximation

When	f	is	a	function	of	many	variables,	it	has	multiple	partial	derivatives,	each	indicating
how	f	changes	when	we	make	small	changes	in	just	one	of	the	input	variables.

We	calculate	its	ith	partial	derivative	by	treating	it	as	a	function	of	just	its	ith	variable,
holding	the	other	variables	fixed:

def	partial_difference_quotient(f,	v,	i,	h):

				"""compute	the	ith	partial	difference	quotient	of	f	at	v"""

				w	=	[v_j	+	(h	if	j	==	i	else	0)				#	add	h	to	just	the	ith	element	of	v

									for	j,	v_j	in	enumerate(v)]

				return	(f(w)	-	f(v))	/	h

after	which	we	can	estimate	the	gradient	the	same	way:

def	estimate_gradient(f,	v,	h=0.00001):

				return	[partial_difference_quotient(f,	v,	i,	h)

												for	i,	_	in	enumerate(v)]

NOTE
A	major	drawback	to	this	“estimate	using	difference	quotients”	approach	is	that	it’s	computationally
expensive.	If	v	has	length	n,	estimate_gradient	has	to	evaluate	f	on	2n	different	inputs.	If	you’re
repeatedly	estimating	gradients,	you’re	doing	a	whole	lot	of	extra	work.

Using	the	Gradient
It’s	easy	to	see	that	the	sum_of_squares	function	is	smallest	when	its	input	v	is	a	vector	of
zeroes.	But	imagine	we	didn’t	know	that.	Let’s	use	gradients	to	find	the	minimum	among
all	three-dimensional	vectors.	We’ll	just	pick	a	random	starting	point	and	then	take	tiny
steps	in	the	opposite	direction	of	the	gradient	until	we	reach	a	point	where	the	gradient	is
very	small:

def	step(v,	direction,	step_size):

				"""move	step_size	in	the	direction	from	v"""

				return	[v_i	+	step_size	*	direction_i

												for	v_i,	direction_i	in	zip(v,	direction)]

def	sum_of_squares_gradient(v):

				return	[2	*	v_i	for	v_i	in	v]

#	pick	a	random	starting	point

v	=	[random.randint(-10,10)	for	i	in	range(3)]

tolerance	=	0.0000001

while	True:

				gradient	=	sum_of_squares_gradient(v)			#	compute	the	gradient	at	v

				next_v	=	step(v,	gradient,	-0.01)							#	take	a	negative	gradient	step

				if	distance(next_v,	v)	<	tolerance:					#	stop	if	we're	converging

								break

				v	=	next_v																														#	continue	if	we're	not

If	you	run	this,	you’ll	find	that	it	always	ends	up	with	a	v	that’s	very	close	to	[0,0,0].	The
smaller	you	make	the	tolerance,	the	closer	it	will	get.

Choosing	the	Right	Step	Size
Although	the	rationale	for	moving	against	the	gradient	is	clear,	how	far	to	move	is	not.
Indeed,	choosing	the	right	step	size	is	more	of	an	art	than	a	science.	Popular	options
include:

Using	a	fixed	step	size

Gradually	shrinking	the	step	size	over	time

At	each	step,	choosing	the	step	size	that	minimizes	the	value	of	the	objective	function

The	last	sounds	optimal	but	is,	in	practice,	a	costly	computation.	We	can	approximate	it	by
trying	a	variety	of	step	sizes	and	choosing	the	one	that	results	in	the	smallest	value	of	the
objective	function:

step_sizes	=	[100,	10,	1,	0.1,	0.01,	0.001,	0.0001,	0.00001]

It	is	possible	that	certain	step	sizes	will	result	in	invalid	inputs	for	our	function.	So	we’ll
need	to	create	a	“safe	apply”	function	that	returns	infinity	(which	should	never	be	the
minimum	of	anything)	for	invalid	inputs:

def	safe(f):

				"""return	a	new	function	that's	the	same	as	f,

				except	that	it	outputs	infinity	whenever	f	produces	an	error"""

				def	safe_f(*args,	**kwargs):

								try:

												return	f(*args,	**kwargs)

								except:

												return	float('inf')									#	this	means	"infinity"	in	Python

				return	safe_f

Putting	It	All	Together
In	the	general	case,	we	have	some	target_fn	that	we	want	to	minimize,	and	we	also	have
its	gradient_fn.	For	example,	the	target_fn	could	represent	the	errors	in	a	model	as	a
function	of	its	parameters,	and	we	might	want	to	find	the	parameters	that	make	the	errors
as	small	as	possible.

Furthermore,	let’s	say	we	have	(somehow)	chosen	a	starting	value	for	the	parameters
theta_0.	Then	we	can	implement	gradient	descent	as:

def	minimize_batch(target_fn,	gradient_fn,	theta_0,	tolerance=0.000001):

				"""use	gradient	descent	to	find	theta	that	minimizes	target	function"""

				step_sizes	=	[100,	10,	1,	0.1,	0.01,	0.001,	0.0001,	0.00001]

				theta	=	theta_0																											#	set	theta	to	initial	value

				target_fn	=	safe(target_fn)															#	safe	version	of	target_fn

				value	=	target_fn(theta)																		#	value	we're	minimizing

				while	True:

								gradient	=	gradient_fn(theta)

								next_thetas	=	[step(theta,	gradient,	-step_size)

																							for	step_size	in	step_sizes]

								#	choose	the	one	that	minimizes	the	error	function

								next_theta	=	min(next_thetas,	key=target_fn)

								next_value	=	target_fn(next_theta)

								#	stop	if	we're	"converging"

								if	abs(value	-	next_value)	<	tolerance:

												return	theta

								else:

												theta,	value	=	next_theta,	next_value

We	called	it	minimize_batch	because,	for	each	gradient	step,	it	looks	at	the	entire	data	set
(because	target_fn	returns	the	error	on	the	whole	data	set).	In	the	next	section,	we’ll	see
an	alternative	approach	that	only	looks	at	one	data	point	at	a	time.

Sometimes	we’ll	instead	want	to	maximize	a	function,	which	we	can	do	by	minimizing	its
negative	(which	has	a	corresponding	negative	gradient):

def	negate(f):

				"""return	a	function	that	for	any	input	x	returns	-f(x)"""

				return	lambda	*args,	**kwargs:	-f(*args,	**kwargs)

def	negate_all(f):

				"""the	same	when	f	returns	a	list	of	numbers"""

				return	lambda	*args,	**kwargs:	[-y	for	y	in	f(*args,	**kwargs)]

def	maximize_batch(target_fn,	gradient_fn,	theta_0,	tolerance=0.000001):

				return	minimize_batch(negate(target_fn),

																										negate_all(gradient_fn),

																										theta_0,

																										tolerance)

Stochastic	Gradient	Descent
As	we	mentioned	before,	often	we’ll	be	using	gradient	descent	to	choose	the	parameters	of
a	model	in	a	way	that	minimizes	some	notion	of	error.	Using	the	previous	batch	approach,
each	gradient	step	requires	us	to	make	a	prediction	and	compute	the	gradient	for	the	whole
data	set,	which	makes	each	step	take	a	long	time.

Now,	usually	these	error	functions	are	additive,	which	means	that	the	predictive	error	on
the	whole	data	set	is	simply	the	sum	of	the	predictive	errors	for	each	data	point.

When	this	is	the	case,	we	can	instead	apply	a	technique	called	stochastic	gradient	descent,
which	computes	the	gradient	(and	takes	a	step)	for	only	one	point	at	a	time.	It	cycles	over
our	data	repeatedly	until	it	reaches	a	stopping	point.

During	each	cycle,	we’ll	want	to	iterate	through	our	data	in	a	random	order:

def	in_random_order(data):

				"""generator	that	returns	the	elements	of	data	in	random	order"""

				indexes	=	[i	for	i,	_	in	enumerate(data)]		#	create	a	list	of	indexes

				random.shuffle(indexes)																				#	shuffle	them

				for	i	in	indexes:																										#	return	the	data	in	that	order

								yield	data[i]

And	we’ll	want	to	take	a	gradient	step	for	each	data	point.	This	approach	leaves	the
possibility	that	we	might	circle	around	near	a	minimum	forever,	so	whenever	we	stop
getting	improvements	we’ll	decrease	the	step	size	and	eventually	quit:

def	minimize_stochastic(target_fn,	gradient_fn,	x,	y,	theta_0,	alpha_0=0.01):

				data	=	zip(x,	y)

				theta	=	theta_0																													#	initial	guess

				alpha	=	alpha_0																													#	initial	step	size

				min_theta,	min_value	=	None,	float("inf")			#	the	minimum	so	far

				iterations_with_no_improvement	=	0

				#	if	we	ever	go	100	iterations	with	no	improvement,	stop

				while	iterations_with_no_improvement	<	100:

								value	=	sum(target_fn(x_i,	y_i,	theta)	for	x_i,	y_i	in	data)

								if	value	<	min_value:

												#	if	we've	found	a	new	minimum,	remember	it

												#	and	go	back	to	the	original	step	size

												min_theta,	min_value	=	theta,	value

												iterations_with_no_improvement	=	0

												alpha	=	alpha_0

								else:

												#	otherwise	we're	not	improving,	so	try	shrinking	the	step	size

												iterations_with_no_improvement	+=	1

												alpha	*=	0.9

								#	and	take	a	gradient	step	for	each	of	the	data	points

								for	x_i,	y_i	in	in_random_order(data):

												gradient_i	=	gradient_fn(x_i,	y_i,	theta)

												theta	=	vector_subtract(theta,	scalar_multiply(alpha,	gradient_i))

				return	min_theta

The	stochastic	version	will	typically	be	a	lot	faster	than	the	batch	version.	Of	course,	we’ll
want	a	version	that	maximizes	as	well:

def	maximize_stochastic(target_fn,	gradient_fn,	x,	y,	theta_0,	alpha_0=0.01):

				return	minimize_stochastic(negate(target_fn),

																															negate_all(gradient_fn),

																															x,	y,	theta_0,	alpha_0)

For	Further	Exploration
Keep	reading!	We’ll	be	using	gradient	descent	to	solve	problems	throughout	the	rest	of
the	book.

At	this	point,	you’re	undoubtedly	sick	of	me	recommending	that	you	read	textbooks.	If
it’s	any	consolation,	Active	Calculus	seems	nicer	than	the	calculus	textbooks	I	learned
from.

scikit-learn	has	a	Stochastic	Gradient	Descent	module	that	is	not	as	general	as	ours	in
some	ways	and	more	general	in	other	ways.	Really,	though,	in	most	real-world
situations	you’ll	be	using	libraries	in	which	the	optimization	is	already	taken	care	of
behind	the	scenes,	and	you	won’t	have	to	worry	about	it	yourself	(other	than	when	it
doesn’t	work	correctly,	which	one	day,	inevitably,	it	won’t).

http://gvsu.edu/s/xr/
http://scikit-learn.org/stable/modules/sgd.html

Chapter	9.	Getting	Data

To	write	it,	it	took	three	months;	to	conceive	it,	three	minutes;	to	collect	the	data	in	it,
all	my	life.

F.	Scott	Fitzgerald

In	order	to	be	a	data	scientist	you	need	data.	In	fact,	as	a	data	scientist	you	will	spend	an
embarrassingly	large	fraction	of	your	time	acquiring,	cleaning,	and	transforming	data.	In	a
pinch,	you	can	always	type	the	data	in	yourself	(or	if	you	have	minions,	make	them	do	it),
but	usually	this	is	not	a	good	use	of	your	time.	In	this	chapter,	we’ll	look	at	different	ways
of	getting	data	into	Python	and	into	the	right	formats.

stdin	and	stdout
If	you	run	your	Python	scripts	at	the	command	line,	you	can	pipe	data	through	them	using
sys.stdin	and	sys.stdout.	For	example,	here	is	a	script	that	reads	in	lines	of	text	and
spits	back	out	the	ones	that	match	a	regular	expression:

#	egrep.py

import	sys,	re

#	sys.argv	is	the	list	of	command-line	arguments

#	sys.argv[0]	is	the	name	of	the	program	itself

#	sys.argv[1]	will	be	the	regex	specified	at	the	command	line

regex	=	sys.argv[1]

#	for	every	line	passed	into	the	script

for	line	in	sys.stdin:

				#	if	it	matches	the	regex,	write	it	to	stdout

				if	re.search(regex,	line):

								sys.stdout.write(line)

And	here’s	one	that	counts	the	lines	it	receives	and	then	writes	out	the	count:

#	line_count.py

import	sys

count	=	0

for	line	in	sys.stdin:

				count	+=	1

#	print	goes	to	sys.stdout

print	count

You	could	then	use	these	to	count	how	many	lines	of	a	file	contain	numbers.	In	Windows,
you’d	use:

type	SomeFile.txt	|	python	egrep.py	"[0-9]"	|	python	line_count.py

whereas	in	a	Unix	system	you’d	use:

cat	SomeFile.txt	|	python	egrep.py	"[0-9]"	|	python	line_count.py

The	|	is	the	pipe	character,	which	means	“use	the	output	of	the	left	command	as	the	input
of	the	right	command.”	You	can	build	pretty	elaborate	data-processing	pipelines	this	way.

NOTE
If	you	are	using	Windows,	you	can	probably	leave	out	the	python	part	of	this	command:

type	SomeFile.txt	|	egrep.py	"[0-9]"	|	line_count.py

If	you	are	on	a	Unix	system,	doing	so	might	require	a	little	more	work.

Similarly,	here’s	a	script	that	counts	the	words	in	its	input	and	writes	out	the	most	common
ones:

#	most_common_words.py

http://bit.ly/1L2Wgb7

import	sys

from	collections	import	Counter

#	pass	in	number	of	words	as	first	argument

try:

				num_words	=	int(sys.argv[1])

except:

				print	"usage:	most_common_words.py	num_words"

				sys.exit(1)			#	non-zero	exit	code	indicates	error

counter	=	Counter(word.lower()																						#	lowercase	words

																		for	line	in	sys.stdin													#

																		for	word	in	line.strip().split()		#	split	on	spaces

																		if	word)																										#	skip	empty	'words'

for	word,	count	in	counter.most_common(num_words):

				sys.stdout.write(str(count))

				sys.stdout.write("\t")

				sys.stdout.write(word)

				sys.stdout.write("\n")

after	which	you	could	do	something	like:

C:\DataScience>type	the_bible.txt	|	python	most_common_words.py	10

64193			the

51380			and

34753			of

13643			to

12799			that

12560			in

10263			he

9840				shall

8987				unto

8836				for

NOTE
If	you	are	a	seasoned	Unix	programmer,	you	are	probably	familiar	with	a	wide	variety	of	command-line
tools	(for	example,	egrep)	that	are	built	into	your	operating	system	and	that	are	probably	preferable	to
building	your	own	from	scratch.	Still,	it’s	good	to	know	you	can	if	you	need	to.

Reading	Files
You	can	also	explicitly	read	from	and	write	to	files	directly	in	your	code.	Python	makes
working	with	files	pretty	simple.

The	Basics	of	Text	Files
The	first	step	to	working	with	a	text	file	is	to	obtain	a	file	object	using	open:

#	'r'	means	read-only

file_for_reading	=	open('reading_file.txt',	'r')

#	'w'	is	write—will	destroy	the	file	if	it	already	exists!

file_for_writing	=	open('writing_file.txt',	'w')

#	'a'	is	append—for	adding	to	the	end	of	the	file

file_for_appending	=	open('appending_file.txt',	'a')

#	don't	forget	to	close	your	files	when	you're	done

file_for_writing.close()

Because	it	is	easy	to	forget	to	close	your	files,	you	should	always	use	them	in	a	with
block,	at	the	end	of	which	they	will	be	closed	automatically:

with	open(filename,'r')	as	f:

				data	=	function_that_gets_data_from(f)

#	at	this	point	f	has	already	been	closed,	so	don't	try	to	use	it

process(data)

If	you	need	to	read	a	whole	text	file,	you	can	just	iterate	over	the	lines	of	the	file	using
for:

starts_with_hash	=	0

with	open('input.txt','r')	as	f:

				for	line	in	file:															#	look	at	each	line	in	the	file

								if	re.match("^#",line):					#	use	a	regex	to	see	if	it	starts	with	'#'

												starts_with_hash	+=	1			#	if	it	does,	add	1	to	the	count

Every	line	you	get	this	way	ends	in	a	newline	character,	so	you’ll	often	want	to	strip()	it
before	doing	anything	with	it.

For	example,	imagine	you	have	a	file	full	of	email	addresses,	one	per	line,	and	that	you
need	to	generate	a	histogram	of	the	domains.	The	rules	for	correctly	extracting	domains
are	somewhat	subtle	(e.g.,	the	Public	Suffix	List),	but	a	good	first	approximation	is	to	just
take	the	parts	of	the	email	addresses	that	come	after	the	@.	(Which	gives	the	wrong	answer
for	email	addresses	like	joel@mail.datasciencester.com.)

def	get_domain(email_address):

				"""split	on	'@'	and	return	the	last	piece"""

				return	email_address.lower().split("@")[-1]

with	open('email_addresses.txt',	'r')	as	f:

				domain_counts	=	Counter(get_domain(line.strip())

																												for	line	in	f

																												if	"@"	in	line)

https://publicsuffix.org

Delimited	Files
The	hypothetical	email	addresses	file	we	just	processed	had	one	address	per	line.	More
frequently	you’ll	work	with	files	with	lots	of	data	on	each	line.	These	files	are	very	often
either	comma-separated	or	tab-separated.	Each	line	has	several	fields,	with	a	comma	(or	a
tab)	indicating	where	one	field	ends	and	the	next	field	starts.

This	starts	to	get	complicated	when	you	have	fields	with	commas	and	tabs	and	newlines	in
them	(which	you	inevitably	do).	For	this	reason,	it’s	pretty	much	always	a	mistake	to	try	to
parse	them	yourself.	Instead,	you	should	use	Python’s	csv	module	(or	the	pandas	library).
For	technical	reasons	that	you	should	feel	free	to	blame	on	Microsoft,	you	should	always
work	with	csv	files	in	binary	mode	by	including	a	b	after	the	r	or	w	(see	Stack	Overflow).

If	your	file	has	no	headers	(which	means	you	probably	want	each	row	as	a	list,	and
which	places	the	burden	on	you	to	know	what’s	in	each	column),	you	can	use	csv.reader
to	iterate	over	the	rows,	each	of	which	will	be	an	appropriately	split	list.

For	example,	if	we	had	a	tab-delimited	file	of	stock	prices:

6/20/2014			AAPL				90.91

6/20/2014			MSFT				41.68

6/20/2014			FB		64.5

6/19/2014			AAPL				91.86

6/19/2014			MSFT				41.51

6/19/2014			FB		64.34

we	could	process	them	with:

import	csv

with	open('tab_delimited_stock_prices.txt',	'rb')	as	f:

				reader	=	csv.reader(f,	delimiter='\t')

				for	row	in	reader:

								date	=	row[0]

								symbol	=	row[1]

								closing_price	=	float(row[2])

								process(date,	symbol,	closing_price)

If	your	file	has	headers:

date:symbol:closing_price

6/20/2014:AAPL:90.91

6/20/2014:MSFT:41.68

6/20/2014:FB:64.5

you	can	either	skip	the	header	row	(with	an	initial	call	to	reader.next())	or	get	each	row
as	a	dict	(with	the	headers	as	keys)	by	using	csv.DictReader:

with	open('colon_delimited_stock_prices.txt',	'rb')	as	f:

				reader	=	csv.DictReader(f,	delimiter=':')

				for	row	in	reader:

								date	=	row["date"]

								symbol	=	row["symbol"]

								closing_price	=	float(row["closing_price"])

								process(date,	symbol,	closing_price)

http://bit.ly/1L2Y7wl

Even	if	your	file	doesn’t	have	headers	you	can	still	use	DictReader	by	passing	it	the	keys
as	a	fieldnames	parameter.

You	can	similarly	write	out	delimited	data	using	csv.writer:

today_prices	=	{	'AAPL'	:	90.91,	'MSFT'	:	41.68,	'FB'	:	64.5	}

with	open('comma_delimited_stock_prices.txt','wb')	as	f:

				writer	=	csv.writer(f,	delimiter=',')

				for	stock,	price	in	today_prices.items():

								writer.writerow([stock,	price])

csv.writer	will	do	the	right	thing	if	your	fields	themselves	have	commas	in	them.	Your
own	hand-rolled	writer	probably	won’t.	For	example,	if	you	attempt:

results	=	[["test1",	"success",	"Monday"],

											["test2",	"success,	kind	of",	"Tuesday"],

											["test3",	"failure,	kind	of",	"Wednesday"],

											["test4",	"failure,	utter",	"Thursday"]]

#	don't	do	this!

with	open('bad_csv.txt',	'wb')	as	f:

				for	row	in	results:

								f.write(",".join(map(str,	row)))	#	might	have	too	many	commas	in	it!

								f.write("\n")																				#	row	might	have	newlines	as	well!

You	will	end	up	with	a	csv	file	that	looks	like:

test1,success,Monday

test2,success,	kind	of,Tuesday

test3,failure,	kind	of,Wednesday

test4,failure,	utter,Thursday

and	that	no	one	will	ever	be	able	to	make	sense	of.

Scraping	the	Web
Another	way	to	get	data	is	by	scraping	it	from	web	pages.	Fetching	web	pages,	it	turns
out,	is	pretty	easy;	getting	meaningful	structured	information	out	of	them	less	so.

HTML	and	the	Parsing	Thereof
Pages	on	the	Web	are	written	in	HTML,	in	which	text	is	(ideally)	marked	up	into	elements
and	their	attributes:

<html>

		<head>

				<title>A	web	page</title>

		</head>

		<body>

				<p	id="author">Joel	Grus</p>

				<p	id="subject">Data	Science</p>

		</body>

</html>

In	a	perfect	world,	where	all	web	pages	are	marked	up	semantically	for	our	benefit,	we
would	be	able	to	extract	data	using	rules	like	“find	the	<p>	element	whose	id	is	subject
and	return	the	text	it	contains.”	In	the	actual	world,	HTML	is	not	generally	well-formed,
let	alone	annotated.	This	means	we’ll	need	help	making	sense	of	it.

To	get	data	out	of	HTML,	we	will	use	the	BeautifulSoup	library,	which	builds	a	tree	out	of
the	various	elements	on	a	web	page	and	provides	a	simple	interface	for	accessing	them.	As
I	write	this,	the	latest	version	is	Beautiful	Soup	4.3.2	(pip	install	beautifulsoup4),
which	is	what	we’ll	be	using.	We’ll	also	be	using	the	requests	library	(pip	install
requests),	which	is	a	much	nicer	way	of	making	HTTP	requests	than	anything	that’s	built
into	Python.

Python’s	built-in	HTML	parser	is	not	that	lenient,	which	means	that	it	doesn’t	always	cope
well	with	HTML	that’s	not	perfectly	formed.	For	that	reason,	we’ll	use	a	different	parser,
which	we	need	to	install:

pip	install	html5lib

To	use	Beautiful	Soup,	we’ll	need	to	pass	some	HTML	into	the	BeautifulSoup()
function.	In	our	examples,	this	will	be	the	result	of	a	call	to	requests.get:

from	bs4	import	BeautifulSoup

import	requests

html	=	requests.get("http://www.example.com").text

soup	=	BeautifulSoup(html,	'html5lib')

after	which	we	can	get	pretty	far	using	a	few	simple	methods.

We’ll	typically	work	with	Tag	objects,	which	correspond	to	the	tags	representing	the
structure	of	an	HTML	page.

For	example,	to	find	the	first	<p>	tag	(and	its	contents)	you	can	use:

first_paragraph	=	soup.find('p')								#	or	just	soup.p

You	can	get	the	text	contents	of	a	Tag	using	its	text	property:

http://www.crummy.com/software/BeautifulSoup/
http://docs.python-requests.org/en/latest/

first_paragraph_text	=	soup.p.text

first_paragraph_words	=	soup.p.text.split()

And	you	can	extract	a	tag’s	attributes	by	treating	it	like	a	dict:

first_paragraph_id	=	soup.p['id']							#	raises	KeyError	if	no	'id'

first_paragraph_id2	=	soup.p.get('id')		#	returns	None	if	no	'id'

You	can	get	multiple	tags	at	once:

all_paragraphs	=	soup.find_all('p')		#	or	just	soup('p')

paragraphs_with_ids	=	[p	for	p	in	soup('p')	if	p.get('id')]

Frequently	you’ll	want	to	find	tags	with	a	specific	class:

important_paragraphs	=	soup('p',	{'class'	:	'important'})

important_paragraphs2	=	soup('p',	'important')

important_paragraphs3	=	[p	for	p	in	soup('p')

																									if	'important'	in	p.get('class',	[])]

And	you	can	combine	these	to	implement	more	elaborate	logic.	For	example,	if	you	want
to	find	every		element	that	is	contained	inside	a	<div>	element,	you	could	do	this:

#	warning,	will	return	the	same	span	multiple	times

#	if	it	sits	inside	multiple	divs

#	be	more	clever	if	that's	the	case

spans_inside_divs	=	[span

																					for	div	in	soup('div')					#	for	each	<div>	on	the	page

																					for	span	in	div('span')]			#	find	each		inside	it

Just	this	handful	of	features	will	allow	us	to	do	quite	a	lot.	If	you	end	up	needing	to	do
more-complicated	things	(or	if	you’re	just	curious),	check	the	documentation.

Of	course,	whatever	data	is	important	won’t	typically	be	labeled	as	class="important".
You’ll	need	to	carefully	inspect	the	source	HTML,	reason	through	your	selection	logic,
and	worry	about	edge	cases	to	make	sure	your	data	is	correct.	Let’s	look	at	an	example.

Example:	O’Reilly	Books	About	Data
A	potential	investor	in	DataSciencester	thinks	data	is	just	a	fad.	To	prove	him	wrong,	you
decide	to	examine	how	many	data	books	O’Reilly	has	published	over	time.	After	digging
through	its	website,	you	find	that	it	has	many	pages	of	data	books	(and	videos),	reachable
through	30-items-at-a-time	directory	pages	with	URLs	like:

http://shop.oreilly.com/category/browse-subjects/data.do?

sortby=publicationDate&page=1

Unless	you	want	to	be	a	jerk	(and	unless	you	want	your	scraper	to	get	banned),	whenever
you	want	to	scrape	data	from	a	website	you	should	first	check	to	see	if	it	has	some	sort	of
access	policy.	Looking	at:

http://oreilly.com/terms/

there	seems	to	be	nothing	prohibiting	this	project.	In	order	to	be	good	citizens,	we	should
also	check	for	a	robots.txt	file	that	tells	webcrawlers	how	to	behave.	The	important	lines	in
http://shop.oreilly.com/robots.txt	are:

Crawl-delay:	30

Request-rate:	1/30

The	first	tells	us	that	we	should	wait	30	seconds	between	requests,	the	second	that	we
should	request	only	one	page	every	30	seconds.	So	basically	they’re	two	different	ways	of
saying	the	same	thing.	(There	are	other	lines	that	indicate	directories	not	to	scrape,	but
they	don’t	include	our	URL,	so	we’re	OK	there.)

NOTE
There’s	always	the	possibility	that	O’Reilly	will	at	some	point	revamp	its	website	and	break	all	the	logic	in
this	section.	I	will	do	what	I	can	to	prevent	that,	of	course,	but	I	don’t	have	a	ton	of	influence	over	there.
Although,	if	every	one	of	you	were	to	convince	everyone	you	know	to	buy	a	copy	of	this	book…

To	figure	out	how	to	extract	the	data,	let’s	download	one	of	those	pages	and	feed	it	to
Beautiful	Soup:

#	you	don't	have	to	split	the	url	like	this	unless	it	needs	to	fit	in	a	book

url	=	"http://shop.oreilly.com/category/browse-subjects/"	+	\

						"data.do?sortby=publicationDate&page=1"

soup	=	BeautifulSoup(requests.get(url).text,	'html5lib')

If	you	view	the	source	of	the	page	(in	your	browser,	right-click	and	select	“View	source”
or	“View	page	source”	or	whatever	option	looks	the	most	like	that),	you’ll	see	that	each
book	(or	video)	seems	to	be	uniquely	contained	in	a	<td>	table	cell	element	whose	class
is	thumbtext.	Here	is	(an	abridged	version	of)	the	relevant	HTML	for	one	book:

<td	class="thumbtext">

		<div	class="thumbcontainer">

				<div	class="thumbdiv">

						

http://shop.oreilly.com/robots.txt

								

						

				</div>

		</div>

		<div	class="widthchange">

				<div	class="thumbheader">

						Getting	a	Big	Data	Job	For	Dummies

				</div>

				<div	class="AuthorName">By	Jason	Williamson</div>

												December	2014				

				<div	style="clear:both;">

						<div	id="146350">

								

																												Ebook:

																												 $29.99

								

						</div>

				</div>

		</div>

</td>

A	good	first	step	is	to	find	all	of	the	td	thumbtext	tag	elements:

tds	=	soup('td',	'thumbtext')

print	len(tds)

#	30

Next	we’d	like	to	filter	out	the	videos.	(The	would-be	investor	is	only	impressed	by
books.)	If	we	inspect	the	HTML	further,	we	see	that	each	td	contains	one	or	more	span
elements	whose	class	is	pricelabel,	and	whose	text	looks	like	Ebook:	or	Video:	or
Print:.	It	appears	that	the	videos	contain	only	one	pricelabel,	whose	text	starts	with
Video	(after	removing	leading	spaces).	This	means	we	can	test	for	videos	with:

def	is_video(td):

				"""it's	a	video	if	it	has	exactly	one	pricelabel,	and	if

				the	stripped	text	inside	that	pricelabel	starts	with	'Video'"""

				pricelabels	=	td('span',	'pricelabel')

				return	(len(pricelabels)	==	1	and

												pricelabels[0].text.strip().startswith("Video"))

print	len([td	for	td	in	tds	if	not	is_video(td)])

#	21	for	me,	might	be	different	for	you

Now	we’re	ready	to	start	pulling	data	out	of	the	td	elements.	It	looks	like	the	book	title	is
the	text	inside	the	<a>	tag	inside	the	<div	class="thumbheader">:

title	=	td.find("div",	"thumbheader").a.text

The	author(s)	are	in	the	text	of	the	AuthorName	<div>.	They	are	prefaced	by	a	By	(which
we	want	to	get	rid	of)	and	separated	by	commas	(which	we	want	to	split	out,	after	which
we’ll	need	to	get	rid	of	spaces):

author_name	=	td.find('div',	'AuthorName').text

authors	=	[x.strip()	for	x	in	re.sub("^By	",	"",	author_name).split(",")]

The	ISBN	seems	to	be	contained	in	the	link	that’s	in	the	thumbheader	<div>:

isbn_link	=	td.find("div",	"thumbheader").a.get("href")

#	re.match	captures	the	part	of	the	regex	in	parentheses

isbn	=	re.match("/product/(.*)\.do",	isbn_link).group(1)

And	the	date	is	just	the	contents	of	the	:

date	=	td.find("span",	"directorydate").text.strip()

Let’s	put	this	all	together	into	a	function:

def	book_info(td):

				"""given	a	BeautifulSoup	<td>	Tag	representing	a	book,

				extract	the	book's	details	and	return	a	dict"""

				title	=	td.find("div",	"thumbheader").a.text

				by_author	=	td.find('div',	'AuthorName').text

				authors	=	[x.strip()	for	x	in	re.sub("^By	",	"",	by_author).split(",")]

				isbn_link	=	td.find("div",	"thumbheader").a.get("href")

				isbn	=	re.match("/product/(.*)\.do",	isbn_link).groups()[0]

				date	=	td.find("span",	"directorydate").text.strip()

				return	{

								"title"	:	title,

								"authors"	:	authors,

								"isbn"	:	isbn,

								"date"	:	date

				}

And	now	we’re	ready	to	scrape:

from	bs4	import	BeautifulSoup

import	requests

from	time	import	sleep

base_url	=	"http://shop.oreilly.com/category/browse-subjects/"	+	\

											"data.do?sortby=publicationDate&page="

books	=	[]

NUM_PAGES	=	31					#	at	the	time	of	writing,	probably	more	by	now

for	page_num	in	range(1,	NUM_PAGES	+	1):

				print	"souping	page",	page_num,	",",	len(books),	"	found	so	far"

				url	=	base_url	+	str(page_num)

				soup	=	BeautifulSoup(requests.get(url).text,	'html5lib')

				for	td	in	soup('td',	'thumbtext'):

								if	not	is_video(td):

												books.append(book_info(td))

				#	now	be	a	good	citizen	and	respect	the	robots.txt!

				sleep(30)

NOTE
Extracting	data	from	HTML	like	this	is	more	data	art	than	data	science.	There	are	countless	other	find-the-
books	and	find-the-title	logics	that	would	have	worked	just	as	well.

Now	that	we’ve	collected	the	data,	we	can	plot	the	number	of	books	published	each	year
(Figure	9-1):

def	get_year(book):

				"""book["date"]	looks	like	'November	2014'	so	we	need	to

				split	on	the	space	and	then	take	the	second	piece"""

				return	int(book["date"].split()[1])

#	2014	is	the	last	complete	year	of	data	(when	I	ran	this)

year_counts	=	Counter(get_year(book)	for	book	in	books

																						if	get_year(book)	<=	2014)

import	matplotlib.pyplot	as	plt

years	=	sorted(year_counts)

book_counts	=	[year_counts[year]	for	year	in	years]

plt.plot(years,	book_counts)

plt.ylabel("#	of	data	books")

plt.title("Data	is	Big!")

plt.show()

Figure	9-1.	Number	of	data	books	per	year

Unfortunately,	the	would-be	investor	looks	at	the	graph	and	decides	that	2013	was	“peak
data.”

Using	APIs
Many	websites	and	web	services	provide	application	programming	interfaces	(APIs),
which	allow	you	to	explicitly	request	data	in	a	structured	format.	This	saves	you	the
trouble	of	having	to	scrape	them!

JSON	(and	XML)
Because	HTTP	is	a	protocol	for	transferring	text,	the	data	you	request	through	a	web	API
needs	to	be	serialized	into	a	string	format.	Often	this	serialization	uses	JavaScript	Object
Notation	(JSON).	JavaScript	objects	look	quite	similar	to	Python	dicts,	which	makes	their
string	representations	easy	to	interpret:

{	"title"	:	"Data	Science	Book",

		"author"	:	"Joel	Grus",

		"publicationYear"	:	2014,

		"topics"	:	["data",	"science",	"data	science"]	}

We	can	parse	JSON	using	Python’s	json	module.	In	particular,	we	will	use	its	loads
function,	which	deserializes	a	string	representing	a	JSON	object	into	a	Python	object:

import	json

serialized	=	"""{	"title"	:	"Data	Science	Book",

																		"author"	:	"Joel	Grus",

																		"publicationYear"	:	2014,

																		"topics"	:	["data",	"science",	"data	science"]	}"""

#	parse	the	JSON	to	create	a	Python	dict

deserialized	=	json.loads(serialized)

if	"data	science"	in	deserialized["topics"]:

				print	deserialized

Sometimes	an	API	provider	hates	you	and	only	provides	responses	in	XML:

<Book>

		<Title>Data	Science	Book</Title>

		<Author>Joel	Grus</Author>

		<PublicationYear>2014</PublicationYear>

		<Topics>

				<Topic>data</Topic>

				<Topic>science</Topic>

				<Topic>data	science</Topic>

		</Topics>

</Book>

You	can	use	BeautifulSoup	to	get	data	from	XML	similarly	to	how	we	used	it	to	get	data
from	HTML;	check	its	documentation	for	details.

Using	an	Unauthenticated	API
Most	APIs	these	days	require	you	to	first	authenticate	yourself	in	order	to	use	them.	While
we	don’t	begrudge	them	this	policy,	it	creates	a	lot	of	extra	boilerplate	that	muddies	up	our
exposition.	Accordingly,	we’ll	first	take	a	look	at	GitHub’s	API,	with	which	you	can	do
some	simple	things	unauthenticated:

import	requests,	json

endpoint	=	"https://api.github.com/users/joelgrus/repos"

repos	=	json.loads(requests.get(endpoint).text)

At	this	point	repos	is	a	list	of	Python	dicts,	each	representing	a	public	repository	in	my
GitHub	account.	(Feel	free	to	substitute	your	username	and	get	your	GitHub	repository
data	instead.	You	do	have	a	GitHub	account,	right?)

We	can	use	this	to	figure	out	which	months	and	days	of	the	week	I’m	most	likely	to	create
a	repository.	The	only	issue	is	that	the	dates	in	the	response	are	(Unicode)	strings:

u'created_at':	u'2013-07-05T02:02:28Z'

Python	doesn’t	come	with	a	great	date	parser,	so	we’ll	need	to	install	one:

pip	install	python-dateutil

from	which	you’ll	probably	only	ever	need	the	dateutil.parser.parse	function:

from	dateutil.parser	import	parse

dates	=	[parse(repo["created_at"])	for	repo	in	repos]

month_counts	=	Counter(date.month	for	date	in	dates)

weekday_counts	=	Counter(date.weekday()	for	date	in	dates)

Similarly,	you	can	get	the	languages	of	my	last	five	repositories:

last_5_repositories	=	sorted(repos,

																													key=lambda	r:	r["created_at"],

																													reverse=True)[:5]

last_5_languages	=	[repo["language"]

																				for	repo	in	last_5_repositories]

Typically	we	won’t	be	working	with	APIs	at	this	low	“make	the	requests	and	parse	the
responses	ourselves”	level.	One	of	the	benefits	of	using	Python	is	that	someone	has
already	built	a	library	for	pretty	much	any	API	you’re	interested	in	accessing.	When
they’re	done	well,	these	libraries	can	save	you	a	lot	of	the	trouble	of	figuring	out	the
hairier	details	of	API	access.	(When	they’re	not	done	well,	or	when	it	turns	out	they’re
based	on	defunct	versions	of	the	corresponding	APIs,	they	can	cause	you	enormous
headaches.)

Nonetheless,	you’ll	occasionally	have	to	roll	your	own	API-access	library	(or,	more	likely,

http://developer.github.com/v3/

debug	why	someone	else’s	isn’t	working),	so	it’s	good	to	know	some	of	the	details.

Finding	APIs
If	you	need	data	from	a	specific	site,	look	for	a	developers	or	API	section	of	the	site	for
details,	and	try	searching	the	Web	for	“python	__	api”	to	find	a	library.	There	is	a	Rotten
Tomatoes	API	for	Python.	There	are	multiple	Python	wrappers	for	the	Klout	API,	for	the
Yelp	API,	for	the	IMDB	API,	and	so	on.

If	you’re	looking	for	lists	of	APIs	that	have	Python	wrappers,	two	directories	are	at	Python
API	and	Python	for	Beginners.

If	you	want	a	directory	of	web	APIs	more	broadly	(without	Python	wrappers	necessarily),
a	good	resource	is	Programmable	Web,	which	has	a	huge	directory	of	categorized	APIs.

And	if	after	all	that	you	can’t	find	what	you	need,	there’s	always	scraping,	the	last	refuge
of	the	data	scientist.

http://www.pythonapi.com
http://bit.ly/1L35VOR
http://www.programmableweb.com

Example:	Using	the	Twitter	APIs
Twitter	is	a	fantastic	source	of	data	to	work	with.	You	can	use	it	to	get	real-time	news.	You
can	use	it	to	measure	reactions	to	current	events.	You	can	use	it	to	find	links	related	to
specific	topics.	You	can	use	it	for	pretty	much	anything	you	can	imagine,	just	as	long	as
you	can	get	access	to	its	data.	And	you	can	get	access	to	its	data	through	its	API.

To	interact	with	the	Twitter	APIs	we’ll	be	using	the	Twython	library	(pip	install
twython).	There	are	quite	a	few	Python	Twitter	libraries	out	there,	but	this	is	the	one	that
I’ve	had	the	most	success	working	with.	You	are	encouraged	to	explore	the	others	as	well!

https://github.com/ryanmcgrath/twython

Getting	Credentials
In	order	to	use	Twitter’s	APIs,	you	need	to	get	some	credentials	(for	which	you	need	a
Twitter	account,	which	you	should	have	anyway	so	that	you	can	be	part	of	the	lively	and
friendly	Twitter	#datascience	community).	Like	all	instructions	that	relate	to	websites
that	I	don’t	control,	these	may	go	obsolete	at	some	point	but	will	hopefully	work	for	a
while.	(Although	they	have	already	changed	at	least	once	while	I	was	writing	this	book,	so
good	luck!)

1.	 Go	to	https://apps.twitter.com/.

2.	 If	you	are	not	signed	in,	click	Sign	in	and	enter	your	Twitter	username	and	password.

3.	 Click	Create	New	App.

4.	 Give	it	a	name	(such	as	“Data	Science”)	and	a	description,	and	put	any	URL	as	the
website	(it	doesn’t	matter	which	one).

5.	 Agree	to	the	Terms	of	Service	and	click	Create.

6.	 Take	note	of	the	consumer	key	and	consumer	secret.

7.	 Click	“Create	my	access	token.”

8.	 Take	note	of	the	access	token	and	access	token	secret	(you	may	have	to	refresh	the
page).

The	consumer	key	and	consumer	secret	tell	Twitter	what	application	is	accessing	its	APIs,
while	the	access	token	and	access	token	secret	tell	Twitter	who	is	accessing	its	APIs.	If
you	have	ever	used	your	Twitter	account	to	log	in	to	some	other	site,	the	“click	to
authorize”	page	was	generating	an	access	token	for	that	site	to	use	to	convince	Twitter	that
it	was	you	(or,	at	least,	acting	on	your	behalf).	As	we	don’t	need	this	“let	anyone	log	in”
functionality,	we	can	get	by	with	the	statically	generated	access	token	and	access	token
secret.

Caution

The	consumer	key/secret	and	access	token	key/secret	should	be	treated	like	passwords.
You	shouldn’t	share	them,	you	shouldn’t	publish	them	in	your	book,	and	you	shouldn’t
check	them	into	your	public	GitHub	repository.	One	simple	solution	is	to	store	them	in	a
credentials.json	file	that	doesn’t	get	checked	in,	and	to	have	your	code	use	json.loads	to
retrieve	them.

Using	Twython

First	we’ll	look	at	the	Search	API,	which	requires	only	the	consumer	key	and	secret,	not
the	access	token	or	secret:

https://apps.twitter.com/
https://dev.twitter.com/docs/api/1.1/get/search/tweets

from	twython	import	Twython

twitter	=	Twython(CONSUMER_KEY,	CONSUMER_SECRET)

#	search	for	tweets	containing	the	phrase	"data	science"

for	status	in	twitter.search(q='"data	science"')["statuses"]:

				user	=	status["user"]["screen_name"].encode('utf-8')

				text	=	status["text"].encode('utf-8')

				print	user,	":",	text

				print

NOTE
The	.encode("utf-8")	is	necessary	to	deal	with	the	fact	that	tweets	often	contain	Unicode	characters	that
print	can’t	deal	with.	(If	you	leave	it	out,	you	will	very	likely	get	a	UnicodeEncodeError.)

It	is	almost	certain	that	at	some	point	in	your	data	science	career	you	will	run	into	some	serious	Unicode
problems,	at	which	point	you	will	need	to	refer	to	the	Python	documentation	or	else	grudgingly	start	using
Python	3,	which	plays	much	more	nicely	with	Unicode	text.

If	you	run	this,	you	should	get	some	tweets	back	like:

haithemnyc:	Data	scientists	with	the	technical	savvy	&	analytical	chops	to

derive	meaning	from	big	data	are	in	demand.	http://t.co/HsF9Q0dShP

RPubsRecent:	Data	Science	http://t.co/6hcHUz2PHM

spleonard1:	Using	#dplyr	in	#R	to	work	through	a	procrastinated	assignment	for

@rdpeng	in	@coursera	data	science	specialization.		So	easy	and	Awesome.

This	isn’t	that	interesting,	largely	because	the	Twitter	Search	API	just	shows	you	whatever
handful	of	recent	results	it	feels	like.	When	you’re	doing	data	science,	more	often	you
want	a	lot	of	tweets.	This	is	where	the	Streaming	API	is	useful.	It	allows	you	to	connect	to
(a	sample	of)	the	great	Twitter	firehose.	To	use	it,	you’ll	need	to	authenticate	using	your
access	tokens.

In	order	to	access	the	Streaming	API	with	Twython,	we	need	to	define	a	class	that	inherits
from	TwythonStreamer	and	that	overrides	its	on_success	method	(and	possibly	its
on_error	method):

from	twython	import	TwythonStreamer

#	appending	data	to	a	global	variable	is	pretty	poor	form

#	but	it	makes	the	example	much	simpler

tweets	=	[]

class	MyStreamer(TwythonStreamer):

				"""our	own	subclass	of	TwythonStreamer	that	specifies

				how	to	interact	with	the	stream"""

				def	on_success(self,	data):

								"""what	do	we	do	when	twitter	sends	us	data?

								here	data	will	be	a	Python	dict	representing	a	tweet"""

								#	only	want	to	collect	English-language	tweets

								if	data['lang']	==	'en':

												tweets.append(data)

												print	"received	tweet	#",	len(tweets)

								#	stop	when	we've	collected	enough

								if	len(tweets)	>=	1000:

												self.disconnect()

				def	on_error(self,	status_code,	data):

http://bit.ly/1ycODJw
http://bit.ly/1ycOEgG

								print	status_code,	data

								self.disconnect()

MyStreamer	will	connect	to	the	Twitter	stream	and	wait	for	Twitter	to	feed	it	data.	Each
time	it	receives	some	data	(here,	a	Tweet	represented	as	a	Python	object)	it	passes	it	to	the
on_success	method,	which	appends	it	to	our	tweets	list	if	its	language	is	English,	and
then	disconnects	the	streamer	after	it’s	collected	1,000	tweets.

All	that’s	left	is	to	initialize	it	and	start	it	running:

stream	=	MyStreamer(CONSUMER_KEY,	CONSUMER_SECRET,

																				ACCESS_TOKEN,	ACCESS_TOKEN_SECRET)

#	starts	consuming	public	statuses	that	contain	the	keyword	'data'

stream.statuses.filter(track='data')

#	if	instead	we	wanted	to	start	consuming	a	sample	of	*all*	public	statuses

#	stream.statuses.sample()

This	will	run	until	it	collects	1,000	tweets	(or	until	it	encounters	an	error)	and	stop,	at
which	point	you	can	start	analyzing	those	tweets.	For	instance,	you	could	find	the	most
common	hashtags	with:

top_hashtags	=	Counter(hashtag['text'].lower()

																							for	tweet	in	tweets

																							for	hashtag	in	tweet["entities"]["hashtags"])

print	top_hashtags.most_common(5)

Each	tweet	contains	a	lot	of	data.	You	can	either	poke	around	yourself	or	dig	through	the
Twitter	API	documentation.

NOTE
In	a	non-toy	project	you	probably	wouldn’t	want	to	rely	on	an	in-memory	list	for	storing	the	tweets.
Instead	you’d	want	to	save	them	to	a	file	or	a	database,	so	that	you’d	have	them	permanently.

https://dev.twitter.com/overview/api/tweets

For	Further	Exploration
pandas	is	the	primary	library	that	data	science	types	use	for	working	with	(and,	in
particular,	importing)	data.

Scrapy	is	a	more	full-featured	library	for	building	more	complicated	web	scrapers	that
do	things	like	follow	unknown	links.

http://pandas.pydata.org/
http://scrapy.org/

Chapter	10.	Working	with	Data

Experts	often	possess	more	data	than	judgment.

Colin	Powell

Working	with	data	is	both	an	art	and	a	science.	We’ve	mostly	been	talking	about	the
science	part,	but	in	this	chapter	we’ll	look	at	some	of	the	art.

Exploring	Your	Data
After	you’ve	identified	the	questions	you’re	trying	to	answer	and	have	gotten	your	hands
on	some	data,	you	might	be	tempted	to	dive	in	and	immediately	start	building	models	and
getting	answers.	But	you	should	resist	this	urge.	Your	first	step	should	be	to	explore	your
data.

Exploring	One-Dimensional	Data
The	simplest	case	is	when	you	have	a	one-dimensional	data	set,	which	is	just	a	collection
of	numbers.	For	example,	these	could	be	the	daily	average	number	of	minutes	each	user
spends	on	your	site,	the	number	of	times	each	of	a	collection	of	data	science	tutorial
videos	was	watched,	or	the	number	of	pages	of	each	of	the	data	science	books	in	your	data
science	library.

An	obvious	first	step	is	to	compute	a	few	summary	statistics.	You’d	like	to	know	how
many	data	points	you	have,	the	smallest,	the	largest,	the	mean,	and	the	standard	deviation.

But	even	these	don’t	necessarily	give	you	a	great	understanding.	A	good	next	step	is	to
create	a	histogram,	in	which	you	group	your	data	into	discrete	buckets	and	count	how
many	points	fall	into	each	bucket:

def	bucketize(point,	bucket_size):

				"""floor	the	point	to	the	next	lower	multiple	of	bucket_size"""

				return	bucket_size	*	math.floor(point	/	bucket_size)

def	make_histogram(points,	bucket_size):

				"""buckets	the	points	and	counts	how	many	in	each	bucket"""

				return	Counter(bucketize(point,	bucket_size)	for	point	in	points)

def	plot_histogram(points,	bucket_size,	title=""):

				histogram	=	make_histogram(points,	bucket_size)

				plt.bar(histogram.keys(),	histogram.values(),	width=bucket_size)

				plt.title(title)

				plt.show()

For	example,	consider	the	two	following	sets	of	data:

random.seed(0)

#	uniform	between	-100	and	100

uniform	=	[200	*	random.random()	-	100	for	_	in	range(10000)]

#	normal	distribution	with	mean	0,	standard	deviation	57

normal	=	[57	*	inverse_normal_cdf(random.random())

										for	_	in	range(10000)]

Both	have	means	close	to	0	and	standard	deviations	close	to	58.	However,	they	have	very
different	distributions.	Figure	10-1	shows	the	distribution	of	uniform:

plot_histogram(uniform,	10,	"Uniform	Histogram")

while	Figure	10-2	shows	the	distribution	of	normal:

plot_histogram(normal,	10,	"Normal	Histogram")

In	this	case,	both	distributions	had	pretty	different	max	and	min,	but	even	knowing	that
wouldn’t	have	been	sufficient	to	understand	how	they	differed.

Figure	10-1.	Histogram	of	uniform

Two	Dimensions
Now	imagine	you	have	a	data	set	with	two	dimensions.	Maybe	in	addition	to	daily
minutes	you	have	years	of	data	science	experience.	Of	course	you’d	want	to	understand
each	dimension	individually.	But	you	probably	also	want	to	scatter	the	data.

For	example,	consider	another	fake	data	set:

def	random_normal():

				"""returns	a	random	draw	from	a	standard	normal	distribution"""

				return	inverse_normal_cdf(random.random())

xs	=	[random_normal()	for	_	in	range(1000)]

ys1	=	[x	+	random_normal()	/	2	for	x	in	xs]

ys2	=	[-x	+	random_normal()	/	2	for	x	in	xs]

If	you	were	to	run	plot_histogram	on	ys1	and	ys2	you’d	get	very	similar	looking	plots
(indeed,	both	are	normally	distributed	with	the	same	mean	and	standard	deviation).

Figure	10-2.	Histogram	of	normal

But	each	has	a	very	different	joint	distribution	with	xs,	as	shown	in	Figure	10-3:

plt.scatter(xs,	ys1,	marker='.',	color='black',	label='ys1')

plt.scatter(xs,	ys2,	marker='.',	color='gray',		label='ys2')

plt.xlabel('xs')

plt.ylabel('ys')

plt.legend(loc=9)

plt.title("Very	Different	Joint	Distributions")

plt.show()

Figure	10-3.	Scattering	two	different	ys

This	difference	would	also	be	apparent	if	you	looked	at	the	correlations:

print	correlation(xs,	ys1)						#		0.9

print	correlation(xs,	ys2)						#	-0.9

Many	Dimensions
With	many	dimensions,	you’d	like	to	know	how	all	the	dimensions	relate	to	one	another.
A	simple	approach	is	to	look	at	the	correlation	matrix,	in	which	the	entry	in	row	i	and
column	j	is	the	correlation	between	the	ith	dimension	and	the	jth	dimension	of	the	data:

def	correlation_matrix(data):

				"""returns	the	num_columns	x	num_columns	matrix	whose	(i,	j)th	entry

				is	the	correlation	between	columns	i	and	j	of	data"""

				_,	num_columns	=	shape(data)

				def	matrix_entry(i,	j):

								return	correlation(get_column(data,	i),	get_column(data,	j))

				return	make_matrix(num_columns,	num_columns,	matrix_entry)

A	more	visual	approach	(if	you	don’t	have	too	many	dimensions)	is	to	make	a	scatterplot
matrix	(Figure	10-4)	showing	all	the	pairwise	scatterplots.	To	do	that	we’ll	use
plt.subplots(),	which	allows	us	to	create	subplots	of	our	chart.	We	give	it	the	number	of
rows	and	the	number	of	columns,	and	it	returns	a	figure	object	(which	we	won’t	use)	and
a	two-dimensional	array	of	axes	objects	(each	of	which	we’ll	plot	to):

import	matplotlib.pyplot	as	plt

_,	num_columns	=	shape(data)

fig,	ax	=	plt.subplots(num_columns,	num_columns)

for	i	in	range(num_columns):

				for	j	in	range(num_columns):

								#	scatter	column_j	on	the	x-axis	vs	column_i	on	the	y-axis

								if	i	!=	j:	ax[i][j].scatter(get_column(data,	j),	get_column(data,	i))

								#	unless	i	==	j,	in	which	case	show	the	series	name

								else:	ax[i][j].annotate("series	"	+	str(i),	(0.5,	0.5),

																																xycoords='axes	fraction',

																																ha="center",	va="center")

								#	then	hide	axis	labels	except	left	and	bottom	charts

								if	i	<	num_columns	-	1:	ax[i][j].xaxis.set_visible(False)

								if	j	>	0:	ax[i][j].yaxis.set_visible(False)

#	fix	the	bottom	right	and	top	left	axis	labels,	which	are	wrong	because

#	their	charts	only	have	text	in	them

ax[-1][-1].set_xlim(ax[0][-1].get_xlim())

ax[0][0].set_ylim(ax[0][1].get_ylim())

plt.show()

Figure	10-4.	Scatterplot	matrix

Looking	at	the	scatterplots,	you	can	see	that	series	1	is	very	negatively	correlated	with
series	0,	series	2	is	positively	correlated	with	series	1,	and	series	3	only	takes	on	the	values
0	and	6,	with	0	corresponding	to	small	values	of	series	2	and	6	corresponding	to	large
values.

This	is	a	quick	way	to	get	a	rough	sense	of	which	of	your	variables	are	correlated	(unless
you	spend	hours	tweaking	matplotlib	to	display	things	exactly	the	way	you	want	them
to,	in	which	case	it’s	not	a	quick	way).

Cleaning	and	Munging
Real-world	data	is	dirty.	Often	you’ll	have	to	do	some	work	on	it	before	you	can	use	it.
We’ve	seen	examples	of	this	in	Chapter	9.	We	have	to	convert	strings	to	floats	or	ints
before	we	can	use	them.	Previously,	we	did	that	right	before	using	the	data:

								closing_price	=	float(row[2])

But	it’s	probably	less	error-prone	to	do	the	parsing	on	the	way	in,	which	we	can	do	by
creating	a	function	that	wraps	csv.reader.	We’ll	give	it	a	list	of	parsers,	each	specifying
how	to	parse	one	of	the	columns.	And	we’ll	use	None	to	represent	“don’t	do	anything	to
this	column”:

def	parse_row(input_row,	parsers):

				"""given	a	list	of	parsers	(some	of	which	may	be	None)

				apply	the	appropriate	one	to	each	element	of	the	input_row"""

				return	[parser(value)	if	parser	is	not	None	else	value

												for	value,	parser	in	zip(input_row,	parsers)]

def	parse_rows_with(reader,	parsers):

				"""wrap	a	reader	to	apply	the	parsers	to	each	of	its	rows"""

				for	row	in	reader:

								yield	parse_row(row,	parsers)

What	if	there’s	bad	data?	A	“float”	value	that	doesn’t	actually	represent	a	number?	We’d
usually	rather	get	a	None	than	crash	our	program.	We	can	do	this	with	a	helper	function:

def	try_or_none(f):

				"""wraps	f	to	return	None	if	f	raises	an	exception

				assumes	f	takes	only	one	input"""

				def	f_or_none(x):

								try:	return	f(x)

								except:	return	None

				return	f_or_none

after	which	we	can	rewrite	parse_row	to	use	it:

def	parse_row(input_row,	parsers):

				return	[try_or_none(parser)(value)	if	parser	is	not	None	else	value

												for	value,	parser	in	zip(input_row,	parsers)]

For	example,	if	we	have	comma-delimited	stock	prices	with	bad	data:

6/20/2014,AAPL,90.91

6/20/2014,MSFT,41.68

6/20/3014,FB,64.5

6/19/2014,AAPL,91.86

6/19/2014,MSFT,n/a

6/19/2014,FB,64.34

we	can	now	read	and	parse	in	a	single	step:

import	dateutil.parser

data	=	[]

with	open("comma_delimited_stock_prices.csv",	"rb")	as	f:

				reader	=	csv.reader(f)

				for	line	in	parse_rows_with(reader,	[dateutil.parser.parse,	None,	float]):

								data.append(line)

after	which	we	just	need	to	check	for	None	rows:

for	row	in	data:

				if	any(x	is	None	for	x	in	row):

								print	row

and	decide	what	we	want	to	do	about	them.	(Generally	speaking,	the	three	options	are	to
get	rid	of	them,	to	go	back	to	the	source	and	try	to	fix	the	bad/missing	data,	or	to	do
nothing	and	cross	our	fingers.)

We	could	create	similar	helpers	for	csv.DictReader.	In	that	case,	you’d	probably	want	to
supply	a	dict	of	parsers	by	field	name.	For	example:

def	try_parse_field(field_name,	value,	parser_dict):

				"""try	to	parse	value	using	the	appropriate	function	from	parser_dict"""

				parser	=	parser_dict.get(field_name)			#	None	if	no	such	entry

				if	parser	is	not	None:

								return	try_or_none(parser)(value)

				else:

								return	value

def	parse_dict(input_dict,	parser_dict):

				return	{	field_name	:	try_parse_field(field_name,	value,	parser_dict)

													for	field_name,	value	in	input_dict.iteritems()	}

A	good	next	step	is	to	check	for	outliers,	using	techniques	from	“Exploring	Your	Data”	or
by	ad	hoc	investigating.	For	example,	did	you	notice	that	one	of	the	dates	in	the	stocks	file
had	the	year	3014?	That	won’t	(necessarily)	give	you	an	error,	but	it’s	quite	plainly	wrong,
and	you’ll	get	screwy	results	if	you	don’t	catch	it.	Real-world	data	sets	have	missing
decimal	points,	extra	zeroes,	typographical	errors,	and	countless	other	problems	that	it’s
your	job	to	catch.	(Maybe	it’s	not	officially	your	job,	but	who	else	is	going	to	do	it?)

Manipulating	Data
One	of	the	most	important	skills	of	a	data	scientist	is	manipulating	data.	It’s	more	of	a
general	approach	than	a	specific	technique,	so	we’ll	just	work	through	a	handful	of
examples	to	give	you	the	flavor	of	it.

Imagine	we’re	working	with	dicts	of	stock	prices	that	look	like:

data	=	[

				{'closing_price':	102.06,

					'date':	datetime.datetime(2014,	8,	29,	0,	0),

					'symbol':	'AAPL'},

				#	...

]

Conceptually	we’ll	think	of	them	as	rows	(as	in	a	spreadsheet).

Let’s	start	asking	questions	about	this	data.	Along	the	way	we’ll	try	to	notice	patterns	in
what	we’re	doing	and	abstract	out	some	tools	to	make	the	manipulation	easier.

For	instance,	suppose	we	want	to	know	the	highest-ever	closing	price	for	AAPL.	Let’s
break	this	down	into	concrete	steps:

1.	 Restrict	ourselves	to	AAPL	rows.

2.	 Grab	the	closing_price	from	each	row.

3.	 Take	the	max	of	those	prices.

We	can	do	all	three	at	once	using	a	list	comprehension:

max_aapl_price	=	max(row["closing_price"]

																					for	row	in	data

																					if	row["symbol"]	==	"AAPL")

More	generally,	we	might	want	to	know	the	highest-ever	closing	price	for	each	stock	in
our	data	set.	One	way	to	do	this	is:

1.	 Group	together	all	the	rows	with	the	same	symbol.

2.	 Within	each	group,	do	the	same	as	before:

#	group	rows	by	symbol

by_symbol	=	defaultdict(list)

for	row	in	data:

				by_symbol[row["symbol"]].append(row)

#	use	a	dict	comprehension	to	find	the	max	for	each	symbol

max_price_by_symbol	=	{	symbol	:	max(row["closing_price"]

																																					for	row	in	grouped_rows)

																								for	symbol,	grouped_rows	in	by_symbol.iteritems()	}

There	are	some	patterns	here	already.	In	both	examples,	we	needed	to	pull	the
closing_price	value	out	of	every	dict.	So	let’s	create	a	function	to	pick	a	field	out	of	a
dict,	and	another	function	to	pluck	the	same	field	out	of	a	collection	of	dicts:

def	picker(field_name):

				"""returns	a	function	that	picks	a	field	out	of	a	dict"""

				return	lambda	row:	row[field_name]

def	pluck(field_name,	rows):

				"""turn	a	list	of	dicts	into	the	list	of	field_name	values"""

				return	map(picker(field_name),	rows)

We	can	also	create	a	function	to	group	rows	by	the	result	of	a	grouper	function	and	to
optionally	apply	some	sort	of	value_transform	to	each	group:

def	group_by(grouper,	rows,	value_transform=None):

				#	key	is	output	of	grouper,	value	is	list	of	rows

				grouped	=	defaultdict(list)

				for	row	in	rows:

								grouped[grouper(row)].append(row)

				if	value_transform	is	None:

								return	grouped

				else:

								return	{	key	:	value_transform(rows)

																	for	key,	rows	in	grouped.iteritems()	}

This	allows	us	to	rewrite	our	previous	examples	quite	simply.	For	example:

max_price_by_symbol	=	group_by(picker("symbol"),

																															data,

																															lambda	rows:	max(pluck("closing_price",	rows)))

We	can	now	start	to	ask	more	complicated	things,	like	what	are	the	largest	and	smallest
one-day	percent	changes	in	our	data	set.	The	percent	change	is	price_today	/
price_yesterday	-	1,	which	means	we	need	some	way	of	associating	today’s	price	and
yesterday’s	price.	One	approach	is	to	group	the	prices	by	symbol,	then,	within	each	group:

1.	 Order	the	prices	by	date.

2.	 Use	zip	to	get	pairs	(previous,	current).

3.	 Turn	the	pairs	into	new	“percent	change”	rows.

We’ll	start	by	writing	a	function	to	do	all	the	within-each-group	work:

def	percent_price_change(yesterday,	today):

				return	today["closing_price"]	/	yesterday["closing_price"]	-	1

def	day_over_day_changes(grouped_rows):

				#	sort	the	rows	by	date

				ordered	=	sorted(grouped_rows,	key=picker("date"))

				#	zip	with	an	offset	to	get	pairs	of	consecutive	days

				return	[{	"symbol"	:	today["symbol"],

														"date"	:	today["date"],

														"change"	:	percent_price_change(yesterday,	today)	}

												for	yesterday,	today	in	zip(ordered,	ordered[1:])]

Then	we	can	just	use	this	as	the	value_transform	in	a	group_by:

#	key	is	symbol,	value	is	list	of	"change"	dicts

changes_by_symbol	=	group_by(picker("symbol"),	data,	day_over_day_changes)

#	collect	all	"change"	dicts	into	one	big	list

all_changes	=	[change

															for	changes	in	changes_by_symbol.values()

															for	change	in	changes]

At	which	point	it’s	easy	to	find	the	largest	and	smallest:

max(all_changes,	key=picker("change"))

#	{'change':	0.3283582089552237,

#		'date':	datetime.datetime(1997,	8,	6,	0,	0),

#		'symbol':	'AAPL'}

#	see,	e.g.	http://news.cnet.com/2100-1001-202143.html

min(all_changes,	key=picker("change"))

#	{'change':	-0.5193370165745856,

#		'date':	datetime.datetime(2000,	9,	29,	0,	0),

#		'symbol':	'AAPL'}

#	see,	e.g.	http://money.cnn.com/2000/09/29/markets/techwrap/

We	can	now	use	this	new	all_changes	data	set	to	find	which	month	is	the	best	to	invest	in
tech	stocks.	First	we	group	the	changes	by	month;	then	we	compute	the	overall	change
within	each	group.

Once	again,	we	write	an	appropriate	value_transform	and	then	use	group_by:

#	to	combine	percent	changes,	we	add	1	to	each,	multiply	them,	and	subtract	1

#	for	instance,	if	we	combine	+10%	and	-20%,	the	overall	change	is

#				(1	+	10%)	*	(1	-	20%)	-	1	=	1.1	*	.8	-	1	=	-12%

def	combine_pct_changes(pct_change1,	pct_change2):

				return	(1	+	pct_change1)	*	(1	+	pct_change2)	-	1

def	overall_change(changes):

				return	reduce(combine_pct_changes,	pluck("change",	changes))

overall_change_by_month	=	group_by(lambda	row:	row['date'].month,

																																			all_changes,

																																			overall_change)

We’ll	be	doing	these	sorts	of	manipulations	throughout	the	book,	usually	without	calling
too	much	explicit	attention	to	them.

Rescaling
Many	techniques	are	sensitive	to	the	scale	of	your	data.	For	example,	imagine	that	you
have	a	data	set	consisting	of	the	heights	and	weights	of	hundreds	of	data	scientists,	and
that	you	are	trying	to	identify	clusters	of	body	sizes.

Intuitively,	we’d	like	clusters	to	represent	points	near	each	other,	which	means	that	we
need	some	notion	of	distance	between	points.	We	already	have	a	Euclidean	distance
function,	so	a	natural	approach	might	be	to	treat	(height,	weight)	pairs	as	points	in	two-
dimensional	space.	Consider	the	people	listed	in	Table	10-1.

Table	10-1.	Heights	and	Weights

Person Height	(inches) Height	(centimeters) Weight

A 63	inches 160	cm 150	pounds

B 67	inches 170.2	cm 160	pounds

C 70	inches 177.8	cm 171	pounds

If	we	measure	height	in	inches,	then	B’s	nearest	neighbor	is	A:

a_to_b	=	distance([63,	150],	[67,	160])								#	10.77

a_to_c	=	distance([63,	150],	[70,	171])								#	22.14

b_to_c	=	distance([67,	160],	[70,	171])								#	11.40

However,	if	we	measure	height	in	centimeters,	then	B’s	nearest	neighbor	is	instead	C:

a_to_b	=	distance([160,	150],	[170.2,	160])				#	14.28

a_to_c	=	distance([160,	150],	[177.8,	171])				#	27.53

b_to_c	=	distance([170.2,	160],	[177.8,	171])		#	13.37

Obviously	it’s	problematic	if	changing	units	can	change	results	like	this.	For	this	reason,
when	dimensions	aren’t	comparable	with	one	another,	we	will	sometimes	rescale	our	data
so	that	each	dimension	has	mean	0	and	standard	deviation	1.	This	effectively	gets	rid	of
the	units,	converting	each	dimension	to	“standard	deviations	from	the	mean.”

To	start	with,	we’ll	need	to	compute	the	mean	and	the	standard_deviation	for	each
column:

def	scale(data_matrix):

				"""returns	the	means	and	standard	deviations	of	each	column"""

				num_rows,	num_cols	=	shape(data_matrix)

				means	=	[mean(get_column(data_matrix,j))

													for	j	in	range(num_cols)]

				stdevs	=	[standard_deviation(get_column(data_matrix,j))

														for	j	in	range(num_cols)]

				return	means,	stdevs

And	then	use	them	to	create	a	new	data	matrix:

def	rescale(data_matrix):

				"""rescales	the	input	data	so	that	each	column

				has	mean	0	and	standard	deviation	1

				leaves	alone	columns	with	no	deviation"""

				means,	stdevs	=	scale(data_matrix)

				def	rescaled(i,	j):

								if	stdevs[j]	>	0:

												return	(data_matrix[i][j]	-	means[j])	/	stdevs[j]

								else:

												return	data_matrix[i][j]

				num_rows,	num_cols	=	shape(data_matrix)

				return	make_matrix(num_rows,	num_cols,	rescaled)

As	always,	you	need	to	use	your	judgment.	If	you	were	to	take	a	huge	data	set	of	heights
and	weights	and	filter	it	down	to	only	the	people	with	heights	between	69.5	inches	and
70.5	inches,	it’s	quite	likely	(depending	on	the	question	you’re	trying	to	answer)	that	the
variation	remaining	is	simply	noise,	and	you	might	not	want	to	put	its	standard	deviation
on	equal	footing	with	other	dimensions’	deviations.

Dimensionality	Reduction
Sometimes	the	“actual”	(or	useful)	dimensions	of	the	data	might	not	correspond	to	the
dimensions	we	have.	For	example,	consider	the	data	set	pictured	in	Figure	10-5.

Figure	10-5.	Data	with	the	“wrong”	axes

Most	of	the	variation	in	the	data	seems	to	be	along	a	single	dimension	that	doesn’t
correspond	to	either	the	x-axis	or	the	y-axis.

When	this	is	the	case,	we	can	use	a	technique	called	principal	component	analysis	to
extract	one	or	more	dimensions	that	capture	as	much	of	the	variation	in	the	data	as
possible.

NOTE
In	practice,	you	wouldn’t	use	this	technique	on	such	a	low-dimensional	data	set.	Dimensionality	reduction
is	mostly	useful	when	your	data	set	has	a	large	number	of	dimensions	and	you	want	to	find	a	small	subset
that	captures	most	of	the	variation.	Unfortunately,	that	case	is	difficult	to	illustrate	in	a	two-dimensional
book	format.

As	a	first	step,	we’ll	need	to	translate	the	data	so	that	each	dimension	has	mean	zero:

def	de_mean_matrix(A):

				"""returns	the	result	of	subtracting	from	every	value	in	A	the	mean

				value	of	its	column.	the	resulting	matrix	has	mean	0	in	every	column"""

				nr,	nc	=	shape(A)

				column_means,	_	=	scale(A)

				return	make_matrix(nr,	nc,	lambda	i,	j:	A[i][j]	-	column_means[j])

(If	we	don’t	do	this,	our	techniques	are	likely	to	identify	the	mean	itself	rather	than	the
variation	in	the	data.)

Figure	10-6	shows	the	example	data	after	de-meaning.

Figure	10-6.	Data	after	de-meaning

Now,	given	a	de-meaned	matrix	X,	we	can	ask	which	is	the	direction	that	captures	the
greatest	variance	in	the	data?

Specifically,	given	a	direction	d	(a	vector	of	magnitude	1),	each	row	x	in	the	matrix
extends	dot(x,	d)	in	the	d	direction.	And	every	nonzero	vector	w	determines	a	direction
if	we	rescale	it	to	have	magnitude	1:

def	direction(w):

				mag	=	magnitude(w)

				return	[w_i	/	mag	for	w_i	in	w]

Therefore,	given	a	nonzero	vector	w,	we	can	compute	the	variance	of	our	data	set	in	the
direction	determined	by	w:

def	directional_variance_i(x_i,	w):

				"""the	variance	of	the	row	x_i	in	the	direction	determined	by	w"""

				return	dot(x_i,	direction(w))	**	2

def	directional_variance(X,	w):

				"""the	variance	of	the	data	in	the	direction	determined	w"""

				return	sum(directional_variance_i(x_i,	w)

															for	x_i	in	X)

We’d	like	to	find	the	direction	that	maximizes	this	variance.	We	can	do	this	using	gradient
descent,	as	soon	as	we	have	the	gradient	function:

def	directional_variance_gradient_i(x_i,	w):

				"""the	contribution	of	row	x_i	to	the	gradient	of

				the	direction-w	variance"""

				projection_length	=	dot(x_i,	direction(w))

				return	[2	*	projection_length	*	x_ij	for	x_ij	in	x_i]

def	directional_variance_gradient(X,	w):

				return	vector_sum(directional_variance_gradient_i(x_i,w)

																						for	x_i	in	X)

The	first	principal	component	is	just	the	direction	that	maximizes	the
directional_variance	function:

def	first_principal_component(X):

				guess	=	[1	for	_	in	X[0]]

				unscaled_maximizer	=	maximize_batch(

								partial(directional_variance,	X),											#	is	now	a	function	of	w

								partial(directional_variance_gradient,	X),		#	is	now	a	function	of	w

								guess)

				return	direction(unscaled_maximizer)

Or,	if	you’d	rather	use	stochastic	gradient	descent:

#	here	there	is	no	"y",	so	we	just	pass	in	a	vector	of	Nones

#	and	functions	that	ignore	that	input

def	first_principal_component_sgd(X):

				guess	=	[1	for	_	in	X[0]]

				unscaled_maximizer	=	maximize_stochastic(

								lambda	x,	_,	w:	directional_variance_i(x,	w),

								lambda	x,	_,	w:	directional_variance_gradient_i(x,	w),

								X,

								[None	for	_	in	X],			#	the	fake	"y"

								guess)

				return	direction(unscaled_maximizer)

On	the	de-meaned	data	set,	this	returns	the	direction	[0.924,	0.383],	which	does	appear
to	capture	the	primary	axis	along	which	our	data	varies	(Figure	10-7).

Figure	10-7.	First	principal	component

Once	we’ve	found	the	direction	that’s	the	first	principal	component,	we	can	project	our
data	onto	it	to	find	the	values	of	that	component:

def	project(v,	w):

				"""return	the	projection	of	v	onto	the	direction	w"""

				projection_length	=	dot(v,	w)

				return	scalar_multiply(projection_length,	w)

If	we	want	to	find	further	components,	we	first	remove	the	projections	from	the	data:

def	remove_projection_from_vector(v,	w):

				"""projects	v	onto	w	and	subtracts	the	result	from	v"""

				return	vector_subtract(v,	project(v,	w))

def	remove_projection(X,	w):

				"""for	each	row	of	X

				projects	the	row	onto	w,	and	subtracts	the	result	from	the	row"""

				return	[remove_projection_from_vector(x_i,	w)	for	x_i	in	X]

Because	this	example	data	set	is	only	two-dimensional,	after	we	remove	the	first
component,	what’s	left	will	be	effectively	one-dimensional	(Figure	10-8).

Figure	10-8.	Data	after	removing	first	principal	component

At	that	point,	we	can	find	the	next	principal	component	by	repeating	the	process	on	the
result	of	remove_projection	(Figure	10-9).

On	a	higher-dimensional	data	set,	we	can	iteratively	find	as	many	components	as	we	want:

def	principal_component_analysis(X,	num_components):

				components	=	[]

				for	_	in	range(num_components):

								component	=	first_principal_component(X)

								components.append(component)

								X	=	remove_projection(X,	component)

				return	components

We	can	then	transform	our	data	into	the	lower-dimensional	space	spanned	by	the
components:

def	transform_vector(v,	components):

				return	[dot(v,	w)	for	w	in	components]

def	transform(X,	components):

				return	[transform_vector(x_i,	components)	for	x_i	in	X]

This	technique	is	valuable	for	a	couple	of	reasons.	First,	it	can	help	us	clean	our	data	by
eliminating	noise	dimensions	and	consolidating	dimensions	that	are	highly	correlated.

Figure	10-9.	First	two	principal	components

Second,	after	extracting	a	low-dimensional	representation	of	our	data,	we	can	use	a	variety
of	techniques	that	don’t	work	as	well	on	high-dimensional	data.	We’ll	see	examples	of
such	techniques	throughout	the	book.

At	the	same	time,	while	it	can	help	you	build	better	models,	it	can	also	make	those	models
harder	to	interpret.	It’s	easy	to	understand	conclusions	like	“every	extra	year	of	experience
adds	an	average	of	$10k	in	salary.”	It’s	much	harder	to	make	sense	of	“every	increase	of
0.1	in	the	third	principal	component	adds	an	average	of	$10k	in	salary.”

For	Further	Exploration
As	we	mentioned	at	the	end	of	Chapter	9,	pandas	is	probably	the	primary	Python	tool
for	cleaning,	munging,	manipulating,	and	working	with	data.	All	the	examples	we	did
by	hand	in	this	chapter	could	be	done	much	more	simply	using	pandas.	Python	for
Data	Analysis	(O’Reilly)	is	probably	the	best	way	to	learn	pandas.

scikit-learn	has	a	wide	variety	of	matrix	decomposition	functions,	including	PCA.

http://pandas.pydata.org/
http://shop.oreilly.com/product/0636920023784.do
http://bit.ly/1ycOLJd

Chapter	11.	Machine	Learning

I	am	always	ready	to	learn	although	I	do	not	always	like	being	taught.

Winston	Churchill

Many	people	imagine	that	data	science	is	mostly	machine	learning	and	that	data	scientists
mostly	build	and	train	and	tweak	machine-learning	models	all	day	long.	(Then	again,
many	of	those	people	don’t	actually	know	what	machine	learning	is.)	In	fact,	data	science
is	mostly	turning	business	problems	into	data	problems	and	collecting	data	and
understanding	data	and	cleaning	data	and	formatting	data,	after	which	machine	learning	is
almost	an	afterthought.	Even	so,	it’s	an	interesting	and	essential	afterthought	that	you
pretty	much	have	to	know	about	in	order	to	do	data	science.

Modeling
Before	we	can	talk	about	machine	learning	we	need	to	talk	about	models.

What	is	a	model?	It’s	simply	a	specification	of	a	mathematical	(or	probabilistic)
relationship	that	exists	between	different	variables.

For	instance,	if	you’re	trying	to	raise	money	for	your	social	networking	site,	you	might
build	a	business	model	(likely	in	a	spreadsheet)	that	takes	inputs	like	“number	of	users”
and	“ad	revenue	per	user”	and	“number	of	employees”	and	outputs	your	annual	profit	for
the	next	several	years.	A	cookbook	recipe	entails	a	model	that	relates	inputs	like	“number
of	eaters”	and	“hungriness”	to	quantities	of	ingredients	needed.	And	if	you’ve	ever
watched	poker	on	television,	you	know	that	they	estimate	each	player’s	“win	probability”
in	real	time	based	on	a	model	that	takes	into	account	the	cards	that	have	been	revealed	so
far	and	the	distribution	of	cards	in	the	deck.

The	business	model	is	probably	based	on	simple	mathematical	relationships:	profit	is
revenue	minus	expenses,	revenue	is	units	sold	times	average	price,	and	so	on.	The	recipe
model	is	probably	based	on	trial	and	error	—	someone	went	in	a	kitchen	and	tried	different
combinations	of	ingredients	until	they	found	one	they	liked.	And	the	poker	model	is	based
on	probability	theory,	the	rules	of	poker,	and	some	reasonably	innocuous	assumptions
about	the	random	process	by	which	cards	are	dealt.

What	Is	Machine	Learning?
Everyone	has	her	own	exact	definition,	but	we’ll	use	machine	learning	to	refer	to	creating
and	using	models	that	are	learned	from	data.	In	other	contexts	this	might	be	called
predictive	modeling	or	data	mining,	but	we	will	stick	with	machine	learning.	Typically,
our	goal	will	be	to	use	existing	data	to	develop	models	that	we	can	use	to	predict	various
outcomes	for	new	data,	such	as:

Predicting	whether	an	email	message	is	spam	or	not

Predicting	whether	a	credit	card	transaction	is	fraudulent

Predicting	which	advertisement	a	shopper	is	most	likely	to	click	on

Predicting	which	football	team	is	going	to	win	the	Super	Bowl

We’ll	look	at	both	supervised	models	(in	which	there	is	a	set	of	data	labeled	with	the
correct	answers	to	learn	from),	and	unsupervised	models	(in	which	there	are	no	such
labels).	There	are	various	other	types	like	semisupervised	(in	which	only	some	of	the	data
are	labeled)	and	online	(in	which	the	model	needs	to	continuously	adjust	to	newly	arriving
data)	that	we	won’t	cover	in	this	book.

Now,	in	even	the	simplest	situation	there	are	entire	universes	of	models	that	might
describe	the	relationship	we’re	interested	in.	In	most	cases	we	will	ourselves	choose	a
parameterized	family	of	models	and	then	use	data	to	learn	parameters	that	are	in	some
way	optimal.

For	instance,	we	might	assume	that	a	person’s	height	is	(roughly)	a	linear	function	of	his
weight	and	then	use	data	to	learn	what	that	linear	function	is.	Or	we	might	assume	that	a
decision	tree	is	a	good	way	to	diagnose	what	diseases	our	patients	have	and	then	use	data
to	learn	the	“optimal”	such	tree.	Throughout	the	rest	of	the	book	we’ll	be	investigating
different	families	of	models	that	we	can	learn.

But	before	we	can	do	that,	we	need	to	better	understand	the	fundamentals	of	machine
learning.	For	the	rest	of	the	chapter,	we’ll	discuss	some	of	those	basic	concepts,	before	we
move	on	to	the	models	themselves.

Overfitting	and	Underfitting
A	common	danger	in	machine	learning	is	overfitting	—	producing	a	model	that	performs
well	on	the	data	you	train	it	on	but	that	generalizes	poorly	to	any	new	data.	This	could
involve	learning	noise	in	the	data.	Or	it	could	involve	learning	to	identify	specific	inputs
rather	than	whatever	factors	are	actually	predictive	for	the	desired	output.

The	other	side	of	this	is	underfitting,	producing	a	model	that	doesn’t	perform	well	even	on
the	training	data,	although	typically	when	this	happens	you	decide	your	model	isn’t	good
enough	and	keep	looking	for	a	better	one.

Figure	11-1.	Overfitting	and	underfitting

In	Figure	11-1,	I’ve	fit	three	polynomials	to	a	sample	of	data.	(Don’t	worry	about	how;
we’ll	get	to	that	in	later	chapters.)

The	horizontal	line	shows	the	best	fit	degree	0	(i.e.,	constant)	polynomial.	It	severely
underfits	the	training	data.	The	best	fit	degree	9	(i.e.,	10-parameter)	polynomial	goes
through	every	training	data	point	exactly,	but	it	very	severely	overfits	—	if	we	were	to
pick	a	few	more	data	points	it	would	quite	likely	miss	them	by	a	lot.	And	the	degree	1	line
strikes	a	nice	balance	—	it’s	pretty	close	to	every	point,	and	(if	these	data	are
representative)	the	line	will	likely	be	close	to	new	data	points	as	well.

Clearly	models	that	are	too	complex	lead	to	overfitting	and	don’t	generalize	well	beyond

the	data	they	were	trained	on.	So	how	do	we	make	sure	our	models	aren’t	too	complex?
The	most	fundamental	approach	involves	using	different	data	to	train	the	model	and	to	test
the	model.

The	simplest	way	to	do	this	is	to	split	your	data	set,	so	that	(for	example)	two-thirds	of	it	is
used	to	train	the	model,	after	which	we	measure	the	model’s	performance	on	the
remaining	third:

def	split_data(data,	prob):

				"""split	data	into	fractions	[prob,	1	-	prob]"""

				results	=	[],	[]

				for	row	in	data:

								results[0	if	random.random()	<	prob	else	1].append(row)

				return	results

Often,	we’ll	have	a	matrix	x	of	input	variables	and	a	vector	y	of	output	variables.	In	that
case,	we	need	to	make	sure	to	put	corresponding	values	together	in	either	the	training	data
or	the	test	data:

def	train_test_split(x,	y,	test_pct):

				data	=	zip(x,	y)																														#	pair	corresponding	values

				train,	test	=	split_data(data,	1	-	test_pct)		#	split	the	data	set	of	pairs

				x_train,	y_train	=	zip(*train)																#	magical	un-zip	trick

				x_test,	y_test	=	zip(*test)

				return	x_train,	x_test,	y_train,	y_test

so	that	you	might	do	something	like:

model	=	SomeKindOfModel()

x_train,	x_test,	y_train,	y_test	=	train_test_split(xs,	ys,	0.33)

model.train(x_train,	y_train)

performance	=	model.test(x_test,	y_test)

If	the	model	was	overfit	to	the	training	data,	then	it	will	hopefully	perform	really	poorly
on	the	(completely	separate)	test	data.	Said	differently,	if	it	performs	well	on	the	test	data,
then	you	can	be	more	confident	that	it’s	fitting	rather	than	overfitting.

However,	there	are	a	couple	of	ways	this	can	go	wrong.

The	first	is	if	there	are	common	patterns	in	the	test	and	train	data	that	wouldn’t	generalize
to	a	larger	data	set.

For	example,	imagine	that	your	data	set	consists	of	user	activity,	one	row	per	user	per
week.	In	such	a	case,	most	users	will	appear	in	both	the	training	data	and	the	test	data,	and
certain	models	might	learn	to	identify	users	rather	than	discover	relationships	involving
attributes.	This	isn’t	a	huge	worry,	although	it	did	happen	to	me	once.

A	bigger	problem	is	if	you	use	the	test/train	split	not	just	to	judge	a	model	but	also	to
choose	from	among	many	models.	In	that	case,	although	each	individual	model	may	not
be	overfit,	the	“choose	a	model	that	performs	best	on	the	test	set”	is	a	meta-training	that
makes	the	test	set	function	as	a	second	training	set.	(Of	course	the	model	that	performed
best	on	the	test	set	is	going	to	perform	well	on	the	test	set.)

In	such	a	situation,	you	should	split	the	data	into	three	parts:	a	training	set	for	building
models,	a	validation	set	for	choosing	among	trained	models,	and	a	test	set	for	judging	the
final	model.

Correctness
When	I’m	not	doing	data	science,	I	dabble	in	medicine.	And	in	my	spare	time	I’ve	come
up	with	a	cheap,	noninvasive	test	that	can	be	given	to	a	newborn	baby	that	predicts	—
with	greater	than	98%	accuracy 	—	 whether	the	newborn	will	ever	develop	leukemia.	My
lawyer	has	convinced	me	the	test	is	unpatentable,	so	I’ll	share	with	you	the	details	here:
predict	leukemia	if	and	only	if	the	baby	is	named	Luke	(which	sounds	sort	of	like
“leukemia”).

As	we’ll	see	below,	this	test	is	indeed	more	than	98%	accurate.	Nonetheless,	it’s	an
incredibly	stupid	test,	and	a	good	illustration	of	why	we	don’t	typically	use	“accuracy”	to
measure	how	good	a	model	is.

Imagine	building	a	model	to	make	a	binary	judgment.	Is	this	email	spam?	Should	we	hire
this	candidate?	Is	this	air	traveler	secretly	a	terrorist?

Given	a	set	of	labeled	data	and	such	a	predictive	model,	every	data	point	lies	in	one	of
four	categories:

True	positive:	“This	message	is	spam,	and	we	correctly	predicted	spam.”

False	positive	(Type	1	Error):	“This	message	is	not	spam,	but	we	predicted	spam.”

False	negative	(Type	2	Error):	“This	message	is	spam,	but	we	predicted	not	spam.”

True	negative:	“This	message	is	not	spam,	and	we	correctly	predicted	not	spam.”

We	often	represent	these	as	counts	in	a	confusion	matrix:

Spam not	Spam

predict	“Spam” True	Positive False	Positive

predict	“Not	Spam” False	Negative True	Negative

Let’s	see	how	my	leukemia	test	fits	into	this	framework.	These	days	approximately	5
babies	out	of	1,000	are	named	Luke.	And	the	lifetime	prevalence	of	leukemia	is	about
1.4%,	or	14	out	of	every	1,000	people.

If	we	believe	these	two	factors	are	independent	and	apply	my	“Luke	is	for	leukemia”	test
to	1	million	people,	we’d	expect	to	see	a	confusion	matrix	like:

leukemia no	leukemia total

“Luke” 70 4,930 5,000

not	“Luke” 13,930 981,070 995,000

total 14,000 986,000 1,000,000

http://bit.ly/1CchAqt
http://1.usa.gov/1ycORjO

We	can	then	use	these	to	compute	various	statistics	about	model	performance.	For
example,	accuracy	is	defined	as	the	fraction	of	correct	predictions:

def	accuracy(tp,	fp,	fn,	tn):

				correct	=	tp	+	tn

				total	=	tp	+	fp	+	fn	+	tn

				return	correct	/	total

print	accuracy(70,	4930,	13930,	981070)					#	0.98114

That	seems	like	a	pretty	impressive	number.	But	clearly	this	is	not	a	good	test,	which
means	that	we	probably	shouldn’t	put	a	lot	of	credence	in	raw	accuracy.

It’s	common	to	look	at	the	combination	of	precision	and	recall.	Precision	measures	how
accurate	our	positive	predictions	were:

def	precision(tp,	fp,	fn,	tn):

				return	tp	/	(tp	+	fp)

print	precision(70,	4930,	13930,	981070)				#	0.014

And	recall	measures	what	fraction	of	the	positives	our	model	identified:

def	recall(tp,	fp,	fn,	tn):

				return	tp	/	(tp	+	fn)

print	recall(70,	4930,	13930,	981070)							#	0.005

These	are	both	terrible	numbers,	reflecting	that	this	is	a	terrible	model.

Sometimes	precision	and	recall	are	combined	into	the	F1	score,	which	is	defined	as:

def	f1_score(tp,	fp,	fn,	tn):

				p	=	precision(tp,	fp,	fn,	tn)

				r	=	recall(tp,	fp,	fn,	tn)

				return	2	*	p	*	r	/	(p	+	r)

This	is	the	harmonic	mean	of	precision	and	recall	and	necessarily	lies	between	them.

Usually	the	choice	of	a	model	involves	a	trade-off	between	precision	and	recall.	A	model
that	predicts	“yes”	when	it’s	even	a	little	bit	confident	will	probably	have	a	high	recall	but
a	low	precision;	a	model	that	predicts	“yes”	only	when	it’s	extremely	confident	is	likely	to
have	a	low	recall	and	a	high	precision.

Alternatively,	you	can	think	of	this	as	a	trade-off	between	false	positives	and	false
negatives.	Saying	“yes”	too	often	will	give	you	lots	of	false	positives;	saying	“no”	too
often	will	give	you	lots	of	false	negatives.

Imagine	that	there	were	10	risk	factors	for	leukemia,	and	that	the	more	of	them	you	had
the	more	likely	you	were	to	develop	leukemia.	In	that	case	you	can	imagine	a	continuum
of	tests:	“predict	leukemia	if	at	least	one	risk	factor,”	“predict	leukemia	if	at	least	two	risk
factors,”	and	so	on.	As	you	increase	the	threshhold,	you	increase	the	test’s	precision	(since
people	with	more	risk	factors	are	more	likely	to	develop	the	disease),	and	you	decrease	the

http://en.wikipedia.org/wiki/Harmonic_mean

test’s	recall	(since	fewer	and	fewer	of	the	eventual	disease-sufferers	will	meet	the
threshhold).	In	cases	like	this,	choosing	the	right	threshhold	is	a	matter	of	finding	the	right
trade-off.

The	Bias-Variance	Trade-off
Another	way	of	thinking	about	the	overfitting	problem	is	as	a	trade-off	between	bias	and
variance.

Both	are	measures	of	what	would	happen	if	you	were	to	retrain	your	model	many	times	on
different	sets	of	training	data	(from	the	same	larger	population).

For	example,	the	degree	0	model	in	“Overfitting	and	Underfitting”	will	make	a	lot	of
mistakes	for	pretty	much	any	training	set	(drawn	from	the	same	population),	which	means
that	it	has	a	high	bias.	However,	any	two	randomly	chosen	training	sets	should	give	pretty
similar	models	(since	any	two	randomly	chosen	training	sets	should	have	pretty	similar
average	values).	So	we	say	that	it	has	a	low	variance.	High	bias	and	low	variance	typically
correspond	to	underfitting.

On	the	other	hand,	the	degree	9	model	fit	the	training	set	perfectly.	It	has	very	low	bias	but
very	high	variance	(since	any	two	training	sets	would	likely	give	rise	to	very	different
models).	This	corresponds	to	overfitting.

Thinking	about	model	problems	this	way	can	help	you	figure	out	what	do	when	your
model	doesn’t	work	so	well.

If	your	model	has	high	bias	(which	means	it	performs	poorly	even	on	your	training	data)
then	one	thing	to	try	is	adding	more	features.	Going	from	the	degree	0	model	in
“Overfitting	and	Underfitting”	to	the	degree	1	model	was	a	big	improvement.

If	your	model	has	high	variance,	then	you	can	similarly	remove	features.	But	another
solution	is	to	obtain	more	data	(if	you	can).

Figure	11-2.	Reducing	variance	with	more	data

In	Figure	11-2,	we	fit	a	degree	9	polynomial	to	different	size	samples.	The	model	fit	based
on	10	data	points	is	all	over	the	place,	as	we	saw	before.	If	we	instead	trained	on	100	data
points,	there’s	much	less	overfitting.	And	the	model	trained	from	1,000	data	points	looks
very	similar	to	the	degree	1	model.

Holding	model	complexity	constant,	the	more	data	you	have,	the	harder	it	is	to	overfit.

On	the	other	hand,	more	data	won’t	help	with	bias.	If	your	model	doesn’t	use	enough
features	to	capture	regularities	in	the	data,	throwing	more	data	at	it	won’t	help.

Feature	Extraction	and	Selection
As	we	mentioned,	when	your	data	doesn’t	have	enough	features,	your	model	is	likely	to
underfit.	And	when	your	data	has	too	many	features,	it’s	easy	to	overfit.	But	what	are
features	and	where	do	they	come	from?

Features	are	whatever	inputs	we	provide	to	our	model.

In	the	simplest	case,	features	are	simply	given	to	you.	If	you	want	to	predict	someone’s
salary	based	on	her	years	of	experience,	then	years	of	experience	is	the	only	feature	you
have.

(Although,	as	we	saw	in	“Overfitting	and	Underfitting”,	you	might	also	consider	adding
years	of	experience	squared,	cubed,	and	so	on	if	that	helps	you	build	a	better	model.)

Things	become	more	interesting	as	your	data	becomes	more	complicated.	Imagine	trying
to	build	a	spam	filter	to	predict	whether	an	email	is	junk	or	not.	Most	models	won’t	know
what	to	do	with	a	raw	email,	which	is	just	a	collection	of	text.	You’ll	have	to	extract
features.	For	example:

Does	the	email	contain	the	word	“Viagra”?

How	many	times	does	the	letter	d	appear?

What	was	the	domain	of	the	sender?

The	first	is	simply	a	yes	or	no,	which	we	typically	encode	as	a	1	or	0.	The	second	is	a
number.	And	the	third	is	a	choice	from	a	discrete	set	of	options.

Pretty	much	always,	we’ll	extract	features	from	our	data	that	fall	into	one	of	these	three
categories.	What’s	more,	the	type	of	features	we	have	constrains	the	type	of	models	we
can	use.

The	Naive	Bayes	classifier	we’ll	build	in	Chapter	13	is	suited	to	yes-or-no	features,	like
the	first	one	in	the	preceding	list.

Regression	models,	as	we’ll	study	in	Chapter	14	and	Chapter	16,	require	numeric	features
(which	could	include	dummy	variables	that	are	0s	and	1s).

And	decision	trees,	which	we’ll	look	at	in	Chapter	17,	can	deal	with	numeric	or
categorical	data.

Although	in	the	spam	filter	example	we	looked	for	ways	to	create	features,	sometimes
we’ll	instead	look	for	ways	to	remove	features.

For	example,	your	inputs	might	be	vectors	of	several	hundred	numbers.	Depending	on	the
situation,	it	might	be	appropriate	to	distill	these	down	to	handful	of	important	dimensions
(as	in	“Dimensionality	Reduction”)	and	use	only	those	small	number	of	features.	Or	it
might	be	appropriate	to	use	a	technique	(like	regularization,	which	we’ll	look	at	in
“Regularization”)	that	penalizes	models	the	more	features	they	use.

How	do	we	choose	features?	That’s	where	a	combination	of	experience	and	domain
expertise	comes	into	play.	If	you’ve	received	lots	of	emails,	then	you	probably	have	a
sense	that	the	presence	of	certain	words	might	be	a	good	indicator	of	spamminess.	And
you	might	also	have	a	sense	that	the	number	of	d’s	is	likely	not	a	good	indicator	of
spamminess.	But	in	general	you’ll	have	to	try	different	things,	which	is	part	of	the	fun.

For	Further	Exploration
Keep	reading!	The	next	several	chapters	are	about	different	families	of	machine-
learning	models.

The	Coursera	Machine	Learning	course	is	the	original	MOOC	and	is	a	good	place	to
get	a	deeper	understanding	of	the	basics	of	machine	learning.	The	Caltech	Machine
Learning	MOOC	is	also	good.

The	Elements	of	Statistical	Learning	is	a	somewhat	canonical	textbook	that	can	be
downloaded	online	for	free.	But	be	warned:	it’s	very	mathy.

https://www.coursera.org/course/ml
http://bit.ly/1ycOTIx
http://stanford.io/1ycOXbo

Chapter	12.	k-Nearest	Neighbors

If	you	want	to	annoy	your	neighbors,	tell	the	truth	about	them.

Pietro	Aretino

Imagine	that	you’re	trying	to	predict	how	I’m	going	to	vote	in	the	next	presidential
election.	If	you	know	nothing	else	about	me	(and	if	you	have	the	data),	one	sensible
approach	is	to	look	at	how	my	neighbors	are	planning	to	vote.	Living	in	downtown
Seattle,	as	I	do,	my	neighbors	are	invariably	planning	to	vote	for	the	Democratic
candidate,	which	suggests	that	“Democratic	candidate”	is	a	good	guess	for	me	as	well.

Now	imagine	you	know	more	about	me	than	just	geography	—	perhaps	you	know	my	age,
my	income,	how	many	kids	I	have,	and	so	on.	To	the	extent	my	behavior	is	influenced	(or
characterized)	by	those	things,	looking	just	at	my	neighbors	who	are	close	to	me	among
all	those	dimensions	seems	likely	to	be	an	even	better	predictor	than	looking	at	all	my
neighbors.	This	is	the	idea	behind	nearest	neighbors	classification.

The	Model
Nearest	neighbors	is	one	of	the	simplest	predictive	models	there	is.	It	makes	no
mathematical	assumptions,	and	it	doesn’t	require	any	sort	of	heavy	machinery.	The	only
things	it	requires	are:

Some	notion	of	distance

An	assumption	that	points	that	are	close	to	one	another	are	similar

Most	of	the	techniques	we’ll	look	at	in	this	book	look	at	the	data	set	as	a	whole	in	order	to
learn	patterns	in	the	data.	Nearest	neighbors,	on	the	other	hand,	quite	consciously	neglects
a	lot	of	information,	since	the	prediction	for	each	new	point	depends	only	on	the	handful
of	points	closest	to	it.

What’s	more,	nearest	neighbors	is	probably	not	going	to	help	you	understand	the	drivers
of	whatever	phenomenon	you’re	looking	at.	Predicting	my	votes	based	on	my	neighbors’
votes	doesn’t	tell	you	much	about	what	causes	me	to	vote	the	way	I	do,	whereas	some
alternative	model	that	predicted	my	vote	based	on	(say)	my	income	and	marital	status	very
well	might.

In	the	general	situation,	we	have	some	data	points	and	we	have	a	corresponding	set	of
labels.	The	labels	could	be	True	and	False,	indicating	whether	each	input	satisfies	some
condition	like	“is	spam?”	or	“is	poisonous?”	or	“would	be	enjoyable	to	watch?”	Or	they
could	be	categories,	like	movie	ratings	(G,	PG,	PG-13,	R,	NC-17).	Or	they	could	be	the
names	of	presidential	candidates.	Or	they	could	be	favorite	programming	languages.

In	our	case,	the	data	points	will	be	vectors,	which	means	that	we	can	use	the	distance
function	from	Chapter	4.

Let’s	say	we’ve	picked	a	number	k	like	3	or	5.	Then	when	we	want	to	classify	some	new
data	point,	we	find	the	k	nearest	labeled	points	and	let	them	vote	on	the	new	output.

To	do	this,	we’ll	need	a	function	that	counts	votes.	One	possibility	is:

def	raw_majority_vote(labels):

				votes	=	Counter(labels)

				winner,	_	=	votes.most_common(1)[0]

				return	winner

But	this	doesn’t	do	anything	intelligent	with	ties.	For	example,	imagine	we’re	rating
movies	and	the	five	nearest	movies	are	rated	G,	G,	PG,	PG,	and	R.	Then	G	has	two	votes
and	PG	also	has	two	votes.	In	that	case,	we	have	several	options:

Pick	one	of	the	winners	at	random.

Weight	the	votes	by	distance	and	pick	the	weighted	winner.

Reduce	k	until	we	find	a	unique	winner.

We’ll	implement	the	third:

def	majority_vote(labels):

				"""assumes	that	labels	are	ordered	from	nearest	to	farthest"""

				vote_counts	=	Counter(labels)

				winner,	winner_count	=	vote_counts.most_common(1)[0]

				num_winners	=	len([count

																							for	count	in	vote_counts.values()

																							if	count	==	winner_count])

				if	num_winners	==	1:

								return	winner																					#	unique	winner,	so	return	it

				else:

								return	majority_vote(labels[:-1])	#	try	again	without	the	farthest

This	approach	is	sure	to	work	eventually,	since	in	the	worst	case	we	go	all	the	way	down
to	just	one	label,	at	which	point	that	one	label	wins.

With	this	function	it’s	easy	to	create	a	classifier:

def	knn_classify(k,	labeled_points,	new_point):

				"""each	labeled	point	should	be	a	pair	(point,	label)"""

				#	order	the	labeled	points	from	nearest	to	farthest

				by_distance	=	sorted(labeled_points,

																									key=lambda	(point,	_):	distance(point,	new_point))

				#	find	the	labels	for	the	k	closest

				k_nearest_labels	=	[label	for	_,	label	in	by_distance[:k]]

				#	and	let	them	vote

				return	majority_vote(k_nearest_labels)

Let’s	take	a	look	at	how	this	works.

Example:	Favorite	Languages
The	results	of	the	first	DataSciencester	user	survey	are	back,	and	we’ve	found	the
preferred	programming	languages	of	our	users	in	a	number	of	large	cities:

#	each	entry	is	([longitude,	latitude],	favorite_language)

cities	=	[([-122.3	,	47.53],	"Python"),		#	Seattle

										([-96.85,	32.85],	"Java"),				#	Austin

										([-89.33,	43.13],	"R"),							#	Madison

										#	...	and	so	on

]

The	VP	of	Community	Engagement	wants	to	know	if	we	can	use	these	results	to	predict
the	favorite	programming	languages	for	places	that	weren’t	part	of	our	survey.

As	usual,	a	good	first	step	is	plotting	the	data	(Figure	12-1):

#	key	is	language,	value	is	pair	(longitudes,	latitudes)

plots	=	{	"Java"	:	([],	[]),	"Python"	:	([],	[]),	"R"	:	([],	[])	}

#	we	want	each	language	to	have	a	different	marker	and	color

markers	=	{	"Java"	:	"o",	"Python"	:	"s",	"R"	:	"^"	}

colors		=	{	"Java"	:	"r",	"Python"	:	"b",	"R"	:	"g"	}

for	(longitude,	latitude),	language	in	cities:

				plots[language][0].append(longitude)

				plots[language][1].append(latitude)

#	create	a	scatter	series	for	each	language

for	language,	(x,	y)	in	plots.iteritems():

				plt.scatter(x,	y,	color=colors[language],	marker=markers[language],

																						label=language,	zorder=10)

plot_state_borders(plt)						#	pretend	we	have	a	function	that	does	this

plt.legend(loc=0)												#	let	matplotlib	choose	the	location

plt.axis([-130,-60,20,55])			#	set	the	axes

plt.title("Favorite	Programming	Languages")

plt.show()

Figure	12-1.	Favorite	programming	languages

NOTE
You	may	have	noticed	the	call	to	plot_state_borders(),	a	function	that	we	haven’t	actually	defined.
There’s	an	implementation	on	the	book’s	GitHub	page,	but	it’s	a	good	exercise	to	try	to	do	it	yourself:

1.	 Search	the	Web	for	something	like	state	boundaries	latitude	longitude.

2.	 Convert	whatever	data	you	can	find	into	a	list	of	segments	[(long1,	lat1),	(long2,	lat2)].

3.	 Use	plt.plot()	to	draw	the	segments.

Since	it	looks	like	nearby	places	tend	to	like	the	same	language,	k-nearest	neighbors	seems
like	a	reasonable	choice	for	a	predictive	model.

To	start	with,	let’s	look	at	what	happens	if	we	try	to	predict	each	city’s	preferred	language
using	its	neighbors	other	than	itself:

#	try	several	different	values	for	k

for	k	in	[1,	3,	5,	7]:

				num_correct	=	0

				for	city	in	cities:

								location,	actual_language	=	city

								other_cities	=	[other_city

																								for	other_city	in	cities

																								if	other_city	!=	city]

								predicted_language	=	knn_classify(k,	other_cities,	location)

http://bit.ly/1ycP2M8

								if	predicted_language	==	actual_language:

												num_correct	+=	1

				print	k,	"neighbor[s]:",	num_correct,	"correct	out	of",	len(cities)

It	looks	like	3-nearest	neighbors	performs	the	best,	giving	the	correct	result	about	59%	of
the	time:

1	neighbor[s]:	40	correct	out	of	75

3	neighbor[s]:	44	correct	out	of	75

5	neighbor[s]:	41	correct	out	of	75

7	neighbor[s]:	35	correct	out	of	75

Now	we	can	look	at	what	regions	would	get	classified	to	which	languages	under	each
nearest	neighbors	scheme.	We	can	do	that	by	classifying	an	entire	grid	worth	of	points,
and	then	plotting	them	as	we	did	the	cities:

plots	=	{	"Java"	:	([],	[]),	"Python"	:	([],	[]),	"R"	:	([],	[])	}

k	=	1	#	or	3,	or	5,	or…

for	longitude	in	range(-130,	-60):

				for	latitude	in	range(20,	55):

								predicted_language	=	knn_classify(k,	cities,	[longitude,	latitude])

								plots[predicted_language][0].append(longitude)

								plots[predicted_language][1].append(latitude)

For	instance,	Figure	12-2	shows	what	happens	when	we	look	at	just	the	nearest	neighbor
(k	=	1).

We	see	lots	of	abrupt	changes	from	one	language	to	another	with	sharp	boundaries.	As	we
increase	the	number	of	neighbors	to	three,	we	see	smoother	regions	for	each	language
(Figure	12-3).

And	as	we	increase	the	neighbors	to	five,	the	boundaries	get	smoother	still	(Figure	12-4).

Here	our	dimensions	are	roughly	comparable,	but	if	they	weren’t	you	might	want	to
rescale	the	data	as	we	did	in	“Rescaling”.

Figure	12-2.	1-Nearest	neighbor	programming	languages

The	Curse	of	Dimensionality
k-nearest	neighbors	runs	into	trouble	in	higher	dimensions	thanks	to	the	“curse	of
dimensionality,”	which	boils	down	to	the	fact	that	high-dimensional	spaces	are	vast.
Points	in	high-dimensional	spaces	tend	not	to	be	close	to	one	another	at	all.	One	way	to
see	this	is	by	randomly	generating	pairs	of	points	in	the	d-dimensional	“unit	cube”	in	a
variety	of	dimensions,	and	calculating	the	distances	between	them.

Figure	12-3.	3-Nearest	neighbor	programming	languages

Generating	random	points	should	be	second	nature	by	now:

def	random_point(dim):

				return	[random.random()	for	_	in	range(dim)]

as	is	writing	a	function	to	generate	the	distances:

def	random_distances(dim,	num_pairs):

				return	[distance(random_point(dim),	random_point(dim))

												for	_	in	range(num_pairs)]

Figure	12-4.	5-Nearest	neighbor	programming	languages

For	every	dimension	from	1	to	100,	we’ll	compute	10,000	distances	and	use	those	to
compute	the	average	distance	between	points	and	the	minimum	distance	between	points	in
each	dimension	(Figure	12-5):

dimensions	=	range(1,	101)

avg_distances	=	[]

min_distances	=	[]

random.seed(0)

for	dim	in	dimensions:

		distances	=	random_distances(dim,	10000)		#	10,000	random	pairs

		avg_distances.append(mean(distances))					#	track	the	average

		min_distances.append(min(distances))						#	track	the	minimum

Figure	12-5.	The	curse	of	dimensionality

As	the	number	of	dimensions	increases,	the	average	distance	between	points	increases.
But	what’s	more	problematic	is	the	ratio	between	the	closest	distance	and	the	average
distance	(Figure	12-6):

min_avg_ratio	=	[min_dist	/	avg_dist

																	for	min_dist,	avg_dist	in	zip(min_distances,	avg_distances)]

Figure	12-6.	The	curse	of	dimensionality	again

In	low-dimensional	data	sets,	the	closest	points	tend	to	be	much	closer	than	average.	But
two	points	are	close	only	if	they’re	close	in	every	dimension,	and	every	extra	dimension
—	even	if	just	noise	—	is	another	opportunity	for	each	point	to	be	further	away	from
every	other	point.	When	you	have	a	lot	of	dimensions,	it’s	likely	that	the	closest	points
aren’t	much	closer	than	average,	which	means	that	two	points	being	close	doesn’t	mean
very	much	(unless	there’s	a	lot	of	structure	in	your	data	that	makes	it	behave	as	if	it	were
much	lower-dimensional).

A	different	way	of	thinking	about	the	problem	involves	the	sparsity	of	higher-dimensional
spaces.

If	you	pick	50	random	numbers	between	0	and	1,	you’ll	probably	get	a	pretty	good	sample
of	the	unit	interval	(Figure	12-7).

Figure	12-7.	Fifty	random	points	in	one	dimension

If	you	pick	50	random	points	in	the	unit	square,	you’ll	get	less	coverage	(Figure	12-8).

Figure	12-8.	Fifty	random	points	in	two	dimensions

And	in	three	dimensions	less	still	(Figure	12-9).

matplotlib	doesn’t	graph	four	dimensions	well,	so	that’s	as	far	as	we’ll	go,	but	you	can
see	already	that	there	are	starting	to	be	large	empty	spaces	with	no	points	near	them.	In
more	dimensions	—	unless	you	get	exponentially	more	data	—	those	large	empty	spaces
represent	regions	far	from	all	the	points	you	want	to	use	in	your	predictions.

So	if	you’re	trying	to	use	nearest	neighbors	in	higher	dimensions,	it’s	probably	a	good	idea
to	do	some	kind	of	dimensionality	reduction	first.

Figure	12-9.	Fifty	random	points	in	three	dimensions

For	Further	Exploration
scikit-learn	has	many	nearest	neighbor	models.

http://bit.ly/1ycP5rj

Chapter	13.	Naive	Bayes

It	is	well	for	the	heart	to	be	naive	and	for	the	mind	not	to	be.

Anatole	France

A	social	network	isn’t	much	good	if	people	can’t	network.	Accordingly,	DataSciencester
has	a	popular	feature	that	allows	members	to	send	messages	to	other	members.	And	while
most	of	your	members	are	responsible	citizens	who	send	only	well-received	“how’s	it
going?”	messages,	a	few	miscreants	persistently	spam	other	members	about	get-rich
schemes,	no-prescription-required	pharmaceuticals,	and	for-profit	data	science
credentialing	programs.	Your	users	have	begun	to	complain,	and	so	the	VP	of	Messaging
has	asked	you	to	use	data	science	to	figure	out	a	way	to	filter	out	these	spam	messages.

A	Really	Dumb	Spam	Filter
Imagine	a	“universe”	that	consists	of	receiving	a	message	chosen	randomly	from	all
possible	messages.	Let	S	be	the	event	“the	message	is	spam”	and	V	be	the	event	“the
message	contains	the	word	viagra.”	Then	Bayes’s	Theorem	tells	us	that	the	probability
that	the	message	is	spam	conditional	on	containing	the	word	viagra	is:

The	numerator	is	the	probability	that	a	message	is	spam	and	contains	viagra,	while	the
denominator	is	just	the	probability	that	a	message	contains	viagra.	Hence	you	can	think	of
this	calculation	as	simply	representing	the	proportion	of	viagra	messages	that	are	spam.

If	we	have	a	large	collection	of	messages	we	know	are	spam,	and	a	large	collection	of
messages	we	know	are	not	spam,	then	we	can	easily	estimate	 	and	

.	If	we	further	assume	that	any	message	is	equally	likely	to	be	spam	or	not-

spam	(so	that),	then:

For	example,	if	50%	of	spam	messages	have	the	word	viagra,	but	only	1%	of	nonspam
messages	do,	then	the	probability	that	any	given	viagra-containing	email	is	spam	is:

A	More	Sophisticated	Spam	Filter
Imagine	now	that	we	have	a	vocabulary	of	many	words	 .	To	move	this	into
the	realm	of	probability	theory,	we’ll	write	 	for	the	event	“a	message	contains	the	word	
.”	Also	imagine	that	(through	some	unspecified-at-this-point	process)	we’ve	come	up

with	an	estimate	 	for	the	probability	that	a	spam	message	contains	the	ith	word,
and	a	similar	estimate	 	for	the	probability	that	a	nonspam	message	contains
the	ith	word.

The	key	to	Naive	Bayes	is	making	the	(big)	assumption	that	the	presences	(or	absences)	of
each	word	are	independent	of	one	another,	conditional	on	a	message	being	spam	or	not.
Intuitively,	this	assumption	means	that	knowing	whether	a	certain	spam	message	contains
the	word	“viagra”	gives	you	no	information	about	whether	that	same	message	contains	the
word	“rolex.”	In	math	terms,	this	means	that:

This	is	an	extreme	assumption.	(There’s	a	reason	the	technique	has	“naive”	in	its	name.)
Imagine	that	our	vocabulary	consists	only	of	the	words	“viagra”	and	“rolex,”	and	that	half
of	all	spam	messages	are	for	“cheap	viagra”	and	that	the	other	half	are	for	“authentic
rolex.”	In	this	case,	the	Naive	Bayes	estimate	that	a	spam	message	contains	both	“viagra”
and	“rolex”	is:

since	we’ve	assumed	away	the	knowledge	that	“viagra”	and	“rolex”	actually	never	occur
together.	Despite	the	unrealisticness	of	this	assumption,	this	model	often	performs	well
and	is	used	in	actual	spam	filters.

The	same	Bayes’s	Theorem	reasoning	we	used	for	our	“viagra-only”	spam	filter	tells	us
that	we	can	calculate	the	probability	a	message	is	spam	using	the	equation:

The	Naive	Bayes	assumption	allows	us	to	compute	each	of	the	probabilities	on	the	right
simply	by	multiplying	together	the	individual	probability	estimates	for	each	vocabulary
word.

In	practice,	you	usually	want	to	avoid	multiplying	lots	of	probabilities	together,	to	avoid	a
problem	called	underflow,	in	which	computers	don’t	deal	well	with	floating-point	numbers
that	are	too	close	to	zero.	Recalling	from	algebra	that	

	and	that	 ,	we	usually
compute	 	as	the	equivalent	(but	floating-point-friendlier):

The	only	challenge	left	is	coming	up	with	estimates	for	 	and	 ,	the
probabilities	that	a	spam	message	(or	nonspam	message)	contains	the	word	 .	If	we	have
a	fair	number	of	“training”	messages	labeled	as	spam	and	not-spam,	an	obvious	first	try	is
to	estimate	 	simply	as	the	fraction	of	spam	messages	containing	word	 .

This	causes	a	big	problem,	though.	Imagine	that	in	our	training	set	the	vocabulary	word
“data”	only	occurs	in	nonspam	messages.	Then	we’d	estimate	 .
The	result	is	that	our	Naive	Bayes	classifier	would	always	assign	spam	probability	0	to
any	message	containing	the	word	“data,”	even	a	message	like	“data	on	cheap	viagra	and
authentic	rolex	watches.”	To	avoid	this	problem,	we	usually	use	some	kind	of	smoothing.

In	particular,	we’ll	choose	a	pseudocount	—	k	—	and	estimate	the	probability	of	seeing
the	ith	word	in	a	spam	as:

Similarly	for	 .	That	is,	when	computing	the	spam	probabilities	for	the	ith
word,	we	assume	we	also	saw	k	additional	spams	containing	the	word	and	k	additional
spams	not	containing	the	word.

For	example,	if	“data”	occurs	in	0/98	spam	documents,	and	if	k	is	1,	we	estimate	
	as	1/100	=	0.01,	which	allows	our	classifier	to	still	assign	some	nonzero

spam	probability	to	messages	that	contain	the	word	“data.”

Implementation
Now	we	have	all	the	pieces	we	need	to	build	our	classifier.	First,	let’s	create	a	simple
function	to	tokenize	messages	into	distinct	words.	We’ll	first	convert	each	message	to
lowercase;	use	re.findall()	to	extract	“words”	consisting	of	letters,	numbers,	and
apostrophes;	and	finally	use	set()	to	get	just	the	distinct	words:

def	tokenize(message):

				message	=	message.lower()																							#	convert	to	lowercase

				all_words	=	re.findall("[a-z0-9']+",	message)			#	extract	the	words

				return	set(all_words)																											#	remove	duplicates

Our	second	function	will	count	the	words	in	a	labeled	training	set	of	messages.	We’ll	have
it	return	a	dictionary	whose	keys	are	words,	and	whose	values	are	two-element	lists
[spam_count,	non_spam_count]	corresponding	to	how	many	times	we	saw	that	word	in
both	spam	and	nonspam	messages:

def	count_words(training_set):

				"""training	set	consists	of	pairs	(message,	is_spam)"""

				counts	=	defaultdict(lambda:	[0,	0])

				for	message,	is_spam	in	training_set:

								for	word	in	tokenize(message):

												counts[word][0	if	is_spam	else	1]	+=	1

				return	counts

Our	next	step	is	to	turn	these	counts	into	estimated	probabilities	using	the	smoothing	we
described	before.	Our	function	will	return	a	list	of	triplets	containing	each	word,	the
probability	of	seeing	that	word	in	a	spam	message,	and	the	probability	of	seeing	that	word
in	a	nonspam	message:

def	word_probabilities(counts,	total_spams,	total_non_spams,	k=0.5):

				"""turn	the	word_counts	into	a	list	of	triplets

				w,	p(w	|	spam)	and	p(w	|	~spam)"""

				return	[(w,

													(spam	+	k)	/	(total_spams	+	2	*	k),

													(non_spam	+	k)	/	(total_non_spams	+	2	*	k))

													for	w,	(spam,	non_spam)	in	counts.iteritems()]

The	last	piece	is	to	use	these	word	probabilities	(and	our	Naive	Bayes	assumptions)	to
assign	probabilities	to	messages:

def	spam_probability(word_probs,	message):

				message_words	=	tokenize(message)

				log_prob_if_spam	=	log_prob_if_not_spam	=	0.0

				#	iterate	through	each	word	in	our	vocabulary

				for	word,	prob_if_spam,	prob_if_not_spam	in	word_probs:

								#	if	*word*	appears	in	the	message,

								#	add	the	log	probability	of	seeing	it

								if	word	in	message_words:

												log_prob_if_spam	+=	math.log(prob_if_spam)

												log_prob_if_not_spam	+=	math.log(prob_if_not_spam)

								#	if	*word*	doesn't	appear	in	the	message

								#	add	the	log	probability	of	_not_	seeing	it

								#	which	is	log(1	-	probability	of	seeing	it)

								else:

												log_prob_if_spam	+=	math.log(1.0	-	prob_if_spam)

												log_prob_if_not_spam	+=	math.log(1.0	-	prob_if_not_spam)

				prob_if_spam	=	math.exp(log_prob_if_spam)

				prob_if_not_spam	=	math.exp(log_prob_if_not_spam)

				return	prob_if_spam	/	(prob_if_spam	+	prob_if_not_spam)

We	can	put	this	all	together	into	our	Naive	Bayes	Classifier:

class	NaiveBayesClassifier:

				def	__init__(self,	k=0.5):

								self.k	=	k

								self.word_probs	=	[]

				def	train(self,	training_set):

								#	count	spam	and	non-spam	messages

								num_spams	=	len([is_spam

																									for	message,	is_spam	in	training_set

																									if	is_spam])

								num_non_spams	=	len(training_set)	-	num_spams

								#	run	training	data	through	our	"pipeline"

								word_counts	=	count_words(training_set)

								self.word_probs	=	word_probabilities(word_counts,

																																													num_spams,

																																													num_non_spams,

																																													self.k)

				def	classify(self,	message):

								return	spam_probability(self.word_probs,	message)

Testing	Our	Model
A	good	(if	somewhat	old)	data	set	is	the	SpamAssassin	public	corpus.	We’ll	look	at	the
files	prefixed	with	20021010.	(On	Windows,	you	might	need	a	program	like	7-Zip	to
decompress	and	extract	them.)

After	extracting	the	data	(to,	say,	C:\spam)	you	should	have	three	folders:	spam,
easy_ham,	and	hard_ham.	Each	folder	contains	many	emails,	each	contained	in	a	single
file.	To	keep	things	really	simple,	we’ll	just	look	at	the	subject	lines	of	each	email.

How	do	we	identify	the	subject	line?	Looking	through	the	files,	they	all	seem	to	start	with
“Subject:”.	So	we’ll	look	for	that:

import	glob,	re

#	modify	the	path	with	wherever	you've	put	the	files

path	=	r"C:\spam**"

data	=	[]

#	glob.glob	returns	every	filename	that	matches	the	wildcarded	path

for	fn	in	glob.glob(path):

				is_spam	=	"ham"	not	in	fn

				with	open(fn,'r')	as	file:

								for	line	in	file:

												if	line.startswith("Subject:"):

																#	remove	the	leading	"Subject:	"	and	keep	what's	left

																subject	=	re.sub(r"^Subject:	",	"",	line).strip()

																data.append((subject,	is_spam))

Now	we	can	split	the	data	into	training	data	and	test	data,	and	then	we’re	ready	to	build	a
classifier:

random.seed(0)						#	just	so	you	get	the	same	answers	as	me

train_data,	test_data	=	split_data(data,	0.75)

classifier	=	NaiveBayesClassifier()

classifier.train(train_data)

And	then	we	can	check	how	our	model	does:

#	triplets	(subject,	actual	is_spam,	predicted	spam	probability)

classified	=	[(subject,	is_spam,	classifier.classify(subject))

														for	subject,	is_spam	in	test_data]

#	assume	that	spam_probability	>	0.5	corresponds	to	spam	prediction

#	and	count	the	combinations	of	(actual	is_spam,	predicted	is_spam)

counts	=	Counter((is_spam,	spam_probability	>	0.5)

																	for	_,	is_spam,	spam_probability	in	classified)

This	gives	101	true	positives	(spam	classified	as	“spam”),	33	false	positives	(ham
classified	as	“spam”),	704	true	negatives	(ham	classified	as	“ham”),	and	38	false	negatives
(spam	classified	as	“ham”).	This	means	our	precision	is	101	/	(101	+	33)	=	75%,	and	our
recall	is	101	/	(101	+	38)	=	73%,	which	are	not	bad	numbers	for	such	a	simple	model.

It’s	also	interesting	to	look	at	the	most	misclassified:

https://spamassassin.apache.org/publiccorpus/
http://www.7-zip.org/

#	sort	by	spam_probability	from	smallest	to	largest

classified.sort(key=lambda	row:	row[2])

#	the	highest	predicted	spam	probabilities	among	the	non-spams

spammiest_hams	=	filter(lambda	row:	not	row[1],	classified)[-5:]

#	the	lowest	predicted	spam	probabilities	among	the	actual	spams

hammiest_spams	=	filter(lambda	row:	row[1],	classified)[:5]

The	two	spammiest	hams	both	have	the	words	“needed”	(77	times	more	likely	to	appear	in
spam),	“insurance”	(30	times	more	likely	to	appear	in	spam),	and	“important”	(10	times
more	likely	to	appear	in	spam).

The	hammiest	spam	is	too	short	(“Re:	girls”)	to	make	much	of	a	judgment,	and	the
second-hammiest	is	a	credit	card	solicitation	most	of	whose	words	weren’t	in	the	training
set.

We	can	similarly	look	at	the	spammiest	words:

def	p_spam_given_word(word_prob):

				"""uses	bayes's	theorem	to	compute	p(spam	|	message	contains	word)"""

				#	word_prob	is	one	of	the	triplets	produced	by	word_probabilities

				word,	prob_if_spam,	prob_if_not_spam	=	word_prob

				return	prob_if_spam	/	(prob_if_spam	+	prob_if_not_spam)

words	=	sorted(classifier.word_probs,	key=p_spam_given_word)

spammiest_words	=	words[-5:]

hammiest_words	=	words[:5]

The	spammiest	words	are	“money,”	“systemworks,”	“rates,”	“sale,”	and	“year,”	all	of
which	seem	related	to	trying	to	get	people	to	buy	things.	And	the	hammiest	words	are
“spambayes,”	“users,”	“razor,”	“zzzzteana,”	and	“sadev,”	most	of	which	seem	related	to
spam	prevention,	oddly	enough.

How	could	we	get	better	performance?	One	obvious	way	would	be	to	get	more	data	to
train	on.	There	are	a	number	of	ways	to	improve	the	model	as	well.	Here	are	some
possibilities	that	you	might	try:

Look	at	the	message	content,	not	just	the	subject	line.	You’ll	have	to	be	careful	how
you	deal	with	the	message	headers.

Our	classifier	takes	into	account	every	word	that	appears	in	the	training	set,	even	words
that	appear	only	once.	Modify	the	classifier	to	accept	an	optional	min_count	threshhold
and	ignore	tokens	that	don’t	appear	at	least	that	many	times.

The	tokenizer	has	no	notion	of	similar	words	(e.g.,	“cheap”	and	“cheapest”).	Modify
the	classifier	to	take	an	optional	stemmer	function	that	converts	words	to	equivalence
classes	of	words.	For	example,	a	really	simple	stemmer	function	might	be:

def	drop_final_s(word):

				return	re.sub("s$",	"",	word)

Creating	a	good	stemmer	function	is	hard.	People	frequently	use	the	Porter	Stemmer.

Although	our	features	are	all	of	the	form	“message	contains	word	 ,”	there’s	no
reason	why	this	has	to	be	the	case.	In	our	implementation,	we	could	add	extra	features
like	“message	contains	a	number”	by	creating	phony	tokens	like	contains:number	and
modifying	the	tokenizer	to	emit	them	when	appropriate.

http://tartarus.org/martin/PorterStemmer/

For	Further	Exploration
Paul	Graham’s	articles	“A	Plan	for	Spam”	and	“Better	Bayesian	Filtering”	(are
interesting	and)	give	more	insight	into	the	ideas	behind	building	spam	filters.

scikit-learn	contains	a	BernoulliNB	model	that	implements	the	same	Naive	Bayes
algorithm	we	implemented	here,	as	well	as	other	variations	on	the	model.

http://bit.ly/1ycPcmA
http://bit.ly/1ycPbiy
http://bit.ly/1ycP9ar

Chapter	14.	Simple	Linear	Regression

Art,	like	morality,	consists	in	drawing	the	line	somewhere.

G.	K.	Chesterton

In	Chapter	5,	we	used	the	correlation	function	to	measure	the	strength	of	the	linear
relationship	between	two	variables.	For	most	applications,	knowing	that	such	a	linear
relationship	exists	isn’t	enough.	We’ll	want	to	be	able	to	understand	the	nature	of	the
relationship.	This	is	where	we’ll	use	simple	linear	regression.

The	Model
Recall	that	we	were	investigating	the	relationship	between	a	DataSciencester	user’s
number	of	friends	and	the	amount	of	time	he	spent	on	the	site	each	day.	Let’s	assume	that
you’ve	convinced	yourself	that	having	more	friends	causes	people	to	spend	more	time	on
the	site,	rather	than	one	of	the	alternative	explanations	we	discussed.

The	VP	of	Engagement	asks	you	to	build	a	model	describing	this	relationship.	Since	you
found	a	pretty	strong	linear	relationship,	a	natural	place	to	start	is	a	linear	model.

In	particular,	you	hypothesize	that	there	are	constants	 	(alpha)	and	 	(beta)	such	that:

where	 	is	the	number	of	minutes	user	i	spends	on	the	site	daily,	 	is	the	number	of
friends	user	i	has,	and	 	is	a	(hopefully	small)	error	term	representing	the	fact	that	there
are	other	factors	not	accounted	for	by	this	simple	model.

Assuming	we’ve	determined	such	an	alpha	and	beta,	then	we	make	predictions	simply
with:

def	predict(alpha,	beta,	x_i):

				return	beta	*	x_i	+	alpha

How	do	we	choose	alpha	and	beta?	Well,	any	choice	of	alpha	and	beta	gives	us	a
predicted	output	for	each	input	x_i.	Since	we	know	the	actual	output	y_i	we	can	compute
the	error	for	each	pair:

def	error(alpha,	beta,	x_i,	y_i):

				"""the	error	from	predicting	beta	*	x_i	+	alpha

				when	the	actual	value	is	y_i"""

				return	y_i	-	predict(alpha,	beta,	x_i)

What	we’d	really	like	to	know	is	the	total	error	over	the	entire	data	set.	But	we	don’t	want
to	just	add	the	errors	—	if	the	prediction	for	x_1	is	too	high	and	the	prediction	for	x_2	is
too	low,	the	errors	may	just	cancel	out.

So	instead	we	add	up	the	squared	errors:

def	sum_of_squared_errors(alpha,	beta,	x,	y):

				return	sum(error(alpha,	beta,	x_i,	y_i)	**	2

															for	x_i,	y_i	in	zip(x,	y))

The	least	squares	solution	is	to	choose	the	alpha	and	beta	that	make
sum_of_squared_errors	as	small	as	possible.

Using	calculus	(or	tedious	algebra),	the	error-minimizing	alpha	and	beta	are	given	by:

def	least_squares_fit(x,	y):

				"""given	training	values	for	x	and	y,

				find	the	least-squares	values	of	alpha	and	beta"""

				beta	=	correlation(x,	y)	*	standard_deviation(y)	/	standard_deviation(x)

				alpha	=	mean(y)	-	beta	*	mean(x)

				return	alpha,	beta

Without	going	through	the	exact	mathematics,	let’s	think	about	why	this	might	be	a
reasonable	solution.	The	choice	of	alpha	simply	says	that	when	we	see	the	average	value
of	the	independent	variable	x,	we	predict	the	average	value	of	the	dependent	variable	y.

The	choice	of	beta	means	that	when	the	input	value	increases	by
standard_deviation(x),	the	prediction	increases	by	correlation(x,	y)	*
standard_deviation(y).	In	the	case	when	x	and	y	are	perfectly	correlated,	a	one	standard
deviation	increase	in	x	results	in	a	one-standard-deviation-of-y	increase	in	the	prediction.
When	they’re	perfectly	anticorrelated,	the	increase	in	x	results	in	a	decrease	in	the
prediction.	And	when	the	correlation	is	zero,	beta	is	zero,	which	means	that	changes	in	x
don’t	affect	the	prediction	at	all.

It’s	easy	to	apply	this	to	the	outlierless	data	from	Chapter	5:

alpha,	beta	=	least_squares_fit(num_friends_good,	daily_minutes_good)

This	gives	values	of	alpha	=	22.95	and	beta	=	0.903.	So	our	model	says	that	we	expect	a
user	with	n	friends	to	spend	22.95	+	n	*	0.903	minutes	on	the	site	each	day.	That	is,	we
predict	that	a	user	with	no	friends	on	DataSciencester	would	still	spend	about	23	minutes	a
day	on	the	site.	And	for	each	additional	friend,	we	expect	a	user	to	spend	almost	a	minute
more	on	the	site	each	day.

In	Figure	14-1,	we	plot	the	prediction	line	to	get	a	sense	of	how	well	the	model	fits	the
observed	data.

Figure	14-1.	Our	simple	linear	model

Of	course,	we	need	a	better	way	to	figure	out	how	well	we’ve	fit	the	data	than	staring	at
the	graph.	A	common	measure	is	the	coefficient	of	determination	(or	R-squared),	which
measures	the	fraction	of	the	total	variation	in	the	dependent	variable	that	is	captured	by	the
model:

def	total_sum_of_squares(y):

				"""the	total	squared	variation	of	y_i's	from	their	mean"""

				return	sum(v	**	2	for	v	in	de_mean(y))

def	r_squared(alpha,	beta,	x,	y):

				"""the	fraction	of	variation	in	y	captured	by	the	model,	which	equals

				1	-	the	fraction	of	variation	in	y	not	captured	by	the	model"""

				return	1.0	-	(sum_of_squared_errors(alpha,	beta,	x,	y)	/

																		total_sum_of_squares(y))

r_squared(alpha,	beta,	num_friends_good,	daily_minutes_good)						#	0.329

Now,	we	chose	the	alpha	and	beta	that	minimized	the	sum	of	the	squared	prediction
errors.	One	linear	model	we	could	have	chosen	is	“always	predict	mean(y)”
(corresponding	to	alpha	=	mean(y)	and	beta	=	0),	whose	sum	of	squared	errors	exactly
equals	its	total	sum	of	squares.	This	means	an	R-squared	of	zero,	which	indicates	a	model
that	(obviously,	in	this	case)	performs	no	better	than	just	predicting	the	mean.

Clearly,	the	least	squares	model	must	be	at	least	as	good	as	that	one,	which	means	that	the
sum	of	the	squared	errors	is	at	most	the	total	sum	of	squares,	which	means	that	the	R-
squared	must	be	at	least	zero.	And	the	sum	of	squared	errors	must	be	at	least	0,	which
means	that	the	R-squared	can	be	at	most	1.

The	higher	the	number,	the	better	our	model	fits	the	data.	Here	we	calculate	an	R-squared
of	0.329,	which	tells	us	that	our	model	is	only	sort	of	okay	at	fitting	the	data,	and	that
clearly	there	are	other	factors	at	play.

Using	Gradient	Descent
If	we	write	theta	=	[alpha,	beta],	then	we	can	also	solve	this	using	gradient	descent:

def	squared_error(x_i,	y_i,	theta):

				alpha,	beta	=	theta

				return	error(alpha,	beta,	x_i,	y_i)	**	2

def	squared_error_gradient(x_i,	y_i,	theta):

				alpha,	beta	=	theta

				return	[-2	*	error(alpha,	beta,	x_i,	y_i),							#	alpha	partial	derivative

												-2	*	error(alpha,	beta,	x_i,	y_i)	*	x_i]	#	beta	partial	derivative

#	choose	random	value	to	start

random.seed(0)

theta	=	[random.random(),	random.random()]

alpha,	beta	=	minimize_stochastic(squared_error,

																																		squared_error_gradient,

																																		num_friends_good,

																																		daily_minutes_good,

																																		theta,

																																		0.0001)

print	alpha,	beta

Using	the	same	data	we	get	alpha	=	22.93,	beta	=	0.905,	which	are	very	close	to	the	exact
answers.

Maximum	Likelihood	Estimation
Why	choose	least	squares?	One	justification	involves	maximum	likelihood	estimation.

Imagine	that	we	have	a	sample	of	data	 	that	comes	from	a	distribution	that
depends	on	some	unknown	parameter	 :

If	we	didn’t	know	theta,	we	could	turn	around	and	think	of	this	quantity	as	the	likelihood
of	 	given	the	sample:

Under	this	approach,	the	most	likely	 	is	the	value	that	maximizes	this	likelihood
function;	that	is,	the	value	that	makes	the	observed	data	the	most	probable.	In	the	case	of	a
continuous	distribution,	in	which	we	have	a	probability	distribution	function	rather	than	a
probability	mass	function,	we	can	do	the	same	thing.

Back	to	regression.	One	assumption	that’s	often	made	about	the	simple	regression	model
is	that	the	regression	errors	are	normally	distributed	with	mean	0	and	some	(known)
standard	deviation	 .	If	that’s	the	case,	then	the	likelihood	based	on	seeing	a	pair	(x_i,
y_i)	is:

The	likelihood	based	on	the	entire	data	set	is	the	product	of	the	individual	likelihoods,
which	is	largest	precisely	when	alpha	and	beta	are	chosen	to	minimize	the	sum	of
squared	errors.	That	is,	in	this	case	(and	with	these	assumptions),	minimizing	the	sum	of
squared	errors	is	equivalent	to	maximizing	the	likelihood	of	the	observed	data.

For	Further	Exploration
Continue	reading	about	multiple	regression	in	Chapter	15!

Chapter	15.	Multiple	Regression

I	don’t	look	at	a	problem	and	put	variables	in	there	that	don’t	affect	it.

Bill	Parcells

Although	the	VP	is	pretty	impressed	with	your	predictive	model,	she	thinks	you	can	do
better.	To	that	end,	you’ve	collected	additional	data:	for	each	of	your	users,	you	know	how
many	hours	he	works	each	day,	and	whether	he	has	a	PhD.	You’d	like	to	use	this
additional	data	to	improve	your	model.

Accordingly,	you	hypothesize	a	linear	model	with	more	independent	variables:

Obviously,	whether	a	user	has	a	PhD	is	not	a	number,	but	—	as	we	mentioned	in
Chapter	11	—	we	can	introduce	a	dummy	variable	that	equals	1	for	users	with	PhDs	and	0
for	users	without,	after	which	it’s	just	as	numeric	as	the	other	variables.

The	Model
Recall	that	in	Chapter	14	we	fit	a	model	of	the	form:

Now	imagine	that	each	input	 	is	not	a	single	number	but	rather	a	vector	of	k	numbers	
.	The	multiple	regression	model	assumes	that:

In	multiple	regression	the	vector	of	parameters	is	usually	called	 .	We’ll	want	this	to
include	the	constant	term	as	well,	which	we	can	achieve	by	adding	a	column	of	ones	to
our	data:

beta	=	[alpha,	beta_1,	...,	beta_k]

and:

x_i	=	[1,	x_i1,	...,	x_ik]

Then	our	model	is	just:

def	predict(x_i,	beta):

				"""assumes	that	the	first	element	of	each	x_i	is	1"""

				return	dot(x_i,	beta)

In	this	particular	case,	our	independent	variable	x	will	be	a	list	of	vectors,	each	of	which
looks	like	this:

[1,				#	constant	term

	49,			#	number	of	friends

	4,				#	work	hours	per	day

	0]				#	doesn't	have	PhD

Further	Assumptions	of	the	Least	Squares	Model
There	are	a	couple	of	further	assumptions	that	are	required	for	this	model	(and	our
solution)	to	make	sense.

The	first	is	that	the	columns	of	x	are	linearly	independent	—	that	there’s	no	way	to	write
any	one	as	a	weighted	sum	of	some	of	the	others.	If	this	assumption	fails,	it’s	impossible
to	estimate	beta.	To	see	this	in	an	extreme	case,	imagine	we	had	an	extra	field
num_acquaintances	in	our	data	that	for	every	user	was	exactly	equal	to	num_friends.

Then,	starting	with	any	beta,	if	we	add	any	amount	to	the	num_friends	coefficient	and
subtract	that	same	amount	from	the	num_acquaintances	coefficient,	the	model’s
predictions	will	remain	unchanged.	Which	means	that	there’s	no	way	to	find	the
coefficient	for	num_friends.	(Usually	violations	of	this	assumption	won’t	be	so	obvious.)

The	second	important	assumption	is	that	the	columns	of	x	are	all	uncorrelated	with	the
errors	 .	If	this	fails	to	be	the	case,	our	estimates	of	beta	will	be	systematically	wrong.

For	instance,	in	Chapter	14,	we	built	a	model	that	predicted	that	each	additional	friend	was
associated	with	an	extra	0.90	daily	minutes	on	the	site.

Imagine	that	it’s	also	the	case	that:

People	who	work	more	hours	spend	less	time	on	the	site.

People	with	more	friends	tend	to	work	more	hours.

That	is,	imagine	that	the	“actual”	model	is:

and	that	work	hours	and	friends	are	positively	correlated.	In	that	case,	when	we	minimize
the	errors	of	the	single	variable	model:

we	will	underestimate	 .

Think	about	what	would	happen	if	we	made	predictions	using	the	single	variable	model
with	the	“actual”	value	of	 .	(That	is,	the	value	that	arises	from	minimizing	the	errors	of
what	we	called	the	“actual”	model.)	The	predictions	would	tend	to	be	too	small	for	users
who	work	many	hours	and	too	large	for	users	who	work	few	hours,	because	 	and
we	“forgot”	to	include	it.	Because	work	hours	is	positively	correlated	with	number	of
friends,	this	means	the	predictions	tend	to	be	too	small	for	users	with	many	friends	and	too
large	for	users	with	few	friends.

The	result	of	this	is	that	we	can	reduce	the	errors	(in	the	single-variable	model)	by

decreasing	our	estimate	of	 ,	which	means	that	the	error-minimizing	 	is	smaller	than
the	“actual”	value.	That	is,	in	this	case	the	single-variable	least	squares	solution	is	biased
to	underestimate	 .	And,	in	general,	whenever	the	independent	variables	are	correlated
with	the	errors	like	this,	our	least	squares	solution	will	give	us	a	biased	estimate	of	 .

Fitting	the	Model
As	we	did	in	the	simple	linear	model,	we’ll	choose	beta	to	minimize	the	sum	of	squared
errors.	Finding	an	exact	solution	is	not	simple	to	do	by	hand,	which	means	we’ll	need	to
use	gradient	descent.	We’ll	start	by	creating	an	error	function	to	minimize.	For	stochastic
gradient	descent,	we’ll	just	want	the	squared	error	corresponding	to	a	single	prediction:

def	error(x_i,	y_i,	beta):

				return	y_i	-	predict(x_i,	beta)

def	squared_error(x_i,	y_i,	beta):

				return	error(x_i,	y_i,	beta)	**	2

If	you	know	calculus,	you	can	compute:

def	squared_error_gradient(x_i,	y_i,	beta):

				"""the	gradient	(with	respect	to	beta)

				corresponding	to	the	ith	squared	error	term"""

				return	[-2	*	x_ij	*	error(x_i,	y_i,	beta)

												for	x_ij	in	x_i]

Otherwise,	you’ll	need	to	take	my	word	for	it.

At	this	point,	we’re	ready	to	find	the	optimal	beta	using	stochastic	gradient	descent:

def	estimate_beta(x,	y):

				beta_initial	=	[random.random()	for	x_i	in	x[0]]

				return	minimize_stochastic(squared_error,

																															squared_error_gradient,

																															x,	y,

																															beta_initial,

																															0.001)

random.seed(0)

beta	=	estimate_beta(x,	daily_minutes_good)	#	[30.63,	0.972,	-1.868,	0.911]

This	means	our	model	looks	like:

Interpreting	the	Model
You	should	think	of	the	coefficients	of	the	model	as	representing	all-else-being-equal
estimates	of	the	impacts	of	each	factor.	All	else	being	equal,	each	additional	friend
corresponds	to	an	extra	minute	spent	on	the	site	each	day.	All	else	being	equal,	each
additional	hour	in	a	user’s	workday	corresponds	to	about	two	fewer	minutes	spent	on	the
site	each	day.	All	else	being	equal,	having	a	PhD	is	associated	with	spending	an	extra
minute	on	the	site	each	day.

What	this	doesn’t	(directly)	tell	us	is	anything	about	the	interactions	among	the	variables.
It’s	possible	that	the	effect	of	work	hours	is	different	for	people	with	many	friends	than	it
is	for	people	with	few	friends.	This	model	doesn’t	capture	that.	One	way	to	handle	this
case	is	to	introduce	a	new	variable	that	is	the	product	of	“friends”	and	“work	hours.”	This
effectively	allows	the	“work	hours”	coefficient	to	increase	(or	decrease)	as	the	number	of
friends	increases.

Or	it’s	possible	that	the	more	friends	you	have,	the	more	time	you	spend	on	the	site	up	to	a
point,	after	which	further	friends	cause	you	to	spend	less	time	on	the	site.	(Perhaps	with
too	many	friends	the	experience	is	just	too	overwhelming?)	We	could	try	to	capture	this	in
our	model	by	adding	another	variable	that’s	the	square	of	the	number	of	friends.

Once	we	start	adding	variables,	we	need	to	worry	about	whether	their	coefficients
“matter.”	There	are	no	limits	to	the	numbers	of	products,	logs,	squares,	and	higher	powers
we	could	add.

Goodness	of	Fit
Again	we	can	look	at	the	R-squared,	which	has	now	increased	to	0.68:

def	multiple_r_squared(x,	y,	beta):

				sum_of_squared_errors	=	sum(error(x_i,	y_i,	beta)	**	2

																																for	x_i,	y_i	in	zip(x,	y))

				return	1.0	-	sum_of_squared_errors	/	total_sum_of_squares(y)

Keep	in	mind,	however,	that	adding	new	variables	to	a	regression	will	necessarily	increase
the	R-squared.	After	all,	the	simple	regression	model	is	just	the	special	case	of	the
multiple	regression	model	where	the	coefficients	on	“work	hours”	and	“PhD”	both	equal
0.	The	optimal	multiple	regression	model	will	necessarily	have	an	error	at	least	as	small	as
that	one.

Because	of	this,	in	a	multiple	regression,	we	also	need	to	look	at	the	standard	errors	of	the
coefficients,	which	measure	how	certain	we	are	about	our	estimates	of	each	 .	The
regression	as	a	whole	may	fit	our	data	very	well,	but	if	some	of	the	independent	variables
are	correlated	(or	irrelevant),	their	coefficients	might	not	mean	much.

The	typical	approach	to	measuring	these	errors	starts	with	another	assumption	—	that	the
errors	 	are	independent	normal	random	variables	with	mean	0	and	some	shared
(unknown)	standard	deviation	 .	In	that	case,	we	(or,	more	likely,	our	statistical	software)
can	use	some	linear	algebra	to	find	the	standard	error	of	each	coefficient.	The	larger	it	is,
the	less	sure	our	model	is	about	that	coefficient.	Unfortunately,	we’re	not	set	up	to	do	that
kind	of	linear	algebra	from	scratch.

Digression:	The	Bootstrap
Imagine	we	have	a	sample	of	n	data	points,	generated	by	some	(unknown	to	us)
distribution:

data	=	get_sample(num_points=n)

In	Chapter	5,	we	wrote	a	function	to	compute	the	median	of	the	observed	data,	which	we
can	use	as	an	estimate	of	the	median	of	the	distribution	itself.

But	how	confident	can	we	be	about	our	estimate?	If	all	the	data	in	the	sample	are	very
close	to	100,	then	it	seems	likely	that	the	actual	median	is	close	to	100.	If	approximately
half	the	data	in	the	sample	is	close	to	0	and	the	other	half	is	close	to	200,	then	we	can’t	be
nearly	as	certain	about	the	median.

If	we	could	repeatedly	get	new	samples,	we	could	compute	the	median	of	each	and	look	at
the	distribution	of	those	medians.	Usually	we	can’t.	What	we	can	do	instead	is	bootstrap
new	data	sets	by	choosing	n	data	points	with	replacement	from	our	data	and	then	compute
the	medians	of	those	synthetic	data	sets:

def	bootstrap_sample(data):

				"""randomly	samples	len(data)	elements	with	replacement"""

				return	[random.choice(data)	for	_	in	data]

def	bootstrap_statistic(data,	stats_fn,	num_samples):

				"""evaluates	stats_fn	on	num_samples	bootstrap	samples	from	data"""

				return	[stats_fn(bootstrap_sample(data))

												for	_	in	range(num_samples)]

For	example,	consider	the	two	following	data	sets:

#	101	points	all	very	close	to	100

close_to_100	=	[99.5	+	random.random()	for	_	in	range(101)]

#	101	points,	50	of	them	near	0,	50	of	them	near	200

far_from_100	=	([99.5	+	random.random()]	+

																[random.random()	for	_	in	range(50)]	+

																[200	+	random.random()	for	_	in	range(50)])

If	you	compute	the	median	of	each,	both	will	be	very	close	to	100.	However,	if	you	look
at:

bootstrap_statistic(close_to_100,	median,	100)

you	will	mostly	see	numbers	really	close	to	100.	Whereas	if	you	look	at:

bootstrap_statistic(far_from_100,	median,	100)

you	will	see	a	lot	of	numbers	close	to	0	and	a	lot	of	numbers	close	to	200.

The	standard_deviation	of	the	first	set	of	medians	is	close	to	0,	while	the
standard_deviation	of	the	second	set	of	medians	is	close	to	100.	(This	extreme	a	case

would	be	pretty	easy	to	figure	out	by	manually	inspecting	the	data,	but	in	general	that
won’t	be	true.)

Standard	Errors	of	Regression	Coefficients
We	can	take	the	same	approach	to	estimating	the	standard	errors	of	our	regression
coefficients.	We	repeatedly	take	a	bootstrap_sample	of	our	data	and	estimate	beta	based
on	that	sample.	If	the	coefficient	corresponding	to	one	of	the	independent	variables	(say
num_friends)	doesn’t	vary	much	across	samples,	then	we	can	be	confident	that	our
estimate	is	relatively	tight.	If	the	coefficient	varies	greatly	across	samples,	then	we	can’t
be	at	all	confident	in	our	estimate.

The	only	subtlety	is	that,	before	sampling,	we’ll	need	to	zip	our	x	data	and	y	data	to	make
sure	that	corresponding	values	of	the	independent	and	dependent	variables	are	sampled
together.	This	means	that	bootstrap_sample	will	return	a	list	of	pairs	(x_i,	y_i),	which
we’ll	need	to	reassemble	into	an	x_sample	and	a	y_sample:

def	estimate_sample_beta(sample):

				"""sample	is	a	list	of	pairs	(x_i,	y_i)"""

				x_sample,	y_sample	=	zip(*sample)	#	magic	unzipping	trick

				return	estimate_beta(x_sample,	y_sample)

random.seed(0)	#	so	that	you	get	the	same	results	as	me

bootstrap_betas	=	bootstrap_statistic(zip(x,	daily_minutes_good),

																																						estimate_sample_beta,

																																						100)

After	which	we	can	estimate	the	standard	deviation	of	each	coefficient:

bootstrap_standard_errors	=	[

				standard_deviation([beta[i]	for	beta	in	bootstrap_betas])

				for	i	in	range(4)]

#	[1.174,				#	constant	term,	actual	error	=	1.19

#		0.079,				#	num_friends,			actual	error	=	0.080

#		0.131,				#	unemployed,				actual	error	=	0.127

#		0.990]				#	phd,											actual	error	=	0.998

We	can	use	these	to	test	hypotheses	such	as	“does	 	equal	zero?”	Under	the	null
hypothesis	 	(and	with	our	other	assumptions	about	the	distribution	of)	the
statistic:

which	is	our	estimate	of	 	divided	by	our	estimate	of	its	standard	error,	follows	a
Student’s	t-distribution	with	“ 	degrees	of	freedom.”

If	we	had	a	students_t_cdf	function,	we	could	compute	p-values	for	each	least-squares
coefficient	to	indicate	how	likely	we	would	be	to	observe	such	a	value	if	the	actual
coefficient	were	zero.	Unfortunately,	we	don’t	have	such	a	function.	(Although	we	would
if	we	weren’t	working	from	scratch.)

However,	as	the	degrees	of	freedom	get	large,	the	t-distribution	gets	closer	and	closer	to	a
standard	normal.	In	a	situation	like	this,	where	n	is	much	larger	than	k,	we	can	use
normal_cdf	and	still	feel	good	about	ourselves:

def	p_value(beta_hat_j,	sigma_hat_j):

				if	beta_hat_j	>	0:

								#	if	the	coefficient	is	positive,	we	need	to	compute	twice	the

								#	probability	of	seeing	an	even	*larger*	value

								return	2	*	(1	-	normal_cdf(beta_hat_j	/	sigma_hat_j))

				else:

								#	otherwise	twice	the	probability	of	seeing	a	*smaller*	value

								return	2	*	normal_cdf(beta_hat_j	/	sigma_hat_j)

p_value(30.63,	1.174)				#	~0			(constant	term)

p_value(0.972,	0.079)				#	~0			(num_friends)

p_value(-1.868,	0.131)			#	~0			(work_hours)

p_value(0.911,	0.990)				#	0.36	(phd)

(In	a	situation	not	like	this,	we	would	probably	be	using	statistical	software	that	knows
how	to	compute	the	t-distribution,	as	well	as	how	to	compute	the	exact	standard	errors.)

While	most	of	the	coefficients	have	very	small	p-values	(suggesting	that	they	are	indeed
nonzero),	the	coefficient	for	“PhD”	is	not	“significantly”	different	from	zero,	which	makes
it	likely	that	the	coefficient	for	“PhD”	is	random	rather	than	meaningful.

In	more	elaborate	regression	scenarios,	you	sometimes	want	to	test	more	elaborate

hypotheses	about	the	data,	such	as	“at	least	one	of	the	 	is	non-zero”	or	“ 	equals	 	and
	equals	 ,”	which	you	can	do	with	an	F-test,	which,	alas,	falls	outside	the	scope	of	this

book.

Regularization
In	practice,	you’d	often	like	to	apply	linear	regression	to	data	sets	with	large	numbers	of
variables.	This	creates	a	couple	of	extra	wrinkles.	First,	the	more	variables	you	use,	the
more	likely	you	are	to	overfit	your	model	to	the	training	set.	And	second,	the	more
nonzero	coefficients	you	have,	the	harder	it	is	to	make	sense	of	them.	If	the	goal	is	to
explain	some	phenomenon,	a	sparse	model	with	three	factors	might	be	more	useful	than	a
slightly	better	model	with	hundreds.

Regularization	is	an	approach	in	which	we	add	to	the	error	term	a	penalty	that	gets	larger
as	beta	gets	larger.	We	then	minimize	the	combined	error	and	penalty.	The	more
importance	we	place	on	the	penalty	term,	the	more	we	discourage	large	coefficients.

For	example,	in	ridge	regression,	we	add	a	penalty	proportional	to	the	sum	of	the	squares
of	the	beta_i.	(Except	that	typically	we	don’t	penalize	beta_0,	the	constant	term.)

#	alpha	is	a	*hyperparameter*	controlling	how	harsh	the	penalty	is

#	sometimes	it's	called	"lambda"	but	that	already	means	something	in	Python

def	ridge_penalty(beta,	alpha):

		return	alpha	*	dot(beta[1:],	beta[1:])

def	squared_error_ridge(x_i,	y_i,	beta,	alpha):

				"""estimate	error	plus	ridge	penalty	on	beta"""

				return	error(x_i,	y_i,	beta)	**	2	+	ridge_penalty(beta,	alpha)

which	you	can	then	plug	into	gradient	descent	in	the	usual	way:

def	ridge_penalty_gradient(beta,	alpha):

				"""gradient	of	just	the	ridge	penalty"""

				return	[0]	+	[2	*	alpha	*	beta_j	for	beta_j	in	beta[1:]]

def	squared_error_ridge_gradient(x_i,	y_i,	beta,	alpha):

				"""the	gradient	corresponding	to	the	ith	squared	error	term

				including	the	ridge	penalty"""

				return	vector_add(squared_error_gradient(x_i,	y_i,	beta),

																						ridge_penalty_gradient(beta,	alpha))

def	estimate_beta_ridge(x,	y,	alpha):

				"""use	gradient	descent	to	fit	a	ridge	regression

				with	penalty	alpha"""

				beta_initial	=	[random.random()	for	x_i	in	x[0]]

				return	minimize_stochastic(partial(squared_error_ridge,	alpha=alpha),

																															partial(squared_error_ridge_gradient,

																																							alpha=alpha),

																															x,	y,

																															beta_initial,

																															0.001)

With	alpha	set	to	zero,	there’s	no	penalty	at	all	and	we	get	the	same	results	as	before:

random.seed(0)

beta_0	=	estimate_beta_ridge(x,	daily_minutes_good,	alpha=0.0)

#	[30.6,	0.97,	-1.87,	0.91]

dot(beta_0[1:],	beta_0[1:])	#	5.26

multiple_r_squared(x,	daily_minutes_good,	beta_0)	#	0.680

As	we	increase	alpha,	the	goodness	of	fit	gets	worse,	but	the	size	of	beta	gets	smaller:

beta_0_01	=	estimate_beta_ridge(x,	daily_minutes_good,	alpha=0.01)

#	[30.6,	0.97,	-1.86,	0.89]

dot(beta_0_01[1:],	beta_0_01[1:])		#	5.19

multiple_r_squared(x,	daily_minutes_good,	beta_0_01)		#	0.680

beta_0_1	=	estimate_beta_ridge(x,	daily_minutes_good,	alpha=0.1)

#	[30.8,	0.95,	-1.84,	0.54]

dot(beta_0_1[1:],	beta_0_1[1:])		#	4.60

multiple_r_squared(x,	daily_minutes_good,	beta_0_1)		#	0.680

beta_1	=	estimate_beta_ridge(x,	daily_minutes_good,	alpha=1)

#	[30.7,	0.90,	-1.69,	0.085]

dot(beta_1[1:],	beta_1[1:])		#	3.69

multiple_r_squared(x,	daily_minutes_good,	beta_1)		#	0.676

beta_10	=	estimate_beta_ridge(x,	daily_minutes_good,	alpha=10)

#	[28.3,	0.72,	-0.91,	-0.017]

dot(beta_10[1:],	beta_10[1:])		#	1.36

multiple_r_squared(x,	daily_minutes_good,	beta_10)		#	0.573

In	particular,	the	coefficient	on	“PhD”	vanishes	as	we	increase	the	penalty,	which	accords
with	our	previous	result	that	it	wasn’t	significantly	different	from	zero.

NOTE
Usually	you’d	want	to	rescale	your	data	before	using	this	approach.	After	all,	if	you	changed	years	of
experience	to	centuries	of	experience,	its	least	squares	coefficient	would	increase	by	a	factor	of	100	and
suddenly	get	penalized	much	more,	even	though	it’s	the	same	model.

Another	approach	is	lasso	regression,	which	uses	the	penalty:

def	lasso_penalty(beta,	alpha):

				return	alpha	*	sum(abs(beta_i)	for	beta_i	in	beta[1:])

Whereas	the	ridge	penalty	shrank	the	coefficients	overall,	the	lasso	penalty	tends	to	force
coefficients	to	be	zero,	which	makes	it	good	for	learning	sparse	models.	Unfortunately,	it’s
not	amenable	to	gradient	descent,	which	means	that	we	won’t	be	able	to	solve	it	from
scratch.

For	Further	Exploration
Regression	has	a	rich	and	expansive	theory	behind	it.	This	is	another	place	where	you
should	consider	reading	a	textbook	or	at	least	a	lot	of	Wikipedia	articles.

scikit-learn	has	a	linear_model	module	that	provides	a	LinearRegression	model
similar	to	ours,	as	well	as	Ridge	regression,	Lasso	regression,	and	other	types	of
regularization	too.

Statsmodels	is	another	Python	module	that	contains	(among	other	things)	linear
regression	models.

http://bit.ly/1ycPg63
http://statsmodels.sourceforge.net

Chapter	16.	Logistic	Regression

A	lot	of	people	say	there’s	a	fine	line	between	genius	and	insanity.	I	don’t	think	there’s	a
fine	line,	I	actually	think	there’s	a	yawning	gulf.

Bill	Bailey

In	Chapter	1,	we	briefly	looked	at	the	problem	of	trying	to	predict	which	DataSciencester
users	paid	for	premium	accounts.	Here	we’ll	revisit	that	problem.

The	Problem
We	have	an	anonymized	data	set	of	about	200	users,	containing	each	user’s	salary,	her
years	of	experience	as	a	data	scientist,	and	whether	she	paid	for	a	premium	account
(Figure	16-1).	As	is	usual	with	categorical	variables,	we	represent	the	dependent	variable
as	either	0	(no	premium	account)	or	1	(premium	account).

As	usual,	our	data	is	in	a	matrix	where	each	row	is	a	list	[experience,	salary,
paid_account].	Let’s	turn	it	into	the	format	we	need:

x	=	[[1]	+	row[:2]	for	row	in	data]		#	each	element	is	[1,	experience,	salary]

y	=	[row[2]	for	row	in	data]									#	each	element	is	paid_account

An	obvious	first	attempt	is	to	use	linear	regression	and	find	the	best	model:

Figure	16-1.	Paid	and	unpaid	users

And	certainly,	there’s	nothing	preventing	us	from	modeling	the	problem	this	way.	The
results	are	shown	in	Figure	16-2:

rescaled_x	=	rescale(x)

beta	=	estimate_beta(rescaled_x,	y)		#	[0.26,	0.43,	-0.43]

predictions	=	[predict(x_i,	beta)	for	x_i	in	rescaled_x]

plt.scatter(predictions,	y)

plt.xlabel("predicted")

plt.ylabel("actual")

plt.show()

Figure	16-2.	Using	linear	regression	to	predict	premium	accounts

But	this	approach	leads	to	a	couple	of	immediate	problems:

We’d	like	for	our	predicted	outputs	to	be	0	or	1,	to	indicate	class	membership.	It’s	fine
if	they’re	between	0	and	1,	since	we	can	interpret	these	as	probabilities	—	an	output	of
0.25	could	mean	25%	chance	of	being	a	paid	member.	But	the	outputs	of	the	linear
model	can	be	huge	positive	numbers	or	even	negative	numbers,	which	it’s	not	clear
how	to	interpret.	Indeed,	here	a	lot	of	our	predictions	were	negative.

The	linear	regression	model	assumed	that	the	errors	were	uncorrelated	with	the
columns	of	x.	But	here,	the	regression	coefficent	for	experience	is	0.43,	indicating	that
more	experience	leads	to	a	greater	likelihood	of	a	premium	account.	This	means	that
our	model	outputs	very	large	values	for	people	with	lots	of	experience.	But	we	know
that	the	actual	values	must	be	at	most	1,	which	means	that	necessarily	very	large
outputs	(and	therefore	very	large	values	of	experience)	correspond	to	very	large
negative	values	of	the	error	term.	Because	this	is	the	case,	our	estimate	of	beta	is
biased.

What	we’d	like	instead	is	for	large	positive	values	of	dot(x_i,	beta)	to	correspond	to
probabilities	close	to	1,	and	for	large	negative	values	to	correspond	to	probabilities	close
to	0.	We	can	accomplish	this	by	applying	another	function	to	the	result.

The	Logistic	Function
In	the	case	of	logistic	regression,	we	use	the	logistic	function,	pictured	in	Figure	16-3:

def	logistic(x):

				return	1.0	/	(1	+	math.exp(-x))

Figure	16-3.	The	logistic	function

As	its	input	gets	large	and	positive,	it	gets	closer	and	closer	to	1.	As	its	input	gets	large
and	negative,	it	gets	closer	and	closer	to	0.	Additionally,	it	has	the	convenient	property
that	its	derivative	is	given	by:

def	logistic_prime(x):

				return	logistic(x)	*	(1	-	logistic(x))

which	we’ll	make	use	of	in	a	bit.	We’ll	use	this	to	fit	a	model:

where	f	is	the	logistic	function.

Recall	that	for	linear	regression	we	fit	the	model	by	minimizing	the	sum	of	squared	errors,

which	ended	up	choosing	the	 	that	maximized	the	likelihood	of	the	data.

Here	the	two	aren’t	equivalent,	so	we’ll	use	gradient	descent	to	maximize	the	likelihood
directly.	This	means	we	need	to	calculate	the	likelihood	function	and	its	gradient.

Given	some	 ,	our	model	says	that	each	 	should	equal	1	with	probability	 	and	0
with	probability	 .

In	particular,	the	pdf	for	 	can	be	written	as:

since	if	 	is	0,	this	equals:

and	if	 	is	1,	it	equals:

It	turns	out	that	it’s	actually	simpler	to	maximize	the	log	likelihood:

Because	log	is	strictly	increasing	function,	any	beta	that	maximizes	the	log	likelihood	also
maximizes	the	likelihood,	and	vice	versa.

def	logistic_log_likelihood_i(x_i,	y_i,	beta):

				if	y_i	==	1:

								return	math.log(logistic(dot(x_i,	beta)))

				else:

								return	math.log(1	-	logistic(dot(x_i,	beta)))

If	we	assume	different	data	points	are	independent	from	one	another,	the	overall	likelihood
is	just	the	product	of	the	individual	likelihoods.	Which	means	the	overall	log	likelihood	is
the	sum	of	the	individual	log	likelihoods:

def	logistic_log_likelihood(x,	y,	beta):

				return	sum(logistic_log_likelihood_i(x_i,	y_i,	beta)

															for	x_i,	y_i	in	zip(x,	y))

A	little	bit	of	calculus	gives	us	the	gradient:

def	logistic_log_partial_ij(x_i,	y_i,	beta,	j):

				"""here	i	is	the	index	of	the	data	point,

				j	the	index	of	the	derivative"""

				return	(y_i	-	logistic(dot(x_i,	beta)))	*	x_i[j]

def	logistic_log_gradient_i(x_i,	y_i,	beta):

				"""the	gradient	of	the	log	likelihood

				corresponding	to	the	ith	data	point"""

				return	[logistic_log_partial_ij(x_i,	y_i,	beta,	j)

												for	j,	_	in	enumerate(beta)]

def	logistic_log_gradient(x,	y,	beta):

				return	reduce(vector_add,

																		[logistic_log_gradient_i(x_i,	y_i,	beta)

																			for	x_i,	y_i	in	zip(x,y)])

at	which	point	we	have	all	the	pieces	we	need.

Applying	the	Model
We’ll	want	to	split	our	data	into	a	training	set	and	a	test	set:

random.seed(0)

x_train,	x_test,	y_train,	y_test	=	train_test_split(rescaled_x,	y,	0.33)

#	want	to	maximize	log	likelihood	on	the	training	data

fn	=	partial(logistic_log_likelihood,	x_train,	y_train)

gradient_fn	=	partial(logistic_log_gradient,	x_train,	y_train)

#	pick	a	random	starting	point

beta_0	=	[random.random()	for	_	in	range(3)]

#	and	maximize	using	gradient	descent

beta_hat	=	maximize_batch(fn,	gradient_fn,	beta_0)

Alternatively,	you	could	use	stochastic	gradient	descent:

beta_hat	=	maximize_stochastic(logistic_log_likelihood_i,

																															logistic_log_gradient_i,

																															x_train,	y_train,	beta_0)

Either	way	we	find	approximately:

beta_hat	=	[-1.90,	4.05,	-3.87]

These	are	coefficients	for	the	rescaled	data,	but	we	can	transform	them	back	to	the
original	data	as	well:

beta_hat_unscaled	=	[7.61,	1.42,	-0.000249]

Unfortunately,	these	are	not	as	easy	to	interpret	as	linear	regression	coefficients.	All	else
being	equal,	an	extra	year	of	experience	adds	1.42	to	the	input	of	logistic.	All	else	being
equal,	an	extra	$10,000	of	salary	subtracts	2.49	from	the	input	of	logistic.

The	impact	on	the	output,	however,	depends	on	the	other	inputs	as	well.	If	dot(beta,
x_i)	is	already	large	(corresponding	to	a	probability	close	to	1),	increasing	it	even	by	a	lot
cannot	affect	the	probability	very	much.	If	it’s	close	to	0,	increasing	it	just	a	little	might
increase	the	probability	quite	a	bit.

What	we	can	say	is	that	—	all	else	being	equal	—	people	with	more	experience	are	more
likely	to	pay	for	accounts.	And	that	—	all	else	being	equal	—	people	with	higher	salaries
are	less	likely	to	pay	for	accounts.	(This	was	also	somewhat	apparent	when	we	plotted	the
data.)

Goodness	of	Fit
We	haven’t	yet	used	the	test	data	that	we	held	out.	Let’s	see	what	happens	if	we	predict
paid	account	whenever	the	probability	exceeds	0.5:

true_positives	=	false_positives	=	true_negatives	=	false_negatives	=	0

for	x_i,	y_i	in	zip(x_test,	y_test):

				predict	=	logistic(dot(beta_hat,	x_i))

				if	y_i	==	1	and	predict	>=	0.5:		#	TP:	paid	and	we	predict	paid

								true_positives	+=	1

				elif	y_i	==	1:																			#	FN:	paid	and	we	predict	unpaid

								false_negatives	+=	1

				elif	predict	>=	0.5:													#	FP:	unpaid	and	we	predict	paid

								false_positives	+=	1

				else:																												#	TN:	unpaid	and	we	predict	unpaid

								true_negatives	+=	1

precision	=	true_positives	/	(true_positives	+	false_positives)

recall	=	true_positives	/	(true_positives	+	false_negatives)

This	gives	a	precision	of	93%	(“when	we	predict	paid	account	we’re	right	93%	of	the
time”)	and	a	recall	of	82%	(“when	a	user	has	a	paid	account	we	predict	paid	account	82%
of	the	time”),	both	of	which	are	pretty	respectable	numbers.

We	can	also	plot	the	predictions	versus	the	actuals	(Figure	16-4),	which	also	shows	that
the	model	performs	well:

predictions	=	[logistic(dot(beta_hat,	x_i))	for	x_i	in	x_test]

plt.scatter(predictions,	y_test)

plt.xlabel("predicted	probability")

plt.ylabel("actual	outcome")

plt.title("Logistic	Regression	Predicted	vs.	Actual")

plt.show()

Figure	16-4.	Logistic	regression	predicted	versus	actual

Support	Vector	Machines
The	set	of	points	where	dot(beta_hat,	x_i)	equals	0	is	the	boundary	between	our
classes.	We	can	plot	this	to	see	exactly	what	our	model	is	doing	(Figure	16-5).

This	boundary	is	a	hyperplane	that	splits	the	parameter	space	into	two	half-spaces
corresponding	to	predict	paid	and	predict	unpaid.	We	found	it	as	a	side-effect	of	finding
the	most	likely	logistic	model.

An	alternative	approach	to	classification	is	to	just	look	for	the	hyperplane	that	“best”
separates	the	classes	in	the	training	data.	This	is	the	idea	behind	the	support	vector
machine,	which	finds	the	hyperplane	that	maximizes	the	distance	to	the	nearest	point	in
each	class	(Figure	16-6).

Figure	16-5.	Paid	and	unpaid	users	with	decision	boundary

Finding	such	a	hyperplane	is	an	optimization	problem	that	involves	techniques	that	are	too
advanced	for	us.	A	different	problem	is	that	a	separating	hyperplane	might	not	exist	at	all.
In	our	“who	pays?”	data	set	there	simply	is	no	line	that	perfectly	separates	the	paid	users
from	the	unpaid	users.

We	can	(sometimes)	get	around	this	by	transforming	the	data	into	a	higher-dimensional
space.	For	example,	consider	the	simple	one-dimensional	data	set	shown	in	Figure	16-7.

Figure	16-6.	A	separating	hyperplane

It’s	clear	that	there’s	no	hyperplane	that	separates	the	positive	examples	from	the	negative
ones.	However,	look	at	what	happens	when	we	map	this	data	set	to	two	dimensions	by
sending	the	point	x	to	(x,	x**2).	Suddenly	it’s	possible	to	find	a	hyperplane	that	splits	the
data	(Figure	16-8).

This	is	usually	called	the	kernel	trick	because	rather	than	actually	mapping	the	points	into
the	higher-dimensional	space	(which	could	be	expensive	if	there	are	a	lot	of	points	and	the
mapping	is	complicated),	we	can	use	a	“kernel”	function	to	compute	dot	products	in	the
higher-dimensional	space	and	use	those	to	find	a	hyperplane.

Figure	16-7.	A	nonseparable	one-dimensional	data	set

It’s	hard	(and	probably	not	a	good	idea)	to	use	support	vector	machines	without	relying	on
specialized	optimization	software	written	by	people	with	the	appropriate	expertise,	so
we’ll	have	to	leave	our	treatment	here.

Figure	16-8.	Data	set	becomes	separable	in	higher	dimensions

For	Further	Investigation
scikit-learn	has	modules	for	both	Logistic	Regression	and	Support	Vector	Machines.

libsvm	is	the	support	vector	machine	implementation	that	scikit-learn	is	using	behind
the	scenes.	Its	website	has	a	variety	of	useful	documentation	about	support	vector
machines.

http://bit.ly/1xkbywA
http://bit.ly/1xkbBZj
http://bit.ly/1xkbA7t

Chapter	17.	Decision	Trees

A	tree	is	an	incomprehensible	mystery.

Jim	Woodring

DataSciencester’s	VP	of	Talent	has	interviewed	a	number	of	job	candidates	from	the	site,
with	varying	degrees	of	success.	He’s	collected	a	data	set	consisting	of	several
(qualitative)	attributes	of	each	candidate,	as	well	as	whether	that	candidate	interviewed
well	or	poorly.	Could	you,	he	asks,	use	this	data	to	build	a	model	identifying	which
candidates	will	interview	well,	so	that	he	doesn’t	have	to	waste	time	conducting
interviews?

This	seems	like	a	good	fit	for	a	decision	tree,	another	predictive	modeling	tool	in	the	data
scientist’s	kit.

What	Is	a	Decision	Tree?
A	decision	tree	uses	a	tree	structure	to	represent	a	number	of	possible	decision	paths	and
an	outcome	for	each	path.

If	you	have	ever	played	the	game	Twenty	Questions,	then	it	turns	out	you	are	familiar	with
decision	trees.	For	example:

“I	am	thinking	of	an	animal.”

“Does	it	have	more	than	five	legs?”

“No.”

“Is	it	delicious?”

“No.”

“Does	it	appear	on	the	back	of	the	Australian	five-cent	coin?”

“Yes.”

“Is	it	an	echidna?”

“Yes,	it	is!”

This	corresponds	to	the	path:

“Not	more	than	5	legs”	→	“Not	delicious”	→	“On	the	5-cent	coin”	→	“Echidna!”

in	an	idiosyncratic	(and	not	very	comprehensive)	“guess	the	animal”	decision	tree
(Figure	17-1).

http://en.wikipedia.org/wiki/Twenty_Questions

Figure	17-1.	A	“guess	the	animal”	decision	tree

Decision	trees	have	a	lot	to	recommend	them.	They’re	very	easy	to	understand	and
interpret,	and	the	process	by	which	they	reach	a	prediction	is	completely	transparent.
Unlike	the	other	models	we’ve	looked	at	so	far,	decision	trees	can	easily	handle	a	mix	of
numeric	(e.g.,	number	of	legs)	and	categorical	(e.g.,	delicious/not	delicious)	attributes	and
can	even	classify	data	for	which	attributes	are	missing.

At	the	same	time,	finding	an	“optimal”	decision	tree	for	a	set	of	training	data	is
computationally	a	very	hard	problem.	(We	will	get	around	this	by	trying	to	build	a	good-
enough	tree	rather	than	an	optimal	one,	although	for	large	data	sets	this	can	still	be	a	lot	of
work.)	More	important,	it	is	very	easy	(and	very	bad)	to	build	decision	trees	that	are
overfitted	to	the	training	data,	and	that	don’t	generalize	well	to	unseen	data.	We’ll	look	at
ways	to	address	this.

Most	people	divide	decision	trees	into	classification	trees	(which	produce	categorical
outputs)	and	regression	trees	(which	produce	numeric	outputs).	In	this	chapter,	we’ll	focus
on	classification	trees,	and	we’ll	work	through	the	ID3	algorithm	for	learning	a	decision
tree	from	a	set	of	labeled	data,	which	should	help	us	understand	how	decision	trees
actually	work.	To	make	things	simple,	we’ll	restrict	ourselves	to	problems	with	binary
outputs	like	“should	I	hire	this	candidate?”	or	“should	I	show	this	website	visitor
advertisement	A	or	advertisement	B?”	or	“will	eating	this	food	I	found	in	the	office	fridge
make	me	sick?”

Entropy
In	order	to	build	a	decision	tree,	we	will	need	to	decide	what	questions	to	ask	and	in	what
order.	At	each	stage	of	the	tree	there	are	some	possibilities	we’ve	eliminated	and	some	that
we	haven’t.	After	learning	that	an	animal	doesn’t	have	more	than	five	legs,	we’ve
eliminated	the	possibility	that	it’s	a	grasshopper.	We	haven’t	eliminated	the	possibility	that
it’s	a	duck.	Every	possible	question	partitions	the	remaining	possibilities	according	to	their
answers.

Ideally,	we’d	like	to	choose	questions	whose	answers	give	a	lot	of	information	about	what
our	tree	should	predict.	If	there’s	a	single	yes/no	question	for	which	“yes”	answers	always
correspond	to	True	outputs	and	“no”	answers	to	False	outputs	(or	vice	versa),	this	would
be	an	awesome	question	to	pick.	Conversely,	a	yes/no	question	for	which	neither	answer
gives	you	much	new	information	about	what	the	prediction	should	be	is	probably	not	a
good	choice.

We	capture	this	notion	of	“how	much	information”	with	entropy.	You	have	probably	heard
this	used	to	mean	disorder.	We	use	it	to	represent	the	uncertainty	associated	with	data.

Imagine	that	we	have	a	set	S	of	data,	each	member	of	which	is	labeled	as	belonging	to	one
of	a	finite	number	of	classes	 .	If	all	the	data	points	belong	to	a	single	class,
then	there	is	no	real	uncertainty,	which	means	we’d	like	there	to	be	low	entropy.	If	the	data
points	are	evenly	spread	across	the	classes,	there	is	a	lot	of	uncertainty	and	we’d	like	there
to	be	high	entropy.

In	math	terms,	if	 	is	the	proportion	of	data	labeled	as	class	 ,	we	define	the	entropy	as:

with	the	(standard)	convention	that	 .

Without	worrying	too	much	about	the	grisly	details,	each	term	 	is	non-negative
and	is	close	to	zero	precisely	when	 	is	either	close	to	zero	or	close	to	one	(Figure	17-2).

Figure	17-2.	A	graph	of	-p	log	p

This	means	the	entropy	will	be	small	when	every	 	is	close	to	0	or	1	(i.e.,	when	most	of
the	data	is	in	a	single	class),	and	it	will	be	larger	when	many	of	the	 ’s	are	not	close	to	0
(i.e.,	when	the	data	is	spread	across	multiple	classes).	This	is	exactly	the	behavior	we
desire.

It	is	easy	enough	to	roll	all	of	this	into	a	function:

def	entropy(class_probabilities):

				"""given	a	list	of	class	probabilities,	compute	the	entropy"""

				return	sum(-p	*	math.log(p,	2)

															for	p	in	class_probabilities

															if	p)																									#	ignore	zero	probabilities

Our	data	will	consist	of	pairs	(input,	label),	which	means	that	we’ll	need	to	compute
the	class	probabilities	ourselves.	Observe	that	we	don’t	actually	care	which	label	is
associated	with	each	probability,	only	what	the	probabilities	are:

def	class_probabilities(labels):

				total_count	=	len(labels)

				return	[count	/	total_count

												for	count	in	Counter(labels).values()]

def	data_entropy(labeled_data):

				labels	=	[label	for	_,	label	in	labeled_data]

				probabilities	=	class_probabilities(labels)

				return	entropy(probabilities)

The	Entropy	of	a	Partition
What	we’ve	done	so	far	is	compute	the	entropy	(think	“uncertainty”)	of	a	single	set	of
labeled	data.	Now,	each	stage	of	a	decision	tree	involves	asking	a	question	whose	answer
partitions	data	into	one	or	(hopefully)	more	subsets.	For	instance,	our	“does	it	have	more
than	five	legs?”	question	partitions	animals	into	those	who	have	more	than	five	legs	(e.g.,
spiders)	and	those	that	don’t	(e.g.,	echidnas).

Correspondingly,	we’d	like	some	notion	of	the	entropy	that	results	from	partitioning	a	set
of	data	in	a	certain	way.	We	want	a	partition	to	have	low	entropy	if	it	splits	the	data	into
subsets	that	themselves	have	low	entropy	(i.e.,	are	highly	certain),	and	high	entropy	if	it
contains	subsets	that	(are	large	and)	have	high	entropy	(i.e.,	are	highly	uncertain).

For	example,	my	“Australian	five-cent	coin”	question	was	pretty	dumb	(albeit	pretty
lucky!),	as	it	partitioned	the	remaining	animals	at	that	point	into	 	=	{echidna}	and	 	=
{everything	else},	where	 	is	both	large	and	high-entropy.	(has	no	entropy	but	it
represents	a	small	fraction	of	the	remaining	“classes.”)

Mathematically,	if	we	partition	our	data	S	into	subsets	 	containing	proportions
	of	the	data,	then	we	compute	the	entropy	of	the	partition	as	a	weighted	sum:

which	we	can	implement	as:

def	partition_entropy(subsets):

				"""find	the	entropy	from	this	partition	of	data	into	subsets

				subsets	is	a	list	of	lists	of	labeled	data"""

				total_count	=	sum(len(subset)	for	subset	in	subsets)

				return	sum(data_entropy(subset)	*	len(subset)	/	total_count

																for	subset	in	subsets)

NOTE
One	problem	with	this	approach	is	that	partitioning	by	an	attribute	with	many	different	values	will	result	in
a	very	low	entropy	due	to	overfitting.	For	example,	imagine	you	work	for	a	bank	and	are	trying	to	build	a
decision	tree	to	predict	which	of	your	customers	are	likely	to	default	on	their	mortgages,	using	some
historical	data	as	your	training	set.	Imagine	further	that	the	data	set	contains	each	customer’s	Social
Security	number.	Partitioning	on	SSN	will	produce	one-person	subsets,	each	of	which	necessarily	has	zero
entropy.	But	a	model	that	relies	on	SSN	is	certain	not	to	generalize	beyond	the	training	set.	For	this	reason,
you	should	probably	try	to	avoid	(or	bucket,	if	appropriate)	attributes	with	large	numbers	of	possible	values
when	creating	decision	trees.

Creating	a	Decision	Tree
The	VP	provides	you	with	the	interviewee	data,	consisting	of	(per	your	specification)	pairs
(input,	label),	where	each	input	is	a	dict	of	candidate	attributes,	and	each	label	is
either	True	(the	candidate	interviewed	well)	or	False	(the	candidate	interviewed	poorly).
In	particular,	you	are	provided	with	each	candidate’s	level,	her	preferred	language,
whether	she	is	active	on	Twitter,	and	whether	she	has	a	PhD:

inputs	=	[

				({'level':'Senior',	'lang':'Java',	'tweets':'no',	'phd':'no'},				False),

				({'level':'Senior',	'lang':'Java',	'tweets':'no',	'phd':'yes'},			False),

				({'level':'Mid',	'lang':'Python',	'tweets':'no',	'phd':'no'},						True),

				({'level':'Junior',	'lang':'Python',	'tweets':'no',	'phd':'no'},			True),

				({'level':'Junior',	'lang':'R',	'tweets':'yes',	'phd':'no'},							True),

				({'level':'Junior',	'lang':'R',	'tweets':'yes',	'phd':'yes'},					False),

				({'level':'Mid',	'lang':'R',	'tweets':'yes',	'phd':'yes'},									True),

				({'level':'Senior',	'lang':'Python',	'tweets':'no',	'phd':'no'},		False),

				({'level':'Senior',	'lang':'R',	'tweets':'yes',	'phd':'no'},							True),

				({'level':'Junior',	'lang':'Python',	'tweets':'yes',	'phd':'no'},		True),

				({'level':'Senior',	'lang':'Python',	'tweets':'yes',	'phd':'yes'},	True),

				({'level':'Mid',	'lang':'Python',	'tweets':'no',	'phd':'yes'},					True),

				({'level':'Mid',	'lang':'Java',	'tweets':'yes',	'phd':'no'},							True),

				({'level':'Junior',	'lang':'Python',	'tweets':'no',	'phd':'yes'},	False)

]

Our	tree	will	consist	of	decision	nodes	(which	ask	a	question	and	direct	us	differently
depending	on	the	answer)	and	leaf	nodes	(which	give	us	a	prediction).	We	will	build	it
using	the	relatively	simple	ID3	algorithm,	which	operates	in	the	following	manner.	Let’s
say	we’re	given	some	labeled	data,	and	a	list	of	attributes	to	consider	branching	on.

If	the	data	all	have	the	same	label,	then	create	a	leaf	node	that	predicts	that	label	and
then	stop.

If	the	list	of	attributes	is	empty	(i.e.,	there	are	no	more	possible	questions	to	ask),	then
create	a	leaf	node	that	predicts	the	most	common	label	and	then	stop.

Otherwise,	try	partitioning	the	data	by	each	of	the	attributes

Choose	the	partition	with	the	lowest	partition	entropy

Add	a	decision	node	based	on	the	chosen	attribute

Recur	on	each	partitioned	subset	using	the	remaining	attributes

This	is	what’s	known	as	a	“greedy”	algorithm	because,	at	each	step,	it	chooses	the	most
immediately	best	option.	Given	a	data	set,	there	may	be	a	better	tree	with	a	worse-looking
first	move.	If	so,	this	algorithm	won’t	find	it.	Nonetheless,	it	is	relatively	easy	to
understand	and	implement,	which	makes	it	a	good	place	to	begin	exploring	decision	trees.

Let’s	manually	go	through	these	steps	on	the	interviewee	data	set.	The	data	set	has	both
True	and	False	labels,	and	we	have	four	attributes	we	can	split	on.	So	our	first	step	will
be	to	find	the	partition	with	the	least	entropy.	We’ll	start	by	writing	a	function	that	does

the	partitioning:

def	partition_by(inputs,	attribute):

				"""each	input	is	a	pair	(attribute_dict,	label).

				returns	a	dict	:	attribute_value	->	inputs"""

				groups	=	defaultdict(list)

				for	input	in	inputs:

								key	=	input[0][attribute]			#	get	the	value	of	the	specified	attribute

								groups[key].append(input)			#	then	add	this	input	to	the	correct	list

				return	groups

and	one	that	uses	it	to	compute	entropy:

def	partition_entropy_by(inputs,	attribute):

				"""computes	the	entropy	corresponding	to	the	given	partition"""

				partitions	=	partition_by(inputs,	attribute)

				return	partition_entropy(partitions.values())

Then	we	just	need	to	find	the	minimum-entropy	partition	for	the	whole	data	set:

for	key	in	['level','lang','tweets','phd']:

				print	key,	partition_entropy_by(inputs,	key)

#	level	0.693536138896

#	lang	0.860131712855

#	tweets	0.788450457308

#	phd	0.892158928262

The	lowest	entropy	comes	from	splitting	on	level,	so	we’ll	need	to	make	a	subtree	for
each	possible	level	value.	Every	Mid	candidate	is	labeled	True,	which	means	that	the	Mid
subtree	is	simply	a	leaf	node	predicting	True.	For	Senior	candidates,	we	have	a	mix	of
Trues	and	Falses,	so	we	need	to	split	again:

senior_inputs	=	[(input,	label)

																	for	input,	label	in	inputs	if	input["level"]	==	"Senior"]

for	key	in	['lang',	'tweets',	'phd']:

				print	key,	partition_entropy_by(senior_inputs,	key)

#	lang	0.4

#	tweets	0.0

#	phd	0.950977500433

This	shows	us	that	our	next	split	should	be	on	tweets,	which	results	in	a	zero-entropy
partition.	For	these	Senior-level	candidates,	“yes”	tweets	always	result	in	True	while	“no”
tweets	always	result	in	False.

Finally,	if	we	do	the	same	thing	for	the	Junior	candidates,	we	end	up	splitting	on	phd,
after	which	we	find	that	no	PhD	always	results	in	True	and	PhD	always	results	in	False.

Figure	17-3	shows	the	complete	decision	tree.

Figure	17-3.	The	decision	tree	for	hiring

Putting	It	All	Together
Now	that	we’ve	seen	how	the	algorithm	works,	we	would	like	to	implement	it	more
generally.	This	means	we	need	to	decide	how	we	want	to	represent	trees.	We’ll	use	pretty
much	the	most	lightweight	representation	possible.	We	define	a	tree	to	be	one	of	the
following:

True

False

a	tuple	(attribute,	subtree_dict)

Here	True	represents	a	leaf	node	that	returns	True	for	any	input,	False	represents	a	leaf
node	that	returns	False	for	any	input,	and	a	tuple	represents	a	decision	node	that,	for	any
input,	finds	its	attribute	value,	and	classifies	the	input	using	the	corresponding	subtree.

With	this	representation,	our	hiring	tree	would	look	like:

('level',

	{'Junior':	('phd',	{'no':	True,	'yes':	False}),

		'Mid':	True,

		'Senior':	('tweets',	{'no':	False,	'yes':	True})})

There’s	still	the	question	of	what	to	do	if	we	encounter	an	unexpected	(or	missing)
attribute	value.	What	should	our	hiring	tree	do	if	it	encounters	a	candidate	whose	level	is
“Intern”?	We’ll	handle	this	case	by	adding	a	None	key	that	just	predicts	the	most	common
label.	(Although	this	would	be	a	bad	idea	if	None	is	actually	a	value	that	appears	in	the
data.)

Given	such	a	representation,	we	can	classify	an	input	with:

def	classify(tree,	input):

				"""classify	the	input	using	the	given	decision	tree"""

				#	if	this	is	a	leaf	node,	return	its	value

				if	tree	in	[True,	False]:

								return	tree

				#	otherwise	this	tree	consists	of	an	attribute	to	split	on

				#	and	a	dictionary	whose	keys	are	values	of	that	attribute

				#	and	whose	values	of	are	subtrees	to	consider	next

				attribute,	subtree_dict	=	tree

				subtree_key	=	input.get(attribute)				#	None	if	input	is	missing	attribute

				if	subtree_key	not	in	subtree_dict:			#	if	no	subtree	for	key,

								subtree_key	=	None																#	we'll	use	the	None	subtree

				subtree	=	subtree_dict[subtree_key]			#	choose	the	appropriate	subtree

				return	classify(subtree,	input)							#	and	use	it	to	classify	the	input

All	that’s	left	is	to	build	the	tree	representation	from	our	training	data:

def	build_tree_id3(inputs,	split_candidates=None):

				#	if	this	is	our	first	pass,

				#	all	keys	of	the	first	input	are	split	candidates

				if	split_candidates	is	None:

								split_candidates	=	inputs[0][0].keys()

				#	count	Trues	and	Falses	in	the	inputs

				num_inputs	=	len(inputs)

				num_trues	=	len([label	for	item,	label	in	inputs	if	label])

				num_falses	=	num_inputs	-	num_trues

				if	num_trues	==	0:	return	False					#	no	Trues?	return	a	"False"	leaf

				if	num_falses	==	0:	return	True					#	no	Falses?	return	a	"True"	leaf

				if	not	split_candidates:												#	if	no	split	candidates	left

								return	num_trues	>=	num_falses		#	return	the	majority	leaf

				#	otherwise,	split	on	the	best	attribute

				best_attribute	=	min(split_candidates,

																									key=partial(partition_entropy_by,	inputs))

				partitions	=	partition_by(inputs,	best_attribute)

				new_candidates	=	[a	for	a	in	split_candidates

																						if	a	!=	best_attribute]

				#	recursively	build	the	subtrees

				subtrees	=	{	attribute_value	:	build_tree_id3(subset,	new_candidates)

																	for	attribute_value,	subset	in	partitions.iteritems()	}

				subtrees[None]	=	num_trues	>	num_falses						#	default	case

				return	(best_attribute,	subtrees)

In	the	tree	we	built,	every	leaf	consisted	entirely	of	True	inputs	or	entirely	of	False	inputs.
This	means	that	the	tree	predicts	perfectly	on	the	training	data	set.	But	we	can	also	apply	it
to	new	data	that	wasn’t	in	the	training	set:

tree	=	build_tree_id3(inputs)

classify(tree,	{	"level"	:	"Junior",

																	"lang"	:	"Java",

																	"tweets"	:	"yes",

																	"phd"	:	"no"})								#	True

classify(tree,	{	"level"	:	"Junior",

																	"lang"	:	"Java",

																	"tweets"	:	"yes",

																	"phd"	:	"yes"})							#	False

And	also	to	data	with	missing	or	unexpected	values:

classify(tree,	{	"level"	:	"Intern"	})	#	True

classify(tree,	{	"level"	:	"Senior"	})	#	False

NOTE
Since	our	goal	was	mainly	to	demonstrate	how	to	build	a	tree,	we	built	the	tree	using	the	entire	data	set.	As
always,	if	we	were	really	trying	to	create	a	good	model	for	something,	we	would	have	(collected	more	data
and)	split	the	data	into	train/validation/test	subsets.

Random	Forests
Given	how	closely	decision	trees	can	fit	themselves	to	their	training	data,	it’s	not
surprising	that	they	have	a	tendency	to	overfit.	One	way	of	avoiding	this	is	a	technique
called	random	forests,	in	which	we	build	multiple	decision	trees	and	let	them	vote	on	how
to	classify	inputs:

def	forest_classify(trees,	input):

				votes	=	[classify(tree,	input)	for	tree	in	trees]

				vote_counts	=	Counter(votes)

				return	vote_counts.most_common(1)[0][0]

Our	tree-building	process	was	deterministic,	so	how	do	we	get	random	trees?

One	piece	involves	bootstrapping	data	(recall	“Digression:	The	Bootstrap”).	Rather	than
training	each	tree	on	all	the	inputs	in	the	training	set,	we	train	each	tree	on	the	result	of
bootstrap_sample(inputs).	Since	each	tree	is	built	using	different	data,	each	tree	will	be
different	from	every	other	tree.	(A	side	benefit	is	that	it’s	totally	fair	to	use	the	nonsampled
data	to	test	each	tree,	which	means	you	can	get	away	with	using	all	of	your	data	as	the
training	set	if	you	are	clever	in	how	you	measure	performance.)	This	technique	is	known
as	bootstrap	aggregating	or	bagging.

A	second	source	of	randomness	involves	changing	the	way	we	chose	the	best_attribute
to	split	on.	Rather	than	looking	at	all	the	remaining	attributes,	we	first	choose	a	random
subset	of	them	and	then	split	on	whichever	of	those	is	best:

				#	if	there's	already	few	enough	split	candidates,	look	at	all	of	them

				if	len(split_candidates)	<=	self.num_split_candidates:

								sampled_split_candidates	=	split_candidates

				#	otherwise	pick	a	random	sample

				else:

								sampled_split_candidates	=	random.sample(split_candidates,

																																																	self.num_split_candidates)

				#	now	choose	the	best	attribute	only	from	those	candidates

				best_attribute	=	min(sampled_split_candidates,

								key=partial(partition_entropy_by,	inputs))

				partitions	=	partition_by(inputs,	best_attribute)

This	is	an	example	of	a	broader	technique	called	ensemble	learning	in	which	we	combine
several	weak	learners	(typically	high-bias,	low-variance	models)	in	order	to	produce	an
overall	strong	model.

Random	forests	are	one	of	the	most	popular	and	versatile	models	around.

For	Further	Exploration
scikit-learn	has	many	Decision	Tree	models.	It	also	has	an	ensemble	module	that
includes	a	RandomForestClassifier	as	well	as	other	ensemble	methods.

We	barely	scratched	the	surface	of	decision	trees	and	their	algorithms.	Wikipedia	is	a
good	starting	point	for	broader	exploration.

http://bit.ly/1ycPmuq
http://bit.ly/1ycPom1
http://bit.ly/1ycPn1j

Chapter	18.	Neural	Networks

I	like	nonsense;	it	wakes	up	the	brain	cells.

Dr.	Seuss

An	artificial	neural	network	(or	neural	network	for	short)	is	a	predictive	model	motivated
by	the	way	the	brain	operates.	Think	of	the	brain	as	a	collection	of	neurons	wired	together.
Each	neuron	looks	at	the	outputs	of	the	other	neurons	that	feed	into	it,	does	a	calculation,
and	then	either	fires	(if	the	calculation	exceeds	some	threshhold)	or	doesn’t	(if	it	doesn’t).

Accordingly,	artificial	neural	networks	consist	of	artificial	neurons,	which	perform	similar
calculations	over	their	inputs.	Neural	networks	can	solve	a	wide	variety	of	problems	like
handwriting	recognition	and	face	detection,	and	they	are	used	heavily	in	deep	learning,
one	of	the	trendiest	subfields	of	data	science.	However,	most	neural	networks	are	“black
boxes”	—	inspecting	their	details	doesn’t	give	you	much	understanding	of	how	they’re
solving	a	problem.	And	large	neural	networks	can	be	difficult	to	train.	For	most	problems
you’ll	encounter	as	a	budding	data	scientist,	they’re	probably	not	the	right	choice.
Someday,	when	you’re	trying	to	build	an	artificial	intelligence	to	bring	about	the
Singularity,	they	very	well	might	be.

Perceptrons
Pretty	much	the	simplest	neural	network	is	the	perceptron,	which	approximates	a	single
neuron	with	n	binary	inputs.	It	computes	a	weighted	sum	of	its	inputs	and	“fires”	if	that
weighted	sum	is	zero	or	greater:

def	step_function(x):

				return	1	if	x	>=	0	else	0

def	perceptron_output(weights,	bias,	x):

				"""returns	1	if	the	perceptron	'fires',	0	if	not"""

				calculation	=	dot(weights,	x)	+	bias

				return	step_function(calculation)

The	perceptron	is	simply	distinguishing	between	the	half	spaces	separated	by	the
hyperplane	of	points	x	for	which:

dot(weights,x)	+	bias	==	0

With	properly	chosen	weights,	perceptrons	can	solve	a	number	of	simple	problems
(Figure	18-1).	For	example,	we	can	create	an	AND	gate	(which	returns	1	if	both	its	inputs
are	1	but	returns	0	if	one	of	its	inputs	is	0)	with:

weights	=	[2,	2]

bias	=	-3

If	both	inputs	are	1,	the	calculation	equals	2	+	2	-	3	=	1,	and	the	output	is	1.	If	only	one
of	the	inputs	is	1,	the	calculation	equals	2	+	0	-	3	=	-1,	and	the	output	is	0.	And	if	both	of
the	inputs	are	0,	the	calculation	equals	-3,	and	the	output	is	0.

Similarly,	we	could	build	an	OR	gate	with:

weights	=	[2,	2]

bias	=	-1

Figure	18-1.	Decision	space	for	a	two-input	perceptron

And	we	could	build	a	NOT	gate	(which	has	one	input	and	converts	1	to	0	and	0	to	1)	with:

weights	=	[-2]

bias	=	1

However,	there	are	some	problems	that	simply	can’t	be	solved	by	a	single	perceptron.	For
example,	no	matter	how	hard	you	try,	you	cannot	use	a	perceptron	to	build	an	XOR	gate
that	outputs	1	if	exactly	one	of	its	inputs	is	1	and	0	otherwise.	This	is	where	we	start
needing	more-complicated	neural	networks.

Of	course,	you	don’t	need	to	approximate	a	neuron	in	order	to	build	a	logic	gate:

and_gate	=	min

or_gate	=	max

xor_gate	=	lambda	x,	y:	0	if	x	==	y	else	1

Like	real	neurons,	artificial	neurons	start	getting	more	interesting	when	you	start
connecting	them	together.

Feed-Forward	Neural	Networks
The	topology	of	the	brain	is	enormously	complicated,	so	it’s	common	to	approximate	it
with	an	idealized	feed-forward	neural	network	that	consists	of	discrete	layers	of	neurons,
each	connected	to	the	next.	This	typically	entails	an	input	layer	(which	receives	inputs	and
feeds	them	forward	unchanged),	one	or	more	“hidden	layers”	(each	of	which	consists	of
neurons	that	take	the	outputs	of	the	previous	layer,	performs	some	calculation,	and	passes
the	result	to	the	next	layer),	and	an	output	layer	(which	produces	the	final	outputs).

Just	like	the	perceptron,	each	(noninput)	neuron	has	a	weight	corresponding	to	each	of	its
inputs	and	a	bias.	To	make	our	representation	simpler,	we’ll	add	the	bias	to	the	end	of	our
weights	vector	and	give	each	neuron	a	bias	input	that	always	equals	1.

As	with	the	perceptron,	for	each	neuron	we’ll	sum	up	the	products	of	its	inputs	and	its
weights.	But	here,	rather	than	outputting	the	step_function	applied	to	that	product,	we’ll
output	a	smooth	approximation	of	the	step	function.	In	particular,	we’ll	use	the	sigmoid
function	(Figure	18-2):

def	sigmoid(t):

				return	1	/	(1	+	math.exp(-t))

Figure	18-2.	The	sigmoid	function

Why	use	sigmoid	instead	of	the	simpler	step_function?	In	order	to	train	a	neural
network,	we’ll	need	to	use	calculus,	and	in	order	to	use	calculus,	we	need	smooth
functions.	The	step	function	isn’t	even	continuous,	and	sigmoid	is	a	good	smooth
approximation	of	it.

NOTE
You	may	remember	sigmoid	from	Chapter	16,	where	it	was	called	logistic.	Technically	“sigmoid”	refers
to	the	shape	of	the	function,	“logistic”	to	this	particular	function	although	people	often	use	the	terms
interchangeably.

We	then	calculate	the	output	as:

def	neuron_output(weights,	inputs):

				return	sigmoid(dot(weights,	inputs))

Given	this	function,	we	can	represent	a	neuron	simply	as	a	list	of	weights	whose	length	is
one	more	than	the	number	of	inputs	to	that	neuron	(because	of	the	bias	weight).	Then	we
can	represent	a	neural	network	as	a	list	of	(noninput)	layers,	where	each	layer	is	just	a	list
of	the	neurons	in	that	layer.

That	is,	we’ll	represent	a	neural	network	as	a	list	(layers)	of	lists	(neurons)	of	lists
(weights).

Given	such	a	representation,	using	the	neural	network	is	quite	simple:

def	feed_forward(neural_network,	input_vector):

				"""takes	in	a	neural	network

				(represented	as	a	list	of	lists	of	lists	of	weights)

				and	returns	the	output	from	forward-propagating	the	input"""

				outputs	=	[]

				#	process	one	layer	at	a	time

				for	layer	in	neural_network:

								input_with_bias	=	input_vector	+	[1]														#	add	a	bias	input

								output	=	[neuron_output(neuron,	input_with_bias)		#	compute	the	output

																		for	neuron	in	layer]																				#	for	each	neuron

								outputs.append(output)																												#	and	remember	it

								#	then	the	input	to	the	next	layer	is	the	output	of	this	one

								input_vector	=	output

				return	outputs

Now	it’s	easy	to	build	the	XOR	gate	that	we	couldn’t	build	with	a	single	perceptron.	We
just	need	to	scale	the	weights	up	so	that	the	neuron_outputs	are	either	really	close	to	0	or
really	close	to	1:

xor_network	=	[#	hidden	layer

															[[20,	20,	-30],						#	'and'	neuron

																[20,	20,	-10]],					#	'or'		neuron

															#	output	layer

															[[-60,	60,	-30]]]				#	'2nd	input	but	not	1st	input'	neuron

for	x	in	[0,	1]:

				for	y	in	[0,	1]:

								#	feed_forward	produces	the	outputs	of	every	neuron

								#	feed_forward[-1]	is	the	outputs	of	the	output-layer	neurons

								print	x,	y,	feed_forward(xor_network,[x,	y])[-1]

#	0	0	[9.38314668300676e-14]

#	0	1	[0.9999999999999059]

#	1	0	[0.9999999999999059]

#	1	1	[9.383146683006828e-14]

By	using	a	hidden	layer,	we	are	able	to	feed	the	output	of	an	“and”	neuron	and	the	output
of	an	“or”	neuron	into	a	“second	input	but	not	first	input”	neuron.	The	result	is	a	network
that	performs	“or,	but	not	and,”	which	is	precisely	XOR	(Figure	18-3).

Figure	18-3.	A	neural	network	for	XOR

Backpropagation
Usually	we	don’t	build	neural	networks	by	hand.	This	is	in	part	because	we	use	them	to
solve	much	bigger	problems	—	an	image	recognition	problem	might	involve	hundreds	or
thousands	of	neurons.	And	it’s	in	part	because	we	usually	won’t	be	able	to	“reason	out”
what	the	neurons	should	be.

Instead	(as	usual)	we	use	data	to	train	neural	networks.	One	popular	approach	is	an
algorithm	called	backpropagation	that	has	similarities	to	the	gradient	descent	algorithm
we	looked	at	earlier.

Imagine	we	have	a	training	set	that	consists	of	input	vectors	and	corresponding	target
output	vectors.	For	example,	in	our	previous	xor_network	example,	the	input	vector	[1,
0]	corresponded	to	the	target	output	[1].	And	imagine	that	our	network	has	some	set	of
weights.	We	then	adjust	the	weights	using	the	following	algorithm:

1.	 Run	feed_forward	on	an	input	vector	to	produce	the	outputs	of	all	the	neurons	in	the
network.

2.	 This	results	in	an	error	for	each	output	neuron	—	the	difference	between	its	output
and	its	target.

3.	 Compute	the	gradient	of	this	error	as	a	function	of	the	neuron’s	weights,	and	adjust
its	weights	in	the	direction	that	most	decreases	the	error.

4.	 “Propagate”	these	output	errors	backward	to	infer	errors	for	the	hidden	layer.

5.	 Compute	the	gradients	of	these	errors	and	adjust	the	hidden	layer’s	weights	in	the
same	manner.

Typically	we	run	this	algorithm	many	times	for	our	entire	training	set	until	the	network
converges:

def	backpropagate(network,	input_vector,	targets):

				hidden_outputs,	outputs	=	feed_forward(network,	input_vector)

				#	the	output	*	(1	-	output)	is	from	the	derivative	of	sigmoid

				output_deltas	=	[output	*	(1	-	output)	*	(output	-	target)

																					for	output,	target	in	zip(outputs,	targets)]

				#	adjust	weights	for	output	layer,	one	neuron	at	a	time

				for	i,	output_neuron	in	enumerate(network[-1]):

								#	focus	on	the	ith	output	layer	neuron

								for	j,	hidden_output	in	enumerate(hidden_outputs	+	[1]):

												#	adjust	the	jth	weight	based	on	both

												#	this	neuron's	delta	and	its	jth	input

												output_neuron[j]	-=	output_deltas[i]	*	hidden_output

				#	back-propagate	errors	to	hidden	layer

				hidden_deltas	=	[hidden_output	*	(1	-	hidden_output)	*

																						dot(output_deltas,	[n[i]	for	n	in	output_layer])

																					for	i,	hidden_output	in	enumerate(hidden_outputs)]

				#	adjust	weights	for	hidden	layer,	one	neuron	at	a	time

				for	i,	hidden_neuron	in	enumerate(network[0]):

								for	j,	input	in	enumerate(input_vector	+	[1]):

												hidden_neuron[j]	-=	hidden_deltas[i]	*	input

This	is	pretty	much	doing	the	same	thing	as	if	you	explicitly	wrote	the	squared	error	as	a
function	of	the	weights	and	used	the	minimize_stochastic	function	we	built	in
Chapter	8.

In	this	case,	explicitly	writing	out	the	gradient	function	turns	out	to	be	kind	of	a	pain.	If
you	know	calculus	and	the	chain	rule,	the	mathematical	details	are	relatively
straightforward,	but	keeping	the	notation	straight	(“the	partial	derivative	of	the	error
function	with	respect	to	the	weight	that	neuron	i	assigns	to	the	input	coming	from	neuron
j”)	is	not	much	fun.

Example:	Defeating	a	CAPTCHA
To	make	sure	that	people	registering	for	your	site	are	actually	people,	the	VP	of	Product
Management	wants	to	implement	a	CAPTCHA	as	part	of	the	registration	process.	In
particular,	he’d	like	to	show	users	a	picture	of	a	digit	and	require	them	to	input	that	digit	to
prove	they’re	human.

He	doesn’t	believe	you	that	computers	can	easily	solve	this	problem,	so	you	decide	to
convince	him	by	creating	a	program	that	can	easily	solve	the	problem.

We’ll	represent	each	digit	as	a	5	×	5	image:

@@@@@		..@..		@@@@@		@@@@@		@...@		@@@@@		@@@@@		@@@@@		@@@@@		@@@@@

@...@		..@..	@	@		@...@		@....		@....	@		@...@		@...@

@...@		..@..		@@@@@		@@@@@		@@@@@		@@@@@		@@@@@	@		@@@@@		@@@@@

@...@		..@..		@....	@	@	@		@...@	@		@...@	@

@@@@@		..@..		@@@@@		@@@@@	@		@@@@@		@@@@@	@		@@@@@		@@@@@

Our	neural	network	wants	an	input	to	be	a	vector	of	numbers.	So	we’ll	transform	each
image	to	a	vector	of	length	25,	whose	elements	are	either	1	(“this	pixel	is	in	the	image”)	or
0	(“this	pixel	is	not	in	the	image”).

For	instance,	the	zero	digit	would	be	represented	as:

zero_digit	=	[1,1,1,1,1,

														1,0,0,0,1,

														1,0,0,0,1,

														1,0,0,0,1,

														1,1,1,1,1]

We’ll	want	our	output	to	indicate	which	digit	the	neural	network	thinks	it	is,	so	we’ll	need
10	outputs.	The	correct	output	for	digit	4,	for	instance,	will	be:

[0,	0,	0,	0,	1,	0,	0,	0,	0,	0]

Then,	assuming	our	inputs	are	correctly	ordered	from	0	to	9,	our	targets	will	be:

targets	=	[[1	if	i	==	j	else	0	for	i	in	range(10)]

											for	j	in	range(10)]

so	that	(for	example)	targets[4]	is	the	correct	output	for	digit	4.

At	which	point	we’re	ready	to	build	our	neural	network:

random.seed(0)						#	to	get	repeatable	results

input_size	=	25					#	each	input	is	a	vector	of	length	25

num_hidden	=	5						#	we'll	have	5	neurons	in	the	hidden	layer

output_size	=	10				#	we	need	10	outputs	for	each	input

#	each	hidden	neuron	has	one	weight	per	input,	plus	a	bias	weight

hidden_layer	=	[[random.random()	for	__	in	range(input_size	+	1)]

																for	__	in	range(num_hidden)]

#	each	output	neuron	has	one	weight	per	hidden	neuron,	plus	a	bias	weight

output_layer	=	[[random.random()	for	__	in	range(num_hidden	+	1)]

																for	__	in	range(output_size)]

#	the	network	starts	out	with	random	weights

network	=	[hidden_layer,	output_layer]

And	we	can	train	it	using	the	backpropagation	algorithm:

#	10,000	iterations	seems	enough	to	converge

for	__	in	range(10000):

				for	input_vector,	target_vector	in	zip(inputs,	targets):

								backpropagate(network,	input_vector,	target_vector)

It	works	well	on	the	training	set,	obviously:

def	predict(input):

				return	feed_forward(network,	input)[-1]

predict(inputs[7])

#	[0.026,	0.0,	0.0,	0.018,	0.001,	0.0,	0.0,	0.967,	0.0,	0.0]

Which	indicates	that	the	digit	7	output	neuron	produces	0.97,	while	all	the	other	output
neurons	produce	very	small	numbers.

But	we	can	also	apply	it	to	differently	drawn	digits,	like	my	stylized	3:

predict([0,1,1,1,0,		#	.@@@.

									0,0,0,1,1,		#	...@@

									0,0,1,1,0,		#	..@@.

									0,0,0,1,1,		#	...@@

									0,1,1,1,0])	#	.@@@.

#	[0.0,	0.0,	0.0,	0.92,	0.0,	0.0,	0.0,	0.01,	0.0,	0.12]

The	network	still	thinks	it	looks	like	a	3,	whereas	my	stylized	8	gets	votes	for	being	a	5,	an
8,	and	a	9:

predict([0,1,1,1,0,		#	.@@@.

									1,0,0,1,1,		#	@..@@

									0,1,1,1,0,		#	.@@@.

									1,0,0,1,1,		#	@..@@

									0,1,1,1,0])	#	.@@@.

#	[0.0,	0.0,	0.0,	0.0,	0.0,	0.55,	0.0,	0.0,	0.93,	1.0]

Having	a	larger	training	set	would	probably	help.

Although	the	network’s	operation	is	not	exactly	transparent,	we	can	inspect	the	weights	of
the	hidden	layer	to	get	a	sense	of	what	they’re	recognizing.	In	particular,	we	can	plot	the
weights	of	each	neuron	as	a	5	×	5	grid	corresponding	to	the	5	×	5	inputs.

In	real	life	you’d	probably	want	to	plot	zero	weights	as	white,	with	larger	positive	weights
more	and	more	(say)	green	and	larger	negative	weights	more	and	more	(say)	red.
Unfortunately,	that’s	hard	to	do	in	a	black-and-white	book.

Instead,	we’ll	plot	zero	weights	as	white,	with	far-away-from-zero	weights	darker	and
darker.	And	we’ll	use	crosshatching	to	indicate	negative	weights.

To	do	this	we’ll	use	pyplot.imshow,	which	we	haven’t	seen	before.	With	it	we	can	plot

images	pixel	by	pixel.	Normally	this	isn’t	all	that	useful	for	data	science,	but	here	it’s	a
good	choice:

import	matplotlib

weights	=	network[0][0]															#	first	neuron	in	hidden	layer

abs_weights	=	map(abs,	weights)							#	darkness	only	depends	on	absolute	value

grid	=	[abs_weights[row:(row+5)]						#	turn	the	weights	into	a	5x5	grid

								for	row	in	range(0,25,5)]					#	[weights[0:5],	...,	weights[20:25]]

ax	=	plt.gca()																								#	to	use	hatching,	we'll	need	the	axis

ax.imshow(grid,																							#	here	same	as	plt.imshow

										cmap=matplotlib.cm.binary,		#	use	white-black	color	scale

										interpolation='none')							#	plot	blocks	as	blocks

def	patch(x,	y,	hatch,	color):

				"""return	a	matplotlib	'patch'	object	with	the	specified

				location,	crosshatch	pattern,	and	color"""

				return	matplotlib.patches.Rectangle((x	-	0.5,	y	-	0.5),	1,	1,

																																								hatch=hatch,	fill=False,	color=color)

#	cross-hatch	the	negative	weights

for	i	in	range(5):																				#	row

				for	j	in	range(5):																#	column

								if	weights[5*i	+	j]	<	0:						#	row	i,	column	j	=	weights[5*i	+	j]

												#	add	black	and	white	hatches,	so	visible	whether	dark	or	light

												ax.add_patch(patch(j,	i,	'/',		"white"))

												ax.add_patch(patch(j,	i,	'\\',	"black"))

plt.show()

Figure	18-4.	Weights	for	the	hidden	layer

In	Figure	18-4	we	see	that	the	first	hidden	neuron	has	large	positive	weights	in	the	left
column	and	in	the	center	of	the	middle	row,	while	it	has	large	negative	weights	in	the	right
column.	(And	you	can	see	that	it	has	a	pretty	large	negative	bias,	which	means	that	it
won’t	fire	strongly	unless	it	gets	precisely	the	positive	inputs	it’s	“looking	for.”)

Indeed,	on	those	inputs,	it	does	what	you’d	expect:

left_column_only	=	[1,	0,	0,	0,	0]	*	5

print	feed_forward(network,	left_column_only)[0][0]		#	1.0

center_middle_row	=	[0,	0,	0,	0,	0]	*	2	+	[0,	1,	1,	1,	0]	+	[0,	0,	0,	0,	0]	*	2

print	feed_forward(network,	center_middle_row)[0][0]		#	0.95

right_column_only	=	[0,	0,	0,	0,	1]	*	5

print	feed_forward(network,	right_column_only)[0][0]		#	0.0

Similarly,	the	middle	hidden	neuron	seems	to	“like”	horizontal	lines	but	not	side	vertical

lines,	and	the	last	hidden	neuron	seems	to	“like”	the	center	row	but	not	the	right	column.
(The	other	two	neurons	are	harder	to	interpret.)

What	happens	when	we	run	my	stylized	3	through	the	network?

my_three	=		[0,1,1,1,0,		#	.@@@.

													0,0,0,1,1,		#	...@@

													0,0,1,1,0,		#	..@@.

													0,0,0,1,1,		#	...@@

													0,1,1,1,0]		#	.@@@.

hidden,	output	=	feed_forward(network,	my_three)

The	hidden	outputs	are:

0.121080		#	from	network[0][0],	probably	dinged	by	(1,	4)

0.999979		#	from	network[0][1],	big	contributions	from	(0,	2)	and	(2,	2)

0.999999		#	from	network[0][2],	positive	everywhere	except	(3,	4)

0.999992		#	from	network[0][3],	again	big	contributions	from	(0,	2)	and	(2,	2)

0.000000		#	from	network[0][4],	negative	or	zero	everywhere	except	center	row

which	enter	into	the	“three”	output	neuron	with	weights	network[-1][3]:

-11.61		#	weight	for	hidden[0]

	-2.17		#	weight	for	hidden[1]

		9.31		#	weight	for	hidden[2]

	-1.38		#	weight	for	hidden[3]

-11.47		#	weight	for	hidden[4]

-	1.92		#	weight	for	bias	input

So	that	the	neuron	computes:

sigmoid(.121	*	-11.61	+	1	*	-2.17	+	1	*	9.31	-	1.38	*	1	-	0	*	11.47	-	1.92)

which	is	0.92,	as	we	saw.	In	essence,	the	hidden	layer	is	computing	five	different
partitions	of	25-dimensional	space,	mapping	each	25-dimensional	input	down	to	five
numbers.	And	then	each	output	neuron	looks	only	at	the	results	of	those	five	partitions.

As	we	saw,	my_three	falls	slightly	on	the	“low”	side	of	partition	0	(i.e.,	only	slightly
activates	hidden	neuron	0),	far	on	the	“high”	side	of	partitions	1,	2,	and	3,	(i.e.,	strongly
activates	those	hidden	neurons),	and	far	on	the	low	side	of	partition	4	(i.e.,	doesn’t	active
that	neuron	at	all).

And	then	each	of	the	10	output	neurons	uses	only	those	five	activations	to	decide	whether
my_three	is	their	digit	or	not.

For	Further	Exploration
Coursera	has	a	free	course	on	Neural	Networks	for	Machine	Learning.	As	I	write	this	it
was	last	run	in	2012,	but	the	course	materials	are	still	available.

Michael	Nielsen	is	writing	a	free	online	book	on	Neural	Networks	and	Deep	Learning.
By	the	time	you	read	this	it	might	be	finished.

PyBrain	is	a	pretty	simple	Python	neural	network	library.

Pylearn2	is	a	much	more	advanced	(and	much	harder	to	use)	neural	network	library.

https://www.coursera.org/course/neuralnets
http://neuralnetworksanddeeplearning.com
http://pybrain.org
http://deeplearning.net/software/pylearn2/

Chapter	19.	Clustering

Where	we	such	clusters	had

As	made	us	nobly	wild,	not	mad

Robert	Herrick

Most	of	the	algorithms	in	this	book	are	what’s	known	as	supervised	learning,	in	that	they
start	with	a	set	of	labeled	data	and	use	that	as	the	basis	for	making	predictions	about	new,
unlabeled	data.	Clustering,	however,	is	an	example	of	unsupervised	learning,	in	which	we
work	with	completely	unlabeled	data	(or	in	which	our	data	has	labels	but	we	ignore	them).

The	Idea
Whenever	you	look	at	some	source	of	data,	it’s	likely	that	the	data	will	somehow	form
clusters.	A	data	set	showing	where	millionaires	live	probably	has	clusters	in	places	like
Beverly	Hills	and	Manhattan.	A	data	set	showing	how	many	hours	people	work	each	week
probably	has	a	cluster	around	40	(and	if	it’s	taken	from	a	state	with	laws	mandating
special	benefits	for	people	who	work	at	least	20	hours	a	week,	it	probably	has	another
cluster	right	around	19).	A	data	set	of	demographics	of	registered	voters	likely	forms	a
variety	of	clusters	(e.g.,	“soccer	moms,”	“bored	retirees,”	“unemployed	millennials”)	that
pollsters	and	political	consultants	likely	consider	relevant.

Unlike	some	of	the	problems	we’ve	looked	at,	there	is	generally	no	“correct”	clustering.
An	alternative	clustering	scheme	might	group	some	of	the	“unemployed	millenials”	with
“grad	students,”	others	with	“parents’	basement	dwellers.”	Neither	scheme	is	necessarily
more	correct	—	instead,	each	is	likely	more	optimal	with	respect	to	its	own	“how	good	are
the	clusters?”	metric.

Furthermore,	the	clusters	won’t	label	themselves.	You’ll	have	to	do	that	by	looking	at	the
data	underlying	each	one.

The	Model
For	us,	each	input	will	be	a	vector	in	d-dimensional	space	(which,	as	usual,	we	will
represent	as	a	list	of	numbers).	Our	goal	will	be	to	identify	clusters	of	similar	inputs	and
(sometimes)	to	find	a	representative	value	for	each	cluster.

For	example,	each	input	could	be	(a	numeric	vector	that	somehow	represents)	the	title	of	a
blog	post,	in	which	case	the	goal	might	be	to	find	clusters	of	similar	posts,	perhaps	in
order	to	understand	what	our	users	are	blogging	about.	Or	imagine	that	we	have	a	picture
containing	thousands	of	(red,	green,	blue)	colors	and	that	we	need	to	screen-print	a
10-color	version	of	it.	Clustering	can	help	us	choose	10	colors	that	will	minimize	the	total
“color	error.”

One	of	the	simplest	clustering	methods	is	k-means,	in	which	the	number	of	clusters	k	is
chosen	in	advance,	after	which	the	goal	is	to	partition	the	inputs	into	sets	 	in	a
way	that	minimizes	the	total	sum	of	squared	distances	from	each	point	to	the	mean	of	its
assigned	cluster.

There	are	a	lot	of	ways	to	assign	n	points	to	k	clusters,	which	means	that	finding	an
optimal	clustering	is	a	very	hard	problem.	We’ll	settle	for	an	iterative	algorithm	that
usually	finds	a	good	clustering:

1.	 Start	with	a	set	of	k-means,	which	are	points	in	d-dimensional	space.

2.	 Assign	each	point	to	the	mean	to	which	it	is	closest.

3.	 If	no	point’s	assignment	has	changed,	stop	and	keep	the	clusters.

4.	 If	some	point’s	assignment	has	changed,	recompute	the	means	and	return	to	step	2.

Using	the	vector_mean	function	from	Chapter	4,	it’s	pretty	simple	to	create	a	class	that
does	this:

class	KMeans:

				"""performs	k-means	clustering"""

				def	__init__(self,	k):

								self.k	=	k										#	number	of	clusters

								self.means	=	None			#	means	of	clusters

				def	classify(self,	input):

								"""return	the	index	of	the	cluster	closest	to	the	input"""

								return	min(range(self.k),

																			key=lambda	i:	squared_distance(input,	self.means[i]))

				def	train(self,	inputs):

								#	choose	k	random	points	as	the	initial	means

								self.means	=	random.sample(inputs,	self.k)

								assignments	=	None

								while	True:

												#	Find	new	assignments

												new_assignments	=	map(self.classify,	inputs)

												#	If	no	assignments	have	changed,	we're	done.

												if	assignments	==	new_assignments:

																return

												#	Otherwise	keep	the	new	assignments,

												assignments	=	new_assignments

												#	And	compute	new	means	based	on	the	new	assignments

												for	i	in	range(self.k):

																#	find	all	the	points	assigned	to	cluster	i

																i_points	=	[p	for	p,	a	in	zip(inputs,	assignments)	if	a	==	i]

																#	make	sure	i_points	is	not	empty	so	don't	divide	by	0

																if	i_points:

																				self.means[i]	=	vector_mean(i_points)

Let’s	take	a	look	at	how	this	works.

Example:	Meetups
To	celebrate	DataSciencester’s	growth,	your	VP	of	User	Rewards	wants	to	organize
several	in-person	meetups	for	your	hometown	users,	complete	with	beer,	pizza,	and
DataSciencester	t-shirts.	You	know	the	locations	of	all	your	local	users	(Figure	19-1),	and
she’d	like	you	to	choose	meetup	locations	that	make	it	convenient	for	everyone	to	attend.

Depending	on	how	you	look	at	it,	you	probably	see	two	or	three	clusters.	(It’s	easy	to	do
visually	because	the	data	is	only	two-dimensional.	With	more	dimensions,	it	would	be	a
lot	harder	to	eyeball.)

Imagine	first	that	she	has	enough	budget	for	three	meetups.	You	go	to	your	computer	and
try	this:

random.seed(0)										#	so	you	get	the	same	results	as	me

clusterer	=	KMeans(3)

clusterer.train(inputs)

print	clusterer.means

Figure	19-1.	The	locations	of	your	hometown	users

You	find	three	clusters	centered	at	[-44,5],	[-16,-10],	and	[18,	20],	and	you	look	for
meetup	venues	near	those	locations	(Figure	19-2).

You	show	it	to	the	VP,	who	informs	you	that	now	she	only	has	enough	budget	for	two

meetups.

“No	problem,”	you	say:

random.seed(0)

clusterer	=	KMeans(2)

clusterer.train(inputs)

print	clusterer.means

Figure	19-2.	User	locations	grouped	into	three	clusters

As	shown	in	Figure	19-3,	one	meetup	should	still	be	near	[18,	20],	but	now	the	other
should	be	near	[-26,	-5].

Figure	19-3.	User	locations	grouped	into	two	clusters

Choosing	k
In	the	previous	example,	the	choice	of	k	was	driven	by	factors	outside	of	our	control.	In
general,	this	won’t	be	the	case.	There	is	a	wide	variety	of	ways	to	choose	a	k.	One	that’s
reasonably	easy	to	understand	involves	plotting	the	sum	of	squared	errors	(between	each
point	and	the	mean	of	its	cluster)	as	a	function	of	k	and	looking	at	where	the	graph
“bends”:

def	squared_clustering_errors(inputs,	k):

				"""finds	the	total	squared	error	from	k-means	clustering	the	inputs"""

				clusterer	=	KMeans(k)

				clusterer.train(inputs)

				means	=	clusterer.means

				assignments	=	map(clusterer.classify,	inputs)

				return	sum(squared_distance(input,	means[cluster])

															for	input,	cluster	in	zip(inputs,	assignments))

#	now	plot	from	1	up	to	len(inputs)	clusters

ks	=	range(1,	len(inputs)	+	1)

errors	=	[squared_clustering_errors(inputs,	k)	for	k	in	ks]

plt.plot(ks,	errors)

plt.xticks(ks)

plt.xlabel("k")

plt.ylabel("total	squared	error")

plt.title("Total	Error	vs.	#	of	Clusters")

plt.show()

Figure	19-4.	Choosing	a	k

Looking	at	Figure	19-4,	this	method	agrees	with	our	original	eyeballing	that	3	is	the
“right”	number	of	clusters.

Example:	Clustering	Colors
The	VP	of	Swag	has	designed	attractive	DataSciencester	stickers	that	he’d	like	you	to
hand	out	at	meetups.	Unfortunately,	your	sticker	printer	can	print	at	most	five	colors	per
sticker.	And	since	the	VP	of	Art	is	on	sabbatical,	the	VP	of	Swag	asks	if	there’s	some	way
you	can	take	his	design	and	modify	it	so	that	it	only	contains	five	colors.

Computer	images	can	be	represented	as	two-dimensional	array	of	pixels,	where	each	pixel
is	itself	a	three-dimensional	vector	(red,	green,	blue)	indicating	its	color.

Creating	a	five-color	version	of	the	image	then	entails:

1.	 Choosing	five	colors

2.	 Assigning	one	of	those	colors	to	each	pixel

It	turns	out	this	is	a	great	task	for	k-means	clustering,	which	can	partition	the	pixels	into
five	clusters	in	red-green-blue	space.	If	we	then	recolor	the	pixels	in	each	cluster	to	the
mean	color,	we’re	done.

To	start	with,	we’ll	need	a	way	to	load	an	image	into	Python.	It	turns	out	we	can	do	this
with	matplotlib:

path_to_png_file	=	r"C:\images\image.png"			#	wherever	your	image	is

import	matplotlib.image	as	mpimg

img	=	mpimg.imread(path_to_png_file)

Behind	the	scenes	img	is	a	NumPy	array,	but	for	our	purposes,	we	can	treat	it	as	a	list	of
lists	of	lists.

img[i][j]	is	the	pixel	in	the	ith	row	and	jth	column,	and	each	pixel	is	a	list	[red,	green,
blue]	of	numbers	between	0	and	1	indicating	the	color	of	that	pixel:

top_row	=	img[0]

top_left_pixel	=	top_row[0]

red,	green,	blue	=	top_left_pixel

In	particular,	we	can	get	a	flattened	list	of	all	the	pixels	as:

pixels	=	[pixel	for	row	in	img	for	pixel	in	row]

and	then	feed	them	to	our	clusterer:

clusterer	=	KMeans(5)

clusterer.train(pixels)			#	this	might	take	a	while

Once	it	finishes,	we	just	construct	a	new	image	with	the	same	format:

def	recolor(pixel):

				cluster	=	clusterer.classify(pixel)								#	index	of	the	closest	cluster

				return	clusterer.means[cluster]												#	mean	of	the	closest	cluster

http://en.wikipedia.org/wiki/RGB_color_model

new_img	=	[[recolor(pixel)	for	pixel	in	row]			#	recolor	this	row	of	pixels

											for	row	in	img]																					#	for	each	row	in	the	image

and	display	it,	using	plt.imshow():

plt.imshow(new_img)

plt.axis('off')

plt.show()

It	is	difficult	to	show	color	results	in	a	black-and-white	book,	but	Figure	19-5	shows
grayscale	versions	of	a	full-color	picture	and	the	output	of	using	this	process	to	reduce	it
to	five	colors:

Figure	19-5.	Original	picture	and	its	5-means	decoloring

Bottom-up	Hierarchical	Clustering
An	alternative	approach	to	clustering	is	to	“grow”	clusters	from	the	bottom	up.	We	can	do
this	in	the	following	way:

1.	 Make	each	input	its	own	cluster	of	one.

2.	 As	long	as	there	are	multiple	clusters	remaining,	find	the	two	closest	clusters	and
merge	them.

At	the	end,	we’ll	have	one	giant	cluster	containing	all	the	inputs.	If	we	keep	track	of	the
merge	order,	we	can	recreate	any	number	of	clusters	by	unmerging.	For	example,	if	we
want	three	clusters,	we	can	just	undo	the	last	two	merges.

We’ll	use	a	really	simple	representation	of	clusters.	Our	values	will	live	in	leaf	clusters,
which	we	will	represent	as	1-tuples:

leaf1	=	([10,	20],)			#	to	make	a	1-tuple	you	need	the	trailing	comma

leaf2	=	([30,	-15],)		#	otherwise	Python	treats	the	parentheses	as	parentheses

We’ll	use	these	to	grow	merged	clusters,	which	we	will	represent	as	2-tuples	(merge	order,
children):

merged	=	(1,	[leaf1,	leaf2])

We’ll	talk	about	merge	order	in	a	bit,	but	first	let’s	create	a	few	helper	functions:

def	is_leaf(cluster):

				"""a	cluster	is	a	leaf	if	it	has	length	1"""

				return	len(cluster)	==	1

def	get_children(cluster):

				"""returns	the	two	children	of	this	cluster	if	it's	a	merged	cluster;

				raises	an	exception	if	this	is	a	leaf	cluster"""

				if	is_leaf(cluster):

								raise	TypeError("a	leaf	cluster	has	no	children")

				else:

								return	cluster[1]

def	get_values(cluster):

				"""returns	the	value	in	this	cluster	(if	it's	a	leaf	cluster)

				or	all	the	values	in	the	leaf	clusters	below	it	(if	it's	not)"""

				if	is_leaf(cluster):

								return	cluster						#	is	already	a	1-tuple	containing	value

				else:

								return	[value

																for	child	in	get_children(cluster)

																for	value	in	get_values(child)]

In	order	to	merge	the	closest	clusters,	we	need	some	notion	of	the	distance	between
clusters.	We’ll	use	the	minimum	distance	between	elements	of	the	two	clusters,	which
merges	the	two	clusters	that	are	closest	to	touching	(but	will	sometimes	produce	large
chain-like	clusters	that	aren’t	very	tight).	If	we	wanted	tight	spherical	clusters,	we	might
use	the	maximum	distance	instead,	as	it	merges	the	two	clusters	that	fit	in	the	smallest	ball.
Both	are	common	choices,	as	is	the	average	distance:

def	cluster_distance(cluster1,	cluster2,	distance_agg=min):

				"""compute	all	the	pairwise	distances	between	cluster1	and	cluster2

				and	apply	_distance_agg_	to	the	resulting	list"""

				return	distance_agg([distance(input1,	input2)

																									for	input1	in	get_values(cluster1)

																									for	input2	in	get_values(cluster2)])

We’ll	use	the	merge	order	slot	to	track	the	order	in	which	we	did	the	merging.	Smaller
numbers	will	represent	later	merges.	This	means	when	we	want	to	unmerge	clusters,	we
do	so	from	lowest	merge	order	to	highest.	Since	leaf	clusters	were	never	merged	(which
means	we	never	want	to	unmerge	them),	we’ll	assign	them	infinity:

def	get_merge_order(cluster):

				if	is_leaf(cluster):

								return	float('inf')

				else:

								return	cluster[0]		#	merge_order	is	first	element	of	2-tuple

Now	we’re	ready	to	create	the	clustering	algorithm:

def	bottom_up_cluster(inputs,	distance_agg=min):

				#	start	with	every	input	a	leaf	cluster	/	1-tuple

				clusters	=	[(input,)	for	input	in	inputs]

				#	as	long	as	we	have	more	than	one	cluster	left…

				while	len(clusters)	>	1:

								#	find	the	two	closest	clusters

								c1,	c2	=	min([(cluster1,	cluster2)

																						for	i,	cluster1	in	enumerate(clusters)

																						for	cluster2	in	clusters[:i]],

																						key=lambda	(x,	y):	cluster_distance(x,	y,	distance_agg))

								#	remove	them	from	the	list	of	clusters

								clusters	=	[c	for	c	in	clusters	if	c	!=	c1	and	c	!=	c2]

								#	merge	them,	using	merge_order	=	#	of	clusters	left

								merged_cluster	=	(len(clusters),	[c1,	c2])

								#	and	add	their	merge

								clusters.append(merged_cluster)

				#	when	there's	only	one	cluster	left,	return	it

				return	clusters[0]

Its	use	is	very	simple:

base_cluster	=	bottom_up_cluster(inputs)

This	produces	a	cluster	whose	ugly	representation	is:

(0,	[(1,	[(3,	[(14,	[(18,	[([19,	28],),

																											([21,	27],)]),

																					([20,	23],)]),

															([26,	13],)]),

										(16,	[([11,	15],),

																([13,	13],)])]),

					(2,	[(4,	[(5,	[(9,	[(11,	[([-49,	0],),

																															([-46,	5],)]),

																									([-41,	8],)]),

																				([-49,	15],)]),

															([-34,	-1],)]),

										(6,	[(7,	[(8,	[(10,	[([-22,	-16],),

																															([-19,	-11],)]),

																									([-25,	-9],)]),

																				(13,	[(15,	[(17,	[([-11,	-6],),

																																						([-12,	-8],)]),

																																([-14,	-5],)]),

																										([-18,	-3],)])]),

															(12,	[([-13,	-19],),

																					([-9,	-16],)])])])])

For	every	merged	cluster,	I	lined	up	its	children	vertically.	If	we	say	“cluster	0”	for	the
cluster	with	merge	order	0,	you	can	interpret	this	as:

Cluster	0	is	the	merger	of	cluster	1	and	cluster	2.

Cluster	1	is	the	merger	of	cluster	3	and	cluster	16.

Cluster	16	is	the	merger	of	the	leaf	[11,	15]	and	the	leaf	[13,	13].

And	so	on…

Since	we	had	20	inputs,	it	took	19	merges	to	get	to	this	one	cluster.	The	first	merge	created
cluster	18	by	combining	the	leaves	[19,	28]	and	[21,	27].	And	the	last	merge	created
cluster	0.

Generally,	though,	we	don’t	want	to	be	squinting	at	nasty	text	representations	like	this.
(Although	it	could	be	an	interesting	exercise	to	create	a	user-friendlier	visualization	of	the
cluster	hierarchy.)	Instead	let’s	write	a	function	that	generates	any	number	of	clusters	by
performing	the	appropriate	number	of	unmerges:

def	generate_clusters(base_cluster,	num_clusters):

				#	start	with	a	list	with	just	the	base	cluster

				clusters	=	[base_cluster]

				#	as	long	as	we	don't	have	enough	clusters	yet…

				while	len(clusters)	<	num_clusters:

								#	choose	the	last-merged	of	our	clusters

								next_cluster	=	min(clusters,	key=get_merge_order)

								#	remove	it	from	the	list

								clusters	=	[c	for	c	in	clusters	if	c	!=	next_cluster]

								#	and	add	its	children	to	the	list	(i.e.,	unmerge	it)

								clusters.extend(get_children(next_cluster))

				#	once	we	have	enough	clusters…

				return	clusters

So,	for	example,	if	we	want	to	generate	three	clusters,	we	can	just	do:

three_clusters	=	[get_values(cluster)

																		for	cluster	in	generate_clusters(base_cluster,	3)]

which	we	can	easily	plot:

for	i,	cluster,	marker,	color	in	zip([1,	2,	3],

																																					three_clusters,

																																					['D','o','*'],

																																					['r','g','b']):

				xs,	ys	=	zip(*cluster)		#	magic	unzipping	trick

				plt.scatter(xs,	ys,	color=color,	marker=marker)

				#	put	a	number	at	the	mean	of	the	cluster

				x,	y	=	vector_mean(cluster)

				plt.plot(x,	y,	marker='$'	+	str(i)	+	'$',	color='black')

plt.title("User	Locations—3	Bottom-Up	Clusters,	Min")

plt.xlabel("blocks	east	of	city	center")

plt.ylabel("blocks	north	of	city	center")

plt.show()

This	gives	very	different	results	than	k-means	did,	as	shown	in	Figure	19-6.

Figure	19-6.	Three	bottom-up	clusters	using	min	distance

As	we	mentioned	above,	this	is	because	using	min	in	cluster_distance	tends	to	give
chain-like	clusters.	If	we	instead	use	max	(which	gives	tight	clusters)	it	looks	the	same	as
the	3-means	result	(Figure	19-7).

NOTE
The	bottom_up_clustering	implementation	above	is	relatively	simple,	but	it’s	also	shockingly	inefficient.
In	particular,	it	recomputes	the	distance	between	each	pair	of	inputs	at	every	step.	A	more	efficient
implementation	might	precompute	the	distances	between	each	pair	of	inputs	and	then	perform	a	lookup
inside	cluster_distance.	A	really	efficient	implementation	would	likely	also	remember	the
cluster_distances	from	the	previous	step.

Figure	19-7.	Three	bottom-up	clusters	using	max	distance

For	Further	Exploration
scikit-learn	has	an	entire	module	sklearn.cluster	that	contains	several	clustering
algorithms	including	KMeans	and	the	Ward	hierarchical	clustering	algorithm	(which	uses
a	different	criterion	for	merging	clusters	than	ours	did).

SciPy	has	two	clustering	models	scipy.cluster.vq	(which	does	k-means)	and
scipy.cluster.hierarchy	(which	has	a	variety	of	hierarchical	clustering	algorithms).

http://scikit-learn.org/stable/modules/clustering.html
http://www.scipy.org/

Chapter	20.	Natural	Language	Processing

They	have	been	at	a	great	feast	of	languages,	and	stolen	the	scraps.

William	Shakespeare

Natural	language	processing	(NLP)	refers	to	computational	techniques	involving
language.	It’s	a	broad	field,	but	we’ll	look	at	a	few	techniques	both	simple	and	not	simple.

Word	Clouds
In	Chapter	1,	we	computed	word	counts	of	users’	interests.	One	approach	to	visualizing
words	and	counts	is	word	clouds,	which	artistically	lay	out	the	words	with	sizes
proportional	to	their	counts.

Generally,	though,	data	scientists	don’t	think	much	of	word	clouds,	in	large	part	because
the	placement	of	the	words	doesn’t	mean	anything	other	than	“here’s	some	space	where	I
was	able	to	fit	a	word.”

If	you	ever	are	forced	to	create	a	word	cloud,	think	about	whether	you	can	make	the	axes
convey	something.	For	example,	imagine	that,	for	each	of	some	collection	of	data
science–related	buzzwords,	you	have	two	numbers	between	0	and	100	—	the	first
representing	how	frequently	it	appears	in	job	postings,	the	second	how	frequently	it
appears	on	resumes:

data	=	[("big	data",	100,	15),	("Hadoop",	95,	25),	("Python",	75,	50),

									("R",	50,	40),	("machine	learning",	80,	20),	("statistics",	20,	60),

									("data	science",	60,	70),	("analytics",	90,	3),

									("team	player",	85,	85),	("dynamic",	2,	90),	("synergies",	70,	0),

									("actionable	insights",	40,	30),	("think	out	of	the	box",	45,	10),

									("self-starter",	30,	50),	("customer	focus",	65,	15),

									("thought	leadership",	35,	35)]

The	word	cloud	approach	is	just	to	arrange	the	words	on	a	page	in	a	cool-looking	font
(Figure	20-1).

Figure	20-1.	Buzzword	cloud

This	looks	neat	but	doesn’t	really	tell	us	anything.	A	more	interesting	approach	might	be
to	scatter	them	so	that	horizontal	position	indicates	posting	popularity	and	vertical	position
indicates	resume	popularity,	which	produces	a	visualization	that	conveys	a	few	insights
(Figure	20-2):

def	text_size(total):

				"""equals	8	if	total	is	0,	28	if	total	is	200"""

				return	8	+	total	/	200	*	20

for	word,	job_popularity,	resume_popularity	in	data:

				plt.text(job_popularity,	resume_popularity,	word,

													ha='center',	va='center',

													size=text_size(job_popularity	+	resume_popularity))

plt.xlabel("Popularity	on	Job	Postings")

plt.ylabel("Popularity	on	Resumes")

plt.axis([0,	100,	0,	100])

plt.xticks([])

plt.yticks([])

plt.show()

Figure	20-2.	A	more	meaningful	(if	less	attractive)	word	cloud

n-gram	Models
The	DataSciencester	VP	of	Search	Engine	Marketing	wants	to	create	thousands	of	web
pages	about	data	science	so	that	your	site	will	rank	higher	in	search	results	for	data
science–related	terms.	(You	attempt	to	explain	to	her	that	search	engine	algorithms	are
clever	enough	that	this	won’t	actually	work,	but	she	refuses	to	listen.)

Of	course,	she	doesn’t	want	to	write	thousands	of	web	pages,	nor	does	she	want	to	pay	a
horde	of	“content	strategists”	to	do	so.	Instead	she	asks	you	whether	you	can	somehow
programatically	generate	these	web	pages.	To	do	this,	we’ll	need	some	way	of	modeling
language.

One	approach	is	to	start	with	a	corpus	of	documents	and	learn	a	statistical	model	of
language.	In	our	case,	we’ll	start	with	Mike	Loukides’s	essay	“What	is	data	science?”

As	in	Chapter	9,	we’ll	use	requests	and	BeautifulSoup	to	retrieve	the	data.	There	are	a
couple	of	issues	worth	calling	attention	to.

The	first	is	that	the	apostrophes	in	the	text	are	actually	the	Unicode	character	u"\u2019".
We’ll	create	a	helper	function	to	replace	them	with	normal	apostrophes:

def	fix_unicode(text):

				return	text.replace(u"\u2019",	"'")

The	second	issue	is	that	once	we	get	the	text	of	the	web	page,	we’ll	want	to	split	it	into	a
sequence	of	words	and	periods	(so	that	we	can	tell	where	sentences	end).	We	can	do	this
using	re.findall():

from	bs4	import	BeautifulSoup

import	requests

url	=	"http://radar.oreilly.com/2010/06/what-is-data-science.html"

html	=	requests.get(url).text

soup	=	BeautifulSoup(html,	'html5lib')

content	=	soup.find("div",	"entry-content")			#	find	entry-content	div

regex	=	r"[\w']+|[\.]"																								#	matches	a	word	or	a	period

document	=	[]

for	paragraph	in	content("p"):

				words	=	re.findall(regex,	fix_unicode(paragraph.text))

				document.extend(words)

We	certainly	could	(and	likely	should)	clean	this	data	further.	There	is	still	some	amount
of	extraneous	text	in	the	document	(for	example,	the	first	word	is	“Section”),	and	we’ve
split	on	midsentence	periods	(for	example,	in	“Web	2.0”),	and	there	are	a	handful	of
captions	and	lists	sprinkled	throughout.	Having	said	that,	we’ll	work	with	the	document	as
it	is.

Now	that	we	have	the	text	as	a	sequence	of	words,	we	can	model	language	in	the
following	way:	given	some	starting	word	(say	“book”)	we	look	at	all	the	words	that	follow
it	in	the	source	documents	(here	“isn’t,”	“a,”	“shows,”	“demonstrates,”	and	“teaches”).	We

http://oreil.ly/1Cd6ykN

randomly	choose	one	of	these	to	be	the	next	word,	and	we	repeat	the	process	until	we	get
to	a	period,	which	signifies	the	end	of	the	sentence.	We	call	this	a	bigram	model,	as	it	is
determined	completely	by	the	frequencies	of	the	bigrams	(word	pairs)	in	the	original	data.

What	about	a	starting	word?	We	can	just	pick	randomly	from	words	that	follow	a	period.
To	start,	let’s	precompute	the	possible	word	transitions.	Recall	that	zip	stops	when	any	of
its	inputs	is	done,	so	that	zip(document,	document[1:])	gives	us	precisely	the	pairs	of
consecutive	elements	of	document:

bigrams	=	zip(document,	document[1:])

transitions	=	defaultdict(list)

for	prev,	current	in	bigrams:

				transitions[prev].append(current)

Now	we’re	ready	to	generate	sentences:

def	generate_using_bigrams():

				current	=	"."			#	this	means	the	next	word	will	start	a	sentence

				result	=	[]

				while	True:

								next_word_candidates	=	transitions[current]				#	bigrams	(current,	_)

								current	=	random.choice(next_word_candidates)		#	choose	one	at	random

								result.append(current)																									#	append	it	to	results

								if	current	==	".":	return	"	".join(result)					#	if	"."	we're	done

The	sentences	it	produces	are	gibberish,	but	they’re	the	kind	of	gibberish	you	might	put	on
your	website	if	you	were	trying	to	sound	data-sciencey.	For	example:

If	you	may	know	which	are	you	want	to	data	sort	the	data	feeds	web	friend	someone	on
trending	topics	as	the	data	in	Hadoop	is	the	data	science	requires	a	book	demonstrates
why	visualizations	are	but	we	do	massive	correlations	across	many	commercial	disk
drives	in	Python	language	and	creates	more	tractable	form	making	connections	then	use
and	uses	it	to	solve	a	data.

Bigram	Model

We	can	make	the	sentences	less	gibberishy	by	looking	at	trigrams,	triplets	of	consecutive
words.	(More	generally,	you	might	look	at	n-grams	consisting	of	n	consecutive	words,	but
three	will	be	plenty	for	us.)	Now	the	transitions	will	depend	on	the	previous	two	words:

trigrams	=	zip(document,	document[1:],	document[2:])

trigram_transitions	=	defaultdict(list)

starts	=	[]

for	prev,	current,	next	in	trigrams:

				if	prev	==	".":														#	if	the	previous	"word"	was	a	period

								starts.append(current)			#	then	this	is	a	start	word

				trigram_transitions[(prev,	current)].append(next)

Notice	that	now	we	have	to	track	the	starting	words	separately.	We	can	generate	sentences
in	pretty	much	the	same	way:

def	generate_using_trigrams():

				current	=	random.choice(starts)			#	choose	a	random	starting	word

				prev	=	"."																								#	and	precede	it	with	a	'.'

				result	=	[current]

				while	True:

								next_word_candidates	=	trigram_transitions[(prev,	current)]

								next_word	=	random.choice(next_word_candidates)

								prev,	current	=	current,	next_word

								result.append(current)

								if	current	==	".":

												return	"	".join(result)

This	produces	better	sentences	like:

In	hindsight	MapReduce	seems	like	an	epidemic	and	if	so	does	that	give	us	new	insights
into	how	economies	work	That’s	not	a	question	we	could	even	have	asked	a	few	years
there	has	been	instrumented.

Trigram	Model

Of	course,	they	sound	better	because	at	each	step	the	generation	process	has	fewer
choices,	and	at	many	steps	only	a	single	choice.	This	means	that	you	frequently	generate
sentences	(or	at	least	long	phrases)	that	were	seen	verbatim	in	the	original	data.	Having
more	data	would	help;	it	would	also	work	better	if	you	collected	n-grams	from	multiple
essays	about	data	science.

Grammars
A	different	approach	to	modeling	language	is	with	grammars,	rules	for	generating
acceptable	sentences.	In	elementary	school,	you	probably	learned	about	parts	of	speech
and	how	to	combine	them.	For	example,	if	you	had	a	really	bad	English	teacher,	you
might	say	that	a	sentence	necessarily	consists	of	a	noun	followed	by	a	verb.	If	you	then
have	a	list	of	nouns	and	verbs,	you	can	generate	sentences	according	to	the	rule.

We’ll	define	a	slightly	more	complicated	grammar:

grammar	=	{

				"_S"		:	["_NP	_VP"],

				"_NP"	:	["_N",

													"_A	_NP	_P	_A	_N"],

				"_VP"	:	["_V",

													"_V	_NP"],

				"_N"		:	["data	science",	"Python",	"regression"],

				"_A"		:	["big",	"linear",	"logistic"],

				"_P"		:	["about",	"near"],

				"_V"		:	["learns",	"trains",	"tests",	"is"]

}

I	made	up	the	convention	that	names	starting	with	underscores	refer	to	rules	that	need
further	expanding,	and	that	other	names	are	terminals	that	don’t	need	further	processing.

So,	for	example,	"_S"	is	the	“sentence”	rule,	which	produces	a	"_NP"	(“noun	phrase”)	rule
followed	by	a	"_VP"	(“verb	phrase”)	rule.

The	verb	phrase	rule	can	produce	either	the	"_V"	(“verb”)	rule,	or	the	verb	rule	followed
by	the	noun	phrase	rule.

Notice	that	the	"_NP"	rule	contains	itself	in	one	of	its	productions.	Grammars	can	be
recursive,	which	allows	even	finite	grammars	like	this	to	generate	infinitely	many
different	sentences.

How	do	we	generate	sentences	from	this	grammar?	We’ll	start	with	a	list	containing	the
sentence	rule	["_S"].	And	then	we’ll	repeatedly	expand	each	rule	by	replacing	it	with	a
randomly	chosen	one	of	its	productions.	We	stop	when	we	have	a	list	consisting	solely	of
terminals.

For	example,	one	such	progression	might	look	like:

['_S']

['_NP','_VP']

['_N','_VP']

['Python','_VP']

['Python','_V','_NP']

['Python','trains','_NP']

['Python','trains','_A','_NP','_P','_A','_N']

['Python','trains','logistic','_NP','_P','_A','_N']

['Python','trains','logistic','_N','_P','_A','_N']

['Python','trains','logistic','data	science','_P','_A','_N']

['Python','trains','logistic','data	science','about','_A',	'_N']

['Python','trains','logistic','data	science','about','logistic','_N']

['Python','trains','logistic','data	science','about','logistic','Python']

How	do	we	implement	this?	Well,	to	start,	we’ll	create	a	simple	helper	function	to	identify
terminals:

def	is_terminal(token):

				return	token[0]	!=	"_"

Next	we	need	to	write	a	function	to	turn	a	list	of	tokens	into	a	sentence.	We’ll	look	for	the
first	nonterminal	token.	If	we	can’t	find	one,	that	means	we	have	a	completed	sentence
and	we’re	done.

If	we	do	find	a	nonterminal,	then	we	randomly	choose	one	of	its	productions.	If	that
production	is	a	terminal	(i.e.,	a	word),	we	simply	replace	the	token	with	it.	Otherwise	it’s	a
sequence	of	space-separated	nonterminal	tokens	that	we	need	to	split	and	then	splice	into
the	current	tokens.	Either	way,	we	repeat	the	process	on	the	new	set	of	tokens.

Putting	it	all	together	we	get:

def	expand(grammar,	tokens):

				for	i,	token	in	enumerate(tokens):

								#	skip	over	terminals

								if	is_terminal(token):	continue

								#	if	we	get	here,	we	found	a	non-terminal	token

								#	so	we	need	to	choose	a	replacement	at	random

								replacement	=	random.choice(grammar[token])

								if	is_terminal(replacement):

												tokens[i]	=	replacement

								else:

												tokens	=	tokens[:i]	+	replacement.split()	+	tokens[(i+1):]

								#	now	call	expand	on	the	new	list	of	tokens

								return	expand(grammar,	tokens)

				#	if	we	get	here	we	had	all	terminals	and	are	done

				return	tokens

And	now	we	can	start	generating	sentences:

def	generate_sentence(grammar):

				return	expand(grammar,	["_S"])

Try	changing	the	grammar	—	add	more	words,	add	more	rules,	add	your	own	parts	of
speech	—	until	you’re	ready	to	generate	as	many	web	pages	as	your	company	needs.

Grammars	are	actually	more	interesting	when	they’re	used	in	the	other	direction.	Given	a
sentence	we	can	use	a	grammar	to	parse	the	sentence.	This	then	allows	us	to	identify
subjects	and	verbs	and	helps	us	make	sense	of	the	sentence.

Using	data	science	to	generate	text	is	a	neat	trick;	using	it	to	understand	text	is	more
magical.	(See	“For	Further	Investigation”	for	libraries	that	you	could	use	for	this.)

An	Aside:	Gibbs	Sampling
Generating	samples	from	some	distributions	is	easy.	We	can	get	uniform	random	variables
with:

random.random()

and	normal	random	variables	with:

inverse_normal_cdf(random.random())

But	some	distributions	are	harder	to	sample	from.	Gibbs	sampling	is	a	technique	for
generating	samples	from	multidimensional	distributions	when	we	only	know	some	of	the
conditional	distributions.

For	example,	imagine	rolling	two	dice.	Let	x	be	the	value	of	the	first	die	and	y	be	the	sum
of	the	dice,	and	imagine	you	wanted	to	generate	lots	of	(x,	y)	pairs.	In	this	case	it’s	easy	to
generate	the	samples	directly:

def	roll_a_die():

				return	random.choice([1,2,3,4,5,6])

def	direct_sample():

				d1	=	roll_a_die()

				d2	=	roll_a_die()

				return	d1,	d1	+	d2

But	imagine	that	you	only	knew	the	conditional	distributions.	The	distribution	of	y
conditional	on	x	is	easy	—	if	you	know	the	value	of	x,	y	is	equally	likely	to	be	x	+	1,	x	+	2,
x	+	3,	x	+	4,	x	+	5,	or	x	+	6:

def	random_y_given_x(x):

				"""equally	likely	to	be	x	+	1,	x	+	2,	...	,	x	+	6"""

				return	x	+	roll_a_die()

The	other	direction	is	more	complicated.	For	example,	if	you	know	that	y	is	2,	then
necessarily	x	is	1	(since	the	only	way	two	dice	can	sum	to	2	is	if	both	of	them	are	1).	If
you	know	y	is	3,	then	x	is	equally	likely	to	be	1	or	2.	Similarly,	if	y	is	11,	then	x	has	to	be
either	5	or	6:

def	random_x_given_y(y):

				if	y	<=	7:

								#	if	the	total	is	7	or	less,	the	first	die	is	equally	likely	to	be

								#	1,	2,	...,	(total	-	1)

								return	random.randrange(1,	y)

				else:

								#	if	the	total	is	7	or	more,	the	first	die	is	equally	likely	to	be

								#	(total	-	6),	(total	-	5),	...,	6

								return	random.randrange(y	-	6,	7)

The	way	Gibbs	sampling	works	is	that	we	start	with	any	(valid)	value	for	x	and	y	and	then
repeatedly	alternate	replacing	x	with	a	random	value	picked	conditional	on	y	and	replacing

y	with	a	random	value	picked	conditional	on	x.	After	a	number	of	iterations,	the	resulting
values	of	x	and	y	will	represent	a	sample	from	the	unconditional	joint	distribution:

def	gibbs_sample(num_iters=100):

				x,	y	=	1,	2	#	doesn't	really	matter

				for	_	in	range(num_iters):

								x	=	random_x_given_y(y)

								y	=	random_y_given_x(x)

				return	x,	y

You	can	check	that	this	gives	similar	results	to	the	direct	sample:

def	compare_distributions(num_samples=1000):

				counts	=	defaultdict(lambda:	[0,	0])

				for	_	in	range(num_samples):

								counts[gibbs_sample()][0]	+=	1

								counts[direct_sample()][1]	+=	1

				return	counts

We’ll	use	this	technique	in	the	next	section.

Topic	Modeling
When	we	built	our	Data	Scientists	You	Should	Know	recommender	in	Chapter	1,	we
simply	looked	for	exact	matches	in	people’s	stated	interests.

A	more	sophisticated	approach	to	understanding	our	users’	interests	might	try	to	identify
the	topics	that	underlie	those	interests.	A	technique	called	Latent	Dirichlet	Analysis	(LDA)
is	commonly	used	to	identify	common	topics	in	a	set	of	documents.	We’ll	apply	it	to
documents	that	consist	of	each	user’s	interests.

LDA	has	some	similarities	to	the	Naive	Bayes	Classifier	we	built	in	Chapter	13,	in	that	it
assumes	a	probabilistic	model	for	documents.	We’ll	gloss	over	the	hairier	mathematical
details,	but	for	our	purposes	the	model	assumes	that:

There	is	some	fixed	number	K	of	topics.

There	is	a	random	variable	that	assigns	each	topic	an	associated	probability	distribution
over	words.	You	should	think	of	this	distribution	as	the	probability	of	seeing	word	w
given	topic	k.

There	is	another	random	variable	that	assigns	each	document	a	probability	distribution
over	topics.	You	should	think	of	this	distribution	as	the	mixture	of	topics	in	document
d.

Each	word	in	a	document	was	generated	by	first	randomly	picking	a	topic	(from	the
document’s	distribution	of	topics)	and	then	randomly	picking	a	word	(from	the	topic’s
distribution	of	words).

In	particular,	we	have	a	collection	of	documents	each	of	which	is	a	list	of	words.	And	we
have	a	corresponding	collection	of	document_topics	that	assigns	a	topic	(here	a	number
between	0	and	K	–	1)	to	each	word	in	each	document.

So	that	the	fifth	word	in	the	fourth	document	is:

documents[3][4]

and	the	topic	from	which	that	word	was	chosen	is:

document_topics[3][4]

This	very	explicitly	defines	each	document’s	distribution	over	topics,	and	it	implicitly
defines	each	topic’s	distribution	over	words.

We	can	estimate	the	likelihood	that	topic	1	produces	a	certain	word	by	comparing	how
many	times	topic	1	produces	that	word	with	how	many	times	topic	1	produces	any	word.
(Similarly,	when	we	built	a	spam	filter	in	Chapter	13,	we	compared	how	many	times	each
word	appeared	in	spams	with	the	total	number	of	words	appearing	in	spams.)

Although	these	topics	are	just	numbers,	we	can	give	them	descriptive	names	by	looking	at

the	words	on	which	they	put	the	heaviest	weight.	We	just	have	to	somehow	generate	the
document_topics.	This	is	where	Gibbs	sampling	comes	into	play.

We	start	by	assigning	every	word	in	every	document	a	topic	completely	at	random.	Now
we	go	through	each	document	one	word	at	a	time.	For	that	word	and	document,	we
construct	weights	for	each	topic	that	depend	on	the	(current)	distribution	of	topics	in	that
document	and	the	(current)	distribution	of	words	for	that	topic.	We	then	use	those	weights
to	sample	a	new	topic	for	that	word.	If	we	iterate	this	process	many	times,	we	will	end	up
with	a	joint	sample	from	the	topic-word	distribution	and	the	document-topic	distribution.

To	start	with,	we’ll	need	a	function	to	randomly	choose	an	index	based	on	an	arbitrary	set
of	weights:

def	sample_from(weights):

				"""returns	i	with	probability	weights[i]	/	sum(weights)"""

				total	=	sum(weights)

				rnd	=	total	*	random.random()						#	uniform	between	0	and	total

				for	i,	w	in	enumerate(weights):

								rnd	-=	w																							#	return	the	smallest	i	such	that

								if	rnd	<=	0:	return	i										#	weights[0]	+	...	+	weights[i]	>=	rnd

For	instance,	if	you	give	it	weights	[1,	1,	3]	then	one-fifth	of	the	time	it	will	return	0,
one-fifth	of	the	time	it	will	return	1,	and	three-fifths	of	the	time	it	will	return	2.

Our	documents	are	our	users’	interests,	which	look	like:

documents	=	[

				["Hadoop",	"Big	Data",	"HBase",	"Java",	"Spark",	"Storm",	"Cassandra"],

				["NoSQL",	"MongoDB",	"Cassandra",	"HBase",	"Postgres"],

				["Python",	"scikit-learn",	"scipy",	"numpy",	"statsmodels",	"pandas"],

				["R",	"Python",	"statistics",	"regression",	"probability"],

				["machine	learning",	"regression",	"decision	trees",	"libsvm"],

				["Python",	"R",	"Java",	"C++",	"Haskell",	"programming	languages"],

				["statistics",	"probability",	"mathematics",	"theory"],

				["machine	learning",	"scikit-learn",	"Mahout",	"neural	networks"],

				["neural	networks",	"deep	learning",	"Big	Data",	"artificial	intelligence"],

				["Hadoop",	"Java",	"MapReduce",	"Big	Data"],

				["statistics",	"R",	"statsmodels"],

				["C++",	"deep	learning",	"artificial	intelligence",	"probability"],

				["pandas",	"R",	"Python"],

				["databases",	"HBase",	"Postgres",	"MySQL",	"MongoDB"],

				["libsvm",	"regression",	"support	vector	machines"]

]

And	we’ll	try	to	find	K	=	4	topics.

In	order	to	calculate	the	sampling	weights,	we’ll	need	to	keep	track	of	several	counts.
Let’s	first	create	the	data	structures	for	them.

How	many	times	each	topic	is	assigned	to	each	document:

#	a	list	of	Counters,	one	for	each	document

document_topic_counts	=	[Counter()	for	_	in	documents]

How	many	times	each	word	is	assigned	to	each	topic:

#	a	list	of	Counters,	one	for	each	topic

topic_word_counts	=	[Counter()	for	_	in	range(K)]

The	total	number	of	words	assigned	to	each	topic:

#	a	list	of	numbers,	one	for	each	topic

topic_counts	=	[0	for	_	in	range(K)]

The	total	number	of	words	contained	in	each	document:

#	a	list	of	numbers,	one	for	each	document

document_lengths	=	map(len,	documents)

The	number	of	distinct	words:

distinct_words	=	set(word	for	document	in	documents	for	word	in	document)

W	=	len(distinct_words)

And	the	number	of	documents:

D	=	len(documents)

For	example,	once	we	populate	these,	we	can	find,	for	example,	the	number	of	words	in
documents[3]	associated	with	topic	1	as:

document_topic_counts[3][1]

And	we	can	find	the	number	of	times	nlp	is	associated	with	topic	2	as:

topic_word_counts[2]["nlp"]

Now	we’re	ready	to	define	our	conditional	probability	functions.	As	in	Chapter	13,	each
has	a	smoothing	term	that	ensures	every	topic	has	a	nonzero	chance	of	being	chosen	in
any	document	and	that	every	word	has	a	nonzero	chance	of	being	chosen	for	any	topic:

def	p_topic_given_document(topic,	d,	alpha=0.1):

				"""the	fraction	of	words	in	document	_d_

				that	are	assigned	to	_topic_	(plus	some	smoothing)"""

				return	((document_topic_counts[d][topic]	+	alpha)	/

												(document_lengths[d]	+	K	*	alpha))

def	p_word_given_topic(word,	topic,	beta=0.1):

				"""the	fraction	of	words	assigned	to	_topic_

				that	equal	_word_	(plus	some	smoothing)"""

				return	((topic_word_counts[topic][word]	+	beta)	/

												(topic_counts[topic]	+	W	*	beta))

We’ll	use	these	to	create	the	weights	for	updating	topics:

def	topic_weight(d,	word,	k):

				"""given	a	document	and	a	word	in	that	document,

				return	the	weight	for	the	kth	topic"""

				return	p_word_given_topic(word,	k)	*	p_topic_given_document(k,	d)

def	choose_new_topic(d,	word):

				return	sample_from([topic_weight(d,	word,	k)

																								for	k	in	range(K)])

There	are	solid	mathematical	reasons	why	topic_weight	is	defined	the	way	it	is,	but	their
details	would	lead	us	too	far	afield.	Hopefully	it	makes	at	least	intuitive	sense	that	—
given	a	word	and	its	document	—	the	likelihood	of	any	topic	choice	depends	on	both	how
likely	that	topic	is	for	the	document	and	how	likely	that	word	is	for	the	topic.

This	is	all	the	machinery	we	need.	We	start	by	assigning	every	word	to	a	random	topic,
and	populating	our	counters	appropriately:

random.seed(0)

document_topics	=	[[random.randrange(K)	for	word	in	document]

																			for	document	in	documents]

for	d	in	range(D):

				for	word,	topic	in	zip(documents[d],	document_topics[d]):

								document_topic_counts[d][topic]	+=	1

								topic_word_counts[topic][word]	+=	1

								topic_counts[topic]	+=	1

Our	goal	is	to	get	a	joint	sample	of	the	topics-words	distribution	and	the	documents-topics
distribution.	We	do	this	using	a	form	of	Gibbs	sampling	that	uses	the	conditional
probabilities	defined	previously:

for	iter	in	range(1000):

				for	d	in	range(D):

								for	i,	(word,	topic)	in	enumerate(zip(documents[d],

																																														document_topics[d])):

												#	remove	this	word	/	topic	from	the	counts

												#	so	that	it	doesn't	influence	the	weights

												document_topic_counts[d][topic]	-=	1

												topic_word_counts[topic][word]	-=	1

												topic_counts[topic]	-=	1

												document_lengths[d]	-=	1

												#	choose	a	new	topic	based	on	the	weights

												new_topic	=	choose_new_topic(d,	word)

												document_topics[d][i]	=	new_topic

												#	and	now	add	it	back	to	the	counts

												document_topic_counts[d][new_topic]	+=	1

												topic_word_counts[new_topic][word]	+=	1

												topic_counts[new_topic]	+=	1

												document_lengths[d]	+=	1

What	are	the	topics?	They’re	just	numbers	0,	1,	2,	and	3.	If	we	want	names	for	them	we
have	to	do	that	ourselves.	Let’s	look	at	the	five	most	heavily	weighted	words	for	each
(Table	20-1):

for	k,	word_counts	in	enumerate(topic_word_counts):

				for	word,	count	in	word_counts.most_common():

								if	count	>	0:	print	k,	word,	count

Table	20-1.	Most	common	words	per	topic

Topic	0 Topic	1 Topic	2 Topic	3

Java R HBase regression

Big	Data statistics Postgres libsvm

Hadoop Python MongoDB scikit-learn

deep	learning probability Cassandra machine	learning

artificial	intelligence pandas NoSQL neural	networks

Based	on	these	I’d	probably	assign	topic	names:

topic_names	=	["Big	Data	and	programming	languages",

															"Python	and	statistics",

															"databases",

															"machine	learning"]

at	which	point	we	can	see	how	the	model	assigns	topics	to	each	user’s	interests:

for	document,	topic_counts	in	zip(documents,	document_topic_counts):

				print	document

				for	topic,	count	in	topic_counts.most_common():

								if	count	>	0:

												print	topic_names[topic],	count,

				print

which	gives:

['Hadoop',	'Big	Data',	'HBase',	'Java',	'Spark',	'Storm',	'Cassandra']

Big	Data	and	programming	languages	4	databases	3

['NoSQL',	'MongoDB',	'Cassandra',	'HBase',	'Postgres']

databases	5

['Python',	'scikit-learn',	'scipy',	'numpy',	'statsmodels',	'pandas']

Python	and	statistics	5	machine	learning	1

and	so	on.	Given	the	“ands”	we	needed	in	some	of	our	topic	names,	it’s	possible	we
should	use	more	topics,	although	most	likely	we	don’t	have	enough	data	to	successfully
learn	them.

For	Further	Exploration
Natural	Language	Toolkit	is	a	popular	(and	pretty	comprehensive)	library	of	NLP	tools
for	Python.	It	has	its	own	entire	book,	which	is	available	to	read	online.

gensim	is	a	Python	library	for	topic	modeling,	which	is	a	better	bet	than	our	from-
scratch	model.

http://www.nltk.org/
http://www.nltk.org/book/
http://radimrehurek.com/gensim/

Chapter	21.	Network	Analysis

Your	connections	to	all	the	things	around	you	literally	define	who	you	are.

Aaron	O’Connell

Many	interesting	data	problems	can	be	fruitfully	thought	of	in	terms	of	networks,
consisting	of	nodes	of	some	type	and	the	edges	that	join	them.

For	instance,	your	Facebook	friends	form	the	nodes	of	a	network	whose	edges	are
friendship	relations.	A	less	obvious	example	is	the	World	Wide	Web	itself,	with	each	web
page	a	node,	and	each	hyperlink	from	one	page	to	another	an	edge.

Facebook	friendship	is	mutual	—	if	I	am	Facebook	friends	with	you	than	necessarily	you
are	friends	with	me.	In	this	case,	we	say	that	the	edges	are	undirected.	Hyperlinks	are	not
—	my	website	links	to	whitehouse.gov,	but	(for	reasons	inexplicable	to	me)
whitehouse.gov	refuses	to	link	to	my	website.	We	call	these	types	of	edges	directed.	We’ll
look	at	both	kinds	of	networks.

Betweenness	Centrality
In	Chapter	1,	we	computed	the	key	connectors	in	the	DataSciencester	network	by	counting
the	number	of	friends	each	user	had.	Now	we	have	enough	machinery	to	look	at	other
approaches.	Recall	that	the	network	(Figure	21-1)	comprised	users:

users	=	[

				{	"id":	0,	"name":	"Hero"	},

				{	"id":	1,	"name":	"Dunn"	},

				{	"id":	2,	"name":	"Sue"	},

				{	"id":	3,	"name":	"Chi"	},

				{	"id":	4,	"name":	"Thor"	},

				{	"id":	5,	"name":	"Clive"	},

				{	"id":	6,	"name":	"Hicks"	},

				{	"id":	7,	"name":	"Devin"	},

				{	"id":	8,	"name":	"Kate"	},

				{	"id":	9,	"name":	"Klein"	}

]

and	friendships:

friendships	=	[(0,	1),	(0,	2),	(1,	2),	(1,	3),	(2,	3),	(3,	4),

															(4,	5),	(5,	6),	(5,	7),	(6,	8),	(7,	8),	(8,	9)]

Figure	21-1.	The	DataSciencester	network

We	also	added	friend	lists	to	each	user	dict:

for	user	in	users:

				user["friends"]	=	[]

for	i,	j	in	friendships:

				#	this	works	because	users[i]	is	the	user	whose	id	is	i

				users[i]["friends"].append(users[j])	#	add	i	as	a	friend	of	j

				users[j]["friends"].append(users[i])	#	add	j	as	a	friend	of	i

When	we	left	off	we	were	dissatisfied	with	our	notion	of	degree	centrality,	which	didn’t
really	agree	with	our	intuition	about	who	were	the	key	connectors	of	the	network.

An	alternative	metric	is	betweenness	centrality,	which	identifies	people	who	frequently
are	on	the	shortest	paths	between	pairs	of	other	people.	In	particular,	the	betweenness
centrality	of	node	i	is	computed	by	adding	up,	for	every	other	pair	of	nodes	j	and	k,	the
proportion	of	shortest	paths	between	node	j	and	node	k	that	pass	through	i.

That	is,	to	figure	out	Thor’s	betweenness	centrality,	we’ll	need	to	compute	all	the	shortest
paths	between	all	pairs	of	people	who	aren’t	Thor.	And	then	we’ll	need	to	count	how
many	of	those	shortest	paths	pass	through	Thor.	For	instance,	the	only	shortest	path
between	Chi	(id	3)	and	Clive	(id	5)	passes	through	Thor,	while	neither	of	the	two	shortest
paths	between	Hero	(id	0)	and	Chi	(id	3)	does.

So,	as	a	first	step,	we’ll	need	to	figure	out	the	shortest	paths	between	all	pairs	of	people.
There	are	some	pretty	sophisticated	algorithms	for	doing	so	efficiently,	but	(as	is	almost
always	the	case)	we	will	use	a	less	efficient,	easier-to-understand	algorithm.

This	algorithm	(an	implementation	of	breadth-first	search)	is	one	of	the	more	complicated
ones	in	the	book,	so	let’s	talk	through	it	carefully:

1.	 Our	goal	is	a	function	that	takes	a	from_user	and	finds	all	shortest	paths	to	every
other	user.

2.	 We’ll	represent	a	path	as	list	of	user	IDs.	Since	every	path	starts	at	from_user,	we
won’t	include	her	ID	in	the	list.	This	means	that	the	length	of	the	list	representing	the
path	will	be	the	length	of	the	path	itself.

3.	 We’ll	maintain	a	dictionary	shortest_paths_to	where	the	keys	are	user	IDs	and	the
values	are	lists	of	paths	that	end	at	the	user	with	the	specified	ID.	If	there	is	a	unique
shortest	path,	the	list	will	just	contain	that	one	path.	If	there	are	multiple	shortest
paths,	the	list	will	contain	all	of	them.

4.	 We’ll	also	maintain	a	queue	frontier	that	contains	the	users	we	want	to	explore	in
the	order	we	want	to	explore	them.	We’ll	store	them	as	pairs	(prev_user,	user)	so
that	we	know	how	we	got	to	each	one.	We	initialize	the	queue	with	all	the	neighbors
of	from_user.	(We	haven’t	ever	talked	about	queues,	which	are	data	structures
optimized	for	“add	to	the	end”	and	“remove	from	the	front”	operations.	In	Python,
they	are	implemented	as	collections.deque	which	is	actually	a	double-ended
queue.)

5.	 As	we	explore	the	graph,	whenever	we	find	new	neighbors	that	we	don’t	already
know	shortest	paths	to,	we	add	them	to	the	end	of	the	queue	to	explore	later,	with	the
current	user	as	prev_user.

6.	 When	we	take	a	user	off	the	queue,	and	we’ve	never	encountered	that	user	before,
we’ve	definitely	found	one	or	more	shortest	paths	to	him	—	each	of	the	shortest
paths	to	prev_user	with	one	extra	step	added.

7.	 When	we	take	a	user	off	the	queue	and	we	have	encountered	that	user	before,	then
either	we’ve	found	another	shortest	path	(in	which	case	we	should	add	it)	or	we’ve
found	a	longer	path	(in	which	case	we	shouldn’t).

8.	 When	no	more	users	are	left	on	the	queue,	we’ve	explored	the	whole	graph	(or,	at
least,	the	parts	of	it	that	are	reachable	from	the	starting	user)	and	we’re	done.

We	can	put	this	all	together	into	a	(large)	function:

from	collections	import	deque

def	shortest_paths_from(from_user):

				#	a	dictionary	from	"user_id"	to	*all*	shortest	paths	to	that	user

				shortest_paths_to	=	{	from_user["id"]	:	[[]]	}

				#	a	queue	of	(previous	user,	next	user)	that	we	need	to	check.

				#	starts	out	with	all	pairs	(from_user,	friend_of_from_user)

				frontier	=	deque((from_user,	friend)

																					for	friend	in	from_user["friends"])

				#	keep	going	until	we	empty	the	queue

				while	frontier:

								prev_user,	user	=	frontier.popleft()			#	remove	the	user	who's

								user_id	=	user["id"]																			#	first	in	the	queue

								#	because	of	the	way	we're	adding	to	the	queue,

								#	necessarily	we	already	know	some	shortest	paths	to	prev_user

								paths_to_prev_user	=	shortest_paths_to[prev_user["id"]]

								new_paths_to_user	=	[path	+	[user_id]	for	path	in	paths_to_prev_user]

								#	it's	possible	we	already	know	a	shortest	path

								old_paths_to_user	=	shortest_paths_to.get(user_id,	[])

								#	what's	the	shortest	path	to	here	that	we've	seen	so	far?

								if	old_paths_to_user:

												min_path_length	=	len(old_paths_to_user[0])

								else:

												min_path_length	=	float('inf')

								#	only	keep	paths	that	aren't	too	long	and	are	actually	new

								new_paths_to_user	=	[path

																													for	path	in	new_paths_to_user

																													if	len(path)	<=	min_path_length

																													and	path	not	in	old_paths_to_user]

								shortest_paths_to[user_id]	=	old_paths_to_user	+	new_paths_to_user

								#	add	never-seen	neighbors	to	the	frontier

								frontier.extend((user,	friend)

																								for	friend	in	user["friends"]

																								if	friend["id"]	not	in	shortest_paths_to)

				return	shortest_paths_to

Now	we	can	store	these	dicts	with	each	node:

for	user	in	users:

				user["shortest_paths"]	=	shortest_paths_from(user)

And	we’re	finally	ready	to	compute	betweenness	centrality.	For	every	pair	of	nodes	i	and
j,	we	know	the	n	shortest	paths	from	i	to	j.	Then,	for	each	of	those	paths,	we	just	add	1/n	to
the	centrality	of	each	node	on	that	path:

for	user	in	users:

				user["betweenness_centrality"]	=	0.0

for	source	in	users:

				source_id	=	source["id"]

				for	target_id,	paths	in	source["shortest_paths"].iteritems():

								if	source_id	<	target_id:						#	don't	double	count

												num_paths	=	len(paths)					#	how	many	shortest	paths?

												contrib	=	1	/	num_paths				#	contribution	to	centrality

												for	path	in	paths:

																for	id	in	path:

																				if	id	not	in	[source_id,	target_id]:

																								users[id]["betweenness_centrality"]	+=	contrib

Figure	21-2.	The	DataSciencester	network	sized	by	betweenness	centrality

As	shown	in	Figure	21-2,	users	0	and	9	have	centrality	0	(as	neither	is	on	any	shortest	path
between	other	users),	whereas	3,	4,	and	5	all	have	high	centralities	(as	all	three	lie	on
many	shortest	paths).

NOTE
Generally	the	centrality	numbers	aren’t	that	meaningful	themselves.	What	we	care	about	is	how	the
numbers	for	each	node	compare	to	the	numbers	for	other	nodes.

Another	measure	we	can	look	at	is	closeness	centrality.	First,	for	each	user	we	compute
her	farness,	which	is	the	sum	of	the	lengths	of	her	shortest	paths	to	each	other	user.	Since
we’ve	already	computed	the	shortest	paths	between	each	pair	of	nodes,	it’s	easy	to	add
their	lengths.	(If	there	are	multiple	shortest	paths,	they	all	have	the	same	length,	so	we	can
just	look	at	the	first	one.)

def	farness(user):

				"""the	sum	of	the	lengths	of	the	shortest	paths	to	each	other	user"""

				return	sum(len(paths[0])

															for	paths	in	user["shortest_paths"].values())

after	which	it’s	very	little	work	to	compute	closeness	centrality	(Figure	21-3):

for	user	in	users:

				user["closeness_centrality"]	=	1	/	farness(user)

Figure	21-3.	The	DataSciencester	network	sized	by	closeness	centrality

There	is	much	less	variation	here	—	even	the	very	central	nodes	are	still	pretty	far	from
the	nodes	out	on	the	periphery.

As	we	saw,	computing	shortest	paths	is	kind	of	a	pain.	For	this	reason,	betweenness	and
closeness	centrality	aren’t	often	used	on	large	networks.	The	less	intuitive	(but	generally
easier	to	compute)	eigenvector	centrality	is	more	frequently	used.

Eigenvector	Centrality
In	order	to	talk	about	eigenvector	centrality,	we	have	to	talk	about	eigenvectors,	and	in
order	to	talk	about	eigenvectors,	we	have	to	talk	about	matrix	multiplication.

Matrix	Multiplication

If	A	is	a	 	matrix	and	B	is	a	 	matrix,	and	if	 ,	then	their	product
AB	is	the	 	matrix	whose	(i,j)th	entry	is:

Which	is	just	the	dot	product	of	the	ith	row	of	A	(thought	of	as	a	vector)	with	the	jth
column	of	B	(also	thought	of	as	a	vector):

def	matrix_product_entry(A,	B,	i,	j):

				return	dot(get_row(A,	i),	get_column(B,	j))

after	which	we	have:

def	matrix_multiply(A,	B):

				n1,	k1	=	shape(A)

				n2,	k2	=	shape(B)

				if	k1	!=	n2:

								raise	ArithmeticError("incompatible	shapes!")

				return	make_matrix(n1,	k2,	partial(matrix_product_entry,	A,	B))

Notice	that	if	A	is	a	 	matrix	and	B	is	a	 	matrix,	then	AB	is	a	 	matrix.
If	we	treat	a	vector	as	a	one-column	matrix,	we	can	think	of	A	as	a	function	that	maps	k-
dimensional	vectors	to	n-dimensional	vectors,	where	the	function	is	just	matrix
multiplication.

Previously	we	represented	vectors	simply	as	lists,	which	isn’t	quite	the	same:

v	=	[1,	2,	3]

v_as_matrix	=	[[1],

															[2],

															[3]]

So	we’ll	need	some	helper	functions	to	convert	back	and	forth	between	the	two
representations:

def	vector_as_matrix(v):

				"""returns	the	vector	v	(represented	as	a	list)	as	a	n	x	1	matrix"""

				return	[[v_i]	for	v_i	in	v]

def	vector_from_matrix(v_as_matrix):

				"""returns	the	n	x	1	matrix	as	a	list	of	values"""

				return	[row[0]	for	row	in	v_as_matrix]

after	which	we	can	define	the	matrix	operation	using	matrix_multiply:

def	matrix_operate(A,	v):

				v_as_matrix	=	vector_as_matrix(v)

				product	=	matrix_multiply(A,	v_as_matrix)

				return	vector_from_matrix(product)

When	A	is	a	square	matrix,	this	operation	maps	n-dimensional	vectors	to	other	n-
dimensional	vectors.	It’s	possible	that,	for	some	matrix	A	and	vector	v,	when	A	operates	on
v	we	get	back	a	scalar	multiple	of	v.	That	is,	that	the	result	is	a	vector	that	points	in	the
same	direction	as	v.	When	this	happens	(and	when,	in	addition,	v	is	not	a	vector	of	all
zeroes),	we	call	v	an	eigenvector	of	A.	And	we	call	the	multiplier	an	eigenvalue.

One	possible	way	to	find	an	eigenvector	of	A	is	by	picking	a	starting	vector	v,	applying
matrix_operate,	rescaling	the	result	to	have	magnitude	1,	and	repeating	until	the	process
converges:

def	find_eigenvector(A,	tolerance=0.00001):

				guess	=	[random.random()	for	__	in	A]

				while	True:

								result	=	matrix_operate(A,	guess)

								length	=	magnitude(result)

								next_guess	=	scalar_multiply(1/length,	result)

								if	distance(guess,	next_guess)	<	tolerance:

												return	next_guess,	length			#	eigenvector,	eigenvalue

								guess	=	next_guess

By	construction,	the	returned	guess	is	a	vector	such	that,	when	you	apply	matrix_operate
to	it	and	rescale	it	to	have	length	1,	you	get	back	(a	vector	very	close	to)	itself.	Which
means	it’s	an	eigenvector.

Not	all	matrices	of	real	numbers	have	eigenvectors	and	eigenvalues.	For	example	the
matrix:

rotate	=	[[0,	1],

										[-1,	0]]

rotates	vectors	90	degrees	clockwise,	which	means	that	the	only	vector	it	maps	to	a	scalar
multiple	of	itself	is	a	vector	of	zeroes.	If	you	tried	find_eigenvector(rotate)	it	would
run	forever.	Even	matrices	that	have	eigenvectors	can	sometimes	get	stuck	in	cycles.
Consider	the	matrix:

flip	=	[[0,	1],

								[1,	0]]

This	matrix	maps	any	vector	[x,	y]	to	[y,	x].	This	means	that,	for	example,	[1,	1]	is	an
eigenvector	with	eigenvalue	1.	However,	if	you	start	with	a	random	vector	with	unequal
coordinates,	find_eigenvector	will	just	repeatedly	swap	the	coordinates	forever.	(Not-
from-scratch	libraries	like	NumPy	use	different	methods	that	would	work	in	this	case.)
Nonetheless,	when	find_eigenvector	does	return	a	result,	that	result	is	indeed	an
eigenvector.

Centrality
How	does	this	help	us	understand	the	DataSciencester	network?

To	start	with,	we’ll	need	to	represent	the	connections	in	our	network	as	an
adjacency_matrix,	whose	(i,j)th	entry	is	either	1	(if	user	i	and	user	j	are	friends)	or	0	(if
they’re	not):

def	entry_fn(i,	j):

				return	1	if	(i,	j)	in	friendships	or	(j,	i)	in	friendships	else	0

n	=	len(users)

adjacency_matrix	=	make_matrix(n,	n,	entry_fn)

The	eigenvector	centrality	for	each	user	is	then	the	entry	corresponding	to	that	user	in	the
eigenvector	returned	by	find_eigenvector	(Figure	21-4):

NOTE
For	technical	reasons	that	are	way	beyond	the	scope	of	this	book,	any	nonzero	adjacency	matrix	necessarily
has	an	eigenvector	all	of	whose	values	are	non-negative.	And	fortunately	for	us,	for	this	adjacency_matrix
our	find_eigenvector	function	finds	it.

eigenvector_centralities,	_	=	find_eigenvector(adjacency_matrix)

Figure	21-4.	The	DataSciencester	network	sized	by	eigenvector	centrality

Users	with	high	eigenvector	centrality	should	be	those	who	have	a	lot	of	connections	and
connections	to	people	who	themselves	have	high	centrality.

Here	users	1	and	2	are	the	most	central,	as	they	both	have	three	connections	to	people	who
are	themselves	highly	central.	As	we	move	away	from	them,	people’s	centralities	steadily
drop	off.

On	a	network	this	small,	eigenvector	centrality	behaves	somewhat	erratically.	If	you	try
adding	or	subtracting	links,	you’ll	find	that	small	changes	in	the	network	can	dramatically
change	the	centrality	numbers.	In	a	much	larger	network	this	would	not	particularly	be	the
case.

We	still	haven’t	motivated	why	an	eigenvector	might	lead	to	a	reasonable	notion	of

centrality.	Being	an	eigenvector	means	that	if	you	compute:

matrix_operate(adjacency_matrix,	eigenvector_centralities)

the	result	is	a	scalar	multiple	of	eigenvector_centralities.

If	you	look	at	how	matrix	multiplication	works,	matrix_operate	produces	a	vector	whose
ith	element	is:

dot(get_row(adjacency_matrix,	i),	eigenvector_centralities)

which	is	precisely	the	sum	of	the	eigenvector	centralities	of	the	users	connected	to	user	i.

In	other	words,	eigenvector	centralities	are	numbers,	one	per	user,	such	that	each	user’s
value	is	a	constant	multiple	of	the	sum	of	his	neighbors’	values.	In	this	case	centrality
means	being	connected	to	people	who	themselves	are	central.	The	more	centrality	you	are
directly	connected	to,	the	more	central	you	are.	This	is	of	course	a	circular	definition	—
eigenvectors	are	the	way	of	breaking	out	of	the	circularity.

Another	way	of	understanding	this	is	by	thinking	about	what	find_eigenvector	is	doing
here.	It	starts	by	assigning	each	node	a	random	centrality.	It	then	repeats	the	following	two
steps	until	the	process	converges:

1.	 Give	each	node	a	new	centrality	score	that	equals	the	sum	of	its	neighbors’	(old)
centrality	scores.

2.	 Rescale	the	vector	of	centralities	to	have	magnitude	1.

Although	the	mathematics	behind	it	may	seem	somewhat	opaque	at	first,	the	calculation
itself	is	relatively	straightforward	(unlike,	say,	betweenness	centrality)	and	is	pretty	easy
to	perform	on	even	very	large	graphs.

Directed	Graphs	and	PageRank
DataSciencester	isn’t	getting	much	traction,	so	the	VP	of	Revenue	considers	pivoting	from
a	friendship	model	to	an	endorsement	model.	It	turns	out	that	no	one	particularly	cares
which	data	scientists	are	friends	with	one	another,	but	tech	recruiters	care	very	much
which	data	scientists	are	respected	by	other	data	scientists.

In	this	new	model,	we’ll	track	endorsements	(source,	target)	that	no	longer	represent	a
reciprocal	relationship,	but	rather	that	source	endorses	target	as	an	awesome	data
scientist	(Figure	21-5).	We’ll	need	to	account	for	this	asymmetry:

endorsements	=	[(0,	1),	(1,	0),	(0,	2),	(2,	0),	(1,	2),

																(2,	1),	(1,	3),	(2,	3),	(3,	4),	(5,	4),

																(5,	6),	(7,	5),	(6,	8),	(8,	7),	(8,	9)]

for	user	in	users:

				user["endorses"]	=	[]							#	add	one	list	to	track	outgoing	endorsements

				user["endorsed_by"]	=	[]				#	and	another	to	track	endorsements

for	source_id,	target_id	in	endorsements:

				users[source_id]["endorses"].append(users[target_id])

				users[target_id]["endorsed_by"].append(users[source_id])

Figure	21-5.	The	DataSciencester	network	of	endorsements

after	which	we	can	easily	find	the	most_endorsed	data	scientists	and	sell	that	information
to	recruiters:

endorsements_by_id	=	[(user["id"],	len(user["endorsed_by"]))

																						for	user	in	users]

sorted(endorsements_by_id,

							key=lambda	(user_id,	num_endorsements):	num_endorsements,

							reverse=True)

However,	“number	of	endorsements”	is	an	easy	metric	to	game.	All	you	need	to	do	is
create	phony	accounts	and	have	them	endorse	you.	Or	arrange	with	your	friends	to
endorse	each	other.	(As	users	0,	1,	and	2	seem	to	have	done.)

A	better	metric	would	take	into	account	who	endorses	you.	Endorsements	from	people
who	have	a	lot	of	endorsements	should	somehow	count	more	than	endorsements	from
people	with	few	endorsements.	This	is	the	essence	of	the	PageRank	algorithm,	used	by

Google	to	rank	websites	based	on	which	other	websites	link	to	them,	which	other	websites
link	to	those,	and	so	on.

(If	this	sort	of	reminds	you	of	the	idea	behind	eigenvector	centrality,	it	should.)

A	simplified	version	looks	like	this:

1.	 There	is	a	total	of	1.0	(or	100%)	PageRank	in	the	network.

2.	 Initially	this	PageRank	is	equally	distributed	among	nodes.

3.	 At	each	step,	a	large	fraction	of	each	node’s	PageRank	is	distributed	evenly	among
its	outgoing	links.

4.	 At	each	step,	the	remainder	of	each	node’s	PageRank	is	distributed	evenly	among	all
nodes.

def	page_rank(users,	damping	=	0.85,	num_iters	=	100):

				#	initially	distribute	PageRank	evenly

				num_users	=	len(users)

				pr	=	{	user["id"]	:	1	/	num_users	for	user	in	users	}

				#	this	is	the	small	fraction	of	PageRank

				#	that	each	node	gets	each	iteration

				base_pr	=	(1	-	damping)	/	num_users

				for	__	in	range(num_iters):

								next_pr	=	{	user["id"]	:	base_pr	for	user	in	users	}

								for	user	in	users:

												#	distribute	PageRank	to	outgoing	links

												links_pr	=	pr[user["id"]]	*	damping

												for	endorsee	in	user["endorses"]:

																next_pr[endorsee["id"]]	+=	links_pr	/	len(user["endorses"])

								pr	=	next_pr

				return	pr

PageRank	(Figure	21-6)	identifies	user	4	(Thor)	as	the	highest	ranked	data	scientist.

Figure	21-6.	The	DataSciencester	network	sized	by	PageRank

Even	though	he	has	fewer	endorsements	(2)	than	users	0,	1,	and	2,	his	endorsements	carry
with	them	rank	from	their	endorsements.	Additionally,	both	of	his	endorsers	endorsed	only
him,	which	means	that	he	doesn’t	have	to	divide	their	rank	with	anyone	else.

For	Further	Exploration
There	are	many	other	notions	of	centrality	besides	the	ones	we	used	(although	the	ones
we	used	are	pretty	much	the	most	popular	ones).

NetworkX	is	a	Python	library	for	network	analysis.	It	has	functions	for	computing
centralities	and	for	visualizing	graphs.

Gephi	is	a	love-it/hate-it	GUI-based	network-visualization	tool.

http://en.wikipedia.org/wiki/Centrality
http://networkx.github.io/
http://gephi.github.io/

Chapter	22.	Recommender	Systems

O	nature,	nature,	why	art	thou	so	dishonest,	as	ever	to	send	men	with	these	false
recommendations	into	the	world!

Henry	Fielding

Another	common	data	problem	is	producing	recommendations	of	some	sort.	Netflix
recommends	movies	you	might	want	to	watch.	Amazon	recommends	products	you	might
want	to	buy.	Twitter	recommends	users	you	might	want	to	follow.	In	this	chapter,	we’ll
look	at	several	ways	to	use	data	to	make	recommendations.

In	particular,	we’ll	look	at	the	data	set	of	users_interests	that	we’ve	used	before:

users_interests	=	[

				["Hadoop",	"Big	Data",	"HBase",	"Java",	"Spark",	"Storm",	"Cassandra"],

				["NoSQL",	"MongoDB",	"Cassandra",	"HBase",	"Postgres"],

				["Python",	"scikit-learn",	"scipy",	"numpy",	"statsmodels",	"pandas"],

				["R",	"Python",	"statistics",	"regression",	"probability"],

				["machine	learning",	"regression",	"decision	trees",	"libsvm"],

				["Python",	"R",	"Java",	"C++",	"Haskell",	"programming	languages"],

				["statistics",	"probability",	"mathematics",	"theory"],

				["machine	learning",	"scikit-learn",	"Mahout",	"neural	networks"],

				["neural	networks",	"deep	learning",	"Big	Data",	"artificial	intelligence"],

				["Hadoop",	"Java",	"MapReduce",	"Big	Data"],

				["statistics",	"R",	"statsmodels"],

				["C++",	"deep	learning",	"artificial	intelligence",	"probability"],

				["pandas",	"R",	"Python"],

				["databases",	"HBase",	"Postgres",	"MySQL",	"MongoDB"],

				["libsvm",	"regression",	"support	vector	machines"]

]

And	we’ll	think	about	the	problem	of	recommending	new	interests	to	a	user	based	on	her
currently	specified	interests.

Manual	Curation
Before	the	Internet,	when	you	needed	book	recommendations	you	would	go	to	the	library,
where	a	librarian	was	available	to	suggest	books	that	were	relevant	to	your	interests	or
similar	to	books	you	liked.

Given	DataSciencester’s	limited	number	of	users	and	interests,	it	would	be	easy	for	you	to
spend	an	afternoon	manually	recommending	interests	for	each	user.	But	this	method
doesn’t	scale	particularly	well,	and	it’s	limited	by	your	personal	knowledge	and
imagination.	(Not	that	I’m	suggesting	that	your	personal	knowledge	and	imagination	are
limited.)	So	let’s	think	about	what	we	can	do	with	data.

Recommending	What’s	Popular
One	easy	approach	is	to	simply	recommend	what’s	popular:

popular_interests	=	Counter(interest

																												for	user_interests	in	users_interests

																												for	interest	in	user_interests).most_common()

which	looks	like:

[('Python',	4),

	('R',	4),

	('Java',	3),

	('regression',	3),

	('statistics',	3),

	('probability',	3),

	#	...

]

Having	computed	this,	we	can	just	suggest	to	a	user	the	most	popular	interests	that	he’s
not	already	interested	in:

def	most_popular_new_interests(user_interests,	max_results=5):

				suggestions	=	[(interest,	frequency)

																			for	interest,	frequency	in	popular_interests

																			if	interest	not	in	user_interests]

				return	suggestions[:max_results]

So,	if	you	are	user	1,	with	interests:

["NoSQL",	"MongoDB",	"Cassandra",	"HBase",	"Postgres"]

then	we’d	recommend	you:

most_popular_new_interests(users_interests[1],	5)

#	[('Python',	4),	('R',	4),	('Java',	3),	('regression',	3),	('statistics',	3)]

If	you	are	user	3,	who’s	already	interested	in	many	of	those	things,	you’d	instead	get:

[('Java',	3),

	('HBase',	3),

	('Big	Data',	3),

	('neural	networks',	2),

	('Hadoop',	2)]

Of	course,	“lots	of	people	are	interested	in	Python	so	maybe	you	should	be	too”	is	not	the
most	compelling	sales	pitch.	If	someone	is	brand	new	to	our	site	and	we	don’t	know
anything	about	them,	that’s	possibly	the	best	we	can	do.	Let’s	see	how	we	can	do	better	by
basing	each	user’s	recommendations	on	her	interests.

User-Based	Collaborative	Filtering
One	way	of	taking	a	user’s	interests	into	account	is	to	look	for	users	who	are	somehow
similar	to	him,	and	then	suggest	the	things	that	those	users	are	interested	in.

In	order	to	do	that,	we’ll	need	a	way	to	measure	how	similar	two	users	are.	Here	we’ll	use
a	metric	called	cosine	similarity.	Given	two	vectors,	v	and	w,	it’s	defined	as:

def	cosine_similarity(v,	w):

				return	dot(v,	w)	/	math.sqrt(dot(v,	v)	*	dot(w,	w))

It	measures	the	“angle”	between	v	and	w.	If	v	and	w	point	in	the	same	direction,	then	the
numerator	and	denominator	are	equal,	and	their	cosine	similarity	equals	1.	If	v	and	w	point
in	opposite	directions,	then	their	cosine	similarity	equals	-1.	And	if	v	is	0	whenever	w	is
not	(and	vice	versa)	then	dot(v,	w)	is	0	and	so	the	cosine	similarity	will	be	0.

We’ll	apply	this	to	vectors	of	0s	and	1s,	each	vector	v	representing	one	user’s	interests.
v[i]	will	be	1	if	the	user	is	specified	the	ith	interest,	0	otherwise.	Accordingly,	“similar
users”	will	mean	“users	whose	interest	vectors	most	nearly	point	in	the	same	direction.”
Users	with	identical	interests	will	have	similarity	1.	Users	with	no	identical	interests	will
have	similarity	0.	Otherwise	the	similarity	will	fall	in	between,	with	numbers	closer	to	1
indicating	“very	similar”	and	numbers	closer	to	0	indicating	“not	very	similar.”

A	good	place	to	start	is	collecting	the	known	interests	and	(implicitly)	assigning	indices	to
them.	We	can	do	this	by	using	a	set	comprehension	to	find	the	unique	interests,	putting
them	in	a	list,	and	then	sorting	them.	The	first	interest	in	the	resulting	list	will	be	interest
0,	and	so	on:

unique_interests	=	sorted(list({	interest

																																	for	user_interests	in	users_interests

																																	for	interest	in	user_interests	}))

This	gives	us	a	list	that	starts:

['Big	Data',

	'C++',

	'Cassandra',

	'HBase',

	'Hadoop',

	'Haskell',

	#	...

]

Next	we	want	to	produce	an	“interest”	vector	of	0s	and	1s	for	each	user.	We	just	need	to
iterate	over	the	unique_interests	list,	substituting	a	1	if	the	user	has	each	interest,	a	0	if
not:

def	make_user_interest_vector(user_interests):

				"""given	a	list	of	interests,	produce	a	vector	whose	ith	element	is	1

				if	unique_interests[i]	is	in	the	list,	0	otherwise"""

				return	[1	if	interest	in	user_interests	else	0

												for	interest	in	unique_interests]

after	which,	we	can	create	a	matrix	of	user	interests	simply	by	map-ping	this	function
against	the	list	of	lists	of	interests:

user_interest_matrix	=	map(make_user_interest_vector,	users_interests)

Now	user_interest_matrix[i][j]	equals	1	if	user	i	specified	interest	j,	0	otherwise.

Because	we	have	a	small	data	set,	it’s	no	problem	to	compute	the	pairwise	similarities
between	all	of	our	users:

user_similarities	=	[[cosine_similarity(interest_vector_i,	interest_vector_j)

																						for	interest_vector_j	in	user_interest_matrix]

																					for	interest_vector_i	in	user_interest_matrix]

after	which,	user_similarities[i][j]	gives	us	the	similarity	between	users	i	and	j.

For	instance,	user_similarities[0][9]	is	0.57,	as	those	two	users	share	interests	in
Hadoop,	Java,	and	Big	Data.	On	the	other	hand,	user_similarities[0][8]	is	only	0.19,
as	users	0	and	8	share	only	one	interest,	Big	Data.

In	particular,	user_similarities[i]	is	the	vector	of	user	i’s	similarities	to	every	other
user.	We	can	use	this	to	write	a	function	that	finds	the	most	similar	users	to	a	given	user.
We’ll	make	sure	not	to	include	the	user	herself,	nor	any	users	with	zero	similarity.	And
we’ll	sort	the	results	from	most	similar	to	least	similar:

def	most_similar_users_to(user_id):

				pairs	=	[(other_user_id,	similarity)																						#	find	other

													for	other_user_id,	similarity	in																	#	users	with

																enumerate(user_similarities[user_id])									#	nonzero

													if	user_id	!=	other_user_id	and	similarity	>	0]		#	similarity

				return	sorted(pairs,																																						#	sort	them

																		key=lambda	(_,	similarity):	similarity,					#	most	similar

																		reverse=True)																															#	first

For	instance,	if	we	call	most_similar_users_to(0)	we	get:

[(9,	0.5669467095138409),

	(1,	0.3380617018914066),

	(8,	0.1889822365046136),

	(13,	0.1690308509457033),

	(5,	0.1543033499620919)]

How	do	we	use	this	to	suggest	new	interests	to	a	user?	For	each	interest,	we	can	just	add
up	the	user-similarities	of	the	other	users	interested	in	it:

def	user_based_suggestions(user_id,	include_current_interests=False):

				#	sum	up	the	similarities

				suggestions	=	defaultdict(float)

				for	other_user_id,	similarity	in	most_similar_users_to(user_id):

								for	interest	in	users_interests[other_user_id]:

												suggestions[interest]	+=	similarity

				#	convert	them	to	a	sorted	list

				suggestions	=	sorted(suggestions.items(),

																									key=lambda	(_,	weight):	weight,

																									reverse=True)

				#	and	(maybe)	exclude	already-interests

				if	include_current_interests:

								return	suggestions

				else:

								return	[(suggestion,	weight)

																for	suggestion,	weight	in	suggestions

																if	suggestion	not	in	users_interests[user_id]]

If	we	call	user_based_suggestions(0),	the	first	several	suggested	interests	are:

[('MapReduce',	0.5669467095138409),

	('MongoDB',	0.50709255283711),

	('Postgres',	0.50709255283711),

	('NoSQL',	0.3380617018914066),

	('neural	networks',	0.1889822365046136),

	('deep	learning',	0.1889822365046136),

	('artificial	intelligence',	0.1889822365046136),

	#...

]

These	seem	like	pretty	decent	suggestions	for	someone	whose	stated	interests	are	“Big
Data”	and	database-related.	(The	weights	aren’t	intrinsically	meaningful;	we	just	use	them
for	ordering.)

This	approach	doesn’t	work	as	well	when	the	number	of	items	gets	very	large.	Recall	the
curse	of	dimensionality	from	Chapter	12	—	in	large-dimensional	vector	spaces	most
vectors	are	very	far	apart	(and	therefore	point	in	very	different	directions).	That	is,	when
there	are	a	large	number	of	interests	the	“most	similar	users”	to	a	given	user	might	not	be
similar	at	all.

Imagine	a	site	like	Amazon.com,	from	which	I’ve	bought	thousands	of	items	over	the	last
couple	of	decades.	You	could	attempt	to	identify	similar	users	to	me	based	on	buying
patterns,	but	most	likely	in	all	the	world	there’s	no	one	whose	purchase	history	looks	even
remotely	like	mine.	Whoever	my	“most	similar”	shopper	is,	he’s	probably	not	similar	to
me	at	all,	and	his	purchases	would	almost	certainly	make	for	lousy	recommendations.

Item-Based	Collaborative	Filtering
An	alternative	approach	is	to	compute	similarities	between	interests	directly.	We	can	then
generate	suggestions	for	each	user	by	aggregating	interests	that	are	similar	to	her	current
interests.

To	start	with,	we’ll	want	to	transpose	our	user-interest	matrix	so	that	rows	correspond	to
interests	and	columns	correspond	to	users:

interest_user_matrix	=	[[user_interest_vector[j]

																									for	user_interest_vector	in	user_interest_matrix]

																								for	j,	_	in	enumerate(unique_interests)]

What	does	this	look	like?	Row	j	of	interest_user_matrix	is	column	j	of
user_interest_matrix.	That	is,	it	has	1	for	each	user	with	that	interest	and	0	for	each
user	without	that	interest.

For	example,	unique_interests[0]	is	Big	Data,	and	so	interest_user_matrix[0]	is:

[1,	0,	0,	0,	0,	0,	0,	0,	1,	1,	0,	0,	0,	0,	0]

because	users	0,	8,	and	9	indicated	interest	in	Big	Data.

We	can	now	use	cosine	similarity	again.	If	precisely	the	same	users	are	interested	in	two
topics,	their	similarity	will	be	1.	If	no	two	users	are	interested	in	both	topics,	their
similarity	will	be	0:

interest_similarities	=	[[cosine_similarity(user_vector_i,	user_vector_j)

																										for	user_vector_j	in	interest_user_matrix]

																									for	user_vector_i	in	interest_user_matrix]

For	example,	we	can	find	the	interests	most	similar	to	Big	Data	(interest	0)	using:

def	most_similar_interests_to(interest_id):

				similarities	=	interest_similarities[interest_id]

				pairs	=	[(unique_interests[other_interest_id],	similarity)

													for	other_interest_id,	similarity	in	enumerate(similarities)

													if	interest_id	!=	other_interest_id	and	similarity	>	0]

				return	sorted(pairs,

																		key=lambda	(_,	similarity):	similarity,

																		reverse=True)

which	suggests	the	following	similar	interests:

[('Hadoop',	0.8164965809277261),

	('Java',	0.6666666666666666),

	('MapReduce',	0.5773502691896258),

	('Spark',	0.5773502691896258),

	('Storm',	0.5773502691896258),

	('Cassandra',	0.4082482904638631),

	('artificial	intelligence',	0.4082482904638631),

	('deep	learning',	0.4082482904638631),

	('neural	networks',	0.4082482904638631),

	('HBase',	0.3333333333333333)]

Now	we	can	create	recommendations	for	a	user	by	summing	up	the	similarities	of	the
interests	similar	to	his:

def	item_based_suggestions(user_id,	include_current_interests=False):

				#	add	up	the	similar	interests

				suggestions	=	defaultdict(float)

				user_interest_vector	=	user_interest_matrix[user_id]

				for	interest_id,	is_interested	in	enumerate(user_interest_vector):

								if	is_interested	==	1:

												similar_interests	=	most_similar_interests_to(interest_id)

												for	interest,	similarity	in	similar_interests:

																suggestions[interest]	+=	similarity

				#	sort	them	by	weight

				suggestions	=	sorted(suggestions.items(),

																									key=lambda	(_,	similarity):	similarity,

																									reverse=True)

				if	include_current_interests:

								return	suggestions

				else:

								return	[(suggestion,	weight)

																for	suggestion,	weight	in	suggestions

																if	suggestion	not	in	users_interests[user_id]]

For	user	0,	this	generates	the	following	(seemingly	reasonable)	recommendations:

[('MapReduce',	1.861807319565799),

	('Postgres',	1.3164965809277263),

	('MongoDB',	1.3164965809277263),

	('NoSQL',	1.2844570503761732),

	('programming	languages',	0.5773502691896258),

	('MySQL',	0.5773502691896258),

	('Haskell',	0.5773502691896258),

	('databases',	0.5773502691896258),

	('neural	networks',	0.4082482904638631),

	('deep	learning',	0.4082482904638631),

	('C++',	0.4082482904638631),

	('artificial	intelligence',	0.4082482904638631),

	('Python',	0.2886751345948129),

	('R',	0.2886751345948129)]

For	Further	Exploration
Crab	is	a	framework	for	building	recommender	systems	in	Python.

Graphlab	also	has	a	recommender	toolkit.

The	Netflix	Prize	was	a	somewhat	famous	competition	to	build	a	better	system	to
recommend	movies	to	Netflix	users.

http://muricoca.github.io/crab/
http://bit.ly/1MF9Tsy
http://www.netflixprize.com

Chapter	23.	Databases	and	SQL

Memory	is	man’s	greatest	friend	and	worst	enemy.

Gilbert	Parker

The	data	you	need	will	often	live	in	databases,	systems	designed	for	efficiently	storing
and	querying	data.	The	bulk	of	these	are	relational	databases,	such	as	Oracle,	MySQL,
and	SQL	Server,	which	store	data	in	tables	and	are	typically	queried	using	Structured
Query	Language	(SQL),	a	declarative	language	for	manipulating	data.

SQL	is	a	pretty	essential	part	of	the	data	scientist’s	toolkit.	In	this	chapter,	we’ll	create
NotQuiteABase,	a	Python	implementation	of	something	that’s	not	quite	a	database.	We’ll
also	cover	the	basics	of	SQL	while	showing	how	they	work	in	our	not-quite	database,
which	is	the	most	“from	scratch”	way	I	could	think	of	to	help	you	understand	what	they’re
doing.	My	hope	is	that	solving	problems	in	NotQuiteABase	will	give	you	a	good	sense	of
how	you	might	solve	the	same	problems	using	SQL.

CREATE	TABLE	and	INSERT
A	relational	database	is	a	collection	of	tables	(and	of	relationships	among	them).	A	table	is
simply	a	collection	of	rows,	not	unlike	the	matrices	we’ve	been	working	with.	However,	a
table	also	has	associated	with	it	a	fixed	schema	consisting	of	column	names	and	column
types.

For	example,	imagine	a	users	data	set	containing	for	each	user	her	user_id,	name,	and
num_friends:

users	=	[[0,	"Hero",	0],

									[1,	"Dunn",	2],

									[2,	"Sue",	3],

									[3,	"Chi",	3]]

In	SQL,	we	might	create	this	table	with:

CREATE	TABLE	users	(

				user_id	INT	NOT	NULL,

				name	VARCHAR(200),

				num_friends	INT);

Notice	that	we	specified	that	the	user_id	and	num_friends	must	be	integers	(and	that
user_id	isn’t	allowed	to	be	NULL,	which	indicates	a	missing	value	and	is	sort	of	like	our
None)	and	that	the	name	should	be	a	string	of	length	200	or	less.	NotQuiteABase	won’t
take	types	into	account,	but	we’ll	behave	as	if	it	did.

NOTE
SQL	is	almost	completely	case	and	indentation	insensitive.	The	capitalization	and	indentation	style	here	is
my	preferred	style.	If	you	start	learning	SQL,	you	will	surely	encounter	other	examples	styled	differently.

You	can	insert	the	rows	with	INSERT	statements:

INSERT	INTO	users	(user_id,	name,	num_friends)	VALUES	(0,	'Hero',	0);

Notice	also	that	SQL	statements	need	to	end	with	semicolons,	and	that	SQL	requires
single	quotes	for	its	strings.

In	NotQuiteABase,	you’ll	create	a	Table	simply	by	specifying	the	names	of	its	columns.
And	to	insert	a	row,	you’ll	use	the	table’s	insert()	method,	which	takes	a	list	of	row
values	that	need	to	be	in	the	same	order	as	the	table’s	column	names.

Behind	the	scenes,	we’ll	store	each	row	as	a	dict	from	column	names	to	values.	A	real
database	would	never	use	such	a	space-wasting	representation,	but	doing	so	will	make
NotQuiteABase	much	easier	to	work	with:

class	Table:

				def	__init__(self,	columns):

								self.columns	=	columns

								self.rows	=	[]

				def	__repr__(self):

								"""pretty	representation	of	the	table:	columns	then	rows"""

								return	str(self.columns)	+	"\n"	+	"\n".join(map(str,	self.rows))

				def	insert(self,	row_values):

								if	len(row_values)	!=	len(self.columns):

												raise	TypeError("wrong	number	of	elements")

								row_dict	=	dict(zip(self.columns,	row_values))

								self.rows.append(row_dict)

For	example,	we	could	set	up:

users	=	Table(["user_id",	"name",	"num_friends"])

users.insert([0,	"Hero",	0])

users.insert([1,	"Dunn",	2])

users.insert([2,	"Sue",	3])

users.insert([3,	"Chi",	3])

users.insert([4,	"Thor",	3])

users.insert([5,	"Clive",	2])

users.insert([6,	"Hicks",	3])

users.insert([7,	"Devin",	2])

users.insert([8,	"Kate",	2])

users.insert([9,	"Klein",	3])

users.insert([10,	"Jen",	1])

If	you	now	print	users,	you’ll	see:

['user_id',	'name',	'num_friends']

{'user_id':	0,	'name':	'Hero',	'num_friends':	0}

{'user_id':	1,	'name':	'Dunn',	'num_friends':	2}

{'user_id':	2,	'name':	'Sue',	'num_friends':	3}

...

UPDATE
Sometimes	you	need	to	update	the	data	that’s	already	in	the	database.	For	instance,	if
Dunn	acquires	another	friend,	you	might	need	to	do	this:

UPDATE	users

SET	num_friends	=	3

WHERE	user_id	=	1;

The	key	features	are:

What	table	to	update

Which	rows	to	update

Which	fields	to	update

What	their	new	values	should	be

We’ll	add	a	similar	update	method	to	NotQuiteABase.	Its	first	argument	will	be	a	dict
whose	keys	are	the	columns	to	update	and	whose	values	are	the	new	values	for	those
fields.	And	its	second	argument	is	a	predicate	that	returns	True	for	rows	that	should	be
updated,	False	otherwise:

				def	update(self,	updates,	predicate):

								for	row	in	self.rows:

												if	predicate(row):

																for	column,	new_value	in	updates.iteritems():

																				row[column]	=	new_value

after	which	we	can	simply	do	this:

users.update({'num_friends'	:	3},															#	set	num_friends	=	3

													lambda	row:	row['user_id']	==	1)			#	in	rows	where	user_id	==	1

DELETE
There	are	two	ways	to	delete	rows	from	a	table	in	SQL.	The	dangerous	way	deletes	every
row	from	a	table:

DELETE	FROM	users;

The	less	dangerous	way	adds	a	WHERE	clause	and	only	deletes	rows	that	match	a	certain
condition:

DELETE	FROM	users	WHERE	user_id	=	1;

It’s	easy	to	add	this	functionality	to	our	Table:

				def	delete(self,	predicate=lambda	row:	True):

								"""delete	all	rows	matching	predicate

								or	all	rows	if	no	predicate	supplied"""

								self.rows	=	[row	for	row	in	self.rows	if	not(predicate(row))]

If	you	supply	a	predicate	function	(i.e.,	a	WHERE	clause),	this	deletes	only	the	rows	that
satisfy	it.	If	you	don’t	supply	one,	the	default	predicate	always	returns	True,	and	you	will
delete	every	row.

For	example:

users.delete(lambda	row:	row["user_id"]	==	1)		#	deletes	rows	with	user_id	==	1

users.delete()																																	#	deletes	every	row

SELECT
Typically	you	don’t	inspect	SQL	tables	directly.	Instead	you	query	them	with	a	SELECT
statement:

SELECT	*	FROM	users;																												--	get	the	entire	contents

SELECT	*	FROM	users	LIMIT	2;																				--	get	the	first	two	rows

SELECT	user_id	FROM	users;																						--	only	get	specific	columns

SELECT	user_id	FROM	users	WHERE	name	=	'Dunn';		--	only	get	specific	rows

You	can	also	use	SELECT	statements	to	calculate	fields:

SELECT	LENGTH(name)	AS	name_length	FROM	users;

We’ll	give	our	Table	class	a	select()	method	that	returns	a	new	Table.	The	method
accepts	two	optional	arguments:

keep_columns	specifies	the	name	of	the	columns	you	want	to	keep	in	the	result.	If	you
don’t	supply	it,	the	result	contains	all	the	columns.

additional_columns	is	a	dictionary	whose	keys	are	new	column	names	and	whose
values	are	functions	specifying	how	to	compute	the	values	of	the	new	columns.

If	you	were	to	supply	neither	of	them,	you’d	simply	get	back	a	copy	of	the	table:

				def	select(self,	keep_columns=None,	additional_columns=None):

								if	keep_columns	is	None:									#	if	no	columns	specified,

												keep_columns	=	self.columns		#	return	all	columns

								if	additional_columns	is	None:

												additional_columns	=	{}

								#	new	table	for	results

								result_table	=	Table(keep_columns	+	additional_columns.keys())

								for	row	in	self.rows:

												new_row	=	[row[column]	for	column	in	keep_columns]

												for	column_name,	calculation	in	additional_columns.iteritems():

																new_row.append(calculation(row))

												result_table.insert(new_row)

								return	result_table

Our	select()	returns	a	new	Table,	while	the	typical	SQL	SELECT	just	produces	some	sort
of	transient	result	set	(unless	you	explicitly	insert	the	results	into	a	table).

We’ll	also	need	where()	and	limit()	methods.	Both	are	pretty	simple:

				def	where(self,	predicate=lambda	row:	True):

								"""return	only	the	rows	that	satisfy	the	supplied	predicate"""

								where_table	=	Table(self.columns)

								where_table.rows	=	filter(predicate,	self.rows)

								return	where_table

				def	limit(self,	num_rows):

								"""return	only	the	first	num_rows	rows"""

								limit_table	=	Table(self.columns)

								limit_table.rows	=	self.rows[:num_rows]

								return	limit_table

after	which	we	can	easily	construct	NotQuiteABase	equivalents	to	the	preceding	SQL
statements:

#	SELECT	*	FROM	users;

users.select()

#	SELECT	*	FROM	users	LIMIT	2;

users.limit(2)

#	SELECT	user_id	FROM	users;

users.select(keep_columns=["user_id"])

#	SELECT	user_id	FROM	users	WHERE	name	=	'Dunn';

users.where(lambda	row:	row["name"]	==	"Dunn")	\

					.select(keep_columns=["user_id"])

#	SELECT	LENGTH(name)	AS	name_length	FROM	users;

def	name_length(row):	return	len(row["name"])

users.select(keep_columns=[],

													additional_columns	=	{	"name_length"	:	name_length	})

Notice	that	—	unlike	in	the	rest	of	the	book	—	here	I	use	backslash	\	to	continue
statements	across	multiple	lines.	I	find	it	makes	the	chained-together	NotQuiteABase
queries	more	readable	than	any	other	way	of	writing	them.

GROUP	BY
Another	common	SQL	operation	is	GROUP	BY,	which	groups	together	rows	with	identical
values	in	specified	columns	and	produces	aggregate	values	like	MIN	and	MAX	and	COUNT
and	SUM.	(This	should	remind	you	of	the	group_by	function	from	“Manipulating	Data”.)

For	example,	you	might	want	to	find	the	number	of	users	and	the	smallest	user_id	for
each	possible	name	length:

SELECT	LENGTH(name)	as	name_length,

	MIN(user_id)	AS	min_user_id,

	COUNT(*)	AS	num_users

FROM	users

GROUP	BY	LENGTH(name);

Every	field	we	SELECT	needs	to	be	either	in	the	GROUP	BY	clause	(which	name_length	is)
or	an	aggregate	computation	(which	min_user_id	and	num_users	are).

SQL	also	supports	a	HAVING	clause	that	behaves	similarly	to	a	WHERE	clause	except	that	its
filter	is	applied	to	the	aggregates	(whereas	a	WHERE	would	filter	out	rows	before
aggregation	even	took	place).

You	might	want	to	know	the	average	number	of	friends	for	users	whose	names	start	with
specific	letters	but	only	see	the	results	for	letters	whose	corresponding	average	is	greater
than	1.	(Yes,	some	of	these	examples	are	contrived.)

SELECT	SUBSTR(name,	1,	1)	AS	first_letter,

	AVG(num_friends)	AS	avg_num_friends

FROM	users

GROUP	BY	SUBSTR(name,	1,	1)

HAVING	AVG(num_friends)	>	1;

(Functions	for	working	with	strings	vary	across	SQL	implementations;	some	databases
might	instead	use	SUBSTRING	or	something	else.)

You	can	also	compute	overall	aggregates.	In	that	case,	you	leave	off	the	GROUP	BY:

SELECT	SUM(user_id)	as	user_id_sum

FROM	users

WHERE	user_id	>	1;

To	add	this	functionality	to	NotQuiteABase	Tables,	we’ll	add	a	group_by()	method.	It
takes	the	names	of	the	columns	you	want	to	group	by,	a	dictionary	of	the	aggregation
functions	you	want	to	run	over	each	group,	and	an	optional	predicate	having	that	operates
on	multiple	rows.

Then	it	does	the	following	steps:

1.	 Creates	a	defaultdict	to	map	tuples	(of	the	group-by-values)	to	rows	(containing
the	group-by-values).	Recall	that	you	can’t	use	lists	as	dict	keys;	you	have	to	use
tuples.

2.	 Iterates	over	the	rows	of	the	table,	populating	the	defaultdict.

3.	 Creates	a	new	table	with	the	correct	output	columns.

4.	 Iterates	over	the	defaultdict	and	populates	the	output	table,	applying	the	having
filter	if	any.

(An	actual	database	would	almost	certainly	do	this	in	a	more	efficient	manner.)

				def	group_by(self,	group_by_columns,	aggregates,	having=None):

								grouped_rows	=	defaultdict(list)

								#	populate	groups

								for	row	in	self.rows:

												key	=	tuple(row[column]	for	column	in	group_by_columns)

												grouped_rows[key].append(row)

								#	result	table	consists	of	group_by	columns	and	aggregates

								result_table	=	Table(group_by_columns	+	aggregates.keys())

								for	key,	rows	in	grouped_rows.iteritems():

												if	having	is	None	or	having(rows):

																new_row	=	list(key)

																for	aggregate_name,	aggregate_fn	in	aggregates.iteritems():

																				new_row.append(aggregate_fn(rows))

																result_table.insert(new_row)

								return	result_table

Again,	let’s	see	how	we	would	do	the	equivalent	of	the	preceding	SQL	statements.	The
name_length	metrics	are:

def	min_user_id(rows):	return	min(row["user_id"]	for	row	in	rows)

stats_by_length	=	users	\

				.select(additional_columns={"name_length"	:	name_length})	\

				.group_by(group_by_columns=["name_length"],

														aggregates={	"min_user_id"	:	min_user_id,

																											"num_users"	:	len	})

The	first_letter	metrics:

def	first_letter_of_name(row):

				return	row["name"][0]	if	row["name"]	else	""

def	average_num_friends(rows):

				return	sum(row["num_friends"]	for	row	in	rows)	/	len(rows)

def	enough_friends(rows):

				return	average_num_friends(rows)	>	1

avg_friends_by_letter	=	users	\

				.select(additional_columns={'first_letter'	:	first_letter_of_name})	\

				.group_by(group_by_columns=['first_letter'],

														aggregates={	"avg_num_friends"	:	average_num_friends	},

														having=enough_friends)

and	the	user_id_sum	is:

def	sum_user_ids(rows):	return	sum(row["user_id"]	for	row	in	rows)

user_id_sum	=	users	\

				.where(lambda	row:	row["user_id"]	>	1)	\

				.group_by(group_by_columns=[],

														aggregates={	"user_id_sum"	:	sum_user_ids	})

ORDER	BY
Frequently,	you’ll	want	to	sort	your	results.	For	example,	you	might	want	to	know	the
(alphabetically)	first	two	names	of	your	users:

SELECT	*	FROM	users

ORDER	BY	name

LIMIT	2;

This	is	easy	to	implement	by	giving	our	Table	an	order_by()	method	that	takes	an	order
function:

				def	order_by(self,	order):

								new_table	=	self.select()							#	make	a	copy

								new_table.rows.sort(key=order)

								return	new_table

which	we	can	then	use	as	follows:

friendliest_letters	=	avg_friends_by_letter	\

				.order_by(lambda	row:	-row["avg_num_friends"])	\

				.limit(4)

The	SQL	ORDER	BY	lets	you	specify	ASC	(ascending)	or	DESC	(descending)	for	each	sort
field;	here	we’d	have	to	bake	that	into	our	order	function.

JOIN
Relational	database	tables	are	often	normalized,	which	means	that	they’re	organized	to
minimize	redundancy.	For	example,	when	we	work	with	our	users’	interests	in	Python	we
can	just	give	each	user	a	list	containing	his	interests.

SQL	tables	can’t	typically	contain	lists,	so	the	typical	solution	is	to	create	a	second	table
user_interests	containing	the	one-to-many	relationship	between	user_ids	and	interests.
In	SQL	you	might	do:

CREATE	TABLE	user_interests	(

				user_id	INT	NOT	NULL,

				interest	VARCHAR(100)	NOT	NULL

);

whereas	in	NotQuiteABase	you’d	create	the	table:

user_interests	=	Table(["user_id",	"interest"])

user_interests.insert([0,	"SQL"])

user_interests.insert([0,	"NoSQL"])

user_interests.insert([2,	"SQL"])

user_interests.insert([2,	"MySQL"])

NOTE
There’s	still	plenty	of	redundancy	—	the	interest	“SQL”	is	stored	in	two	different	places.	In	a	real	database
you	might	store	user_id	and	interest_id	in	the	user_interests	table	and	then	create	a	third	table
interests	mapping	interest_id	to	interest	so	you	could	store	the	interest	names	only	once	each.	Here
that	would	just	make	our	examples	more	complicated	than	they	need	to	be.

When	our	data	lives	across	different	tables,	how	do	we	analyze	it?	By	JOINing	the	tables
together.	A	JOIN	combines	rows	in	the	left	table	with	corresponding	rows	in	the	right
table,	where	the	meaning	of	“corresponding”	is	based	on	how	we	specify	the	join.

For	example,	to	find	the	users	interested	in	SQL	you’d	query:

SELECT	users.name

FROM	users

JOIN	user_interests

ON	users.user_id	=	user_interests.user_id

WHERE	user_interests.interest	=	'SQL'

The	JOIN	says	that,	for	each	row	in	users,	we	should	look	at	the	user_id	and	associate
that	row	with	every	row	in	user_interests	containing	the	same	user_id.

Notice	we	had	to	specify	which	tables	to	JOIN	and	also	which	columns	to	join	ON.	This	is
an	INNER	JOIN,	which	returns	the	combinations	of	rows	(and	only	the	combinations	of
rows)	that	match	according	to	the	specified	join	criteria.

There	is	also	a	LEFT	JOIN,	which	—	in	addition	to	the	combinations	of	matching	rows	—
returns	a	row	for	each	left-table	row	with	no	matching	rows	(in	which	case,	the	fields	that
would	have	come	from	the	right	table	are	all	NULL).

Using	a	LEFT	JOIN,	it’s	easy	to	count	the	number	of	interests	each	user	has:

SELECT	users.id,	COUNT(user_interests.interest)	AS	num_interests

FROM	users

LEFT	JOIN	user_interests

ON	users.user_id	=	user_interests.user_id

The	LEFT	JOIN	ensures	that	users	with	no	interests	will	still	have	rows	in	the	joined	data
set	(with	NULL	values	for	the	fields	coming	from	user_interests),	and	COUNT	only	counts
values	that	are	non-NULL.

The	NotQuiteABase	join()	implementation	will	be	more	restrictive	—	it	simply	joins
two	tables	on	whatever	columns	they	have	in	common.	Even	so,	it’s	not	trivial	to	write:

				def	join(self,	other_table,	left_join=False):

								join_on_columns	=	[c	for	c	in	self.columns											#	columns	in

																											if	c	in	other_table.columns]						#	both	tables

								additional_columns	=	[c	for	c	in	other_table.columns	#	columns	only

																														if	c	not	in	join_on_columns]			#	in	right	table

								#	all	columns	from	left	table	+	additional_columns	from	right	table

								join_table	=	Table(self.columns	+	additional_columns)

								for	row	in	self.rows:

												def	is_join(other_row):

																return	all(other_row[c]	==	row[c]	for	c	in	join_on_columns)

												other_rows	=	other_table.where(is_join).rows

												#	each	other	row	that	matches	this	one	produces	a	result	row

												for	other_row	in	other_rows:

																join_table.insert([row[c]	for	c	in	self.columns]	+

																																		[other_row[c]	for	c	in	additional_columns])

												#	if	no	rows	match	and	it's	a	left	join,	output	with	Nones

												if	left_join	and	not	other_rows:

																join_table.insert([row[c]	for	c	in	self.columns]	+

																																		[None	for	c	in	additional_columns])

								return	join_table

So,	we	could	find	users	interested	in	SQL	with:

sql_users	=	users	\

				.join(user_interests)	\

				.where(lambda	row:	row["interest"]	==	"SQL")	\

				.select(keep_columns=["name"])

And	we	could	get	the	interest	counts	with:

def	count_interests(rows):

				"""counts	how	many	rows	have	non-None	interests"""

				return	len([row	for	row	in	rows	if	row["interest"]	is	not	None])

user_interest_counts	=	users	\

				.join(user_interests,	left_join=True)	\

				.group_by(group_by_columns=["user_id"],

														aggregates={"num_interests"	:	count_interests	})

In	SQL,	there	is	also	a	RIGHT	JOIN,	which	keeps	rows	from	the	right	table	that	have	no

matches,	and	a	FULL	OUTER	JOIN,	which	keeps	rows	from	both	tables	that	have	no
matches.	We	won’t	implement	either	of	those.

Subqueries
In	SQL,	you	can	SELECT	from	(and	JOIN)	the	results	of	queries	as	if	they	were	tables.	So	if
you	wanted	to	find	the	smallest	user_id	of	anyone	interested	in	SQL,	you	could	use	a
subquery.	(Of	course,	you	could	do	the	same	calculation	using	a	JOIN,	but	that	wouldn’t
illustrate	subqueries.)

SELECT	MIN(user_id)	AS	min_user_id	FROM

(SELECT	user_id	FROM	user_interests	WHERE	interest	=	'SQL')	sql_interests;

Given	the	way	we’ve	designed	NotQuiteABase,	we	get	this	for	free.	(Our	query	results	are
actual	tables.)

likes_sql_user_ids	=	user_interests	\

				.where(lambda	row:	row["interest"]	==	"SQL")	\

				.select(keep_columns=['user_id'])

likes_sql_user_ids.group_by(group_by_columns=[],

																												aggregates={	"min_user_id"	:	min_user_id	})

Indexes
To	find	rows	containing	a	specific	value	(say,	where	name	is	“Hero”),	NotQuiteABase	has
to	inspect	every	row	in	the	table.	If	the	table	has	a	lot	of	rows,	this	can	take	a	very	long
time.

Similarly,	our	join	algorithm	is	extremely	inefficient.	For	each	row	in	the	left	table,	it
inspects	every	row	in	the	right	table	to	see	if	it’s	a	match.	With	two	large	tables	this	could
take	approximately	forever.

Also,	you’d	often	like	to	apply	constraints	to	some	of	your	columns.	For	example,	in	your
users	table	you	probably	don’t	want	to	allow	two	different	users	to	have	the	same
user_id.

Indexes	solve	all	these	problems.	If	the	user_interests	table	had	an	index	on	user_id,	a
smart	join	algorithm	could	find	matches	directly	rather	than	scanning	the	whole	table.	If
the	users	table	had	a	“unique”	index	on	user_id,	you’d	get	an	error	if	you	tried	to	insert	a
duplicate.

Each	table	in	a	database	can	have	one	or	more	indexes,	which	allow	you	to	quickly	look
up	rows	by	key	columns,	efficiently	join	tables	together,	and	enforce	unique	constraints	on
columns	or	combinations	of	columns.

Designing	and	using	indexes	well	is	somewhat	of	a	black	art	(which	varies	somewhat
depending	on	the	specific	database),	but	if	you	end	up	doing	a	lot	of	database	work	it’s
worth	learning	about.

Query	Optimization
Recall	the	query	to	find	all	users	who	are	interested	in	SQL:

SELECT	users.name

FROM	users

JOIN	user_interests

ON	users.user_id	=	user_interests.user_id

WHERE	user_interests.interest	=	'SQL'

In	NotQuiteABase	there	are	(at	least)	two	different	ways	to	write	this	query.	You	could
filter	the	user_interests	table	before	performing	the	join:

user_interests	\

				.where(lambda	row:	row["interest"]	==	"SQL")	\

				.join(users)	\

				.select(["name"])

Or	you	could	filter	the	results	of	the	join:

user_interests	\

				.join(users)	\

				.where(lambda	row:	row["interest"]	==	"SQL")	\

				.select(["name"])

You’ll	end	up	with	the	same	results	either	way,	but	filter-before-join	is	almost	certainly
more	efficient,	since	in	that	case	join	has	many	fewer	rows	to	operate	on.

In	SQL,	you	generally	wouldn’t	worry	about	this.	You	“declare”	the	results	you	want	and
leave	it	up	to	the	query	engine	to	execute	them	(and	use	indexes	efficiently).

NoSQL
A	recent	trend	in	databases	is	toward	nonrelational	“NoSQL”	databases,	which	don’t
represent	data	in	tables.	For	instance,	MongoDB	is	a	popular	schema-less	database	whose
elements	are	arbitrarily	complex	JSON	documents	rather	than	rows.

There	are	column	databases	that	store	data	in	columns	instead	of	rows	(good	when	data
has	many	columns	but	queries	need	few	of	them),	key-value	stores	that	are	optimized	for
retrieving	single	(complex)	values	by	their	keys,	databases	for	storing	and	traversing
graphs,	databases	that	are	optimized	to	run	across	multiple	datacenters,	databases	that	are
designed	to	run	in	memory,	databases	for	storing	time-series	data,	and	hundreds	more.

Tomorrow’s	flavor	of	the	day	might	not	even	exist	now,	so	I	can’t	do	much	more	than	let
you	know	that	NoSQL	is	a	thing.	So	now	you	know.	It’s	a	thing.

For	Further	Exploration
If	you’d	like	to	download	a	relational	database	to	play	with,	SQLite	is	fast	and	tiny,
while	MySQL	and	PostgreSQL	are	larger	and	featureful.	All	are	free	and	have	lots	of
documentation.

If	you	want	to	explore	NoSQL,	MongoDB	is	very	simple	to	get	started	with,	which	can
be	both	a	blessing	and	somewhat	of	a	curse.	It	also	has	pretty	good	documentation.

The	Wikipedia	article	on	NoSQL	almost	certainly	now	contains	links	to	databases	that
didn’t	even	exist	when	this	book	was	written.

http://www.sqlite.org
http://www.mysql.com
http://www.postgresql.org
http://www.mongodb.org
http://en.wikipedia.org/wiki/NoSQL

Chapter	24.	MapReduce

The	future	has	already	arrived.	It’s	just	not	evenly	distributed	yet.

William	Gibson

MapReduce	is	a	programming	model	for	performing	parallel	processing	on	large	data	sets.
Although	it	is	a	powerful	technique,	its	basics	are	relatively	simple.

Imagine	we	have	a	collection	of	items	we’d	like	to	process	somehow.	For	instance,	the
items	might	be	website	logs,	the	texts	of	various	books,	image	files,	or	anything	else.	A
basic	version	of	the	MapReduce	algorithm	consists	of	the	following	steps:

1.	 Use	a	mapper	function	to	turn	each	item	into	zero	or	more	key-value	pairs.	(Often
this	is	called	the	map	function,	but	there	is	already	a	Python	function	called	map	and
we	don’t	need	to	confuse	the	two.)

2.	 Collect	together	all	the	pairs	with	identical	keys.

3.	 Use	a	reducer	function	on	each	collection	of	grouped	values	to	produce	output
values	for	the	corresponding	key.

This	is	all	sort	of	abstract,	so	let’s	look	at	a	specific	example.	There	are	few	absolute	rules
of	data	science,	but	one	of	them	is	that	your	first	MapReduce	example	has	to	involve
counting	words.

Example:	Word	Count
DataSciencester	has	grown	to	millions	of	users!	This	is	great	for	your	job	security,	but	it
makes	routine	analyses	slightly	more	difficult.

For	example,	your	VP	of	Content	wants	to	know	what	sorts	of	things	people	are	talking
about	in	their	status	updates.	As	a	first	attempt,	you	decide	to	count	the	words	that	appear,
so	that	you	can	prepare	a	report	on	the	most	frequent	ones.

When	you	had	a	few	hundred	users	this	was	simple	to	do:

def	word_count_old(documents):

				"""word	count	not	using	MapReduce"""

				return	Counter(word

								for	document	in	documents

								for	word	in	tokenize(document))

With	millions	of	users	the	set	of	documents	(status	updates)	is	suddenly	too	big	to	fit	on
your	computer.	If	you	can	just	fit	this	into	the	MapReduce	model,	you	can	use	some	“big
data”	infrastructure	that	your	engineers	have	implemented.

First,	we	need	a	function	that	turns	a	document	into	a	sequence	of	key-value	pairs.	We’ll
want	our	output	to	be	grouped	by	word,	which	means	that	the	keys	should	be	words.	And
for	each	word,	we’ll	just	emit	the	value	1	to	indicate	that	this	pair	corresponds	to	one
occurrence	of	the	word:

def	wc_mapper(document):

				"""for	each	word	in	the	document,	emit	(word,1)"""

				for	word	in	tokenize(document):

								yield	(word,	1)

Skipping	the	“plumbing”	step	2	for	the	moment,	imagine	that	for	some	word	we’ve
collected	a	list	of	the	corresponding	counts	we	emitted.	Then	to	produce	the	overall	count
for	that	word	we	just	need:

def	wc_reducer(word,	counts):

				"""sum	up	the	counts	for	a	word"""

				yield	(word,	sum(counts))

Returning	to	step	2,	we	now	need	to	collect	the	results	from	wc_mapper	and	feed	them	to
wc_reducer.	Let’s	think	about	how	we	would	do	this	on	just	one	computer:

def	word_count(documents):

				"""count	the	words	in	the	input	documents	using	MapReduce"""

				#	place	to	store	grouped	values

				collector	=	defaultdict(list)

				for	document	in	documents:

								for	word,	count	in	wc_mapper(document):

												collector[word].append(count)

				return	[output

												for	word,	counts	in	collector.iteritems()

												for	output	in	wc_reducer(word,	counts)]

Imagine	that	we	have	three	documents	["data	science",	"big	data",	"science
fiction"].

Then	wc_mapper	applied	to	the	first	document	yields	the	two	pairs	("data",	1)	and
("science",	1).	After	we’ve	gone	through	all	three	documents,	the	collector	contains

{	"data"	:	[1,	1],

		"science"	:	[1,	1],

		"big"	:	[1],

		"fiction"	:	[1]	}

Then	wc_reducer	produces	the	count	for	each	word:

[("data",	2),	("science",	2),	("big",	1),	("fiction",	1)]

Why	MapReduce?
As	mentioned	earlier,	the	primary	benefit	of	MapReduce	is	that	it	allows	us	to	distribute
computations	by	moving	the	processing	to	the	data.	Imagine	we	want	to	word-count
across	billions	of	documents.

Our	original	(non-MapReduce)	approach	requires	the	machine	doing	the	processing	to
have	access	to	every	document.	This	means	that	the	documents	all	need	to	either	live	on
that	machine	or	else	be	transferred	to	it	during	processing.	More	important,	it	means	that
the	machine	can	only	process	one	document	at	a	time.

NOTE
Possibly	it	can	process	up	to	a	few	at	a	time	if	it	has	multiple	cores	and	if	the	code	is	rewritten	to	take
advantage	of	them.	But	even	so,	all	the	documents	still	have	to	get	to	that	machine.

Imagine	now	that	our	billions	of	documents	are	scattered	across	100	machines.	With	the
right	infrastructure	(and	glossing	over	some	of	the	details),	we	can	do	the	following:

Have	each	machine	run	the	mapper	on	its	documents,	producing	lots	of	(key,	value)
pairs.

Distribute	those	(key,	value)	pairs	to	a	number	of	“reducing”	machines,	making	sure
that	the	pairs	corresponding	to	any	given	key	all	end	up	on	the	same	machine.

Have	each	reducing	machine	group	the	pairs	by	key	and	then	run	the	reducer	on	each
set	of	values.

Return	each	(key,	output)	pair.

What	is	amazing	about	this	is	that	it	scales	horizontally.	If	we	double	the	number	of
machines,	then	(ignoring	certain	fixed-costs	of	running	a	MapReduce	system)	our
computation	should	run	approximately	twice	as	fast.	Each	mapper	machine	will	only	need
to	do	half	as	much	work,	and	(assuming	there	are	enough	distinct	keys	to	further	distribute
the	reducer	work)	the	same	is	true	for	the	reducer	machines.

MapReduce	More	Generally
If	you	think	about	it	for	a	minute,	all	of	the	word-count-specific	code	in	the	previous
example	is	contained	in	the	wc_mapper	and	wc_reducer	functions.	This	means	that	with	a
couple	of	changes	we	have	a	much	more	general	framework	(that	still	runs	on	a	single
machine):

def	map_reduce(inputs,	mapper,	reducer):

				"""runs	MapReduce	on	the	inputs	using	mapper	and	reducer"""

				collector	=	defaultdict(list)

				for	input	in	inputs:

								for	key,	value	in	mapper(input):

												collector[key].append(value)

				return	[output

												for	key,	values	in	collector.iteritems()

												for	output	in	reducer(key,values)]

And	then	we	can	count	words	simply	by	using:

word_counts	=	map_reduce(documents,	wc_mapper,	wc_reducer)

This	gives	us	the	flexibility	to	solve	a	wide	variety	of	problems.

Before	we	proceed,	observe	that	wc_reducer	is	just	summing	the	values	corresponding	to
each	key.	This	kind	of	aggregation	is	common	enough	that	it’s	worth	abstracting	it	out:

def	reduce_values_using(aggregation_fn,	key,	values):

				"""reduces	a	key-values	pair	by	applying	aggregation_fn	to	the	values"""

				yield	(key,	aggregation_fn(values))

def	values_reducer(aggregation_fn):

				"""turns	a	function	(values	->	output)	into	a	reducer

				that	maps	(key,	values)	->	(key,	output)"""

				return	partial(reduce_values_using,	aggregation_fn)

after	which	we	can	easily	create:

sum_reducer	=	values_reducer(sum)

max_reducer	=	values_reducer(max)

min_reducer	=	values_reducer(min)

count_distinct_reducer	=	values_reducer(lambda	values:	len(set(values)))

and	so	on.

Example:	Analyzing	Status	Updates
The	content	VP	was	impressed	with	the	word	counts	and	asks	what	else	you	can	learn
from	people’s	status	updates.	You	manage	to	extract	a	data	set	of	status	updates	that	look
like:

{"id":	1,

	"username"	:	"joelgrus",

	"text"	:	"Is	anyone	interested	in	a	data	science	book?",

	"created_at"	:	datetime.datetime(2013,	12,	21,	11,	47,	0),

	"liked_by"	:	["data_guy",	"data_gal",	"mike"]	}

Let’s	say	we	need	to	figure	out	which	day	of	the	week	people	talk	the	most	about	data
science.	In	order	to	find	this,	we’ll	just	count	how	many	data	science	updates	there	are	on
each	day	of	the	week.	This	means	we’ll	need	to	group	by	the	day	of	week,	so	that’s	our
key.	And	if	we	emit	a	value	of	1	for	each	update	that	contains	“data	science,”	we	can
simply	get	the	total	number	using	sum:

def	data_science_day_mapper(status_update):

				"""yields	(day_of_week,	1)	if	status_update	contains	"data	science"	"""

				if	"data	science"	in	status_update["text"].lower():

								day_of_week	=	status_update["created_at"].weekday()

								yield	(day_of_week,	1)

data_science_days	=	map_reduce(status_updates,

																															data_science_day_mapper,

																															sum_reducer)

As	a	slightly	more	complicated	example,	imagine	we	need	to	find	out	for	each	user	the
most	common	word	that	she	puts	in	her	status	updates.	There	are	three	possible
approaches	that	spring	to	mind	for	the	mapper:

Put	the	username	in	the	key;	put	the	words	and	counts	in	the	values.

Put	the	word	in	key;	put	the	usernames	and	counts	in	the	values.

Put	the	username	and	word	in	the	key;	put	the	counts	in	the	values.

If	you	think	about	it	a	bit	more,	we	definitely	want	to	group	by	username,	because	we
want	to	consider	each	person’s	words	separately.	And	we	don’t	want	to	group	by	word,
since	our	reducer	will	need	to	see	all	the	words	for	each	person	to	find	out	which	is	the
most	popular.	This	means	that	the	first	option	is	the	right	choice:

def	words_per_user_mapper(status_update):

				user	=	status_update["username"]

				for	word	in	tokenize(status_update["text"]):

								yield	(user,	(word,	1))

def	most_popular_word_reducer(user,	words_and_counts):

				"""given	a	sequence	of	(word,	count)	pairs,

				return	the	word	with	the	highest	total	count"""

				word_counts	=	Counter()

				for	word,	count	in	words_and_counts:

								word_counts[word]	+=	count

				word,	count	=	word_counts.most_common(1)[0]

				yield	(user,	(word,	count))

user_words	=	map_reduce(status_updates,

																								words_per_user_mapper,

																								most_popular_word_reducer)

Or	we	could	find	out	the	number	of	distinct	status-likers	for	each	user:

def	liker_mapper(status_update):

				user	=	status_update["username"]

				for	liker	in	status_update["liked_by"]:

								yield	(user,	liker)

distinct_likers_per_user	=	map_reduce(status_updates,

																																						liker_mapper,

																																						count_distinct_reducer)

Example:	Matrix	Multiplication
Recall	from	“Matrix	Multiplication”	that	given	a	 	matrix	A	and	a	 	matrix
B,	we	can	multiply	them	to	form	a	 	matrix	C,	where	the	element	of	C	in	row	i	and
column	j	is	given	by:

As	we’ve	seen,	a	“natural”	way	to	represent	a	 	matrix	is	with	a	list	of	lists,

where	the	element	 	is	the	jth	element	of	the	ith	list.

But	large	matrices	are	sometimes	sparse,	which	means	that	most	of	their	elements	equal
zero.	For	large	sparse	matrices,	a	list	of	lists	can	be	a	very	wasteful	representation.	A	more
compact	representation	is	a	list	of	tuples	(name,	i,	j,	value)	where	name	identifies	the
matrix,	and	where	i,	j,	value	indicates	a	location	with	nonzero	value.

For	example,	a	billion	×	billion	matrix	has	a	quintillion	entries,	which	would	not	be	easy
to	store	on	a	computer.	But	if	there	are	only	a	few	nonzero	entries	in	each	row,	this
alternative	representation	is	many	orders	of	magnitude	smaller.

Given	this	sort	of	representation,	it	turns	out	that	we	can	use	MapReduce	to	perform
matrix	multiplication	in	a	distributed	manner.

To	motivate	our	algorithm,	notice	that	each	element	 	is	only	used	to	compute	the

elements	of	C	in	row	i,	and	each	element	 	is	only	used	to	compute	the	elements	of	C	in
column	j.	Our	goal	will	be	for	each	output	of	our	reducer	to	be	a	single	entry	of	C,	which
means	we’ll	need	our	mapper	to	emit	keys	identifying	a	single	entry	of	C.	This	suggests
the	following:

def	matrix_multiply_mapper(m,	element):

				"""m	is	the	common	dimension	(columns	of	A,	rows	of	B)

				element	is	a	tuple	(matrix_name,	i,	j,	value)"""

				name,	i,	j,	value	=	element

				if	name	==	"A":

								#	A_ij	is	the	jth	entry	in	the	sum	for	each	C_ik,	k=1..m

								for	k	in	range(m):

												#	group	with	other	entries	for	C_ik

												yield((i,	k),	(j,	value))

				else:

								#	B_ij	is	the	i-th	entry	in	the	sum	for	each	C_kj

								for	k	in	range(m):

												#	group	with	other	entries	for	C_kj

												yield((k,	j),	(i,	value))

def	matrix_multiply_reducer(m,	key,	indexed_values):

				results_by_index	=	defaultdict(list)

				for	index,	value	in	indexed_values:

								results_by_index[index].append(value)

				#	sum	up	all	the	products	of	the	positions	with	two	results

				sum_product	=	sum(results[0]	*	results[1]

																						for	results	in	results_by_index.values()

																						if	len(results)	==	2)

				if	sum_product	!=	0.0:

								yield	(key,	sum_product)

For	example,	if	you	had	the	two	matrices

A	=	[[3,	2,	0],

					[0,	0,	0]]

B	=	[[4,	-1,	0],

					[10,	0,	0],

					[0,	0,	0]]

you	could	rewrite	them	as	tuples:

entries	=	[("A",	0,	0,	3),	("A",	0,	1,		2),

											("B",	0,	0,	4),	("B",	0,	1,	-1),	("B",	1,	0,	10)]

mapper	=	partial(matrix_multiply_mapper,	3)

reducer	=	partial(matrix_multiply_reducer,	3)

map_reduce(entries,	mapper,	reducer)	#	[((0,	1),	-3),	((0,	0),	32)]

This	isn’t	terribly	interesting	on	such	small	matrices,	but	if	you	had	millions	of	rows	and
millions	of	columns,	it	could	help	you	a	lot.

An	Aside:	Combiners
One	thing	you	have	probably	noticed	is	that	many	of	our	mappers	seem	to	include	a	bunch
of	extra	information.	For	example,	when	counting	words,	rather	than	emitting	(word,	1)
and	summing	over	the	values,	we	could	have	emitted	(word,	None)	and	just	taken	the
length.

One	reason	we	didn’t	do	this	is	that,	in	the	distributed	setting,	we	sometimes	want	to	use
combiners	to	reduce	the	amount	of	data	that	has	to	be	transferred	around	from	machine	to
machine.	If	one	of	our	mapper	machines	sees	the	word	“data”	500	times,	we	can	tell	it	to
combine	the	500	instances	of	("data",	1)	into	a	single	("data",	500)	before	handing
off	to	the	reducing	machine.	This	results	in	a	lot	less	data	getting	moved	around,	which
can	make	our	algorithm	substantially	faster	still.

Because	of	the	way	we	wrote	our	reducer,	it	would	handle	this	combined	data	correctly.	(If
we’d	written	it	using	len	it	would	not	have.)

For	Further	Exploration
The	most	widely	used	MapReduce	system	is	Hadoop,	which	itself	merits	many	books.
There	are	various	commercial	and	noncommercial	distributions	and	a	huge	ecosystem
of	Hadoop-related	tools.	
In	order	to	use	it,	you	have	to	set	up	your	own	cluster	(or	find	someone	to	let	you	use
theirs),	which	is	not	necessarily	a	task	for	the	faint-hearted.	Hadoop	mappers	and
reducers	are	commonly	written	in	Java,	although	there	is	a	facility	known	as	“Hadoop
streaming”	that	allows	you	to	write	them	in	other	languages	(including	Python).

Amazon.com	offers	an	Elastic	MapReduce	service	that	can	programmatically	create
and	destroy	clusters,	charging	you	only	for	the	amount	of	time	that	you’re	using	them.

mrjob	is	a	Python	package	for	interfacing	with	Hadoop	(or	Elastic	MapReduce).

Hadoop	jobs	are	typically	high-latency,	which	makes	them	a	poor	choice	for	“real-
time”	analytics.	There	are	various	“real-time”	tools	built	on	top	of	Hadoop,	but	there
are	also	several	alternative	frameworks	that	are	growing	in	popularity.	Two	of	the	most
popular	are	Spark	and	Storm.

All	that	said,	by	now	it’s	quite	likely	that	the	flavor	of	the	day	is	some	hot	new
distributed	framework	that	didn’t	even	exist	when	this	book	was	written.	You’ll	have	to
find	that	one	yourself.

http://hadoop.apache.org
http://aws.amazon.com/elasticmapreduce/
https://github.com/Yelp/mrjob
http://spark.apache.org/
http://storm.incubator.apache.org/

Chapter	25.	Go	Forth	and	Do	Data
Science

And	now,	once	again,	I	bid	my	hideous	progeny	go	forth	and	prosper.

Mary	Shelley

Where	do	you	go	from	here?	Assuming	I	haven’t	scared	you	off	of	data	science,	there	are
a	number	of	things	you	should	learn	next.

IPython
We	mentioned	IPython	earlier	in	the	book.	It	provides	a	shell	with	far	more	functionality
than	the	standard	Python	shell,	and	it	adds	“magic	functions”	that	allow	you	to	(among
other	things)	easily	copy	and	paste	code	(which	is	normally	complicated	by	the
combination	of	blank	lines	and	whitespace	formatting)	and	run	scripts	from	within	the
shell.

Mastering	IPython	will	make	your	life	far	easier.	(Even	learning	just	a	little	bit	of	IPython
will	make	your	life	a	lot	easier.)

Additionally,	it	allows	you	to	create	“notebooks”	combining	text,	live	Python	code,	and
visualizations	that	you	can	share	with	other	people,	or	just	keep	around	as	a	journal	of
what	you	did	(Figure	25-1).

Figure	25-1.	An	IPython	notebook

http://ipython.org/

Mathematics
Throughout	this	book,	we	dabbled	in	linear	algebra	(Chapter	4),	statistics	(Chapter	5),
probability	(Chapter	6),	and	various	aspects	of	machine	learning.

To	be	a	good	data	scientist,	you	should	know	much	more	about	these	topics,	and	I
encourage	you	to	give	each	of	them	a	more	in-depth	study,	using	the	textbooks
recommended	at	the	end	of	the	chapters,	your	own	preferred	textbooks,	online	courses,	or
even	real-life	courses.

Not	from	Scratch
Implementing	things	“from	scratch”	is	great	for	understanding	how	they	work.	But	it’s
generally	not	great	for	performance	(unless	you’re	implementing	them	specifically	with
performance	in	mind),	ease	of	use,	rapid	prototyping,	or	error	handling.

In	practice,	you’ll	want	to	use	well-designed	libraries	that	solidly	implement	the
fundamentals.	(My	original	proposal	for	this	book	involved	a	second	“now	let’s	learn	the
libraries”	half	that	O’Reilly,	thankfully,	vetoed.)

NumPy
NumPy	(for	“Numeric	Python”)	provides	facilities	for	doing	“real”	scientific	computing.
It	features	arrays	that	perform	better	than	our	list-vectors,	matrices	that	perform	better
than	our	list-of-list-matrices,	and	lots	of	numeric	functions	for	working	with	them.

NumPy	is	a	building	block	for	many	other	libraries,	which	makes	it	especially	valuable	to
know.

http://www.numpy.org

pandas
pandas	provides	additional	data	structures	for	working	with	data	sets	in	Python.	Its
primary	abstraction	is	the	DataFrame,	which	is	conceptually	similar	to	the	NotQuiteABase
Table	class	we	constructed	in	Chapter	23,	but	with	much	more	functionality	and	better
performance.

If	you’re	going	to	use	Python	to	munge,	slice,	group,	and	manipulate	data	sets,	pandas	is
an	invaluable	tool.

http://pandas.pydata.org

scikit-learn
scikit-learn	is	probably	the	most	popular	library	for	doing	machine	learning	in	Python.	It
contains	all	the	models	we’ve	implemented	and	many	more	that	we	haven’t.	On	a	real
problem,	you’d	never	build	a	decision	tree	from	scratch;	you’d	let	scikit-learn	do	the
heavy	lifting.	On	a	real	problem,	you’d	never	write	an	optimization	algorithm	by	hand;
you’d	count	on	scikit-learn	to	be	already	using	a	really	good	one.

Its	documentation	contains	many,	many	examples	of	what	it	can	do	(and,	more	generally,
what	machine	learning	can	do).

http://scikit-learn.org
http://scikit-learn.org/stable/auto_examples/

Visualization
The	matplotlib	charts	we’ve	been	creating	have	been	clean	and	functional	but	not
particularly	stylish	(and	not	at	all	interactive).	If	you	want	to	get	deeper	into	data
visualization,	you	have	several	options.

The	first	is	to	further	explore	matplotlib,	only	a	handful	of	whose	features	we’ve	actually
covered.	Its	website	contains	many	examples	of	its	functionality	and	a	Gallery	of	some	of
the	more	interesting	ones.	If	you	want	to	create	static	visualizations	(say,	for	printing	in	a
book),	this	is	probably	your	best	next	step.

You	should	also	check	out	seaborn,	which	is	a	library	that	(among	other	things)	makes
matplotlib	more	attractive.

If	you’d	like	to	create	interactive	visualizations	that	you	can	share	on	the	Web,	the	obvious
choice	is	probably	D3.js,	a	JavaScript	library	for	creating	“Data	Driven	Documents”
(those	are	the	three	Ds).	Even	if	you	don’t	know	much	JavaScript,	it’s	often	possible	to
crib	examples	from	the	D3	gallery	and	tweak	them	to	work	with	your	data.	(Good	data
scientists	copy	from	the	D3	gallery;	great	data	scientists	steal	from	the	D3	gallery.)

Even	if	you	have	no	interest	in	D3,	just	browsing	the	gallery	is	itself	a	pretty	incredible
education	in	data	visualization.

Bokeh	is	a	project	that	brings	D3-style	functionality	into	Python.

http://matplotlib.org/examples/
http://matplotlib.org/gallery.html
http://web.stanford.edu/~mwaskom/software/seaborn/
http://d3js.org
https://github.com/mbostock/d3/wiki/Gallery
http://bokeh.pydata.org

R
Although	you	can	totally	get	away	with	not	learning	R,	a	lot	of	data	scientists	and	data
science	projects	use	it,	so	it’s	worth	getting	at	least	familiar	with	it.

In	part,	this	is	so	that	you	can	understand	people’s	R-based	blog	posts	and	examples	and
code;	in	part,	this	is	to	help	you	better	appreciate	the	(comparatively)	clean	elegance	of
Python;	and	in	part,	this	is	to	help	you	be	a	more	informed	participant	in	the	never-ending
“R	versus	Python”	flamewars.

The	world	has	no	shortage	of	R	tutorials,	R	courses,	and	R	books.	I	hear	good	things	about
Hands-On	Programming	with	R,	and	not	just	because	it’s	also	an	O’Reilly	book.	(OK,
mostly	because	it’s	also	an	O’Reilly	book.)

http://www.r-project.org
http://shop.oreilly.com/product/0636920028574.do

Find	Data
If	you’re	doing	data	science	as	part	of	your	job,	you’ll	most	likely	get	the	data	as	part	of
your	job	(although	not	necessarily).	What	if	you’re	doing	data	science	for	fun?	Data	is
everywhere,	but	here	are	some	starting	points:

Data.gov	is	the	government’s	open	data	portal.	If	you	want	data	on	anything	that	has	to
do	with	the	government	(which	seems	to	be	most	things	these	days)	it’s	a	good	place	to
start.

reddit	has	a	couple	of	forums,	r/datasets	and	r/data,	that	are	places	to	both	ask	for	and
discover	data.

Amazon.com	maintains	a	collection	of	public	data	sets	that	they’d	like	you	to	analyze
using	their	products	(but	that	you	can	analyze	with	whatever	products	you	want).

Robb	Seaton	has	a	quirky	list	of	curated	data	sets	on	his	blog.

Kaggle	is	a	site	that	holds	data	science	competitions.	I	never	managed	to	get	into	it	(I
don’t	have	much	of	a	competitive	nature	when	it	comes	to	data	science),	but	you	might.

http://www.data.gov
http://www.reddit.com/r/datasets
http://www.reddit.com/r/data
http://aws.amazon.com/public-data-sets/
http://rs.io/100-interesting-data-sets-for-statistics/
https://www.kaggle.com/

Do	Data	Science
Looking	through	data	catalogs	is	fine,	but	the	best	projects	(and	products)	are	ones	that
tickle	some	sort	of	itch.	Here	are	a	few	that	I’ve	done.

Hacker	News
Hacker	News	is	a	news	aggregation	and	discussion	site	for	technology-related	news.	It
collects	lots	and	lots	of	articles,	many	of	which	aren’t	interesting	to	me.

Accordingly,	several	years	ago,	I	set	out	to	build	a	Hacker	News	story	classifier	to	predict
whether	I	would	or	would	not	be	interested	in	any	given	story.	This	did	not	go	over	so	well
with	the	users	of	Hacker	News,	who	resented	the	idea	that	someone	might	not	be
interested	in	every	story	on	the	site.

This	involved	hand-labeling	a	lot	of	stories	(in	order	to	have	a	training	set),	choosing	story
features	(for	example,	words	in	the	title,	and	domains	of	the	links),	and	training	a	Naive
Bayes	classifier	not	unlike	our	spam	filter.

For	reasons	now	lost	to	history,	I	built	it	in	Ruby.	Learn	from	my	mistakes.

https://news.ycombinator.com/news
https://github.com/joelgrus/hackernews

Fire	Trucks
I	live	on	a	major	street	in	downtown	Seattle,	halfway	between	a	fire	station	and	most	of
the	city’s	fires	(or	so	it	seems).	Accordingly,	over	the	years,	I	have	developed	a
recreational	interest	in	the	Seattle	Fire	Department.

Luckily	(from	a	data	perspective)	they	maintain	a	Realtime	911	site	that	lists	every	fire
alarm	along	with	the	fire	trucks	involved.

And	so,	to	indulge	my	interest,	I	scraped	many	years’	worth	of	fire	alarm	data	and
performed	a	social	network	analysis	of	the	fire	trucks.	Among	other	things,	this	required
me	to	invent	a	fire-truck-specific	notion	of	centrality,	which	I	called	TruckRank.

http://www2.seattle.gov/fire/realtime911/getDatePubTab.asp
https://github.com/joelgrus/fire

T-shirts
I	have	a	young	daughter,	and	an	incessant	source	of	frustration	to	me	throughout	her
childhood	has	been	that	most	“girls	shirts”	are	quite	boring,	while	many	“boys	shirts”	are
a	lot	of	fun.

In	particular,	it	felt	clear	to	me	that	there	was	a	distinct	difference	between	the	shirts
marketed	to	toddler	boys	and	toddler	girls.	And	so	I	asked	myself	if	I	could	train	a	model
to	recognize	these	differences.

Spoiler:	I	could.

This	involved	downloading	the	images	of	hundreds	of	shirts,	shrinking	them	all	to	the
same	size,	turning	them	into	vectors	of	pixel	colors,	and	using	logistic	regression	to	build
a	classifier.

One	approach	looked	simply	at	which	colors	were	present	in	each	shirt;	a	second	found
the	first	10	principal	components	of	the	shirt	image	vectors	and	classified	each	shirt	using
its	projections	into	the	10-dimensional	space	spanned	by	the	“eigenshirts”	(Figure	25-2).

Figure	25-2.	Eigenshirts	corresponding	to	the	first	principal	component

https://github.com/joelgrus/shirts

And	You?
What	interests	you?	What	questions	keep	you	up	at	night?	Look	for	a	data	set	(or	scrape
some	websites)	and	do	some	data	science.

Let	me	know	what	you	find!	Email	me	at	joelgrus@gmail.com	or	find	me	on	Twitter	at
@joelgrus.

mailto:joelgrus@gmail.com

Index

A

A/B	test,	Example:	Running	an	A/B	Test

accuracy,	Correctness

of	model	performance,	Correctness

all	function	(Python),	Truthiness

Anaconda	distribution	of	Python,	Getting	Python

any	function	(Python),	Truthiness

APIs,	using	to	get	data,	Using	APIs-Using	Twython

example,	using	Twitter	APIs,	Example:	Using	the	Twitter	APIs-Using	Twython

getting	credentials,	Getting	Credentials

using	twython,	Using	Twython

finding	APIs,	Finding	APIs

JSON	(and	XML),	JSON	(and	XML)

unauthenticated	API,	Using	an	Unauthenticated	API

args	and	kwargs	(Python),	args	and	kwargs

argument	unpacking,	zip	and	Argument	Unpacking

arithmetic

in	Python,	Arithmetic

performing	on	vectors,	Vectors

artificial	neural	networks,	Neural	Networks

(see	also	neural	networks)

assignment,	multiple,	in	Python,	Tuples

B

backpropagation,	Backpropagation

bagging,	Random	Forests

bar	charts,	Bar	Charts-Line	Charts

Bayes’s	Theorem,	Bayes’s	Theorem,	A	Really	Dumb	Spam	Filter

Bayesian	Inference,	Bayesian	Inference

Beautiful	Soup	library,	HTML	and	the	Parsing	Thereof,	n-gram	Models

using	with	XML	data,	JSON	(and	XML)

Bernoulli	trial,	Example:	Flipping	a	Coin

Beta	distributions,	Bayesian	Inference

betweenness	centrality,	Betweenness	Centrality-Betweenness	Centrality

bias,	The	Bias-Variance	Trade-off

additional	data	and,	The	Bias-Variance	Trade-off

bigram	model,	n-gram	Models

binary	relationships,	representing	with	matrices,	Matrices

binomial	random	variables,	The	Central	Limit	Theorem,	Example:	Flipping	a	Coin

Bokeh	project,	Visualization

booleans	(Python),	Truthiness

bootstrap	aggregating,	Random	Forests

bootstrapping	data,	Digression:	The	Bootstrap

bottom-up	hierarchical	clustering,	Bottom-up	Hierarchical	Clustering-Bottom-up
Hierarchical	Clustering

break	statement	(Python),	Control	Flow

buckets,	grouping	data	into,	Exploring	One-Dimensional	Data

business	models,	Modeling

C

CAPTCHA,	defeating	with	a	neural	network,	Example:	Defeating	a	CAPTCHA-
Example:	Defeating	a	CAPTCHA

causation,	correlation	and,	Correlation	and	Causation,	The	Model

cdf	(see	cumulative	distribtion	function)

central	limit	theorem,	The	Central	Limit	Theorem,	Confidence	Intervals

central	tendencies

mean,	Central	Tendencies

median,	Central	Tendencies

mode,	Central	Tendencies

quantile,	Central	Tendencies

centrality

betweenness,	Betweenness	Centrality-Betweenness	Centrality

closeness,	Betweenness	Centrality

degree,	Finding	Key	Connectors,	Betweenness	Centrality

eigenvector,	Eigenvector	Centrality-Centrality

classes	(Python),	Object-Oriented	Programming

classification	trees,	What	Is	a	Decision	Tree?

closeness	centrality,	Betweenness	Centrality

clustering,	Clustering-For	Further	Exploration

bottom-up	hierarchical	clustering,	Bottom-up	Hierarchical	Clustering-Bottom-up
Hierarchical	Clustering

choosing	k,	Choosing	k

example,	clustering	colors,	Example:	Clustering	Colors

example,	meetups,	Example:	Meetups-Example:	Meetups

k-means	clustering,	The	Model

clusters,	Rescaling,	The	Idea

distance	between,	Bottom-up	Hierarchical	Clustering

code	examples	from	this	book,	Using	Code	Examples

coefficient	of	determination,	The	Model

combiners	(in	MapReduce),	An	Aside:	Combiners

comma-separated	values	files,	Delimited	Files

cleaning	comma-delimited	stock	prices,	Cleaning	and	Munging

command	line,	running	Python	scripts	at,	stdin	and	stdout

conditional	probability,	Conditional	Probability

random	variables	and,	Random	Variables

confidence	intervals,	Confidence	Intervals

confounding	variables,	Simpson’s	Paradox

confusion	matrix,	Correctness

continue	statement	(Python),	Control	Flow

continuity	correction,	Example:	Flipping	a	Coin

continuous	distributions,	Continuous	Distributions

control	flow	(in	Python),	Control	Flow

correctness,	Correctness

correlation,	Correlation

and	causation,	Correlation	and	Causation

in	simple	linear	regression,	The	Model

other	caveats,	Some	Other	Correlational	Caveats

outliers	and,	Correlation

Simpson’s	Paradox	and,	Simpson’s	Paradox

correlation	function,	Simple	Linear	Regression

cosine	similarity,	User-Based	Collaborative	Filtering,	Item-Based	Collaborative
Filtering

Counter	(Python),	Counter

covariance,	Correlation

CREATE	TABLE	statement	(SQL),	CREATE	TABLE	and	INSERT

cumulative	distribution	function	(cdf),	Continuous	Distributions

currying	(Python),	Functional	Tools

curse	of	dimensionality,	The	Curse	of	Dimensionality-The	Curse	of	Dimensionality,
User-Based	Collaborative	Filtering

D

D3.js	library,	Visualization

data

cleaning	and	munging,	Cleaning	and	Munging

exploring,	Exploring	Your	Data-Many	Dimensions

finding,	Find	Data

getting,	Getting	Data-For	Further	Exploration

reading	files,	Reading	Files-Delimited	Files

scraping	from	web	pages,	Scraping	the	Web-Example:	O’Reilly	Books	About
Data

using	APIs,	Using	APIs-Using	Twython

using	stdin	and	stdout,	stdin	and	stdout

manipulating,	Manipulating	Data-Manipulating	Data

rescaling,	Rescaling-Rescaling

data	mining,	What	Is	Machine	Learning?

data	science

about,	Data	Science

defined,	What	Is	Data	Science?

doing,	projects	of	the	author,	Do	Data	Science

from	scratch,	From	Scratch

learning	more	about,	Go	Forth	and	Do	Data	Science-And	You?

skills	needed	for,	Data	Science

using	libraries,	Not	from	Scratch

data	visualization,	Visualizing	Data-For	Further	Exploration

bar	charts,	Bar	Charts-Line	Charts

further	exploration	of,	Visualization

line	charts,	Line	Charts

matplotlib,	matplotlib

scatterplots,	Scatterplots-Scatterplots

databases	and	SQL,	Databases	and	SQL-For	Further	Exploration

CREATE	TABLE	and	INSERT	statements,	CREATE	TABLE	and	INSERT-
UPDATE

DELETE	statement,	DELETE

GROUP	BY	statement,	GROUP	BY-GROUP	BY

JOIN	statement,	JOIN

NoSQL,	NoSQL

ORDER	BY	statement,	ORDER	BY

query	optimization,	Query	Optimization

SELECT	statement,	SELECT-SELECT

subqueries,	Subqueries

UPDATE	statement,	UPDATE

decision	trees,	Decision	Trees-For	Further	Exploration

creating,	Creating	a	Decision	Tree

defined,	What	Is	a	Decision	Tree?

entropy,	Entropy

entropy	of	a	partition,	The	Entropy	of	a	Partition

hiring	tree	implementation	(example),	Putting	It	All	Together

random	forests,	Random	Forests

degree	centrality,	Finding	Key	Connectors,	Betweenness	Centrality

DELETE	statement	(SQL),	DELETE

delimited	files,	Delimited	Files

dependence,	Dependence	and	Independence

derivatives,	approximating	with	difference	quotients,	Estimating	the	Gradient

dictionaries	(Python),	Dictionaries

defaultdict,	defaultdict

items	and	iteritems	methods,	Generators	and	Iterators

dimensionality	reduction,	Dimensionality	Reduction-Dimensionality	Reduction

using	principal	component	analysis,	Dimensionality	Reduction

dimensionality,	curse	of,	The	Curse	of	Dimensionality-The	Curse	of	Dimensionality,
User-Based	Collaborative	Filtering

discrete	distribution,	Continuous	Distributions

dispersion,	Dispersion

range,	Dispersion

standard	deviation,	Dispersion

variance,	Dispersion

distance,	The	Model

(see	also	nearest	neighbors	classification)

between	clusters,	Bottom-up	Hierarchical	Clustering

distance	function,	Rescaling,	The	Model

distribution

bernoulli,	The	Central	Limit	Theorem,	Example:	Flipping	a	Coin

beta,	Bayesian	Inference

binomial,	The	Central	Limit	Theorem,	Example:	Flipping	a	Coin

continuous,	Continuous	Distributions

normal,	The	Normal	Distribution

dot	product,	Vectors,	Matrix	Multiplication

dummy	variables,	Multiple	Regression

E

edges,	Network	Analysis

eigenshirts	project,	T-shirts

eigenvector	centrality,	Eigenvector	Centrality-Centrality

ensemble	learning,	Random	Forests

entropy,	Entropy

of	a	partition,	The	Entropy	of	a	Partition

enumerate	function	(Python),	enumerate

errors

in	clustering,	Choosing	k

in	multiple	linear	regression	model,	Further	Assumptions	of	the	Least	Squares
Model

in	simple	linear	regression	model,	The	Model,	Maximum	Likelihood	Estimation

minimizing	in	models,	Gradient	Descent-For	Further	Exploration

standard	errors	of	regression	coefficients,	Standard	Errors	of	Regression
Coefficients-Standard	Errors	of	Regression	Coefficients

Euclidean	distance	function,	Rescaling

exceptions	in	Python,	Exceptions

experience	optimization,	Example:	Running	an	A/B	Test

F

F1	score,	Correctness

false	positives,	Example:	Flipping	a	Coin

farness,	Betweenness	Centrality

features,	Feature	Extraction	and	Selection

choosing,	Feature	Extraction	and	Selection

extracting,	Feature	Extraction	and	Selection

feed-forward	neural	networks,	Feed-Forward	Neural	Networks

files,	reading,	Reading	Files

delimited	files,	Delimited	Files

text	files,	The	Basics	of	Text	Files

filter	function	(Python),	Functional	Tools

fire	trucks	project,	Fire	Trucks

for	comprehensions	(Python),	Generators	and	Iterators

for	loops	(Python),	Control	Flow

in	list	comprehensions,	List	Comprehensions

full	outer	joins,	JOIN

functions	(Python),	Functions

G

generators	(Python),	Generators	and	Iterators

getting	data	(see	data,	getting)

Gibbs	sampling,	An	Aside:	Gibbs	Sampling-An	Aside:	Gibbs	Sampling

Github’s	API,	Using	an	Unauthenticated	API

gradient,	The	Idea	Behind	Gradient	Descent

gradient	descent,	Gradient	Descent-For	Further	Exploration

choosing	the	right	step	size,	Choosing	the	Right	Step	Size

estimating	the	gradient,	Estimating	the	Gradient

example,	minimize_batch	function,	Putting	It	All	Together

stochastic,	Stochastic	Gradient	Descent

using	for	multiple	regression	model,	Fitting	the	Model

using	in	simple	linear	regression,	Using	Gradient	Descent

grammars,	Grammars-Grammars

greedy	algorithms,	Creating	a	Decision	Tree

GROUP	BY	statement	(SQL),	GROUP	BY-GROUP	BY

H

Hacker	News,	Hacker	News

harmonic	mean,	Correctness

hierarchical	clustering,	Bottom-up	Hierarchical	Clustering-Bottom-up	Hierarchical
Clustering

histograms

of	friend	counts	(example),	Describing	a	Single	Set	of	Data

plotting	using	bar	charts,	Bar	Charts

HTML,	parsing,	HTML	and	the	Parsing	Thereof

example,	O’Reilly	books	about	data,	Example:	O’Reilly	Books	About	Data-
Example:	O’Reilly	Books	About	Data

using	Beautiful	Soup	library,	HTML	and	the	Parsing	Thereof

hypotheses,	Hypothesis	and	Inference

hypothesis	testing,	Statistical	Hypothesis	Testing

example,	an	A/B	test,	Example:	Running	an	A/B	Test

example,	flipping	a	coin,	Example:	Flipping	a	Coin-Example:	Flipping	a	Coin

p-hacking,	P-hacking

regression	coefficients,	Standard	Errors	of	Regression	Coefficients-Standard
Errors	of	Regression	Coefficients

using	confidence	intervals,	Confidence	Intervals

using	p-values,	Example:	Flipping	a	Coin

I

if	statements	(Python),	Control	Flow

if-then-else	statements	(Python),	Control	Flow

in	operator	(Python),	Lists,	Dictionaries

in	for	loops,	Control	Flow

using	on	sets,	Sets

independence,	Dependence	and	Independence

indexes	(database	tables),	Indexes

inference

Bayesian	Inference,	Bayesian	Inference

statistical,	in	A/B	test,	Example:	Running	an	A/B	Test

inner	joins,	JOIN

INSERT	statement	(SQL),	CREATE	TABLE	and	INSERT

interactive	visualizations,	Visualization

inverse	normal	cumulative	distribution	function,	The	Normal	Distribution

IPython,	Getting	Python,	IPython

item-based	collaborative	filtering,	Item-Based	Collaborative	Filtering-For	Further
Exploration

J

JavaScript,	D3.js	library,	Visualization

JOIN	statement	(SQL),	JOIN

JSON	(JavaScript	Object	Notation),	JSON	(and	XML)

K

k-means	clustering,	The	Model

choosing	k,	Choosing	k

k-nearest	neighbors	classification	(see	nearest	neighbors	classification)

kernel	trick,	Support	Vector	Machines

key/value	pairs	(in	Python	dictionaries),	Dictionaries

kwargs	(Python),	args	and	kwargs

L

Lasso	regression,	Regularization

Latent	Dirichlet	Analysis	(LDA),	Topic	Modeling

layers	(neural	network),	Feed-Forward	Neural	Networks

least	squares	model

assumptions,	Further	Assumptions	of	the	Least	Squares	Model

in	simple	linear	regression,	The	Model

left	joins,	JOIN

likelihood,	Maximum	Likelihood	Estimation,	The	Logistic	Function

line	charts

creating	with	matplotlib,	matplotlib

showing	trends,	Line	Charts

linear	algebra,	Linear	Algebra-For	Further	Exploration,	Mathematics

matrices,	Matrices-Matrices

vectors,	Vectors-Vectors

linear	regression

multiple,	Multiple	Regression-For	Further	Exploration

assumptions	of	least	squares	model,	Further	Assumptions	of	the	Least	Squares
Model

bootstrapping	new	data	sets,	Digression:	The	Bootstrap

goodness	of	fit,	Goodness	of	Fit

interpreting	the	model,	Interpreting	the	Model

model,	The	Model

regularization,	Regularization

standard	errors	of	regression	coefficients,	Standard	Errors	of	Regression
Coefficients-Standard	Errors	of	Regression	Coefficients

simple,	Simple	Linear	Regression-For	Further	Exploration

maximum	likelihood	estimation,	Maximum	Likelihood	Estimation

model,	The	Model

using	gradient	descent,	Using	Gradient	Descent

using	to	predict	paid	accounts,	The	Problem

list	comprehensions	(Python),	List	Comprehensions

lists	(in	Python),	Lists

representing	matrices	as,	Matrices

sort	method,	Sorting

using	to	represent	vectors,	Vectors

zipping	and	unzipping,	zip	and	Argument	Unpacking

log	likelihood,	The	Logistic	Function

logistic	regression,	Logistic	Regression-For	Further	Investigation

applying	the	model,	Applying	the	Model

goodness	of	fit,	Goodness	of	Fit

logistic	function,	The	Logistic	Function

problem,	predicting	paid	user	accounts,	The	Problem

M

machine	learning,	Machine	Learning-For	Further	Exploration

bias-variance	trade-off,	The	Bias-Variance	Trade-off

correctness,	Correctness

defined,	What	Is	Machine	Learning?

feature	extraction	and	selection,	Feature	Extraction	and	Selection

modeling	data,	Modeling

overfitting	and	underfitting,	Overfitting	and	Underfitting

scikit-learn	library	for,	scikit-learn

magnitude	of	a	vector,	Vectors

manipulating	data,	Manipulating	Data-Manipulating	Data

map	function	(Python),	Functional	Tools

MapReduce,	MapReduce-For	Further	Exploration

basic	algorithm,	MapReduce

benefits	of	using,	Why	MapReduce?

combiners,	An	Aside:	Combiners

example,	analyzing	status	updates,	Example:	Analyzing	Status	Updates

example,	matrix	multiplication,	Example:	Matrix	Multiplication-Example:	Matrix
Multiplication

example,	word	count,	Example:	Word	Count-Why	MapReduce?

math.erf	function	(Python),	The	Normal	Distribution

matplotlib,	matplotlib,	Visualization

matrices,	Matrices-Matrices

importance	of,	Matrices

matrix	multiplication,	Matrix	Multiplication

using	MapReduce,	Example:	Matrix	Multiplication-Example:	Matrix
Multiplication

scatterplot	matrix,	Many	Dimensions

maximum	likelihood	estimation,	Maximum	Likelihood	Estimation

maximum,	finding	using	gradient	descent,	The	Idea	Behind	Gradient	Descent,
Putting	It	All	Together

mean

computing,	Central	Tendencies

removing	from	PCA	data,	Dimensionality	Reduction

median,	Central	Tendencies

meetups	(example),	Example:	Meetups-Example:	Meetups

member	functions,	Object-Oriented	Programming

merged	clusters,	Bottom-up	Hierarchical	Clustering

minimum,	finding	using	gradient	descent,	The	Idea	Behind	Gradient	Descent

mode,	Central	Tendencies

models,	Modeling

bias-variance	trade-off,	The	Bias-Variance	Trade-off

in	machine	learning,	What	Is	Machine	Learning?

modules	(Python),	Modules

multiple	assignment	(Python),	Tuples

N

n-gram	models,	n-gram	Models-n-gram	Models

bigram,	n-gram	Models

trigrams,	n-gram	Models

n-grams,	n-gram	Models

Naive	Bayes	algorithm,	Naive	Bayes-For	Further	Exploration

example,	filtering	spam,	A	Really	Dumb	Spam	Filter-A	More	Sophisticated	Spam
Filter

implementation,	Implementation

natural	language	processing	(NLP),	Natural	Language	Processing-For	Further
Exploration

grammars,	Grammars-Grammars

topic	modeling,	Topic	Modeling-Topic	Modeling

topics	of	interest,	finding,	Topics	of	Interest

word	clouds,	Word	Clouds-Word	Clouds

nearest	neighbors	classification,	k-Nearest	Neighbors-For	Further	Exploration

curse	of	dimensionality,	The	Curse	of	Dimensionality-The	Curse	of	Dimensionality

example,	favorite	programming	languages,	Example:	Favorite	Languages-
Example:	Favorite	Languages

model,	The	Model

network	analysis,	Network	Analysis-For	Further	Exploration

betweenness	centrality,	Betweenness	Centrality-Betweenness	Centrality

closeness	centrality,	Betweenness	Centrality

degree	centrality,	Finding	Key	Connectors,	Betweenness	Centrality

directed	graphs	and	PageRank,	Directed	Graphs	and	PageRank-Directed	Graphs
and	PageRank

eigenvector	centrality,	Eigenvector	Centrality-Centrality

networks,	Network	Analysis

neural	networks,	Neural	Networks-For	Further	Exploration

backpropagation,	Backpropagation

example,	defeating	a	CAPTCHA,	Example:	Defeating	a	CAPTCHA-Example:
Defeating	a	CAPTCHA

feed-forward,	Feed-Forward	Neural	Networks

perceptrons,	Perceptrons

neurons,	Neural	Networks

NLP	(see	natural	language	processing)

nodes,	Network	Analysis

noise,	Rescaling

in	machine	learning,	Overfitting	and	Underfitting

None	(Python),	Truthiness

normal	distribution,	The	Normal	Distribution

and	p-value	computation,	Example:	Flipping	a	Coin

central	limit	theorem	and,	The	Central	Limit	Theorem

in	coin	flip	example,	Example:	Flipping	a	Coin

standard,	The	Normal	Distribution

normalized	tables,	JOIN

NoSQL	databases,	NoSQL

NotQuiteABase,	Databases	and	SQL

null	hypothesis,	Statistical	Hypothesis	Testing

testing	in	A/B	test,	Example:	Running	an	A/B	Test

NumPy,	NumPy

O

one-sided	tests,	Example:	Flipping	a	Coin

ORDER	BY	statement	(SQL),	ORDER	BY

overfitting,	Overfitting	and	Underfitting,	The	Bias-Variance	Trade-off

P

p-hacking,	P-hacking

p-values,	Example:	Flipping	a	Coin

PageRank	algorithm,	Directed	Graphs	and	PageRank

paid	accounts,	predicting,	Paid	Accounts

pandas,	For	Further	Exploration,	For	Further	Exploration,	pandas

parameterized	models,	What	Is	Machine	Learning?

parameters,	probability	judgments	about,	Bayesian	Inference

partial	derivatives,	Estimating	the	Gradient

partial	functions	(Python),	Functional	Tools

PCA	(see	principal	component	analysis)

perceptrons,	Perceptrons

pip	(Python	package	manager),	Getting	Python

pipe	operator	(|),	stdin	and	stdout

piping	data	through	Python	scripts,	stdin	and	stdout

posterior	distributions,	Bayesian	Inference

precision	and	recall,	Correctness

predicate	functions,	DELETE

predictive	modeling,	What	Is	Machine	Learning?

principal	component	analysis,	Dimensionality	Reduction

probability,	Probability-For	Further	Exploration,	Mathematics

Bayes’s	Theorem,	Bayes’s	Theorem

central	limit	theorem,	The	Central	Limit	Theorem

conditional,	Conditional	Probability

continuous	distributions,	Continuous	Distributions

defined,	Probability

dependence	and	independence,	Dependence	and	Independence

normal	distribution,	The	Normal	Distribution

random	variables,	Random	Variables

probability	density	function,	Continuous	Distributions

programming	languages	for	learning	data	science,	From	Scratch

Python,	A	Crash	Course	in	Python-For	Further	Exploration

args	and	kwargs,	args	and	kwargs

arithmetic,	Arithmetic

benefits	of	using	for	data	science,	From	Scratch

Booleans,	Truthiness

control	flow,	Control	Flow

Counter,	Counter

dictionaries,	Dictionaries-defaultdict

enumerate	function,	enumerate

exceptions,	Exceptions

functional	tools,	Functional	Tools

functions,	Functions

generators	and	iterators,	Generators	and	Iterators

list	comprehensions,	List	Comprehensions

lists,	Lists

object-oriented	programming,	Object-Oriented	Programming

piping	data	through	scripts	using	stdin	and	stdout,	stdin	and	stdout

random	numbers,	generating,	Randomness

regular	expressions,	Regular	Expressions

sets,	Sets

sorting	in,	The	Not-So-Basics

strings,	Strings

tuples,	Tuples

whitespace	formatting,	Whitespace	Formatting

zip	function	and	argument	unpacking,	zip	and	Argument	Unpacking

Q

quantile,	computing,	Central	Tendencies

query	optimization	(SQL),	Query	Optimization

R

R	(programming	language),	From	Scratch,	R

random	forests,	Random	Forests

random	module	(Python),	Randomness

random	variables,	Random	Variables

Bernoulli,	The	Central	Limit	Theorem

binomial,	The	Central	Limit	Theorem

conditioned	on	events,	Random	Variables

expected	value,	Random	Variables

normal,	The	Normal	Distribution-The	Central	Limit	Theorem

uniform,	Continuous	Distributions

range,	Dispersion

range	function	(Python),	Generators	and	Iterators

reading	files	(see	files,	reading)

recall,	Correctness

recommendations,	Recommender	Systems

recommender	systems,	Recommender	Systems-For	Further	Exploration

Data	Scientists	You	May	Know	(example),	Data	Scientists	You	May	Know

item-based	collaborative	filtering,	Item-Based	Collaborative	Filtering-For	Further
Exploration

manual	curation,	Manual	Curation

recommendations	based	on	popularity,	Recommending	What’s	Popular

user-based	collaborative	filtering,	User-Based	Collaborative	Filtering-User-Based
Collaborative	Filtering

reduce	function	(Python),	Functional	Tools

using	with	vectors,	Vectors

regression	(see	linear	regression;	logistic	regression)

regression	trees,	What	Is	a	Decision	Tree?

regular	expressions,	Regular	Expressions

regularization,	Regularization

relational	databases,	Databases	and	SQL

rescaling	data,	Rescaling-Rescaling,	Regularization

ridge	regression,	Regularization

right	joins,	JOIN

S

scalars,	Vectors

scale	of	data,	Rescaling

scatterplot	matrices,	Many	Dimensions

scatterplots,	Scatterplots-Scatterplots

schema,	CREATE	TABLE	and	INSERT

scikit-learn,	scikit-learn

scraping	data	from	web	pages,	Scraping	the	Web-Example:	O’Reilly	Books	About
Data

HTML,	parsing,	HTML	and	the	Parsing	Thereof

example,	O’Reilly	books	about	data,	Example:	O’Reilly	Books	About	Data-
Example:	O’Reilly	Books	About	Data

SELECT	statement	(SQL),	SELECT-SELECT

sets	(Python),	Sets

sigmoid	function,	Feed-Forward	Neural	Networks

Simpson’s	Paradox,	Simpson’s	Paradox

smooth	functions,	Feed-Forward	Neural	Networks

social	network	analysis	(fire	trucks),	Fire	Trucks

sorting	(in	Python),	Sorting

spam	filters	(see	Naive	Bayes	algorithm)

sparse	matrices,	Example:	Matrix	Multiplication

SQL	(Structured	Query	Language),	Databases	and	SQL

(see	also	databases	and	SQL)

square	brackets	([]),	working	with	lists	in	Python,	Lists

standard	deviation,	Dispersion

standard	errors	of	coefficients,	Goodness	of	Fit,	Standard	Errors	of	Regression
Coefficients-Regularization

standard	normal	distribution,	The	Normal	Distribution

statistics,	Statistics-For	Further	Exploration,	Mathematics

correlation,	Correlation

and	causation,	Correlation	and	Causation

other	caveats,	Some	Other	Correlational	Caveats

Simpson’s	Paradox,	Simpson’s	Paradox

describing	a	single	dataset,	Describing	a	Single	Set	of	Data

central	tendencies,	Central	Tendencies

dispersion,	Dispersion

testing	hypotheses	with,	Statistical	Hypothesis	Testing

stdin	and	stdout,	stdin	and	stdout

stemming	words,	Testing	Our	Model

stochastic	gradient	descent,	Stochastic	Gradient	Descent

using	to	find	optimal	beta	in	multiple	regression	model,	Fitting	the	Model

using	with	PCA	data,	Dimensionality	Reduction

strings	(in	Python),	Strings

Structured	Query	Language	(see	databases	and	SQL;	SQL)

subqueries,	Subqueries

sum	of	squares,	computing	for	a	vector,	Vectors

supervised	learning,	Clustering

supervised	models,	What	Is	Machine	Learning?

support	vector	machines,	Support	Vector	Machines

T

t-shirts	project,	T-shirts

tab-separated	values	files,	Delimited	Files

tables	(database),	CREATE	TABLE	and	INSERT

indexes,	Indexes

normalized,	JOIN

text	files,	working	with,	The	Basics	of	Text	Files

tokenization,	Grammars

for	Naive	Bayes	spam	filter,	Implementation

topic	modeling,	Topic	Modeling-Topic	Modeling

transforming	data	(dimensionality	reduction),	Dimensionality	Reduction

trends,	showing	with	line	charts,	Line	Charts

trigrams,	n-gram	Models

truthiness	(in	Python),	Truthiness

tuples	(Python),	Tuples

Twenty	Questions,	What	Is	a	Decision	Tree?

Twitter	APIs,	using	to	get	data,	Example:	Using	the	Twitter	APIs-Using	Twython

getting	credentials,	Getting	Credentials

using	twython,	Using	Twython

U

underfitting,	Overfitting	and	Underfitting,	The	Bias-Variance	Trade-off

uniform	distribution,	Continuous	Distributions

cumulative	distribution	function	for,	Continuous	Distributions

unsupervised	learning,	Clustering

unsupervised	models,	What	Is	Machine	Learning?

UPDATE	statement	(SQL),	UPDATE

user-based	collaborative	filtering

V

variance,	Dispersion,	The	Bias-Variance	Trade-off

covariance	versus,	Correlation

reducing	with	more	data,	The	Bias-Variance	Trade-off

vectors,	Vectors-Vectors

adding,	Vectors

dataset	of	multiple	vectors,	representing	as	matrix,	Matrices

distance	between,	computing,	Vectors

dot	product	of,	Vectors

multiplying	by	a	scalar,	Vectors

subtracting,	Vectors

sum	of	squares	and	magnitude,	computing,	Vectors

visualizing	data	(see	data	visualization)

W

WHERE	clause	(SQL),	DELETE

while	loops	(Python),	Control	Flow

whitespace	in	Python	code,	Whitespace	Formatting

word	clouds,	Word	Clouds-Word	Clouds

X

XML	data	from	APIs,	JSON	(and	XML)

xrange	function	(Python),	Generators	and	Iterators

Y

yield	operator	(Python),	Generators	and	Iterators

Z

zip	function	(Python),	zip	and	Argument	Unpacking

using	with	vectors,	Vectors

About	the	Author

Joel	Grus	is	a	software	engineer	at	Google.	Previously	he	worked	as	a	data	scientist	at
several	startups.	He	lives	in	Seattle,	where	he	regularly	attends	data	science	happy	hours.
He	blogs	infrequently	at	joelgrus.com	and	tweets	all	day	long	at	@joelgrus.

http://twitter.com/joelgrus/

Colophon

The	animal	on	the	cover	of	Data	Science	from	Scratch	is	a	Rock	Ptarmigan	(Lagopus
muta).	This	medium-sized	gamebird	of	the	grouse	family	is	called	simply	“ptarmigan”	in
the	UK	and	Canada,	and	“snow	chicken”	in	the	United	States.	The	rock	ptarmigan	is
sedentary,	and	breeds	across	arctic	and	subarctic	Eurasia	as	well	as	North	America	as	far
as	Greenland.	It	prefers	barren,	isolated	habitats,	such	as	Scotland’s	mountains,	the
Pyrenees,	the	Alps,	the	Urals,	the	Pamir	Mountains,	Bulgaria,	the	Altay	Mountains,	and
the	Japan	Alps.	It	eats	primarily	birch	and	willow	buds,	but	also	feeds	on	seeds,	flowers,
leaves,	and	berries.	Developing	young	rock	ptarmigans	eat	insects.

Male	rock	ptarmigans	don’t	have	the	typical	ornaments	of	a	grouse,	aside	from	the	comb,
which	is	used	for	courtship	display	or	altercations	between	males.	Many	studies	have
shown	a	correlation	between	comb	size	and	testosterone	levels	in	males.	Its	feathers	moult
from	winter	to	spring	and	summer,	changing	from	white	to	brown,	providing	it	a	sort	of
seasonal	camouflage.	Breeding	males	have	white	wings	and	grey	upper	parts	except	in
winter,	when	its	plumage	is	completely	white	save	for	its	black	tail.

At	six	months	of	age,	the	ptarmigan	becomes	sexually	mature;	a	breeding	rate	of	six
chicks	per	breeding	season	is	common,	which	helps	protect	the	population	from	outside
factors	such	as	hunting.	It’s	also	spared	many	predators	because	of	its	remote	habitat,	and
is	hunted	mainly	by	golden	eagles.

Rock	ptarmigan	meat	is	a	popular	staple	in	Icelandic	festive	meals.	Hunting	of	rock
ptarmigans	was	banned	in	2003	and	2004	because	of	declining	population.	In	2005,
hunting	was	allowed	again	with	restrictions	to	certain	days.	All	rock	ptarmigan	trade	is
illegal.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Cassell’s	Natural	History.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Data	Science

From	Scratch

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

1.	Introduction
The	Ascendance	of	Data

What	Is	Data	Science?

Motivating	Hypothetical:	DataSciencester
Finding	Key	Connectors

Data	Scientists	You	May	Know

Salaries	and	Experience

Paid	Accounts

Topics	of	Interest

Onward

2.	A	Crash	Course	in	Python
The	Basics

Getting	Python

The	Zen	of	Python

Whitespace	Formatting

Modules

Arithmetic

Functions

Strings

Exceptions

Lists

Tuples

Dictionaries

Sets

Control	Flow

Truthiness

The	Not-So-Basics
Sorting

List	Comprehensions

Generators	and	Iterators

Randomness

Regular	Expressions

Object-Oriented	Programming

Functional	Tools

enumerate

zip	and	Argument	Unpacking

args	and	kwargs

Welcome	to	DataSciencester!

For	Further	Exploration

3.	Visualizing	Data
matplotlib

Bar	Charts

Line	Charts

Scatterplots

For	Further	Exploration

4.	Linear	Algebra
Vectors

Matrices

For	Further	Exploration

5.	Statistics
Describing	a	Single	Set	of	Data

Central	Tendencies

Dispersion

Correlation

Simpson’s	Paradox

Some	Other	Correlational	Caveats

Correlation	and	Causation

For	Further	Exploration

6.	Probability
Dependence	and	Independence

Conditional	Probability

Bayes’s	Theorem

Random	Variables

Continuous	Distributions

The	Normal	Distribution

The	Central	Limit	Theorem

For	Further	Exploration

7.	Hypothesis	and	Inference
Statistical	Hypothesis	Testing

Example:	Flipping	a	Coin

Confidence	Intervals

P-hacking

Example:	Running	an	A/B	Test

Bayesian	Inference

For	Further	Exploration

8.	Gradient	Descent
The	Idea	Behind	Gradient	Descent

Estimating	the	Gradient

Using	the	Gradient

Choosing	the	Right	Step	Size

Putting	It	All	Together

Stochastic	Gradient	Descent

For	Further	Exploration

9.	Getting	Data
stdin	and	stdout

Reading	Files
The	Basics	of	Text	Files

Delimited	Files

Scraping	the	Web
HTML	and	the	Parsing	Thereof

Example:	O’Reilly	Books	About	Data

Using	APIs
JSON	(and	XML)

Using	an	Unauthenticated	API

Finding	APIs

Example:	Using	the	Twitter	APIs
Getting	Credentials

For	Further	Exploration

10.	Working	with	Data
Exploring	Your	Data

Exploring	One-Dimensional	Data

Two	Dimensions

Many	Dimensions

Cleaning	and	Munging

Manipulating	Data

Rescaling

Dimensionality	Reduction

For	Further	Exploration

11.	Machine	Learning
Modeling

What	Is	Machine	Learning?

Overfitting	and	Underfitting

Correctness

The	Bias-Variance	Trade-off

Feature	Extraction	and	Selection

For	Further	Exploration

12.	k-Nearest	Neighbors
The	Model

Example:	Favorite	Languages

The	Curse	of	Dimensionality

For	Further	Exploration

13.	Naive	Bayes
A	Really	Dumb	Spam	Filter

A	More	Sophisticated	Spam	Filter

Implementation

Testing	Our	Model

For	Further	Exploration

14.	Simple	Linear	Regression
The	Model

Using	Gradient	Descent

Maximum	Likelihood	Estimation

For	Further	Exploration

15.	Multiple	Regression
The	Model

Further	Assumptions	of	the	Least	Squares	Model

Fitting	the	Model

Interpreting	the	Model

Goodness	of	Fit

Digression:	The	Bootstrap

Standard	Errors	of	Regression	Coefficients

Regularization

For	Further	Exploration

16.	Logistic	Regression
The	Problem

The	Logistic	Function

Applying	the	Model

Goodness	of	Fit

Support	Vector	Machines

For	Further	Investigation

17.	Decision	Trees
What	Is	a	Decision	Tree?

Entropy

The	Entropy	of	a	Partition

Creating	a	Decision	Tree

Putting	It	All	Together

Random	Forests

For	Further	Exploration

18.	Neural	Networks
Perceptrons

Feed-Forward	Neural	Networks

Backpropagation

Example:	Defeating	a	CAPTCHA

For	Further	Exploration

19.	Clustering
The	Idea

The	Model

Example:	Meetups

Choosing	k

Example:	Clustering	Colors

Bottom-up	Hierarchical	Clustering

For	Further	Exploration

20.	Natural	Language	Processing
Word	Clouds

n-gram	Models

Grammars

An	Aside:	Gibbs	Sampling

Topic	Modeling

For	Further	Exploration

21.	Network	Analysis
Betweenness	Centrality

Eigenvector	Centrality
Matrix	Multiplication

Centrality

Directed	Graphs	and	PageRank

For	Further	Exploration

22.	Recommender	Systems
Manual	Curation

Recommending	What’s	Popular

User-Based	Collaborative	Filtering

Item-Based	Collaborative	Filtering

For	Further	Exploration

23.	Databases	and	SQL
CREATE	TABLE	and	INSERT

UPDATE

DELETE

SELECT

GROUP	BY

ORDER	BY

JOIN

Subqueries

Indexes

Query	Optimization

NoSQL

For	Further	Exploration

24.	MapReduce
Example:	Word	Count

Why	MapReduce?

MapReduce	More	Generally

Example:	Analyzing	Status	Updates

Example:	Matrix	Multiplication

An	Aside:	Combiners

For	Further	Exploration

25.	Go	Forth	and	Do	Data	Science
IPython

Mathematics

Not	from	Scratch
NumPy

pandas

scikit-learn

Visualization

R

Find	Data

Do	Data	Science
Hacker	News

Fire	Trucks

T-shirts

And	You?

Index

	35a4104a0e2785459219fe6dfbd2cb0291ea0ab5118278deb8e3d979813a6b96.pdf
	c341f72fddfccd59ae917cbda9ec67aac913f9ff2085f7711f6fc39225682a29.pdf

	faa128d895132f5289ea7ff0fac820a64d5262203f10113fc0e49e599b9f7074.pdf
	Data Science from Scratch: First Principles with Python
	1. Introduction
	The Ascendance of Data
	What Is Data Science?
	Motivating Hypothetical: DataSciencester
	Finding Key Connectors
	Data Scientists You May Know
	Salaries and Experience
	Paid Accounts
	Topics of Interest
	Onward

	2. A Crash Course in Python
	The Basics
	Getting Python
	The Zen of Python
	Whitespace Formatting
	Modules
	Arithmetic
	Functions
	Strings
	Exceptions
	Lists
	Tuples
	Dictionaries
	defaultdict
	Counter

	Sets
	Control Flow
	Truthiness

	The Not-So-Basics
	Sorting
	List Comprehensions
	Generators and Iterators
	Randomness
	Regular Expressions
	Object-Oriented Programming
	Functional Tools
	enumerate
	zip and Argument Unpacking
	args and kwargs
	Welcome to DataSciencester!

	For Further Exploration

	3. Visualizing Data
	matplotlib
	Bar Charts
	Line Charts
	Scatterplots
	For Further Exploration

	4. Linear Algebra
	Vectors
	Matrices
	For Further Exploration

	5. Statistics
	Describing a Single Set of Data
	Central Tendencies
	Dispersion

	Correlation
	Simpson’s Paradox
	Some Other Correlational Caveats
	Correlation and Causation
	For Further Exploration

	6. Probability
	Dependence and Independence
	Conditional Probability
	Bayes’s Theorem
	Random Variables
	Continuous Distributions
	The Normal Distribution
	The Central Limit Theorem
	For Further Exploration

	7. Hypothesis and Inference
	Statistical Hypothesis Testing
	Example: Flipping a Coin
	Confidence Intervals
	P-hacking
	Example: Running an A/B Test
	Bayesian Inference
	For Further Exploration

	8. Gradient Descent
	The Idea Behind Gradient Descent
	Estimating the Gradient
	Using the Gradient
	Choosing the Right Step Size
	Putting It All Together
	Stochastic Gradient Descent
	For Further Exploration

	9. Getting Data
	stdin and stdout
	Reading Files
	The Basics of Text Files
	Delimited Files

	Scraping the Web
	HTML and the Parsing Thereof
	Example: O’Reilly Books About Data

	Using APIs
	JSON (and XML)
	Using an Unauthenticated API
	Finding APIs

	Example: Using the Twitter APIs
	Getting Credentials
	Using Twython

	For Further Exploration

	10. Working with Data
	Exploring Your Data
	Exploring One-Dimensional Data
	Two Dimensions
	Many Dimensions

	Cleaning and Munging
	Manipulating Data
	Rescaling
	Dimensionality Reduction
	For Further Exploration

	11. Machine Learning
	Modeling
	What Is Machine Learning?
	Overfitting and Underfitting
	Correctness
	The Bias-Variance Trade-off
	Feature Extraction and Selection
	For Further Exploration

	12. k-Nearest Neighbors
	The Model
	Example: Favorite Languages
	The Curse of Dimensionality
	For Further Exploration

	13. Naive Bayes
	A Really Dumb Spam Filter
	A More Sophisticated Spam Filter
	Implementation
	Testing Our Model
	For Further Exploration

	14. Simple Linear Regression
	The Model
	Using Gradient Descent
	Maximum Likelihood Estimation
	For Further Exploration

	15. Multiple Regression
	The Model
	Further Assumptions of the Least Squares Model
	Fitting the Model
	Interpreting the Model
	Goodness of Fit
	Digression: The Bootstrap
	Standard Errors of Regression Coefficients
	Regularization
	For Further Exploration

	16. Logistic Regression
	The Problem
	The Logistic Function
	Applying the Model
	Goodness of Fit
	Support Vector Machines
	For Further Investigation

	17. Decision Trees
	What Is a Decision Tree?
	Entropy
	The Entropy of a Partition
	Creating a Decision Tree
	Putting It All Together
	Random Forests
	For Further Exploration

	18. Neural Networks
	Perceptrons
	Feed-Forward Neural Networks
	Backpropagation
	Example: Defeating a CAPTCHA
	For Further Exploration

	19. Clustering
	The Idea
	The Model
	Example: Meetups
	Choosing k
	Example: Clustering Colors
	Bottom-up Hierarchical Clustering
	For Further Exploration

	20. Natural Language Processing
	Word Clouds
	n-gram Models
	Grammars
	An Aside: Gibbs Sampling
	Topic Modeling
	For Further Exploration

	21. Network Analysis
	Betweenness Centrality
	Eigenvector Centrality
	Matrix Multiplication
	Centrality

	Directed Graphs and PageRank
	For Further Exploration

	22. Recommender Systems
	Manual Curation
	Recommending What’s Popular
	User-Based Collaborative Filtering
	Item-Based Collaborative Filtering
	For Further Exploration

	23. Databases and SQL
	CREATE TABLE and INSERT
	UPDATE
	DELETE
	SELECT
	GROUP BY
	ORDER BY
	JOIN
	Subqueries
	Indexes
	Query Optimization
	NoSQL
	For Further Exploration

	24. MapReduce
	Example: Word Count
	Why MapReduce?
	MapReduce More Generally
	Example: Analyzing Status Updates
	Example: Matrix Multiplication
	An Aside: Combiners
	For Further Exploration

	25. Go Forth and Do Data Science
	IPython
	Mathematics
	Not from Scratch
	NumPy
	pandas
	scikit-learn
	Visualization
	R

	Find Data
	Do Data Science
	Hacker News
	Fire Trucks
	T-shirts
	And You?

	Index

