
Advanced
Applied Deep
Learning

Convolutional Neural Networks and
Object Detection
—
Umberto Michelucci

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Advanced Applied
Deep Learning

Convolutional Neural Networks
and Object Detection

Umberto Michelucci

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

v

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: Introduction and Development Environment Setup�������������1

GitHub Repository and Companion Website���3

Mathematical Level Required��3

Python Development Environment���4

Google Colab���5

Anaconda��9

Docker Image���18

Which Option Should You Choose?��25

Chapter 2: TensorFlow: Advanced Topics��27

Tensorflow Eager Execution���28

Enabling Eager Execution���29

Polynomial Fitting with Eager Execution��30

MNIST Classification with Eager Execution��34

TensorFlow and Numpy Compatibility��39

Hardware Acceleration���40

Checking the Availability of the GPU���40

Device Names���41

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

vi

Explicit Device Placement��42

GPU Acceleration Demonstration: Matrix Multiplication���������������������������������43

Effect of GPU Acceleration on the MNIST Example���45

Training Only Specific Layers���47

Training Only Specific Layers: An Example���48

Removing Layers��52

Keras Callback Functions���54

Custom Callback Class���55

Example of a Custom Callback Class���57

Save and Load Models���61

Save Your Weights Manually���67

Saving the Entire Model���68

Dataset Abstraction��68

Iterating Over a Dataset��71

Simple Batching���72

Simple Batching with the MNIST Dataset���73

Using tf.data.Dataset in Eager Execution Mode��76

Conclusions��77

Chapter 3: Fundamentals of Convolutional Neural Networks��������������79

Kernels and Filters���79

Convolution��81

Examples of Convolution��91

Pooling���99

Padding��104

Building Blocks of a CNN���105

Convolutional Layers��105

Pooling Layers��108

Stacking Layers Together���108

Table of ContentsTable of Contents

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

vii

Number of Weights in a CNN��109

Convolutional Layer��109

Pooling Layer��110

Dense Layer��110

Example of a CNN: MNIST Dataset���110

Visualization of CNN Learning��115

Brief Digression: keras.backend.function( )��115

Effect of Kernels���118

Effect of Max-Pooling���121

Chapter 4: Advanced CNNs and Transfer Learning����������������������������125

Convolution with Multiple Channels���125

History and Basics of Inception Networks���129

Inception Module: Naïve Version��131

Number of Parameters in the Naïve Inception Module���������������������������������132

Inception Module with Dimension Reduction���133

Multiple Cost Functions: GoogLeNet��134

Example of Inception Modules in Keras���136

Digression: Custom Losses in Keras��139

How To Use Pre-Trained Networks���141

Transfer Learning: An Introduction���145

A Dog and Cat Problem��149

Classical Approach to Transfer Learning��150

Experimentation with Transfer Learning���157

Chapter 5: Cost Functions and Style Transfer������������������������������������161

Components of a Neural Network Model���161

Training Seen as an Optimization Problem���162

A Concrete Example: Linear Regression���164

Table of ContentsTable of Contents

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

viii

The Cost Function��165

Mathematical Notation���165

Typical Cost Functions��166

Neural Style Transfer��176

The Mathematics Behind NST��178

An Example of Style Transfer in Keras��183

NST with Silhouettes��190

Masking��192

Chapter 6: Object Classification: An Introduction������������������������������195

What Is Object Localization?��196

Most Important Available Datasets���199

Intersect Over Union (IoU)���200

A Naïve Approach to Solving Object Localization (Sliding Window Approach)���202

Problems and Limitations the with Sliding Window Approach���������������������204

Classification and Localization���211

Region-Based CNN (R-CNN)���213

Fast R-CNN��217

Faster R-CNN���219

Chapter 7: Object Localization: An Implementation in Python����������221

The You Only Look Once (YOLO) Method��222

How YOLO Works��223

YOLOv2 (Also Known As YOLO9000)���226

YOLOv3���227

Non-Maxima Suppression��228

Loss Function���228

Table of ContentsTable of Contents

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

ix

YOLO Implementation in Python and OpenCV��231

Darknet Implementation of YOLO��231

Testing Object Detection with Darknet���233

Training a Model for YOLO for Your Specific Images��240

Concluding Remarks��241

Chapter 8: Histology Tissue Classification��243

Data Analysis and Preparation���244

Model Building���253

Data Augmentation��264

Horizontal and Vertical Shifts���266

Flipping Images Vertically���269

Randomly Rotating Images���269

Zooming in Images���272

Putting All Together��272

VGG16 with Data Augmentation���273

The fit( ) Function��273

The fit_generator( ) Function��274

The train_on_batch( ) Function���275

Training the Network��276

And Now Have Fun…���277

Index��279

Table of ContentsTable of Contents

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

1© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_1

CHAPTER 1

Introduction and
Development
Environment Setup
This book assumes that you have some basic know-how in machine

learning, neural networks, and TensorFlow.1 It follows my first book,

Applied Deep Learning: A Case-Based Approach (ISBN 978-1-4842-3790-8),

published by Apress in 2018, and assumes you know and understand

what is explained in there. The first volume’s goal is to explain the

basic concepts of neural networks and to give you a sound basis in

deep learning, and this book’s goal is to explain more advanced topics,

like convolutional and recurrent neural networks. To be able to profit

from this book, you should have at least a basic knowledge of the

following topics:

•	 How a single neuron and its components work

(activation functions, inputs, weights, and bias)

•	 How to develop a simple neural network with several

layers in Python with TensorFlow or Keras

1�TensorFlow, the TensorFlow logo, and any related marks are trademarks of
Google Inc.

2

•	 What an optimizer is and how it works (at least you

should know how gradient descent works)

•	 Which advanced optimizers are available and how they

work (at least RMSProp, Momentum, and Adam)

•	 What regularization is and what the most common

methods are (ℓ1, ℓ2, and dropout)

•	 What hyperparameters are

•	 How to train a network and which hyper-parameters

play an essential role (for example, the learning rate or

the number of epochs)

•	 What hyperparameter tuning is and how to do it

In the next chapters, we switch freely between low-level TensorFlow

APIs and Keras (introduced in the next chapter) where needed, to

be able to concentrate on the more advanced concepts and not on

implementation details. We will not discuss why a specific optimizer works

better or how neurons work. If any of that is unclear, you should keep my

first book close and use it as a reference.

Additionally, not all the Python code in the book is discussed as

extensively as in my first book. You should already understand Python

code well. However, all the new concepts are explained. If you have a

sound basis, you will understand very well what is going on (and why).

This book is not for beginners of deep learning. If you are one, I suggest

buying my first book and studying it before starting this one.

I hope that the book will be enjoyable and that you will learn a lot from

it. But most of all, I hope it will be fun.

Chapter 1 Introduction and Development Environment Setup

3

�GitHub Repository and Companion Website
The Jupyter Notebooks related to the code I discuss in this book are found

on GitHub.2 To find the link to them, go to the Apress web page for this book.

Near the cover of the book, a button with the text “Download Code” can be

found. It points to the GitHub repository. The notebooks contain specific

topics discussed in the book, including exercises of additional material

that did not fit in the book. It is even possible to leave feedback directly on

GitHub using “Issues” (see https://goo.gl/294qg4 to learn how). It would

be great to hear from you. The GitHub repository acts as a companion to

the book, meaning it contains more code than is printed in the book. If you

are a teacher, I hope you can use these notebooks for your students. The

notebooks are the same ones I use in my university courses, and much work

has gone into making them useful for teaching.

The best way to learn is to try. Don’t merely read the book: try, play

with the code, change it, and apply it to concrete problems.

A companion website is also available, where news about

the book and additional useful material is found. Its URL is

www.applieddeeplearningbook.com.

�Mathematical Level Required
There are a few sections that are more mathematically advanced. You

should understand most of these concepts without the mathematical

details. However, it is essential to know what a matrix is, how to multiply

matrices, what a transpose is, and so on. You basically need a sound grasp

of linear algebra. If that is not the case, I suggest reviewing a linear algebra

book before reading this book. A basic understanding of calculus is also

2�In case you don’t know what GitHub is, you can learn the basics with this guide at
https://guides.github.com/activities/hello-world/

Chapter 1 Introduction and Development Environment Setup

https://goo.gl/294qg4
http://www.applieddeeplearningbook.com
https://guides.github.com/activities/hello-world/

4

beneficial. It is important not to skip the mathematical parts. They can

help you understand why we do things in specific ways. You should also

not be scared by more complex mathematical notations. The goal of this

book is not to give you a mathematical foundation; I assume you have that

already. Deep learning and neural networks (in general, machine learning)

are complex and whoever tries to convince you otherwise is lying or

doesn’t understand them.

We will not spend time justifying or deriving algorithms or equations.

Additionally, we will not discuss the applicability of specific equations. For

example, we will not discuss the problem of differentiability of functions

when we calculate derivatives. Just assume we can apply the formulas you

find here. Many years of practical implementations have shown the deep

learning community that those methods and equations work as expected.

These kinds of advanced discussions would require a separate book.

�Python Development Environment
In this book, we work exclusively with TensorFlow and Keras from Google,

and we develop our code exclusively with Jupyter Notebooks, so it is

crucial to know how to deal with them. There are three main possibilities

when working with the code in the book, and in general when working

with Python and TensorFlow:

•	 Use Google Colab, a cloud-based Python development

environment.

•	 Install a Python development environment locally on a

laptop or desktop.

•	 Use a Docker image provided by Google, with

TensorFlow installed.

Let’s look at the different options in order to decide which one is the

best for you.

Chapter 1 Introduction and Development Environment Setup

5

�Google Colab
As mentioned, Google Colab is a cloud-based environment. That means

nothing has to be installed locally. A Google account and a web browser

(preferably Google Chrome) are the only things you need. The URL of the

service is https://colab.research.google.com/.

Just log in with a Google account or create one if you don’t have one.

You will then get a window where you can open existing notebooks, if

you have some already in the cloud, or create new ones. The window looks

like Figure 1-1.

Figure 1-1.  The first screen you see when you log in to Google Colab.
In this screenshot, the Recent tab is open. Sometimes the Recent tab is
opened the first time you log in.

Chapter 1 Introduction and Development Environment Setup

https://colab.research.google.com/

6

In the lower right, you can see the NEW PYTHON 3 NOTEBOOK link

(typically in blue). If you click on the small downward triangle, you have

the option of creating a Python 2 notebook. In this book, we use Python 3

exclusively. If you click the link, you get an empty Jupyter Notebook, like

the one shown in Figure 1-2.

Figure 1-2.  The empty Jupyter Notebook you see when you create a
new notebook in Google Colab

The notebook works precisely like a locally installed Jupyter Notebook,

with the exception that keyboard shortcuts (referred to here as simply

shortcuts) are not the same as the ones in a local installation. For example,

pressing X to delete a cell does not work here (but works in a local

installation). In case you are stuck, and you don’t find the shortcut you

want, you can press Ctrl+Shift+P to get a popup where you can search

through the shortcuts. Figure 1-3 shows this popup.

Chapter 1 Introduction and Development Environment Setup

7

For example, typing DELETE in the popup tells you that, to delete a

cell, you need to type Ctrl+M and then D. An exceptional place to start

learning what is possible in Google Colab is from this Google notebook:

https://Colab.research.Google.com/notebooks/basic_features_

overview.ipynb (https://goo.gl/h9Co1f).

Figure 1-3.  The popup to search keyboard shortcuts when pressing
Ctrl+Shift+P. Note that you can type a command name to search for
it. You don’t need to scroll through them.

Chapter 1 Introduction and Development Environment Setup

https://colab.research.google.com/notebooks/basic_features_overview.ipynb
https://colab.research.google.com/notebooks/basic_features_overview.ipynb
https://goo.gl/h9Co1f

8

Note  Google Colab has a great feature: it allows you to use GPU
(Graphical Processing Unit) and TPU (Tensor Processing Unit)3
hardware acceleration for your experimentation. I will explain what
difference this makes and how to use this when the time comes, but
it will not be necessary to try the code and examples in this book.

�Benefits and Drawbacks to Google Colab

Google Colab is a great development environment, but it has positive and

negative aspects. Here is an overview.

Positives:

•	 You don’t have to install anything on your laptop/

desktop.

•	 You can use GPU and TPU acceleration without buying

expensive hardware.

•	 It has excellent sharing possibilities.

•	 Multiple people can collaboratively edit the same

notebook at the same time. Like Google Docs, you can

set collaborators both within the document (top right,

left of the comments button) and within a cell (right of

the cell).4

3�In deep learning, most of the calculations are done between tensors (multi-
dimensional arrays). GPUs and TPUs are chips that are highly optimized to
perform such calculations (like matrix multiplications) between very big tensors
(up to a million of elements). When developing networks, it is possible to let
GPUs and TPUs perform such expensive calculation in Google Colab, speeding
up the training of networks.

4�Google Colab documentation is found at https://goo.gl/bKNWy8

Chapter 1 Introduction and Development Environment Setup

https://goo.gl/bKNWy8

9

Negatives:

•	 You need to be online to use and work with it. If you

want to study this book on a train while commuting,

you may not be able to do so.

•	 If you have sensitive data and you are not allowed to

upload it to a cloud service, you cannot work with it.

•	 This system is designed for research and

experimentation, so you should not use it as a

substitute productive environment.

�Anaconda
The second way of using and testing the code in this book is to have a local

installation of Python and TensorFlow on your laptop or desktop. The

easiest way to do that is using Anaconda. Here I describe in quite some

detail how to do that.

To set it up, first download and install Anaconda for your system (I

used Anaconda on Windows 10, but the code is not dependent on it, so feel

free to use a Mac or Linux version if you prefer). You can get the Anaconda

from https://anaconda.org/.

On the right side of the web page (see Figure 1-4), you’ll find a

Download Anaconda link.

Figure 1-4.  On the top-right side of the Anaconda website, you’ll find
a link to download the software

Chapter 1 Introduction and Development Environment Setup

https://anaconda.org/

10

Just follow the instructions to install it. When you start it after the

installation, you should see the screen shown in Figure 1-5.

Figure 1-5.  The screen you see when you start Anaconda

Python packages (like numpy) are updated regularly and very often. A

new version of a package may make your code stop working. Functions are

deprecated and removed and new ones are added. To solve this problem,

in Anaconda you can create what is called an environment. That is a

container that contains a specific Python version and specific versions

of the packages you decide to install. This way, you can have a container

for Python 2.7 and numpy 1.10 and another with Python 3.6 and numpy

1.13, for example. You may have to work with code that exists already, and

that is based on Python 2.7, and therefore you need a container with the

right Python version. However, at the same time, it may be that for your

projects you need Python 3.6. With containers, you can do all this at the

same time. Sometimes different packages conflict, so you must be careful,

Chapter 1 Introduction and Development Environment Setup

11

and you should avoid installing all the packages you find interesting in

your environment, primarily if you use it for developing under a deadline.

There’s nothing worse than discovering that your code is not working

anymore, and you don’t know why.

Note  When you define an environment, try to install only the
packages you need and pay attention when you update them to make
sure that the upgrade does not break your code (remember that
functions are deprecated, removed, added, or changed very often).
Check the updates documentation before upgrading and do it only if
you need the updated features.

In the first book of the series (https://goo.gl/ytiQ1k), I explained

how to create an environment with the graphical interface, so you can check

that to learn how, or you can read the following page on the Anaconda

documentation to understand how to work with environments in detail:

https://conda.io/docs/user-guide/tasks/manage-environments.html

In the next section, we will create an environment and install

TensorFlow in one shot, with one command only.

�Installing TensorFlow the Anaconda Way

Installing TensorFlow is not complicated and has gotten a lot easier in

the last year since my last book. To start (we describe the procedure for

Windows here), go into the Start menu in Windows and type Anaconda.

You should see the Anaconda Prompt under Apps. (You should see

something similar to what is shown in Figure 1-6.)

Chapter 1 Introduction and Development Environment Setup

https://goo.gl/ytiQ1k
https://conda.io/docs/user-guide/tasks/manage-environments.html

12

Start the Anaconda Prompt (see Figure 1-7). A command-line interface

should start. The difference between this and the simple cmd.exe command

prompt is that, here, all the Anaconda commands are recognized without

having to set up Windows environment variables.

Figure 1-6.  If you type Anaconda in the Start menu search field
in Windows 10 you should see at least two entries: the Anaconda
Navigator and the Anaconda Prompt.

Figure 1-7.  This is what you should see when you start the Anaconda
Prompt. Note that the username will be different. You will not see
“umber” (my username), but your username.

Chapter 1 Introduction and Development Environment Setup

13

Then just type the following commands:

conda create -n tensorflow tensorflow

conda activate tensorflow

The first line creates an environment called tensorflow with TensorFlow

already installed, and the second line activates the environment. Then you

only need to install the following packages with this code:

conda install Jupyter

conda install matplotlib

conda install scikit-learn

Note that sometimes you may get some warnings simply by importing

TensorFlow with this command:

import tensorflow as tf

The warnings are due, most probably, by an outdated hdf5 version. To

solve this issue (if it happens to you), try to update it using this code (if you

don’t get any warning you can skip this step):

conda update hdf5

You should be all set up. If you have a compatible GPU graphic card

installed locally, you can simply install the GPU version of TensorFlow by

using this command:

conda create -n tensorflow_gpuenv tensorflow-gpu

This will create an environment with the GPU version of TensorFlow

installed. If you do this, remember to activate the environment and

then install all the additional packages as we have done here, in this

new environment. Note that to use a GPU, you need additional libraries

installed on your system. You can find all the necessary information for the

Chapter 1 Introduction and Development Environment Setup

14

different operating systems (Windows, Mac, and Linux) at https://www.

tensorflow.org/install/gpu. Note that the TensorFlow website suggests

using a Docker image (discussed later in the chapter) if you’re using a GPU

for hardware acceleration.

�Local Jupyter Notebooks

The last step to be able to type code and let it run is to use a Jupyter

Notebook from a local installation. The Jupyter Notebook can be described

(according to the official website) as follows:

The Jupyter Notebook is an open source web application that
allows you to create and share documents that contain live
code, equations, visualizations, and narrative text. Uses
include data cleaning and transformation, numerical simula-
tion, statistical modeling, data visualization, machine learn-
ing, and much more.

It is widely used in the machine learning community and is a good idea

to learn how to use it. Check out the Jupyter project website at http://

Jupyter.org/. It is very instructive and includes many examples of what is

possible.

All the code you find in this book has been developed and tested using

Jupyter Notebooks. I assume that you have some experience with this

web-based development environment. If you need a refresher, I suggest

you check out the documentation. You can find it on the Jupyter project

website at this address: http://Jupyter.org/documentation.html.

To start a notebook in your new environment, you must go back

to Anaconda Navigator and click on the triangle to the right of your

tensorflow environment (if you used a different name, you have to

click on the triangle to the right of your new environment), as shown in

Figure 1-8. Then click on the Open with Jupyter Notebook option.

Chapter 1 Introduction and Development Environment Setup

https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/gpu
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/documentation.html

15

Your browser starts with a list of the folders in your user folder. (If you

are using Windows, this is usually located in c:\Users\<YOUR USER NAME>,

where you substitute <YOUR USER NAME> with your username.) From there,

you should navigate to a folder where you want to save your notebook files.

You can create a new one by clicking on the New button, as illustrated in

Figure 1-9.

Figure 1-8.  To start a Jupyter Notebook in your new environment,
click on the triangle to the right of the TensorFlow environment name
and choose Open with Jupyter Notebook

Figure 1-9.  To create a new notebook, click on the New button
located on the top-right part of the page and choose Python 3

Chapter 1 Introduction and Development Environment Setup

16

A new page that should look like the one in Figure 1-10 will open.

Figure 1-10.  An empty Jupyter Notebook as it appears immediately
after creation

For example, you can type the following code in the first “cell” (the

rectangular space where you can type).

a=1

b=2

print(a+b)

To evaluate the code press Shift+Enter and you should see the result (3)

immediately, as shown in Figure 1-11.

Figure 1-11.  After typing some code in the cell, pressing Shift+Enter
evaluates the code in the cell

The result of a+b is 3 (as shown in Figure 1-11). A new empty cell is

automatically created after the result for you to type in.

For more information on how to add comments, equations, inline

plots, and much more, I suggest you visit the Jupyter website and check out

their documentation.

Chapter 1 Introduction and Development Environment Setup

17

Note  In case you forget which folder your notebook is in, you can
check the URL of the page. For example, in my case, I have http://
localhost:8888/notebooks/Documents/Data%20Science/
Projects/Applied%20advanced%20deep%20learning%20
(book)/chapter%201/AADL%20-%20Chapter%201%20-%20
Introduction.ipynb. Note that the URL is merely a concatenation
of the folders showing where the notebook is located, separated by
forward slashes. A %20 character indicates a space. In this case, my
notebook is in the Documents/Data Science/Projects/...
folder. I often work with several notebooks at the same time and it’s
useful to know where each notebook is located, in case you forget
(as I often do).

�Benefits and Drawbacks to Anaconda

Let’s take a look at the positive and the negative sides of Anaconda now.

Positives:

•	 The system does not require an active Internet

connection (except when installing), so you can work

with it everywhere (on the train, for example).

•	 If you are working on sensitive data that you cannot

upload to a cloud service, this is the solution for you,

since you can work with data locally.

•	 You can keep close control over which packages you

install and on which environment you create.

Chapter 1 Introduction and Development Environment Setup

18

Negatives:

•	 It is quite annoying to get the TensorFlow GPU version

to work (you need additional libraries for it to work)

with this method. The TensorFlow website suggests

using a Docker image (see the next section) for it.

•	 It is complicated to share your work with other people

directly. If sharing is essential, you should consider

Google Colab.

•	 If you are using a corporate laptop that must work

behind a firewall or a proxy, it’s challenging to work with

Jupyter Notebooks, since sometimes, the notebooks

may need to connect to the Internet and, if you are

behind a firewall, this may not be possible. Installing

packages may also be complicated in this case.

•	 The performance of your code depends on the power

and memory of your laptop or desktop. If you are using

a slow or old machine, your code may be very slow. In

this case, Google Colab may be the better option.

�Docker Image
The third option you have is to use a Docker image with TensorFlow

installed. Docker (https://www.docker.com/) in a way is a bit like a virtual

machine. However, unlike a virtual machine, rather than creating a whole

virtual operating system, it merely adds components that are not present

on the host machine.5 First, you need to download Docker for your system.

A good starting point to learn about it and download it is at https://docs.

docker.com/install/.

5�https://opensource.com/resources/what-docker [Last accessed: 19/12/2018]

Chapter 1 Introduction and Development Environment Setup

https://www.docker.com/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://opensource.com/resources/what-docker

19

First, install Docker on your system. Once you have done so, you can

access all different types of TensorFlow versions by using the following

command. You must type this command into a command-line interface (for

example, cmd in Windows, Terminal on the Mac, or a shell under Linux):

docker pull TensorFlow/TensorFlow:<TAG>

You should substitute <TAG> with the right text (called a tag as you may

imagine), like latest-py3, if you want the latest stable CPU-based build

from Python 3.5. You can find an updated list of all tags at https://hub.

docker.com/r/TensorFlow/TensorFlow/tags/.

In this example, you would need to type:

docker pull tensorflow/tensorflow:latest-py3

This command downloads the right image automatically. Docker is

efficient, and you can ask it to run the image immediately. If it does not

find it locally, it downloads it. You can use the following command to start

the image:

docker run -it -p 8888:8888 tensorflow/tensorflow:latest-py3

If you haven’t already downloaded it, this command downloads the

latest TensorFlow version based on Python 3 and starts it. You should see

output like the following if everything goes well:

C:\Users\umber>docker run -it -p 8888:8888 tensorflow/

tensorflow:latest-py3

Unable to find image 'TensorFlow/TensorFlow:latest-py3' locally

latest-py3: Pulling from TensorFlow/TensorFlow

18d680d61657: Already exists

0addb6fece63: Already exists

78e58219b215: Already exists

eb6959a66df2: Already exists

3b57572cd8ae: Pull complete

Chapter 1 Introduction and Development Environment Setup

https://hub.docker.com/r/tensorflow/tensorflow/tags/
https://hub.docker.com/r/tensorflow/tensorflow/tags/

20

56ffb7bbb1f1: Pull complete

1766f64e236d: Pull complete

983abc49e91e: Pull complete

a6f427d2463d: Pull complete

1d2078adb47a: Pull complete

f644ce975673: Pull complete

a4eaf7b16108: Pull complete

8f591b09babe: Pull complete

Digest: sha256:1658b00f06cdf8316cd8a905391235dad4bf25a488f1ea98

9a98a9fe9ec0386e

Status: Downloaded newer image for TensorFlow/TensorFlow:latest-py3

[I 08:53:35.084 NotebookApp] Writing notebook server cookie

secret to /root/.local/share/Jupyter/runtime/notebook_cookie_

secret

[I 08:53:35.112 NotebookApp] Serving notebooks from local

directory: /notebooks

[I 08:53:35.112 NotebookApp] The Jupyter Notebook is running at:

[I 08:53:35.112 NotebookApp] http://(9a30b4f7646e or

127.0.0.1):8888/?token=f2ff836cccb1d688f4d9ad8c7ac3af80011f11ea

77edc425

[I 08:53:35.112 NotebookApp] Use Control-C to stop this server

and shut down all kernels (twice to skip confirmation).

[C 08:53:35.113 NotebookApp]

 �Copy/paste this URL into your browser when you connect for

the first time, to login with a token:

 �http://(9a30b4f7646e or 127.0.0.1):8888/?token=f2ff836c

ccb1d688f4d9ad8c7ac3af80011f11ea77edc425

At this point, you can simply connect to a Jupyter server running from

the Docker image.

Chapter 1 Introduction and Development Environment Setup

21

At the end of all previous messages, you’ll find the URL you should

type in the browser to use Jupyter Notebooks. When you copy the URL,

simply substitute cbc82bb4e78c or 127.0.0.1 with 127.0.0.1. Copy

it into the URL field of your browser. The page should look like the one

shown in Figure 1-12.

Figure 1-12.  The navigation window you see when using a Docker
image Jupyter instance

It’s important to note that if you use the notebook out of the box, all

files and notebooks that you create will disappear the next time you start

the Docker image.

Note  If you use the Jupyter Notebook server as it is, and you create
new notebooks and files, they will all disappear the next time you start
the server. You need to mount a local directory that resides on your
machine so that you can save your files locally and not in the image itself.

Chapter 1 Introduction and Development Environment Setup

22

Let’s suppose you are using a Windows machine and that your

notebooks reside locally at c:\python. To see and use them while using

Jupyter Notebooks from the Docker image, you need to start the Docker

instance using the -v option in the following way:

docker run -it -v c:/python:/notebooks/python -p 8888:8888

TensorFlow/TensorFlow:latest-py3

This way, you can see all your files that are under c:\python in a folder

called python in the Docker image. You specify the local folder (where the

files are local) and the Docker folder name (where you want to see the files

while using Jupyter Notebooks from the Docker image) with the -v option:

-v <LOCAL FOLDER>:/notebooks/<DOCKER FOLDER>

In our example, <LOCAL FOLDER> is c:/python (the local folder you

want to use for your locally saved notebooks) and <DOCKER FOLDER> is

python (where you want Docker to mount the folder with your notebooks).

Once you run the code, you should see output like the following:

[I 09:23:49.182 NotebookApp] Writing notebook server cookie

secret to /root/.local/share/Jupyter/runtime/notebook_cookie_

secret

[I 09:23:49.203 NotebookApp] Serving notebooks from local

directory: /notebooks

[I 09:23:49.203 NotebookApp] The Jupyter Notebook is running at:

[I 09:23:49.203 NotebookApp] http://(93d95a95358a or

127.0.0.1):8888/?token=d564b4b1e806c62560ef9e477bfad99245bf9670

52bebf68

[I 09:23:49.203 NotebookApp] Use Control-C to stop this server

and shut down all kernels (twice to skip confirmation).

[C 09:23:49.204 NotebookApp]

Chapter 1 Introduction and Development Environment Setup

23

 �Copy/paste this URL into your browser when you connect for

the first time, to log in with a token:

 �http://(93d95a95358a or 127.0.0.1):8888/?token=d564b4b1

e806c62560ef9e477bfad99245bf967052bebf68

Now, when you start your browser with the URL given at the end of

the last message (where you must substitute 93d95a95358a or 127.0.0.1

with 127.0.0.1), you should see a Python folder named python, as shown

in the one circled in Figure 1-13.

Figure 1-13.  The folder that you should see when starting the Docker
image with the correct -v option. In the folder, you can now see all the
files that are saved locally in the c:\python folder.

You can now see all your locally saved notebooks, and if you save a

notebook in the folder, you will find it again when you restart your Docker

image.

Chapter 1 Introduction and Development Environment Setup

24

On a final note, if you have a compatible GPU at your disposal,6 you

can directly download the latest GPU TensorFlow version, for example,

using the tag, latest-gpu. You can find more information at

https://www.TensorFlow.org/install/gpu.

�Benefits and Drawbacks to a Docker Image

Let’s take a look at the positive and the negative aspects of this option.

Positives:

•	 You don’t need to install anything locally, except

Docker.

•	 The installation process is straightforward.

•	 You get the latest version of TensorFlow automatically.

•	 It is the preferred option to choose if you want to use

the GPU version of TensorFlow.

Negatives:

•	 You cannot develop with this method in several

environments and with several versions of the

packages.

•	 Installing specific package versions is complicated.

•	 Sharing notebooks is more complicated than with other

options.

•	 The performance of your code is limited by the

hardware on which you are running the Docker image.

6�You can find a list of all compatible GPUs at https://developer.nvidia.com/
cuda-gpus and TensorFlow information at https://www.TensorFlow.org/
install/gpu.

Chapter 1 Introduction and Development Environment Setup

https://www.tensorflow.org/install/gpu
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/gpu

25

�Which Option Should You Choose?
You can quickly start with any of the options described and later continue

with another one. Your code will continue to work. The only thing you

need to be aware of is that, if you develop extensive amounts of code with

GPU support and then try to run this on a system without GPU support,

you may need to modify the code extensively. To decide which option is

the best one for you, I provided the following questions and answers.

•	 Do you need to work on sensitive data?

If you need to work on sensitive data (for example,

medical data) that you cannot upload on a cloud

service, you should choose a local installation with

Anaconda or Docker. You cannot use Google Colab.

•	 Do you often work in an environment without an
Internet connection?

If you want to write code and train your models

without an active Internet connection (for example,

while commuting), you should choose a local

installation of Anaconda or Docker, since Google

Colab requires an active Internet connection.

•	 Do you need to work on the same notebook in
parallel with other people?

If you want to share your work with others and work

on it at the same time as others, the best solution is

to use Google Colab, since it offers a great sharing

experience, one that is missing from the local

installation options.

Chapter 1 Introduction and Development Environment Setup

26

•	 You don’t want to (or can’t) install anything on your
laptop/desktop?

If you don’t want to or can’t install anything on your

laptop or desktop (maybe it’s a corporate laptop),

you should use Google Colab. You only need an

Internet connection and a browser. Keep in mind

that some features work only with Google Chrome

and not Internet Explorer.

Note T he easiest way to get up and running and start developing
models with TensorFlow is probably to use Google Colab since it
does not require any installation. Directly go the website, log in, and
start writing code. If you need to work locally, the Docker option is
probably the easiest solution. It is straightforward to get it up and
running and you get to work with the latest version of TensorFlow.
If you need the flexibility of many environments and precise control
over which version of each package you’re using, your only solution
is to perform a complete local installation of a Python development
environment, like Anaconda.

Chapter 1 Introduction and Development Environment Setup

27© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_2

CHAPTER 2

TensorFlow:
Advanced Topics
The TensorFlow library has come a long way from its first appearance.

Especially in the last year, many more features have become available that

can make the life of researchers a lot easier. Things like eager execution

and Keras allow scientists to test and experiment much faster and debug

models in ways that were not possible before. It is essential for any

researcher to know those methods and know when it makes sense to

use them. In this chapter, we will look at few of them: eager execution,

GPU acceleration, Keras, how to freeze parts of a network and train only

specific parts (used very often, especially in transfer learning and image

recognition), and finally how to save and restore models already trained.

Those technical skills will be very useful, not only to study this book, but in

real-life research projects.

The goal of this chapter is not to teach you how to use Keras from the

ground up, or to teach you all the intricacies of the methods, but to show

you some advanced techniques to solve some specific problems. Consider

the different sections as hints. Remember that is always a good idea to

study the official documentation, since methods and functions change very

often. In this chapter, I will avoid copying the official documentation, and

instead give you few advanced examples of techniques that are very useful

and are used very often. To go deeper (pun intended), you should study the

official TensorFlow documentation at https://www.tensorflow.org/.

https://www.tensorflow.org/

28

To study and understand advanced topics, a good basis in Tensorflow

and Keras is required. A very good resource to get up to speed with Keras

is the book Learn Keras for Deep Neural Networks - A Fast-Track Approach

to Modern Deep Learning with Python from Jojo John Moolayil (https://

goo.gl/mW4Ubg). If you don’t have much experience, I suggest you get this

book and study it before starting this one.

�Tensorflow Eager Execution
TensorFlow’s eager execution is an imperative programming

environment.1 That, loosely explained, means that the commands are

evaluated immediately. That also means that a computational graph

is built in the background without you noticing it. Operations return

concrete values immediately instead of having first open a session, and

then run it. This makes it very easy to start with TensorFlow, since it

resembles classical Python programming. Eager execution provides the

following advantages:

•	 Easier debugging: You can debug your models with

classical Python debugging tools for immediate checks

•	 Intuitive interface: You can structure your code

naturally, as you would do in a classical Python

program

•	 Support for GPU acceleration is available

To be able to use this execution mode, you will need the latest version

of TensorFlow. If you have not yet installed it, see Chapter 1 to learn how to

do it.

1�https://www.tensorflow.org/guide/eager (accessed 17th January, 2019)

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/mW4Ubg
https://goo.gl/mW4Ubg
https://www.tensorflow.org/guide/eager

29

�Enabling Eager Execution
To enable eager execution, you can use the following code:

import tensorflow as tf

tf.enable_eager_execution()

Remember that you need to do that right at the beginning, after the

imports and before any other command. Otherwise, you will get an

error message. If that is the case, you can simply restart the kernel of the

notebook.

For example, you can easily add two tensors

print(tf.add(1, 2))

and get immediately this result

tf.Tensor(3, shape=(), dtype=int32)

If you don’t enable eager execution and try the print command again,

you will get this result

Tensor("Add:0", shape=(), dtype=int32)

Since TensorFlow has not yet evaluated the node. You would need the

following code to get the result:

sess = tf.Session()

print(sess.run(tf.add(1,2)))

sess.close()

The result will be, of course, 3. This second version of the code creates

a graph, then opens a session, and then evaluates it. With eager you get

the result immediately. You can easily check if you have enabled eager

execution with this:

tf.executing_eagerly()

Chapter 2 TensorFlow: Advanced Topics

30

It should return True or False, depending on if you have enabled it or

not.

�Polynomial Fitting with Eager Execution
Let’s check how eager execution works in a practical example.2

Keep in mind you need the following imports:

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import tensorflow.contrib.eager as tfe

tf.enable_eager_execution()

Let’s generate some fake data for this function

y x x x= - - +3 24 2 2

with the code

x = np.arange(0, 5, 0.1)

y = x**3 - 4*x**2 - 2*x + 2

y_noise = y + np.random.normal(0, 1.5, size=(len(x),))

We have created two numpy arrays: y, which contains the function

evaluated over the array x, and y_noise, which contains y with some noise

added. You can see how the data looks in Figure 2-1.

2�You can find the notebook with the code in the book repository. To find it, go to
the Apress book website and click on the Download Code button. The link points
to the GitHub repository. The notebook is in the Chapter2 folder.

Chapter 2 TensorFlow: Advanced Topics

31

Now we need to define a model that we want to fit and define our loss

function (the one we want to minimize with TensorFlow). Remember we

are facing a regression problem, so we will use the Mean Squared Error

(MSE) as our loss function. The functions we need are as follows:

class Model(object):

 def __init__(self):

 �self.w = tfe.Variable(tf.random_normal([4])) # The 4

parameters

 def f(self, x):

 �return self.w[0] * x ** 3 + self.w[1] * x ** 2 +

self.w[2] * x + self.w[3]

and

def loss(model, x, y):

 err = model.f(x) - y

 return tf.reduce_mean(tf.square(err))

Figure 2-1.  The plot shows the two numpy arrays y (ground truth)
and y_noise (ground truth + noise)

Chapter 2 TensorFlow: Advanced Topics

32

Now is easy to minimize the loss function. First let’s define some

variables we will need:

model = Model()

grad = tfe.implicit_gradients(loss)

optimizer = tf.train.AdamOptimizer()

Then let’s, with a for loop, minimize the loss function:

iters = 20000

for i in range(iters):

 optimizer.apply_gradients(grad(model, x, y))

 if i % 1000 == 0:

 �print("Iteration {}, loss: {}".format(i+1, loss(model,

x, y).numpy()))

This code will produce some outputs showing you the value for the

loss function each 1,000 iterations. Note that we are feeding all the data

in one batch to the optimizer (since we have only 50 data points, we don’t

really need to use mini-batches).

You should see several output lines like this one:

Iteration 20000, loss: 0.004939439240843058

The loss function plot versus the number of the iterations can be seen

in Figure 2-2 and is decreasing constantly, as expected.

Chapter 2 TensorFlow: Advanced Topics

33

In Figure 2-3, you can see the function the optimizer was able to find,

by minimizing the weights.

Figure 2-2.  The loss function (MSE) vs. the iteration number is
decreasing as expected. That shows clearly that the optimizer is doing
a good job finding the best weights to minimize the loss function.

Figure 2-3.  The red dashed line is the function obtained by
minimizing the loss function with the Adam optimizer. The method
worked perfectly and found the right function efficiently.

Chapter 2 TensorFlow: Advanced Topics

34

What you should note is that we did not create a computational graph

explicitly and then evaluate it in a session. We simply used the commands

as we would with any Python code. For example, in the code

for i in range(iters):

 optimizer.apply_gradients(grad(model, x, y))

we simply call a TensorFlow operation in a loop without the need of

a session. With eager execution, it’s easy to start using TensorFlow

operations quickly without too much overhead.

�MNIST Classification with Eager Execution
To give another example of how you can build a model with eager

execution, let’s build a classifier for the famous MNIST dataset. This is a

dataset containing 60000 images of handwritten digits (from 0 to 9), each

with a dimension of 28x28 in gray levels (each pixel has a value ranging

from 0 to 255). If you have not seen the MNIST dataset, I suggest you check

out the original website at https://goo.gl/yF0yH, where you will find all

the information. We will implement the following steps:

•	 Load the dataset.

•	 Normalize the features and one-hot encode the labels.

•	 Convert the data in a tf.data.Dataset object.

•	 Build a Keras model with two layers, each with 1024

neurons.

•	 Define the optimizer and the loss function.

•	 Minimize the loss function using the gradients and the

optimizer directly.

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/yF0yH

35

Let’s start.

While following the code, note how we implement each piece as we

would do with plain numpy, meaning without the need of creating a graph

or opening a TensorFlow session.

So first let’s load the MNIST dataset using the keras.datasets.mnist

package, reshape it, and one-hot encode the labels.

import tensorflow as tf

import tensorflow.keras as keras

num_classes = 10

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_vector_size = 28*28

x_train = x_train.reshape(x_train.shape[0], image_vector_size)

x_test = x_test.reshape(x_test.shape[0], image_vector_size)

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

Then let’s convert the arrays in a tf.data.Dataset object. In case you

don’t understand what this is, don’t worry, we will look at this more later in

this chapter. For the moment, it suffices to know that it is a convenient way

to use mini-batches while you train your network.

dataset = tf.data.Dataset.from_tensor_slices(

 (tf.cast(x_train/255.0, tf.float32),

 tf.cast(y_train,tf.int64)))

dataset = dataset.shuffle(60000).batch(64)

Chapter 2 TensorFlow: Advanced Topics

36

Now let’s build the model using a feed-forward neural network with

two layers, each with 1024 neurons:

mnist_model = tf.keras.Sequential([

 tf.keras.layers.Dense(1024, input_shape=(784,)),

 tf.keras.layers.Dense(1024),

 tf.keras.layers.Dense(10)

])

Up to now we have not done anything particularly new, so you should

be able to follow what we did quite easily. The next step is to define the

optimizer (we will use Adam) and the list that will contain the loss function

history:

optimizer = tf.train.AdamOptimizer()

loss_history = []

At this point we can start with the actual training. We will have two

nested loops—the first is for the epochs, the second for the batches.

for i in range(10): # Epochs

 print ("\nEpoch:", i)

 �for (batch, (images, labels)) in enumerate(dataset.

take(60000)):

 if batch % 100 == 0:

 print('.', end=")

 with tf.GradientTape() as tape:

 �logits = mnist_model(images, training=True) # Prediction

of the model

 �loss_value = tf.losses.sparse_softmax_cross_entropy(tf.

argmax(labels, axis = 1), logits)

 loss_history.append(loss_value.numpy())

 �grads = tape.gradient(loss_value, mnist_model.variables)

Evaluation of gradients

Chapter 2 TensorFlow: Advanced Topics

37

 �optimizer.apply_gradients(zip(grads, mnist_model.

variables),

 �global_step=tf.train.get_or_

create_global_step())

The part of the code that is probably new to you is the part that

contains these two lines:

grads = tape.gradient(loss_value, mnist_model.variables)

optimizer.apply_gradients(zip(grads, mnist_model.variables),

 �global_step=tf.train.get_or_

create_global_step())

The first line calculates the gradients of the loss_value TensorFlow

operation with respect to the mnist_model.variables (the weights

basically), and the second line uses the gradients to let the optimizer

update the weights. To understand how Keras evaluates gradients

automatically, I suggest you check the official documentation at https://

goo.gl/s9Uqjc. Running the code will finally train the network. As the

training progress, you should see output like this for each epoch:

Epoch: 0

..........

Now to check the accuracy, you can simply run the following two lines

(that should be self-explanatory):

probs = tf.nn.softmax(mnist_model(x_train))

print(tf.reduce_mean(tf.cast(tf.equal(tf.argmax(probs, axis=1),

tf.argmax(y_train, axis = 1)), tf.float32)))

This will give you as a result a tensor that will contain the accuracy

reached by the model:

tf.Tensor(0.8980333, shape=(), dtype=float32)

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/s9Uqjc
https://goo.gl/s9Uqjc

38

In this example, we reached 89.8% accuracy, a relatively good result

for such a simple network. Of course, you could try to train the model for

more epochs or try to change the learning rate, for example. In case you

are wondering where we defined the learning rate, we did not. When we

define the optimizer as tf.train.AdamOptimizer, TensorFlow will use, if

not specified differently, the standard value of 10−3. You can check this by

looking at the documentation at https://goo.gl/pU7yrB.

We could check one prediction easily. Let’s get one image from our

dataset:

image = x_train[4:5,:]

label = y_train[4]

If we plot the image, we will see the number nine (see Figure 2-4).

Figure 2-4.  One image from the MNIST dataset. This happens to
be a 9.

We can easily check what the model predicts:

print(tf.argmax(tf.nn.softmax(mnist_model(image)), axis = 1))

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/pU7yrB

39

This returns the following, as we expected:

tf.Tensor([9], shape=(1,), dtype=int64)

You should note how we wrote the code. We did not create a graph

explicitly, but we simply used functions and operations as we would have

done with numpy. There is no need to think in graphs and sessions. This is

how eager execution works.

�TensorFlow and Numpy Compatibility
TensorFlow makes switching to and from numpy arrays very easy:

•	 TensorFlow converts numpy arrays to tensors

•	 Numpy converts tensors to numpy arrays

Converting a tensor to a numpy array is very easy and is enough to

invoke the .numpy() method. This operation is fast and cheap since the

numpy array and the tensor share the memory, so no shifting around

in memory is happening. Now this is not possible if you are using GPU

hardware acceleration, since numpy arrays cannot be stored in GPU

memory and tensors can. Converting will involve copying data from the

GPU memory to the CPU memory. Simply something to keep in mind.

Note T ypically, TensorFlow tensors and numpy arrays share the
same memory. Converting one to another is a very cheap operation.
But if you use GPU accelerations, tensors may be held in the GPU
memory, and numpy arrays cannot, so copying data will be required.
This may be more expensive in terms of running time.

Chapter 2 TensorFlow: Advanced Topics

40

�Hardware Acceleration
�Checking the Availability of the GPU
It is worth it to show briefly how to use GPUs and what difference it may

make, just to give you a feeling for it. If you have never seen it, it’s quite

impressive. The easiest way to test GPU acceleration is to use Google

Colab. Create a new notebook in Google Colab, activate GPU3 acceleration,

and import TensorFlow as usual:

import tensorflow as tf

Then we need to test if we have a GPU at our disposal. This can be

easily done with this code:

print(tf.test.is_gpu_available())

This will return True or False depending on if a GPU is available. In a

slightly more sophisticated way, it can be done in this way:

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found.')

print('Found GPU at: {}'.format(device_name))

If you run the code, you may get this error:

SystemErrorTraceback (most recent call last)

<ipython-input-1-d1680108c58e> in <module>()

 2 device_name = tf.test.gpu_device_name()

 3 if device_name != '/device:GPU:0':

3�You can find this article at https://goo.gl/hXKNnf to learn how to do it.

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/hXKNnf

41

----> 4 raise SystemError('GPU device not found')

 5 print('Found GPU at: {}'.format(device_name))

SystemError: GPU device not found

The reason is that you may have not yet configured the notebook (if

you are in Google Colab) to use a GPU. Or, if you are working on a laptop

or desktop, you may have not installed the right TensorFlow version or you

may not have a compatible GPU available.

To enable the GPU hardware acceleration in Google Colab, choose

the Edit ➤ Notebook Settings menu option. You are then presented with a

window where you can set up the hardware accelerator. By default, it is set

to None. If you set it to GPU and run the previous code again, you should

get this message:

Found GPU at: /device:GPU:0

�Device Names
Note how the device name, in our case /device:GPU:0, encodes lots of

information. This name ends with GPU:<NUMBER>, where <NUMBER> is an

integer that can be as big as the number of GPUs you have at your disposal.

You can get a list of all the devices you have at your disposal with this code:

local_device_protos = device_lib.list_local_devices()

print(local_device_protos)

You will get a list of all the devices. Each list entry will resemble this

one (this example refers to a GPU device):

name: "/device:XLA_GPU:0"

device_type: "XLA_GPU"

memory_limit: 17179869184

locality {

}

Chapter 2 TensorFlow: Advanced Topics

42

incarnation: 16797530695469281809

physical_device_desc: "device: XLA_GPU device"

With a function like this one:

def get_available_gpus():

 local_device_protos = device_lib.list_local_devices()

 �return [x.name for x in local_device_protos if x.device_

type.endswith('GPU')]

You will get an easier-to-read result like this one4:

['/device:XLA_GPU:0', '/device:GPU:0']

�Explicit Device Placement
It is very easy to place an operation on a specific device. That can be

achieved using the tf.device context. For example, to place an operation

on a CPU, you can use the following code:

with tf.device("/cpu:0"):

 # SOME OPERATION

Or to place an operation on a GPU, you can use the code:

with tf.device('/gpu:0'):

 # SOME OPERATION

Note  Unless explicitly declared, TensorFlow automatically decides
on which device each operation must run. Don’t assume that if you
don’t specify the device explicitly that your code will run on a CPU.

4�The result was obtained when calling the function in a Google Colab notebook.

Chapter 2 TensorFlow: Advanced Topics

43

�GPU Acceleration Demonstration: Matrix
Multiplication
It is interesting to see what effect hardware acceleration may have. To learn

more about using GPUs, it is instructive to read the official documentation,

which can be found at https://www.TensorFlow.org/guide/using_gpu.

Start with the following code5:

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

sess = tf.Session(config=config)

The second line is needed since TensorFlow starts to allocate a little

GPU memory. As the session is started and the processes run, more GPU

memory is then allocated as needed. Then a session is created. Let’s try

to multiply two matrices of dimensions 10000x10000 filled with random

values and see if using a GPU makes a difference. The following code will

run the multiplication on a GPU:

%%time

with tf.device('/gpu:0'):

 tensor1 = tf.random_normal((10000, 10000))

 tensor2 = tf.random_normal((10000, 10000))

 prod = tf.linalg.matmul(tensor1, tensor2)

 prod_sum = tf.reduce_sum(prod)

 sess.run(prod_sum)

And the following runs it on a CPU:

%%time

with tf.device('/cpu:0'):

5�The code has been inspired by the Google code in the Google Colab
documentation.

Chapter 2 TensorFlow: Advanced Topics

https://www.tensorflow.org/guide/using_gpu

44

 tensor1 = tf.random_normal((10000, 10000))

 tensor2 = tf.random_normal((10000, 10000))

 prod = tf.linalg.matmul(tensor1, tensor2)

 prod_sum = tf.reduce_sum(prod)

 sess.run(prod_sum)

When I ran the code, I got 1.86 sec total time on a GPU and 1min

4sec on a CPU: a factor 32 times faster. You can imagine then, when doing

such calculations over and over (as is often the case in deep learning), that

you’ll get quite a performance boost in your evaluations. Using TPUs is

slightly more complicated and goes beyond the scope of this book, so we

will skip that.

Note  Using a GPU does not always give you a performance
boost. When the tensors involved are small, you will not see a huge
difference between using a GPU and a CPU. The real difference will
become evident when the dimensions of the tensors start to grow.

If you try to run the same code on smaller tensors, for example

100x100, you will not see any difference at all between using a GPU and

a CPU. The tensors are small enough that a CPU will get the result as fast

as a GPU. For two 100x100 matrices, GPU and CPU both give a result in

roughly 20ms. Typically, practitioners let CPUs do all the preprocessing (for

example, normalization, loading of data, etc.) and then let GPUs perform

all the big tensor operations during training.

Note T ypically, you should evaluate only expensive tensor
operations (like matrix multiplications or convolution) on GPUs and do
all preprocessing (like data loading, cleaning, etc.) on a CPU.

Chapter 2 TensorFlow: Advanced Topics

45

We will see later in the book (where applicable) how to do that. But

don’t be afraid. You will be able to use the code and follow the examples

without a GPU at your disposal.

�Effect of GPU Acceleration on the MNIST
Example
It is instructive to see the effect of hardware acceleration on the MNIST

example. To run the training of the model completely on the CPU we need

to force TensorFlow to do it, since otherwise it will try to place expensive

operations on a GPU when available. To do that, you can use this code:

with tf.device('/cpu:0'):

 for i in range(10): # Loop for the Epochs

 print ("\nEpoch:", i)

 �for (batch, (images, labels)) in enumerate(dataset.

take(60000)): # Loop for the mini-batches

 if batch % 100 == 0:

 print('.', end=")

 with tf.GradientTape() as tape:

 logits = mnist_model(images, training=True)

 �loss_value = tf.losses.sparse_softmax_cross_entropy(tf.

argmax(labels, axis = 1), logits)

 loss_history.append(loss_value.numpy())

 �grads = tape.gradient(loss_value, mnist_model.

variables)

 �optimizer.apply_gradients(zip(grads, mnist_model.

variables),

 �global_step=tf.train.get_or_

create_global_step())

Chapter 2 TensorFlow: Advanced Topics

46

This code, on Google Colab, runs in roughly 8 minutes and 41 seconds.

If we put all the possible operations on a GPU, using this code:

for i in range(10): # Loop for the Epochs

 print ("\nEpoch:", i)

 �for (batch, (images, labels)) in enumerate(dataset.

take(60000)): # Loop for the mini-batches

 if batch % 100 == 0:

 print('.', end=")

 labels = tf.cast(labels, dtype = tf.int64)

 with tf.GradientTape() as tape:

 with tf.device('/gpu:0'):

 logits = mnist_model(images, training=True)

 with tf.device('/cpu:0'):

 �tgmax = tf.argmax(labels, axis = 1, output_type=tf.

int64)

 with tf.device('/gpu:0'):

 �loss_value = tf.losses.sparse_softmax_cross_

entropy(tgmax, logits)

 loss_history.append(loss_value.numpy())

 �grads = tape.gradient(loss_value, mnist_model.

variables)

 �optimizer.apply_gradients(zip(grads, mnist_model.

variables),

 �global_step=tf.train.get_

or_create_global_step())

Chapter 2 TensorFlow: Advanced Topics

47

It will run in 1 minute and 24 seconds. The reason that the tf.

argmax() has been placed on a CPU is that at the time of writing the GPU

implementation of tf.argmax has a bug and does not work as intended.

You can clearly see the dramatic effect that GPU acceleration has, even

on a simple network like the one we used.

�Training Only Specific Layers
You should now know that Keras works with layers. When you define one,

let’s say a Dense layer, as follows:

layer1 = Dense(32)

You can pass a trainable argument (that is Boolean) to a layer

constructor. This will stop the optimizer to update its weights

layer1 = dense(32, trainable = False)

But this would not be very useful. What is needed is the possibility of

changing this property after instantiation. This is easy to do. For example,

you can use the following code

layer = Dense(32)

something useful happens here

layer.trainable = False

Note  For the trainable property’s change to take effect, you need to
call the compile() method on your model. Otherwise, the change
will not have any effect while using the fit() method.

Chapter 2 TensorFlow: Advanced Topics

48

�Training Only Specific Layers: An Example
To understand better how this all works, let’s look at an example. Let’s

again consider a feed-forward network with two layers:

model = Sequential()

model.add(Dense(32, activation='relu', input_dim=784,

name = 'input'))

model.add(Dense(32, activation='relu', name = 'hidden1'))

Note how we created a model with two Dense layers with a name

property. One is called input and the second is called hidden1. Now you

can check the network structure with model.summary(). In this simple

example, you will get the following output:

Layer (type) Output Shape Param #

===

input (Dense) (None, 32) 25120

hidden1 (Dense) (None, 32) 1056

===

Total params: 26,176

Trainable params: 26,176

Non-trainable params: 0

Note how all the parameters are trainable and how you can find the

layer name in the first column. Please take note, since assigning each layer

a name will be useful in the future. To freeze the layer called hidden1,

you simply need to find the layer with the name and change its trainable

property as follows:

model.get_layer('hidden1').trainable = False

Chapter 2 TensorFlow: Advanced Topics

49

Now, if you check the model summary again, you will see a different

number of trainable parameters:

Layer (type) Output Shape Param #

===

input (Dense) (None, 32) 25120

hidden1 (Dense) (None, 32) 1056

===

Total params: 26,176

Trainable params: 25,120

Non-trainable params: 1,056

As you can see, the 1056 parameters contained in the hidden1 layer

are no longer trainable. The layer is now frozen. If you have not assigned

names to the layers and you want to find out what the layers are called, you

can use the model.summary() function or you can simply loop through the

layers in the model with this:

for layer in model.layers:

 print (layer.name)

This code will give you the following output:

input

hidden1

Note that model.layers is simply a list with layers as elements. As

such, you can use the classical way of accessing elements from a list. For

example, to access the last layer, you can use:

model.layers[-1]

Chapter 2 TensorFlow: Advanced Topics

50

Or to access the first layer, use:

model.layers[0]

To freeze the last layer, for example, you can simply use:

model.layers[-1].trainable = False

Note W hen you change a property of a layer in Keras, like the
trainable property, remember to recompile the model with the
compile() function. Otherwise, the change will not take effect
during the training.

To summarize, consider the following code6:

x = Input(shape=(4,))

layer = Dense(8)

layer.trainable = False

y = layer(x)

frozen_model = Model(x, y)

Now, if we run the following code:

frozen_model.compile(optimizer='Adam', loss='mse')

frozen_model.fit(data, labels)

It will not modify the weights of layer. In fact, calling frozen_model.

summary() gives us this:

6�Check the official documentation for the example at https://keras.io/
getting-started/faq/#how-can-i-freeze-keras-layers.

Chapter 2 TensorFlow: Advanced Topics

https://keras.io/getting-started/faq/#how-can-i-freeze-keras-layers
https://keras.io/getting-started/faq/#how-can-i-freeze-keras-layers

51

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 4) 0

dense_6 (Dense) (None, 8) 40

===

Total params: 40

Trainable params: 0

Non-trainable params: 40

As expected, there are no trainable parameters. We can simply modify

the layer.trainable property:

layer.trainable = True

trainable_model = Model(x, y)

Now we compile and fit the model:

trainable_model.compile(optimizer='Adam', loss='mse')

trainable_model.fit(data, labels)

This time the weights of layer will be updated. We can check on that

with trainable_model.summary():

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 4) 0

dense_6 (Dense) (None, 8) 40

===

Chapter 2 TensorFlow: Advanced Topics

52

Total params: 40

Trainable params: 40

Non-trainable params: 0

Now all the parameters are trainable, as we wanted.

�Removing Layers
It’s very useful to remove one or more of the last layers in a model and

add different ones to fine-tune it. The idea is used very often in transfer

learning, when you train a network and want to fine-tune its behavior by

training only the last few layers. Let’s consider the following model:

model = Sequential()

model.add(Dense(32, activation='relu', input_dim=784, name =

'input'))

model.add(Dense(32, activation='relu', name = 'hidden1'))

model.add(Dense(32, activation='relu', name = 'hidden2'))

The summary() call will give this output:

Layer (type) Output Shape Param #

===

input (Dense) (None, 32) 25120

hidden1 (Dense) (None, 32) 1056

hidden2 (Dense) (None, 32) 1056

===

Chapter 2 TensorFlow: Advanced Topics

53

Total params: 27,232

Trainable params: 27,232

Non-trainable params: 0

Say you want to build a second model, keeping your trained weights in

the input and hidden1 layers, but you want to substitute the hidden2 layer

with a different layer (let’s say one with 16 neurons). You can easily do that

in the following way:

model2 = Sequential()

for layer in model.layers[:-1]:

 model2.add(layer)

This gives you:

Layer (type) Output Shape Param #

===

input (Dense) (None, 32) 25120

hidden1 (Dense) (None, 32) 1056

===

Total params: 26,176

Trainable params: 26,176

Non-trainable params: 0

At this point, you can simply add a new layer with the following:

model2.add(Dense(16, activation='relu', name = 'hidden3'))

Chapter 2 TensorFlow: Advanced Topics

54

It has the following structure:

Layer (type) Output Shape Param #

===

input (Dense) (None, 32) 25120

hidden1 (Dense) (None, 32) 1056

hidden3 (Dense) (None, 16) 528

===

Total params: 26,704

Trainable params: 26,704

Non-trainable params: 0

After that, remember to compile your model. For example, for a

regression problem, your code may look like this:

model.compile(loss='mse', optimizer='Adam', metrics=['mse'])

�Keras Callback Functions
It is instructive to understand a bit better what Keras callback functions are

since they are used quite often while developing models. This is from the

official documentation7:

A callback is a set of functions to be applied at given stages of
the training procedure.

The idea is that you can pass a list of callback functions to the .fit()

method of the Sequential or Model classes. Relevant methods of the

7�https://keras.io/callbacks/

Chapter 2 TensorFlow: Advanced Topics

https://keras.io/callbacks/

55

callbacks will then be called at each stage of training [https://keras.io/

callbacks/, Accessed 01/02/2019]. Keunwoo Choi has written a nice

overview on how to write a callback class that you can find at https://

goo.gl/hL37wq. We summarize it here and expand it with some practical

examples.

�Custom Callback Class
The abstract base class, called Callback, can be found at the time of this

writing at

tensorflow/python/keras/callbacks.py (https://goo.gl/uMrMbH).

To start, you need to define a custom class. The main methods you

want to redefine are typically the following

•	 on_train_begin: Called at the beginning of training

•	 on_train_end: Called at the end of training

•	 on_epoch_begin: Called at the start of an epoch

•	 on_epoch_end: Called at the end of an epoch

•	 on_batch_begin: Called right before processing a batch

•	 on_batch_end: Called at the end of a batch

This can be done with the following code:

import keras

class My_Callback(keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 return

 def on_train_end(self, logs={}):

 return

 def on_epoch_begin(self, epoch, logs={}):

 return

Chapter 2 TensorFlow: Advanced Topics

https://keras.io/callbacks/
https://keras.io/callbacks/
https://goo.gl/hL37wq
https://goo.gl/hL37wq
https://goo.gl/uMrMbH

56

 def on_epoch_end(self, epoch, logs={}):

 return

 def on_batch_begin(self, batch, logs={}):

 return

 def on_batch_end(self, batch, logs={}):

 self.losses.append(logs.get('loss'))

 return

Each of the methods has slightly different inputs that you may use in

your class. Let’s look at them briefly (you can find them in the original

Python code at https://goo.gl/uMrMbH).

on_epoch_begin, on_epoch_end

Arguments:

 epoch: integer, index of epoch.

 logs: dictionary of logs.

on_train_begin, on_train_end

Arguments:

 logs: dictionary of logs.

on_batch_begin, on_batch_end

Arguments:

 �batch: integer, index of batch within the current

epoch.

 logs: dictionary of logs.

Let’s see with an example of how we can use this class.

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/uMrMbH

57

�Example of a Custom Callback Class
Let’s again consider the MNIST example. It’s the same code you have seen

by now:

import tensorflow as tf

from tensorflow import keras

(train_images, train_labels), (test_images, test_labels) =

tf.keras.datasets.mnist.load_data()

train_labels = train_labels[:5000]

test_labels = test_labels[:5000]

train_images = train_images[:5000].reshape(-1, 28 * 28) / 255.0

test_images = test_images[:5000].reshape(-1, 28 * 28) / 255.0

Let’s define a Sequential model for our example:

model = tf.keras.models.Sequential([

 �keras.layers.Dense(512, activation=tf.keras.activations.

relu, input_shape=(784,)),

 keras.layers.Dropout(0.2),

 �\keras.layers.Dense(10, activation=tf.keras.activations.

softmax)

])

model.compile(optimizer='adam',

 �loss=tf.keras.losses.sparse_categorical_

crossentropy,

 metrics=['accuracy'])

Chapter 2 TensorFlow: Advanced Topics

58

Now let’s write a custom callback class, redefining only one of the

methods to see the inputs. For example, let’s see what the logs variable

contains at the beginning of the training:

class CustomCallback1(keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 print (logs)

 return

You can then use it with:

CC1 = CustomCallback1()

model.fit(train_images, train_labels, epochs = 2,

 validation_data = (test_images,test_labels),

 callbacks = [CC1]) # pass callback to training

Remember to always instantiate the class and pass the CC1 variable,

and not the class itself. You will get the following:

Train on 5000 samples, validate on 5000 samples

{}

Epoch 1/2

5000/5000 [==============================] - 1s 274us/step -

loss: 0.0976 - acc: 0.9746 - val_loss: 0.2690 - val_acc: 0.9172

Epoch 2/2

5000/5000 [==============================] - 1s 275us/step -

loss: 0.0650 - acc: 0.9852 - val_loss: 0.2925 - val_acc: 0.9114

{}

<tensorflow.python.keras.callbacks.History at 0x7f795d750208>

The logs dictionary is empty, as you can see from the {}. Let’s expand

our class a bit:

Chapter 2 TensorFlow: Advanced Topics

59

class CustomCallback2(keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 print (logs)

 return

 def on_epoch_end(self, epoch, logs={}):

 print ("Just finished epoch", epoch)

 print (logs)

 return

Now we train the network with this:

CC2 = CustomCallback2()

model.fit(train_images, train_labels, epochs = 2,

 validation_data = (test_images,test_labels),

 callbacks = [CC2]) # pass callback to training

This will give the following output (reported here for just one epoch for

brevity):

Train on 5000 samples, validate on 5000 samples

{}

Epoch 1/2

4864/5000 [============================>.] - ETA: 0s - loss:

0.0511 - acc: 0.9879

Just finished epoch 0

{'val_loss': 0.2545496598124504, 'val_acc': 0.9244, 'loss':

0.05098680723309517, 'acc': 0.9878}

Now things are starting to get interesting. The logs dictionary now

contains a lot more information that we can access and use. In the

dictionary, we have val_loss, val_acc, and acc. So let’s customize

our output a bit. Let’s set verbose = 0 in the fit() call to suppress the

standard output and then generate our own.

Chapter 2 TensorFlow: Advanced Topics

60

Our new class will be:

class CustomCallback3(keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 print (logs)

 return

 def on_epoch_end(self, epoch, logs={}):

 print ("Just finished epoch", epoch)

 �print ('Loss evaluated on the validation dataset

=',logs.get('val_loss'))

 print ('Accuracy reached is', logs.get('acc'))

 return

We can train our network with:

CC3 = CustomCallback3()

model.fit(train_images, train_labels, epochs = 2,

 validation_data = (test_images,test_labels),

 �callbacks = [CC3], verbose = 0) # pass callback to

training

We will get this:

{}

Just finished epoch 0

Loss evaluated on the validation dataset = 0.2546206972360611

The empty {} simply indicates the empty logs dictionary that

on_train_begin received. Of course, you can print information every

few epochs. For example, by modifying the on_epoch_end() function as

follows:

def on_epoch_end(self, epoch, logs={}):

 if (epoch % 10 == 0):

 print ("Just finished epoch", epoch)

Chapter 2 TensorFlow: Advanced Topics

61

 �print ('Loss evaluated on the validation dataset

=',logs.get('val_loss'))

 print ('Accuracy reached is', logs.get('acc'))

 return

You will get the following output if you train your network for 30

epochs:

{}

Just finished epoch 0

Loss evaluated on the validation dataset = 0.3692033936366439

Accuracy reached is 0.9932

Just finished epoch 10

Loss evaluated on the validation dataset = 0.3073081444747746

Accuracy reached is 1.0

Just finished epoch 20

Loss evaluated on the validation dataset = 0.31566708440929653

Accuracy reached is 0.9992

<tensorflow.python.keras.callbacks.History at 0x7f796083c4e0>

Now you should start to get an idea as to how you can perform several

things during the training. A typical use of callbacks that we will look at

in the next section is saving your model every few epochs. But you can,

for example, save accuracy values in lists to be able to plot them later, or

simply plot metrics to see how your training is going.

�Save and Load Models
It is often useful to save a model on disk, in order to be able to continue

the training at a later stage, or to reuse a previously trained model. To see

how you can do this, let’s consider the MNIST dataset again for the sake

Chapter 2 TensorFlow: Advanced Topics

62

of giving a concrete example.8 The entire code is available in a dedicated

notebook in the book’s GitHub repository in the chapter 2 folder.

You will need the following imports:

import os

import tensorflow as tf

from tensorflow import keras

Again, let’s load the MNIST dataset and take the first 5000

observations.

(train_images, train_labels), (test_images, test_labels) =

tf.keras.datasets.mnist.load_data()

train_labels = train_labels[:5000]

test_labels = test_labels[:5000]

train_images = train_images[:5000].reshape(-1, 28 * 28) / 255.0

test_images = test_images[:5000].reshape(-1, 28 * 28) / 255.0

Then let’s build a simple Keras model using a Dense layer with 512

neurons, a bit of dropout, and the classical 10 neuron output layer for

classification (remember the MNIST dataset has 10 classes).

model = tf.keras.models.Sequential([

 �keras.layers.Dense(512, activation=tf.keras.activations.

relu, input_shape=(784,)),

 keras.layers.Dropout(0.2),

 �keras.layers.Dense(10, activation=tf.keras.activations.

softmax)

])

model.compile(optimizer='adam',

8�The example was inspired by the official Keras documentation at https://www.
tensorflow.org/tutorials/keras/save_and_restore_models.

Chapter 2 TensorFlow: Advanced Topics

https://www.tensorflow.org/tutorials/keras/save_and_restore_models
https://www.tensorflow.org/tutorials/keras/save_and_restore_models

63

 �loss=tf.keras.losses.sparse_categorical_

crossentropy,

 metrics=['accuracy'])

We added a bit of dropout, since this model has 407’050 trainable

parameters. You can check this number simply by using model.summary().

What we need to do is define where we want to save the model on the

disk. And we can do that (for example) in this way:

checkpoint_path = "training/cp.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

After that, we need to define a callback (remember what we did in the

last section) that will save the weights:

cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,

 �save_weights_

only=True,

 verbose=1)

Note that now we don’t need to define a class as we did in the previous

section, since ModelCheckpoint inherits from the Callback class.

Then we can simply train the model, specifying the correct callback

function:

model.fit(train_images, train_labels, epochs = 10,

 validation_data = (test_images,test_labels),

 callbacks = [cp_callback])

If you run a !ls command, you should see at least three files:

•	 cp.ckpt.data-00000-of-00001: Contains the weights

(in case the number of weights is large, you will get

many files like this one)

Chapter 2 TensorFlow: Advanced Topics

64

•	 cp.ckpt.index: This file indicates which weights are in

which files

•	 checkpoint: This text file contains information about

the checkpoint itself

We can now test our method. The previous code will give you a model

that will reach an accuracy on the validation dataset of roughly 92%. Now if

we define a second model as so:

model2 = tf.keras.models.Sequential([

 �keras.layers.Dense(512, activation=tf.keras.activations.

relu, input_shape=(784,)),

 keras.layers.Dropout(0.2),

 �keras.layers.Dense(10, activation=tf.keras.activations.

softmax)

])

model2.compile(optimizer='adam',

 �loss=tf.keras.losses.sparse_categorical_

crossentropy,

 metrics=['accuracy'])

And we check its accuracy on the validation dataset with this:

loss, acc = model2.evaluate(test_images, test_labels)

print("Untrained model, accuracy: {:5.2f}%".format(100*acc))

We will get an accuracy of roughly 8.6%. That was expected, since this

model has not been trained yet. But now we can load the saved weights in

this model and try again.

model2.load_weights(checkpoint_path)

loss,acc = model2.evaluate(test_images, test_labels)

print("Second model, accuracy: {:5.2f}%".format(100*acc))

Chapter 2 TensorFlow: Advanced Topics

65

We should get this result:

5000/5000 [==============================] - 0s 50us/step

Restored model, accuracy: 92.06%

That makes again sense, since the new model is now using the weights

on the old trained model. Keep in mind that, to load pre-trained weights in

a new model, the new model needs to have the exact same architecture as

the original one.

Note T o use saved weights with a new model, the new model must
have the same architecture as the one used to save the weights.
Using pre-trained weights can save you a lot of time, since you don't
need to waste time training the network again.

As we will see again and again, the basic idea is to use callbacks

and define a custom one that will save our weights. Of course, we can

customize our callback function. For example, if want to save the weights

every 100 epochs, each time with a different filename so that we can

restore a specific checkpoint if needed, we must first define the filename in

a dynamic way:

checkpoint_path = "training/cp-{epoch:04d}.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

We should also use the following callback:

cp_callback = tf.keras.callbacks.ModelCheckpoint(

 checkpoint_path, verbose=1, save_weights_only=True,

 period=1)

Note that checkpoint_path can contain named formatting options (in

the name we have {epoch:04d}), which will be filled by the values of epoch

and keys in logs (passed in on_epoch_end, which we saw in the previous

Chapter 2 TensorFlow: Advanced Topics

66

section).9 You can check the original code for tf.keras.callbacks.

ModelCheckpoint and you will find that the formatting is done in the on_

epoch_end(self, epoch, logs) method:

filepath = self.filepath.format(epoch=epoch + 1, **logs)

You can define your filename with the epoch number and the values

contained in the logs dictionary.

Let’s get back to our example. Let’s start by saving the first version of

the model:

model.save_weights(checkpoint_path.format(epoch=0))

Then we can fit the model as usual:

model.fit(train_images, train_labels,

 epochs = 10, callbacks = [cp_callback],

 validation_data = (test_images,test_labels),

 verbose=0)

Be careful since this will save lots of files. In our example, one file

every epoch. So, for example, your directory content (obtainable with !ls

training) may look like this:

checkpoint cp-0006.ckpt.data-00000-of-00001

cp-0000.ckpt.data-00000-of-00001 cp-0006.ckpt.index

cp-0000.ckpt.index cp-0007.ckpt.data-00000-of-00001

cp-0001.ckpt.data-00000-of-00001 cp-0007.ckpt.index

cp-0001.ckpt.index cp-0008.ckpt.data-00000-of-00001

cp-0002.ckpt.data-00000-of-00001 cp-0008.ckpt.index

cp-0002.ckpt.index cp-0009.ckpt.data-00000-of-00001

cp-0003.ckpt.data-00000-of-00001 cp-0009.ckpt.index

cp-0003.ckpt.index cp-0010.ckpt.data-00000-of-00001

9�Check the official documentation at https://goo.gl/SnKgyQ.

Chapter 2 TensorFlow: Advanced Topics

https://goo.gl/SnKgyQ

67

cp-0004.ckpt.data-00000-of-00001 cp-0010.ckpt.index

cp-0004.ckpt.index cp.ckpt.data-00000-of-00001

cp-0005.ckpt.data-00000-of-00001 cp.ckpt.index

cp-0005.ckpt.index

A last tip before moving on is how to get the latest checkpoint, without

bothering to search its filename. This can be done easily with the following

code:

latest = tf.train.latest_checkpoint('training')

model.load_weights(latest)

This will load the weights saved in the latest checkpoint automatically.

The latest variable is simply a string and contains the last checkpoint

filename. In our example, that is training/cp-0010.ckpt.

Note T he checkpoint files are binary files that contain the weights
of your model. So you will not be able to read them directly, and you
should not need to.

�Save Your Weights Manually
Of course, you can simply save your model weights manually when you are

done training, without defining a callback function:

model.save_weights('./checkpoints/my_checkpoint')

This command will generate three files, all starting with the string you

gave as a name. In this case, it’s my_checkpoint. Running the previous

code will generate the three files we described above:

checkpoint

my_checkpoint.data-00000-of-00001

my_checkpoint.index

Chapter 2 TensorFlow: Advanced Topics

68

Reloading the weights in a new model is as simple as this:

model.load_weights('./checkpoints/my_checkpoint')

Keep in mind that, to be able to reload saved weights in a new model,

the old model must have the same architecture as the new one. It must be

exactly the same.

�Saving the Entire Model
Keras also allows you to save the entire model on disk: weights, the

architecture, and the optimizer. In this way, you can recreate the same

model by moving some files. For example, we could use the following code

model.save('my_model.h5')

This will save in one file, called my_model.h5, the entire model. You can

simply move the file to a different computer and recreate the same trained

model with this code:

new_model = keras.models.load_model('my_model.h5')

Note that this model will have the same trained weights of your original

model, so it’s ready to use. This may be helpful if you want to stop training

your model and continue the training on a different machine, for example.

Or maybe you must stop the training for a while and continue at a later time.

�Dataset Abstraction
The tf.data.Dataset10 is a new abstraction in TensorFlow that is very

useful for building data pipelines. It’s also very useful when you are dealing

with datasets that do not fit in memory. We will see how to use it in more

10�https://www.tensorflow.org/guide/datasets

Chapter 2 TensorFlow: Advanced Topics

https://www.tensorflow.org/guide/datasets

69

detail later in the book. In the next sections, I give you some hints on

a couple of ways in which you can use it in your projects. To learn how

to use it, a good starting point is to study the official documentation at

https://www.tensorflow.org/guide/datasets. Remember: Always start

there when you want to learn more about a specific method or feature of

TensorFlow.

Basically, a Dataset it is simply a sequence of elements, in which each

element contains one or more tensors. Typically, each element will be

one training example or a batch of them. The basic idea is that first you

create a Dataset with some data, and then you chain method calls on it.

For example, you apply the Dataset.map() to apply a function to each

element. Note that a dataset is made up of elements, each with the same

structure.

As usual, let’s consider an example to understand how this works and

how to use it. Let’s suppose we have as input a matrix of 10 rows and 10

columns, defined by the following:

inp = tf.random_uniform([10, 10])

We can simply create a dataset with the following:

dataset = tf.data.Dataset.from_tensor_slices(inp)

Using print(dataset), will get you this output:

<TensorSliceDataset shapes: (10,), types: tf.float32>

That tells you that each element in the dataset is a tensor with 10

elements (the rows in the inp tensor). A nice possibility is to apply specific

functions to each element in a dataset. For example, we could multiply all

elements by two:

dataset2 = dataset.map(lambda x: x*2)

Chapter 2 TensorFlow: Advanced Topics

https://www.tensorflow.org/guide/datasets

70

In order to check what happened, we could print the first element in

each dataset. This can be easily done (more on that later) with:

dataset.make_one_shot_iterator().get_next()

and

dataset2.make_one_shot_iterator().get_next()

From the first line, you will get (your number will be different since we

are dealing with random numbers here):

<tf.Tensor: id=62, shape=(10,), dtype=float32, numpy=

array([0.2215631 , 0.32099664, 0.04410303, 0.8502971 ,

0.2472974 , 0.25522232, 0.94817066, 0.7719344 , 0.60333145,

0.75336015], dtype=float32)>

And from the second line, you get:

<tf.Tensor: id=71, shape=(10,), dtype=float32, numpy=

array([0.4431262 , 0.6419933 , 0.08820605, 1.7005942 ,

0.4945948 , 0.51044464, 1.8963413 , 1.5438688 , 1.2066629 ,

1.5067203], dtype=float32)>

As expected, the second output contains all numbers of the first

multiplied by two.

Note  tf.data.dataset is designed to build data processing
pipelines. For example, in image recognition you could do data
augmentation, preparation, normalization, and so on in this way.

Chapter 2 TensorFlow: Advanced Topics

71

I strongly suggest you check the official documentation to get more

information on different ways of applying a function to each element.

For example, you may need to apply transformation to the data and then

flatten the result (see flat_map(), for example).

�Iterating Over a Dataset
Once you have your dataset, you probably want to process the elements

one by one, or in batches. To do that, you need an iterator. For example,

to process the elements that you defined before one by one, you can

instantiate a so-called make_one_shot_iterator() as follows:

iterator = dataset.make_one_shot_iterator()

Then you can iterate over the elements using the get_next() method:

for i in range(10):

 value = print(iterator.get_next())

This will give you all the elements in the dataset. They will look like this

one (note that your number will be different):

tf.Tensor(

[0.2215631 0.32099664 0.04410303

0.8502971 0.2472974 0.25522232

 �0.94817066 0.7719344 0.60333145 0.75336015], shape=(10,),

dtype=float32)

Note that once you reach the end of the dataset, using the method

get_next() will raise a tf.errors.OutOfRangeError.

Chapter 2 TensorFlow: Advanced Topics

72

�Simple Batching
The most fundamental way to batch consists of stacking n consecutive

elements of a dataset in a single group. This will be very useful when we

train our networks with mini-batches. This can be done using the batch()

method. Let’s get back to our example. Remember that our dataset has 10

elements. Suppose we want to create batches, each having two elements.

This can be done with this code:

batched_dataset = dataset.batch(2)

Now let’s define an iterator again with:

iterator = batched_dataset.make_one_shot_iterator()

Now let’s check what get_next() will return with this:

print(iterator.get_next())

The output will be:

tf.Tensor(

[[0.2215631 0.32099664 0.04410303

0.8502971 0.2472974 0.25522232

 �0.94817066 0.7719344 0.60333145 0.75336015]

 �[0.28381765 0.3738917 0.8146689 0.20919728

0.5753969 0.9356725

 �0.7362906 0.76200795 0.01308048 0.14003313]], shape=(2, 10),

dtype=float32)

That is two elements of our dataset.

Note  Batching with the batch() method is really useful when we
train a neural network with mini-batches. We don’t have to bother
creating the batches ourselves, as tf.data.dataset will do it for us.

Chapter 2 TensorFlow: Advanced Topics

73

�Simple Batching with the MNIST Dataset
To try the following code, you may want to restart the kernel you are using

to avoid to conflicts with eager execution from the previous examples.

Once you have done that, load the data (as before):

num_classes = 10

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_vector_size = 28*28

x_train = x_train.reshape(x_train.shape[0], image_vector_size)

x_test = x_test.reshape(x_test.shape[0], image_vector_size)

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

Then create the training Dataset:

mnist_ds_train = tf.data.Dataset.from_tensor_slices((x_train,

y_train))

Now build the Keras model using a simple feed-forward network with

two layers:

img = tf.placeholder(tf.float32, shape=(None, 784))

x = Dense(128, activation='relu')(img) # fully-connected layer

with 128 units and ReLU activation

x = Dense(128, activation='relu')(x)

preds = Dense(10, activation='softmax')(x)

labels = tf.placeholder(tf.float32, shape=(None, 10))

loss = tf.reduce_mean(categorical_crossentropy(labels, preds))

correct_prediction = tf.equal(tf.argmax(preds,1),

tf.argmax(labels,1))

Chapter 2 TensorFlow: Advanced Topics

74

accuracy = tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))

train_step = tf.train.AdamOptimizer(0.001).minimize(loss)

init_op = tf.global_variables_initializer()

Now we need to define the batch size:

train_batched = mnist_ds_train.batch(1000)

And now let’s define the iterator:

train_iterator = train_batched.make_initializable_iterator()

So we can restart from the beginning

next_batch = train_iterator.get_next()

it_init_op = train_iterator.initializer

The it_init_op operation will be used to reset the iterator and

will start from the beginning of each epoch. Note that the next_batch

operation has the following structure:

(<tf.Tensor 'IteratorGetNext_6:0' shape=(?, 784) dtype=uint8>,

<tf.Tensor 'IteratorGetNext_6:1' shape=(?, 10) dtype=float32>)

Since it contains the images and the labels. During our training, we will

need to get the batches in this form:

train_batch_x, train_batch_y = sess.run(next_batch)

Finally, let’s train our network:

with tf.Session() as sess:

 sess.run(init_op)

 for epoch in range(50):

 sess.run(it_init_op)

 try:

Chapter 2 TensorFlow: Advanced Topics

75

 while True:

 train_batch_x, train_batch_y = sess.run(next_batch)

 �sess.run(train_step,feed_dict={img: train_batch_x,

labels: train_batch_y})

 except tf.errors.OutOfRangeError:

 pass

 if (epoch % 10 == 0):

 print('epoch',epoch)

 print(sess.run(accuracy,feed_dict={img: x_train,

 labels: y_train}))

Now, I have used a few tricks here that are good to know. In particular,

since you don’t know how many batches you have, you can use the

following construct to avoid getting error messages:

 try:

 while True:

 # Do something

 except tf.errors.OutOfRangeError:

 pass

This way, when you get an OutOfRangeError when you run out of

batches, the exception will simply go on without interrupting your code.

Note how, for each epoch, we call this code to reset the iterator:

sess.run(it_init_op)

Otherwise, we would get an OutOfRangeError immediately. Running

this code will get you to roughly 99% accuracy very fast. You should see

output like this one (I show the output for epoch 40 only, for brevity):

epoch 40

0.98903334

Chapter 2 TensorFlow: Advanced Topics

76

This quick overview of the dataset is not exhaustive by any means, but

should give you an idea of its power. If you want to learn more, the best

place to do so is, as usual, the official documentation.

Note  tf.data.Dataset is an extremely convenient way of
building pipelines for data, beginning from loading, to manipulating,
normalizing, augmenting, and so on. Especially in image-recognition
problems, this can be very useful. Remember that using it means
adding nodes to your computational graph. So no data is processed
until the session evaluates the graph.

�Using tf.data.Dataset in Eager Execution Mode
This chapter ends with one final hint. If you are working in eager execution

mode, your life with datasets is even easier. For example, to iterate over a

batched dataset, you can simply do as you would do with classical Python

(for x in ...). To understand what I mean, let’s look at an easy example.

First, you need to enable eager execution:

import tensorflow as tf

from tensorflow import keras

import tensorflow.contrib.eager as tfe

tf.enable_eager_execution()

Then you can simply do this:

dataset = tf.data.Dataset.from_tensor_slices(tf.random_

uniform([4, 2]))

dataset = dataset.batch(2)

for batch in dataset:

 print(batch)

Chapter 2 TensorFlow: Advanced Topics

77

This can be very useful when you need to iterate over a dataset batch

by batch. The output would be as follows (your numbers will be different,

due to the tf.random.uniform() call):

tf.Tensor(

[[0.07181489 0.46992648]

 [0.00652897 0.9028846]], shape=(2, 2), dtype=float32)

tf.Tensor(

[[0.9167508 0.8379569]

 [0.33501422 0.3299384]], shape=(2, 2), dtype=float32)

�Conclusions
This chapter had the goal of showing you a few techniques that we will

use in this book and that will be very helpful to your projects. The goal was

not to explain those methods in detail, as that would require a separate

book. But the chapter should point you in the right direction when trying

to do specific things, such as saving the weights of your model regularly.

In the next chapters, we will use some of these techniques. If you want

to learn a bit more about them, remember to always check the official

documentation.

Chapter 2 TensorFlow: Advanced Topics

79© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_3

CHAPTER 3

Fundamentals
of Convolutional
Neural Networks
In this chapter, we will look at the main components of a convolutional

neural network (CNN): kernels and pooling layers. We will then look

at how a typical network looks. We will then try to solve a classification

problem with a simple convolutional network and try to visualize the

convolutional operation. The purpose of this is to try to understand, at

least intuitively, how the learning works.

�Kernels and Filters
One of the main components of CNNs are filters, which are square

matrices that have dimensions nK × nK, where nK is an integer and is usually

a small number, like 3 or 5. Sometimes filters are also called kernels. Using

kernels comes from classical image processing techniques. If you have

used Photoshop or similar software, you are used to do operations like

80

sharpening, blurring, embossing, and so on.1 All those operations are

done with kernels. We will see in this section what exactly kernels are and

how they work. Note that in this book we will use both terms (kernels and

filters) interchangeably. Let’s define four different filters and let’s check

later in the chapter their effect when used in convolution operations. For

those examples, we will work with 3 × 3 filters. For the moment, just take

the following definitions as a reference and we will see how to use them

later in the chapter.

•	 The following kernel will allow the detection of

horizontal edges

IH =
- - -

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 1 1

0 0 0

1 1 1

•	 The following kernel will allow the detection of vertical

edges

IV =
-
-
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 0 1

1 0 1

1 0 1

•	 The following kernel will allow the detection of edges

when luminosity changes drastically

IL =
- - -
- -
- - -

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 1 1

1 8 1

1 1 1

1�You can find a nice overview on Wikipedia at https://en.wikipedia.org/wiki/
Kernel_(image_processing).

Chapter 3 Fundamentals of Convolutional Neural Networks

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

81

•	 The following kernel will blur edges in an image

IB = -
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1

9

1 1 1

1 1 1

1 1 1

In the next sections, we will apply convolution to a test image with the

filters, to see what their effect is.

�Convolution
The first step to understanding CNNs is to understand convolution. The

easiest way is to see it in action with a few simple cases. First, in the context

of neural networks, convolution is done between tensors. The operation

gets two tensors as input and produces a tensor as output. The operation is

usually indicated with the operator *.

Let’s see how it works. Consider two tensors, both with dimensions

3 × 3. The convolution operation is done by applying the following

formula:

a a a

a a a

a a a

k k k

k k k

k k k

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
*
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=

ii
i ia k

=
å

1

9

In this case, the result is merely the sum of each element, ai, multiplied

by the respective element, ki. In more typical matrix formalism, this

formula could be written with a double sum as

a a a

a a a

a a a

k k k

k k k

k

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

3

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
*

11 32 33
1

3

1

3

k k

a k
i j

ij ij

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=

= =
åå

Chapter 3 Fundamentals of Convolutional Neural Networks

82

However, the first version has the advantage of making the

fundamental idea very clear: each element from one tensor is multiplied

by the correspondent element (the element in the same position) of the

second tensor, and then all the values are summed to get the result.

In the previous section, we talked about kernels, and the reason is that

convolution is usually done between a tensor, that we may indicate here

with A, and a kernel. Typically, kernels are small, 3 × 3 or 5 × 5, while the

input tensors A are normally bigger. In image recognition for example,

the input tensors A are the images that may have dimensions as high as

1024 × 1024 × 3, where 1024 × 1024 is the resolution and the last dimension

(3) is the number of the color channels, the RGB values.

In advanced applications, the images may even have higher resolution.

To understand how to apply convolution when we have matrices with

different dimensions, let’s consider a matrix A that is 4 × 4

A

a a a a

a a a a

a a a a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

And a Kernel K that we will take for this example to be 3 × 3

K

k k k

k k k

k k k

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 2 3

4 5 6

7 8 9

The idea is to start in the top-left corner of the matrix A and select a

3 × 3 region. In the example that would be

A

a a a

a a a

a a a
1

1 2 3

5 6 7

9 10 11

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Chapter 3 Fundamentals of Convolutional Neural Networks

83

Alternatively, the elements marked in boldface here:

A

a

a

a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

a a a

a a a

a a a

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

Then we perform the convolution, as explained at the beginning

between this smaller matrix A1 and K, getting (we will indicate the result

with B1):

B A K a k a k a k k a k a k a k a k a k a1 1 1 1 2 2 3 3 4 5 5 5 6 7 7 9 8 10 9 11= * = + + + + + + + +

Then we need to shift the selected 3 × 3 region in matrix A of one

column to the right and select the elements marked in bold here:

A

a

a

a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1

5

9

13 14 15 16

a a a

a a a

a a a

2 3 4

6 7 8

10 11 12

This will give us the second sub-matrix A2:

A

a a a

a a a

a a a
2

2 3 4

6 7 8

10 11 12

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

We then perform the convolution between this smaller matrix A2

and K again:

B A K a k a k a k a k a k a k a k a k a k2 2 2 1 3 2 4 3 6 4 7 5 8 6 10 7 11 8 12 9= * = + + + + + + + +

Chapter 3 Fundamentals of Convolutional Neural Networks

84

We cannot shift our 3 × 3 region anymore to the right, since we have

reached the end of the matrix A, so what we do is shift it one row down and

start again from the left side. The next selected region would be

A

a a a

a a a

a a a
3

5 6 7

9 10 11

13 14 15

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Again, we perform convolution of A3 with K

	 B A K a k a k a k a k a k a k a k a k a k3 3 5 1 6 2 7 3 9 4 10 5 11 6 13 7 14 8 15 9= * = + + + + + + + +

As you may have guessed at this point, the last step is to shift our 3 × 3

selected region to the right of one column and perform convolution again.

Our selected region will now be

A

a a a

a a a

a a a
4

6 7 8

10 11 12

14 15 16

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Moreover, the convolution will give this result:

	 B A K a k a k a k a k a k a k a k a k a k4 4 6 1 7 2 8 3 10 4 11 5 12 6 14 7 15 8 16 9= * = + + + + + + + +

Now we cannot shift our 3 × 3 region anymore, neither right nor down.

We have calculated four values: B1, B2, B3, and B4. Those elements will form

the resulting tensor of the convolution operation giving us the tensor B:

B
B B

B B
=
æ

è
ç

ö

ø
÷

1 2

3 4

Chapter 3 Fundamentals of Convolutional Neural Networks

85

The same process can be applied when tensor A is bigger. You will

simply get a bigger resulting B tensor, but the algorithm to get the elements

Bi is the same. Before moving on, there is still a small detail that we need

to discuss, and that is the concept of stride. In the previous process, we

moved our 3 × 3 region always one column to the right and one row down.

The number of rows and columns, in this example 1, is called the stride

and is often indicated with s. Stride s = 2 means simply that we shift our

3 × 3 region two columns to the right and two rows down at each step.

Something else that we need to discuss is the size of the selected

region in the input matrix A. The dimensions of the selected region that

we shifted around in the process must be the same as of the kernel used. If

you use a 5 × 5 kernel, you will need to select a 5 × 5 region in A. In general,

given a nK × nK kernel, you select a nK × nK region in A.

In a more formal definition, convolution with stride s in the neural

network context is a process that takes a tensor A of dimensions nA × nA

and a kernel K of dimensions nK × nK and gives as output a matrix B of

dimensions nB × nB with

n
n n

sB
A K=
-

+ê
ëê

ú
ûú

1

Where we have indicated with ⌊x⌋ the integer part of x (in the

programming world, this is often called the floor of x). A proof of this

formula would take too long to discuss, but it’s easy to see why it is true

(try to derive it). To make things a bit easier, suppose that nK is odd. You

will see soon why this is important (although not fundamental). Let’s start

explaining formally the case with a stride s = 1. The algorithm generates

a new tensor B from an input tensor A and a kernel K according to the

formula

B A K A Kij ij
f

n

h

n

i f j h i f j h

K K

= *() =
=

-

=

-

+ + + +å å
0

1

0

1

, ,

Chapter 3 Fundamentals of Convolutional Neural Networks

86

The formula is cryptic and is very difficult to understand. Let’s study

some more examples to grasp the meaning better. In Figure 3-1, you can

see a visual explanation of how convolution works. Suppose to have a 3 × 3

filter. Then in the Figure 3-1, you can see that the top left nine elements of

the matrix A, marked by a square drawn with a black continuous line, are

the one used to generate the first element of the matrix B1 according to this

formula. The elements marked by the square drawn with a dotted line are

the ones used to generate the second element B2 and so on.

Figure 3-1.  A visual explanation of convolution

To reiterate what we discuss in the example at the beginning, the basic

idea is that each element of the 3 × 3 square from matrix A is multiplied

by the corresponding element of the kernel K and all the numbers are

summed. The sum is then the element of the new matrix B. After having

calculated the value for B1, you shift the region you are considering in

the original matrix of one column to the right (the square indicated in

Figure 3-1 with a dotted line) and repeat the operation. You continue

to shift your region to the right until you reach the border and then you

move one element down and start again from the left. You continue in this

fashion until the lower right angle of the matrix. The same kernel is used

for all the regions in the original matrix.

Given the kernel IH for example, you can see in Figure 3-2 which

element of A are multiplied by which elements in IH and the result for the

element B1, that is nothing else as the sum of all the multiplications

B11 1 1 2 1 3 1 1 0 2 0 3 0 4 1 3 1 2 1 3= ´ + ´ + ´ + ´ + ´ + ´ + ´ -()+ ´ -()+ ´ -() = -

Chapter 3 Fundamentals of Convolutional Neural Networks

87

In Figure 3-3, you can see an example of convolution with stride s = 2.

Figure 3-2.  A visualization of convolution with the kernel IH

Figure 3-3.  A visual explanation of convolution with stride s = 2

The reason that the dimension of the output matrix takes only the floor

(the integer part) of

n n

s
A K-

+1

Can be seen intuitively in Figure 3-4. If s > 1, what can happen,

depending on the dimensions of A, is that at a certain point you cannot

shift your window on matrix A (the black square you can see in Figure 3-3

for example) anymore, and you cannot cover all of matrix A completely. In

Figure 3-4, you can see how you would need an additional column to the

right of matrix A (marked by many X) to be able to perform the convolution

Chapter 3 Fundamentals of Convolutional Neural Networks

88

operation. In Figure 3-4, we chose s = 3, and since we have nA = 5 and

nK = 3, B will be a scalar as a result.

n
n n

sB
A K=
-

+ê
ëê

ú
ûú
=

-
+ê

ëê
ú
ûú
= ê
ëê

ú
ûú
=1

5 3

3
1

5

3
1

Figure 3-4.  A visual explanation of why the floor function is needed
when evaluating the resulting matrix B dimensions

You can easily see from Figure 3-4, how with a 3 × 3 region, one can

only cover the top-left region of A, since with stride s = 3 you would end up

outside A and therefore can consider one region only for the convolution

operation. Therefore, you end up with a scalar for the resulting tensor B.

Let’s now look at a few additional examples to make this formula even

more transparent. Let’s start with a small matrix 3 × 3

A =
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 2 3

4 5 6

7 8 9

Moreover, let’s consider the kernel

K

k k k

k k k

k k k

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 2 3

4 5 6

7 8 9

Chapter 3 Fundamentals of Convolutional Neural Networks

89

with stride s = 1. The convolution will be given by

B A K k k k k k k k k k= * = × + × + × + × + × + × + × + × + ×1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

Moreover, the result B will be a scalar, since nA = 3, nK = 3.

n
n n

sB
A K=
-

+ê
ëê

ú
ûú
=

-
+ê

ëê
ú
ûú
=1

3 3

1
1 1

If you consider a matrix A with dimensions 4 × 4, or nA = 4, nK = 3 and

s = 1, you will get as output a matrix B with dimensions 2 × 2, since

n
n n

sB
A K=
-

+ê
ëê

ú
ûú
=

-
+ê

ëê
ú
ûú
=1

4 3

1
1 2

For example, you can verify that given

A =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

And

K =
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 2 3

4 5 6

7 8 9

We have with stride s = 1

B A K= * =
æ

è
ç

ö

ø
÷

348 393

528 573

Chapter 3 Fundamentals of Convolutional Neural Networks

90

We’ll verify one of the elements: B11 with the formula I gave you. We have

B A K K K
f h

f h f h
f

f11
0

2

0

2

1 1 1 1
0

2

1 1 1 1 1 2 1= = +
= =

+ + + +
=

+ + + +å å å, , , , ,A Af f ff fK

K K K K

, , ,

, , , , , , , ,

2 1 3 1 3

1 1 1 1 1 2 1 2 1 3 1 3 2 1 2 1

+()
+ +()+ +=

+ +A

A A A A

f

AA A

A A A

2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3 1 1 2 2

, , , ,

, , , , , ,

K K

K K K

+()
+ +() = × + × ++ 33 3 5 4 6 5 7 6

9 7 10 8 11 9 14 92 242 348

×()+ × + × + ×()
× + × + ×() = + + =+

Note that the formula I gave you for the convolution works only for

stride s = 1, but can be easily generalized for other values of s.

This calculation is very easy to implement in Python. The following

function can evaluate the convolution of two matrices easily enough

for s = 1 (you can do it in Python with existing functions, but I think it’s

instructive to see how to do it from scratch):

import numpy as np

def conv_2d(A, kernel):

 �output = np.zeros([A.shape[0]-(kernel.shape[0]-1),

A.shape[1]-(kernel.shape[0]-1)])

 for row in range(1,A.shape[0]-1):

 for column in range(1, A.shape[1]-1):

 �output[row-1, column-1] = np.tensordot(A[row-

1:row+2, column-1:column+2], kernel)

 return output

Note that the input matrix A does not even need to a square one, but it

is assumed that the kernel is and that its dimension nK is odd. The previous

example can be evaluated with the following code:

A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])

K = np.array([[1,2,3],[4,5,6],[7,8,9]])

print(conv_2d(A,K))

Chapter 3 Fundamentals of Convolutional Neural Networks

91

This gives the result:

[[348. 393.]

[528. 573.]]

�Examples of Convolution
Now let’s try to apply the kernels we defined at the beginning to a test

image and see the results. As a test image, let’s create a chessboard of

dimensions 160 × 160 pixels with the code:

chessboard = np.zeros([8*20, 8*20])

for row in range(0, 8):

 for column in range (0, 8):

 if ((column+8*row) % 2 == 1) and (row % 2 == 0):

 �chessboard[row*20:row*20+20,

column*20:column*20+20] = 1

 elif ((column+8*row) % 2 == 0) and (row % 2 == 1):

 �chessboard[row*20:row*20+20,

column*20:column*20+20] = 1

Chapter 3 Fundamentals of Convolutional Neural Networks

92

Now let’s apply convolution to this image with the different kernels

with stride s = 1.

Using the kernel, IH will detect the horizontal edges. This can be

applied with the code

edgeh = np.matrix('1 1 1; 0 0 0; -1 -1 -1')

outputh = conv_2d (chessboard, edgeh)

In Figure 3-6, you can see how the output looks. The image can be

easily generated with this code:

Import matplotlib.pyplot as plt

plt.imshow(outputh)

Figure 3-5.  The chessboard image generated with code

In Figure 3-5, you can see how the chessboard looks.

Chapter 3 Fundamentals of Convolutional Neural Networks

93

Now you can understand why this kernel detects horizontal edges.

Additionally, this kernel detects when you go from light to dark or vice

versa. Note this image is only 158 × 158 pixels, as expected, since

n
n n

sB
A K=
-

+ê
ëê

ú
ûú
=

-
+ê

ëê
ú
ûú
= +ê
ëê

ú
ûú
= êë úû =1

160 3

1
1

157

1
1 158 158

Now let’s apply IV using this code:

edgev = np.matrix('1 0 -1; 1 0 -1; 1 0 -1')

outputv = conv_2d (chessboard, edgev)

Figure 3-6.  The result of performing a convolution between the
kernel IH and the chessboard image

Chapter 3 Fundamentals of Convolutional Neural Networks

94

Now we can use kernel IL :

edgel = np.matrix ('-1 -1 -1; -1 8 -1; -1 -1 -1')

outputl = conv_2d (chessboard, edgel)

That gives the result shown in Figure 3-8.

Figure 3-7.  The result of performing a convolution between the
kernel IV and the chessboard image

This gives the result shown in Figure 3-7.

Chapter 3 Fundamentals of Convolutional Neural Networks

95

Moreover, we can apply the blurring kernel IB :

edge_blur = -1.0/9.0*np.matrix('1 1 1; 1 1 1; 1 1 1')

output_blur = conv_2d (chessboard, edge_blur)

In Figure 3-9, you can see two plots—on the left the blurred image and

on the right the original one. The images show only a small region of the

original chessboard to make the blurring clearer.

Figure 3-8.  The result of performing a convolution between the
kernel IL and the chessboard image

Chapter 3 Fundamentals of Convolutional Neural Networks

96

Figure 3-9.  The effect of the blurring kernel IB . On the left is the
blurred image and on the right is the original one.

To finish this section, let’s try to understand better how the edges can

be detected. Consider the following matrix with a sharp vertical transition,

since the left part is full of 10 and the right part full of 0.

ex_mat = np.matrix('10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0;

10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0;

10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0')

This looks like this

matrix([[10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0],

 [10, 10, 10, 10, 0, 0, 0, 0]])

Chapter 3 Fundamentals of Convolutional Neural Networks

97

Let’s consider the kernel IV . We can perform the convolution with

this code:

ex_out = conv_2d (ex_mat, edgev)

The result is as follows:

array([[0., 0., 30., 30., 0., 0.],

 [0., 0., 30., 30., 0., 0.],

 [0., 0., 30., 30., 0., 0.],

 [0., 0., 30., 30., 0., 0.],

 [0., 0., 30., 30., 0., 0.],

 [0., 0., 30., 30., 0., 0.]])

In Figure 3-10, you can see the original matrix (on the left) and the

output of the convolution on the right. The convolution with the kernel IV

has clearly detected the sharp transition in the original matrix, marking

with a vertical black line where the transition from black to white happens.

For example, consider B11 = 0

B V11

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
* =

æ

è

ç
çI
çç

ö

ø

÷
÷
÷
*

-
-
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= ´ + ´ + ´- + ´ + ´ +

1 0 1

1 0 1

1 0 1

10 1 10 0 10 1 10 1 10 0 100 1 10 1 10 0 10 1 0´- + ´ + ´ + ´- =

Note that in the input matrix

10 10 10

10 10 10

10 10 10

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Chapter 3 Fundamentals of Convolutional Neural Networks

98

there is no transition, as all the values are the same. On the contrary, if you

consider B13 you need to consider this region of the input matrix

10 10 0

10 10 0

10 10 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

where there is a clear transition since the right-most column is made of

zeros and the rest of 10. You get now a different result

B V11

10 10 0

10 10 0

10 10 0

10 10 0

10 10 0

10 10 0

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
* =

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

I **
-
-
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= ´ + ´ + ´- + ´ + ´ + ´- + ´

1 0 1

1 0 1

1 0 1

10 1 10 0 0 1 10 1 10 0 0 1 10 11 10 0 0 1 30+ ´ + ´- =

Moreover, this is precisely how, as soon as there is a significant change

in values along the horizontal direction, the convolution returns a high

value since the values multiplied by the column with 1 in the kernel will be

more significant. When there is a transition from small to high values along

the horizontal axis, the elements multiplied by -1 will give a result that is

bigger in absolute value. Therefore the final result will be negative and big

in absolute value. This is the reason that this kernel can also detect if you

pass from a light color to a darker color and vice versa. If you consider the

opposite transition (from 0 to 10) in a different hypothetical matrix A, you

would have

B V11

0 10 10

0 10 10

0 10 10

0 10 10

0 10 10

0 10 10

=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
* =

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

I **
-
-
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= ´ + ´ + ´- + ´ + ´ + ´- + ´

1 0 1

1 0 1

1 0 1

0 1 10 0 10 1 0 1 10 0 10 1 0 1++ ´ + ´- = -10 0 10 1 30

We move from 0 to 10 along the horizontal direction.

Chapter 3 Fundamentals of Convolutional Neural Networks

99

Figure 3-10.  The result of the convolution of the matrix ex_mat with
the kernel IV as described in the text

Note how, as expected, the output matrix has dimensions 5 × 5 since

the original matrix has dimensions 7 × 7 and the kernel is 3 × 3.

�Pooling
Pooling is the second operation that is fundamental in CNNs. This operation

is much easier to understand than convolution. To understand it, let’s look

at a concrete example and consider what is called max pooling. Consider the

4 × 4 matrix we discussed during our convolution discussion again:

A

a a a a

a a a a

a a a a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Chapter 3 Fundamentals of Convolutional Neural Networks

100

To perform max pooling, we need to define a region of size nK × nK,

analogous to what we did for convolution. Let’s consider nK = 2. What we

need to do is start on the top-left corner of our matrix A and select a nK × nK

region, in our case 2 × 2 from A. Here we would select

a a

a a
1 2

5 6

æ

è
ç

ö

ø
÷

Alternatively, the elements marked in boldface in the matrix A here:

A

a a

a a

a a a a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

a a

a a
1 2

5 6

3 4

7 8

9 10 11 12

13 14 15 16

From the elements selected, a1, a2, a5 and a6, the max pooling

operation selects the maximum value. The result is indicated with B1

B a
i

i1
1 2 5 6

=
=
max

, , ,

We then need to shift our 2 × 2 window two columns to the right,

typically the same number of columns the selected region has, and select

the elements marked in bold:

A

a a

a a

a a a a

a a a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 2

5 6

9 10 11 12

13 14 15 16

a a

a a
3 4

7 8

Chapter 3 Fundamentals of Convolutional Neural Networks

101

Or, in other words, the smaller matrix

a a

a a
3 4

7 8

æ

è
ç

ö

ø
÷

The max-pooling algorithm will then select the maximum of the values

and give a result that we will indicate with B2

B a
i

i2
3 4 7 8

=
=
max

, , ,

At this point we cannot shift the 2 × 2 region to the right anymore, so

we shift it two rows down and start the process again from the left side of

A, selecting the elements marked in bold and getting the maximum and

calling it B3.

A

a a a a

a a a a

a a

a a

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 2 3 4

5 6 7 8

11 12

15 16

a a

a a
9 10

13 14

The stride s in this context has the same meaning we have

already discussed in convolution. It’s simply the number of rows or

columns you move your region when selecting the elements. Finally, we

select the last region 2 × 2 in the bottom-lower part of A, selecting the

elements a11, a12, a15, and a16. We then get the maximum and call it B4. With

the values we obtain in this process, in the example the four values B1, B2,

B3 and B4, we will build an output tensor:

B
B B

B B
=
æ

è
ç

ö

ø
÷

1 2

3 4

Chapter 3 Fundamentals of Convolutional Neural Networks

102

For example, applying max-pooling to the input A

A =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 3 5 7

4 5 11 3

4 1 21 6

13 15 1 2

In the example, we have s = 2. Basically, this operation takes as input

a matrix A, a stride s, and a kernel size nK (the dimension of the region

we selected in the example before) and returns a new matrix B with

dimensions given by the same formula we discussed for convolution:

n
n n

sB
A K=
-

+ê
ëê

ú
ûú

1

To reiterate this idea, start from the top-left of matrix A, take a

region of dimensions nK × nK, apply the max function to the selected

elements, then shift the region of s elements toward the right, select a new

region again of dimensions nK × nK, apply the function to its values, and

so on. In Figure 3-11 you can see how you would select the elements from

matrix A with stride s = 2.

Figure 3-11.  A visualization of pooling with stride s = 2

Chapter 3 Fundamentals of Convolutional Neural Networks

103

Will get you this result (it’s very easy to verify it):

B =
æ

è
ç

ö

ø
÷

4 11

15 21

Since four is the maximum of the values marked in bold.

A =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 3

4 5

5 7

11 3

4 1 21 6

13 15 1 2

Eleven is the maximum of the values marked in bold here:

A =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 3

4 5

4 1 21 6

13 15 1 2

5 7

11 3

And so on. It’s worth mentioning another way of doing pooling,

although it’s not as widely used as max-pooling: average pooling. Instead

of returning the maximum of the selected values, it returns the average.

Note T he most commonly used pooling operation is max pooling.
Average pooling is not as widely used but can be found in specific
network architectures.

Chapter 3 Fundamentals of Convolutional Neural Networks

104

�Padding
Something that’s worth mentioning here is padding. Sometimes, when

dealing with images, it is not optimal to get a result from a convolution

operation that has dimensions that are different from the original image.

This is when padding is necessary. The idea is straightforward: you add

rows of pixels on the top and bottom and columns of pixels on the right

and left of the final images so the resulting matrices are the same size

as the original. Some strategies fill the added pixels with zeros, with the

values of the closest pixels and so on. For example, in our example, our

ex_out matrix with zero padding would like like this

array([[0., 0., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 30., 30., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0.]])

Only as a reference, in case you use padding p (the width of the rows

and columns you use as padding), the final dimensions of the matrix B, in

case of both convolution and pooling, is given by

n
n p n

sB
A K=
+ -

+ê
ëê

ú
ûú

2
1

Chapter 3 Fundamentals of Convolutional Neural Networks

105

Note W hen dealing with real images, you always have color
images, coded in three channels: RGB. That means that convolution
and pooling must be done in three dimensions: width, height, and
color channel. This will add a layer of complexity to the algorithms.

�Building Blocks of a CNN
Convolution and pooling operations are used to build the layers used in

CNNs. In CNNs typically you can find the following layers

•	 Convolutional layers

•	 Pooling layers

•	 Fully connected layers

Fully connected layers are precisely what we have seen in all the

previous chapters: a layer where neurons are connected to all neurons of

previous and subsequent layers. You know them already. The other two

require some additional explanation.

�Convolutional Layers
A convolutional layer takes as input a tensor (which can be three-

dimensional, due to the three color channels), for example an image,

applies a certain number of kernels, typically 10, 16, or even more, adds

a bias, applies ReLu activation functions (for example) to introduce non-

linearity to the result of the convolution, and produces an output matrix B.

Chapter 3 Fundamentals of Convolutional Neural Networks

106

Now in the previous sections, I showed you some examples of applying

convolutions with just one kernel. How can you apply several kernels at

the same time? Well, the answer is straightforward. The final tensor (I use

now the word tensor since it will not be a simple matrix anymore) B will

have not two dimensions but three. Let’s indicate the number of kernels

you want to apply with nc (the c is used since sometimes people talk about

channels). You simply apply each filter to the input independently and

stack the results. So instead of a single matrix B with dimensions nB × nB

you get a final tensor B of dimensions nB × nB × nc. That means that this

B i j ni j B, , ,1 1" Î[],

Will be the output of convolution of the input image with the first

kernel, and

B i j ni j B, , ,2 1" Î[],

Will be the output of convolution with the second kernel, and so on.

The convolution layer simply transforms the input into an output tensor.

However, what are the weights in this layer? The weights, or the parameters

that the network learns during the training phase, are the elements of the

kernel themselves. We discussed that we have nc kernels, each of nK × nK

dimensions. That means that we have n nK c
2 parameter in a convolutional

layer.

Note T he number of parameters that you have in a convolutional
layer, n nK c

2 , is independent from the input image size. This fact helps
in reducing overfitting, especially when dealing with large input
images.

Chapter 3 Fundamentals of Convolutional Neural Networks

107

Sometimes this layer is indicated with the word POOL and

then a number. In our case, we could indicate this layer with POOL1. In

Figure 3-12, you can see a representation of a convolutional layer. The

input image is transformed by applying convolution with nc kernels in a

tensor of dimensions nA × nA × nc.

Figure 3-12.  A representation of a convolutional layer2

Of course, a convolutional layer must not necessarily be placed

immediately after the inputs. A convolutional layer may get as input

the output of any other layer of course. Keep in mind that usually, the

input image will have dimensions nA × nA × 3, since an image in color has

three channels: Red, Green, and Blue. A complete analysis of the tensors

involved in a CNN when considering color images is beyond the scope of

this book. Very often in diagrams, the layer is simply indicated as a cube or

a square.

2�Cat image source: https://www.shutterstock.com/

Chapter 3 Fundamentals of Convolutional Neural Networks

https://www.shutterstock.com/

108

�Pooling Layers
A pooling layer is usually indicated with POOL and a number: for example,

POOL1. It takes as input a tensor and gives as output another tensor after

applying pooling to the input.

Note A pooling layer has no parameter to learn, but it introduces
additional hyperparameters: nK and stride v. Typically, in pooling
layers, you don't use any padding, since one of the reasons to use
pooling is often to reduce the dimensionality of the tensors.

�Stacking Layers Together
In CNNs you usually stack convolutional and pooling layer together. One

after the other. In Figure 3-13, you can see a convolutional and a pooling

layer stack. A convolutional layer is always followed by a pooling layer.

Sometimes the two together are called a layer. The reason is that a pooling

layer has no learnable weights and therefore it is merely seen as a simple

operation that is associated with the convolutional layer. So be aware when

you read papers or blogs and check what they intend.

Figure 3-13.  A representation of how to stack convolutional and
pooling layers

Chapter 3 Fundamentals of Convolutional Neural Networks

109

�Number of Weights in a CNN
It is important to point out where the weights in a CNN are in the

different layers.

�Convolutional Layer
In a convolutional layer, the parameters that are learned are the filters

themselves. For example, if you have 32 filters, each of dimension 5x5,

you will get 32x5x5=832 learnable parameters, since for each filter there

is also a bias term that you will need to add. Note that this number is

not dependent on the input image size. In a typical feed-forward neural

network, the number of weights in the first layer is dependent on the input

size, but not here.

To conclude this part of CNN in Figure 3-14, you can see an example

of a CNN. In Figure 3-14, you see an example like the very famous LeNet-5

network, about which you can read more here: https://goo.gl/hM1kAL.

You have the inputs, then two times convolution-pooling layer, then three

fully connected layers, and then an output layers, with a softmax activation

function to perform multiclass classification. I put some indicative

numbers in the figure to give you an idea of the size of the different layers.

Figure 3-14.  A representation of a CNN similar to the famous
LeNet-5 network

Chapter 3 Fundamentals of Convolutional Neural Networks

https://goo.gl/hM1kAL

110

The number of weights in a convolutional layer is, in general terms,

given by the following:

n n n nC K K C× × +

�Pooling Layer
The pooling layer has no learnable parameters, and as mentioned, this is

the reason it’s typically associated with the convolutional layer. In this layer

(operation), there are no learnable weights.

�Dense Layer
In this layer, the weights are the ones you know from traditional feed-

forward networks. So the number depends on the number of neurons and

the number of neurons in the preceding and subsequent layers.

Note T he only layers in a CNN that have learnable parameters are
the convolutional and dense layers.

�Example of a CNN: MNIST Dataset
Let’s start with some coding. We will develop a very simple CNN and try to

do classification on the MNIST dataset. You should know the dataset very

well by now, from Chapter 2.

We start, as usual, by importing the necessary packages:

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Conv2D,

MaxPool2D

from keras.utils import np_utils

Chapter 3 Fundamentals of Convolutional Neural Networks

Chapter 3 Fundamentals of Convolutional Neural Networks

111

import numpy as np

import matplotlib.pyplot as plt

We need an additional step before we can start loading the data:

from keras import backend as K

K.set_image_dim_ordering('th')

The reason is the following. When you load images for your model, you

will need to convert them to tensors, each with three dimensions:

•	 Number of pixels along the x-axis

•	 Number of pixels along the y-axis

•	 Number of color channels (in a gray image, this

number is; if you have color images, this number is 3,

one for each of the RGB channels)

When doing convolution, Keras must know on which axis it finds the

information. In particular, it is relevant to define if the index of the color

channel’s dimension is the first or the last. To achieve this, we can define

the ordering of the data with keras.backend.set_image_dim_ordering().

This function accepts as input a string that can assume two possible

values:

•	 'th' (for the convention used by the library Theano):

Theano expects the channel dimensions to be the

second one (the first one will be the observation index).

•	 'tf' (for the convention used by TensorFlow):

TensorFlow expects the channel dimension to be the

last one.

You can use both, but simply pay attention when preparing the data

to use the right convention. Otherwise, you will get error messages about

tensor dimensions. In what follows, we will convert images in tensors having

the color channel dimensions as the second one, as you can see later.

Chapter 3 Fundamentals of Convolutional Neural Networks

112

Now we are ready to load the MNIST data with this code:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

The code will deliver the images “flattened,” meaning each image will

be a one-dimensional vector of 784 elements (28x28). We need to reshape

them as proper images, since our convolutional layers want images as

inputs. After that, we need to normalize the data (remember the images

are in a grayscale, and each pixel can have a value from 0 to 255).

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).

astype('float32')

X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).

astype('float32')

X_train = X_train / 255.0

X_test = X_test / 255.0

Note how, since we have defined the ordering as 'th', the number of

channels (in this case 1) is the second element of the X arrays. As a next

step, we need to one-hot-encode the labels:

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

We know we have 10 classes so we can simply define them:

num_classes = 10

Now let’s define a function to create and compile our Keras model:

def baseline_model():

 # create model

 model = Sequential()

 �model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

 model.add(MaxPool2D(pool_size=(2, 2)))

Chapter 3 Fundamentals of Convolutional Neural Networks

113

To determine what kind of model we have, we simply use the

model.summary() call. Let’s first create a model and then check it:

model = baseline_model()

model.summary()

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(128, activation='relu'))

 model.add(Dense(num_classes, activation='softmax'))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

You can see a diagram of this CNN in Figure 3-15.

Figure 3-15.  A diagram depicting the CNN we used in the text. The
numbers are the dimensions of the tensors produced by each layer.

Chapter 3 Fundamentals of Convolutional Neural Networks

114

The output (check the diagram form in Figure 3-15) is as follows:

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 32, 24, 24) 832

max_pooling2d_1 (MaxPooling2 (None, 32, 12, 12) 0

dropout_1 (Dropout) (None, 32, 12, 12) 0

flatten_1 (Flatten) (None, 4608) 0

dense_1 (Dense) (None, 128) 589952

dense_2 (Dense) (None, 10) 1290

===

Total params: 592,074

Trainable params: 592,074

Non-trainable params: 0

In case you are wondering why the max-pooling layer produces tensors

of dimensions 12x12, the reason is that since we haven’t specified the

stride, Keras will take as a standard value the dimension of the filter, which

in our case is 2x2. Having input tensors that are 24x24 with stride 2 you will

get tensors that are 12x12.

This network is quite simple. In the model we defined just one

convolutional and pooling layer, we added a bit of dropout, then we added

a dense layer with 128 neurons and then an output layer for the softmax

with 10 neurons. Now we can simply train it with the fit() method:

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=1, batch_size=200, verbose=1)

Chapter 3 Fundamentals of Convolutional Neural Networks

115

This will train the network for only one epoch and should give you

output similar to this (your numbers may vary a bit):

Train on 60000 samples, validate on 10000 samples

Epoch 1/1

60000/60000 [==============================] - 151s 3ms/step -

loss: 0.0735 - acc: 0.9779 - val_loss: 0.0454 - val_acc: 0.9853

We have already reached good accuracy, without having any overfitting.

Note W hen you pass to the compile() method the optimizer
parameter, Keras will use its standard parameters. If you want
to change them, you need to define an optimizer separately. For
example, to specify an Adam optimizer with a starting learning
rate of 0.001 you can use AdamOpt = adam(lr=0.001)
and then pass it to the compile method with model.
compile(optimizer=AdamOpt, loss='categorical_
crossentropy', metrics=['accuracy']).

�Visualization of CNN Learning
�Brief Digression: keras.backend.function( )
Sometime it’s useful to get intermediate results from a computational

graph. For example, you may be interested in the output of a specific

layer for debugging purposes. In low-level TensorFlow, you can simply

evaluate in the session the relevant node in the graph, but it’s not so easy

to understand how to do it in Keras. To find out, we need to consider what

Chapter 3 Fundamentals of Convolutional Neural Networks

116

the Keras backend is. The best way of explaining it is to cite the official

documentation (https://keras.io/backend/):

Keras is a model-level library, providing high-level building
blocks for developing deep learning models. It does not handle
low-level operations such as tensor products, convolutions,
and so on itself. Instead, it relies on a specialized, well opti-
mized tensor manipulation library to do so, serving as the
“backend engine” of Keras.

To be complete, it is important to note that Keras uses (at the time of

writing) three backends: the TensorFlow backend, the Theano backend,

and the CNTK backend. When you want to write your own specific

function, you should use the abstract Keras backend API that can be

loaded with this code:

from keras import backend as K

Understanding how to use the Keras backend goes beyond the scope of

this book (remember the focus of this book is not Keras), but I suggest you

spend some time getting to know it. It may be very useful. For example, to

reset a session when using Keras you can use this:

keras.backend.clear_session()

What we are really interested in this chapter is a specific method

available in the backed: function(). Its arguments are as follows:

•	 inputs: List of placeholder tensors

•	 outputs: List of output tensors

•	 updates: List of update ops

•	 **kwargs: Passed to tf.Session.run

Chapter 3 Fundamentals of Convolutional Neural Networks

https://keras.io/backend/

117

We will use only the first two in this chapter. To understand how to

use them, let’s consider for example the model we created in the previous

sections:

model = Sequential()

model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

model.add(MaxPool2D(pool_size=(2, 2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

How do we get, for example, the output of the first convolutional layer?

We can do this easily by creating a function:

get_1st_layer_output = K.function([model.layers[0].

input],[model.layers[0].output])

This will use the following arguments

•	 inputs: model.layers[0].input, which is the input of

our network

•	 outputs: model.layers[0].output, which is the output

of the first layer (with index 0)

You simply ask Keras to evaluate specific nodes in your computational

graph, given a specific set of inputs. Note that up to now we have only

defined a function. Now we need to apply it to a specific dataset. For

example, if we want to apply it to one single image, we could do this:

layer_conv_output = get_1st_layer_output([np.expand_dims(X_

test[21], axis=0)])[0]

Chapter 3 Fundamentals of Convolutional Neural Networks

118

This multidimensional array will have dimensions (1, 32, 24, 24)

as expected: one image, 32 filters, 24x24 output. In the next section, we will

use this function to see the effect of the learned filter in the network.

�Effect of Kernels
It is interesting to see what the effect of the learned kernels is on the input

image. For this purpose, let’s take an image from the test dataset (if you

shuffled your dataset, you may get a different digit at index 21).

tst = X_test[21]

Note how this array has dimensions (1,28,28). This is a six, as you can

see in Figure 3-16.

Figure 3-16.  The first image in the test dataset

Chapter 3 Fundamentals of Convolutional Neural Networks

119

To get the effect of the first layer (the convolutional one), we can use

the following code (explained in the previous section)

get_1st_layer_output = K.function([model.layers[0].

input],[model.layers[0].output])

layer_conv_output = get_1st_layer_output([tst])[0]

Note how the layer_conv_output is a multidimensional array, and it

will contain the convolution of the input image with each filter, stacked

on top of each other. Its dimensions are (1,32,24,24). The first number

is 1 since we applied the layer only to one single image, the second, 32,

is the number of filters we have, and the second is 24 since, as we have

discussed, the output tensor dimensions of a conv layer are given by

n
n p n

sB
A K=
+ -

+ê
ëê

ú
ûú

2
1

Moreover, in our case

nB =
-

+ê
ëê

ú
ûú
=

28 5

1
1 24

Chapter 3 Fundamentals of Convolutional Neural Networks

120

Figure 3-17.  The test image (a 6) convoluted with the first 12 filters
learned by the network

Chapter 3 Fundamentals of Convolutional Neural Networks

121

Since in our network, we have nA = 28, p = 0, nK = 5, and stride s = 1. In

Figure 3-17, you can see our test image convoluted with the first 12 filters

(32 was too many for a figure).

From Figure 3-17 you can see how different filters learn to detect

different features. For example, the third filter (as can be seen in

Figure 3-18) learned to detect diagonal lines.

Other filters learn to detect horizontal lines or other features.

�Effect of Max-Pooling
The subsequent step is to apply max pooling to the output of the

convolutional layer. As we discussed, this will reduce the dimensions of the

tensors and will try to (intuitively) condense the relevant information.

You can see the output on the tensor coming from the first 12 filters in

Figure 3-19.

Figure 3-18.  The test image convoluted with the third filter. It learned
to detect diagonal lines.

Chapter 3 Fundamentals of Convolutional Neural Networks

122

Figure 3-19.  The output of the pooling layer when applied to the first
12 tensors coming from the convolutional layer

Chapter 3 Fundamentals of Convolutional Neural Networks

123

Let’s see how our test image is transformed from one convolutional

and the pooling layer by one of the filters (consider the third, just for

illustration purposes). You can easily see the effect in Figure 3-20.

Note how the resolution of the image is changing, since we are not

using any padding. In the next chapter, we will look at more complicated

architectures, called inception networks, that are known to work better

than traditional CNN (what we have described in this chapter) when

dealing with images. In fact, simply adding more and more convolutional

layers will not easily increase the accuracy of the predictions, and more

complex architecture are known to be much more effective.

Now that we have seen the very basic building blocks of a CNN, we are

ready to move to some more advanced topics. In the next chapter, we will

look at many exciting topics as inception networks, multiple loss functions,

custom loss functions, and transfer learning.

Figure 3-20.  The original test image as in the dataset (in panel a);
the image convoluted with the third learned filter (panel b); the image
convoluted with the third filter after the max pooling layer (panel c)

Chapter 3 Fundamentals of Convolutional Neural Networks

125© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_4

CHAPTER 4

Advanced CNNs
and Transfer Learning
In this chapter, we look at more advanced techniques typically used

when developing CNNs. In particular, we will look at a very successful

new convolutional network called the inception network that is based on

the idea of several convolutional operations done in parallel instead of

sequentially. We will then look at how to use the multiple cost function,

in a similar fashion as what is done in multi-task learning. The next

sections will show you how to use the pre-trained network that Keras

makes available, and how to use transfer learning to tune those pre-trained

networks for your specific problem. At the end of the chapter, we will look

at a technique to implement transfer learning that is very efficient when

dealing with big datasets.

�Convolution with Multiple Channels
In the previous chapter, you learned how convolution works. In the

examples we have explicitly described how to perform it when the input

is a bi-dimensional matrix. But this is not what happens in reality. For

example, the input tensors may represent color images, and therefore will

have three dimensions: the number of pixels in the x direction (resolution

along the x axis), the number of pixels in the y direction (resolution along

126

the y axis), and the number of color channels, that is three when dealing

with RGB images (one channel for the reds, one for the greens, and one

for the blues). It can be even worse. A convolutional layer with 32 kernels,

each 5 × 5, when expecting an input of images each 28 × 28 (see the MNIST

example in the previous chapter) will have an output of dimensions

(m, 32, 24, 24), where m is the number of training images. That means

that our convolutions will have to be done with tensors with dimensions

of 32 × 24 × 24. So how we can perform the convolutional operation on

three-dimensional tensors? Well, it is actually quite easy. Mathematically

speaking, if kernel K has dimensions nK × nK × nc, and the input tensors A

have dimensions nx × ny × nc, the result of our convolution operation will

be:

i

n

j

n

k

n

ijk ijk

x y c

K A
= = =
ååå

1 1 1

Meaning that we will sum over the channel dimension. In Keras, when

you define a convolutional layer in 2D, you use the following code:

Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu')

Where the first number (32) is the number of filters and (5,5) defines

the dimensions of the kernels. What Keras does not tell you is that it

automatically takes kernels of nc × 5 × 5 where nc is the number of channels

of the input tensors. This is why you need to give the first layer the input_

shape parameter. The number of channels is included in this information.

But which of the three numbers is the correct one? How can Keras know

that the right one is 1 in this case and not a 28?

Let’s look at the concrete example we looked in the previous chapter

more in depth. Let’s suppose we import the MNIST dataset with this code:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Chapter 4 Advanced CNNs and Transfer Learning

127

In the previous chapter, we reshaped the input tensors with

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')

As you will notice, we added a dimension of 1 before the x and y

dimensions of 28. The 1 is the number of channels in the image: since it’s

a grayscale image, it has only one channel. But we could have added the

number of channels also after the x and y dimensions of 28. That was our

choice. We can tell Keras which dimension to take with the code that we

discussed in Chapter 3:

K.set_image_dim_ordering('th')

This line is important, since Keras needs to know which one is

the channel dimension in order to be able to extract the right channel

dimension for the convolutional operation. Remember that for the kernels

we specify only x and y dimensions, so Keras needs to find the third

dimension by itself: in this case a 1. You will remember that a value of 'th'

will expect the channel dimension to come before the x, y dimensions,

while a value of 'tf' will expect the channel dimension to be the last

one. So, it is just a matter of being consistent. You tell Keras with the

code above, where the channel dimension is and then reshape your data

accordingly. Let’s consider a few additional examples to make the concept

even clearer.

Let’s suppose we consider the following network with set_image_

dim_ordering('th') (we will neglect the dimension for the number of

observations m) when using MNIST images as the input:

Input tensors shape: 1×28×28

Convolutional Layer 1 with 32 kernels, each 5×5: output shape

32×24×24

Convolutional Layer 2 with 16 kernels, each 3×3: output shape

16×22×22

Chapter 4 Advanced CNNs and Transfer Learning

128

The kernels in the second convolutional layer will have dimensions

of 32 × 3 × 3. The number of channels coming from the first convolutional

layer (32) do not play a role in determining the dimensions of the output

of the second convolutional layer, since we sum over that dimension. In

fact, if we change the number of kernels in the first layer to 128, we get the

following dimensions:

Input tensors shape: 1×28×28

Convolutional Layer 1 with 32 kernels, each 5×5: output shape

128×24×24

Convolutional Layer 2 with 16 kernels, each 3×3: output shape

16×22×22

As you can see, the output dimensions of the second layer have not

changed at all.

Note  Keras infers automatically the channel dimensions when
creating the filters, so you need to tell Keras which one is the right
dimension with set_image_dim_ordering() and then reshape
your data accordingly.

WHY A 1 × 1 CONVOLUTION REDUCES DIMENSIONALITY

In this chapter we will look at inception networks, and we will use 1 × 1

kernels, with the reasonsing that those reduce dimensionality. At first it

seems counter-intuitive, but you need to remember from the previous section

discussion, that a filter always has a third dimension. Consider the following

set of layers:

Input tensors shape: 1 × 28 × 28

Convolutional Layer 1 with 32 kernels, each 5 × 5: output shape

128 × 24 × 24

Chapter 4 Advanced CNNs and Transfer Learning

129

Convolutional Layer 2 with 16 kernels, each 1 × 1: output shape

16 × 24 × 24

Note how the layer with 1 × 1 kernels reduces the dimensions of the previous

layer. It changes the dimensions from 128 × 24 × 24 to 16 × 24 × 24. A 1 × 1

kernel will not change the x, y dimensions of the tensors but it will change

the channel dimension. This is the reason why, if you read blogs or books

on inception networks, you will read that those kernels are used to reduce

dimensions of the tensors used.

Kernels 1 × 1 does not change the x, y dimensions of tensors, but will

change the channel dimension. This is why they are often used to reduce

dimensionality of the tensors flowing through a network.

�History and Basics of Inception Networks
Inception networks were first proposed in a famous paper by Szegedy et al.

titled Going Deeper with Convolutions.1 This new architecture that we will

discuss in detail is the result of the efforts to get better results in image

recognition tasks without increasing the computational budget.2 Adding

more and more layers will create models with more and more parameters

that will be increasingly difficult and slow to train. Additionally the authors

wanted to find methods that could be used on machines that may not be

as powerful as the ones used in big data centers. As they state in the paper,

their models were designed to keep a “computational budget of 1.5 billion

multiply-adds at inference time”. It is important that inference is cheap,

because then it can be done on devices that are not that powerful; for

example, on mobile phones.

1�The original paper can be accessed on the arXiv archive at this link: http://toe.lt/4.
2�With computational budget we determine the time and hardware resources
needed to perform a specific computation (for example, training a network).

Chapter 4 Advanced CNNs and Transfer Learning

http://toe.lt/4

130

Note that the goal of this chapter is not to analyze the entire original

paper on inception networks, but to explain the new building blocks and

techniques that have been used and show you how to use them in your

projects. To develop inception networks, we will need to start using the

functional Keras APIs, work with multiple loss functions, and perform

operations on the dataset with layers that are evaluated in parallel and

not sequentially. We will also not look at all variants of the architecture,

because that would simply require us to list the results of a few papers and

will not bring any additional value to the reader (that is better served by

reading the original papers). If you are interested, the best advice I can

give you is to download it and study the original paper. You will find lots

of interesting information in there. But at the end of this chapter, you will

have the tools to really understand those new networks and will be able to

develop one with Keras.

Let’s go back to “classical” CNNs. Typically, those have a standard

structure: stacked convolutional layers (with pooling of course) followed

by a set of dense layers. It is very tempting to just increase the number of

layers or the number of kernels or their size to try to get a better result.

This leads to overfitting issues and therefore requires heavy use of

regularization techniques (like dropout) to try to counter this problem.

Bigger sizes (both in the number of layers and kernel size and numbers)

mean of course a larger number of parameters and therefore the need of

increasingly high computational resources. To summarize, some of the

main problems of “classical” CNNs are as follows:

•	 It is very difficult to get the right kernel size. Each image

is different. Typically, larger kernels are good for more

globally distributed information, and smaller ones for

locally distributed information.

•	 Deep CNNs are prone to overfitting.

•	 Training and inference of networks with many

parameters is computationally intensive.

Chapter 4 Advanced CNNs and Transfer Learning

131

�Inception Module: Naïve Version
To overcome these difficulties, the main idea of Szegedy and the co-

authors of the paper is to perform convolution with multiple-size kernels

in parallel, to be able to detect features at different sizes at the same time,

instead of adding convolutional layer after layer sequentially. Those kinds

of networks are said to be going wider instead of deeper.

For example, we may do convolution with 1 × 1, 3 × 3 and 5 × 5 kernels,

and even max pooling at the same time in parallel, instead of adding

several convolutional layers, one after the other. In Figure 4-1, you can see

how the different convolutions can be done in parallel in what is called the

naïve inception module.

Figure 4-1.  Different convolutions with different kernel sizes done in
parallel. This is the basic module used in inception networks called
the inception module.

In the example in Figure 4-1, the 1 × 1 kernel will look at very localized

information, while the 5 × 5 will be able to spot more global features. In the

next section, we will look at how we can develop exactly that with Keras.

Chapter 4 Advanced CNNs and Transfer Learning

132

�Number of Parameters in the Naïve Inception
Module
Let’s look at the difference in number of parameters between inception

and classical CNNs. Let’s suppose we consider the example in Figure 4-1.

Let’s suppose the “previous layer” is the input layer with the MNIST

dataset. For the sake of this comparison, we will use 32 kernels for all

layers or convolutional operations. The number of parameters for each

convolution operation in the naïve inception module is

•	 1 × 1 convolutions: 64 parameters3

•	 3 × 3 convolutions: 320 parameters

•	 5 × 5 convolutions: 832 parameters

Remember that the max-pooling operations have no learnable

parameters. In total, we have 1216 learnable parameters. Now let’s

suppose we create a network with the three convolutional layers, one after

the other. The first one with 32 1 × 1 kernels, then one with 32 3 × 3 kernels,

and finally one with 32 5 × 5 kernels. Now the total number of parameters

in the layers will be (remember that, for example, the convolutional layer

with the 32 3 × 3 kernels will have as input the output of the convolutional

layer with the 32 1 × 1 kernels):

•	 Layer with 1 × 1 convolutions: 64 parameters

•	 Layer with 3 × 3 convolutions: 9248 parameters

•	 Layer with 5 × 5 convolutions: 25632 parameters

For a total of 34944 learnable parameters. Roughly 30 times the

number of the parameters as the inception version. You can easily see how

such parallel processing reduces drastically the number of parameters that

the model must learn.

3�Remember in this case we have one weight and one bias.

Chapter 4 Advanced CNNs and Transfer Learning

133

�Inception Module with Dimension Reduction
In the naïve inception module, we get a smaller number of learnable

parameters with respect to classical CNNs, but we can actually do even better.

We can use 1 × 1 convolutions at the right places (mainly before the higher

dimension convolutions) to reduce dimensions. This allows us to use an

increasing number of such modules without blowing up the computational

budget. In Figure 4-2, you can see how such a module could look.

Figure 4-2.  Inception module example with dimension reduction

It is instructive to see how many learnable parameters we have in

this module. To see where the dimensionality reduction really helps, let’s

suppose that the previous layer is the output of a previous operation and

that its output has the dimensions of 256, 28, 28. Now let’s compare the naïve

module and the one with dimension reduction pictured in Figure 4-2.

Naïve module:

•	 1 × 1 convolutions with 8 kernels: 2056 parameters4

•	 3 × 3 convolutions with 8 kernels: 18440 parameters

•	 5 × 5 convolutions with 8 kernels: 51208 parameters

4�Remember in this case we have one weight and one bias.

Chapter 4 Advanced CNNs and Transfer Learning

134

For a total of 71704 learnable parameters.

Module with dimension reduction:

•	 1 × 1 convolutions with 8 kernels: 2056 parameters

•	 1 × 1 followed by the 3 × 3 convolutions: 2640

parameters

•	 1 × 1 followed by the 5 × 5 convolutions: 3664

parameters

•	 3 × 3 max pooling followed by the 1 × 1 convolutions:

2056 parameters

For a total of 10416 learnable parameters. Comparing the number

of learnable parameters, you can see why this module is said to reduce

dimensions. Thanks to a smart placement of 1 × 1 convolutions, we can

prevent the number of learnable parameters from blowing up without

control.

An inception network is simply built by stacking lots of those modules

one after the other.

�Multiple Cost Functions: GoogLeNet
In Figure 4-3, you can see the main structure of the GoogLeNet network

that won the imagenet challenge. This network, as described in the paper

referenced at the beginning, stacks several inception models one after

the other. The problem is, as the authors of the original paper quickly

discovered, the middle layers tend to “die”. Meaning they tend to stop

playing any role in the learning. To keep them from “dying,” the authors

introduced classifiers along the network, as depicted in Figure 4-3.

Each part of the network (PART 1, PART 2, and PART 3 in Figure 4-3)

will be trained as a stand-alone classifier. The training of the three parts

does not happen independently, but at the same time, in a very similar way

to what happens in multi-task learning (MTL).

Chapter 4 Advanced CNNs and Transfer Learning

135

To prevent the middle part of the network from not being so effective

and effectively dying out, the authors introduced two classifiers along the

network, indicated in Figure 4-3 with the yellow boxes. They introduced

two intermediate loss functions and then computed the total loss function

as a weighted sum of the auxiliary losses, effectively using a total loss

evaluated with this formula:

Total Loss = Cost Function 1 + 0.3 * (Cost Function 2) + 0.3 *

(Cost Function 3)

Where Cost Function 1 is the cost function evaluated with PART 1,

Cost Function 2 is evaluated with PART 2, and Cost Function 3 with

PART 3. Testing has shown that this is quite effective and you get a much

better result than simply training the entire network as a single classifier.

Of course, the auxiliary losses are used only in training and not during

inference.

The authors have developed several versions of inception networks,

with increasingly complex modules. If you are interested, you should read

the original papers as they are very instructive. A second paper with more

a complex architecture by the authors can be found at https://arxiv.

org/pdf/1512.00567v3.pdf.

Figure 4-3.  The high-level architecture of the GoogLeNet network

Chapter 4 Advanced CNNs and Transfer Learning

https://arxiv.org/pdf/1512.00567v3.pdf
https://arxiv.org/pdf/1512.00567v3.pdf

136

�Example of Inception Modules in Keras
Using the functional APIs of Keras makes building an inception module

extremely easy. Let’s look at the necessary code. For space reasons, we will

not build a complete model with a dataset, because that would take up too

much space and would distract from the main learning goal, which is to

see how to use Keras to build a network with layers that are evaluated in

parallel instead of sequentially.

Let’s suppose for the sake of this example that our training dataset is the

CIFAR10.5 This is made of images, all 32 × 32 with three channels (the images

are in color). So first we need to define the input layer of our network:

from keras.layers import Input

input_img = Input(shape = (32, 32, 3))

Then we simply define one layer after the other:

from keras.layers import Conv2D, MaxPooling2D

tower_1 = Conv2D(64, (1,1), padding='same', activation='relu')

(input_img)

tower_1 = Conv2D(64, (3,3), padding='same', activation='relu')

(tower_1)

tower_2 = Conv2D(64, (1,1), padding='same', activation='relu')

(input_img)

tower_2 = Conv2D(64, (5,5), padding='same', activation='relu')

(tower_2)

tower_3 = MaxPooling2D((3,3), strides=(1,1), padding='same')

(input_img)

tower_3 = Conv2D(64, (1,1), padding='same', activation='relu')

(tower_3)

5�You can find all information on the dataset at https://www.cs.toronto.
edu/~kriz/cifar.html.

Chapter 4 Advanced CNNs and Transfer Learning

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

137

This code will build the module depicted in Figure 4-4. The Keras

functional APIs are easy to use: you define the layers as functions

of another layer. Each function returns a tensor of the appropriate

dimensions. The nice thing is that you don’t have to worry about

dimensions; you can simply define layer after layer. Just take care to use

the right one for the input. For example, with this line:

tower_1 = Conv2D(64, (1,1), padding='same', activation='relu')

(input_img)

You define a tensor, named tower_1, that is evaluated after a

convolutional operation with the input_img tensor and 64 1 × 1 kernels.

Then this line:

tower_1 = Conv2D(64, (3,3), padding='same', activation='relu')

(tower_1)

Defines a new tensor that is obtained by the convolution of 64 3 × 3

kernels with the output of the previous line. We have taken the input

tensor, performed convolution with 64 1 × 1 kernels, and then performed

convolution with 64 3 × 3 kernels again.

Figure 4-4.  The inception module built from the given code

Chapter 4 Advanced CNNs and Transfer Learning

138

The concatenation of the layers is easy:

from keras.layers import concatenate

from tensorflow.keras import optimizers

output = concatenate([tower_1, tower_2, tower_3], axis = 3)

Now let’s add the couple of necessary dense layers:

from keras.layers import Flatten, Dense

output = Flatten()(output)

out = Dense(10, activation='softmax')(output)

Then we finally create the model:

from keras.models import Model

model = Model(inputs = input_img, outputs = out)

This model can then be compiled and trained as usual. An example of

usage could be

epochs = 50

model.compile(loss='categorical_crossentropy',

optimizer=optimizers.Adam(), metrics=['accuracy'])

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=epochs, batch_size=32)

Supposing the training dataset is composed by the arrays (X_train

and y_train) and the validation dataset by (X_test, y_test).

Note I n all convolutional operations in the inception module, you
have to use the padding='same' option, since all the outputs of the
convolutional operations must have the same dimensions.

This section gave you a brief introduction to how to develop more

complex network architectures using the functional APIs of Keras. You

should now have a basic understanding of how inception networks work

and their basic building blocks.

Chapter 4 Advanced CNNs and Transfer Learning

139

�Digression: Custom Losses in Keras
Sometimes it is useful to be able to develop custom losses in Keras. From

the official Keras documentation (https://keras.io/losses/):

You can either pass the name of an existing loss function or
pass a TensorFlow/Theano symbolic function that returns a
scalar for each data point and takes the following two
arguments:

y_true: True labels. TensorFlow/Theano tensor.

y_pred: Predictions. TensorFlow/Theano tensor of the same
shape as y_true.

Let’s suppose we want to define a loss that calculates the average of the

predictions. We would need to write this

import keras.backend as K

def mean_predictions(y_true, y_pred):

 return K.mean(y_pred)

And then we can simply use it in the compile call as follows:

model.compile(optimizer='rmsprop',

 loss=mean_predictions,

 metrics=['accuracy'])

Although this would not make so much sense as a loss. Now this starts

to get interesting the moment where the loss function can be evaluated

only using intermediate results from specific layers. But to do that, we

need to use a small trick. Since, as per official documentation, the function

can only accept as input true labels and predictions. To do this we need

to create a function that return a function that accepts only the true

labels and the predictions. Seems convoluted? Let’s look at an example to

understand it. Let’s suppose we have this model:

Chapter 4 Advanced CNNs and Transfer Learning

https://keras.io/losses/

140

inputs = Input(shape=(512,))

x1 = Dense(128, activation=sigmoid)(inputs)

x2 = Dense(64, activation=sigmoid)(x1)

predictions = Dense(10, activation='softmax')(x2)

model = Model(inputs=inputs, outputs=predictions)

We can define a loss function that depends on x1 with this code6 (what

the loss is doing is not relevant):

def custom_loss(layer):

 def loss(y_true,y_pred):

 �return K.mean(K.square(y_pred - y_true) +

K.square(layer), axis=-1)

 return loss

Then we can simply use the loss function as before:

model.compile(optimizer='adam',

 loss=custom_loss(x1),

 metrics=['accuracy'])

This is an easy way to develop and use custom losses. It is also

sometimes useful to be able to train a model with multiple losses, as

described in the inception networks. Keras is ready for this. Once you

define the loss functions you can use the following syntax

model.compile(loss = [loss1,loss2], loss_weights = [l1,l2], ...)

and Keras will then use as loss function

l1*loss1+l2*loss2

6�The code was inspired by http://toe.lt/7.

Chapter 4 Advanced CNNs and Transfer Learning

http://toe.lt/7

141

Consider that each loss will only affect the weights that are on the

path between the inputs and the loss functions. In Figure 4-5, you can

see a network divided in different parts: A, B, and C. loss1 is calculated

using the output of B, and loss2 of C. Therefore, loss1 will only affect the

weights in A and B, while loss2 will affect weights in A, B and C, as you

can see in Figure 4-5.

Figure 4-5.  A schematic representation of the influence of multiple
loss functions on different network parts

As a side note, this technique is heavily used in what is called multi-

task learning (MTL).7

�How To Use Pre-Trained Networks
Keras makes pre-trained deep learning models available for you to use.

The models, called applications, can be used for predictions on new data.

The models have already been trained on big datasets, so there is no need

for big datasets or long training sessions. You can find all applications

information on the official documentation at https://keras.io/

applications/. At the moment of writing there are 20 models available,

each a variation of one of the following:

•	 Xception

•	 VGG16

7�You can find more information at https://en.wikipedia.org/wiki/
Multi-task_learning

Chapter 4 Advanced CNNs and Transfer Learning

https://keras.io/applications/
https://keras.io/applications/
https://en.wikipedia.org/wiki/Multi-task_learning
https://en.wikipedia.org/wiki/Multi-task_learning

142

•	 VGG19

•	 ResNet

•	 ResNetV2

•	 ResNeXt

•	 InceptionV3

•	 InceptionResNetV2

•	 MobileNet

•	 MobileNetV2

•	 DenseNEt

•	 NASNet

Let’s look at one example, and while doing so, let’s discuss the different

parameters used in the functions. The pre-ready models are all in the

keras.applications package. Each model has its own package. For

example, ResNet50 is in the keras.applications.resnet50. Let’s suppose

we have one image we want to classify. We may use the VGG16 network, a

well known network that is very successful in image recognition. We can

start with the following code

import tensorflow as tf

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import preprocess_

input , decode_predictions

import numpy as np

Then we can simply load the model with a simple line

model = VGG16(weights='imagenet')

Chapter 4 Advanced CNNs and Transfer Learning

143

The weights parameter is very important. If weights is None the

weights are randomly initialized. That means that you get the VGG16

architecture and you can train it yourself. But be aware, it has roughly

138 million parameters, so you will need a really big training dataset and

lots of patience (and a really powerful hardware). If you use the value

imagenet, the weights are the ones obtained by training the network with

the imagenet dataset.8 If you want a pre-trained network, you should use

weights = 'imagenet'.

If you get an error message about certificates and you are on a Mac,

there is an easy solution. The command above will try to download the

weights over SSL and, if you just installed Python from python.org, the

installed certificates will not work on your machine. Simply open a Finder

window, navigate to the Applications/Python 3.7 (or the Python version

you have installed), and double-click Install Certificates.command. A

Terminal window will open, and a script will run. After that, the VGG16()

call will work without an error message.

After that, we need to tell Keras where the image is (let’s suppose you

have it in the folder where the Jupyter Notebook is) and load it:

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size = (224, 224))

You can find the image in the GitHub repository in the folder for

Chapter 4. After that we need

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

First, you convert the image to an array, then you need to expand its

dimensions. What is meant is the following: the model works with batches

of images, meaning it will expect as input a tensor with four axes (index

8�http://www.image-net.org

Chapter 4 Advanced CNNs and Transfer Learning

http://www.image-net.org

144

in the batch of images, resolution along x, resolution along y, number of

channels). But our image has only three dimensions, the horizontal and

vertical resolutions and the number of channels (in our example three,

for the RGB channels). We need to add one dimension for the samples

dimension. To be more concrete, our image has dimensions (224,244,3),

but the model expects a tensor of dimensions (1,224,224,3), so we need to

add the first dimension.

This can be done with the numpy function expand_dims(), which

simply inserts a new axis in the tensor.9 As a last step, you need to pre-

process the input image, since each model expects something slightly

different (normalized between +1 and -1, or between 0 and 1, and so on)

with the preprocess_input(x) call.

Now we are ready to let the model predict the class of the image with

the following:

preds = model.predict(x)

To get the top three classes of the prediction, we can use the decode_

predictions() function.

print('Predicted:', decode_predictions(preds, top=3)[0])

It will produce (with our image) the following predictions:

Predicted: [('n02504013', 'Indian_elephant', 0.7278206),

('n02504458', 'African_elephant', 0.14308284), ('n01871265',

'tusker', 0.12798567)]

The decode_predictions() returns tuples in the form (class_name,

class_description, score). The first cryptic string is the internal class

name, the second is the description (what we are interested in), and the

last one is the probability. It seems our image, according to the VGG16

network, is with 72.8% probability an Indian elephant. I am not an expert

9�You can check the official documentation for the function at http://toe.lt/5.

Chapter 4 Advanced CNNs and Transfer Learning

http://toe.lt/5

145

on elephants, but I will trust the model. To use a different pre-trained

network (for example ResNet50), you need to change the following

imports:

from keras.applications.resnet50 import ResNet50

from keras.applications.resnet50 import preprocess_input,

decode_predictions

And the way you define the model:

model = ResNet50(weights='imagenet')

The rest of the code remains the same.

�Transfer Learning: An Introduction
Transfer learning is a technique where a model trained to solve a specific

problem is re-purposed10 for a new challenge related to the first problem.

Let’s suppose we have a network with many layers. In image recognition

typically, the first layers will learn to detect generic features, and the

last layers will be able to detect more specific ones.11 Remember that

in a classification problem the last layer will have N softmax neurons

(assuming we are classifiying N classes), and therefore must learn to be

very specific to your problem. You can intuitively understand transfer

learning with the following steps, where we introduce some notation we

will use in the next sections and chapters. Let’s suppose we have a network

with nL layers.

	 1.	 We train a base network (or get a pre-trained model)

on a big dataset (called a base dataset) related to our

10�The term has been used by Yosinki in https://arxiv.org/abs/1411.1792.
11�You can find a very interesting paper on the subject by Yosinki et al. at https://
arxiv.org/abs/1411.1792.

Chapter 4 Advanced CNNs and Transfer Learning

https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1411.1792

146

problem. For example, if we want to classify dogs’

images, we may train a model in this step on the

imagenet dataset (since we basically want to classify

images). It is important that, at this step, the dataset

has enough data and that the task is related to the

problem we want to solve. Getting a network trained

for speech recognition will not be good at dog images

classification. This network will probably not be that

good for your specific problem.

	 2.	 We get a new dataset that we call a target dataset (for

example, dogs’ breeds images) that will be our new

training dataset. Typically, this dataset will be much

smaller than the one used in Step 1.

	 3.	 You then train a new network, called target network,
on the target dataset. The target network will typically

have the same first nk (with nk < nL) layers of our base

network. The learnable parameters of the first layers

(let’s say 1 to nk, with nk < nL) are inherited from the

base network trained in Step 1, and are not changed

during the training of the target network. Only the last

and new layers (in our example from layer nK to nL)

are trained. The idea is that layers from 1 to nk (from

the base network) will learn enough features in Step 1

to distinguish dogs from other animals, and the layers

nk to nL (in the target network) will learn the features

needed to distinguish different breeds. Sometimes you

can even train your entire target network using the

weights inherited from the base network as the initial

values of the weights, although this requires much

more powerful hardware.

Chapter 4 Advanced CNNs and Transfer Learning

147

Note I f the target dataset is small, the best strategy is to keep the
layers inherited from the base network frozen, since otherwise it’s
very easy to overfit the small dataset.

The idea behind this is that you hope that in Step 1, the base network

has learned to extract generic features from images well enough and

therefore you want to use this learned knowledge and avoid the need to

learn it again. But to make predictions better, you want to fine-tune the

predictions of your network for your specific case, optimizing how your

target network extracts specific features (that typically happens in the last

layers of a network) that are related to your problem.

In other words, you can think it this way. To recognize dog breeds, you

implicitly follow these steps:

	 1.	 You look at an image and decide if it’s a dog or not.

	 2.	 If you are looking at a dog, you classify it into broad

classes (for example, terrier).

	 3.	 After that, you classify into sub-classes (for example,

a Welsh terrier or Tibetan terrier).

Transfer learning is based on the idea that Steps 1 and possibly 2 can

be learned from a lot of generic images (for example from the imagenet

dataset) from a base network, and that Step 3 can be learned by a much

smaller dataset with the help of what has been learned in Step 1 and 2.

When the target dataset is much smaller than the base dataset, this

is a very powerful tool that will help avoiding overfitting of your training

dataset.

This method is very useful when used with pre-trained models. For

example, using a VGG16 network trained on imagenet, and then re-

training just the last layers is typically an extremely efficient way to solve

specific image recognition problems. You get lots of features detection

Chapter 4 Advanced CNNs and Transfer Learning

148

capabilities for free. Keep in mind that training such networks on the

imagenet networks costs several thousands of GPU hours. It’s typically not

doable for researchers without the needed hardware and know-how. In the

next sections, we will look at how to do exactly that. With Keras, it’s really

easy and it will allow you to solve image classification problems with an

accuracy that would not otherwise be possible. In Figure 4-6, you can see a

schematic representation of the transfer learning process.

Figure 4-6.  A schematic representation of the transfer learning
process

Chapter 4 Advanced CNNs and Transfer Learning

149

�A Dog and Cat Problem
The best way to understand how transfer learning works in practice is to

try it in practice. Our goal is to be able to classify images of dogs and cats

as best as we can, with the least effort (in computational resources) as

possible. To do that, we will use the dataset with dog and cat images that

you can find on Kaggle at https://www.kaggle.com/c/dogs-vs-cats.

Warning: The download is almost 800MB. In Figure 4-7, you can see some

of the images we will have to classify.

Figure 4-7.  Random samples of the images contained in the dog
versus cat dataset

Chapter 4 Advanced CNNs and Transfer Learning

https://www.kaggle.com/c/dogs-vs-cats

150

�Classical Approach to Transfer Learning
The naïve way of solving this problem is to create a CNN model and train it

with the images. First of all, we need to load the images and resize them to

make sure they all have the same resolution. If you check the images in the

dataset, you will notice that each has a different resolution. To do that let’s

resize all the images to (150, 150) pixels. In Python, we would use this:

import glob

import numpy as np

import os

img_res = (150, 150)

train_files = glob.glob('training_data/*')

train_imgs = [img_to_array(load_img(img, target_size=img_res))

for img in train_files]

train_imgs = np.array(train_imgs)

train_labels = [fn.split('/')[1].split('.')[0].strip() for fn

in train_files]

validation_files = glob.glob('validation_data/*')

validation_imgs = [img_to_array(load_img(img, target_size=img_

res)) for img in validation_files]

validation_imgs = np.array(validation_imgs)

validation_labels = [fn.split('/')[1].split('.')[0].strip() for

fn in validation_files]

Supposing we have 3000 training images in a folder called training_

data and 1000 validation images in a folder called validation_data, the

shapes of the train_imgs and validation_imgs will be as follows:

(3000, 150, 150, 3)

(1000, 150, 150, 3)

Chapter 4 Advanced CNNs and Transfer Learning

151

As usual we will need to normalize the images. Each pixel now has a

value between 0 and 255 and is an integer. So first we convert the numbers

to floating point, and then we normalize them by dividing by 255, so that

each value is now between 0 and 1.

train_imgs_scaled = train_imgs.astype('float32')

validation_imgs_scaled = validation_imgs.astype('float32')

train_imgs_scaled /= 255

validation_imgs_scaled /= 255

If you check the train_labels you will see that they are strings: 'dog'

or 'cat'. We need to transform the labels to integers, in particular into 0

and 1. To do that, we can use the Keras function called LabelEncoder.

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

le.fit(train_labels)

train_labels_enc = le.transform(train_labels)

validation_labels_enc = le.transform(validation_labels)

We can check the labels with this code:

print(train_labels[10:15], train_labels_enc[10:15])

Which will give this:

['cat', 'dog', 'cat', 'cat', 'dog'] [0 1 0 0 1]

Now we are ready to build our model. We can do this easily with the

following code:

from tensorflow.keras.layers import Conv2D, MaxPooling2D,

Flatten, Dense, Dropout

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

Chapter 4 Advanced CNNs and Transfer Learning

152

model = Sequential()

model.add(Conv2D(16, kernel_size=(3, 3), activation='relu',

 input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

 optimizer=optimizers.RMSprop(),

 metrics=['accuracy'])

Chapter 4 Advanced CNNs and Transfer Learning

153

This is a small network that has this structure:

Layer (type) Output Shape Param #

==

conv2d_3 (Conv2D) (None, 148, 148, 16) 448

__

max_pooling2d_3 (MaxPooling2 (None, 74, 74, 16) 0

__

conv2d_4 (Conv2D) (None, 72, 72, 64) 9280

__

max_pooling2d_4 (MaxPooling2 (None, 36, 36, 64) 0

__

conv2d_5 (Conv2D) (None, 34, 34, 128) 73856

__

max_pooling2d_5 (MaxPooling2 (None, 17, 17, 128) 0

__

flatten_1 (Flatten) (None, 36992) 0

__

dense_2 (Dense) (None, 512) 18940416

__

dense_3 (Dense) (None, 1) 513

==

Total params: 19,024,513

Trainable params: 19,024,513

Non-trainable params: 0

__

In Figure 4-8, you can see a schematic representation of the network to

give you an idea of the layer sequence.

Chapter 4 Advanced CNNs and Transfer Learning

154

At this point we can train the network with the following:

batch_size = 30

num_classes = 2

epochs = 2

input_shape = (150, 150, 3)

model.fit(x=train_imgs_scaled, y=train_labels_enc,

 �validation_data=(validation_imgs_scaled,

validation_labels_enc),

 batch_size=batch_size,

 epochs=epochs,

 verbose=1)

With two epochs, we get to about 69% validation accuracy and 70%

training accuracy. Not really a good result. Let’s see if we can do better

than this in just two epochs. The reason to do this in two epochs is merely

a way of checking quickly different possibilities. Training such networks

for many epochs can take easily few hours. Note that this model overfit the

training data. That becomes clearly visible when training for more epochs,

but the main goal here is not to get the best model, but to see how you can

use pre-trained model to get better results, so we will ignore this problem.

Figure 4-8.  A schematic representation of the network to give you an
idea of the layer sequence

Chapter 4 Advanced CNNs and Transfer Learning

155

Now let’s import the VGG16 pre-trained network.

from tensorflow.keras.applications import vgg16

from tensorflow.keras.models import Model

import tensorflow.keras as keras

base_model=vgg16.VGG16(include_top=False, weights='imagenet')

Note that the include_top=False parameter removes the last three

fully connected layers of the network. In this way, we can append our own

layers to the base network with the code:

from tensorflow.keras.layers import

Dense,GlobalAveragePooling2D

x=base_model.output

x=GlobalAveragePooling2D()(x)

x=Dense(1024,activation='relu')(x)

preds=Dense(1,activation='softmax')(x)

model=Model(inputs=base_model.input,outputs=preds)

We added a pooling layer, then a Dense layer with 1024 neurons, and

then an output layer with one neuron with a softmax activation function to

do binary classification. We can check the structure with the following:

model.summary()

The output is quite long, but at the end you will find this:

Total params: 15,242,050

Trainable params: 15,242,050

Non-trainable params: 0

Chapter 4 Advanced CNNs and Transfer Learning

156

All the 22 layers are trainable at the moment. To be able to really do

transfer learning, we need to freeze all layers of the VGG16 base network.

To do that we can do the following:

for layer in model.layers[:20]:

 layer.trainable=False

for layer in model.layers[20:]:

 layer.trainable=True

This code will set the first 20 layers to a non trainable status, and the

last two to a trainable status. Then we can compile our model as follows:

model.compile(optimizer='Adam',loss='sparse_categorical_crossen

tropy',metrics=['accuracy'])

Note that we used loss='sparse_categorical_crossentropy' to be

able to use the labels as they are, without having to hot-encode them. As

we have done before, we can now train the network:

model.fit(x=train_imgs_scaled, y=train_labels_enc,

 �validation_data=(validation_imgs_scaled,

validation_labels_enc),

 batch_size=batch_size,

 epochs=epochs,

 verbose=1)

Note that although we are training only a portion of the network, this

will require much more time than the simple network we tried before. The

result will be an astounding 88% in two epochs. An incredibly better result

than before! Your output should look something like this:

Train on 3000 samples, validate on 1000 samples

Epoch 1/2

3000/3000 [==============================] - 283s 94ms/sample -

loss: 0.3563 - acc: 0.8353 - val_loss: 0.2892 - val_acc: 0.8740

Chapter 4 Advanced CNNs and Transfer Learning

157

Epoch 2/2

3000/3000 [==============================] - 276s 92ms/sample -

loss: 0.2913 - acc: 0.8730 - val_loss: 0.2699 - val_acc: 0.8820

This was thanks to the pre-trained first layers, which saved us a lot of work.

�Experimentation with Transfer Learning
What if we want to try different architectures for the target networks, and

we want to add a few more layers and try again? The previous approach

has a slight downside: we need to train the entire network each time event

though only the last layers should be trained. As you see from the section

above, one epoch took roughly 4.5 minutes. Can we be more efficient?

Turns out we can.

Consider the configuration depicted in Figure 4-9.

Figure 4-9.  A schematic representation of a more flexible way of
doing transfer learning in practice

The idea is to generate a new dataset that we will call the feature

dataset, with the frozen layers. Since they will not be changed by training,

those layers will always generate the same output. We can use this feature

dataset as new input for a much smaller network (that we will call the

target subnetwork), made by only the new layers we added to the base

Chapter 4 Advanced CNNs and Transfer Learning

158

layer in the previous section. We will need to train only a few layers,

and that will be much faster. The generation of the feature dataset will

take some time, but this must be done only once. At this point you can

test different architecture for the target subnetwork and find the best

configuration for your problem. Let’s see how we can do that in Keras. The

base dataset preparation is the same as before, so we will not do it again.

Let’s import the VGG16 pre-trained network as before:

from tensorflow.keras.applications import vgg16

from tensorflow.keras.models import Model

import tensorflow.keras as keras

vgg = vgg16.VGG16(include_top=False, weights='imagenet',

 input_shape=input_shape)

output = vgg.layers[-1].output

output = keras.layers.Flatten()(output)

vgg_model = Model(vgg.input, output)

vgg_model.trainable = False

for layer in vgg_model.layers:

 layer.trainable = False

where input_shape is (150, 150, 3).

We can simply generate the features dataset with a few lines (using

the predict functionality):

def get_ features(model, input_imgs):

 features = model.predict(input_imgs, verbose=0)

 return features

train_features_vgg = get_features(vgg_model, train_imgs_scaled)

validation_features_vgg = get_features(vgg_model, validation_

imgs_scaled)

Chapter 4 Advanced CNNs and Transfer Learning

159

Note that this will take a few minutes on a modern laptop. On a

modern MacBook Pro, this will take 40 CPU minutes, meaning that if you

have more cores/threads it will take a fraction of it. On my laptop, it takes

effectively four minutes. Remember that since we used the parameter

include_top = False, the three dense layers at the end of the network

have been removed. The train_features_vgg will contain just the output

of the last layer of the base network without the last three dense layers. At

this point we can simply build our target subnetwork:

from tensorflow.keras.layers import Conv2D, MaxPooling2D,

Flatten, Dense, Dropout, InputLayer

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

input_shape = vgg_model.output_shape[1]

model = Sequential()

model.add(InputLayer(input_shape=(input_shape,)))

model.add(Dense(512, activation='relu', input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.3))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

 optimizer=optimizers.Adam(lr =1e-4),

 metrics=['accuracy'])

model.summary()

Training this network will be much faster than before. You will get in

the range of 90% accuracy in a few seconds’ time (remember that you have

created a new training dataset this time). But now you can change this

network and it will be much faster to test different architectures. This time,

Chapter 4 Advanced CNNs and Transfer Learning

160

one epoch takes only six seconds, in comparison to the 4.5 minutes in the

previous example. This method is much more efficient than the previous

one. We split the training in two phases:

	 1.	 Creation of the feature dataset. Done only once. (In

our example, this needs about four minutes.)

	 2.	 Train the new layers as a stand-alone network, using

the feature dataset as input. (This takes six seconds

for each epoch.)

If we want to train our network for 100 epochs, with this method

we would need 14 minutes. With the method described in the previous

section, we would need 7.5 hours! The downside is that you need to create

the new feature dataset for each dataset you want to use. In our example,

we needed to do it for the training and for the validation dataset.

Chapter 4 Advanced CNNs and Transfer Learning

161© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_5

CHAPTER 5

Cost Functions
and Style Transfer
In this chapter we will look in more depth at the role of the cost function

in neural network models. In particular, we will discuss the MSE (mean

square error) and the cross-entropy and discuss their origin and their

interpretation. We will look at why we can use them to solve problems and

how the MSE can be interpreted in a statistical sense, as well as how cross-

entropy is related to information theory. Then, to give you an example of a

much more advanced use of special loss functions, we will learn how to do

neural style transfer, where we will discuss a neural network to paint in the

style of famous painters.

�Components of a Neural Network Model
At this point you have seen and developed several models that try to solve

different types of problems. You should know by now that in all the neural

network models, there are (at least) three main building blocks:

•	 Network architecture (number of layers, type of layers,

activation functions, etc.)

•	 Loss function (MSE, cross-entropy, etc.)

•	 The optimizer

162

The optimizer is not typically problem specific. For example, to solve

a regression or classification problem, you need to choose a different

architecture and loss function, but you can use in both cases the same

optimizer. In regression, you may use a feed-forward network and the MSE

for the loss function. In classification, you may choose a convolutional

neural network and the cross-entropy loss function. But in both you can

use the Adam optimizer. The component that plays the biggest role in

deciding what a network can learn is the loss function. Change it and you

will change what your network will be able to predict and learn.

�Training Seen as an Optimization Problem
Let’s try to understand why this is the case in more detail. From a purely

theoretical point of view, training a network means nothing more than

solving a really complex optimization problem. The standard formulation

of continuous optimization problem is to find the minimum of a given

function

min
x

f x()

Subject to two constraint types

g x i m

p x j n
i

j

() £ = ¼

() = = ¼
0 1

0 1

, , ,

, , ,

where f : ℝn → ℝ is the continuous function we want to minimize, gi(x) ≤ 0

refers to the inequalities constraints, pj(x) = 0 refers to the equality

constraints, and m, n ∈ ℕ+. And of course, is possible to have a problem

without constraints. But how does this relate to neural networks? Well, the

following parallels can be drawn:

Chapter 5 Cost Functions and Style Transfer

163

•	 The function f (x) is the loss function that we have

chosen when building the neural network model.

•	 The input x ∈ ℝn are the weights (the learnable

parameters) of our network. Remember that any loss

function that we may choose is always a function of the

output of the network (that we indicate with ŷ), and

the output is always a function of the weights W (the

learnable parameters of the network).

When we are training a network, we are actually solving an

optimization problem, one where we want to minimize the loss function

with respect to the weights. We implicitly have constraints, although we

normally don’t declare them explicitly. For example, we may have the

constraint that we want the inference time needed for one observation

to be less than 10ms. In this case we would have n = 0 (no equality

constraints), m = 1 (one inequality constraint) with g1 being the inference

running time. To cite Wikipedia1:

A loss function or cost function is a function that maps an
event or values of one or more variables onto a real number
intuitively representing some “cost” associated with the event

Typically, a loss function measures how bad your model understands

your data. Let’s look at a few simple examples so that you can understand

in a concrete case this formulation of the training of a network.

1�https://en.wikipedia.org/wiki/Loss_function

Chapter 5 Cost Functions and Style Transfer

https://en.wikipedia.org/wiki/Loss_function

164

�A Concrete Example: Linear Regression
As you know, you can perform linear regression with a network with just

one neuron if you choose as its activation function the identity function2.

We indicate the set of observations with x[i] ∈ ℝn with i = 1, …, m where m

is the number of observations we have at our disposal. The neuron (and

therefore the network) will have the output

ŷ w x bi

k

n

k k
i[]

=

[]= +å
1

where we have indicated the weights with w = (w1, …wn). We can choose

the loss function as the mean square error (MSE):

J w b
m

y y
k

m
i i,() = -()

=

[] []å1

1

2
ˆ

Where y[i] is the target variable that we want to predict for the ith

observation. It’s easy to see how the loss function that we have defined is a

function of the weights and the bias. In fact, we have

J w b
m

y y
m

w x b y
i

m
i i

i

m

k

n

k k
i i,() = -() = + -

æ

è
ç

ö

=

[] []

= =

[] []å å å1 1

1

2

1 1

ˆ
øø
÷

2

Training this network as we typically do with (for example) a gradient

descent algorithm is nothing more than solving an unconstrained

2�This example is discussed in detail in Michelucci, Umberto, 2018. Applied Deep
Learning: A Case-Based Approach To Understanding Deep Neural Networks. 1.
Auflage. New York: Apress. ISBN 978-1-4842-3789-2. Available from: https://
doi.org/10.1007/978-1-4842-3790-8

Chapter 5 Cost Functions and Style Transfer

https://doi.org/10.1007/978-1-4842-3790-8
https://doi.org/10.1007/978-1-4842-3790-8

165

optimization problem where we have (using the notation we have used at

the beginning):

f J:=

�The Cost Function
�Mathematical Notation
Let’s define some notation that we will use in the next sections. We will use

ŷ ki[] Î is the output of the network for the ith observation.

Ŷ m kÎ ´ is the tensor containing the output of the network for all

observations.3

x i n n nx y c[] ´ ´Î represents the ith observation input features (in general,

for images we would have nc channels, and a resolution of nx × ny).

X m n n nx y cÎ ´ ´ ´ is the tensor containing all input observations.

W is the set of all learnable parameters that are used in the network

(including the biases).

m is the number of observations.

nc is the number of image channels (for RGB images it would be 3).

nx is the horizontal resolution of the input images.

ny is the vertical resolution of the input images.

J is the cost function.

In general, we will define the so-called cost (or loss) function J

generically as follows:

J X Y, Wˆ ()()

3�Remember that the order of the dimensions depends on how you structure your
network and you may need to change it. The dimensions here are for illustrative
purposes only.

Chapter 5 Cost Functions and Style Transfer

166

This function, in addition to the network architecture, will define what

kind of problem our neural network model will be able to solve. Note how

this function

•	 Depends on the network architecture, since it depends

on the network output Ŷ (and therefore from the

learnable parameters, W)

•	 Depends on the input dataset, since it depends on the

input X

This is the function that will be used when finding the best weights. In

almost all optimizers, the weights are updated using Ñ ()()W , WJ X Ŷ in

some form.

�Typical Cost Functions
There are several cost functions that you may use when training neural

networks, as we have seen in the previous chapters. In the next sections,

we will look at two of the most used in detail and try to understand their

meaning and origin.

�Mean Square Error

The mean square error function

J w b
m

y y
k

m
i i,() = -()

=

[] []å1

1

2
ˆ

is probably the most used cost function used when developing models

for regression. There are several interpretations of this cost function, but

the following two should help you in get an intuitive and a more formal

understanding of it.

Chapter 5 Cost Functions and Style Transfer

167

Intuitive Explanation

J is nothing more than the average of the squared difference between the

predictions and the measured values. So basically, it measures how far

the predictions are from the expected values. A perfect model that would

predict the data perfectly (ŷ yi i[] []= for all i = 1, …, m) would have J = 0. In

general, it holds the smallest J the better the predictions are.

Note I n general, it holds that the smaller the MSE, the better the
predictions are (and therefore, the better the model is).

Minimizing the MSE means finding the parameters so that our

network will give output as close as possible to our training data. Note that

you could achieve a similar result by using, for example, the MAE (Mean

Absolute Error) given by

MAE
m

y y
k

m
i i= -

=

[] []å1

1

ˆ

Although this is not usually done.

MSE as the Second Moment of a Moment-Generating Function

There is a more formal way of interpreting the MSE. Let’s define the

quantity

DY y yi i i[] [] []= -ˆ

Let’s define the moment-generating function

M t E eY
t Y

D () = éë ùû: D

Chapter 5 Cost Functions and Style Transfer

168

Where we have t ∈ ℝ and we have indicated with E[·] the expected

value of the variable over all observations. We will skip the discussion

about the existence of the expected value, depending on the characteristics

of ΔY, since this goes beyond the scope of this book. We can expand etΔY

with a Taylor series expansion4 (we will assume we can do that):

e t Y
t YtDY = + + +¼1
2

2 2

D
D
!

Therefore

M t E e tE Y
t E Y

Y
t

D () = éë ùû = + []+
éë ùû +¼:
!

D
D

Y 1
2

2 2

D

E[ΔYn] is called the nth moment of the function MΔY(t). You can see that

the moments can be easily interpreted (at least the first):

•	 E[ΔY]: First moment of MΔY(t) - Average of ΔY

•	 E[ΔY2]: Second moment of MΔY(t) - is what we defined

as the MSE function

•	 E[ΔY3]: Third moment of MΔY(t) - Skeweness5

•	 E[ΔY4]: Fourth moment of MΔY(t) - Kurtosis6

We can simply write the second moment as the average over the

observations

E Y YD 2

1

2

1

21 1éë ùû = -()
=

[]

=

[] []å å:=
m m

y y
k

m
i

k

m
i iD ˆ

4�https://en.wikipedia.org/wiki/Taylor_series
5�https://en.m.wikipedia.org/wiki/Skewness. In the case of E[ΔY] = 0.
6�https://en.m.wikipedia.org/wiki/Kurtosis. In the case of E[ΔY] = 0.

Chapter 5 Cost Functions and Style Transfer

https://en.wikipedia.org/wiki/Taylor_series
https://en.m.wikipedia.org/wiki/Skewness
https://en.m.wikipedia.org/wiki/Kurtosis

169

If we assume that our model predict data with E[ΔY] = 0, then the

E[ΔY2] (and therefore the MSE) is nothing more than the variance of the

distribution of our data points ΔY[i]. In this case, it simply measures how

broad our points are spread around the average (that is zero): the perfect

prediction. Remember that, if for an observation, we have ΔY[i] = 0, it

means we have ŷ yi i[] []= , meaning the prediciton is perfect. Just to give the

correct terminology, if E[ΔY] is not zero, then the moments are sometimes

called the non-central moments. If you are dealing with non-central

moments, you cannot interpret them directly as a statistical quantity (as

the variance) anymore.

Note I f you are dealing with non-central moments, you cannot
interpret them directly as a statistical quantity (as the variance)
anymore. If the average of ΔY [i] is zero, then the MSE is simply the
variance of the distributions of our predictions. And of course, the
smaller the value, the better the predictions are.

�Cross-Entropy

There are several ways to understand the cross-entropy loss function, but

I think the most fascinating way is obtained by starting the discussion

from information theory. In this section, we will discuss some of the

fundamental concepts on a more intuitive basis to give you enough

information and understanding to get a very powerful understanding of

cross-entropy.

Self-Information or Suprisal of an Event

We need to start with the concept of self-information, or suprisal of an

event. To get an intuitive understanding of it, consider the following: when

an unlikely outcome of an event occurs, we associate it with a high level

Chapter 5 Cost Functions and Style Transfer

170

of information. When an outcome happens all the time, typically it does

not have much information associated with it. In other words, we are more

surprised when an unlikely event occurs; therefore, it’s also called suprisal

of an outcome. How can we formulate this in a mathematical form? Let’s

consider a random variable X with n possible outcomes x1, x2, …, xn and

probability mass function7 P(X). Let’s indicate the probability of event xi to

occur with pi = P(xi). Any monotonically decreasing function I(pi) between

0 and 1 could be used to represent the suprisal (or self-information) of the

random variable X. But there is an important property that this function

must have: if the events are independent, I should satisfy

I p p I p I pi j i j() = () + ()

If the outcomes i and j are independent. There is immediately a

function that comes to mind that has this property: the logarithm. In fact,

it’s true that

ln log logp p p pi j i j() = +

To have it monotonically decreasing, we can choose the following

formula:

I p pi i() = -log

7�In probability and statistics, a probability mass function (PMF) is a function
that gives the probability that a discrete random variable is exactly equal to
some value [Stewart, William J. (2011). Probability, Markov Chains, Queues,
and Simulation: The Mathematical Basis of Performance Modeling. Princeton
University Press. p. 105. ISBN 978-1-4008-3281-1.]

Chapter 5 Cost Functions and Style Transfer

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Discrete_random_variable
https://books.google.com/books?id=ZfRyBS1WbAQC&pg=PT105
https://books.google.com/books?id=ZfRyBS1WbAQC&pg=PT105
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4008-3281-1

171

Suprisal Associated with an Event X

In general, how much information do we have related to a specific event

X? This is measured by the expected value over all possible outcomes for X

(we will indicate this set with P). Mathematically, we can write this as

H X E I X P x I x P x P xP
i

n

i i
i

n

i b i() = ()éë ùû = () () = - () ()
= =
å å

1 1

log

H(X) is called the Shannon entropy, and b is the basis of the algorithm

and typically is chosen as 2, 10, or e.

Cross-Entropy

Now let’s suppose we want to compare two distributions of probabilities

for our event X. Let’s analyze what we do when we train a neural network

for classification. Consider the following points:

•	 Our examples give us the “real” or expected

distributions of our events (the true labels). Their

distributions will be our P. For example, our

observations may contain cat classes (let’s suppose this

is class 1) with a certain probability P(x1), where x1 is

the outcome “this image has a cat in it”. We have a given

probability mass function, P.

•	 The network we have trained will give us a different

probability mass function, Q, since the predictions

will not be identical to the training data. Outcome x1

(“the image has a cat in it”) will occur with a different

probability, Q(x1). You will remember that when

building a network for classification, we use a softmax

activation function for the output layer to interpret the

output as probabilities. Do you see how everything

seems to make suddenly more sense?

Chapter 5 Cost Functions and Style Transfer

172

We want to have a prediction that reflects as best as possible the given

labels, meaning that we want to have a probability mass function Q that is

as similar as possible to P.

To compare the two probability mass functions (what we are interested

in), we can simply calculate the expected value of the self-information

obtained by our network with the distribution obtained by the examples.

In a more mathematical form

H Q P E I Q E Q P x Q xP P b
i

n

i b i,() = ()éë ùû = -[] = - () ()
=
ålog log

1

If you have any experience in information theory, H(Q, P) will give a

measure of the similary of the two probability mass functions, Q and P. To

understand why, let’s consider a practical example. X will be the toss of a

fair coin. X will have two possible outcomes: x1 will be the head and x2 will

be the tail of the coint. The “true” probability mass function is of course a

constant one with P(x1) = 0.5 and P(x2) = 0.5. Now let’s consider alternative

probability mass functions Qi with (we will consider only nine possible

values for illustrative purposes):

•	 i = 1 → Q1(x1) = 0.1, Q1(x2) = 0.9

•	 i = 2 → Q2(x1) = 0.2, Q2(x2) = 0.8

•	 i = 3 → Q3(x1) = 0.3, Q3(x2) = 0.7

•	 i = 4 → Q4(x1) = 0.4, Q4(x2) = 0.6

•	 i = 5 → Q5(x1) = 0.5, Q5(x2) = 0.5

•	 i = 6 → Q6(x1) = 0.6, Q6(x2) = 0.4

•	 i = 7 → Q7(x1) = 0.7, Q7(x2) = 0.3

•	 i = 8 → Q8(x1) = 0.8, Q8(x2) = 0.2

•	 i = 9 → Q9(x1) = 0.9, Q9(x2) = 0.1

Chapter 5 Cost Functions and Style Transfer

173

Let’s calculate H(Qi, P) for i = 1, …5. We don’t need to calculate H

for i = 6, . . , 9 since the function is symmetric, meaning for example that

H(Q4, P) = H(Q6, P). In Figure 5-1, you can see the plot of H(Qi, P). You can

see how the maxium is reached for i = 5, exactly when the two probability

mass functions are the same.

Figure 5-1.  H(Qi, P) for i = 1, …5. The minimum is obtained for i = 5,
when the two probability mass functions are exactly the same.

Note  Cross-entropy H(Q, P) is a measure of how similar the two
mass probability functions, Q and P, are.

Cross-Entropy for Binary Classification

Now let’s consider a binary classification problem and let’s see how cross-

entropy works. Let’s suppose our event X is the classification of a given

image in two classes. The possible outcomes are only two: class 1 or class 2.

Let’s suppose for illustrative purposes that our image belongs to class 1.

Our “true” probability mass function for the image will have P(x1) = 1.0,

P(x2) = 0. In other words, our probability mass function P can only be 0 or 1

since we know the true value.

Chapter 5 Cost Functions and Style Transfer

174

You will remember that in a binary classification problem we used the

following

 ˆ ˆ ˆlog logy y y y y yj j j j j j() () () () () ()() = - + -() -()(), 1 1

Where y(j) represents the true labels (0 for class 1 and 1 for class 2) and

ŷ j() is the probability of the image j of being of class 2, or in other words, of

the output of the network assuming the value 1. The cost function we will

minimize is given by a sum over all observations (or examples)

J b
m

y y
j

m
j jw, ,() = ()

=

() ()å1

1

 ˆ

Using the notation of the previous section, we can write for image j

p x yj
j

1 1() = - ()

p x yj
j

2() = ()

Remember that y(j) can be only 0 or 1; therefore, we have only two

possibilities: pj(x1) = 1, pj(x2) = 0 or pj(x1) = 0, pj(x2) = 1. And we can also

write for the prediction of the network

q x yj
j

1 1() = - ()ˆ

q x yj
j

2() = ()ˆ

Remember: This result is determined by how we built our network

(since we used the softmax activation functions in the output layer to

have probabilities) and by how we coded our labels (to be 0 and 1, so that

they could be interpreted as probabilities). Let’s now write cross-entropy

Chapter 5 Cost Functions and Style Transfer

175

as defined in the previous section using our neural network notation but

summing over all examples (remember that we want to have the entire

cross-entropy for all the events, in other words for all images):

H Q P, log

log

() = - () ()

=- + -

= =

=

() ()

åå

å
j

m

i
j i b j i

j

m
j

b
j

p x q x

y y y

1 1

2

1

1ˆ jj
b

jy() ()() -()()log 1 ˆ

So basically  ŷ yi i() ()(), is nothing more than the cross-entropy as it is

derived in information theory.

Note I ntuitively when we minimize the cross-entropy in a binary
classification problem, we minimize the surprise that we may have
when our predictions are different from what we expect.

H(Q, P) measures how good our predictions probability mass function

(Q) matches our training examples probability mass function (P).

Note  When we design a network for classification using the cross-
entropy and we use the softmax activation function in the final layer
to interpret the output as probabilities, we simply build a complex
classification system that is based on information theory. We should
thank Shannon8 for classification with neural networks.

8�https://en.wikipedia.org/wiki/Claude_Shannon

Chapter 5 Cost Functions and Style Transfer

https://en.wikipedia.org/wiki/Claude_Shannon

176

�Cost Functions: A Final Word

It should be clear now that the cost function determines what a neural

network can learn. Change it and the network will learn completely

different things. It should come as no surprise that, to achieve special

results, like art for example, it’s simply a matter of choosing the right

architecture and the right cost function. In the next part of this chapter, we

will look at neural style transfer and it will become immediately clear how

choosing the right cost function (multiple ones in this example as we will

see) is the key to achieving extraordinary results.

�Neural Style Transfer
At this point you have all the tools to start using networks for more

advanced techniques: using pre-trained CNNs, extracting information

from the hidden layers, and using custom cost functions. This is starting

to be advanced material, so you need to understand all the basics we

discussed in the previous chapters very well. If something seems unclear,

go back and study the material again.

An interesting and fun application of CNNs is to make art. Neural style

transfer (NST) refers to a technique that manipulates digital images, to

adopt the appearance or style of another image9. A fun application is to

take an image and let the network manipulate it to adopt it to the style of a

famous painter, like Van Gogh. NST using deep learning appeared first in a

paper by Gatys et al. in 201510. It’s a new technique. The method developed

by Gatys used pre-trained deep CNNs to separate the content of an image

from the style.

9�https://en.wikipedia.org/wiki/Neural_Style_Transfer
10�Gatys, Leon A.; Ecker, Alexander S.; Bethge, Matthias (26 August 2015). “A Neural

Algorithm of Artistic Style”. https://arxiv.org/abs/1508.06576

Chapter 5 Cost Functions and Style Transfer

https://en.wikipedia.org/wiki/Neural_Style_Transfer
https://arxiv.org/abs/1508.06576

177

The idea is that an image is fed into a pre-trained VGG-1911 CNN

trained on the imagenet dataset. The author assumed that the content

of an image can be found in the network intermediate layers output (the

image passed through the learned filters in each layers), while the style

lies in the correlations of the different layers output (coded in a Gramian

matrix). The pre-trained network can identify the content of images quite

well, and therefore the features learned by each layer must relate strongly

to the content of the image, and not to the style. In fact, a robust CNN that

is good at identifying images does not care much about style. Intuitively,

style is contained in how the different filter responses over the space of

an image are related. A painter may use brush strokes that are wide or

narrow, may use many colors close to each other or just a few, and so on.

Remember in a CNN, each layer is simply a collection of image filters;

therefore, the output of a given layer is simply a collection of differently

filtered versions of the input image10.

Another way of seeing that is that content is found when you look at

an image from afar (you don’t care much about the details), while style is

found when looking at the image at a much closer scale and depends on

how different parts of the image relate to each other. Gatys et al. have, in a

smart way, simply implemented these ideas mathematically. To give you

an idea, look at Figure 5-2. A network has manipulated the original image

(upper left) into the style of the Van Gogh painting in the upper right, to

obtain the image on the bottom.

11�”Very Deep CNNS for Large-Scale Visual Recognition”. Robots.ox.ac.uk. 2014.
Retrieved 13 February 2019, http://www.robots.ox.ac.uk/~vgg/research/
very_deep/

Chapter 5 Cost Functions and Style Transfer

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

178

�The Mathematics Behind NST
The original paper used the VGG19 network, which Keras makes available

for us to download and use. An input image that we will indicate here with

x (I will try to use the original notation as much as possible) is encoded

Figure 5-2.  An example of NST. The method has manipulated the
original image (upper left) into the style of the Van Gogh painting in
the upper right, to obtain the image on the bottom.

Chapter 5 Cost Functions and Style Transfer

179

in each layer of the CNN. A layer with Nl filters (or kernels as they are

sometimes called) will have Nl feature maps as output. In the algorithm

those outputs will be flattened out in a one-dimensional vector of

dimension Ml, where Ml is the height times the width of the output of each

filter when applied to the input image. The response of a layer l can then

be encoded in a tensor F l N Ml lÎ ´ . Let’s pause a second here and try to

understand with a concrete example what we mean.

Let’s suppose we use as input images in color, each with dimensions

32 × 32. Let’s consider the first convolutional layer in a CNN that has been

created with the code:

Conv2D(32, (3, 3), padding='same', activation='relu', input_

shape=input_shape))

Where of course input_shape = (32,32,3). The output of the layer

will have these dimensions

(None, 32, 32, 32)

Where of course the None will assume the value of the number of

observations used. This is because we used the parameter padding =

'same'. In this case, the output of layer l = 1, are 32 feature maps

(or the result of the input image convoluted with the 32 filters) each

with dimensions 32 × 32. In this case, we will have Nl = 1 = 32 and

Ml = 1 = 32 × 32 = 1024. Each of the 32 × 32 feature maps will be flattened out

before calculating the Gramian matrices. You will see clearly how this is

done later in the code.

Let’s call the original image p. This is the image we want to change. The

image that is generated as output is called x. We will indicate with Pl and Fl

their respective features maps obtained from layer l. We define the squre

error loss, called the content loss function, as follows:

content
i j

ij
l

ij
lp x l F P, ,() = -()å12

2

,

Chapter 5 Cost Functions and Style Transfer

180

In Keras, we will implement this with the following code:

content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-

content_targets[name])**2)

 �for name in content_outputs.

keys()])

where the content_outputs[] and content_targets[] will contain the

output of specific layers of VGG19 when applied to the input (content_

outputs) and the generated image (content_targets), respectively

(already flattened). Later we will discuss it in more detail; don’t worry for

the moment if you don’t understand it completely. You may wonder why

we don’t have the factor 1/2 but we don’t need it, since content p x l, ,() will

be multiplied by another factor, which will make the 1/2 useless.

We need to calculate the gradient of the loss function with respect to

the image. This is quite an important point. What this means is that the

parameters we want to learn are the pixel values of the image we want to

change. The parameters of the network are fixed, and we don’t need to

change them. With Keras, we will need to use the tape.gradient function

in this form:

tape.gradient(loss, image)

We will need to define the image as a TensorFlow Variable (more on

that later). If you are not familiar with how tape.gradient works, I suggest

you check out the official documentation at https://www.tensorflow.

org/tutorials/eager/automatic_differentiation.

Note T he parameters we want to learn are the pixel values of the
image we want to change, not the weights of the network.

Now we need to take care of the style. To do this, we need to define a

loss function for the style. To do this, we need to define the Gramian matrix

Chapter 5 Cost Functions and Style Transfer

https://www.tensorflow.org/tutorials/eager/automatic_differentiation
https://www.tensorflow.org/tutorials/eager/automatic_differentiation

181

Gl, which is the inner product between the flattened feature maps i and j in

layer l. In other words

G F Fij
l

k
ik
l

kj
l=å

With this newly defined quantity, we will define a Style loss function

style a x,() , where a is the image from which we want to use the style as

style
l

l la x w E,() =
=
å

1

5

Where

E
N M

G Al
l l i j

ij
l

ij
l= -()å1

4 2 2

2

,

Where wl are weights that in the original papers were chosen and equal

1/5. In Keras, we will implement this loss with the code (we will look at the

details later):

tf.add_n([tf.reduce_mean((style_outputs[name]-style_

targets[name])**2)

 for name in style_outputs.keys()])

The style_outputs and style_targets variables will contain the

output of five of the layers of the VGG19 network. In the original paper, the

following five layers were used:

l=1 - block1_conv1

l=2 - block2_conv1

l=3 - block3_conv1

l=4 - block4_conv1

l=5 - block5_conv1

Chapter 5 Cost Functions and Style Transfer

182

Those are the first layers in each block in the VGG19 network.

Remember that you can get the layer names from the VGG19 simply with

this code:

vgg = tf.keras.applications.VGG19(include_top=False,

weights='imagenet')

print()

for layer in vgg.layers:

 print(layer.name)

That would give you this result:

input_1

block1_conv1

block1_conv2

block1_pool

block2_conv1

block2_conv2

block2_pool

block3_conv1

block3_conv2

block3_conv3

block3_conv4

block3_pool

block4_conv1

block4_conv2

block4_conv3

block4_conv4

block4_pool

block5_conv1

block5_conv2

block5_conv3

Chapter 5 Cost Functions and Style Transfer

183

block5_conv4

block5_pool

Note that we have no dense layers, since we used include_top=False.

Finally, we will minimize the following loss function

  total style
l

contentp x a a x p x l, , , , ,() = () + ()
=
åa b

1

5

With gradient descent (for example), with respect to the image we want

to change. The constants α and β can be choosen to give more weight to

style or content. For the result in Figure 5-1, I chose α = 1.0,  β = 104. Other

typical values are α = 10−2,  β = 104.

�An Example of Style Transfer in Keras
The code that we will discuss here has been taken from the original

TensorFlow NST tutorial and is greatly simplified for this discussion.

We will discuss only part of the code to simplify the discussion, since in

its entirety the code is relatively long. You can find the entire simplified

version in the book’s GitHub repository in the Chapter 5 folder. I

suggest you run the code in Google Colab with GPU enabled, since it

is computationally quite intensive. To give you an idea, one epoch on

my laptop takes roughly 13 seconds, while on Google Colab, it takes 0.5

seconds to work with 512 × 512 pixel images.

To make sure that you have the latest TensorFlow version installed, you

should run the following code at the beginning of your notebook:

from __future__ import absolute_import, division, print_

function, unicode_literals

!pip install tensorflow-gpu==2.0.0-alpha0

import tensorflow as tf

Chapter 5 Cost Functions and Style Transfer

184

If you run the code on Google Colab, you need to save the images you

want to work with on your Google drive and mount it. To do that, you need

to upload two images on your drive:

•	 A style image: For example, a famous painting. This is

the image you want to get the style from.

•	 A content image: For example, a landscape or a photo

you took. This is the image you want to modify.

I assume here that you uploaded your images into a folder called data

into the root directory of your Google drive. What you need to do now is to

mount your Google drive in Google Colab to be able to access the images.

To do that, you need the following code:

from google.colab import drive

drive.mount('/content/drive')

If you run this code, you need to go to a specific URL (that will be given

to you by Google Colab) where you will receive the code that you need to

paste in your notebook. A nice overview on how to do this can be found

at http://toe.lt/a. Once mounted, you’ll get a list of the files in the

directory with this:

!ls "/content/drive/My Drive/data"

We can define the filenames of the images we will use with

content_path = '/content/drive/My Drive/data/landscape.jpg'

style_path = '/content/drive/My Drive/data/vangogh_landscape.jpg'

You need to change the filenames to yours, of course. But you will

find the images I used for this example on the GitHub repository if you

want to try the exercise with them. You need to create the data directory

if you don’t have it and copy the images in there. The images will be

loaded with the load_img() function. Note that in the function at the

beginning we resize the images to have their maximum dimension equal

Chapter 5 Cost Functions and Style Transfer

http://toe.lt/a

185

to 512 (the complete code for the load_img() function can be found on

GitHub). This is a size that is manageable, but if you want to generate

better-looking images, you need to increase this value. The image in

Figure 5-1 was generated with max_dim = 1024. The function begins with

def load_img(path_to_img):

 max_dim = 512

 img = tf.io.read_file(path_to_img)

So, you change the value of the max_dim variable to work with bigger

images. Now we need to select only the output of some layers, as we

described in the previous section. To do that, we put the names of the

layers we want to use into two lists:

Content layer where will pull our feature maps

content_layers = ['block5_conv2']

Style layer we are interested in

style_layers = ['block1_conv1',

 'block2_conv1',

 'block3_conv1',

 'block4_conv1',

 'block5_conv1']

This way we can select the right layers using the names. What we need

is a model that gets input and returns all the feature maps from each layer.

To do that, we use the following code

def vgg_layers(layer_names):

 �vgg = tf.keras.applications.VGG19(include_top=False,

weights='imagenet')

 vgg.trainable = False

 �outputs = [vgg.get_layer(name).output for name in layer_names]

Chapter 5 Cost Functions and Style Transfer

186

 model = tf.keras.Model([vgg.input], outputs)

 return model

This function gets a list as input with the layer names and selects the

network layer output of the given layers with this line:

outputs = [vgg.get_layer(name).output for name in layer_names]

Note that there are no checks, so if you have a wrong layer names you

will not get the result you expect. But since the layers we need are fixed,

you don’t need to check if the names exist in the network. This line

model = tf.keras.Model([vgg.input], outputs)

creates a model with one input (vgg.input) and one or more outputs,

depending on the number of layers in the layer_names input list.

To calculate Gij
l (the Gramian matrix), we use this function

def gram_matrix(input_tensor):

 �result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor,

input_tensor)

 input_shape = tf.shape(input_tensor)

 �num_locations = tf.cast(input_shape[1]*input_shape[2],

tf.float32)

 return result/(num_locations)

where the variable num_locations is simply Ml. Now comes the interesting

part: the definition of the loss functions. We need to define a class called

StyleContentModel that will take our model and return the output of

the different layers at each iteration. The class has an __init__ part that

we will skip here (you can find the code in the Jupyter Notebook). The

interesting part is the call() function:

def call(self, inputs):

 inputs = inputs*255.0

Chapter 5 Cost Functions and Style Transfer

187

 �preprocessed_input = tf.keras.applications.vgg19.

preprocess_input(inputs)

 outputs = self.vgg(preprocessed_input)

 �style_outputs, content_outputs = (outputs[:self.num_style_

layers],

 �outputs[self.num_style_

layers:])

 style_outputs = [gram_matrix(style_output)

 for style_output in style_outputs]

 content_dict = {content_name:value

 for content_name, value

 �in zip(self.content_layers, content_

outputs)}

 style_dict = {style_name:value

 for style_name, value

 in zip(self.style_layers, style_outputs)}

 return {'content':content_dict, 'style':style_dict}

This function will return a dictionary with two elements—content_

dict contains the content layers and their output and style_dict contains

the style layers and their outputs. You use this function:

extractor = StyleContentModel(style_layers, content_layers)

And then:

style_targets = extractor(style_image)['style']

content_targets = extractor(content_image)['content']

This way, we can get the output of the different layers when applied

to different images. Remember we need the output of the style layers

when applied to our Van Gogh painting, but we need the content layer

Chapter 5 Cost Functions and Style Transfer

188

output when applied to the landscape (or your image) image. Let’s save

the content image (the landscape or your image) in a variable and define

a function (it will be useful later9) that will clip the values of an array

between 0 and 1:

image = tf.Variable(content_image)

def clip_0_1(image):

 �return tf.clip_by_value(image, clip_value_min=0.0,

clip_value_max=1.0)

Then we can define the two variables α, β as follows:

style_weight=1e-2

content_weight=1e4

Now we have everything we need to define the loss function:

def style_content_loss(outputs):

 style_outputs = outputs['style']

 content_outputs = outputs['content']

 �style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-

style_targets[name])**2)

 �for name in style_outputs.keys()])

 style_loss *= style_weight / num_style_layers

 �content_loss = tf.add_n([tf.reduce_mean((content_

outputs[name]-content_targets[name])**2)

 �for name in content_outputs.

keys()])

 content_loss *= content_weight / num_content_layers

 loss = style_loss + content_loss

 return loss

This code is rather self-explanatory, as we have discussed its parts

already. This function expects as input the dictionary that we obtain using

the StyleContentModel class.

Chapter 5 Cost Functions and Style Transfer

189

Now let’s create the function that will update the weights:

@tf.function()

def train_step(image):

 with tf.GradientTape() as tape:

 outputs = extractor(image)

 loss = style_content_loss(outputs)

 grad = tape.gradient(loss, image)

 opt.apply_gradients([(grad, image)])

 image.assign(clip_0_1(image))

We use tf.GradientTape to update the image. Note that when you

annotate a function with @tf.function, you can still call it like any other

function. But it will be compiled into a graph, which means you get

the benefits of faster execution, running on GPU or TPU, or exporting

to SavedModel (see https://www.tensorflow.org/alpha/guide/

autograph). Remember that the variable extractor has been obtained

with this code:

extractor = StyleContentModel(style_layers, content_layers)

And is the dictionary with the output of the different layers.

Now this code is rather advanced and complicated to understand

at the beginning, so take your time and read the pages with the Jupyter

Notebook open at the same time, to be able to follow the code and

the explanation. Don’t be discouraged if at the beginning you don’t

understand everything. The line:

grad = tape.gradient(loss, image)

will calculate the gradients of the loss function with respect to the variable

image that we have defined. Each update step can be done with a simple

line of code:

train_step(image)

Chapter 5 Cost Functions and Style Transfer

https://www.tensorflow.org/alpha/guide/autograph
https://www.tensorflow.org/alpha/guide/autograph

190

Now we can do the final loop easily:

epochs = 20

steps_per_epoch = 100

step = 0

for n in range(epochs):

 for m in range(steps_per_epoch):

 step += 1

 train_step(image)

 print(".", end=")

 display.clear_output(wait=True)

 imshow(image.read_value())

 plt.title("Train step: {}".format(step))

 plt.show()

While it’s running, you will see the image change every epoch and you

can witness how it is changing.

�NST with Silhouettes
There is a fun application that you can do with NST, and that has to do with

silhouettes12. A silhouette is an image of something represented as a solid

shape of a single color. In Figure 5-3, you can see an example; if you are a

fan of Star Wars, you know who it is (hint: Darth Vader13).

12�This part of the chapter has been inspired by the Medium post https://
becominghuman.ai/creating-intricate-art-with-neural-style-transfer-
e5fee5f89481.

13�https://en.wikipedia.org/wiki/Darth_Vader

Chapter 5 Cost Functions and Style Transfer

https://becominghuman.ai/creating-intricate-art-with-neural-style-transfer-e5fee5f89481
https://becominghuman.ai/creating-intricate-art-with-neural-style-transfer-e5fee5f89481
https://becominghuman.ai/creating-intricate-art-with-neural-style-transfer-e5fee5f89481
https://en.wikipedia.org/wiki/Darth_Vader

191

You should search the Internet14 for images that are similar to a mosaic

or stained glass, like the one shown in Figure 5-4.

Figure 5-3.  A silhouette of the Star Wars character Darth Vader

Figure 5-4.  A mosaic-like image

14�Note that all the images used in this chapter were images free of copyright and
free to use. If you use images for your papers or block, ensure that you can use
them freely or you’ll need to pay royalties.

Chapter 5 Cost Functions and Style Transfer

192

The goal is to obtain an image like the one shown in Figure 5-5.

Figure 5-6.  Masking applied to the mosaic image in Figure 5-4

Figure 5-5.  NST done on a silhouette after applying masking (more
on this later)

�Masking
Masking has several meanings, depending on the field you are using it

in. Here I refer to masking as the process of changing parts of an image to

absolute white according to a silhouette. The idea is graphically illustrated

in Figure 5-6. You can think of it this way: you put a silhouette over your

image (they should have the same resolution) and keep only the parts

where the silhouette is black.

Chapter 5 Cost Functions and Style Transfer

193

This is okay, but a bit unsatisfying, since for example you don’t have

edges in the result. The mosaic shapes are simply cut in the middle.

Visually this is not so satisfying. But we can use NST to make the end image

much nicer. The process is the following:

•	 You use the mosaic-like image as the style image.

•	 You use your silhouette image as the content image.

•	 At the end you apply masking to your end result using

your silhouette image.

You can see the result (using the same code) in Figure 5-5. You can see

that you get nice edges and the mosaic tiles are not cut in half.

You can find the entire code in the book’s GitHub repository in

Chapter 5. But as a reference, let’s suppose that you have your image saved

as a numpy array. Let’s suppose that the silhouette is saved in an array

called mask and that your image is saved in an array called result. The

assumption (and you should check that) is that the mask array will contain

only 0 or 255 values (black and white). Then masking is done simply with

this:

result[mask] = 255

That simply makes white in the result image where there is white in the

silhouette and leaves the rest untouched.

Chapter 5 Cost Functions and Style Transfer

195© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_6

CHAPTER 6

Object Classification:
An Introduction
In this chapter, we will look at more advanced tasks in image processing

that can be achieved with neural networks. We will look at semantic

segmentation, localization, detection, and instance segmentation. The

goal of this chapter is not to make you an expert, since one could easily

read many books on the subject, but to give you enough information to

be able to understand the algorithms and read the original papers. I hope

that, by the end of this chapter, you will understand the difference between

the methods, and you will have an intuitive understanding of the building

blocks of these methods.

These algorithms need many advanced techniques that we have

looked at in the previous chapters, like multiple loss functions and multi-

task learning. We will look at a few more in this chapter. Keep in mind that

the original papers on the methods are in some cases just a couple of years

old, so to master the subject, you need to get your hands dirty and read the

original papers.

Training and using the networks described in the papers is not doable

on a simple laptop and therefore you will find in this chapter (and in the

next) less code and examples. I try to point you in the right direction and

tell you what pre-trained libraries and networks are available at the time

of this writing, in case you want to use those techniques in your own

196

projects. That will be the subject of the next chapter. Where relevant, I try

to point out the differences, advantages, and disadvantages of the different

methods. We will look at the most advanced methods in a very superficial

way, since the details are so complex that only studying the original papers

can give you all the information you need to implement those algorithms

yourself.

�What Is Object Localization?
Let’s start with an intuitive understanding of what object localization is.

We have already seen image classification in many forms: it tells us what

the content of an image is. That may sound easy, but there are many cases

when this is difficult, and not because of the algorithms. For example,

consider the case when you have a dog and a cat in an image at the same

time. What is the class of the image: cat or dog? And what is the content of

the image: A cat or a dog? Of course, both are in there, but classification

algorithms give you one class only, so they are unable to tell you that you

have two animals in the image. And what if you have many cats and many

dogs? What if you have several objects? You get the idea.

It may be interesting to know where the cat and the dog are in the

image. Consider the problem of a self-driving car: it is important to know

where a person is, since that could mean the difference between a dead

passerby and a living one. Classification, as we have looked at in the

previous chapters, often cannot be used alone to solve real-life problems

with images. Typically, recognizing that you have many instances of an

object in an image involves finding their position in an image and being

able to distinguish between them. To do that, we need to be able to find the

positions of each instance in the image and their borders. This is one of the

most interesting (and more difficult) tasks in image recognition techniques

that can be solved with CNNs.

Chapter 6 Object Classification: An Introduction

197

Typically, with object localization we want to determine the location

of an object (for example, a person or a car) in an image and draw a

rectangular bounding box around it.

Note  With object localization, we want to determine the location of
one or more objects (for example, people or cars) in an image and
draw a rectangular bounding box around it.

Sometimes in the literature researchers use the term localization when

the image contains only one instance of an object (for example, only one

person or only one car) and the term detection when an image contains

several instances of an object.

Note  Localization typically refers to when an image contains only
one instance of an object, while detection is when there are several
instances of an object in an image.

To summarize and clarify the terminology, here is an overview of all

the words and terms used (a visual explanation is shown in Figure 6-1):

•	 Classification: Give a label to an image, or in other

words, “understand” what is in an image. For example,

an image of a cat may have the label “cat” (we have

seen several cases of this in the previous chapters).

•	 Classification and localization: Give a label to

an image and determine the borders of the object

contained in it (and typically draw a rectangle around

the object).

Chapter 6 Object Classification: An Introduction

198

•	 Object detection: This term is used when you have

multiple instances of an object in an image. In object

detection, you want to determine all the instances of

several objects (for example, people, cars, signs, etc.)

and draw bounding boxes around them.

•	 Instance segmentation: You want to label each pixel

of the image with a specific class for each separate

instance, to be able to find the exact limits of the object

instance.

•	 Semantic segmentation: You want to label each

pixel of the image with a specific class. The difference

with instance segmentation is that you don’t care if

you have several instances of a car as examples. All

pixels belonging to the cars will be labelled as “car”. In

instance segmentation, you will still be able to tell how

many instances of a car you have and where they are

exactly. To understand the difference, see Figure 6-1.

Figure 6-1.  A visual explanation of the different terms describing the
general task of locating one or more objects in an image

Segmentation is typically the most difficult task of all of them, and in

particular instance segmentation is particularly difficult. Many advanced

techniques come together to solve those problems. One of the things to

remember is that getting enough training data is not easy. Keep in mind

Chapter 6 Object Classification: An Introduction

199

that this is much more difficult than simple classification, since someone

will need to mark where the objects are. With segmentation, someone

needs to classify each pixel in the image, which means training data is very

expensive and difficult to collect.

�Most Important Available Datasets
A well-known dataset that can be used to work on these problems is

the Microsoft COCO dataset at http://cocodataset.org. The dataset

contains 91 object types with a total of 2.5 million labelled instances in

328,000 images.1 To give you an idea of the kind of labeling used, Figure 6-2

shows some examples from the dataset. You can see how specific instances

of objects (like people and cats) are classified at the pixel level.

Figure 6-2.  Examples of the images in the COCO dataset

1�The original paper describing the dataset is: Tsung-Yi Lin, Michael Maire, Serge
Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, Piotr Dollár, Microsoft COCO: Common Objects in
Context, https://arxiv.org/abs/1405.0312

Chapter 6 Object Classification: An Introduction

http://cocodataset.org
https://arxiv.org/abs/1405.0312

200

A quick note about sizes: the 2017 training images are roughly 118,000

and require 18GB2 of hard disk space, so keep that in mind. Training a

network with such a large amount of data is not trivial and will require

time and lots of computing power. There is an API to download the

COCO images that you can use and that is also available in Python. More

information can be found on the main web page or on the API GitHub

repository at https://github.com/cocodataset/cocoapi. The images

have five annotation types: object detection, keypoint detection, stuff

segmentation, panoptic segmentation, and image captioning. More

information can be found at http://cocodataset.org/#format-data.

Another dataset that you may encounter is the Pascal VOC dataset.

Unfortunately, the website is not that stable, and therefore mirrors exist

where you can find the files. One mirror is https://pjreddie.com/

projects/pascal-voc-dataset-mirror/. Note that this is a much smaller

dataset than the COCO dataset.

In this and the next chapter, we will concentrate mainly on object

classification and localization. We will assume that in the images we

have only one instance of a specific object, and the task is to determine

what kind of object it is and draw a bounding box (a rectangle) around

it. These present enough challenge for now! We will look briefly at how

segmentation works, but we will not go into many details about it, since its

problems are extremely difficult to solve. I will provide references that you

may check and study on your own.

�Intersect Over Union (IoU)
Let’s consider the task of classifying an image and then drawing a

bounding box around the object in it. In Figure 6-3, you can see an

example of the output we expect (where the class would be cat).

2�http://cocodataset.org/#download

Chapter 6 Object Classification: An Introduction

https://github.com/cocodataset/cocoapi
http://cocodataset.org/#format-data
https://pjreddie.com/projects/pascal-voc-dataset-mirror/
https://pjreddie.com/projects/pascal-voc-dataset-mirror/
http://cocodataset.org/#download

201

This is a fully supervised task. This means that we will need to learn

where the bounding boxes are and compare them to some given ground

truth. We need a metric to quantify how good the overlap is between the

predicted bounding boxes and the ground truth. This is typically done

with the IOU (Intersect Over Union) . In Figure 6-4, you can see a visual

explanation of it. As a formula, we could write

IOU
Area of overlap

Area of union
=

Figure 6-3.  An example of object classification and localization3

3�Image source: http://www.cbsr.ia.ac.cn/users/ynyu/detection.html

Figure 6-4.  A visual explanation of the IOU metric

Chapter 6 Object Classification: An Introduction

http://www.cbsr.ia.ac.cn/users/ynyu/detection.html

202

In the ideal case of perfect overlap, we have IOU = 1, while if there is no

overlap at all, we have IOU = 0. You will find this term in blogs and books,

so it’s a good idea to know how to measure bounding boxes using the

ground truth.

�A Naïve Approach to Solving Object
Localization (Sliding Window Approach)
A naïve way of solving the problem of localization is the following (spoiler:

this is a bad idea but it’s instructive to see why):

	 1.	 You cut a small portion of your input image

starting from the top-left corner. Let’s suppose your

image has dimensions x, y, and your portion has

dimensions wx, wy, with wx < x and wy < y.

	 2.	 You use a pre-trained network (how you train it or

how you get it is not relevant here) and you let it

classify the image portion that you cut.

	 3.	 You shift this window by an amount we call stride

and indicate with s toward the right and then below.

You use the network to classify this second portion.

	 4.	 Once the sliding window has covered the entire

image, you choose the position of the window that

gives you the highest classification probability.

This position will give you the bounding box

of your object (remember your window has

dimensions wx, wy).

In Figure 6-5, you can see a graphical illustration of the algorithm (we

assumed wx = wy = s).

Chapter 6 Object Classification: An Introduction

203

As you can see in Figure 6-5, we start from the top left and slide the

window toward the right. As soon as we reach the right border of the image

and we don’t have any space to shift the window further to the right, we

get back on the left border but we shift it s pixel down. We continue in this

fashion until we reach the lower-right corner of the image.

You might immediately see some problems with this method:

•	 Depending on the choice of wx, wy, and s, we may

not be able to cover the entire image. (Do you see in

Figure 6-5 the small portion of the image on the right of

window 4 that remains not analyzed?)

•	 How do you choose wx, wy, and s? This is a rather nasty

problem, since the bounding box of our object will

have exactly the dimensions wx, wy. What if the object is

larger or smaller? We typically don’t know in advance

its dimensions and that is a huge problem if we want to

have precise bounding boxes.

Figure 6-5.  A graphical illustration of the sliding window approach
to solve the problem of object localization

Chapter 6 Object Classification: An Introduction

204

•	 What if our object flows across two windows? In

Figure 6-5, you can imagine that the object is half in

window 2 and half in window 3. Then your bounding

box would not be correct if you follow the algorithm as

described.

We could solve the third problem by using s = 1 to be sure that we

cover all possible cases, but the first two problems are not so easy to solve.

To address the window size problem, we should try all possible sizes and

all possible proportions. Do you see any problem here? The number of

evulations that you will need to do with your network is getting out of

control and will become quickly computationally infeasible.

�Problems and Limitations the with Sliding
Window Approach
In the book’s GitHub repository, within the Chapter 6 folder, you can

find an implementation of the sliding window algorithm. To make things

easier, I decided to use the MNIST dataset since you should know it very

well at this point and it’s an easy dataset to use. As a first step, I built a

CNN trained on the MNIST dataset that reached 99.3% accuracy. I then

proceeded to save the model and the weights on disk. The CNN I used has

the following structure:

Chapter 6 Object Classification: An Introduction

205

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

conv2d_2 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0

dropout_1 (Dropout) (None, 12, 12, 64) 0

flatten_1 (Flatten) (None, 9216) 0

dense_1 (Dense) (None, 128) 1179776

dropout_2 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 10) 1290

===

Total params: 1,199,882

Trainable params: 1,199,882

Non-trainable params: 0

I then saved the model and weights using this code (we already

discussed how to do this):

model_json = model.to_json()

with open("model_mnist.json", "w") as json_file:

 json_file.write(model_json)

model.save_weights("model_mnist.h5")

You can see in Figure 6-6 how the network training and accuracy

changes with the number of epochs.

Chapter 6 Object Classification: An Introduction

206

The weights and model can be found in the GitHub repository. I did

that to avoid having to re-train the CNN every time. I can reuse the model

every time by reloading it. You can do it with this code (after you mount

your Google drive if you want to run the code in Google Colab as I did):

model_path = '/content/drive/My Drive/pretrained-models/model_

mnist.json'

weights_path = '/content/drive/My Drive/pretrained-models/

model_mnist.h5'

json_file = open(model_path, 'r')

loaded_model_json = json_file.read()

json_file.close()

loaded_model = model_from_json(loaded_model_json)

loaded_model.load_weights(weights_path)

To make things easier. I decided to create a larger image with one digit

in the middle and see how efficiently I can put a bounding box around it.

To create the image, I used the following code:

Figure 6-6.  Loss function value and accuracy for the training
(continuous line) and for the validation (dashed line) dataset versus
the number of epochs

Chapter 6 Object Classification: An Introduction

207

from PIL import Image, ImageOps

src_img = Image.fromarray(x_test[5].reshape(28,28))

newimg = ImageOps.expand(src_img,border=56,fill='black')

The resulting image is 140x140 pixel. You can see it in Figure 6-7.

Figure 6-7.  The new image created by adding a white border of 56
pixels around one of the digits in the MNIST dataset

Now let’s start with a sliding window that’s 28x28 pixels. We can write

a function that will try to localize the digit and that will get the image as

input, the stride s, and the values wx and wy:

def localize_digit(bigimg, stride, wx, wy):

 slidx, slidy = wx, wy

 digit_found = -1

 max_prob = -1

 bbx = -1 # Bounding box x upper left

 bby = -1 # Bounding box y upper left

 max_prob_ = 0.0

 bbx_ = -1

 bby_ = -1

 most_prob_digit = -1

Chapter 6 Object Classification: An Introduction

208

 maxloopx = (bigimg.shape[0] -wx) // stride

 maxloopy = (bigimg.shape[1] -wy) // stride

 print((maxloopx, maxloopy))

 for slicey in range (0, maxloopx*stride, stride):

 for slicex in range (0, maxloopy*stride, stride):

 slice_ = bigimg[slicex:slicex+wx, slicey:slicey+wx]

 �img_ = Image. fromarray(slice_).resize((28, 28), Image.

NEAREST)

 �probs = loaded_model.predict(np.array(img_).

reshape(1,28,28,1))

 if (np.max(probs > 0.2)):

 most_prob_digit = np.argmax(probs)

 max_prob_ = np.max(probs)

 bbx_ = slicex

 bby_ = slicey

 if (max_prob_ > max_prob):

 max_prob = max_prob_

 bbx = bbx_

 bby = bby_

 digit_found = most_prob_digit

 �print("Digit "+str(digit_found)+ " found, with probability

"+str(max_prob)+" at coordinates "+str(bbx)+" "+str(bby))

 return (max_prob, bbx, bby, digit_found)

Running on our image as so:

localize_digit(np.array(newimg), 28, 28, 28)

Returns this code:

Digit 1 found, with probability 1.0 at coordinates 56 56

(1.0, 56, 56, 1)

Chapter 6 Object Classification: An Introduction

209

Figure 6-8.  The bounding box found by the sliding window method
with wx = 28, wy = 28, and stride s = 28

The resulting bounding boxes can be seen in Figure 6-8.

So that works quite well. But you may have noticed that we used values

for wx, wy, and s that are exactly 28, which is the size of our images. What

happens if we change that? For example, consider the cases depicted in

Figure 6-9. You can clearly see how this method stops working as soon as

the size and proportions of the window change to different values than 28.

Chapter 6 Object Classification: An Introduction

210

Check the confidence of the classification in Figure 6-9, in the lower-

left box. It is quite low. For example, for a window 40x40 and a stride of 10,

the classification of the digit is correct (a 1) but is done with a probability

of 21%. That’s a low value! In the lower-right box, the classification is

completely wrong. Keep in mind that you need to resize the small portion

you cut from your image, and therefore it may look different from the

training data you used.

In this case, it may seem easy to choose the right window size and

proportions, since you know what the images looks like, but in general

you have no idea what value will work. You would have to test different

Figure 6-9.  Results of the sliding window algorithm with different
values of wx, wy, and s

Chapter 6 Object Classification: An Introduction

211

proportions and sizes and get several possible bounding boxes and

classifications and then decide which one is the best. You can easily see

how this becomes computationally infeasible with real images that may

contain several objects with different dimensions and proportions.

�Classification and Localization
We have seen that the sliding window approach is a bad idea. A better

approach is to use multi-task learning. The idea is that we can build a

network that will learn at the same time the class and the position of

the bounding box. We can achieve that by adding two dense layers after

the last one of a CNN. One with (for example) Nc neurons (to classify Nc

classes) that will predict the class with a cross-entropy loss function (that

we will indicate with Jclassification), and one with four neurons that will learn

the bounding boxes with a ℓ2 loss function (that we will indicate with JBB).

You can see a diagram of the network in Figure 6-10.

Figure 6-10.  A diagram that depicts a network that can predict the
class and the bounding box position at the same time

Chapter 6 Object Classification: An Introduction

212

Since this will be a multi task learning problem, we will need to

minimize a linear combination of the two loss functions:

J Jclassification BB+a

Of course, α is an additional hyper-parameter that needs to be tuned.

Just as a reference a ℓ2 loss is proportional to the MSE

2
1

2

Loss Function y y
i

m

true
i

predicted
i = -()

=

() ()å

Where we have, as usual, indicated with m the number of observations

we have at our disposal. This same idea is used very successfully in human

pose estimation, which finds specific points of the human body (like for

example, the joints), as can be seen in Figure 6-11.

Figure 6-11.  An example of human pose estimation. A CNN can
be trained to find important points of the human body, such as the
joints.

Chapter 6 Object Classification: An Introduction

213

There is a lot of research going on in this field, and in the next sections

we will look at how those methods work. The implementation becomes

quite complex and time consuming. If you want to work with these

algorithms, the best way is to look at the original papers and study them.

Unfortunately, there is no plug-and-play library that you can use for those

tasks, although you may find a GitHub repository that will help you. In this

chapter, we will look at the most common variations of CNNs to do object

localization—R-CNN, fast R-CNN, and faster R-CNN. In the next chapter,

we will look at the YOLO (You Only Look Once) algorithm. The next

sections should serve only as pointers to the relevant papers and will give

you a basic understanding of the building blocks of the networks. This is by

no means an exhaustive analysis of these implementations, as that would

require a massive amount of space.

�Region-Based CNN (R-CNN)
The basic idea of region-based CNNs (also known as R-CNNs) is quite

simple (but implementing it is not). As we discussed, the main problem

with naïve approaches is that you need to test a huge number of windows

to be able to find the best matching bounding boxes. Searching every

possible location is computationally infeasible, as it is testing all possible

aspect ratios and window sizes.

So Girshick et al.4 proposed a method where they used an algorithm

called selective search5 to first propose 2000 regions from the image (called

the region proposals) and then, instead of classifying a huge number of

regions, they classified just those 2000 regions.

4�https://arxiv.org/pdf/1311.2524.pdf
5�Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders
International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013
[http://toe.lt/b]

Chapter 6 Object Classification: An Introduction

https://arxiv.org/pdf/1311.2524.pdf
http://toe.lt/b

214

Selective search has nothing to do with machine learning and uses a

classical approach to determine which regions may contain an object. The

first step in the algorithm is to segment an image, using pixel intensities

and graph-based methods (for example, the one by Felzenszwalb and

Huttenlocher6). You can see in Figure 6-12 the result of this segmentation.

Figure 6-12.  An example of segmentation applied to an image
(image source: http://cs.brown.edu/people/pfelzens/segment/)

After this step, adjacent regions are grouped together based on

similarities of the following features:

•	 Color similarity

•	 Texture similarity

6�P. Felzenszwalb, D. Huttenlocher, Efficient Graph-Based Image Segmentation,
International Journal of Computer Vision, Vol. 59, No. 2, September 2004

Chapter 6 Object Classification: An Introduction

http://cs.brown.edu/people/pfelzens/segment/

215

Figure 6-13.  An example of the output of the selective search
algorithm as implemented in the OpenCV library

•	 Size similarity

•	 Shape compatibility

The exact details of how this is done go beyond the scope of this book,

since those techniques are typically used in image-processing algorithms.

In the OpenCV7 library, there is an implementation of the algorithm that

you can try. In Figure 6-13, you can see an example. I applied the algorithm

to a picture I took and I asked the algorithm to propose 40 regions.

7�https://opencv.org

Chapter 6 Object Classification: An Introduction

https://opencv.org

216

The Python code that I used can be found on the following website:

https://www.learnopencv.com/selective-search-for-object-

detection-cpp-python/. The main idea of R-CNN is to use a CNN to label

the regions that this algorithm proposed and then use support vector

machines for the final classification.

In Figure 6-9, you can see for example that the laptop has not been

identified as an object. But that is why one uses 2000 regions in R-CNN,

to make sure that enough regions are proposed. Checking many regions

manually cannot be done visually by a person. The number of regions and

their overlap is so big that the task is not feasible anymore. If you try the

OpenCV implementation of the algorithm, you will notice that it is quite

slow. This is one of the main reasons that additional methods have been

developed. The manual approach is, for example, not suitable for real-time

object detection (for example, in a self driving car).

R-CNN can be summarized in the following steps (the steps have been

taken from http://toe.lt/d):

	 1.	 Take a pre-trained imagenet CNN (such as Alexnet).

	 2.	 Re-train the last fully connected layer with the

objects that need to be detected and the “no-object”

class.

	 3.	 Get all proposals (around 2000 region proposals for

each image) from selective search and resize them

to match the CNN input.

Chapter 6 Object Classification: An Introduction

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
http://toe.lt/d

217

	 4.	 Train SVM to classify each region between object

and background (one binary SVM for each class).

	 5.	 Use bounding box regression. Train a linear

regression classifier that will output some correction

factor for the bounding boxes.

�Fast R-CNN
Girshick improved on its algorithm and created what are known as

“fast R-CNNs”.8 The main idea behind this algorithm is the following

	 1.	 The image goes through the CNN and feature maps

are extracted (the output of the convolutional

layers).

	 2.	 Regions are proposed, not based on the initial

image, but based on the feature maps.

	 3.	 Then the same feature maps and the proposed

regions are used passed to a classifier that decides

which object is in which region.

A diagram explaining these steps is shown in Figure 6-14.

8�https://arxiv.org/pdf/1504.08083.pdf

Chapter 6 Object Classification: An Introduction

https://arxiv.org/pdf/1504.08083.pdf

218

The reason this algorithm is faster than R-CNN is because you don’t

have to feed 2000 region proposals to the convolutional neural network

every time9—you do it only once.

Figure 6-14.  A diagram depicting the main steps of the algorithm for
fast R-CNN

9�http://toe.lt/c

Chapter 6 Object Classification: An Introduction

http://toe.lt/c

219

�Faster R-CNN
Note that R-CNN and fast R-CNN both use selective search to propose

regions, and therefore are relatively slow. Even fast R-CNN needs around

two seconds for each image, making this variation not suitable for real-

time object detection. R-CNN needs around 50 seconds, and fast R-CNN

around two seconds. But it turns out we can do even better, by removing

the need to use selective search, since this turns out to be the bottleneck of

both algorithms.

Ren et al.10 developed a new idea: to use a neural network to learn

regions from labelled data, removing the slow selective search algorithm

altogether. Faster R-CNN requires around 0.2 seconds, making them a

fast algorithm for object detection. There is a very nice diagram depicting

the main steps of a faster R-CNN that can be found at http://toe.lt/e.11

We report it in Figure 6-15 for you since I think it really helps in intuitively

understanding the main building blocks of a faster R-CNN. The details

tend to be quite complicated and therefore an intuitive and superficial

description will not serve you. To understand the steps and the subtleties,

you need more time and experience.

10�https://arxiv.org/pdf/1506.01497.pdf
11�Part of the image appears in the original paper by Ren, but additional labels and

information have been added by Leonardo Araujo dos Santos (https://legacy.
gitbook.com/@leonardoaraujosantos).

Chapter 6 Object Classification: An Introduction

http://toe.lt/e
https://arxiv.org/pdf/1506.01497.pdf
https://legacy.gitbook.com/@leonardoaraujosantos
https://legacy.gitbook.com/@leonardoaraujosantos

220

Figure 6-15.  A diagram depicting the main parts of faster
R-CNN. Image source: http://toe.lt/e.

In the next chapter, we will look at another algorithm (YOLO) and see

how you can use those techniques in your own projects.

Chapter 6 Object Classification: An Introduction

http://toe.lt/e

221© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_7

CHAPTER 7

Object Localization:
An Implementation
in Python
In this chapter, we will look at the YOLO (You Only Look Once) method

for object detection. The chapter is split in two parts: in the first section

we learn how the algorithm works, and in the second section, I will give an

example of how you can use it in your own Python projects.

Keep in mind that YOLO is quite complicated, so for 99% of you, a

pre-trained model is the best choice for doing object detection. For the 1%

at the forefront of the research, you probably don’t need this book anyway

and you should know how to do object detection starting from scratch.

This chapter (as the previous one) should serve to point you in the

right direction, give you the fundamentals you need to understand the

algorithm, and give you your first experiences with object detection.

You will notice quite soon that those methods are slow, difficult to

implement, and have many limitations. This is a very active research

field that is also very young. The paper describing YOLO version 3 (that

we will use later in the chapter in the Python code) was published just

in April, 2018. At the time of this writing, it’s less than two years old!

222

Those algorithms are difficult to implement, difficult to understand,

and very difficult to train. I hope that by the end of this chapter, you will

understand the basics of it, and you can perform your first tests with

the models.

Note  Those algorithms are difficult to implement, difficult to
understand, and very difficult to train.

�The You Only Look Once (YOLO) Method
In the last chapter, we looked at several methods for object detection.

I also showed you why using a sliding window is a bad idea and where

the difficulties are. In 2015, Redmon J. et al. proposed a new method to

do object detection: they called it YOLO (You Only Look Once). They

developed a network that can perform all the necessary tasks (detect

where the objects are, classify multiple objects, etc.) in one pass. This is

one of the reasons that this method is fast and is used often in real-time

applications.

In the literature, you will find three versions of the algorithm: YOLOv1,

YOLOv2, and YOLOv3. v2 and v3 are improvements over v1 (more on that

later). The original network has been developed and trained with darknet,

a neural network framework developed by the author of the original

algorithm, Redmon J. You will not find an easy-to-download, pre-trained

model that you can use with Keras. More on that later when I give you an

example of how you can use it in your projects.

It is very instructive to read the original paper on YOLO, which can be

found at https://arxiv.org/abs/1506.02640.

Chapter 7 Object Localization: An Implementation in Python

https://arxiv.org/abs/1506.02640

223

Note  The main idea of the method is to reframe the detection
problem as one single regression problem, from the pixels of
the image as inputs, to the bounding box coordinates and class
probabilities1.

Let’s see how it works in detail.

�How YOLO Works
To understand how YOLO works, it’s best to go through the algorithm step

by step.

�Dividing the Image Into Cells

The first step is to divide the image into S × S cells. For each cell, we predict

what (and if an) object is in the cell. Only one object will be predicted for

each cell, so one cell cannot predict multiple objects. Then for each cell,

a certain number (B) of bounding boxes that should contain the object

are predicted. In Figure 7-1, you can see the grid and the bounding boxes

that the network might predict (as an example). In the original paper, the

image was divided into a 7 × 7 grid, but for the sake of clarity in Figure 7-1,

I divided the image into a 5x5 grid.

1�Redmon J. et al., “You Only Look Once: Unified, Real-Time Object Detection,”
https://arxiv.org/abs/1506.02640.

Chapter 7 Object Localization: An Implementation in Python

https://arxiv.org/abs/1506.02640

224

Let’s take as an example cell D3 in Figure 7-1. This cell will predict

the presence of a mouse and then it will predict a certain number B of

bounding boxes (the yellow rectangles). Similarly, cell B2 will predict

the presence of the bottle and B bounding boxes (the red rectangles in

Figure 7-1) all at the same time. Additionally, the model predicts a class

confidence (a number) for each bounding box. To be precise, the model

output for each cell is as follows:

•	 For each bounding box (B in total), there are four

values: x, y, w, h. These are the position of the center,

its width, and its height. Note that the position of the

center is given with relationship to the cell position, not

as an absolute value.

Figure 7-1.  Image divided into a 5 × 5 grid. For cell D3, we will
predict the mouse and will predict bounding boxes (the yellow boxes).
For cell B2, we will predict a bottle and its bounding boxes (the red
rectangles).

Chapter 7 Object Localization: An Implementation in Python

225

•	 For each bounding box (B in total), there is a

confidence score, which is a number that reflects how

likely the box contains the object. In particular, at

training time, if we indicate the probability of the cell

containing the object as Pr(Object), the confidence is

calculated as follows:

Pr Object IOU()´

Where IOU indicates the Intersection Over Union,

which is calculated using the training data (see the

previous chapter for an explanation of the term and

how to calculate it). This number encodes at the same

time the probability that a specific object is in a box and

how good the bounding box fits the object.

Therefore, supposing we have S = 5, B = 2 and supposing the network

can classify Nc = 80 classes, the network will have an output of size of the

following:

S S B Nc´ ´ ´ +() = ´ ´ ´ +() =5 5 5 2 5 80 2250

In the original paper, the authors used S = 7, B = 2 and used the VOC

dataset2 with 20 labelled classes. Therefore, the output of the network was

as follows:

S S B Nc´ ´ ´ +() = ´ ´ ´ +() =5 7 7 2 5 20 1470

The network structure is quite easy. It’s simply a set of several

convolutional layers (with some maxpool thrown in there) and a big dense

layer at the end to predict the necessary values (remember the problem is

2�http://host.robots.ox.ac.uk/pascal/VOC/

Chapter 7 Object Localization: An Implementation in Python

http://host.robots.ox.ac.uk/pascal/VOC/

226

framed as a regression problem). In the original paper, the authors were

inspired by the GoogLeNet model. The network has 24 layers followed

by two dense layers (the last one having 1470 neurons; do you see why?).

Training took, as the authors mentioned, one entire week. They used a

few tricks for the training, and if you are interested, I strongly suggest you

read the original paper. It’s quite instructive (for example, they also used

learning rate decay in an unusual way, increasing the value of the learning

rate at the beginning and then lowering it later). They also used dropout

and extensive data augmentation. Training those models is not a trivial

undertaking.

�YOLOv2 (Also Known As YOLO9000)
The original YOLO version had some shortcomings. For example, it was

not very good at detecting objects that were too close. In the second

version,3 the authors introduced some optimizations, the most important

one being anchor boxes. The network gives pre-determined sets of boxes,

and instead of predicting bounding boxes completely from scratch, it

simply predicted deviations from the set of anchor boxes. The anchor

boxes can be chosen depending on the type of objects that you want to

predict, making the network better at certain specific tasks (for example,

small or big objects).

In this version, they also changed the network structure, using 19

layers and then 11 more layers specifically designed for object detection,

for a total of 30 layers. This version also struggled with small objects (also

when using anchor boxes). This was because the layers downsampled the

image and, during the forward pass-through, the network information was

lost, making detecting small things difficult.

3�Redmon J., Farhadi A., “YOLO9000: Better, Faster, Stronger,” https://arxiv.org/
abs/1612.08242

Chapter 7 Object Localization: An Implementation in Python

https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242

227

�YOLOv3
The last version4 introduces a few new concepts that makes the model

quite powerful. Here are the main improvements:

•	 Predicting boxes at different scales: The model predicts

boxes with different dimensions, so to say (is a bit more

complicated than that, but that should give you an

intuitive understanding of what is going on).

•	 The network is much bigger: A total of 53 layers.

•	 The network uses skip connections. Basically, this

means that the output of a layer will be fed not only

to the very next layer but also to a layer coming later

in the network. This way, the information not yet

downsampled will be used later to make detecting

small objects easier. Skip connections are used in

ResNets (not discussed in this book), and you can find

a good introduction at http://toe.lt/w.

•	 This version uses nine anchor boxes, three for

each scale.

•	 This version predicts more bounding boxes for

each cell.

All those improvements make YOLOv3 quite good, but also quite slow,

due to the increased computational power needed to process all those

numbers.

4�Redmon J., Farhadi A., “YOLOv3: An Incremental Improvement,” https://arxiv.
org/pdf/1804.02767.pdf

Chapter 7 Object Localization: An Implementation in Python

http://toe.lt/w
https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf

228

�Non-Maxima Suppression
Once you have all the predicted bounding boxes, you need to choose the

best one. Remember that for each cell and object, the model predicts

several bounding boxes (regardless of which version you use). Basically,

you choose the best bounding box by following this procedure (called non-

maxima suppression):

	 1.	 It first discards all cells in which the probability of an

object being present is less than a given threshold

(typically 0.6).

	 2.	 It takes all the cells with the highest probability of

having an object inside.

	 3.	 It takes the bounding boxes that have the highest score

and removes all other bounding boxes that have an

IOU greater than a certain threshold (typically 0.5) with

each other. That means that it removes all bounding

boxes that are very similar to the chosen one.

�Loss Function
Note that the networks mentioned previously have a large number of

outputs, so you should not expect a simple loss function to work. Also note

that different parts of the final layer have very different meanings. One part

is bounding box positions, one part is class probabilities, and so on. The

loss function has three parts:

•	 Classification loss

•	 Localization loss (the error between predicted

bounding boxes and the expected results)

•	 Confidence loss (whether there is an object in the box)

Let’s take a closer look at these three aspects of loss.

Chapter 7 Object Localization: An Implementation in Python

229

�Classification Loss

The classification loss used is determined by

i

S

i
obj

c classes
i ip c p c

= Î
å å ()- ()()

0

2
2

 ˆ

Where

i
objis 1 if an object is in cell i, or 0 otherwise.

p̂ ci () denotes the probability of having class c in cell i.

�Localization Loss

This loss measures the error of the predicted bounding boxes with respect

to the expected ones.

l

l

coord
i

S

j

B

i
obj

i i i i

coord
i

S

x x y y
= =

=

åå

å

-() + -()é
ë

ù
û +

0 0

2 2

0

2

2

 ˆ ˆ

jj

B

i
obj

i i i iw w h h
=
å -() + -()é

ë
ê

ù

û
ú

0

2 2

 ˆ ˆ

�Confidence Loss

The confidence loss measures the error when deciding if an object is in the

box or not.

i

S

j

B

ij
obj

= =
åå -()

0 0

2
2

 C Ci i
ˆ

Where

Ĉi is the confidence of the box j in cell i.

ij
objis 1 if the jth bounding box in cell i is responsible for detecting the

object.

Chapter 7 Object Localization: An Implementation in Python

230

Since most cells does not contain an object, we must be careful.

The network could learn that the background is important. We need

to add a term to the cost function to remedy this. This is done with the

additional term:

lnoobj
i

S

j

B

ij
noobj

= =
åå -()

0 0

2
2

 C Ci i
ˆ

Where ij
noobj is the opposite of ij

obj .

�Total Loss Function

The total loss function is simply the sum of all the terms:

L p c p c
i

S

i
obj

c classes
i i coord

i

S

j

B

i= ()- ()() +
= Î = =
å å åå

0

2

0 0

2 2

 ˆ l oobj
i i i i

coord
i

S

j

B

i
obj

i i

x x y y

w w

-() + -()é
ë

ù
û +

-()
= =
åå

ˆ ˆ

ˆ

2 2

0 0

2

l 
22 2

0 0

2

0

2 2

+ -()é

ë
ê

ù

û
ú +

-() +
= = =
åå å

h hi i

i

S

j

B

ij
obj

noobj
i

S

ˆ

ˆ C Ci i l
jj

B

ij
noobj

=
å -()

0

2

 C Ci i
ˆ

As you can see, it’s a complicated formula to implement. This is one of

the reasons that the easiest way to do object detection is to download and

use a pre-trained model. Starting from scratch will require some time and

effort. Believe me.

In the next sections, we will look at how you can use YOLO algorithms

(in particular, YOLOv3) in your own Python projects.

Chapter 7 Object Localization: An Implementation in Python

231

�YOLO Implementation in Python and OpenCV
�Darknet Implementation of YOLO
If you followed the previous sections, you understand that developing your

own models for YOLO from scratch is not feasible for a beginner (and for

almost all practitioners), so, as we have done in previous chapters, we need

to use pre-trained models to use object detection in your projects. The web

page where you can find all the pre-trained models you could ever want is

https://pjreddie.com. This is the home page of Joseph C. Redmon, the

maintainer of Darknet.

Note  Darknet is an open source neural network framework written
in C and CUDA. It is fast, easy to install, and supports CPU and GPU
computation.

On a subpage (https://pjreddie.com/darknet/yolo/), you will

find all the information you need about the YOLO algorithm. You can

download from this page the weights of several pre-trained models. For

each model, you will always need two files:

•	 A .cfg file, which basically contains the structure of the

network.

•	 A .weights file, which contains the weights obtained

after training.

To give you an idea of the content of the files, the .cfg file contains,

among other things, information on all the layers used. An example follows:

[convolutional]

batch_normalize=1

filters=64

size=3

Chapter 7 Object Localization: An Implementation in Python

https://pjreddie.com
https://pjreddie.com/darknet/yolo/

232

stride=1

pad=1

activation=leaky

This tells you how that particular convolutional layer is structured. The

most important information contained in the file is about:

•	 Network architecture

•	 Anchor boxes

•	 Number of classes

•	 Learning rate and other parameters used

•	 Batch size

The other file (.weights) contains the pre-trained weights that you

need in order to perform inference. Note that they are not saved in a Keras

compatible format (like the .h5 files we have used so far), so they cannot

be loaded in a Keras model unless you convert them first.

There is no standard tool or utility to convert those files, since the

format is not constant (it has changed for example between YOLOv2

and YOLOv3). If you are interested in using YOLO up to v2, you can use

the YAD2K library (Yet Another Darknet 2 Keras), which can be found at

https://github.com/allanzelener/YAD2K.

Note that this does not work on YOLOv3 .cfg files. Believe me, I have

tried. But if you are happy with YOLOv2, you can use the code in this

repository to convert the .weight files into a more Keras-friendly format.

I also want to point out another GitHub repository that implemented

a converter for YOLOv3 at https://github.com/qqwweee/keras-yolo3.

It has some limitations (for example, you must use standard anchors), but

it may be a good starting point to convert the files. However, there is an

easier way to use the pre-trained models and that is using OpenCV, as we

will see later in the chapter.

Chapter 7 Object Localization: An Implementation in Python

https://github.com/allanzelener/YAD2K
https://github.com/qqwweee/keras-yolo3

233

�Testing Object Detection with Darknet
If you simply want to perform some classification on an image, the easiest

way to do that is to follow the instructions on the darknet website. Let’s

look at how that works here. Note that the instructions work if you are on

a Linux or MacOS X system. On Windows, you need to have make, gcc, and

several other tools installed. As described on the website, the installation

needs only a few lines:

git clone https://github.com/pjreddie/darknet

cd darknet

make

wget https://pjreddie.com/media/files/yolov3.weights

At this point, you can simply perform your object detection with this:5

./darknet detect cfg/yolov3.cfg yolov3.weights table.jpg

Note that the .weight file is very big (around 237MB). Keep that in

mind when downloading it. On a CPU this is quite slow; it took a very

modern MacBook Pro from 2018 18 seconds to download. You can see the

result in Figure 7-2.

5�You can find the image used for testing in the GitHub repository within Chapter 7.

Chapter 7 Object Localization: An Implementation in Python

234

By default, a threshold of 0.25 is used. But you can specify a different

one using the -thresh XYZ parameter. You must change XYZ to the

threshold value you want to use.

This method is nice for playing with object detection, but it’s difficult

to use in your Python projects. To do that, you will need to be able to use

the pre-trained models in your code. There are several ways to do that, but

the easiest way is to use the opencv library. If you are working with images,

chances are that you are already working with this library. If you have

never heard of it, I strongly suggest you check it out, since it’s a great library

for working with images. You can find the official web page at https://

opencv.org.

You can, as usual, find the entire code in the GitHub repository, within

the Chapter 7 folder of this book. We will discuss only the most important

parts for brevity.

Figure 7-2.  YOLOv3 used with darknet on a test image

Chapter 7 Object Localization: An Implementation in Python

https://opencv.org
https://opencv.org

235

You will need to have the newest opencv library installed. The code we

discuss here has been developed with version 4.1.0. To determine which

version you have, use this:

import cv2

print (cv2.__version__)

To try the code we discuss here, you need three files from the https://

pjreddie.com website:

•	 coco.names

•	 yolov3.cfg

•	 yolov3.weights

coco.names contains the labels of the classes that the pre-trained

model can classify. The yolov3.cfg and yolov3.weights files contain the

model configuration parameters (as we have discussed) and the weights

we need to use. For your convenience, since the yolov3.weights is about

240MB and cannot be uploaded to GitHub, you can download a ZIP file

of all three at http://toe.lt/r. In the code, we need to specify where the

files are. For example, you can use the following code:

weightsPath = "yolo-coco/yolov3.weights"

configPath = "yolo-coco/yolov3.cfg"

You need to change the location to where you saved the files on your

system. OpenCV provides a function to load the weights without the need

to convert them:

net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

This is quite confortable, since you don’t need to analyze or write your

own loading function. It returns a model object that we will use later for

inference. If you remember from the discussion about the method at the

Chapter 7 Object Localization: An Implementation in Python

https://pjreddie.com
https://pjreddie.com
http://toe.lt/r

236

beginning of the chapter, we need to get the output layers, in order to get

all the information we need, like bounding boxes or predicted classes. We

can do that easily with the following code:

ln = net.getLayerNames()

ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

The getUnconnectedOutLayers() function returns indexes of layers

with unconnected outputs, which is exactly what we are looking for. The ln

variable will contain the following layers:

['yolo_82', 'yolo_94', 'yolo_106']

Then we need to resize the image in a square 416x416 image and

normalize it by dividing the pixel values by 255.0:

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),

swapRB=True, crop=False)

Then we need to use it as input to our model saved in the net model:

net.setInput(blob)

And then we can use the forward() call to do a forward pass-through

of the pre-trained model:

layerOutputs = net.forward(ln)

We are not yet done, so don’t relax. We need to extract the bounding

boxes, which we will save in the boxes list, then the confidences, saved in the

confidences list, and then the predicted classes, saved in the classIDs list.

We first initialize the lists as follows:

boxes = []

confidences = []

classIDs = []

Chapter 7 Object Localization: An Implementation in Python

237

Then we loop over the layers and extract the information we need. We

can perform the loops as follows:

for output in layerOutputs:

 for detection in output:

Now the scores are saved in the elements starting from the fifth in

the detection variable, and we can extract the predicted class with np.

argmax(scores):

scores = detection[5:]

classID = np.argmax(scores)

The confidence is of course the score of the predicted class:

confidence = scores[classID]

We want to keep predictions with a confidence bigger than zero. In the

code used here, we chose a limit of 0.15. The predicted bounding box is

contained in the first four values of the detection variable:

box = detection[0:4] * np.array([W, H, W, H])

(centerX, centerY, width, height) = box.astype("int")

And if you remember, YOLO predicts the center of the bounding box,

so we need to extract the upper-left corner position:

x = int(centerX - (width / 2))

y = int(centerY - (height / 2))

And then we can simply append the found values to the lists:

boxes.append([x, y, int(width), int(height)])

confidences.append(float(confidence))

classIDs.append(classID)

Chapter 7 Object Localization: An Implementation in Python

238

Then we need to use non-maxima suppression (as discussed in the

previous sections). OpenCV provides also a function6 for it:

idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.6,0.2)

The function needs the following parameters:

•	 A set of bounding boxes (saved in the boxes variable)

•	 A set of confidences (saved in the confidences

variable)

•	 A threshold used to filter boxes by score (0.6 in the

previous code)

•	 The threshold used in non-maximum suppression (the

0.2 in the previous code)

Then we can obtain the right coordinates with this simple code:

for i in idxs.flatten():

 # extract the bounding box coordinates

 (x, y) = (boxes[i][0], boxes[i][1])

 (w, h) = (boxes[i][2], boxes[i][3])

You can see in Figure 7-3 the results of this code.

6�You can find the official documentation at http://toe.lt/t.

Chapter 7 Object Localization: An Implementation in Python

http://toe.lt/t

239

That is exactly as it should be—the same results as in Figure 7-2. In

addition, we have the probability of the prediction on the box. You can see

how easy this is. You simply add those few lines of code to your project.

Keep in mind that the model we built using the pre-trained weights

will only detect the objects that are contained in the image dataset that the

pre-trained model has been trained with. If you need to use the model on

different objects, you need to fine-tune the models, or train it from scratch

for your objects. Describing how to train the model completely from

scratch is beyond the scope of the book, but in the next section, I provide

some pointers in case you need to do it.

Figure 7-3.  YOLOv3 results obtained with OpenCV

Chapter 7 Object Localization: An Implementation in Python

240

�Training a Model for YOLO for Your Specific
Images
I will not describe the different procedures you need to train your own

YOLO models, since that would take a few chapters on its own, but I hope

I can point you in the right direction. Let’s suppose you want to train a

model specifically for your images. As a first step, you need the training

data. Supposing you have enough images, you first need to label them.

Remember that you need to mark the right bounding boxes for each image.

Doing that manually is an almost impossible task, so I suggest two projects

that will help you label your training data.

•	 BBox-Label-Tool by Darkflow Annotations: This tool

can be found at https://github.com/enriqueav/

BBox-Label-Tool. The tool saves the annotations in

the right format as expected by Darkflow (a Python

wrapper that can use darknet weight files, https://

github.com/thtrieu/darkflow).

•	 labelImg: This tool can be found at https://github.

com/tzutalin/labelImg. This tool can be used with

several Python installations (including Anaconda, for

example) and on several operating systems (including

Windows).

Check them out in case you want to try to train your YOLO model on

your data. Since describing the entire procedure would go well beyond the

scope of the book, I suggest you read the following medium post, which

does quite a good job at describing how to do that: http://toe.lt/v.

Remember that you need to modify a cfg file so that you can specify the

right number of classes that you are trying to identify. For example, in the

yolov3.cfg file, you will find this line (at line 610):

classes=80

Chapter 7 Object Localization: An Implementation in Python

https://github.com/enriqueav/BBox-Label-Tool
https://github.com/enriqueav/BBox-Label-Tool
https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
http://toe.lt/v

241

It tells you how many classes you can identify with the models. You will

need to modify this line to reflect the number of classes you have in your

problem.

On the official YOLO website, there is a detailed description of how to

do that: https://pjreddie.com/darknet/yolo/. Scroll down until you

find the sections on training the models with your own datasets. Do not

underestimate the complexity of this task. Lots of reading and testing will

be required.

�Concluding Remarks
As you might have noticed, using these advanced techniques is quite

complicated and not simply a matter of copying a few lines of code. You

need to make sure you understand how the algorithms work to be able

to use them in your own projects. Depending on the object you need to

detect, you may need to spend quite some time building a custom model

suited for your problem. That will require lots of testing and coding. It will

not be easy. My goal with this chapter was to give you enough tools to help

you and point you in the right direction.

After the previous chapters, you have now enough understanding

of advanced techniques to be able to re-implement even complicated

algorithms as YOLO on your own, although this will require time and

effort. You will suffer a lot, but if you don’t give up, you will be rewarded

with success. I am sure of it.

In the next chapter, we look at a complete example that uses CNNs

on real data, where we use all the techniques that we have learned so far.

Consider Chapter 8 as an exercise. Try to play with the data and reproduce

the results described there. I hope you have fun!

Chapter 7 Object Localization: An Implementation in Python

https://pjreddie.com/darknet/yolo/

243© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5_8

CHAPTER 8

Histology Tissue
Classification
Now it’s time to put all we have learned together and see how the

techniques we have learned so far can be used on a real dataset. We

will use a dataset that I have used successfully as my end project in my

university course on deep learning: the “collection of textures in colorectal

cancer histology”.1 This dataset can be found on several websites:

•	 http://toe.lt/f: On zenodo.org

•	 http://toe.lt/g: On Kaggle (this dataset was

prepared originally by Kevin Mäder2 and me for the

purpose of the university course we held during the

Autumn semester of 2018 at the Zürich University of

Applied Science)

•	 http://toe.lt/h: Since TensorFlow 2.0, this is also

available as a pre-read dataset (the link points to the

TensorFlow GitHub repository for the dataset’s API)

1�Kather JN, Weis CA, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zollner F:
Multi-class texture analysis in colorectal cancer histology (2016), Scientific Reports
(in press)

2�https://www.linkedin.com/in/kevinmader/

http://toe.lt/f:
http://toe.lt/g
http://toe.lt/h
https://www.linkedin.com/in/kevinmader/

244

Don’t download the data yet. I prepared a pickle (more on that

later) file for you with all the data ready to be used. You will find all the

information in the next section.

The thing we will use in this chapter is the Kather_texture_2016_

image_tiles_5000 folder and it contains 5000 histological images of

150x150px each (74x74μm). Each image belongs to exactly one of eight

tissue categories (specified by the folder name from the Zenodo website).

In the code, I assume that, within the folder where you have your Jupyter

Notebooks, you have a data folder and under that data folder, you have the

Kather_texture_2016_image_tiles_5000 folder.

In the GitHub repository for this book, the folder for Chapter 8 contains

the complete code that you can use. In this chapter, we will look only at the

parts that are relevant to our discussions. If you want to try this, please use

the GitHub repository. The code is complete and directly usable. The goal

of this project is to build a classifier that can classify the different images

into one of eight classes. We will look at them in the next sections and see

where the difficulties are. Let’s start, as usual, with the data.

Most of the code was developed by Fabien Tarrade (https://www.

linkedin.com/in/fabientarrade/) for my university course, and he was

nice enough to give me permission to use it. I have updated it quite a bit to

make it usable in this example. Note that everything that works is thanks to

Fabien, and all the bugs are my fault.

�Data Analysis and Preparation
The code for this section is contained in the notebook called 01- Data

exploration and preparation.ipynb, which is in the book’s GitHub

repository in the Chapter 8 folder. Feel free to follow this discussion with a

window open on your computer to try the code. Since we have the images

in different folders, we need to load them in a pandas dataframe and

automatically generate a label from the folder name. For example, the image

Chapter 8 Histology Tissue Classification

https://www.linkedin.com/in/fabientarrade/
https://www.linkedin.com/in/fabientarrade/

245

1A11_CRC-Prim-HE-07_022.tif_Row_601_Col_151.tif is contained in

the folder 01_TUMOR and therefore must have "TUMOR" as its label.

We can automate that process in a very simple way. We start with this

code (for all the imports, please check the code in GitHub):

df = pd.DataFrame({'path': glob(os.path.join(base_dir, '*',

'*.tif'))})

This generates a dataframe with just one column, 'path'. This column

contains the path to each image we want to load. The base_dir variable

contains the path to the Kather_texture_2016_image_tiles_5000 folder.

For example, I am running the code in Google Colab and my base_dir

looks like this:

base_dir = '/content/drive/My Drive/Book2-ch8/data/Kather_

texture_2016_image_tiles_5000'

The first five records of my dataframe look like this:

/content/drive/My Drive/Book2-ch8/data/Kather_texture_2016_

image_tiles_5000/05_DEBRIS/5434_CRC-Prim-HE-04_002.tif_Row_451_

Col_1351.tif

/content/drive/My Drive/Book2-ch8/data/Kather_texture_2016_

image_tiles_5000/05_DEBRIS/626A_CRC-Prim-HE-08_024.tif_Row_451_

Col_1.tif

/content/drive/My Drive/Book2-ch8/data/Kather_texture_2016_

image_tiles_5000/05_DEBRIS/148A7_CRC-Prim-HE-04_004.tif_

Row_151_Col_901.tif

/content/drive/My Drive/Book2-ch8/data/Kather_texture_2016_

image_tiles_5000/05_DEBRIS/6B37_CRC-Prim-HE-08_024.tif_

Row_1501_Col_301.tif

/content/drive/My Drive/Book2-ch8/data/Kather_texture_2016_

image_tiles_5000/05_DEBRIS/6B44_CRC-Prim-HE-03_010.tif_Row_301_

Col_451.tif

Chapter 8 Histology Tissue Classification

246

Now we can use the .map() function to extract all the information we

need and create new columns.

df['file_id'] = df['path'].map(lambda x: os.path.splitext(os.

path.basename(x))[0])

df['cell_type'] = df['path'].map(lambda x: os.path.basename(os.

path.dirname(x)))

df['cell_type_idx'] = df['cell_type'].map(lambda x: int(x.

split('_')[0]))

df['cell_type'] = df['cell_type'].map(lambda x: x.split('_')[1])

df['full_image_name'] = df['file_id'].map(lambda x: x.split('_

Row')[0])

df['full_image_row'] = df['file_id'].map(lambda x: int(x.

split('_')[-3]))

df['full_image_col'] = df['file_id'].map(lambda x: int(x.

split('_')[-1]))

You can easily check what each call is doing. The column name should

tell you what you will have in each column. In Figure 8-1, you can see the

first two records of the dataframe so far.

At this point, we must read the images with imread(). To do this, we

can simply use

df['image'] = df['path'].map(imread)

Keep in mind that this can take some time (depending on where you

are running it). This will create a new column called image that will contain

Figure 8-1.  The first two records of the dataframe df before loading
the images

Chapter 8 Histology Tissue Classification

247

the images. For your convenience, I used the to_pickle() pandas call to

save the dataframe to disk. Pickling is the process whereby a Python object

hierarchy is converted into a byte stream3 and then can be saved on-disk.

The file is called dataframe_Kather_texture_2016_image_tiles_5000.

pkl. You can load it with:

df=pd.read_pickle('/content/drive/My Drive/Book2-ch8/data/

dataframe_Kather_texture_2016_image_tiles_5000.pkl')

This way, you can save yourself lots of time. You don’t even need to

download the data since you can simply use the pickle I prepared for you.

Note that the pickles are too big for GitHub, so I saved them on a server

where you can download them. You will find the links in GitHub and at

the end of this section. First things first: what classes do we have in this

dataset? We can check the labels we have with this code:

df['cell_type'].unique()

This will give us the following:

array(['DEBRIS', 'ADIPOSE', 'LYMPHO', 'EMPTY', 'STROMA', 'TUMOR',

 'MUCOSA', 'COMPLEX'], dtype=object)

So here are our eight classes. We have 5000 images, which we can

check using this:

df.shape

It gives us this:

(5000, 8)

3�From the official Python documentation: https://docs.python.org/2/library/
pickle.html

Chapter 8 Histology Tissue Classification

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html

248

Figure 8-2.  Five images appear twice in the dataset

The next step is to check if we have a balanced class distribution. We

can count how many images we have for each class:

df['cell_type'].value_counts()

Luckily, we have exactly 625 images for each class.

EMPTY 625

ADIPOSE 625

STROMA 625

COMPLEX 625

LYMPHO 625

DEBRIS 625

TUMOR 625

MUCOSA 625

Name: cell_type, dtype: int64

Strangely enough, there are five duplicate images. You can check that

with this code:

df['full_image_name'][df.duplicated('full_image_name')]

This will report the names of the images that appear twice. You can

see them in Figure 8-2. Since there are only five, we will simply ignore this

problem.

Chapter 8 Histology Tissue Classification

249

In Figure 8-3, you can see a few examples of each class.

Figure 8-3.  Examples of the images in each class

Chapter 8 Histology Tissue Classification

250

As expected, each image has a size of (150, 150, 3):

df['image'][0].shape

(150, 150, 3)

Note how the classes are ordered, which is due to how we loaded the data.

The DEBRIS class comes first, then ADIPOSE, and so on. This can be checked

using a plot of the class label versus the index, as you can see in Figure 8-4.

Figure 8-4.  A plot showing how the images in the dataframe are ordered

Now we can randomly shuffle the elements:

import random

rows = df.index.values

random.shuffle(rows)

print(rows)

That will give you

array([1115, 4839, 3684, ..., 187, 1497, 2375])

You can see that the indexes are now randomly shuffled. The last step

we need to take is to modify the actual dataframe:

df=df.reindex(rows)

df.sort_index(inplace=True)

Chapter 8 Histology Tissue Classification

251

There are a few steps that we need to use the data with Keras. One is

that we need to transform the dataframe to a numpy array:

data=np.array(df['image'].tolist())

Then, as usual, we need to create a training, test, and development

dataset to make all the usual checks:

x, x_test, y, y_test = train_test_split(data, label, test_

size=0.2,train_size=0.8)

x_train, x_val, y_train, y_val = train_test_split(x, y, test_

size = 0.25,train_size =0.75)

You can check the dimensions of the three datasets easily with this code:

print('1- Training set:', x_train.shape, y_train.shape)

print('2- Validation set:', x_val.shape, y_val.shape)

print('3- Testing set:', x_test.shape, y_test.shape)

At this point, the elements are shuffled. Now we need to one-hot-

encode the labels. Pandas provide a very useful and easy-to-use method

for this process:

df_label = pd.get_dummies(df['cell_type'])

It will give you one-hot-encoded labels, as you can see from Figure 8-5.

Figure 8-5.  The result of using the get_dummies() pandas function to
one-hot-encode labels

Chapter 8 Histology Tissue Classification

252

That should give you the following:

1- Training set: (3000, 150, 150, 3) (3000, 8)
2- Validation set: (1000, 150, 150, 3) (1000, 8)

3- Testing set: (1000, 150, 150, 3) (1000, 8)

Now you will see that the data is of type integer. We need to cast them

to floating point numbers since we want to normalize them later. To do

that, we use this code:

x_train = np.array(x_train, dtype=np.float32)
x_test = np.array(x_test, dtype=np.float32)

x_val = np.array(x_val, dtype=np.float32)

Then we can normalize the datasets (remember that each pixel will

have a maximum value of 255):

x_train /= 255.0
x_test /= 255.0

x_val /= 255.0

For your convenience, I saved all the prepared datasets as pickles. If

you want to follow from here and play with the data, you need to load the

pickles using the following commands (you will need to change the folder

name where the files are saved):

x_train=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/x_train.pkl', 'rb'))
x_test=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/x_test.pkl', 'rb'))
x_val=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/x_val.pkl', 'rb'))
y_train=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/y_train.pkl', 'rb'))
y_test=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/y_test.pkl', 'rb'))
y_val=pickle.load(open('/content/drive/My Drive/Book2-ch8/
data/y_val.pkl', 'rb'))

Chapter 8 Histology Tissue Classification

253

You will then have everything ready. Keep in mind that the files

containing the data (x_train, x_test, and x_val) are big files, with x_train

being 800MB unzipped. Keep that in mind if you plan to download the files

or upload them on your Google drive. Of course, you will need to change the

folder to where your data is saved. This will save you time. Pickles are usually

saved, since you don’t want to rerun the entire data preparation each time you

experiment with the data. In the 01- Data exploration and preparation.

ipynb files, you will also find some histogram analysis and data augmentation

examples. For space reasons and to keep this chapter compact, we will not

look at histogram analysis, but we will talk about data augmentation later in

the chapter, as it’s a very effective way of fighting overfitting.

The files were too big for GitHub, so I put them on a server where you

can download them. In the GitHub repository (the Chapter 8 folder), you

will find all the information. If you don’t have access to GitHub and you

still want to download the files, here are the links:

•	 dataframe_Kather_texture_201_image_tiles_5000.

pkl (340MB unzipped): http://toe.lt/j

•	 x_test.pkl (270MB unzipped): http://toe.lt/k

•	 x_train.pkl (810MB unzipped): http://toe.lt/m

•	 x_val.pkl (270MB unzipped): http://toe.lt/n

•	 y_train, y_test, and y_val (all zipped together)

(about 50KB unzipped): http://toe.lt/p

�Model Building
It is time to build some models. You will find all the code in the book’s

GitHub repository (Chapter 8 folder, in the 02_Model_building.ipynb

notebook), so we will not look at all the details here. The best way to follow

along is to keep the notebook open and try the code while you are reading

this. As mentioned, we first need to load the pickle files. We can do that

with the following code:

Chapter 8 Histology Tissue Classification

http://toe.lt/j
http://toe.lt/k
http://toe.lt/m
http://toe.lt/n
http://toe.lt/p

254

x_train=pickle.load(open(base_dir+'x_train.pkl', 'rb'))

x_test=pickle.load(open(base_dir+'x_test.pkl', 'rb'))

x_val=pickle.load(open(base_dir+'x_val.pkl', 'rb'))

y_train=pickle.load(open(base_dir+'y_train.pkl', 'rb'))

y_test=pickle.load(open(base_dir+'y_test.pkl', 'rb'))

y_val=pickle.load(open(base_dir+'y_val.pkl', 'rb'))

Then we need to define the input_shape variable that we will need for

our CNNs. In the code we always define functions that return the Keras

models. For example, our first try looks like this:

def model_cnn_v1():

 �# must define the input shape in the first layer of the

neural network

 model = tf.keras.models.Sequential()

 �model.add(tf.keras.layers.Conv2D(32, 3, 3, input_

shape=input_shape))

 model.add(tf.keras.layers.Activation('relu'))

 model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

 model.add(tf.keras.layers.Conv2D(64, 3, 3))

 model.add(tf.keras.layers.Activation('relu'))

 model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

 model.add(tf.keras.layers.Flatten())

 model.add(tf.keras.layers.Dense(64))

 model.add(tf.keras.layers.Activation('relu'))

 model.add(tf.keras.layers.Dropout(0.5))

 model.add(tf.keras.layers.Dense(8))

 model.add(tf.keras.layers.Activation('sigmoid'))

 model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

Chapter 8 Histology Tissue Classification

255

This is a simple network, as you can check with the summary() function:

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 50, 50, 32) 896

activation (Activation) (None, 50, 50, 32) 0

max_pooling2d (MaxPooling2D) (None, 25, 25, 32) 0

conv2d_1 (Conv2D) (None, 8, 8, 64) 18496

activation_1 (Activation) (None, 8, 8, 64) 0

max_pooling2d_1 (MaxPooling2 (None, 4, 4, 64) 0

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 64) 65600

activation_2 (Activation) (None, 64) 0

dropout (Dropout) (None, 64) 0

dense_1 (Dense) (None, 8) 520

activation_3 (Activation) (None, 8) 0

===

Total params: 85,512

Trainable params: 85,512

Non-trainable params: 0

Chapter 8 Histology Tissue Classification

256

To make sure that the session is reset, we always use:

tf.keras.backend.clear_session()

Then we create an instance of the model, as follows:

model_cnn_v1=model_cnn_v1()

Then we also save the initial weights to make sure, if we do runs later,

that we start from these same weights:

initial_weights = model_cnn_v1.get_weights()

Then we train the model with this:

model_cnn_v1.set_weights(initial_weights)

define path to save the mnodel

path_model=base_dir+'model_cnn_v1.weights.best.hdf5'

shutil.rmtree(path_model, ignore_errors=True)

checkpointer = ModelCheckpoint(filepath=path_model,

 verbose = 1,

 save_best_only=True)

EPOCHS=200

BATCH_SIZE=256

history=model_cnn_v1.fit(x_train,

 y_train,

 batch_size=BATCH_SIZE,

 epochs=EPOCHS,

 validation_data=(x_test, y_test),

 callbacks=[checkpointer])

Chapter 8 Histology Tissue Classification

257

Note a few points:

•	 We create a custom CallBack class ModelCheckpoint,

which will save the weights of the network during

training every time the loss functions diminishes.

•	 We train the network with the fit() call and save its

output in a history variable, to be able to plot loss and

metrics later.

Note T raining such networks may be very slow if you do it on your
laptop or desktop, depending on the hardware you have. I strongly
suggest you do that on Google Colab, since this will speed up your testing.
All the notebooks in the book’s GitHub repository have been tested on
Google Colab and can be opened in Google Colab directly from GitHub.

On Google Colab, training the previous network will take roughly three

minutes. It will reach the following accuracies:

•	 Accuracy on the training dataset: 85%

•	 Accuracy on the validation dataset: 82.7%

These results are not bad, and we don’t have much overfitting (you can

see in Figure 8-6 how accuracy and loss change with the epochs).

Figure 8-6.  Accuracy and loss function for the first network described
in the text

Chapter 8 Histology Tissue Classification

258

Let’s move to a different model, which we will call v2. This one has a lot

more parameters than the previous one:

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 150, 150, 128) 9728

max_pooling2d (MaxPooling2D) (None, 75, 75, 128) 0

dropout (Dropout) (None, 75, 75, 128) 0

conv2d_1 (Conv2D) (None, 75, 75, 64) 73792

max_pooling2d_1 (MaxPooling2 (None, 37, 37, 64) 0

dropout_1 (Dropout) (None, 37, 37, 64) 0

conv2d_2 (Conv2D) (None, 37, 37, 64) 36928

max_pooling2d_2 (MaxPooling2 (None, 18, 18, 64) 0

dropout_2 (Dropout) (None, 18, 18, 64) 0

flatten (Flatten) (None, 20736) 0

dense (Dense) (None, 256) 5308672

dense_1 (Dense) (None, 64) 16448

dense_2 (Dense) (None, 32) 2080

dense_3 (Dense) (None, 8) 264

===

Total params: 5,447,912

Trainable params: 5,447,912

Non-trainable params: 0

Chapter 8 Histology Tissue Classification

259

Again, you can find all the code in the GitHub repository. We will train

it again, but this time, for time reasons, for 50 epochs and with a slightly

smaller batch size of 64.

EPOCHS=50

BATCH_SIZE=64

history=model_cnn_v2.fit(x_train,

 y_train,

 batch_size=BATCH_SIZE,

 epochs=EPOCHS,

 validation_data=(x_test, y_test),

 callbacks=[checkpointer])

Otherwise, everything remains the same. This time, due to the sheer

number of parameters, you will notice that we get an evident overfitting. In

fact, we get the following accuracies:

•	 Accuracy on the training dataset: 99.5%

•	 Accuracy on the validation dataset: 74%

You can clearly see the overfitting in Figure 8-7, looking at the plot of

the accuracies versus the number of epochs.

Figure 8-7.  Accuracies and loss functions versus the number of
epochs for the v2 network

Chapter 8 Histology Tissue Classification

260

We need to work a bit more to get some more reasonable results. Now

let’s use a network with fewer parameters (in particular, with fewer kernels):

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 150, 150, 16) 448

conv2d_1 (Conv2D) (None, 150, 150, 16) 2320

conv2d_2 (Conv2D) (None, 150, 150, 16) 2320

dropout (Dropout) (None, 150, 150, 16) 0

max_pooling2d (MaxPooling2D) (None, 50, 50, 16) 0

conv2d_3 (Conv2D) (None, 50, 50, 32) 4640

conv2d_4 (Conv2D) (None, 50, 50, 32) 9248

conv2d_5 (Conv2D) (None, 50, 50, 32) 9248

dropout_1 (Dropout) (None, 50, 50, 32) 0

max_pooling2d_1 (MaxPooling2 (None, 16, 16, 32) 0

conv2d_6 (Conv2D) (None, 16, 16, 64) 18496

conv2d_7 (Conv2D) (None, 16, 16, 64) 36928

conv2d_8 (Conv2D) (None, 16, 16, 64) 36928

dropout_2 (Dropout) (None, 16, 16, 64) 0

Chapter 8 Histology Tissue Classification

261

max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_9 (Conv2D) (None, 5, 5, 128) 73856

conv2d_10 (Conv2D) (None, 5, 5, 128) 147584

conv2d_11 (Conv2D) (None, 5, 5, 256) 295168

dropout_3 (Dropout) (None, 5, 5, 256) 0

max_pooling2d_3 (MaxPooling2 (None, 1, 1, 256) 0

global_max_pooling2d (Global (None, 256) 0

dense (Dense) (None, 8) 2056

===

Total params: 639,240

Trainable params: 639,240

Non-trainable params: 0

We will call this network v3. This time, the situation is not much better,

as you can see in Figure 8-8.

Figure 8-8.  Accuracies and loss functions versus. the number of
epochs for the v3 network.

Chapter 8 Histology Tissue Classification

262

Why don’t we use what we have learned so far? Let’s use transfer

learning and see if we can use a pre-trained network. Let’s download the

VGG16 network and retrain the last layers with our data. To do that, we need

to use the following code (we will call this network vgg-v4):

def model_vgg16_v4():

 # load the VGG model

 vgg_conv = tf.keras.applications.VGG16(weights='imagenet',

include_top=False, input_shape = input_shape)

 # freeze the layers except the last 4 layers

 for layer in vgg_conv.layers[:-4]:

 layer.trainable = False

 # Check the trainable status of the individual layers

 for layer in vgg_conv.layers:

 print(layer, layer.trainable)

 # create the model

 model = tf.keras.models.Sequential()

 # add the vgg convolutional base model

 model.add(vgg_conv)

 # add new layers

 model.add(tf.keras.layers.Flatten())

 model.add(tf.keras.layers.Dense(1024, activation='relu'))

 model.add(tf.keras.layers.Dropout(0.5))

 model.add(tf.keras.layers.Dense(8, activation='softmax'))

 model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

Chapter 8 Histology Tissue Classification

263

Note how we downloaded the pre-trained network (as we have seen in

previous chapters) with this code:

vgg_conv = tf.keras.applications.VGG16(weights='imagenet',

include_top=False, input_shape = input_shape)

We used the include_top=False parameter, since we want to remove

the final dense layers and put our own in their place. We add a layer with

1024 neurons at the end:

model.add(tf.keras.layers.Dense(1024, activation='relu'))

Then we add an output layer with 8 as the softmax activation function

for classification:

model.add(tf.keras.layers.Dense(8, activation='softmax'))

The summary() call will give you this overview:

Layer (type) Output Shape Param #

===

vgg16 (Model) (None, 4, 4, 512) 14714688

flatten (Flatten) (None, 8192) 0

dense (Dense) (None, 1024) 8389632

dropout (Dropout) (None, 1024) 0

dense_1 (Dense) (None, 8) 8200

===

Total params: 23,112,520

Trainable params: 15,477,256

Non-trainable params: 7,635,264

Chapter 8 Histology Tissue Classification

264

The entire vgg16 network is condensed into one line (vgg16 (Model)).

In this network, we have 15’477’256 trainable parameters. Quite a few. In

fact, training this network for 30 epochs will require around 11 minutes

on Google Colab. You can see in Figure 8-9 how accuracy and loss change

with the number of epochs.

As you can see, the situation is better, but we still get overfitting. It’s not

as dramatic as before, but still quite noticeable. The only strategy we have

to fight this is data augmentation. In the next sections, we’ll see how easy it

is to do data augmentation in Keras and the effects it has.

�Data Augmentation
One obvious strategy to fight overfitting (although one that is rarely

doable in real life) is to get more training data. In our case here, this is not

possible. The images given are the only ones available. But we can still

do something in this case: data augmentation. What do we mean by that

exactly? Typically, data augmentation consists of generating new images

from existing ones by applying some kind of transformation to them and

using them as additional training data.

Figure 8-9.  Accuracies and loss functions versus the number of
epochs for the vgg-v4 network

Chapter 8 Histology Tissue Classification

265

Note  Data augmentation consists of generating new images from
existing ones by applying some kind of transformation to them and
using them as additional training data.

The most common transformations are as follows:

•	 Shifting the image by a certain number of pixels

horizontally or vertically

•	 Rotating the image

•	 Changing its brightness

•	 Changing the zoom

•	 Changing the contrast

•	 Shearing the image4

Let’s see how to do data augmentation in Keras, and let’s look

at a few examples in our dataset. The function we need to use is

ImageDataGenerator. To start, you need to import it from keras_

preprocessing.image:

from keras_preprocessing.image import ImageDataGenerator

Note that this function will not generate new images and save them

to disk, but will create augmented image data for you just-in-time

during the training in random fashion (later it will become clear how

to use it). This will not require much additional memory, but will add

4�In plane geometry, a shear mapping is a linear map that displaces each point
in a fixed direction, by an amount proportional to its signed distance from the
line that is parallel to that direction and goes through the origin. See https://
en.wikipedia.org/wiki/Shear_mapping.

Chapter 8 Histology Tissue Classification

https://en.wikipedia.org/wiki/Shear_mapping
https://en.wikipedia.org/wiki/Shear_mapping

266

some additional time during model training. The function can do lots

of transformations and the best way to discover them all is to look at the

official documentation at https://keras.io/preprocessing/image/. We

will look at the most important ones with examples.

�Horizontal and Vertical Shifts
To shift images horizontally and vertically, you use the following code:

datagen = ImageDataGenerator(width_shift_range=.2,

 height_shift_range=.2,

 fill_mode='nearest')

fit parameters from data

datagen.fit(x_train)

The result is shown in a few random images in Figure 8-10.

Chapter 8 Histology Tissue Classification

https://keras.io/preprocessing/image/

267

If you check the images, you will notice how strange features appear at

the borders. Since we are shifting the image, we need to tell Keras how to

fill the part of the image that remains empty. Consider Figure 8-11, where

we shift an image horizontally. As you may notice, the part marked in the

image with the A remains empty, and we can tell Keras how to fill that part

using the fill_mode parameter.

Figure 8-10.  The result of shifting images horizontally and vertically

Chapter 8 Histology Tissue Classification

268

The best way to understand the different possibilities for fill_mode

is to consider a one-dimensional case. The explanation has been taken

from the official documentation of the function. Let’s suppose we have a

set of four pixels that will have some values that we indicate with a, b, c,

and d. And let’s suppose we have boundaries that we need to fill. The parts

that need to be filled are marked with o. Figure 8-12 shows a graphical

explanation of the four possibilities: constant, nearest, reflect, and wrap.

Figure 8-11.  An example of shifting an image in the horizontal
direction. The A marks the part of the resulting image that will remain
empty.

Figure 8-12.  Possible values for the fill_mode parameter and a
graphical explanation of the possibilities

Chapter 8 Histology Tissue Classification

269

The images in Figure 8-11 have been generated using the nearest fill

mode. Although this transformation introduces artificial features, using

those additional images for training increases the accuracy of the model

and fights overfitting extremely effectively, as we will see later in the

chapter. The most common method to fill the empty parts is nearest.

�Flipping Images Vertically
To flip images vertically, the following code can be used:

datagen = ImageDataGenerator(vertical_flip=True)

fit parameters from data

datagen.fit(x_train)

�Randomly Rotating Images
You can randomly rotate images with this code:

datagen = ImageDataGenerator(rotation_range=40, fill_mode =

'constant')

fit parameters from data

datagen.fit(x_train)

And, as with the shifting transformation, you can choose different ways

of filling the empty areas. You can see the effect of this code in Figure 8-13.

Chapter 8 Histology Tissue Classification

270

In Figure 8-14, you can see the effect of the rotation when it’s filled

with fill_mode = 'nearest'. Typically, this is the preferred way to fill the

images to avoid giving black (or solid color) parts of images to the network.

Figure 8-13.  The effect of rotating images in a random direction up
to 40 degrees (the amount of rotation is chosen randomly up to 40
degrees). The parts of the images left empty by the rotation have been
filled with a constant value.

Chapter 8 Histology Tissue Classification

271

Figure 8-14.  The effect of rotating images in a random direction up
to 40 degrees. The parts of the images left empty by the rotation have
been filled with the nearest mode.

Chapter 8 Histology Tissue Classification

272

�Zooming in Images
You should now understand how these image transformations work.

Zooming is as easy as the previous transformation:

datagen = ImageDataGenerator(zoom_range=0.2)

fit parameters from data

datagen.fit(x_train)

�Putting All Together
One of the great things about Keras is that you don’t need to perform

each transformation, one at a time. You can do everything in one shot.

For example, consider this code:

datagen = ImageDataGenerator(rotation_range=40,

 width_shift_range=0.2,

 height_shift_range=0.2,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True,

 fill_mode="nearest")

This will enhance your dataset greatly, with several transformations

done at the same time:

•	 Rotation

•	 Shift

•	 Shear

•	 Zoom

•	 Flip

Let’s put everything together and see how effective this technique is.

Chapter 8 Histology Tissue Classification

273

�VGG16 with Data Augmentation
Now it’s time to train our vgg16 network with transfer learning and image

augmentation. The only modification to the code we looked at before is in

how we feed the data to train the model.

Now we will need to use this code:

history=model_vgg16_v4.fit_generator(datagen.flow(x_train,

y_train, batch_size=BATCH_SIZE),

 �validation_data=(x_test,

y_test),

 epochs=EPOCHS,

 callbacks=[checkpointer])

Instead of the classical fit() call, we need to use fit_generator().

A small digression is necessary to explain the main differences between

the two functions. Keras includes not two, but three functions that can be

used to train a model:

•	 fit()

•	 fit_generator()

•	 train_on_batch()

�The fit( ) Function
Up to now, we used the fit() function when training our Keras models.

The main implicit assumption when using this method is that the dataset

that you feed to the model will fit completely in memory. We don’t need

to move batches to and from memory. That is a pretty big assumption,

especially if you are working on big datasets and your laptop or desktop

doesn’t have a lot of memory available. Additionally, the assumption is

that there is no need to do real-time data augmentation (as we want to

do here).

Chapter 8 Histology Tissue Classification

274

Note T he fit() function is good for small datasets that can fit in
your system memory and do not require real-time data augmentation.

�The fit_generator( ) Function
When the data does not fit in memory anymore, we need a smarter

function that can help us deal with it. Note that the ImageDataGenerator

we created before will generate, in a random fashion, batches that need to

be fed to the model. The fit_generator() function assumes that there is a

function that generates the data for it. When using fit_generator(), Keras

follows this process:

	 1.	 Keras calls the function that generates the batches.

In our code, that’s datagen.flow().

	 2.	 This generator function returns a batch whose size is

specified by the batch_size=BATCH_SIZE parameter.

	 3.	 The fit.generator() function then performs

backpropagation and updates the weights.

	 4.	 This is repeated until we reach the number of

epochs wanted.

Note T he fit_generator() function is meant to be used for
bigger datasets that do not fit in memory and when you need to do
data augmentation.

Note that there is an important parameter that we have not used in

our code: steps_per_epoch. The datagen.flow() function will generate

a batch of images each time, but Keras needs to know how many such

batches we want for each epoch, since the datagen.flow() can continue

Chapter 8 Histology Tissue Classification

275

to generate as many batches as we want (remember that they are

generated in a random fashion). We need to decide how many batches

we want before declaring each epoch finished. You can decide with the

steps_per_epoch parameter, but if you don’t specify it, Keras will use

len(generator)5 as the number of steps.

�The train_on_batch( ) Function
If you need to fine-tune your training, the train_on_batch() function is

the one to use.

Note T he train_on_batch() function accepts a single batch
of data, performs backpropagation, and then updates the model
parameters.

The batch of data can be arbitrarily sized and can be theoretically in

any format you need. You need this function when you need, for example,

to perform custom data augmentation that cannot be done by the standard

Keras functions.

Note A s they say—if you don’t know whether you need the
train_on_batch() function, you probably don’t.

You can find more information from the official documentation at

https://keras.io/models/sequential/.

5�https://keras.io/models/sequential/

Chapter 8 Histology Tissue Classification

https://keras.io/models/sequential/
https://keras.io/models/sequential/

276

To summarize, we started with a simple CNN that was not too bad, but

we immediately realized that going deeper (more layers) and increasing

the complexity (more kernels) led to overfitting quite dramatically. Adding

dropout was not really helping, so the only solution was to use data

augmentation.

Note that we did not show the first networks described in this chapter

with data augmentation for space reasons, but you should do that. If you try,

you will realize that you fight overfitting quite efficiently, but the accuracy

goes down. Using a pre-trained network gives us a very good starting point

and allows us to go into the 90% accuracy regime in a few epochs.

�Training the Network
We can finally train our network and see how it performs. Training it for 50

epochs and with a batch size of 128 gives the following accuracies:

•	 Accuracy on the training dataset: 93.3%

•	 Accuracy on the validation dataset: 91%

That is a great result. Practically no overfitting and great accuracy. This

network took roughly 15 minutes on Google Colab, which is quite fast.

Figure 8-15 shows the accuracies and loss versus the number of epochs.

Figure 8-15.  Accuracy and loss function versus the number of epochs
for the VGG16 network with transfer learning and data augmentation

Chapter 8 Histology Tissue Classification

277

�And Now Have Fun…
In this book, you have learned powerful techniques that will allow you

to read research papers, understand them, and start implementing more

advanced networks that go beyond the easy CNNs that you find in blogs

and websites. I hope you enjoyed the book and that it will help you in your

journey toward deep learning mastery. Deep learning is really fun and an

incredibly creative research field. I hope you now have a glimpse of the

possibilities of the algorithms and the creativity involved. I love feedback

and would love to hear from you. Don’t hesitate to get in touch and tell me

how (and especially if) this book has helped you learn those algorithms.

—Umberto Michelucci, Dübendorf, June 2019

Chapter 8 Histology Tissue Classification

279© Umberto Michelucci 2019
U. Michelucci, Advanced Applied Deep Learning,
https://doi.org/10.1007/978-1-4842-4976-5

Index

A
Adam optimizer, 33, 162
Anaconda

benefits/drawbacks, 17–18
download, 9
install, 11–14
screen, 10

B
BBox-Label-Tool, 240
Building blocks, CNN

convolutional
layer, 105–107

pooling layer, 108
stacking layers, 108, 109

C
call() function, 186
Chessboard image

blurring kernel IB, 95, 96
creation, 91
horizontal edges, 93
kernel, IH, 92, 93
kernel, IL, 94, 95
kernel IV, 94, 97
transition, values, 98

Classification loss, 229
Confidence loss, 229
Content loss function, 179
Convolution

definition, 85
example, chessboard (see

Chessboard image)
kernel IH, 86, 87
kernels, 82
matrix, 82, 83
matrix 3 × 3, 88, 90
multiple channels, 125–128
Python, 90
size, 85
stride, 85, 87
tensors, 81, 82
visual explanation, 86
works, 86

Convolutional neural
network (CNN)

building blocks (see Building
blocks, CNN)

visualization (see Visualization
of CNN)

weights
convolutional layer, 109
dense layer, 110
pooling layer, 110

https://doi.org/10.1007/978-1-4842-4976-5

280

Cost function
cross-entropy (see

Cross-entropy)
mathematical notation, 165, 166
MSE (see Mean Square

Error (MSE))
Cross-entropy

binary classification
problem, 173–175

distributions of probabilities, 171
probability mass

functions, 172, 173
self-information, 169, 170
suprisal associated with

Event X, 171
suprisal of an event, 169, 170

D
Data analysis, 244–253
Data augmentation

flip images vertically, 269
horizontal and vertical

shifts, 266–269
randomly rotate

images, 269–271
VGG16

accuracy and loss function
vs. number of epochs, 276

fit() function, 273, 274
fit_generator()

function, 274, 275
train_on_batch()

function, 275
zooming in images, 272

Dataset abstraction, 68–71
iterator, 71
MNIST dataset, simple

batching, 73, 74, 76
simple batching, 72
tf.data.Dataset, eager execution

mode, 76, 77
Dataset.map() function, 69
Deep learning models, 141, 176
Digression, 139–141
Docker image, 18

E
Eager execution, TensorFlow

advantages, 28
enabling, 29, 30
MNIST dataset, 34

feed-forward neural
network, 36

implementation, 34
keras.datasets.mnist

package, 35
learning rate, 38
loss_value, 37
nested loops, 36
plot image, 38
tf.data.Dataset object, 35

polynomial fitting, 30
adam optimizer, 33
loss function vs. iteration

number, 32, 33
minimize loss function, 32
MSE, 31
numpy arrays, 31

INDEX

281

F
Fast R-CNNs, 217–220
Filters, 79
fit() function, 273, 274
fit_generator() function, 274, 275

G
get_dummies() pandas

function, 251
get_next() method, 71
GitHub repository, 3
Google Colab, 5, 8, 184, 206
Google drive, 184, 206
GoogLeNet network, 135
Gramian matrices, 179

H
Hardware acceleration, TensorFlow

checking availability of
GPU, 40, 41

device name, 41, 42
effect on MNIST, 45, 47
explicit device placement, 42
matrix multiplication, 43, 44

I, J
ImageDataGenerator, 265
Image filters, 177
Imagenet dataset, 177
imread() function, 246
Inception module

classical CNNs, 130

computational budget, 129
convolutional layers, 130
dimension reduction, 133, 134
functional APIs, Keras, 136–138
max-pooling operations, 132
MNIST dataset, 132
Naïve version, 131
number of parameters, 132

Inception networks, 123
input_shape variable, 254
Instance segmentation, 198
Intersect Over Union

(IoU), 200–202
it_init_op operation, 74

K
Keras, 116
keras.backend.function()

CNTK backend, 116
computational graph, 115
dataset, 117
function(), 116
TensorFlow backend, 116
Theano backend, 116

Keras callback functions, 54
custom class, 55, 56

CC1 variable, 58
logs dictionary, 58–60
log variable, 58
on_epoch_end() function, 60
output, 61
Sequential model, 57

Kernels/filters, 79–81
effects, 118–121

Index

282

L
LabelEncoder, 151
labelImg tool, 240
LeNet-5 network, 109
Linear regression, 164–165
load_img() function, 184, 185
Localization loss, 229
Loss function, 162, 188

classification loss, 229
confidence loss, 229, 230
localization loss, 229
total, 230
value, 206

M
make_one_shot_iterator(), 71, 72
.map() function, 246
Masking, 192–193
Mathematical notation, 165–166
max_dim variable, 185
Mean Square Error (MSE), 31

intuitive explanation, 167
moment-generating

function, 167–169
Microsoft COCO dataset, 199, 200
MNIST dataset, 126, 204

convolutional layers, 112
fit() method, 114
import packages, 110
Keras model, 111, 112
load data, 112
load images, 111
model.summary(), 113

mnist_model.variables, 37
Model, building

accuracies and loss functions
vs. number of epochs

v2 network, 259
v3 network, 261
vgg-v4 network, 264

accuracy and loss function
v1 network, 257

GitHub repository, 259
fit() call, 257
include_top=False

parameter, 263
input_shape variable, 254
Keras models, 254
ModelCheckpoint, 257
model_cnn_v1=model_cnn_

v1(), 256
overfitting, 259
softmax activation function,

classification, 263
summary() function, 255, 263
tf.keras.backend.clear_

session(), 256
Multiple cost functions, 134, 135
Multi-task learning (MTL), 141

N
Naïve approach, object

localization, 202–204
Neural network models

components, 161, 162
linear regression, 164, 165

INDEX

283

optimization problem,
training, 162, 163

optimizer, 162
Neural style transfer (NST)

deep learning, 176
digital images, 176
in Keras, 183–190
masking, 192, 193
mathematics, 178–183
pre-trained network, 177
robust CNN, 177
Silhouettes, 190–192
Van Gogh painting, 177, 178

next_batch operation, 74
Non-central moments, 169
Non-maxima suppression, 228
numpy() method, 39

O
Object classification and

localization, 197, 200, 201,
211, 213

Object detection, 198, 200, 216,
219, 221, 226, 231, 233–239

Object localization
detection, 197, 233–239
instance segmentation, 198
IOU, 200–202
location of an object, 197
Microsoft COCO dataset, 199, 200
Naïve Approach, 202–204
Pascal VOC dataset, 200
self-driving car, 196

semantic segmentation, 198
sliding window approach (see

Sliding window approach)
on_epoch_end(self, epoch, logs)

method, 55, 56, 60, 65, 66
Optimizer, 2, 32, 33, 36, 37, 47, 68,

162, 166
OutOfRangeError, 75

P, Q
Pascal VOC dataset, 200
Pickling, 247
Pooling

convolution, 102
max pooling, 100
padding, 104, 105
stride, 101
visualization, 102

Pre-trained CNNs, 176
Pre-trained networks, 276

applications, 141
decode_predictions()

function, 144
GitHub repository, 143
imagenet dataset, 143
Jupyter Notebook, 143
keras.applications package, 142

Probability mass function
(PMF), 170–173, 175

Python development environment
Anaconda

benefits, 17
drawbacks, 18

Index

284

installation, 9, 10
installing TensorFlow, 11–13
Jupyter Notebook, 14, 16
Python packages, 10, 11

Docker image
benefits, 24
correct-v option, 23
drawbacks, 24
install, 18–20
Jupyter instance, 21
pyhton, 22

Google Colab
benefits, 8
create notebook, 6
definition, 5
drawbacks, 9
popup, 7

possibilities, 4

R
Region-based CNN

(R-CNN), 213–217

S
Segmentation, 198, 214
Selective search

algorithm, 215, 219
Semantic segmentation, 198
Shannon entropy, 171
Silhouettes, 190–192

Sliding window approach, 203
bounding box, 209
object localization, solving, 203
problems and

limitations, 204–211
size and proportions, window

change, 209
softmax activation functions, 174
StyleContentModel class, 186, 188

T, U
tape.gradient function, 180
TensorFlow, 13

dataset abstraction (see Dataset
abstraction)

eager execution (see Eager
execution, TensorFlow)

hardware acceleration (see
Hardware acceleration,
TensorFlow)

numpy compatibility, 39
removing layers, 52–54
save model

callback function, 63, 65
checkpoint_path, 65
Dense layer, 62
entire model, 68
latest variable, 67
MNIST dataset, 61, 62
validation dataset, 64
weights manually, 67, 68

training specific layers, 47
feed-forward network, 48

Python development
environment (cont.)

INDEX

285

frozen_model.summary(), 50
layer.trainable property, 51
model.summary()

function, 49
parameters, 49
trainable_model.

summary(), 51
TensorFlow Variable, 180
Tensor Processing Unit

(TPU), 8, 189
tf.GradientTape, 189
tf.train.AdamOptimizer

TensorFlow, 38
to_pickle() pandas, 247
Total loss function, 135, 230
train_on_batch() function, 275
Transfer learning

base network, 146
classical approach

binary classification,
155–157

CNN model, 150
dense layer, 155
LabelEncoder, 151
model, 151, 153
pooling layer, 155
training_data, 150
validation_data, 150
VGG16 pre-trained

network, 155
definition, 145
dog vs. cat dataset, 149

experimentation
dataset preparation, 158, 159
flexible, 157
frozen layers, 157
target subnetwork, 157, 159
validation dataset, 160

features, 147
image recognition problems, 147
schematic representation, 148
target dataset, 146

V, W, X
Visualization of CNN

keras.backend.function(), 115,
117, 118

kernels effect, 118, 119, 121
max pooling effect, 121, 123

Y, Z
You Only Look Once (YOLO)

method
darknet detection, 233–237
darknet implementation, 231, 232
detection variable, 237
division of image, 223, 224
model output, 224
non-maxima suppression, 238
OpenCV, 239
versions, 222
YOLOv3, 227

Index

	0a09c04c2d8eb2308969d06242c38d367ed07f5eafafe9c7c420c45ed55662a2.pdf
	f9669576d032d769a2f5c059c67429db92c5ba5dde6d09e579bd9af06dd423fc.pdf
	Table of Contents

	0a162e418e9af35a06c2e3343ea1578cb51a14f10b2df905447de4e60aa40a9d.pdf
	c5c5afd20bd76eb9742ca145be357018bfc2fda3918584e173a64aa3b68c5602.pdf
	Chapter 1: Introduction and Development Environment Setup
	GitHub Repository and Companion Website
	Mathematical Level Required
	Python Development Environment
	Google Colab
	Benefits and Drawbacks to Google Colab

	Anaconda
	Installing TensorFlow the Anaconda Way
	Local Jupyter Notebooks
	Benefits and Drawbacks to Anaconda

	Docker Image
	Benefits and Drawbacks to a Docker Image

	Which Option Should You Choose?

	Chapter 2: TensorFlow: Advanced Topics
	Tensorflow Eager Execution
	Enabling Eager Execution
	Polynomial Fitting with Eager Execution
	MNIST Classification with Eager Execution

	TensorFlow and Numpy Compatibility
	Hardware Acceleration
	Checking the Availability of the GPU
	Device Names
	Explicit Device Placement
	GPU Acceleration Demonstration: Matrix Multiplication
	Effect of GPU Acceleration on the MNIST Example

	Training Only Specific Layers
	Training Only Specific Layers: An Example
	Removing Layers

	Keras Callback Functions
	Custom Callback Class
	Example of a Custom Callback Class

	Save and Load Models
	Save Your Weights Manually
	Saving the Entire Model

	Dataset Abstraction
	Iterating Over a Dataset
	Simple Batching
	Simple Batching with the MNIST Dataset
	Using tf.data.Dataset in Eager Execution Mode

	Conclusions

	Chapter 3: Fundamentals of Convolutional Neural Networks
	Kernels and Filters
	Convolution
	Examples of Convolution
	Pooling
	Padding

	Building Blocks of a CNN
	Convolutional Layers
	Pooling Layers
	Stacking Layers Together

	Number of Weights in a CNN
	Convolutional Layer
	Pooling Layer
	Dense Layer

	Example of a CNN: MNIST Dataset
	Visualization of CNN Learning
	Brief Digression: keras.backend.function()
	Effect of Kernels
	Effect of Max-Pooling

	Chapter 4: Advanced CNNs and Transfer Learning
	Convolution with Multiple Channels
	History and Basics of Inception Networks
	Inception Module: Naïve Version
	Number of Parameters in the Naïve Inception Module
	Inception Module with Dimension Reduction

	Multiple Cost Functions: GoogLeNet
	Example of Inception Modules in Keras
	Digression: Custom Losses in Keras
	How To Use Pre-Trained Networks
	Transfer Learning: An Introduction
	A Dog and Cat Problem
	Classical Approach to Transfer Learning
	Experimentation with Transfer Learning

	Chapter 5: Cost Functions and Style Transfer
	Components of a Neural Network Model
	Training Seen as an Optimization Problem
	A Concrete Example: Linear Regression

	The Cost Function
	Mathematical Notation
	Typical Cost Functions
	Mean Square Error
	Intuitive Explanation
	MSE as the Second Moment of a Moment-Generating Function

	Cross-Entropy
	Self-Information or Suprisal of an Event
	Suprisal Associated with an Event X
	Cross-Entropy
	Cross-Entropy for Binary Classification

	Cost Functions: A Final Word

	Neural Style Transfer
	The Mathematics Behind NST
	An Example of Style Transfer in Keras
	NST with Silhouettes
	Masking

	Chapter 6: Object Classification: An Introduction
	What Is Object Localization?
	Most Important Available Datasets
	Intersect Over Union (IoU)

	A Naïve Approach to Solving Object Localization (Sliding Window Approach)
	Problems and Limitations the with Sliding Window Approach

	Classification and Localization
	Region-Based CNN (R-CNN)
	Fast R-CNN
	Faster R-CNN

	Chapter 7: Object Localization: An Implementation in Python
	The You Only Look Once (YOLO) Method
	How YOLO Works
	Dividing the Image Into Cells

	YOLOv2 (Also Known As YOLO9000)
	YOLOv3
	Non-Maxima Suppression
	Loss Function
	Classification Loss
	Localization Loss
	Confidence Loss
	Total Loss Function

	YOLO Implementation in Python and OpenCV
	Darknet Implementation of YOLO
	Testing Object Detection with Darknet

	Training a Model for YOLO for Your Specific Images
	Concluding Remarks

	Chapter 8: Histology Tissue Classification
	Data Analysis and Preparation
	Model Building
	Data Augmentation
	Horizontal and Vertical Shifts
	Flipping Images Vertically
	Randomly Rotating Images
	Zooming in Images
	Putting All Together

	VGG16 with Data Augmentation
	The fit() Function
	The fit_generator() Function
	The train_on_batch() Function
	Training the Network

	And Now Have Fun…

	Index

