
https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Applied	Text	Analysis	with
Python

Enabling	Language	Aware	Data	Products	with	Machine
Learning

Benjamin	Bengfort,	Rebecca	Bilbro,	and	Tony	Ojeda

Applied	Text	Analysis	with	Python
by	Benjamin	Bengfort	,	Tony	Ojeda	,	and	Rebecca	Bilbro

Copyright	©	2016	Benjamin	Bengfort,	Tony	Ojeda,	Rebecca	Bilbro.	All	rights
reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.	,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com/safari).
For	more	information,	contact	our	corporate/institutional	sales	department:	800-
998-9938	or	corporate@oreilly.com	.

Editor:	Nicole	Tache

Production	Editor:	FILL	IN	PRODUCTION	EDITOR

Copyeditor:	FILL	IN	COPYEDITOR

Proofreader:	FILL	IN	PROOFREADER

Indexer:	FILL	IN	INDEXER

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

January	-4712:	First	Edition

Revision	History	for	the	First	Edition

2016-12-19:	First	Early	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491962978	for	release
details.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491962978

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Applied
Text	Analysis	with	Python,	the	cover	image,	and	related	trade	dress	are
trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author(s)	have	used	good	faith	efforts	to	ensure	that
the	information	and	instructions	contained	in	this	work	are	accurate,	the
publisher	and	the	author(s)	disclaim	all	responsibility	for	errors	or	omissions,
including	without	limitation	responsibility	for	damages	resulting	from	the	use	of
or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in
this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-96297-8

[FILL	IN]

Chapter	1.	Text	Ingestion	and
Wrangling

As	we	explored	the	architecture	of	language	in	the	previous	chapter,	we	began	to
see	that	it	is	possible	to	model	natural	language	in	spite	of	its	complexity	and
flexibility.	And	yet,	the	best	language	models	are	often	highly	constrained	and
application-specific.	Why	is	it	that	models	trained	in	a	specific	field	or	domain
of	the	language	would	perform	better	than	ones	trained	on	general	language?
Consider	that	the	term	“bank”	is	very	likely	to	be	an	institution	that	produces
fiscal	and	monetary	tools	in	an	economics,	financial,	or	political	domain,
whereas	in	an	aviation	or	vehicular	domain	it	is	more	likely	to	be	a	form	of
motion	that	results	in	the	change	of	direction	of	an	aircraft.	By	fitting	models	in
a	narrower	context,	the	prediction	space	is	smaller	and	more	specific,	and
therefore	better	able	to	handle	the	flexible	aspects	of	language.

The	bulk	of	our	work	in	the	subsequent	chapters	will	be	in	“feature	extraction”
and	“knowledge	engineering”	-	where	we’ll	be	concerned	with	the	identification
of	unique	vocabulary	words,	sets	of	synonyms,	interrelationships	between
entities,	and	semantic	contexts.	However,	all	of	these	techniques	will	revolve
around	a	central	text	dataset:	the	corpus.

Corpora	are	collections	of	related	documents	that	contain	natural	language.	A
corpus	can	be	large	or	small,	though	generally	they	consist	of	hundreds	of
gigabytes	of	data	inside	of	thousands	of	documents.	For	instance,	considering
that	the	average	email	inbox	is	2GB,	a	moderately	sized	company	of	200
employees	would	have	around	a	half-terabyte	email	corpus.	Documents
contained	by	a	corpus	can	also	vary	in	size,	from	tweets	to	books.	Corpora	can
be	annotated,	meaning	that	the	text	or	documents	are	labeled	with	the	correct
responses	for	supervised	learning	algorithms,	or	unannotated,	making	them
candidates	for	topic	modeling	and	document	clustering.

NOTE
No	two	corpora	are	exactly	alike	and	there	are	many	opportunities	to	customize	the	approach

taken	in	this	chapter.	This	chapter	presents	a	general	method	for	ingesting	HTML	data	from	the
internet,	a	ubiquitous	text	markup	that	is	easily	parsed	and	available	in	a	variety	of	domains.
The	HTML	data	is	cleaned,	parsed,	segmented,	tokenized,	and	tagged	into	a	preprocessed	data
structure	that	will	be	used	for	the	rest	of	the	book.

Naturally	the	next	question	should	then	be	“how	do	we	construct	a	dataset	with
which	to	build	a	language	model?”	In	order	to	equip	you	for	the	rest	of	the	book,
this	chapter	will	explore	the	preliminaries	of	construction	and	organization	of	a
domain-specific	corpus.	Working	with	text	data	is	substantially	different	from
working	with	purely	numeric	data,	and	there	are	a	number	of	unique
considerations	that	we	will	need	to	take.	Whether	it	is	done	via	scraping,	RSS
ingestion,	or	an	API,	ingesting	a	raw	text	corpus	in	a	form	that	will	support	the
construction	of	a	data	product	is	no	trivial	task.	Moreover,	when	dealing	with	a
text	corpus,	we	must	consider	not	only	how	the	data	is	acquired,	but	also	how	it
is	organized	on	disk.	Since	these	will	be	very	large,	often	unpredictable	datasets,
we	will	need	to	anticipate	potential	performance	problems	and	ensure	memory
safety	through	streaming	data	loading	and	multiprocessing.	Finally,	we	must
establish	a	systematic	preprocessing	method	to	transform	our	raw	ingested	text
into	a	corpus	that	is	ready	for	computation	and	modeling.	By	the	end	of	this
chapter,	you	should	be	able	to	organize	your	data	and	establish	a	reader	that
knows	how	to	access	the	text	on	disk	and	present	it	in	a	standardized	fashion	for
downstream	analyses.

Acquiring	a	Domain-Specific	Corpus
Acquiring	a	domain-specific	corpus	will	be	essential	to	producing	a	language-
aware	data	product.	Fortunately,	the	internet	offers	us	a	seemingly	infinite
resource	with	which	to	construct	domain-specific	corpora.	Below	are	some
examples	of	domains,	along	with	corresponding	web	text	data	sources.

Category Sources

Politics

http://www.politico.com

http://www.cnn.com/politics

https://www.washingtonpost.com/politics

http://www.foxnews.com/politics.html

http://www.politico.com
http://www.cnn.com/politics
https://www.washingtonpost.com/politics
http://www.foxnews.com/politics.html

http://www.huffingtonpost.com/section/politics

Business

http://www.bloomberg.com

http://www.inc.com

https://www.entrepreneur.com

https://hbr.org

http://fortune.com

Sports

http://espn.go.com

http://sports.yahoo.com

http://bleacherreport.com

http://www.nytimes.com/pages/sports

Technology

http://www.wired.com

https://techcrunch.com

http://radar.oreilly.com

https://gigaom.com

http://gizmodo.com

Cooking

http://blog.foodnetwork.com

http://www.delish.com

http://www.epicurious.com

http://www.skinnytaste.com

One	important	question	to	address	is	the	degree	of	specificity	required	of	a
corpus	for	effective	language	modeling;	how	specific	is	specific	enough?	As	we
increase	the	specificity	of	the	domain,	we	will	necessarily	reduce	the	volume	of
our	corpus.	For	instance,	it	would	be	easier	to	produce	a	large	dataset	about	the
general	category	‘sports’,	but	that	corpus	would	still	contain	a	large	degree	of
ambiguity.	By	specifically	targeting	text	data	about	baseball	or	basketball,	we
reduce	this	ambiguity,	but	we	also	reduce	the	overall	size	of	our	corpus.	This	is	a
significant	tradeoff,	because	we	will	need	a	very	large	corpus	in	order	to	provide
sufficient	training	examples	to	our	language	models,	thus	we	must	find	a	balance
between	domain	specificity	and	corpus	size.

http://www.huffingtonpost.com/section/politics
http://www.bloomberg.com
http://www.inc.com
https://www.entrepreneur.com
https://hbr.org
http://fortune.com
http://espn.go.com
http://sports.yahoo.com
http://bleacherreport.com
http://www.nytimes.com/pages/sports
http://www.wired.com
https://techcrunch.com
http://radar.oreilly.com
https://gigaom.com
http://gizmodo.com
http://blog.foodnetwork.com
http://www.delish.com
http://www.epicurious.com
http://www.skinnytaste.com

Data	Ingestion	of	Text
As	data	scientists,	we	rely	heavily	on	structure	and	patterns,	not	only	in	the
content	of	our	data,	but	in	its	history	and	provenance.	In	general,	good	data
sources	have	a	determinable	structure,	where	different	pieces	of	content	are
organized	according	to	some	schema	and	can	be	extracted	systematically	via	the
application	of	some	logic	to	that	schema.	If	there	is	no	common	structure	or
schema	between	documents,	it	becomes	difficult	to	discern	any	patterns	for
extracting	the	information	we	want,	which	often	results	in	either	no	data
retrieved	at	all	or	significant	cleaning	required	to	correct	what	the	ingestion
process	got	wrong.

In	the	specific	context	of	text,	we	want	the	result	of	our	ingestion	process	to	be
paragraphs	of	text	that	are	ordered	and	complete.	However,	achieving	this
outcome	is	made	somewhat	more	or	less	challenging	depending	on	how	the	data
is	stored.	When	we	ingest	text	data	from	the	internet,	the	most	common	format
we	will	encounter	are	HTML	webpages	and	websites.	A	website	is	a	collection
of	web	pages	that	belong	to	the	same	person	or	organization,	contain	similar
content,	and	most	importantly,	usually	share	a	common	domain	name.	In	the
below	example,	we	see	that	districtdatalabs.com	is	the	website,	or	the	collection
of	pages,	and	each	of	the	individual	documents	listed	below	it	(courses,	projects,
etc.)	represent	the	individual	web	pages.

districtdatalabs.com
├── /
├── /courses
├── /projects
├── /corporate-offerings
├── /about
└── blog.districtdatalabs.com
| ├── /an-introduction-to-machine-learning-with-python
| ├── /the-age-of-the-data-product
| └── /building-a-classifier-from-census-data
| └── /modern-methods-for-sentiment-analysis
...

The	predictability	of	a	common	domain	name	makes	systematic	data	collection
simpler	and	more	convenient.	However,	most	ingested	HTML	does	not	arrive
clean,	ordered,	and	ready	for	analysis.	For	one	thing,	a	raw	HTML	document
collected	from	the	web	will	include	much	that	is	not	text:	advertisements,

headers	and	footers,	navigation	bars,	etc.	Because	of	its	loose	schema,	HTML
makes	the	systematic	extraction	of	the	text	from	the	non-text	challenging.	On	the
other	end	of	the	spectrum	is	a	structured	format	like	JSON,	which,	while	less
common	than	HTML,	is	human-readable	and	contains	substantially	more
schema,	making	text	extraction	easier.	Somewhere	in	between	HTML	and	JSON
is	the	web	syndication	format	RSS.	RSS	often	provides	fields,	such	as
publication	date,	author,	and	URL,	which	help	with	systematic	text	extraction
and	also	offer	useful	metadata	that	can	later	be	used	in	feature	engineering.	On
the	other	hand,	RSS	does	not	always	contain	the	full	text,	providing	instead	a
summary,	which	may	not	be	sufficiently	robust	for	language	modeling.

In	the	following	sections,	we	will	explore	each	of	these	three	further	as	we
investigate	a	range	of	techniques	for	ingesting	text	from	the	internet,	including
scraping,	crawling,	RSS,	and	APIs.

Scraping	and	Crawling
Two	of	the	most	popular	ways	of	ingesting	data	from	the	internet	are	web
scraping	and	web	crawling.	Scraping	(done	by	scrapers)	refers	to	the	automated
extraction	of	specific	information	from	a	web	page.	This	information	is	often	a
page’s	text	content,	but	it	may	also	include	the	headers,	the	date	the	page	was
published,	what	links	are	present	on	the	page,	or	any	other	specific	information
the	page	contains.	Crawling	(done	by	crawlers	or	spiders)	involves	the	traversal
of	a	website’s	link	network,	while	saving	or	indexing	all	the	pages	in	that
network.	Scraping	is	done	with	an	explicit	purpose	of	extracting	specific
information	from	a	page,	while	crawling	is	done	in	order	to	obtain	information
about	link	networks	within	and	between	websites.	It	is	possible	to	both	crawl	a
website	and	scrape	each	of	the	pages,	but	only	if	we	know	what	specific	content
we	want	from	each	page	and	have	information	about	its	structure	in	advance.

CAUTION
There	are	some	important	precautions	that	need	to	be	taken	into	consideration	when	crawling
websites	in	order	to	be	good	web	citizens	and	not	cause	any	trouble.	The	first	of	these	are
robot.txt	files,	which	are	files	that	websites	publish	telling	you	what	they	do	and	do	not
allow	from	crawlers.	A	simple	Google	search	for	the	website	you’re	going	to	crawl	and
“robots.txt”	should	get	you	the	file.

Let’s	say	we	wanted	to	automatically	fetch	news	stories	from	a	variety	of
sources	in	order	to	quickly	get	a	sense	of	what	was	happening	today.	The	first
step	is	to	start	with	a	seed	list	of	news	sites,	crawl	those	sites,	and	save	all	the
pages	to	disk.	We	can	do	this	in	Python	with	the	help	of	the	following	libraries:

requests	to	read	the	content	from	web	pages.

BeautifulSoup	to	extract	the	links.

awesome-slugify	to	format	the	filenames	when	we	save	the	pages	to	disk.

In	the	code	snippet	below,	we	create	a	function	crawl	that	uses	the	get	method
of	the	requests	library	to	make	a	call	to	a	series	of	webpages	and	read	the
content	of	the	server’s	response.	Then	we	call	the	content	method	on	the	result
of	this	response	to	get	its	raw	contents	as	bytes.	We	next	create	a
BeautifulSoup	object	with	these	contents,	and	use	the	find_all	method	from
bs4	to	identify	the	links	inside	the	text	by	finding	each	of	the	a	tags	with	an
href.	We	then	iterate	over	the	set	of	those	links,	using	get	and	content	to
retrieve	and	save	the	content	of	each	of	those	webpages	to	a	unique	HTML	file
on	disk.

import bs4
import requests
from slugify import slugify

sources = ['https://www.washingtonpost.com',
 'http://www.nytimes.com/',
 'http://www.chicagotribune.com/',
 'http://www.bostonherald.com/',
 'http://www.sfchronicle.com/']

def crawl(url):
 domain = url.split("//www.")[-1].split("/")[0]
 html = requests.get(url).content
 soup = bs4.BeautifulSoup(html, "lxml")
 links = set(soup.find_all('a', href=True))
 for link in links:
 sub_url = link['href']
 page_name = link.string
 if domain in sub_url:
 try:
 page = requests.get(sub_url).content
 filename = slugify(page_name).lower() + '.html'

 with open(filename, 'wb') as f:
 f.write(page)
 except:
 pass

if __name__ == '__main__':
 for url in sources:
 crawl(url)

The	code	above	creates	a	series	of	files	that	contain	the	full	HTML	content	for
each	of	the	web	pages	linked	to	from	the	main	list	of	sources	URLs.	This
includes	all	text,	images,	links,	and	other	content	present	on	those	pages.	One
thing	to	note	is	that	the	resultant	files	are	saved	without	hierarchy	in	whichever
directory	the	script	is	run	from.	As	is,	the	crawl	script	does	not	segregate	the
saved	HTML	files	by	their	original	sources,	an	important	data	management
mechanism	that	becomes	critical	as	corpora	increase	in	size,	and	which	we	will
implement	in	later	parts	of	this	chapter.	Another	consideration	with	the	above
crawl	function	is	that	some	of	the	resultant	HTML	files	will	contain	fulltext
articles,	while	others	will	merely	contain	article	headlines	and	links	that	fall
under	a	certain	topic	(e.g.	street	fashion	or	local	politics).	In	order	to	collect	all
of	the	fulltext	articles	from	all	of	the	secondary,	tertiary,	etc.	web	pages	that
comprise	a	website,	further	recursion	is	needed.

CAUTION
Another	precaution	that	should	be	taken	is	rate	limiting,	or	limiting	the	frequency	at	which	you
ping	a	website.	In	practice,	you	should	insert	a	pause	for	a	certain	amount	of	time	(usually	at
least	a	few	seconds)	between	each	web	page	you	call.	One	of	the	reasons	for	doing	this	is	that
if	we	hit	a	website	with	too	much	traffic	too	fast,	it	might	bring	down	the	website	if	it	is	not
equipped	to	handle	that	level	of	traffic.	Another	reason	is	that	larger	websites	might	not	like
the	fact	that	you	are	crawling	their	site,	and	they	might	block	your	IP	address	so	that	you	can’t
use	their	site	anymore.

Running	the	code	above	will	take	several	minutes.	In	order	to	speed	it	up,	we
may	want	to	multiprocess	this	task.	Multiprocessing	means	performing	actions
in	parallel,	so	in	this	case,	we’d	be	crawling	multiple	sites	at	the	same	time.	We
can	use	the	multiprocessing	library	to	help	us	do	this.

In	the	following	code	snippet,	we	are	creating	a	multi_proc_crawl	function

that	accepts	as	arguments	a	list	of	URLs	and	a	number	of	processes	across	which
to	distribute	the	work.	We	then	create	a	Pool	object,	which	can	parallelize	the
execution	of	a	function	and	distribute	the	input	across	processes.	We	then	call
map,	the	parallel	equivalent	of	the	Python	built-in	function,	on	our	Pool	object,
which	chops	the	crawl	iteration	into	chunks	and	submits	to	the	Pool	as	separate
tasks.	After	the	crawl	tasks	have	been	executed	for	all	of	the	items	in	the	URL
list,	the	close	method	allows	the	worker	processes	to	exit,	and	join	acts	as	a
synchronization	point,	reporting	any	exceptions	that	occurred	among	the	worker
processes.

from multiprocessing.dummy import Pool

def multi_proc_crawl(url_list, processes=2):
 pool = Pool(processes)
 pool.map(crawl, url_list)
 pool.close()
 pool.join()

multi_proc_crawl(sources, 4)

In	effect,	the	above	code	snippet	will	split	our	original	job	into	four	processes,
and	then	run	those	processes	in	parallel,	making	our	crawl	function	much	faster.
Multiprocessing	is	particularly	handy	for	large	ingestion	and	wrangling	tasks,
and	we	will	discuss	it	in	greater	detail	in	a	later	section.

At	this	point,	we	have	several	HTML	web	pages	written	to	disk	-	one	file	per
web	page.	Now,	we	will	want	to	parse	the	HTML	in	each	file	in	order	to	extract
just	the	text	we	want	to	keep.	The	easiest	way	to	do	this	with	Python	is	to	use	the
BeautifulSoup	library.	For	example,	if	we	wanted	to	extract	the	text	from	one
of	the	news	article	pages	we	saved	and	print	it	to	the	console,	we	would	use	the
code	snippet	below	to	do	so.	In	the	code	below,	we	first	identify	the	tags	where
text	data	is	contained.	Then	we	create	an	html_to_text	function	which	takes	a
file	path,	reads	the	HTML	from	the	file,	and	uses	the	get_text	method	to	yield
the	text	from	anywhere	it	finds	a	tag	that	matches	our	tag	list.

import bs4

TAGS = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li']

def html_to_text(path):
 with open(path, 'r') as f:
 html = f.read()
 soup = bs4.BeautifulSoup(html, "lxml")
 for tag in soup.find_all(TAGS):
 yield tag.get_text()

Just	as	with	crawling,	there	are	also	a	some	considerations	to	take	into	account
when	scraping	content	from	web	pages.	Some	websites	have	dynamic	content
that	is	loaded	via	JavaScript.	For	these	websites,	you	would	need	to	take	a
different	approach	in	order	to	obtain	the	content.

There	are	also	several	ways	to	crawl	and	scrape	websites	besides	the	methods
we’ve	demonstrated	here.	For	more	advanced	crawling	and	scraping,	it	may	be
worth	looking	into	the	following	tools.

Scrapy	-	an	open	source	framework	for	extracting	data	from	websites.

Selenium	-	a	Python	library	that	allows	you	to	simulate	user	interaction	with	a
website.

Apache	Nutch	-	a	highly	extensible	and	scalable	open	source	web	crawler.

Web	crawling	and	scraping	can	take	us	a	long	way	in	our	quest	to	acquire	text
data	from	the	web,	and	the	tools	currently	available	make	performing	these	tasks
easier	and	more	efficient.	However,	there	is	still	much	work	left	to	do	after	initial
ingestion.	While	formatted	HTML	is	fairly	easy	to	parse	with	packages	like
BeautifulSoup,	after	a	bit	of	experience	with	scraping,	one	quickly	realizes	that
while	general	formats	are	similar,	different	websites	can	lay	out	content	very
differently.	Accounting	for,	and	working	with,	all	these	different	HTML	layouts
can	be	frustrating	and	time	consuming,	which	can	make	using	more	structured
text	data	sources,	like	RSS,	look	much	more	attractive.

Ingestion	using	RSS	Feeds	and	Feedparser
RSS	(Really	Simple	Syndication)	is	a	standardized	XML	format	for	syndicated
text	data	that	is	primarily	used	by	blogs,	news	sites,	and	other	online	publishers
who	publish	multiple	documents	(posts,	articles,	etc.)	using	the	same	general
layout.	There	are	different	versions	of	RSS,	all	originally	evolved	from	the
Resource	Description	Framework	(RDF)	data	serialization	model,	the	most

common	of	which	is	currently	RSS	2.0.	Atom	is	a	newer	and	more	standardized,
but	at	the	time	of	this	writing,	a	less	widely-used	approach	to	providing	XML
content	updates.

Text	data	structured	as	RSS	is	formatted	more	consistently	than	text	data	on	a
regular	web	page,	as	a	content	feed,	or	a	series	of	documents	arranged	in	the
order	they	were	published.	This	feed	means	you	do	not	need	to	crawl	the	website
in	order	to	get	other	content	or	acquire	updates,	making	it	preferable	to	acquiring
data	through	crawling	and	scraping.	If	the	desired	data	resides	in	the	body	of
blog	posts	or	news	articles	and	the	website	makes	them	available	as	an	RSS
feed,	you	can	merely	parse	that	feed.

Another	feature	of	RSS	is	its	ability	to	synchronize	or	retrieve	the	latest	version
of	the	content	as	articles	on	the	source	website	are	updated.	Routine	querying
ensures	any	changes	to	the	content	are	reflected	in	the	XML.	However,	the	RSS
format	also	has	some	notable	drawbacks.	Most	feeds	give	the	content	owner	the
option	of	displaying	either	the	full	text	or	just	a	summary	of	each	post	or	article.
Content	owners	whose	revenue	depends	heavily	on	serving	advertisements	have
an	incentive	to	display	only	summary	text	via	RSS	to	encourage	readers	to	visit
their	website	to	view	both	the	full	content	and	the	ads.

In	the	example	below,	we	introduce	the	Python	feedparser	library	to	assist	in
ingesting	the	RSS	feeds	of	a	list	of	blogs,	parsing	them,	extracting	the	text
content,	and	then	writing	that	content	to	disk	as	XML	files.	After	creating	a	list
of	feeds,	the	rss_parse	function	uses	the	parse	method	to	parse	the	XML	for
each	of	our	feeds.	From	there,	the	entries	method	retrieves	the	feed’s	posts	or
articles.	Next,	we	iterate	through	each	post,	extracting	the	title	for	each,	using
the	get_text	method	to	extract	the	text	from	inside	any	of	the	tags	from	our	tag
list,	and	writing	that	post’s	text	to	a	file.

import bs4
import feedparser
from slugify import slugify

feeds = ['http://blog.districtdatalabs.com/feed',
 'http://feeds.feedburner.com/oreilly/radar/atom',
 'http://blog.kaggle.com/feed/',
 'http://blog.revolutionanalytics.com/atom.xml']

def rss_parse(feed):

 parsed = feedparser.parse(feed)
 posts = parsed.entries
 for post in posts:
 html = post.content[0].get('value')
 soup = bs4.BeautifulSoup(html, 'lxml')
 post_title = post.title
 filename = slugify(post_title).lower() + '.xml'
 TAGS = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li']
 for tag in soup.find_all(TAGS):
 paragraphs = tag.get_text()
 with open(filename, 'a') as f:
 f.write(paragraphs + '\n \n')

When	the	code	above	is	run,	it	generates	a	series	of	XML	files,	one	for	each	blog
post	or	article	belonging	to	the	each	RSS	source	listed	in	our	feeds	list.	The	files
contain	only	the	text	content	from	each	posts	or	article.

THE	BALEEN	INGESTION	ENGINE
The	actual	implementation	of	ingestion	can	become	complex;	APIs	and	RSS
feeds	can	change,	and	significant	forethought	is	required	to	determine	how
best	to	put	together	an	application	that	will	conduct	not	only	robust,
autonomous	ingestion,	but	also	secure	data	management.

Figure	1-1.	The	Baleen	RSS	Ingestion	Architecture

The	complexity	of	routine	text	ingestion	via	RSS	is	shown	in	Figure	1-1.
The	fixture	that	specifies	what	feeds	to	ingest	and	how	they’re	categorized	is
an	OPML	file	that	must	be	read	from	disk.	Connecting	and	inserting	posts,
feeds,	and	other	information	to	the	MongoDB	store	requires	an	object
document	mapping	(ODM),	and	tools	are	need	to	define	a	single	ingestion
job	that	synchronizes	entire	feeds	then	fetches	and	wrangles	individual	posts
or	articles.

With	these	mechanisms	in	place,	other	utilities	are	required	to	run	the
ingestion	job	on	a	routine	basis	(e.g.	hourly).	Some	configuration	is	required
to	specify	database	connection	parameters	and	how	often	to	run.	Since	this
will	be	a	long	running	process,	logging	and	other	types	of	monitoring	are
required.	A	mechanism	is	needed	that	will	schedule	ingestion	jobs	to	run
every	hour	and	deal	with	errors.	Finally	some	tool	is	needed	to	export	the
final	corpus	ready	for	preprocessing	from	the	database.

While	RSS	provides	additional	structure	that	makes	ingesting	text	data	easier,
the	sources	available	in	RSS	format	are	typically	blog	posts	and	news	articles.	If
other	types	of	data	are	needed,	an	alternate	ingestion	method,	such	as	ingestion
from	an	API,	may	be	necessary.

APIs:	Twitter	and	Search
An	API	(Application	Programming	Interface)	is	a	set	of	programmatic
instructions	for	accessing	a	web-based	software	application.	Organizations
frequently	release	their	APIs	to	the	public	to	enable	others	to	develop	products
on	top	of	their	data.	Most	modern	web	and	social	media	services	have	APIs	that
developers	can	access,	and	they	are	typically	accompanied	by	documentation
with	instructions	on	how	to	access	and	obtain	the	data.

NOTE
As	a	web	service	evolves,	both	the	API	and	the	documentation	are	usually	updated	as	well,	and
as	developers	and	data	scientists,	we	need	to	stay	current	on	changes	to	the	APIs	we	use	in	our
data	products.

A	RESTful	API	is	a	type	of	web	service	API	that	adheres	to	representational
state	transfer	(REST)	architectural	constraints.	REST	is	a	simple	way	to	organize
interactions	between	independent	systems,	allowing	for	lightweight	interaction
with	clients	such	as	mobile	phones	and	other	websites.	REST	is	not	exclusively
tied	to	the	web,	but	it	is	almost	always	implemented	as	such,	as	it	was	inspired
by	HTTP.	As	a	result,	wherever	HTTP	can	be	used,	REST	can	also	be	used.

In	order	to	interact	with	APIs,	you	must	usually	register	your	application	with
the	service	provider,	obtain	authorization	credentials,	and	agree	to	the	web
service’s	terms	of	use.	The	credentials	provided	usually	consist	of	an	API	key,	an
API	secret,	an	access	token,	and	an	access	token	secret;	all	of	which	consist	of
long	combinations	of	alpha-numeric	and	special	characters.	Having	a
credentialing	system	in	place	allows	the	service	provider	to	monitor	and	control
use	of	their	API.	The	primary	reason	they	do	this	is	so	that	they	can	prevent
abuse	of	their	service.	Many	service	providers	allow	for	registration	using
OAuth,	which	is	an	open	authentication	standard	that	allows	a	user’s	information

to	be	communicated	to	a	third	party	without	exposing	confidential	information
such	as	their	password.

APIs	are	popular	data	sources	among	data	scientists	because	they	provide	us
with	a	source	of	ingestion	that	is	authorized,	structured,	and	well-documented.
The	service	provider	is	giving	us	permission	and	access	to	retrieve	and	use	the
data	they	have	in	a	responsible	manner.	This	isn’t	true	of	crawling/scraping	or
RSS,	and	for	this	reason,	obtaining	data	via	API	is	preferable	whenever	it	is	an
option.

To	illustrate	how	we	can	work	with	an	API	to	acquire	some	data,	let’s	take	a	look
at	an	example.	The	following	example	uses	the	popular	tweepy	library	to
connect	to	Twitter’s	API	and	then,	given	a	list	of	user	names,	retrieves	the	last
100	tweets	from	each	user	and	saves	each	tweet	to	disk	as	an	individual
document.

In	order	to	do	this,	you	must	obtain	credentials	for	accessing	the	API,	which	can
be	done	by	following	the	steps	below.

1.	 Go	to	https://apps.twitter.com	and	sign	in	with	your	Twitter	account.

2.	 Once	you’ve	signed	in,	click	on	the	Create	New	App	button.

3.	 Fill	out	the	required	fields	on	the	form	(Name,	Description,	and	Website)	and
check	the	checkbox	indicating	that	you’ve	read	their	Developer	Agreement.

4.	 Click	the	Create	your	Twitter	application	button.

5.	 On	the	next	page,	click	on	the	Keys	and	Access	Tokens	tab,	and	copy	your
API	Key	and	API	Secret	tokens	somewhere	safe.

6.	 Scroll	to	the	bottom	of	the	page	and	click	the	Create	my	access	token
button.

7.	 Under	the	Your	Access	Token	section,	you	should	now	see	your	Access
Token	and	Access	Token	Secret.	Copy	these	to	a	safe	place	also.

You	can	then	substitute	your	credentials	into	placeholders	in	the	code	below,	as
well	as	experimenting	with	customizing	the	user	list,	the	number	of	tweets	to
retrieve	from	each	user’s	timeline,	and	the	number	of	characters	from	the	tweet
to	use	in	the	file	name	to	suit	your	needs.

https://apps.twitter.com

CAUTION
It	is	worth	noting	that	instead	of	explicitly	storing	your	credentials	in	your	code,	you	should
instead	save	them	in	a	JSON	config	file	and	then	add	that	config	file	to	a	.gitignore	file.	This
will	help	ensure	that	your	credentials	do	not	accidentally	get	uploaded	to	Github,	where	others
can	obtain	them	and	potentially	use	them	use	them	to	abuse	the	service	on	your	behalf.

In	the	code	snippet	below,	we	are	using	the	tweepy	library	to	access	the	Twitter
API,	passing	it	our	credentials	so	that	it	can	allow	us	to	proceed.	Once	we	are
connected	to	the	API,	we	pass	a	list	of	Twitter	usernames	to	a	users	list.	We
then	iterate	through	this	list,	using	the	user_timeline	method	to	fetch	the	last
100	tweets	from	each	user’s	timeline.	We	then	iterate	through	each	tweet	in	the
user’s	timeline,	use	the	text	method	to	extract	the	text	content,	and	save	it	to
disk	as	a	line	in	a	JSON	file	for	each	user.

import tweepy
from slugify import slugify

API_KEY = " "
API_SECRET = " "
ACCESS_TOKEN = " "
ACCESS_TOKEN_SECRET = " "

auth = tweepy.OAuthHandler(API_KEY, API_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

api = tweepy.API(auth)

users = ["tonyojeda3","bbengfort","RebeccaBilbro","OReillyMedia",
 "datacommunitydc","dataelixir","pythonweekly","KirkDBorne"]

def get_tweets(user_list, tweets=20):
 for user in users:
 user_timeline = api.user_timeline(screen_name=user, count=tweets)
 filename = str(user) + ".json"
 with open(filename, 'w+') as f:
 for idx, tweet in enumerate(user_timeline):
 tweet_text = user_timeline[idx].text
 f.write(tweet_text + "\n")

get_tweets(users, 100)

The	result	of	running	the	code	above	is	a	single	JSON	file	for	each	username.

Each	JSON	file	contains	a	line	for	each	tweet	published	to	that	user’s	timeline.

CAUTION
It	is	important	to	read	the	documentation	for	an	API	and	respect	any	specified	rate	limits.	To
access	data	from	the	Twitter	API,	we	were	required	to	register	our	application	with	Twitter.
This	ensures	that	they	know	what	you	are	planning	to	do	with	their	data,	and	can	monitor,	and
in	some	cases	control	your	access	to	the	data.	Web	service	providers	like	Twitter	often	impose
limits	on	the	amount	of	data	you	can	retrieve	from	their	service	and	also	how	quickly	you	can
retrieve	it.	If	you	hit	those	limits,	they	will	often	cut	off	your	access	for	a	limited	amount	of
time,	and	if	you	disregard	those	limits	consistently	and	abuse	their	service,	they	may	block
your	access	permanently.

Below	is	a	review	of	the	different	methods	for	ingesting	text	from	the	web,	in
order	of	our	preference,	and	the	types	of	data	typically	obtained	from	each.

1.	 APIs	-	text	content	from	web	services	and	applications.

2.	 RSS	-	text	content	from	blog	posts	and	news	articles.

3.	 Web	Crawling	and	Scraping	-	text	content	you	can’t	get	via	APIs	or	RSS.

One	of	the	potential	problems	we	have	encountered	with	the	crawl,	rss_parse,
and	get_tweets	functions	is	that	in	each	case,	the	resultant	files	are	saved
without	any	hierarchy	or	folder	structure	from	which	to	retrieve	information
about	the	source,	the	corpus	category,	the	date	of	ingestion,	etc.	While	this
absence	of	structure	may	simply	be	a	nuisance	with	only	a	few	dozen	files,	when
we	our	corpus	is	likely	to	contain	hundreds	of	thousands	of	files,	we	must
seriously	consider	how	to	best	organize	and	manage	the	text	content	we	are
ingesting.	In	the	following	section,	we	will	explore	a	workflow	that	wraps	a
series	of	best	practices	for	corpus	data	management	that	we	have	developed
though	experience.

Corpus	Data	Management
After	identifying	a	data	source	to	ingest	application-specific	language,	we	can
then	construct	a	corpus	using	the	fundamental	ingestion	mechanics	discussed	in
the	first	part	of	the	chapter.	Often,	this	is	where	data	scientists	will	start	when

employing	analytics:	collecting	a	single,	static	set	of	documents,	and	then
applying	routine	analyses.	However,	without	considering	routine	and
programmatic	data	ingestion,	analytics	will	be	static	and	unable	to	respond	to
change	or	new	feedback.	In	the	final	section	of	this	chapter	we	will	discuss	how
to	monitor	corpora	as	our	ingestion	routines	continue	and	the	data	change	and
grow.

Whether	documents	are	routinely	ingested	or	part	of	a	fixed	collection,	some
thought	must	go	into	how	manage	the	data	and	prepare	it	for	analytical
processing	and	model	computation.	The	first	assumption	we	should	make	is	that
the	corpora	we	will	be	dealing	with	will	be	non-trivial — that	is	they	will	contain
thousands	or	tens	of	thousands	of	documents	comprising	gigabytes	of	data.	The
second	assumption	is	that	the	language	data	will	come	from	a	source	that	will
need	to	be	cleaned	and	processed	into	data	structures	that	we	can	perform
analytics	on.	The	former	assumption	requires	a	computing	methodology	that	can
scale,	and	the	latter	implies	that	we	will	be	performing	irreversible
transformations	on	the	data.

Figure	1-2.	WORM	Storage	Provides	and	Intermediate	Wrangling	Step

Data	products	often	employ	a	write-once,	read-many	(WORM)	storage	as	an
intermediate	data	management	layer	between	ingestion	and	preprocessing	as
shown	in	Figure	1-2.	WORM	stores	(sometimes	referred	to	as	data	lakes)
provide	streaming	read	accesses	to	raw	data	in	a	repeatable	and	scalable	fashion,
addressing	the	requirement	for	performance	computing.	Moreover,	by	keeping

data	in	a	WORM	store,	preprocessed	data	can	be	re-analyzed	without	re-
ingestion;	allowing	new	hypotheses	to	be	easily	explored	on	the	raw	data	format.
Because	preprocessing	is	irreversible,	having	the	raw	data	stored	as	a	backup
allows	you	to	conduct	analyses	without	fear.

The	addition	of	the	WORM	store	to	our	data	ingestion	workflow	means	that	we
need	to	store	data	in	two	places:	the	raw	corpus	as	well	as	the	preprocessed
corpus,	and	leads	to	the	question:	where	should	that	data	be	stored?	When	we
think	of	data	management,	the	first	thought	is	a	database.	Databases	are	certainly
valuable	tools	in	building	language	aware	data	products,	and	many	provide	full-
text	search	functionality	and	other	types	of	indexing.	However,	consider	the	fact
that	most	databases	are	constructed	to	retrieve	or	update	only	a	couple	of	rows
per	transaction.	In	contrast,	computational	access	to	a	text	corpus	will	be	a
complete	read	of	every	single	document,	and	will	cause	no	in-place	updates	to
the	document,	nor	search	or	select	individual	documents.	As	such,	databases
tend	to	add	overhead	to	computation	without	real	benefit.

NOTE
Relational	database	management	systems	are	great	for	transactions	that	operate	on	a	small
collection	of	rows	at	a	time,	particularly	when	those	rows	are	updated	frequently.	Machine
learning	on	a	text	corpus	has	a	different	computational	profile:	many	sequential	reads	of	the
entire	data	set.	As	a	result,	storing	corpora	on	disk	(or	in	a	document	database)	is	often
preferred.

For	text	data	management,	the	best	choice	is	often	to	store	data	in	a	NoSQL
document	storage	database	that	allows	streaming	reads	of	the	documents	with
minimal	overhead,	or	to	simply	write	each	document	to	disk.	While	a	NoSQL
application	might	be	worthwhile	in	large	applications,	consider	the	benefits	of
using	a	file-based	approach:	compression	techniques	on	directories	are	well
suited	to	text	information	and	the	use	of	a	file	synchronization	service	provides
automatic	replication.	The	construction	of	a	corpus	in	a	database	is	thus	beyond
the	scope	of	this	book.	In	order	to	access	our	text	corpora,	we	will	plan	to
structure	our	data	on	disk	in	a	meaningful	way,	which	we	will	explore	in	the	next
section.

Corpus	Disk	Structure
The	simplest	and	most	common	method	of	organizing	and	managing	a	text-
based	corpus	is	to	store	individual	documents	in	a	file	system	on	disk.	By
organizing	the	corpus	into	sub	directories,	corpora	can	be	categorized	or
meaningfully	partitioned	by	meta	information	like	dates.	By	maintaining	each
document	as	its	own	file,	readers	can	seek	quickly	to	different	subsets	of
documents	and	processing	can	be	parallelized,	with	each	process	taking	a
different	subset	of	documents.	Text	is	also	the	most	compressible	format,	making
Zip	files,	which	leverage	directory	structures	on	disk,	an	ideal	distribution	and
storage	format,	in	fact,	NLTK	CorpusReader	objects,	which	we	will	discuss	in
the	next	section,	can	read	from	either	a	path	to	a	directory	or	a	path	to	a	Zip	file.
Finally,	corpora	stored	on	disk	are	generally	static	and	treated	as	a	whole,
fulfilling	the	requirement	for	WORM	storage	presented	in	the	previous	section.

Storing	a	single	document	per	file	could	lead	to	some	challenges,	however.
Consider	smaller	document	sizes	like	emails	or	tweets,	which	don’t	make	sense
to	store	as	individual	files.	Email	is	typically	stored	in	an	MBox	format — a
plaintext	format	that	uses	separators	to	delimit	multipart	mime	messages
containing	text,	HTML,	images,	and	attachments.	The	MBox	format	can	be	read
in	Python	with	the	email	module	that	comes	with	the	standard	library,	making	it
easy	to	parse	with	a	reader,	but	difficult	to	split	into	multiple	documents	per	file.
On	the	other	hand,	most	email	clients	store	an	MBox	file	per	folder	(or	label),
e.g.	the	Inbox	MBox,	the	Starred	MBox,	the	Archive	MBox	and	so	forth,	which
gives	us	the	idea	that	a	corpus	of	MBox	files	organized	by	category	is	a	good
idea.

Tweets	are	generally	small	JSON	data	structures	that	include	not	just	the	text	of
the	tweet	but	other	meta	data	like	user	or	location.	The	typical	way	to	store
multiple	tweets	is	in	newline	delimited	JSON,	sometimes	called	the	JSON	lines
format.	This	format	makes	it	easy	to	read	one	tweet	at	a	time	by	parsing	only	a
single	line	at	a	time,	but	also	to	seek	to	different	tweets	in	the	file.	A	single	file
of	tweets	can	be	large,	so	organizing	tweets	in	files	by	user,	location,	or	day	can
reduce	overall	file	sizes	and	again	create	a	disk	structure	of	multiple	files.
Another	technique	is	simply	to	write	files	with	a	maximum	size	limit.	E.g.	keep
writing	data	to	the	file,	respecting	document	boundaries,	until	it	reaches	some
size	limit	(e.g.	128	MB)	then	open	a	new	file	and	continue	writing	there.

NOTE
A	corpus	on	disk	will	necessarily	contain	many	files	that	represent	one	or	more	documents	in
the	corpus	-	sometimes	partitioned	into	subdirectories	that	represent	meaningful	splits	like
category.	Corpus	and	document	meta	information	must	also	be	stored	along	with	its
documents.	As	a	result	a	standard	structure	for	corpora	on	disk	is	vital	to	ensuring	that	data	can
be	meaningfully	read	by	Python	programs.

Whether	documents	are	aggregated	into	multi-document	files	or	each	stored	as
their	own	file,	a	corpus	represents	many	files	that	need	to	be	organized.	If	corpus
ingestion	occurs	over	time,	a	meaningful	organization	may	be	subdirectories	for
year,	month,	day	-	with	documents	placed	into	each	folder	respectively.	If	the
documents	are	categorized,	e.g.	for	sentiment	as	positive	or	negative,	each	type
of	document	can	be	grouped	together	into	their	own	category	subdirectory.	If
there	are	multiple	users	in	a	system	that	generate	their	own	subcorpora	of	user-
specific	writing,	for	example	for	reviews	or	tweets,	then	each	user	can	have	their
own	subdirectory.	Note,	however,	that	the	choice	of	organization	on	disk	has	a
large	impact	on	how	documents	are	read	by	CorpusReader	objects.	All
subdirectories	need	to	be	stored	alongside	each	other	in	a	single	corpus	root
directory.	Importantly,	corpus	meta	information	such	as	a	license,	manifest,
readme,	or	citation	must	also	be	stored	along	with	documents	such	that	the
corpus	can	be	treated	as	an	individual	whole.

THE	BALEEN	DISK	STRUCTURE
The	Baleen	corpus	ingestion	engine	writes	a	HTML	corpus	to	disk	as
follows:

corpus
├── citation.bib
├── feeds.json
├── LICENSE.md
├── manifest.json
├── README.md
└── books
| ├── 56d629e7c1808113ffb87eaf.html
| ├── 56d629e7c1808113ffb87eb3.html
| └── 56d629ebc1808113ffb87ed0.html
└── business

| ├── 56d625d5c1808113ffb87730.html
| ├── 56d625d6c1808113ffb87736.html
| └── 56d625ddc1808113ffb87752.html
└── cinema
| ├── 56d629b5c1808113ffb87d8f.html
| ├── 56d629b5c1808113ffb87d93.html
| └── 56d629b6c1808113ffb87d9a.html
└── cooking
 ├── 56d62af2c1808113ffb880ec.html
 ├── 56d62af2c1808113ffb880ee.html
 └── 56d62af2c1808113ffb880fa.html

There	are	a	few	important	things	to	note	here.	First,	all	documents	are	stored
as	HTML	files,	named	according	to	their	MD5	hash	(to	prevent	duplication)
and	each	stored	in	their	own	category	subdirectory.	It	is	simple	to	identify
which	files	are	documents	and	which	files	are	meta	both	by	the	directory
structure	and	the	name	of	each	file.	In	the	next	section,	we	will	see	that	a
regular	expression	must	be	used	to	identify	which	files	are	documents	vs.
corpus	meta.	In	terms	of	meta	information,	a	citation.bib	file	provides
attribution	for	the	corpus	and	the	LICENSE.md	file	specifies	the	rights	others
have	to	use	this	corpus.	While	these	two	pieces	of	information	are	usually
reserved	for	public	corpora,	it	is	helpful	to	include	them	so	that	it	is	clear
how	the	corpus	must	be	used — for	the	same	reason	that	you	would	add	this
type	of	information	to	a	private	software	repository.	The	feeds.json	and
manifest.json	files	are	two	corpus-specific	files	that	serve	to	identify
information	about	the	categories,	and	each	specific	file	respectively.	Finally,
the	README.md	file	is	a	human	readable	description	of	the	corpus.

Of	these	files,	citation.bib,	LICENSE,	and	README	are	special	files	because
they	can	be	automatically	read	from	an	NLTK	CorpusReader	object	with	the
citation(),	license(),	and	readme()	methods.

A	structured	approach	to	corpus	management	and	storage	means	that	applied	text
analytics	follows	a	scientific	process	of	reproducibility,	a	method	that
encourages	the	interpretability	of	analytics	as	well	as	confidence	in	their	results.
Moreover,	structuring	a	corpus	as	above,	enables	us	to	use	CorpusReader
objects,	mentioned	routinely,	but	explained	in	detail	in	the	next	section.

Modifying	these	methods	to	deal	with	Markdown	or	to	read	corpus-specific	files

like	the	manifest	is	fairly	simple:

import json

 # In a custom corpus reader class
 def manifest(self):
 """
 Reads and parses the manifest.json file in our corpus if it exists.
 """
 return json.load(self.open("README"))

These	methods	are	specifically	exposed	programmatically	to	allow	corpora	to
remain	compressed,	but	still	readable,	minimizing	the	amount	of	storage
required	on	disk.	Consider	that	the	README	file	is	essential	to	communicating
about	the	composition	of	the	corpus,	not	just	to	other	users	or	developers	of	the
corpus,	but	also	to	“future	you”	who	may	not	remember	specifics;	and	to	be	able
to	identify	which	models	were	trained	on	which	corpora,	and	what	information
those	models	have.

Corpus	Readers
Once	a	corpus	has	been	well	structured	and	organized	on	disk,	two	opportunities
present	themselves:	a	systematic	approach	to	accessing	the	corpus	in	a
programming	context,	and	the	ability	to	monitor	and	manage	change	in	the
corpus.	We	will	discuss	the	latter	at	the	end	of	the	chapter,	but	for	now	we	will
tackle	the	subject	of	how	to	load	documents	for	use	in	analytics.

Most	non-trivial	corpora	contain	thousands	of	documents	with	potentially
gigabytes	of	text	data.	The	raw	text	strings	loaded	from	the	documents	then	need
to	be	preprocessed	and	parsed	into	a	representation	suitable	for	analysis;	an
additive	process	whose	methods	may	generate	or	duplicate	data,	increasing	the
amount	of	required	working	memory.	From	a	computational	standpoint,	this	is
an	important	consideration,	because	without	some	method	to	stream	and	select
documents	from	disk,	text	analytics	would	quickly	be	bound	to	the	performance
of	a	single	machine,	limiting	our	ability	to	generate	interesting	models.	Luckily,
tools	for	streaming	accesses	of	a	corpus	from	disk	have	been	well	thought	out	by
the	NLTK	library,	which	exposes	corpora	in	Python	via	CorpusReader	objects.

NOTE
Though	outside	the	scope	of	this	book,	it	is	important	to	note	that	distributed	computing
frameworks	such	as	Hadoop	were	created	in	response	to	the	amount	of	text	data	generated	by
web	crawlers	to	produce	search	engines	(Nutch	in	the	case	of	Hadoop,	which	was	inspired	by
two	Google	papers).

A	CorpusReader	is	a	programmatic	interface	to	read,	seek,	stream,	and	filter
documents,	and	furthermore	to	expose	data	wrangling	techniques	like	encoding
and	preprocessing	for	code	that	requires	access	to	data	within	a	corpus.	A
CorpusReader	is	instantiated	by	passing	a	path	to	the	directory	that	contains	the
corpus	files,	the	root	path,	a	signature	for	discovering	document	names,	as	well
as	a	file	encoding	(by	default,	UTF-8).	Because	a	corpus	contains	files	beyond
the	documents	meant	for	analysis	(e.g.	the	README,	citation,	license,	etc.)
some	mechanism	must	be	given	to	the	reader	to	identify	exactly	what	documents
are	part	of	the	corpus.	This	mechanism	is	a	parameter	that	can	be	specified
explicitly	as	a	list	of	names	or	implicitly	as	a	regular	expression	that	will	be
matched	upon	all	documents	under	the	root,	e.g.	\w\.txt+,	which	matches	one	or
more	characters	or	digits	in	the	file	name	preceding	the	file	extension,	.txt.	For
instance,	in	the	following	directory,	this	regex	pattern	will	match	the	three
speeches	and	the	transcript,	but	not	the	license,	README,	or	metadata	files.

corpus
├── LICENSE.md
├── README.md
├── transcript.txt
└── speeches
 ├── 04102008.txt
 ├── 10142009.txt
 ├── 09012014.txt
 └── metadata.json

These	three	simple	parameters	then	give	the	CorpusReader	the	ability	to	list	the
absolute	paths	of	all	documents	in	the	corpus,	to	open	each	document	with	the
correct	encoding,	and	to	allow	programmers	to	access	meta	data	such	as	the
README,	license,	and	citation.	By	default,	NLTK	CorpusReader	objects	can
even	access	corpora	that	are	compressed	as	Zip	files,	and	simple	extensions
allow	the	reading	of	Gzip	or	Bzip	compression	as	well.	By	itself,	this	is	not

particularly	spectacular,	however	when	dealing	with	a	myriad	of	documents,	the
interface	allows	programmers	to	read	one	or	more	documents	into	memory,	to
seek	forward	and	backward	to	particular	places	in	the	corpus	without	opening	or
reading	unnecessary	documents,	to	stream	data	to	an	analytical	process	holding
only	one	document	in	memory	at	a	time,	and	to	filter	or	select	only	specific
documents	from	the	corpus	at	a	time.	These	techniques	are	what	make	in-
memory	text	analytics	possible	for	non-trivial	corpora	because	they	apply	work
to	only	a	few	documents	in-memory	at	a	time.

Therefore,	in	order	to	analyze	your	own	text	corpus	in	a	specific	domain	that
targets	exactly	the	language	models	you	are	attempting	to	build,	you	will	need	an
application-specific	corpus	reader.	This	is	so	critical	to	enabling	applied	text
analytics	that	we	have	devoted	most	of	the	remainder	of	this	chapter	to	the
subject!	In	this	section	we	will	discuss	the	corpus	readers	that	come	with	NLTK
and	the	possibility	of	structuring	your	corpus	so	that	you	can	simply	use	one	of
them	out	of	the	box.	We	will	then	move	forward	into	a	discussion	of	how	to
define	a	custom	corpus	reader	that	does	application-specific	work,	namely
dealing	with	HTML	files	collected	during	the	ingestion	process.

Streaming	Data	Access	with	NLTK
NLTK	comes	with	a	variety	of	corpus	readers	(66	at	the	time	of	this	writing)	that
are	specifically	designed	to	access	the	text	corpora	and	lexical	resources	that	can
be	downloaded	with	NLTK.	For	example,	the	CMUDictCorpusReader	reads	a
dictionary	of	English	language	phonemes	to	support	phonetic	translation,	and	the
NombankCorpusReader	provides	access	to	the	Nombank	corpus,	which
augments	the	Penn	Treebank	with	predicate-argument	annotations.	While	these
are	clearly	academic	corpora	that	show	very	specific	properties	of	language,	they
are	worth	noting	because	you	might	come	across	a	paper	or	technique	that
leverages	a	specific	language	or	academic	format.	For	example,	the
NombankCorpusReader	exposes	a	frame-based	mechanism	for	discovering	the
roles	of	nouns	in	relation	to	a	predicate.	If	this	technique	appeared	promising	for
your	use	case,	transforming	your	application	corpus	into	the	format	expected	by
the	NombankCorpusReader	would	open	up	the	possibility	of	more	easily
leveraging	its	methods.

NLTK	also	comes	with	slightly	more	generic	utility	CorpusReader	objects.

These	objects	are	fairly	rigid	in	the	corpus	structure	that	they	expect,	but	provide
the	opportunity	to	quickly	create	corpora	and	associate	them	with	readers.	They
also	give	hints	as	to	how	to	customize	a	CorpusReader	for	application	specific
purposes.	To	name	a	few	notable	utility	readers:

PlaintextCorpusReader:	a	reader	for	corpora	that	consist	of	plaintext
documents,	where	paragraphs	are	assumed	to	be	split	using	blank	lines.

TaggedCorpusReader:	a	reader	for	simple	part-of-speech	tagged	corpora,
where	sentences	are	on	their	own	line,	and	tokens	are	delimited	with	their	tag.

BracketParseCorpusReader:	a	reader	for	corpora	that	consist	of
parenthesis-delineated	parse	trees.

ChunkedCorpusReader:	a	reader	for	chunked	(and	optionally	tagged)	corpora
formatted	with	parentheses.

TwitterCorpusReader:	a	reader	for	corpora	that	consist	of	Tweets	that	have
been	serialized	into	line-delimited	JSON.

WordListCorpusReader:	List	of	words,	one	per	line.	Blank	lines	are	ignored.

XMLCorpusReader:	a	reader	for	corpora	whose	documents	are	XML	files.

CategorizedCorpusReader:	a	mixin	for	corpus	readers	whose	documents
are	organized	by	category.

The	tagged,	bracket	parse,	and	chunked	corpus	readers	are	annotated	corpus
readers;	if	you’re	going	to	be	doing	domain-specific	hand	annotation	in	advance
of	machine	learning,	then	the	formats	exposed	by	these	readers	are	important	to
understand.	The	Twitter,	XML,	and	plaintext	corpus	readers	all	give	hints	about
how	to	deal	with	data	on	disk	that	has	different	parseable	formats,	allowing	for
extensions	related	to	CSV	corpora,	JSON,	or	even	from	a	database.	If	your
corpus	is	already	in	one	of	these	formats,	then	you	have	little	work	to	do.	For
example,	consider	a	corpus	of	the	plaintext	scripts	of	the	Star	Wars	and	Star	Trek
movies	organized	as	follows:

corpus
├── LICENSE
├── README

└── Star Trek
| ├── Star Trek - Balance of Terror.txt
| ├── Star Trek - First Contact.txt
| ├── Star Trek - Generations.txt
| ├── Star Trek - Nemesis.txt
| ├── Star Trek - The Motion Picture.txt
| ├── Star Trek 2 - The Wrath of Khan.txt
| └── Star Trek.txt
└── Star Wars
| ├── Star Wars Episode 1.txt
| ├── Star Wars Episode 2.txt
| ├── Star Wars Episode 3.txt
| ├── Star Wars Episode 4.txt
| ├── Star Wars Episode 5.txt
| ├── Star Wars Episode 6.txt
| └── Star Wars Episode 7.txt
└── citation.bib

The	CategorizedPlaintextCorpusReader	is	perfect	for	accessing	data	from
the	movie	scripts	since	the	documents	are	TXT	files	and	there	are	two
categories,	namely	“Star	Wars”	and	“Star	Trek”.	In	order	to	use	the
CategorizedPlaintextCorpusReader,	we	need	to	specify	a	regular	expression
that	allows	the	reader	to	automatically	determine	both	the	fileids	and
categories.

from nltk.corpus.reader.plaintext import CategorizedPlaintextCorpusReader

DOC_PATTERN = r'(?!\.)[\w_\s]+/[\w\s\d\-]+\.txt'
CAT_PATTERN = r'([\w_\s]+)/.*'

corpus = CategorizedPlaintextCorpusReader(
 '/path/to/corpus/root', DOC_PATTERN, cat_pattern=CAT_PATTERN
)

The	document	pattern	regular	expression	specifies	documents	as	having	paths
under	the	corpus	root	such	that	there	is	one	or	more	letters,	digits,	spaces,	or
underscores,	followed	by	the	/	character,	then	one	or	more	letters,	digits,	spaces,
or	hyphens	followed	by	.txt.	This	will	match	documents	such	as	Star
Wars/Star Wars Episode 1.txt	but	not	documents	such	as	episode.txt.
The	categories	pattern	regular	expression	truncates	the	original	regular
expression	with	a	capture	group	that	indicates	that	a	category	is	any	directory
name,	e.g.	Star Wars/anything.txt	will	capture	Star Wars	as	the	category.

You	can	start	to	access	the	data	on	disk	by	inspecting	how	these	names	are
captured:

corpus.categories()
['Star Trek', 'Star Wars']

corpus.fileids()
['Star Trek/Star Trek - Balance of Terror.txt', 'Star Trek/Star Trek - First
Contact.txt', ...]

Although	regular	expressions	can	be	difficult,	they	do	provide	a	powerful
mechanism	for	specifying	exactly	what	should	be	loaded	by	the	corpus	reader,
and	how.	Alternatively,	you	could	explicitly	pass	a	list	of	categories	and	file	ids,
but	that	would	make	the	reader	a	lot	less	flexible.	By	using	regular	expressions
you	could	add	new	categories	by	simply	creating	a	directory	in	your	corpus,	and
add	new	documents	by	moving	them	to	the	correct	directory.

Now	that	we	have	access	to	the	CorpusReader	objects	that	come	with	NLTK,
we	will	explore	how	to	modify	them	specifically	for	use	with	the	HTML	content
that	we	have	been	ingesting	throughout	the	chapter	so	far.

Reading	an	HTML	Corpus

The	CategorizedPlaintextCorpusReader	in	the	previous	section	is	actually
very	useful	as	it	implements	a	standard	preprocessing	API	that	exposes	the
following	methods:

paras():	a	generator	of	paragraphs,	blocks	of	text	delimited	with	double
newlines.

sents():	a	generator	of	individual	sentences	in	the	text.

words():	tokenizes	the	text	into	individual	words.

raw():	provides	access	to	the	raw	text	without	preprocessing.

Other	CorpusReader	objects	expose	other	language	processing	methods,	for
example	automatically	tagging	or	parsing	sentences,	converting	annotated	text
into	meaningful	data	structures	like	Tree	objects,	or	exposing	format-specific
utilities	like	individual	XML	elements.	In	order	to	fit	models	using	machine

learning	techniques	on	our	text,	we	will	need	these	methods	as	part	of	the	feature
extraction	process.	In	the	next	section,	we	will	discuss	the	details	of
preprocessing	and	explore	what	is	actually	going	on.	Before	we	get	to	that,
however,	we	need	a	methodology	to	stream	the	HTML	data	we	have	ingested	to
programming.

So	far	in	this	chapter	we	have	explored	data	ingestion	from	the	web	through	a
variety	of	techniques	including	web	scraping,	APIs	and	search,	or	by	using	RSS
feeds	or	other	syndication	mechanisms.	Because	we	are	ingesting	data	from	the
Internet,	it	is	a	safe	bet	that	the	data	we’re	ingesting	is	formatted	as	HTML.	One
option	for	creating	a	streaming	corpus	reader	is	to	simply	strip	all	the	tags	from
the	HTML,	writing	it	as	plaintext	and	using	the
CategorizedPlaintextCorpusReader.	However,	if	we	do	that,	we	will	lose	the
benefits	of	HTML — namely	computer	parseable,	structured	text,	which	we	can
take	advantage	of	when	preprocessing.	Therefore,	in	this	section	we	will	begin	to
design	a	custom	HTMLCorpusReader	that	we	will	extend	in	the	preprocessing
section.

from nltk.corpus.reader.api import CorpusReader
from nltk.corpus.reader.api import CategorizedCorpusReader

Tags to extract as paragraphs from the HTML text
TAGS = [
 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li'
]

class HTMLCorpusReader(CategorizedCorpusReader, CorpusReader):
 """
 A corpus reader for raw HTML documents to enable preprocessing.
 """

 def __init__(self, root, tags=TAGS, **kwargs):
 """
 Initialize the corpus reader. Categorization arguments
 (``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
 the ``CategorizedCorpusReader`` constructor. The remaining
 arguments are passed to the ``CorpusReader`` constructor.
 """

 # Get the CorpusReader specific arguments
 fileids = kwargs.pop('fileids')
 encoding = kwargs.pop('encoding')

 # Initialize the NLTK corpus reader objects
 CategorizedCorpusReader.__init__(self, kwargs)
 CorpusReader.__init__(self, root, fileids, encoding)

 # Save the tags that we specifically want to extract.
 self.tags = tags

Our	HTMLCorpusReader	class	extends	both	the	CategorizedCorpusReader	and
the	CorpusReader,	similarly	to	how	the	CategorizedPlaintextCorpusReader
uses	the	categorization	mixin.	Multiple	inheritance	can	by	tricky,	so	the	bulk	of
the	code	in	the	init	function	simply	figures	out	which	arguments	to	pass	to
which	class.	In	particular,	the	CategorizedCorpusReader	takes	in	generic
keyword	arguments,	and	the	CorpusReader	will	be	initialized	with	the	root
directory	of	the	corpus,	as	well	as	the	fileids	and	the	HTML	encoding	scheme.
However,	we	have	also	added	our	own	customization — allowing	the	user	to
specify	which	HTML	tags	should	be	treated	as	independent	paragraphs.

The	next	step	is	to	augment	the	HTMLCorpusReader	with	a	method	that	will
allow	us	to	filter	how	we	read	text	data	from	disk,	either	by	specifying	a	list	of
categories,	or	a	list	of	file	names:

 def resolve(self, fileids, categories):
 """
 Returns a list of fileids or categories depending on what is passed
 to each internal corpus reader function. Implemented similarly to
 the NLTK ``CategorizedPlaintextCorpusReader``.
 """
 if fileids is not None and categories is not None:
 raise ValueError("Specify fileids or categories, not both")

 if categories is not None:
 return self.fileids(categories)
 return fileids

This	method	returns	a	list	of	file	ids	whether	or	not	they	have	been	categorized.
In	this	sense,	it	both	adds	flexibility	and	exposes	the	method	signature	that	we
will	use	for	pretty	much	every	other	method	on	the	reader.	In	our	resolve
method,	if	both	categories	and	fileids	are	specified,	it	will	complain,
otherwise,	the	method	will	use	a	CorpusReader	method	to	compute	the	file	ids
associated	with	the	specific	categories.	Note	that	categories	can	either	be	a

single	category	or	a	list	of	categories.	Otherwise,	we	will	simply	return	the
fileids — if	this	is	None,	the	CorpusReader	will	automatically	read	every
single	document	in	the	corpus	without	filtering.

NOTE
Note,	the	ability	to	read	only	part	of	a	corpus	will	become	essential	as	we	move	towards
machine	learning,	particularly	for	doing	cross-validation	where	we	will	have	to	create	training
and	testing	splits	of	the	corpus.

At	the	moment,	the	HTMLCorpusReader	doesn’t	have	a	method	for	reading	a
stream	of	complete	documents,	one	document	at	a	time.	Instead,	it	will	expose
the	entire	text	of	every	single	document	in	the	corpus	in	a	streaming	fashion	to
our	methods.	However,	we	will	want	to	parse	one	HTML	document	at	a	time,	so
the	following	method	gives	us	access	to	the	text	on	a	document	by	document
basis:

 def docs(self, fileids=None, categories=None):
 """
 Returns the complete text of an HTML document, closing the document
 after we are done reading it and yielding it in a memory safe fashion.
 """
 # Resolve the fileids and the categories
 fileids = self.resolve(fileids, categories)

 # Create a generator, loading one document into memory at a time.
 for path, encoding in self.abspaths(fileids, include_encoding=True):
 with codecs.open(path, 'r', encoding=encoding) as f:
 yield f.read()

Our	custom	corpus	reader	now	knows	how	to	deal	with	individual	documents	in
the	corpus,	one	document	at	a	time,	allowing	us	to	filter	and	seek	to	different
places	in	the	corpus.	It	can	handle	file	ids	and	categories,	and	has	all	the	tools
imported	from	NLTK	to	make	disk	access	easier.	In	the	next	section	we	will
extend	this	class	with	methods	to	preprocess	the	raw	HTML	as	it	is	streamed	in	a
memory	safe	fashion	and	achieve	our	final	text	data	structure	in	advance	of
machine	learning — a	list	of	documents,	composed	of	lists	of	paragraphs,	which
are	lists	of	sentences,	where	a	sentence	is	a	list	of	tuples	containing	a	token	and

its	part-of-speech	tag.

Preprocessing	and	Wrangling
A	key	motivation	for	writing	this	book	has	been	the	immense	challenge	we
ourselves	have	encountered	in	our	efforts	to	build	and	work	with	corpora	large
and	rich	enough	to	power	meaningfully	literate	data	products.	Academic
resources	and	toy	corpora	exist	(many	of	which	are	thanks	to	the	work	of	Steven
Bird	and	his	colleagues),	yet	there	are	few	materials	for	the	developer	looking	to
build	a	custom	application	with	a	heavy-duty	corpus.	Unfortunately,	much	of	the
code	provided	in	teaching	materials	is	intended	merely	to	illustrate	the
functionalities	of	NLTK,	and	the	corpora	provided	have	already	been	annotated;
neither	of	these	scale	well	to	a	real-world	application.	Any	real	corpus	in	its	raw
form	is	completely	unusable	for	analytics	without	significant	preprocessing	and
compression.

In	this	section,	we	will	provide	a	multipurpose	preprocessing	framework,
developed	through	our	own	experience,	that	can	be	used	to	systematically
transform	raw	text	into	usable	data.	Our	framework	includes	5	key	stages:
content	extraction,	paragraph	blocking,	sentence	segmentation,	word
tokenization,	and	part-of-speech	tagging.	For	each	of	these	stages,	we	have
provided	functions	conceived	as	methods	under	the	HTMLCorpusReader	class
defined	in	the	previous	section.

Readability	for	Accessing	Core	Content
Although	the	web	is	an	excellent	source	of	text	with	which	to	build	novel	and
useful	corpora,	it	is	also	a	fairly	lawless	place	in	the	sense	that	the	underlying
structures	of	webpages	need	not	conform	to	any	set	standard.	As	a	result,	HTML
content,	while	structured,	can	be	produced	and	rendered	in	numerous	and
sometimes	erratic	ways.	This	unpredictability	makes	it	very	difficult	to	extract
data	from	raw	HTML	text	in	a	methodical	and	programmatic	way.	To	help	us	in
grappling	with	the	high	degree	of	variability,	we	can	use	the	Readability-lxml
library.

Readability-lxml	is	a	Python	wrapper	for	the	Javascript	Readability	library	by
Arc90.	Just	as	browsers	like	Safari	and	Chrome	offer	a	reading	mode,

Readability	takes	away	all	the	distractions	from	a	page,	leaving	just	the	text.
Given	an	HTML	document,	Readability	employs	a	series	of	regular	expressions
to	remove	navigation	bars,	advertisements,	page	script	tags	and	CSS,	then	builds
a	new	Document	Object	Model	(DOM)	tree,	extracts	the	text	from	the	original
tree	and	reconstructs	the	text	within	the	newly	restructured	tree.

Here	we	import	two	readability	modules,	Unparseable	and	Document,	which	we
can	use	to	extract	and	clean	the	raw	HTML	text	for	the	first	phase	of	our
preprocessing	workflow.

from readability.readability import Unparseable
from readability.readability import Document as Paper

 def html(self, fileids=None, categories=None):
 """
 Returns the HTML content of each document, cleaning it using
 the readability-lxml library.
 """
 for doc in self.docs(fileids, categories):
 try:
 yield Paper(doc).summary()
 except Unparseable as e:
 print("Could not parse HTML: {}".format(e))
 continue

Our	html	method	iterates	over	each	file	and	uses	the	summary	method	from
Readability’s	Document	class	to	remove	any	non-text	content,	as	well	as	script
and	stylistic	tags,	and	to	correct	any	of	the	most	commonly	misused	tags	(e.g.
<div>	and	
),	only	throwing	an	exception	if	the	original	HTML	is	found	to
be	unparseable.	The	most	likely	reason	for	such	an	exception	is	if	the	function	is
passed	an	empty	document,	which	has	nothing	to	parse.	The	result	is	clean	and
well-structured	HTML	text	that	we	will	be	able	to	incrementally	decompose	into
paragraphs,	sentences,	and	tokens.

Documents,	Discourse,	and	Paragraphs
Now	that	we	are	able	to	filter	the	raw	HTML	text	that	we’ve	ingested,	we	will
move	towards	building	a	preprocessed	corpus	that	is	structured	in	a	way	that	will
facilitate	machine	learning.	For	this	reason,	as	we	dissect	the	language	contained
in	our	corpus,	we	must	also	preserve	much	of	the	original	structure.	Paragraphs

encapsulate	complete	ideas,	functioning	as	the	unit	of	document	structure,	and
our	first	step	will	be	to	isolate	the	paragraphs	that	appear	within	the	text.

NOTE
The	precision	and	sensitivity	of	our	models	will	rely	on	how	effectively	we	are	able	to	link
tokens	with	the	textual	contexts	in	which	they	appear.

Since	we	have	opted	to	create	methods	that	retain	the	structure	of	our	HTML
documents,	we	can	isolate	content	that	appears	within	paragraphs	by	searching
for	<p>	tags,	the	element	that	formally	defines	an	HTML	paragraph.	However,
content	can	also	appear	in	other	ways,	embedded	inside	other	structures	within
the	document	like	headings	and	lists,	so	we	must	be	prepared	to	search	broadly
through	the	text.

Recall	that	we	defined	our	HTMLCorpusReader	class	so	that	our	reader	objects
have	these	tags	as	a	class	attribute	(which	could	be	expanded,	abbreviated,	or
otherwise	modified	according	to	your	context),	and	we	can	use	BeautifulSoup	to
search	for	them.

import bs4

Tags to extract as paragraphs from the HTML text
self.tags = [
 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li'
]

 def paras(self, fileids=None, categories=None):
 """
 Uses BeautifulSoup to parse the paragraphs from the HTML.
 """
 for html in self.html(fileids, categories):
 soup = bs4.BeautifulSoup(html, 'lxml')
 for element in soup.find_all(self.tags):
 yield element.text
 soup.decompose()

We	iterate	through	each	file	id	and	pass	each	HTML	document	into	the
BeautifulSoup	constructor,	specifying	that	the	HTML	should	be	parsed	using	the
lxml	HTML	parser.	BeautifulSoup	uses	HTML5	by	default,	and	while	lxml	is	a

pain	to	deal	with,	it	is	powerful	and	needed	to	parsing	meaningfully	at	scale.	The
resulting	soup	is	a	nested	tree	structure	that	we	can	navigate	using	the	original
HTML	tags	and	elements.	For	each	of	our	document	soups,	we	then	iterate
through	each	of	the	tags	from	our	pre-defined	set	and	yield	the	text	from	within
that	tag.	We	can	then	call	Beautiful	Soup’s	decompose	method	to	destroy	the	tree
when	we’re	done	working	with	each	file	to	free	up	memory.

The	result	of	our	paras	method	is	a	generator	with	the	raw	text	paragraphs	from
every	document,	from	first	to	last,	with	no	document	boundaries.	If	passed	a
specific	file	id,	paras	will	return	the	paragraphs	from	that	file	only.	It’s	worth
noting	that	the	paras	methods	for	many	of	the	NLTK	corpus	readers,	such	as	the
standard	NLTK	CorpusReader,	function	differently,	frequently	doing
segmentation	and	tokenization	in	addition	to	isolating	the	paragraphs.	This	is
because	NLTK	methods	tend	to	expect	a	corpus	that	has	already	been	annotated,
and	are	thus	not	concerned	with	reconstructing	paragraphs.	By	contrast,	our
methods	are	designed	to	work	on	raw,	un-annotated	corpora	and	will	need	to
support	reconstruction.	Though	critical	to	our	machine	learning	goal,	our
decompositional	approach	is	far	from	easy	and	will	necessitate	painstaking
deconstruction	to	isolate	paragraphs,	then	sentences,	and	then	tokens.

Segmentation:	Breaking	out	Sentences
If	we	can	think	of	paragraphs	as	the	units	of	document	structure,	it	is	useful	to
see	sentences	as	the	units	of	discourse.	Just	as	a	paragraph	within	a	document
comprises	a	single	idea,	a	sentence	contains	a	complete	language	structure,	one
that	we	want	to	be	able	to	identify	and	encode.	In	the	next	section,	the	method
we	will	write	to	parse	our	text	into	sentences	(segmentation)	will	employ	NLTK
methods	that	are	trained	on	sentences.	Segementation	is	a	critical	next	step
because	the	part-of-speech	tagging	methods	we	will	employ	later	will	rely	on	an
internally-consistent	morphology.

Thus,	in	order	to	get	to	the	sentences,	we’ll	write	a	new	method	that	calls	our
paras	method,	performs	sentence	segmentation,	and	returns	a	generator	(an
iterator)	yielding	each	sentence	from	every	paragraph.

from nltk import sent_tokenize

 def sents(self, fileids=None, categories=None):
 """
 Uses the built in sentence tokenizer to extract sentences from the
 paragraphs. Note that this method uses BeautifulSoup to parse HTML.
 """
 for paragraph in self.paras(fileids, categories):
 for sentence in sent_tokenize(paragraph):
 yield sentence

Our	sents	method	iterates	through	each	of	the	paragraphs	we	isolated	with	our
paras	method,	using	the	built-in	NLTK	sent_tokenize	method	to	conduct
segmentation.	Under	the	hood,	sent_tokenize	employs	the
PunktSentenceTokenizer,	a	method	that	uses	unsupervised	learning	to	build	a
model	(a	series	of	regular	expressions)	for	the	kinds	of	words	and	punctuation
(e.g.	periods,	question	marks,	exclamation	points,	capitalization,	etc.)	that	signal
the	beginnings	and	ends	of	sentences.

The	result	is	a	generator	with	a	list	of	sentences	for	each	paragraph.	This	model
has	been	trained	on	English	text	and	it	works	well	for	most	European	languages.
However,	punctuation	marks	can	be	ambiguous;	while	periods	frequently	signal
the	end	of	a	sentence,	they	can	also	appear	in	floats,	abbreviations,	and	ellipses.
In	other	words,	identifying	the	boundaries	between	sentences	can	be	tricky.
There	are	alternative	sentences	tokenizers,	and	if	your	domain	space	has	special
peculiarities	in	the	way	that	sentences	are	demarcated,	it’s	also	possible	to	train
your	own	using	domain-specific	content.

Tokenization:	Identifying	Individual	Tokens
Whereas	we	have	defined	sentences	as	the	units	of	discourse	and	paragraphs	as
the	units	of	document	structure,	tokens	are	like	the	atoms	of	semantics.	Recall
that	tokens	are	not	the	same	as	words.	The	tokens	in	our	corpus	will	be
sequences	of	characters	that	appeared	in	one	or	some	of	the	documents	and	are
grouped	together	in	ways	that	encode	some	semantic	information	beyond	just
substring	characters.

Now	that	we	have	found	our	paragraphs	within	our	HTML	documents	and
isolated	our	sentences	within	those	paragraphs,	we	next	need	to	find	a	way	to
identify	the	tokens	within	our	sentences.	Tokenization	is	the	process	by	which
we’ll	arrive	at	those	tokens,	and	we’ll	use	WordPunctTokenizer,	a	regular-

expression	based	tokenizer	that	splits	text	on	both	whitespace	and	punctuation
and	returns	a	list	of	alphabetic	and	non-alphabetic	characters.

from nltk import wordpunct_tokenize

 def words(self, fileids=None, categories=None):
 """
 Uses the built in word tokenizer to extract tokens from sentences.
 Note that this method uses BeautifulSoup to parse HTML content.
 """
 for sentence in self.sents(fileids, categories):
 for token in wordpunct_tokenize(sentence):
 yield token

As	with	sentence	demarcation,	tokenization	is	not	always	straightforward.	We
must	consider	things	like:	do	we	want	to	remove	punctuation	from	tokens?
Should	we	preserve	hyphenated	words	as	compound	elements	or	break	them
apart?	Should	we	approach	contractions	as	one	token	or	two,	and	if	they	are	two
tokens,	where	should	they	be	split?

We	can	select	different	tokenizers	depending	on	our	responses	to	these	questions.
Of	the	many	word	tokenizers	available	in	NLTK	(e.g.	TreebankWordTokenizer,
WordPunctTokenize,	PunktWordTokenizer,	etc.),	a	common	choice	for
tokenization	is	word_tokenize,	which	invokes	the	Treebank	tokenizer	and	uses
regular	expressions	to	tokenize	text	as	in	Penn	Treebank.	This	includes	splitting
standard	contractions	(e.g.	``wouldn’t``	becomes	``would``	and	``n’t``)	and
treating	punctuation	marks	(like	commas,	single	quotes,	and	periods	followed	by
whitespace)	as	separate	tokens.	By	contrast,	WordPunctTokenizer	is	based	on
the	RegexpTokenizer	class,	which	splits	strings	using	the	regular	expression
\w+|[^\w\s]+	,	matching	either	tokens	or	separators	between	tokens	and	resulting
in	a	sequence	of	alphabetic	and	non-alphabetic	characters.	You	can	also	use	the
RegexpTokenizer	class	to	create	your	own	custom	tokenizer.

Part-of-Speech	Tagging
Now	that	we	can	access	the	tokens	within	the	sentences	of	our	document
paragraphs,	we	will	proceed	to	tag	each	token	with	it’s	part	of	speech.	Parts	of
speech	(e.g.	verbs,	nouns,	prepositions,	adjectives)	indicate	how	a	word	is
functioning	within	the	context	of	a	sentence.	In	English	as	in	many	other

languages,	a	single	word	can	function	in	multiple	ways,	and	we	would	like	to	be
able	to	distinguish	those	uses	(for	example	“building”	can	be	either	a	noun	or	a
verb).	Part-of-speech	tagging	entails	labeling	each	token	with	the	appropriate
tag,	which	will	encode	information	both	about	the	word’s	definition	and	it’s	use
in	context.

We’ll	use	the	off-the-shelf	NLTK	tagger,	pos_tag,	which	at	the	time	of	this
writing	uses	the	PerceptronTagger()	and	the	Penn	Treebank	tagset.	The	Penn
Treebank	tagset	consists	of	36	parts	of	speech,	structural	tags,	and	indicators	of
tense	(NN	for	singular	nouns,	NNS	for	plural	nouns,	JJ	for	adjectives,	RB	for
adverbs,	PRP	for	personal	pronouns,	etc.).

The	pos_tag	method	will	differentiate	how	words	are	used	in	context:

from nltk import pos_tag

 def tokenize(self, fileids=None, categories=None):
 """
 Segments, tokenizes, and tags a document in the corpus.
 """
 for paragraph in self.corpus.paras(fileids=fileid):
 yield [
 nltk.pos_tag(nltk.wordpunct_tokenize(sent))
 for sent in nltk.sent_tokenize(paragraph)
]

The	tokenize	method	returns	a	generator	of	generators	containing	paragraphs,
which	are	lists	of	sentences,	which	in	turn	are	lists	of	part-of-speech	tagged
tokens.	The	tagged	tokens	are	represented	as	(tag, token)	tuples,	where	the
tag	is	a	case-sensitive	string	that	specifies	how	the	token	is	functioning	in
context.

NOTE
The	rule	of	thumb	for	part	of	speech	tagging	is	that	if	it	starts	with	an	N,	it’s	a	noun;	a	V	if	it’s	a
verb,	a	J	for	an	adjective,	an	R	for	an	adverb,	and	if	it	starts	with	anything	else,	it’s	some	kind
of	a	structural	element.	A	full	list	of	tags	can	be	found	here:
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

NLTK	provides	several	options	for	part-of-speech	taggers	(e.g.	DefaultTagger,
RegexpTagger,	UnigramTagger,	BrillTagger).	Taggers	can	also	be	used	in
combination,	such	as	the	BrillTagger,	which	uses	Brill	transformational	rules
to	improve	initial	tags.

Transformation
We	have	now	successfully	scripted	a	series	of	methods	that	will	transform	our
raw	HTML	text	into	data	that	we	will	be	able	to	perform	machine	learning	on	in
the	subsequent	chapters.	Unfortunately,	this	preprocessing	isn’t	cheap.	On	a
corpus	of	roughly	300,000	HTML	news	articles,	these	preprocessing	steps	took
over	12	hours.	Because	this	is	not	something	you	will	want	to	have	to	do	every
time	your	run	your	models,	we	must	ensure	we	are	saving	the	preprocessed
version	of	our	text.	So	we’ll	write	a	transformer	that	takes	our
HTMLCorpusReader,	executes	each	of	the	five	preprocessing	steps,	and	writes
out	a	new	text	corpus	to	disk.	This	new	corpus	is	the	one	on	which	we	will
perform	our	text	analytics.

NOTE
We	should	anticipate	the	possibility	of	routine	ingestion,	meaning	we	want	to	be	able	to
process	only	the	new	documents,	without	re-processing	the	old	ones.	This	will	be	addressed	in
the	monitoring	section.

There	are	several	options	for	how	to	approach	this	transformation.	One	is	using	a
tagged	corpus	view,	like	the	Brown	corpus.

With	the	tagged	corpus	view,	we	would	write	out	our	paragraphs	as	double
newlines	with	a	sentence	on	each	line,	delimiting	tokens	and	tags	with	a
separator	character,	which	is	usually	a	backslash.

def transform(htmldir, textdir):
 """
 Pass in a directory containing HTML documents
 and an output directory for the preprocessed
 text and this function transforms the HTML to
 a text corpus that has been tagged in the Brown
 corpus style.

 """
 # List the target HTML directory
 for name in os.listdir(htmldir):

 # Determine paths of files to transform & write to
 inpath = os.path.join(htmldir, name)
 outpath = os.path.join(textdir,
 os.path.splitext(name)[0]
 + ".txt")

 # Open the file for reading UTF-8
 if os.path.isfile(inpath):
 with codecs.open(outpath, 'w+',
 encoding='utf-8') as f:

 # Paragraphs double newline separated,
 # sentences separated by a single newline.
 # Also write token/tag pairs.
 for paragraph in preprocess(inpath):
 for sentence in paragraph:
 f.write(" ".join("%s/%s"
 % (word, tag)
 for word, tag in sentence))
 f.write("\n")
 f.write("\n")

Note	that	this	code	does	not	employ	methodology	we	have	defined	in	this
chapter,	meaning	that	it	is	not	looking	for	subdirectories	and	relies	on	a
preprocess	function	that	we	have	left	undefined	in	the	above.	Nevertheless,	the
outcome	is	nice	because	it’s	simple	text,	meaning	you	don’t	need	custom	code	in
order	to	load	the	transformed	corpus.	Moreover,	it’s	also	human	readable	(if	a	bit
weird	looking).

And	yet,	as	we	gradually	build	up	the	text	data	structure	we	need	(a	list	of
documents,	composed	of	lists	of	paragraphs,	which	are	lists	of	sentences,	where
a	sentence	is	a	list	of	token,	tag	tuples),	we	are	adding	much	more	content	to	the
original	text	than	we	are	removing.	For	this	reason,	we	would	also	want	to	apply
some	kind	of	compression	method	to	keep	disk	storage	under	control.	If	we	used
a	standard	compression	methodology,	NLTK	would	still	be	able	read	it,

The	tagged	corpus	view	doesn’t	come	with	compression;	though	we	are	stripping
out	a	lot	as	we	go	from	HTML	to	plaintext	(ads,	navigation	bars,	etc),	we
actually	end	up	significantly	expanding	the	corpus,	meaning	that	we’ll	need	to
add	Gzip	or	Bzip	for	compression.

Writing	to	Pickle
Another	option	for	transforming	and	saving	our	preprocessed	corpus	is	using
pickle.	With	this	approach	we	would	write	an	iterator	that	loads	one	document
into	memory	at	a	time,	converts	it	into	the	target	data	structure,	and	dumps	a
string	representation	of	that	structure	to	a	small	file	on	disk.	Unlike	the	tagged
corpus	view,	this	string	representation	will	not	be	human	readable;	you	won’t	be
able	unzip	and	read	it,	but	it	will	be	more	compressed,	easier	to	load,	serialize
and	deserialize,	and	thus	more	efficient.

import pickle

 def preprocess(self, fileid):
 """
 For a single file does the following preprocessing work:
 1. Checks the location on disk to make sure no errors occur.
 2. Gets all paragraphs for the given text.
 3. Segements the paragraphs with the sent_tokenizer
 4. Tokenizes the sentences with the wordpunct_tokenizer
 5. Tags the sentences using the default pos_tagger
 6. Writes the document as a pickle to the target location.
 This method is called multiple times from the transform runner.
 """
 # Compute the outpath to write the file to.
 target = self.abspath(fileid)
 parent = os.path.dirname(target)

 # Create a data structure for the pickle
 document = list(self.tokenize(fileid))

 # Open and serialize the pickle to disk
 with open(target, 'wb') as f:
 pickle.dump(document, f, pickle.HIGHEST_PROTOCOL)

 # Clean up the document
 del document

 # Return the target fileid
 return target

In	the	above	preprocess	method,	once	we	have	established	a	place	on	disk	to
retrieve	the	original	files	and	to	store	their	processed,	pickled,	and	compressed
counterparts,	we	create	a	temporary	document	variable	that	creates	the	list	of
lists	of	lists	of	tuples	data	structure.	Then,	after	we	serialize	that	document	and

write	it	to	disk	using	the	highest	compression	option,	we	delete	that	document
before	moving	on	to	the	next	file	to	ensure	that	we	are	not	holding	extraneous
content	in	memory.

Pickle	Corpus	Reader

You	can	then	write	out	a	PickledHTMLCorpusReader	class	that	uses
pickle.load()	to	quickly	retrieve	the	Python	structure:

class HTMLPickledCorpusReader(HTMLCorpusReader):
 """
 A corpus reader for the preprocessed pickled documents created by
 the `Preprocessor` module. This reader contains all the
 functionality of the HTMLCorpusReader but may contain less data and
 fields, but hopefully should be much faster reading and parsing data
 from disk.
 """

The	downside	is	that	you	can’t	(as	a	human)	read	the	compressed	data	on	disk,
and	you	won’t	be	able	to	easily	share	the	text	across	different	applications,
because	it	will	only	be	readable	with	Python.

Corpus	Monitoring
As	we	have	established	in	this	chapter,	applied	text	analytics	requires	substantial
data	management	and	preprocessing.	The	methods	described	for	data	ingestion,
management,	and	preprocessing	are	laborious	and	time-intensive,	but	also
critical	precursors	to	machine	learning.	Given	the	requisite	time,	energy,	and
disk	storage	commitments,	it	is	good	practice	to	include	with	the	rest	of	the	data
some	meta	information	about	the	details	of	how	the	corpus	was	built.

In	this	section,	we	will	describe	how	to	create	a	monitoring	system	for	ingestion
and	preprocessing.	To	begin,	we	should	consider	what	specific	kinds	of
information	we	would	like	to	monitor,	such	as	the	dates	and	sources	of	ingestion.
Given	the	massive	size	of	the	corpora	with	which	we	will	be	working,	we
should,	at	the	very	least,	keep	track	of	the	size	of	each	file	on	disk.

 def sizes(self, fileids=None, categories=None):
 """
 Returns a list of tuples, the fileid and size on disk of the file.

 This function is used to detect oddly large files in the corpus.
 """
 # Resolve the fileids and the categories
 fileids = self._resolve(fileids, categories)

 # Create a generator, getting every path and computing filesize
 for path in self.abspaths(fileids):
 yield os.path.getsize(path)

One	of	our	observations	in	working	with	RSS	HTML	corpora	in	practice	is	that
in	addition	to	text,	a	significant	number	of	the	ingested	files	came	with
embedded	images,	audio	tracks,	and	video.	These	embedded	media	files	quickly
ate	up	memory	during	ingestion	and	were	disruptive	to	preprocessing.	The	above
sizes	method	is	in	part	a	reaction	to	these	kinds	of	experiences	with	real	world
corpora,	and	will	help	us	to	be	able	to	perform	diagnostics	and	identify
individual	files	within	the	corpus	that	are	much	larger	than	expected.	This
method	will	enable	us	to	compute	the	complete	size	of	the	corpus,	to	track	over
time,	and	see	how	it	is	growing	and	changing.

Corpus	Meta	Information
In	addition	to	tracking	the	size	of	our	corpora	as	it	grows	through	ingestion,
preprocessing,	and	compression,	we	also	want	to	watch	how	the	content	changes
over	time.	Some	of	the	measures	we	will	track	are	the	vocabulary,	word	counts,
token	counts,	numbers	of	files,	categories,	and	lexical	diversity	of	our	corpus.

def describe(self, fileids=None, categories=None):
 """
 Performs a single pass of the corpus and
 returns a dictionary with a variety of metrics
 concerning the state of the corpus.
 """
 # Structures to perform counting.
 counts = nltk.FreqDist()
 tokens = nltk.FreqDist()
 started = time.time()

 # Perform single pass over paragraphs, tokenize and count
 for para in self.paras(fileids, categories):
 counts['paras'] += 1

 for sent in self._sent_tokenizer.tokenize(para):
 counts['sents'] += 1

 for word in self._word_tokenizer.tokenize(sent):
 counts['words'] += 1
 tokens[word] += 1

 # Compute the number of files and categories in the corpus
 n_fileids = len(self._resolve(fileids, categories) or self.fileids())
 n_topics = len(self.categories(self._resolve(fileids, categories)))

 # Return data structure with information
 return {
 'files': n_fileids,
 'topics': n_topics,
 'paras': counts['paras'],
 'sents': counts['sents'],
 'words': counts['words'],
 'vocab': len(tokens),
 'lexdiv': float(counts['words']) / float(len(tokens)),
 'ppdoc': float(counts['paras']) / float(n_fileids),
 'sppar': float(counts['sents']) / float(counts['paras']),
 'secs': time.time() - started,
 }

Conclusion
In	this	chapter,	we	have	learned	that	text	analytics	requires	a	large,	robust,
domain-specific	corpus.	We	have	developed	a	systematic	way	of	obtaining,
storing,	and	preprocessing	this	corpus	to	prepare	it	for	machine	learning,	which
we	will	begin	to	do	in	the	next	chapter.	But	first,	it	will	be	useful	to	establish	a
common	vocabulary	for	machine	learning	and	discuss	the	ways	in	which
machine	learning	on	text	differs	from	the	kind	of	statistical	programming	we
have	done	for	previous	applications.	In	the	next	chapter,	we	will	consider	how	to
frame	learning	problems	now	that	our	input	data	is	text,	meaning	we	are	working
in	a	very	high	dimensional	space	where	our	instances	are	complete	documents,
and	our	features	can	include	word-level	attributes	like	vocabulary	and	token
frequency,	but	also	metadata	like	author,	date,	and	source.	Next,	we	will	prepare
our	preprocessed	text	data	for	machine	learning	by	encoding	it	as	vectors.	We’ll
weigh	several	techniques	for	vector	encoding,	and	discuss	how	to	wrap	that
encoding	process	in	a	pipeline	to	allow	for	systematic	loading,	normalization,
and	feature	extraction.	Finally,	we’ll	discuss	how	to	reunite	the	extracted	features
to	allow	for	more	complex	analysis	and	more	sophisticated	modeling.	These

steps	will	leave	us	poised	to	extract	meaningful	patterns	from	our	corpus,	and	to
use	those	patterns	to	make	predictions	about	new,	as-yet	unseen	data.

Chapter	2.	Machine	Learning	on
Text

As	discussed	in	[Link	to	Come],	natural	language	is	flexible,	evolves	over	time,
and	depends	on	context.	Computation	and	analysis	on	language	must	also	be
flexible,	therefore	the	primary	computational	technique	for	text	analytics	is
machine	learning.	Learning	techniques	give	data	scientists	the	ability	to	train
models	in	a	specific	context	on	a	specific	corpus,	make	predictions	on	new	data,
and	adapt	over	time	as	the	corpus	grows	and	changes.	In	fact,	most	natural
language	processing	uses	machine	learning	in	one	form	or	another,	from
tokenization	and	part	of	speech	tagging,	as	we	saw	in	the	previous	chapter,	to
named	entity	recognition,	entailment,	and	parsing.	More	recently,	textual
machine	learning	has	enabled	applications	that	utilize	sentiment	analysis,	word
sense	disambiguation,	automatic	translation	and	tagging,	scene	recognition,
captioning,	chatbots,	and	more!

Because	of	Python’s	unique	role	in	data	science,	it	is	rich	in	third	party	machine
learning	tools,	from	Scikit-Learn	to	TensorFlow,	as	well	as	language	processing
tools	like	NLTK	and	Gensim.	In	the	last	chapter	we	constructed	a	corpus	of
preprocessed	documents	from	HTML	ingested	via	RSS	feeds,	saving	them	as	a
pickled	list	of	lists	of	(token,	tag)	tuples.	The	next	essential	preparatory	step	is	to
transform	our	documents	into	numeric	features,	a	process	called	vectorization.
Representing	documents	numerically	gives	us	the	ability	to	perform	meaningful
analytics	and	also	creates	the	instances	on	which	machine	learning	algorithms
operate.

Instances	are	vector	(numeric)	representations	of	distinguishable	entities	in	the
real	world	that	describe	some	predictive	property.	In	text	analysis,	instances	are
entire	documents,	which	can	vary	in	length	from	quotes	or	tweets	to	entire
books,	but	whose	vectors	are	always	of	a	uniform	length.	Each	property	of	the
vector	representation	is	called	a	feature,	therefore	the	representation	of	instances
describes	a	multidimensional	feature	space	where	predictions	can	be	made.
Features	represent	some	real	world	attribute	of	the	instance,	a	mapping	or

function	applied	to	a	combination	of	properties,	or	a	descriptive	value	that	is
computed	by	analysis	of	some	other	feature	set.	For	text	in	particular,	the
features	represent	the	attributes	and	properties	of	documents.	Some	of	these
features	may	represent	a	document’s	content,	while	others	may	represent	meta
attributes	such	as	document	length,	author,	source,	or	publication	date.

The	essential	question	for	this	chapter	therefore	considers	how	we	employ	the
memory-safe	corpus	reader	we	developed	in	the	last	chapter	for	machine
learning,	particularly	with	Scikit-Learn.	In	order	to	more	clearly	understand	this
process,	we	must	engage	the	model	selection	triple,	which	guides	machine
learning	workflows.	We	will	then	introduce	our	base	vectorization	model,	bag-
of-words,	as	well	as	some	of	its	extensions,	and	explore	how	to	use	the
vectorization	process	to	combine	linguistic	techniques	from	NLTK	with	machine
learning	techniques	in	Scikit-Learn,	creating	repeatable	and	reusable	Pipelines
with	custom	transformers.	Finally,	we	will	extend	our	feature	exploration	from
simple	word	vectors	to	include	meta	features,	creating	context	specific	feature
extraction	and	more	informative	pipelines.	By	the	end	of	this	chapter,	we	will	be
ready	to	engage	our	preprocessed	corpus,	transforming	documents	to	model
space	and	begin	modeling	with	both	supervised	and	unsupervised	techniques,
which	we’ll	explore	in	detail	in	[Link	to	Come]	and	[Link	to	Come].

The	Model	Selection	Triple
Discussions	of	machine	learning	are	frequently	characterized	by	a	singular	focus
on	model	selection.	Be	it	logistic	regression,	random	forests,	Bayesian	methods,
or	artificial	neural	networks,	machine	learning	practitioners	are	often	quick	to
express	their	preference.	The	reason	for	this	is	mostly	historical.	Though	modern
third-party	machine	learning	libraries	have	made	the	deployment	of	multiple
models	appear	nearly	trivial,	traditionally	the	application	and	tuning	of	even	one
of	these	algorithms	required	many	years	of	study.	As	a	result,	machine	learning
practitioners	tended	to	have	strong	preferences	for	particular	(and	likely	more
familiar)	models	over	others.

Now	that	libraries	such	as	Scikit-Learn,	NLTK,	Gensim,	and	SpaCy	have	largely
democratized	the	practice	of	machine	learning,	debates	about	model	selection
tend	to	truncate	the	challenges	of	machine	learning	into	a	single	problem.	As	we

will	see	in	the	next	section,	Scikit-Learn	provides	a	single	interface	to	hundreds
of	models,	allowing	them	to	be	interchanged	and	compared	with	relative	ease.
While	model	selection	is	important	(especially	in	the	context	of	machine
learning	on	text),	successful	machine	learning	relies	on	significantly	more	than
merely	having	picked	the	“right”	or	“wrong”	algorithm.

As	we	hope	to	have	illustrated	in	the	first	two	chapters,	equally	if	not	more
important	to	the	construction	of	language-aware	data	products	is	the
foundational	data	layer,	which	requires	robust	ingestion,	data	management,	and
corpus	preprocessing.	In	this	chapter,	we	will	begin	to	explore	the	next	steps	of
the	workflow,	which	build	directly	atop	of	that	foundational	layer.	We	will
describe	these	next	steps	in	the	context	of	the	model	selection	triple,	a	workflow
that	expands	the	often	truncated	perspective	of	model	selection	to	include	three
independent,	exploratory	workflows:	feature	engineering,	algorithm	selection,
and	hyperparameter	tuning,	as	shown	in	Figure	2-1.

Figure	2-1.	The	Model	Selection	Triple

In	the	feature	extraction	phase,	which	we	will	begin	to	explore	in	our	discussion
of	vectorization	in	this	chapter,	the	goal	is	to	analyze,	extract,	and	select	a

sufficiently	hearty	set	of	features	with	which	to	model	the	data.	In	the	second
phase,	a	set	of	algorithms	are	selected	from	a	model	family,	which	can	then	be
used,	evaluated,	and	compared	in	parallel.	Finally,	we	conduct	tuning	by
adjusting	the	model	hyperparameters	to	identify	the	combination	that	result	in
the	most	predictive	fitted	model.

These	tasks	together	allow	data	scientists	to	define	and	describe	a	learning	model
that	is	able	to	effectively	leverage	specific	data	(feature	engineering)	with	a
specific	interaction	between	variables	and	the	target	of	interest	(algorithm
selection)	then	optimize	the	behavior	of	that	model	during	learning	and
prediction	(hyperparameter	tuning).	Applied	methodologies	for	all	three
workflows	usually	include	heuristics	or	rules	of	thumb	for	specific	algorithms,
which	can	loosely	be	described	as	intuition,	combined	with	automatic
optimization	and	search	techniques.

While	the	workflow	it	describes	is	one	with	which	many	machine	learning
practitioners	are	likely	familiar,	the	model	selection	triple	was	first	explicitly
described	in	a	2015	SIGMOD	paper	by	Kumar	et	al .	In	their	paper,	which
concerns	the	development	of	next-generation	database	systems	built	to	anticipate
predictive	modeling,	the	authors	cogently	express	that	such	systems	are	badly
needed	due	to	the	highly	experimental	nature	of	machine	learning	in	practice.
“Model	selection,”	they	explain,	“is	iterative	and	exploratory	because	the	space
of	[model	selection	triples]	is	usually	infinite,	and	it	is	generally	impossible	for
analysts	to	know	a	priori	which	[combination]	will	yield	satisfactory	accuracy
and/or	insights.”

Indeed,	the	process	of	model	selection	is	complex,	iterative,	and	substantially
more	intricate	than,	say,	the	choice	of	a	support	vector	machine	over	a	decision
tree	classifier.	Our	model	selection	triple	workflow	aims	to	treat	these	iterations
as	central	to	the	science	of	machine	learning.	It	is	a	workflow	that,	thanks	to	the
robust	and	secure	foundational	data	layer,	can	afford	to	enable	optimization	by
facilitating	rather	than	limiting	those	iterations.

Model	Selection	as	Search
Just	as	the	phrase	model	selection	often	masks	the	independent	tasks	of	feature
engineering,	algorithm	selection,	and	tuning,	so	too	is	the	term	model	overloaded
from	the	multiple	domains	in	which	it	is	used.	In	a	2015	ASA	journal	article,

1

2

Wickham	et	al 	neatly	disambiguate	the	term	by	describing	its	three	principle
uses	in	statistical	machine	learning:	model	family,	model	form,	and	fitted	model.
The	model	family	loosely	describes	the	relationships	of	variables	to	the	target	of
interest,	e.g.	a	“linear	model”	or	a	“recurrent	tensor	neural	network”.	The	model
form	is	a	specific	instantiation	of	the	model	selection	triple:	a	set	of	features,	an
algorithm,	and	specific	hyperparameters.	Finally	the	fitted	model	is	a	model
form	that	has	been	fit	to	a	specific	set	of	training	data	and	is	available	to	make
predictions.

Data	products	are	composed	of	many	fitted	models,	and	are	constructed	through
the	model	selection	workflow	which	creates	and	evaluates	model	forms.	Data
products	that	build	models	from	natural	language	are	a	special	case	of	machine
learning	as	they	enable	increasingly	novel	human	computer	interaction.	As	data
products	have	become	more	successful,	there	has	been	increasing	interest	in
generally	defining	a	machine	learning	workflow	for	more	rapid	model	building.
Usually	the	discussion	of	machine	learning	techniques	separate	workflows	and
their	interaction	with	data	management	because	they	are	loosely	independent	or
dependent	only	on	the	algorithm	selected.	However,	by	combining	these
workflows	into	a	single	generalization,	we	are	able	leverage	a	much	larger
machine	learning	space,	potentially	creating	global	optimizations	and	automatic
analyses	that	can	be	steered	(guided)	by	experts.

Building	a	machine	learning	model	can	therefore	be	described	as	the	act	of
defining	a	model	selection	triple	(MST),	fitting	and	evaluating	it,	then	refining
by	creating	a	new	instance	of	the	MST	and	comparing	the	result.	This	workflow
is	iterative	in	that	many	MSTs	must	be	generated	and	evaluated,	and	exploratory
because	the	model	selection	triple	defines	a	search	space	that	is	infinite	and	it	is
impossible	to	know	exactly	which	MST	will	perform	“the	best”	before	hand.
Even	if	a	well	performing	MST	is	discovered,	we	could	have	reached	a	local
maxima,	and	another	more	performant	model	may	exist	elsewhere	in	the	model
selection	space.

When	it	comes	to	applied	text	analytics,	the	search	for	the	most	optimal	model
may	narrow	because	of	the	specificity	required	by	language	modeling.	However
the	practice	is	the	same:	create	a	specific	corpus	of	documents	to	train	your
model	on.	Select	a	vectorization	technique	to	describe	documents	in	a	numeric
space.	Fit	a	model	that	is	able	to	make	predictions	about	the	documents	in	your

2

corpus.	Evaluate	the	model	by	training	it	on	only	a	portion	of	the	data	set	and
scoring	it	on	a	reserved,	unseen	portion	(cross-validation).	Rinse,	wash,	and
repeat	with	another	MST	and	compare.	At	application	time,	select	the	best	result
based	on	cross-validation	and	use	it	to	make	predictions.

The	purpose	of	these	past	two	sections	is	to	characterize	and	contextualize
machine	learning	specific	terms	that	you’ll	encounter	throughout	the	rest	of	the
book.	However,	a	formal	approach	to	a	discussion	of	machine	learning	is
perhaps	not	required	as	we	focus	on	the	applied	aspects	of	text	analytics.	In	fact,
machine	learning	formalizations	are	made	readily	available	to	Python	developers
for	immediate	application	by	Scikit-Learn.	Scikit-Learn	provides	an	API	for
machine	learning	that	easily	allows	developers	to	specify	many	model	forms,	fit
and	evaluate	them	in	repeatable	workflows,	operationalizing	the	model	selection
search	process.

The	Scikit-Learn	API
Scikit-Learn	is	an	extension	of	SciPy	(a	scikit)	whose	primary	purpose	is	to
provide	machine	learning	algorithms	as	well	as	the	tools	and	utilities	required	to
engage	in	successful	modeling.	Its	primary	contribution	is	an	“API	for	machine
learning”	that	exposes	the	implementations	of	a	wide	array	of	model	families
into	a	single,	user-friendly	interface.	The	result	is	that	Scikit-Learn	can	be	used
to	simultaneously	train	a	staggering	variety	of	models,	evaluate	and	compare
them,	then	utilize	the	model	to	make	predictions	on	new	data.	Because	Scikit-
Learn	provides	a	standardized	API,	this	can	be	done	with	little	to	no	effort	and
models	can	be	tried	and	evaluated	by	simply	swapping	out	a	few	lines	of	code.

The	API	itself	is	object-oriented	and	describes	a	hierarchy	of	interfaces	for
different	machine	learning	tasks.	The	root	of	the	hierarchy	is	an	Estimator,
broadly	any	object	that	can	learn	from	data.	The	primary	Estimator	objects	we
think	of	implement	classifiers,	regressors,	or	clustering	algorithms	-	but	they	can
include	a	wide	array	of	data	manipulation	from	dimensionality	reduction	to
feature	extraction	from	raw	data.	The	concept	of	an	Estimator	is	an	interface,
classes	which	implement	Estimator	functionality	must	have	two	methods:	fit
and	predict	as	shown	below:

from sklearn.base import BaseEstimator

class Estimator(BaseEstimator)

 def fit(self, X, y=None):
 """
 Accept input data, X, and optional target data, y. Returns self.
 """
 return self

 def predict(self, X):
 """
 Accept input data, X and return a vector of predictions for each row.
 """
 return yhat

The	Estimator.fit	method	sets	the	state	of	the	estimator	based	on	the	training
data,	X	and	y.	The	training	data	X	is	expected	to	be	matrix-like,	e.g.	a	two-
dimensional	numpy	array	of	shape	(n_samples, +n_features)	or	a	Pandas
DataFrame	whose	rows	are	the	instances	and	whose	columns	are	the	features.
Supervised	estimators	are	also	fit	with	a	one-dimensional	numpy	array,	y,	that
holds	the	correct	labels.	The	fitting	process	modifies	the	internal	state	of	the
estimator	such	that	it	is	ready	or	able	to	make	predictions,	this	state	is	stored	in
instance	variables	that	are	usually	postfixed	with	an	underscore,	e.g.
Estimator.coefs_.	For	example,	fitting	a	linear	regression	model	would
compute	the	optimal	coefficients	for	the	linear	model,	minimizing	the	error	from
the	input	data,	and	storing	those	coefficients	as	an	array.	Because	this	method
modifies	an	internal	state,	it	returns	self	so	that	the	method	can	be	chained.

The	Estimator.predict	method	creates	predictions	using	the	internal,	fitted
state	of	the	model	on	the	new	data,	X.	The	input	for	the	method	must	have	the
same	number	of	columns	as	the	training	data	passed	to	fit,	and	can	have	as
many	rows	as	predictions	are	required.	This	method	returns	a	vector,	yhat,
which	contains	the	predictions	for	each	row	in	the	input	data.

Specializations	of	the	Estimator	interface	may	have	additional	methods	or
helpers.	For	example,	models	that	use	probability	to	make	predictions	have	an
Estimator.predict_proba	method	that	returns	a	two-dimensional	yhat	array,
whose	rows	are	predictions	and	whose	columns	are	all	possible	predictions;	the
values	are	the	probability	associated.	Extending	BaseEstimator	automatically

gives	the	Estimator	a	fit_predict	method	which	allows	you	to	combine	fit
and	predict	in	one	simple	call.

Estimator	objects	have	parameters	(also	called	hyperparameters)	that	define
how	the	fitting	process	is	conducted.	These	parameters	are	set	when	the
Estimator	is	instantiated	(and	if	not	specified,	they	are	set	to	reasonable
defaults),	and	can	be	modified	with	the	get_param	and	set_param	methods	that
are	also	available	from	the	BaseEstimator	super	class.	At	this	point,	we	have	a
fairly	complete	description	of	the	Estimator	API,	and	we	can	see	how	the	API
applies	to	the	model	selection	workflow.	Consider	the	following	example:

from sklearn.naive_bayes import MultinomialNB

model = MultinomialNB(alpha=0.0, class_prior=[0.4, 0.6])
model.fit(documents, labels)

Scikit-Learn	defines	the	model	family	by	the	package	and	type	of	the	estimator.
In	this	case	we	have	selected	the	Naive	Bayes	model	family,	and	a	specific
member	of	the	family,	a	multinomial	model	(which	is	suitable	for	text
classification).	The	model	form	is	defined	when	the	class	is	instantiated	and
hyperparameters	are	passed	in.	Here	we	pass	an	alpha	parameter	which	is	used
for	additive	smoothing,	as	well	as	prior	probabilities	for	each	of	our	two	classes.
The	model	form	is	trained	on	specific	data,	documents	and	labels	and	at	that
point	becomes	a	fitted	model.	This	basic	usage	is	the	same	for	every	model
(Estimator)	in	Scikit-Learn	from	random	forest	decision	tree	ensembles	to
logistic	regressions	and	beyond.	It	is	easy	to	see	how	the	API	creates	an	ease	of
use	that	allows	developers	to	try	as	many	models	as	possible	and	select	the	best
one.

Scikit-Learn	also	specifies	utilities	for	performing	machine	learning	in	a
repeatable	fashion	and	we	could	not	discuss	Scikit-Learn	without	also	discussing
the	Transformer	interface.	A	Transformer	is	a	special	type	of	Estimator	that
creates	a	new	data	set	from	an	old	one	based	on	rules	that	it	has	learned	from	the
fitting	process.	The	interface	is	as	follows:

from sklearn.base import TransformerMixin

class Transfomer(BaseEstimator, TransformerMixin):

 def fit(self, X, y=None):
 """
 Learn how to transform data based on input data, X.
 """
 return self

 def transform(self, X):
 """
 Transform X into a new dataset, Xprime and return it.
 """
 return Xprime

The	Transformer.transform	method	takes	a	dataset	and	returns	a	new	dataset,
X’,	with	new	values	based	on	the	transformation	process.	There	are	several
included	transformers	in	Scikit-Learn	including	transformers	to	normalize	or
scale	features,	handle	missing	values	(imputation),	perform	dimensionality
reduction,	extract	or	select	features,	or	perform	mappings	from	one	feature	space
to	another.	The	machine	learning	process	often	combines	a	series	of	transformers
on	raw	data,	transforming	the	data	set	each	step	of	the	way	until	it	is	passed	to
the	fit	method	of	a	final	estimator,	and	Pipeline	objects	(discussed	later)	are	a
mechanism	for	sanely	combining	these	steps.

In	the	context	of	our	model	selection	triple,	feature	engineering	techniques	can
be	described	as	reproducible	pipelines	of	transformers,	algorithm	selection	is	as
simple	as	importing	an	estimator	from	a	model	family	package	and	instantiating
a	model	form.	Hyperparameter	tuning	can	utilize	reasonable	defaults,	as	well	as
grid	search	all	estimators	with	cross	validation.	Several	models	can	be	fit	and
evaluated	in	parallel,	and	the	best	results	can	inform	the	next	steps	for	data
scientists.	By	using	the	pickle	module,	both	data	and	models	can	be	serialized	to
a	data	management	system	for	comparison	and	review	down	stream,	and
operationalized	in	a	data	product.

Although	both	NLTK,	Gensim,	and	even	newer	text	analytics	libraries	like
SpaCy	have	their	own	internal	APIs	and	learning	mechanisms,	the	scope	and
comprehensiveness	of	Scikit-Learn	models	and	methodologies	for	machine
learning	make	it	an	essential	part	of	the	modeling	workflow.	As	a	result	we
propose	to	use	the	API	to	create	our	own	Transformer	and	Estimator	objects
that	implement	methods	from	NLTK	and	Gensim.	For	example,	we	can	create
topic	modeling	estimators	that	wrap	Gensim’s	LDA	and	LSA	models	(which	are

not	currently	included	in	Scikit-Learn)	or	create	transformers	that	utilize	NLTK’s
part	of	speech	tagging	and	named	entity	chunking	methods.	We	will	explore	this
in	the	last	section	of	the	chapter.	However,	the	first,	most	critical	step	is	to
implement	a	mechanism	that	converts	raw	text	into	a	feature	space	that	can	be
learned	on	-	a	feature	engineering	and	extraction	process	called	vectorization.

Vectorization
Machine	learning	algorithms	operate	on	a	numeric	feature	space,	expecting	input
as	a	two-dimensional	array	where	rows	are	instances	and	columns	are	features.
In	order	to	perform	machine	learning	on	text,	we	need	to	transform	our
instances,	documents,	into	vector	representations	such	that	we	can	apply	numeric
machine	learning.	The	process	of	encoding	documents	in	a	numeric	feature
space	is	called	feature	extraction	or	more	simply,	vectorization	and	is	an
essential	first	step	towards	language	aware	analysis.

In	order	to	understand	vectorization,	we	must	shift	from	thinking	about	language
as	a	sequence	of	words	toward	thinking	about	how	language	might	occupy	a
high-dimensional	semantic	space.	The	term	space	implies	a	spatial	region	where
each	instance	is	represented	by	a	point;	points	in	space	can	be	close	together	or
far	apart.	Semantic	space	is	therefore	a	mapping	of	meaning	to	space	such	that
documents	that	have	a	similar	meaning	are	closer	together	and	documents	that
are	very	different	are	farther	apart.	If	we	can	encode	similarity	as	distance	we
can	begin	to	derive	the	primary	components	of	documents	(ideas)	and	draw
decision	regions	in	semantic	space.

The	simplest	encoding	of	semantic	space	is	the	“bag-of-words”	model,	whose
primary	insight	is	that	meaning	and	similarity	is	encoded	in	the	specific
vocabulary	used	in	each	document.	For	example,	a	Wikipedia	article	about
baseball	and	Babe	Ruth	are	probably	very	similar	because	the	same	words	will
appear	in	both,	whereas	they	will	not	share	many	words	in	common	with	an
article	about	quantitative	easing.	This	model,	while	simple,	is	extremely
effective	and	is	the	starting	point	for	more	complex	models.

In	order	to	vectorize	a	corpus	with	a	bag	of	words	approach,	we	create	a	per-
document	representation	as	a	vector	whose	length	is	equal	to	the	vocabulary	of
the	entire	corpus	from	which	the	document	originated	as	shown	in	Figure	2-2.	In

order	to	simplify	the	computation	of	the	representation,	the	vector	positions	can
be	sorted	in	lexicographic	(alphabetical)	order,	but	this	is	not	necessary	so	long
as	there	is	a	dictionary	which	maps	a	token	to	a	vector	position.	The	entries	of
each	element	in	the	vector	uniquely	describe	a	single	document.

Figure	2-2.	Encode	Documents	as	Vectors

The	question	then	becomes	what	each	element	in	the	document	vector	should	be,
and	in	fact	there	are	several	choices	from	binary	encoding	to	integer	encoding,
real	number	encoding,	and	even	distributed	representations.	Each	of	these
models	extends	or	modifies	the	base	bag	of	words	model	in	order	to	capture
more	information	and	describe	the	semantic	space	more	meaningfully.	Note,
however,	that	these	vectors	can	be	extremely	sparse,	particularly	as	vocabularies
get	larger,	having	a	significant	impact	on	machine	learning	methodologies	in
each	of	our	three	text	analysis	libraries.

In	the	next	few	sections	we	will	look	at	several	of	these	methods	and	discuss
their	implementations	in	Scikit-Learn,	Gensim,	and	NLTK.	We’ll	operate	on	a
small	corpus	of	the	three	sentences	in	the	example	figures.	As	a	quick	setup	let’s
create	a	list	of	these	documents	and	tokenize	them	for	the	proceeding
vectorization	examples:

import nltk
import string

def tokenize(text):
 stem = nltk.stem.SnowballStemmer('english')

 text = text.lower()

 for token in nltk.word_tokenize(text):
 if token in string.punctuation: continue
 yield stem.stem(token)

corpus = [
 "The elephant sneezed at the sight of potatoes.",
 "Bats can see via echolocation. See the bat sight sneeze!",
 "Wondering, she opened the door to the studio.",
]

The	tokenization	method	here	performs	some	lightweight	normalization,
stripping	punctuation	using	the	string.punctuation	character	set	and	setting
the	text	to	lowercase.	This	function	also	performs	some	feature	reduction	using
the	SnowballStemmer	to	remove	affixes	such	as	plurality	(“bats”	and	“bat”	are
the	same	token).	The	examples	in	the	next	section	will	utilize	this	example
corpus	and	some	will	use	the	tokenization	method.

Frequency	Vectors
The	simplest	vector	encoding	model	is	to	simply	fill	in	the	vector	with	the
frequency	of	each	word	as	it	appears	in	the	document,	that	is	a	vector	of	word
counts.	In	this	encoding	scheme	each	document	is	represented	as	the	multiset	of
the	tokens	that	compose	the	document	and	the	value	for	each	word	position	in
the	vector	is	the	number	of	times	it	appears.	This	representation	can	either	be	a
straight	count	(integer)	encoding	as	shown	in	Figure	2-3	or	a	normalized
encoding	where	each	word	is	weighted	by	the	total	number	of	words	in	the
document.

Figure	2-3.	Token	Frequency	as	Vector	Encoding

NLTK	provides	no	special	mechanism	for	encoding	documents	as	vectors,	but
instead	expects	features	as	a	dict	object	whose	keys	are	the	names	of	the
features	and	whose	values	are	boolean	or	numeric.	Because	NLTK	uses	standard
Python	data	structures,	it	also	demonstrates	how	easy	this	type	of	encoding	is.
The	NLTK	vectorization	method	is:

from collections import defaultdict

def vectorize(doc):
 features = defaultdict(int)

 for token in tokenize(doc):
 features[token] += 1

 return features

vectors = map(vectorize, corpus)

The	vectorize	method	simply	creates	a	dictionary	whose	keys	are	the	tokens	in
the	document	and	whose	values	are	the	number	of	times	that	token	appears	in	the
document.	The	defaultdict	object	allows	us	to	specify	what	the	dictionary	will
return	for	a	key	that	hasn’t	been	assigned	to	it	yet.	By	setting
defaultdict(int)	we	are	specifying	that	a	0	should	be	returned,	thus	creating	a
simple	counting	dictionary.	Note	that	the	collections	module	has	a	Counter
object	that	would	work	similarly.	We	can	map	this	function	to	every	item	in	the

corpus	using	the	last	line	of	code,	creating	an	iterable	of	vectorized	documents.

The	Scikit-Learn	method	involves	the	use	of	a	transformer	that	vectorizes	text.
We	will	discuss	the	Scikit-Learn	API	in	detail	in	[Link	to	Come].	The
CountVectorizer	transformer	in	the	feature_extraction	module	implements
two	methods,	fit	and	transform,	which	can	be	called	simultaneously	as
follows:

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
vectors = vectorizer.fit_transform(corpus)

The	first	step	is	to	instantiate	a	blank	CountVectorizer.	The	fit	method	of	the
vectorizer	expects	an	iterable	or	list	of	strings	or	file	objects.	The
CountVectorizer	has	its	own	internal	tokenization	and	normalization	methods
(which	we	will	extend	to	use	NLTK	in	[Link	to	Come]);	when	fit	is	called	it
applies	those	functions	to	the	strings	and	creates	a	dictionary	of	the	vocabulary
on	the	corpus.	When	transform	is	called,	each	individual	document	is
transformed	into	a	sparse	array	whose	index	tuple	is	the	row	(the	document	id)
and	the	token	id	from	the	dictionary,	and	whose	value	is	the	count.

NOTE
For	very	large	corpora,	it	is	recommended	to	use	the	Scikit-Learn	HashingVectorizer,	which
uses	a	hashing	trick	to	find	the	token	string	name	to	feature	index	mapping.	This	means	it	uses
very	low	memory	and	scales	to	large	data	sets	as	it	does	not	need	to	store	the	entire	vocabulary
and	it	is	faster	to	pickle	and	fit	since	there	is	no	state.	However,	there	is	no	inverse	transform
(from	vector	to	text),	there	can	be	collisions,	and	there	is	no	inverse	document	frequency
weighting.

Finally,	Gensim	also	has	a	frequency	encoder	called	doc2bow.	Unlike	Scikit-
Learn,	Gensim	does	no	work	on	behalf	of	your	documents	for	tokenization	or
stemming.	Additionally,	Gensim	also	can	serialize	its	dictionaries	and	references
in	matrix	market	format,	making	it	a	bit	more	flexible	for	multiple	platforms.
We’ll	see	this	in	action	in	[Link	to	Come].	The	Gensim	vectorization	model	is	as
follows:

import gensim

corpus = [tokenize(doc) for doc in corpus]
id2word = gensim.corpora.Dictionary(corpus)
vectors = [
 id2word.doc2bow(doc) for doc in corpus
]

We	first	create	a	Gensim	Dictionary	which	maps	tokens	to	particular	indices
based	on	the	order	it	observes	tokens	as	it	reads	through	the	corpus	(eliminating
the	overhead	of	lexicographic	sorting).	The	dictionary	object	can	be	loaded	or
saved	to	disk	but	also	implements	a	doc2bow	library	which	accepts	a	pre-
tokenized	document	and	returns	a	sparse	matrix	of	(id, count)	tuples	where
the	id	is	the	token’s	id	in	the	dictionary.	Because	Gensim	expects	a	list	of
tokens,	it	assumes	that	preprocessing	such	as	tokenization,	stemming,	and
normalization	has	already	occurred.	The	doc2bow	method	also	only	takes	a
single	document	instance,	which	is	why	we	used	the	list	comprehension	to
restore	the	entire	corpus.

Frequency	representations	disregard	grammar	as	well	as	information	about	the
relative	position	of	words	in	the	document.	Bag-of-words	models	and	the
frequency	representation	in	particular	rely	on	the	assumption	that	word	count	is	a
close	enough	approximation	of	the	document	contents,	encoding	enough
information	to	differentiate	it	from	other	documents.	However,	this	comes	at	the
cost	of	highly	frequent	terms	being	represented	by	orders	of	magnitude	over
other	terms.	In	the	next	section	we	will	explore	one-hot	encoding,	which
eliminates	this	problem.

One-Hot	Encoding
Frequency	based	encoding	methods	suffer	from	the	long	tail,	or	Zipfian
distribution,	that	characterizes	natural	language.	Because	of	this	distribution,
some	features	(tokens)	are	orders	of	magnitude	more	“significant”	than	other
less	frequent	tokens	and	hapax	legomena.	This	can	have	a	significant	impact	on
some	models,	particularly	models	which	expect	normally	distributed	features,
generalized	linear	models	for	example.

The	solution	to	this	problem	is	one-hot	encoding,	a	boolean	vector	encoding
such	that	if	the	token	of	a	particular	vector	index	exists	in	the	document,	that

element	is	marked	as	true,	otherwise	false.	In	other	words,	each	element	of	a
one-hot	encoded	vector	simply	reflects	the	presence	or	absence	of	the	token	in
the	described	text	as	shown	in	Figure	2-4.	This	method	is	frequently	used	in
artificial	neural	network	models	whose	activation	functions	require	input	to	be	in
the	range	of	[0,1]	or	[-1,1].

Figure	2-4.	One	Hot	Encoding

The	NLTK	implementation	of	one-hot	encoding	is	simply	a	dictionary	whose
keys	are	tokens	and	whose	value	is	True:

def vectorize(doc):
 return {
 token: True
 for token in doc
 }

vectors = map(vectorize, corpus)

Dictionaries	act	as	simple	sparse	matrices	in	the	NLTK	case	because	it	is	not
necessary	to	mark	every	absent	word	False.	In	addition	to	the	boolean
dictionary	values,	it	is	also	acceptable	to	use	an	integer	value,	1	for	present	and	0
for	absent.

In	Scikit-Learn,	one-hot	encoding	is	implemented	with	the	Binarizer
transformer	in	the	preprocessing	module.	The	Binarizer	takes	only	numeric
data,	therefore	the	text	data	must	be	transformed	into	a	numeric	space	using	the
CountVectorizer	ahead	of	one-hot	encoding.

from sklearn.preprocessing import Binarizer

freq = CountVectorizer()
corpus = freq.fit_transform(corpus)

onehot = Binarizer()
corpus = onehot.fit_transform(corpus.toarray())

The	Binarizer	class	uses	a	threshold	value	(0	by	default)	such	that	all	values	of
the	vector	that	are	less	than	or	equal	to	the	threshold	are	set	to	zero,	while	those
that	are	greater	than	the	threshold	are	set	to	one.	Therefore	by	default	the
Binarizer	converts	all	frequency	values	to	one	while	maintaining	the	zero-
valued	frequencies.	Note	that	the	corpus.toarray()	method	in	the	code	snippet
above	converts	the	sparse	matrix	representation	to	a	dense	one,	but	is	optional.
In	corpora	with	large	vocabularies,	the	sparse	matrix	representation	is	much
better.

Note	that	in	spite	of	its	name,	the	OneHotEncoder	transformer	in	the
sklearn.preprocessing	module	is	not	exactly	the	right	fit	for	this	task.	The
OneHotEncoder	treats	each	vector	component	(column)	as	an	independent
categorical	variable,	expanding	the	dimensionality	of	the	vector	for	each
observed	value	in	each	column.	In	this	case,	the	component	(sight, 0)	and
(sight, 1)	would	be	treated	as	two	categorical	dimensions	rather	than	as	a
single	binary	encoded	vector	component.

Gensim	does	not	have	a	library-specific	one-hot	encoder,	however	the	Gensim
doc2bow	method	returns	a	list	of	tuples	that	we	can	manage	on	the	fly.	Extending
the	code	from	the	frequency	vectorization	example,	we	can	utilize	the	Gensim
dictionary	as	follows	for	one-hot	encoding:

corpus = [tokenize(doc) for doc in corpus]
id2word = gensim.corpora.Dictionary(corpus)
vectors = [
 [(token[0], 1) for token in id2word.doc2bow(doc)]
 for doc in corpus
]

This	approach	uses	a	double	list	comprehension,	the	inner	comprehension
converts	the	list	of	tuples	returned	from	the	doc2bow	method	into	a	list	of

(token_id, 1)	tuples	and	the	outer	comprehension	applies	that	converter	to	all
documents	in	the	corpus.

Note	that	one-hot	encoding	is	not	able	to	encode	per-word	similarity,	as	all
words	are	rendered	equidistant,	and	thus	are	equally	different.	However,	if	we
use	this	encoding	scheme	on	entire	documents,	meaning	that	we	represent	each
document	as	a	single	vector	of	the	length	of	the	corpus	vocabulary	that	consists
of	ones	and	zeroes	depending	on	whether	those	vocabulary	words	appear	in	the
document,	we	can	begin	to	encode	similarity	and	difference	at	the	document
level.

Importantly,	because	all	words	are	equally	distant,	word	form	becomes
incredibly	important	in	one-hot	encoded	vectors.	Consider	the	fact	that	the
tokens	trying	and	try	are	equally	distant	from	unrelated	tokens	like	red	or
bicycle.	Normalizing	tokens	to	a	single	word	class,	either	through	stemming	or
lemmatization	ensures	that	different	forms	of	tokens	that	embed	plurality,	case,
gender,	cardinality,	tense,	etc.	are	treated	as	a	single	vector	component,	reducing
the	feature	space	and	making	this	model	more	performant.	We	employed
stemming	in	the	tokenize	method	in	the	last	section;	later	we	will	explore	the
use	of	lemmatization	for	more	accurate	word	class	discovery.

One-hot	encoding	reduces	the	imbalance	issue	of	the	distribution	of	tokens	in	a
corpus,	at	the	cost	of	simplifying	a	document	only	to	it’s	constituent
components.	This	is	such	a	reduction	in	the	amount	of	information	that	one-hot
encoding	is	generally	used	for	very	small	documents	(sentences,	tweets)	that
don’t	contain	very	many	repeated	elements,	and	is	usually	applied	to	models	that
have	very	good	smoothing	properties,	for	example	artificial	neural	networks.	In
the	next	section	we’ll	look	at	another	normalization	technique,	TF-IDF	that	also
attempts	to	handle	the	distribution	problems	with	a	frequency	approach,	while
emphasizing	semantically	relevant	terms	to	specific	documents.

Term	Frequency-Inverse	Document	Frequency
The	bag-of-words	representations	that	we	have	explored	so	far	only	describe	a
document	in	a	stand-alone	fashion,	not	taking	into	account	the	context	of	the
corpus.	A	better	approach	would	be	to	consider	the	relative	frequency	or	rareness
of	tokens	in	the	document	against	their	frequency	in	other	documents.	The

central	insight	is	that	tokens	that	appear	frequently	in	a	document	have	more
relevance	to	that	document,	particularly	if	they	appear	infrequently	in	the	rest	of
the	corpus.	For	example	in	a	corpus	of	sports	text,	in	documents	that	discuss
baseball	tokens	such	as	umpire,	base,	dugout	will	appear	more	frequently,
whereas	other	tokens	that	appear	frequently	throughout	the	corpus,	like	run,
score,	and	play,	will	be	less	important.

TF-IDF,	term	frequency-inverse	document	frequency,	encoding	normalizes	the
frequency	of	tokens	in	a	document	with	respect	to	the	rest	of	the	corpus.	This
encoding	approach	accentuates	terms	that	are	very	relevant	to	a	specific	instance
(document),	as	shown	in	Figure	2-5,	where	the	token	studio	has	a	higher
relevance	to	this	document	since	it	only	appears	there.	Here,	the	underlying
assumption	is	that	meaning	is	most	likely	encoded	in	the	more	rare	terms	from	a
document.

Figure	2-5.	TF-IDF	Encoding

TF-IDF	is	computed	on	a	per-term	basis,	such	that	the	relevance	of	a	token	to	a
document	is	measured	by	the	scaled	frequency	of	the	appearance	of	the	term	in
the	document,	normalized	by	the	inverse	of	the	scaled	frequency	of	the	term	in
the	entire	corpus.	Let’s	take	this	definition	piece	by	piece.	The	term	frequency	of

a	term	given	a	document,	 ,	can	simply	be	the	boolean	frequency	(as	in
one-hot	encoding,	1	if	 	occurs	in	 	0	otherwise),	or	the	count.	However,
generally	both	the	term	frequency	and	inverse	document	frequency	are	scaled

logarithmically	to	prevent	bias	of	longer	documents	or	terms	that	appear	much

more	frequently	relative	to	other	terms:	 .

Similarly	the	inverse	document	frequency	of	a	term	given	the	set	of	documents

can	be	logarithmically	scaled	as	follows:	 	where	
is	the	number	of	documents	and	 	is	the	number	of	occurrences	of	the	term	 	in
all	documents.	TF-IDF	is	then	computed	completely	as	

.	Because	of	the	ratio	of	the	
log	function	is	greater	or	equal	to	1,	the	TF-IDF	score	is	always	greater	than	or
equal	to	zero.	We	interpret	the	score	to	mean,	the	closer	the	TF-IDF	score	of	a
term	to	a	document	to	1,	the	more	information	that	term	imparts	to	that
document,	the	closer	to	zero,	the	less	informative	that	term	is.

In	order	to	vectorize	text	with	NLTK,	we	must	use	the	TextCollection	class,	a
wrapper	for	a	list	of	texts	or	a	corpus	consisting	of	one	or	more	texts.	This	class
provides	support	for	counting,	concordancing,	collocation	discovery,	and	more
importantly,	computing	tf_idf.

from nltk.text import TextCollection

def vectorize(corpus):
 corpus = [tokenize(doc) for doc in corpus]
 texts = TextCollection(corpus)

 for doc in corpus:
 yield {
 term: texts.tf_idf(term, doc)
 for term in doc
 }

Because	TF-IDF	requires	the	entire	corpus,	this	version	of	the	vectorize
function	does	not	accept	a	single	document,	but	rather	all	documents.	After
applying	our	tokenization	function	and	creating	the	text	collection,	the	function
goes	through	each	document	in	the	corpus	and	yields	a	dictionary	whose	keys
are	the	terms	and	whose	values	are	the	TF-IDF	score	for	the	term	in	that
particular	document.

Scikit-Learn	provides	a	transformer	called	the	TfidfVectorizer	in	the
feature_extraction.text	module	for	vectorizing	documents	with	TF-IDF

scores.	Under	the	hood,	the	TfidfVectorizer	uses	the	CountVectorizer
estimator	we	used	to	produce	the	bag-of-words	encoding	to	count	occurrences	of
tokens,	followed	by	a	TfidfTransformer,	which	normalizes	these	occurrence
counts	by	the	inverse	document	frequency.

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer()
corpus = tfidf.fit_transform(corpus)

The	input	for	a	TfidfVectorizer	is	expected	to	be	a	sequence	of	filenames,
file-like	objects,	or	strings	that	contain	a	collection	of	raw	documents,	similar	to
that	of	the	CountVectorizer.	As	a	result,	a	default	tokenization	and
preprocessing	method	is	applied	unless	other	functions	are	specified.	The
vectorizer	returns	a	sparse	matrix	representation	in	the	form	of	((doc, term)
tfidf)	where	each	key	is	a	document	and	term	pair	and	the	value	is	the	TF-IDF
score.

Gensim	also	provides	a	built-in	implementation	of	TF-IDF,	highlighting	the
popularity	of	this	encoding	for	most	text	analytics.	In	Gensim,	the	TfidfModel
datastructure	is	similar	to	the	Dictionary	object	in	that	it	stores	a	mapping	of
terms	and	their	vector	positions	in	the	order	they	are	observed,	but	additionally
stores	the	corpus	frequency	of	those	terms	so	it	can	vectorize	documents	on
demand.

corpus = [tokenize(doc) for doc in corpus]
lexicon = gensim.corpora.Dictionary(corpus)
tfidf = gensim.models.TfidfModel(dictionary=lexicon, normalize=True)
vectors = [tfidf[lexicon.doc2bow(doc)] for doc in corpus]

As	before,	Gensim	allows	us	to	apply	our	own	tokenization	method,	expecting	a
corpus	that	is	a	list	of	lists	of	tokens.	We	first	construct	the	lexicon	and	use	it	to
instantiate	the	TfidfModel,	which	computes	the	normalized	inverse	document
frequency.	We	can	then	fetch	the	TF-IDF	representation	for	each	vector	using	a
getitem,	dictionary-like	syntax,	after	applying	the	doc2bow	method	to	each
document	using	the	lexicon.

Gensim	provides	helper	functionality	to	write	dictionaries	and	models	to	disk	in

a	compact	format,	meaning	you	can	conveniently	save	both	the	TF-IDF	model
and	the	lexicon	to	disk	in	order	to	load	them	later	to	vectorize	new	documents.	It
is	possible	though	slightly	more	work	to	achieve	the	same	result	by	using	the
pickle	module	in	combination	with	Scikit-Learn.	To	save	a	Gensim	model	to
disk:

lexicon.save_as_text('lexicon.txt', sort_by_word=True)
tfidf.save('tfidf.pkl')

This	will	save	the	lexicon	as	a	text-delimited	text	file,	sorted	lexicographically,
and	the	TF-IDF	model	as	a	pickled	sparse	matrix.	Note	that	the	Dictionary
object	can	also	be	saved	more	compactly	in	a	binary	format	using	its	save
method,	but	save_as_text	allows	easy	inspection	of	the	dictionary	for	later
work.	To	load	the	models	from	disk:

lexicon = gensim.corpora.Dictionar.load_from_text('lexicon.txt')
tfidf = gensim.models.TfidfModel.load('tfidf.pkl')

One	benefit	of	term	frequency-inverse	document	frequency	is	that	it	naturally
addresses	the	problem	of	stopwords,	which	are	likely	to	be	common	across	all
documents	in	the	corpus,	and	thus	will	accrue	very	small	weights	under	this
encoding	scheme.	This	biases	the	TF-IDF	model	towards	moderately	rare	words
-	that	is	words	that	appear	in	a	few	documents	but	not	very	commonly.	Generally
speaking	this	means	that	the	most	relevant	terms	to	a	document	are	the	most
informative	features	in	our	model.	As	a	result	TF-IDF	is	widely	used	for	bag-of-
words	models,	and	is	an	excellent	starting	point	for	most	text	analytics.

Distributed	Representation
The	previous	encoding	schemes	aim	to	represent	text	locally,	as	a	series	of
sparse	vectors	encoded	via	a	dictionary	of	words	that	either	appear	or	do	not
appear	in	the	document,	possibly	with	some	degree	of	frequency.	However,	it	is
also	possible	to	encode	text	along	a	continuous	scale	with	a	distributed
representation.	As	shown	in	Figure	2-6,	this	means	that	the	resulting	document
vector	is	not	a	simple	mapping	from	token	position	to	token	score.	Instead	the
document	is	represented	in	a	feature	space	that	has	been	trained	to	represent
word	similarity	based	on	their	context.	The	complexity	of	this	space	(and	the

resulting	vector	length)	is	the	product	of	how	that	representation	is	trained	and
not	directly	tied	to	the	document	itself.

Figure	2-6.	Distributed	Representation

Because	local	document	vectors	such	as	those	we’ve	described	thus	far	have
non-negative	elements,	two	vectors	with	a	cosine	distance	of	zero	are	orthogonal
(e.g.	they	share	no	elements,	terms	in	this	case).	Orthogonal	vectors	are	not
similar	and	it	is	very	difficult	to	compare	them.	By	using	a	distributed
representation,	documents	will	no	longer	be	orthogonal — even	if	they	do	not
share	terms.	As	a	result	the	similarity	of	documents	in	this	vector	space	is	more
easily	encoded.

The	distributed	representation	implemented	by	Gensim,	doc2vec 	is	an	extension
of	the	word	embedding	model	called	word2vec	wherein	documents	are	encoded
together	rather	than	single	words	in	context.	The	word2vec	algorithm	was
created	by	a	team	of	researchers	at	Google,	led	by	Tomáš	Mikolov	who	is	well
known	for	his	work	in	recurrent	neural	networks	for	language	processing.	The
word2vec	algorithm	trains	word	representations	based	on	either	a	continuous	bag
of	words	(CBOW)	or	skip-gram	models,	such	that	words	are	embedded	in	space
along	with	similar	words	based	on	their	context.	In	order	to	learn	the	optimal
vectors	for	these	embeddings,	a	two-layer	recurrent	neural	network	is	used.

The	doc2vec	algorithm	proposes	a	paragraph	vector	-	an	unsupervised	algorithm
that	learns	fixed-length	feature	representations	from	variable	length	documents.
This	representation	inherits	the	semantic	properties	of	words	such	that	words
such	as	“red”	and	“colorful”	are	more	similar	to	words	like	“river”.	Moreover,
the	paragraph	vector	takes	into	consideration	the	ordering	of	words	within	a
narrow	context,	similar	to	an	n-gram	model.	The	combined	result	is	much	more

3

effective	than	a	bag-of-words	or	bag-of-n-grams	models	because	it	generalizes
better	and	has	a	lower	dimensionality	but	still	is	of	a	fixed	length	so	can	be	used
in	common	machine	learning	algorithms.

Neither	NLTK	nor	Scikit-Learn	provide	an	implementation	of	either	the
word2vec	or	doc2vec	algorithms.	Gensim	does	provide	an	implementation,
written	in	C	that	allows	users	to	train	both	word2vec	and	doc2vec	models	on
custom	corpora.	However,	Gensim	also	conveniently	comes	with	a	model	that	is
pre-trained	on	the	Google	news	corpus,	a	corpus	that	is	general	enough	for	many
language	applications.	In	order	to	use	that	model,	you	have	to	download	the
model	bin	file,	which	clocks	in	at	a	whopping	1.5GB!	Because	doc2vec	is
unsupervised,	we	will	simply	train	our	own	model	as	follows:

from gensim.models.doc2vec import TaggedDocument, Doc2Vec

corpus = [list(tokenize(doc)) for doc in corpus]
corpus = [
 TaggedDocument(words, ['d{}'.format(idx)])
 for idx, words in enumerate(corpus)
]

model = Doc2Vec(corpus, size=5, min_count=0)
print(model.docvecs[0])
[0.01797447 -0.01509272 0.0731937 0.06814702 -0.0846546]

As	in	previous	models,	Gensim	expects	documents	to	be	preprocessed	and
tokenized	in	advance;	this	allows	us	to	use	complex	tokenization	schemes	for
example	n-gram	models,	collecting	phrases	as	single	words,	or	performing	other
types	of	semantic	preprocessing.	The	input	to	the	Doc2Vec	model	is	a	list	of
TaggedDocument	objects,	which	extends	the	idea	of	a	LabeledSentence	and	in
turn	the	distributed	representation	of	word2vec.	These	concepts	allow	us	to
capture	both	semantic	similarity	and	word	context	for	variable	length
documents.

TaggedDocument	objects	consist	of	words	and	tags.	The	easiest	method	is	to
instantiate	the	tagged	document	with	the	list	of	tokens	along	with	a	single	tag,
one	which	uniquely	identifies	the	instance.	In	this	example,	we’ve	simply
labeled	each	document	as	"d{}".format(idx),	e.g.	d0,	d1,	d2	and	so	forth.
Once	we	have	a	list	of	tagged	documents,	we	can	instantiate	the	Doc2Vec	model

and	specify	the	size	of	the	vector	(usually	not	as	low	a	dimensionality	as	5,	we
selected	such	a	small	number	for	demonstration	only)	as	well	as	the	minimum
count	which	ignores	all	tokens	that	have	a	frequency	less	than	that	number.	In
our	case,	we	set	it	to	zero	to	ensure	we	consider	all	tokens,	but	generally	this	is
set	between	3	and	5	depending	on	how	much	information	the	model	needs	to
capture.	Once	instantiated,	an	unsupervised	neural	network	is	trained	to	learn	the
vector	representations,	which	can	then	be	accessed	via	the	docvecs	property.

Distributed	representations	will	dramatically	improve	results	over	TF-IDF
models	when	used	correctly.	The	model	itself	can	be	saved	to	disk	and	retrained
in	an	active	fashion,	making	it	extremely	flexible	for	a	variety	of	use	cases.
However,	on	larger	corpora,	training	can	be	slow	and	memory	intensive,	and	it
might	not	be	as	good	as	a	TF-IDF	model	with	Principal	Component	Analysis
(PCA)	or	Singular	Value	Decomposition	(SVD)	applied	to	reduce	the	feature
space	if	used	incorrectly.	In	the	end,	however,	this	representation	is	breakthrough
work	that	has	led	to	a	dramatic	improvement	in	text	processing	capabilities	of
data	products	in	recent	years.

Benefits	and	Limitations	of	Vector	Encoding
In	this	section	we’ve	presented	four	types	of	vector	encoding:	frequency,	one-
hot,	TF-IDF,	and	distributed	representations.	Each	of	these	methods	has
performed	the	central	task	of	converting	a	text	document	into	a	numeric
representation	that	can	be	learned	on.	However,	as	we	have	discussed	in	each	of
the	sections,	each	representation	has	a	variety	of	strengths	and	weaknesses	for
different	approaches.	We	have	found	that	it	is	often	best	to	select	an	encoding
scheme	based	on	the	problem	at	hand;	certain	methods	substantially	outperform
others	for	certain	tasks.

For	example,	for	recurrent	neural	network	models,	it	is	often	better	to	use	one-
hot	encoding,	but	to	divide	the	text	space.	For	example,	one	might	create	a
combined	vector	for	the	document	summary,	document	header,	body,	etc.
Frequency	encoding	should	be	normalized,	but	different	types	of	frequency
encoding	can	benefit	probabilistic	methods	like	Bayesian	models.	TF-IDF	is	an
excellent	general	purpose	encoding	and	is	often	used	first	in	modeling,	but	can
also	cover	a	lot	of	sins.	Distributed	representations	are	the	new	hotness,	but	are
performance	intensive	and	difficult	to	scale.

Machine	learning	requires	a	vector	representation,	and	thus	feature	extraction	of
this	form	is	required.	The	advantage	is	that	we	can	embed	complex
representations	like	TF-IDF	into	the	vector	form.	Furthermore	feature
vectorization	brings	us	closer	towards	a	token-concept	mapping	without	pre-
biased	rules.

On	the	other	hand,	vectorization	does	lead	to	some	problems.	Bag-of-words
models	have	a	very	high	dimensionality,	meaning	the	space	is	extremely	sparse,
leading	to	difficulty	generalizing	the	data	space.	Word	order,	grammar,	and	other
structural	features	are	natively	lost,	and	it	is	difficult	to	add	knowledge	(lexical
resources,	ontological	encodings)	to	the	learning	process.	Local	encodings	(e.g.
non-distributed	representations)	require	a	lot	of	samples	which	could	lead	to
over-training	or	underfit,	but	distributed	representations	are	complex	and	add	a
layer	of	“representational	mysticism”.

In	the	end,	much	of	the	work	for	language	aware	applications	comes	from
domain	specific	feature	analysis;	not	just	simple	vectorization.	In	[Link	to
Come],	we	will	explore	some	more	complex	methods	for	feature	analysis	and
feature	exploration	that	will	assist	in	fine	tuning	our	vector-based	models	to
achieve	better	results.	Nonetheless,	using	simple	models	that	consider	only	of
word	frequencies	will	often	be	very	successful;	in	our	experience,	a	pure	bag-of-
words	model	works	about	85%	of	time.	In	the	next	section,	we	will	demonstrate
how	to	integrate	this	kind	of	simple	model	into	a	complete	pipeline	in	order	to
illustrate	how	to	construct	the	core	of	a	fully	operational	textual	machine
learning	application.

Feature	Extraction
In	the	first	part	of	the	chapter	we	considered	a	workflow	for	machine	learning
that	centers	around	the	model	selection	triple.	In	the	second	part	of	the	chapter
we	discussed	the	first	step	toward	machine	learning	on	text:	vectorization.	At
first	glance	it	seems	that	vectorization	is	the	feature	selection	part	of	the	model
selection	triple,	however	it	is	only	the	first	step	to	enabling	feature	selection	and
analysis	on	a	larger	scale.

The	model	selection	triple	is	a	method	of	defining	a	search	-	that	is	the	belief
that	there	exists	some	combination	of	features,	a	machine	learning	algorithm,

and	hyperparameters	of	that	algorithm	that	will	lead	to	a	fitted	model	that	is
optimally	predictive.	Because	the	search	space	is	large,	automatic	techniques	for
optimization	are	not	sufficient.	Instead,	data	scientists	use	intuition	and
generalizing	techniques	to	fit	the	best	possible	model,	usually	trying	several	and
comparing	them.	This	style	of	machine	learning	fits	very	well	with	Scikit-Learn
whose	primary	contribution	is	an	API	for	machine	learning.	The	API	means	that
models	and	transformers	can	be	easily	swapped	in	and	out,	tested	and	compared
until	a	sufficient	solution	is	reached.

In	order	to	engage	this	style	of	model	search,	though,	some	repeatable
mechanism	is	required	to	reliably	extract	the	same	features	from	our	corpus	of
documents.	This	mechanism	is	required	with	text	in	particular,	because	the
feature	extraction	methodology	is	what	allows	us	to	apply	our	predictive	models
to	new	instances	of	text.	If	we	don’t	vectorize	our	documents	in	the	same	exact
manner,	we	will	end	up	with	wrong	or,	at	the	very	least,	unintelligible	results.

The	Scikit-Learn	Pipeline	object	is	the	solution	to	this	dilemma.	Pipeline
objects	enable	us	to	integrate	a	series	of	transformers	that	combine
normalization,	vectorization,	and	feature	analysis	into	a	single,	well-defined
mechanism.	As	shown	in	Figure	2-7	Pipeline	objects	move	data	from	a	loader
(an	object	that	will	wrap	our	CorpusReader	from	Chapter	1)	into	feature
extraction	mechanisms	to	finally	an	estimator	object	that	implements	our
predictive	models.	Pipelines	are	directed	acyclic	graphs	(DAGs)	that	can	be
simple	linear	chains	of	transformers	to	arbitrarily	complex	branching	and	joining
paths	implemented	by	the	FeatureUnion	transformer.

Figure	2-7.	Pipelines	for	Text	Vectorization	and	Feature	Extraction

Pipeline	objects	are	a	Scikit-Learn	specific	utility,	however	they	are	also	the
critical	integration	point	with	NLTK	and	Gensim.	Because	Scikit-Learn	provides
so	many	estimators	and	model	families,	it	is	the	primary	choice	for	the	machine
learning	implementations	(with	the	exception	of	topic	modeling	with	Latent
Dirichlet	Allocation,	or	LDA,	and	Latent	Semantic	Analysis,	or	LSA,	which	are
the	fundamental	learning	mechanisms	of	Gensim).	NLTK	is	responsible	for	the
preprocessing	and	linguistic	feature	extraction	(such	as	syntax	analysis)	as	well
as	corpus	management.	By	using	the	Transformer	API	as	discussed	earlier	in
the	chapter,	we	can	wrap	NLTK	CorpusReader	objects	and	other	linguistic
components.	Gensim	is	responsible	for	vectorization,	and	we	will	similarly
create	transformers	to	wrap	the	Gensim	utilities	and	estimators	that	Scikit-Learn
does	not	have.	Scikit-Learn	is	responsible	for	the	integration	via	Pipelines,
utilities	like	cross-validation,	and	the	many	models	we	will	use	from	naive
Bayes	to	logistic	regression.

Pipeline	Basics
The	purpose	of	a	Pipeline	is	to	chain	together	multiple	estimators	representing
a	fixed	sequence	of	steps	into	a	single	unit.	All	estimators	in	the	pipeline,	except
the	last	one,	must	be	transformers — that	is	implement	the	transform	method,
while	the	last	estimator	can	be	of	any	type,	including	predictive	estimators.
Pipelines	provide	convenience,	that	is	fit	and	transform	can	be	called	for

single	inputs	across	multiple	objects	at	once.	Pipelines	also	provide	a	single
interface	for	grid	search	of	multiple	estimators	at	once.	Most	importantly,
pipelines	provide	operationalization	of	text	models	by	coupling	a	vectorization
methodology	with	a	predictive	model.

Pipelines	are	constructed	by	describing	a	list	of	(key, value)	pairs	where	the
key	is	a	string	that	names	the	step	and	the	value	is	the	estimator	object.
Pipelines	can	be	created	either	by	using	the	make_pipeline	helper	function,
which	automatically	determines	the	names	of	the	steps,	or	by	specifying	them
directly.	Generally,	it	is	better	to	specify	the	steps	directly	to	provide	good	user
documentation,	whereas	make_pipeline	is	used	more	often	for	automatic
pipeline	construction.	Here	is	an	example	to	create	a	one-hot	encoder	that
vectorizes	text	in	advance	of	a	Bayesian	model:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Binarizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer

model = Pipeline([
 ('count', CountVectorizer()),
 ('onehot', Binarizer()),
 ('bayes', 'MultinomialNB()'),
])

The	Pipeline	can	then	be	used	as	a	single	instance	of	a	complete	model.	Calling
model.fit	is	the	same	as	calling	fit	on	each	estimator	in	sequence,
transforming	the	input	and	passing	it	on	to	the	next	step.	Other	methods	like
fit_transform	behave	similarly.	The	pipeline	will	also	have	all	the	methods	the
last	estimator	in	the	pipeline	has.	If	the	last	estimator	is	a	transformer,	so	too	is
the	pipeline.	If	the	last	estimator	is	a	classifier,	as	in	the	example	above,	then	the
pipeline	will	also	have	predict	and	score	methods	so	that	the	entire	model	can
be	used	as	a	classifier.

The	estimators	in	the	pipeline	are	stored	as	a	list,	and	can	be	accessed	by	index.
For	example	model.steps[1]	returns	the	tuple	(onehot,
Binarizer(copy=True, threshold=0.0)).	Common	usage	though	is	to
identify	estimators	by	their	names	using	the	named_steps	dictionary	property	of

the	Pipeline	object.	The	easiest	way	to	access	the	predictive	model	is	to	use
model.named_steps["bayes"]	and	fetch	the	estimator	directly.

Grid	search	can	be	implemented	to	modify	the	parameters	of	all	estimators	in	the
Pipeline	as	though	it	were	a	single	object.	In	order	to	access	the	attributes	of
estimators,	you	would	use	the	set_params	or	get_params	pipeline	methods
with	a	dunderscore	representation	of	the	estimator	and	parameter	names	as
follows:	estimator__parameter.	Let’s	say	that	we	want	to	one-hot	encode
terms	that	appear	at	least	three	times	in	the	corpus;	we	could	modify	the
Binarizer	as	follows:

model.set_params(onehot__threshold=3.0)

Using	this	principle,	we	could	define	a	grid	search	by	defining	the	search
parameters	grid	using	the	dunderscore	parameter	syntax.	Consider	the	following
grid	search	to	determine	the	best	one-hot	encoded	Bayesian	text	classification
model:

from sklearn.model_selection import GridSearchCV

search = GridSearchCV(model, param_grid={
 'count__analyzer': ['word', 'char', 'char_wb'],
 'count__ngram_range': [(1,1), (1,2), (1,3), (1,4), (1,5), (2,3)],
 'onehot__threshold': [0.0, 1.0, 2.0, 3.0],
 'bayes__alpha': [0.0, 1.0],
})

The	search	nominates	three	possibilities	for	the	CountVectorizer	analyzer
parameter	(creating	n-grams	on	word	boundaries,	character	boundaries,	or	only
on	characters	that	are	between	word	boundaries),	and	several	possibilities	for	the
n-gram	ranges	to	tokenize	against.	We	also	specify	the	threshold	for	binarization,
meaning	that	the	n-gram	has	to	appear	a	certain	number	of	times	before	it’s
included	in	the	model.	Finally	the	search	specifies	two	smoothing	parameters
(the	bayes_alpha	parameter):	either	no	smoothing	(add	0.0)	or	Laplacian
smoothing	(add	1.0).	The	grid	search	will	instantiate	a	pipeline	of	our	model	for
each	combination	of	features,	then	use	cross	validation	to	score	the	model	and
select	the	best	combination	of	features	(in	this	case,	the	combination	that
maximizes	the	F1	score).

Pipelines	do	not	have	to	be	simple	linear	sequences	of	steps,	in	fact	they	can	be
arbitrarily	complex	directed	acyclic	graphs	through	the	implementation	of
feature	unions.	The	FeatureUnion	object	combines	several	transformer	objects
into	a	new,	single	transformer,	similar	to	the	Pipline	object.	However,	instead
of	fitting	and	transforming	data	in	sequence	through	each	transformer,	they	are
instead	evaluated	independently	and	the	results	are	concatenated	into	a
composite	vector.

Figure	2-8.	Feature	Unions	for	Branching	Vectorization

Consider	the	example	shown	in	Figure	2-8.	We	might	imagine	an	HTML	parser
transformer	that	uses	Beautiful	Soup	or	an	XML	library	to	parse	the	HTML	and
return	a	dictionary	that	contains	the	title	and	body	of	each	document.	When
passed	into	the	feature	union,	we	need	some	method	to	select	either	the	title	or
the	body,	then	pass	that	to	the	appropriate	vectorization	method.	Using	frequency
encoding	on	the	title	is	more	sensible	than	TF-IDF	since	titles	are	relatively
small,	but	TF-IDF	makes	more	sense	for	body	text.	The	feature	union	then
concatenates	the	two	resulting	vectors	such	that	our	decision	space	ahead	of	the
logistic	regression	separates	word	dimensions	in	the	title	from	word	dimensions
in	the	body.

FeatureUnion	objects	are	similarly	instantiated	as	Pipeline	objects	with	a	list
of	(key, value)	pairs	where	the	key	is	the	name	of	the	transformer,	and	the
value	is	the	transformer	object.	There	is	also	a	make_union	helper	function	that
can	automatically	determine	names	and	is	used	in	a	similar	fashion	to	the
make_pipeline	helper	function — for	automatic	or	generated	pipelines.
Estimator	parameters	can	also	be	accessed	in	the	same	fashion,	and	to	implement

a	search	on	a	feature	union,	simply	nest	the	dunderscore	for	each	transformer	in
the	feature	union.	Given	the	unimplemented	transformers	mentioned	above,	we
can	construct	our	pipeline	as	follows:

from sklearn.pipeline import FeatureUnion
from sklearn.linear_model import LogisticRegression

model = Pipeline([
 ('parser', HTMLParser()),
 ('text_union', FeatureUnion(

 transformer_list = [

 ('title_feature', Pipeline([
 ('title_select', KeySelector('title')),
 ('title_vect', CountVectorizer()),
])),

 ('body_feature', Pipeline([
 ('body_select', KeySelector('body')),
 ('body_vect', TfidfVectorizer()),
])),
],
 transformer_weights= {
 'title_feature': 0.6,
 'body_feature': 0.4,
 }
)),
 ('clf', LogisticRegression()),
])

Note	that	the	KeySelector	and	HTMLParser	objects	are	currently
unimplemented,	though	we	will	explore	similar	objects	later	in	this	section.	The
feature	union	is	fit	in	sequence	with	respect	to	the	rest	of	the	pipeline,	however
each	transformer	within	the	feature	union	is	fit	independently,	meaning	that	each
transformer	sees	the	same	data	as	the	input	to	the	feature	union.	During
transformation,	each	transformer	is	applied	in	parallel	and	the	vectors	that	they
output	are	concatenated	together	into	a	single	larger	vector,	which	can	be
optionally	weighted.	In	the	example	above,	we	are	weighting	the
title_feature	transformer	slightly	more	than	the	body_feature	transformer.
Using	combinations	of	custom	transformers,	feature	unions,	and	pipelines,	it	is
possible	to	define	incredibly	rich	feature	extraction	and	transformation	in	a
repeatable	fashion.

In	the	rest	of	this	section	we	will	explore	the	application	of	pipelines,	feature
unions,	and	more	with	custom	transformers	that	allow	us	to	use	NLTK	and
Gensim	effectively	within	a	Scikit-Learn	context.	We	will	start	to	build	a	library
that	will	allow	us	to	load	data	from	our	corpus	reader	objects,	and	define
complex	modeling.	However,	by	collecting	our	methodology	into	a	single
sequence,	we	can	repeatably	apply	the	transformations,	particularly	on	new
documents	when	we	want	to	make	predictions	in	a	production	environment.

Corpus	Loader
In	Chapter	1	we	built	a	CorpusReader	that	streams	raw	HTML	data	from	disk	so
that	we	can	preprocess	it	in	parallel,	seek	to	specific	locations,	and	filter	by	file
id.	As	we	learned	in	that	chapter,	this	component	is	a	critical	utility	for	our
application	because	raw	text	data	must	be	preprocessed	to	enable	meaningful
analysis	and	modeling,	and	because	preprocessing	is	non-trivial	in	terms	of
computation	time	and	data	management.	However,	while	the	CorpusReader
gives	us	memory-safe	streaming	access	to	our	corpus,	it	is	not	completely	ready
to	send	into	a	vectorization	transformer	to	start	modeling,	and	the	reason	for	this
is	cross-validation.

To	conduct	supervised	machine	learning,	we	can	compare	models	trained	on	the
same	data	set	through	cross-validation.	This	method	divides	our	corpus	into	two
smaller	data	sets:	a	training	and	test	set.	Models	are	fit	on	the	training	data	and
then	evaluated	on	the	unseen	test	data.	This	allows	us	to	compare	models
without	bias	and	prevents	overfit,	indicating	that	the	model	is	able	to	generalize
to	unseen	inputs.	However,	even	when	data	is	split	into	training	and	test	sets,
there	is	a	potential	that	certain	chunks	of	the	data	will	have	more	variance	than
others.	To	handle	this	case,	we	shuffle	our	dataset,	and	divide	into	k	train	and
test	splits,	averaging	the	scores	for	each	split.

Note	that	if	our	natural	language	processing	application	didn’t	have	to	do	any
machine	learning	work,	the	CorpusReader	would	be	enough;	after
preprocessing,	the	text	could	go	directly	into	a	transformer.	However,	if	we	use
the	sklearn.cross_validation.train_test_split	function	directly	on	the
reader,	the	data	would	be	loaded	into	memory	all	at	once,	leaving	us	precious
little	RAM	for	computation	if	any	at	all.	Although	eventually	we	have	to	load	a
matrix	representation	of	our	entire	corpus	into	memory,	at	that	point	documents

will	be	described	as	numeric	sparse	matrices,	which	are	much	more	compact!
Therefore	in	order	to	perform	cross-validation	on	text	data	in	a	memory-safe
manner,	we	will	need	to	be	able	to	create	splits	and	retrieve	documents	by	file	id
and	category	labels	on	demand.

It	is	essential	to	get	into	the	habit	of	using	cross	validation	to	ensure	that	our
models	perform	well,	particularly	when	engaging	the	model	selection	process.
We	consider	it	so	important	to	applied	text	analytics	that	we	start	by	creating	a
CorpusLoader	object	that	wraps	a	CorpusReader	in	order	to	provide	streaming
access	to	k	splits!	We’ll	construct	the	base	class	as	follows:

from sklearn.cross_validation import KFold

class CorpusLoader(object):

 def __init__(self, corpus, folds=None, shuffle=True):
 self.n_docs = len(corpus.fileids())
 self.corpus = corpus
 self.folds = folds

 if folds is not None:
 # Generate the KFold cross validation for the loader.
 self.folds = KFold(self.n_docs, folds, shuffle)

 @property
 def n_folds(self):
 """
 Returns the number of folds if it exists; 0 otherwise.
 """
 if self.folds is None: return 0
 return self.folds.n_folds

In	order	to	stay	in	line	with	the	Scikit-Learn	API,	we’ll	create	our	loader	as	a
class.	The	CorpusLoader	object	is	instantiated	with	a	CorpusReader,	the
number	of	folds,	and	whether	or	not	to	shuffle	the	corpus,	which	is	true	by
default.	If	folds	is	not	None,	we	instantiate	a	Scikit-Learn	KFold	object	that
knows	how	to	partition	the	corpus	by	the	number	of	documents	and	specified
folds.	We	also	create	a	property	so	that	we	can	easily	look	up	the	number	folds
specified	by	the	loader.	The	next	step	is	to	add	a	method	that	will	allow	us	to
access	a	listing	of	file	ids	by	fold	ID	for	either	the	train	or	the	test	splits.

 def fileids(self, fold=None, train=False, test=False):

 if fold is None:
 # If no fold is specified, return all the fileids.
 return self.corpus.fileids()

 # Otherwise, identify the fold specifically and get the train/test idx
 train_idx, test_idx = [split for split in self.folds][fold]

 # Now determine if we're in train or test mode.
 if not (test or train) or (test and train):
 raise ValueError(
 "Please specify either train or test flag"
)

 # Select only the indices to filter upon.
 indices = train_idx if train else test_idx
 return [
 fileid for doc_idx, fileid in enumerate(self.corpus.fileids())
 if doc_idx in indices
]

This	rather	daunting	method	returns	a	list	of	document	ids,	filtering	by	fold	and
by	test	or	train.	The	first	step	is	to	check	if	the	fold	is	None,	if	so	return	all
documents.	If	a	fold	is	specified	(e.g.	if	we	do	12	part	cross-validation	and
request	fold	3),	then	we	create	a	list	of	train	and	test	indices	for	each	fold,	and
select	the	correct	split.	This	method	requires	that	either	train	or	test	is	passed	in,
and	so	the	next	step	is	to	check	that	one	of	the	flags	is	set,	which	we	can	then	use
to	gather	the	correct	set	of	indices.	Finally,	we	filter	the	file	ids	in	the	corpus,
returning	only	those	documents	that	match	the	index	of	the	split.	Once	we	have
the	file	ids,	we	can	return	the	documents	and	labels	respectively	as	follows.

 def documents(self, fold=None, train=False, test=False):
 for fileid in self.fileids(fold, train, test):
 yield list(self.corpus.docs(fileids=fileid))

 def labels(self, fold=None, train=False, test=False):
 return [
 self.corpus.categories(fileids=fileid)[0]
 for fileid in self.fileids(fold, train, test)
]

Both	the	documents	and	labels	function	has	the	same	signature	as	our	file	ids,
and	in	fact	the	first	thing	they	do	is	filter	the	corpus	based	on	the	fold	and

whether	or	not	we’re	accessing	the	train	or	test	split.	The	documents()	method
returns	a	generator	to	provide	memory	safe	access	to	the	documents	in	our
corpus,	and	yields	a	list	of	tagged	tokens	for	each	file	id	in	the	split,	one
document	at	a	time.	The	labels()	method	uses	the	corpus.categories()	to
look	up	the	label	from	the	corpus	and	returns	a	list	of	labels,	one	per	document.
Usage	of	the	CorpusLoader	is	as	follows:

FOLDS = 12
corpus = PickledCorpusReader("/path/to/corpus")
loader = CorpusLoader(corpus, folds=FOLDS)

scores = []
for fold in range(FOLDS):
 # Get the train/test splits for the first fold
 X_train = loader.documents(fold, train=True)
 y_train = loader.labels(fold, train=True)

 X_test = loader.documents(fold, test=True)
 y_test = loader.labels(fold, test=True)

 # Fit a model and score
 model.fit(X_train, y_train)
 score = model.score(X_test, y_test)
 scores.append(score)

This	methodology	creates	a	12-fold	cross-validation	that	fits	a	model	12	times
and	collects	12	scores,	evaluating	on	unseen	data.	These	scores	can	then	be
averaged	and	used	to	compare	models.	The	CorpusLoader	object	is	not	a
transformer,	however	it	is	the	first	step	to	start	machine	learning,	as	it	allows	us
to	load	documents	from	disk	and	add	send	them	into	the	Pipeline,	therefore	it	is
often	the	first	step	in	transformation	pipelines.

Text	Normalization
Now	that	we	have	the	means	with	which	to	load	data	from	our	corpus	in	a
memory	safe	manner,	splitting	into	train/test	splits	for	cross-validation,	we	can
start	to	build	transformers	for	our	feature	extraction	pipeline.	Transformers	are	fit
so	that	the	transformer	can	set	an	internal	state	based	on	input	data	and,	once	fit,
can	transform	data	(documents	or	the	output	of	other	transformers)	using	that
state,	returning	a	new	data	set.	One	of	the	first	transformers	that	is	applied	(and

often	included	in	vectorization	methodologies)	is	a	text	normalization
transformer.

Normalization	is	another	overloaded	machine	learning	term	with	a	few	different
meanings.	In	the	case	of	text,	normalization	is	intended	to	reduce	the	number	of
features	(tokens,	in	a	bag-of-words	model)	by	eliminating	or	combining	different
tokens	into	a	single	class.	Consider	case,	for	example,	the	tokens	friend,
Friend,	and	FRIEND	all	have	the	same	meaning	(possibly)	and	therefore	can	be
reduced	to	the	single	token,	friend.	Punctuation	and	stopwords	(high	frequency,
structural	words)	may	not	convey	much	information	and	can	therefore	be
eliminated.	Further,	words	with	affixes	or	morphologic	transformations	to
indicate	gender,	plurality,	tense,	etc.	can	be	collapsed	into	a	single	word	class,
e.g.	the	verbs	throwing,	throws,	threw,	and	thrown	are	all	throw.

CAUTION
The	act	of	text	normalization	should	be	optional	and	applied	carefully	because	the	operation	is
destructive	in	that	it	removes	information.	Case,	punctuation,	stopwords,	and	varying	word
constructions	are	all	critical	to	understanding	language.	Some	models	may	require	indicators
such	as	case,	for	example	a	named	entity	recognition	classifier,	because	in	English,	proper
nouns	are	capitalized.

Many	model	families	suffer	from	“the	curse	of	dimensionality”,	that	is	as	the
feature	space	increases	in	dimensions,	the	data	becomes	more	sparse	and	less
informative	to	the	underlying	decision	space.	Considering	that	any	meaningfully
robust	corpus	(such	as	the	one	we	constructed	in	Chapter	1)	will	have	a	large
vocabulary,	and	every	vocabulary	word	is	a	feature,	text	analysis	is	extremely
high	dimensional.	Text	normalization	reduces	the	number	of	dimensions,
decreasing	sparsity.	Besides	the	simple	filtering	of	tokens	(removing	punctuation
and	stopwords),	there	are	two	primary	methods	for	text	normalization:	stemming
and	lemmatization.	Both	methodologies	work	by	returning	a	single	word	class
for	a	group	of	word	forms	thereby	reducing	the	number	of	tokens	in	the	corpus
as	shown	in	Table	2-1.

Table	2-1.	Stemming
vs.	Lemmatization

Token Stem Lemma

gardener garden gardener

running run run

threw threw throw

foxes fox fox

geese geese goose

Stemming	uses	a	series	of	rules	(or	a	model)	to	slice	a	string	to	a	smaller
substring.	The	goal	is	to	remove	word	affixes	(particularly	suffixes)	that	modify
meaning,	for	example	removing	an	s	or	es	which	generally	indicates	plurality	in
latin	languages.	There	are	several	different	stemmer	implementations	in	NLTK’s
nltk.stem	module.	The	original	PorterStemmer	and	the	more	aggressive
LancasterStemmer	are	English-only	and	there	are	other	language-specific
stemmer	options	as	well.	The	modern	option,	the	SnowballStemmer	provides
support	for	multiple	languages	and	is	used	by	default	as	follows:

from nltk import word_tokenize
from nltk.stem.snowball import SnowballStemmer

Initialize the stemmer for English
stemmer = SnowballStemmer('english')
text = "The geese flying through foggy clouds passed bunnies in their dens."
tokens = word_tokenize(text)

Create the list of stems
stems = [stemmer.stem(token) for token in tokens]
the gees fli through foggi cloud pass bunni in their den .

Lemmatization	on	the	other	hand	uses	a	dictionary	to	look	up	every	token	and
returns	the	canonical	“head”	word	in	the	dictionary,	called	a	lemma.	Because	it	is
looking	up	tokens	from	a	ground	truth,	it	can	handle	irregular	cases	as	well	as
handle	tokens	with	different	parts	of	speech.	For	example,	the	verb	gardening
should	be	lemmatized	to	to garden,	while	the	nouns	garden	and	gardener	are
both	different	lemmas.	Stemming	would	capture	all	of	these	tokens	into	a	single
garden	token.	NLTK	uses	the	WordNet	lexicon	for	lookups	and	lemmatization

as	follows:

from nltk import pos_tag
from nltk.corpus import wordnet as wn
from nltk.stem.wordnet import WordNetLemmatizer

tag_map = {
 'N': wn.NOUN,
 'V': wn.VERB,
 'R': wn.ADV,
 'J': wn.ADJ,
}

Instantiate the lemmatizer
lemmatizer = WordNetLemmatizer()

Part of speech tag the text and map to wordnet tags
tagged = [(token, tag_map.get(tag[0])) for token, tag in pos_tag(tokens)]
lemmas = [lemmatizer.lemmatize(token, tag) for token, tag in tagged]
The goose fly through foggy cloud pass bunny in their den .

Stemming	and	lemmatization	have	their	advantages	and	disadvantages.	Because
it	only	requires	us	to	splice	word	strings,	stemming	is	faster.	Lemmatization,	on
the	other	hand,	requires	a	lookup	to	a	dictionary	or	database,	and	uses	part	of
speech	tags	to	identify	a	word’s	root	lemma,	making	it	noticeably	slower	than
stemming,	but	also	more	effective.

NOTE
Normalization	techniques	tend	to	be	language	specific	and	may	also	require	methods	to
remove	verb	tense,	gender,	and	other	affixes.	In	Hebrew	for	instance,	we	can	use	consonantal
templates	to	group	similar	words,	whereas	in	Chinese,	we	can	group	pictographically-similar
symbols	together.

In	order	to	add	a	text	normalizing	methodology	to	a	Scikit-Learn	Pipeline,	we
must	write	a	custom	transformer	that	puts	these	pieces	together.	We’ll	start	by
creating	the	base	transformer	class	as	follows:

import unicodedata
from sklearn.base import BaseEstimator, TransformerMixin

class TextNormalizer(BaseEstimator, TransformerMixin):

 def __init__(self, language='english'):
 self.stopwords = set(nltk.corpus.stopwords.words(language))
 self.lemmatizer = WordNetLemmatizer()

 def is_punct(self, token):
 return all(
 unicodedata.category(char).startswith('P') for char in token
)

 def is_stopword(self, token):
 return token.lower() in self.stopwords

The	TextNormalizer	takes	as	input	a	language,	which	is	used	to	load	the	correct
stopwords	from	the	NLTK	corpus.	We	could	customize	the	TextNormalizer	to
allows	uses	to	choose	between	stemming	and	lemmatization,	and	pass	the
language	into	the	SnowballStemmer.	For	filtering	extraneous	tokens,	we	create
two	methods.	The	first,	is_punct(),	checks	if	every	character	in	the	token	has	a
unicode	category	that	starts	with	P	(for	punctuation),	the	second,
is_stopword()	determines	if	the	token	is	in	our	set	of	stopwords.	We	can	then
add	a	normalize()	method	as	follows:

 def normalize(self, document):
 return [
 self.lemmatize(token, tag).lower()
 for paragraph in document
 for sentence in paragraph
 for (token, tag) in sentence
 if not self.is_punct(token) and not self.is_stopword(token)
]

The	normalize()	method	takes	a	single	document	that	is	composed	of	a	list	of
paragraphs,	which	are	lists	of	sentences,	which	are	lists	of	(token, tag)	tuples 
— the	data	format	that	we	preprocessed	raw	HTML	to	in	Chapter	1.	This	method
applies	the	filtering	functions	to	remove	unwanted	tokens,	and	then	lemmatizes
them.	The	lemmatize()	method	is	as	follows:

 def lemmatize(self, token, pos_tag):
 tag = {
 'N': wn.NOUN,
 'V': wn.VERB,

 'R': wn.ADV,
 'J': wn.ADJ
 }.get(pos_tag[0], wn.NOUN)

 return self.lemmatizer.lemmatize(token, tag)

The	first	step	in	lemmatization	is	to	convert	the	Penn	Treebank	part	of	speech
tags	that	are	the	default	tag	set	in	the	nltk.pos_tag	function	to	WordNet	tag.
By	observing	that	in	Penn	Treebank	all	noun	classes	start	with	“N”,	verbs	with
“V”,	adverbs	with	“R”,	and	adjectives	with	“J”,	we	can	create	a	simple	mapping
from	the	first	character	of	the	part	of	speech	tag	to	the	wordnet	mappings,
selecting	nouns	by	default.	Finally,	we	must	add	the	Transformer	interface	so
that	we	can	add	this	class	to	a	Scikit-Learn	pipeline:

 def fit(self, X, y=None):
 return self

 def transform(self, documents):
 for document in documents:
 yield self.normalize(document)

By	utilizing	our	CorpusLoader,	we	can	directly	pass	documents	into	the
transform()	method,	and	are	returned	a	normalized	data	structure	for
downstream	processing	that	has	fewer	unique	tokens	than	the	original	data	set.
Note,	however,	that	this	is	only	one	methodology	that	utilizes	NLTK	very
heavily.	Other	options	include	removing	tokens	that	appear	above	or	below	a
particular	count	threshold,	removing	stopwords	then	only	selecting	the	first	five
to	ten	thousand	most	common	words.	Instead	of	doing	a	rules	based	elimination
of	stopwords,	we	could	simply	compute	the	cumulative	frequency	and	only	take
words	that	contain	10-50%	of	the	cumulative	frequency	distribution.	These
mtehods	would	allow	us	to	ignore	both	the	very	low	frequency	hapaxes	(terms
that	appear	only	once)	and	the	most	common	words,	enabling	us	to	identify	only
the	most	predictive	terms	in	the	corpus.

An	alternate	approach	is	to	perform	dimensionality	reduction	with	principal
component	analysis	(PCA)	or	singular	value	decomposition	(SVD),	to	reduce	the
feature	space	to	a	specific	dimensionality	(e.g.	five	or	ten	thousand	dimensions)
based	on	word	frequency.	These	transformers	would	have	to	be	applied
following	a	vectorizer	transformer,	and	would	have	the	effect	of	merging

together	words	that	are	similar	into	the	same	vector	space.

Vectorization	with	Gensim
Now	that	we	have	a	CorpusLoader	that	can	read	our	data	from	disk	as	well	as	a
TextNormalizer	transformer	that	will	allow	us	to	target	very	specific	word
classes,	the	next	phase	of	our	pipeline	is	vectorization.	Vectorization	is	a	very
specific	dividing	line	from	which	we	move	from	functions	that	apply	to	text	to
functions	that	apply	to	numeric	space;	in	[Link	to	Come]	we	will	discuss	more
text	feature	extraction.	Moving	to	numeric	space,	we	could	apply	any	of	the
vectorization	methods	from	the	previous	section,	however	if	we	want	to	use	a
non-Scikit-Learn	vectorization	method	we	will	have	to	create	a	custom
transformer.

Gensim	vectorization	techniques	are	an	interesting	opportunity	because	Gensim
corpora	can	be	saved	and	loaded	from	disk	in	such	a	way	as	to	remain	decoupled
from	the	pipeline.	Scikit-Learn	vectorizers	must	be	pickled	to	disk	to	be	used
again,	but	they	are	strongly	tied	to	the	transformer	methodology.	To	use	Gensim
vectorization	instead,	we	can	build	a	transformer	as	follows:

import os

from gensim.corpora import Dictionary
from gensim.matutils import sparse2full

class GensimVectorizer(BaseEstimator, TransformerMixin):

 def __init__(self, path=None):
 self.path = path
 self.id2word = None

 self.load()

 def load(self):
 if os.path.exists(self.path):
 self.id2word = Dictionary.load(self.path)

 def save(self):
 self.id2word.save(self.path)

This	transformer	simply	wraps	a	gensim	Dictionary	object	that	will	be

generated	during	fit()	and	whose	doc2bow	method	is	used	during
transform().	The	Dictionary	object	(like	the	TfidfModel)	can	be	saved	and
loaded	from	disk,	so	our	transformer	utilizes	that	methodology	by	taking	a	path
on	instantiation.	If	a	file	exists	at	that	path,	it	is	loaded	immediately.
Additionally,	a	save()	method	allows	us	to	write	our	Dictionary	to	disk,	which
we	can	do	in	fit()	as	follows:

 def fit(self, documents, labels=None):
 self.id2word = Dictionary(documents)
 self.save()
 return self

 def transform(self, documents):
 for document in documents:
 docvec = self.id2word.doc2bow(document)
 yield sparse2full(docvec, len(self.id2word))

The	fit()	method	constructs	the	Dictionary	object	by	passing	already
tokenized	and	normalized	documents	to	the	Dictionary	constructor.	The
Dictionary	is	then	immediately	saved	to	disk	so	that	the	transformer	can	be
loaded	without	requiring	a	refit.	The	transform()	method	uses	the
Dictionary.doc2bow	method	which	returns	a	sparse	representation	of	the
document	as	a	list	of	(token_id, frequency)	tuples.	This	representation	will
not	work	with	Scikit-Learn,	however,	so	we	utilize	a	Gensim	helper	function,
sparse2full	to	convert	the	sparse	representation	into	a	Numpy	array.

It	is	easy	to	see	how	the	vectorization	methodologies	that	we	discussed	earlier	in
the	chapter	can	be	wrapped	by	Scikit-Learn	transformers.	This	gives	us	more
flexibility	in	the	approaches	we	take,	while	still	allowing	us	to	leverage	the
machine	learning	utilities	in	each	library.	We	leave	it	to	the	reader	to	investigate
TF-IDF	and	distributed	representation	transformers	that	are	implemented	in	the
same	fashion.

Document	Level	Features
We	have	so	far	explored	a	simple	bag-of-words	model	that	represents	documents
as	a	vector	where	each	position	in	the	vector	represents	a	word	and	its	value
indicates	the	relationship	of	the	word	to	the	document.	This	representation

allows	us	to	capture	documents	in	a	numeric	space	to	which	we	can	apply
machine	learning	models,	and	with	normalization	this	model	is	sufficient	to
create	general	models	that	are	effective	approximately	85%	of	the	time.	Said
another	way,	a	general	rule	of	thumb	for	the	bag-of-words	model	is	that	they	can
achieve	F1	scores	for	classifiers	of	around	0.85	(anecdotally).

While	those	scores	are	good,	they	are	often	insufficient	for	applications	because
errors	are	particularly	noticeable	when	it	comes	to	text.	When	we	think	about	the
model	selection	triple,	it	is	apparent	that	we	can	use	hyperparameter	tuning	and
search	methods	to	improve	our	performance	but	this	typically	only	boosts
performance	by	a	few	points.	We	can	also	enhance	algorithm	selection	by	using
ensembles	of	weaker	models	that	together	provide	stronger	answers.	However,
by	far	the	most	effective	method	of	boosting	performance	is	in	the	final	element
of	the	MST	-	feature	analysis.

Extending	the	bag-of-words	model	means	including	document,	corpus,	or
discourse	level	meta-features	or	applying	other	mappings	from	other	analyses.
For	example,	characteristics	like	the	size	of	a	document	or	the	shape	of	its
paragraphs	can	be	a	good	indicator	of	what	kind	of	document	it	is;	legal	briefs
are	structurally	very	different	from	speeches,	news	stories,	and	medical	reports.
In	addition,	the	size	and	shape	of	sentences,	the	range	of	vocabulary	words	used,
the	name	of	the	author,	etc.	are	frequently	informative	and	can	be	used	to
identify	the	complexity	of	the	text	or	the	context	(informal	vs.	formal	speech).

To	explore	the	extraction	of	these	types	of	document	level	features,	and	put
everything	together	with	FeatureUnion	objects,	we	will	create	a	transformer
that	returns	a	statistics	dictionary	on	a	per	document	basis:

from collections import Counter

class TextStats(BaseEstimator, TransformerMixin):

 def fit(self, documents, labels=None):
 vocabulary = Counter(
 token for paragraph in document
 for sentence in paragraph
 for token,tag in sentence
)

 self.corpus_vocab = len(vocabulary)

 self.corpus_count = sum(vocabulary.items())
 return self

 def transform(self, documents):
 for document in documents:
 # Collect token and vocabulary counts
 counts = Counter(
 item[0] for para in document for sent in para for item in sent
)

 # Yield structured information about the document
 yield {
 'paragraphs': len(document),
 'sentences': sum(len(para) for para in document),
 'words': sum(counts.values()),
 'vocab': len(counts),
 }

The	TextStats	transformer	uses	a	Counter	object	to	count	the	frequency	of
tokens	and	obtain	vocabulary	in	an	efficient	manner.	In	the	fit()	method	we
count	the	vocabulary	and	tokens	for	the	entire	corpus,	which	would	allow	us	to
compute	per-document	ratios	or	perform	other	normalization.	The	transform()
method	returns	a	generator	of	dictionaries	with	per-document	statistics.	Often
applications	will	have	many,	very-specific	types	of	these	transformers	that	can
be	added	or	combined	at	will.

Building	Models
In	this	section	we	have	built	a	few	techniques	for	extracting	features	including
methods	for	vectorizing	documents,	extracting	only	valuable	tokens,	and
identifying	the	structural	features	of	documents.	At	this	point,	we	need	to
combine	our	transformers	into	a	single,	repeatable	pipeline	of	transformation
that	can	be	applied	both	in	the	build	and	operation	phases	of	machine	learning,
in	such	a	way	that	we	can	engage	the	model	selection	triple	to	find	the	best
possible	model.

The	first	step	is	to	create	a	feature	extraction	pipeline	using	the	Pipeline	and
FeatureUnion	objects	to	meaningfully	transform	preprocessed	text	documents
into	numeric	representations.	In	order	to	add	our	feature	methodology	to
multiple	models,	we	will	create	a	function	that	constructs	a	per-estimator
pipeline	and	returns	it:

from sklearn.pipeline import Pipeline
from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

def construct_pipeline(estimator, **kwargs):
 return Pipeline([
 # Create a Feature Union of Text Stats and Bag of Words
 ('features', FeatureUnion(
 transformer_list = [

 # Pipeline for pulling document structure features
 ('stats', Pipeline([
 ('stats', TextStats()),
 ('vect', DictVectorizer()),
])),

 # Pipeline for creating a bag of words TF-IDF vector
 ('bow', Pipeline([
 ('tokens', TextNormalizer()),
 ('tfidf', TfidfVectorizer(
 tokenizer=identity, preprocessor=None, lowercase=False
)),
 ('best', TruncatedSVD(n_components=10000)),
])),

],

 # weight components in feature union
 transformer_weights = {
 'stats': 0.15,
 'bow': 0.85,
 },
)),

 # Append the estimator to the end of the pipeline
 ('model', estimator(**kwargs)),
])

Note	the	numerous	transformers	that	we	include	in	for	feature	extraction;	there	is
a	balance	between	the	amount	of	work	each	transformer	does	and	the	modularity
that	allows	you	to	combine	transformers	in	meaningful	ways.	All	feature
extraction	is	conducted	in	the	FeatureUnion,	which	passes	documents	both	to	a
structural	transformer	and	a	bag-of-words	extractor.	Document	statistics	are	an
inner	pipeline	that	includes	a	DictVectorizer	to	manage	the	output	from	the

TextStats	transformer.	The	bow	Pipeline	uses	our	text	normalization	technique
and	the	built	in	Scikit-Learn	vectorizers,	with	a	truncated	singular	value
decomposition	to	further	reduce	the	dimensionality.	The	features	are	combined
with	different	weights,	and	the	model	is	instantiated	and	appended	at	the	end.

We	can	now	create	a	function	that	builds	and	evaluates	our	model	using	12	part
cross	validation.	This	function	accepts	a	corpus,	a	model,	and	model	arguments
and	then	returns	a	fitted	model	and	a	score.	The	function	is	as	follows:

def build_model(corpus, estimator, **kwargs):

 # Create a loader for scoring.
 loader = CorpusLoader(corpus, 12)
 scores = []

 # Perform 12-part cross validation
 for fold in range(12):
 # Get the train data sets
 docs_train = loader.documents(fold, train=True)
 labels_train = loader.labels(fold, train=True)

 # Create and fit the model
 model = create_pipeline(estimator, **kwargs)
 model.fit(docs_train, labels_train)

 # Get the score of the model on the test data
 docs_test = loader.documents(fold, test=True)
 labels_test = loader.labels(fold, test=True)
 scores.append(model.score(docs_test, labels_test))

 # Build the final model on the entire dataset
 loader = CorpusLoader(corpus, None)
 model = create_pipeline(estimator, **kwargs)
 model.fit(loader.documents(), loader.labels())

 return model, scores

The	first	thing	this	function	does	is	create	a	CorpusLoader	that	knows	how	to
split	the	documents	into	train/test	splits.	For	each	fold	in	our	twelve-part	cross
validation	we	fit	a	model	on	the	train	data	and	score	on	the	unseen	test	data.
These	scores	are	appended	to	a	complete	list	of	scores.	Finally	we	fit	the	model
on	the	entire	corpus,	using	a	new	loader	that	doesn’t	do	any	splitting.	We	could
create	a	simple	classifier	built	from	our	corpus	created	in	Chapter	1	as	follows:

import pickle
from sklearn.linear_model import LogisticRegression

corpus = PickledCorpusReader('corpus')
model, scores = build_model(corpus, LogisticRegression)

with open('model.pkl', 'wb') as fobj:
 pickle.dump(model, fobj)

These	few	lines	of	code	engage	our	entire	pipeline	and	most	of	the	code	written
in	the	past	two	chapters.	The	PickledCorpusReader	is	able	to	read
preprocessed	documents	from	disk	in	a	memory	safe	fashion.	The
build_model()	function	uses	the	CorpusLoader	to	split	the	documents	into
train/test	splits	for	cross-validation	and	evaluation.	Those	splits	are	passed	into	a
feature	extraction	pipeline	that	uses	a	FeatureUnion	and	Pipeline	objects	to
send	data	through	several	transformers	and	whose	end	result	is	a	meaningful
representation	of	documents	in	numeric	space.	Finally	these	vectors	are	passed
to	a	Scikit-Learn	estimator,	which	is	fit,	evaluated,	and	saved	to	disk	for
operationalization.

Conclusion
Performing	computation	on	natural	language	requires	a	methodology	that	is
flexible	and	can	respond	to	change.	Machine	learning	gives	us	that	flexibility	by
learning	from	example	in	order	to	make	predictions	on	new	data.	In	this	chapter,
we	conducted	a	whirlwind	overview	of	the	requirements	of	machine	learning
and	how	to	conduct	machine	learning	on	text.	This	is	necessary	preparation	as
we	move	forward	with	the	rest	of	the	book.

The	workflow	for	machine	learning	surrounds	the	model	selection	triple — that
is	the	meaningful	combination	of	feature	analysis,	algorithm	selection,	and
hyperparameter	tuning.	Applied	text	analytics	focuses	on	the	hypothesis	that
there	is	some	combination	of	features	and	algorithm	that	will	lead	to	effective
predicability;	however	the	algorithm	selection	and	hyperparameter	tuning
elements	of	the	model	selection	triple	can	be	engaged	using	search	mechanisms,
particularly	because	of	the	effectiveness	of	the	Scikit-Learn	API	and	grid	search.

Instead,	building	effective	application-specific	language	models	revolves	around

high	quality	feature	extraction.	We	have	to	represent	documents	in	a	numeric
space	for	machine	learning,	therefore	the	first	consideration	is	a	process	called
vectorization	-	the	transformation	of	strings	into	numeric	representations.	The
simplest	and	most	common	model	is	the	“bag-of-words”	model	where	elements
of	the	vector	represent	words	and	the	values	represent	the	relationship	of
documents	to	words	such	as	whether	or	not	the	word	is	in	the	document,	the
frequency	of	the	word,	or	the	TF-IDF	score	of	the	word.	Other	models	include
distributed	representations,	which	may	be	even	more	effective	at	prediction.

Vectorization	must	be	combined	with	other,	document-level	features	as	well	as
application-specific	feature	extraction.	In	the	final	section	of	this	chapter	we
explored	the	use	of	FeatureUnion	and	Pipeline	objects	to	create	meaningful
extraction	methodologies	by	combining	transformers.	We	also	integrated	NLTK
and	Gensim	with	Scikit-Learn	by	wrapping	the	other	libraries	in	transformers
and	coordinating	their	work	with	Scikit-Learn	in	the	pipelines.	As	we	move
forward,	the	practice	of	building	pipelines	of	transformers	and	estimators	will
continue	to	be	our	primary	mechanism	of	performing	machine	learning.

In	Chapter	1	we	performed	ingestion	and	preprocessing	of	text	to	prepare	for
machine	learning,	this	preprocessing	was	transformative	but	not	destructive	in
that	no	information	is	lost,	only	added	during	preprocessing.	Preprocessing
ensures	that	we	can	do	rapid	prototyping	on	text	models.	In	this	chapter	we	used
preprocessed	documents	to	perform	feature	extraction,	processes	which	are
destructive	since	they	remove	information.	In	[Link	to	Come]	we	will	explore
classification	models	and	applications,	then	in	[Link	to	Come]	we	will	take	a
look	at	clustering	models,	often	called	topic	modeling	in	text	analysis.

	Kumar,	A.,	McCann,	R.,	Naughton,	J.,	Patel,	J.	(2015)	Model	Selection
Management	Systems:	The	Next	Frontier	of	Advanced	Analytics

	Wickham,	H.,	Cooke,	D.,	Hofmann,	H.	(2015)	Visualizing	statistical	models:
Removing	the	blindfold

	https://arxiv.org/abs/1405.4053

1

2

3

https://arxiv.org/abs/1405.4053

	866daa79a93d9a585adb61e727181fc8e26ec770ad4484a35ae7bffdf547d43b.pdf
	cf5e57656d6c54b9bab212af9947b238ebf7eae9458fcc310b195edfa3e548b5.pdf

	da8155a074701022339838d6202133b9f9e241b67808630ab5b2a433a3f1ba57.pdf
	Applied Text Analysis with Python: Enabling Language Aware Data Products with Machine Learning
	1. Text Ingestion and Wrangling
	Acquiring a Domain-Specific Corpus
	Data Ingestion of Text
	Scraping and Crawling
	Ingestion using RSS Feeds and Feedparser
	APIs: Twitter and Search

	Corpus Data Management
	Corpus Disk Structure
	Corpus Readers

	Preprocessing and Wrangling
	Readability for Accessing Core Content
	Documents, Discourse, and Paragraphs
	Segmentation: Breaking out Sentences
	Tokenization: Identifying Individual Tokens
	Part-of-Speech Tagging
	Transformation

	Corpus Monitoring
	Corpus Meta Information

	Conclusion

	2. Machine Learning on Text
	The Model Selection Triple
	Model Selection as Search
	The Scikit-Learn API

	Vectorization
	Frequency Vectors
	One-Hot Encoding
	Term Frequency-Inverse Document Frequency
	Distributed Representation
	Benefits and Limitations of Vector Encoding

	Feature Extraction
	Pipeline Basics
	Corpus Loader
	Text Normalization
	Vectorization with Gensim
	Document Level Features
	Building Models

	Conclusion

