
IACSD Concepts of Programming

1

Institute for Advanced Computing
and Software Development, Akurdi .

Concepts of Programming Notes

 https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

2

About Java Features , development environment

Features of Java

Object Oriented

Everything in Java is coded using OO principles. This facilitates code modularization, reusability,

testability, and performance.

Interpreted/Portable

Java source is compiled into platform-independent bytecode, which is then interpreted (compiled

into native-code) at runtime. Java code is "Write Once, Run Everywhere"

Simple

Java has a familiar syntax, automatic memory management, exception handling, single inheritance,

standardized documentation, and a very rich set of libraries .

Secure/Robust

Due to its support for strong type checking, exception handling, and memory management, Java is

immune to buffer- overruns, leaked memory, illegal data access. Additionally, Java comes with a Security

Manager too.

Scalable

Java is scalable both in terms of performance/throughput, and as a development environment. A

single user can play a Java game on a mobile phone, or millions of users can shop though a Java-based e-

commerce enterprise application.

High-performance/Multi-threaded

With its Just-in-Time compiler, Java can achieve (or exceed) performance of native applications. Java

supports multi-threaded development out-of-the-box.

Dynamic

Java can load application components at run-time even if it knows nothing about them. Each class

has a run-time representation.

Distributed

Java comes with support for networking, as well as for invoking methods on remote (distributed)

objects through RMI.

About JVM,JRE,JDK

Java Development Kit [JDK] is the core component of Java Environment and provides all the tools,

executable and binaries required to compile, debug and execute a Java Program. JDK is a platform specific

software and that’s why we have separate installers for Windows, Mac and Unix systems.

Java Virtual Machine[JVM] is the heart of java programming language. When we run a program, JVM

is responsible to converting Byte code to the machine specific code. JVM is also platform dependent and

provides core java functions like memory management, garbage collection, security etc.

Java Runtime Environment [JRE] is the implementation of JVM, it provides platform to execute java

programs. JRE consists of JVM and java binaries and other class libraries to execute any program successfully.

To execute any java program, JRE is required.

3

JVM architecture with journey of java program from source code to execution stage

As shown in the below architecture diagram, JVM subsystems are :

 Class Loader Subsystem

 Runtime Data Area

 Execution Engine

Class Loader Subsystem

Loading : Class loader dynamically loads java classes. It loads, links and initializes the class file when it refers

to a class for the first time at runtime, not compile time. Class Loaders follow Delegation Hierarchy Algorithm

while loading the class files. 3 types are,

1. Boot Strap Class Loader – Responsible for loading classes from the bootstrap classpath, nothing but

rt.jar. Highest priority will be given to this loader.

2. Extension Class Loader – Responsible for loading classes which are inside the ext folder (jre\lib).

3. Application Class Loader –Responsible for loading Application Level Class path, path mentioned

Environment Variable etc.

Linking : Linking stage involves,

 Verify – Byte code verifier will verify byte code using checksum.

 Prepare – For all static variables memory will be allocated and assigned with default values.

 Resolve – All symbolic memory references are replaced with the original references from

Method Area.

 Initialization: Here all static variables will be assigned with the original values, and the static

block will be executed.

http://www.javainterviewpoint.com/
http://www.javainterviewpoint.com/use-of-static-keyword-in-java/
http://www.javainterviewpoint.com/java-static-import/
http://www.javainterviewpoint.com/java-static-import/

4

Runtime Data Area

The Runtime Data Area is divided into 5 major components:

 Method Area – All the class level data will be stored here, including static variables. There is only one

method area per JVM, and it is a shared resource.

 Heap Area – All the Objects and their corresponding instance variables and arrays will be stored here.

There is also one Heap Area per JVM. Since the Method and Heap areas share memory for multiple

threads, the data stored is not thread-safe.

 Stack Area – For every thread, a separate runtime stack will be created. For every method call, one

entry will be made in the stack memory which is called as Stack Frame. All local variables will be

created in the stack memory. The stack area is thread-safe since it is not a shared resource. The Stack

Frame is divided into three sub entities:

1. Local Variable Array – Related to the method how many local variables are involved and the

corresponding values will be stored here.

2. Operand stack – If any intermediate operation is required to perform, operand stack acts as

runtime workspace to perform the operation.

3. Frame data – All symbols corresponding to the method is stored here. In the case of any

exception, the catch block information will be maintained in the frame data.

 PC Registers – Each thread will have separate PC Registers, to hold the address of current executing

instruction once the instruction is executed the PC register will be updated with the next instruction.

 Native Method stacks – Native Method Stack holds native method information. For every thread, a

separate native method stack will be created.

Execution Engine

The byte code which is assigned to the Runtime Data Area will be executed by the Execution Engine. The

Execution Engine reads the byte code and executes it piece by piece.

 Interpreter – The interpreter interprets the byte code faster, but executes slowly. The disadvantage

of the interpreter is that when one method is called multiple times, every time a new interpretation

is required.

 JIT Compiler – The JIT Compiler neutralizes the disadvantage of the interpreter. The Execution Engine

will be using the help of the interpreter in converting byte code, but when it finds repeated code it

uses the JIT compiler, which compiles the entire bytecode and changes it to native code. This native

code will be used directly for repeated method calls, which improve the performance of the system.

 Intermediate Code generator – Produces intermediate code

 Code Optimizer – Responsible for optimizing the intermediate code generated above

 Target Code Generator – Responsible for Generating Machine Code or Native Code

 Profiler – A special component, responsible for finding hotspots, i.e. whether the method is called

multiple times or not.

Garbage Collector: Collects and removes unreferenced objects.

Java Native Interface (JNI): JNI will be interacting with the Native Method Libraries and provides the Native

Libraries required for the Execution Engine.

Native Method Libraries: This is a collection of the Native Libraries which is required for the Execution Engine.

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

Rohit Sharma
Highlight

5

Bytecode

 Bytecode is in a compiled Java programming language [by javac command] format and has the .class

extension executed by Java Virtual Machine (JVM). The Java bytecode gets processed by the Java virtual

machine (JVM) instead of the processor. The JVM transforms program code into readable machine language

for the CPU because platforms utilize different code interpretation techniques. A JVM converts bytecode for

platform interoperability, but bytecode is not platform-specific. JVM is responsible for processing & running

the bytecode.

JIT

 The magic of java "Write once, run everywhere" is bytecode. JIT improves the performance of Java

applications by compiling bytecode to native machine code at run time. JIT is activated when a Java method

is called. The JIT compiler compiles the bytecode of that method into native machine code, compiling it "just

in time" to run. When a method has been compiled, the JVM calls the compiled code of that method directly

instead of interpreting it.

 Typical compilers take source code and completely convert it into machine code, JITs take the same

source code and convert it into an intermediary “assembly language,” which can then be pulled from when

it’s needed. And that’s the key. Assembly code is interpreted into machine code on call—resulting in a faster

translation of only the code that you need. JIT have access to dynamic runtime information and are able to

optimize code. JITs monitor and optimize while they run by finding code more often called to make them run

better in the future.

 JITs reduce the CPU’s workload by not compiling everything all at once, but also because the resulting

compiled code is optimized for that particular CPU. It’s why languages with JIT compilers are able to be so

“portable” and run on any platform or OS.

Platform independence

 Java is a platform independent programming language, because your source code can be executed

on any platform [e.g. Windows, Mac or Linux etc..]. When you install JDK software on your system , JVM is

automatically installed on your system. When we compile Java code then .class file or bytecode is generated

by javac compiler. For every operating system separate JVM is available which is capable to read the .class

file or byte code and execute it by converting to native code for that specific machine. We compile code once

and run everywhere.

6

Language Fundamentals

Sample Java Program

 All code is contained within a class, in this case HelloWorld.

 The file name must match the class name and have a .java extension, for example: HelloWorld.java

 All executable statements are contained within a method, in this case named main().

 Use System.out.println() to print text to the terminal.

 Classes and methods (including other flow-control structures) are always defined in blocks of code

enclosed by curly braces ({ }).

 All other statements are terminated with a semi-colon (;).

 Java language is case-sensitive.

Compiling Java Programs

 The JDK comes with a command-line compiler: javac.

 It compiles source code into Java bytecode, which is low-level instruction set similar to binary

machine code.

 The bytecode is executed by a Java virtual machine (JVM), rather than a specific physical processor.

 To compile our HelloWorld.java, you could go to the directory containing the source file and execute:

javac HelloWorld.java

 This produces the file HelloWorld.class, which contains the Java bytecode.

 You can view the generated byte-code, using the -c option to javap, the Java class disassembler. For

example: javap -c HelloWorld

To run the bytecode, execute:

java HelloWorld

The main() Method

 A Java application is a public Java class with a main() method.

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello World!");

 }

}

7

 The main() method is the entry point into the application.

 The signature of the method is always:

 public static void main(String[] args)

 Command-line arguments are passed through the args parameter, which is an array of Strings

Primitive Data Types

Type Size Range Default Value

boolean 1 bit true or false false

byte 8 bits [-128, 127] 0

short 16 bits [-32,768, 32,767] 0

char 16 bits ['\u0000', '\uffff'] or [0, 65535] '\u0000'

int 32 bits [-2,147,483,648 to 2,147,483,647] 0

long 64 bits [-263, 263-1] 0

float 32 bits 32-bit IEEE 754 floating-point 0.0

double 64 bits 64-bit IEEE 754 floating-point 0.0

Variables

Variable is nothing but identification of memory location.

Types of variables

Local

Variables declared inside method are local variable they have scope only within that methods.

Instance

Instance variables are declared inside class but used outside method.

Static

Static variable are same as that of instance variable but having keyword static.

They are also called as class variable because they are specified and can be access either class name

or object name.

Operators in Java

1. Java Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and data.

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo Operation (Remainder after division)

2. Java Assignment Operators

8

Assignment operators are used in Java to assign values to variables.

Operator Example Equivalent to

= a = b; a = b;

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;

3. Java Relational Operators

Relational operators are used to check the relationship between two operands.It returns either true

or false.

Operator Description Example

== Is Equal To 2 == 8 returns false

!= Not Equal To 2 != 8 returns true

> Greater Than 2 > 8 returns false

< Less Than 2 < 8 returns true

>= Greater Than or Equal To 2 >= 8 returns false

<= Less Than or Equal To 2 <= 8 returns false

4. Java Logical Operators

Logical operators are used to check whether an expression is true or false. They are used in decision

making.

Operator Example Meaning

&& (Logical AND) expression1 && expression2 true only if both expression1

and expression2 are true

|| (Logical OR) expression1 || expression2 true if either expression1 or

expression2 is true

! (Logical NOT) !expression true if expression is false and

vice versa

5. Java Unary Operators

Unary operators are used with only one operand.

Operator Meaning

+ Unary plus: not necessary to use since numbers

are positive without using it

- Unary minus: inverts the sign of an expression

++ Increment operator: increments value by 1

9

-- Decrement operator: decrements value by 1

! Logical complement operator: inverts the value

of a boolean

6. Java Ternary Operator

The ternary operator (conditional operator) is shorthand for the if-then-else statement. For example,

variable = Expression ? expression1 : expression2

Here,

If the Expression is true, expression1 is assigned to the variable.

If the Expression is false, expression2 is assigned to the variable.

Java Arrays

An array is a container object that holds a fixed number of values of a single type. The length of an

array is established when the array is created. After creation, its length is fixed. You have seen an

example of arrays already, in the main method of the "Hello World!" application. This section

discusses arrays in greater detail.

An array of 10 elements.

Each item in an array is called an element, and each element is accessed by its numerical index. As

shown in the preceding illustration, numbering begins with 0. The 9th element, for example, would

therefore be accessed at index 8.In Java, array is an object of a dynamically generated class. Java

array inherits the Object class.

Types of Array in java

 Single Dimensional Array

 Multidimensional Array

Single Dimensional Array in Java

Syntax to Declare an Array in Java

dataType[] arr; (or)

dataType []arr; (or)

dataType arr[];

Instantiation of an Array in Java

arrVar=new datatype[size];

10

Multidimensional Array in Java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in Java

dataType[][] arrVar; (or)

dataType [][]arrVar; (or)

dataType arrVar [][]; (or)

dataType []arrVar [];

Instantiate Multidimensional Array in Java

 int[][] arr=new int[3][3];//3 row and 3 column

Jagged Array in Java

If we are creating odd number of columns in a 2D array, it is known as a jagged array. In other words,

it is an array of arrays with different number of columns.

 int arr[][] = new int[3][];

 arr[0] = new int[3];

 arr[1] = new int[4];

 arr[2] = new int[2];

Copying Arrays

The System class has an arraycopy method that you can use to efficiently copy data from one array

into another:

public static void arraycopy(Object src, int srcPos,

 Object dest, int destPos, int length)

The two Object arguments specify the array to copy from and the array to copy to. The

three int arguments specify the starting position in the source array, the starting position in the destination

array, and the number of array elements to copy.

for-each Loop for Java Array

We can also print the Java array using for-each loop. The Java for-each loop prints the array elements

one by one. It holds an array element in a variable, then executes the body of the loop.

The syntax of the for-each loop is given below:

for(data_type variable:array){

 //body of the loop

}

11

Object Oriented Concepts in Java

Classes in Java

 Everything in Java is defined in a class.

 In its simplest form, a class just defines a collection of data

e.g.

class Employee {

int empid;

String name;

double salary;

}

Objects in Java

 To create an object (instance) of a particular class, use the new operator, followed by an invocation

of a constructor for that class, such as:

 new Employee();

 The constructor method initializes the state of the new object.

 The new operator returns a reference to the newly created object.

 As with primitives, the variable type must be compatible with the value type when using object

references, as in:

 Employee e = new Employee();

 To access member data or methods of an object, use the dot (.)

notation: variable.field or variable.method().

Static vs. Instance members

Static (or class) data members

 Unique to the entire class

 Shared by all instances (objects) of that class

 Accessible using ClassName.fieldName

 The class name is optional within static and instance methods of the class, unless a local variable of

the same name exists in that scope.

 Subject to the declared access mode, accessible from outside the class using the same syntax

Instance or data members

 Unique to each instance (object) of that class (that is, each object has its own set of instance fields)

 Accessible within instance methods and constructors using this.fieldName

 The this qualifier is optional, unless a local variable of the same name exists in that scope.

 Subject to the declared access mode, accessible from outside the class from an object reference

using objectRef.fieldName

12

Static vs. Instance Methods

 Static methods can access only static data and invoke other static methods.

 Often serve as helper procedures/functions

 Use when the desire is to provide a utility or access to class data only

 Instance methods can access both instance and static data and methods.

 Implement behavior for individual objects

 Use when access to instance data/methods is required

 An example of static method use is Java’s Math class.

 All of its functionality is provided as static methods implementing mathematical functions

(e.g., Math.sin()).

 The Math class is designed so that you don’t (and can’t) create actual Math instances.

 Static methods also are used to implement factory methods for creating objects, a technique

discussed later in this class.

Constructors

 Constructors are like special methods that are called implicitly as soon as an object is instantiated

(i.e. on new ClassName()).

 Constructors have no return type (not even void).

 The constructor name must match the class name.

 If you don’t define an explicit constructor, Java assumes a default constructor

 The default constructor accepts no arguments.

 The default constructor automatically invokes its base class constructor with no arguments,

as discussed later in this module.

 You can provide one or more explicit constructors to:

 Simplify object initialization (one line of code to create and initialize the object)

 Enforce the state of objects (require parameters in the constructor)

 Invoke the base class constructor with arguments, as discussed later in this module.

 Adding any explicit constructor disables the implicit (no argument) constructor.

 As with methods, constructors can be overloaded.

 Each constructor must have a unique signature.

 The parameter type list must be different, either different number or different order.

 Only parameter types determine the signature, not parameter names.

 One constructor can invoke another by invoking this(param1, param2, …) as the first line of its

implementation.

Access Modifiers: Enforcing Encapsulation

 Access modifiers are Java keywords you include in a declaration to control access.

 You can apply access modifiers to:

 Instance and static fields

 Instance and static methods

 Constructors

 Classes

 Interfaces (discussed later in this module)

13

Primitive Wrappers / Wrapper Classes

 The java.lang package includes a class for each Java primitive type:

 Boolean, Byte, Short, Character, Integer, Float, Long, Double, Void

 Used for:

 Storing primitives in Object based collections

 Parsing/decoding primitives from Strings, for example:

 int value = Integer.parseInt(str);

 Converting/encoding primitives to Strings

 Since Java 5, Java supports implicit wrapping/unwrapping of primitives as needed. This compiler-

feature is called auto-boxing/auto-unboxing.

 Autoboxing: Converting a primitive value into an object of the corresponding wrapper class is called

autoboxing.

 Unboxing: Converting an object of a wrapper type to its corresponding primitive value is called

unboxing

Integer Iobj = 10; //Boxing

int k = Iobj //Unboxing

Java Packages
A package is simply a container that groups related types (Java classes, interfaces, enumerations, and

annotations). For example, in core Java, the System class belongs to the java.lang package. The

package contains all the related types that are needed for the basic java development.

Access Modifier Description

public Accessible from any class

protected Accessible from all classes in the same package or

any child classes regardless of the package

Default

 (no modifier)

Accessible only from the classes in the same

package (also known as friendly)

private Accessible only from within the same class (or any

nested classes)

https://www.geeksforgeeks.org/wrapper-classes-java/

14

 Built-in Package

Built-in packages are existing java packages that come along with the JDK. For example, java.lang,

java.util, java.io

 User-defined Package

Java also allows you to create packages as per your need. These packages are called user-defined

packages.

Defining a Java package

To define a package in Java, you use the keyword package.

package packageName;

Java uses file system directories to store packages.

For example:

└── com

 └── test

 └── TestPlanet.java

Now, edit Test.java file, and at the beginning of the file, write the package statement as:

package com.test;

Here, any class that is declared within the test directory belongs to the com.test package.

Importing packages in Java

Java has an import statement that allows you to import an entire package, or use only certain classes

and interfaces defined in the package.

The general form of import statement is:

import package.name.ClassName; // To import a certain class only

import package.name.* // To import the whole package

For example,

import java.util.Date; // imports only Date class

import java.io.*; // imports everything inside java.io package

	031c2b5a34fef0379af2448fc3de828404777eb67228d81af57013009bdc7c56.pdf
	bf91f3047b028e4ef7315441fa8f798a7e2e7bd1100b2665d0596c6c5dc20167.pdf

