
1

INTRODUCTION TO

DEVELOPMENT OF DYNAMIC

WEB APPLICATIONS

2

Table of Contents

Preface .. 7

Session 1: Introduction ... 8

Web-pages and web sites ... 8

Dynamic web sites .. 9

CGI and PERL ... 10

Applications Program Interfaces ... 10

ColdFusion Markup Language ... 11

Evaluating a web site .. 11

Visit counter example ... 12

Exercises .. 13

Session 2: ColdFusion MX ... 15

ColdFusion Markup Language ... 15

Data types ... 15

Variables.. 16

Expressions .. 16

Flow control statements ... 18

Other components .. 19

Guessing game example ... 20

Exercises .. 23

Session 3: Web market research .. 24

Introduction .. 24

Market research .. 24

Applications outline .. 24

Implementation .. 25

3

Exercises .. 31

Session 4: Web database for opinion polls ... 33

Files and databases ... 33

Databases .. 33

CFMX SQL .. 34

Basic SQL elements ... 34

Opinion polling .. 35

INSERT statements .. 37

SELECT statements .. 40

UPDATE statements .. 41

Statistical report .. 45

DELETE statements ... 47

Exercises .. 49

Session 5: Web perception application .. 50

Introduction .. 50

Outline of the design ... 51

Design of the database ... 52

Design of the dynamic web process ... 53

Opening page .. 53

Demographic form .. 54

Displaying the first chart ... 58

Perception report form ... 61

Next chart .. 64

Thanks to the participants .. 67

Exercises .. 68

Session 6: Web search engine... 69

A search engine ... 69

Selection menu ... 70

File collection .. 71

Indexing the files ... 73

Searching the collection .. 75

Deleting a registered collection .. 77

4

Final remarks ... 79

Exercises .. 79

Session 7: e-learning ... 80

Web courses .. 80

Course architecture... 80

Authorization and authentication ... 81

Registration and authorization ... 82

Authentication .. 86

List of content ... 87

Lectures ... 88

Session 8: Web shop ... 91

e-business ... 91

Business promotion .. 91

Buying products .. 94

Purchasing products .. 101

Exercises .. 103

Session 9: Web agents .. 104

Web agents ... 104

Agent 1 .. 104

Advanced agent .. 107

Remarks on scheduling ... 113

Other Internet Agents ... 114

Exercises .. 114

Session 10: Data exchange - syndication .. 116

XML ... 116

Web Distributed Data Exchange ... 116

Data exchange between art galleries.. 117

Implementation of the exchange .. 118

DTD for WDDX ... 123

Exercises .. 123

Session 11: Regular expressions and CFScript .. 125

Regular expressions and string processing ... 125

5

Re-visiting the search engine .. 125

Implementation .. 130

CFScript language .. 131

Comparing CFML and CFScript .. 131

Conclusion ... 133

Exercises .. 133

Session 12: Re-using code ... 134

Re-using code .. 134

ColdFusion approaches ... 134

Custom Tags .. 134

User-Defined Functions .. 137

UDF libraries .. 138

CFX Tags .. 139

Exercises .. 139

Session 13: Distributed processing ... 140

Distributed processing .. 140

Client-side processing ... 140

JavaScript .. 140

Flash and ActionScript ... 142

Exercises .. 149

Session 14: Components ... 150

CFMX Component technology .. 150

Authorization example .. 150

Component for generating unique random numbers .. 150

Introspection ... 153

Exercises .. 154

Session 15: Web services .. 155

Web services ... 155

Universal Description, Discovery, and Integration .. 156

Web Service Description Language ... 156

Simple Object Access Protocol .. 156

Web services creation and consumption in CFMX .. 156

6

A web service example .. 157

About the implementation of the example ... 158

Exercises .. 158

A bibliography for further studies ... 159

7

Preface
This publication is an extract from an interactive online course given at the University of Bergen,

the University of Hawaii and a few other organizations in the period from 2001 to 2007. The

purpose was to provide the students with knowledge of and training in the use of methods

available in ColdFusion suite of tools from Allaire-Macromedia-Adobe.

The course were provided with a number of interactive components as quizzes, search tool,

virtual classroom, communication channels, control of participants’ performance and tools for

the teacher. Even without these interactive components the course was thought to be of interest

and is offered readers in the present reduced form.

Bergen 2007.

Svein Nordbotten

8

Session 1: Introduction

Web-pages and web sites

The Internet was initiated in the 1970's as a further development of the ARPANET. The World

Wide Web, WWW, was developed and introduced in 1989 by Tim Berners-Lee and Robert

Cailliau at the European Particle Physics Laboratory (CERN) as an Internet tool for collaborative

knowledge-sharing. It became in short time very popular. Today, the WWW comprises a large

number of computers that make files available through the Internet according to the HyperText

Transfer Protocol, HTTP. Today, it is estimated that more than 250 M people worldwide are

using the web.

The visible content of a web file is called a web page. If a web page is prepared according to the

HTTP protocol, it can be transferred from a host computer using appropriate software to a

requesting client through the Internet. Most pages are prepared by means of the tag-based

language HTML, frequently supplemented with some additional tools. If the requesting client

has the necessary browser software installed, the file received can be displayed and, if wanted, a

new request can be generated.

A web site is usually a set of web files hosted by a computer running a web server. Design and

implementation of a web site has several aspects:

 the content embedded in the site
 the page sent from the site
 the functionality of the site

The topics of a web site are varying and depend on the owner's interests and mission. In this

course, we will not in this course discuss which appropriate pages for web publication are, and

which are not. Examples of both interesting and less interesting pages can easily be found.

The layout of pages is a fascinating subject. All kinds of backgrounds colors and patterns, fonts

of different kinds and sizes, etc., are among the layout factors from which the designer may

choose. Some pages have animation or voice embedded, and using programs transferred to and

acting in the client computer. The layout of a page is an important subject because it has a

significant impact on how the receivers will perceive the page. So far, the layout has to a large

extent been determined by the latest hypes and layout advises, and the heuristic design rules

offered have been based on opinions and limited empirical facts. Large scale investigations of

people's perception of alternative layouts are needed. However, layout is not the subject of this

course either.

The subject of this course is the functionality required to change the web arena from basically

static to dynamic applications. The required functionality is the web site's ability to react on a

visitor's behavior over a shorter or longer time period expressed by a series of requests and

responses. It is called dynamic because the web pages returned to the client depend on the

visitor's previous interaction.

9

Dynamic functionality can be approached in many ways. In this course, we limit our discussion

to the functionality based in the server and disregard other approaches.

Dynamic web sites

The basic model of the web interaction is:

1. A set of pre-developed static web pages are stored on a host server.
2. A user sends a request for a web page to the host.
3. The host sends a copy of the requested page to the client.
4. If desired, points 2 and 3 are repeated for new pages.

The service that manages the host as a node in the web is called a web server. In the static

model, Figure 1, the host has no ability to analyze the request and adjust the response

accordingly. The response is a requested pre-designed web page. The request-response exchange

is therefore called static. However, the exchange protocol used, HTTP, provides possibilities for

some additional items of information sent with the request without any instructions from the

Figure 1: Basic web server model

requester. In the same way, the responding host can include additional information with the

response, usually hidden for the receiver. The host also has capabilities for forwarding messages

to other programs beyond the web server for additional processing. These possibilities for

information processing behind the scenes make it possible to create the additional functionality.

We shall use the term dynamic web site to emphasize that we are not concerned with a simple set

of web pages with HTML tags, but with applications in which the pages returned to the client

can be dynamically adjusted to fit the individual requests of the client. This course can serve as a

first illustration of a dynamic web site. You have already experienced in this course that when

you submitted your personal access code, the system became accessible to you. If you had

http://nordbotten.net/courses/ics/sessions/session1/images/figure1.cfm

10

submitted an invalid access code, the host would instead have sent you a message adjusted to an

unacceptable access code. The site must know your identity prior to your request. You will soon

also see that if you try to go on to the next session before it is officially opened, you will receive

a message informing you that the session is not yet open. However, when the opening date is

passed, and you have passed the test at the end of the previous session, the system will respond

by giving you access to the session. The system must be able to compare your request with its

clock time and with your recorded test performance. If a student has not yet completed the

required test, the host will return a message saying that the test must be done before the student

can proceed.

Important characteristics of the dynamic web site are the ability to authenticate you, i.e. to verify

your identity, record your performance history, keep track of your interactions from when you

start a session and until you leave, and sometimes even from session to session. In this course,

you can for example request your personal progress report, and the system will generate the

content of the report to you while another student will get a completely different report and

perhaps for a different number of sessions.

CGI and PERL

The first step towards dynamic web pages is the possibility for a remote client to request the

execution of a process at the host. Use of the FORM tags of HTML requires for example that

the server can perform a processing of the data submitted on the form. A program must exist for

this purpose at the host site, and the web server must be able to communicate with this program.

We will refer to such a program as a script, and the addressable files in which the script is stored

as templates to avoid any confusion with other types of programs, files, and pages.

The Common Gateway Interface, CGI, is a protocol specifying how certain scripts can

communicate with web servers. One of the most frequently used tools for creating such scripts is

the scripting language PERL. A PERL script stored in the host computer can be supplied with

data from a request, for example sent by an HTML FORM. The script can be designed to

perform a variety of tasks such as saving and retrieving data from a database, updating a log,

keeping track of visitors, running a course, etc. It can also be designed to perform its task and

then leave the result to the web server, which returns a web page generated by means of the

script to the requesting client. Programming languages such as C, C++, C# and JAVA can also

be used for creating scripts. One reason for the popularity of PERL is that scripts programmed in

PERL can be ported from one operating system to another with little or no modification.

Applications Program Interfaces

A PERL-CGI application is time-consuming because PERL scripts must be loaded, executed,

and unloaded each time they are used as interpretive programs, and do not offer the flexibility

that may be required.

To improve this situation, Web Application Interface Servers were developed. An application

server is a service operating behind the web server. It processes script code, which the web

server does not understand, and returns the results to the web server for sending to the requesting

11

client. The applications server is a resource of permanently loaded executable programs. The

resource of loaded programs for WINDOWS operating systems usually written as Dynamic

Load Libraries, DLL's, is referred to as an Applications Program Interface, API. The benefit of

using an API is increased speed and flexibility because no loading and interpretation is needed.

The disadvantage is that the API programs must be implemented specifically for each type of

operating system, and require more memory space.

ColdFusion Markup Language

The most well-known API tools include the Active Server Pages, ASP, and ASP.NET from

Microsoft, the open source system PHP: Hypertext Preprocessor, PHP, Inline Internet Systems,

iHTML, and ColdFusion MX, CFMX, from Macromedia. We are leaving the comparisons

between the tools to evaluators and sales people, and concentrate on CFMX in this course

because it is well developed, easy to learn, and reliable.

The language in which we design our scripts for CFMX is the ColdFusion Markup Language,

CFML. The templates are recognized by their extensions, .cfm (or .cfml). You are referred to the

section Software to get instructions for installing necessary software on your own PC.

In the previous paragraph, the advantage of using a web API instead of a CGI approach was

emphasized. CF was introduced in 1995. It started out as a scripting language based on CGI.

Later, the API was developed. The latest version of CFMX is implemented in JAVA resulting

in a very efficient and portable API that can easily be extended by JAVA.

CFMX is widely used. Among the well-known companies that have taken advantage of CF in

the development of their web sites are Amazon, Dell Computers, and Federal Express. For an up-

to-date list see Ben Forta.

Evaluating a web site

Before starting to improve a web site, you should try to make an evaluation of its performance.

Evaluating a web application requires empirical data. The most obvious source is the log of the

activities of the web server. The first step towards collecting data on the use of pages was

counting the number of visitors to the web site. The number of visitors tells the owner of the site

if his/her site was visited at all, and how frequently. In most web servers, an access log system is

embedded. The access log system continuously records all requests to the server as well as the

server's retrieval of different files to compose the responses. A log, even for a completely static

web site, gives data on dynamic development because it reflects visits during a time interval.

The server's access log usually records according to one of several formats:

 Old NCSA/CERN format

 Combined NCSA/CERN format

 Windows format

http://nordbotten.net/courses/ics/information/software/access.cfm
http://www.amazon.com/
http://www.dell.com/
http://www.fedex.com/
http://www.forta.com/cf/using/list.cfm?categ_id=2%20

12

The Windows format can easily be imported into applications such as EXCEL and ACCESS. It

contains the following fields:

 Date and time
 IP address of client
 Address of server
 HTTP method of request
 Requested URL
 Referring URL
 Browser type
 HTTP response code
 Number of bytes transferred
 Milliseconds between arrival of request and log recording

Typical studies of this kind can be inspected in Nordbotten & Nordbotten 2001a and Nordbotten

& Nordbotten 2001b.

There are several obvious drawbacks associated with the access log for web applications

research. First, the access log is part of the server software guarded by the web server's

administrator group, and the researcher may not always get access to this log. Second, the access

log records all file retrievals necessary to assemble the requested page to the client including

icons, images, etc. which are not needed for an application evaluation. Third, the log system only

recognizes the client machine identified with an IP number. Many users are assigned different IP

numbers by their net provider from one visit to the next. Fourth, there are often several users

sharing a client computer.

Frequently, a more customized recording than that provided by the web server application log is

needed for a satisfactory evaluation. Later in this course, we shall discuss how you can set up

your own log to avoid these problems. At this stage, we start with a very simple example.

Visit counter example

Our first application example is a personalized course visit counter. It demonstrates a few

properties of a dynamic web site. A direct link to the implemented example is located at the end

of this session. The example application keeps track of the number of visits you have made to

this course since you started your study.

The application script consists of 2 templates. The template used as for entering an example is by

convention called index.cfm to avoid unwanted public listing of your templates. This template

personalizes the response to your call for the example and remembers the number of visits.

1. <!--- index.cfm --->
2.
3. <cfquery name="visits" datasource="db">SELECT firstname, visits FROM users WHERE

accesscode='#session.pin#'
4. </cfquery>
5. <cfoutput>

http://nordbotten.ifi.uib.no/courses/cfmx/articles/report.pdf
http://nordbotten.ifi.uib.no/courses/cfmx/articles/hci2001.pdf
http://nordbotten.ifi.uib.no/courses/cfmx/articles/hci2001.pdf

13

6. <div align="center">
7. <h1>#visits.firstname#'s site visit counter</h1>
8. <p>#visits.firstname#: The number of visits you have made to this course site until

#TimeFormat(Now())#, #DateFormat(Now(),'mm/dd/yy')# is: <font
color="Blue">#visits.visits#</p>

9. </div>
10. </cfoutput>

All CFMX template files are identified by the extension .cfm. Line 1 is a comment line that is

used here to refer to the name of the template. The comment tag is similar to the HTML

comment tag, but has 3 '---' while the HTML comment has 2. Except for this tag, all ColdFusion

start and end tags begin with CF or /CF, respectively.

At this stage, we will postpone the detailed discussion of the CFMX tags, and limit the

explanation to the more general issues. In the listing, you may recognize some HTML tags that

can be intermixed with CFMX tags.

Lines 3 - 4 illustrate the CFQUERY tags ColdFusion uses to exchange data with a database. The

statement between these tags is a regular SQL SELECT statement used to retrieve the user's

first name and the number of recorded visits from a database referred to as db. In other words,

this application assumes that the users are recorded in a database and that their numbers of visits

are updated in the database each time they log in. The term '#session.pin#' refers to the string

you submitted as your access code.

Lines 5 -9 output the query result from the database. If you are acquainted with HTML, you will

recognize most of the content between the CFOUTPUT tags.

There is one more point that you should observe. That is the #visits.firstname# and

#visits.visits#. The surrounding #'s indicate that we refer to the value of the included named

variable, in this case firstname and visits, respectively, in the retrieved query object visits.

In the next session, the syntax of the CFML will be discussed in more detail.

Exercises

a. Visit the web sites of Amazon, Dell Computers, and Federal Express, and spend some time to

study what these pages can provide. Make a short report for yourself containing ideas to use later

in this course.

b. Get acquainted with the web site of this course. The Calendar is important, and it is suggested

that you print it out for easy consultation. In the FAQ section, you will find useful information

about the course. Consider the course design and structure, and suggest changes and

improvements to the author (svein@nordbotten.com).

c. The text book used, Programming ColdFusion by Rob Brooke-Bilson, will be referred to as

RBB. This book is not a novel you can read sequentially. You should use it as a manual, and

http://www.amazon.com/
http://www.dell.com/
http://www.fedex.com/

14

read about the task you are currently working on. Read Chapter 1 of RBB before you start on the

next session.

15

Session 2: ColdFusion MX

ColdFusion Markup Language

The CFML is the tool by which we express our ideas, conditions, and goals for the applications

in this course. CFML is a tag-based scripting language. As in any other programming language,

CFML has its own syntax, but can be intermixed with HTML. As a scripting language, it has

borrowed a number of concepts from PERL and other programming languages.

A CFMX script is stored in one or more files with the extension .cfm. These files are referred to

as CFML templates. The extension makes it possible for the web server to identify which

requests it should pass on to the CFMX application server. No harm is done if a usual HTML

page is named with the .cfm extension, but a CFML template with an .htm or .html extension

will not work. In this course, we use the .cfm extension for all templates.

The first difference you will observe between HTML pages and CFML templates is the CF tags

permitted in the latter. All CFML tags starts with the 2 letters CF. Most CF tags come in pairs

with a starting and an ending tag with the form <CF..> and </CF..>, respectively.

When you try to view the source of a page generated by CFML templates by clicking the

View/Source option in your browser, you will only see the HTML source sent for display. The

.cfm template, which generated the HTML display, will not be available for the client.

CFML has the following components:

 Data types
 Variables
 Expressions
 Control statements
 Other components

In this session, we will review each component. This session is a brief summary of CFML. For

more details and precise descriptions, you are referred to RBB. Special topics will be discussed

in each session and illustrated by implemented examples that you can run, copy, modify, and try

on your own PC.

Data types

As in any language, CFML supports a set of different data types:

 Boolean
 Strings
 Numbers
 Date/time
 Lists
 Arrays

16

 Structures
 Query objects
 Component objects

Any data type variable can be assigned a value directly or by special functions in a CF tag.

Variables

There are 3 aspects associated with a variable that you should keep in mind:

 Name
 Value
 Scope

The variable name identifies the variable, and must begin with a letter, contain no spaces or

special characters, and should not be identical to reserved names in CFML or SQL. The value is

either numeric, logical, or string. A string is enclosed by single or double quotes. The CFML

variables are all typeless which means that you can assign a value of any type to any variable.

However, the use of a variable can be restricted by the data type of its value.

A variable is most frequently defined by the CFSET tag:

<CFSET variable_name="xxx">

The value you substitute for xxx in the tag is the assigned value of the variable here symbolized

by variable-name.

The value of a defined variable can be obtained by surrounding the variable name with #, i.e.

#variable_name#. This can be used in another set tag, for example for counting:

<CFSET new_ variable=#variable _name# + 1>

The scope of a variable is in general limited to the template in which it is set. As we shall see

later, the variables are frequently given wider scopes.

Expressions

In CF, an expression is a construct in which data are acted on by different operators. By means

of an expression, the result of operators acting on variables can be evaluated. There are 2

categories of operators:

 Basic operators
 Functions

There are 4 types of basic operators:

 Arithmetic

17

 Comparison
 String
 Boolean

Well known arithmetic operators are +, -, / and *, exemplified by:

<CFSET evaluation _variable=(#new_variable# +2)/5>

where new_variable has already been assigned some value by previous operations. The result of

an arithmetic expression is a new value assigned to a numeric variable, in this example named

evaluation _variable with value #evaluation _variable#.

The comparison operators require 2 values and give a Boolean result, 0 (false) or 1 (true). Some

of the most frequently used comparison operators are EQ, NEQ, GT, GTE, LT and LTE. The

following expression illustrates use of a comparison operator:

<CFSET x=#new_ variable# EQ 3>

where #x# will be a Boolean variable assigned the value false (0) if #new_variable# NOT EQ

3, or true (1) if #new_variable# EQ 3.

A string is a sequence of symbols. The concatenation operator, &, is used for concatenating 2

strings. There are also 2 operators for string comparison, CONTAIN and DOES NOT

CONTAIN, by which 2 strings can be compared. The result of the concatenation is a string,

while the 2 comparison operators result in Boolean values.

In the group of Boolean operators, the usual logical operators NOT, AND, OR, XOR, EQ and

IMP, are available. An expression with logical operators gives a Boolean result.

Functions are advanced operators with pre-defined actions on data values. There are a number of

different types of functions built into ColdFusion:

 Array functions
 Date/time function
 Decision/evaluation functions
 Encoding/encryption functions
 File/directory functions
 Formatting functions
 International functions
 List functions
 Mathematical functions
 Miscellaneous functions
 Query functions
 Security functions
 String functions
 Structure functions
 Undocumented functions

18

You are referred to RBB, Appendix B, and the literature for details about the individual

functions available in CFMX.

Flow control statements

Flow control and decision making require control statements. CFMX has 3 different types of

conditional control statements:

 If/else statements
 Switch statements
 Loop statements

The syntax for the two-way branching if/else statements is:

<CFIF "logical_expression EQ True">

execute block 1

<CFELSE>

execute block 2

</CFIF>

The logical expression can for example be #y# GT #x#.

The multi-way branching switch statement complex has the following syntax:

<CFSWITCH EXPRESSION="expression">

<CFCASE VALUE="value1">

execute block1

</CFCASE>

<CFCASE VALUE="value2">

execute block 2

</CFCASE>

<CFCASE VALUE="value3">

execute block 3

</CFCASE>

19

....

</CFSWITCH>

The expression is assumed to be valid, possible to evaluate, and producing a value compatible

with the values in the CFCASE tags.

There are several types of loops. We illustrate the loop statements with the simplest, often

referred to as the FOR loop:

<CFLOOP INDEX="LoopCount" FROM="start_no" TO="end_no">

execute block

</CFLOOP>

#LoopCOUNT# will be incremented by 1 for each loop started. It starts with the value assigned

to start_no and end with the value specified for end_no.

Other components

There are other language components in CFML, the most common of which are:

 Output
 Include
 Comments

The output tag permits displaying the results from CFMX operations, for example the results

from a database query:

<CFOUTPUT QUERY="query_name" MAXROWS="max" GROUP="group" STARTROW="row">

Text

</CFOUTPUT>

where query_name is a name given in a previous query tag, max is the maximum number of

rows wanted, and row specifies the row from which to start output. This tag generates a display

of the content of a collected query object.

The CFINCLUDE tag permits reference to another CF template. The syntax is simple:

<CFINCLUDE TEMPLATE="template_name">

where template_name is the absolute URL or the relative address to the template. This tag

functions similar to a call to a subroutine.

20

CFML also includes a tag for non-executable remarks. It is similar but not identical to the

HTML remark tag:

<!--- text --->

The three dashes and a blank before, and a blank and three dashes following the text are

required, in contrast to the HTML remarks with two dashes before and after the text.

Guessing game example

This example, as all examples in this course, is implemented for you to try out. For running the

example, a link is provided at the end of the session. The example is a simple guessing game.

You will be asked to guess the sum of all integers from 1 and up to a number that is generated

randomly. When you submit your answer, you will either get a feedback confirming a correct

guess, or a message that your guess was wrong together with the correct answer. I recommend

that you start by running the example a couple of times (use the Back button to return to the start

and refresh the display). When you feel acquainted with the game, and then proceed to the study

of the templates below.

All applications must have an Application.cfm template. The purpose of this template is to

specify properties, which are valid for all other templates of the application. The application

name is a typical example. All Application.cfm templates must include the CFAPPLICATION

tag, but can also include other tags. The Application.cfm of the guessing example is very simple:

1. <!--- Application.cfm --->

2. <CFAPPLICATION NAME="Guess"

SESSIONMANAGEMENT="YES"

SESSIONTIMEOUT=#CreateTimeSpan(0,0,30,0)#>

The first statement is giving the template name within a comment tag. Note that the comment is

different from the comment you may know from HTML. The second statement is the

CFAPPLICATION tag which in our present example has only 3 attributes, the NAME that

specifies the name of the application, the SESSIONMANAGEMENT that says that the

application must remember session variables, and finally, SESSIONTIMEOUT, that specifies

the length of the time in days, hours, minutes and seconds the system must remember these

variables if the user is inactive. This template can also include other tags as we will see in later

sessions.

The game problem itself is a very simple dynamic application containing only 2 display

templates of which the second depends on the information submitted from the first and makes

the application dynamic. The first template is named index.cfm, which eliminates the possibility

that uninvited visitors are browsing the content of our folder.

The task to be solved by this template is to present the game for the user and collect his/her name

and guess by means of a form. An important parameter is the random upper limit for the integers

to be summed. The task for the second template, response.cfm, is to calculate the correct answer

21

to the problem, decide whether the guess submitted is correct or not, and present the conclusion

for the user.

Template index.cfm looks like this (the numbers to the left are not part of the script, but placed there to

make it easier to refer to the different parts of the template):

1. <!--- index.cfm --->

2. <CFSET temp=Randomize(second(Now()))>

3. <CFSET session.target=#RandRange(50,100)#>

4. <h2>Guess!</h2>

5. <form action="response.cfm">

6. <cfoutput>

7. <p>My name is <input type="text" name="name"></p>

8. <p>I guess the sum of all integers from 1 to #session.target# is <input type="text"

name="guess"></p>

9. </cfoutput>

10. <p><input type="submit" value="Submit"></p>

11. </form>

Figure 1 shows the invitation to submit a guess for evaluation.

Figure 1: My guess

Lines 2-3 illustrate the CFSET tag. The first command defines a variable called temp and give it

a value computed by the CF function Randomize(second(Now())). The purpose of this is to get a

random seed for the next line. This is obtained by using the second at the moment of execution

as an argument. If you look carefully at the expression, you will see that there are in fact 3 nested

functions. The innermost Now() gets the time (year, data, hour, minute, second) from the internal

http://nordbotten.net/courses/ics/sessions/session2/images/figure1.cfm

22

clock of the computer, the intermediate Second(Now()) extract the seconds from the time object,

while the outer function uses the seconds to generate a random seed.

Line 3 defines a variable session.target and assigns to the variable a random integer value in the

range from 50-100. This is done by the CF function RandRange(50,100). Note that the

expression is enclosed by # before and after the function. This simply means that the function

value is assigned to the variable session.target. By qualifying a variable by session, the variable

is made persistent, i.e. the variable session.target retains its value for use in other templates

called by the same user within the same session. The detailed explanation is postponed to the

next session.

Following a usual heading in Line 4, a FORM tag block is the remaining of the template. It is an

ordinary FORM tag as described in the HTML texts with one exception: The text and input tags

in Lines 7-8 are enclosed in CFOUTPUT tags. This is required to get the correct interpretation

of the CF variable value #session.target#.

When the form generated by index.cfm is submitted by the user, the 2 variables, name and

guess, followed with assigned values are sent with the request to the server. The second template

response.cfm, controls the processing of the transferred variables and the returned response to

the client.

1. <!--- response.cfm --->

2. <CFSET sum="0">

3. <CFLOOP INDEX="count" FROM="1" TO="#session.target#" >

4. <CFSET sum=#sum#+#count#>

5. </cfloop>

6. <CFIF #sum# EQ #guess#>

7. <cfoutput>

8. <h3>#name#,your guess was correct!</h3>

9. </cfoutput>

10. <CFELSE>

11. <cfoutput>

12. <h3>Sorry,#name#, the sum is #sum#.</h3>

13. </cfoutput>

14. </cfif>

23

Line 2 assigns value "0" to the variable sum. By means of CFLOOP, Lines 3-5 add the integers

from 1 to #session.target# and save the results in the variable sum. In Line 6, a CFIF tag

instructs the server to test if the guess is correct, and Lines 7 to 9 inform the user about a correct

guess.

If the sum is not equal to the guess, the CFELSE is selected and the page sent to the user

informing that the guess was not correct as well giving the correct answer.

Figure 2 demonstrates the answer to an incorrect guess.

Figure 2: Evaluation of my guess

Exercises

a. Read Chapter 2 in RBB carefully, you will get repaid for the knowledge very soon.

b. The guessing example consists of 3 templates, Application.cfm, index.cfm and response.cfm.

Establish a CFMX script folder on your computer with sub folders for each example. The folder

must be within the document root defined for your web server. Copy the templates from the

browser display to your script folder. Delete the line numbers, save the files with extension .cfm

and run the example.

c. Consider how to modify your template index.cfm to generate also a random upper limit

between 100 and 200 for the range. Give the new template the name game_modified.cfm. Try it

out.

http://nordbotten.net/courses/ics/sessions/session2/images/figure2.cfm

24

Session 3: Web market research

Introduction

Our next dynamic web application is design and implementation of a hypothetical market

research on the web. You will find the visual web pages as illustrations. At the end of the session

you will also find a link to the implemented session application example.

Market research

Does the order of links on a page have any influence on the selection by the user? This question

has appeared in several connections. One way to approach an answer to this question is to design

a web experiment.

Assume that a market research company is trying to measure the public's preference of 2

competing products, A and B. The company designs a web form that has two radio buttons, the

upper for product A and the lower for product B, by which the visitor can express his/her

preference for one of the products.

From experience, the market researcher knows that the ordering of A and B on the form may

have an effect and that the preference may not be persistent. Two identical forms are therefore

designed. One is called Form 1 and has product A listed first. The other is called Form 2 and

has product B listed first. A script is designed for random selection of the form to be displayed

for each visitor. The visitor is asked to request a second form in a week. The second form is

another random selection of one of the forms. To attract customers to the web site, a lottery is set

up for persons completing the 2 forms.

No names or addresses are required for completing the forms. To participate in the lottery

drawing, the participants must, however, send in a separate form, called Form 3, with their name

and address. A condition for participation in the lottery is that the two forms with preferences

were returned.

Applications outline

Figure 1 is an outline of the system we want to implement. The numbers indicate the flow in the

system for each form requested, completed, and returned. The challenge will be to find a way to

connect the submitted preference forms to the anonymous participants. Further, if a participant is

willing to unveil his/her name to participate in the lottery; another solution must be developed to

check that the person has answered the two required forms.

http://nordbotten.net/courses/ics/sessions/session3/images/figure1.cfm

25

Figure 1: Outline of the market research system

Implementation

The first step is to establish a subfolder within which we will keep the application. The

Application.cfm (the capital A is important only if you are working on a web server installed on

platforms using Linux or UNIX) template must be saved in this folder. Recall that the content of

this template is valid for the whole application, i.e. for all templates in the same sub folder. The

application template for the market research application looks like this:

1. <!--- Application.cfm --->

2. <CFAPPLICATION NAME="market_research"

3. SESSIONMANAGEMENT="yes"

4. SESSIONTIMEOUT=#CreateTimeSpan(0,0,30,0)#

5. SETCLIENTCOOKIES="yes">

6. <CFSET session.path="c:\myapplications\market_research">

The application.cfm has 2 tags in addition to the name comment tag. The CFAPPLICATION

tag specifies 3 attributes. SESSIONMANAGEMENT permits the use of session variables that

have a scope comprising all templates in the applications, but are limited to a session time span.

By means of the function CreateTimeSpan(days, hours, minutes, seconds), the time span for

each market research session variables is limited to 30 inactive minutes, i.e. if you leave your

computer for 29 minutes it will still remember your session variables.

26

However, because we ask the visitors to come back in a week, we need a technique for

recognizing a client when he submits the second and third form. We have several options. In this

application, we use cookies. A cookie is identification invisible for the user, which the server

sends a client when responding to a request, and which the client, if willing, saves in a special

file. Next time the client makes a request to the server that issued the cookie, the cookie

identifier will be attached to the request, and the server will know from which client the request

is sent.

Use of cookies requires that the client has a browser able to receive cookies, and that his browser

is set to receive cookies. This technique is useful if the client must be identified over a time

period longer than a session. Setting cookies requires the third attribute,

SETCLIENTCOOKIES, in the CFAPPLICATION tag. Note that SETCLIENTCOOKIES

also influence the persistency of session variables! Read carefully what RBB writes about

Session Variables in Chapter 7.

Finally, Line 6 specifies in a CFSET tag a session variable containing the path to a folder in

which we want to store data. If for example you want to save your data in a subfolder

market_research within the folder c:\myapplications, the value of session.path in the

Application.cfm should be "c:\myapplications\market_research". In all your templates, you can

then use #session.path# instead of the longer c:\myapplications\market_research. This is also a

very effective technique if you develop your applications on one computer with a directory

structure that differs from that of the web server on which the application finally will be

published.

We recall the rule that the entrance template to applications should be named index.cfm to

prevent unwanted browsing of the folder if the browsing option has not been turned off. In the

current applications, index.cfm is an information and menu template (Figure 2):

1. <!--- index.cfm --->

2. <h2><fontcolor="Red">Market research</h2>

3. <p>This is a market research to investigate the public's preferences for Product A and Product B. If you

respond and complete the requirements stated below, you will be eligible to participate in a lottery.</p.>

4. <p>The requirements are:</p>

5.

6. Request, complete and submit questionnaire 1 today

7. Request, complete and submit questionnaire 2 in a week

8. Request, complete and submit questionnaire 3 after you have submitted

questionnaire 2

9.

http://nordbotten.net/courses/ics/sessions/session3/images/figure2.cfm

27

10. <p>The 2 first questionnaires require only a single selection and click before you submit the response. The

third questionnaire asks you for an e-mail address for notification in case you become a lucky winner in the

lottery.</p>

11. <p>The market research sets a cookie in your browser. It is time-limited and will be automatically deleted

after 15 days. </p>

Figure 2: Introduction to the market research

As the listing shows, this template could have passed as a HTML file since it contains no CFMX

tags. To be consequent, we have given it the extension .cfm. Figure 2 shows the menu.

A random selection between Form 1 and Form 2 is necessary. The template prepare.cfm

contains the necessary script:

1. <!--- prepare.cfm --->

2. <CFSET temp=Randomize(Second(now())) >

3. <CFSET selected_number=RandRange(1,2)>

4. <CFIF #selected_number# EQ 1>

5. <CFLOCATION url="form1.cfm">

6. <CFELSE>

7. <CFLOCATION url="form2.cfm">

8. </CFIF>

Each time a pseudo random algorithm is started, it needs a seed. If the seed is the same, the

sequence of random numbers will also be the same for all applications. Randomize() in Line 2 is

a mathematical CFMX function that instructs the server to plant an initial seed based on the

internal server clock. The next function, RandRange(lowest, highest) in Line 3, generates a

http://nordbotten.net/courses/ics/sessions/session3/images/figure2.cfm

28

pseudo-random integer in the range between the lowest and the highest parameter values, in our

case either 1 or 2.

Lines 4 to 8 represent an if-else block for selecting the form to present for the visitor. If the

logical expression #selected_number# EQ 1 is true, Form 1 is selected by the tag

<CFLOCATION url="form1.cfm">. The CFLOCATION tag is very useful because it

redirects the control to another template. If the condition in Line 4 is not true, i.e.

#selected_number# EQ 2, Form 2 is selected for sending to the client.

The form1.cfm and form2.cfm generates the page shown in Figure 3. The 2 forms are identical

Figure 3: Form 1

except for the ordering of the 2 products and the value of the attribute form_type which is "1" in

form1.cfm and "2" in form2.cfm, and we need consider only form1.cfm.

1. <!--- Form 1 --->

2. <CFIF IsDefined("cookie.user_id") EQ 0>

3. <CFCOOKIE NAME="User_Id" VALUE='#Now()#' EXPIRES="15">

4. </CFIF>

5. <h2>Preference for products</h2>

6. <p>Thank you for visiting this page and expressing your opinion. Complete and submit this form. If this is

the first form you submit, please request another form:

http://nordbotten.com/courses/cf/information/files/market_research/, and submit it in a week. If you have

submitted 2 forms and wish to participate in the lottery, request and submit the form:

http://nordbotten.com/courses/cf/information/files/market_research/form3.cfm. </p>

7. <p>Please mark your preference by clicking a button. Comparing the 2 products A and B, I prefer:</p>

8. <CFFORM ACTION="save.cfm">

9. <INPUT TYPE="hidden" NAME="form_type" VALUE="1">

http://nordbotten.net/courses/ics/sessions/session3/images/figure3.cfm

29

10. <p><INPUT TYPE="Radio" NAME="Preference" VALUE="A"> Product A</p>

11.<p> <INPUT TYPE="Radio" NAME="Preference" VALUE="B"> Product B</p>

12.<p> <INPUT TYPE="submit" name="SUBMIT" VALUE="Submit"></p>

13. </CFFORM>

The form templates start with a CFIF tag in Line 2 that tests if a variable called cookie.user_id

has been defined. The function IsDefined("cookie.user_id") returns value 1 if true and 0 if false.

The first time a client requests one of the 2 form templates, we know the function must return a

0, while in later requests from the same client, the function will return 1 because the request now

also includes the hidden cookie. If the function returns value 0, the variable User_Id is defined

in Line 3 by the CFCOOKIE tag. The variable is assigned a unique value obtained by using the

clock function Now(). We also require that the cookie will expire in 15 days. Using cookies, we

are able to connect 2 or more responses from a client without requesting any further

identification. CFORM has some additional features compared with the HTML FORM.

After some informative text in Lines 5, 6 and 7, the CFFORM tag follows, specifying the

subsequent action by template save.cfm. Two radio buttons are included in the form for the

visitor to flag his/her product preference. The form ends with a submit button. One of the 2 radio

buttons must be pressed. Note that we do not ask the visitor for his/her name for anonymity

reasons.

When the completed form is submitted, template save.cfm is executed. Line 2 tests if the file to

which the data should be written has been established with a heading, and if not, it is established

by a CFFILE tag with attribute ACTION="write" in Line 3.

It saves the returned response identified with the cookie user_id, the form_type and the

preference in a text file named response.txt. In Line 5, the template makes use of a CFFILE tag

that can have several actions and attributes. In this application we use the action "append",

which require 2 attributes, the FILE in which the data from the form should be saved, and the

OUTPUT, the variable values to be saved. Note that the complete path for the file is required,

and we make use of the value of the session variable set in Application.cfm.

1. <!--- save.cfm --->

2. <cfif IsDefined("reponse.txt")EQ 0>

3. <cffile action="WRITE" file="response.txt" output="Response text file">

4. </cfif>

5. <CFFILE ACTION="append" FILE="#session.path#\response.txt" OUTPUT="User id: #cookie.user_id#,

Form_type: #form.form_type#, Preference:#form.preference#">

6. </CFFILE>

30

7. <CFLOCATION URL="index.cfm">

The last 2 building bricks of the market research application are a form requesting the email

address if participation in the lottery is desired (Figure 4), and a template for saving the address.

Figure 4: Form 3

Since we already know the user identification of the participant, the form can be quite simple:

1. <!--- Form 3 --->

2. <p>Thank you for visiting this page and expressing your opinion. If you have complete and submitted 2

forms with your preferences for Product A and Product B, you are eligible to participate in the lottery. </p>

3. <CFFORM ACTION="save2.cfm">

4. <p>Your name:<cfinput type="Text" name="name" required="yes"></p>

5. <p>e-mail address:<cfinput type="Text" name="email" required="yes"></p>

6. <p><INPUT TYPE="submit" name="SUBMIT" VALUE="Submit">></p>

7. </CFFORM>

The cookie identification will also be attached to this form when returned, and we can check that

the visitor is eligible as a participant in the lottery.

The save2.cfm template takes care of saving the cookie user identification of the visitor, his/her

name, and address in address.txt. As for the first text file, the template tests for the existence of

the file, and establishes the file if necessary:

1. <!--- save2.cfm --->

2. <cfif IsDefined("address.txt")EQ 0>

3. <cffile action="WRITE" file="address.txt" output="Address text file">

http://nordbotten.net/courses/ics/sessions/session3/images/figure4.cfm

31

4. </cfif>

5. <CFFILE ACTION="append" FILE="#session.path#\address.txt" OUTPUT="User id: #cookie.user_id#,

Name: #form.name#, Email address:#form.email#">

6. </CFFILE>

7. <CFLOCATION URL="index.cfm">

By sorting and merging saved responses in response.txt and address.txt, we can establish a list of

names and addresses for all visitors that have returned 2 forms with preferences, and the form

with their e-mail address. The lottery can easily be carried out.

For market research analysis, the file response.txt will give 2 main classes of data: First, all

responses can be used to analyze the overall preferences for Products A and B. Second, all

responses sorted by Form 1 and 2 can be used to analyze the effect of the ordering, and third, the

responses ordered by user identification and time received can be used for investigating the

preference persistence over time.

The template report.cfm gives an unedited display of the response.txt file. It can easily be copied

and processed by EXCEL.

1. <!--- report.cfm --->

2. <cffile action="READ" variable="report" file="c:#session.path#\response.txt"></cffile>

3.<cfoutput>#report#</cfoutput>

Inspect the values of the cookies, which indicate that some visitors have been visiting several

times. You can also see the content of address.txt from the menu page by means of a similar

template, report2.cfm.

Exercises

a. Read Chapter 3 in RBB about ways to pass data between templates. In the first part of Chapter

7, you can read about application templates and cookies, and jumping to Chapter 12, you will be

able to read more in detail about the CFFILE tag.

b. Study the application Market research carefully. In the first form, it is possible to request

questionnaire 1, questionnaire 2, or questionnaire 3. It would be more professional if only

questionnaire 1 could be called if this was the first visit, only questionnaire 2 if the first had

already been submitted and only questionnaire 3 if both the previous questionnaires had been

completed. Try if you can see a way do this improvement.

c. Copy and install the templates on your own computer and try to run the application. You may

meet a few problems, but don't give up.

32

d. Extend the assortment to 3 competing products. How would you re-arrange the experiment to

obtain an unbiased set of preference responses?

33

Session 4: Web database for opinion polls

Files and databases

In Session 3 we used the tag CFFILE, which permits storing and retrieval of files on disk when

needed. However, the files created by CFFILE can only be written, appended, read or deleted. If

any operations on individual records, such as conditional modifications or retrieval of records,

are needed, the file has to be read into the memory before it can be processed and then re-written.

Modern databases can store complex collections of data, and flexible methods for inserting and

retrieving data exist.

Databases

This is not a course in databases, but databases are frequently needed in connection with web

applications. We shall limit our discussion in this session to how an established database can be

used to serve the needs of web applications by means of the SQL language included in CFML.

An established database includes one or more named tables. Each table has one or more named

columns, and zero or more identifiable rows with column data.

The connection between a web applications and the database we shall use, is through Java

Database Connectivity, JDBC, drivers which permit interrogations and updating of a database by

means of SQL statements. In some cases, the JDBC driver will also have to cooperate behind

the scene with ODBC drivers.

Databases, which can be used as a back-end to ColdFusion applications, are limited to those for

which adequate drivers exist for the operation system/hardware platform used. For Windows

XP/2000, on which this course is based, drivers for MS Access, Excel, MySQL, SQL Server,

and a few other are included. Drivers developed by others exist, however, for a number of other

databases/platforms. More efficient native drivers for DB2, Informix, Oracle and Sybase are

available from Macromedia to be used in connection with the CFMX Enterprise version.

In this course, we use a MS Access database. The database used has no significance for the

functionality discussed. The MySQL database can be downloaded free and is an excellent

alternative.

An installed and specified database must be named as a datasource, and registered with the

CFMX Administrator as an accessible database. The name is usually some shortcut, and in this

course, the datasource name used is db. If the database corresponding to a datasource name

exists, the database may be extended with the tables needed. Registering the datasource with the

CFMX Administrator means that it has to be listed as a datasource known to the CFMX system.

The registering of a datasource should be done with your CFMX Administrator. If you installed

CFMX with the standalone web server, the URL of the Administrator is

http://localhost:8500/CFIDE/ADMINISTRATOR. If you use another web server, it is the same

without the port address ":8500".

34

CFMX SQL

ColdFusion opens for interaction with a data base by means of a special pair of tags, CFQUERY

and /CFQUERY, between which the SQL statements are inserted. The tag syntax is:

<CFQUERY NAME="myquery" DATASOURCE="#session.datasource#" >

SQL statements

</CFQUERY>

The NAME is a useful reference to the output from a database transaction if needed in other

places of the current or other templates. We shall see examples later on. The only requirement is

that a unique name is chosen. The DATASOURCE parameter specifies which database is

relevant, and in our course the name is db, which implies that a <CFSET

session.datasource="db"> must be set, usually as part of the Application.cfm template.

Basic SQL elements

We consider 4 SQL statements:

 SELECT
 INSERT
 UPDATE
 DELETE

We shall discuss applications of each type in detail below.

Within each statement, a number of clauses can be specified of which some are restricted to use

with only one or two of the SQL commands. The list of the most commonly SQL clauses in

alphabetic order, is:

 FROM
 GROUPED BY
 HAVING
 INTO
 JOIN
 ORDERED BY
 SET
 VALUES
 WHERE
 UNION

For construction of compound statements, SQL provides also a large set of operators:

 = : equal to
 <> : not equal to

35

 < : less than
 > : greater than
 <= : less than or equal to
 >= : greater than or equal to
 + : plus
 - : minus
 / : divided by
 * : multiplied by
 AND : both conditions must be true
 OR : one or both conditions must be true
 NOT : ignores a condition
 IS [NOT] NULL : value is [not] null
 IN : value is within a list
 BETWEEN :value is in the range between two values
 LIKE : value is like a % or _ value
 EXISTS : tests for a non-empty set

In addition to the datasource name, you must also know the name of the table, the columns and

rows from which you want to retrieve data or add data. Table, column and row specifications

will be discussed in the next section.

Opinion polling

A polling institute is the scenario for the service we shall use to explain the SQL statements.

The institute investigates changing opinions among 5 competing brands of a certain commodity.

The organization uses a rotating panel of voter who are interviewed about their preferences each

week. The panel must include a certain number of voters to provide significant results. For each

voter, name, telephone, age and home area is recorded for the establishment of the panel. Each

Monday, the panel voters are interviewed about their opinions about the preferred alternative

among the 5 competing products. For each interviewed panel voter, name, telephone number,

and age may also change and are checked. The updating takes place on Wednesday. Each

Thursday, statistics are generated from the records and made available, and each Friday, one

fraction of the panel is substituted with new voters. Figure 1 shows the processes in the system.

In this session, we assume that the db datasource has a specified table named Voters. The box at

the left hand in Figure 1 shows the columns of the table.

http://nordbotten.net/courses/ics/sessions/session4/images/figure1.cfm
http://nordbotten.net/courses/ics/sessions/session4/images/figure1.cfm

36

Figure 1: Opinion poll application

A link to a complete demonstration of the application is available at the end of the session. As

usual, the application starts with an Application.cfm.

1. <!--- Application.cfm --->

2. <CFAPPLICATION NAME="database"

3. SESSIONMANAGEMENT="yes"

4. SESSIONTIMEOUT=#CreateTimeSpan(0,0,30,0)#>

5. <CFSET session.datasource="db">

In this Application.cfm the cookies used in the example of the last session, are not needed, but a

CFSET tag for setting the session.datasource variable has been added.

A menu, (Figure 2), implemented by the index.cfm template introduces the application. This is

an ordinary HTML type of form template with simple hyperlinks for the different options. We

could have named the file index.htm as well.

http://nordbotten.net/courses/ics/sessions/session4/images/figure2.cfm

37

Figure 2: Application menu

1. <!--- index.cfm --->

2. <h2>Opinion polls</h2> <p>The Opinion polls system is <font

color="Red">initialized with a sample of panel voters. Each Monday a <font

color="Red">List of panel voters to be interviewed is generated. After the interviews, a table with

data for each of the panel voters is updated. The table is the basis for computing

statistics for the week. At the end of the week, the first panel voter on the list is

deleted, and a new voter added at the end of the

list.</p>

3.

4. Initialize table of panel voters

5. List panel voters for interviews

6. Update table of panel voters after interviews

7. Compute statistics for the week

8. Delete first and add new panel voter

9.

and needs no further comments.

INSERT statements

It is not our concern to identify and recruit a representative panel of persons willing to serve on

the panel. We simply assume that the required number of persons has been recruited and

information has been collected about their names, telephone number, age and area in which they

live. Votes will be collected later by interview.

38

Figure 3: Form for establishing the list of panel members

To establish the list of panel voters, a form template will be needed to record and for transcribing

collected information to a table in the database. The form can look like Figure 3 and the template

like the following:

1. <!--- form.cfm --->

2. <h2>Form to be used for establishing the interview panel</h2>

3. <form action="add.cfm">

4. <p>Family name:<input type="text" name="FamilyName"></p>

5. <p>First name:<input type="text" name="FirstName"></p>

6. <p>Telephone no:<input type="text" name="Telephone"></p>

7. <p>Age(18-100):<input type="text" name="Age"></p>

8. <p>Area (1-10):<input type="text" name="Area"></p>

9. <p><input type="submit" value="Submit new panel voter"></p>

10. </form>

As you see from Line 3 in the template, the form requests a template named add.cfm when it is

submitted for further processing. The form.cfm template also uses ordinary HTML tags, and

could as well have been named with a .htm extension. However, we use consequently the .cfm

extension.

The purpose of the add.cfm template is to append a new row with values to a database table

called Voters. The panel voters need to be assigned a unique Id number, and we start by

introducing the mechanism needed for this in Lines 2-5. The core in this is the variable

application.id which keeps track of the last identification number assigned. The qualifier

http://nordbotten.net/courses/ics/sessions/session4/images/figure3.cfm

39

application makes the variable persistent within the application, in other words, the service will

keep the number in mind from session to session.

The tag in Line 2 tests if the application has been active before and the application.id variable

has been defined. If not, the variable is defined in the next line and assigned value "0". If the

application has already been used the control is transferred directly from Line 2 to Line 5, and

the value of the identification variable is increased by "1", i.e. the first time the identifier variable

is assign the value "1", next time the value "2", and so on.

1. <--- add.cfm --->

2. < CFIF NOT IsDefined("application.id")>

3. < CFSET application.id="0">

4. < /CFIF>

5. < CFSET application.id=#application.id#+1>

6. <CFQUERY NAME="add" DATASOURCE="#session.datasource#">

7. INSERT INTO Voters(Id,FamilyName, FirstName,Telephone,Age,Area,Vote)

VALUES('#application.id#','#FamilyName#','#FirstName#','#Telephone#','#Age#','#Area#','-')

8. </CFQUERY>>

9. <CFLOCATION url="form.cfm">

This template uses in Line 6 the QUERY tag with an INSERT INTO statement which specifies

the name of the table, Voters, and all predefined column names of the table following in a

parenthesis. It is extremely important that the list contains column names correctly spelled. The

next attribute is VALUES with a parenthesis containing all the values which should be saved in

a new row of the table.

Note 2 important details. for each specified variable, a value represented by the variable name

enclosed by # before and after the name, for example #FamilyName#, is needed. If the variable

is a text type, this should be indicated by single quotes before and after the name and the #'s, for

example '#FamilyName#'. As you can see, we specify all values as text, because all variables

were specified as text in when we defined the table in the database. The last value is '-' . The

surrounding single quotes tells us that this is another text variable and the value of the variable

Vote is set preliminary to "-" because the person has not yet been interviewed.

After all panel members have been appropriately recorded by means of this form, the polling can

start.

40

SELECT statements

Monday morning the telephone interviewers need a list for calling the panel voters. This list can

be retrieved by calling the template "list.cfm" which illustrates the use of the statement

SELECT. The CFQUERY tag includes a NAME="list" which will be used below. The SQL

statement SELECT is followed by a list of those variable which are required. The attribute

FROM specifies from which table, Voters in our application, the variables should be retrieved.

As for all SQL statements, the syntax is very strict. Only variable names specified in the named

table are accepted.

1. <--- list.cfm ---

2. <CFQUERY NAME="list" DATASOURCE="#session.datasource#">

3. SELECT Id,FamilyName,FirstName,Telephone,Age,Area FROM Voters

4. </CFQUERY>

5. <h2>List of panel voters<</h2>

6. <TABLE >

7. <TR>

8. <TD>ID</TD>

9. <TD>Family Name</TD>

10.<TD>First Name</TD>

11.<TD>Telephone</TD>

12. <TD>Age</TD>

13. <TD>Area</TD>

14. </tr>

15. <CFOUTPUT QUERY="list">

16. <TR>

17. <TD>#id#</TD>

18. <TD>#FamilyName#</TD>

19. <TD>#FirstName#</TD>

20. <TD>#Telephone#</TD>

41

21. <TD>#Age#</TD>

22. <TD>#Area#</TD>

23. </TR>

24. </CFOUTPUT>

25. </TABLE>

The content of the column Vote is excluded from the listing to avoid that the interviewer reminds

the panel voters about their answers last week.

The second part of the template concerns the tabulation of the list. The TABLE tags used are

well known from HTML which permits more elaborate tables with background, borders, etc. In

this example, we keep it as simple as possible. Note that the results from the CFQUERY can be

referred to in the CFOUTPUT tag by its name QUERY="list". All the retrieved rows are

considered as a Query Object with the NAME="list". By referring to the attribute

QUERY="list" in the CFOUTPUT tag, each retrieved row from the table Voters will be listed

according to the table specifications. No loops are needed.

Figure 4 illustrates the output from this template.

Figure 4: List for the interviewers

UPDATE statements

The third step is a process which permits updating of the panel table. For this we use the SQL

UPDATE statement. Updating requires that all fields of the update form are populated. Since the

fields FamilyName, FirstName, Telephone, Age and Area are usually unchanged; a direct use

of the insert form used to create the initial table would require a large amount of unnecessary

typing of redundant information. The solution is first to retrieve a list of Id's, and then updated

with the changes needed.

http://nordbotten.net/courses/ics/sessions/session4/images/figure4.cfm

42

The first template retrieve.cfm retrieves the unique ID of the current panel voters and produces a

list with links to each individual row of the table:

1. <!--- retrieve.cfm --->

2. <cfquery name="retrieve" datasource="#session.datasource#">

3. SELECT Id FROM Voters

4. </cfquery>

5. <p><h2>List of ID for updating</h2></p>

6. <CFOUTPUT QUERY="retrieve">

7. <TABLE>

8. <tr>

9. <td>#Id#</td>

10. </tr>

11. </table>

12. </cfoutput>

This template, called from the menu, is extremely simple. The SQL has a SELECT statement,

which retrieves only the ID from each row, and tabulates a list of ID's (Figure 5). The table has

Figure 5: List for updating member data and votes

one small finesse, the ID's are linked in order to retrieve wanted rows of Voters by a click if

wanted. The reference used is "retrieve2.cfm?Id=#Id#" which refer to a second retrieval

template, retrieve2.cfm, and the attribute Id=#Id#. Remember that #Id# is the value of the ID

variable for the particular row considered. By attaching the name-value after the template name

http://nordbotten.net/courses/ics/sessions/session4/images/figure5.cfm

43

by question mark ?, the value #Id# is made available to template retrieve2.cfm when this

template is processed. The output is illustrated in Figure 5.

We now want to design a template, which returns an individual form with the old values for the

selected panel voter to the client for updating changes in data of the voter. The task is solved, see

Lines 2-4, by a CFQUERY to the #session.datasource# combined with a SELECT of all

variables values from Voters for the panel voter with Id=#Id#. A pre-filled updating form is

created by means of the query object named retrieve2 in the CFQUERY tag:

1. <!--- retrieve2 --->

2. <cfquery name="retrieve2" datasource="#session.datasource#">

3. SELECT Id,FamilyName,FirstName,Telephone,Age,Area, Vote FROM Voters WHERE Id='#Id#'

4. </cfquery>

5. <cfform action="update.cfm" >

6. <cfoutput query="retrieve2">

7. <h2>Update form for Id:#Id#</h2>

8. <table>

9. <tr><td>Family name:</td><td><input type="text" name="FamilyName"

value="#retrieve2.FamilyName#"> </td> </tr>

10. <tr><td>First name:</td><td><input type="text" name="FirstName"

value="#retrieve2.FirstName#"></td></tr>

11. <tr><td>Telephone:</td><td><input type="text" name="Telephone"

value="#retrieve2.Telephone#"></td></tr>

12. <tr><td>Age:</td><td><input type="text" name="Age" value="#retrieve2.Age#"></td></tr>

13. <tr><td>Area:</td><td><input type="text" name="Area" value="#retrieve2.Area#"></td></tr>

14. <tr><td>Vote:</td><td><input type="text" name="Vote" value="#retrieve2.Vote#"></td></tr>

15. </table>

16. <input type="hidden" name="ID" value="#Id#">

17. </cfoutput>

18. <p><input type="submit" value="Update"></p>

19. </cfform>

44

Since the Id is permanently assigned to each panel voter, it cannot be updated and should not be

included in the form, but it has to be attached and the returned values to get the correct line

updated. This is solved by sending it to the client as a hidden variable as can be seen in Line 16.

The form will be displayed with the old values on the client screen, and all values (except the Id

value) can be changed according to the information received at the interview and with the vote

added (Figure 6).

Figure 6: Form for updating individual data

When the form has been corrected and the update submitted, it calls a small template update.cfm

template:

1. <!--- update --->

2. <cfquery name="update" datasource="#session.datasource#" >

3. UPDATE voters SET

4. FamilyName='#FamilyName#',

5. FirstName='#FirstName#',

6. Telephone='#Telephone#',

7. Age='#Age#',

8. Area='#Area#',

9. Vote='#Vote#'

10. WHERE ID='#Id#'

http://nordbotten.net/courses/ics/sessions/session4/images/figure6.cfm

45

11. </cfquery>

12. <CFLOCATION url="retrieve.cfm">

This template demonstrates the CFQUERY tags with the statement UPDATE. The UPDATE

statement specifies the table, Voters, which should be updated and use the attribute SET with a

list of name-value pairs of the variables to be updated. The update refers to the row WHERE

ID=#ID#. Also in the UPDATE statement, the different components must have exact names and

acceptable values with no comma delimiter before the WHERE. Finally, by means of the

CFLOCATION, the control is transferred to the retrieve.cfm template to produce the list and for

selection of another voter for updating.

Statistical report

When all received updates have been performed, the database table is ready for providing data

for statistics of the week. In this example, we aim at very simple statistical report about the

number of panel voters having preference for each of the 5 alternatives. The computation can

easily be extended to computations of the preference frequencies by age and by area. The

presentation of statistics requires 4 steps to be performed:

1. Defining frequency variables
2. Retrieving data
3. Computing statistics
4. Presenting results

The template compute.cfm takes care of these tasks:

1. <!--- compute.cfm --->

2. <cfset A="0">

3. <cfset B="0">

4. <cfset C="0">

5. <cfset D="0">

6. <cfset E="0">

7. <cfquery name="statistics" datasource="#session.datasource#">

8. SELECT vote FROM voters

9. </cfquery>

10. <cfloop query="statistics">

11. <cfswitch expression="#vote#">

46

12. <cfcase value="a"><cfset A=#A#+1></cfcase>

13. <cfcase value="b"><cfset B=#B#+1></cfcase>

14. <cfcase value="c"><cfset C=#C#+1></cfcase>

15. <cfcase value="d"><cfset D=#D#+1></cfcase>

16. <cfcase value="e"><cfset E=#E#+1></cfcase>

17. </cfswitch>

18. </cfloop>

19. <cfoutput>

20. <p><h2>The votes this week:</h2></p>

21. <table>

22. <tr><td>

23. Alternative:</td>

24. <td>Frequency:</td>

25. </tr>

26. <tr>

27. <td>A</td><td>#A#</td>

28. </tr>

29. <tr>

30. <td>B</td><td>#B#</td>

31. </tr>

32. <tr>

33. <td>C</td><td>#C#</td>

34. </tr>

35. <tr>

36. <td>D</td><td>#D#</td>

47

37. </tr>

38. <tr>

39. <td>E</td><td>#E#</td>

40. </tr>

41. </table>

</cfoutput>

After using CFSET to define a set of 5 aggregate variable all with values "0", a CFQUERY

with SELECT of all variables in all rows of Voters retrieves the data from the database. It is

followed by a CFLOOP block with a CFSWITCH and connected CFCASE statements to loop

through all rows of the retrieved data from Voters, and to count the number of cases with

preference for A, B, C, D and E, respectively.

When the looping has finished, tabulation of the five frequency variables and their values is done

by means of a simple set of TABLE tags. Figure 7 shows the distribution of 3 panel voters we

have used for this example.

CFMX has also included some powerful Graphing and Charting possibilities, which could be

used for creating favorable alternatives to the statistical reporting used above.

Figure 7: Votes of current week

DELETE statements

The final part of the system is to make the system rotating, i.e. create a templates which add a

http://nordbotten.net/courses/ics/sessions/session4/images/figure7.cfm

48

Figure 8: Form for rotating the members

new at the end of the list and delete the first voter of the list. The template called for this purpose

from the menu is form2.cfm. It creates a form for filling in data for a new voter (Figure 8):

1. <!--- form2.cfm --->

2. <h2>Form to be used for deleting and adding voters to the panel</h2>

3. <h3>New voter data:</h3>

4. <form action="delete.cfm">

5. <p>Family name:<input type="text" name="FamilyName"></p>

6. <p>First name:<input type="text" name="FirstName"></p>

7. <p>Telephone no:<input type="text" name="Telephone"></p>

8. <p>Age(18-100):<input type="text" name="Age"></p>

9. <p>Area (1-10):<input type="text" name="Area"></p>

10. <p><input type="submit" name="NewMember" value="Submit new panel voter"></p>

11. </form>

When the form is completed and submitted, it calls upon template delete.cfm It starts by

retrieving all ID values from Voters by means of a simple SELECT statement. The Id of the

first row can e found in different ways. We use a CFLOOP statement with the attribute setting

STARTROW="1" and ENDROW="12" which only extract the first Id which is defined as

voter_out=#ID#. This variable is used in a CFQUERY with the SQL statement DELETE from

Voters and for the row which has Id=#voter_out# which completes deleting the first voter of

the panel.

1. <--- delete.cfm --->

2. <cfquery name="retrieve" datasource="#session.datasource#">

3. SELECT Id FROM Voters

4. </cfquery>

5. <cfloop query="retrieve" startrow="1" endrow="1" >

6. <cfset voter_out=#retrieve.id#>

7. </cfloop>

http://nordbotten.net/courses/ics/sessions/session4/images/figure8.cfm

49

8. <cfquery name="delete" datasource="#session.datasource#">

9. DELETE FROM Voters WHERE id='#voter_out#'

10. </cfquery>

11. <CFSET application.id=#application.id#+1>

12. <cfquery name="add" datasource="#session.datasource#">

13. INSERT INTO Voters(Id,FamilyName, FirstName,Telephone,Age,Area,Vote)

14. VALUES('#application.id#','#FamilyName#','#FirstName#','#Telephone#',#Age#,'#Area#','-')

15. </cfquery>

16. <CFLOCATION url="form2.cfm">

The second part of this template adds the submitted data for the new panel voter at the end of the

table by means of a CFQUERY and an INSERT statement. Note that the new value of ID is

computed by the tag in Line 11.

In this section we have discussed some of the simplest and most basic SQL statements available

in CF. In later sections we shall demonstrate some further features of the language available

within ColdFusion MX.

Exercises

a. In this session, we have interacted with a database. You can develop complex applications

interrogating local as well as remote databases, which frequently are the main cores of

information systems. Read the Chapters 4 and 5 of RBB carefully and compare the example of

this session with the text. See if you can point at possible improvements.

b. Try to copy this session's templates, implement them on your own server and run them.

c. In Session 3 you learned about the CFFILE tag. It is possible to by-pass the use of a database

in the application discussed in this session using the CFFILE tag instead. Consider how you

could re-write the templates in the opinion polls application using the CFFILE tag, and consider

if it would be efficient if you had a panel of 10 000 voters.

d. Look through the Chapters 1-10 and see if they can provide you with new ideas for preparing

the project proposal you must submit before you can advance to the next session.

e. Read Chapter 17 in RBB, and try to design a weekly graphical report on the votes.

50

Session 5: Web perception application

Introduction

How to present a visual message to the public in such a way that it will be correctly perceived

and remembered? This is a task of great importance for politicians, information agencies,

product promoters, news media, educators and many more. It is an essential task for an

information agency with the responsibility to disseminate facts to the public about local and

global events as a background for democratic decisions expressed by an election or a

referendum.

A news promoter may have several options for a fact presentation, for example, it may be:

 discussed in a text form
 displayed in a table
 expressed in a graphical chart
 read from an audio recording
 played as a video

The problem is that we have little knowledge about the relative effects on the public of the

different multimedia options.

One approach to learn more about the impacts of the different alternative fact representations on

the public opinion can be to design and carry out an experiment using the web. A web

experiment must satisfy the general principles for experimental designs and will be a highly

dynamic web application. In this session, we shall study the design and implementation of such

an experiment limited to the 3 first presentation forms listed above.

The first step is to create a system which simulates the alternative presentations to the public. As

already pointed out, such a system can be designed and implemented as a dynamic web

application. The next step is to recruited participants to participate in the experiment. Ideally, the

participants should be a representative sample of the population, which we want to inform. This

can, however, be both expensive and difficult, and frequently we recruit volunteers, a strategy,

which may decrease the representatively of the sample. The perceptions of each participant from

the exposed presentations are measured and recorded, and will finally be tested for significant

differences.

As an example in this session, we illustrate the experimentation on the net by a set of 25

socioeconomic facts which we present in alternative ways and observe haw the participants

perceive the different presentations. The recruited participants are recorded by their individual

attributes, which permit to classify their expressed perceptions according to participants’

categories.

A keyword distributed to each recruited participant gives access to the experiment and serves to

keep input from participants separated. Each participant in the experiment will be presented with

a random sequence of the facts. The representation of each fact is also randomly determined. The

51

presentation is displayed for each participant for a period of random length. Following each

presentation, the participant will receive a form for reporting his perception of selected

characteristics connected to the fact. The purpose of the randomization of presentations and time

is to avoid any systematic influence on the results.

The experiment has been carried out with several groups. A published paper in .pdf format with

some results is available in Nordbotten & Nordbotten.

Outline of the design

Figure 1 gives an outline of the experiment. We implement a CFMX application system with a

database as a back-end component for keeping references to a gallery of presentations and for

storing the feedback from participants.

Figure 1: Overview of experiment structure

We focus our discussion to the web application dimension of the experiments and assume that

the participants are recruited by other professionals. The participants will work with their

browsers on client computers connected to our server by the WWW. Between each client and the

server, there are 4 streams of messages, two in each direction. From the client, requests for

participation and responses to forms will be moving to the server. From the server, presentations

and related forms for responses will be sent to the clients.

The experiment is based on a set of 25 international facts from the socio-demographic domain.

Each fact is represented in 3 alternative presentations, textual, tabular and graphical, in the

gallery of images. Other representations, such as voice and animation, can be added.

http://nordbotten.net/courses/ics/articles/PerceptReport.pdf
http://nordbotten.net/courses/ics/sessions/session5/images/figure1.cfm

52

Each participant who completes the experiment will have seen all 25 facts each presented in one

and only one of the 3 alternative presentations. Following each presentation, the participant is

asked to complete a standard form about perceived characteristics of the fact presentation.

With a satisfactory number of participants, the recorded data will permit analysis of perception

characteristics of the 3 representational forms subject to background factors expressed by

individual demographic characteristics, fact and representation types, position in sequence and

display time.

Design of the database

The starting point for the design of the experiment is a database. Several database systems can be

used including Microsoft Access and MySQL. The requirement to the database is that there

exists a JDBC driver for the server platform used. In this session, MS Access is used as a simple

solution.

The database is a collection of tables with columns corresponding to variables. Each table row is

a recording of an event, and each column contains the event values for the variable represented

in the particular column and for the particular row.

Four tables are used for the experiment:

1. calls(participant,fact)
2. charts(chart,fact,type,url)
3. form1(participant,day,hour_minute,host,gender,age,subject,resident, keyword)
4. form2(participant,chart,wait,fact,type,unit,topic,measure,tid,category,startform2,endform2)

The names within the parentheses are the column variables of the respective tables. Table 1, 3

and 4 have all the variable participant which means they can be combined to give a wide

empirical description of the participant and his/her demographic attributes as well as his/her

interaction with the experimental system.

Table 1 is used to keep track of the facts presented for each participant to avoid that he/she is

exposed to the same fact more than once. Each participant is identified by an internal identifier,

participant, which is kept during the session in order to make the presentations and responses

connectable during the analysis.

The second table is a listing of all fact presentations in the gallery. Since there are 25 facts, all

represented by 3 different presentations, the table has 75 rows, each with a distinct chart number,

reference to the fact represented, the type of presentation, and a pointer to the chart images in the

gallery. This table is the basis for random drawing representations and a link to the gallery with

the image files to be presented. Note that the gallery is not part of the database, but a collection

of image files in a separate directory.

53

Form 1 is used for recording when a participant joined the experiment (date, hour and minute) as

well as his/her demographic data values for the attributes gender, age group, professional

background (in work/studies),country of residence and keyword.

The last table is the main table in which the feedback from the participants for each presentation

is saved. The table variables reflect the participant, the chart reported on, the time it was

displayed for the participant, the fact presented in the chart, the chart topic perceived by the

participant, perceived measure used in the chart, if the presentation refereed to a single/multiple

time(s), category, start times and end times are variables used to measure the times needed for

completing the forms.

A table containing the 'correct' values for each fact also exists for use during the subsequent

analysis of the experiment. Since we are not discussing the analysis in this course, this table is

not included in the listing above.

Design of the dynamic web process

The design of the web process to be implemented has 6 main templates of which some have

attached templates for background processing:

1. Opening page explaining the application and a login form
2. Demographic form
3. First chart display
4. Perception report form
5. Next chart display
6. Thanks for participating

In addition to these templates, an Application.cfm template setting the session management must

be created for specification of persistent session variables. The variable session.datasource is also

set in this template.

Opening page

The first template, index.cfm, opens the experiment for the participant. It explains the

application and asks the participant for his/her keyword. As indicated above, the keyword is not

a password, but simply a means for recording to which recruitment group the participant belongs.

The opening template contains a small form which is used to record the participants key (in the

application example, you can use the key="CF"). When the form is submitted, the control is

transferred to template form1.cfm (Line 3).

1. <--- index.cfm --->

2. <p>(There is a relative long introduction of the application which has little relevance for the

implementation. You can read the full text in the application example.)</P>

3. <FORM ACTION="form1.cfm" METHOD="post">

54

4. <p>If you wish to participate, please type your keyword: <INPUT TYPE="TEXT" NAME="KEYWORD"

VALUE=" "></p>

5. <p>and click the button,</p>

6. <p> <INPUT TYPE="SUBMIT" NAME="response" VALUE="Participate"></P>

<p>else go to your preferred URL.</p>

After reading about the experiment as indicated in Line 2, the visitor is offered the option to

cancel his/her participation as indicated in Figure 2.

Figure 2: Introductory page

Demographic form

Before starting to record the demographic data, it is important to give the participant an

identification permitting to recognize him/her each time he/she returns a feedback. One option is

use of cookies as we did in the Market research application. Since some people do not permit

their browsers to accept cookies, we use another technique in this experiment.

As soon as a visitor has decided to become a participant, control goes to template form1.cfm.

According to Line 2, the participant is assigned an internal identifier, #session.participant#,

computed from the time the form was processed by the server. A simpler time identifier can be

used, but in this session we compute the identifier from scratch to demonstrate the principle in

detail. There is a microscopic risk that 2 or more participants can be assigned identifiers within

the same second. A few other variables are also set to last through the session in Line 3-6,

including the day, time, IP number of the client, and the keyword which all is required saved in

the database.

http://nordbotten.net/courses/ics/sessions/session5/images/figure2.cfm

55

Then follows the demographic form in Line 11-64 displayed for collecting the background data

about the participant. Even though advantage is taken of the HTML form possibilities including

menus to check the relevant option, the template is long, but does not introduce any new CFMX

features.

1. <--- form1.cfm --->

2. <CFSET session.participant=Second(#Now()#)+60*Minute(#Now()#)+

60*60*Hour(#Now()#)+60*60*24*Day(#Now()#)+60*60*24*30*Month(#Now()#)

+60*60*24*30*12*(Year(#Now()#)-1999)>

3. <CFSET session.day=#DateFormat(Now())#>

4. <CFSET session.time=#TimeFormat(Now())#>

5. <CFSET session.host=cgi.remote_addr>

6. <CFSET session.keyword=#form.keyword#>

7. <H2>Demographic Form</H2><P>

8.

9. <p>The information you give on this form is needed for classifying your answers about the presentations in

demographic and social categories such as male-female, age group, etc. Your identity will not be revealed by

your answers. <p>

10. <i>Please click at the arrow symbol at the right hand side of each reply box to get the reply options

displayed and make your selection.</i> <p>

11. <FORM ACTION="first_chart.cfm" METHOD="POST">

12. <TABLE>

13. <TR>

14. <TD>

15. <I>Is your gender:</I><P></TD>

16. <TD><SELECT NAME="gender">

17. <OPTION value="0">Unanswered

18. <OPTION Value="1">Male

19. <OPTION Value="2">Female

20. </SELECT></TD>

56

21. </TR>

22. <TR>

23. <TD><I>Is your age:</I><P></TD>

24. <TD><SELECT NAME="age">

25. <OPTION value="0">Unanswered

26. <OPTION value="1">19 years or less

27. <OPTION value="2">20-24 years

28 <OPTION value="3">25-29 years

29. <OPTION value="4">30-49 years

30. <OPTION value="5">50 or more

31. </SELECT></TD>

32. </TR>

33. <TR>

34. <TD><I>Are you studying/working in:</I></TD>

35. <TD><SELECT NAME="subject">

36. <OPTION value="0"> Unanswered

37. <OPTION value="1"> Humanities (incl. religious and humanitarian services)

38. <OPTION value="2"> Social sciences (incl. law and business)

39. <OPTION value="3"> Life sciences (incl. medicine, ontology, psychology)

40. <OPTION value="4"> Natural sciences (incl.engineering, construction)

41. <OPTION value="5"> Agriculture,fisheries, industry

42. <OPTION value="6"> Business

43. <OPTION value="7"> Services (incl.work in the home)

44. <OPTION value="8"> Central and local government

45. <OPTION value="9"> Other

57

46. </SELECT></TD>

47. </TR>

48. <TR>

49. <TD><I>Are you living in:</I><P></TD>

50. <TD><SELECT NAME="resident">

51. <OPTION value="0"> Unanswered

52. <OPTION value="1"> Denmark

53. <OPTION value="2"> Norway

54. <OPTION value="3"> Sweden

55. <OPTION value="4"> Other European countries

56. <OPTION value="5"> United States

<OPTION value="9"> Other countries

57. </SELECT></TD>

58. </TR>

59. </TABLE>

60. If you want to continue, click the button

61. <INPUT TYPE="SUBMIT" NAME="submit" VALUE="CONTINUE">,

62. please be patient while the display is compiled,

63. <p>else leave for the URL you prefer.</p>

64. </FORM>

58

Figure 3: Collecting background data

Figure 3 shows how this form appears to the user. When submitted, this template calls upon the

template first_chart.cfm.

Displaying the first chart

The template first_chart.cfm has 2 tasks:

 take care of and save the data submitted by the participant's completed demographic form.
 prepare for sending the first chart presentation to the participant.

The first task requires the CFQUERY tag in Line 3 followed by an INSERT INTO statement.

This statement specifies all the variables we want to insert into the table form1 of database

#session.datasource# and their values. The first 4 are values of session variables defined in the

previous template. The next 4 are values submitted by the participant on the demographic form.

Note that we refer to these by preceding their names with the qualifier form because they were

submitted by the last read form. The value of the keyword variable was also defined as a session

variable in the previous template. All variables are introduced to the database as texts, i.e. they

are surrounded by single quotes.

1. <!--- first_chart.cfm --->

2. <!-- Store answers from Participant's form -->

3. <CFQUERY NAME="ADDFORM1" DATASOURCE="#session.datasource#">

4. INSERT INTO form1 (participant,day,hour_minute,host,gender,age,subject, resident, keyword)

VALUES('#session.participant#','#session.day#', '#session.time#', '#session.host#','#form.gender#',

'#form.age#','#form.subject#','#form.resident#', '#session.keyword#')

http://nordbotten.net/courses/ics/sessions/session5/images/figure3.cfm

59

5. </CFQUERY>

6. <!-- Randomize and draw a random first chart number. The parameters must be set 1 and 75 where 75 is

the number of facts-->

7. <CFSET random=RANDOMIZE(#session.participant#)>

8. <CFSET session.chart=#RANDRANGE(1,75)# >

9. <!-- Retrieve the first fact number, type and usl corresponding for chart number -->

10. <CFQUERY NAME="SELECT1" DATASOURCE="#session.datasource#">

11. SELECT chart,fact,type,url FROM charts WHERE chart=#session.chart#

12. </CFQUERY>

13. <!-- Set session variable values -->

14. <CFSET session.fact= #select1.fact#>

15. <CFSET session.type=#select1.type#>

16. <CFSET session.url= #select1.url#>

17. <!-- Update calls with the participant identification and the fact number displayed -->

18. <CFQUERY NAME="INSERTCALL" DATASOURCE="#session.datasource#">

19. INSERT INTO calls(participant, fact) VALUES('#session.participant#','#session.fact#')

20. </CFQUERY>

21. <!--- Set the initial value of session.counter --->

22. <CFSET session.counter =1>

23. <!--- The image should be displayed for session.wait sec. --->

24. <CFSET session.wait=#RANDRANGE(10,20)#>

25. <CFOUTPUT>

26. <META HTTP-EQUIV="Refresh" CONTENT="#session.wait#; URL=back.cfm">

27. </CFOUTPUT>

28. <--- first_chart --->

29. <!-- Display first image, and refresh with form2.cfm -->

60

30. <H2>This is the first presentation of 25:</H2><P><P>

31. <!-- Present the display selected: -->

32. <CFOUTPUT>

33.

34. </CFOUTPUT>

35.

36. The presentation will be removed after a randomly determined time.

The second task of the template is preparing for the display of the first chart. This is the core of

the application, and rather complex. Be patient, it is not that difficult as it may look at the first

glance. There are also some comments included which should help to understand the algorithm.

The first step is to use the RANDOMIZE(#session.participant#) function to provide the system

with a seed for the pseudo-random algorithm which will be used. Since the value of the

session.participant variable is unique, it is an ideal for use as a seed. Note that this function

does not randomize the session.participant variable, it prepares for the use of the following

RANDRANGE function. The first chart to be presented is determined by the function

session.chart=RANDRANGE(1,75) which provide a random integer in the range 1 to 75

(Recall that the number of different presentations charts in the gallery collection is 3*25=75). To

find the location of the chart, the fact it represents and its type, requires a search (Lines 10-12)

using SQL statement SELECT in the database #session.datasource# FROM table charts for

the row WHERE chart value is #session.chart#. The location of the chart is contained in the

variable url. We need to refer to this query and name it select1.

The 3 variables session.fact, session.type and session.url are set and assigned the values

retrieved from the query named select1 in Line 14-16. For future use, the table calls must be

updated with the values of #session.participant# and #session.fact# to avoid presenting the

participant with the same fact more than once. This we do with a simple CFQUERY with an

INSERT INTO statement in Line 19.

session.counter is a variable used to keep track of the number of presentations sent to the

participant. At this point it is initialized with value 1. In Line 24 of the template, the length of the

time in seconds the current presentation should be exposed is determined as a random integer

between 10 and 20 seconds.

Line 26 contains a particularly interesting HTML statement. The META statement will keep the

presentation of the current presentation (not yet presented!) on the client's screen for

#session.wait# seconds, before it passes the control to the form2. cfm through a small template,

back.cfm, (not reproduced here) with a warning against the temptation to use the back-button. To

simplify, you can substitute back.cfm with form2.cfm in Line 26.

61

We are now approaching the end of the preparations for sending the selected presentation to the

client. Lines 30 to 36 take care of this final purpose of this template. As you see from Line 33,

the presentation image is stored at the location to which the URL #session.url# points. Figure 4

show a random presentation.

Figure 4: Presentation example

Perception report form

By means of the previous template the presentation is displayed for the participants for the

randomly determined time period and the control redirected to the template form2.cfm for

display of form 2. The main purpose of form2.cfm is to collect the perception report from the

participant. A few other facts are also recorded, for example session.startform2 for recording

the start time for working on form2 in Line 2.

1. <!--- Form2 returned to the visitor: --->

2. <CFSET session.startform2=#LSTimeFormat(Now(),"HH:MM:SS")#>

3. <H2>Report Form</H2>

4. <P><P>

5. Please do not get tempted to use your Back button, it may ruin your

participation.<P>

6. <p>This is your report on the presentation which was displayed for you. Some presentations are

intentionally displayed for only a short period in order to test for how long time such a presentation should be

http://nordbotten.net/courses/ics/sessions/session5/images/figure4.cfm

62

displayed, f.ex. on TV. It is not expected that you always can give answers to all questions. If the presentation

was not displayed, leave the form blank.</P>

7. <i>Click at the arrow symbol at the right hand side of each reply box to get the reply options displayed

and make your selection.</i> Please take the time you need to complete the report.<P><P>

8. <!-- This is the call for the template to record the answers in the data base and to generate the next display:

-->

9. <FORM ACTION="next_chart.cfm" METHOD="POST">

10. <TABLE>

11. <TR>

12. <TD><I>Was the topic of the presentation within the domain of:

</I></TD>

13. <TD><SELECT NAME="topic">

14. <OPTION Value="0">Unanswered

15. <OPTION value="1">Demographic, social and health conditions

16. <OPTION value="2">Education, culture and art, religion

17. <OPTION value="3">Work, employment, professions

18. <OPTION value="4">Production, services, economy

19. <OPTION value="5">Research and development

20. <OPTION value="6">Entertainment, tourism, traveling

21. <OPTION value="7">Environment, climate, natural resources

22. <OPTION value="8">Government, elections, politics

23. <OPTION value="9">Several domains, other

24. </SELECT></TD>

25. </TR>

26. <TR>

27. <TD><I>In which measure the presented fact expressed

by:</I></TD>

28. <TD> <SELECT NAME="measure">

63

29. <OPTION Value="0">Unanswered

30. <OPTION value="1">Numbers, values (e.g. 3000 persons, 400 dollars)

31. <OPTION value="2">Percentages, fractions, points (e.g. 30%, 1/4 of population, 110.9 (1990:100)

32. <OPTION value="9">Other

33. </SELECT> </TD>

34. </TR>

35. <TR>

36. <TD><I>Were the facts related to a single or <font face=""

color="Red">multiple point(s)/period(s) of time:</I></TD>

37. <TD><SELECT NAME="tid">

38. <OPTION Value="0">Unanswered

39. <OPTION value="1">Single point/period(e.g. Dec.31 1999, Year 2000)

40. <OPTION value="2">Multiple points/periods(e.g. Dec. 31 1999 and 2000, Year 1900 and 2000)

41. </SELECT></TD>

42. </TR>

43. <TR>

44. <TD><I>Were the facts presented in a single or multiple <font face=""

color="Red">categories:</I></TD>

45. <TD><SELECT NAME="category">

46. <OPTION Value="0">Unanswered

47. <OPTION Value="1">A single category(e.g.. one country)

48. <OPTION value="2">Several categories (e.g. male/female, age classes, geographical areas)

49. </SELECT>

50. </TD>

51. </TR>

52. </TABLE>

53. <p>Thank you so far!</P>

64

54. If you want to continue, click the button

55. <INPUT TYPE="SUBMIT" NAME="submit" VALUE="CONTINUE">,

56. (please be patient while the display is compiled),

57. else go to the URL you prefer.

58. </INPUT>

59. </FORM>

In general, you find form2.cfm is long but rather trivial. After an introductory text, the starting

form tag is on Line 9 specifying next_chart.cfm as the template to be called on when the form is

submitted. The form has an ordinary structure with a table tag and ends at Line 59. The form as

presented for the participant can be seen in Figure 5.

Figure 5: Report form

Next chart

The next_chart.cfm is similar to the first_chart.cfm template. The main difference is that the

first_chart.cfm has to take care of saving the submitted data from the demographic form while

the next_chart.cfm must save the data submitted from the perception report form.

The next_chart.cfm template starts by logging the #session.endform2# which is the time at

which the form2 is completed and submitted. The CFQUERY block in Lines 4 to 6 saves the

data in the db by a sql statement INSERT INTO

http://nordbotten.net/courses/ics/sessions/session5/images/figure5.cfm

65

1.<!-- next_chart.cfm. -->

2.<CFSET session.endform2=#LSTimeFormat(Now(), "HH:MM:SS")#>

3. <!-- Store input from form2: -->

4. <CFQUERY NAME="INSERT3" DATASOURCE="#session.datasource#">

5. INSERT INTO form2(participant, chart, wait, fact,type,topic, measure,tid, category, startform2,

endform2)

VALUES ('#session.participant#', #session.chart#, #session.wait#, #session.fact#, #session.type#,

'#form.topic#', '#form.measure#','#form.tid#', '#form.category#','#session.startform2#',

'#session.endform2#')

6. </CFQUERY>

7. <!--- Test if the previous display was the last (no.25) --->

8. <CFIF #session.counter# EQ "25">

9. <--- If the previous display was no. 25 --->

10. <CFLOCATION URL="thanks.cfm">

11. <!--- If not the last fact, continue from here--->

12. <CFELSE>

13. <!--- Select a random chart number and test if fact already displayed: --->

14. <CFSET test="0">

15. <CFLOOP CONDITION =" #test# EQUAL 0 ">

16. <CFSET session.chart=#RANDRANGE(1,75)#>

17. <!--- Get the fact,type and url corresponding to chart number --->

18. <CFQUERY NAME="SELECT2" DATASOURCE="#session.datasource#">

19. SELECT fact,type, url FROM charts WHERE chart= #session.chart#

20. </CFQUERY>

21. <CFSET session.fact = #select2.fact#>

22. <CFSET session.type = #select2.type#>

23. <CFSET session.url = #select2.url#>

66

24. <!--- Check that fact no is not in calls from previous displays --->

25. <CFQUERY DATASOURCE="#session.datasource#" NAME="call">

26. SELECT fact FROM calls WHERE participant = '#session.participant#' AND fact= #session.fact#

27. </CFQUERY>

28. <CFIF #call.fact# NEQ #session.fact#>

29. <CFSET #test#="1">

30. </CFIF>

31. </CFLOOP>

32. <!-- A new chart number for an unused fact has been found -->

33. <!-- Record in calls that this fact has been used -->

34. <CFQUERY NAME="INSERTCALL" DATASOURCE="#session.datasource#">

35. INSERT INTO calls(participant, fact) VALUES ('#session.participant#','#session.fact#')

36. </CFQUERY>

37. <CFSET session.counter=#session.counter#+1>

41. <!--- The image should be displayed for session.wait sec.--->

42. <CFSET session.wait=#RANDRANGE(10,20)#>

38. <HTML>

39. <CFOUTPUT>

40. <META HTTP-EQUIV="Refresh" CONTENT="#session.wait#; URL=back.cfm">

41. </CFOUTPUT>

42. <CFOUTPUT>

43. <H2>This is presentation no.: #session.counter# of 25:</H2><P><P>

44.

45.

46. The presentation will be removed after a randomly determined time.

67

47. </CFOUTPUT>

48. </CFIF>

49. </BODY>

50. </HTML>

The CFIF tag in Line 8 tests if the just saved form was the last, i.e. number 25. If so, the control

is directed to thanks.cfm.

The selection of a new presentation is more complicated than the first because we now have to

check that the display drawn does not represent a fact already presented. Line 15 to 31 is a

sequence of CF tags in which a display is randomly selected and tested, if the implied fact has

already been used the sequence is repeated. When a presentation of an unused fact is found, the

looping is finished and the processing continues for the new display as for the first display

Thanks to the participants

When a participant has responded to 25 presentations, he/she is sent a page generated by the final

template tanks.cfm. Again, this is a page without any CF tags and it qualifies as a HTML page

including the reference to a mail address in Line 9.

1. <--- thanks.cfm --->

2. <HTML>

3.<BODY>

4. <H1>

5. SIS Statistical Information Systems</H1>

6. <P>You have completed the applications. Thank you very much for your patience and interest.</P>

7. <P>Please exit to the URL of your choice.</P>

8. If you have any proposals or comments, please send them to:

9. Svein Nordbotten

10. <!-- The session is terminated -->

11.</BODY>

12. </HTML>

Figure 6 gives the last display for the participant who completes all 25 presentation reports.

http://nordbotten.net/courses/ics/sessions/session5/images/figure6.cfm

68

Figure 6: Thank you

The experiment discussed in this session has been carried out several times in different

environments, and the experience for this type of experiments is encouraging.

Exercises

a. Read Chapter 10 in RBB about a CFML tag, CFFORM, which extends the functionality of

the ordinary HTML tag FORM with a variety of control features.

b. In the application discussed, the focus was on perception of socio-demographic facts. The

framework used is general and can for instance be used for investigating the impact on web users

from different layouts (background color, font sizes, animation, etc.) of web pages. Choose an

aspect in which you have interest, and re-write the templates for an investigation of this aspect.

c. Modify the templates to satisfy another experiment on the net.

d. Consider the changes you must do in the templates if you do not have access to a database and

have to rely on the CFFILE tag.

e. There is more advanced solutions to avoid backtracking. Try to see if you can find one. If you

succeed, inform the other students about the trick.

69

Session 6: Web search engine

A search engine

Among the most used tools on the web are the search engines. Through a systematic and

continuous search, huge indexes with references to the addresses of hundreds of millions of web

files are created and maintained. Also smaller organization may need search engines for their

internal files. In this session, the development of the simple search engine is discussed and

exemplified with a search engine for this course.

In contrast to the databases in which the data are nicely organized in tables, the type of data

considered here are text files with varying content and length. Among the properties of text files

are, in addition to the size, language, etc., the words included in the documents. The tool we

discuss in this session is a full text search engine, which can be implemented by means of

features in ColdFusion. The basic approach of a full text search engine for a (large) set of text

files is an index file with one record for the different (important) words occurring in the set of

texts. Each word record has attached links to the files in which the word occurs one or more

times. By asking for files with one or several words contained, a search through the index file

will give links to the requested files. Based on the numbers of occurrences in the requested files,

scores can be computed.

Included in ColdFusion are the components for such a search engine. They originate from a

system module called Verity included in CFMX.

To create search engine templates for your web system using CFML, you must take several

steps:

1. Prepare a menu
2. Register the collection of files which should be covered by the system
3. Index the files
4. Construct a query interface to the system
5. Prepare searching by means of the engine
6. Prepare an option for deleting a collection

Figure 1 indicates the system components. The right hand part of the figure represents how the

search results first appear as references while the left side of the figure indicates that these

references can be activated to retrieve the files searched. When the user receives the retrieved

links, he should be able to select all or some of the links and retrieve the electronic documents in

which he/she is interested.

http://nordbotten.net/courses/ics/sessions/session6/images/figure1.cfm

70

Figure 1: Outline of search system

In the following sections, the templates needed for implementing a search engine in CFMX

Verity module are discussed.

Selection menu

The implementation of the full text retrieval system requires a usual Application.cfm template

similar to those discussed in earlier applications (no datasource is needed). The first template,

index.cfm, is a menu for selecting the required processes:

1. <!--- index.cfm --->

2. <h2>Search engine</h2>

3. <p>Select the process you want:</p>

4.<p>1. Define a collection of files </p>

5. <p>2. Indexing the files of a collection</p>

6. <p>3. Searching in a collection index</p>

7. <p>4. Deleting a file collection</p>

71

Figure 2: Search system menu

The menu, Figure 2, generated by the template, displays 4 options,

 registering
 indexing
 searching
 deleting

Observe that a set of files representing text documents is assumed already stored on your disk for

registration as a collection. Be careful with interpreting this term. For example, when the

literature discussing creation of a collection, it does not mean creating the documents, but

defining the location of the collection indexes, and when the documentation refers to deleting a

collection, it means that the indexes and the definition of the collection are deleted, not the

physical text files.

File collection

The collection, which we are going to define for this example, comprises the session text files of

this course. Usually, the number of text files comprised by a collection is of course much higher.

The files can be of different types, distinguished by their extensions, .htm, .html,.cfm, .cfml,

.jpg, .gif, .pdf, .txt, .xls, etc. Note that graphical files can also be included, but only indexed if

they contain some text. Not all types of files are always relevant for the application. The first

task is to distinguish between relevant and irrelevant files by extension during the indexing. In

the example, we use only .cfm files.

The first step is naming the collection remembering that a collection is not the set of files

themselves. The following template makes the required preparation for a collection:

http://nordbotten.net/courses/ics/sessions/session6/images/figure2.cfm

72

Figure 3: Recording form

The form_recording.cfm displays a form, Figure 3, requesting the information needed for

definition of a collection:

1. <!--- form_recording.cfm --->

2. <h2>Defining a collection</h2>

3. <form action="recording.cfm" >

4. <p>Name of collection:<input type="text" name="collection_name">

5. <p>Folder for collection:<input type="text" name="collection_path"> </p>

6. <p><input type="submit" value="Record"></p>

7. </form>

The form requests 2 attribute values:

 What name should be attached to the collection,
 In which folder should the collection, i.e. the index files, be established

Recall that the collection consists of special index files referring to the files in the set in which

we are interested, not the data files themselves. The collection path is therefore referring to the

collection index.

The FORM tag leaves the process control to the template recording.cfm when the form is

submitted. The recording.cfm template looks like this:

1. <!--- recording.cfm --->

http://nordbotten.net/courses/ics/sessions/session6/images/figure3.cfm

73

2. <CFLOCK TIMEOUT="30" NAME="cfcollection_lock" TYPE="EXCLUSIVE">

3. <CFCOLLECTION ACTION="CREATE" COLLECTION="#collection_name#"

PATH="#collection_path#" LANGUAGE="English">

4., </CFLOCK>

5. <p><h3>The collection is registered.</h3></p>

Keep in mind that the templates now discussed are tools for the developer to establish the search

engine, not for the end users. Still, there might be several people working with the files, and to

avoid any problems, this template uses the CFLOCK/CFLOCK tags. The lock makes certain

that the developer can make the recording enclosed undisturbed by other developers and/or users.

The CFLOCK in Line 2 has many possible attributes of which we need only 2 in the present

application. TIMEOUT specifies the maximum time in seconds CFMX should wait to obtain a

lock, not the duration of the lock. TYPE of lock and is set to "EXCLUSIVE", the alternative is

"READONLY". An exclusive lock reserves the files completely for the developer's script while

it is working within the locked area. CFLOCK tags should be used around all read-write

operations for which there is a risk that 2 or more requests happen at the same time. Experience

indicates that in applications with few users, this situation happens rather infrequently.

CFCOLLECTION tag has several options. The first is ACTION, which we give values

"create" and "delete" in this example. The name of the COLLECTION is needed and received

from the previous form, and so is also the attribute PATH which is the path of the folder in

which the collection is to be established. LANGUAGE has "English" as default. If the text in

the files are from other languages, an International Language add- on is available.

Indexing the files

The defined collection must be populated/indexed with data about the files in which we are

interested. This is done by the process indexing. A second form, Figure 4, is implemented for

this purpose by the template form_indexing.cfm:

http://nordbotten.net/courses/ics/sessions/session6/images/figure4.cfm

74

Figure 4: Indexing form

1. <!--- form_indexing.cfm --->

2. <h2>Indexing documents for a collection</h2>

3. <form action="indexing.cfm" >

4. <p>Name of collection:<input type="text" name="collection_name"></p>

5. <p>URL path to source folder:<input type="text" name="URLPATH"></p>

6. <p>Full path to source folder:<input type="text" name="KEY"></p>

7. <p>File extensions:<input type="text" name="extensions"></p>

8. <input type="submit" value="Index"></p>

9. </form>

In addition to the name of the collection, the URL path and the Full path to the folder (not the

connection folder!) containing the documents to be index are required. Remember the URL path

must start with http://.. The full path of the same folder on the server should also be provided.

This path starts with c:\.., or another relevant disk reference. Finally, the extension(s) of the files

to be included must be specified. The specification must be on the form .cfm, .pdf, .jpg, etc. If

more than one is needed, comma should be used as delimiter.

Multiple collections and document folders can also be specified with comma delimiters between

names and paths.

75

From this form, the process control is left to the template indexing.cfm. This short template

contains the very powerful tag CFINDEX tag in Line 3:

1. <!--- indexing.cfm --->

2. <CFLOCK TIMEOUT="30" NAME="cfindex_lock" TYPE="EXCLUSIVE">

3. <CFINDEX ACTION="UPDATE"

COLLECTION="#collection_name#"

TYPE="PATH"

EXTENSIONS="#extensions#"

RECURSE="YES"

URLPATH="#urlpath#"

KEY="#key#"

LANGUAGE="English">

4. </cflock>

5. <p><h3>The collection is indexed.</h3></p>

For the reason given above for specification of collections, CFLOCK-/CFLOCK tags are used

to enclose the indexing process because it can take some time if the number of files to be indexed

is large. Indexing of the document files (populating the collection) is completely taken care of by

means of the CFINDEX tag. The ACTION is specified to "UPDATE" which can be used both

for initialization as well as maintenance of an index. RECURSE is set to "YES" indicating that

the process should traverse all sub folders of text files if any. The remaining attribute values are

obtained from the form_indexing.cfm.

Searching the collection

The previous processes have established the search engine. We are now ready to prepare the use

of the search engine. A simple search form, Figure 5, is the first step. It is implemented by the

template form_searching.cfm:

1. <!--- form_searching.cfm --->

2. <h2>Searching a collection</h2>

3. <form action="searching.cfm" >

4. <p>Name of collection:<input type="text" name="collection_name"></p>

5. <p>Search words:<input type="text" name="criteria">

6. <input type="submit" value="Search"></p>

7. </form>

http://nordbotten.net/courses/ics/sessions/session6/images/figure5.cfm

76

Figure 5: Search form

A search requires the name of the collection(s) and search criteria. A simple search criteria can

be a single word, a phrase, several words delimited by comma between them as well as

expressions based on the logical operators OR, AND and NOT. More complex search criteria

can be created by using a special Search Language available in CFMX VERITY module.

The search data are sent for processing by means of the template searching.cfm. The core of this

template is the CFSEARCH tag. This tag has a number of attributes. Execution of the tag also

provides a number of variables about the search. Attributes in addition to those transferred from

the search form, are TYPE, STARTROW and MAXROW. TYPE is given the value

"SIMPLE" which is the most compact form, the alternative is "EXPLICIT" which is more

flexible, but requires the criteria spelled out explicitly with all operators. STARTROW and

MAXROW refer to the references retrieved. In our example we use the values "1" and "10",

respectively, for the two attributes.

The searching.cfm template is listed below. Following the CFSEARCH tag, the results of the

search are sent for display by Lines 3-6. Line 5 makes use of 2 of the variables provided by the

search process, i.e. #collection_search.recordssearched# and

#collection_search.recordcount#. The value of the first variable informs about the total number

of files referred to in the index, the second the number of files relevant according to the criteria

specified in the previous form.

1. <!--- searching.cfm --->

2. <CFSEARCH COLLECTION="#collection_name#"

NAME="collection_search"

TYPE="SIMPLE"

CRITERIA="#criteria#"

STARTROW="1"

MAXROWS="10"

LANGUAGE="English">

3. <h3>The search gave the following results:</h3>

77

4. <CFOUTPUT>

5. <p>The collection contained #collection_search.recordssearched# files, and

#collection_search.recordcount# files satisfying the search criteria "<font

color="Red">#criteria#".</p>

6. </CFOUTPUT>

7. <CFIF #collection_search.recordcount# LTE 0>

8. <CFOUTPUT> Sorry , no files were found for the search criteria "<font

color="Red">#criteria#".</CFOUTPUT>

9. <cfelse>

10. <p>These files found were:</p>

11. <table>

12. <tr><td>Score:</td><td>Link:</td></tr>

13. <CFOUTPUT QUERY="collection_search">

14. <tr>

15. <td>#collection_search.score#</td>

16. <td>#collection_search.url# </td>

17, </tr>

18. </CFOUTPUT>

19. </table>

20. </CFIF>

The remaining Line 7-20, controls a two way branching by a set of CFIF-CFELSE-/CFIF tags.

The decision criteria in Line 7 select Line 8 if no relevant files were found. If relevant files were

identified, Line 10-19 is executed. The results are presented in a TABLE construct with 2

columns: Score and Link. The score is a number in the range 0 to 1 where 1 is indicating the

highest possible relevance. Link is a sensitive link to the actual file which can be retrieved by a

click.

Deleting a registered collection

After some time a search engine can become obsolete. To make the system complete, a

possibility to delete a collection with the contained indexes must also be included. The

form_deleting.cfm template generates the necessary form:

78

1. <!--- form_deleting.cfm --->

2. <h2>Deleting a collection</h2>

3. <FORM ACTION="deleting.cfm" >

4. <p>Name of collection:<INPUT TYPE="text" NAME="collection_name"></p>

5. <p><INPUT TYPE="submit" VALUE="Delete"></p>

6. </form>

The only required information is the name of the collection. When the form, Figure 6, is

Figure 6: Deleting form

submitted, the template deleting.cfm takes care of the deletion:

1. <!--- deleting.cfm --->

2. <CFLOCK TIMEOUT="30" NAME="cfcollection_lock" TYPE="EXCLUSIVE">

3. <CFCOLLECTION ACTION="delete" COLLECTION="#collection_name#">

4. </CFLOCK>

5. <h3>The collection is deleted.</h3>

The deleting.cfm uses the same CFCOLLECTION tag as the recording.cfm did.

http://nordbotten.net/courses/ics/sessions/session6/images/figure6.cfm

79

Final remarks

It is important to note that the hidden dynamics in this system, i.e. using the results of a search

for output, cannot be done with any static tool.

A search engine of the type we have discussed in this session is an interesting tool generating a

number of research questions. Problems, which can be raised, are how different groups express

their search criteria? Do they learn over time using a search engine more efficient? How many

users are able to express advanced search criteria? Are advanced search criteria more effective

than simple? Should large text files be partitioned into smaller sub files to obtain more efficient

searches?

Exercises

a. Read Chapter 16 in RBB about the Advanced Techniques and try to see possible

improvements of the templates presented in this session.

b. Copy all search engine templates to your PC. Prepare 3-4 small text files in English, or use

some files you already have. Try to create a collection and to index the text files. Set up the

search engine.

c. Do explorative searches in your collection using words and logical expressions as search

criteria. Study the Scores, and compare with the frequencies of the word appearances in you text

file collection.

d. Report on the Message board about your experience

e. Developers interested in crawlers, should investigate Web Spider, a command-line utility,

which can be found in the COLDFUSIONMX directory in your computer.

80

Session 7: e-learning

Web courses

In this session, implementation of web courses using ColdFusion is discussed. As a student of

this course, you should be particularly well armed with good ideas from your personal

experience. It is impossible to go through a complete course in detail. The course you are

attending contains for example more than 1000 files of different types organized in a structure

with about 180 folders. In this session, we concentrate on discussing a few essential problems

common for most Web courses.

As an application example, a hypothetical web course on Information Retrieval is used. We

assume that the following list can be used as a guide for our discussion:

 Course architecture
 Authorization and authentication
 Texts
 Illustrations
 Literature
 Evaluation

You find a link to the implementation of the example at the end of the session. You can either

register yourself getting your own PIN code, or you can behave as already registered with e-mail

"dummy@dummy" and PIN code "0".

Course architecture

Development of a web course, like any IT system, is an art. There are no absolute, proven rules

for what is the right or the best approach. The more complex the objectives are, the more

elaborated course structure will be required. In this example application, a folder with a flat

organization of all needed files will be considered acceptable. All the files for the example is in a

single folder (with the exception of a database located outside the directly accessible area and

referred to as (#session.datasource#).

Security considerations are important only in connection with course design. We use the course

application as a case for discussing authorization and authentication of users which is a common

task in many applications. Along the road, we shall also make comments to other forms of

security. In Figure 1, the overall organization for the example course is depicted. The figure

indicates that topics we are particularly interested in discussing are authorization, authentication

http://nordbotten.net/courses/ics/sessions/session7/images/figure1.cfm

81

and

Figure 1:Course organization progress control.

Authorization and authentication

In mostly web courses, participation requires authorization, i.e. each participating student has

been admitted by a sponsoring organization. By authorization, the participant receives some kind

of identification to prove his/her right to enter the course. The requirements governing the

authorization can vary from course to course. The technique of assigning the identification for

proving the right to participate is a highly relevant subject to discuss in more detail.

The first template we shall discuss is the index.cfm which opens our example course scenario. It

starts by a welcome text to both admitted and new, applying students. Line 3 differentiates

actions for the two groups. If the caller is new, he/she is asked to go on for registration, while

already registered students can proceed to the login as specified in Line 5-9.

Consider the login alternative first. The login process, Figure 2, requires that the student types

his/her e-mail address and personal PIN code which she/he received when registered. The

http://nordbotten.net/courses/ics/sessions/session7/images/figure2.cfm

82

Figure 2: Course entrance form

process of checking that a student is entitled to access the course as an admitted student is

referred to as the authentication.

The index.cfm template is quite ordinary and looks like this:

1. <!--- index.cfm --->

2. <h1> <i>e-learning</i> Information Retrieval</h1>

3. <p>Thank you for your interest in this course on Information Retrieval. If you already have registered for

the course, go on to the login. If you are new and want to join this course, we need some information from

you, and you will need a personal identity number (PIN). Please click on registration form. </p>

4. <p>If you already are registered, please continue </p>

5. <p>Access the course with your

6. <FORM METHOD="POST" ACTION="authentication.cfm">

7. <p>PIN: <INPUT TYPE="Password" name ="submitted_pin" SIZE="17"></P>

8. <p>Click the button <INPUT TYPE="SUBMIT" NAME="response" VALUE="Submit"></p>

9. </FORM>

Lines 6-7 of the template indicate that for authentication, the e-mail address and the PIN code

are required. More identifiers, means a higher security, i.e. less risk for intruders.

Registration and authorization

If the student replies that he wants to register, the registration.cfm template is called (Figure 3):

http://nordbotten.net/courses/ics/sessions/session7/images/figure3.cfm

83

Figure 3: Course registration form

1. <!--- registration.cfm --->

2.<h2>Registration form</h2>

3. <form action="authorization.cfm" METHOD="post">

4. <pre>

5. First name: <INPUT TYPE="text" NAME="FirstName" SIZE="30">

6. Family name: <INPUT TYPE="text" NAME="LastName" SIZE="30">

7. E-mail: <INPUT TYPE="text" NAME="Email" SIZE="30">

8. </pre>

9. <p>All boxes must be compl hardware platform, and the limitations of the web server.

In a similar way, the eted for successful processing.</p>

10. <p><INPUT TYPE="submit" VALUE="Submit"> your registration.</p>

11. </form>

The PIN can either be self-composed, i.e. the person who request registration provides his/her

own password, or it is assigned by the system. Self-composed PINs have the advantages that

they may be easier for the owners to remember, and they can by special techniques (hashing) be

kept secret also for the system staff. Compared with the system assigned passwords, the

disadvantages of self-composed PINs are they may be easy to guess, and they cannot easily serve

as internal identifiers. The above template has no field for providing self-composed PINs

indicating that we have chosen to use system assigned identifiers.

84

The registration.cfm template leaves the control to the authorization.cfm template which can be

modified in several ways. For example, the course capacity, which is set in Line 2, will depend

on a number of factors as the nature of the course, the capacity of instructor. The multiplier set

in Line 3 is another parameter, which can be changed. Increasing the value of the multiplier

affects the security of authentication by reducing the risk that a valid password can be found by a

potential intruder. Note that the value 5 of multiplier with random PIN generation used in this

example, means that a potential intruder in average must make 5 trials to hit a valid PIN value

because the size of the number space from which the codes are drawn, is 5 times the capacity.

Since a valid PIN number has to be combined with the associated email address, the risk is

considered low enough.

This application uses the datasource #session.datasource# with a table, used_pin, which has 2

columns, email and pin. For security reasons, the database is located outside the area available

from the web and in our example specified in the Application.cfm..

The template has a CFQUERY tag named "list" with a SELECT FROM statement in Line 4.

The SQL statement retrieves all values in column pin. The number of records in the table is

available as the value of the variable List.Recordcount. In Line 7 is a CFIF tag test if the

number of used PIN's, i.e. the value #List.Recordcount#, already has reached the capacity limit.

If so, a message about no vacant position is sent to the student. If there is still capacity, Lines 10-

31 specify the further processing.

1. <!--- authorization.cfm --->

2. <cfset capacity="10">

3.<cfset multiplier="5">

4. <CFQUERY NAME="list" datasource="#db#">

5. SELECT pin FROM used_pin

6. </cfquery>

7. <CFIF #list.Recordcount# EQ #capacity#>

8. <h2>Sorry, the course has no vacant position.</h2>

9. <CFELSE>

10. <CFSET test="0">

11. <cfloop condition="#test# EQ 0">

12. <CFSET temp=randomize(second(Now()))>

13. <CFSET generated_pin=#RandRange(1, #multiplier#*#capacity#)#>

14. <cfset test="1">

85

15. <CFLOOP QUERY="list">

16. <cfif #list.pin# EQ #generated_pin#>

17. <cfset test="0">

18. <cfbreak>

19. </cfif>

20. </cfloop>

21. <cfif #test# EQ 1>

22. <CFBREAK>

23. </cfif>

24. </cfloop>

25. <cfquery name="add_pin" datasource="db">

26. INSERT INTO used_pin(pin,email) VALUES('#generated_pin#','#email#')

27. </cfquery>

28. <cfoutput><h2>Your PIN for the course</h2>

29. <p>You have been admitted to the course. Use the following PIN each time you log in to the course:

#generated_pin#</p>

20. </cfoutput>

31. </cfif>

The second part of the template, concerns the generation of a PIN code not previously used. A

variable called test is set equal to 0, followed by a CFLOOP block from Line 11-20. This loop

runs as long as the condition"#test# EQ 0" is true. In Line 12-13, a PIN code is generated by a

random generator in the range 1 to #multiplier#*#capacity#, and the variable test is set to "1".

Then an inner CFLOOP block is inserted in Line 15-20 to check if the generated PIN is free and

not already assigned to another student. .

The operation of this second CFLOOP block is interesting because referring to the name, "list",

of the query, it automatically loops through the query object, i.e. all the retrieved PINs, and

compare in Line 16 each used PINs with the new generated pin. If the new PIN code is found

among the used pin codes, the variable test is again set to 0, this inner CFLOOP is broken and

the remainder of the outer CFLOOP in Line 21-24 is passed without any actions. The control is

returned to Line 11. This continues until the inner loop is passed without being broken, which

implies that the generated PIN is unused. In Lines 25-27, the new student is inserted into

86

database with e-mail address and PIN code, and in Lines 28-30, a message is generated for

return to the student.

In a real life course, the registration form will usually be intercepted for an off-line evaluation

against other criteria as previous training and grades. Following a positive external evaluation,

the PIN code will then be generated and a message sent the applicant.

Authentication

If the student logging in has submitted his e-mail address and PIN code on the form generated

by the index.cfm template discussed above, the process control is transferred to the template

authentication.cfm. The purpose of this template is limited to check that the submitted PIN code

exists.

This template starts by setting a variable test to 0 and queries the datasource for the list of all

registered pairs of email and pin values. The query is named "authentication".

1. <!--- authentication --->

2. <cfset test="0">

3. <cfset submitted_pin="#form.submitted_pin#">

4. <cfquery datasource="#session.datasource#" name="authentication">

5. SELECT pin FROM used_pin

6. </cfquery>

7. <cfloop query="authentication">

8. <cfif #pin# EQ #submitted_pin# >

9. <cfset test="1">

10. <cfbreak>

11. </cfif>

12. </cfloop>

13. <cfif #test# EQ "1">

14. <cfset session.pin=#submitted_pin#>

15. <h3>Please, continue</h3>

87

16. <cfelse>

17. <h3>Your PIN code was not accepted.</h3>

18. </cfif>

As in the authorization template, this template also have a CFLOOP block in Lines 7-12 in

which all retrieved PIN codes are compared with the submitted PIN. If one retrieved code

matches the submitted, the variable test is set to "1" and the loop is broken. Line 13 contains the

variable test. If #test# EQ "1" the authentication is positive. If the test condition is not true, Line

17 produces a message to the student that the PIN code was rejected.

The above templates demonstrate the principle. If we should implement the previously stated

security policy, both the registered email address and the used PIN codes should be retrieved for

each student, and compared with the submitted email address and PIN code.

List of content

After a positive authentication, template content.cfm displays a list of the course content for the

student from which he/she can select a lecture (Figure 4). Note that Lectures 2-4 have no links

Figure 4: News subscription form

http://nordbotten.net/courses/ics/sessions/session7/images/figure4.cfm

88

since they are non-existent in the example.

1. <!--- content.cfm --->

2. <h2>Information Retrieval Course</h2>

3. <h1>Content:</h1>

4.

5. Lecture: Introduction

6. Lecture: Description and query language

7. Lecture: Document indexing

8. Lecture: File organization

9. Lecture: Search operation

10. Lecture: Evaluation

11. <p></p>

12. References

13. Figures

14.

The template is rather trivial and requires no further comments.

Associated with each lecture, a number of special features can be established. Access may, for

example, be delayed to a certain opening date to avoid that the students rush through the course.

The lecture can be finished by a test in which the student can check if he/she has read the lecture

thoroughly and a pre-described test result must be achieved as a condition to continue with the

next lecture. As a student of this CFMX course, you have personal knowledge about the

functioning of the tests and their features. It is also easy to introduce closing dates for the

lectures if wanted.

Lectures

From the list of contents, there are links to the different parts of the course. As illustration, only a

few components are implemented in this example and listed below. On top of each template a

CFIF tag has been included with a special condition, IsDefined('session.pin'). This tag tests if

the client calling the page has been authenticated and a session.pin variable defined in Line 13 of

89

authentication.cfm. If this variable has not been defined, the control goes to CFELSE and to

CFABORT at the end of the templates. This feature reduces the risk for arbitrary visits to

individual pages of the course system.

Lecture 1 could look like this:

1. <!--- text.cfm --->

2. <cfif IsDefined('session.pin')>

3. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

4. <h2>Lecture 1:Introduction</h2>

5. <p>The topic information retrieval concerns the structure, analysis, implementation, search and

dissemination of documents representing information.The purpose of an information retrieval system is to

satisfy needs for information in a best possible way. </p>

6. <p>A typical modern information retrieval system is implemented in a host computer which can be

accessed on internet from client computers. It is implemented with 2 sets of software, the client software and

the server software.</p>

7. <p>The required client server is the basic software for working with the internet, while the server requires

the general software to provide services on internet as well as specialized software for the information

retrieval application. </p>

8. <p>The information retrieval application is build with a collection of documents as in an ordinary library

or files as with a provider of electronic document representations as the core. To help the user to identify the

documents in which he/she is interested, a set of files with meta data for the documents are developed and

frequently organized in a database. In some applications, but far from all, even the electronic documents

themselves can be included in the database.</p>

9. <p>To interact with the system, the user must use a query language which has been adjusted to the type of

meta data in the database. The user must be able to describe the general properties of the unknown

documents he/she wants to identify. On the other side, the retrieval system must be able to interprete the

requests, communicate with the user for more details if necessary, and search in the system for the documents

wanted. Figure 1 gives an overview of a retrieval system.</p>

10. <p>Depending on the users knowledge about the system, the components of the query language, the meta

data for the documents included in the collection, and the composition of documents, the retrieval process

may be more or less successful. To be able to compare one retrieval system application with a second,

measures of performance are needed. For information retrieval, 2 measures, recall and precision, have been

widely used.</p>

11. <p>If A is the subset of the documents which are relevant for a certain task expressed the query by Q, and

B is the retrieved documents, the ratio (A AND B)/A is called the recall of the retrieval system for the query

Q. The precision of the expressed Q for the same task is the ratio (A AND B)/B. Since the evaluation of the

recall in principle assumes that the set of relevant documents in the collection is known (if it is known, no

retrieval problem exists), the set A has to be estimated. Precision, on the other hand, requires no knowledge

outside the retrieved set B.</p>

12. <h3>Literature</h3>

90

13. <p>Return to the Content.</p>

14. <cfelse>

15. <CFABORT>

16. </cfif>

Note that the links to other texts, literature, figures, etc. are included as in a usual HTML page.

Figure 5 shows a part of the lecture.

http://nordbotten.net/courses/ics/sessions/session7/images/figure5.cfm

91

Session 8: Web shop

e-business

One of the most talked about web applications is e-shop, e-business or e-commerce. Complete

commercial systems are available from the shelf, new web shops have emerged and many have

disappeared. Great expectations obviously exist for the future of web shops. These applications

also demonstrate a number of web application aspects.

In this session we discuss and demonstrate some of the basic principles for a web shop. The

example is a web shop, which are selling the web scripts we have introduced in this course. As

all the other examples, our web shop application is not complete, and can be improved in many

ways.

The essential templates of the application are discussed below. Some trivial templates as

conditions.cfm, shipping.cfm, support.cfm and about.cfm are demonstrated in the running

example available at the end of this session, but are not discussed below. It is recommended that

you make yourself acquainted with the example before you start studying the templates in detail.

Business promotion

Operating a web shop requires product promotion, i.e. dissemination of information about the

products offered, prices, sales conditions, shipping, information about the company and its

addresses. In addition to distribution of information by huge lists of e-mail addresses and

advertisements, a web shop must have a home page with links to required information and

provide the possibility to order/buy products online. In our example, Software Shop has a home

page generated by the template index.cfm. This homepage, Figure 1, will serve as an

introduction to this application.

Figure 1: Welcome page

http://nordbotten.net/courses/ics/sessions/session8/images/figure1.cfm

92

In a fancy commercial application, the home page template should probably contain icons, flash

or applet driven animation, etc. The main focus in our example is, however, the dynamics

aspects. On the introductory page, a menu with links provides a list of the services offered to the

customers. The example concentrates on products, orders and sales. On the Introductory page,

the links to products.cfm and information templates are on Lines 5 - 9:

1. <!--- index.cfm --->

2. <h1>Welcome to the Software Shop</h1>

3. <p>The Software Shop has an exclusive suite of software for small companies. We have well satisfied

customers and would be glad to see you among them. Please study out list of Product and if you fin any item

of interest, click for more details and price. You can buy the product safely on the net and the merchandise

will be shipped to you according to the alternative you prefer.</p>

4.

5. Products

6. Sales conditions

7. Shipping

8. Support

9. About Software Shop

10.

Except for the links, this page is of minimal interest in the context of dynamic web applications.

The product.cfm template generates a table with a row for each product. The template is a

straight forward demonstration of the HTML table tag features.

1. <!--- products.cfm --->

2. <h1>Products</h1>

3. <p>Our products cover web ColdFusion scripts. They all require a web server and a

4. ColdFusion application interface installed:</p>

5. <h3>Product list</h3>

6. <table border="2" cellpadding="10" cellspacing="10">

7. <th>

93

8. <tr><td>Product name:</td><td>Demonstration:</td>

9. <td>Price:</td></tr></th>

10. <tr><td>Market research</td><td>Demo</td><td>$

150,00</td></tr>

11. <tr><td>Opinion polls</td><td>Demo</td><td>$ 150,00</td></tr>

12. <tr><td>Perception investigation</td><td>Demo</td><td>$

300,00</td></tr>

13. <tr><td>Search engine</td><td>Demo</td><td>$ 200,00</td></tr>

14. <tr><td>Net course </td><td>Demo</td><td>$ 350,00</td></tr>

15. <tr><td>Shop</td><td>Demo</td><td>$ 250,00</td></tr>

16. </table>

17. <p>Do you want to order? Yes/No</p>

Figure 2 shows the table generated. Each product is listed with the possibility to get an online

demo of the product. The table also informs the customers about the prices and has a link to

ordering.

http://nordbotten.net/courses/ics/sessions/session8/images/figure2.cfm

94

Figure 2: Product promotion list

Buying products

Buying products is taken care of by the form.cfm template which generates the form (Figure 3)

by which necessary data about the customer are collected:

http://nordbotten.net/courses/ics/sessions/session8/images/figure3.cfm

95

Figure 3: Customer data

1. <!--- form.cfm --->

2. <h1>customer form</h1>

3. <p>If you are a new customer, please give the information necessary to send the products you buy to

you:</p>

4. <table cellpadding="10">

5. <form action="customers.cfm" >

6. <tr><td>First name: </td><td><input type="text" name="first_name"></td></tr>

7. <tr><td>Last name: </td><td><input type="text" name="last_name"></td></tr>

96

8. <tr><td>Street: </td><td><input type="text" name="Street"></td></tr>

9. <tr><td>City: </td><td><input type="text" name="City"></td></tr>

10. <tr><td>State: </td><td><input type="text" name="State"></td></tr>

11. <tr><td>Country: </td><td><input type="text" name="Country"></td></tr>

12. <tr><td>Zip no.: </td><td><input type="text" name="zip"></td></tr>

13. <tr><td>e-mail:</td><td><input type="text" name="submitted_email"></td></tr>

14. <input type="hidden" name="sswitch" value="0">

15. <tr><td><td><td><input type="submit" value="Name and adress"></td></tr>

16. </table>

17. </form>

18. <p></p>

19. <p>If you have previously bought products from us, please type your</p>

20. <table cellpadding="10"></table>

21. <form action="customers.cfm" >

22. <tr><td>e-mail address: </td><td><input type="text" name="submitted_email"></td></tr>

23. <input type="hidden" name="sswitch" value="1">

24. <tr><td></td><td><input type="submit" value="e-mail address"></td></tr>

25. </form>

The HTML FORM-/FORM tags for new customers extend on Lines 5-17 and collect name and

address. Another form block, on Lines 21 – 25, for 'old' customers collects only the e-mail

address. The application must be able to 'remember' the data provided, and to check the e-mail

address and retrieve the information when a customer responds as an 'old' customer. To

distinguish which of the two blocks is submitted, a 'hidden' variable SSWITCH (the double ss is

used to avoid confusion with the reserved word SWITCH) is used with value "0" set in Line 14

if the customer is a new, and "1" set in Line 23 if he/she is an 'old'. Both blocks call on the

template customer.cfm when submitted.

Before we proceed to the custommer.cfm template, we describe a database table, customers,

which have to be defined in the #session.datasource#. . The table must have the columns:

 First_Name

97

 Last_name
 Street
 City
 State
 Country
 Zip
 Email

All variables are defined as text variables.

The customer.cfm template has 3 tasks.

 update the database table customers with the data about the customer if he is 'new (Lines 3. -
5.),

 retrieve customer data from the database for display if he is an 'old' customer (Lines 7. -9.)
 display recorded customer data for the client.

1. <!--- customer.cfm --->

2. <cfif #sswitch# EQ "0">

3. <cfquery datasource="#session.dat5asource#" name="add">

4. INSERT INTO customers(first_name,last_name,street,city,state,country, zip, email) VALUES

('#first_name#','#last_name#','#street#','#city#','#state#','#country#','#zip#','#submitted_email#')

5. </cfquery>

6. </cfif>

7. <cfquery datasource="#session.datasource#" name="retrieve">

8. SELECT customer_id,first_name,last_name,street,city,state,country,zip,email FROM customers WHERE

email='#submitted_email#'

9. </cfquery>

10. <p>You are recorded with the following data:</p>

11. <cfoutput query="retrieve">

12. <table>

13. <tr><td>First name:</td><td>#first_name#</td></tr>

14. <tr><td>Last name: </td><td>#last_name#</td></tr>

98

15. <tr><td>Street: </td><td>#street#</td></tr>

16. <tr><td>City:</td><td>#city#</td></tr>

17. <tr><td>State:</td><td>#state#</td></tr>

18. <tr><td>Country:</td><td>#country#</td></tr>

19. <tr><td>Zip:</td><td>#zip#</td></tr>

20. </table>

21 </cfoutput>

22. <cfset session.customer_id=#retrieve.email#>

23. <p>Are the above data correct? Yes/No</p>

In Line 2 a CFIF tag checks if the data received concern a new customer. If so, CFQUERY tag

for the datasource #session.datasource# followed by an SQL INSERT INTO table customers,

inserts the submitted data.

Both new and old customers forms are then processed according to Lines 7-23. A CFQUERY

tag block in Lines 7-9 named "retrieve" with a SELECT from table customers the row

WHERE email='#submitted_email#'. Usually only one row is retrieved, but if the customer

has submitted data as 'new' customer twice or more, there can be more than one record.

By means of a CFOUTPUT block referring to the QUERY="retrieve" in Lines 11-21, one or

more sets of data for the e-mail address submitted is displayed (Figure 4). Finally, if the

customer accepts the displayed data, the control is transferred to template order.cfm. Note that

#email# is used as customer identification.

Figure 4: Check customer data

http://nordbotten.net/courses/ics/sessions/session8/images/figure4.cfm

99

This template presents the form for buying items with boxes to check for the different products.

The template contains a set of multiple inputs (Figure 5). The values of the checked items are

Figure 5: Order form

saved in a shopping list named order:

1. <!--- order.cfm --->

2. <cfset order="">

3. <h1>Order</h1>

4. <p>Please, mark the items you want to buy:</p>

5. <form action="sum.cfm" method="post" >

6. <p><input type="checkbox" name="order" value="150">Market research - $150.00</p>

7. <p><input type="checkbox" name="order" value="150">Opinion poll - $150.00</p>

8. <p><input type="checkbox" name="order" value="300">Perception investigation - $300.00</p>

9. <p><input type="checkbox" name="order" value="200">Search engine - $200.00</p>

10. <p><input type="checkbox" name="order" value="350">Net course - $350.00</p>

11. <p><input type="checkbox" name="order" value="250">Shop - $250</p>

http://nordbotten.net/courses/ics/sessions/session8/images/figure5.cfm

100

12. <p><input type="checkbox" name="order" value="150">Web agent - $150.00</p>

13. </select>

14. <p><input type="submit" value="Order"></p>

15. </form>

When the above form is submitted, the control is left to the sum.cfm template below. Here are

several new CFML features introduced. In Line 3, an array of items is defined. In ColdFusion

arrays can be defined with up to 3 dimensions. One great advantage with CFMX arrays is that

the size (number of rows and columns) is not required specified, but is determined dynamically.

In Line 4, the shopping list from the form is transferred to the array by means of the function

ListToArray(order). The reason is that an array can be manipulated more conveniently than a

list.

In a CFOUPUT block in Lines 5-9, the value of the variable total is computed in a CFLOOP.

1. <!--- sum.cfm --->

2. <cfset total="0">

3. <cfset items=ArrayNew(1)>

4. <cfset items=ListToArray(order)>

5. <cfoutput>

6. <cfloop from="1" index="count" to="#ListLen(order)#">

7. <p><cfset total=#items[count]#+#total#></p>

8. </cfloop>

9. </cfoutput>

10. <cfoutput>You have ordered products for $#total#.</cfoutput>

11. <cfset session.total=#total#>

12. <p>Please return your creditcard information:</p>

13. <cfform action="sale.cfm">

14. <p>Card type:</p>

15. <p><input type="radio" name="card_type" value="VISA">VISA</p>

16. <p><input type="radio" name="card_type" value="Mastercard">MASTERCARD</p>

101

17. <p><input type="radio" name="card_type" value="Ammerican Express">AMERICAN EXPRESS</p>

18. <p></p>

19. <p>Card number:<cfinput type="text" validate="creditcard" name="card_no"></p><p>

20. </p>Expire date: <input type="text" name="expire_date">

21. <p><input type="submit" value="Submit order"></p>

22. </cfform>

The remaining of the template specify a form for the customer to specify credit card type,

number and expire date (Figure 6). In Line 13, the tag CFFORM is used to be able to check the

Figure 6:Payment form

credit card number. The attribute VALIDATE with value "creditcard" checks that the credit

card number is a formally correct number (but unfortunately not for validity!).

Purchasing products

We shall need a second database table, Sales, which must be defined with the following 3

columns:

 custommer_id
 total
 ddate

http://nordbotten.net/courses/ics/sessions/session8/images/figure6.cfm

102

We assume that all are specified as text type.

Submitting the shopping list and the credit card information establish a purchase. The task of the

template sales.cfm is to process the purchase. The date of the purchase is determined in Line 2

by using the value of the function DateFormat(Now()), and the transaction including customer

identification, total value of the transaction and the date is booked in the datasource

#session.datasource# by a CFQUERY tag with the sql INSERT INTO.

1. <!--- sale.cfm --->

2. <cfset ddate=#DateFormat(Now())#>

3. <cfquery name="sales" datasource="#session.datasource#">

4. INSERT INTO sales(customer_id,total,ddate) VALUES(#session.customer_id#, '#session.total#', '#ddate#')

5. </cfquery>

6. <cfoutput>

7. <p>Sales for customer no. #session.customer_id# has been processed.</p>

8. </cfoutput>

9. <p>Print out a receipt.</p>

The template sends a message that the transaction has been processed, and offers a printout of a

receipt:

1. <!--- receipt.cfm --->

2. <cfquery datasource="#session.datasource#" name="receipt">

3. SELECT first_name,last_name, street, city,state,country, zip FROM customers WHERE customer_id =

'#session.customer_id#'

4. </cfquery>

5. <h1>Software Shop</h1>

6. <cfoutput query="receipt">

7. <p>#first_name# #last_name#</p>

8. <p>#Street#</p>

9. <p>#City#</p>

10. <p>#State#</p>

103

11. <p>#Country#</p>

12. <p>zip</p>

13. <p></p>

14. <p>We have charged your account with $#session.total# for products sent to you.</p>

15. <p> Thank you for ordering our products.</p>

17. </cfoutput>

16. <p>Yes/Return to the product page. </p>

The output receipt is illustrated in Figure 7.

Figure 7: Purchase receipt

To be a real functional application, an agreement has to be signed with a credit card company

and a connection established with company.

Exercises

a. In this session we have used the datatypes list and array. Read Chapter 6 in RBB about these

and other complex datatypes included in CFML promotion.

b. Copy the templates and rewrite them for your favorite business idea. Complete and expand the

'surrounding' pages.

http://nordbotten.net/courses/ics/sessions/session8/images/figure7.cfm

104

Session 9: Web agents

Web agents

An agent is a piece of software performing a repeating service according to a timetable without

needing to be requested each time. On the web, an agent is located in a server from which it

serves its clients. CFMX has features which make the language well suited for implementing

such types of services. Even though many types of agents exist, we shall consider only two

applications of agents leaving others for you to design.

The first application scenario is simple: Assume the existence of a news agency connected to the

net. It updates frequently a news message page for a large range of different events. An

organization, running an intranet, wants to offer the local intranet users a mirror of the news

agency page to avoid unnecessary visits to the internet by the users of the intranet. One solution

is to implement a web agent which periodically scans the news agency page, creates and

maintains a local mirror which the local users can access.

In principle, the agent outlined is composed of:

1. the retriever controlled by the scheduler, and
2. the dispatcher

.

The retriever collects and updates the news data according to a frequency controlled by the

scheduler. The time scheduler sets start and end times as well as frequency of the news

collection. The dispatcher returns the news on demand from the clients.

In applications discussed so far in this course, activities were carried out when requested. A web

agent application can work independently of requests, but it requires adequate server resources to

avoid that it will be too engaged in performing agent tasks, and neglecting calls from clients for

on demand service.

Agent 1

In the first application, Agent 1, a very basic service is discussed. A more advanced client, Agent

2 is discussed in the last part of this session.

The first task considered is to retrieve the News from the CNN net service once every second

hour, maintaining an updated local copy which can be requested by clients on demand.

The application includes templates for the following tasks:

 the news collecting and maintenance part
 the setting of the scheduling part
 the news service part

105

Figure 1 outlines the scenario.

Figure 1: Agent 1 application.

The core of the first template is the powerful CFHTTP tag which can be compared with a

CFQUERY tag, but with the important difference that the CFHTTP tag queries other web

servers, and not a database.

1. <!--- agent.cfm --->

2. <cfhttp method="GET" url="http://www.cnn.com/" resolveurl="Yes" >

3. </cfhttp>

4. <cffile action="write" file="c:#application.path#\retrieved.html" output="#CFHTTP.FileContent#"> >

The CFHTTP tag in Line 2 indicates that we want to retrieve the CNN entry page in order to

establish a local mirror of the CNN page. The attribute RESOLVEURL, set to "yes", resolves

URL's within the mirror page so they will also function for the client environment. The page is

returned in a variable called CFHTTP.FileContent.

The content is saved in Line 4 to maintain a file named retrieved.html. The particular disk

address at which the content is stored, can be set in the Application.cfm as an application wide

variable application.path.

http://nordbotten.net/courses/ics/sessions/session9/images/figure1.cfm

106

The agent administrator will need a form to specify the start and end times and the frequency of

the news collection. This form is used only once for starting up the agent's activity, and

eventually for terminating the service before specified. The template taking care of this task is:

1. <!--- schedule_form.cfm --->

2.<h2>Scheduling or deleting the news collection</h2>

3. <p>a. Scheduling data collection:</p>

4. <form action="schedule.cfm" method="post">

5. <p>Startdate (mm/dd/yy):<input type="text" name="STARTDATE"></p>

6. <p>Starttime (hh:mm AM/PM):<input type="text" name="STARTTIME"></p>

7. <p>Update interval(sec):<input type="text" name="INTERVAL"></p>

8. <p>End date (mm/dd/yy):<input type="text" name="ENDDATE"></p>

9. <p>End time (HH:mm AM/PM):<input type="text" name="ENDTIME"></p>

10. <p>Timeout for request:<input type="text" name="TIMEOUT"></p>

11. <input type="submit" value="Schedule">

12. </form>

13. <p>Stop the news collection. </p>

Note that the template refers to 2 actions, the template to schedule the agent in Lines 3-12, and

the template to delete an existing time schedule in Line 13.

The schedule.cfm template for processing the scheduling data is short:

1. <!--- schedule.cfm --->

2. <cfschedule action="UPDATE"

task="Agent"

operation="HTTPRequest"

startdate="#startdate#"

starttime="#starttime#"

interval="#interval#"

enddate="#ENDDATE#"

endtime="#ENDTIME#"

url="http:/#application.url#/agent.cfm"

resolveurl="Yes" requesttimeout="120">

The template is simple, but has a number of attributes of which only ENDDATE is optional. It

contains a variable, application.url which must be set in the Application.cfm.

107

If you have access to the CFMX Administrator, the schedule can alternatively be set by means

of that utility. However, if you are renting time from an ISP, you will usually not have access to

the Administrator feature.

If the stop option is selected in the schedule_form.cfm, the following template is run:

1. <!--- delete.cfm --->

2. <cfschedule action="delete" task="Agent" >

3. <cfoutput>

4. <H3>Agent task deleted.<;/H3>

5. </cfoutput>

The final component of the news service is a form for the clients to request the news:

1. <!--- index.cfm --->

2.<p><h2>Information collection by agent</h2></p>

3. <p>Do you want a news report? Yes/ No.</p>

where the link in Line 3 is all that is needed to respond to the request by serving the page

retrieved.html..

In a real situation, a more elaborate form would be designed, but for demonstrating the principles

of web agents, this simple form will do. As usual, you will find a link to an implemented

example of the agent at the end of the session.

Advanced agent

Let us consider a more advanced agent. In addition to collecting news information regularly from

one or more sources, Agent 2 accepts subscriptions for news pages containing topics specified

by the user in the form of keywords. Each time a news page is retrieved from the news source,

the agent reads through the page to see if it contains any of the topics requested by the

subscribers, and if so, it e-mails a copy of the news to the lucky subscribers.

On request, this agent sends a subscription form to a user asking about his/her name, email

address, topic and source(s) of interest, as well as time interval for the wanted service. By

submitting the form, a subscription is recorded by the agent, and the service will start. In this

example, only a single topic per request is possible, but servicing more complex requests is quite

possible.

In the application example demonstrated, two news sources, CNN and Washington Post, are

copied every third hour. Each time, the copies are scanned for keywords provided by the

108

subscribers. Each time a hit is detected, the agent sends the subscriber(s) who provided the

keyword, an email with a copy of the relevant news page attached.

Figure 2: Components of Agent 2

Figure 2 gives an overview of the application. This agent system consists of 5 logical parts

 the scheduler
 the news retriever
 the subscription service
 the parser
 the discharger

The parts will be discussed in a slightly different order in the following paragraphs.

Before the agent can be activated, the news sources and retrieving frequency must be specified.

We focus on the scheduling and assume here that the 2 news sources, CNN and Washington

Post, are already selected. The scheduling is similar to the one we described for the simpler

Agent 1 above, and implemented by the following form template:

1. <!--- schedule_form.cfm --->

2. <h2>Scheduling or deleting the news collection</h2>

3.<cfloop index="i" from="1" to="2">

http://nordbotten.net/courses/ics/sessions/session9/images/figure2.cfm

109

4. <p>a. Scheduling data collection from source #i#:</p>

5. <form action="schedule.cfm" method="post">

6. <p>Startdate (mm/dd/yy):<input type="text" name="STARTDATE#i#"></p>

7. <p>Starttime (hh:mm AM/PM):<input type="text" name="STARTTIME#i#"></p>

8. <p>Update interval(sec):<input type="text" name="INTERVAL#i#"></p>

9. <p>End date (mm/dd/yy):<input type="text" name="ENDDATE#i#"></p>

10. <p>End time (HH:mm AM/PM):<input type="text" name="ENDTIME#i#"></p>

11. <p>Timeout for request:<input type="text" name="TIMEOUT#i#"></p>

12. <input type="submit" value="Schedule">

13. </form>

14.</cfloop>

15. <p>Stop the news collection from both sources. </p>

The schedule_form.cfm passes the control on to the schedule.cfm, which is identical with the

template discussed in connection with the simpler agent. Also this agent can be scheduled by

means of the CFMX Administrator.

The subscription can be taken care of by means of a very simple form illustrated in Figure 3, and

Figure 3: Agent scheduling form

http://nordbotten.net/courses/ics/sessions/session9/Images/figure3.cfm

110

be implemented by the service.cfm template:

1. <!--- service.cfm --->

2. <FORM action="register.cfm" method="post">

3. <TABLE>

4. <TR><TD>Your name:</TD><TD><INPUT name="nname" type="text"></TD></TR>

5. <TR><TD>Your email address:</TD><TD><INPUT name="email" type="text"></TD><</TR>

6. <TR><TD>The topic in which you are interested:</TD><TD><INPUT name="topic"

type="text"></TD></TR>

7. <TR><TD>Source for the service:</TD><TD></TD></TR>
</TD></TR>

8. <TR><TD>Washington Post:</TD><TD><INPUT name="source" type="radio"

value="1">
</TD></TR>

10. <TR><TD>CNN:</TD><TD><INPUT name="source" type="radio" value="2">
</TD></TR>

11. <TR><TD>Washington Post and CNN:</TD><TD><INPUT name="source" type="radio"

value="3">
</TD></TR>

12. <TR>

13. <TD>No. of days you want the service:</TD><TD><INPUT name="days"

type="text">
</TD></TR>

14. <TR><TD></TD><TD><INPUT type="submit" value="Submit"></TD>

15. </TR>

16. </TABLE>

17. </FORM>

This form indicates the similarity with a search system in which only one keyword is permitted

in the search. An improvement of this form would be to permit multiple topic keywords, and

topics which were structured into a complex request as is for example possible in the search

engine discussed in a previous session.

The content of the subscription form is registered in a table called agent2 at a datasource

#session.datasource# set in the Application.cfm.:

1. <!--- register.cfm --->

2. <cfset MyDate=now()>

111

3. <cfset untill= DateFormat(DateAdd('d',#form.days#,MyDate),'mmmm dd yyyy')>

4. <CFQUERY name="register" datasource="#session.datasource#">

5. INSERT INTO agent2(nname, email,topic, untill) VALUES('#form.nname#',

'#form.email#','#form.topic#','#untill#')

6. </CFQUERY>

7. <cfoutput>

8. <H3>#form.nname#

9. Your request has been recorded.</H3>

10. </cfoutput>

Lines 1-6 take care of the registration in the database. If the registration is successful, a message

is returned to the subscriber by email.

The main template of Agent 2 covers the retrieval, parsing and discharging of news to the

subscribers:

1. <!--- agent2.cfm --->

2. <cfhttp method="GET" url="http://www.cnn.com/" resolveurl="Yes" timeout="300">

3. </cfhttp>

4.<cffile action="write" file="#application.path#\temp.html" output="#CFHTTP.FileContent#">

5.<cffile action="READ" file="#application.path#\temp.html" variable="retrieved">

6.<cffile action="write" file="#application.path#\retrieved.html" output="#retrieved#">

7. <cfhttp method="GET" url="http://www.washingtonpost.com/" resolveurl="Yes" timeout="300">

8. </cfhttp>

9. <cffile action="write" file="#application.path#\temp.html" output="#CFHTTP.FileContent#">

10. <cffile action="READ" file="#application.path#\temp.html" variable="retrieved2">

11. <cffile action="write" file="#application.path#\retrieved2.html" output="#retrieved2#" >

12. <cfquery name="subscribers" datasource="#application.datasource#">

SELECT nname, email, topic, untill, source FROM agent2

112

13. </cfquery>

14. <CFSET PresentDate=#DateFormat(now(),'mmm dd yyyy')#>

15.<CFLOOP query="subscribers">

16. <CFIF #PresentDate# LT #subscribers.untill# >

17.<cfif (#subscribers.source# EQ "1" OR "3") AND (#retrieved# NEQ "")>

18. <cfset source_name="CNN">

<19. < cfset text=Trim(#subscribers.topic#)>

20. <cfset Position=REFindNoCase(#text#,#retrieved#,1)>

21. <cfif #Position# GT 0>>

22. <cfmail

to="#subscribers.email#"

from="svein@nordbotten.com"

type="html"

server="alf.uib.no"

subject="News: On #text# from #source_name#">

#retrieved#

</cfmail>

23. </cfif> 24. </cfif>

25. <cfif (#subscribers.source# EQ "2" or "3") AND (#retrieved2# NEQ "")>

26. <cfset source_name="Washington Post">

27. <cfset text=Trim(#subscribers.topic#)>

> 28. <cfset Position=REFindNoCase(#text#,#retrieved2#,1)>

29. <cfif #Position# GT 0>

30. <cfmail

to="#subscribers.email#"

from="svein@nordbotten.com"

type="html"

server="alf.uib.no"

subject="News: On #text# from #source_name#">

#retrieved2#

31. </cfmail>

32. </cfif>

113

33. </cfif>

34. </cfif>

35. </cfloop>

This template describes the collection of news from 2 sources. Lines 2-11 take care of retrieving

and storing the news from the 2 sources. Note the difference in saving retrieved pages from

agent.cfm. In some cases, implementation by a temporary file, temp.html, may make it easier to

get an acceptable execution of the agent. The template can be made more elegant by looping 2

times through most of the lines.

The query named subscribers in Line 12 selects the subscriber data and stores them in a query

object. The CFLOOP query block follows with the remaining lines. This loop is run for each

subscriber. However, the first line in the loop is a CFIF tag testing if the stop date for the

subscription has passed. In that case, the subscriber is skipped. The regular expression in Line 20

tests the retrieved news page from CNN for the topic. It continues in a similar way with the news

from Washington Post.

Finally, we shall need a template to delete the whole service. Template delete2.cfm deletes both

sources at the same time. It would be easy to introduce an arrangement which permitted to delete

a selected source.

1. <!--- delete2.cfm --->

2. <cfschedule action="delete" task="Retrieve1" >

3. <cfschedule action="delete" task="Retrieve2" >

4. <cfoutput>

5. <H3>Agent task deleted.</H3>

6. </cfoutput>

The regular expressions in Lines 20 and 28 will be discussed in further detail in session 11.

Remarks on scheduling

The scheduling of agents can be difficult to implement. There are, however, several alternatives

for scheduling processes. The ColdFusion Administrator has been referred to several times, but

it requires that the developer has access to this utility.

Another possibility is to use the meta tag , e.g. <META HTTP-EQUIV="REFRESH"

content="18000">, at the top of the agent.cfm template and drop the scheduling template. The

template must be kept running as long as the service is offered. Using the example, the agent

114

template will be executed every 18000 second, i.e. every 5 hour. This alternative is simple, but

requires that the administrator of the agent keeps the template running as long as he offers the

service.

A third alternative for Windows is to select Settings -> Control board -> Schedule tasks which

offers a wizard for setting the execution of tasks as running the agents at specified times.

Other Internet Agents

The CFHTTP tags open for the development a number of different Internet agents. Information

can be downloaded from remote hosts as in our agent examples, but information flow can also be

uploaded from a local host to a number of remote hosts. For example, a news agency has its own

corps of field reporters uploading their news from their laptops to the agency's host computer as

soon as they finish their stories. Newspapers around the country can subscribe to the news

according to specified time and topic profiles from the agency. The agency host downloads

automatically the new stories to pre-set folders in the newspaper hosts according to specified

time schedules and topic profiles. The individual newspaper can process the accepted stories in

its folder for stories from the news agency according to their individual editorial policies.

A famous type of agents is the stock exchange monitoring agents. They monitor the stock

exchange values on a continuous basis and signals automatically crucial changes to subscribers

of their services.

Spider agents crawling around in the Internet is another well-known application. In the spider

applications, the agent visits a set of already recorded web sites, parses the pages for relevant

content, saves their content, follows identified links to new pages, and repeats the parsing. Some

spiders re-visit already recorded pages and make comparisons for updating.

Exercises

a. The CFHTTP tag used in this session is discussed in Chapter 14 in RBB. Study the text; it

will give you further ideas about the many possible applications of this tag.

b. The examples in this session are simple agent applications. Using the powerful CFHTTP tags

with its many optional attributes, complex agents can be implemented. Agents surveying the

exchange market are popular. Using action "POST" makes it also possible to work as a

distributor. The agent is then scheduled to release and distribute messages from another process

to a list of remote servers as well as clients.

c. CFSCHEDULE is described in Chapter 22 of RBB. Even though this tag is mainly related to

the application server management, we have demonstrated that it has clearly also interest for the

application programmer.

115

d. If you have some ideas for developing agents, write them down and post them on the message

board.

116

Session 10: Data exchange - syndication

XML

XML (Extensible Markup Language) is considered a language which in the future may replace

HTML for coding web pages. It is, as HTML, a derived subset of SGML (Standard Generalized

Markup Language) and permits a programmer to define new tags and their meaning for different

applications.

The tags can be defined in a DTD (Document Type Definition), which may either be embedded

in the XML file in which it is used, or, if the tags are used in several files, DTD may be in a

separate file downloaded with the XML files and read by the browser. The presentation style of

the XML file content can be separated from the structure of the file in a style sheet prepared by

means of XSL (Extensible Style Language). XLL (Extensible Link Language), a language for

defining hypertext links in XML web pages belongs also to the family.

The XML document object is a special data type in CFMX. An XML document can easily be

converted to this data type by means of the function XmlParse(). A great advantage of the XML

document object is that it can be processed by the ordinary CFMX structure functions.

An XML document must be strictly well-formed. It is well-formed if it is free of syntax errors. If

syntax errors exist in an XML document, it cannot be processed.

XML is an extensive topic which deserves its own course. In this course, we have space only to

refer the interested student to the short introduction of XML in RBB, and to the many books

issued in the recent years on the topic. In the remaining of this session, we shall discuss a

technology for exchanging data between different types of computer platforms based on XML.

This technology, WDDX, does not require any extensive knowledge about the XML language.

Web Distributed Data Exchange

WDDX (Web Distributed Data Exchange) is an open technology for exchanging all kinds of data

types by means of an XML representation. It is intended to be used for exchanging data among

applications implemented by different software languages, and run on different hardware

platforms. WDDX is constructed on the simple assumption that data to be exchanged is

'serialized' from the local language of the sender to a representation readable by all systems and

'deserialized' to the foreign language of the receiver. The exchange requires that serialization

and deserialization functions exist for each environment participating in the exchange. Required

WDDX functions have already been prepared for many programming languages and can be

downloaded freely from the net.

In CFMX, the serialization and deserialization are controlled by a special tag, <CFWDDX

ACTION=".." INPUT=".." OUTPUT="..">. The tag can be used without any knowledge of

XML. The ACTION attribute can take 2 values in which we are interested: cfml2wddx is used

for serialization, and wddx2cfml for decentralization (2 more will be discussed in the last

session). Other languages/platforms have corresponding instructions, which permit each partner

117

to use the instructions of her/his technology to serialize data to be sent and deserialize data

received.

Data exchange between art galleries

The WDDX technology is demonstrated in the following scenario. Consider 2 cooperating Art

Galleries, A and B, which have agreed to inform each other in text and images about their stocks

of paintings at the end of each month. This kind of loose cooperation is often referred to as

content syndication.

The following data about each painting should be included in the exchange:

 Identification
 Name of picture
 Name of artist
 Time at which the painting was completed
 Estimated value
 Picture of the painting

Each gallery has its own database not available on the web. A problem for the data exchange is

that the partners have different hardware platforms, run different operating systems and database

systems. Fortunately, WDDX modules exist for both system environments.

Figure 1 shows the data exchange scenario between the 2 galleries.

Figure 1: Data exchange between Gallery A and Gallery B

http://nordbotten.net/courses/ics/sessions/session10/images/figure1.cfm

118

Implementation of the exchange

To demonstrate the WDDX data exchange, we consider the following templates:

1. index.cfm generating menu for the application
2. Form_store.cfm and store.cfm for packing and storing new pictures data
3. Transmit.cfm for retrieving, and sending stored pictures data
4. Packet.cfm for inspecting a received WDDX packet
5. Table.cfm for unpacking and view received image data.

The menu is quite ordinary and should not need any explanation:

1. <!--- index.cfm --->
2. <div align="center">
3. <h2>Menu for WDDX example</h2>
4. <table>
5. <tr><td>Store picture data in a database</td></tr>
6. <tr><td>Transmit data</td></tr>
7. <tr><td>See table </td></tr>
8. <tr><td>See packet</td></tr>
9. </table>
10. </div>

The form_store.cfm initiates the form for uploading a new picture from your client computer of

to the server of the first gallery assuming you are in charge of this gallery and have acquired the

pictured painting:

1. <!--- form_store.cfm --->
2. <center>
3. <h2>Storing picture data in a database</h2>
4. <p>Select an image stored on your PC. It doesn't matter what you call the painting(image) or the artist's

name.</p>
5. <cfform action="store.cfm" method="post">
6. <table>
7. <tr><td>Picture name:</td><td><cfinput name="name" type="text"></td></tr>
8. <tr><td>Picture artist:</td><td><cfinput name="artist" type="text"></td></tr>
9. <tr><td>Picture created:</td><td><cfinput name="created" type="text"></td></tr>
10. <tr><td>Picture value:</td><td><cfinput name="est_value" type="text"></td></tr>
11. <tr><td>Picture file:</td><td><input name="picture" type="file" ></tr>
12. <tr><td></td><td><input type="submit" value="Submit"></td></tr>
13. </table>
14. </cfform>

Figure 2 illustrates the use of the form which is trivial.

http://nordbotten.net/courses/ics/sessions/session10/images/figure2.cfm

119

Figure 2: Example menu.

The store.cfm is more interesting. Line 2, uploads the selected picture from a user’s computer to

the server of the first gallery and stores it in a temporary binary image file. The next statement

reads this file into a variable called picture. Then a new structure, picture_data is defined in Line

4, and the structure is populated by Lines 5-9. Structure is a very convenient data type because it

can be processed as a single object or variable. Our variable is picture_data.

1. <--- store.cfm --->
2. <cffile action="UPLOAD" filefield="form.picture" destination="#session.path#\temp.jpg"

nameconflict="OVERWRITE">
3. <cffile action="READBINARY" file="#session.path#\temp.jpg" variable="picture">
4. <cfset picture_data=StructNew()>
5. <cfset picture_data.name=#form.name#>
6. <cfset picture_data.artist=#form.artist#>
7. <cfset picture_data.created=#form.created#>
8. <cfset picture_data.est_value=#form.est_value#>
9. <cfset picture_data.picture=#picture#>
10. <cfwddx action="cfml2wddx" input="#picture_data#" output="picture_packet">
11. <cfif not IsWddx(#picture_packet#)>
12. <p>Picture_packet is not a well-formed XML. </p>
13. <cfabort>
14. </cfif>
15. <cfquery name="delete" datasource="#session.datasource#">
16. DELETE FROM wddx
17. </cfquery>
18. <cfquery name="packet_in" datasource="#session.datasource#">
19. INSERT INTO wddx(packet) Values('#picture_packet#')
20. </cfquery>
21. <center>
22. <cfoutput>
23. <p>Picture data structure has been successfully stored in the database.</p>
24. </cfoutput>
25. <p>Return to menu.</p>
26. </center>

120

Line 10 uses the WDDX function to convert the object picture_data to a single text string, the

WDDX packet picture_packet. This is an XML page and is checked in Lines 11-13 for being

well-formed. A not well-formed XML page cannot be processed, and if so the process is aborted.

As usual, session.path must be set in the Application.cfm pointing to the directory in which you

store your WDDX example.

Lines 15-17 are included for this example to delete old paintings in the database. In a real

application, these lines would not be included. Lines 18-20 store all the painting data represented

as a text string in a variable named packet in the table WDDX. This demonstrates a compact way

of storing data in a database. Alternatively, the data could of course have been stored in a table

with one variable for each painting attribute, which would have permitted searching in the

database by attribute values.

To send a copy of the table to a collaborating gallery, we need to retrieve the packet from the

database. Since it is already serialized before it was saved in the database, we may only want to

test the packet again for being well-form before it is sent to the receiving gallery. The packet can

be sent to the other gallery by means of the CFHTTP tag we already know from a previous

session. To avoid working with 2 servers, we 'substitute' the transfer .by a remark tag and

continue as if we are on the receiving server of the other gallery

The template transmit.cfm for the sending data from one gallery to another based on CFMX

looks like this:

1. <!--- transmit.cfm --->
2. <cfquery name="packet_out" datasource="#session.datasource#">
3. SELECT packet FROM wddx
4. <cfquery>
5. <cfif Not IsWDDX(#packet_out.packet#)>
6. <p>Packet_out.packet is not a well-formed XML</p>
7. <cfabort>
8. </cfif>
9. <!--- Code for packet transfer to the other server --->
10. <cffile action="write" file="#session.path#\packet.txt" output="#packet_out.packet#">
11. <center>
12. <h2>Dump of transmitted packet</h2>
13. <cfoutput>
14. <cfdump var="#packet_out#" >
15. </cfoutput>
16. </center>

Lines 2-4 retrieve the packet(s) naming the query object packet_out. Since a WDDX packet is an

XML file, it is again tested for being well-formed. Line 9 is the substitute for the real

transmission. In a real application, Line 9 must be replaced by CFHTTP and CFHTTPPARM

tags to initiate the transfer to the server of the second gallery where Line 10 takes care of storing

the received packet in a text file, packet.txt, at the other server.

121

Lines 11-16 apply the CFDUMP tag which displays the complex WDDX packet object by

components. Figure 3 illustrates the result generated by this tag. Note that this dump is not the

the packet string representation, but an interpretation of the packet content.

Figure 3: Packet component.

The packet text string itself can be displayed by the template packet.cfm:

1. <!--- packet.cfm --->
2. <center> <h2>Display of WDDX packet</h2>
3. <cffile action="read" file="#session.path#\packet.txt" variable="packet2">
4. <cfoutput > <textarea rows="15" cols="70" wrap="virtual"> #packet2#</textarea>
5. </cfoutput>

6. </center>

The XML file for representation of the image used in the example is illustrated in Figure 4. You

can explore the tags and representations. You can for example se that the whole image used in

the example is represented by a string of 22065 characters.

Figure 4: The WDDX XML file.

http://nordbotten.net/courses/ics/sessions/session10/images/figure3.cfm
http://nordbotten.net/courses/ics/sessions/session10/images/figure4.cfm

122

We shall return to the DTD for the WDDX packets in a moment. Notice that the variables

represented in the packet are ordered by the values of the variables, not by their names. A whole

painting structure is represented in a text string with a surprisingly low number of bytes.

The last template, table.cfm, let you see the picture data after it has been deserialized at the

simulated receiving end. When received, the packet was saved in packet.txt as an XML file. This

file is read and transformed to a variable picture_data2 by Line 2 and deserialized by Line 3 to a

structure object, deserialized_packet, with five variables. In a real application, the CFWDDX

function in Line 3 must be replaced by the WDDX function corresponding to the receiving

gallery's platform.

We have now the structure object. To display the picture, we must first save the picture

component in Line 4 so it can be binary read in Line 13.

In the remaining lines the content of the structure is displayed for the user.

1. <!--- table.cfm --->
2. <cffile action="read" file="#session.path#\packet.txt" variable="picture_data2">
3. <cfwddx action="wddx2cfml" input="#picture_data2#" output="deserialized_packet">
4. <cffile action="WRITE" file="#session.path#\picture_received.jpg"

output="#deserialized_packet.picture#" nameconflict="overwrite">
5. <center>
6. <cfoutput>
7. <h2>Received picture data</h2>
8. <table>
9. <tr><td>Name: </td><td>#deserialized_packet.name#</td></tr>
10. <tr><td>Artist:</td><td> #deserialized_packet.artist#</td></tr>
11. <tr><td>Created:</td> <td>#deserialized_packet.created#</td></tr>
12. <tr> Value: #deserialized_packet.est_value#</td></tr>
13. <p></p>
14. </table>
15. </cfoutput>
16. </center>

To be able to exchange the pictures, both galleries must have the templates discussed above

supplemented by the CFHTTP tag to send the WWDX packets to each other. The final result

from our example for this exchange process is shown in Figure 5. Remember that you must set

the session.url also in the Application.cfm of the example.

http://nordbotten.net/courses/ics/sessions/session10/images/figure5.cfm

123

Figure 5: The final display of the received data.

DTD for WDDX

Referring to the introduction of this session, you may wonder how the document type definition

for the WDDX looks. Here is a link to the DTD file defining the language of WDDX. If you

activate this link, the WDDX document type definition is displayed for you by means of an

XML document object. Recall that the use of the WDDX technology does not require that you

know anything about neither this DTD, XML nor XML document objects.

Exercises

a. Copy the displayed templates, complete the example with the statements required for sending

the picture data to a remote host (for example another student), and test out your application.

b. Download the WDDX software needed for receiving packets in a JAVA environment, and see

if you succeed to deserialize the packets sent from the ColdFusion host in a JAVA environment.

http://www.macromedia.com/v1/documents/objects/whitepapers/wddx_dtd.txt

124

c. For simple mass data exchange, a less general technology based on XML can be used.

Consider the requirements for a scenario you know, and use RBB as a guide to planning you

own data exchange design.

125

Session 11: Regular expressions and CFScript

Regular expressions and string processing

Regular expressions are a way of specifying text processing conditions. It is used in a number of

programming languages, but it is unfortunately not standardized. It is a very central part of the

scripting language PERL, and the regular expression feature in ColdFusion is almost compatible

with PERL 5. In ColdFusion, regular expressions are used in 2 basic ways:

1. Searching for symbol patterns in a string of symbols.
2. Replacing symbol patterns in a string with new symbol patterns.

There are 4 RE functions in CFMX:

1. REFind(REGex, String [, Start] [,ReturnSubExpressions])
2. REFindNoCase(REGex, String [, Start] [,ReturnSubExpressions)
3. REReplace(String, REGex, SunString [,Scope])
4. REPlaceNoCase(String, REGex, SubString [,Scope])

The 2 first functions used for searching are identical with the exception that the first is case

sensitive and the second is case insensitive. These functions can take up to 4 arguments of which

only the 2 first are required. The first required argument is the regular expression containing the

condition for identifying a symbol pattern in the text string given as the second required

argument.

Similarly for the third and the fourth functions used for replacing. These functions have,

however, 3 required arguments: A string which is to be processed, a regular expression

identifying substrings, and a new substring to replace identified substring(s).

We have already used the second regular expression function, REFindNoCase(REGex, String

[, Start] [,ReturnSubExpressions), for parsing text in the agent2.cfm template of the Agent2

example in Session 9 in order to identify wanted keywords in a text of news.

The syntax for forming regular expressions is based on sets of operators, character classes and/or

Portable Operating System Interface (POSIX) classes. For a more detailed description of the

syntax for regular expressions, consult RBB.

Re-visiting the search engine

In Session 6, we studied how to build a search engine by means of the Verity module included in

ColdFusion. One of the VERITY functions was indexing. Figure 1 explains the content of this

function. Given the documents of a registered collection, the indexing function processes each

document by parsing, i.e., identifying and marking each word of the document, for building a

frequency list containing each different word appearing in the document. When parsing of all

documents is completed, a word frequency list for the whole collection has been generated. For

each recorded word, links have been established to all documents in which the word occurs.

http://nordbotten.net/courses/ics/sessions/session11/images/figure1.cfm

126

Figure 1: Logical diagram for the indexing process.

The result will be an inverted index of words each with frequency of occurrence in the document

collection.

Documents containing requested words can then easily be localized by means of the index.

Based on each word's total frequency in the collection and its local frequency in a document,

different kinds of scores of relevance for the individual document can be computed.

In the following example, we demonstrate how to construct a template, which reads a text file,

parses the text by means of a regular expression and builds an inverted word index for the

document. To make the demonstration complete, the application has an introductory form by

means of which you can upload your own text file. The second template, parser.cfm, uploads,

parses and prints results from the specified file.

The introductory index.cfm file is simple:

1. <!--- index.cfm --->

2. <h3>Text file indexing</h3>

3. <cfform action="parser.cfm" method="POST">

127

4. Name of file:<input type="file" name="file_name">

5. <input type="submit" value="Submit">

6. </cfform>

The purpose of this template is to permit the user to specify a text file at the client computer for

uploading to the server for processing.

The next step is to search sequentially through the text string in the file to identify each separate

word, record the identified word in a list if it not exists already or increment a frequency counter

if it exists, and repeat for next word. For each existing word, its frequency counter is

incremented by 1. When the document is exhausted, the words are sorted in descending order

with the most frequent on top of the list.

In the following template parser.cfm, Lines 2-3, the file you specify in index.cfm is uploaded,

read into variable file_up as a string value, and its characters counted. The core of the process is

surrounded by 2 pairs of CFLOOP tags, one nested in the other and both function as 'while'

loops. The first, starting at Line 8 and closing at Line 26, is traversed as many times as the

process identifies words. The second enclosing Lines 13-20 is traversed for each character in the

words.

The core of the parsing process starts by finding each word. This is done by Line 9 in which the

position of the end delimiter of the current word is identified. Since the beginning is the

character following the end delimiter of the previous word, the word can be extracted by the tag

of Line 10.

The position of the delimiter following the end of the current word is found by means of the

function REFindNoCase(..) in which the criterion for finding the next word delimiter is the

regular expression appearing as the first argument. In this template, two POSIX classes,

[:punct:] and [:space:], are used. Note that in the function, the square bracket must be repeated

to be correctly interpreted! The first class matches most punctuation characters not appearing as

part of English words. The second class matches spaces. As indicated above, the same results

could also be obtained by a regular expression based on character classes.

With the position at the end of a word and the start position of the word, the 3 arguments needed

for the string function MID() in Line 10 extract the word are available. Lines 11-20 determine if

the current word already is in the frequency list. If the word has already been recorded, the

frequency number is incremented in Line 16. If not, Line 25 inserts the word, and the next word

is extracted and tested against the list of words.

1. <!--- parser.cfm --->

2. < CFFILE action="upload" filefield="file_up" destination="#path#\file_up.txt"

nameconflict="overwrite">

3. < CFFILE action="read" file="#path#\file_up.txt" variable="file_up">

128

4. <CFSET document_size="#len(file_up)#">

5. <CFSET start="1">

6. <CFSET frequency_structure=StructNew()>

7. <CFSET characters_processed="0">

8. <CFLOOP condition="#characters_processed# LT #document_size#">

9. <CFSET position=REFindNoCase("[[:punct:]][[:space:]]",#file_up#, #start#>

10. <CFSET word=Mid(#file_up#,#start#,#position#-#start#)>

11. <CFSET hit="0">

12. <CFSET counter="0">

13. <CFLOOP condition="#counter# LT #StructCount(frequency_structure)# AND #hit# EQ 0">

14. <CFIF StructKeyExists(frequency_structure,#word#)>

15. < CFSET frequency=StructFind(frequency_structure,#word#)>

16. < CFSET StructInsert(frequency_structure,#word#,#frequency#+1,"true")>

17. < CFSET hit="1">

18. </CFIF>

19. <CFSET counter=#counter#+1>

20. </CFLOOP>

21. <CFIF #hit# EQ 0>

22. <CFSET StructInsert(frequency_structure,#word#,1)>

23. </CFIF>

24. <CFSET start=#position#+1>

25. <CFSET characters_processed=#characters_processed#+#Len(word)#+1>

26. </CFLOOP>

27. <div align="center"><h2> Word frequency list </h2></div>

28. <table align="center" border="1">

129

29. <tr>

30. <th>Word:</th><th>Frequency:</th>

31. <CFSET mylist="#ArrayToList(StructSort(frequency_structure,"numeric","desc"))#>

32. <CFLOOP index="word" list="#mylist#">

33. <CFOUTPUT>

34. <tr>

35. <td> #word# </td><td> #StructFind(freguency_struct,word)# </td>

36. </tr>

37. </CFOUTPUT>

38. </CFLOOP>

39. </table>

The last part of this template, Line 27-39 is an ordinary tabulation of the list. Line 31 orders the

word frequency list in frequency descending order, while Line 35 prepares the word and its

frequency for display in a table row.

Figure 2 shows a short text,

Figure 2: A test text.

and Figure 3 demonstrates the indexing result.

http://nordbotten.net/courses/ics/sessions/session11/images/figure2.cfm
http://nordbotten.net/courses/ics/sessions/session11/images/figure3.cfm

130

Figure 3: The most frequent words in the extracted list.

Implementation

The application has been implemented as an example and is available by the link at the end of

this session. Observe that your file used in this example should be a .txt file and that the absolute

address to the file on your own computer must be specified. You can try files with other

extensions, but the results may be affected by the formatting code of the particular file type and

create problems. If you for example parse a .htm file containing a number of <P> tags, the P's

are surrounded by the symbols < and > which are considered word delimiters. Consequently, the

"word" P appears with high frequency. The best way to try out the parser is to prepare/use a

document in NotePad (or another ASCCI text processor.)

In a real application, the frequent words such as 'and', 'or', 'but', 'the' and words such as pronouns

'I', 'you', 'she', etc., are specified in a list called a stop-word list used to exclude these words from

the word frequency list since they have little significance when the frequency list is used for

searching for keywords. In a real application, the formatting specifications should also be

eliminated from the text before indexing.

131

CFScript language

In the introductory session of this course, it was pointed out that ColdFusion is based on the tag-

oriented language CFML. However, CFMX also includes a scripting language which can be

activated by the tag CFSCRIPT. The CFScript language has syntax similar to ordinary

programming languages such as C. It has syntactically also many similarities with JavaScript

(we shall return to JavaScript in the next session). While JavaScript is a tool for extending

HTML on the client-side, the scripting tool CFScript is an extension of CFMX on the server-

side.

The syntax of CFScript is simple, and is discussed by RBB in Chapter 19 of his book. You

should take note of the following basic rules:

 CFScripts can be included in CFMX templates, but must always be enclosed by the tag pair
CFSCRIPT and /CFSCRIPT.

 CF tags cannot be used within a CFScript.
 CF functions can be used in CFScripts.
 Variables defined in a CF template are available in a CFScript and vice versa.

CFScripts usually give more compact code than CFML, and many programmers trained in

conventional programming feel more comfortable with CFScript than with the tag based

statements of CFML.

Comparing CFML and CFScript

To demonstrate the CFScript, we are returning to the parser.cfm template of the Regular

Expression example discussed in the first part of this session. The code for parsing is now

developed by means of CFScript instead of the CFML tags. The CFFILE tags in the beginning

of the parser template of the previous session, which are needed for uploading and handling the

file to be parsed, and the final TABLE tags for displaying the results, are kept unchanged in the

example of this session's parser_script.cfm while the tags for processing and preparing the word

frequency list are substituted with CFScript code.

The parser_script.cfm template starts with the CFFILE tags needed to upload to location

#path#\file.txt and to read the text file. Then follows the CFSCRIPT block, and the template

ends with the CFOUTPUT tag block. The value #path# must be set compatible with the web

page organization of your server.

Note that like many other language syntaxes, the syntax of CFScript requires that each

statement is terminated with a semicolon. As mentioned, CFScript permits the use of all CFMX

functions and variables.

Almost a one-to-one correspondence between the tags of the previous example and the scripting

statements can be obtained. Because of the strong similarity between the two templates,

parser_script.cfm can easily be interpreted and understood without any further explanation.

Note, however, the use of the special CFScript function WriteOutput(string) appearing in Lines

132

9 and 10. It writes text to the output stream. The visible gain of scripting compared with the tags

in this example is less text.

1. <!--- parser_script.cfm --->
2. <CFFILE action="upload" filefield="file_up" nameconflict="OVERWRITE"

destination="#path#\file2.txt">
3. <CFFILE action="READ" file="#path#\file2.txt" variable="file_up">
4. <CFSET document_size="#len(file_up)#">
5. <CFSCRIPT>
6. start=1;
7. frequency_structure=StructNew();
8. characters_processed=0;
9. WriteOutput("Text: #file_up#
");
10. WriteOutput("Document size: #document_size# characters.
");
11. while (#characters_processed# lt #document_size#){
12. position=REFindNoCase("[[:punct:][:space:]]",#file_up#,#start#);
13. word=Mid(#file_up#,#start#,#position#-#start#);
14. hit=0;
15. counter=0;
16. while(#counter# LT #StructCount(frequency_structure)# AND #hit# EQ 0){
17. if (StructKeyExists(frequency_structure,#word#)){
18. frequency=StructFind(frequency_structure,#word#);
19. StructInsert(frequency_structure,#word#,#frequency#+1,"true");
20. hit=1; }
21. counter=#counter#+1; }
22. if (#hit# eq 0)
23. StructInsert(frequency_structure,#word#,1);
24. start=#position#+1;
25. characters_processed=#characters_processed#+#Len(word)#+1; }
26. </CFSCRIPT>
27. <CFOUTPUT>
28. tid2: #TimeFormat(now(),'hh:mm:ss:ll')#
29. </CFOUTPUT>
30. <div align="center"><h2> Word frequency list </h2></div>
31. <table align="center" border="1">
32. <tr>
33. <th>Word:</th><th>Frequency:</th>
34. </tr>
35. <CFSET mylist=#ArrayToList(StructSort(frequency_structure,"numeric","desc"))#>
36. <CFLOOP index="word" list="#mylist#">
37. <CFOUTPUT>
38. <tr><td> #word# </td><td> #StructFind(frequency_structure,word)#</td></tr>
39. </CFOUTPUT>
40. </CFLOOP>
41. </table>

For the example of this session, the code was implemented with the same index.cfm template as

in the previous example containing the form required for identifying the text file to be uploaded.

The example can be tested by using the link at the end of this session. If used at the same text file

as you used for the example of the previous session, the results should be identical.

133

The advantage of CFScript will become significant in more complex processing tasks. It seems

to be a trend that scripting is used for developing User Defined Functions and CF Components

designed for intensive re-use. These topics will be discussed in the next sessions.

Conclusion

One of the objectives of ColdFusion is to be a RAD (Rapid Application Development) tool. The

advantage of CFScript is more compact, elegant and efficient code. The price to be paid for

using CFScript may, however, may be less rapid development. Optimum development strategy

will depend on the nature of the application task and the developer's preferences, knowledge and

experience with the CFML tags and scripting.

Exercises

a. In the example, we have not paid attention to how the frequency list should be stored for

efficient use. What about links to the indexed text documents? How should a stop word list be

taken into account? List the storage alternatives you can think of, and prepare a pro & contra

discussion for the alternatives imagining you need to convince a client for the solution you think

is most suitable.

b. Implement your storage solution, and consider which search strategy will be optimal if you are

searching for documents containing one, two or more words. It is usual to indicate document

relevance with a score indicator. How would you assign scores to the different documents? Can

you extend your design to work with logical expressions?

c. Do not forget to read Chapter 18 by RBB. The potentials of RE are much wider than what has

been discussed in this session, and knowledge about these potential are useful for designing a

number of different systems.

d. Select one of the processing templates developed in your project and rewrite it by means of

CFScript.

e. Insert time-stamps combined with CFOUTPUT at the beginning and end in both the tag and

the script versions. Run both of them, compare the timing outputs and see if you can detect any

speed differences. Discuss what you in fact are measuring?

f. I recommend studying Chapter 19 on Scripting in RBB. My guess is that CFScripting will be

become more important in the future in connection with User defined Functions, Components

and Web Services which are 3 topics to be discussed in the following sessions.

134

Session 12: Re-using code

The topic for this session is re-using code the aim of which is to make development less work

extensive and applications to perform more efficiently. This aim is obtained by spending more

resources and time on new tasks considered to be repetitive, and to organize the results in such a

way that they can easily be used when needed for development of new applications. There are

others important issues associated with this objective, which we cannot discuss in this course,

among which are scaling and load-balancing,

Re-using code

ColdFusion approaches

When the programmed computers emerged in the 1940's, it was soon recognized that a large

proportion of development time was in fact used for re-inventing and re-coding programs already

prepared, but unfortunately not always taken well care of and made available or distributed.

Program and routine libraries therefore became established, systematized, published and

distributed. About 20 years later, the object-oriented programming took off, and class libraries

were developed and assembled with extended possibilities for re-use.

ColdFusion MX includes a battery of approaches for facilitating systematic re-use of codes

including:

 CFINCLUDE Tags
 Customs Tags
 User-Defined Functions
 CFX Tags
 Components

You have most likely already used the CFINCLUDE tag in your work and probably saved

yourself for some repetitive work. By means of this tag you can include a template with a

sequence of tags frequently used in other templates. One drawback is that you have to keep track

of the address at which the tag to be included is located.

In this session, we discuss Custom Tags and User_Defined Functions. You are referred to

RBB for information about CFX tags. Visit also Macromedia web site for additional

information.

Components and Web services will be discussed in later sessions.

Custom Tags

ColdFusion includes almost 100 tags. ColdFusion also includes a feature, Custom Tags, CF_

tags, which permits users to define their own tags for operations or procedures frequently used.

CF_ tags are easy to use, save the developer for re-writing the code for the specific operation,

135

permit definition of attributes, can be stored in standard directories, and decrease the possibility

for creating bugs in the tedious re-writing of code.

This session's application examples include a tailor-made logging of application use. Evaluating

web applications requires observations and data. One type of data is log data reflecting the users'

movements from one template to another during a visit to the web site and possibly for a

sequence of visits. Log data can identify templates frequently visited by users, users' paths

through the application, and the time spent by users at each template or sequence of templates.

The purpose is usually to provide knowledge to developers for improving the applications.

Let us consider the following scenario: Imagine that milestones (important points in an

application) in can be identified in an application. At each milestone, a log recording can be

embedded. Recorded passing of each milestone will be data of the type required.

What should be recorded in connection with a milestone passing? There are at least 4 useful facts

for any log record:

 ID for the user (ID)
 Timestamp for passing the milestone (TimeStamp)
 Name of current milestone passed(CurrentMilestone)
 Name of previous milestone(PreviousMilestone)

A CF_ tag, which takes care of the recording of these 4 facts, can be defined by the following

template, logmilestone.cfm:

1. <!--- LogMilestone.cfm --->
2. <cfset timestamp=Now()>
3. <cfset id="#session.pin#">
4. <cfset CurrentMileStone=#cgi.SCRIPT_NAME#>
5. <cfif Not IsDefined('session.PreviousMilestone')>
6. <cfset session.PreviousMilestone="">
7. </cfif>
8. <cfset milestonerecord="#id#, #timestamp#, #CurrentMilestone#, #session.PreviousMilestone#">
9. <cfset session.PreviousMileStone=#CurrentMilestone#>
10. <CFIF NOT FileExists('logrecords.htm')>
11. <CFFILE ACTION="write" FILE="#session.path#\logrecords.htm" OUTPUT="<h3><font

color=""Blue"">Milestone records</h3>">
12. </CFIF>
13. <CFFILE ACTION="append" FILE="#session.path#\logrecords.htm" OUTPUT="#milestonerecord# <p>"

addnewline="yes">

Note that the above listing shows that this template is not different from a regular template. Lines

2-4 take care of generating 3 of the 4 variables wanted for the log recording. The value,

#session.pin#, is assumed set when the users entered the application. The 4th variable,

PreviousMilestone, does not exist if the recording is the first milestone of the current session.

Then Lines 5-7 define the session.PreviousMilestone to be blank ("").

136

Line 8 composes a list called milestonerecord. Lines 10-12 test the existence of the file

logrecords.htm. If the file does not exist, i.e. this is the first log recording, done, the template

establishes the file. Finally, Line 13 appends the list milestonerecord as a record to the file

logrecords.htm

The Custom Tag template can be saved in different places. A recommended rule is to save it in

a pre-installed directory called CustomTags in a special directory, Customtags, within the

general CFMX directory. However, frequently an ISP host does not permit its customers access

to this directory. The easiest way is then to copy the tag template to the directory in which it is

used. The tag template can be called from any template by the tag CF_LogMileStone.

The CustomTags have a number of properties, possible uses as well as restrictions. In this

session, only the most elementary aspects are discussed. You are recommended to study Chapter

27 of RBB.

We use the guess example from Session 2 to illustrate application of the CF_LogMileStone tag.

We assume that the display of the problem and the response from the system are the 2 interesting

milestones in this application. In the present example, index.cfm template of session 2 is re-

named as index_.cfm after the CF_LogMileStone tag is included at the top of the template:

1. <!--- index_.cfm --->
2. <cfset session.pin=#xxxx#>
3. <CF_LogMilestone>
4. <CFSET temp=randomize(second(Now()))>
5. <CFSET session.target=#RandRange(50,100)#>
6. <h2>Guess!</h2>
7. <form action="response_.cfm">
8. <cfoutput>
9. <p>My name is <input type="text" name="name"></p>
10. <p>I guess the sum of all integers from 1 to #session.target# is <input type="text"

name="guess"></p>
11. </cfoutput>
12. <p><input type="submit" value="Submit"></p>
13. </form>

In Line 2 we have to set some value for the session.pin. Similarly, the response.cfm template of

session 2 is renamed as response_.cfm after the CF_LogMileStone tag is included:

1. <!--- response_.cfm --->
2. <CF_LogMileStone>
3. <CFSET sum="0">
4. <CFLOOP INDEX="count" FROM="1" TO="#session.target#" >
5. <CFSET sum=#sum#+#count#>
6. </cfloop>
7. <CFIF #sum# EQ #guess#>
8. <cfoutput>
9. <h3>#name#, your guess was correct!</h3>
10. </cfoutput>
11. <CFELSE>

137

12. <cfoutput>
13. <h3>Sorry, #name#, the sum is #sum#.</h3>
14. </cfoutput>
15. </cfif>

To make the example complete, a menu is need, and index.cfm is included:

1. <!--- index.cfm --->
2. <center>
3. <h2>Menu</h2>
4. <p>Do you want to:</p>
5. <table>
6.
7. Run the application
8. See the log
9.
10. </table>

11. </center>

The options of Lines 7-8 make it possible to run the application several times and then and

inspect the listing of the log file in which the milestone passing are recorded. The list displays all

activities of the example applications and you will see recordings from other users before you

entered the example. The list can easily be copied and processed for analytical purposes by for

example MS Excel. With real id numbers, you will then be able to study how many times the

individual user tests the example application before he/she gets bored, how long time is used in

average to figure out an answer, etc.

User-Defined Functions

User-Defined Functions, UDF, is another feature which makes re-using code easier. Compared

with Custom Tags, UDF can be an advantage if you have some data manipulation (calculations,

string parsing, etc.) to be done in different applications. A UDF can either be coded by general

CFML tags, or as a CFScript block.

In the Guess example, response_.cfm includes the calculation of all integers from 1 up to a

certain number. If we develop applications in which this calculation frequently is required, we

may decide to make it a UDF. We decide to use the CFScript keeping in mind that this approach

cannot use CFML tags. The CFScript is also compatible with earlier versions of CF.

We create a UDF called sum_integers(number) with one argument, number. The argument is

the upper limit of the integer series.

1. <!--- UDF_lib.cfm --->
2. <!--- You can store as many UDF-functions as you like within the CFSCRIPT tags --->

3. <CFSCRIPT>

138

4. function sum_integers(number)
5. {
6. sum=0;
7. for(index=1; index LTE number; index=index+1)
8. {
9. sum=sum+index;
10. }
11. return sum;
12. }

13. </CFSCRIPT>

Note that the CFSCRIPT block comprises all statements in the template, in this case all

statements in the single function included.

UDF libraries

A function can be saved in the same template it is used. Obviously, when you need to use the

function more than once, a better solution is required. An effective approach is to collect all your

functions in a library template, which you name UDF_lib.cfm. If you add an include tag,

<CFINCLUDE template="UDF_lib.cfm">, in your Application.cfm, all functions in your

library will be available for all templates in your application.

Above, we have stored the function sum_integers(number) including the CFSCRIPT tags in

the file called UDF_lib.cfm, and illustrate by the template index.cfm how we can make use of

the library and its functions:

1. <!---index.cfm --->
2. < cfinclude template="udf_lib.cfm">
3. < center>
4. < Cfif IsDefined('number')>
5. < cfoutput>
6. < font color="blue"><h2>The sum is #sum_integers(number)#</h2>

< /cfoutput>
7. <cfelse>
8. < h2>Sum function</h2>
9. < cfform action="index.cfm" method="post" enablecab="yes">
10. < p>I want the sum of all integers from 1 to
11. < cfinput name="number" required="yes" type="text">
12. < input type="submit" value="Submit">

< /cfform>
13. < /Cfif>
14. </center>

Note that we have included the CFINCLUDE tag in this file, since we have not shown the

Application.cfm for this application.

139

CFX Tags

CFX tags are tags prepared in a foreign language and compiled to a .dll or .class file. This opens

for preparing very effective tailor made tags. In this course, however, we shall only take note of

this possibility without exploring it further.

Exercises

a. You are encouraged to copy and try out the examples for yourself. An challenging task will be

to work out how a component can be called by means of the CFOBJECT tag.

b. Review your project templates and identify code sequences which you have used repetitively.

Transform these sequences to Custom Tags, and evaluate what you gained in your project, and if

you can benefit from your Custom Tags in future applications.

c. The experts recommend that you code your UDF based on tags. Re-write the UDF script-

based function sum_integers(number) as a tag-based UDF and test it.

d. RBB discusses Function Libraries in Chapter 20. Read the chapter carefully. He refers to an

open source repository named the Common Function Library Project. Import the library and see

if you find any interesting and useful functions for your project in the library.

e. There are many ways of constructing and using components. RBB discusses some of them in

Chapter 22. Components build on UDF is discussed in detail in RBB Chapter 20. You are

recommended to read this chapter, and try out some of the suggestions.

f. Consider how you would reorganize your own project if you should have implemented it by

means of components.

e. You are welcome to study the wsdl of as well as and invoke the web service:

http://nordbotten.ifi.uib.no/webservices/access_webservice.cfc?wsdl called from an application

on your own computer.

http://www.cflib.org/

140

Session 13: Distributed processing

Distributed processing

Processing tasks can be distributed among several computers connected by a network. In this

session, we shall consider 2 technologies for distributing a task between a host and connected

clients.

Client-side processing

In web applications, many possibilities exist to let the clients do part of the processing.

Transmitting Java Applets were among the first client-side technologies available. Later,

alternative specialized tools for client-side processing have been developed. JavaScript is a tool

for client-side processing which today can be used in connection with most popular browser

software.

Macromedia's Flash has become very popular and powerful as another tool for client-side

processing. It can also be combined with ColdFusion by means of Flash Remoting, an interface

between the Flash processing (See Colin Moock) on the client-side and ColdFusion on the

server-side (See Tom Muck).

JavaScript

In this session, we shall review JavaScript (See David Flanagan) combined with CFMX for

client-side processing. JavaScript scripts can be embedded in CFML templates and sent as part

of the HTML response to a requesting client. Most major browsers are able to interpret and

execute JavaScript code.

JavaScript is a scripting language similar to CFScript already discussed. In contrast to

CFScript, which is interpreted on the server side, JavaScript is executed on the client-side.

JavaScript code can be included in CFMX templates surrounded by the tags <SCRIPT

LANGUAGE ="JavaScript" TYPE="javascript"> and </SCRIPT>.

The application domain of JavaScript is wide. Most popular is probably use of the technology

for validity checking of the answers to form requests before the form is submitted. Client-side

checking saves the transmitting, server-side checking a possible a new request to the client

because of invalid answers.

WE shall consider another application. The session tests of this course have all been developed

as server-side applications. However, they could as well have been developed as distributed

applications where the checking of the answer is done at the client-side, and the server is only

engaged when you pass the test and want the points recorded at your progress record, or when

you request a new test.

The example application we shall illustrate how the test form can be designed to be checked by

the client computer by embedding a JavaScript in the .cfm file sent to the client.

http://nordbotten.net/courses/ics/information/literature/literature_.cfm?Moock%202002
http://nordbotten.net/courses/ics/sessions/session13/texts/macromedia.com
http://nordbotten.net/courses/ics/information/literature/literature_.cfm?Flanagan%202001

141

As an example shortcut, we call the form template for index.cfm in the example. This template

would look like this:

1. <!--- form.cfm --->
2. < cfoutput>
3. < SCRIPT language="JavaScript" type="text/javascript">
4. function evaluate(){
5. if(document.select.reply[1].checked) document.write("<center><h3>Your answer

was correct.

Do you want to continue?

Yes/No</h3>.</center>");

6. if(document.select.reply[0].checked) document.write("<center><h3>Your answer
was wrong.</h3>Correct answer is: JavaScript is a scripting language.

<font
color=\"blue\"><h3>Do you want to continue?

Yes/No</h3></center>");

7. if(document.select.reply[2].checked) document.write("<center><h3>Your answer
was wrong.</h3>Correct answer is: JavaScript is a scripting language.

<font
color=\"blue\"><h3>Do you want to continue?

Yes/No</h3></center>");

8. if(document.select.reply[3].checked) document.write("<center><h3>Your answer
was wrong.</h3>Correct answer is: JavaScript is a scripting language.

<font
color=\"blue\"><h3>Do you want to continue?

Yes/No</h3></center>"); }

9. < /SCRIPT>
10. < /cfoutput>
11. ><H2>Question 7 from session 13 </H2>
12. <I>Question:</I>
 < P>JavaScript is a:</P>
13. <I>Answers:</I>

14. <form name="select" onsubmit="return false">
15. < P><INPUT name="reply" type="radio" onClick="evaluate()" value="1"> JAVA program.</P>
16. < P><INPUT name="reply" type="radio" onClick="evaluate()" value="2"> Scripting language.</P>
17. < P><INPUT name="reply" type="radio" onClick="evaluate()" value="3"> JAVA utility.</P>
18. < P><INPUT name="reply" type="radio" onClick="evaluate()" value="4"> JAVA interpreter.</P>

19. < /form>

The form with the question and answers is contained in the Lines 11. - 19. It differs in 2 respects

from the server-side template form used in the tests. First, this form has no INPUT tag with

TYPE="submit" because it should not be submitted to the server. Instead each input tag has an

ONCLICK event attribute, which transfers the control to the JavaScript function evaluate() in

Lines 4-8 with the VALUE attribute as a parameter. This JavaScript function is executed

locally at the client's computer by means of an interpreter included in the browser.

The JavaScript function evaluate() is surrounded by the SCRIPT tags, which again is nested in

the CFOUTPUT tags in order to display CFML based strings. The evaluate() function includes

4 if clauses, each of which tests if one of the 4 alternative answers was checked. The if-

conditions make use of a JavaScript document object method,

document.select.reply[].checked, which select the option checked (it is impossible to check

more than one answer). Note that while the answers are numbered from 1 to 4, the JavaScript

runs through a list of the options in which they are numbered from 0 to 3. Another document

method, document.write, is used in the script to write if the checked alternative was correct or

not.

142

The above distribution saves some interaction between client and host and let the client share

part of the processing load with the host. With modern high memory capacity on the client side,

an even more efficient and realistic distribution would be to transfer all the questions with

answers prepared by the host for a client requesting a test, and let a JavaScript manage the

complete test and report the final results only back to the server.

Flash and ActionScript

Flash has become known as a technology for developing animations on the net. However, the

last versions of Flash MX, the scripting language ActionScript, the Flash Remoting and

ColdFusion MX represent together a very general environment for developing advanced

applications on the net.

Developing such applications requires Flash MX, installation of Flash Remoting and

ColdFusion MX on the developer's computer. Running the developed and tested application,

does not require more than any other ColdFusion applications. To accept and run a Flash

application, the client's computer must have the Flash reader (free) installed.

The scripting language ActionScript, as JavaScript and CFScript, is developed on basis of the

ECMA-262 standard. The 3 languages deviate all from the standard, and each other, but there

are obvious similarities.

The final FLASH result is called a movie (saved as a .swf file) which is generated from a

FLASH document (saved as a .fla file). Usually a document is created by means of the FLASH

graphic authoring tool (Figure 1) and ActionScript as a sequence of graphical frames connected

to scripts. As an elementary demonstration of Flash application in combination with

ColdFusion, a small example is included.

http://nordbotten.net/courses/ics/sessions/session13/images/figure1.cfm

143

Figure 1: FLASH authoring tool.

The scenario is again the session tests of this course. An index.cfm page is used to call the Flash

application which is loaded down to your computer. During the loading process, which starts by

a .html page, the existence of a Flash reader is checked, and, if negative, also loaded before the

movie:

1. <!--- index.cfm --->

2. <center>

3. <h3> FLASH demonstration </h3>

4. <p>Do you want to take the session test?</p>

5. <p>Yes/No

This CFML template returns the questions.html and an attached Flash movie file questions.swf

, containing the Flash application, to the requesting client.

The Flash movie contains a sequence of frames which are played subject to the control of the

scripts also included in the .swf file. In this example, there are 5 frames:

 init,
 continue,
 correct,
 incorrect,
 end.

Frame init (Figure 2) displays a question and the multi-choice answers. When a button is clicked,

http://nordbotten.net/courses/ics/sessions/session13/images/figure2.cfm

144

Figure 2: FLASH frame init

an attached script directs the play through continue (Figure 3)

Figure 3: FLASH frame continue

http://nordbotten.net/courses/ics/sessions/session13/images/figure3.cfm

145

to either frame correct (Figure 4)

Figure 3: FLASH frame continue

or incorrect (Figure 5)

http://nordbotten.net/courses/ics/sessions/session13/images/figure4.cfm
http://nordbotten.net/courses/ics/sessions/session13/images/figure5.cfm

146

Figure 5: FLASH frame incorrect.

depending on the button clicked. Passing continue, to either of these 2 frames, the content of

continue is activated as an overlay. The content is 2 buttons, continue Yes or No. A second script

connected to both correct and incorrect, determines if the play head should be moved back to init

or forward to end (Figure 6) depending on whether the Yes or No button of the overlay is

clicked.

http://nordbotten.net/courses/ics/sessions/session13/images/figure6.cfm

147

Figure 6: FLASH frame end.

The ActionScript code connected to the init frame looks like::

1. //Initialization
2. var sum;
3. stop();
4. answer1.onRelease = function(){
5. gotoAndStop("incorrect");
6. };
7. answer2.onRelease = function()
8. {
9. gotoAndStop("correct");
10. };
11. answer3.onRelease = function(){
12. gotoAndStop("incorrect");
13. };
14. answer4.onRelease = function()
15. {
16. gotoAndStop("incorrect");
17. };

148

Line 1 is an ActionScript comment while in Line a variable called sum is defined. Then the

actions arte stopped until an event occurs. Four events with associated functions are defined in

Lines 4-17. Each corresponds to the release of a mouse button over a radio button in frame init.

All functions are similar and results in moving the play head to one of two named frames, correct

and incorrect.

The continue overlay frame is passed and activated when the play head is moved to either of the

2 frames mentioned above. The script associated with the overlay frame is:

1. //Continue
2. stop();
3. yes_btn.onRelease = function() {
4. gotoAndStop("init");
5. };
6. no_btn.onRelease = function() {
7. gotoAndStop("end");
8. };

The continue frame, which is overlaid on both the correct and the incorrect frame, has a yes and

a no button. When the mouse button is released over the yes frame button, the play head is

returned to the init frame, while when the mouse button is released over the no frame button, the

play head is moved to the end frame. Neither the correct nor the incorrect frame has separate

scripts associated to them.

The script connected to the end frame looks like this:

1. //End
2. if(sum<1) {sum=0};
3. this.createTextField("Result_txt",1,200,200,200,30);
4. Result_txt.text="Your number of correct answers is:" + sum;

The last script contains code which sends the results back to a ColdFusion server-side program

for storing in a database or for further processing .

1. //Transmit
2. dataSender = new LoadVars();
3. button_submit.onrelease = function ()
4. dataSender.send("

5. http://nordbotten.net/courses/HSH/sessions/session13/examples/flash/feedback.cfm","_self",
"GET"); } stop();

The transmit script creates an object called dataSender with a method send. In our simple

example, no data is sent. The method simply requests a CFMX page, feedback.cfm, from the

server (Figure 7). A more efficient technology, FLASH Remoting, exists for client-server

collaboration. As FLASH itself, FLASH Remoting is outside the scope of this course.

http://nordbotten.net/courses/ics/sessions/session13/images/figure7.cfm

149

Figure 7: CFMX response to FLASH request..

Exercises

a. Free manuals and guides are available on the net. You are encouraged to retrieve information

necessary for taking advantage of the fact that practically all browsers can interpret JavaScript

scripts if you can design them.

b. A challenging task will be to work out how a more complete quiz can be developed by means

of JavaScript.

150

Session 14: Components

CFMX Component technology

ColdFusion Component is another approach to systemizing the code for convenient future re-

use by the developer or for distribution to other developers. The Component feature has some of

the object-oriented characteristics, but is not considered a true object-oriented programming

approach. In CFMX, components serve also as an interface to other technologies such as Flash

and Web services. A component usually contains a set of functions also called methods, and is

similar to a UDF library file.

For the application developer, the components are hiding the details of the code and focusing on

the functionality. The component technology permits the use of all CFMX tags and functions,

can access databases, protocols, foreign systems and code, which makes the technology

extremely flexible.

Authorization example

In Session 7, we discussed authorization and authentication. It was pointed out that authorization

and authentication were processes used in many applications for security reasons. If

authorization, i.e. providing users with credentials for entering the application, can be designed

in a way which permits the code to be re-used, we can save ourselves for future re-design of the

same task for each application.

To illustrate the principles of CFMX Components, we shall design a simple application for

generating unique accesscodes as a component, which can easily be embedded into all

applications of an organization.

The basic requirements to the accesscodes are:

1. The accesscode should have a large number of possible values compared with those used,
2. The accesscode should be assigned randomly to the users,
3. The accesscode should be unique, i.e. not assigned to more than one user.

An accesscode alone is not a very safe precaution against intruders, but as long as the system

does not contain sensitive personal or economic information of importance, a simple accesscode

can be satisfactory. If you want higher security level, consider to combine the accesscode with

for example the user's email address, his birth place, etc.

Component for generating unique random numbers

We envisage that the component to be developed should be called from an application template

to which the accesscode is supplied and which saves it in a database for future authentications. In

our session example, the application is substituted by a single template which calls on a

component, and displays an unused accesscode as requested. Figure 1 illustrates the structure of

a component with 4 functions (methods) included.

http://nordbotten.net/courses/ics/sessions/session14/images/figure1.cfm

151

Figure 1: Model of component component access_no

A main function controls the process. It can be compared with the main procedure of a

traditional computer program. In addition, 3 more functions/methods are included in the

component. The 4 functions of the component are:

1. main(), which controls the processing within the component and returns the result to the calling
template. It also displays the list of all used access numbers.

2. retrieve(), which retrieves the list of previously used numbers,
3. generate(), which generates a random number within the specified area 10000-99999,
4. check(), which checks if the generated number is unused or already used.

The component is invoked from template, access_no.cfm. This template plays the role of an

application needing the processing of the component. For the purpose of demonstration, this

template displays a list of the most recently generated access numbers, and the requested new

number:

1. <!--- access_no.cfm --->
2. <cfinvoke component="access_component" method="Main" returnvariable="access_no"></cfinvoke>
3. <center>
4. <h2>A vacant access number is:</h2>
5. < cfoutput>
6. #access_no#
7. </cfoutput>
8. </center>

The CFINVOKE tag in Line 2 calls the function/method main() within the component. The

value of the variable access_no is expected to be returned by the component to the calling

152

template. In the example, Lines 4-7 display the values of the requested new number (See Figure

2). A component can also be called by means of the CFOBJECT tag, the createobject() function

in CFScript and via a http call. Consult RBB for detailed information on how to call a

component.

Figure 2: The results from component access_no

The component itself is displayed below. Note the file extension .cfc used for identifying

component files. The function main() calls on the 3 other functions, and depending on whether

the value of the variable accept_no is 1 or 0. The main() also returns the value of access_no to

the calling template if accept_no is 1, or repeats execution of functions generate() and check()

until accept_no() becomes 1.

1. <!--- access_component.cfc --->
2. < cfcomponent hint="This component returns an unused accessnumber in the interval 10000 - 99999">
3. <!--- main() --->
4. <cffunction hint="Controls the process" name="main">
5. < cfset used_no="#retrieve()#">
6. < cfset accept_no="0">
7. < cfloop condition="#accept_no# EQ 0">
8. <cfset access_no="#generate()#">
9. < cfset accept_no="#check(access_no,used_no)#">
10. </cfloop>
11. <cfreturn access_no>
12. < /cffunction>
13. < !--- retrieve() --->
14. <cffunction hint="Retrieves list of used numbers" name="retrieve">
15. <cfif Not FileExists('#session.path#\sessions\session12\examples\component\Used_no.txt')>
16. < cfset Used_no="10000,99999">
17. < cffile action="write" file="#session.path#\sessions\session12\examples\component\Used_no.txt"

output="#Used_no#">
18. < /cfif>
19. <cffile action="read" file="#session.path#\sessions\session12\examples\component\Used_no.txt"

variable="Used_no">
20. <cfreturn Used_no>
21. </cffunction>
22. <!--- generate() --->

http://nordbotten.net/courses/ics/sessions/session14/images/figure2.cfm
http://nordbotten.net/courses/ics/sessions/session14/images/figure2.cfm

153

23. <cffunction hint="Generates a random number in the interval 10000 - 99999" name="generate">
24. < CFSET temp=randomize(second(Now()))>
25. < CFSET access_no=#RandRange(10000,99999)#>
26. < cfreturn access_no>
27. < /cffunction>
28. < cffunction hint="Checks whether the generated number has not been used, saves and returns it, or

has been used and return to Generator" name="check">
29. < cfargument name="access_no" type="numeric" required="true">
30. < cfargument name="used_no" type="any" required="true">
31. <cfset accept_no="1">
32. <cfloop index="i" list="Used_no" delimiters=",">
33. < cfif #i# EQ #access_no#>
34. < cfset accept_no="0">
35. < cfbreak>
36. < /cfif>
37. < /cfloop>
38. <cfif #accept_no# EQ "1">
39. < cfset Used_no=ListAppend(Used_no,#access_no#)>
40. < cffile action="write" file="#session.path#\sessions\session12\examples\component\Used_no.txt"

output="#Used_no#">
41. < /cfif>
42. < cfreturn accept_no>
43. </cffunction>
44. < /cfcomponent>

The function retrieve() tests if a file, used_no.txt, exists and creates the file if not. The function

then retrieves the file with all previously used numbers and stores it in a list named Used_no

which is returned to the main(). The function generate() is quite simple. It generates a random

number, access_no, between 10000 and 99999, and returns the number to the main().

Function check(Used_no,access_no) is called and checks the random number value

#access_no# against the values in the list of used number. If the number is unused, check() saves

the updated list of used numbers and returns accept_no with value 1, and main will be able to

return #access_no# to the template which called the component, else the Lines 7-10 are repeated.

Note that the path to the component in the FILE tags is assumed specified in the

Application.cfm. In the example, a small index.cfm template is included to start the generation.

Introspection

A component can be stored in the folder of the application using it, or in any other folder below

the web root. Its properties can be inspected by so-called Introspection. Call the URL of the

component by means of your browser. This call activates the CFC Explorer which requires your

username and password. It displays a page with the meta-information about the component.

154

Figure 3 demonstrates part of the information for the component access_no.cfc. Note that the

addresses given are not real addresses.

Figure 3: Introspection of component access_no

Exercises

a. You are encouraged to copy and try out the examples for yourself. A challenging task will be

to work out how a component can be called by means of the CFOBJECT tag.

b. There are many ways of constructing and using components. RBB discusses some of them in

Chapter 22. Components build on UDF is discussed in detail in RBB Chapter 20. You are

recommended to read this chapter, and try out some of the suggestions.

c. Consider how you would reorganize your own project if you should have implemented it by

means of components.

http://nordbotten.net/courses/ics/sessions/session14/images/figure3.cfm

155

Session 15: Web services

Web services
Web services are the last option for re-using code to be discussed in this course. In addition to

re-using code, web services also contribute to making web processing more efficient by

distributed processing because they permit a number of applications on different locations to

share as well software as computing facilities.

The technology can best be explained by Figure 1. Assume a number, k, of end users (clients)

Figure 1: Interaction among end users, applications and web services.

requesting applications from a set of m servers. Some of the applications require, however,

special components residing in a second set of n servers which are providing the result of their

components as Web Services. The services are, like the applications of the first set of servers,

offered on the net and can be integrated in the different applications just as if they were local

components. To the end users, the applications they request will appear as if the applications are

executed by the application servers. In the figure, it is, as an example, assumed that end user 1

requests both application 1 and m, while end user k only request application m. To deliver,

application 1 needs both web services 1 and n, while application m only needs web service n to

deliver. Of course, most applications do not at all require the services of another server.

Web service is a concept which has entered the web arena in the last few years. Even though the

technology is supported by major vendors and seems to have a potential for contributing to

remote, distributed processing on the net it is still controversial.

It uses a set of standards/technologies including:

 TCP/IP
 HTTP,
 XML,
 Universal Description, Discovery and Integration (UDDI).

http://nordbotten.net/courses/ics/sessions/session15/images/figure1.cfm

156

 Web Service Description Language (WSDL)
 Simple Object Access Protocol (SOAP),

The Web service is an open source technology supported by many important actors in the web

domain. A Web service is said to be created by its developers, and consumed by their users.

ColdFusion MX supports creation as well as consumption of Web services by the CFMX

Component technology discussed in a previous session. Journals for web services have been

establish for developers and consumers to maintain their knowledge about the state of the art.

In this session we review UDDI, WSDL and SOAP, and discuss how you create and consume a

web service.

Universal Description, Discovery, and Integration

The first condition for being able to consume a web service is to know of its existence. An UDDI

registry is a facility established for locating sources of web services. It can be a local enterprise

restricted or an open, public registry. Market actors as IBM and Microsoft are running global

UDDIs. A popular UDDI is XMethods to which you can get your own web service registered.

You can also publish your web services in your own UDDI. CFMX does not contain any special

features for establishing an UDDI, but the design and development of an UDDI can be done by

means of CFMX..

Web Service Description Language

WSDL is an XML format for describing net services. Description of web services are therefore

standardized in an XML based document prepared by the Web Service Description Language,

WSDL. The WSDL describes the requirements for consuming a web service. The CFMX

developer does not need to be concerned about writing the WSDL for the component he/she

develops, it is done automatically by CFMX. As we shall see later in this session, likewise to

view the WSDL of an existing component does not require more than typing the URL of the

component with a short extension. A visit to W3C gives useful and official information on web

services.

Simple Object Access Protocol

SOAP provides an XML messaging framework used by web services. For a CFMX developer, it

is not necessary to learn the SOAP technology, or be at all concerned about it, since it is handled

automatically by the CFMX web service technology.

Web services creation and consumption in CFMX

Consider the following scenario. A number of developers are working on different web

applications within a worldwide organization. Applications need all accesscode authorization,

and the codes must be unique for each user independent of application. A Web service providing

unique accesscodes can be the solution.

http://www.sys-con.com/webservices/
http://www.ibm.com/services/uddi/
http://uddi.microsoft.com/
http://www.xmethods.net/
http://www.w3.org/TR/wsdl

