
Introduction

to

Machine

Learning

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Brief Contents

1 Introduction 1

2 Supervised Learning 21

3 Bayesian Decision Theory 47

4 Parametric Methods 61

5 Multivariate Methods 87

6 Dimensionality Reduction 109

7 Clustering 143

8 Nonparametric Methods 163

9 Decision Trees 185

10 Linear Discrimination 209

11 Multilayer Perceptrons 233

12 Local Models 279

13 Kernel Machines 309

14 Bayesian Estimation 341

15 Hidden Markov Models 363

16 Graphical Models 387

17 Combining Multiple Learners 419

18 Reinforcement Learning 447

19 Design and Analysis of Machine Learning Experiments 475

A Probability 517

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Contents

Series Foreword xvii

Figures xix

Tables xxix

Preface xxxi

Acknowledgments xxxiii

Notes for the Second Edition xxxv

Notations xxxix

1 Introduction 1

1.1 What Is Machine Learning? 1

1.2 Examples of Machine Learning Applications 4

1.2.1 Learning Associations 4

1.2.2 Classification 5

1.2.3 Regression 9

1.2.4 Unsupervised Learning 11

1.2.5 Reinforcement Learning 13

1.3 Notes 14

1.4 Relevant Resources 16

1.5 Exercises 18

1.6 References 19

2 Supervised Learning 21

2.1 Learning a Class from Examples 21

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

viii Contents

2.2 Vapnik-Chervonenkis (VC) Dimension 27

2.3 Probably Approximately Correct (PAC) Learning 29

2.4 Noise 30

2.5 Learning Multiple Classes 32

2.6 Regression 34

2.7 Model Selection and Generalization 37

2.8 Dimensions of a Supervised Machine Learning Algorithm 41

2.9 Notes 42

2.10 Exercises 43

2.11 References 44

3 Bayesian Decision Theory 47

3.1 Introduction 47

3.2 Classification 49

3.3 Losses and Risks 51

3.4 Discriminant Functions 53

3.5 Utility Theory 54

3.6 Association Rules 55

3.7 Notes 58

3.8 Exercises 58

3.9 References 59

4 Parametric Methods 61

4.1 Introduction 61

4.2 Maximum Likelihood Estimation 62

4.2.1 Bernoulli Density 63

4.2.2 Multinomial Density 64

4.2.3 Gaussian (Normal) Density 64

4.3 Evaluating an Estimator: Bias and Variance 65

4.4 The Bayes’ Estimator 66

4.5 Parametric Classification 69

4.6 Regression 73

4.7 Tuning Model Complexity: Bias/Variance Dilemma 76

4.8 Model Selection Procedures 80

4.9 Notes 84

4.10 Exercises 84

4.11 References 85

5 Multivariate Methods 87

5.1 Multivariate Data 87

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Contents ix

5.2 Parameter Estimation 88

5.3 Estimation of Missing Values 89

5.4 Multivariate Normal Distribution 90

5.5 Multivariate Classification 94

5.6 Tuning Complexity 99

5.7 Discrete Features 102

5.8 Multivariate Regression 103

5.9 Notes 105

5.10 Exercises 106

5.11 References 107

6 Dimensionality Reduction 109

6.1 Introduction 109

6.2 Subset Selection 110

6.3 Principal Components Analysis 113

6.4 Factor Analysis 120

6.5 Multidimensional Scaling 125

6.6 Linear Discriminant Analysis 128

6.7 Isomap 133

6.8 Locally Linear Embedding 135

6.9 Notes 138

6.10 Exercises 139

6.11 References 140

7 Clustering 143

7.1 Introduction 143

7.2 Mixture Densities 144

7.3 k-Means Clustering 145

7.4 Expectation-Maximization Algorithm 149

7.5 Mixtures of Latent Variable Models 154

7.6 Supervised Learning after Clustering 155

7.7 Hierarchical Clustering 157

7.8 Choosing the Number of Clusters 158

7.9 Notes 160

7.10 Exercises 160

7.11 References 161

8 Nonparametric Methods 163

8.1 Introduction 163

8.2 Nonparametric Density Estimation 165

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

x Contents

8.2.1 Histogram Estimator 165

8.2.2 Kernel Estimator 167

8.2.3 k-Nearest Neighbor Estimator 168

8.3 Generalization to Multivariate Data 170

8.4 Nonparametric Classification 171

8.5 Condensed Nearest Neighbor 172

8.6 Nonparametric Regression: Smoothing Models 174

8.6.1 Running Mean Smoother 175

8.6.2 Kernel Smoother 176

8.6.3 Running Line Smoother 177

8.7 How to Choose the Smoothing Parameter 178

8.8 Notes 180

8.9 Exercises 181

8.10 References 182

9 Decision Trees 185

9.1 Introduction 185

9.2 Univariate Trees 187

9.2.1 Classification Trees 188

9.2.2 Regression Trees 192

9.3 Pruning 194

9.4 Rule Extraction from Trees 197

9.5 Learning Rules from Data 198

9.6 Multivariate Trees 202

9.7 Notes 204

9.8 Exercises 207

9.9 References 207

10 Linear Discrimination 209

10.1 Introduction 209

10.2 Generalizing the Linear Model 211

10.3 Geometry of the Linear Discriminant 212

10.3.1 Two Classes 212

10.3.2 Multiple Classes 214

10.4 Pairwise Separation 216

10.5 Parametric Discrimination Revisited 217

10.6 Gradient Descent 218

10.7 Logistic Discrimination 220

10.7.1 Two Classes 220

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Contents xi

10.7.2 Multiple Classes 224

10.8 Discrimination by Regression 228

10.9 Notes 230

10.10 Exercises 230

10.11 References 231

11 Multilayer Perceptrons 233

11.1 Introduction 233

11.1.1 Understanding the Brain 234

11.1.2 Neural Networks as a Paradigm for Parallel

Processing 235

11.2 The Perceptron 237

11.3 Training a Perceptron 240

11.4 Learning Boolean Functions 243

11.5 Multilayer Perceptrons 245

11.6 MLP as a Universal Approximator 248

11.7 Backpropagation Algorithm 249

11.7.1 Nonlinear Regression 250

11.7.2 Two-Class Discrimination 252

11.7.3 Multiclass Discrimination 254

11.7.4 Multiple Hidden Layers 256

11.8 Training Procedures 256

11.8.1 Improving Convergence 256

11.8.2 Overtraining 257

11.8.3 Structuring the Network 258

11.8.4 Hints 261

11.9 Tuning the Network Size 263

11.10 Bayesian View of Learning 266

11.11 Dimensionality Reduction 267

11.12 Learning Time 270

11.12.1 Time Delay Neural Networks 270

11.12.2 Recurrent Networks 271

11.13 Notes 272

11.14 Exercises 274

11.15 References 275

12 Local Models 279

12.1 Introduction 279

12.2 Competitive Learning 280

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

xii Contents

12.2.1 Online k-Means 280

12.2.2 Adaptive Resonance Theory 285

12.2.3 Self-Organizing Maps 286

12.3 Radial Basis Functions 288

12.4 Incorporating Rule-Based Knowledge 294

12.5 Normalized Basis Functions 295

12.6 Competitive Basis Functions 297

12.7 Learning Vector Quantization 300

12.8 Mixture of Experts 300

12.8.1 Cooperative Experts 303

12.8.2 Competitive Experts 304

12.9 Hierarchical Mixture of Experts 304

12.10 Notes 305

12.11 Exercises 306

12.12 References 307

13 Kernel Machines 309

13.1 Introduction 309

13.2 Optimal Separating Hyperplane 311

13.3 The Nonseparable Case: Soft Margin Hyperplane 315

13.4 ν-SVM 318

13.5 Kernel Trick 319

13.6 Vectorial Kernels 321

13.7 Defining Kernels 324

13.8 Multiple Kernel Learning 325

13.9 Multiclass Kernel Machines 327

13.10 Kernel Machines for Regression 328

13.11 One-Class Kernel Machines 333

13.12 Kernel Dimensionality Reduction 335

13.13 Notes 337

13.14 Exercises 338

13.15 References 339

14 Bayesian Estimation 341

14.1 Introduction 341

14.2 Estimating the Parameter of a Distribution 343

14.2.1 Discrete Variables 343

14.2.2 Continuous Variables 345

14.3 Bayesian Estimation of the Parameters of a Function 348

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Contents xiii

14.3.1 Regression 348

14.3.2 The Use of Basis/Kernel Functions 352

14.3.3 Bayesian Classification 353

14.4 Gaussian Processes 356

14.5 Notes 359

14.6 Exercises 360

14.7 References 361

15 Hidden Markov Models 363

15.1 Introduction 363

15.2 Discrete Markov Processes 364

15.3 Hidden Markov Models 367

15.4 Three Basic Problems of HMMs 369

15.5 Evaluation Problem 369

15.6 Finding the State Sequence 373

15.7 Learning Model Parameters 375

15.8 Continuous Observations 378

15.9 The HMM with Input 379

15.10 Model Selection in HMM 380

15.11 Notes 382

15.12 Exercises 383

15.13 References 384

16 Graphical Models 387

16.1 Introduction 387

16.2 Canonical Cases for Conditional Independence 389

16.3 Example Graphical Models 396

16.3.1 Naive Bayes’ Classifier 396

16.3.2 Hidden Markov Model 398

16.3.3 Linear Regression 401

16.4 d-Separation 402

16.5 Belief Propagation 402

16.5.1 Chains 403

16.5.2 Trees 405

16.5.3 Polytrees 407

16.5.4 Junction Trees 409

16.6 Undirected Graphs: Markov Random Fields 410

16.7 Learning the Structure of a Graphical Model 413

16.8 Influence Diagrams 414

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

xiv Contents

16.9 Notes 414

16.10 Exercises 417

16.11 References 417

17 Combining Multiple Learners 419

17.1 Rationale 419

17.2 Generating Diverse Learners 420

17.3 Model Combination Schemes 423

17.4 Voting 424

17.5 Error-Correcting Output Codes 427

17.6 Bagging 430

17.7 Boosting 431

17.8 Mixture of Experts Revisited 434

17.9 Stacked Generalization 435

17.10 Fine-Tuning an Ensemble 437

17.11 Cascading 438

17.12 Notes 440

17.13 Exercises 442

17.14 References 443

18 Reinforcement Learning 447

18.1 Introduction 447

18.2 Single State Case: K-Armed Bandit 449

18.3 Elements of Reinforcement Learning 450

18.4 Model-Based Learning 453

18.4.1 Value Iteration 453

18.4.2 Policy Iteration 454

18.5 Temporal Difference Learning 454

18.5.1 Exploration Strategies 455

18.5.2 Deterministic Rewards and Actions 456

18.5.3 Nondeterministic Rewards and Actions 457

18.5.4 Eligibility Traces 459

18.6 Generalization 461

18.7 Partially Observable States 464

18.7.1 The Setting 464

18.7.2 Example: The Tiger Problem 465

18.8 Notes 470

18.9 Exercises 472

18.10 References 473

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Contents xv

19 Design and Analysis of Machine Learning Experiments 475

19.1 Introduction 475

19.2 Factors, Response, and Strategy of Experimentation 478

19.3 Response Surface Design 481

19.4 Randomization, Replication, and Blocking 482

19.5 Guidelines for Machine Learning Experiments 483

19.6 Cross-Validation and Resampling Methods 486

19.6.1 K-Fold Cross-Validation 487

19.6.2 5×2 Cross-Validation 488

19.6.3 Bootstrapping 489

19.7 Measuring Classifier Performance 489

19.8 Interval Estimation 493

19.9 Hypothesis Testing 496

19.10 Assessing a Classification Algorithm’s Performance 498

19.10.1 Binomial Test 499

19.10.2 Approximate Normal Test 500

19.10.3 t Test 500

19.11 Comparing Two Classification Algorithms 501

19.11.1 McNemar’s Test 501

19.11.2 K-Fold Cross-Validated Paired t Test 501

19.11.3 5× 2 cv Paired t Test 502

19.11.4 5× 2 cv Paired F Test 503

19.12 Comparing Multiple Algorithms: Analysis of Variance 504

19.13 Comparison over Multiple Datasets 508

19.13.1 Comparing Two Algorithms 509

19.13.2 Multiple Algorithms 511

19.14 Notes 512

19.15 Exercises 513

19.16 References 514

A Probability 517

A.1 Elements of Probability 517

A.1.1 Axioms of Probability 518

A.1.2 Conditional Probability 518

A.2 Random Variables 519

A.2.1 Probability Distribution and Density Functions 519

A.2.2 Joint Distribution and Density Functions 520

A.2.3 Conditional Distributions 520

A.2.4 Bayes’ Rule 521

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

xvi Contents

A.2.5 Expectation 521

A.2.6 Variance 522

A.2.7 Weak Law of Large Numbers 523

A.3 Special Random Variables 523

A.3.1 Bernoulli Distribution 523

A.3.2 Binomial Distribution 524

A.3.3 Multinomial Distribution 524

A.3.4 Uniform Distribution 524

A.3.5 Normal (Gaussian) Distribution 525

A.3.6 Chi-Square Distribution 526

A.3.7 t Distribution 527

A.3.8 F Distribution 527

A.4 References 527

Index 529

https://chools.in/ https://choolsgroup.com/ https://choolskool.com/

Series Foreword

The goal of building systems that can adapt to their environments and

learn from their experience has attracted researchers from many fields,

including computer science, engineering, mathematics, physics, neuro-

science, and cognitive science. Out of this research has come a wide

variety of learning techniques that are transforming many industrial and

scientific fields. Recently, several research communities have converged

on a common set of issues surrounding supervised, semi-supervised, un-

supervised, and reinforcement learning problems. The MIT Press Series

on Adaptive Computation and Machine Learning seeks to unify the many

diverse strands of machine learning research and to foster high-quality

research and innovative applications.

The MIT Press is extremely pleased to publish this second edition of

Ethem Alpaydın’s introductory textbook. This book presents a readable

and concise introduction to machine learning that reflects these diverse

research strands while providing a unified treatment of the field. The

book covers all of the main problem formulations and introduces the

most important algorithms and techniques encompassing methods from

computer science, neural computation, information theory, and statis-

tics. The second edition expands and updates coverage of several areas,

particularly kernel machines and graphical models, that have advanced

rapidly over the past five years. This updated work continues to be a

compelling textbook for introductory courses in machine learning at the

undergraduate and beginning graduate level.

Figures

1.1 Example of a training dataset where each circle corresponds

to one data instance with input values in the corresponding

axes and its sign indicates the class. 6

1.2 A training dataset of used cars and the function fitted. 10

2.1 Training set for the class of a “family car.” 22

2.2 Example of a hypothesis class. 23

2.3 C is the actual class and h is our induced hypothesis. 25

2.4 S is the most specific and G is the most general hypothesis. 26

2.5 We choose the hypothesis with the largest margin, for best

separation. 27

2.6 An axis-aligned rectangle can shatter four points. 28

2.7 The difference between h and C is the sum of four

rectangular strips, one of which is shaded. 30

2.8 When there is noise, there is not a simple boundary

between the positive and negative instances, and zero

misclassification error may not be possible with a simple

hypothesis. 31

2.9 There are three classes: family car, sports car, and luxury

sedan. 33

2.10 Linear, second-order, and sixth-order polynomials are fitted

to the same set of points. 36

2.11 A line separating positive and negative instances. 44

3.1 Example of decision regions and decision boundaries. 54

xx Figures

4.1 θ is the parameter to be estimated. 67

4.2 (a) Likelihood functions and (b) posteriors with equal priors

for two classes when the input is one-dimensional. 71

4.3 (a) Likelihood functions and (b) posteriors with equal priors

for two classes when the input is one-dimensional. 72

4.4 Regression assumes 0 mean Gaussian noise added to the

model; here, the model is linear. 74

4.5 (a) Function, f (x) = 2sin(1.5x), and one noisy (N (0,1))

dataset sampled from the function. 78

4.6 In the same setting as that of figure 4.5, using one hundred

models instead of five, bias, variance, and error for

polynomials of order 1 to 5. 79

4.7 In the same setting as that of figure 4.5, training and

validation sets (each containing 50 instances) are generated. 81

4.8 In the same setting as that of figure 4.5, polynomials of

order 1 to 4 are fitted. 83

5.1 Bivariate normal distribution. 91

5.2 Isoprobability contour plot of the bivariate normal

distribution. 92

5.3 Classes have different covariance matrices. 96

5.4 Covariances may be arbitary but shared by both classes. 97

5.5 All classes have equal, diagonal covariance matrices, but

variances are not equal. 98

5.6 All classes have equal, diagonal covariance matrices of

equal variances on both dimensions. 99

5.7 Different cases of the covariance matrices fitted to the same

data lead to different boundaries. 101

6.1 Principal components analysis centers the sample and then

rotates the axes to line up with the directions of highest

variance. 115

6.2 (a) Scree graph. (b) Proportion of variance explained is given

for the Optdigits dataset from the UCI Repository. 117

6.3 Optdigits data plotted in the space of two principal

components. 118

6.4 Principal components analysis generates new variables that

are linear combinations of the original input variables. 121

Figures xxi

6.5 Factors are independent unit normals that are stretched,

rotated, and translated to make up the inputs. 122

6.6 Map of Europe drawn by MDS. 126

6.7 Two-dimensional, two-class data projected on w. 129

6.8 Optdigits data plotted in the space of the first two

dimensions found by LDA. 132

6.9 Geodesic distance is calculated along the manifold as

opposed to the Euclidean distance that does not use this

information. 134

6.10 Local linear embedding first learns the constraints in the

original space and next places the points in the new space

respecting those constraints. 136

7.1 Given x, the encoder sends the index of the closest code

word and the decoder generates the code word with the

received index as x′. 147

7.2 Evolution of k-means. 148

7.3 k-means algorithm. 149

7.4 Data points and the fitted Gaussians by EM, initialized by

one k-means iteration of figure 7.2. 153

7.5 A two-dimensional dataset and the dendrogram showing

the result of single-link clustering is shown. 159

8.1 Histograms for various bin lengths. 166

8.2 Naive estimate for various bin lengths. 167

8.3 Kernel estimate for various bin lengths. 168

8.4 k-nearest neighbor estimate for various k values. 169

8.5 Dotted lines are the Voronoi tesselation and the straight

line is the class discriminant. 173

8.6 Condensed nearest neighbor algorithm. 174

8.7 Regressograms for various bin lengths. ‘×’ denote data
points. 175

8.8 Running mean smooth for various bin lengths. 176

8.9 Kernel smooth for various bin lengths. 177

8.10 Running line smooth for various bin lengths. 178

8.11 Kernel estimate for various bin lengths for a two-class

problem. 179

8.12 Regressograms with linear fits in bins for various bin lengths. 182

xxii Figures

9.1 Example of a dataset and the corresponding decision tree. 186

9.2 Entropy function for a two-class problem. 189

9.3 Classification tree construction. 191

9.4 Regression tree smooths for various values of θr . 195

9.5 Regression trees implementing the smooths of figure 9.4

for various values of θr . 196

9.6 Example of a (hypothetical) decision tree. 197

9.7 Ripper algorithm for learning rules. 200

9.8 Example of a linear multivariate decision tree. 203

10.1 In the two-dimensional case, the linear discriminant is a

line that separates the examples from two classes. 213

10.2 The geometric interpretation of the linear discriminant. 214

10.3 In linear classification, each hyperplane Hi separates the

examples of Ci from the examples of all other classes. 215

10.4 In pairwise linear separation, there is a separate hyperplane

for each pair of classes. 216

10.5 The logistic, or sigmoid, function. 219

10.6 Logistic discrimination algorithm implementing gradient

descent for the single output case with two classes. 222

10.7 For a univariate two-class problem (shown with ‘◦’ and ‘×’),
the evolution of the line wx+w0 and the sigmoid output

after 10, 100, and 1,000 iterations over the sample. 223

10.8 Logistic discrimination algorithm implementing gradient

descent for the case with K > 2 classes. 226

10.9 For a two-dimensional problem with three classes, the

solution found by logistic discrimination. 226

10.10 For the same example in figure 10.9, the linear

discriminants (top), and the posterior probabilities after the

softmax (bottom). 227

11.1 Simple perceptron. 237

11.2 K parallel perceptrons. 239

11.3 Perceptron training algorithm implementing stochastic

online gradient descent for the case with K > 2 classes. 243

11.4 The perceptron that implements AND and its geometric

interpretation. 244

11.5 XOR problem is not linearly separable. 245

11.6 The structure of a multilayer perceptron. 247

Figures xxiii

11.7 The multilayer perceptron that solves the XOR problem. 249

11.8 Sample training data shown as ‘+’, where xt ∼ U(−0.5,0.5),
and yt = f (xt)+N (0,0.1). 252

11.9 The mean square error on training and validation sets as a

function of training epochs. 253

11.10 (a) The hyperplanes of the hidden unit weights on the first

layer, (b) hidden unit outputs, and (c) hidden unit outputs

multiplied by the weights on the second layer. 254

11.11 Backpropagation algorithm for training a multilayer

perceptron for regression with K outputs. 255

11.12 As complexity increases, training error is fixed but the

validation error starts to increase and the network starts to

overfit. 259

11.13 As training continues, the validation error starts to increase

and the network starts to overfit. 259

11.14 A structured MLP. 260

11.15 In weight sharing, different units have connections to

different inputs but share the same weight value (denoted

by line type). 261

11.16 The identity of the object does not change when it is

translated, rotated, or scaled. 262

11.17 Two examples of constructive algorithms. 265

11.18 Optdigits data plotted in the space of the two hidden units

of an MLP trained for classification. 268

11.19 In the autoassociator, there are as many outputs as there

are inputs and the desired outputs are the inputs. 269

11.20 A time delay neural network. 271

11.21 Examples of MLP with partial recurrency. 272

11.22 Backpropagation through time. 273

12.1 Shaded circles are the centers and the empty circle is the

input instance. 282

12.2 Online k-means algorithm. 283

12.3 The winner-take-all competitive neural network, which is a

network of k perceptrons with recurrent connections at the

output. 284

12.4 The distance from xa to the closest center is less than the

vigilance value ρ and the center is updated as in online

k-means. 285

xxiv Figures

12.5 In the SOM, not only the closest unit but also its neighbors,

in terms of indices, are moved toward the input. 287

12.6 The one-dimensional form of the bell-shaped function used

in the radial basis function network. 289

12.7 The difference between local and distributed representations. 290

12.8 The RBF network where ph are the hidden units using the

bell-shaped activation function. 292

12.9 (-) Before and (- -) after normalization for three Gaussians

whose centers are denoted by ‘*’. 296

12.10 The mixture of experts can be seen as an RBF network

where the second-layer weights are outputs of linear models. 301

12.11 The mixture of experts can be seen as a model for

combining multiple models. 302

13.1 For a two-class problem where the instances of the classes

are shown by plus signs and dots, the thick line is the

boundary and the dashed lines define the margins on either

side. 314

13.2 In classifying an instance, there are four possible cases. 316

13.3 Comparison of different loss functions for r t = 1. 318

13.4 The discriminant and margins found by a polynomial

kernel of degree 2. 322

13.5 The boundary and margins found by the Gaussian kernel

with different spread values, s2. 323

13.6 Quadratic and ε-sensitive error functions. 329

13.7 The fitted regression line to data points shown as crosses

and the ε-tube are shown (C = 10, ε = 0.25). 331

13.8 The fitted regression line and the ε-tube using a quadratic

kernel are shown (C = 10, ε = 0.25). 332

13.9 The fitted regression line and the ε-tube using a Gaussian

kernel with two different spreads are shown

(C = 10, ε = 0.25). 332

13.10 One-class support vector machine places the smoothest

boundary (here using a linear kernel, the circle with the

smallest radius) that encloses as much of the instances as

possible. 334

13.11 One-class support vector machine using a Gaussian kernel

with different spreads. 336

Figures xxv

13.12 Instead of using a quadratic kernel in the original space (a),

we can use kernel PCA on the quadratic kernel values to

map to a two-dimensional new space where we use a linear

discriminant (b); these two dimensions (out of five) explain

80 percent of the variance. 337

14.1 The generative graphical model. 342

14.2 Plots of beta distributions for different sets of (α,β). 346

14.3 20 data points are drawn from p(x) ∼N (6,1.52), prior is

p(μ) ∼N (4,0.82), and posterior is then

p(μ|X) ∼N (5.7,0.32). 347

14.4 Bayesian linear regression for different values of α and β. 351

14.5 Bayesian regression using kernels with one standard

deviation error bars. 354

14.6 Gaussian process regression with one standard deviation

error bars. 357

14.7 Gaussian process regression using a Gaussian kernel with

s2 = 0.5 and varying number of training data. 359

15.1 Example of a Markov model with three states. 365

15.2 An HMM unfolded in time as a lattice (or trellis) showing all

the possible trajectories. 368

15.3 Forward-backward procedure. 371

15.4 Computation of arc probabilities, ξt(i, j). 375

15.5 Example of a left-to-right HMM. 381

16.1 Bayesian network modeling that rain is the cause of wet

grass. 388

16.2 Head-to-tail connection. 390

16.3 Tail-to-tail connection. 391

16.4 Head-to-head connection. 392

16.5 Larger graphs are formed by combining simpler subgraphs

over which information is propagated using the implied

conditional independencies. 394

16.6 (a) Graphical model for classification. (b) Naive Bayes’

classifier assumes independent inputs. 397

16.7 Hidden Markov model can be drawn as a graphical model

where qt are the hidden states and shaded Ot are observed. 398

xxvi Figures

16.8 Different types of HMM model different assumptions about

the way the observed data (shown shaded) is generated

from Markov sequences of latent variables. 399

16.9 Bayesian network for linear regression. 401

16.10 Examples of d-separation. 403

16.11 Inference along a chain. 404

16.12 In a tree, a node may have several children but a single parent. 406

16.13 In a polytree, a node may have several children and several

parents, but the graph is singly connected; that is, there is a

single chain between Ui and Yj passing through X. 407

16.14 (a) A multiply connected graph, and (b) its corresponding

junction tree with nodes clustered. 410

16.15 (a) A directed graph that would have a loop after

moralization, and (b) its corresponding factor graph that is

a tree. 412

16.16 Influence diagram corresponding to classification. 415

16.17 A dynamic version where we have a chain of graphs to

show dependency in weather in consecutive days. 416

17.1 Base-learners are dj and their outputs are combined using

f (·). 424

17.2 AdaBoost algorithm. 432

17.3 Mixture of experts is a voting method where the votes, as

given by the gating system, are a function of the input. 434

17.4 In stacked generalization, the combiner is another learner

and is not restricted to being a linear combination as in

voting. 436

17.5 Cascading is a multistage method where there is a sequence

of classifiers, and the next one is used only when the

preceding ones are not confident. 439

18.1 The agent interacts with an environment. 448

18.2 Value iteration algorithm for model-based learning. 453

18.3 Policy iteration algorithm for model-based learning. 454

18.4 Example to show that Q values increase but never decrease. 457

18.5 Q learning, which is an off-policy temporal difference

algorithm. 458

18.6 Sarsa algorithm, which is an on-policy version of Q learning. 459

18.7 Example of an eligibility trace for a value. 460

Figures xxvii

18.8 Sarsa(λ) algorithm. 461

18.9 In the case of a partially observable environment, the agent

has a state estimator (SE) that keeps an internal belief state

b and the policy π generates actions based on the belief

states. 465

18.10 Expected rewards and the effect of sensing in the Tiger

problem. 468

18.11 Expected rewards change (a) if the hidden state can change,

and (b) when we consider episodes of length two. 470

18.12 The grid world. 472

19.1 The process generates an output given an input and is

affected by controllable and uncontrollable factors. 479

19.2 Different strategies of experimentation with two factors

and five levels each. 480

19.3 (a) Typical ROC curve. (b) A classifier is preferred if its ROC

curve is closer to the upper-left corner (larger AUC). 491

19.4 (a) Definition of precision and recall using Venn diagrams.

(b) Precision is 1; all the retrieved records are relevant but

there may be relevant ones not retrieved. (c) Recall is 1; all

the relevant records are retrieved but there may also be

irrelevant records that are retrieved. 492

19.5 95 percent of the unit normal distribution lies between

−1.96 and 1.96. 494

19.6 95 percent of the unit normal distribution lies before 1.64. 496

A.1 Probability density function of Z, the unit normal
distribution. 525

Tables

2.1 With two inputs, there are four possible cases and sixteen

possible Boolean functions. 37

5.1 Reducing variance through simplifying assumptions. 100

11.1 Input and output for the AND function. 244

11.2 Input and output for the XOR function. 245

17.1 Classifier combination rules. 425

17.2 Example of combination rules on three learners and three

classes. 425

19.1 Confusion matrix for two classes. 489

19.2 Performance measures used in two-class problems. 490

19.3 Type I error, type II error, and power of a test. 497

19.4 The analysis of variance (ANOVA) table for a single factor

model. 507

Preface

Machine learning is programming computers to optimize a performance

criterion using example data or past experience. We need learning in

cases where we cannot directly write a computer program to solve a given

problem, but need example data or experience. One case where learning

is necessary is when human expertise does not exist, or when humans

are unable to explain their expertise. Consider the recognition of spoken

speech—that is, converting the acoustic speech signal to an ASCII text;

we can do this task seemingly without any difficulty, but we are unable

to explain how we do it. Different people utter the same word differently

due to differences in age, gender, or accent. In machine learning, the ap-

proach is to collect a large collection of sample utterances from different

people and learn to map these to words.

Another case is when the problem to be solved changes in time, or

depends on the particular environment. We would like to have general-

purpose systems that can adapt to their circumstances, rather than ex-

plicitly writing a different program for each special circumstance. Con-

sider routing packets over a computer network. The path maximizing

the quality of service from a source to destination changes continuously

as the network traffic changes. A learning routing program is able to

adapt to the best path by monitoring the network traffic. Another ex-

ample is an intelligent user interface that can adapt to the biometrics of

its user—namely, his or her accent, handwriting, working habits, and so

forth.

Already, there are many successful applications of machine learning

in various domains: There are commercially available systems for rec-

ognizing speech and handwriting. Retail companies analyze their past

sales data to learn their customers’ behavior to improve customer rela-

xxxii Preface

tionship management. Financial institutions analyze past transactions

to predict customers’ credit risks. Robots learn to optimize their behav-

ior to complete a task using minimum resources. In bioinformatics, the

huge amount of data can only be analyzed and knowledge extracted us-

ing computers. These are only some of the applications that we—that

is, you and I—will discuss throughout this book. We can only imagine

what future applications can be realized using machine learning: Cars

that can drive themselves under different road and weather conditions,

phones that can translate in real time to and from a foreign language,

autonomous robots that can navigate in a new environment, for example,

on the surface of another planet. Machine learning is certainly an exciting

field to be working in!

The book discusses many methods that have their bases in different

fields: statistics, pattern recognition, neural networks, artificial intelli-

gence, signal processing, control, and data mining. In the past, research

in these different communities followed different paths with different

emphases. In this book, the aim is to incorporate them together to give a

unified treatment of the problems and the proposed solutions to them.

This is an introductory textbook, intended for senior undergraduate

and graduate-level courses on machine learning, as well as engineers

working in the industry who are interested in the application of these

methods. The prerequisites are courses on computer programming, prob-

ability, calculus, and linear algebra. The aim is to have all learning algo-

rithms sufficiently explained so it will be a small step from the equations

given in the book to a computer program. For some cases, pseudocode

of algorithms are also included to make this task easier.

The book can be used for a one-semester course by sampling from the

chapters, or it can be used for a two-semester course, possibly by dis-

cussing extra research papers; in such a case, I hope that the references

at the end of each chapter are useful.

The Web page is http://www.cmpe.boun.edu.tr/∼ethem/i2ml/ where I
will post information related to the book that becomes available after the

book goes to press, for example, errata. I welcome your feedback via

email to alpaydin@boun.edu.tr.
I very much enjoyed writing this book; I hope you will enjoy reading it.

http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml/
http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml/
http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml/
mailto:alpaydin@boun.edu.tr

Acknowledgments

The way you get good ideas is by working with talented people who are

also fun to be with. The Department of Computer Engineering of Boğaziçi

University is a wonderful place to work, and my colleagues gave me all the

support I needed while working on this book. I would also like to thank

my past and present students on whom I have field-tested the content

that is now in book form.

While working on this book, I was supported by the Turkish Academy

of Sciences, in the framework of the Young Scientist Award Program (EA-

TÜBA-GEḂIP/2001-1-1).

My special thanks go to Michael Jordan. I am deeply indebted to him

for his support over the years and last for this book. His comments on

the general organization of the book, and the first chapter, have greatly

improved the book, both in content and form. Taner Bilgiç, Vladimir

Cherkassky, Tom Dietterich, Fikret Gürgen, Olcay Taner Yıldız, and anony-

mous reviewers of the MIT Press also read parts of the book and provided

invaluable feedback. I hope that they will sense my gratitude when they

notice ideas that I have taken from their comments without proper ac-

knowledgment. Of course, I alone am responsible for any errors or short-

comings.

My parents believe in me, and I am grateful for their enduring love

and support. Sema Oktuğ is always there whenever I need her, and I will

always be thankful for her friendship. I would also like to thank Hakan

Ünlü for our many discussions over the years on several topics related to

life, the universe, and everything.

This book is set using LATEX macros prepared by Chris Manning for

which I thank him. I would like to thank the editors of the Adaptive Com-

putation and Machine Learning series, and Bob Prior, Valerie Geary, Kath-

xxxiv Acknowledgments

leen Caruso, Sharon Deacon Warne, Erica Schultz, and Emily Gutheinz

from the MIT Press for their continuous support and help during the

completion of the book.

Notes for the Second Edition

Machine learning has seen important developments since the first edition

appeared in 2004. First, application areas have grown rapidly. Internet-

related technologies, such as search engines, recommendation systems,

spam fiters, and intrusion detection systems are now routinely using ma-

chine learning. In the field of bioinformatics and computational biology,

methods that learn from data are being used more and more widely. In

natural language processing applications—for example, machine transla-

tion—we are seeing a faster and faster move from programmed expert

systems to methods that learn automatically from very large corpus of

example text. In robotics, medical diagnosis, speech and image recogni-

tion, biometrics, finance, sometimes under the name pattern recognition,

sometimes disguised as data mining, or under one of its many cloaks,

we see more and more applications of the machine learning methods we

discuss in this textbook.

Second, there have been supporting advances in theory. Especially, the

idea of kernel functions and the kernel machines that use them allow

a better representation of the problem and the associated convex opti-

mization framework is one step further than multilayer perceptrons with

sigmoid hidden units trained using gradient-descent. Bayesian meth-

ods through appropriately chosen prior distributions add expert know-

ledge to what the data tells us. Graphical models allow a representa-

tion as a network of interrelated nodes and efficient inference algorithms

allow querying the network. It has thus become necessary that these

three topics—namely, kernel methods, Bayesian estimation, and graphi-

cal models—which were sections in the first edition, be treated in more

length, as three new chapters.

Another revelation hugely significant for the field has been in the real-

xxxvi Notes for the Second Edition

ization that machine learning experiments need to be designed better. We

have gone a long way from using a single test set to methods for cross-

validation to paired t tests. That is why, in this second edition, I have

rewritten the chapter on statistical tests as one that includes the design

and analysis of machine learning experiments. The point is that testing

should not be a separate step done after all runs are completed (despite

the fact that this new chapter is at the very end of the book); the whole

process of experimentation should be designed beforehand, relevant fac-

tors defined, proper experimentation procedure decided upon, and then,

and only then, the runs should be done and the results analyzed.

It has long been believed, especially by older members of the scientific

community, that for machines to be as intelligent as us, that is, for ar-

tificial intelligence to be a reality, our current knowledge in general, or

computer science in particular, is not sufficient. People largely are of

the opinion that we need a new technology, a new type of material, a

new type of computational mechanism or a new programming methodol-

ogy, and that, until then, we can only “simulate” some aspects of human

intelligence and only in a limited way but can never fully attain it.

I believe that we will soon prove them wrong. First we saw this in

chess, and now we are seeing it in a whole variety of domains. Given

enough memory and computation power, we can realize tasks with rela-

tively simple algorithms; the trick here is learning, either learning from

example data or learning from trial and error using reinforcement learn-

ing. It seems as if using supervised and mostly unsupervised learn-

ing algorithms—for example, machine translation—will soon be possible.

The same holds for many other domains, for example, unmanned navi-

gation in robotics using reinforcement learning. I believe that this will

continue for many domains in artificial intelligence, and the key is learn-

ing. We do not need to come up with new algorithms if machines can

learn themselves, assuming that we can provide them with enough data

(not necessarily supervised) and computing power.

I would like to thank all the instructors and students of the first edition,

from all over the world, including the reprint in India and the German

translation. I am grateful to those who sent me words of appreciation

and errata or who provided feedback in any other way. Please keep those

emails coming. My email address is alpaydin@boun.edu.tr.

The second edition also provides more support on the Web. The book’s

mailto:alpaydin@boun.edu.tr

Notes for the Second Edition xxxvii

Web site is http://www.cmpe.boun.edu.tr/∼ethem/i2ml.

I would like to thankmy past and present thesis students, Mehmet Gönen,

Esma Kılıç, Murat Semerci, M. Aydın Ulaş, and Olcay Taner Yıldız, and also

those who have taken CmpE 544, CmpE 545, CmpE 591, and CmpE 58E

during these past few years. The best way to test your knowledge of a

topic is by teaching it.

It has been a pleasure working with the MIT Press again on this second

edition, and I thank Bob Prior, Ada Brunstein, Erin K. Shoudy, Kathleen

Caruso, and Marcy Ross for all their help and support.

http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml
http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml
http://www.cmpe.boun.edu.tr/%E2%88%BCethem/i2ml

Notations

x Scalar value

x Vector

X Matrix

xT Transpose

X−1 Inverse

X Random variable

P(X) Probability mass function when X is discrete

p(X) Probability density function when X is continuous

P(X|Y) Conditional probability of X given Y

E[X] Expected value of the random variable X

Var(X) Variance of X

Cov(X, Y) Covariance of X and Y

Corr(X, Y) Correlation of X and Y

μ Mean

σ 2 Variance

Σ Covariance matrix

m Estimator to the mean

s2 Estimator to the variance

S Estimator to the covariance matrix

xl Notations

N (μ,σ 2) Univariate normal distribution with mean μ and vari-

ance σ 2

Z Unit normal distribution: N (0,1)

Nd(μ,Σ) d-variate normal distribution with mean vector μ and

covariance matrix Σ

x Input

d Number of inputs (input dimensionality)

y Output

r Required output

K Number of outputs (classes)

N Number of training instances

z Hidden value, intrinsic dimension, latent factor

k Number of hidden dimensions, latent factors

Ci Class i

X Training sample

{xt}Nt=1 Set of x with index t ranging from 1 to N

{xt, r t}t Set of ordered pairs of input and desired output with

index t

g(x|θ) Function of x defined up to a set of parameters θ

argmaxθ g(x|θ) The argument θ for which g has its maximum value

argminθ g(x|θ) The argument θ for which g has its minimum value

E(θ|X) Error function with parameters θ on the sample X
l(θ|X) Likelihood of parameters θ on the sample X
L(θ|X) Log likelihood of parameters θ on the sample X

1(c) 1 if c is true, 0 otherwise

#{c} Number of elements for which c is true

δij Kronecker delta: 1 if i = j , 0 otherwise

1 Introduction

1.1 What Is Machine Learning?

To solve a problem on a computer, we need an algorithm. An algo-

rithm is a sequence of instructions that should be carried out to trans-

form the input to output. For example, one can devise an algorithm for

sorting. The input is a set of numbers and the output is their ordered

list. For the same task, there may be various algorithms and we may be

interested in finding the most efficient one, requiring the least number of

instructions or memory or both.

For some tasks, however, we do not have an algorithm—for example,

to tell spam emails from legitimate emails. We know what the input is:

an email document that in the simplest case is a file of characters. We

know what the output should be: a yes/no output indicating whether the

message is spam or not. We do not know how to transform the input

to the output. What can be considered spam changes in time and from

individual to individual.

What we lack in knowledge, we make up for in data. We can easily

compile thousands of example messages some of which we know to be

spam and what we want is to “learn” what consititutes spam from them.

In other words, we would like the computer (machine) to extract auto-

matically the algorithm for this task. There is no need to learn to sort

numbers, we already have algorithms for that; but there are many ap-

plications for which we do not have an algorithm but do have example

data.

With advances in computer technology, we currently have the ability to

store and process large amounts of data, as well as to access it from phys-

ically distant locations over a computer network. Most data acquisition

2 1 Introduction

devices are digital now and record reliable data. Think, for example, of a

supermarket chain that has hundreds of stores all over a country selling

thousands of goods to millions of customers. The point of sale terminals

record the details of each transaction: date, customer identification code,

goods bought and their amount, total money spent, and so forth. This

typically amounts to gigabytes of data every day. What the supermarket

chain wants is to be able to predict who are the likely customers for a

product. Again, the algorithm for this is not evident; it changes in time

and by geographic location. The stored data becomes useful only when

it is analyzed and turned into information that we can make use of, for

example, to make predictions.

We do not know exactly which people are likely to buy this ice cream

flavor, or the next book of this author, or see this new movie, or visit this

city, or click this link. If we knew, we would not need any analysis of the

data; we would just go ahead and write down the code. But because we

do not, we can only collect data and hope to extract the answers to these

and similar questions from data.

We do believe that there is a process that explains the data we observe.

Though we do not know the details of the process underlying the gener-

ation of data—for example, consumer behavior—we know that it is not

completely random. People do not go to supermarkets and buy things

at random. When they buy beer, they buy chips; they buy ice cream in

summer and spices for Glühwein in winter. There are certain patterns in

the data.

We may not be able to identify the process completely, but we believe

we can construct a good and useful approximation. That approximation

may not explain everything, but may still be able to account for some part

of the data. We believe that though identifying the complete process may

not be possible, we can still detect certain patterns or regularities. This

is the niche of machine learning. Such patterns may help us understand

the process, or we can use those patterns to make predictions: Assuming

that the future, at least the near future, will not be much different from

the past when the sample data was collected, the future predictions can

also be expected to be right.

Application of machine learning methods to large databases is called

data mining. The analogy is that a large volume of earth and raw ma-

terial is extracted from a mine, which when processed leads to a small

amount of very precious material; similarly, in data mining, a large vol-

ume of data is processed to construct a simple model with valuable use,

1.1 What Is Machine Learning? 3

for example, having high predictive accuracy. Its application areas are

abundant: In addition to retail, in finance banks analyze their past data

to build models to use in credit applications, fraud detection, and the

stock market. In manufacturing, learning models are used for optimiza-

tion, control, and troubleshooting. In medicine, learning programs are

used for medical diagnosis. In telecommunications, call patterns are an-

alyzed for network optimization and maximizing the quality of service.

In science, large amounts of data in physics, astronomy, and biology can

only be analyzed fast enough by computers. The World Wide Web is huge;

it is constantly growing, and searching for relevant information cannot be

done manually.

But machine learning is not just a database problem; it is also a part

of artificial intelligence. To be intelligent, a system that is in a changing

environment should have the ability to learn. If the system can learn and

adapt to such changes, the system designer need not foresee and provide

solutions for all possible situations.

Machine learning also helps us find solutions to many problems in vi-

sion, speech recognition, and robotics. Let us take the example of rec-

ognizing faces: This is a task we do effortlessly; every day we recognize

family members and friends by looking at their faces or from their pho-

tographs, despite differences in pose, lighting, hair style, and so forth.

But we do it unconsciously and are unable to explain how we do it. Be-

cause we are not able to explain our expertise, we cannot write the com-

puter program. At the same time, we know that a face image is not just a

random collection of pixels; a face has structure. It is symmetric. There

are the eyes, the nose, the mouth, located in certain places on the face.

Each person’s face is a pattern composed of a particular combination

of these. By analyzing sample face images of a person, a learning pro-

gram captures the pattern specific to that person and then recognizes by

checking for this pattern in a given image. This is one example of pattern

recognition.

Machine learning is programming computers to optimize a performance

criterion using example data or past experience. We have a model defined

up to some parameters, and learning is the execution of a computer pro-

gram to optimize the parameters of the model using the training data or

past experience. The model may be predictive to make predictions in the

future, or descriptive to gain knowledge from data, or both.

Machine learning uses the theory of statistics in building mathematical

models, because the core task is making inference from a sample. The

4 1 Introduction

role of computer science is twofold: First, in training, we need efficient

algorithms to solve the optimization problem, as well as to store and pro-

cess the massive amount of data we generally have. Second, once a model

is learned, its representation and algorithmic solution for inference needs

to be efficient as well. In certain applications, the efficiency of the learn-

ing or inference algorithm, namely, its space and time complexity, may

be as important as its predictive accuracy.

Let us now discuss some example applications in more detail to gain

more insight into the types and uses of machine learning.

1.2 Examples of Machine Learning Applications

1.2.1 Learning Associations

In the case of retail—for example, a supermarket chain—one application

of machine learning is basket analysis, which is finding associations be-

tween products bought by customers: If people who buy X typically also

buy Y , and if there is a customer who buys X and does not buy Y , he

or she is a potential Y customer. Once we find such customers, we can

target them for cross-selling.

In finding an association rule, we are interested in learning a conditionalassociation rule

probability of the form P(Y |X) where Y is the product we would like to

condition on X, which is the product or the set of products which we

know that the customer has already purchased.

Let us say, going over our data, we calculate that P(chips|beer) = 0.7.

Then, we can define the rule:

70 percent of customers who buy beer also buy chips.

We may want to make a distinction among customers and toward this,

estimate P(Y |X,D) where D is the set of customer attributes, for exam-

ple, gender, age, marital status, and so on, assuming that we have access

to this information. If this is a bookseller instead of a supermarket, prod-

ucts can be books or authors. In the case of a Web portal, items corre-

spond to links to Web pages, and we can estimate the links a user is likely

to click and use this information to download such pages in advance for

faster access.

1.2 Examples of Machine Learning Applications 5

1.2.2 Classification

A credit is an amount of money loaned by a financial institution, for

example, a bank, to be paid back with interest, generally in installments.

It is important for the bank to be able to predict in advance the risk

associated with a loan, which is the probability that the customer will

default and not pay the whole amount back. This is both to make sure

that the bank will make a profit and also to not inconvenience a customer

with a loan over his or her financial capacity.

In credit scoring (Hand 1998), the bank calculates the risk given the

amount of credit and the information about the customer. The informa-

tion about the customer includes data we have access to and is relevant in

calculating his or her financial capacity—namely, income, savings, collat-

erals, profession, age, past financial history, and so forth. The bank has

a record of past loans containing such customer data and whether the

loan was paid back or not. From this data of particular applications, the

aim is to infer a general rule coding the association between a customer’s

attributes and his risk. That is, the machine learning system fits a model

to the past data to be able to calculate the risk for a new application and

then decides to accept or refuse it accordingly.

This is an example of a classification problem where there are twoclassification

classes: low-risk and high-risk customers. The information about a cus-

tomer makes up the input to the classifier whose task is to assign the

input to one of the two classes.

After training with the past data, a classification rule learned may be

of the form

IF income> θ1 AND savings> θ2 THEN low-risk ELSE high-risk

for suitable values of θ1 and θ2 (see figure 1.1). This is an example of

a discriminant; it is a function that separates the examples of differentdiscriminant

classes.

Having a rule like this, the main application is prediction: Once we haveprediction

a rule that fits the past data, if the future is similar to the past, then we

can make correct predictions for novel instances. Given a new application

with a certain income and savings, we can easily decide whether it is low-

risk or high-risk.

In some cases, instead of making a 0/1 (low-risk/high-risk) type de-

cision, we may want to calculate a probability, namely, P(Y |X), where
X are the customer attributes and Y is 0 or 1 respectively for low-risk

6 1 Introduction

Sa
vi

ng
s

Income

Low-Risk

High-Risk
θ2

θ1

Figure 1.1 Example of a training dataset where each circle corresponds to one

data instance with input values in the corresponding axes and its sign indicates

the class. For simplicity, only two customer attributes, income and savings,

are taken as input and the two classes are low-risk (‘+’) and high-risk (‘−’). An
example discriminant that separates the two types of examples is also shown.

and high-risk. From this perspective, we can see classification as learn-

ing an association from X to Y . Then for a given X = x, if we have

P(Y = 1|X = x) = 0.8, we say that the customer has an 80 percent proba-

bility of being high-risk, or equivalently a 20 percent probability of being

low-risk. We then decide whether to accept or refuse the loan depending

on the possible gain and loss.

There are many applications of machine learning in pattern recognition.pattern

recognition One is optical character recognition, which is recognizing character codes

from their images. This is an example where there are multiple classes,

as many as there are characters we would like to recognize. Especially in-

teresting is the case when the characters are handwritten—for example,

to read zip codes on envelopes or amounts on checks. People have differ-

ent handwriting styles; characters may be written small or large, slanted,

with a pen or pencil, and there are many possible images corresponding

1.2 Examples of Machine Learning Applications 7

to the same character. Though writing is a human invention, we do not

have any system that is as accurate as a human reader. We do not have a

formal description of ‘A’ that covers all ‘A’s and none of the non-‘A’s. Not

having it, we take samples from writers and learn a definition of A-ness

from these examples. But though we do not know what it is that makes

an image an ‘A’, we are certain that all those distinct ‘A’s have something

in common, which is what we want to extract from the examples. We

know that a character image is not just a collection of random dots; it

is a collection of strokes and has a regularity that we can capture by a

learning program.

If we are reading a text, one factor we can make use of is the redun-

dancy in human languages. A word is a sequence of characters and suc-

cessive characters are not independent but are constrained by the words

of the language. This has the advantage that even if we cannot recognize

a character, we can still read t?e word. Such contextual dependencies

may also occur in higher levels, between words and sentences, through

the syntax and semantics of the language. There are machine learning

algorithms to learn sequences and model such dependencies.

In the case of face recognition, the input is an image, the classes are

people to be recognized, and the learning program should learn to asso-

ciate the face images to identities. This problem is more difficult than

optical character recognition because there are more classes, input im-

age is larger, and a face is three-dimensional and differences in pose and

lighting cause significant changes in the image. There may also be oc-

clusion of certain inputs; for example, glasses may hide the eyes and

eyebrows, and a beard may hide the chin.

In medical diagnosis, the inputs are the relevant information we have

about the patient and the classes are the illnesses. The inputs contain the

patient’s age, gender, past medical history, and current symptoms. Some

tests may not have been applied to the patient, and thus these inputs

would be missing. Tests take time, may be costly, and may inconvience

the patient so we do not want to apply them unless we believe that they

will give us valuable information. In the case of a medical diagnosis, a

wrong decision may lead to a wrong or no treatment, and in cases of

doubt it is preferable that the classifier reject and defer decision to a

human expert.

In speech recognition, the input is acoustic and the classes are words

that can be uttered. This time the association to be learned is from an

acoustic signal to a word of some language. Different people, because

8 1 Introduction

of differences in age, gender, or accent, pronounce the same word differ-

ently, which makes this task rather difficult. Another difference of speech

is that the input is temporal; words are uttered in time as a sequence of

speech phonemes and some words are longer than others.

Acoustic information only helps up to a certain point, and as in optical

character recognition, the integration of a “language model” is critical in

speech recognition, and the best way to come up with a language model

is again by learning it from some large corpus of example data. The appli-

cations of machine learning to natural language processing is constantly

increasing. Spam filtering is one where spam generators on one side and

filters on the other side keep finding more and more ingenious ways to

outdo each other. Perhaps the most impressive would be machine trans-

lation. After decades of research on hand-coded translation rules, it has

become apparent recently that the most promising way is to provide a

very large number of example pairs of translated texts and have a pro-

gram figure out automatically the rules to map one string of characters

to another.

Biometrics is recognition or authentication of people using their physi-

ological and/or behavioral characteristics that requires an integration of

inputs from different modalities. Examples of physiological characteris-

tics are images of the face, fingerprint, iris, and palm; examples of behav-

ioral characteristics are dynamics of signature, voice, gait, and key stroke.

As opposed to the usual identification procedures—photo, printed signa-

ture, or password—when there are many different (uncorrelated) inputs,

forgeries (spoofing) would be more difficult and the system would be

more accurate, hopefully without too much inconvenience to the users.

Machine learning is used both in the separate recognizers for these differ-

ent modalities and in the combination of their decisions to get an overall

accept/reject decision, taking into account how reliable these different

sources are.

Learning a rule from data also allows knowledge extraction. The rule isknowledge

extraction a simple model that explains the data, and looking at this model we have

an explanation about the process underlying the data. For example, once

we learn the discriminant separating low-risk and high-risk customers,

we have the knowledge of the properties of low-risk customers. We can

then use this information to target potential low-risk customers more

efficiently, for example, through advertising.

Learning also performs compression in that by fitting a rule to the data,compression

we get an explanation that is simpler than the data, requiring less mem-

1.2 Examples of Machine Learning Applications 9

ory to store and less computation to process. Once you have the rules of

addition, you do not need to remember the sum of every possible pair of

numbers.

Another use of machine learning is outlier detection, which is findingoutlier detection

the instances that do not obey the rule and are exceptions. In this case,

after learning the rule, we are not interested in the rule but the exceptions

not covered by the rule, which may imply anomalies requiring attention—

for example, fraud.

1.2.3 Regression

Let us say we want to have a system that can predict the price of a used

car. Inputs are the car attributes—brand, year, engine capacity, mileage,

and other information—that we believe affect a car’s worth. The output

is the price of the car. Such problems where the output is a number are

regression problems.regression

Let X denote the car attributes and Y be the price of the car. Again

surveying the past transactions, we can collect a training data and the

machine learning program fits a function to this data to learn Y as a

function of X. An example is given in figure 1.2 where the fitted function

is of the form

y = wx+w0

for suitable values of w and w0.

Both regression and classification are supervised learning problemssupervised learning

where there is an input, X, an output, Y , and the task is to learn the map-

ping from the input to the output. The approach in machine learning is

that we assume a model defined up to a set of parameters:

y = g(x|θ)

where g(·) is the model and θ are its parameters. Y is a number in re-

gression and is a class code (e.g., 0/1) in the case of classification. g(·)
is the regression function or in classification, it is the discriminant func-

tion separating the instances of different classes. The machine learning

program optimizes the parameters, θ, such that the approximation error

is minimized, that is, our estimates are as close as possible to the cor-

rect values given in the training set. For example in figure 1.2, the model

is linear and w and w0 are the parameters optimized for best fit to the

10 1 Introduction

 x: mileage

 y
: p

ri
ce

Figure 1.2 A training dataset of used cars and the function fitted. For simplic-

ity, mileage is taken as the only input attribute and a linear model is used.

training data. In cases where the linear model is too restrictive, one can

use for example a quadratic

y = w2x
2 +w1x+w0

or a higher-order polynomial, or any other nonlinear function of the in-

put, this time optimizing its parameters for best fit.

Another example of regression is navigation of a mobile robot, for ex-

ample, an autonomous car, where the output is the angle by which the

steering wheel should be turned at each time, to advance without hitting

obstacles and deviating from the route. Inputs in such a case are pro-

vided by sensors on the car—for example, a video camera, GPS, and so

forth. Training data can be collected by monitoring and recording the

actions of a human driver.

One can envisage other applications of regression where one is trying

1.2 Examples of Machine Learning Applications 11

to optimize a function1. Let us say we want to build a machine that roasts

coffee. The machine has many inputs that affect the quality: various

settings of temperatures, times, coffee bean type, and so forth. We make

a number of experiments and for different settings of these inputs, we

measure the quality of the coffee, for example, as consumer satisfaction.

To find the optimal setting, we fit a regression model linking these inputs

to coffee quality and choose new points to sample near the optimum of

the current model to look for a better configuration. We sample these

points, check quality, and add these to the data and fit a new model. This

is generally called response surface design.

1.2.4 Unsupervised Learning

In supervised learning, the aim is to learn a mapping from the input to

an output whose correct values are provided by a supervisor. In unsuper-

vised learning, there is no such supervisor and we only have input data.

The aim is to find the regularities in the input. There is a structure to the

input space such that certain patterns occur more often than others, and

we want to see what generally happens and what does not. In statistics,

this is called density estimation.density estimation

One method for density estimation is clustering where the aim is toclustering

find clusters or groupings of input. In the case of a company with a data

of past customers, the customer data contains the demographic informa-

tion as well as the past transactions with the company, and the company

may want to see the distribution of the profile of its customers, to see

what type of customers frequently occur. In such a case, a clustering

model allocates customers similar in their attributes to the same group,

providing the company with natural groupings of its customers; this is

called customer segmentation. Once such groups are found, the company

may decide strategies, for example, services and products, specific to dif-

ferent groups; this is known as customer relationship management. Such

a grouping also allows identifying those who are outliers, namely, those

who are different from other customers, which may imply a niche in the

market that can be further exploited by the company.

An interesting application of clustering is in image compression. In

this case, the input instances are image pixels represented as RGB val-

ues. A clustering program groups pixels with similar colors in the same

1. I would like to thank Michael Jordan for this example.

12 1 Introduction

group, and such groups correspond to the colors occurring frequently in

the image. If in an image, there are only shades of a small number of

colors, and if we code those belonging to the same group with one color,

for example, their average, then the image is quantized. Let us say the

pixels are 24 bits to represent 16 million colors, but if there are shades

of only 64 main colors, for each pixel we need 6 bits instead of 24. For

example, if the scene has various shades of blue in different parts of the

image, and if we use the same average blue for all of them, we lose the

details in the image but gain space in storage and transmission. Ideally,

one would like to identify higher-level regularities by analyzing repeated

image patterns, for example, texture, objects, and so forth. This allows a

higher-level, simpler, and more useful description of the scene, and for

example, achieves better compression than compressing at the pixel level.

If we have scanned document pages, we do not have random on/off pix-

els but bitmap images of characters. There is structure in the data, and

we make use of this redundancy by finding a shorter description of the

data: 16× 16 bitmap of ‘A’ takes 32 bytes; its ASCII code is only 1 byte.

In document clustering, the aim is to group similar documents. For

example, news reports can be subdivided as those related to politics,

sports, fashion, arts, and so on. Commonly, a document is represented

as a bag of words, that is, we predefine a lexicon of N words and each

document is an N-dimensional binary vector whose element i is 1 if word

i appears in the document; suffixes “–s” and “–ing” are removed to avoid

duplicates and words such as “of,” “and,” and so forth, which are not

informative, are not used. Documents are then grouped depending on

the number of shared words. It is of course here critical how the lexicon

is chosen.

Machine learning methods are also used in bioinformatics. DNA in our

genome is the “blueprint of life” and is a sequence of bases, namely, A, G,

C, and T. RNA is transcribed from DNA, and proteins are translated from

the RNA. Proteins are what the living body is and does. Just as a DNA is

a sequence of bases, a protein is a sequence of amino acids (as defined

by bases). One application area of computer science in molecular biology

is alignment, which is matching one sequence to another. This is a dif-

ficult string matching problem because strings may be quite long, there

are many template strings to match against, and there may be deletions,

insertions, and substitutions. Clustering is used in learningmotifs, which

are sequences of amino acids that occur repeatedly in proteins. Motifs

are of interest because they may correspond to structural or functional

1.2 Examples of Machine Learning Applications 13

elements within the sequences they characterize. The analogy is that if

the amino acids are letters and proteins are sentences, motifs are like

words, namely, a string of letters with a particular meaning occurring

frequently in different sentences.

1.2.5 Reinforcement Learning

In some applications, the output of the system is a sequence of actions.

In such a case, a single action is not important; what is important is the

policy that is the sequence of correct actions to reach the goal. There is

no such thing as the best action in any intermediate state; an action is

good if it is part of a good policy. In such a case, the machine learning

program should be able to assess the goodness of policies and learn from

past good action sequences to be able to generate a policy. Such learning

methods are called reinforcement learning algorithms.reinforcement

learning A good example is game playing where a single move by itself is not

that important; it is the sequence of right moves that is good. A move is

good if it is part of a good game playing policy. Game playing is an im-

portant research area in both artificial intelligence and machine learning.

This is because games are easy to describe and at the same time, they are

quite difficult to play well. A game like chess has a small number of rules

but it is very complex because of the large number of possible moves at

each state and the large number of moves that a game contains. Once

we have good algorithms that can learn to play games well, we can also

apply them to applications with more evident economic utility.

A robot navigating in an environment in search of a goal location is

another application area of reinforcement learning. At any time, the robot

can move in one of a number of directions. After a number of trial runs,

it should learn the correct sequence of actions to reach to the goal state

from an initial state, doing this as quickly as possible and without hitting

any of the obstacles.

One factor that makes reinforcement learning harder is when the sys-

tem has unreliable and partial sensory information. For example, a robot

equipped with a video camera has incomplete information and thus at

any time is in a partially observable state and should decide taking into

account this uncertainty; for example, it may not know its exact location

in a room but only that there is a wall to its left. A task may also re-

quire a concurrent operation of multiple agents that should interact and

14 1 Introduction

cooperate to accomplish a common goal. An example is a team of robots

playing soccer.

1.3 Notes

Evolution is the major force that defines our bodily shape as well as our

built-in instincts and reflexes. We also learn to change our behavior dur-

ing our lifetime. This helps us cope with changes in the environment

that cannot be predicted by evolution. Organisms that have a short life

in a well-defined environment may have all their behavior built-in, but

instead of hardwiring into us all sorts of behavior for any circumstance

that we could encounter in our life, evolution gave us a large brain and a

mechanism to learn, such that we could update ourselves with experience

and adapt to different environments. When we learn the best strategy in

a certain situation, that knowledge is stored in our brain, and when the

situation arises again, when we re-cognize (“cognize” means to know) the

situation, we can recall the suitable strategy and act accordingly. Learn-

ing has its limits though; there may be things that we can never learn with

the limited capacity of our brains, just like we can never “learn” to grow

a third arm, or an eye on the back of our head, even if either would be

useful. See Leahey and Harris 1997 for learning and cognition from the

point of view of psychology. Note that unlike in psychology, cognitive sci-

ence, or neuroscience, our aim in machine learning is not to understand

the processes underlying learning in humans and animals, but to build

useful systems, as in any domain of engineering.

Almost all of science is fitting models to data. Scientists design exper-

iments and make observations and collect data. They then try to extract

knowledge by finding out simple models that explain the data they ob-

served. This is called induction and is the process of extracting general

rules from a set of particular cases.

We are now at a point that such analysis of data can no longer be done

by people, both because the amount of data is huge and because people

who can do such analysis are rare and manual analysis is costly. There

is thus a growing interest in computer models that can analyze data and

extract information automatically from them, that is, learn.

The methods we are going to discuss in the coming chapters have their

origins in different scientific domains. Sometimes the same algorithm

1.3 Notes 15

was independently invented in more than one field, following a different

historical path.

In statistics, going from particular observations to general descriptions

is called inference and learning is called estimation. Classification is

called discriminant analysis in statistics (McLachlan 1992; Hastie, Tib-

shirani, and Friedman 2001). Before computers were cheap and abun-

dant, statisticians could only work with small samples. Statisticians, be-

ing mathematicians, worked mostly with simple parametric models that

could be analyzed mathematically. In engineering, classification is called

pattern recognition and the approach is nonparametric and much more

empirical (Duda, Hart, and Stork 2001; Webb 1999). Machine learning is

related to artificial intelligence (Russell and Norvig 2002) because an in-

telligent system should be able to adapt to changes in its environment.

Application areas like vision, speech, and robotics are also tasks that

are best learned from sample data. In electrical engineering, research in

signal processing resulted in adaptive computer vision and speech pro-

grams. Among these, the development of hidden Markov models (HMM)

for speech recognition is especially important.

In the late 1980s with advances in VLSI technology and the possibil-

ity of building parallel hardware containing thousands of processors,

the field of artificial neural networks was reinvented as a possible the-

ory to distribute computation over a large number of processing units

(Bishop 1995). Over time, it has been realized in the neural network com-

munity that most neural network learning algorithms have their basis in

statistics—for example, the multilayer perceptron is another class of non-

parametric estimator—and claims of brainlike computation have started

to fade.

In recent years, kernel-based algorithms, such as support vector ma-

chines, have become popular, which, through the use of kernel functions,

can be adapted to various applications, especially in bioinformatics and

language processing. It is common knowledge nowadays that a good rep-

resentation of data is critical for learning and kernel functions turn out

to be a very good way to introduce such expert knowledge.

Recently, with the reduced cost of storage and connectivity, it has be-

come possible to have very large datasets available over the Internet, and

this, coupled with cheaper computation, have made it possible to run

learning algorithms on a lot of data. In the past few decades, it was gen-

erally believed that for artificial intelligence to be possible, we needed

a new paradigm, a new type of thinking, a new model of computation

16 1 Introduction

or a whole new set of algorithms. Taking into account the recent suc-

cesses in machine learning in various domains, it may be claimed that

what we needed was not new algorithms but a lot of example data and

sufficient computing power to run the algorithms on that much data. For

example, the roots of support vector machines go to potential functions,

linear classifiers, and neighbor-based methods, proposed in the 1950s or

the 1960s; it is just that we did not have fast computers or large storage

then for these algorithms to show their full potential. It may be con-

jectured that tasks such as machine translation, and even planning, can

be solved with such relatively simple learning algorithms but trained on

large amounts of example data, or through long runs of trial and error.

Intelligence seems not to originate from some outlandish formula, but

rather from the patient, almost brute-force use of a simple, straightfor-

ward algorithm.

Data mining is the name coined in the business world for the applica-

tion of machine learning algorithms to large amounts of data (Witten and

Frank 2005; Han and Kamber 2006). In computer science, it used to be

called knowledge discovery in databases (KDD).

Research in these different communities (statistics, pattern recogni-

tion, neural networks, signal processing, control, artificial intelligence,

and data mining) followed different paths in the past with different em-

phases. In this book, the aim is to incorporate these emphases together

to give a unified treatment of the problems and the proposed solutions

to them.

1.4 Relevant Resources

The latest research on machine learning is distributed over journals and

conferences from different fields. Dedicated journals are Machine Learn-

ing and Journal of Machine Learning Research. Journals with a neural

network emphasis are Neural Computation, Neural Networks, and the

IEEE Transactions on Neural Networks. Statistics journals like Annals of

Statistics and Journal of the American Statistical Association also publish

machine learning papers. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence is another source.

Journals on artificial intelligence, pattern recognition, fuzzy logic, and

signal processing also contain machine learning papers. Journals with an

emphasis on data mining are Data Mining and Knowledge Discovery, IEEE

1.4 Relevant Resources 17

Transactions on Knowledge and Data Engineering, and ACM Special Inter-

est Group on Knowledge Discovery and Data Mining Explorations Journal.

The major conferences on machine learning are Neural Information

Processing Systems (NIPS), Uncertainty in Artificial Intelligence (UAI), In-

ternational Conference on Machine Learning (ICML), European Conference

on Machine Learning (ECML), and Computational Learning Theory (COLT).

International Joint Conference on Artificial Intelligence (IJCAI), as well as

conferences on neural networks, pattern recognition, fuzzy logic, and ge-

netic algorithms, have sessions on machine learning and conferences on

application areas like computer vision, speech technology, robotics, and

data mining.

There are a number of dataset repositories on the Internet that are used

frequently by machine learning researchers for benchmarking purposes:

� UCI Repository for machine learning is the most popular repository:

http://www.ics.uci.edu/∼mlearn/MLRepository.html

� UCI KDD Archive:

http://kdd.ics.uci.edu/summary.data.application.html

� Statlib: http://lib.stat.cmu.edu

� Delve: http://www.cs.utoronto.ca/∼delve/

In addition to these, there are also repositories for particular applica-

tions, for example, computional biology, face recognition, speech recog-

nition, and so forth.

New and larger datasets are constantly being added to these reposi-

tories, especially to the UCI repository. Still, some researchers believe

that such repositories do not reflect the full characteristics of real data

and are of limited scope, and therefore accuracies on datasets from such

repositories are not indicative of anything. It may even be claimed that

when some datasets from a fixed repository are used repeatedly while tai-

loring a new algorithm, we are generating a new set of “UCI algorithms”

specialized for those datasets.

As we will see in later chapters, different algorithms are better on dif-

ferent tasks anyway, and therefore it is best to keep one application in

mind, to have one or a number of large datasets drawn for that and com-

pare algorithms on those, for that specific task.

Most recent papers by machine learning researchers are accessible over

the Internet, and a good place to start searching is the NEC Research In-

http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html
http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html
http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu
http://www.cs.utoronto.ca/%E2%88%BCdelve/
http://www.cs.utoronto.ca/%E2%88%BCdelve/
http://www.cs.utoronto.ca/%E2%88%BCdelve/

18 1 Introduction

dex at http://citeseer.ist.psu.edu. Most authors also make codes of their
algorithms available over the Web. There are also free software packages

implementing various machine learning algorithms, and among these,

Weka is especially noteworthy: http://www.cs.waikato.ac.nz/ml/weka/.

1.5 Exercises

1. Imagine you have two possibilities: You can fax a document, that is, send the

image, or you can use an optical character reader (OCR) and send the text

file. Discuss the advantage and disadvantages of the two approaches in a

comparative manner. When would one be preferable over the other?

2. Let us say we are building an OCR and for each character, we store the bitmap

of that character as a template that we match with the read character pixel by

pixel. Explain when such a system would fail. Why are barcode readers still

used?

3. Assume we are given the task to build a system that can distinguish junk e-

mail. What is in a junk e-mail that lets us know that it is junk? How can the

computer detect junk through a syntactic analysis? What would you like the

computer to do if it detects a junk e-mail—delete it automatically, move it to

a different file, or just highlight it on the screen?

4. Let us say you are given the task of building an automated taxi. Define the

constraints. What are the inputs? What is the output? How can you com-

municate with the passenger? Do you need to communicate with the other

automated taxis, that is, do you need a “language”?

5. In basket analysis, we want to find the dependence between two items X

and Y . Given a database of customer transactions, how can you find these

dependencies? How would you generalize this to more than two items?

6. How can you predict the next command to be typed by the user? Or the

next page to be downloaded over the Web? When would such a prediction be

useful? When would it be annoying?

7. In your everyday newspaper, find five sample news reports for each category

of politics, sports, and the arts. Go over these reports and find words that are

used frequently for each category, which may help us discriminate between

different categories. For example, a news report on politics is likely to include

words such as “government,” “recession,” “congress,” and so forth, whereas

a news report on the arts may include “album,” “canvas,” or “theater.” There

are also words such as “goal” that are ambiguous.

8. If a face image is a 100 × 100 image, written in row-major, this is a 10,000-

dimensional vector. If we shift the image one pixel to the right, this will be a

http://citeseer.ist.psu.edu
http://www.cs.waikato.ac.nz/ml/weka/

1.6 References 19

very different vector in the 10,000-dimensional space. How can we build face

recognizers robust to such distortions?

9. Take a word, for example, “machine.” Write it ten times. Also ask a friend

to write it ten times. Analyzing these twenty images, try to find features,

types of strokes, curvatures, loops, how you make the dots, and so on, that

discriminate your handwriting from your friend’s.

10. In estimating the price of a used car, rather than estimating the absolute price

it makes more sense to estimate the percent depreciation over the original

price. Why?

1.6 References

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

Han, J., and M. Kamber. 2006. Data Mining: Concepts and Techniques, 2nd ed.

San Francisco: Morgan Kaufmann.

Hand, D. J. 1998. “Consumer Credit and Statistics.” In Statistics in Finance, ed.

D. J. Hand and S. D. Jacka, 69–81. London: Arnold.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York: Springer.

Leahey, T. H., and R. J. Harris. 1997. Learning and Cognition, 4th ed. New York:

Prentice Hall.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition.

New York: Wiley.

Russell, S., and P. Norvig. 2002. Artificial Intelligence: A Modern Approach, 2nd

ed. New York: Prentice Hall.

Webb, A. 1999. Statistical Pattern Recognition. London: Arnold.

Witten, I. H., and E. Frank. 2005. Data Mining: Practical Machine Learning Tools

and Techniques, 2nd ed. San Francisco: Morgan Kaufmann.

2 Supervised Learning

We discuss supervised learning starting from the simplest case, which

is learning a class from its positive and negative examples. We gener-

alize and discuss the case of multiple classes, then regression, where

the outputs are continuous.

2.1 Learning a Class from Examples

Let us say we want to learn the class, C, of a “family car.” We have a

set of examples of cars, and we have a group of people that we survey to

whom we show these cars. The people look at the cars and label them;

the cars that they believe are family cars are positive examples, and thepositive examples

other cars are negative examples. Class learning is finding a descriptionnegative examples

that is shared by all positive examples and none of the negative examples.

Doing this, we can make a prediction: Given a car that we have not seen

before, by checking with the description learned, we will be able to say

whether it is a family car or not. Or we can do knowledge extraction:

This study may be sponsored by a car company, and the aim may be to

understand what people expect from a family car.

After some discussions with experts in the field, let us say that we reach

the conclusion that among all features a car may have, the features that

separate a family car from other cars are the price and engine power.

These two attributes are the inputs to the class recognizer. Note that

when we decide on this particular input representation, we are ignoringinput

representation various other attributes as irrelevant. Though one may think of other

attributes such as seating capacity and color that might be important for

distinguishing among car types, we will consider only price and engine

power to keep this example simple.

22 2 Supervised Learning

x 2: E
ng

in
e

po
w

er

x1: Price
x1

t

x2
t

Figure 2.1 Training set for the class of a “family car.” Each data point corre-

sponds to one example car, and the coordinates of the point indicate the price

and engine power of that car. ‘+’ denotes a positive example of the class (a family

car), and ‘−’ denotes a negative example (not a family car); it is another type of
car.

Let us denote price as the first input attribute x1 (e.g., in U.S. dollars)

and engine power as the second attribute x2 (e.g., engine volume in cubic

centimeters). Thus we represent each car using two numeric values

x =
[
x1
x2

]
(2.1)

and its label denotes its type

r =
{

1 if x is a positive example

0 if x is a negative example
(2.2)

Each car is represented by such an ordered pair (x, r) and the training

set contains N such examples

X = {xt , r t}Nt=1(2.3)

where t indexes different examples in the set; it does not represent time

or any such order.

2.1 Learning a Class from Examples 23

x 2: E
ng

in
e

po
w

er

x1: Price
p1 p2

e1

e2
C

Figure 2.2 Example of a hypothesis class. The class of family car is a rectangle

in the price-engine power space.

Our training data can now be plotted in the two-dimensional (x1, x2)

space where each instance t is a data point at coordinates (xt1, x
t
2) and its

type, namely, positive versus negative, is given by r t (see figure 2.1).

After further discussions with the expert and the analysis of the data,

we may have reason to believe that for a car to be a family car, its price

and engine power should be in a certain range

(p1 ≤ price ≤ p2) AND (e1 ≤ engine power ≤ e2)(2.4)

for suitable values of p1, p2, e1, and e2. Equation 2.4 thus assumes C to

be a rectangle in the price-engine power space (see figure 2.2).

Equation 2.4 fixes H , the hypothesis class from which we believe C ishypothesis class

drawn, namely, the set of rectangles. The learning algorithm then finds

the particular hypothesis, h ∈H , to approximate C as closely as possible.hypothesis

Though the expert defines this hypothesis class, the values of the pa-

rameters are not known; that is, though we choose H , we do not know

which particular h ∈H is equal, or closest, to C. But once we restrict our

24 2 Supervised Learning

attention to this hypothesis class, learning the class reduces to the easier

problem of finding the four parameters that define h.

The aim is to find h ∈ H that is as similar as possible to C. Let us say
the hypothesis h makes a prediction for an instance x such that

h(x) =
{

1 if h classifies x as a positive example

0 if h classifies x as a negative example
(2.5)

In real life we do not know C(x), so we cannot evaluate how well h(x)

matches C(x). What we have is the training set X , which is a small subset

of the set of all possible x. The empirical error is the proportion of train-empirical error

ing instances where predictions of h do not match the required values

given in X . The error of hypothesis h given the training set X is

E(h|X) =
N∑
t=1

1(h(xt) �= r t)(2.6)

where 1(a �= b) is 1 if a �= b and is 0 if a = b (see figure 2.3).
In our example, the hypothesis class H is the set of all possible rec-

tangles. Each quadruple (ph1 , p
h
2 , e

h
1 , e

h
2) defines one hypothesis, h, from

H , and we need to choose the best one, or in other words, we need to

find the values of these four parameters given the training set, to in-

clude all the positive examples and none of the negative examples. Note

that if x1 and x2 are real-valued, there are infinitely many such h for

which this is satisfied, namely, for which the error, E, is 0, but given a

future example somewhere close to the boundary between positive and

negative examples, different candidate hypotheses may make different

predictions. This is the problem of generalization—that is, how well ourgeneralization

hypothesis will correctly classify future examples that are not part of the

training set.

One possibility is to find the most specific hypothesis, S, that is themost specific

hypothesis tightest rectangle that includes all the positive examples and none of the

negative examples (see figure 2.4). This gives us one hypothesis, h = S, as
our induced class. Note that the actual class C may be larger than S but is

never smaller. The most general hypothesis, G, is the largest rectangle wemost general

hypothesis can draw that includes all the positive examples and none of the negative

examples (figure 2.4). Any h ∈ H between S and G is a valid hypothesis

with no error, said to be consistent with the training set, and such hmake

up the version space. Given another training set, S, G, version space, theversion space

parameters and thus the learned hypothesis, h, can be different.

2.1 Learning a Class from Examples 25

��
�

�
�
��
�
�
	

�
�
�

Figure 2.3 C is the actual class and h is our induced hypothesis. The point

where C is 1 but h is 0 is a false negative, and the point where C is 0 but h is 1

is a false positive. Other points—namely, true positives and true negatives—are

correctly classified.

Actually, depending on X andH , there may be several Si and Gj which

respectively make up the S-set and the G-set. Every member of the S-set

is consistent with all the instances, and there are no consistent hypothe-

ses that are more specific. Similarly, every member of the G-set is consis-

tent with all the instances, and there are no consistent hypotheses that

are more general. These two make up the boundary sets and any hypoth-

esis between them is consistent and is part of the version space. There is

an algorithm called candidate elimination that incrementally updates the

S- and G-sets as it sees training instances one by one; see Mitchell 1997.

We assume X is large enough that there is a unique S and G.

Given X , we can find S, or G, or any h from the version space and use

it as our hypothesis, h. It seems intuitive to choose h halfway between S

and G; this is to increase the margin, which is the distance between themargin

26 2 Supervised Learning

x 2: E
ng

in
e

po
w

er

x1: Price

C

S

G

Figure 2.4 S is the most specific and G is the most general hypothesis.

boundary and the instances closest to it (see figure 2.5). For our error

function to have a minimum at h with the maximum margin, we should

use an error (loss) function which not only checks whether an instance

is on the correct side of the boundary but also how far away it is. That

is, instead of h(x) that returns 0/1, we need to have a hypothesis that

returns a value which carries a measure of the distance to the boundary

and we need to have a loss function which uses it, different from 1(·)
that checks for equality.

In some applications, a wrong decision may be very costly and in such

a case, we can say that any instance that falls in between S and G is a

case of doubt, which we cannot label with certainty due to lack of data.doubt

In such a case, the system rejects the instance and defers the decision to

a human expert.

Here, we assume thatH includes C; that is, there exists h ∈ H , such

that E(h|X) is 0. Given a hypothesis classH , it may be the case that we

cannot learn C; that is, there exists no h ∈ H for which the error is 0.

Thus, in any application, we need to make sure thatH is flexible enough,

or has enough “capacity,” to learn C.

2.2 Vapnik-Chervonenkis (VC) Dimension 27

��
�

�
�
��
�
�
	

�
�
�

Figure 2.5 We choose the hypothesis with the largest margin, for best separa-

tion. The shaded instances are those that define (or support) the margin; other

instances can be removed without affecting h.

2.2 Vapnik-Chervonenkis (VC) Dimension

Let us say we have a dataset containing N points. These N points can

be labeled in 2N ways as positive and negative. Therefore, 2N different

learning problems can be defined by N data points. If for any of these

problems, we can find a hypothesis h ∈H that separates the positive ex-

amples from the negative, then we sayH shatters N points. That is, any

learning problem definable by N examples can be learned with no error

by a hypothesis drawn from H . The maximum number of points that

can be shattered byH is called the Vapnik-Chervonenkis (VC) dimensionVC dimension

ofH , is denoted as VC(H), and measures the capacity ofH .

In figure 2.6, we see that an axis-aligned rectangle can shatter four

points in two dimensions. Then VC(H), whenH is the hypothesis class

of axis-aligned rectangles in two dimensions, is four. In calculating the

VC dimension, it is enough that we find four points that can be shattered;

it is not necessary that we be able to shatter any four points in two di-

28 2 Supervised Learning

x 2

x1

Figure 2.6 An axis-aligned rectangle can shatter four points. Only rectangles

covering two points are shown.

mensions. For example, four points placed on a line cannot be shattered

by rectangles. However, we cannot place five points in two dimensions

anywhere such that a rectangle can separate the positive and negative

examples for all possible labelings.

VC dimension may seem pessimistic. It tells us that using a rectangle

as our hypothesis class, we can learn only datasets containing four points

and not more. A learning algorithm that can learn datasets of four points

is not very useful. However, this is because the VC dimension is inde-

pendent of the probability distribution from which instances are drawn.

In real life, the world is smoothly changing, instances close by most of

the time have the same labels, and we need not worry about all possible

labelings. There are a lot of datasets containing many more data points

than four that are learnable by our hypothesis class (figure 2.1). So even

hypothesis classes with small VC dimensions are applicable and are pre-

ferred over those with large VC dimensions, for example, a lookup table

that has infinite VC dimension.

2.3 Probably Approximately Correct (PAC) Learning 29

2.3 Probably Approximately Correct (PAC) Learning

Using the tightest rectangle, S, as our hypothesis, we would like to find

how many examples we need. We would like our hypothesis to be approx-

imately correct, namely, that the error probability be bounded by some

value. We also would like to be confident in our hypothesis in that we

want to know that our hypothesis will be correct most of the time (if not

always); so we want to be probably correct as well (by a probability we

can specify).

In Probably Approximately Correct (PAC) learning, given a class, C, andPAC learning

examples drawn from some unknown but fixed probability distribution,

p(x), we want to find the number of examples, N , such that with prob-

ability at least 1 − δ, the hypothesis h has error at most ε, for arbitrary

δ ≤ 1/2 and ε > 0

P{CΔh ≤ ε} ≥ 1− δ

where CΔh is the region of difference between C and h.

In our case, because S is the tightest possible rectangle, the error region

between C and h = S is the sum of four rectangular strips (see figure 2.7).

We would like to make sure that the probability of a positive example

falling in here (and causing an error) is at most ε. For any of these strips,

if we can guarantee that the probability is upper bounded by ε/4, the

error is at most 4(ε/4) = ε. Note that we count the overlaps in the corners
twice, and the total actual error in this case is less than 4(ε/4). The

probability that a randomly drawn example misses this strip is 1 − ε/4.
The probability that all N independent draws miss the strip is (1−ε/4)N ,
and the probability that all N independent draws miss any of the four

strips is at most 4(1 − ε/4)N , which we would like to be at most δ. We

have the inequality

(1− x) ≤ exp[−x]

So if we choose N and δ such that we have

4exp[−εN/4] ≤ δ

we can also write 4(1 − ε/4)N ≤ δ. Dividing both sides by 4, taking

(natural) log and rearranging terms, we have

N ≥ (4/ε) log(4/δ)(2.7)

30 2 Supervised Learning

x 2

x1

C

h

Figure 2.7 The difference between h and C is the sum of four rectangular strips,

one of which is shaded.

Therefore, provided that we take at least (4/ε) log(4/δ) independent

examples from C and use the tightest rectangle as our hypothesis h, with

confidence probability at least 1 − δ, a given point will be misclassified

with error probability at most ε. We can have arbitrary large confidence

by decreasing δ and arbitrary small error by decreasing ε, and we see in

equation 2.7 that the number of examples is a slowly growing function of

1/ε and 1/δ, linear and logarithmic, respectively.

2.4 Noise

Noise is any unwanted anomaly in the data and due to noise, the classnoise

may be more difficult to learn and zero error may be infeasible with a

simple hypothesis class (see figure 2.8). There are several interpretations

of noise:

� There may be imprecision in recording the input attributes, which may

shift the data points in the input space.

� There may be errors in labeling the data points, which may relabel

2.4 Noise 31

x 2

x1

h1

h2

Figure 2.8 When there is noise, there is not a simple boundary between the pos-

itive and negative instances, and zero misclassification error may not be possible

with a simple hypothesis. A rectangle is a simple hypothesis with four param-

eters defining the corners. An arbitrary closed form can be drawn by piecewise

functions with a larger number of control points.

positive instances as negative and vice versa. This is sometimes called

teacher noise.

� There may be additional attributes, which we have not taken into ac-

count, that affect the label of an instance. Such attributes may be

hidden or latent in that they may be unobservable. The effect of these

neglected attributes is thus modeled as a random component and is

included in “noise.”

As can be seen in figure 2.8, when there is noise, there is not a simple

boundary between the positive and negative instances and to separate

them, one needs a complicated hypothesis that corresponds to a hypoth-

esis class with larger capacity. A rectangle can be defined by four num-

bers, but to define a more complicated shape one needs a more complex

model with a much larger number of parameters. With a complex model,

32 2 Supervised Learning

one can make a perfect fit to the data and attain zero error; see the wiggly

shape in figure 2.8. Another possibility is to keep the model simple and

allow some error; see the rectangle in figure 2.8.

Using the simple rectangle (unless its training error is much bigger)

makes more sense because of the following:

1. It is a simple model to use. It is easy to check whether a point is

inside or outside a rectangle and we can easily check, for a future data

instance, whether it is a positive or a negative instance.

2. It is a simple model to train and has fewer parameters. It is easier

to find the corner values of a rectangle than the control points of an

arbitrary shape. With a small training set when the training instances

differ a little bit, we expect the simpler model to change less than a

complex model: A simple model is thus said to have less variance.

On the other hand, a too simple model assumes more, is more rigid,

and may fail if indeed the underlying class is not that simple: A sim-

pler model has more bias. Finding the optimal model corresponds to

minimizing both the bias and the variance.

3. It is a simple model to explain. A rectangle simply corresponds to

defining intervals on the two attributes. By learning a simple model,

we can extract information from the raw data given in the training set.

4. If indeed there is mislabeling or noise in input and the actual class

is really a simple model like the rectangle, then the simple rectangle,

because it has less variance and is less affected by single instances,

will be a better discriminator than the wiggly shape, although the sim-

ple one may make slightly more errors on the training set. Given

comparable empirical error, we say that a simple (but not too simple)

model would generalize better than a complex model. This principle

is known as Occam’s razor, which states that simpler explanations areOccam’s razor

more plausible and any unnecessary complexity should be shaved off.

2.5 Learning Multiple Classes

In our example of learning a family car, we have positive examples be-

longing to the class family car and the negative examples belonging to all

other cars. This is a two-class problem. In the general case, we have K

2.5 Learning Multiple Classes 33

E
ng

in
e

po
w

er

Price

Family car

Sports car

Luxury sedan

?

?

Figure 2.9 There are three classes: family car, sports car, and luxury sedan.

There are three hypotheses induced, each one covering the instances of one

class and leaving outside the instances of the other two classes. ‘?’ are reject

regions where no, or more than one, class is chosen.

classes denoted as Ci , i = 1, . . . , K, and an input instance belongs to one

and exactly one of them. The training set is now of the form

X = {xt , r t}Nt=1
where r has K dimensions and

r ti =
{

1 if xt ∈ Ci
0 if xt ∈ Cj , j �= i(2.8)

An example is given in figure 2.9 with instances from three classes:

family car, sports car, and luxury sedan.

In machine learning for classification, we would like to learn the bound-

ary separating the instances of one class from the instances of all other

classes. Thus we view a K-class classification problem as K two-class

problems. The training examples belonging to Ci are the positive in-

stances of hypothesis hi and the examples of all other classes are the

34 2 Supervised Learning

negative instances of hi . Thus in a K-class problem, we have K hypothe-

ses to learn such that

hi(x
t) =

{
1 if xt ∈ Ci
0 if xt ∈ Cj , j �= i(2.9)

The total empirical error takes a sum over the predictions for all classes

over all instances:

E({hi}Ki=1|X) =
N∑
t=1

K∑
i=1

1(hi(x
t) �= r ti)(2.10)

For a given x, ideally only one of hi(x), i = 1, . . . , K is 1 and we can

choose a class. But when no, or two or more, hi(x) is 1, we cannot choose

a class, and this is the case of doubt and the classifier rejects such cases.reject

In our example of learning a family car, we used only one hypothesis

and only modeled the positive examples. Any negative example outside

is not a family car. Alternatively, sometimes we may prefer to build two

hypotheses, one for the positive and the other for the negative instances.

This assumes a structure also for the negative instances that can be cov-

ered by another hypothesis. Separating family cars from sports cars is

such a problem; each class has a structure of its own. The advantage is

that if the input is a luxury sedan, we can have both hypotheses decide

negative and reject the input.

If in a dataset, we expect to have all classes with similar distribution—

shapes in the input space—then the same hypothesis class can be used

for all classes. For example, in a handwritten digit recognition dataset,

we would expect all digits to have similar distributions. But in a medical

diagnosis dataset, for example, where we have two classes for sick and

healthy people, we may have completely different distributions for the

two classes; there may be multiple ways for a person to be sick, reflected

differently in the inputs: All healthy people are alike; each sick person is

sick in his or her own way.

2.6 Regression

In classification, given an input, the output that is generated is Boolean;

it is a yes/no answer. When the output is a numeric value, what we would

like to learn is not a class, C(x) ∈ {0,1}, but is a numeric function. In

2.6 Regression 35

machine learning, the function is not known but we have a training set of

examples drawn from it

X = {xt , r t}Nt=1
where r t ∈ 	. If there is no noise, the task is interpolation. We would likeinterpolation

to find the function f (x) that passes through these points such that we

have

r t = f (xt)
In polynomial interpolation, givenN points, we find the (N−1)st degree

polynomial that we can use to predict the output for any x. This is called

extrapolation if x is outside of the range of xt in the training set. Inextrapolation

time-series prediction, for example, we have data up to the present and

we want to predict the value for the future. In regression, there is noiseregression

added to the output of the unknown function

r t = f (xt)+ ε(2.11)

where f (x) ∈ 	 is the unknown function and ε is random noise. The ex-

planation for noise is that there are extra hidden variables that we cannot

observe

rt = f∗(xt ,zt)(2.12)

where zt denote those hidden variables. We would like to approximate

the output by our model g(x). The empirical error on the training set X
is

E(g|X) = 1

N

N∑
t=1
[r t − g(xt)]2(2.13)

Because r and g(x) are numeric quantities, for example, ∈ 	, there is
an ordering defined on their values and we can define a distance between

values, as the square of the difference, which gives us more informa-

tion than equal/not equal, as used in classification. The square of the

difference is one error (loss) function that can be used; another is the ab-

solute value of the difference. We will see other examples in the coming

chapters.

Our aim is to find g(·) that minimizes the empirical error. Again our

approach is the same; we assume a hypothesis class for g(·) with a small
set of parameters. If we assume that g(x) is linear, we have

g(x) = w1x1 + · · · +wdxd +w0 =
d∑
j=1

wjxj +w0(2.14)

36 2 Supervised Learning

 x: milage

 y
: p

ri
ce

Figure 2.10 Linear, second-order, and sixth-order polynomials are fitted to the

same set of points. The highest order gives a perfect fit, but given this much

data it is very unlikely that the real curve is so shaped. The second order seems

better than the linear fit in capturing the trend in the training data.

Let us now go back to our example in section 1.2.3 where we estimated

the price of a used car. There we used a single input linear model

g(x) = w1x+w0(2.15)

where w1 and w0 are the parameters to learn from data. The w1 and w0

values should minimize

E(w1, w0|X) = 1

N

N∑
t=1
[r t − (w1x

t +w0)]
2(2.16)

Its minimum point can be calculated by taking the partial derivatives

of E with respect to w1 and w0, setting them equal to 0, and solving for

the two unknowns:

w1 =
∑
t x

tr t − xrN∑
t (x

t)2 −Nx2
w0 = r −w1x(2.17)

2.7 Model Selection and Generalization 37

Table 2.1 With two inputs, there are four possible cases and sixteen possible

Boolean functions.

x1 x2 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

where x = ∑
t x

t/N and r = ∑
t r

t/N . The line found is shown in figure 1.2.

If the linear model is too simple, it is too constrained and incurs a

large approximation error, and in such a case, the output may be taken

as a higher-order function of the input—for example, quadratic

g(x) = w2x
2 +w1x+w0(2.18)

where similarly we have an analytical solution for the parameters. When

the order of the polynomial is increased, the error on the training data de-

creases. But a high-order polynomial follows individual examples closely,

instead of capturing the general trend; see the sixth-order polynomial in

figure 2.10. This implies that Occam’s razor also applies in the case of re-

gression and we should be careful when fine-tuning the model complexity

to match it with the complexity of the function underlying the data.

2.7 Model Selection and Generalization

Let us start with the case of learning a Boolean function from examples.

In a Boolean function, all inputs and the output are binary. There are

2d possible ways to write d binary values and therefore, with d inputs,

the training set has at most 2d examples. As shown in table 2.1, each

of these can be labeled as 0 or 1, and therefore, there are 22
d
possible

Boolean functions of d inputs.

Each distinct training example removes half the hypotheses, namely,

those whose guesses are wrong. For example, let us say we have x1 = 0,

x2 = 1 and the output is 0; this removes h5, h6, h7, h8, h13, h14, h15, h16.

This is one way to interpret learning: we start with all possible hypothe-

sis and as we see more training examples, we remove those hypotheses

38 2 Supervised Learning

that are not consistent with the training data. In the case of a Boolean

function, to end up with a single hypothesis we need to see all 2d training

examples. If the training set we are given contains only a small subset of

all possible instances, as it generally does—that is, if we know what the

output should be for only a small percentage of the cases—the solution

is not unique. After seeing N example cases, there remain 22
d−N possible

functions. This is an example of an ill-posed problem where the data byill-posed problem

itself is not sufficient to find a unique solution.

The same problem also exists in other learning applications, in classi-

fication, and in regression. As we see more training examples, we know

more about the underlying function, and we carve out more hypotheses

that are inconsistent from the hypothesis class, but we still are left with

many consistent hypotheses.

So because learning is ill-posed, and data by itself is not sufficient to

find the solution, we should make some extra assumptions to have a

unique solution with the data we have. The set of assumptions we make

to have learning possible is called the inductive bias of the learning al-inductive bias

gorithm. One way we introduce inductive bias is when we assume a hy-

pothesis classH . In learning the class of family car, there are infinitely

many ways of separating the positive examples from the negative exam-

ples. Assuming the shape of a rectangle is one inductive bias, and then

the rectangle with the largest margin for example, is another inductive

bias. In linear regression, assuming a linear function is an inductive bias,

and among all lines, choosing the one that minimizes squared error is

another inductive bias.

But we know that each hypothesis class has a certain capacity and can

learn only certain functions. The class of functions that can be learned

can be extended by using a hypothesis class with larger capacity, contain-

ing more complex hypotheses. For example, the hypothesis class that is a

union of two rectangles has higher capacity, but its hypotheses are more

complex. Similarly in regression, as we increase the order of the polyno-

mial, the capacity and complexity increase. The question now is to decide

where to stop.

Thus learning is not possible without inductive bias, and now the ques-

tion is how to choose the right bias. This is called model selection, whichmodel selection

is choosing between possible H . In answering this question, we should

remember that the aim of machine learning is rarely to replicate the train-

ing data but the prediction for new cases. That is we would like to be able

to generate the right output for an input instance outside the training set,

2.7 Model Selection and Generalization 39

one for which the correct output is not given in the training set. How well

a model trained on the training set predicts the right output for new

instances is called generalization.generalization

For best generalization, we should match the complexity of the hypoth-

esis classH with the complexity of the function underlying the data. If

H is less complex than the function, we have underfitting, for example,underfitting

when trying to fit a line to data sampled from a third-order polynomial. In

such a case, as we increase the complexity, the training error decreases.

But if we haveH that is too complex, the data is not enough to constrain

it and we may end up with a bad hypothesis, h ∈ H , for example, when

fitting two rectangles to data sampled from one rectangle. Or if there

is noise, an overcomplex hypothesis may learn not only the underlying

function but also the noise in the data and may make a bad fit, for exam-

ple, when fitting a sixth-order polynomial to noisy data sampled from a

third-order polynomial. This is called overfitting. In such a case, havingoverfitting

more training data helps but only up to a certain point. Given a training

set andH , we can find h ∈H that has the minimum training error but if

H is not chosen well, no matter which h ∈ H we pick, we will not have

good generalization.

We can summarize our discussion citing the triple trade-off (Dietterichtriple trade-off

2003). In all learning algorithms that are trained from example data,

there is a trade-off between three factors:

� the complexity of the hypothesis we fit to data, namely, the capacity

of the hypothesis class,

� the amount of training data, and

� the generalization error on new examples.

As the amount of training data increases, the generalization error de-

creases. As the complexity of the model classH increases, the general-

ization error decreases first and then starts to increase. The generaliza-

tion error of an overcomplex H can be kept in check by increasing the

amount of training data but only up to a point. If the data is sampled

from a line and if we are fitting a higher-order polynomial, the fit will be

constrained to lie close to the line if there is training data in the vicin-

ity; where it has not been trained, a high-order polynomial may behave

erratically.

We can measure the generalization ability of a hypothesis, namely, the

quality of its inductive bias, if we have access to data outside the training

40 2 Supervised Learning

set. We simulate this by dividing the training set we have into two parts.

We use one part for training (i.e., to fit a hypothesis), and the remaining

part is called the validation set and is used to test the generalizationvalidation set

ability. That is, given a set of possible hypothesis classes Hi , for each

we fit the best hi ∈ Hi on the training set. Then, assuming large enough

training and validation sets, the hypothesis that is the most accurate on

the validation set is the best one (the one that has the best inductive bias).

This process is called cross-validation. So, for example, to find the rightcross-validation

order in polynomial regression, given a number of candidate polynomials

of different orders where polynomials of different orders correspond to

Hi , for each order, we find the coefficients on the training set, calculate

their errors on the validation set, and take the one that has the least

validation error as the best polynomial.

Note that if we need to report the error to give an idea about the ex-

pected error of our best model, we should not use the validation error.

We have used the validation set to choose the best model, and it has ef-

fectively become a part of the training set. We need a third set, a test set,test set

sometimes also called the publication set, containing examples not used

in training or validation. An analogy from our lives is when we are taking

a course: the example problems that the instructor solves in class while

teaching a subject form the training set; exam questions are the valida-

tion set; and the problems we solve in our later, professional life are the

test set.

We cannot keep on using the same training/validation split either, be-

cause after having been used once, the validation set effectively becomes

part of training data. This will be like an instructor who uses the same

exam questions every year; a smart student will figure out not to bother

with the lectures and will only memorize the answers to those questions.

We should always remember that the training data we use is a random

sample, that is, for the same application, if we collect data once more, we

will get a slightly different dataset, the fitted h will be slightly different

and will have a slightly different validation error. Or if we have a fixed set

which we divide for training, validation, and test, we will have different

errors depending on how we do the division. These slight differences in

error will allow us to estimate how large differences should be to be con-

sidered significant and not due to chance. That is, in choosing between

two hypothesis classesHi andHj , we will use them both multiple times

on a number of training and validation sets and check if the difference

between average errors of hi and hj is larger than the average difference

2.8 Dimensions of a Supervised Machine Learning Algorithm 41

between multiple hi . In chapter 19, we discuss how to design machine

learning experiments using limited data to best answer our questions—

for example, which is the best hypothesis class?—and how to analyze the

results of these experiments so that we can achieve statistically signifi-

cant conclusions minimally affected by random chance.

2.8 Dimensions of a Supervised Machine Learning Algorithm

Let us now recapitulate and generalize. We have a sample

X = {xt, r t}Nt=1(2.19)

The sample is independent and identically distributed (iid); the orderingiid

is not important and all instances are drawn from the same joint dis-

tribution p(x, r). t indexes one of the N instances, xt is the arbitrary

dimensional input, and r t is the associated desired output. r t is 0/1 for

two-class learning, is a K-dimensional binary vector (where exactly one of

the dimensions is 1 and all others 0) for (K > 2)-class classification, and

is a real value in regression.

The aim is to build a good and useful approximation to r t using the

model g(xt|θ). In doing this, there are three decisions we must make:

1. Model we use in learning, denoted as

g(x|θ)

where g(·) is the model, x is the input, and θ are the parameters.

g(·) defines the hypothesis class H , and a particular value of θ in-

stantiates one hypothesis h ∈ H . For example, in class learning, we

have taken a rectangle as our model whose four coordinates make up

θ; in linear regression, the model is the linear function of the input

whose slope and intercept are the parameters learned from the data.

The model (inductive bias), orH , is fixed by the machine learning sys-

tem designer based on his or her knowledge of the application and the

hypothesis h ic chosen (parameters are tuned) by a learning algorithm

using the training set, sampled from p(x, r).

2. Loss function, L(·), to compute the difference between the desired out-

put, rt , and our approximation to it, g(xt|θ), given the current value

42 2 Supervised Learning

of the parameters, θ. The approximation error, or loss, is the sum of

losses over the individual instances

E(θ|X) =
∑
t

L(r t , g(xt|θ))(2.20)

In class learning where outputs are 0/1, L(·) checks for equality or not;
in regression, because the output is a numeric value, we have ordering

information for distance and one possibility is to use the square of the

difference.

3. Optimization procedure to find θ∗ that minimizes the total error

θ∗ = argmin
θ
E(θ|X)(2.21)

where argmin returns the argument that minimizes. In regression, we

can solve analytically for the optimum. With more complex models

and error functions, we may need to use more complex optimization

methods, for example, gradient-based methods, simulated annealing,

or genetic algorithms.

For this to work well, the following conditions should be satisfied: First,

the hypothesis class of g(·) should be large enough, that is, have enough
capacity, to include the unknown function that generated the data that is

represented in rt in a noisy form. Second, there should be enough train-

ing data to allow us to pinpoint the correct (or a good enough) hypothesis

from the hypothesis class. Third, we should have a good optimization

method that finds the correct hypothesis given the training data.

Different machine learning algorithms differ either in the models they

assume (their hypothesis class/inductive bias), the loss measures they

employ, or the optimization procedure they use. We will see many exam-

ples in the coming chapters.

2.9 Notes

Mitchell proposed version spaces and the candidate elimination algo-

rithm to incrementally build S and G as instances are given one by one;

see Mitchell 1997 for a recent review. The rectangle-learning is from exer-

cise 2.4 of Mitchell 1997. Hirsh (1990) discusses how version spaces can

handle the case when instances are perturbed by small amount of noise.

2.10 Exercises 43

In one of the earliest works on machine learning, Winston (1975) pro-

posed the idea of a “near miss." A near miss is a negative example that

is very much like a positive example. In our terminology, we see that

a near miss would be an instance that falls in the gray area between S

and G, an instance which would affect the margin, and would hence be

more useful for learning, than an ordinary positive or negative example.

The instances that are close to the boundary are the ones that define it

(or support it); those which are surrounded by many instances with the

same label can be added/removed without affecting the boundary.

Related to this idea is active learning where the learning algorithm can

generate instances itself and ask for them to be labeled, instead of pas-

sively being given them (Angluin 1988) (see exercise 4).

VC dimension was proposed by Vapnik and Chervonenkis in the early

1970s. A recent source is Vapnik 1995 where he writes, “Nothing is more

practical than a good theory” (p. x), which is as true in machine learning as

in any other branch of science. You should not rush to the computer; you

can save yourself from hours of useless programming by some thinking,

a notebook, and a pencil—you may also need an eraser.

The PAC model was proposed by Valiant (1984). The PAC analysis of

learning a rectangle is from Blumer et al. 1989. A good textbook on com-

putational learning theory covering PAC learning and VC dimension is

Kearns and Vazirani 1994.

2.10 Exercises

1. Let us say our hypothesis class is a circle instead of a rectangle. What are the

parameters? How can the parameters of a circle hypothesis be calculated in

such a case? What if it is an ellipse? Why does it make more sense to use

an ellipse instead of a circle? How can you generalize your code to K > 2

classes?

2. Imagine our hypothesis is not one rectangle but a union of two (or m > 1)

rectangles. What is the advantage of such a hypothesis class? Show that any

class can be represented by such a hypothesis class with large enough m.

3. The complexity of most learning algorithms is a function of the training set.

Can you propose a filtering algorithm that finds redundant instances?

4. If we have a supervisor who can provide us with the label for any x, where

should we choose x to learn with fewer queries?

5. In equation 2.13, we summed up the squares of the differences between the

actual value and the estimated value. This error function is the one most

44 2 Supervised Learning

x1

x 2

Figure 2.11 A line separating positive and negative instances.

frequently used, but it is one of several possible error functions. Because

it sums up the squares of the differences, it is not robust to outliers. What

would be a better error function to implement robust regression?

6. Derive equation 2.17.

7. Assume our hypothesis class is the set of lines, and we use a line to separate

the positive and negative examples, instead of bounding the positive exam-

ples as in a rectangle, leaving the negatives outside (see figure 2.11). Show

that the VC dimension of a line is 3.

8. Show that the VC dimension of the triangle hypothesis class is 7 in two di-

mensions. (Hint: For best separation, it is best to place the seven points

equidistant on a circle.)

9. Assume as in exercise 7 that our hypothesis class is the set of lines. Write

down an error function that not only minimizes the number of misclassifica-

tions but also maximizes the margin.

10. One source of noise is error in the labels. Can you propose a method to find

data points that are highly likely to be mislabeled?

2.11 References

Angluin, D. 1988. “Queries and Concept Learning.” Machine Learning 2: 319–

342.

Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. 1989. “Learnability

and the Vapnik-Chervonenkis Dimension.” Journal of the ACM 36: 929–965.

2.11 References 45

Dietterich, T. G. 2003. “Machine Learning.” In Nature Encyclopedia of Cognitive

Science. London: Macmillan.

Hirsh, H. 1990. Incremental Version Space Merging: A General Framework for

Concept Learning. Boston: Kluwer.

Kearns, M. J., and U. V. Vazirani. 1994. An Introduction to Computational Learn-

ing Theory. Cambridge, MA: MIT Press.

Mitchell, T. 1997. Machine Learning. New York: McGraw-Hill.

Valiant, L. 1984. “A Theory of the Learnable.” Communications of the ACM 27:

1134–1142.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. New York:

Springer.

Winston, P. H. 1975. “Learning Structural Descriptions from Examples.” In

The Psychology of Computer Vision, ed. P. H. Winston, 157–209. New York:

McGraw-Hill.

3 Bayesian Decision Theory

We discuss probability theory as the framework for making decisions

under uncertainty. In classification, Bayes’ rule is used to calcu-

late the probabilities of the classes. We generalize to discuss how

we can make rational decisions among multiple actions to minimize

expected risk. We also discuss learning association rules from data.

3.1 Introduction

Programming computers to make inference from data is a cross

between statistics and computer science, where statisticians provide the

mathematical framework of making inference from data and computer

scientists work on the efficient implementation of the inference methods.

Data comes from a process that is not completely known. This lack

of knowledge is indicated by modeling the process as a random process.

Maybe the process is actually deterministic, but because we do not have

access to complete knowledge about it, we model it as random and use

probability theory to analyze it. At this point, it may be a good idea to

jump to the appendix and review basic probability theory before contin-

uing with this chapter.

Tossing a coin is a random process because we cannot predict at any

toss whether the outcome will be heads or tails—that is why we toss

coins, or buy lottery tickets, or get insurance. We can only talk about the

probability that the outcome of the next toss will be heads or tails. It may

be argued that if we have access to extra knowledge such as the exact

composition of the coin, its initial position, the force and its direction

that is applied to the coin when tossing it, where and how it is caught,

and so forth, the exact outcome of the toss can be predicted.

48 3 Bayesian Decision Theory

The extra pieces of knowledge that we do not have access to are named

the unobservable variables. In the coin tossing example, the only observ-unobservable

variables

observable variable

able variable is the outcome of the toss. Denoting the unobservables by

z and the observable as x, in reality we have

x = f (z)
where f (·) is the deterministic function that defines the outcome from

the unobservable pieces of knowledge. Because we cannot model the

process this way, we define the outcome X as a random variable drawn

from a probability distribution P(X = x) that specifies the process.
The outcome of tossing a coin is heads or tails, and we define a random

variable that takes one of two values. Let us say X = 1 denotes that the

outcome of a toss is heads and X = 0 denotes tails. Such X are Bernoulli-

distributed where the parameter of the distribution po is the probability

that the outcome is heads:

P(X = 1) = po and P(X = 0) = 1− P(X = 1) = 1− po
Assume that we are asked to predict the outcome of the next toss. If

we know po, our prediction will be heads if po > 0.5 and tails otherwise.

This is because if we choose the more probable case, the probability of

error, which is 1 minus the probability of our choice, will be minimum.

If this is a fair coin with po = 0.5, we have no better means of prediction

than choosing heads all the time or tossing a fair coin ourselves!

If we do not know P(X) and want to estimate this from a given sample,

then we are in the realm of statistics. We have a sample, X , containingsample

examples drawn from the probability distribution of the observables xt ,

denoted as p(x). The aim is to build an approximator to it, p̂(x), using

the sample X .
In the coin tossing example, the sample contains the outcomes of the

past N tosses. Then using X , we can estimate po, which is the parameter
that uniquely specifies the distribution. Our estimate of po is

p̂o = #{tosses with outcome heads}
#{tosses}

Numerically using the random variables, xt is 1 if the outcome of toss t

is heads and 0 otherwise. Given the sample {heads, heads, heads, tails,
heads, tails, tails, heads, heads}, we have X = {1,1,1,0,1,0,0,1,1} and
the estimate is

p̂o =
∑N
t=1 xt

N
= 6

9

3.2 Classification 49

3.2 Classification

We discussed credit scoring in section 1.2.2, where we saw that in a bank,

according to their past transactions, some customers are low-risk in that

they paid back their loans and the bank profited from them and other

customers are high-risk in that they defaulted. Analyzing this data, we

would like to learn the class “high-risk customer” so that in the future,

when there is a new application for a loan, we can check whether that

person obeys the class description or not and thus accept or reject the

application. Using our knowledge of the application, let us say that we

decide that there are two pieces of information that are observable. We

observe them because we have reason to believe that they give us an

idea about the credibility of a customer. Let us say, for example, we

observe customer’s yearly income and savings, which we represent by

two random variables X1 and X2.

It may again be claimed that if we had access to other pieces of know-

ledge such as the state of economy in full detail and full knowledge about

the customer, his or her intention, moral codes, and so forth, whether

someone is a low-risk or high-risk customer could have been determin-

istically calculated. But these are nonobservables and with what we can

observe, the credibility of a customer is denoted by a Bernoulli random

variable C conditioned on the observables X = [X1, X2]
T where C = 1

indicates a high-risk customer and C = 0 indicates a low-risk customer.

Thus if we know P(C|X1, X2), when a new application arrives with X1 = x1
and X2 = x2, we can

choose

{
C = 1 if P(C = 1|x1, x2) > 0.5

C = 0 otherwise

or equivalently

choose

{
C = 1 if P(C = 1|x1, x2) > P(C = 0|x1, x2)
C = 0 otherwise

(3.1)

The probability of error is 1 −max(P(C = 1|x1, x2), P(C = 0|x1, x2)).
This example is similar to the coin tossing example except that here, the

Bernoulli random variable C is conditioned on two other observable vari-

ables. Let us denote by x the vector of observed variables, x = [x1, x2]
T .

The problem then is to be able to calculate P(C|x). Using Bayes’ rule, itBayes’ rule

can be written as

P(C|x) = P(C)p(x|C)
p(x)

(3.2)

50 3 Bayesian Decision Theory

P(C = 1) is called the prior probability that C takes the value 1, whichprior probability

in our example corresponds to the probability that a customer is high-

risk, regardless of the x value. It is called the prior probability because

it is the knowledge we have as to the value of C before looking at the

observables x, satisfying

P(C = 0)+ P(C = 1) = 1

p(x|C) is called the class likelihood and is the conditional probabilityclass likelihood

that an event belonging to C has the associated observation value x. In

our case, p(x1, x2|C = 1) is the probability that a high-risk customer has

his or her X1 = x1 and X2 = x2. It is what the data tells us regarding the

class.

p(x), the evidence, is the marginal probability that an observation x isevidence

seen, regardless of whether it is a positive or negative example.

p(x) =
∑
C
p(x,C) = p(x|C = 1)P(C = 1)+ p(x|C = 0)P(C = 0)(3.3)

Combining the prior and what the data tells us using Bayes’ rule, we

calculate the posterior probability of the concept, P(C|x), after havingposterior

probability seen the observation, x.

posterior = prior× likelihood

evidence

Because of normalization by the evidence, the posteriors sum up to 1:

P(C = 0|x)+ P(C = 1|x) = 1

Once we have the posteriors, we decide by using equation 3.1. For now,

we assume that we know the prior and likelihoods; in later chapters, we

discuss how to estimate P(C) and p(x|C) from a given training sample.

In the general case, we haveK mutually exclusive and exhaustive classes;

Ci , i = 1, . . . , K; for example, in optical digit recognition, the input is a

bitmap image and there are ten classes. We have the prior probabilities

satisfying

P(Ci) ≥ 0 and
K∑
i=1

P(Ci) = 1(3.4)

p(x|Ci) is the probability of seeing x as the input when it is known to

belong to class Ci . The posterior probability of class Ci can be calculated
as

P(Ci|x) = p(x|Ci)P(Ci)
p(x)

= p(x|Ci)P(Ci)∑K
k=1 p(x|Ck)P(Ck)

(3.5)

3.3 Losses and Risks 51

and for minimum error, the Bayes’ classifier chooses the class with theBayes’ classifier

highest posterior probability; that is, we

choose Ci if P(Ci|x) =max
k
P(Ck|x)(3.6)

3.3 Losses and Risks

It may be the case that decisions are not equally good or costly. A finan-

cial institution when making a decision for a loan applicant should take

into account the potential gain and loss as well. An accepted low-risk

applicant increases profit, while a rejected high-risk applicant decreases

loss. The loss for a high-risk applicant erroneously accepted may be dif-

ferent from the potential gain for an erroneously rejected low-risk appli-

cant. The situation is much more critical and far from symmetry in other

domains like medical diagnosis or earthquake prediction.

Let us define action αi as the decision to assign the input to class Ci
and λik as the loss incurred for taking action αi when the input actuallyloss function

belongs to Ck. Then the expected risk for taking action αi isexpected risk

R(αi|x) =
K∑
k=1

λikP(Ck|x)(3.7)

and we choose the action with minimum risk:

choose αi if R(αi|x) =min
k
R(αk|x)(3.8)

Let us define K actions αi, i = 1, . . . , K, where αi is the action of assign-

ing x to Ci . In the special case of the 0/1 loss case where0/1 loss

λik =
{

0 if i = k
1 if i �= k(3.9)

all correct decisions have no loss and all errors are equally costly. The

risk of taking action αi is

R(αi|x) =
K∑
k=1

λikP(Ck|x)

=
∑
k�=i

P(Ck|x)

= 1− P(Ci|x)

52 3 Bayesian Decision Theory

because
∑
k P(Ck|x) = 1. Thus to minimize risk, we choose the most

probable case. In later chapters, for simplicity, we will always assume

this case and choose the class with the highest posterior, but note that

this is indeed a special case and rarely do applications have a symmetric,

0/1 loss. In the general case, it is a simple postprocessing to go from

posteriors to risks and to take the action to minimize the risk.

In some applications, wrong decisions—namely, misclassifications—

may have very high cost, and it is generally required that a more complex—

for example, manual—decision is made if the automatic system has low

certainty of its decision. For example, if we are using an optical digit rec-

ognizer to read postal codes on envelopes, wrongly recognizing the code

causes the envelope to be sent to a wrong destination.

In such a case, we define an additional action of reject or doubt, αK+1,reject

with αi, i = 1, . . . , K, being the usual actions of deciding on classes Ci , i =
1, . . . , K (Duda, Hart, and Stork 2001).

A possible loss function is

λik =

⎧⎪⎨
⎪⎩

0 if i = k
λ if i = K + 1

1 otherwise
(3.10)

where 0 < λ < 1 is the loss incurred for choosing the (K + 1)st action of

reject. Then the risk of reject is

R(αK+1|x) =
K∑
k=1

λP(Ck|x) = λ(3.11)

and the risk of choosing class Ci is
R(αi|x) =

∑
k�=i

P(Ck|x) = 1− P(Ci|x)(3.12)

The optimal decision rule is to

choose Ci if R(αi|x) < R(αk|x) for all k �= i and
R(αi|x) < R(αK+1|x)

reject if R(αK+1|x) < R(αi|x), i = 1, . . . , K(3.13)

Given the loss function of equation 3.10, this simplifies to

choose Ci if P(Ci|x) > P(Ck|x) for all k �= i and
P(Ci|x) > 1− λ

reject otherwise(3.14)

3.4 Discriminant Functions 53

This whole approach is meaningful if 0 < λ < 1: If λ = 0, we always

reject; a reject is as good as a correct classification. If λ ≥ 1, we never

reject; a reject is as costly as, or costlier than, an error.

3.4 Discriminant Functions

Classification can also be seen as implementing a set of discriminant func-discriminant

functions tions, gi(x), i = 1, . . . , K, such that we

choose Ci if gi(x) =max
k
gk(x)(3.15)

We can represent the Bayes’ classifier in this way by setting

gi(x) = −R(αi|x)

and the maximum discriminant function corresponds to minimum con-

ditional risk. When we use the 0/1 loss function, we have

gi(x) = P(Ci|x)

or ignoring the common normalizing term, p(x), we can write

gi(x) = p(x|Ci)P(Ci)

This divides the feature space into K decision regionsR1, . . . ,RK , wheredecision regions

Ri = {x|gi(x) = maxk gk(x)}. The regions are separated by decision

boundaries, surfaces in feature space where ties occur among the largest

discriminant functions (see figure 3.1).

When there are two classes, we can define a single discriminant

g(x) = g1(x)− g2(x)

and we

choose

{
C1 if g(x) > 0

C2 otherwise

An example is a two-class learning problem where the positive exam-

ples can be taken as C1 and the negative examples as C2. When K = 2,

the classification system is a dichotomizer and for K ≥ 3, it is a poly-dichotomizer

polychotomizer chotomizer.

54 3 Bayesian Decision Theory

x 2

x1

C1

C3

C2

reject

Figure 3.1 Example of decision regions and decision boundaries.

3.5 Utility Theory

In equation 3.7, we defined the expected risk and chose the action that

minimizes expected risk. We now generalize this to utility theory, whichutility theory

is concerned with making rational decisions when we are uncertain about

the state. Let us say that given evidence x, the probability of state Sk is

calculated as P(Sk|x). We define a utility function, Uik, which measuresutility function

how good it is to take action αi when the state is Sk. The expected utilityexpected utility

is

EU(αi|x) =
∑
k

UikP(Sk|x)(3.16)

A rational decision maker chooses the action that maximizes the ex-

pected utility

Choose αi if EU(αi|x) =max
j
EU(αj|x)(3.17)

In the context of classification, decisions correspond to choosing one

of the classes, and maximizing the expected utility is equivalent to mini-

mizing expected risk. Uik are generally measured in monetary terms, and

this gives us a way to define the loss matrix λik as well. For example, in

3.6 Association Rules 55

defining a reject option (equation 3.10), if we know how much money we

will gain as a result of a correct decision, how much money we will lose

on a wrong decision, and how costly it is to defer the decision to a human

expert, depending on the particular application we have, we can fill in the

correct values Uik in a currency unit, instead of 0, λ, and 1, and make our

decision so as to maximize expected earnings.

Note that maximizing expected utility is just one possibility; one may

define other types of rational behavior, for example, minimizing the worst

possible loss.

In the case of reject, we are choosing between the automatic decision

made by the computer program and human decision that is costlier but

assumed to have a higher probability of being correct. Similarly one can

imagine a cascade of multiple automatic decision makers, which as we

proceed are costlier but have a higher chance of being correct; we are go-

ing to discuss such cascades in chapter 17 where we talk about combining

multiple learners.

3.6 Association Rules

An association rule is an implication of the form X → Y where X is theassociation rule

antecedent and Y is the consequent of the rule. One example of associ-

ation rules is in basket analysis where we want to find the dependencybasket analysis

between two items X and Y . The typical application is in retail where X

and Y are items sold, as we discussed in section 1.2.1.

In learning association rules, there are three measures that are fre-

quently calculated:

� Support of the association rule X → Y :support

Support(X, Y) ≡ P(X,Y) = #{customers who bought X and Y}
#{customers}(3.18)

� Confidence of the association rule X → Y :confidence

Confidence(X → Y) ≡ P(Y |X) = P(X,Y)

P(X)

= #{customers who bought X and Y}
#{customers who bought X}(3.19)

� Lift, also known as interest of the association rule X → Y :lift

interest

56 3 Bayesian Decision Theory

Lift(X → Y) = P(X,Y)

P(X)P(Y)
= P(Y |X)

P(Y)
(3.20)

There are other measures as well (Omiecinski 2003), but these three,

especially the first two, are the most widely known and used. Confidence

is the conditional probability, P(Y |X), which is what we normally calcu-

late. To be able to say that the rule holds with enough confidence, this

value should be close to 1 and significantly larger than P(Y), the overall

probability of people buying Y . We are also interested in maximizing the

support of the rule, because even if there is a dependency with a strong

confidence value, if the number of such customers is small, the rule is

worthless. Support shows the statistical significance of the rule, whereas

confidence shows the strength of the rule. The minimum support and

confidence values are set by the company, and all rules with higher sup-

port and confidence are searched for in the database.

If X and Y are independent, then we expect lift to be close to 1; if the

ratio differs—if P(Y |X) and P(Y) are different—we expect there to be a

dependency between the two items: If the lift is more than 1, we can say

that X makes Y more likely, and if the lift is less than 1, having X makes

Y less likely.

These formulas can easily be generalized to more than two items. For

example, {X,Y ,Z} is a three-item set, and we may look for a rule, such

as X,Z → Y , that is, P(Y |X,Z). We are interested in finding all such rules
having high enough support and confidence and because a sales database

is generally very large, we want to find them by doing a small number of

passes over the database. There is an efficient algorithm, called Apri-Apriori algorithm

ori (Agrawal et al. 1996) that does this, which has two steps: (1) finding

frequent itemsets, that is, those which have enough support, and (2) con-

verting them to rules with enough confidence, by splitting the items into

two, as items in the antecedent and items in the consequent:

1. To find frequent itemsets quickly (without complete enumeration of all

subsets of items), the Apriori algorithm uses the fact that for {X,Y ,Z}
to be frequent (have enough support), all its subsets {X,Y}, {X,Z},
and {Y,Z} should be frequent as well—adding another item can never

increase support. That is, we only need to check for three-item sets all

of whose two-item subsets are frequent; or, in other words, if a two-

item set is known not to be frequent, all its supersets can be pruned

and need not be checked.

3.6 Association Rules 57

We start by finding the frequent one-item sets and at each step, induc-

tively, from frequent k-item sets, we generate candidate k+1-item sets

and then do a pass over the data to check if they have enough support.

The Apriori algorithm stores the frequent itemsets in a hash table for

easy access. Note that the number of candidate itemsets will decrease

very rapidly as k increases. If the largest itemset has n items, we need

a total of n+ 1 passes over the data.

2. Once we find the frequent k-item sets, we need to convert them to

rules by splitting the k items into two as antecedent and consequent.

Just like we do for generating the itemsets, we start by putting a single

consequent and k − 1 items in the antecedent. Then, for all possible

single consequents, we check if the rule has enough confidence and

remove it if it does not.

Note that for the same itemset, there may be multiple rules with dif-

ferent subsets as antecedent and consequent. Then, inductively, we

check whether we can move another item from the antecedent to the

consequent. Rules with more items in the consequent are more spe-

cific and more useful. Here, as in itemset generation, we use the fact

that to be able to have rules with two items in the consequent with

enough confidence, each of the two rules with single consequent by

itself should have enough confidence; that is, we go from one conse-

quent rules to two consequent rules and need not check for all possible

two-term consequents (exercise 7).

It should be kept in mind that a rule X → Y need not imply causality

but just an association. In a problem, there may also be hidden variableshidden variables

whose values are never known through evidence. The advantage of us-

ing hidden variables is that the dependency structure can be more easily

defined. For example, in basket analysis when we want to find the depen-

dencies among items sold, let us say we know that there is a dependency

among “baby food,” “diapers,” and “milk” in that a customer buying one

of these is very much likely to buy the other two. Instead of representing

dependencies among these three, we may designate a hidden node, “baby

at home,” as the hidden cause of the consumption of these three items.

Graphical models that we will discuss in chapter 16 allow us to represent

such hidden variables. When there are hidden nodes, their values are

estimated given the values of observed nodes and filled in.

58 3 Bayesian Decision Theory

3.7 Notes

Making decisions under uncertainty has a long history, and over time hu-

manity has looked at all sorts of strange places for evidence to remove the

uncertainty: stars, crystal balls, and coffee cups. Reasoning from mean-

ingful evidence using probability theory is only a few hundred years old;

see Newman 1988 for the history of probability and statistics and some

very early articles by Laplace, Bernoulli, and others who have founded the

theory.

Russell and Norvig (1995) give an excellent discussion of utility theory

and the value of information, also discussing the assignment of utilities

in monetary terms. Shafer and Pearl 1990 is an early collection of articles

on reasoning under uncertainty.

Association rules are successfully used in many data mining applica-

tions, and we see such rules on many Web sites that recommend books,

movies, music, and so on. The algorithm is very simple and its effi-

cient implementation on very large databases is critical (Zhang and Zhang

2002; Li 2006). Later, we will see in chapter 16 about graphical models

how to generalize from association rules to concepts that need not be

binary and where associations can be of different types, also allowing

hidden variables.

3.8 Exercises

1. In a two-class problem, the likelihood ratio islikelihood ratio

p(x|C1)
p(x|C2)
Write the discriminant function in terms of the likelihood ratio.

2. In a two-class problem, the log odds is defined aslog odds

log
P(C1|x)
P(C2|x)

Write the discriminant function in terms of the log odds.

3. In a two-class, two-action problem, if the loss function is λ11 = λ22 = 0,

λ12 = 10, and λ21 = 1, write the optimal decision rule.

4. Propose a three-level cascade where when one level rejects, the next one is

used as in equation 3.10. How can we fix the λ on different levels?

5. Somebody tosses a fair coin and if the result is heads, you get nothing; oth-

erwise you get $5. How much would you pay to play this game? What if the

win is $500 instead of $5?

3.9 References 59

6. Generalize the confidence and support formulas for basket analysis to calcu-

late k-dependencies, namely, P(Y |X1, . . . , Xk).

7. Show that as we move an item from the consequent to the antecedent, confi-

dence can never increase: confidence(ABC → D) ≥ confidence(AB → CD).

8. Associated with each item sold in basket analysis, if we also have a number

indicating how much the customer enjoyed the product, for example, in a

scale of 0 to 10, how can you use this extra information to calculate which

item to propose to a customer?

9. Show example transaction data where for the rule X → Y :

(a) Both support and confidence are high.

(b) Support is high and confidence is low.

(c) Support is low and confidence is high.

(d) Both support and confidence are low.

3.9 References

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. 1996. “Fast

Discovery of Association Rules.” In Advances in Knowledge Discovery and

Data Mining, ed. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-

rusamy, 307–328. Cambridge, MA: MIT Press.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

Li, J. 2006. “On Optimal Rule Discovery.” IEEE Transactions on Knowledge and

Data Discovery 18: 460–471.

Newman, J. R., ed. 1988. The World of Mathematics. Redmond, WA: Tempus.

Omiecinski, E. R. 2003. “Alternative Interest Measures for Mining Associations

in Databases.” IEEE Transactions on Knowledge and Data Discovery 15: 57–69.

Russell, S., and P. Norvig. 1995. Artificial Intelligence: A Modern Approach. New

York: Prentice Hall.

Shafer, G., and J. Pearl, eds. 1990. Readings in Uncertain Reasoning. San Mateo,

CA: Morgan Kaufmann.

Zhang, C., and S. Zhang. 2002. Association Rule Mining: Models and Algorithms.

New York: Springer.

4 Parametric Methods

Having discussed how to make optimal decisions when the uncer-

tainty is modeled using probabilities, we now see how we can esti-

mate these probabilities from a given training set. We start with the

parametric approach for classification and regression. We discuss

the semiparametric and nonparametric approaches in later chap-

ters. We introduce bias/variance dilemma and model selection meth-

ods for trading off model complexity and empirical error.

4.1 Introduction

A statistic is any value that is calculated from a given sample. In

statistical inference, we make a decision using the information provided

by a sample. Our first approach is parametric where we assume that the

sample is drawn from some distribution that obeys a known model, for

example, Gaussian. The advantage of the parametric approach is that

the model is defined up to a small number of parameters—for example,

mean, variance—the sufficient statistics of the distribution. Once those pa-

rameters are estimated from the sample, the whole distribution is known.

We estimate the parameters of the distribution from the given sample,

plug in these estimates to the assumed model, and get an estimated dis-

tribution, which we then use to make a decision. The method we use

to estimate the parameters of a distribution is maximum likelihood esti-

mation. We also introduce Bayesian estimation, which we will continue

discussing in chapter 14.

We start with density estimation, which is the general case of estimating

p(x). We use this for classification where the estimated densities are the

class densities, p(x|Ci), and priors, P(Ci), to be able to calculate the pos-

62 4 Parametric Methods

teriors, P(Ci|x), andmake our decision. We then discuss regressionwhere
the estimated density is p(y|x). In this chapter, x is one-dimensional and
thus the densities are univariate. We generalize to the multivariate case

in chapter 5.

4.2 Maximum Likelihood Estimation

Let us say we have an independent and identically distributed (iid) sample

X = {xt}Nt=1. We assume that xt are instances drawn from some known

probability density family, p(x|θ), defined up to parameters, θ:

xt ∼ p(x|θ)

We want to find θ that makes sampling xt from p(x|θ) as likely as

possible. Because xt are independent, the likelihood of parameter θ givenlikelihood

sample X is the product of the likelihoods of the individual points:

l(θ|X) ≡ p(X|θ) =
N∏
t=1

p(xt|θ)(4.1)

In maximum likelihood estimation, we are interested in finding θ thatmaximum likelihood

estimation makes X the most likely to be drawn. We thus search for θ that maxi-

mizes the likelihood, which we denote by l(θ|X). We can maximize the

log of the likelihood without changing the value where it takes its maxi-

mum. log(·) converts the product into a sum and leads to further compu-

tational simplification when certain densities are assumed, for example,

containing exponents. The log likelihood is defined aslog likelihood

L(θ|X) ≡ log l(θ|X) =
N∑
t=1

logp(xt|θ)(4.2)

Let us now see some distributions that arise in the applications we

are interested in. If we have a two-class problem, the distribution we

use is Bernoulli. When there are K > 2 classes, its generalization is the

multinomial. Gaussian (normal) density is the one most frequently used

for modeling class-conditional input densities with numeric input. For

these three distributions, we discuss the maximum likelihood estimators

(MLE) of their parameters.

4.2 Maximum Likelihood Estimation 63

4.2.1 Bernoulli Density

In a Bernoulli distribution, there are two outcomes: An event occurs or

it does not; for example, an instance is a positive example of the class,

or it is not. The event occurs and the Bernoulli random variable X takes

the value 1 with probability p, and the nonoccurrence of the event has

probability 1 − p and this is denoted by X taking the value 0. This is

written as

P(x) = px(1− p)1−x, x ∈ {0,1}(4.3)

The expected value and variance can be calculated as

E[X] =
∑
x

xp(x) = 1 · p + 0 · (1− p) = p

Var(X) =
∑
x

(x− E[X])2p(x) = p(1− p)

p is the only parameter and given an iid sample X = {xt}Nt=1, where
xt ∈ {0,1}, we want to calculate its estimator, p̂. The log likelihood is

L(p|X) = log
N∏
t=1

p(x
t)(1− p)(1−xt)

=
∑
t

xt logp +
⎛
⎝N −∑

t

xt

⎞
⎠ log(1− p)

p̂ that maximizes the log likelihood can be found by solving for dL/dp =
0. The hat (circumflex) denotes that it is an estimate.

p̂ =
∑
t x

t

N
(4.4)

The estimate for p is the ratio of the number of occurrences of the event

to the number of experiments. Remembering that if X is Bernoulli with

p, E[X] = p, and, as expected, the maximum likelihood estimator of the

mean is the sample average.

Note that the estimate is a function of the sample and is another ran-

dom variable; we can talk about the distribution of p̂i given different Xi

sampled from the same p(x). For example, the variance of the distri-

bution of p̂i is expected to decrease as N increases; as the samples get

bigger, they (and hence their averages) get more similar.

64 4 Parametric Methods

4.2.2 Multinomial Density

Consider the generalization of Bernoulli where instead of two states, the

outcome of a random event is one of K mutually exclusive and exhaustive

states, for example, classes, each of which has a probability of occurring

pi with
∑K
i=1 pi = 1. Let x1, x2, . . . , xK are the indicator variables where xi

is 1 if the outcome is state i and 0 otherwise.

P(x1, x2, . . . , xK) =
K∏
i=1

p
xi
i(4.5)

Let us say we do N such independent experiments with outcomes X =
{xt}Nt=1 where

xti =
{

1 if experiment t chooses state i

0 otherwise

with
∑
i x

t
i = 1. The MLE of pi is

p̂i =
∑
t x

t
i

N
(4.6)

The estimate for the probability of state i is the ratio of experiments

with outcome of state i to the total number of experiments. There are two

ways one can get this: If xi are 0/1, then they can be thought of as K sepa-

rate Bernoulli experiments. Or, one can explicitly write the log likelihood

and find pi that maximize it (subject to the condition that
∑
i pi = 1).

4.2.3 Gaussian (Normal) Density

X is Gaussian (normal) distributed with mean E[X] ≡ μ and variance

Var(X) ≡ σ 2, denoted asN (μ,σ 2), if its density function is

p(x) = 1√
2πσ

exp

[
−(x− μ)

2

2σ 2

]
,−∞ < x < ∞(4.7)

Given a sample X = {xt}Nt=1 with xt ∼N (μ,σ 2), the log likelihood is

L(μ,σ |X) = −N
2
log(2π)−N logσ −

∑
t (x

t − μ)2
2σ 2

The MLE that we find by taking the partial derivatives of the log likeli-

hood and setting them equal to 0 are

m =
∑
t x

t

N
(4.8)

s2 =
∑
t(x

t −m)2
N

4.3 Evaluating an Estimator: Bias and Variance 65

We follow the usual convention and use Greek letters for the popula-

tion parameters and Roman letters for their estimates from the sample.

Sometimes, the hat is also used to denote the estimator, for example, μ̂.

4.3 Evaluating an Estimator: Bias and Variance

Let X be a sample from a population specified up to a parameter θ, and

let d = d(X) be an estimator of θ. To evaluate the quality of this estima-
tor, we can measure how much it is different from θ, that is, (d(X)−θ)2.
But since it is a random variable (it depends on the sample), we need to

average this over possible X and consider r(d, θ), the mean square errormean square error

of the estimator d defined as

r(d, θ) = E[(d(X)− θ)2](4.9)

The bias of an estimator is given asbias

bθ(d) = E[d(X)]− θ(4.10)

If bθ(d) = 0 for all θ values, then we say that d is an unbiased estimatorunbiased estimator

of θ. For example, with xt drawn from some density with mean μ, the

sample average,m, is an unbiased estimator of the mean, μ, because

E[m] = E
[∑

t x
t

N

]
= 1

N

∑
t

E[xt] = Nμ

N
= μ

This means that though on a particular sample, m may be different

from μ, if we take many such samples, Xi , and estimate many mi =
m(Xi), their average will get close to μ as the number of such samples

increases. m is also a consistent estimator, that is, Var(m)→ 0 as N →∞.

Var(m) = Var

(∑
t x

t

N

)
= 1

N2

∑
t

Var(xt) = Nσ 2

N2
= σ 2

N

As N , the number of points in the sample, gets larger, m deviates less

from μ. Let us now check, s2, the MLE of σ 2:

s2 =
∑
t(x

t −m)2
N

=
∑
t (x

t)2 −Nm2

N

E[s2] =
∑
t E[(x

t)2]−N · E[m2]

N

Given that Var(X) = E[X2] − E[X]2, we get E[X2] = Var(X) + E[X]2,
and we can write

E[(xt)2] = σ 2 + μ2 and E[m2] = σ 2/N + μ2

66 4 Parametric Methods

Then, plugging these in, we get

E[s2] = N(σ 2 + μ2)−N(σ 2/N + μ2)
N

=
(
N − 1

N

)
σ 2 �= σ 2

which shows that s2 is a biased estimator of σ 2. (N/(N − 1))s2 is an

unbiased estimator. However whenN is large, the difference is negligable.

This is an example of an asymptotically unbiased estimator whose bias

goes to 0 as N goes to infinity.

The mean square error can be rewritten as follows—d is short for d(X):

r(d, θ) = E
[
(d − θ)2

]
= E

[
(d − E[d]+ E[d]− θ)2

]
= E

[
(d − E[d])2 + (E[d]− θ)2 + 2(E[d]− θ)(d − E[d])

]
= E

[
(d − E[d])2

]
+ E

[
(E[d]− θ)2

]
+ 2E [(E[d]− θ)(d − E[d])]

= E
[
(d − E[d])2

]
+ (E[d]− θ)2 + 2(E[d]− θ)E[d − E[d]]

= E
[
(d − E[d])2

]
︸ ︷︷ ︸

variance

+ (E[d]− θ)2︸ ︷︷ ︸
bias2

(4.11)

The two equalities follow because E[d] is a constant and therefore E[d]−
θ also is a constant, and because E[d − E[d]] = E[d] − E[d] = 0. In

equation 4.11, the first term is the variance that measures how much, onvariance

average, di vary around the expected value (going from one dataset to

another), and the second term is the bias that measures how much the

expected value varies from the correct value θ (figure 4.1). We then write

error as the sum of these two terms, the variance and the square of the

bias:

r(d, θ) = Var(d)+ (bθ(d))2(4.12)

4.4 The Bayes’ Estimator

Sometimes, before looking at a sample, we (or experts of the application)

may have some prior information on the possible value range that a pa-

rameter, θ, may take. This information is quite useful and should be

used, especially when the sample is small. The prior information does

not tell us exactly what the parameter value is (otherwise we would not

4.4 The Bayes’ Estimator 67

di

E[d]

variance

bias

θ

Figure 4.1 θ is the parameter to be estimated. di are several estimates (denoted

by ‘×’) over different samples Xi . Bias is the difference between the expected

value of d and θ. Variance is how much di are scattered around the expected

value. We would like both to be small.

need the sample), and we model this uncertainty by viewing θ as a ran-

dom variable and by defining a prior density for it, p(θ). For example, let

us say we are told that θ is approximately normal and with 90 percent

confidence, θ lies between 5 and 9, symmetrically around 7. Then we can

write p(θ) to be normal with mean 7 and because

P{−1.64 < θ − μ
σ

< 1.64} = 0.9

P{μ − 1.64σ < θ < μ + 1.64σ} = 0.9

we take 1.64σ = 2 and use σ = 2/1.64. We can thus assume p(θ) ∼
N (7, (2/1.64)2).

The prior density, p(θ), tells us the likely values that θ may take beforeprior density

looking at the sample. We combine this with what the sample data tells

us, namely, the likelihood density, p(X|θ), using Bayes’ rule, and get the

posterior density of θ, which tells us the likely θ values after looking atposterior density

the sample:

p(θ|X) = p(X|θ)p(θ)
p(X) = p(X|θ)p(θ)∫

p(X|θ′)p(θ′)dθ′(4.13)

For estimating the density at x, we have

p(x|X) =
∫
p(x, θ|X)dθ

=
∫
p(x|θ,X)p(θ|X)dθ

=
∫
p(x|θ)p(θ|X)dθ

68 4 Parametric Methods

p(x|θ,X) = p(x|θ) because once we know θ, the sufficient statistics,

we know everything about the distribution. Thus we are taking an average

over predictions using all values of θ, weighted by their probabilities. If

we are doing a prediction in the form, y = g(x|θ), as in regression, then

we have

y =
∫
g(x|θ)p(θ|X)dθ

Evaluating the integrals may be quite difficult, except in cases where

the posterior has a nice form. When the full integration is not feasible,

we reduce it to a single point. If we can assume that p(θ|X) has a nar-
row peak around its mode, then using the maximum a posteriori (MAP)maximum a

posteriori estimate estimate will make the calculation easier:

θMAP = argmax
θ

p(θ|X)(4.14)

thus replacing a whole density with a single point, getting rid of the inte-

gral and using as

p(x|X) = p(x|θMAP)
yMAP = g(x|θMAP)

If we have no prior reason to favor some values of θ, then the prior

density is flat and the posterior will have the same form as the likeli-

hood, p(X|θ), and the MAP estimate will be equivalent to the maximum

likelihood estimate (section 4.2) where we have

θML = argmax
θ

p(X|θ)(4.15)

Another possibility is the Bayes’ estimator, which is defined as the ex-Bayes’ estimator

pected value of the posterior density

θBayes = E[θ|X] =
∫
θp(θ|X)dθ(4.16)

The reason for taking the expected value is that the best estimate of

a random variable is its mean. Let us say θ is the variable we want to

predict with E[θ] = μ. It can be shown that if c, a constant value, is our

estimate of θ, then

E[(θ − c)2] = E[(θ − μ + μ − c)2]
= E[(θ − μ)2]+ (μ − c)2(4.17)

4.5 Parametric Classification 69

which is minimum if c is taken as μ. In the case of a normal density, the

mode is the expected value and if p(θ|X) is normal, then θBayes = θMAP .
As an example, let us suppose xt ∼ N (θ,σ 2) and θ ∼ N (μ0, σ

2
0),

where μ0, σ
2
0 , and σ

2 are known:

p(X|θ) = 1

(2π)N/2σN
exp

[
−
∑
t (x

t − θ)2
2σ 2

]

p(θ) = 1√
2πσ0

exp

[
−(θ − μ0)

2

2σ 2
0

]

It can be shown that p(θ|X) is normal with

E[θ|X] = N/σ 2

N/σ 2 + 1/σ 2
0

m+ 1/σ 2
0

N/σ 2 + 1/σ 2
0

μ0(4.18)

Thus the Bayes’ estimator is a weighted average of the prior mean μ0
and the sample mean m, with weights being inversely proportional to

their variances. As the sample size N increases, the Bayes’ estimator gets

closer to the sample average, using more the information provided by the

sample. When σ 2
0 is small, that is, when we have little prior uncertainty

regarding the correct value of θ, or when N is small, our prior guess μ0
has a higher effect.

Note that both MAP and Bayes’ estimators reduce the whole posterior

density to a single point and lose information unless the posterior is

unimodal and makes a narrow peak around these points. With computa-

tion getting cheaper, we can use a Monte Carlo approach that generates

samples from the posterior density (Andrieu et al. 2003). There also are

approximation methods one can use to evaluate the full integral. We are

going to discuss Bayesian estimation in more detail in chapter 14.

4.5 Parametric Classification

We saw in chapter 3 that using the Bayes’ rule, we can write the posterior

probability of class Ci as

P(Ci|x) = p(x|Ci)P(Ci)
p(x)

= p(x|Ci)P(Ci)∑K
k=1 p(x|Ck)P(Ck)

(4.19)

and use the discriminant function

gi(x) = p(x|Ci)P(Ci)

70 4 Parametric Methods

or equivalently

gi(x) = logp(x|Ci)+ logP(Ci)(4.20)

If we can assume that p(x|Ci) are Gaussian

p(x|Ci) = 1√
2πσi

exp

[
−(x− μi)

2

2σ 2
i

]
(4.21)

equation 4.20 becomes

gi(x) = −1
2
log2π − logσi − (x− μi)2

2σ 2
i

+ logP(Ci)(4.22)

Let us see an example: Assume we are a car company selling K dif-

ferent cars, and for simplicity, let us say that the sole factor that affects

a customer’s choice is his or her yearly income, which we denote by x.

Then P(Ci) is the proportion of customers who buy car type i. If the

yearly income distributions of such customers can be approximated with

a Gaussian, then p(x|Ci), the probability that a customer who bought car
type i has income x, can be takenN (μi, σ

2
i), where μi is the mean income

of such customers and σ 2
i is their income variance.

When we do not know P(Ci) and p(x|Ci), we estimate them from a sam-

ple and plug in their estimates to get the estimate for the discriminant

function. We are given a sample

X = {xt, r t}Nt=1(4.23)

where x ∈ 	 is one-dimensional and r ∈ {0,1}K such that

r ti =
{

1 if xt ∈ Ci
0 if xt ∈ Ck, k �= i(4.24)

For each class separately, the estimates for the means and variances

are (relying on equation 4.8)

mi =
∑
t x

tr ti∑
t r

t
i

(4.25)

s2i =
∑
t (x

t −mi)
2r ti∑

t r
t
i

(4.26)

and the estimates for the priors are (relying on equation 4.6)

P̂(Ci) =
∑
t r

t
i

N
(4.27)

4.5 Parametric Classification 71

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4
(a) Likelihoods

x
p(

x|
C

i)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
(b) Posteriors with equal priors

x

p(
C

i|x
)

Figure 4.2 (a) Likelihood functions and (b) posteriors with equal priors for two

classes when the input is one-dimensional. Variances are equal and the posteri-

ors intersect at one point, which is the threshold of decision.

Plugging these estimates into equation 4.22, we get

gi(x) = −1
2
log 2π − log si − (x−mi)

2

2s2i
+ log P̂(Ci)(4.28)

The first term is a constant and can be dropped because it is common

in all gi(x). If the priors are equal, the last term can also be dropped. If

we can further assume that variances are equal, we can write

gi(x) = −(x−mi)
2(4.29)

and thus we assign x to the class with the nearest mean:

Choose Ci if |x−mi| =min
k
|x−mk|

With two adjacent classes, the midpoint between the two means is the

threshold of decision (see figure 4.2).

g1(x) = g2(x)

72 4 Parametric Methods

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4
(a) Likelihoods

x

p(
x|

C
i)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1
(b) Posteriors with equal priors

x

p(
C

i|x
)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1
(c) Expected risks

x

R
(α

i|x
)

Figure 4.3 (a) Likelihood functions and (b) posteriors with equal priors for two

classes when the input is one-dimensional. Variances are unequal and the pos-

teriors intersect at two points. In (c), the expected risks are shown for the two

classes and for reject with λ = 0.2 (section 3.3).

(x−m1)
2 = (x−m2)

2

x = m1 +m2

2

When the variances are different, there are two thresholds (see fig-

ure 4.3), which can be calculated easily (exercise 4). If the priors are

different, this has the effect of moving the threshold of decision toward

the mean of the less likely class.

Here we use the maximum likelihood estimators for the parameters

but if we have some prior information about them, for example, for the

means, we can use a Bayesian estimate of p(x|Ci) with prior on μi .
One note of caution is necessary here: When x is continuous, we should

not immediately rush to use Gaussian densities for p(x|Ci). The classifi-
cation algorithm—that is, the threshold points—will be wrong if the den-

sities are not Gaussian. In statistical literature, tests exist to check for

4.6 Regression 73

normality, and such a test should be used before assuming normality.

In the case of one-dimensional data, the easiest test is to plot the his-

togram and to check visually whether the density is bell-shaped, namely,

unimodal and symmetric around the center.

This is the likelihood-based approach to classification where we use

data to estimate the densities separately, calculate posterior densities

using Bayes’ rule, and then get the discriminant. In later chapters, we

discuss the discriminant-based approach where we bypass the estimation

of densities and directly estimate the discriminants.

4.6 Regression

In regression, we would like to write the numeric output, called the depen-

dent variable, as a function of the input, called the independent variable.

We assume that the numeric output is the sum of a deterministic function

of the input and random noise:

r = f (x)+ ε

where f (x) is the unknown function, which we would like to approximate

by our estimator, g(x|θ), defined up to a set of parameters θ. If we

assume that ε is zero mean Gaussian with constant variance σ 2, namely,

ε ∼ N (0, σ 2), and placing our estimator g(·) in place of the unknown

function f (·), we have (figure 4.4)

p(r|x) ∼N (g(x|θ),σ 2)(4.30)

We again use maximum likelihood to learn the parameters θ. The pairs

(xt , r t) in the training set are drawn from an unknown joint probability

density p(x, r), which we can write as

p(x, r) = p(r|x)p(x)

p(r|x) is the probability of the output given the input, and p(x) is the

input density. Given an iid sample X = {xt, r t}Nt=1, the log likelihood is

L(θ|X) = log
N∏
t=1

p(xt, r t)

= log
N∏
t=1

p(rt |xt)+ log
N∏
t=1

p(xt)

74 4 Parametric Methods

Figure 4.4 Regression assumes 0 mean Gaussian noise added to the model;

here, the model is linear.

We can ignore the second term since it does not depend on our estima-

tor, and we have

L(θ|X) = log
N∏
t=1

1√
2πσ

exp

[
−[r

t − g(xt|θ)]2
2σ 2

]
(4.31)

= log

(
1√
2πσ

)N
exp

⎡
⎣− 1

2σ 2

N∑
t=1
[r t − g(xt|θ)]2

⎤
⎦

= −N log(
√
2πσ)− 1

2σ 2

N∑
t=1
[r t − g(xt |θ)]2

The first term is independent of the parameters θ and can be dropped,

as can the factor 1/σ 2. Maximizing this is equivalent to minimizing

E(θ|X) = 1

2

N∑
t=1
[r t − g(xt|θ)]2(4.32)

which is the most frequently used error function, and θ that minimize it

are called the least squares estimates. This is a transformation frequentlyleast squares

estimate done in statistics: When the likelihood l contains exponents, instead of

maximizing l, we define an error function, E = − log l, and minimize it.
In linear regression, we have a linear modellinear regression

g(xt|w1, w0) = w1x
t +w0

4.6 Regression 75

and taking the derivative of the sum of squared errors (equation 4.32)

with respect to w1 and w0, we have two equations in two unknowns∑
t

r t = Nw0 +w1

∑
t

xt

∑
t

r txt = w0

∑
t

xt +w1

∑
t

(xt)2

which can be written in vector-matrix form as Aw = y where

A =
[
N

∑
t x

t∑
t x

t
∑
t(x

t)2

]
, w =

[
w0

w1

]
, y =

[∑
t r

t∑
t r

txt

]

and can be solved as w = A−1y.
In the general case of polynomial regression, the model is a polynomialpolynomial

regression in x of order k

g(xt|wk, . . . , w2, w1, w0) = wk(xt)k + · · · +w2(x
t)2 +w1x

t +w0

The model is still linear with respect to the parameters and taking the

derivatives, we get k+1 equations in k+1 unknowns, which can be written
in vector matrix form Aw = y where we have

A =

⎡
⎢⎢⎢⎢⎢⎣
N

∑
t x

t
∑
t(x

t)2 · · · ∑
t (x

t)k∑
t x

t
∑
t (x

t)2
∑
t(x

t)3 · · · ∑
t (x

t)k+1
...∑
t (x

t)k
∑
t (x

t)k+1
∑
t(x

t)k+2 · · · ∑
t (x

t)2k

⎤
⎥⎥⎥⎥⎥⎦

w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

w2

...

wk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
t r

t∑
t r

txt∑
t r

t (xt)2

...∑
t r

t (xt)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We can write A = DTD and y = DTr where

D =

⎡
⎢⎢⎢⎢⎢⎣
1 x1 (x1)2 · · · (x1)k

1 x2 (x2)2 · · · (x2)k

...

1 xN (xN)2 · · · (xN)k

⎤
⎥⎥⎥⎥⎥⎦ , r =

⎡
⎢⎢⎢⎢⎢⎣
r1

r2

...

rN

⎤
⎥⎥⎥⎥⎥⎦

and we can then solve for the parameters as

w = (DTD)−1DTr(4.33)

76 4 Parametric Methods

Assuming Gaussian distributed error and maximizing likelihood corre-

sponds to minimizing the sum of squared errors. Another measure is the

relative square error (RSE):relative square

error

ERSE =
∑
t [r

t − g(xt|θ)]2∑
t(r

t − r)2(4.34)

If ERSE is close to 1, then our prediction is as good as predicting by

the average; as it gets closer to 0, we have better fit. If ERSE is close to

1, this means that using a model based on input x does not work better

than using the average which would be our estimator if there were no x;

if ERSE is close to 0, input x helps.

To check whether regression makes a good fit, a measure is the coeffi-coefficient of

determination cient of determination that is

R2 = 1− ERSE
and for regression to be considered useful, we require R2 to be close to

1.

Remember that for best generalization, we should adjust the complex-

ity of our learner model to the complexity of the data. In polynomial

regression, the complexity parameter is the order of the fitted polyno-

mial, and therefore we need to find a way to choose the best order that

minimizes the generalization error, that is, tune the complexity of the

model to best fit the complexity of the function inherent in the data.

4.7 Tuning Model Complexity: Bias/Variance Dilemma

Let us say that a sample X = {xt, r t} is drawn from some unknown joint

probability density p(x, r). Using this sample, we construct our estimate

g(·). The expected square error (over the joint density) at x can be written
as (using equation 4.17)

E[(r − g(x))2|x] = E[(r − E[r|x])2|x]︸ ︷︷ ︸
noise

+ (E[r|x]− g(x))2︸ ︷︷ ︸
squared error

(4.35)

The first term on the right is the variance of r given x; it does not

depend on g(·) or X . It is the variance of noise added, σ 2. This is the

part of error that can never be removed, no matter what estimator we use.

The second term quantifies how much g(x) deviates from the regression

function, E[r|x]. This does depend on the estimator and the training set.

4.7 Tuning Model Complexity: Bias/Variance Dilemma 77

It may be the case that for one sample, g(x) may be a very good fit; and

for some other sample, it may make a bad fit. To quantify how well an

estimator g(·) is, we average over possible datasets.
The expected value (average over samples X , all of size N and drawn

from the same joint density p(r, x)) is (using equation 4.11)

EX[(E[r|x]−g(x))2|x] = (E[r|x]− EX[g(x)])2︸ ︷︷ ︸
bias

+EX[(g(x)− EX[g(x)])2]︸ ︷︷ ︸
variance

(4.36)

As we discussed before, bias measures how much g(x) is wrong disre-

garding the effect of varying samples, and variance measures how much

g(x) fluctuate around the expected value, E[g(x)], as the sample varies.

We want both to be small.

Let us see a didactic example: To estimate the bias and the variance,

we generate a number of datasets Xi = {xti , r ti }, i = 1, . . . ,M , from some

known f (·) with added noise, use each dataset to form an estimator gi(·),
and calculate bias and variance. Note that in real life, we cannot do this

because we do not know f (·) or the parameters of the added noise. Then
E[g(x)] is estimated by the average over gi(·):

g(x) = 1

M

M∑
i=1

gi(x)

Estimated bias and variance are

Bias2(g) = 1

N

∑
t

[g(xt)− f (xt)]2

Variance(g) = 1

NM

∑
t

∑
i

[gi(x
t)− g(xt)]2

Let us see some models of different complexity: The simplest is a con-

stant fit

gi(x) = 2

This has no variance because we do not use the data and all gi(x) are the

same. But the bias is high, unless of course f (x) is close to 2 for all x. If

we take the average of r t in the sample

gi(x) =
∑
t

r ti /N

instead of the constant 2, this decreases the bias because we would ex-

pect the average in general to be a better estimate. But this increases the

78 4 Parametric Methods

0 1 2 3 4 5
−5

0

5
(a) Function and data

0 1 2 3 4 5
−5

0

5
(b) Order 1

0 1 2 3 4 5
−5

0

5
(c) Order 3

0 1 2 3 4 5
−5

0

5
(d) Order 5

Figure 4.5 (a) Function, f (x) = 2 sin(1.5x), and one noisy (N (0,1)) dataset

sampled from the function. Five samples are taken, each containing twenty in-

stances. (b), (c), (d) are five polynomial fits, namely, gi(·), of order 1, 3, and 5.

For each case, dotted line is the average of the five fits, namely, g(·).

variance because the different samples Xi would have different average

values. Normally in this case the decrease in bias would be larger than

the increase in variance, and error would decrease.

In the context of polynomial regression, an example is given in fig-

ure 4.5. As the order of the polynomial increases, small changes in the

dataset cause a greater change in the fitted polynomials; thus variance

increases. But a complex model on the average allows a better fit to the

underlying function; thus bias decreases (see figure 4.6). This is called

the bias/variance dilemma and is true for any machine learning systembias/variance

dilemma and not only for polynomial regression (Geman, Bienenstock, and Dour-

sat 1992). To decrease bias, the model should be flexible, at the risk of

4.7 Tuning Model Complexity: Bias/Variance Dilemma 79

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Order

E
rr

or

Error

Bias

Variance

Figure 4.6 In the same setting as that of figure 4.5, using one hundred models

instead of five, bias, variance, and error for polynomials of order 1 to 5. Order

1 has the smallest variance. Order 5 has the smallest bias. As the order is

increased, bias decreases but variance increases. Order 3 has the minimum error.

having high variance. If the variance is kept low, we may not be able to

make a good fit to data and have high bias. The optimal model is the one

that has the best trade-off between the bias and the variance.

If there is bias, this indicates that our model class does not contain

the solution; this is underfitting. If there is variance, the model class isunderfitting

too general and also learns the noise; this is overfitting. If g(·) is of theoverfitting

same hypothesis class with f (·), for example, a polynomial of the same

order, we have an unbiased estimator, and estimated bias decreases as

the number of models increase. This shows the error-reducing effect of

choosing the right model (which we called inductive bias in chapter 2—

the two uses of “bias” are different but not unrelated). As for variance, it

also depends on the size of the training set; the variability due to sample

decreases as the sample size increases. To sum up, to get a small value of

error, we should have the proper inductive bias (to get small bias in the

statistical sense) and have a large enough dataset so that the variability

of the model can be constrained with the data.

80 4 Parametric Methods

Note that when the variance is large, bias is low: this indicates that g(x)

is a good estimator. So to get a small value of error, we can take a large

number of high-variance models and use their average as our estimator.

We will discuss such approaches for model combination in chapter 17.

4.8 Model Selection Procedures

There are a number of procedures we can use to fine-tune model com-

plexity.

In practice, the method we use to find the optimal complexity is cross-cross-validation

validation. We cannot calculate bias and variance for a model, but we can

calculate the total error. Given a dataset, we divide it into two parts as

training and validation sets, train candidate models of different complex-

ities, and test their error on the validation set left out during training.

As the model complexity increases, training error keeps decreasing. The

error on the validation set decreases up to a certain level of complexity,

then stops decreasing or does not decrease further significantly, or even

increases if there is significant noise. This “elbow” corresponds to the

optimal complexity level (see figure 4.7).

In real life, we cannot calculate bias and hence error as we do in fig-

ure 4.6; the validation error in figure 4.7 is an estimate of that except

that it also contains noise: Even if we have the right model that there

is no bias and large enough data that variance is negligable, there may

still be nonzero validation error. Note that the validation error of fig-

ure 4.7 is not as V-shaped as the error of figure 4.6 because the former

uses more training data and we know that we can constrain variance with

more data. Indeed we see in figure 4.5(d) that even the fifth-order poly-

nomial behaves like a third-order where there is data; for example, at the

two extremes where there are fewer data points, it is not as accurate.

Another approach that is used frequently is regularization (Breimanregularization

1998). In this approach, we write an augmented error function

E′ = error on data+ λ ·model complexity(4.37)

This has a second term that penalizes complex models with large vari-

ance, where λ gives the weight of this penalty. When we minimize the

augmented error function instead of the error on data only, we penal-

ize complex models and thus decrease variance. If λ is taken too large,

only very simple models are allowed and we risk introducing bias. λ is

optimized using cross-validation.

4.8 Model Selection Procedures 81

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5
(a) Data and fitted polynomials

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3
(b) Error vs. polynomial order

Training
Validation

Figure 4.7 In the same setting as that of figure 4.5, training and validation

sets (each containing 50 instances) are generated. (a) Training data and fitted

polynomials of order from 1 to 8. (b) Training and validation errors as a function

of the polynomial order. The “elbow” is at 3.

Another way we can view equation 4.37 is by regarding E′ as the error
on new test data. The first term on the right is the training error and the

second is an optimism term estimating the discrepancy between training

and test error (Hastie, Tibshirani, and Friedman 2001). Methods such

as Akaike’s information criterion (AIC) and Bayesian information criterionAIC

BIC (BIC) work by estimating this optimism and adding it to the training error

to estimate test error, without any need for validation. The magnitude of

this optimism term increases linearly with d, the number of inputs (here,

it is k+1), and decreases asN , training set size, increases; it also increases
with σ 2, the variance of the noise added (which we can estimate from the

error of a low-bias model). For models that are not linear, d should be

82 4 Parametric Methods

replaced with the “effective” number of parameters.

Structural risk minimization (SRM) (Vapnik 1995) uses a set of modelsstructural risk

minimization ordered in terms of their complexities. An example is polynomials of in-

creasing order. The complexity is generally given by the number of free

parameters. VC dimension is another measure of model complexity. In

equation 4.37, we can have a set of decreasing λi to get a set of models

ordered in increasing complexity. Model selection by SRM then corre-

sponds to finding the model simplest in terms of order and best in terms

of empirical error on the data.

Minimum description length (MDL) (Rissanen 1978; Grünwald 2007)minimum

description length uses an information theoretic measure. Kolmogorov complexity of a dataset

is defined as the shortest description of the data. If the data is simple,

it has a short complexity; for example, if it is a sequence of ‘0’s, we can

just write ‘0’ and the length of the sequence. If the data is completely

random, then we cannot have any description of the data shorter than

the data itself. If a model is appropriate for the data, then it has a good

fit to the data, and instead of the data, we can send/store the model de-

scription. Out of all the models that describe the data, we want to have

the simplest model so that it lends itself to the shortest description. So

we again have a trade-off between how simple the model is and how well

it explains the data.

Bayesian model selection is used when we have some prior knowledgeBayesian model

selection about the appropriate class of approximating functions. This prior know-

ledge is defined as a prior distribution over models, p(model). Given the

data and assuming a model, we can calculate p(model|data) using Bayes’
rule:

p(model|data) = p(data|model)p(model)

p(data)
(4.38)

p(model|data) is the posterior probability of the model given our prior

subjective knowledge about models, namely, p(model), and the objec-

tive support provided by the data, namely, p(data|model). We can then

choose the model with the highest posterior probability, or take an aver-

age over all models weighted by their posterior probabilities. If we take

the log of equation 4.38, we get

logp(model|data) = logp(data|model)+ logp(model)− c(4.39)

which has the form of equation 4.37; the log likelihood of the data is the

training error and the log of the prior is the penalty term. For example,

4.8 Model Selection Procedures 83

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 4.8 In the same setting as that of figure 4.5, polynomials of order

1 to 4 are fitted. The magnitude of coefficients increase as the order of

the polynomial increases. They are as follows: 1 : [−0.0769,0.0016]T, 2 :

[0.1682,−0.6657,0.0080]T, 3 : [0.4238,−2.5778,3.4675,−0.0002]T, 4 :

[−0.1093,1.4356,−5.5007,6.0454,−0.0019]T.

if we have a regression model and use the prior p(w) ∼ N (0,1/λ), the

MAP corresponds to the minimum of

E =
∑
t

[r t − g(xt|w)]2 + λ
∑
i

w2
i(4.40)

That is, we look for wi that both decrease error and are also as close as

possible to 0, and the reason we want them close to 0 is then because the

fitted polynomial will be smoother. As the polynomial order increases, to

get a better fit to the data, the function will go up and down which will

mean coefficients moving away from 0 (see figure 4.8); when we add this

penalty, we force a flatter, smoother fit. How much we penalize depends

on λ, which is the inverse of the variance of the prior, that is, how much

we expect the weights a priori to be away from 0. That is, having such a

prior is equivalent to forcing parameters to be close to 0. We are going to

talk about this in more detail in chapter 14.

That is, when the prior is chosen such that we give higher probabilities

to simpler models (following Occam’s razor), the Bayesian approach, reg-

ularization, SRM, and MDL are equivalent. Cross-validation is different

from all other methods for model selection in that it makes no prior as-

sumption about the model. If there is a large enough validation dataset,

84 4 Parametric Methods

it is the best approach. The other models become useful when the data

sample is small.

4.9 Notes

A good source on the basics of maximum likelihood and Bayesian estima-

tion is Ross 1987. Many pattern recognition textbooks discuss classifica-

tion with parametric models (e.g., MacLachlan 1992; Devroye, Györfi, and

Lugosi 1996; Webb 1999; Duda, Hart, and Stork 2001). Tests for checking

univariate normality can be found in Rencher 1995.

Geman, Bienenstock, and Doursat (1992) discuss bias and variance de-

composition for several learning models, which we discuss in later chap-

ters. Bias/variance decomposition is for sum of squared loss and is for

regression; such a nice additive splitting of error into bias, variance and

noise is not possible for 0/1 loss, because in classification, there is error

only if we accidentally move to the other side of the boundary. For a

two-class problem, if the correct posterior is 0.7 and if our estimate is

0.8, there is no error; we have error only if our estimate is less than 0.5.

Various researchers proposed different definitions of bias and variance

for classification; see Friedman 1997 for a review.

4.10 Exercises

1. Write the code that generates a Bernoulli sample with given parameter p, and

the code that calculates p̂ from the sample.

2. Write the log likelihood for a multinomial sample and show equation 4.6.

3. Write the code that generates a normal sample with given μ and σ , and the

code that calculates m and s from the sample. Do the same using the Bayes’

estimator assuming a prior distribution for μ.

4. Given two normal distributions p(x|C1) ∼N (μ1, σ
2
1) and p(x|C2) ∼N (μ2, σ

2
2)

and P(C1) and P(C2), calculate the Bayes’ discriminant points analytically.
5. What is the likelihood ratio

p(x|C1)
p(x|C2)
in the case of Gaussian densities?

6. For a two-class problem, generate normal samples for two classes with differ-

ent variances, then use parametric classification to estimate the discriminant

points. Compare these with the theoretical values.

4.11 References 85

7. Assume a linear model and then add 0-mean Gaussian noise to generate a

sample. Divide your sample into two as training and validation sets. Use

linear regression using the training half. Compute error on the validation set.

Do the same for polynomials of degrees 2 and 3 as well.

8. When the training set is small, the contribution of variance to error may be

more than that of bias and in such a case, we may prefer a simple model even

though we know that it is too simple for the task. Can you give an example?

9. Let us say, given the samples Xi = {xti , r ti }, we define gi(x) = r1i , namely, our

estimate for any x is the r value of the first instance in the (unordered) dataset

Xi . What can you say about its bias and variance, as compared with gi(x) = 2

and gi(x) =
∑
t r

t
i /N? What if the sample is ordered, so that gi(x) =mint r

t
i ?

10. In equation 4.40, what is the effect of changing λ on bias and variance?

4.11 References

Andrieu, C., N. de Freitas, A. Doucet, and M. I. Jordan. 2003. “An Introduction

to MCMC for Machine Learning.” Machine Learning 50: 5–43.

Breiman, L. 1998. “Bias-Variance, Regularization, Instability and Stabilization.”

In Neural Networks and Machine Learning, ed. C. M. Bishop, 27–56. Berlin:

Springer.

Devroye, L., L. Györfi, and G. Lugosi. 1996. A Probabilistic Theory of Pattern

Recognition. New York: Springer.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

Friedman, J. H. 1997. “On Bias, Variance, 0/1-Loss and the Curse of Dimension-

ality.” Data Mining and Knowledge Discovery 1: 55–77.

Geman, S., E. Bienenstock, and R. Doursat. 1992. “Neural Networks and the

Bias/Variance Dilemma.” Neural Computation 4: 1–58.

Grünwald, P. D. 2007. The Minimum Description Length Principle. Cambridge,

MA: MIT Press.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York: Springer.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition.

New York: Wiley.

Rencher, A. C. 1995. Methods of Multivariate Analysis. New York: Wiley.

Rissanen, J. 1978. “Modeling by Shortest Data Description.” Automatica 14:

465–471.

86 4 Parametric Methods

Ross, S. M. 1987. Introduction to Probability and Statistics for Engineers and

Scientists. New York: Wiley.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer.

Webb, A. 1999. Statistical Pattern Recognition. London: Arnold.

5 Multivariate Methods

In chapter 4, we discussed the parametric approach to classifica-

tion and regression. Now, we generalize this to the multivariate

case where we have multiple inputs and where the output, which

is class code or continuous output, is a function of these multiple in-

puts. These inputs may be discrete or numeric. We will see how such

functions can be learned from a labeled multivariate sample and

also how the complexity of the learner can be fine-tuned to the data

at hand.

5.1 Multivariate Data

In many applications, several measurements are made on each in-

dividual or event generating an observation vector. The sample may be

viewed as a data matrix

X =

⎡
⎢⎢⎢⎢⎢⎣
X1
1 X1

2 · · · X1
d

X2
1 X2

2 · · · X2
d

...

XN
1 XN

2 · · · XN
d

⎤
⎥⎥⎥⎥⎥⎦

where the d columns correspond to d variables denoting the result of

measurements made on an individual or event. These are also called in-input

puts, features, or attributes. The N rows correspond to independent andfeature

attribute identically distributed observations, examples, or instances on N individ-
observation

example

instance

uals or events.

For example, in deciding on a loan application, an observation vector

is the information associated with a customer and is composed of age,

marital status, yearly income, and so forth, and we have N such past

88 5 Multivariate Methods

customers. These measurements may be of different scales, for example,

age in years and yearly income in monetary units. Some like age may be

numeric, and some like marital status may be discrete.

Typically these variables are correlated. If they are not, there is no need

for a multivariate analysis. Our aim may be simplification, that is, sum-

marizing this large body of data by means of relatively few parameters.

Or our aim may be exploratory, and we may be interested in generating

hypotheses about data. In some applications, we are interested in pre-

dicting the value of one variable from the values of other variables. If the

predicted variable is discrete, this is multivariate classification, and if it

is numeric, this is a multivariate regression problem.

5.2 Parameter Estimation

The mean vector μ is defined such that each of its elements is the meanmean vector

of one column of X:

E[x] = μ = [μ1, . . . , μd]T(5.1)

The variance of Xi is denoted as σ
2
i , and the covariance of two variables

Xi and Xj is defined as

σij ≡ Cov(Xi,Xj) = E[(Xi − μi)(Xj − μj)] = E[XiXj]− μiμj(5.2)

with σij = σji , and when i = j , σii = σ 2
i . With d variables, there are d

variances and d(d−1)/2 covariances, which are generally represented as
a d×d matrix, named the covariance matrix, denoted as Σ, whose (i, j)thcovariance matrix

element is σij :

Σ =

⎡
⎢⎢⎢⎢⎢⎣
σ 2
1 σ12 · · · σ1d

σ21 σ 2
2 · · · σ2d

...

σd1 σd2 · · · σ 2
d

⎤
⎥⎥⎥⎥⎥⎦

The diagonal terms are the variances, the off-diagonal terms are the

covariances, and the matrix is symmetric. In vector-matrix notation

Σ ≡ Cov(X) = E[(X − μ)(X − μ)T] = E[XXT]− μμT(5.3)

If two variables are related in a linear way, then the covariance will be

positive or negative depending on whether the relationship has a positive

5.3 Estimation of Missing Values 89

or negative slope. But the size of the relationship is difficult to interpret

because it depends on the units in which the two variables are measured.

The correlation between variables Xi and Xj is a statistic normalized be-correlation

tween −1 and +1, defined as

Corr(Xi,Xj) ≡ ρij =
σij

σiσj
(5.4)

If two variables are independent, then their covariance, and hence their

correlation, is 0. However, the converse is not true: the variables may be

dependent (in a nonlinear way), and their correlation may be 0.

Given a multivariate sample, estimates for these parameters can be

calculated: The maximum likelihood estimator for the mean is the samplesample mean

mean, m. Its ith dimension is the average of the ith column of X:

m =
∑N
t=1 xt

N
with mi =

∑N
t=1 x

t
i

N
, i = 1, . . . , d(5.5)

The estimator of Σ is S, the sample covariance matrix, with entriessample covariance

s2i =
∑N
t=1(x

t
i −mi)

2

N
(5.6)

sij =
∑N
t=1(x

t
i −mi)(x

t
j −mj)

N
(5.7)

These are biased estimates, but if in an application the estimates vary

significantly depending on whether we divide by N or N − 1, we are in

serious trouble anyway.

The sample correlation coefficients aresample correlation

rij =
sij

sisj
(5.8)

and the sample correlation matrix R contains rij .

5.3 Estimation of Missing Values

Frequently, values of certain variables may be missing in observations.

The best strategy is to discard those observations all together, but gen-

erally we do not have large enough samples to be able to afford this and

we do not want to lose data as the non-missing entries do contain infor-

mation. We try to fill in the missing entries by estimating them. This is

called imputation.imputation

90 5 Multivariate Methods

Inmean imputation, for a numeric variable, we substitute the mean (av-

erage) of the available data for that variable in the sample. For a discrete

variable, we fill in with the most likely value, that is, the value most often

seen in the data.

In imputation by regression, we try to predict the value of a missing

variable from other variables whose values are known for that case. De-

pending on the type of the missing variable, we define a separate re-

gression or classification problem that we train by the data points for

which such values are known. If many different variables are missing, we

take the means as the initial estimates and the procedure is iterated until

predicted values stabilize. If the variables are not highly correlated, the

regression approach is equivalent to mean imputation.

Depending on the context, however, sometimes the fact that a certain

attribute value is missing may be important. For example, in a credit

card application, if the applicant does not declare his or her telephone

number, that may be a critical piece of information. In such cases, this is

represented as a separate value to indicate that the value is missing and

is used as such.

5.4 Multivariate Normal Distribution

In the multivariate case where x is d-dimensional and normal distributed,

we have

p(x) = 1

(2π)d/2|Σ|1/2 exp
[
−1
2
(x − μ)TΣ−1(x − μ)

]
(5.9)

and we write x ∼ Nd(μ,Σ) where μ is the mean vector and Σ is the

covariance matrix (see figure 5.1). Just as

(x− μ)2
σ 2

= (x− μ)(σ 2)−1(x− μ)

is the squared distance from x to μ in standard deviation units, normal-

izing for different variances, in the multivariate case the MahalanobisMahalanobis

distance distance is used:

(x − μ)TΣ−1(x − μ)(5.10)

(x−μ)TΣ−1(x−μ) = c2 is the d-dimensional hyperellipsoid centered at
μ, and its shape and orientation are defined by Σ. Because of the use of

the inverse of Σ, if a variable has a larger variance than another, it receives

5.4 Multivariate Normal Distribution 91

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
1

x
2

Figure 5.1 Bivariate normal distribution.

less weight in the Mahalanobis distance. Similarly, two highly correlated

variables do not contribute as much as two less correlated variables. The

use of the inverse of the covariance matrix thus has the effect of stan-

dardizing all variables to unit variance and eliminating correlations.

Let us consider the bivariate case where d = 2 for visualization pur-

poses (see figure 5.2). When the variables are independent, the major

axes of the density are parallel to the input axes. The density becomes

an ellipse if the variances are different. The density rotates depending on

the sign of the covariance (correlation). The mean vector is μT = [μ1, μ2],
and the covariance matrix is usually expressed as

Σ =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]

The joint bivariate density can be expressed in the form (see exercise 1)

p(x1, x2) = 1

2πσ1σ2
√
1− ρ2

exp

[
− 1

2(1− ρ2)
(
z21 − 2ρz1z2 + z22

)]
(5.11)

where zi = (xi − μi)/σi, i = 1,2, are standardized variables; this is called

z-normalization. Remember thatz-normalization

z21 + 2ρz1z2 + z22 = constant

92 5 Multivariate Methods

Cov(x
1
,x

2
)=0, Var(x

1
)=Var(x

2
)

x
1

x 2

Cov(x
1
,x

2
)=0, Var(x

1
)>Var(x

2
)

Cov(x
1
,x

2
)>0 Cov(x

1
,x

2
)<0

Figure 5.2 Isoprobability contour plot of the bivariate normal distribution. Its

center is given by the mean, and its shape and orientation depend on the covari-

ance matrix.

for |ρ| < 1, is the equation of an ellipse. When ρ > 0, the major axis of

the ellipse has a positive slope and if ρ < 0, the major axis has a negative

slope.

In the expanded Mahalanobis distance of equation 5.11, each variable

is normalized to have unit variance, and there is the cross-term that cor-

rects for the correlation between the two variables.

The density depends on five parameters: the two means, the two vari-

ances, and the correlation. Σ is nonsingular, and hence positive definite,

provided that variances are nonzero and |ρ| < 1. If ρ is +1 or −1, the
two variables are linearly related, the observations are effectively one-

dimensional, and one of the two variables can be disposed of. If ρ = 0,

then the two variables are independent, the cross-term disappears, and

we get a product of two univariate densities.

In the multivariate case, a small value of |Σ| indicates samples are close
to μ, just as in the univariate case where a small value of σ 2 indicates

5.4 Multivariate Normal Distribution 93

samples are close to μ. Small |Σ| may also indicate that there is high

correlation between variables. Σ is a symmetric positive definite matrix;

this is the multivariate way of saying that Var(X) > 0. If not so, Σ is

singular and its determinant is 0. This is either due to linear dependence

between the dimensions or because one of the dimensions has variance

0. In such a case, dimensionality should be reduced to a get a positive

definite matrix; methods for this are discussed in chapter 6.

If x ∼ Nd(μ,Σ), then each dimension of x is univariate normal. (The

converse is not true: Each Xi may be univariate normal and X may not

be multivariate normal.) Actually any k < d subset of the variables is

k-variate normal.

A special, naive case is where the components of x are independent

and Cov(Xi,Xj) = 0, for i �= j , and Var(Xi) = σ 2
i ,∀i. Then the covariance

matrix is diagonal and the joint density is the product of the individual

univariate densities:

p(x) =
d∏
i=1

pi(xi) = 1

(2π)d/2
∏d
i=1σi

exp

⎡
⎣−1

2

d∑
i=1

(
xi − μi
σi

)2⎤⎦(5.12)

Now let us see another property we make use of in later chapters. Let

us say x ∼Nd(μ,Σ) and w ∈ 	d , then

wTx = w1x1 +w2x2 + · · · +wdxd ∼N (wTμ,wT
Σw)

given that

E[wTx] = wTE[x] = wTμ(5.13)

Var(wTx) = E[(wTx −wTμ)2] = E[(wTx −wTμ)(wTx −wTμ)]

= E[wT (x − μ)(x − μ)Tw] = wTE[(x − μ)(x − μ)T]w
= wT

Σw(5.14)

That is, the projection of a d-dimensional normal on the vector w is

univariate normal. In the general case, if W is a d × k matrix with rank

k < d, then the k-dimensional WTx is k-variate normal:

WTx ∼Nk(W
Tμ,WT

ΣW)(5.15)

That is, if we project a d-dimensional normal distribution to a space

that is k-dimensional, then it projects to a k-dimensional normal.

94 5 Multivariate Methods

5.5 Multivariate Classification

When x ∈ 	d , if the class-conditional densities, p(x|Ci), are taken as

normal density,Nd(μi ,Σi), we have

p(x|Ci) = 1

(2π)d/2|Σi|1/2
exp

[
−1
2
(x − μi)TΣ−1i (x − μi)

]
(5.16)

The main reason for this is its analytical simplicity (Duda, Hart, and Stork

2001). Besides, the normal density is a model for many naturally occur-

ring phenomena in that examples of most classes can be seen as mildly

changed versions of a single prototype, μi , and the covariance matrix,

Σi , denotes the amount of noise in each variable and the correlations of

these noise sources. While real data may not often be exactly multivari-

ate normal, it is a useful approximation. In addition to its mathematical

tractability, the model is robust to departures from normality as is shown

in many works (e.g., McLachlan 1992). However, one clear requirement is

that the sample of a class should form a single group; if there are multiple

groups, one should use a mixture model (chapter 7).

Let us say we want to predict the type of a car that a customer would be

interested in. Different cars are the classes and x are observable data of

customers, for example, age and income. μi is the vector of mean age and

income of customers who buy car type i and Σi is their covariance matrix:

σ 2
i1 and σ

2
i2 are the age and income variances, and σi12 is the covariance

of age and income in the group of customers who buy car type i.

When we define the discriminant function as

gi(x) = logp(x|Ci)+ logP(Ci)
and assuming p(x|Ci) ∼Nd(μi ,Σi), we have

gi(x) = −d
2
log 2π − 1

2
log |Σi| − 1

2
(x − μi)TΣ−1i (x − μi)+ logP(Ci)(5.17)

Given a training sample for K ≥ 2 classes, X = {xt , r t}, where r ti = 1

if xt ∈ Ci and 0 otherwise, estimates for the means and covariances are

found using maximum likelihood separately for each class:

P̂(Ci) =
∑
t r

t
i

N
(5.18)

mi =
∑
t r

t
i x

t∑
t r

t
i

Si =
∑
t r

t
i (x

t −mi)(x
t −mi)

T∑
t r

t
i

5.5 Multivariate Classification 95

These are then plugged into the discriminant function to get the esti-

mates for the discriminants. Ignoring the first constant term, we have

gi(x) = −
1

2
log |Si| −

1

2
(x −mi)

TS−1i (x −mi)+ log P̂(Ci)(5.19)

Expanding this, we get

gi(x) = −1
2
log |Si| − 1

2

(
xTS−1i x − 2xTS−1i mi +mT

i S−1i mi

)
+ log P̂(Ci)

which defines a quadratic discriminant (see figure 5.3) that can also bequadratic

discriminant written as

gi(x) = xTWix +wT
i x +wi0(5.20)

where

Wi = −1
2

S−1i

wi = S−1i mi

wi0 = −1
2
mT
i S−1i mi − 1

2
log |Si| + log P̂(Ci)

The number of parameters to be estimated are K · d for the means and
K · d(d + 1)/2 for the covariance matrices. When d is large and samples

are small, Si may be singular and inverses may not exist. Or, |Si| may be

nonzero but too small, in which case it will be unstable; small changes in

Si will cause large changes in S−1i . For the estimates to be reliable on small

samples, one may want to decrease dimensionality, d, by redesigning the

feature extractor and select a subset of the features or somehow combine

existing features. We discuss such methods in chapter 6.

Another possibility is to pool the data and estimate a common covari-

ance matrix for all classes:

S =
∑
i

P̂ (Ci)Si(5.21)

In this case of equal covariance matrices, equation 5.19 reduces to

gi(x) = −1
2
(x −mi)

TS−1(x −mi)+ log P̂(Ci)(5.22)

The number of parameters is K · d for the means and d(d + 1)/2 for

the shared covariance matrix. If the priors are equal, the optimal decision

rule is to assign input to the class whose mean’s Mahalanobis distance to

the input is the smallest. As before, unequal priors shift the boundary

96 5 Multivariate Methods

0

0.05

0.1

x
1

x
2

p(
 x

|C
1)

0

0.5

1

x
1

x
2

p(
C

1| x
)

Figure 5.3 Classes have different covariance matrices. Likelihood densities and

the posterior probability for one of the classes (top). Class distributions are

indicated by isoprobability contours and the discriminant is drawn (bottom).

5.5 Multivariate Classification 97

Figure 5.4 Covariances may be arbitary but shared by both classes.

toward the less likely class. Note that in this case, the quadratic term

xTS−1x cancels since it is common in all discriminants, and the decision

boundaries are linear, leading to a linear discriminant (figure 5.4) that canlinear discriminant

be written as

gi(x) = wT
i x +wi0(5.23)

where

wi = S−1mi

wi0 = −1
2
mT
i S−1mi + log P̂ (Ci)

Decision regions of such a linear classifier are convex; namely, when

two points are chosen arbitrarily in one decision region and are connected

by a straight line, all the points on the line will lie in the region.

Further simplication may be possible by assuming all off-diagonals of

the covariance matrix to be 0, thus assuming independent variables. This

is the naive Bayes’ classifier where p(xj|Ci) are univariate Gaussian. Snaive Bayes’

classifier and its inverse are diagonal, and we get

gi(x) = −1
2

d∑
j=1

(
xtj −mij

sj

)2
+ log P̂ (Ci)(5.24)

The term (xtj−mij)/sj has the effect of normalization andmeasures the

distance in terms of standard deviation units. Geometrically speaking,

98 5 Multivariate Methods

Figure 5.5 All classes have equal, diagonal covariance matrices, but variances

are not equal.

classes are hyperellipsoidal and, because the covariances are zero, are

axis-aligned (see figure 5.5). The number of parameters is K · d for the

means and d for the variances. Thus the complexity of S is reduced from

O(d2) to O(d).
Simplifying even further, if we assume all variances to be equal, the

Mahalanobis distance reduces to Euclidean distance. Geometrically, theEuclidean distance

distribution is shaped spherically, centered around the mean vector mi

(see figure 5.6). Then |S| = s2d and S−1 = (1/s2)I. The number of param-

eters in this case is K · d for the means and 1 for s2.

gi(x) = −‖x −mi‖2
2s2

+ log P̂ (Ci) = − 1

2s2

d∑
j=1
(xtj −mij)

2 + log P̂(Ci)(5.25)

If the priors are equal, we have gi(x) = −‖x −mi‖2. This is named the

nearest mean classifier because it assigns the input to the class of thenearest mean

classifier nearest mean. If each mean is thought of as the ideal prototype or tem-

plate for the class, this is a template matching procedure. This can betemplate matching

expanded as

gi(x) = −‖x −mi‖2 = −(x −mi)
T (x −mi)

= −(xTx − 2mT
i x +mT

i mi)(5.26)

5.6 Tuning Complexity 99

Figure 5.6 All classes have equal, diagonal covariance matrices of equal vari-

ances on both dimensions.

The first term, xTx, is shared in all gi(x) and can be dropped, and we

can write the discriminant function as

gi(x) = wT
i x +wi0(5.27)

where wi = mi and wi0 = −(1/2)‖mi‖2. If all mi have similar norms,

then this term can also be ignored and we can use

gi(x) =mT
i x(5.28)

When the norms of mi are comparable, dot product can also be used

as the similarity measure instead of the (negative) Euclidean distance.

We can actually think of finding the best discriminant function as the

task of finding the best distance function. This can be seen as another

approach to classification: Instead of learning the discriminant functions,

gi(x), we want to learn the suitable distance functionD(x1,x2), such that
for any x1,x2,x3, where x1 and x2 belong to the same class, and x1 and

x3 belong to two different classes, we would like to have

D(x1,x2) <D(x1,x3)

5.6 Tuning Complexity

In table 5.1, we see how the number of parameters of the covariance

matrix may be reduced, trading off the comfort of a simple model with

100 5 Multivariate Methods

Table 5.1 Reducing variance through simplifying assumptions.

Assumption Covariance matrix No. of parameters

Shared, Hyperspheric Si = S = s2I 1

Shared, Axis-aligned Si = S, with sij = 0 d

Shared, Hyperellipsoidal Si = S d(d + 1)/2

Different, Hyperellipsoidal Si K · (d(d + 1)/2)

generality. This is another example of bias/variance dilemma. When

we make simplifying assumptions about the covariance matrices and de-

crease the number of parameters to be estimated, we risk introducing

bias (see figure 5.7). On the other hand, if no such assumption is made

and the matrices are arbitrary, the quadratic discriminant may have large

variance on small datasets. The ideal case depends on the complexity of

the problem represented by the data at hand and the amount of data we

have. When we have a small dataset, even if the covariance matrices are

different, it may be better to assume a shared covariance matrix; a single

covariance matrix has fewer parameters and it can be estimated using

more data, that is, instances of all classes. This corresponds to using

linear discriminants, which is very frequently used in classification and

which we discuss in more detail in chapter 10.

Note that when we use Euclidean distance to measure similarity, we

are assuming that all variables have the same variance and that they are

independent. In many cases, this does not hold; for example, age and

yearly income are in different units, and are dependent in many contexts.

In such a case, the inputs may be separately z-normalized in a prepro-

cessing stage (to have zero mean and unit variance), and then Euclidean

distance can be used. On the other hand, sometimes even if the variables

are dependent, it may be better to assume that they are independent

and to use the naive Bayes’ classifier, if we do not have enough data to

calculate the dependency accurately.

Friedman (1989) proposed a method that combines all these as spe-

cial cases, named regularized discriminant analysis (RDA). We rememberregularized

discriminant

analysis

that regularization corresponds to approaches where one starts with high

variance and constrains toward lower variance, at the risk of increasing

bias. In the case of parametric classification with Gaussian densities, the

5.6 Tuning Complexity 101

0 2 4
0

1

2

3

4
Population likelihoods and posteriors

x
y

0 2 4
0

1

2

3

4

x

y
Arbitrary covar.

0 2 4
0

1

2

3

4

x

y

Shared covar.

0 2 4
0

1

2

3

4

x

y

Diag. covar.

0 2 4
0

1

2

3

4

x
y

Equal var.

Figure 5.7 Different cases of the covariance matrices fitted to the same data

lead to different boundaries.

covariance matrices can be written as a weighted average of the three

special cases:

S′i = ασ 2I+ βS+ (1−α− β)Si(5.29)

When α = β = 0, this leads to a quadratic classifier. When α = 0 and

β = 1, the covariance matrices are shared, and we get linear classifiers.

When α = 1 and β = 0, the covariance matrices are diagonal with σ 2 on

the diagonals, and we get the nearest mean classifier. In between these

102 5 Multivariate Methods

extremes, we get a whole variety of classifiers where α,β are optimized

by cross-validation.

Another approach to regularization, when the dataset is small, is one

that uses a Bayesian approach by defining priors on μi and Si or that uses

cross-validation to choose the best of the four cases given in table 5.1.

5.7 Discrete Features

In some applications, we have discrete attributes taking one of n different

values. For example, an attribute may be color ∈ {red, blue, green, black},
or another may be pixel ∈ {on, off}. Let us say xj are binary (Bernoulli)
where

pij ≡ p(xj = 1|Ci)
If xj are independent binary variables, we have

p(x|Ci) =
d∏
j=1

p
xj
ij (1− pij)(1−xj)

This is another example of the naive Bayes’ classifier where p(xj|Ci)
are Bernoulli. The discriminant function is

gi(x) = logp(x|Ci)+ logP(Ci)
=

∑
j

[
xj logpij + (1− xj) log(1− pij)

]
+ logP(Ci)(5.30)

which is linear. The estimator for pij is

p̂ij =
∑
t x

t
jr
t
i∑

t r
t
i

(5.31)

This approach is used in document categorization, an example of whichdocument

categorization is classifying news reports into various categories, such as, politics, sports,

fashion, and so forth. In the bag of words representation, we choose abag of words

priori d words that we believe give information regarding the class (Man-

ning and Schütze 1999). For example, in news classification, words such

as “missile,” “athlete,” and “couture” are useful, rather than ambiguous

words such as “model,” or even “runway.” In this representation, each

text is a d-dimensional binary vector where xj is 1 if word j occurs in

the document and is 0 otherwise. Note that this representation loses all

ordering information of words, and hence the name bag of words.

5.8 Multivariate Regression 103

After training, p̂ij estimates the probability that word j occurs in doc-

ument type i. Words whose probabilities are similar for different classes

do not convey much information; for them to be useful, we would want

the probability to be high for one class (or few) and low for all others; we

are going to talk about this type of feature selection in chapter 6. Another

example application of document categorization is spam filtering wherespam filtering

there are two classes of emails as spam and legitimate. In bioinformatics,

too, inputs are generally sequences of discrete items, whether base-pairs

or amino acids.

In the general case, instead of binary features, let us say we have the

multinomial xj chosen from the set {v1, v2, . . . , vnj }. We define new 0/1

dummy variables as

ztjk =
{

1 if xtj = vk
0 otherwise

Let pijk denote the probability that xj belonging to Ci takes value vk:

pijk ≡ p(zjk = 1|Ci) = p(xj = vk|Ci)

If the attributes are independent, we have

p(x|Ci) =
d∏
j=1

nj∏
k=1

p
zjk
ijk(5.32)

The discriminant function is then

gi(x) =
∑
j

∑
k

zjk logpijk + logP(Ci)(5.33)

The maximum likelihood estimator for pijk is

p̂ijk =
∑
t z

t
jkr

t
i∑

t r
t
i

(5.34)

which can be plugged into equation 5.33 to give us the discriminant.

5.8 Multivariate Regression

In multivariate linear regression, the numeric output r is assumed to bemultivariate linear

regression written as a linear function, that is, a weighted sum, of several input

variables, x1, . . . , xd , and noise. Actually in statistical literature, this is

104 5 Multivariate Methods

called multiple regression; statisticians use the term multivariate when

there are multiple outputs. The multivariate linear model is

r t = g(xt |w0, w1, . . . , wd)+ ε = w0 +w1x
t
1 +w2x

t
2 + · · · +wdxtd + ε(5.35)

As in the univariate case, we assume ε to be normal with mean 0 and

constant variance, and maximizing the likelihood is equivalent to mini-

mizing the sum of squared errors:

E(w0, w1, . . . , wd|X) = 1

2

∑
t

(r t −w0 −w1x
t
1 −w2x

t
2 − · · · −wdxtd)2(5.36)

Taking the derivative with respect to the parameters, wj, j = 0, . . . , d,

we get the normal equations:∑
t

r t = Nw0 +w1

∑
t

xt1 +w2

∑
t

xt2 + · · · +wd
∑
t

xtd(5.37)

∑
t

xt1r
t = w0

∑
t

xt1 +w1

∑
t

(xt1)
2 +w2

∑
t

xt1x
t
2 + · · · +wd

∑
t

xt1x
t
d∑

t

xt2r
t = w0

∑
t

xt2 +w1

∑
t

xt1x
t
2 +w2

∑
t

(xt2)
2 + · · · +wd

∑
t

xt2x
t
d

...∑
t

xtdr
t = w0

∑
t

xtd +w1

∑
t

xtdx
t
1 +w2

∑
t

xtdx
t
2 + · · · +wd

∑
t

(xtd)
2

Let us define the following vectors and matrix:

X =

⎡
⎢⎢⎢⎢⎢⎣
1 x11 x12 · · · x1d
1 x21 x22 · · · x2d
...

1 xN1 xN2 · · · xNd

⎤
⎥⎥⎥⎥⎥⎦ ,w =

⎡
⎢⎢⎢⎢⎢⎣
w0

w1

...

wd,

⎤
⎥⎥⎥⎥⎥⎦ , r =

⎡
⎢⎢⎢⎢⎢⎣
r1

r2

...

rN

⎤
⎥⎥⎥⎥⎥⎦

Then the normal equations can be written as

XTXw = XT r(5.38)

and we can solve for the parameters as

w = (XTX)−1XT r(5.39)

This method is the same as we used for polynomial regression using

one input. The two problems are the same if we define the variables as

x1 = x, x2 = x2, . . . , xk = xk. This also gives us a hint as to how we can do

multivariate polynomial regression if necessary (exercise 7), but unless dmultivariate

polynomial

regression

5.9 Notes 105

is small, in multivariate regression, we rarely use polynomials of an order

higher than linear.

Actually using higher-order terms of inputs as additional inputs is

only one possibility; we can define any nonlinear function of the origi-

nal inputs using basis functions. For example, we can define new inputs

x2 = sin(x), x3 = exp(x2) if we believe that such a transformation is

useful. Then, using a linear model in this new augmented space will cor-

respond to a nonlinear model in the original space. The same calculation

will still be valid; we need only replace X with the data matrix after the ba-

sis functions are applied. As we will see later under various guises (e.g.,

multilayer perceptrons, support vector machines, Gaussian processes),

this type of generalizing the linear model is frequently used.

One advantage of linear models is that after the regression, looking at

the wj, j = 1, . . . , d, values, we can extract knowledge: First, by looking at

the signs of wj , we can see whether xj have a positive or negative effect

on the output. Second, if all xj are in the same range, by looking at the

absolute values of wj , we can get an idea about how important a feature

is, rank the features in terms of their importances, and even remove the

features whose wj are close to 0.

When there are multiple outputs, this can equivalently be defined as a

set of independent single-output regression problems.

5.9 Notes

A good review text on linear algebra is Strang 1988. Harville 1997 is an-

other excellent book that looks at matrix algebra from a statistical point

of view.

One inconvenience with multivariate data is that when the number of

dimensions is large, one cannot do a visual analysis. There are methods

proposed in the statistical literature for displaying multivariate data; a

review is given in Rencher 1995. One possibility is to plot variables two

by two as bivariate scatter plots: If the data is multivariate normal, then

the plot of any two variables should be roughly linear; this can be used

as a visual test of multivariate normality. Another possibility that we

discuss in chapter 6 is to project them to one or two dimensions and

display there.

Most work on pattern recognition is done assuming multivariate nor-

mal densities. Sometimes such a discriminant is even called the Bayes’

106 5 Multivariate Methods

optimal classifier, but this is generally wrong; it is only optimal if the

densities are indeed multivariate normal and if we have enough data to

calculate the correct parameters from the data. Rencher 1995 discusses

tests for assessing multivariate normality as well as tests for checking for

equal covariance matrices. McLachlan 1992 discusses classification with

multivariate normals and compares linear and quadratic discriminants.

One obvious restriction of multivariate normals is that it does not al-

low for data where some features are discrete. A variable with n pos-

sible values can be converted into n dummy 0/1 variables, but this in-

creases dimensionality. One can do a dimensionality reduction in this

n-dimensional space by a method explained in chapter 6 and thereby not

increase dimensionality. Parametric classification for such cases of mixed

features is discussed in detail in McLachlan 1992.

5.10 Exercises

1. Show equation 5.11.

2. Generate a sample from a multivariate normal density N (μ,Σ), calculate m

and S, and compare them with μ and Σ. Check how your estimates change as

the sample size changes.

3. Generate samples from two multivariate normal densitiesN (μi ,Σi), i = 1,2,

and calculate the Bayes’ optimal discriminant for the four cases in table 5.1.

4. For a two-class problem, for the four cases of Gaussian densities in table 5.1,

derive

log
P(C1|x)
P(C2|x)

5. Another possibility using Gaussian densities is to have them all diagonal but

allow them to be different. Derive the discriminant for this case.

6. Let us say in two dimensions, we have two classes with exactly the same

mean. What type of boundaries can be defined?

7. Let us say we have two variables x1 and x2 and we want to make a quadratic

fit using them, namely,

f (x1, x2) = w0 +w1x1 +w2x2 +w3x1x2 +w4(x1)
2 +w5(x2)

2

How can we find wi, i = 0, . . . ,5, given a sample of X = {xt1, xt2, r t}?
8. In regression we saw that fitting a quadratic is equivalent to fitting a linear

model with an extra input corresponding to the square of the input. Can we

also do this in classification?

5.11 References 107

9. In document clustering, ambiguity of words can be decreased by taking the

context into account, for example, by considering pairs of words, as in “cock-

tail party” vs. “party elections.” Discuss how this can be implemented.

5.11 References

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

Friedman, J. H. 1989. “Regularized Discriminant Analysis.” Journal of American

Statistical Association 84: 165–175.

Harville, D. A. 1997. Matrix Algebra from a Statistician’s Perspective. New York:

Springer.

Manning, C. D., and H. Schütze. 1999. Foundations of Statistical Natural Lan-

guage Processing. Cambridge, MA: MIT Press.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition.

New York: Wiley.

Rencher, A. C. 1995. Methods of Multivariate Analysis. New York: Wiley.

Strang, G. 1988. Linear Algebra and its Applications, 3rd ed. New York: Har-

court Brace Jovanovich.

6 Dimensionality Reduction

The complexity of any classifier or regressor depends on the number

of inputs. This determines both the time and space complexity and

the necessary number of training examples to train such a classi-

fier or regressor. In this chapter, we discuss feature selection meth-

ods that choose a subset of important features pruning the rest and

feature extraction methods that form fewer, new features from the

original inputs.

6.1 Introduction

In an application, whether it is classification or regression, observa-

tion data that we believe contain information are taken as inputs and fed

to the system for decision making. Ideally, we should not need feature

selection or extraction as a separate process; the classifier (or regressor)

should be able to use whichever features are necessary, discarding the

irrelevant. However, there are several reasons why we are interested in

reducing dimensionality as a separate preprocessing step:

� In most learning algorithms, the complexity depends on the number of

input dimensions, d, as well as on the size of the data sample, N , and

for reduced memory and computation, we are interested in reducing

the dimensionality of the problem. Decreasing d also decreases the

complexity of the inference algorithm during testing.

� When an input is decided to be unnecessary, we save the cost of ex-

tracting it.

� Simpler models are more robust on small datasets. Simpler models

110 6 Dimensionality Reduction

have less variance, that is, they vary less depending on the particulars

of a sample, including noise, outliers, and so forth.

� When data can be explained with fewer features, we get a better idea

about the process that underlies the data and this allows knowledge

extraction.

� When data can be represented in a few dimensions without loss of

information, it can be plotted and analyzed visually for structure and

outliers.

There are two main methods for reducing dimensionality: feature se-

lection and feature extraction. In feature selection, we are interested infeature selection

finding k of the d dimensions that give us the most information and we

discard the other (d − k) dimensions. We are going to discuss subset

selection as a feature selection method.

In feature extraction, we are interested in finding a new set of k di-feature extraction

mensions that are combinations of the original d dimensions. These

methods may be supervised or unsupervised depending on whether or

not they use the output information. The best known and most widely

used feature extraction methods are Principal Components Analysis (PCA)

and Linear Discriminant Analysis (LDA), which are both linear projection

methods, unsupervised and supervised respectively. PCA bears much

similarity to two other unsupervised linear projection methods, which we

also discuss—namely, Factor Analysis (FA) and Multidimensional Scaling

(MDS). As examples of nonlinear dimensionality reduction, we are going

to see Isometric feature mapping (Isomap) and Locally Linear Embedding

(LLE).

6.2 Subset Selection

In subset selection, we are interested in finding the best subset of thesubset selection

set of features. The best subset contains the least number of dimensions

that most contribute to accuracy. We discard the remaining, unimportant

dimensions. Using a suitable error function, this can be used in both

regression and classification problems. There are 2d possible subsets

of d variables, but we cannot test for all of them unless d is small and

we employ heuristics to get a reasonable (but not optimal) solution in

reasonable (polynomial) time.

There are two approaches: In forward selection, we start with no vari-forward selection

6.2 Subset Selection 111

ables and add them one by one, at each step adding the one that de-

creases the error the most, until any further addition does not decrease

the error (or decreases it only sightly). In backward selection, we startbackward selection

with all variables and remove them one by one, at each step removing

the one that decreases the error the most (or increases it only slightly),

until any further removal increases the error significantly. In either case,

checking the error should be done on a validation set distinct from the

training set because we want to test the generalization accuracy. With

more features, generally we have lower training error, but not necessarily

lower validation error.

Let us denote by F , a feature set of input dimensions, xi, i = 1, . . . , d.

E(F) denotes the error incurred on the validation sample when only the

inputs in F are used. Depending on the application, the error is either the

mean square error or misclassification error.

In sequential forward selection, we start with no features: F = ∅. At
each step, for all possible xi , we train our model on the training set and

calculate E(F ∪ xi) on the validation set. Then, we choose that input xj
that causes the least error

j = argmin
i
E(F ∪ xi)(6.1)

and we

add xj to F if E(F ∪ xj) < E(F)(6.2)

We stop if adding any feature does not decrease E. We may even de-

cide to stop earlier if the decrease in error is too small, where there is a

user-defined threshold that depends on the application constraints, trad-

ing off the importance of error and complexity. Adding another feature

introduces the cost of observing the feature, as well as making the clas-

sifier/regressor more complex.

This process may be costly because to decrease the dimensions from d

to k, we need to train and test the system d+(d−1)+(d−2)+· · ·+(d−k)
times, which is O(d2). This is a local search procedure and does not

guarantee finding the optimal subset, namely, the minimal subset causing

the smallest error. For example, xi and xj by themselves may not be good

but together may decrease the error a lot, but because this algorithm

is greedy and adds attributes one by one, it may not be able to detect

this. It is possible to generalize and add multiple features at a time,

instead of a single one, at the expense of more computation. We can

112 6 Dimensionality Reduction

also backtrack and check which previously added feature can be removed

after a current addition, thereby increasing the search space, but this

increases complexity. In floating search methods (Pudil, Novovĭcová, andfloating search

Kittler 1994), the number of added features and removed features can

also change at each step.

In sequential backward selection, we start with F containing all features

and do a similar process except that we remove one attribute from F as

opposed to adding to it, and we remove the one that causes the least

error

j = argmin
i
E(F − xi)(6.3)

and we

remove xj from F if E(F − xj) < E(F)(6.4)

We stop if removing a feature does not decrease the error. To decrease

complexity, we may decide to remove a feature if its removal causes only

a slight increase in error.

All the variants possible for forward search are also possible for back-

ward search. The complexity of backward search has the same order of

complexity as forward search, except that training a system with more

features is more costly than training a system with fewer features, and

forward search may be preferable especially if we expect many useless

features.

Subset selection is supervised in that outputs are used by the regressor

or classifier to calculate the error, but it can be used with any regression

or classification method. In the particular case of multivariate normals

for classification, remember that if the original d-dimensional class den-

sities are multivariate normal, then any subset is also multivariate normal

and parametric classification can still be used with the advantage of k×k
covariance matrices instead of d × d.
In an application like face recognition, feature selection is not a good

method for dimensionality reduction because individual pixels by them-

selves do not carry much discriminative information; it is the combina-

tion of values of several pixels together that carry information about the

face identity. This is done by feature extraction methods that we discuss

next.

6.3 Principal Components Analysis 113

6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the

inputs in the original d-dimensional space to a new (k < d)-dimensional

space, with minimum loss of information. The projection of x on the

direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis

it does not use the output information; the criterion to be maximized is

the variance. The principal component is w1 such that the sample, after

projection on to w1, is most spread out so that the difference between

the sample points becomes most apparent. For a unique solution and to

make the direction the important factor, we require ‖w1‖ = 1. We know

from equation 5.14 that if z1 = wT
1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint

that wT
1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we

have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-

value. Because we want to maximize

wT
1Σw1 = αwT

1w1 = α
we choose the eigenvector with the largest eigenvalue for the variance

to be maximum. Therefore the principal component is the eigenvector

of the covariance matrix of the input sample with the largest eigenvalue,

λ1 = α.
The second principal component, w2, should also maximize variance,

be of unit length, and be orthogonal to w1. This latter requirement is so

that after projection z2 = wT
2x is uncorrelated with z1. For the second

principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)

114 6 Dimensionality Reduction

Taking the derivative with respect to w2 and setting it equal to 0, we

have

2Σw2 − 2αw2 − βw1 = 0(6.8)

Premultiply by wT
1 and we get

2wT
1Σw2 − 2αwT

1w2 − βwT
1w1 = 0

Note that wT
1w2 = 0. wT

1Σw2 is a scalar, equal to its transpose w
T
2Σw1

where, because w1 is the leading eigenvector of Σ, Σw1 = λ1w1. There-

fore

wT
1Σw2 = wT

2Σw1 = λ1wT
2w1 = 0

Then β = 0 and equation 6.8 reduces to

Σw2 = αw2

which implies that w2 should be the eigenvector of Σ with the second

largest eigenvalue, λ2 = α. Similarly, we can show that the other dimen-

sions are given by the eigenvectors with decreasing eigenvalues.

Because Σ is symmetric, for two different eigenvalues, the eigenvectors

are orthogonal. If Σ is positive definite (xTΣx > 0, for all nonnull x), then

all its eigenvalues are positive. If Σ is singular, then its rank, the effective

dimensionality, is k with k < d and λi, i = k+ 1, . . . , d are 0 (λi are sorted

in descending order). The k eigenvectors with nonzero eigenvalues are

the dimensions of the reduced space. The first eigenvector (the one with

the largest eigenvalue), w1, namely, the principal component, explains

the largest part of the variance; the second explains the second largest;

and so on.

We define

z =WT (x −m)(6.9)

where the k columns of W are the k leading eigenvectors of S, the esti-

mator to Σ. We subtract the sample mean m from x before projection

to center the data on the origin. After this linear transformation, we get

to a k-dimensional space whose dimensions are the eigenvectors, and the

variances over these new dimensions are equal to the eigenvalues (see

figure 6.1). To normalize variances, we can divide by the square roots of

the eigenvalues.

6.3 Principal Components Analysis 115

z1

z2

x1

x 2

z1

z 2

Figure 6.1 Principal components analysis centers the sample and then rotates

the axes to line up with the directions of highest variance. If the variance on z2
is too small, it can be ignored and we have dimensionality reduction from two to

one.

Let us see another derivation: We want to find a matrix W such that

when we have z = WTx (assume without loss of generality that x are al-

ready centered), we will get Cov(z) = D′ where D′ is any diagonal matrix;
that is, we would like to get uncorrelated zi .

If we form a (d × d) matrix C whose ith column is the normalized

eigenvector ci of S, then CTC = I and

S = SCCT

= S(c1,c2, . . . ,cd)C
T

= (Sc1, Sc2, . . . , Scd)C
T

= (λ1c1, λ2c2, . . . , λdcd)C
T

= λ1c1c
T
1 + · · · + λdcdcTd

= CDCT(6.10)

where D is a diagonal matrix whose diagonal elements are the eigenval-

ues, λ1, . . . , λd . This is called the spectral decomposition of S. Since C isspectral

decomposition orthogonal and CCT = CTC = I, we can multiply on the left by CT and on

the right by C to obtain

CTSC = D(6.11)

We know that if z = WTx, then Cov(z) = WTSW, which we would like

to be equal to a diagonal matrix. Then from equation 6.11, we see that

116 6 Dimensionality Reduction

we can set W = C.

Let us see an example to get some intuition (Rencher 1995): Assume

we are given a class of students with grades on five courses and we want

to order these students. That is, we want to project the data onto one

dimension, such that the difference between the data points become most

apparent. We can use PCA. The eigenvector with the highest eigenvalue

is the direction that has the highest variance, that is, the direction on

which the students are most spread out. This works better than taking

the average because we take into account correlations and differences in

variances.

In practice even if all eigenvalues are greater than 0, if |S| is small, re-

membering that |S| =∏d
i=1 λi , we understand that some eigenvalues have

little contribution to variance and may be discarded. Then, we take into

account the leading k components that explain more than, for example,

90 percent, of the variance. When λi are sorted in descending order, the

proportion of variance explained by the k principal components isproportion of

variance

λ1 + λ2 + · · · + λk
λ1 + λ2 + · · · + λk + · · · + λd
If the dimensions are highly correlated, there will be a small number of

eigenvectors with large eigenvalues and k will be much smaller than d and

a large reduction in dimensionality may be attained. This is typically the

case in many image and speech processing tasks where nearby inputs (in

space or time) are highly correlated. If the dimensions are not correlated,

k will be as large as d and there is no gain through PCA.

Scree graph is the plot of variance explained as a function of the num-scree graph

ber of eigenvectors kept (see figure 6.2). By visually analyzing it, one can

also decide on k. At the “elbow,” adding another eigenvector does not

significantly increase the variance explained.

Another possibility is to ignore the eigenvectors whose eigenvalues are

less than the average input variance. Given that
∑
i λi =

∑
i s

2
i (equal

to the trace of S, denoted as tr(S)), the average eigenvalue is equal to

the average input variance. When we keep only the eigenvectors with

eigenvalues greater than the average eigenvalue, we keep only those that

have variance higher than the average input variance.

If the variances of the original xi dimensions vary considerably, they

affect the direction of the principal components more than the correla-

tions, so a common procedure is to preprocess the data so that each

dimension has mean 0 and unit variance, before using PCA. Or, one may

6.3 Principal Components Analysis 117

0 10 20 30 40 50 60 70
0

100

200

Eigenvectors

E
ig

en
va

lu
es

(a) Scree graph for Optdigits

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Eigenvectors

P
ro

p.
 o

f v
ar

.

(b) Proportion of variance explained

Figure 6.2 (a) Scree graph. (b) Proportion of variance explained is given for the

Optdigits dataset from the UCI Repository. This is a handwritten digit dataset

with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors

explain 90 percent of the variance.

use the eigenvectors of the correlation matrix, R, instead of the covari-

ance matrix, S, for the correlations to be effective and not the individual

variances.

PCA explains variance and is sensitive to outliers: A few points distant

from the center would have a large effect on the variances and thus the

eigenvectors. Robust estimation methods allow calculating parameters in

the presence of outliers. A simple method is to calculate the Mahalanobis

distance of the data points, discarding the isolated data points that are

far away.

If the first two principal components explain a large percentage of the

variance, we can do visual analysis: We can plot the data in this two di-

118 6 Dimensionality Reduction

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

First eigenvector

S
ec

on
d

ei
ge

nv
ec

to
r

Optdigits after PCA

0

0

7

4

6

2

5

5

0

8

7

1
9

5

3

0

4

7

8

4

7

8

5

9 1

2

0

6

1

8

7

0

7

6

9

1
9

3

9

4

9

2

1

9

9

6

4

3

2

8

2

7 1

4

6

2

0

4

6

3

7
1

0

2

2

5

2

4

8

1
7

3
0

3
3

7

7

9

1

3

3

4

3

4

2

8

8
9

8

4

7

1

6

9

4

0

1

3

6

2

Figure 6.3 Optdigits data plotted in the space of two principal components.

Only the labels of a hundred data points are shown to minimize the ink-to-noise

ratio.

mensional space (figure 6.3) and search visually for structure, groups,

outliers, normality, and so forth. This plot gives a better pictorial de-

scription of the sample than a plot of any two of the original variables.

By looking at the dimensions of the principal components, we can also

try to recover meaningful underlying variables that describe the data. For

example, in image applications where the inputs are images, the eigen-

vectors can also be displayed as images and can be seen as templates for

important features; they are typically named “eigenfaces,” “eigendigits,”eigenfaces

eigendigits and so forth (Turk and Pentland 1991).

When d is large, calculating, storing, and processing S may be tedious.

It is possible to calculate the eigenvectors and eigenvalues directly from

data without explicitly calculating the covariance matrix (Chatfield and

6.3 Principal Components Analysis 119

Collins 1980).

We know from equation 5.15 that if x ∼Nd(μ,Σ), then after projection

WTx ∼ Nk(W
Tμ,WT

ΣW). If the sample contains d-variate normals, then

it projects to k-variate normals allowing us to do parametric discrimi-

nation in this hopefully much lower dimensional space. Because zj are

uncorrelated, the new covariance matrices will be diagonal, and if they

are normalized to have unit variance, Euclidean distance can be used in

this new space, leading to a simple classifier.

Instance xt is projected to the z-space as

zt = WT (xt − μ)
When W is an orthogonal matrix such that WWT = I, it can be backpro-

jected to the original space as

x̂t = Wzt + μ
x̂
t is the reconstruction of xt from its representation in the z-space.

It is known that among all orthogonal linear projections, PCA minimizes

the reconstruction error, which is the distance between the instance andreconstruction

error its reconstruction from the lower dimensional space:∑
t

‖x̂t − x‖2(6.12)

The reconstruction error depends on how many of the leading com-

ponents are taken into account. In a visual recognition application—for

example, face recognition—displaying x̂t allows a visual check for infor-

mation loss during PCA.

PCA is unsupervised and does not use output information. It is a one-

group procedure. However, in the case of classification, there are multiple

groups. Karhunen-Loève expansion allows using class information; for ex-Karhunen-Loève

expansion ample, instead of using the covariance matrix of the whole sample, we can

estimate separate class covariance matrices, take their average (weighted

by the priors) as the covariance matrix, and use its eigenvectors.

In common principal components (Flury 1988), we assume that the prin-common principal

components cipal components are the same for each class whereas the variances of

these components differ for different classes:

Si = CDiC
T

This allows pooling data and is a regularization method whose com-

plexity is less than that of a common covariance matrix for all classes,

120 6 Dimensionality Reduction

while still allowing differentiation of Si . A related approach is flexibleflexible

discriminant

analysis

discriminant analysis (Hastie, Tibshirani, and Buja 1994), which does a

linear projection to a lower-dimensional space where all features are un-

correlated and then uses a minimum distance classifier.

6.4 Factor Analysis

In PCA, from the original dimensions xi, i = 1, . . . , d, we form a new set

of variables z that are linear combinations of xi :

z =WT (x − μ)

In factor analysis (FA), we assume that there is a set of unobservable,factor analysis

latent factors zj , j = 1, . . . , k, which when acting in combination generatelatent factors

x. Thus the direction is opposite that of PCA (see figure 6.4). The goal is

to characterize the dependency among the observed variables by means

of a smaller number of factors.

Suppose there is a group of variables that have high correlation among

themselves and low correlation with all the other variables. Then there

may be a single underlying factor that gave rise to these variables. If the

other variables can be similarly grouped into subsets, then a few factors

can represent these groups of variables. Though factor analysis always

partitions the variables into factor clusters, whether the factors mean

anything, or really exist, is open to question.

FA, like PCA, is a one-group procedure and is unsupervised. The aim is

to model the data in a smaller dimensional space without loss of infor-

mation. In FA, this is measured as the correlation between variables.

As in PCA, we have a sample X = {xt}t drawn from some unknown

probability density with E[x] = μ and Cov(x) = Σ. We assume that

the factors are unit normals, E[zj] = 0,Var(zj) = 1, and are uncorre-

lated, Cov(zi, zj) = 0, i �= j . To explain what is not explained by the

factors, there is an added source for each input which we denote by εi .

It is assumed to be zero-mean, E[εi] = 0, and have some unknown vari-

ance, Var(εi) = ψi . These specific sources are uncorrelated among them-

selves, Cov(εi, εj) = 0, i �= j , and are also uncorrelated with the factors,

Cov(εi, zj) = 0,∀i, j .
FA assumes that each input dimension, xi, i = 1, . . . , d, can be written

as a weighted sum of the k < d factors, zj , j = 1, . . . , k, plus the residual

6.4 Factor Analysis 121

Figure 6.4 Principal components analysis generates new variables that are lin-

ear combinations of the original input variables. In factor analysis, however,

we posit that there are factors that when linearly combined generate the input

variables.

term (see figure 6.5):

xi − μi = vi1z1 + vi2z2 + · · · + vikzk + εi,∀i = 1, . . . , d

xi − μi =
k∑
j=1

vijzj + εi(6.13)

This can be written in vector-matrix form as

x − μ = Vz + ε(6.14)

where V is the d × k matrix of weights, called factor loadings. From now

on, we are going to assume that μ = 0 without loss of generality; we can

always add μ after projection. Given that Var(zj) = 1 and Var(εi) = ψi

Var(xi) = v2i1 + v2i2 + · · · + v2ik +ψi(6.15) ∑k
j=1 v

2
ij is the part of the variance explained by the common factors and

ψi is the variance specific to xi .

In vector-matrix form, we have

Σ = Cov(x) = Cov(Vz + ε)(6.16)

= Cov(Vz)+ Cov(ε)

= VCov(z)VT + Ψ
= VVT + Ψ(6.17)

122 6 Dimensionality Reduction

z1

z 2

x1

x 2

Figure 6.5 Factors are independent unit normals that are stretched, rotated,

and translated to make up the inputs.

where Ψ is a diagonal matrix with ψi on the diagonals. Because the fac-

tors are uncorrelated unit normals, we have Cov(z) = I. With two factors,

for example,

Cov(x1, x2) = v11v21 + v12v22
If x1 and x2 have high covariance, then they are related through a fac-

tor. If it is the first factor, then v11 and v21 will both be high; if it is the

second factor, then v12 and v22 will both be high. In either case, the sum

v11v21 + v12v22 will be high. If the covariance is low, then x1 and x2 de-
pend on different factors and in the products in the sum, one term will

be high and the other will be low and the sum will be low.

We see that

Cov(x1, z2) = Cov(v12z2, z2) = v12Var(z2) = v12
Thus Cov(x,z) = V, and we see that the loadings represent the corre-

lations of variables with the factors.

Given S, the estimator of Σ, we would like to find V and Ψ such that

S = VVT + Ψ
If there are only a few factors, that is, if V has few columns, then we

have a simplified structure for S, as V is d × k and Ψ has d values, thus

reducing the number of parameters from d2 to d · k+ d.
Since Ψ is diagonal, covariances are represented by V. Note that PCA

does not allow a separate Ψ and it tries to account for both the covari-

ances and the variances. When all ψi are equal, namely, Ψ = ψI, we get

6.4 Factor Analysis 123

probabilistic PCA (Tipping and Bishop 1999) and the conventional PCA isprobabilistic PCA

when ψi are 0.

Let us now see how we can find the factor loadings and the specific

variances: Let us first ignore Ψ . Then, from its spectral decomposition,

we know that we have

S = CDCT = CD1/2D1/2CT = (CD1/2)(CD1/2)T

where we take only k of the eigenvectors by looking at the proportion of

variance explained so that C is the d × k matrix of eigenvectors and D1/2

is the k × k diagonal matrix with the square roots of the eigenvalues on

its diagonals. Thus we have

V = CD1/2(6.18)

We can find ψj from equation 6.15 as

ψi = s2i −
k∑
j=1

v2ij(6.19)

Note that when V is multiplied with any orthogonal matrix—namely,

having the property TTT = I—that is another valid solution and thus the

solution is not unique.

S = (VT)(VT)T = VTTTVT = VIVT = VVT

If T is an orthogonal matrix, the distance to the origin does not change.

If z = Tx, then

zTz = (Tx)T (Tx) = xTTTTx = xTx
Multiplying with an orthogonal matrix has the effect of rotating the

axes and allows us to choose the set of axes most interpretable (Rencher

1995). In two dimensions,

T =
(
cosφ − sinφ
sinφ cosφ

)

rotates the axes by φ. There are two types of rotation: In orthogonal

rotation the factors are still orthogonal after the rotation, and in oblique

rotation the factors are allowed to become correlated. The factors are

rotated to give the maximum loading on as few factors as possible for

each variable, to make the factors interpretable. However, interpretability

is subjective and should not be used to force one’s prejudices on the data.

124 6 Dimensionality Reduction

There are two uses of factor analysis: It can be used for knowledge

extraction when we find the loadings and try to express the variables

using fewer factors. It can also be used for dimensionality reduction

when k < d. We already saw how the first one is done. Now, let us see

how factor analysis can be used for dimensionality reduction.

When we are interested in dimensionality reduction, we need to be able

to find the factor scores, zj , from xi . We want to find the loadings wji
such that

zj =
d∑
i=1

wjixi + εi, j = 1, . . . , k(6.20)

where xi are centered to have mean 0. In vector form, for observation t ,

this can be written as

zt = WTxt + ε,∀t = 1, . . . , N

This is a linear model with d inputs and k outputs. Its transpose can

be written as

(zt)T = (xt)TW+ εT ,∀t = 1, . . . , N

Given that we have a sample of N observations, we write

Z = XW+ Ξ(6.21)

where Z is N × k of factors, X is N × d of (centered) observations, and Ξ

is N × k of zero-mean noise. This is multivariate linear regression with

multiple outputs, and we know from section 5.8 that W can be found as

W = (XTX)−1XTZ

but we do not know Z; it is what we would like to calculate. We multiply

and divide both sides by N − 1 and obtain

W = (N − 1)(XTX)−1
XTZ

N − 1

=
(

XTX

N − 1

)−1
XTZ

N − 1

= S−1V(6.22)

and placing equation 6.22 in equation 6.21, we write

Z = XW = XS−1V(6.23)

6.5 Multidimensional Scaling 125

assuming that S is nonsingular. One can use R instead of S when xi are

normalized to have unit variance.

For dimensionality reduction, FA offers no advantage over PCA ex-

cept the interpretability of factors allowing the identification of common

causes, a simple explanation, and knowledge extraction. For example, in

the context of speech recognition, x corresponds to the acoustic signal,

but we know that it is the result of the (nonlinear) interaction of a small

number of articulators, namely, jaw, tongue, velum, lips, and mouth,

which are positioned appropriately to shape the air as it comes out of

the lungs and generate the speech sound. If a speech signal could be

transformed to this articulatory space, then recognition would be much

easier. Using such generative models is one of the current research di-

rections for speech recognition; in chapter 16, we will discuss how such

models can be represented as a graphical model.

6.5 Multidimensional Scaling

Let us say for N points, we are given the distances between pairs of

points, dij , for all i, j = 1, . . . , N . We do not know the exact coordinates

of the points, their dimensionality, or how the distances are calculated.

Multidimensional scaling (MDS) is the method for placing these points inmultidimensional

scaling a low—for example, two-dimensional—space such that the Euclidean dis-

tance between them there is as close as possible to dij , the given distances

in the original space. Thus it requires a projection from some unknown

dimensional space to, for example, two dimensions.

In the archetypical example of multidimensional scaling, we take the

road travel distances between cities, and after applying MDS, we get an

approximation to the map. The map is distorted such that in parts of

the country with geographical obstacles like mountains and lakes where

the road travel distance deviates much from the direct bird-flight path

(Euclidean distance), the map is stretched out to accommodate longer

distances (see figure 6.6). The map is centered on the origin, but the so-

lution is still not unique. We can get any rotated or mirror image version.

MDS can be used for dimensionality reduction by calculating pairwise

Euclidean distances in the d-dimensional x space and giving this as input

to MDS, which then projects it to a lower-dimensional space so as to

preserve these distances.

Let us say we have a sample X = {xt}Nt=1 as usual, where xt ∈ 	d . For

126 6 Dimensionality Reduction

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000
−2000

−1500

−1000

−500

0

500

1000

1500

2000

 Athens

 Berlin

 Dublin

 Helsinki

 Istanbul

 Lisbon

 London

 Madrid

 Moscow

 Paris

 Rome

 Zurich

Figure 6.6 Map of Europe drawn by MDS. Pairwise road travel distances be-

tween these cities are given as input, and MDS places them in two dimensions

such that these distances are preserved as well as possible.

two points r and s, the squared Euclidean distance between them is

d2rs = ‖xr − xs‖2 =
d∑
j=1
(xrj − xsj)2 =

d∑
j=1
(xrj)

2 − 2
d∑
j=1

xrjx
s
j +

d∑
j=1
(xsj)

2

= brr + bss − 2brs(6.24)

where brs is defined as

brs =
d∑
j=1

xrjx
s
j(6.25)

To constrain the solution, we center the data at the origin and assume

N∑
t=1

xtj = 0,∀j = 1, . . . , d

6.5 Multidimensional Scaling 127

Then, summing up equation 6.24 on r , s, and both r, s, and defining

T =
N∑
t=1

btt =
∑
t

∑
j

(xtj)
2

we get∑
r

d2rs = T +Nbss
∑
s

d2rs = Nbrr + T
∑
r

∑
s

d2rs = 2NT

When we define

d2•s =
1

N

∑
r

d2rs , d2r• =
1

N

∑
s

d2rs , d2•• =
1

N2

∑
r

∑
s

d2rs

and using equation 6.24, we get

brs = 1

2
(d2r• + d2•s − d2•• − d2rs)(6.26)

Having now calculated brs and knowing that B = XXT as defined in

equation 6.25, we look for an approximation. We know from the spectral

decomposition that X = CD1/2 can be used as an approximation for X,

where C is the matrix whose columns are the eigenvectors of B and D1/2

is a diagonal matrix with square roots of the eigenvalues on the diagonals.

Looking at the eigenvalues of B, we decide on a dimensionality k lower

than d (and N), as we did in PCA and FA. Let us say cj are the eigenvectors

with λj as the corresponding eigenvalues. Note that cj is N-dimensional.

Then we get the new dimensions as

ztj =
√
λjc

t
j , j = 1, . . . , k, t = 1, . . . , N(6.27)

That is, the new coordinates of instance t are given by the tth elements

of the eigenvectors, cj , j = 1, . . . , k, after normalization.

It has been shown (Chatfield and Collins 1980) that the eigenvalues of

XXT (N × N) are the same as those of XTX (d × d) and the eigenvectors

are related by a simple linear transformation. This shows that PCA does

the same work with MDS and does it more cheaply. PCA done on the cor-

relation matrix rather than the covariance matrix equals doing MDS with

standardized Euclidean distances where each variable has unit variance.

128 6 Dimensionality Reduction

In the general case, we want to find a mapping z = g(x|θ), where
z ∈ 	k,x ∈ 	d , and g(x|θ) is the mapping function from d to k dimen-

sions defined up to a set of parameters θ. Classical MDS we discussed

previously corresponds to a linear transformation

z = g(x|W) = WTx(6.28)

but in a general case, a nonlinear mapping can also be used; this is called

Sammon mapping. The normalized error in mapping is called the Sam-Sammon mapping

mon stress and is defined as

E(θ|X) =
∑
r ,s

(‖zr − zs‖ − ‖xr − xs‖)2
‖xr − xs‖2

=
∑
r ,s

(‖g(xr |θ) − g(xs|θ)‖ − ‖xr − xs‖)2
‖xr − xs‖2(6.29)

One can use any regression method for g(·|θ) and estimate θ to mini-

mize the stress on the training data X . If g(·) is nonlinear in x, this will
then correspond to a nonlinear dimensionality reduction.

In the case of classification, one can include class information in the

distance (see Webb 1999) as

d′rs = (1−α)drs +αcrs
where crs is the “distance” between the classes xr and xs belong to. This

interclass distance should be supplied subjectively and α is optimized

using cross-validation.

6.6 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised method for dimension-linear discriminant

analysis ality reduction for classification problems. We start with the case where

there are two classes, then generalize to K > 2 classes.

Given samples from two classes C1 and C2, we want to find the direc-

tion, as defined by a vector w, such that when the data are projected onto

w, the examples from the two classes are as well separated as possible.

As we saw before,

z = wTx(6.30)

is the projection of x onto w and thus is a dimensionality reduction from

d to 1.

6.6 Linear Discriminant Analysis 129

w

m1

m1

m2

m2

s1
2

s2
2

x1

x 2

Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-

tion, respectively. Note thatm1 ∈ 	d andm1 ∈ 	. We are given a sample

X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑
t w

Txtr t∑
t r

t
= wTm1

m2 =
∑
t w

Txt(1− r t)∑
t(1− r t)

= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter

s21 =
∑
t

(wTxt −m1)
2r t

s22 =
∑
t

(wTxt −m2)
2(1− r t)(6.32)

After projection, for the two classes to be well separated, we would like

the means to be as far apart as possible and the examples of classes be

scattered in as small a region as possible. So we want |m1 −m2| to be

large and s21 + s22 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)
2

s21 + s22
(6.33)

130 6 Dimensionality Reduction

Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their

means after projection and can be rewritten as

s21 =
∑
t

(wTxt −m1)
2r t

=
∑
t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑
t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑
t r

t is the estimator of Σ1.within-class

scatter matrix Similarly, s22 = wTS2w with S2 =
∑
t (1 − rt)(xt −m2)(x

t −m2)
T , and we

get

s21 + s22 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s21 + s22
divided by the total number of samples is the variance of the pooled

data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we

get

wT (m1 −m2)

wTSWw

(
2(m1 −m2)− wT (m1 −m2)

wTSWw
SWw

)
= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for

us and not the magnitude, we can just take c = 1 and find w.

6.6 Linear Discriminant Analysis 131

Remember that when p(x|Ci) ∼ N (μi ,Σ), we have a linear discrimi-

nant where w = Σ
−1(μ1 − μ2), and we see that Fisher’s linear discrimi-

nant is optimal if the classes are normally distributed. Under the same

assumption, a threshold, w0, can also be calculated to separate the two

classes. But Fisher’s linear discriminant can be used even when the classes

are not normal. We have projected the samples from d dimensions to one,

and any classification method can be used afterward.

In the case of K > 2 classes, we want to find the matrix W such that

z =WTx(6.39)

where z is k-dimensional and W is d × k. The within-class scatter matrix
for Ci is

Si =
∑
t

r ti (x
t −mi)(x

t −mi)
T(6.40)

where r ti = 1 if xt ∈ Ci and 0 otherwise. The total within-class scatter is

SW =
K∑
i=1

Si(6.41)

When there are K > 2 classes, the scatter of the means is calculated as

how much they are scattered around the overall mean

m = 1

K

K∑
i=1
mi(6.42)

and the between-class scatter matrix is

SB =
K∑
i=1

Ni(mi −m)(mi −m)T(6.43)

with Ni =
∑
t r

t
i . The between-class scatter matrix after projection is

WTSBW and the within-class scatter matrix after projection is WTSWW.

These are both k × k matrices. We want the first scatter to be large, that
is, after the projection, in the new k-dimensional space we want class

means to be as far apart from each other as possible. We want the sec-

ond scatter to be small, that is, after the projection, we want samples

from the same class to be as close to their mean as possible. For a scatter

(or covariance) matrix, a measure of spread is the determinant, remem-

bering that the determinant is the product of eigenvalues and that an

132 6 Dimensionality Reduction

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4
Optdigits after LDA

0

0

7

4

6
2

5
5

0

8

7

1

9

5

3

0

4

7

8

4

7

8

5

9

1

2

0

6

1

8

7

0

7

6

9
1

9

3

9

4

9

2

1

9
9

6

4

32

8

2

7

1
4

6

2

0

4

6
3

7

1

0

2

2

5
2

4

8

1

7

3

0

3

3

7
7

9

1

3

3

4

3

4

2

8
8

9

8

4

7

1

6

9

4

0

1

3 6

2

Figure 6.8 Optdigits data plotted in the space of the first two dimensions found

by LDA. Comparing this with figure 6.3, we see that LDA, as expected, leads to a

better separation of classes than PCA. Even in this two-dimensional space (there

are nine altogether), we can discern separate clouds for different classes.

eigenvalue gives the variance along its eigenvector (component). Thus we

are interested in the matrix W that maximizes

J(W) = |WTSBW|
|WTSWW|(6.44)

The largest eigenvectors of S−1W SB are the solution. SB is the sum of K

matrices of rank 1, namely, (mi −m)(mi −m)T , and only K − 1 of them

are independent. Therefore, SB has a maximum rank of K − 1 and we

take k = K − 1. Thus we define a new lower, (K − 1)-dimensional space

where the discriminant is then to be constructed (see figure 6.8). Though

LDA uses class separability as its goodness criterion, any classification

method can be used in this new space for estimating the discriminants.

6.7 Isomap 133

We see that to be able to apply LDA, SW should be invertible. If this

is not the case, we can first use PCA to get rid of singularity and then

apply LDA to its result; however, we should make sure that PCA does not

reduce dimensionality so much that LDA does not have anything left to

work on.

6.7 Isomap

Principal component analysis (PCA), which we discussed in section 6.3,

works when the data lies in a linear subspace. However, this may not

hold in many applications. Take, for example, face recognition where a

face is represented as a two-dimensional, say 100 × 100 image. In this

case, each face is a point in 10,000 dimensions. Now let us say that

we take a series of pictures as a person slowly rotates his or her head

from right to left. The sequence of face images we capture follows a

trajectory in the 10,000-dimensional space and this is not linear. Now

consider the faces of many people. The trajectories of all their faces as

they rotate their faces define a manifold in the 10,000-dimensional space,

and this is what we want to model. The similarity between two faces

cannot simply be written in terms of the sum of the pixel differences,

and hence Euclidean distance is not a good metric. It may even be the

case that images of two different people with the same pose have smaller

Euclidean distance between them than the images of two different poses

of the same person. This is not what we want. What should count is

the distance along the manifold, which is called the geodesic distance.geodesic distance

Isometric feature mapping (Isomap) (Tenenbaum, de Silva, and Langfordisometric feature

mapping 2000) estimates this distance and applies multidimensional scaling (MDS)

(section 6.5), using it for dimensionality reduction.

Isomap uses the geodesic distances between all pairs of data points.

For neighboring points that are close in the input space, Euclidean dis-

tance can be used; for small changes in pose, the manifold is locally

linear. For faraway points, geodesic distance is approximated by the sum

of the distances between the points along the way over the manifold.

This is done by defining a graph whose nodes correspond to the N data

points and whose edges connect neighboring points (those with distance

less than some ε or one of the n nearest) with weights corresponding

to Euclidean distances. The geodesic distance between any two points is

calculated as the length of the shortest path between the corresponding

134 6 Dimensionality Reduction

Figure 6.9 Geodesic distance is calculated along the manifold as opposed to

the Euclidean distance that does not use this information. After multidimen-

sional scaling, these two instances from two classes will be mapped to faraway

positions in the new space, though they are close in the original space.

two nodes. For two points that are not close by, we need to hop over a

number of intermediate points along the way, and therefore the distance

will be the distance along the manifold, approximated as the sum of local

Euclidean distances (see figure 6.9).

Two nodes r and s are connected if ‖xr − xs‖ < ε (while making sure

that the graph is connected), or if xs is one of the n neighbors of xr (while

making sure that the distance matrix is symmetric), and we set the edge

length to ‖xr − xs‖. For any two nodes r and s, drs is the length of the

shortest path between them. We then apply MDS on drs to reduce dimen-

sionality to k by observing the proportion of variance explained. This will

have the effect of placing r and s that are far apart in the geodesic space

also far in the new k-dimensional space even if they are close in terms of

Euclidean distance in the original d-dimensional space.

It is clear that the graph distances provide a better approximation as

the number of points increases, though there is the trade-off of longer

execution time; if time is critical, one can subsample and use a subset

of “landmark points” to make the algorithm faster. The parameter ε

needs to be carefully tuned; if it is too small, there may be more than

one connected component, and if it is too large, “shortcut” edges may be

added that corrupt the low-dimensional embedding (Balasubramanian et

al. 2002).

One problem with Isomap, as with MDS, is that it places the N points in

a low-dimensional space, but it does not learn a general mapping function

that will allow mapping a new test point; the new point should be added

6.8 Locally Linear Embedding 135

to the dataset and the whole algorithm needs to be run once more using

N + 1 instances.

6.8 Locally Linear Embedding

Locally linear embedding (LLE) recovers global nonlinear structure fromlocally linear

embedding locally linear fits (Roweis and Saul 2000). The idea is that each local

patch of the manifold can be approximated linearly and given enough

data, each point can be written as a linear, weighted sum of its neighbors

(again either defined using a given number of neighbors, n, or distance

threshold, ε). Given xr and its neighbors xs(r) in the original space, one

can find the reconstruction weights Wrs that minimize the error function

Ew(W|X) =
∑
r

‖xr −
∑
s

Wrsx
s
(r)‖2(6.45)

using least squares subject to Wrr = 0,∀r and ∑s Wrs = 1.

The idea in LLE is that the reconstruction weights Wrs reflect the in-

trinsic geometric properties of the data that we expect to be also valid

for local patches of the manifold, that is, the new space we are mapping

the instances to (see figure 6.10). The second step of LLE is hence to now

keep the weights Wrs fixed and let the new coordinates zr take what-

ever values they need respecting the interpoint constraints given by the

weights:

Ez(Z|W) =
∑
r

‖zr −
∑
s

Wrsz
s‖2(6.46)

Nearby points in the original, d-dimensional space should remain nearby

and similarly colocated with respect to one another in the new, k-dimensional

space. Equation 6.46 can be rewritten as

Ez(Z|W) =
∑
r ,s

Mrs(z
r)Tzs(6.47)

where

Mrs = δrs −Wrs −Wsr +
∑
i

WirWis(6.48)

M is sparse (only a small percentage of data points are neighbors of a

data point: n � N), symmetric, and positive semidefinite. As in other

dimensionality reduction methods, we require that the data be centered

at the origin, E[z] = 0, and that the new coordinates be uncorrelated

136 6 Dimensionality Reduction

Figure 6.10 Local linear embedding first learns the constraints in the original

space and next places the points in the new space respecting those constraints.

The constraints are learned using the immediate neighbors (shown with contin-

uous lines) but also propagate to second-order neighbors (shown dashed).

and unit length: Cov(z) = I. The solution to equation 6.47 subject to

these two constraints is given by the k+ 1 eigenvectors with the smallest

eigenvalues; we ignore the lowest one and the other k eigenvectors give

us the new coordinates.

Because the n neighbors span a space of dimensionality n − 1 (you

need distances to three points to uniquely specify your location in two

dimensions), LLE can reduce dimensionality up to k ≤ n−1. It is observed
(Saul and Roweis 2003) that some margin between k and n is necessary to

obtain a good embedding. Note that if n (or ε) is small, the graph (that is

constructed by connecting each instance to its neighbors) may no longer

be connected and it may be necessary to run LLE separately on separate

components to find separate manifolds in different parts of the input

space. On the other hand, if n (or ε) is taken large, some neighbors may

be too far for the local linearity assumption to hold and this may corrupt

the embedding. It is possible to use different n (or ε) in different parts

of the input space based on some prior knowledge, but how this can be

done is open to research (Saul and Roweis 2003).

As with Isomap, LLE solution is the set of new coordinates for the N

points, but we do not learn a mapping and hence cannot find z′ for a new
x′. There are two solutions to this:

6.8 Locally Linear Embedding 137

1. Using the same idea, one can find the n neighbors of x′ in the original

d-dimensional space and first learn the reconstruction weightswj that

minimizes

Ew(w|X) = ‖x′ −
∑
s

wsx
s‖2(6.49)

and then use them to reconstruct z′ in the new k-dimensional space:

z′ =
∑
s

wsz
s(6.50)

Note that this approach can also be used to interpolate from an Isomap

(or MDS) solution. The drawback however is the need to store the

whole set of {xt ,zt}Nt=1.

2. Using X = {xt ,zt}Nt=1 as a training set, one can train any regressor,

g(xt |θ)—for example, a multilayer perceptron (chapter 11)—as a gen-

eralizer to approximate zt from xt , whose parameters θ is learned to

minimize the regression error:

E(θ|X) =
∑
t

‖zt − g(xt|θ)‖2(6.51)

Once training is done, we can calculate z′ = g(x′|θ). The model g(·)
should be carefully chosen to be able to learn the mapping. There

may no longer be a unique optimum and hence there are all the usual

problems related to minimization, that is, initialization, local optima,

convergence, and so on.

In both Isomap and LLE, there is local information that is propagated

over neighbors to get a global solution. In Isomap, the geodesic distance

is the sum of local distances; in LLE, the final opimization in placing zt

takes into account all local Wrs values. Let us say a and b are neighbors

and b and c are neighbors. Though a and c may not be neighbors, there

is dependence between a and c either through the graph, dac = dab+dbc ,
or the weights Wab and Wbc . In both algorithms, the global nonlinear

organization is found by integrating local linear constraints that overlap

partially.

138 6 Dimensionality Reduction

6.9 Notes

A survey of feature selection algorithms is given in Devijer and Kittler

1982. Feature subset selection algorithms are also known as the wrap-wrappers

per approach, where the feature selection is thought to “wrap” around

the learner it uses as a subroutine (Kohavi and John 1997). Subset selec-

tion in regression is discussed in Miller 1990. The forward and backward

search procedures we discussed are local search procedures. Fukunaga

and Narendra (1977) proposed a branch and bound procedure. At consid-

erable more expense, one can use a stochastic procedure like simulated

annealing or genetic algorithms to search more widely in the the search

space.

There are also filtering algorithms for feature selection where heuristic

measures are used to calculate the “relevance” of a feature in a prepro-

cessing stage without actually using the learner. For example, in the case

of classification, instead of training a classifier and testing it at each step,

one can use a separability measure, like the one used in linear discrim-

inant analysis, to measure the quality of the new space in separating

classes from each other (McLachlan 1992). With the cost of computation

going down, it is best to include the learner in the loop because there

is no guarantee that the heuristic used by the filter will match the bias

of the learner that uses the features; no heuristic can replace the actual

validation accuracy. A survey of feature selection methods is given by

Guyon and Elisseeff (2003).

Projection methods work with numeric inputs, and discrete variables

should be represented by 0/1 dummy variables, whereas subset selection

can use discrete inputs directly. Finding the eigenvectors and eigenvalues

is quite straightforward; an example of a code is given in Press et al. 1992.

Factor analysis was introduced by the British psychologist Charles Spear-

man to find the single factor for intelligence which explains the correla-

tion between scores on various intelligence tests. The existence of such

a single factor, called g, is highly disputed. More information on multidi-

mensional scaling can be found in Cox and Cox 1994.

The projection methods we discussed are batch procedures in that they

require that the whole sample be given before the projection directions

are found. Mao and Jain (1995) discuss online procedures for doing PCA

and LDA, where instances are given one by one and updates are done

as new instances arrive. Another possibility in doing a nonlinear projec-

tion is when the estimator in Sammon mapping is taken as a nonlinear

6.10 Exercises 139

function, for example, a multilayer perceptron (section 11.11) (Mao and

Jain 1995). It is also possible but much harder to do nonlinear factor anal-

ysis. When the models are nonlinear, it is difficult to come up with the

right nonlinear model. One also needs to use complicated optimization

and approximation methods to solve for the model parameters.

For more information, one can refer to the Isomap homepage that

is at http://web.mit.edu/cocosci/isomap/isomap.html and the LLE

homepage is at http://www.cs.toronto.edu/∼roweis/lle/. Both con-
tain links to related publications and example code.

Just as we implement polynomial regression by using linear regression

where we consider high-order terms as additional inputs (section 5.8),

another way to do nonlinear dimensionality reduction is to first map to

a new space by using nonlinear basis functions and then use a linear

method there. In chapter 13 where we will discuss kernel methods, we

will see how this can be done efficiently.

There is a trade-off between feature extraction and decision making.

If the feature extractor is good, the task of the classifier (or regressor)

becomes trivial, for example, when the class code is extracted as a new

feature from the existing features. On the other hand, if the classifier

is good enough, then there is no need for feature extraction; it does its

automatic feature selection or combination internally. We live between

these two ideal worlds.

There exist algorithms that do some feature selection internally, though

in a limited way. Decision trees (chapter 9) do feature selection while

generating the decision tree, and multilayer perceptrons (chapter 11) do

nonlinear feature extraction in the hidden nodes. We expect to see more

development along this line in embedding feature extraction in the actual

step of classification/regression.

6.10 Exercises

1. Assuming that the classes are normally distributed, in subset selection, when

one variable is added or removed, how can the new discriminant be calculated

quickly? For example, how can the new S−1new be calculated from S−1old?

2. Using Optdigits from the UCI repository, implement PCA. For various number

of eigenvectors, reconstruct the digit images and calculate the reconstruction

error (equation 6.12).

3. Plot the map of your state/country using MDS, given the road travel distances

as input.

http://web.mit.edu/cocosci/isomap/isomap.html
http://www.cs.toronto.edu/%E2%88%BCroweis/lle/
http://www.cs.toronto.edu/%E2%88%BCroweis/lle/
http://www.cs.toronto.edu/%E2%88%BCroweis/lle/

140 6 Dimensionality Reduction

4. In Sammon mapping, if the mapping is linear, namely, g(x|W) = WTx, how

can W that minimizes the Sammon stress be calculated?

5. Redo exercise 3, this time using Isomap where two cities are connected only

if there is a direct road between them that does not pass through any other

city.

6. In Isomap, instead of using Euclidean distance, we can also use Mahalanobis

distance between neighboring points. What are the advantages and disadvan-

tages of this approach, if any?

7. Draw two-class, two-dimensional data such that (a) PCA and LDA find the

same direction and (b) PCA and LDA find totally different directions.

8. Multidimensional scaling can work as long as we have the pairwise distances

between objects. We do not actually need to represent the objects as vec-

tors at all as long as we have some measure of similarity. Can you give an

example?

9. How can we incorporate class information into Isomap and LLE such that

instances of the same class are mapped to nearby locations in the new space?

10. In factor analysis, how can we find the remaining ones if we already know

some of the factors?

11. Discuss an application where there are hidden factors (not necessarily linear)

and where factor analysis would be expected to work well.

6.11 References

Balasubramanian, M., E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C.

Langford. 2002. “The Isomap Algorithm and Topological Stability.” Science

295: 7.

Chatfield, C., and A. J. Collins. 1980. Introduction to Multivariate Analysis.

London: Chapman and Hall.

Cox, T. F., and M. A. A. Cox. 1994. Multidimensional Scaling. London: Chapman

and Hall.

Devijer, P. A., and J. Kittler. 1982. Pattern Recognition: A Statistical Approach.

New York: Prentice-Hall.

Flury, B. 1988. Common Principal Components and Related Multivariate Models.

New York: Wiley.

Fukunaga, K., and P. M. Narendra. 1977. “A Branch and Bound Algorithm for

Feature Subset Selection.” IEEE Transactions on Computers C-26: 917–922.

Guyon, I., and A. Elisseeff. 2003. “An Introduction to Variable and Feature

Selection.” Journal of Machine Learning Research 3: 1157–1182.

6.11 References 141

Hastie, T. J., R. J. Tibshirani, and A. Buja. 1994. “Flexible Discriminant Analysis

by Optimal Scoring.” Journal of the American Statistical Association 89: 1255–

1270.

Kohavi, R., and G. John. 1997. “Wrappers for Feature Subset Selection.” Artifi-

cial Intelligence 97: 273–324.

Mao, J., and A. K. Jain. 1995. “Artificial Neural Networks for Feature Extraction

and Multivariate Data Projection.” IEEE Transactions on Neural Networks 6:

296–317.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition.

New York: Wiley.

Miller, A. J. 1990. Subset Selection in Regression. London: Chapman and Hall.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numer-

ical Recipes in C. Cambridge, UK: Cambridge University Press.

Pudil, P., J. Novovic̆ová, and J. Kittler. 1994. “Floating Search Methods in Feature

Selection.” Pattern Recognition Letters 15: 1119–1125.

Rencher, A. C. 1995. Methods of Multivariate Analysis. New York: Wiley.

Roweis, S. T., and L. K. Saul. 2000. “Nonlinear Dimensionality Reduction by

Locally Linear Embedding.” Science 290: 2323–2326.

Saul, K. K., and S. T. Roweis. 2003. “Think Globally, Fit Locally: Unsuper-

vised Learning of Low Dimensional Manifolds.” Journal of Machine Learning

Research 4: 119–155.

Tenenbaum, J. B., V. de Silva, and J. C. Langford. 2000. “A Global Geomet-

ric Framework for Nonlinear Dimensionality Reduction.” Science 290: 2319–

2323.

Tipping, M. E., and C. M. Bishop. 1999. “Probabilistic Principal Components

Analysis.” Journal of the Royal Statistical Society Series B 61: 611–622.

Turk, M., and A. Pentland. 1991. “Eigenfaces for Recognition.” Journal of

Cognitive Neuroscience 3: 71–86.

Webb, A. 1999. Statistical Pattern Recognition. London: Arnold.

7 Clustering

In the parametric approach, we assumed that the sample comes

from a known distribution. In cases when such an assumption is

untenable, we relax this assumption and use a semiparametric ap-

proach that allows a mixture of distributions to be used for estimat-

ing the input sample. Clustering methods allow learning the mixture

parameters from data. In addition to probabilistic modeling, we dis-

cuss vector quantization and hierarchical clustering.

7.1 Introduction

In chapters 4 and 5, we discussed the parametric method for density

estimation where we assumed that the sample X is drawn from some

parametric family, for example, Gaussian. In parametric classification,

this corresponds to assuming a certain density for the class densities

p(x|Ci). The advantage of any parametric approach is that given a model,
the problem reduces to the estimation of a small number of parameters,

which, in the case of density estimation, are the sufficient statistics of the

density, for example, the mean and covariance in the case of Gaussian

densities.

Though parametric approaches are used quite frequently, assuming a

rigid parametric model may be a source of bias in many applications

where this assumption does not hold. We thus need more flexible models.

In particular, assuming Gaussian density corresponds to assuming that

the sample, for example, instances of a class, forms one single group in

the d-dimensional space, and as we saw in chapter 5, the center and the

shape of this group is given by the mean and the covariance respectively.

In many applications, however, the sample is not one group; there may

144 7 Clustering

be several groups. Consider the case of optical character recognition:

There are two ways of writing the digit 7; the American writing is ‘7’,

whereas the European writing style has a horizontal bar in the middle (to

tell it apart from the European ‘1’, which keeps the small stroke on top in

handwriting). In such a case, when the sample contains examples from

both continents, the class for the digit 7 should be represented as the

disjunction of two groups. If each of these groups can be represented by

a Gaussian, the class can be represented by a mixture of two Gaussians,

one for each writing style.

A similar example is in speech recognition where the same word can be

uttered in different ways, due to different pronounciation, accent, gender,

age, and so forth. Thus when there is not a single, universal prototype,

all these different ways should be represented in the density to be statis-

tically correct.

We call this approach semiparametric density estimation, as we stillsemiparametric

density estimation assume a parametric model for each group in the sample. We discuss

the nonparametric approach in chapter 8, which is used when there is no

structure to the data and even a mixture model is not applicable. In this

chapter, we focus on density estimation and defer supervised learning to

chapter 12.

7.2 Mixture Densities

The mixture density is written asmixture density

p(x) =
k∑
i=1

p(x|Gi)P(Gi)(7.1)

where Gi are the mixture components. They are also called group or clus-mixture

components

groups

clusters

ters. p(x|Gi) are the component densities and P(Gi) are the mixture pro-

component

densities

mixture

proportions

portions. The number of components, k, is a hyperparameter and should

be specified beforehand. Given a sample and k, learning corresponds to

estimating the component densities and proportions. When we assume

that the component densities obey a parametric model, we need only

estimate their parameters. If the component densities are multivariate

Gaussian, we have p(x|Gi) ∼N (μi ,Σi), and Φ = {P(Gi),μi ,Σi}ki=1 are the
parameters that should be estimated from the iid sample X = {xt}t .

7.3 k-Means Clustering 145

Parametric classification is a bona fide mixture model where groups,

Gi , correspond to classes, Ci , component densities p(x|Gi) correspond to
class densities p(x|Ci), and P(Gi) correspond to class priors, P(Ci):

p(x) =
K∑
i=1

p(x|Ci)P(Ci)

In this supervised case, we know how many groups there are and learn-

ing the parameters is trivial because we are given the labels, namely,

which instance belongs to which class (component). We remember from

chapter 5 that when we are given the sampleX = {xt , r t}Nt=1, where r ti = 1

if xt ∈ Ci and 0 otherwise, the parameters can be calculated using max-

imum likelihood. When each class is Gaussian distributed, we have a

Gaussian mixture, and the parameters are estimated as

P̂(Ci) =
∑
t r

t
i

N
(7.2)

mi =
∑
t r

t
i x

t∑
t r

t
i

Si =
∑
t r

t
i (x

t −mi)(x
t −mi)

T∑
t r

t
i

The difference in this chapter is that the sample is X = {xt}t : We have
an unsupervised learning problem. We are given only xt and not the labels

rt , that is, we do not know which xt comes from which component. So we

should estimate both: First, we should estimate the labels, r ti , the compo-

nent that a given instance belongs to; and, second, once we estimate the

labels, we should estimate the parameters of the components given the

set of instances belonging to them. We are first going to discuss a simple

algorithm, k-means clustering, for this purpose and later on show that it

is a special case of the Expectation-Maximization algorithm.

7.3 k-Means Clustering

Let us say we have an image that is stored with 24 bits/pixel and can have

up to 16 million colors. Assume we have a color screen with 8 bits/pixel

that can display only 256 colors. We want to find the best 256 colors

among all 16 million colors such that the image using only the 256 colors

in the palette looks as close as possible to the original image. This is colorcolor quantization

quantization where we map from high to lower resolution. In the general

146 7 Clustering

case, the aim is to map from a continuous space to a discrete space; this

process is called vector quantization.vector

quantization Of course we can always quantize uniformly, but this wastes the col-

ormap by assigning entries to colors not existing in the image, or would

not assign extra entries to colors frequently used in the image. For ex-

ample, if the image is a seascape, we expect to see many shades of blue

and maybe no red. So the distribution of the colormap entries should

reflect the original density as close as possible placing many entries in

high-density regions, discarding regions where there is no data.

Let us say we have a sample of X = {xt}Nt=1. We have k referencereference vectors

vectors, mj , j = 1, . . . , k. In our example of color quantization, xt are the

image pixel values in 24 bits and mj are the color map entries also in 24

bits, with k = 256.

Assume for now that we somehow have the mj values; we will discuss

how to learn them shortly. Then in displaying the image, given the pixel,

xt , we represent it with the most similar entry, mi in the color map,

satisfying

‖xt −mi‖ =min
j
‖xt −mj‖

That is, instead of the original data value, we use the closest value we

have in the alphabet of reference vectors. mi are also called codebookcodebook vectors

vectors or code words, because this is a process of encoding/decodingcode words

(see figure 7.1): Going from xt to i is a process of encoding the data using

the codebook of mi , i = 1, . . . , k and, on the receiving end, generatingmi

from i is decoding. Quantization also allows compression: For example,compression

instead of using 24 bits to store (or transfer over a communication line)

each xt , we can just store/transfer its index i in the colormap using 8 bits

to index any one of 256, and we get a compression rate of almost 3; there

is also the color map to store/transfer.

Let us see how we can calculatemi : When xt is represented bymi , there

is an error that is proportional to the distance, ‖xt −mi‖. For the new
image to look like the original image, we should have these distances as

small as possible for all pixels. The total reconstruction error is definedreconstruction

error as

E({mi}ki=1|X) =
∑
t

∑
i

bti‖xt −mi‖2(7.3)

7.3 k-Means Clustering 147

mi

x i

.

.

.

i
Communication

line

.

.

.

mi

x' =mi

Encoder Decoder

F
in

d
cl

os
es

t

Figure 7.1 Given x, the encoder sends the index of the closest code word and

the decoder generates the code word with the received index as x′. Error is

‖x′ − x‖2.

where

bti =
{

1 if ‖xt −mi‖ =minj ‖xt −mj‖
0 otherwise

(7.4)

The best reference vectors are those that minimize the total reconstruc-

tion error. bti also depend on mi , and we cannot solve this optimization

problem analytically. We have an iterative procedure named k-meansk-means clustering

clustering for this: First, we start with some mi initialized randomly.

Then at each iteration, we first use equation 7.4 and calculate bti for all

xt , which are the estimated labels; if bti is 1, we say that x
t belongs to the

group of mi . Then, once we have these labels, we minimize equation 7.3.

Taking its derivative with respect tomi and setting it to 0, we get

mi =
∑
t b

t
ix
t∑

t b
t
i

(7.5)

The reference vector is set to the mean of all the instances that it rep-

resents. Note that this is the same as the formula for the mean in equa-

tion 7.2, except that we place the estimated labels bti in place of the labels

r ti . This is an iterative procedure because once we calculate the new mi ,

bti change and need to be recalculated, which in turn affectmi . These two

steps are repeated until mi stabilize (see figure 7.2). The pseudocode of

the k-means algorithm is given in figure 7.3.

One disadvantage is that this is a local search procedure, and the fi-

nal mi highly depend on the initial mi . There are various methods for

initialization:

� One can simply take randomly selected k instances as the initial mi .

148 7 Clustering

−40 −20 0 20 40
−30

−20

−10

0

10

20

x
1

x 2

k−means: Initial

−40 −20 0 20 40
−30

−20

−10

0

10

20

x
1

x 2

After 1 iteration

−40 −20 0 20 40
−30

−20

−10

0

10

20

x
1

x 2

After 2 iterations

−40 −20 0 20 40
−30

−20

−10

0

10

20

x
1

x 2

After 3 iterations

Figure 7.2 Evolution of k-means. Crosses indicate center positions. Data points

are marked depending on the closest center.

� The mean of all data can be calculated and small random vectors may

be added to the mean to get the k initial mi .

� One can calculate the principal component, divide its range into k

equal intervals, partitioning the data into k groups, and then take the

means of these groups as the initial centers.

After convergence, all the centers should cover some subset of the data

instances and be useful; therefore, it is best to initialize centers where we

believe there is data.

There are also algorithms for adding new centers incrementally or delet-

ing empty ones. In leader cluster algorithm, an instance that is far awayleader cluster

algorithm from existing centers (defined by a threshold value) causes the creation

of a new center at that point (we discuss such a neural network algorithm,

7.4 Expectation-Maximization Algorithm 149

Initialize mi , i = 1, . . . , k, for example, to k random xt

Repeat
For all xt ∈ X

bti ←
{

1 if ‖xt −mi‖ =minj ‖xt −mj‖
0 otherwise

For all mi , i = 1, . . . , k

mi ←
∑
t b

t
ix
t/
∑
t b

t
i

Until mi converge

Figure 7.3 k-means algorithm.

ART, in chapter 12). Or, a center that covers a large number of instances

(
∑
t b

t
i /N > θ) can be split into two (by adding a small random vector to

one of the two copies to make them different). Similarly, a center that

covers too few instances can be removed and restarted from some other

part of the input space.

k-means algorithm is for clustering, that is, for finding groups in the

data, where the groups are represented by their centers, which are the

typical representatives of the groups. Vector quantization is one applica-

tion of clustering, but clustering is also used for preprocessing before a

later stage of classification or regression. Given xt , when we calculate bti ,

we do a mapping from the original space to the k-dimensional space, that

is, to one of the corners of the k-dimensional hypercube. A regression or

discriminant function can then be learned in this new space; we discuss

such methods in chapter 12.

7.4 Expectation-Maximization Algorithm

In k-means, we approached clustering as the problem of finding codebook

vectors that minimize the total reconstruction error. In this section, our

approach is probabilistic and we look for the component density parame-

ters that maximize the likelihood of the sample. Using the mixture model

of equation 7.1, the log likelihood given the sample X = {xt}t is
L(Φ|X) = log

∏
t

p(xt |Φ)

=
∑
t

log
k∑
i=1

p(xt |Gi)P(Gi)(7.6)

150 7 Clustering

where Φ includes the priors P(Gi) and also the sufficient statistics of the

component densities p(xt|Gi). Unfortunately, we cannot solve for the

parameters analytically and need to resort to iterative optimization.

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Ru-Expectation-

Maximization bin 1977; Redner and Walker 1984) is used in maximum likelihood esti-

mation where the problem involves two sets of random variables of which

one, X, is observable and the other, Z, is hidden. The goal of the algo-

rithm is to find the parameter vector Φ that maximizes the likelihood of

the observed values of X, L(Φ|X). But in cases where this is not feasi-

ble, we associate the extra hidden variables Z and express the underlying

model using both, to maximize the likelihood of the joint distribution of

X and Z, the complete likelihood Lc(Φ|X,Z).
Since the Z values are not observed, we cannot work directly with the

complete data likelihood Lc ; instead, we work with its expectation, Q,
given X and the current parameter values Φl , where l indexes iteration.

This is the expectation (E) step of the algorithm. Then in themaximization

(M) step, we look for the new parameter values, Φl+1, that maximize this.

Thus

E-step : Q(Φ|Φl) = E[Lc(Φ|X,Z)|X,Φl]
M-step : Φ

l+1 = argmax
Φ

Q(Φ|Φl)

Dempster, Laird, and Rubin (1977) proved that an increase in Q implies

an increase in the incomplete likelihood

L(Φl+1|X) ≥ L(Φl|X)

In the case of mixtures, the hidden variables are the sources of ob-

servations, namely, which observation belongs to which component. If

these were given, for example, as class labels in a supervised setting, we

would know which parameters to adjust to fit that data point. The EM

algorithm works as follows: in the E-step we estimate these labels given

our current knowledge of components, and in the M-step we update our

component knowledge given the labels estimated in the E-step. These two

steps are the same as the two steps of k-means; calculation of bti (E-step)

and reestimation of mi (M-step).

We define a vector of indicator variables zt = {zt1, . . . , ztk} where zti = 1

if xt belongs to cluster Gi , and 0 otherwise. z is a multinomial distribu-

7.4 Expectation-Maximization Algorithm 151

tion from k categories with prior probabilities πi , shorthand for P(Gi).
Then

P(zt) =
k∏
i=1

π
zti
i(7.7)

The likelihood of an observation xt is equal to its probability specified by

the component that generated it:

p(xt |zt) =
k∏
i=1

pi(x
t)z

t
i(7.8)

pi(x
t) is shorthand for p(xt|Gi). The joint density is

p(xt ,zt) = P(zt)p(xt |zt)

and the complete data likelihood of the iid sample X is

Lc(Φ|X,Z) = log
∏
t

p(xt ,zt|Φ)

=
∑
t

logp(xt ,zt|Φ)

=
∑
t

logP(zt |Φ)+ logp(xt|zt ,Φ)

=
∑
t

∑
i

zti [logπi + logpi(x
t |Φ)]

E-step: We define

Q(Φ|Φl) ≡ E
[
logP(X,Z)|X,Φl

]
= E

[
Lc(Φ|X,Z)|X,Φl)

]
=

∑
t

∑
i

E[zti |X,Φl][logπi + logpi(x
t |Φl)]

where

E[zti |X,Φl] = E[zti |xt ,Φl] xt are iid

= P(zti = 1|xt ,Φl) zti is a 0/1 random variable

= p(xt|zti = 1,Φl)P(zti = 1|Φl)
p(xt |Φl) Bayes’ rule

= pi(x
t |Φl)πi∑

j pj(x
t |Φl)πj

152 7 Clustering

= p(xt |Gi ,Φl)P(Gi)∑
j p(x

t |Gj ,Φl)P(Gj)
= P(Gi|xt ,Φl) ≡ hti(7.9)

We see that the expected value of the hidden variable, E[zti], is the

posterior probability that xt is generated by component Gi . Because this
is a probability, it is between 0 and 1 and is a “soft” label, as opposed to

the 0/1 “hard” label of k-means.

M-step: We maximize Q to get the next set of parameter values Φl+1:

Φ
l+1 = argmax

Φ

Q(Φ|Φl)

which is

Q(Φ|Φl) =
∑
t

∑
i

hti [logπi + logpi(x
t |Φl)]

=
∑
t

∑
i

hti logπi +
∑
t

∑
i

hti logpi(x
t |Φl)(7.10)

The second term is independent of πi and using the constraint that∑
i πi = 1 as the Lagrangian, we solve for

∇πi

∑
t

∑
i

hti logπi − λ
⎛
⎝∑

i

πi − 1

⎞
⎠ = 0

and get

πi =
∑
t h

t
i

N
(7.11)

which is analogous to the calculation of priors in equation 7.2.

Similarly, the first term of equation 7.10 is independent of the compo-

nents and can be dropped while estimating the parameters of the com-

ponents. We solve for

∇Φ
∑
t

∑
i

hti logpi(x
t|Φ) = 0(7.12)

If we assume Gaussian components, p̂i(xt|Φ) ∼ N (mi , Si), the M-step

is

ml+1
i =

∑
t h

t
ix
t∑

t h
t
i

(7.13)

Sl+1i =
∑
t h

t
i (x

t −ml+1
i)(xt −ml+1

i)T∑
t h

t
i

7.4 Expectation-Maximization Algorithm 153

−40 −30 −20 −10 0 10 20
−30

−25

−20

−15

−10

−5

0

5

10

15

20

x
1

x 2

EM solution

Figure 7.4 Data points and the fitted Gaussians by EM, initialized by one k-

means iteration of figure 7.2. Unlike in k-means, as can be seen, EM allows

estimating the covariance matrices. The data points labeled by greater hi , the

contours of the estimated Gaussian densities, and the separating curve of hi =
0.5 (dashed line) are shown.

where, for Gaussian components in the E-step, we calculate

hti =
πi|Si|−1/2 exp[−(1/2)(xt −mi)

TS−1i (xt −mi)]∑
j πj|Sj |−1/2 exp[−(1/2)(xt −mj)TS−1j (xt −mj)]

(7.14)

Again, the similarity between equations 7.13 and 7.2 is not accidental;

the estimated soft labels hti replace the actual (unknown) labels r
t
i .

EM is initalized by k-means. After a few iterations of k-means, we get

the estimates for the centersmi and using the instances covered by each

center, we estimate the Si and
∑
t b

t
i /N give us the πi . We run EM from

that point on, as shown in figure 7.4.

Just as in parametric classification (section 5.5), with small samples and

large dimensionality we can regularize by making simplifying assump-

tions. When p̂i(xt |Φ) ∼N (mi , S), the case of a shared covariance matrix,

154 7 Clustering

equation 7.12 reduces to

min
mi ,S

∑
t

∑
i

hti (x
t −mi)

TS−1(xt −mi)(7.15)

When p̂i(xt |Φ) ∼ N (mi , s
2I), the case of a shared diagonal matrix, we

have

min
mi ,s

∑
t

∑
i

hti
‖xt −mi‖2

s2
(7.16)

which is the reconstruction error we defined in k-means clustering (equa-

tion 7.3). The difference is that now

hti =
exp

[−(1/2s2)‖xt −mi‖2
]

∑
j exp

[
−(1/2s2)‖xt −mj‖2

](7.17)

is a probability between 0 and 1. bti of k-means clustering makes a hard

0/1 decision, whereas hti is a soft label that assigns the input to a cluster

with a certain probability. When hti are used instead of bti , an instance

contributes to the update of parameters of all components, to each pro-

portional to that probability. This is especially useful if the instance is

close to the midpoint between two centers.

We thus see that k-means clustering is a special case of EM applied

to Gaussian mixtures where inputs are assumed independent with equal

and shared variances, all components have equal priors, and labels are

hardened. k-means thus pave the input density with circles, whereas EM

in the general case uses ellipses of arbitrary shapes, orientations, and

coverage proportions.

7.5 Mixtures of Latent Variable Models

When full covariance matrices are used with Gaussian mixtures, even if

there is no singularity, one risks overfitting if the input dimensionality

is high and the sample is small. To decrease the number of parameters,

assuming a common covariance matrix may not be right since clusters

may really have different shapes. Assuming diagonal matrices is even

more risky because it removes all correlations.

The alternative is to do dimensionality reduction in the clusters. This

decreases the number of parameters while still capturing the correla-

tions. The number of free parameters is controlled through the dimen-

sionality of the reduced space.

7.6 Supervised Learning after Clustering 155

When we do factor analysis (section 6.4) in the clusters, we look for

latent or hidden variables or factors that generate the data in the clusters

(Bishop 1999):

p(xt |Gi) ∼N (mi ,ViV
T
i + Ψ i)(7.18)

where Vi and Ψ i are the factor loadings and specific variances of cluster

Gi . Rubin and Thayer (1982) give EM equations for factor analysis. It

is possible to extend this in mixture models to find mixtures of factormixtures of factor

analyzers analyzers (Ghahramani and Hinton 1997). In the E-step, in equation 7.9,

we use equation 7.18, and in the M-step, we solve equation 7.12 for Vi

and Ψ i instead of Si . Similarly, one can also do PCA in groups, which

is called mixtures of probabilistic principal component analyzers (Tippingmixtures of

probabilistic

principal

component

analyzers

and Bishop 1999).

We can of course use EM to learn Si and then do FA or PCA separately

in each cluster, but doing EM is better because it couples these two steps

of clustering and dimensionality reduction and does a soft partitioning.

An instance contributes to the calculation of the latent variables of all

groups, weighted by hti .

7.6 Supervised Learning after Clustering

Clustering, like the dimensionality reduction methods discussed in chap-

ter 6, can be used for two purposes: it can be used for data exploration,

to understand the structure of data. Dimensionality reduction methods

are used to find correlations between variables and thus group variables;

clustering methods, on the other hand, are used to find similarities be-

tween instances and thus group instances.

If such groups are found, these may be named (by application experts)

and their attributes be defined. One can choose the group mean as the

representative prototype of instances in the group, or the possible range

of attributes can be written. This allows a simpler description of the

data. For example, if the customers of a company seem to fall in one

of k groups, called segments, customers being defined in terms of theircustomer

segmentation demographic attributes and transactions with the company, then a better

understanding of the customer base will be provided that will allow the

company to provide different strategies for different types of customers;

this is part of customer relationship management (CRM). Likewise, thecustomer

relationship

management

company will also be able to develop strategies for those customers who

156 7 Clustering

do not fall in any large group, and who may require attention, for exam-

ple, churning customers.

Frequently, clustering is also used as a preprocessing stage. Just like

the dimensionality reduction methods of chapter 6 allowed us to make

a mapping to a new space, after clustering, we also map to a new k-

dimensional space where the dimensions are hi (or bi at the risk of loss of

information). In a supervised setting, we can then learn the discriminant

or regression function in this new space. The difference from dimension-

ality reduction methods like PCA however is that k, the dimensionality of

the new space, can be larger than d, the original dimensionality.

When we use a method like PCA, where the new dimensions are combi-

nations of the original dimensions, to represent any instance in the new

space, all dimensions contribute; that is, all zj are nonzero. In the case of

a method like clustering where the new dimensions are defined locally,

there are many more new dimensions, bj , but only one (or if we use hj ,

few) of them have a nonzero value. In the former case, where there are

few dimensions but all contribute, we have a distributed representation;distributed vs.

local

representation

in the latter case, where there are many dimensions but few contribute,

we have a local representation.

One advantage of preceding a supervised learner with unsupervised

clustering or dimensionality reduction is that the latter does not need

labeled data. Labeling the data is costly. We can use a large amount of

unlabeled data for learning the cluster parameters and then use a smaller

labeled data to learn the second stage of classification or regression. Un-

supervised learning is called “learning what normally happens” (Barrow

1989). When followed by a supervised learner, we first learn what nor-

mally happens and then learn what that means. We discuss such methods

in chapter 12.

In the case of classification, when each class is a mixture model com-

posed of a number of components, the whole density is a mixture ofmixture of mixtures

mixtures:

p(x|Ci) =
ki∑
j=1

p(x|Gij)P(Gij)

p(x) =
K∑
i=1

p(x|Ci)P(Ci)

where ki is the number of components making up p(x|Ci) and Gij is the
component j of class i. Note that different classes may need different

7.7 Hierarchical Clustering 157

number of components. Learning the parameters of components is done

separately for each class (probably after some regularization) as we dis-

cussed previously. This is better than fitting many components to data

from all classes and then labeling them later with classes.

7.7 Hierarchical Clustering

We discussed clustering from a probabilistic point of view as fitting a

mixture model to the data, or in terms of finding code words minimizing

reconstruction error. There are also methods for clustering that only use

similarities of instances, without any other requirement on the data; the

aim is to find groups such that instances in a group are more similar to

each other than instances in different groups. This is the approach taken

by hierarchical clustering.hierarchical

clustering This needs the use of a similarity, or equivalently a distance, measure

defined between instances. Generally Euclidean distance is used, where

one has to make sure that all attributes have the same scale. This is a

special case of the Minkowksi distance with p = 2:

dm(x
r ,xs) =

⎡
⎣ d∑
j=1
(xrj − xsj)p

⎤
⎦1/p

City-block distance is easier to calculate:

dcb(x
r ,xs) =

d∑
j=1

|xrj − xsj|

An agglomerative clustering algorithm starts with N groups, each ini-agglomerative

clustering tially containing one training instance, merging similar groups to form

larger groups, until there is a single one. A divisive clustering algorithmdivisive clustering

goes in the other direction, starting with a single group and dividing large

groups into smaller groups, until each group contains a single instance.

At each iteration of an agglomerative algorithm, we choose the two

closest groups to merge. In single-link clustering, this distance is definedsingle-link

clustering as the smallest distance between all possible pair of elements of the two

groups:

d(Gi ,Gj) = min
xr∈Gi ,xs∈Gj

d(xr ,xs)(7.19)

Consider a weighted, completely connected graph with nodes corre-

sponding to instances and edges between nodes with weights equal to

158 7 Clustering

the distances between the instances. Then the single-link method corre-

sponds to constructing the minimal spanning tree of this graph.

In complete-link clustering, the distance between two groups is taken ascomplete-link

clustering the largest distance between all possible pairs:

d(Gi ,Gj) = max
xr∈Gi ,xs∈Gj

d(xr ,xs)(7.20)

These are the two most frequently used measures to choose the two

closest groups to merge. Other possibilities are the average-link method

that uses the average of distances between all pairs and the centroid dis-

tance that measures the distance between the centroids (means) of the

two groups.

Once an agglomerative method is run, the result is generally drawn as

a hierarchical structure known as the dendrogram. This is a tree wheredendrogram

leaves correspond to instances, which are grouped in the order in which

they are merged. An example is given in figure 7.5. The tree can be then

intersected at any level to get the wanted number of groups.

Single-link and complete-link methods calculate the distance between

groups differently that affect the clusters and the dendrogram. In the

single-link method, two instances are grouped together at level h if the

distance between them is less than h, or if there is an intermediate se-

quence of instances between them such that the distance between con-

secutive instances is less than h. On the other hand, in the complete-link

method, all instances in a group have a distance less than h between

them. Single-link clusters may be elongated due to this “chaining” effect.

(In figure 7.5, what if there were an instance halfway between e and c?)

Complete-link clusters tend to be more compact.

7.8 Choosing the Number of Clusters

Like any learning method, clustering also has its knob to adjust complex-

ity; it is k, the number of clusters. Given any k, clustering will always find

k centers, whether they really are meaningful groups, or whether they

are imposed by the method we use. There are various ways we can use to

fine-tune k:

� In some applications such as color quantization, k is defined by the

application.

7.8 Choosing the Number of Clusters 159

a

b

fe
d

c

a d e c b f

1

3

2
h

Figure 7.5 A two-dimensional dataset and the dendrogram showing the result

of single-link clustering is shown. Note that leaves of the tree are ordered so

that no branches cross. The tree is then intersected at a desired value of h to get

the clusters.

� Plotting the data in two dimensions using PCA may be used in uncov-

ering the structure of data and the number of clusters in the data.

� An incremental approach may also help: setting a maximum allowed

distance is equivalent to setting a maximum allowed reconstruction

error per instance.

� In some applications, validation of the groups can be done manually

by checking whether clusters actually code meaningful groups of the

data. For example, in a data mining application, application experts

may do this check. In color quantization, we may inspect the image

visually to check its quality (despite the fact that our eyes and brain

do not analyze an image pixel by pixel).

Depending on what type of clustering method we use, we can plot the

reconstruction error or log likelihood as a function of k and look for the

“elbow.” After a large enough k, the algorithm will start dividing groups,

in which case there will not be a large decrease in the reconstruction error

or large increase in the log likelihood. Similarly, in hierarchical clustering,

by looking at the differences between levels in the tree, we can decide on

a good split.

160 7 Clustering

7.9 Notes

Mixture models are frequently used in statistics. Dedicated textbooks are

those by Titterington, Smith, and Makov (1985) and McLachlan and Bas-

ford (1988). McLachlan and Krishnan (1997) discuss recent developments

in the EM algorithm, how its convergence can be accelerated, and vari-

ous variants. In signal processing, k-means is called the Linde-Buzo-Gray

(LBG) algorithm (Gersho and Gray 1992). It is frequently used in both

statistics and signal processing in a large variety of applications and has

many variants, one of which is fuzzy k-means. The fuzzy membership offuzzy k-means

an input to a component is also a number between 0 and 1 (Bezdek and

Pal 1995). Alpaydın (1998) compares k-means, fuzzy k-means, and EM on

Gaussian mixtures. A comparison of EM and other learning algorithms

for the learning of Gaussian mixture models is given by Xu and Jordan

(1996). On small data samples, an alternative to simplifying assumptions

is to use a Bayesian approach (Ormoneit and Tresp 1996). Moerland

(1999) compares mixtures of Gaussians and mixtures of latent variable

models on a set of classification problems, showing the advantage of la-

tent variable models empirically. A book on clustering methods is by Jain

and Dubes (1988) and survey articles are by Jain, Murty, and Flynn (1999)

and Xu and Wunsch (2005).

7.10 Exercises

1. In image compression, k-means can be used as follows: The image is divided

into nonoverlapping c×c windows and these c2-dimensional vectors make up
the sample. For a given k, which is generally a power of two, we do k-means

clustering. The reference vectors and the indices for each window is sent over

the communication line. At the receiving end, the image is then reconstructed

by reading from the table of reference vectors using the indices. Write the

computer program that does this for different values of k and c. For each

case, calculate the reconstruction error and the compression rate.

2. We can do k-means clustering, partition the instances, and then calculate Si
separately in each group. Why is this not a good idea?

3. Derive the M-step equations for S in the case of shared arbitrary covariance

matrix S (equation 7.15) and s2, in the case of shared diagonal covariance

matrix (equation 7.16).

4. Define a multivariate Bernoulli mixture where inputs are binary and derive

the EM equations.

7.11 References 161

5. In the mixture of mixtures approach for classification, how can we fine-tune

ki , the number of components for class Ci?
6. How can we do hierarchical clustering with binary input vectors, for example,

for text clustering using the bag-of-words representation?

7. What are the similarities and differences between average-link clustering and

k-means?

8. In hierarchical clustering, how can we have locally adaptive distances? What

are the advantages and disadvantages of this?

9. How can we make k-means robust to outliers?

10. Having generated a dendrogram, can we “prune” it?

7.11 References

Alpaydın, E. 1998. “Soft Vector Quantization and the EM Algorithm.” Neural

Networks 11: 467–477.

Barrow, H. B. 1989. “Unsupervised Learning.” Neural Computation 1: 295–311.

Bezdek, J. C., and N. R. Pal. 1995. “Two Soft Relatives of Learning Vector

Quantization.” Neural Networks 8: 729–743.

Bishop, C. M. 1999. “Latent Variable Models.” In Learning in Graphical Models,

ed. M. I. Jordan, 371–403. Cambridge, MA: MIT Press.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from

Incomplete Data via the EM Algorithm.” Journal of Royal Statistical Society B

39: 1–38.

Gersho, A., and R. M. Gray. 1992. Vector Quantization and Signal Compression.

Boston: Kluwer.

Ghahramani, Z., and G. E. Hinton. 1997. The EM Algorithm for Mixtures of Factor

Analyzers. Technical Report CRG TR-96-1, Department of Computer Science,

University of Toronto (revised Feb. 1997).

Jain, A. K., and R. C. Dubes. 1988. Algorithms for Clustering Data. New York:

Prentice Hall.

Jain, A. K., M. N. Murty, and P. J. Flynn. 1999. “Data Clustering: A Review.” ACM

Computing Surveys 31: 264–323.

McLachlan, G. J., and K. E. Basford. 1988. Mixture Models: Inference and Appli-

cations to Clustering. New York: Marcel Dekker.

McLachlan, G. J., and T. Krishnan. 1997. The EM Algorithm and Extensions. New

York: Wiley.

162 7 Clustering

Moerland, P. 1999. “A Comparison of Mixture Models for Density Estimation.”

In International Conference on Artificial Neural Networks, ed. D. Willshaw,

and A. Murray, 25–30. London, UK: IEE Press.

Ormoneit, D., and V. Tresp. 1996. “Improved Gaussian Mixture Density Esti-

mates using Bayesian Penalty Terms and Network Averaging.” In Advances in

Neural Information Processing Systems 8, ed. D. S. Touretzky, M. C. Mozer,

and M. E. Hasselmo, 542–548. Cambridge, MA: MIT Press.

Redner, R. A., and H. F. Walker. 1984. “Mixture Densities, Maximum Likelihood

and the EM Algorithm.” SIAM Review 26: 195–239.

Rubin, D. B., and D. T. Thayer. 1982. “EM Algorithms for ML Factor Analysis.”

Psychometrika 47: 69–76.

Tipping, M. E., and C. M. Bishop. 1999. “Mixtures of Probabilistic Principal

Component Analyzers.” Neural Computation 11: 443–482.

Titterington, D. M., A. F. M. Smith, and E. E. Makov. 1985. Statistical Analysis of

Finite Mixture Distributions. New York: Wiley.

Xu, L., and M. I. Jordan. 1996. “On Convergence Properties of the EM Algorithm

for Gaussian Mixtures.” Neural Computation 8: 129–151.

Xu, R., and D. Wunsch II. 2005. “Survey of Clustering Algorithms.” IEEE Trans-

actions on Neural Networks 16: 645–678.

8 Nonparametric Methods

In the previous chapters, we discussed the parametric and semipara-

metric approaches where we assumed that the data is drawn from

one or a mixture of probability distributions of known form. Now, we

are going to discuss the nonparametric approach that is used when

no such assumption can be made about the input density and the

data speaks for itself. We consider the nonparametric approaches

for density estimation, classification, and regression and see how the

time and space complexity can be checked.

8.1 Introduction

In parametric methods, whether for density estimation, classifica-

tion, or regression, we assume a model valid over the whole input space.

In regression, for example, when we assume a linear model, we assume

that for any input, the output is the same linear function of the input.

In classification when we assume a normal density, we assume that all

examples of the class are drawn from this same density. The advantage

of a parametric method is that it reduces the problem of estimating a

probability density function, discriminant, or regression function to esti-

mating the values of a small number of parameters. Its disadvantage is

that this assumption does not always hold and we may incur a large error

if it does not.

If we cannot make such assumptions and cannot come up with a para-

metric model, one possibility is to use a semiparametric mixture model

as we saw in chapter 7 where the density is written as a disjunction of a

small number of parametric models.

In nonparametric estimation, all we assume is that similar inputs havenonparametric

estimation

164 8 Nonparametric Methods

similar outputs. This is a reasonable assumption: the world is smooth

and functions, whether they are densities, discriminants, or regression

functions, change slowly. Similar instances mean similar things. We all

love our neighbors because they are so much like us.

Therefore, our algorithm is composed of finding the similar past in-

stances from the training set using a suitable distance measure and in-

terpolating from them to find the right output. Different nonparametric

methods differ in the way they define similarity or interpolate from the

similar training instances. In a parametric model, all of the training in-

stances affect the final global estimate, whereas in the nonparametric

case, there is no single global model; local models are estimated as they

are needed, affected only by the nearby training instances.

Nonparametric methods do not assume any a priori parametric form

for the underlying densities; in a looser interpretation, a nonparametric

model is not fixed but its complexity depends on the size of the training

set, or rather, the complexity of the problem inherent in the data.

In machine learning literature, nonparametric methods are also called

instance-based or memory-based learning algorithms, since what they doinstance-based

memory-based

learning

is store the training instances in a lookup table and interpolate from

these. This implies that all of the training instances should be stored

and storing all requires memory of O(N). Furthermore, given an input,

similar ones should be found, and finding them requires computation of

O(N). Such methods are also called lazy learning algorithms, because

unlike the eager parametric models, they do not compute a model when

they are given the training set but postpone the computation of the model

until they are given a test instance. In the case of a parametric approach,

the model is quite simple and has a small number of parameters, of or-

der O(d), or O(d2), and once these parameters are calculated from the

training set, we keep the model and no longer need the training set to

calculate the output. N is generally much larger than d (or d2), and this

increased need for memory and computation is the disadvantage of the

nonparametric methods.

We start by estimating a density function, and discuss its use in classi-

fication. We then generalize the approach to regression.

8.2 Nonparametric Density Estimation 165

8.2 Nonparametric Density Estimation

As usual in density estimation, we assume that the sample X = {xt}Nt=1 is
drawn independently from some unknown probability density p(·). p̂(·)
is our estimator of p(·). We start with the univariate case where xt are

scalars and later generalize to the multidimensional case.

The nonparametric estimator for the cumulative distribution function,

F(x), at point x is the proportion of sample points that are less than or

equal to x

F̂(x) = #{xt ≤ x}
N

(8.1)

where #{xt ≤ x} denotes the number of training instances whose xt is

less than or equal to x. Similarly, the nonparametric estimate for the

density function can be calculated as

p̂(x) = 1

h

[
#{xt ≤ x+ h} − #{xt ≤ x}

N

]
(8.2)

h is the length of the interval and instances xt that fall in this in-

terval are assumed to be “close enough.” The techniques given in this

chapter are variants where different heuristics are used to determine the

instances that are close and their effects on the estimate.

8.2.1 Histogram Estimator

The oldest and most popular method is the histogram where the inputhistogram

space is divided into equal-sized intervals named bins. Given an origin xo
and a bin width h, the bins are the intervals [xo +mh,xo + (m + 1)h) for

positive and negative integers m and the estimate is given as

p̂(x) = #{xt in the same bin as x}
Nh

(8.3)

In constructing the histogram, we have to choose both an origin and

a bin width. The choice of origin affects the estimate near boundaries

of bins, but it is mainly the bin width that has an effect on the estimate:

with small bins, the estimate is spiky, and with larger bins, the estimate

is smoother (see figure 8.1). The estimate is 0 if no instance falls in a bin

and there are discontinuities at bin boundaries. Still, one advantage of

the histogram is that once the bin estimates are calculated and stored,

we do not need to retain the training set.

166 8 Nonparametric Methods

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
Histogram: h = 2

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
h = 1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
h = 0.5

Figure 8.1 Histograms for various bin lengths. ‘×’ denote data points.

The naive estimator (Silverman 1986) frees us from setting an origin. Itnaive estimator

is defined as

p̂(x) = #{x− h/2 < xt ≤ x+ h/2}
Nh

(8.4)

and is equal to the histogram estimate where x is always at the center of

a bin of size h (see figure 8.2). The estimator can also be written as

p̂(x) = 1

Nh

N∑
t=1

w

(
x− xt
h

)
(8.5)

with the weight function defined as

w(u) =
{

1 if |u| < 1/2

0 otherwise

This is as if each xt has a symmetric region of influence of size h around

it and contributes 1 for an x falling in its region. Then the nonparamet-

ric estimate is just the sum of influences of xt whose regions include x.

Because this region of influence is “hard” (0 or 1), the estimate is not a

continuous function and has jumps at xt ± h/2.

8.2 Nonparametric Density Estimation 167

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
Naive estimator: h = 2

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
h = 1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
h = 0.5

Figure 8.2 Naive estimate for various bin lengths.

8.2.2 Kernel Estimator

To get a smooth estimate, we use a smooth weight function, called a

kernel function. The most popular is the Gaussian kernel:kernel function

K(u) = 1√
2π

exp

[
−u

2

2

]
(8.6)

The kernel estimator, also called Parzen windows, is defined askernel estimator

Parzen windows

p̂(x) = 1

Nh

N∑
t=1

K

(
x− xt
h

)
(8.7)

The kernel function K(·) determines the shape of the influences and
the window width h determines the width. Just like the naive estimate is

the sum of “boxes,” the kernel estimate is the sum of “bumps.” All the xt

have an effect on the estimate at x, and this effect decreases smoothly as

|x− xt | increases.
To simplify calculation, K(·) can be taken to be 0 if |x−xt| > 3h. There

exist other kernels easier to compute that can be used, as long as K(u) is

maximum for u = 0 and decreasing symmetrically as |u| increases.

168 8 Nonparametric Methods

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2
Kernel estimator: h = 1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
h = 0.5

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
h = 0.25

Figure 8.3 Kernel estimate for various bin lengths.

When h is small, each training instance has a large effect in a small

region and no effect on distant points. When h is larger, there is more

overlap of the kernels and we get a smoother estimate (see figure 8.3).

If K(·) is everywhere nonnegative and integrates to 1, namely, if it is a

legitimate density function, so will p̂(·) be. Furthermore, p̂(·) will inherit
all the continuity and differentiability properties of the kernel K(·), so
that, for example, if K(·) is Gaussian, then p̂(·) will be smooth having all
the derivatives.

One problem is that the window width is fixed across the entire input

space. Various adaptive methods have been proposed to tailor h as a

function of the density around x.

8.2.3 k-Nearest Neighbor Estimator

The nearest neighbor class of estimators adapts the amount of smoothing

to the local density of data. The degree of smoothing is controlled by k,

the number of neighbors taken into account, which is much smaller than

8.2 Nonparametric Density Estimation 169

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
k−nn estimator: k = 5

0 1 2 3 4 5 6 7 8
0

0.5

1
k = 3

0 1 2 3 4 5 6 7 8
0

0.5

1
k = 1

Figure 8.4 k-nearest neighbor estimate for various k values.

N , the sample size. Let us define a distance between a and b, for example,

|a− b|, and for each x, we define

d1(x) ≤ d2(x) ≤ · · · ≤ dN(x)

to be the distances arranged in ascending order, from x to the points

in the sample: d1(x) is the distance to the nearest sample, d2(x) is the

distance to the next nearest, and so on. If xt are the data points, then we

define d1(x) = mint |x − xt|, and if i is the index of the closest sample,

namely, i = argmint |x− xt|, then d2(x) =minj �=i |x− xj|, and so forth.
The k-nearest neighbor (k-nn) density estimate isk-nearest neighbor

estimate

p̂(x) = k

2Ndk(x)
(8.8)

This is like a naive estimator with h = 2dk(x), the difference being that

instead of fixing h and checking how many samples fall in the bin, we fix

k, the number of observations to fall in the bin, and compute the bin size.

Where density is high, bins are small, and where density is low, bins are

larger (see figure 8.4).

170 8 Nonparametric Methods

The k-nn estimator is not continuous; its derivative has a discontinuity

at all 12(x
(j)+x(j+k)) where x(j) are the order statistics of the sample. The

k-nn is not a probability density function since it integrates to ∞, not 1.
To get a smoother estimate, we can use a kernel function whose effect

decreases with increasing distance

p̂(x) = 1

Ndk(x)

N∑
t=1

K

(
x− xt
dk(x)

)
(8.9)

This is like a kernel estimator with adaptive smoothing parameter h =
dk(x). K(·) is typically taken to be the Gaussian kernel.

8.3 Generalization to Multivariate Data

Given a sample of d-dimensional observations X = {xt}Nt=1, the multivari-

ate kernel density estimator is

p̂(x) = 1

Nhd

N∑
t=1

K

(
x − xt
h

)
(8.10)

with the requirement that∫
	d
K(x)dx = 1

The obvious candidate is the multivariate Gaussian kernel:

K(u) =
(

1√
2π

)d
exp

[
−‖u‖

2

2

]
(8.11)

However, care should be applied to using nonparametric estimates in

high-dimensional spaces because of the curse of dimensionality: Let uscurse of

dimensionality say x is eight-dimensional, and we use a histogram with ten bins per

dimension, then there are 108 bins, and unless we have lots of data, most

of these bins will be empty and the estimates in there will be 0. In high

dimensions, the concept of “close” also becomes blurry so one should be

careful in choosing h.

For example, the use of the Euclidean norm in equation 8.11 implies

that the kernel is scaled equally on all dimensions. If the inputs are on

different scales, they should be normalized to have the same variance.

Still, this does not take correlations into account and better results are

8.4 Nonparametric Classification 171

achieved when the kernel has the same form as the underlying distribu-

tion

K(u) = 1

(2π)d/2|S|1/2 exp
[
−1
2
uTS−1u

]
(8.12)

where S is the sample covariance matrix. This corresponds to using Ma-

halanobis distance instead of the Euclidean distance.

It is also possible to have the distance metric local where S is calculated

from instances in the vicinity of x, for example, some k closest instances.

Note that S calculated locally may be singular and PCA (or LDA, in the

case of classification) may be needed.

When the inputs are discrete, we can use Hamming distance, whichHamming distance

counts the number of nonmatching attributes

HD(x,xt) =
d∑
j=1

1(xj �= xtj)(8.13)

where

1(xj �= xtj) =
{

1 if xj �= xtj
0 otherwise

HD(x,xt) is then used in place of ‖x − xt‖ or (x − xt)TS−1(x − xt) for
kernel estimation or for finding the k closest neighbors.

8.4 Nonparametric Classification

When used for classification, we use the nonparametric approach to esti-

mate the class-conditional densities, p(x|Ci). The kernel estimator of the
class-conditional density is given as

p̂(x|Ci) = 1

Nihd

N∑
t=1

K

(
x − xt
h

)
r ti(8.14)

where r ti is 1 if xt ∈ Ci and 0 otherwise. Ni is the number of labeled

instances belonging to Ci : Ni =
∑
t r

t
i . The MLE of the prior density is

P̂(Ci) = Ni/N . Then, the discriminant can be written as

gi(x) = p̂(x|Ci)P̂ (Ci)

= 1

Nhd

N∑
t=1

K

(
x − xt
h

)
r ti(8.15)

172 8 Nonparametric Methods

and x is assigned to the class for which the discriminant takes its max-

imum. The common factor 1/(Nhd) can be ignored. So each training

instance votes for its class and has no effect on other classes; the weight

of vote is given by the kernel function K(·), typically giving more weight
to closer instances.

For the special case of k-nn estimator, we have

p̂(x|Ci) = ki

NiVk(x)
(8.16)

where ki is the number of neighbors out of the k nearest that belong to

Ci and Vk(x) is the volume of the d-dimensional hypersphere centered
at x, with radius r = ‖x − x(k)‖ where x(k) is the k-th nearest observation
to x (among all neighbors from all classes of x): Vk = rdcd with cd as

the volume of the unit sphere in d dimensions, for example, c1 = 2, c2 =
π, c3 = 4π/3, and so forth. Then

P̂(Ci|x) = p̂(x|Ci)P̂ (Ci)
p̂(x)

= ki

k
(8.17)

The k-nn classifier assigns the input to the class having most examplesk-nn classifier

among the k neighbors of the input. All neighbors have equal vote, and

the class having the maximum number of voters among the k neighbors

is chosen. Ties are broken arbitrarily or a weighted vote is taken. k

is generally taken to be an odd number to minimize ties: confusion is

generally between two neighboring classes.

Again, the use of Euclidean distance corresponds to assuming uncorre-

lated inputs with equal variances, and when this is not the case a suitable

metric should be used. One example is discriminant adaptive nearestdiscriminant

adaptive nearest

neighbor

neighbor (Hastie and Tibshirani 1996) where the optimal distance to sep-

arate classes is estimated locally.

A special case of k-nn is the nearest neighbor classifier where k = 1 andnearest neighbor

classifier the input is assigned to the class of the nearest pattern. This divides the

space in the form of a Voronoi tesselation (see figure 8.5).Voronoi

tesselation

8.5 Condensed Nearest Neighbor

Time and space complexity of nonparametric methods are proportional

to the size of the training set, and condensing methods have been pro-

posed to decrease the number of stored instances without degrading per-

formance. The idea is to select the smallest subset Z of X such that when

Z is used in place of X , error does not increase (Dasarathy 1991).

8.5 Condensed Nearest Neighbor 173

x1

x 2

*

*

Figure 8.5 Dotted lines are the Voronoi tesselation and the straight line is the

class discriminant. In condensed nearest neighbor, those instances that do not

participate in defining the discriminant (marked by ‘*’) can be removed without

increasing the training error.

The best-known and earliest method is condensed nearest neighborcondensed nearest

neighbor where 1-nn is used as the nonparametric estimator for classification (Hart

1968). 1-nn approximates the discriminant in a piecewise linear manner,

and only the instances that define the discriminant need be kept; an in-

stance inside the class regions need not be stored as its nearest neighbor

is of the same class and its absence does not cause any error (on the

training set) (figure 8.5). Such a subset is called a consistent subset, and

we would like to find the minimal consistent subset.

Hart proposed a greedy algorithm to find Z (figure 8.6). The algorithm

starts with an empty Z and passing over the instances in X one by one in

a random order, checks whether they can be classified correctly by 1-nn

using the instances already stored in Z. If an instance is misclassified, it is

added to Z; if it is correctly classified, Z is unchanged. One should pass

over the training set a few times until no further instances are added.

The algorithm does a local search and depending on the order in which

the training instances are seen, different subsets may be found, which

may have different accuracies on the validation data. Thus it does not

174 8 Nonparametric Methods

Z ← ∅
Repeat

For all x ∈ X (in random order)
Find x′ ∈ Z such that ‖x − x′‖ =minxj∈Z ‖x − xj‖
If class(x) �=class(x′) add x to Z

Until Z does not change

Figure 8.6 Condensed nearest neighbor algorithm.

guarantee finding the minimal consistent subset, which is known to be

NP-complete (Wilfong 1992).

Condensed nearest neighbor is a greedy algorithm that aims to mini-

mize training error and complexity, measured by the size of the stored

subset. We can write an augmented error function

E′(Z|X) = E(X|Z)+ λ|Z|(8.18)

where E(X|Z) is the error on X storing Z. |Z| is the cardinality of Z, and
the second term penalizes complexity. As in any regularization scheme,

λ represents the trade-off between the error and complexity such that

for small λ, error becomes more important, and as λ gets larger, complex

models are penalized more. Condensed nearest neighbor is one method

to minimize equation 8.18, but other algorithms to optimize it can also

be devised.

8.6 Nonparametric Regression: Smoothing Models

In regression, given the training setX = {xt, r t} where r t ∈ 	, we assume

r t = g(xt)+ ε

In parametric regression, we assume a polynomial of a certain order

and compute its coefficients that minimize the sum of squared error on

the training set. Nonparametric regression is used when no such poly-

nomial can be assumed; we only assume that close x have close g(x)

values. As in nonparametric density estimation, given x, our approach

is to find the neighborhood of x and average the r values in the neigh-

borhood to calculate ĝ(x). The nonparametric regression estimator is

also called a smoother and the estimate is called a smooth (Härdle 1990).smoother

8.6 Nonparametric Regression: Smoothing Models 175

0 1 2 3 4 5 6 7 8
−2

0

2

4
Regressogram smoother: h = 6

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 3

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 1

Figure 8.7 Regressograms for various bin lengths. ‘×’ denote data points.

There are various methods for defining the neighborhood and averaging

in the neighborhood, similar to methods in density estimation. We dis-

cuss the methods for the univariate x; they can be generalized to the

multivariate case in a straightforward manner using multivariate kernels,

as in density estimation.

8.6.1 Running Mean Smoother

If we define an origin and a bin width and average the r values in the bin

as in the histogram, we get a regressogram (see figure 8.7)regressogram

ĝ(x) =
∑N
t=1 b(x, xt)r t∑N
t=1 b(x, xt)

(8.19)

where

b(x, xt) =
{

1 if xt is the same bin with x

0 otherwise

Having discontinuities at bin boundaries is disturbing as is the need to

fix an origin. As in the naive estimator, in the running mean smoother,running mean

smoother

176 8 Nonparametric Methods

0 1 2 3 4 5 6 7 8
−2

0

2

4
Running mean smoother: h = 6

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 3

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 1

Figure 8.8 Running mean smooth for various bin lengths.

we define a bin symmetric around x and average in there (figure 8.8).

ĝ(x) =
∑N
t=1w

(
x−xt
h

)
r t∑N

t=1w
(
x−xt
h

)(8.20)

where

w(u) =
{

1 if |u| < 1

0 otherwise

This method is especially popular with evenly spaced data, for example,

time series. In applications where there is noise, one can use the median

of the r t in the bin instead of their mean.

8.6.2 Kernel Smoother

As in the kernel estimator, we can use a kernel giving less weight to fur-

ther points, and we get the kernel smoother (see figure 8.9):kernel smoother

8.6 Nonparametric Regression: Smoothing Models 177

0 1 2 3 4 5 6 7 8
−2

0

2

4
Kernel smooth: h = 1

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 0.5

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 0.25

Figure 8.9 Kernel smooth for various bin lengths.

ĝ(x) =
∑
t K

(
x−xt
h

)
r t∑

t K
(
x−xt
h

)(8.21)

Typically a Gaussian kernel K(·) is used. Instead of fixing h, we can fix
k, the number of neighbors, adapting the estimate to the density around

x, and get the k-nn smoother.k-nn smoother

8.6.3 Running Line Smoother

Instead of taking an average and giving a constant fit at a point, we can

take into account one more term in the Taylor expansion and calculate

a linear fit. In the running line smoother, we can use the data points inrunning line

smoother the neighborhood, as defined by h or k, and fit a local regression line (see

figure 8.10).

In the locally weighted running line smoother, known as loess, insteadlocally weighted

running line

smoother

of a hard definition of neighborhoods, we use kernel weighting such that

distant points have less effect on error.

178 8 Nonparametric Methods

0 1 2 3 4 5 6 7 8
−2

0

2

4
Running line smooth: h = 6

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 3

0 1 2 3 4 5 6 7 8
−2

0

2

4

6
h = 1

Figure 8.10 Running line smooth for various bin lengths.

8.7 How to Choose the Smoothing Parameter

In nonparametric methods, for density estimation or regression, the crit-

ical parameter is the smoothing parameter as used in bin width or kernel

spread h, or the number of neighbors k. The aim is to have an estimate

that is less variable than the data points. As we have discussed previ-

ously, one source of variability in the data is noise and the other is the

variability in the unknown underlying function. We should smooth just

enough to get rid of the effect of noise—not less, not more. With too

large h or k, many instances contribute to the estimate at a point and we

also smooth the variability due to the function (oversmoothing); with too

small h or k, single instances have a large effect, we do not even smooth

over the noise (undersmoothing). In other words, small h or k leads to

small bias but large variance. Larger h or k decreases variance but in-

creases bias. Geman, Bienenstock, and Doursat (1992) discuss bias and

variance for nonparametric estimators.

This requirement is explicitly coded in a regularized cost function as

used in smoothing splinessmoothing splines

8.7 How to Choose the Smoothing Parameter 179

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2
Kernel estimator for two classes: h = 1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
h = 0.5

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
h = 0.25

Figure 8.11 Kernel estimate for various bin lengths for a two-class problem.

Plotted are the conditional densities, p(x|Ci). It seems that the top one over-

smooths and the bottom undersmooths, but whichever is the best will depend

on where the validation data points are.

∑
t

[
r t − ĝ(xt)]2 + λ∫ b

a
[ĝ′′(x)]2dx(8.22)

The first term is the error of fit. [a, b] is the input range; ĝ′′(·) is
the curvature of the estimated function ĝ(·) and as such measures the

variability. Thus the second term penalizes fast-varying estimates. λ

trades off variability and error where, for example, with large λ, we get

smoother estimates.

Cross-validation is used to tune h, k, or λ. In density estimation, we

choose the parameter value that maximizes the likelihood of the valida-

tion set. In a supervised setting, trying a set of candidates on the training

set (see figure 8.11), we choose the parameter value that minimizes the

error on the validation set.

180 8 Nonparametric Methods

8.8 Notes

k-nearest neighbor and kernel-based estimation were proposed fifty years

ago, but because of the need for large memory and computation, the

approach was not popular until recently (Aha, Kibler, and Albert 1991).

With advances in parallel processing and with memory and computation

getting cheaper, such methods have recently become more widely used.

Textbooks on nonparametric estimation are Silverman 1986 and Scott

1992. Dasarathy 1991 is a collection of many papers on k-nn and edit-

ing/condensing rules; Aha 1997 is a collection of more recent work.

The nonparametric methods are very easy to parallelize on a Single In-

struction Multiple Data (SIMD) machine; each processor stores one train-

ing instance in its local memory and in parallel computes the kernel

function value for that instance (Stanfill and Waltz 1986). Multiplying

with a kernel function can be seen as a convolution, and we can use

Fourier transformation to calculate the estimate more efficiently (Silver-

man 1986). It has also been shown that spline smoothing is equivalent to

kernel smoothing.

The most critical factor in nonparametric estimation is the distance

metric used. With discrete attributes, we can simply use the Hamming

distance where we just sum up the number of nonmatching attributes.

More sophisticated distance functions are discussed in Wettschereck, Aha,

and Mohri 1997 and Webb 1999.

In artificial intelligence, the nonparametric approach is called case-case-based

reasoning based reasoning. The output is found by interpolating from known sim-

ilar past “cases.” This also allows for some knowledge extraction: the

given output can be justified by listing these similar past cases.

Due to its simplicity, k-nn is the most widely used nonparametric clas-

sification method and is quite successful in practice in a variety of appli-

cations. It has been shown (Cover and Hart 1967; reviewed in Duda, Hart,

and Stork 2001) that in the large sample case when N → ∞, the risk of

nearest neighbor (k = 1) is never worse than twice the Bayes’ risk (which

is the best that can be achieved), and, in that respect, it is said that “half

of the available information in an infinite collection of classified samples

is contained in the nearest neighbor” (Cover and Hart 1967, 21). In the

case of k-nn, it has been shown that the risk asymptotes to the Bayes’

risk as k goes to infinity.

Nonparametric regression is discussed in detail in Härdle 1990. Hastie

and Tibshirani (1990) discuss smoothing models and propose additiveadditive models

8.9 Exercises 181

models where a multivariate function is written as a sum of univariate es-

timates. Locally weighted regression is discussed in Atkeson, Moore, and

Schaal 1997. These models bear much similarity to radial basis functions

and mixture of experts that we will discuss in chapter 12.

In the condensed nearest neighbor algorithm, we saw that we can keep

only a subset of the training instances, those that are close to the bound-

ary, and we can define the discriminant using them only. This idea bears

much similarity to the support vector machines that we will discuss in

chapter 13. There we will also discuss various kernel functions to mea-

sure similarity between instances and how we can choose the best. Writ-

ing the prediction as a sum of the combined effects of training instances

also underlies Gaussian processes (chapter 14), where a kernel function is

called a covariance function.

8.9 Exercises

1. How can we have a smooth histogram?

2. Show equation 8.17.

3. How does condensed nearest neighbor behave if k > 1?

4. In condensed nearest neighbor, an instance previously added to Z may no

longer be necessary after a later addition. How can we find such instances

that are no longer necessary?

5. In a regressogram, instead of averaging in a bin and doing a constant fit, one

can use the instances falling in a bin and do a linear fit (see figure 8.12). Write

the code and compare this with the regressogram proper.

6. Write the error function for loess discussed in section 8.6.3.

7. Propose an incremental version of the running mean estimator, which, like

the condensed nearest neighbor, stores instances only when necessary.

8. Generalize kernel smoother to multivariate data.

9. In the running smoother, we can fit a constant, a line, or a higher-degree

polynomial at a test point. How can we choose between them?

10. In the running mean smoother, additional to giving an estimate, can we also

calculate a confidence interval indicating the variance (uncertainty) around

the estimate at that point?

182 8 Nonparametric Methods

0 1 2 3 4 5 6 7 8
−2

0

2

4
Regressogram linear smoother: h = 6

0 1 2 3 4 5 6 7 8
−4

−2

0

2

4
h = 3

0 1 2 3 4 5 6 7 8
−2

0

2

4
h = 1

Figure 8.12 Regressograms with linear fits in bins for various bin lengths.

8.10 References

Aha, D. W., ed. 1997. Special Issue on Lazy Learning, Artificial Intelligence

Review 11(1–5): 7–423.

Aha, D. W., D. Kibler, and M. K. Albert. 1991. “Instance-Based Learning Algo-

rithm.” Machine Learning 6: 37–66.

Atkeson, C. G., A. W. Moore, and S. Schaal. 1997. “Locally Weighted Learning.”

Artificial Intelligence Review 11: 11–73.

Cover, T. M., and P. E. Hart. 1967. “Nearest Neighbor Pattern Classification.”

IEEE Transactions on Information Theory 13: 21–27.

Dasarathy, B. V. 1991. Nearest Neighbor Norms: NN Pattern Classification Tech-

niques. Los Alamitos, CA: IEEE Computer Society Press.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

Geman, S., E. Bienenstock, and R. Doursat. 1992. “Neural Networks and the

Bias/Variance Dilemma.” Neural Computation 4: 1–58.

Härdle, W. 1990. Applied Nonparametric Regression. Cambridge, UK: Cam-

bridge University Press.

8.10 References 183

Hart, P. E. 1968. “The Condensed Nearest Neighbor Rule.” IEEE Transactions on

Information Theory 14: 515–516.

Hastie, T. J., and R. J. Tibshirani. 1990. Generalized Additive Models. London:

Chapman and Hall.

Hastie, T. J., and R. J. Tibshirani. 1996. “Discriminant Adaptive Nearest Neigh-

bor Classification.” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 18: 607–616.

Scott, D. W. 1992. Multivariate Density Estimation. New York: Wiley.

Silverman, B. W. 1986. Density Estimation in Statistics and Data Analysis. Lon-

don: Chapman and Hall.

Stanfill, C., and D. Waltz. 1986. “Toward Memory-Based Reasoning.” Communi-

cations of the ACM 29: 1213–1228.

Webb, A. 1999. Statistical Pattern Recognition. London: Arnold.

Wettschereck, D., D. W. Aha, and T. Mohri. 1997. “A Review and Empirical Evalu-

ation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.”

Artificial Intelligence Review 11: 273–314.

Wilfong, G. 1992. “Nearest Neighbor Problems.” International Journal on Com-

putational Geometry and Applications 2: 383–416.

9 Decision Trees

A decision tree is a hierarchical data structure implementing the

divide-and-conquer strategy. It is an efficient nonparametric method,

which can be used for both classification and regression. We discuss

learning algorithms that build the tree from a given labeled training

sample, as well as how the tree can be converted to a set of simple

rules that are easy to understand. Another possibility is to learn a

rule base directly.

9.1 Introduction

In parametric estimation, we define a model over the whole input

space and learn its parameters from all of the training data. Then we

use the same model and the same parameter set for any test input. In

nonparametric estimation, we divide the input space into local regions,

defined by a distance measure like the Euclidean norm, and for each in-

put, the corresponding local model computed from the training data in

that region is used. In the instance-based models we discussed in chap-

ter 8, given an input, identifying the local data defining the local model

is costly; it requires calculating the distances from the given input to all

of the training instances, which is O(N).
A decision tree is a hierarchical model for supervised learning wherebydecision tree

the local region is identified in a sequence of recursive splits in a smaller

number of steps. A decision tree is composed of internal decision nodes

and terminal leaves (see figure 9.1). Each decision node m implements adecision node

test function fm(x) with discrete outcomes labeling the branches. Given

an input, at each node, a test is applied and one of the branches is taken

depending on the outcome. This process starts at the root and is repeated

186 9 Decision Trees

x 2

x1
w10

w20

x1>w10

x2>w20

Yes
No

NoYes

C1

C1

C1

C2

C2

Figure 9.1 Example of a dataset and the corresponding decision tree. Oval

nodes are the decision nodes and rectangles are leaf nodes. The univariate de-

cision node splits along one axis, and successive splits are orthogonal to each

other. After the first split, {x|x1 < w10} is pure and is not split further.

recursively until a leaf node is hit, at which point the value written in theleaf node

leaf constitutes the output.

A decision tree is also a nonparametric model in the sense that we

do not assume any parametric form for the class densities and the tree

structure is not fixed a priori but the tree grows, branches and leaves

are added, during learning depending on the complexity of the problem

inherent in the data.

Each fm(x) defines a discriminant in the d-dimensional input space

dividing it into smaller regions that are further subdivided as we take a

path from the root down. fm(·) is a simple function and when written

down as a tree, a complex function is broken down into a series of simple

decisions. Different decision tree methods assume different models for

fm(·), and the model class defines the shape of the discriminant and

the shape of regions. Each leaf node has an output label, which in the

case of classification is the class code and in regression is a numeric

value. A leaf node defines a localized region in the input space where

instances falling in this region have the same labels (in classification),

9.2 Univariate Trees 187

or very similar numeric outputs (in regression). The boundaries of the

regions are defined by the discriminants that are coded in the internal

nodes on the path from the root to the leaf node.

The hierarchical placement of decisions allows a fast localization of the

region covering an input. For example, if the decisions are binary, then

in the best case, each decision eliminates half of the cases. If there are b

regions, then in the best case, the correct region can be found in log2 b

decisions. Another advantage of the decision tree is interpretability. As

we will see shortly, the tree can be converted to a set of IF-THEN rules that

are easily understandable. For this reason, decision trees are very pop-

ular and sometimes preferred over more accurate but less interpretable

methods.

We start with univariate trees where the test in a decision node uses

only one input variable and we see how such trees can be constructed

for classification and regression. We later generalize this to multivariate

trees where all inputs can be used in an internal node.

9.2 Univariate Trees

In a univariate tree, in each internal node, the test uses only one of theunivariate tree

input dimensions. If the used input dimension, xj , is discrete, taking one

of n possible values, the decision node checks the value of xj and takes

the corresponding branch, implementing an n-way split. For example, if

an attribute is color ∈ {red, blue, green}, then a node on that attribute

has three branches, each one corresponding to one of the three possible

values of the attribute.

A decision node has discrete branches and a numeric input should be

discretized. If xj is numeric (ordered), the test is a comparison

fm(x) : xj > wm0(9.1)

where wm0 is a suitably chosen threshold value. The decision node di-

vides the input space into two: Lm = {x|xj > wm0} and Rm = {x|xj ≤
wm0}; this is called a binary split. Successive decision nodes on a pathbinary split

from the root to a leaf further divide these into two using other attributes

and generating splits orthogonal to each other. The leaf nodes define hy-

perrectangles in the input space (see figure 9.1).

Tree induction is the construction of the tree given a training sample.

For a given training set, there exists many trees that code it with no er-

ror, and, for simplicity, we are interested in finding the smallest among

188 9 Decision Trees

them, where tree size is measured as the number of nodes in the tree

and the complexity of the decision nodes. Finding the smallest tree is

NP-complete (Quinlan 1986), and we are forced to use local search proce-

dures based on heuristics that give reasonable trees in reasonable time.

Tree learning algorithms are greedy and, at each step, starting at the

root with the complete training data, we look for the best split. This

splits the training data into two or n, depending on whether the chosen

attribute is numeric or discrete. We then continue splitting recursively

with the corresponding subset until we do not need to split anymore, at

which point a leaf node is created and labeled.

9.2.1 Classification Trees

In the case of a decision tree for classification, namely, a classificationclassification tree

tree, the goodness of a split is quantified by an impurity measure. Aimpurity measure

split is pure if after the split, for all branches, all the instances choosing

a branch belong to the same class. Let us say for node m, Nm is the

number of training instances reaching nodem. For the root node, it is N .

Ni
m of Nm belong to class Ci , with

∑
i N

i
m = Nm. Given that an instance

reaches node m, the estimate for the probability of class Ci is

P̂(Ci|x,m) ≡ pim =
Ni
m

Nm
(9.2)

Node m is pure if pim for all i are either 0 or 1. It is 0 when none of the

instances reaching node m are of class Ci , and it is 1 if all such instances
are of Ci . If the split is pure, we do not need to split any further and can

add a leaf node labeled with the class for which pim is 1. One possible

function to measure impurity is entropy (Quinlan 1986) (see figure 9.2)entropy

Im = −
K∑
i=1

pim log2 p
i
m(9.3)

where 0 log 0 ≡ 0. Entropy in information theory specifies the minimum

number of bits needed to encode the class code of an instance. In a two-

class problem, if p1 = 1 and p2 = 0, all examples are of C1, and we do

not need to send anything, and the entropy is 0. If p1 = p2 = 0.5, we

need to send a bit to signal one of the two cases, and the entropy is 1.

In between these two extremes, we can devise codes and use less than

a bit per message by having shorter codes for the more likely class and

9.2 Univariate Trees 189

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

en
tr

op
y=

−p
*l

og
2(p

)−
(1

−p
)*

lo
g 2(1

−p
)

Figure 9.2 Entropy function for a two-class problem.

longer codes for the less likely. When there are K > 2 classes, the same

discussion holds and the largest entropy is log2K when pi = 1/K.

But entropy is not the only possible measure. For a two-class problem

where p1 ≡ p and p2 = 1 − p, φ(p,1 − p) is a nonnegative function

measuring the impurity of a split if it satisfies the following properties

(Devroye, Györfi, and Lugosi 1996):

� φ(1/2,1/2) ≥ φ(p,1− p), for any p ∈ [0,1].
� φ(0,1) = φ(1,0) = 0.

� φ(p,1−p) is increasing in p on [0,1/2] and decreasing in p on [1/2,1].
Examples are

1. Entropy

φ(p,1− p) = −p log2 p − (1− p) log2(1− p)(9.4)

Equation 9.3 is the generalization to K > 2 classes.

2. Gini index (Breiman et al. 1984)Gini index

φ(p,1− p) = 2p(1− p)(9.5)

190 9 Decision Trees

3. Misclassification error

φ(p,1− p) = 1−max(p,1− p)(9.6)

These can be generalized to K > 2 classes, and the misclassification er-

ror can be generalized to minimum risk given a loss function (exercise 1).

Research has shown that there is not a significant difference between

these three measures.

If node m is not pure, then the instances should be split to decrease

impurity, and there are multiple possible attributes on which we can split.

For a numeric attribute, multiple split positions are possible. Among all,

we look for the split that minimizes impurity after the split because we

want to generate the smallest tree. If the subsets after the split are closer

to pure, fewer splits (if any) will be needed afterward. Of course this is

locally optimal, and we have no guarantee of finding the smallest decision

tree.

Let us say at node m, Nmj of Nm take branch j ; these are xt for which

the test fm(xt) returns outcome j . For a discrete attribute with n values,

there are n outcomes, and for a numeric attribute, there are two outcomes

(n = 2), in either case satisfying
∑n
j=1Nmj = Nm. N

i
mj of Nmj belong to

class Ci :
∑K
i=1N

i
mj = Nmj . Similarly,

∑n
j=1N

i
mj = Ni

m.

Then given that at nodem, the test returns outcome j , the estimate for

the probability of class Ci is

P̂(Ci|x,m, j) ≡ pimj =
Ni
mj

Nmj
(9.7)

and the total impurity after the split is given as

I′m = −
n∑
j=1

Nmj

Nm

K∑
i=1

pimj log2 p
i
mj(9.8)

In the case of a numeric attribute, to be able to calculate pimj using

equation 9.1, we also need to know wm0 for that node. There are Nm − 1

possible wm0 between Nm data points: we do not need to test for all

(possibly infinite) points; it is enough to test, for example, at halfway

between points. Note also that the best split is always between adjacent

points belonging to different classes. So we try them, and the best in

terms of purity is taken for the purity of the attribute. In the case of a

discrete attribute, no such iteration is necessary.

9.2 Univariate Trees 191

GenerateTree(X)
If NodeEntropy(X)< θI /* equation 9.3 */

Create leaf labelled by majority class in X
Return

i ← SplitAttribute(X)
For each branch of xi

Find Xi falling in branch
GenerateTree(Xi)

SplitAttribute(X)
MinEnt← MAX
For all attributes i = 1, . . . , d

If xi is discrete with n values
Split X into X1, . . . ,Xn by xi
e ← SplitEntropy(X1, . . . ,Xn) /* equation 9.8 */
If e<MinEnt MinEnt ← e; bestf ← i

Else /* xi is numeric */
For all possible splits

Split X into X1,X2 on xi
e←SplitEntropy(X1,X2)
If e<MinEnt MinEnt ← e; bestf ← i

Return bestf

Figure 9.3 Classification tree construction.

So for all attributes, discrete and numeric, and for a numeric attribute

for all split positions, we calculate the impurity and choose the one that

has the minimum entropy, for example, as measured by equation 9.8.

Then tree construction continues recursively and in parallel for all the

branches that are not pure, until all are pure. This is the basis of the Clas-Classification and

Regression Trees sification and Regression Trees (CART) algorithm (Breiman et al. 1984),

ID3 algorithm (Quinlan 1986), and its extension C4.5 (Quinlan 1993). TheID3

C4.5 pseudocode of the algorithm is given in figure 9.3.

It can also be said that at each step during tree construction, we choose

the split that causes the largest decrease in impurity, which is the differ-

ence between the impurity of data reaching nodem (equation 9.3) and the

total entropy of data reaching its branches after the split (equation 9.8).

192 9 Decision Trees

One problem is that such splitting favors attributes with many values.

When there are many values, there are many branches, and the impurity

can be much less. For example, if we take training index t as an attribute,

the impurity measure will choose that because then the impurity of each

branch is 0, although it is not a reasonable feature. Nodes with many

branches are complex and go against our idea of splitting class discrim-

inants into simple decisions. Methods have been proposed to penalize

such attributes and to balance the impurity drop and the branching fac-

tor.

When there is noise, growing the tree until it is purest, we may grow

a very large tree and it overfits; for example, consider the case of a mis-

labeled instance amid a group of correctly labeled instances. To alle-

viate such overfitting, tree construction ends when nodes become pure

enough, namely, a subset of data is not split further if I < θI . This im-

plies that we do not require that pimj be exactly 0 or 1 but close enough,

with a threshold θp. In such a case, a leaf node is created and is labeled

with the class having the highest pimj .

θI (or θp) is the complexity parameter, like h or k of nonparametric

estimation. When they are small, the variance is high and the tree grows

large to reflect the training set accurately, and when they are large, vari-

ance is lower and a smaller tree roughly represents the training set and

may have large bias. The ideal value depends on the cost of misclassifi-

cation, as well as the costs of memory and computation.

It is generally advised that in a leaf, one stores the posterior proba-

bilities of classes, instead of labeling the leaf with the class having the

highest posterior. These probabilities may be required in later steps,

for example, in calculating risks. Note that we do not need to store the

instances reaching the node or the exact counts; just ratios suffice.

9.2.2 Regression Trees

A regression tree is constructed in almost the same manner as a clas-regression tree

sification tree, except that the impurity measure that is appropriate for

classification is replaced by a measure appropriate for regression. Let us

say for node m, Xm is the subset of X reaching node m; namely, it is the

set of all x ∈ X satisfying all the conditions in the decision nodes on the

path from the root until node m. We define

bm(x) =
{

1 if x ∈ Xm: x reaches node m

0 otherwise
(9.9)

9.2 Univariate Trees 193

In regression, the goodness of a split is measured by the mean square

error from the estimated value. Let us say gm is the estimated value in

node m.

Em = 1

Nm

∑
t

(r t − gm)2bm(xt)(9.10)

where Nm = |Xm| =
∑
t bm(x

t).

In a node, we use the mean (median if there is too much noise) of the

required outputs of instances reaching the node

gm =
∑
t bm(x

t)r t∑
t bm(x

t)
(9.11)

Then equation 9.10 corresponds to the variance at m. If at a node, the

error is acceptable, that is, Em < θr , then a leaf node is created and it

stores the gm value. Just like the regressogram of chapter 8, this creates

a piecewise constant approximation with discontinuities at leaf bound-

aries.

If the error is not acceptable, data reaching node m is split further

such that the sum of the errors in the branches is minimum. As in clas-

sification, at each node, we look for the attribute (and split threshold

for a numeric attribute) that minimizes the error, and then we continue

recursively.

Let us define Xmj as the subset of Xm taking branch j : ∪nj=1Xmj = Xm.

We define

bmj(x) =
{

1 if x ∈ Xmj : x reaches node m and takes branch j

0 otherwise
(9.12)

gmj is the estimated value in branch j of node m.

gmj =
∑
t bmj(x

t)r t∑
t bmj(x

t)
(9.13)

and the error after the split is

E′m =
1

Nm

∑
j

∑
t

(r t − gmj)2bmj(xt)(9.14)

The drop in error for any split is given as the difference between equa-

tion 9.10 and equation 9.14. We look for the split such that this drop is

maximum or, equivalently, where equation 9.14 takes its minimum. The

code given in figure 9.3 can be adapted to training a regression tree by

194 9 Decision Trees

replacing entropy calculations with mean square error and class labels

with averages.

Mean square error is one possible error function; another is worst pos-

sible error

Em =max
j

max
t
|r t − gmj|bm(xt)(9.15)

and using this, we can guarantee that the error for any instance is never

larger than a given threshold.

The acceptable error threshold is the complexity parameter; when it is

small, we generate large trees and risk overfitting; when it is large, we

underfit and smooth too much (see figures 9.4 and 9.5).

Similar to going from running mean to running line in nonparametric

regression, instead of taking an average at a leaf that implements a con-

stant fit, we can also do a linear regression fit over the instances choosing

the leaf:

gm(x) = wT
mx +wm0(9.16)

This makes the estimate in a leaf dependent on x and generates smaller

trees, but there is the expense of extra computation at a leaf node.

9.3 Pruning

Frequently, a node is not split further if the number of training instances

reaching a node is smaller than a certain percentage of the training set—

for example, 5 percent—regardless of the impurity or error. The idea is

that any decision based on too few instances causes variance and thus

generalization error. Stopping tree construction early on before it is full

is called prepruning the tree.prepruning

Another possibility to get simpler trees is postpruning, which in prac-postpruning

tice works better than prepruning. We saw before that tree growing is

greedy and at each step, we make a decision, namely, generate a decision

node, and continue further on, never backtracking and trying out an al-

ternative. The only exception is postpruning where we try to find and

prune unnecessary subtrees.

In postpruning, we grow the tree full until all leaves are pure and we

have no training error. We then find subtrees that cause overfitting and

we prune them. From the initial labeled set, we set aside a pruning set,pruning set

unused during training. For each subtree, we replace it with a leaf node

9.3 Pruning 195

0 1 2 3 4 5 6 7 8
−2

0

2

4 θ
r
 = 0.5

0 1 2 3 4 5 6 7 8
−2

0

2

4 θ
r
 = 0.2

0 1 2 3 4 5 6 7 8
−2

0

2

4 θ
r
 = 0.05

Figure 9.4 Regression tree smooths for various values of θr . The corresponding

trees are given in figure 9.5.

labeled with the training instances covered by the subtree (appropriately

for classification or regression). If the leaf node does not perform worse

than the subtree on the pruning set, we prune the subtree and keep the

leaf node because the additional complexity of the subtree is not justified;

otherwise, we keep the subtree.

For example, in the third tree of figure 9.5, there is a subtree starting

with condition x < 6.31. This subtree can be replaced by a leaf node of

y = 0.9 (as in the second tree) if the error on the pruning set does not

increase during the substitution. Note that the pruning set should not be

confused with (and is distinct from) the validation set.

Comparing prepruning and postpruning, we can say that prepruning is

faster but postpruning generally leads to more accurate trees.

196 9 Decision Trees

x < 3.16

x < 1.36

Yes No

NoYes

1.37 -1.35

1.86

x < 3.16

x < 1.36

Yes No

2.20

x < 5 .96

NoYes

1.37 -1.35

NoYes

0.9 2.40

Yes No

x < 6.91

x < 3.16

x < 1.36

Yes No

2.20

x < 5 .96

NoYes

-1.35

NoYes

2.40

Yes No

x < 6.91x < 0.7 6

NoYes

1.15 1.80

NoYes

1.20 0.60

x < 6.31

Figure 9.5 Regression trees implementing the smooths of figure 9.4 for various

values of θr .

9.4 Rule Extraction from Trees 197

x1 > 38.5

x2 > 2.5

Yes No

NoYes

0.8 0.6

x4

'A' 'C' 'B'

0.20.30.4

x1 : Age
x2 : Years in job
x3 : Gender
x4 : Job type

Figure 9.6 Example of a (hypothetical) decision tree. Each path from the root to

a leaf can be written down as a conjunctive rule, composed of conditions defined

by the decision nodes on the path.

9.4 Rule Extraction from Trees

A decision tree does its own feature extraction. The univariate tree only

uses the necessary variables, and after the tree is built, certain features

may not be used at all. We can also say that features closer to the root

are more important globally. For example, the decision tree given in fig-

ure 9.6 uses x1, x2, and x4, but not x3. It is possible to use a decision tree

for feature extraction: we build a tree and then take only those features

used by the tree as inputs to another learning method.

Another main advantage of decision trees is interpretability: The de-interpretability

cision nodes carry conditions that are simple to understand. Each path

from the root to a leaf corresponds to one conjunction of tests, as all

those conditions should be satisfied to reach to the leaf. These paths to-

gether can be written down as a set of IF-THEN rules, called a rule base.IF-THEN rules

One such method is C4.5Rules (Quinlan 1993).

For example, the decision tree of figure 9.6 can be written down as the

following set of rules:

R1: IF (age>38.5) AND (years-in-job>2.5) THEN y =0.8
R2: IF (age>38.5) AND (years-in-job≤2.5) THEN y =0.6
R3: IF (age≤38.5) AND (job-type=‘A’) THEN y =0.4
R4: IF (age≤38.5) AND (job-type=‘B’) THEN y =0.3
R5: IF (age≤38.5) AND (job-type=‘C’) THEN y =0.2

198 9 Decision Trees

Such a rule base allows knowledge extraction; it can be easily under-knowledge

extraction stood and allows experts to verify the model learned from data. For each

rule, one can also calculate the percentage of training data covered by the

rule, namely, rule support. The rules reflect the main characteristics ofrule support

the dataset: they show the important features and split positions. For in-

stance, in this (hypothetical) example, we see that in terms of our purpose

(y), people who are thirty-eight years old or less are different from people

who are thirty-nine or more years old. And among this latter group, it is

the job type that makes them different, whereas in the former group, it is

the number of years in a job that is the best discriminating characteristic.

In the case of a classification tree, there may be more than one leaf

labeled with the same class. In such a case, these multiple conjunctive

expressions corresponding to different paths can be combined as a dis-

junction (OR). The class region then corresponds to a union of these mul-

tiple patches, each patch corresponding to the region defined by one leaf.

For example, class C1 of figure 9.1 is written as

IF (x ≤ w10) OR ((x1 > w10) AND (x2 ≤ w20)) THEN C1
Pruning rules is possible for simplification. Pruning a subtree corre-pruning rules

sponds to pruning terms from a number of rules at the same time. It

may be possible to prune a term from one rule without touching other

rules. For example, in the previous rule set, for R3, if we see that all

whose job-type=‘A’ have outcomes close to 0.4, regardless of age, R3

can be pruned as

R3′ : IF (job-type=‘A’) THEN y =0.4

Note that after the rules are pruned, it may not be possible to write

them back as a tree anymore.

9.5 Learning Rules from Data

As we have just seen, one way to get IF-THEN rules is to train a decision

tree and convert it to rules. Another is to learn the rules directly. Rulerule induction

induction works similar to tree induction except that rule induction does

a depth-first search and generates one path (rule) at a time, whereas tree

induction goes breadth-first and generates all paths simultaneously.

Rules are learned one at a time. Each rule is a conjunction of condi-

tions on discrete or numeric attributes (as in decision trees) and these

9.5 Learning Rules from Data 199

conditions are added one at a time, to optimize some criterion, for exam-

ple, minimize entropy. A rule is said to cover an example if the example

satisfies all the conditions of the rule. Once a rule is grown and pruned,

it is added to the rule base and all the training examples covered by the

rule are removed from the training set, and the process continues until

enough rules are added. This is called sequential covering. There is ansequential

covering outer loop of adding one rule at a time to the rule base and an inner loop

of adding one condition at a time to the current rule. These steps are

both greedy and do not guarantee optimality. Both loops have a pruning

step for better generalization.

One example of a rule induction algorithm is Ripper (Cohen 1995),Ripper

based on an earlier algorithm Irep (Fürnkranz and Widmer 1994). WeIrep

start with the case of two classes where we talk of positive and negative

examples, then later generalize to K > 2 classes. Rules are added to ex-

plain positive examples such that if an instance is not covered by any

rule, then it is classified as negative. So a rule when it matches is either

correct (true positive), or it causes a false positive. The pseudocode of

the outer loop of Ripper is given in figure 9.7.

In Ripper, conditions are added to the rule to maximize an information

gain measure used in Quinlan’s (1990) Foil algorithm. Let us say we haveFoil

rule R and R′ is the candidate rule after adding a condition. Change in
gain is defined as

Gain(R′, R) = s ·
(
log2

N′+
N′

− log2
N+
N

)
(9.17)

where N is the number of instances that are covered by R and N+ is the

number of true positives in them. N′ and N′+ are similarly defined for R′.
s is the number of true positives in R, which are still true positives in R′,
after adding the condition. In terms of information theory, the change in

gain measures the reduction in bits to encode a positive instance.

Conditions are added to a rule until it covers no negative example.

Once a rule is grown, it is pruned back by deleting conditions in reverse

order, to find the rule that maximizes the rule value metricrule value metric

rvm(R) = p − n
p + n(9.18)

where p and n are the number of true and false positives, respectively,

on the pruning set, which is one-third of the data, having used two-thirds

as the growing set.

200 9 Decision Trees

Ripper(Pos,Neg,k)
RuleSet ← LearnRuleSet(Pos,Neg)
For k times

RuleSet ← OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)

RuleSet ← ∅
DL ← DescLen(RuleSet,Pos,Neg)
Repeat

Rule ← LearnRule(Pos,Neg)
Add Rule to RuleSet
DL’ ← DescLen(RuleSet,Pos,Neg)
If DL’>DL+64

PruneRuleSet(RuleSet,Pos,Neg)
Return RuleSet

If DL’<DL DL ← DL’
Delete instances covered by Rule from Pos and Neg

Until Pos = ∅
Return RuleSet

PruneRuleSet(RuleSet,Pos,Neg)
For each Rule ∈ RuleSet in reverse order

DL ← DescLen(RuleSet,Pos,Neg)
DL’ ← DescLen(RuleSet-Rule,Pos,Neg)
IF DL’<DL Delete Rule from RuleSet

Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)

For each Rule ∈ RuleSet
DL0 ← DescLen(RuleSet,Pos,Neg)
DL1 ← DescLen(RuleSet-Rule+

ReplaceRule(RuleSet,Pos,Neg),Pos,Neg)
DL2 ← DescLen(RuleSet-Rule+

ReviseRule(RuleSet,Rule,Pos,Neg),Pos,Neg)
If DL1=min(DL0,DL1,DL2)

Delete Rule from RuleSet and
add ReplaceRule(RuleSet,Pos,Neg)

Else If DL2=min(DL0,DL1,DL2)
Delete Rule from RuleSet and

add ReviseRule(RuleSet,Rule,Pos,Neg)
Return RuleSet

Figure 9.7 Ripper algorithm for learning rules. Only the outer loop is given; the

inner loop is similar to adding nodes in a decision tree.

9.5 Learning Rules from Data 201

Once a rule is grown and pruned, all positive and negative training ex-

amples covered by the rule are removed from the training set. If there

are remaining positive examples, rule induction continues. In the case of

noise, we may stop early, namely, when a rule does not explain enough

number of examples. To measure the worth of a rule, minimum descrip-

tion length (section 4.8) is used (Quinlan 1995). Typically, we stop if the

description of the rule is not shorter than the description of instances

it explains. The description length of a rule base is the sum of the de-

scription lengths of all the rules in the rule base, plus the description of

instances not covered by the rule base. Ripper stops adding rules when

the description length of the rule base is more than 64 bits larger than

the best description length so far. Once the rule base is learned, we pass

over the rules in reverse order to see if they can be removed without

increasing the description length.

Rules in the rule base are also optimized after they are learned. Ripper

considers two alternatives to a rule: One, called the replacement rule,

starts from an empty rule, is grown, and is then pruned. The second,

called the revision rule, starts with the rule as it is, is grown, and is then

pruned. These two are compared with the original rule, and the shortest

of three is added to the rule base. This optimization of the rule base can

be done k times, typically twice.

When there are K > 2 classes, they are ordered in terms of their prior

probabilities such that C1 has the lowest prior probability and CK has the
highest. Then a sequence of two-class problems are defined such that,

first, instances belonging to C1 are taken as positive examples and in-

stances of all other classes are taken as negative examples. Then, having

learned C1 and all its instances removed, it learns to separate C2 from

C3, . . . ,CK . This process is repeated until only CK remains. The empty

default rule is then labeled CK , so that if an instance is not covered by

any rule, it will be assigned to CK .
For a training set of size N , Ripper’s complexity is O(N log2N) and

is an algorithm that can be used on very large training sets (Dietterich

1997). The rules we learn are propositional rules. More expressive, first-propositional rules

first-order rules order rules have variables in conditions, called predicates. A predicate is

a function that returns true or false depending on the value of its argu-

ment. Predicates therefore allow defining relations between the values of

attributes, which cannot be done by propositions (Mitchell 1997):

IF Father(y, x) AND Female(y) THEN Daughter(x, y)

202 9 Decision Trees

Such rules can be seen as programs in a logic programming language,

such as Prolog, and learning them from data is called inductive logic pro-inductive logic

programming gramming. One such algorithm is Foil (Quinlan 1990).

Assigning a value to a variable is called binding. A rule matches ifbinding

there is a set of bindings to the variables existing in the training set.

Learning first-order rules is similar to learning propositional rules with

an outer loop of adding rules, and an inner loop of adding conditions to

a rule, with prunings at the end of each loop. The difference is in the

inner loop, where at each step we consider one predicate to add (instead

of a proposition) and check the increase in the performance of the rule

(Mitchell 1997). To calculate the performance of a rule, we consider all

possible bindings of the variables, count the number of positive and neg-

ative bindings in the training set, and use, for example, equation 9.17. In

this first-order case, we have predicates instead of propositions, so they

should be previously defined, and the training set is a set of predicates

known to be true.

9.6 Multivariate Trees

In the case of a univariate tree, only one input dimension is used at a

split. In a multivariate tree, at a decision node, all input dimensions canmultivariate tree

be used and thus it is more general. When all inputs are numeric, a binary

linear multivariate node is defined as

fm(x) : w
T
mx +wm0 > 0(9.19)

Because the linear multivariate node takes a weighted sum, discrete

attributes should be represented by 0/1 dummy numeric variables. Equa-

tion 9.19 defines a hyperplane with arbitrary orientation (see figure 9.8).

Successive nodes on a path from the root to a leaf further divide these,

and leaf nodes define polyhedra in the input space. The univariate node

with a numeric feature is a special case when all but one of wmj are 0.

Thus the univariate numeric node of equation 9.1 also defines a linear

discriminant but one that is orthogonal to axis xj , intersecting it at wm0

and parallel to all other xi . We therefore see that in a univariate node

there are d possible orientations (wm) and Nm − 1 possible thresholds

(−wm0), making an exhaustive search possible. In a multivariate node,

there are 2d
(
Nm
d

)
possible hyperplanes (Murthy, Kasif, and Salzberg

1994) and an exhaustive search is no longer practical.

9.6 Multivariate Trees 203

�
�

�

Figure 9.8 Example of a linear multivariate decision tree. The linear multivari-

ate node can place an arbitrary hyperplane and thus is more general, whereas

the univariate node is restricted to axis-aligned splits.

When we go from a univariate node to a linear multivariate node, the

node becomes more flexible. It is possible to make it even more flexible

by using a nonlinear multivariate node. For example, with a quadratic, we

have

fm(x) : x
TWmx +wT

mx +wm0 > 0(9.20)

Guo and Gelfand (1992) propose to use a multilayer perceptron (chap-

ter 11) that is a linear sum of nonlinear basis functions, and this is an-

other way of having nonlinear decision nodes. Another possibility is a

sphere node (Devroye, Györfi, and Lugosi 1996)sphere node

fm(x) : ‖x − cm‖ ≤ αm(9.21)

where cm is the center and αm is the radius.

There are a number of algorithms proposed for learning multivariate

decision trees for classification: The earliest is the multivariate version of

the CART algorithm (Breiman et al. 1984), which fine-tunes the weightsCART

wmj one by one to decrease impurity. CART also has a preprocessing

stage to decrease dimensionality through subset selection (chapter 6) and

reduce the complexity of the node. An algorithm with some extensions

to CART is the OC1 algorithm (Murthy, Kasif, and Salzberg 1994). OneOC1

204 9 Decision Trees

possibility (Loh and Vanichsetakul 1988) is to assume that all classes are

Gaussian with a common covariance matrix, thereby having linear dis-

criminants separating each class from the others (chapter 5). In such a

case, with K classes, each node has K branches and each branch carries

the discriminant separating one class from the others. Brodley and Ut-

goff (1995) propose a method where the linear discriminants are trained

to minimize classification error (chapter 10). Guo and Gelfand (1992)

propose a heuristic to group K > 2 classes into two supergroups, and

then binary multivariate trees can be learned. Loh and Shih (1997) use 2-

means clustering (chapter 7) to group data into two. Yıldız and Alpaydın

(2000) use LDA (chapter 6) to find the discriminant once the classes are

grouped into two.

Any classifier approximates the real (unknown) discriminant choosing

one hypothesis from its hypothesis class. When we use univariate nodes,

our approximation uses piecewise, axis-aligned hyperplanes. With linear

multivariate nodes, we can use arbitrary hyperplanes and do a better ap-

proximation using fewer nodes. If the underlying discriminant is curved,

nonlinear nodes work better. The branching factor has a similar effect

in that it specifies the number of discriminants that a node defines. A

binary decision node with two branches defines one discriminant sepa-

rating the input space into two. An n-way node separates into n. Thus,

there is a dependency among the complexity of a node, the branching

factor, and tree size. With simple nodes and low branching factors, one

may grow large trees, but such trees, for example, with univariate binary

nodes, are more interpretable. Linear multivariate nodes are more dif-

ficult to interpret. More complex nodes also require more data and are

prone to overfitting as we get down the tree and have less and less data.

If the nodes are complex and the tree is small, we also lose the main idea

of the tree, which is that of dividing the problem into a set of simple

problems. After all, we can have a very complex classifier in the root that

separates all classes from each other, but then this will not be a tree!

9.7 Notes

Divide-and-conquer is a frequently used heuristic that has been used

since the days of Caesar to break a complex problem, for example, Gaul,

into a group of simpler problems. Trees are frequently used in computer

science to decrease complexity from linear to log time. Decision trees

9.7 Notes 205

were made popular in statistics in Breiman et al. 1984 and in machine

learning in Quinlan 1986 and Quinlan 1993. Multivariate tree induction

methods became popular more recently; a review and comparison on

many datasets are given in Yıldız and Alpaydın 2000. Many researchers

(e.g., Guo and Gelfand 1992), proposed to combine the simplicity of trees

with the accuracy of multilayer perceptrons (chapter 11). Many studies,

however, have concluded that the univariate trees are quite accurate and

interpretable, and the additional complexity brought by linear (or non-

linear) multivariate nodes is hardly justified. A recent survey is given by

Rokach and Maimon (2005).

The omnivariate decision tree (Yıldız and Alpaydın 2001) is a hybridomnivariate

decision tree tree architecture where the tree may have univariate, linear multivariate,

or nonlinear multivariate nodes. The idea is that during construction, at

each decision node, which corresponds to a different subproblem defined

by the subset of the training data reaching that node, a different model

may be appropriate and the appropriate one should be found and used.

Using the same type of nodes everywhere corresponds to assuming that

the same inductive bias is good in all parts of the input space. In an omni-

variate tree, at each node, candidate nodes of different types are trained

and compared using a statistical test (chapter 19) on a validation set to

determine which one generalizes the best. The simpler one is chosen

unless a more complex one is shown to have significantly higher accu-

racy. Results show that more complex nodes are used early in the tree,

closer to the root, and as we go down the tree, simple univariate nodes

suffice. As we get closer to the leaves, we have simpler problems and, at

the same time, we have less data. In such a case, complex nodes overfit

and are rejected by the statistical test. The number of nodes increases

exponentially as we go down the tree; therefore, a large majority of the

nodes are univariate and the overall complexity does not increase much.

Decision trees are used more frequently for classification than for re-

gression. They are very popular: They learn and respond quickly, and

are accurate in many domains (Murthy 1998). It is even the case that a

decision tree is preferred over more accurate methods, because it is in-

terpretable. When written down as a set of IF-THEN rules, the tree can be

understood and the rules can be validated by human experts who have

knowledge of the application domain.

It is generally recommended that a decision tree be tested and its ac-

curacy be taken as a benchmark before more complicated algorithms are

employed. Analysis of the tree also allows an understanding of the im-

206 9 Decision Trees

portant features, and the univariate tree does its own automatic feature

extraction. Another big advantage of the univariate tree is that it can use

numeric and discrete features together, without needing to convert one

type into the other.

The decision tree is a nonparametric method, similar to the instance-

based methods discussed in chapter 8, but there are a number of differ-

ences:

� Each leaf node corresponds to a “bin,” except that the bins need not

be the same size (as in Parzen windows) or contain an equal number

of training instances (as in k-nearest neighbor).

� The bin divisions are not done based only on similarity in the input

space, but supervised output information through entropy or mean

square error is also used.

� Another advantage of the decision tree is that, thanks to the tree struc-

ture, the leaf (“bin”) is found much faster with smaller number of com-

parisons.

� The decision tree, once it is constructed, does not store all the training

set but only the structure of the tree, the parameters of the decision

nodes, and the output values in leaves; this implies that the space com-

plexity is also much less, as opposed to instance-based nonparametric

methods that store all training examples.

With a decision tree, a class need not have a single description to which

all instances should match. It may have a number of possible descrip-

tions that can even be disjoint in the input space.

The tree is different from the statistical models discussed in previous

chapters. The tree codes directly the discriminants separating class in-

stances without caring much for how those instances are distributed in

the regions. The decision tree is discriminant-based, whereas the statisti-

cal methods are likelihood-based in that they explicitly estimate p(x|Ci)
before using Bayes’ rule and calculating the discriminant. Discriminant-

based methods directly estimate the discriminants, bypassing the esti-

mation of class densities. We further discuss such discriminant-based

methods in the chapters ahead.

9.8 Exercises 207

9.8 Exercises

1. Generalize the Gini index (equation 9.5) and the misclassification error (equa-

tion 9.6) for K > 2 classes. Generalize misclassification error to risk, taking a

loss function into account.

2. For a numeric input, instead of a binary split, one can use a ternary split with

two thresholds and three branches as

xj < wma, wma ≤ xj < wmb, xj ≥ wmb
Propose a modification of the tree induction method to learn the two thresh-

olds, wma,wmb. What are the advantages and the disadvantages of such a

node over a binary node?

3. Propose a tree induction algorithm with backtracking.

4. In generating a univariate tree, a discrete attribute with n possible values

can be represented by n 0/1 dummy variables and then treated as n sepa-

rate numeric attributes. What are the advantages and disadvantages of this

approach?

5. Derive a learning algorithm for sphere trees (equation 9.21). Generalize to

ellipsoid trees.

6. In a regression tree, we discussed that in a leaf node, instead of calculating

the mean, we can do a linear regression fit and make the response at the leaf

dependent on the input. Propose a similar method for classification trees.

7. Propose a rule induction algorithm for regression.

8. In regression trees, how can we get rid of discountinuities at the leaf bound-

aries?

9. Let us say that for a classification problem, we already have a trained decision

tree. How can we use it in addition to the training set in constructing a k-

nearest neighbor classifier?

10. In a multivariate tree, very probably, at each internal node, we will not be

needing all the input variables. How can we decrease dimensionality at a

node?

9.9 References

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification

and Regression Trees. Belmont, CA: Wadsworth International Group.

Brodley, C. E., and P. E. Utgoff. 1995. “Multivariate Decision Trees.” Machine

Learning 19: 45–77.

208 9 Decision Trees

Cohen, W. 1995. “Fast Effective Rule Induction.” In Twelfth International Con-

ference on Machine Learning, ed. A. Prieditis and S. J. Russell, 115–123. San

Mateo, CA: Morgan Kaufmann.

Devroye, L., L. Györfi, and G. Lugosi. 1996. A Probabilistic Theory of Pattern

Recognition. New York: Springer.

Dietterich, T. G. 1997. “Machine Learning Research: Four Current Directions.”

AI Magazine 18: 97–136.

Fürnkranz, J., and G. Widmer. 1994. “Incremental Reduced Error Pruning.” In

Eleventh International Conference on Machine Learning, ed. W. Cohen and H.

Hirsh, 70–77. San Mateo, CA: Morgan Kaufmann.

Guo, H., and S. B. Gelfand. 1992. “Classification Trees with Neural Network

Feature Extraction.” IEEE Transactions on Neural Networks 3: 923–933.

Loh, W.-Y., and Y. S. Shih. 1997. “Split Selection Methods for Classification

Trees.” Statistica Sinica 7: 815–840.

Loh, W.-Y., and N. Vanichsetakul. 1988. “Tree-Structured Classification via Gen-

eralized Discriminant Analysis.” Journal of the American Statistical Associa-

tion 83: 715–725.

Mitchell, T. 1997. Machine Learning. New York: McGraw-Hill.

Murthy, S. K. 1998. “Automatic Construction of Decision Trees from Data: A

Multi-Disciplinary Survey.” Data Mining and Knowledge Discovery 4: 345–

389.

Murthy, S. K., S. Kasif, and S. Salzberg. 1994. “A System for Induction of Oblique

Decision Trees.” Journal of Artificial Intelligence Research 2: 1–32.

Quinlan, J. R. 1986. “Induction of Decision Trees.” Machine Learning 1: 81–106.

Quinlan, J. R. 1990. “Learning Logical Definitions from Relations.” Machine

Learning 5: 239–266.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo, CA:

Morgan Kaufmann.

Quinlan, J. R. 1995. “MDL and Categorical Theories (continued).” In Twelfth In-

ternational Conference on Machine Learning, ed. A. Prieditis and S. J. Russell,

467–470. San Mateo, CA: Morgan Kaufmann.

Rokach, L., and O. Maimon. 2005. “Top-Down Induction of Decision Trees

Classifiers—A Survey.” IEEE Transactions on Systems, Man, and Cybernetics–

Part C 35: 476–487.

Yıldız, O. T., and E. Alpaydın. 2000. “Linear Discriminant Trees.” In Seventeenth

International Conference on Machine Learning, ed. P. Langley, 1175–1182.

San Francisco: Morgan Kaufmann.

Yıldız, O. T., and E. Alpaydın. 2001. “Omnivariate Decision Trees.” IEEE Trans-

actions on Neural Networks 12: 1539–1546.

10 Linear Discrimination

In linear discrimination, we assume that instances of a class are lin-

early separable from instances of other classes. This is a discriminant-

based approach that estimates the parameters of the linear discrim-

inant directly from a given labeled sample.

10.1 Introduction

We remember from the previous chapters that in classification we de-

fine a set of discriminant functions gj(x), j = 1, . . . , K, and then we

choose Ci if gi(x) =
K

max
j=1

gj(x)

Previously, when we discussed methods for classification, we first es-

timated the prior probabilities, P̂ (Ci), and the class likelihoods, p̂(x|Ci),
then used Bayes’ rule to calculate the posterior densities. We then defined

the discriminant functions in terms of the posterior, for example,

gi(x) = log P̂ (Ci|x)
This is called likelihood-based classification, and we have previouslylikelihood-based

classification discussed the parametric (chapter 5), semiparametric (chapter 7), and

nonparametric (chapter 8) approaches to estimating the class likelihoods,

p(x|Ci).
We are now going to discuss discriminant-based classification wherediscriminant-based

classification we assume a model directly for the discriminant, bypassing the estima-

tion of likelihoods or posteriors. The discriminant-based approach, as we

also saw for the case of decision trees in chapter 9, makes an assumption

on the form of the discriminant between the classes and makes no as-

sumption about, or requires no knowledge of the densities—for example,

210 10 Linear Discrimination

whether they are Gaussian, or whether the inputs are correlated, and so

forth.

We define a model for the discriminant

gi(x|Φi)
explicitly parameterized with the set of parameters Φi , as opposed to

a likelihood-based scheme that has implicit parameters in defining the

likelihood densities. This is a different inductive bias: instead of making

an assumption on the form of the class densities, we make an assumption

on the form of the boundaries separating classes.

Learning is the optimization of the model parameters Φi to maximize

the quality of the separation, that is, the classification accuracy on a given

labeled training set. This differs from the likelihood-based methods that

search for the parameters that maximize sample likelihoods, separately

for each class.

In the discriminant-based approach, we do not care about correctly

estimating the densities inside class regions; all we care about is the cor-

rect estimation of the boundaries between the class regions. Those who

advocate the discriminant-based approach (e.g., Vapnik 1995) state that

estimating the class densities is a harder problem than estimating the

class discriminants, and it does not make sense to solve a hard prob-

lem to solve an easier problem. This is of course true only when the

discriminant can be approximated by a simple function.

In this chapter, we concern ourselves with the simplest case where the

discriminant functions are linear in x:

gi(x|wi , wi0) = wT
i x +wi0 =

d∑
j=1

wijxj +wi0(10.1)

The linear discriminant is used frequently mainly due to its simplicity:linear discriminant

both the space and time complexities are O(d). The linear model is easy
to understand: the final output is a weighted sum of the input attributes

xj . The magnitude of the weight wj shows the importance of xj and

its sign indicates if the effect is positive or negative. Most functions are

additive in that the output is the sum of the effects of several attributes

where the weights may be positive (enforcing) or negative (inhibiting).

For example, when a customer applies for credit, financial institutions

calculate the applicant’s credit score that is generally written as a sum of

the effects of various attributes; for example, yearly income has a positive

effect (higher incomes increase the score).

10.2 Generalizing the Linear Model 211

In many applications, the linear discriminant is also quite accurate. We

know, for example, that when classes are Gaussian with a shared covari-

ance matrix, the optimal discriminant is linear. The linear discriminant,

however, can be used even when this assumption does not hold, and the

model parameters can be calculated without making any assumptions

on the class densities. We should always use the linear discriminant be-

fore trying a more complicated model to make sure that the additional

complexity is justified.

As always, we formulate the problem of finding a linear discriminant

function as a search for the parameter values that minimize an error

function. In particular, we concentrate on gradient methods for optimiz-

ing a criterion function.

10.2 Generalizing the Linear Model

When a linear model is not flexible enough, we can use the quadraticquadratic

discriminant discriminant function and increase complexity

gi(x|Wi ,wi , wi0) = xTWix +wix +wi0(10.2)

but this approach is O(d2) and we again have the bias/variance dilemma:

the quadratic model, though is more general, requires much larger train-

ing sets and may overfit on small samples.

An equivalent way is to preprocess the input by adding higher-orderhigher-order terms

terms, also called product terms. For example, with two inputs x1 and x2,product terms

we can define new variables

z1 = x1, z2 = x2, z3 = x21, z4 = x22, z5 = x1x2
and take z = [z1, z2, z3, z4, z5]

T as the input. The linear function defined

in the five-dimensional z space corresponds to a nonlinear function in

the two-dimensional x space. Instead of defining a nonlinear function

(discriminant or regression) in the original space, what we do is to define

a suitable nonlinear transformation to a new space where the function

can be written in a linear form.

We write the discriminant as

gi(x) =
k∑
j=1

wjφij(x)(10.3)

where φij(x) are basis functions. Higher-order terms are only one set ofbasis function

possible basis functions; other examples are

212 10 Linear Discrimination

� sin(x1)

� exp(−(x1 −m)2/c)

� exp(−‖x −m‖2/c)

� log(x2)

� 1(x1 > c)

� 1(ax1 + bx2 > c)

wherem,a, b, c are scalars,m is a d-dimensional vector, and 1(b) returns

1 if b is true and returns 0 otherwise. The idea of writing a nonlinear

function as a linear sum of nonlinear basis functions is an old idea and

was originally called potential functions (Aizerman, Braverman, and Ro-potential function

zonoer 1964). Multilayer perceptrons (chapter 11) and radial basis func-

tions (chapter 12) have the advantage that the parameters of the basis

functions can be fine-tuned to the data during learning. In chapter 13,

we discuss support vector machines that use kernel functions built from

such basis functions.

10.3 Geometry of the Linear Discriminant

10.3.1 Two Classes

Let us start with the simpler case of two classes. In such a case, one

discriminant function is sufficient:

g(x) = g1(x)− g2(x)
= (wT

1x +w10)− (wT
2x +w20)

= (w1 −w2)
Tx + (w10 −w20)

= wTx +w0

and we

choose

{
C1 if g(x) > 0

C2 otherwise

This defines a hyperplane where w is the weight vector and w0 is theweight vector

threshold. This latter name comes from the fact that the decision rulethreshold

can be rewritten as follows: choose C1 if wTx > −w0, and choose C2

10.3 Geometry of the Linear Discriminant 213

C1C2

g(x)=w
1
x

1
+w

2
x

2
+w

0
=0

g(x)> 0
g(x)< 0

+

x1

x 2

Figure 10.1 In the two-dimensional case, the linear discriminant is a line that

separates the examples from two classes.

otherwise. The hyperplane divides the input space into two half-spaces:

the decision regionR1 for C1 andR2 for C2. Any x inR1 is on the positive

side of the hyperplane and any x in R2 is on its negative side. When x is

0, g(x) = w0 and we see that if w0 > 0, the origin is on the positive side

of the hyperplane, and if w0 < 0, the origin is on the negative side, and if

w0 = 0, the hyperplane passes through the origin (see figure 10.1).

Take two points x1 and x2 both on the decision surface; that is, g(x1) =
g(x2) = 0, then

wTx1 +w0 = wTx2 +w0

wT (x1 − x2) = 0

and we see that w is normal to any vector lying on the hyperplane. Let us

rewrite x as (Duda, Hart, and Stork 2001)

x = xp + r w

‖w‖
where xp is the normal projection of x onto the hyperplane and r gives

us the distance from x to the hyperplane, negative if x is on the negative

214 10 Linear Discrimination

w

g(x)=0

g(x)> 0 g(x)< 0

x

|w0|/||w||

|g(x)| /|| w||

x1

x 2

Figure 10.2 The geometric interpretation of the linear discriminant.

side, and positive if x is on the positive side (see figure 10.2). Calculating

g(x) and noting that g(xp) = 0, we have

r = g(x)

‖w‖(10.4)

We see then that the distance to origin is

r0 = w0

‖w‖(10.5)

Thus w0 determines the location of the hyperplane with respect to the

origin, and w determines its orientation.

10.3.2 Multiple Classes

When there are K > 2 classes, there are K discriminant functions. When

they are linear, we have

gi(x|wi , wi0) = wT
i x +wi0(10.6)

10.3 Geometry of the Linear Discriminant 215

C1C2

H2

H3

C3

H1
+

+

+

x1

x 2

Figure 10.3 In linear classification, each hyperplane Hi separates the examples

of Ci from the examples of all other classes. Thus for it to work, the classes

should be linearly separable. Dotted lines are the induced boundaries of the

linear classifier.

We are going to talk about learning later on but for now, we assume

that the parameters, wi , wi0, are computed so as to have

gi(x|wi , wi0) =
{
> 0 if x ∈ Ci
≤ 0 otherwise

(10.7)

for all x in the training set. Using such discriminant functions corre-

sponds to assuming that all classes are linearly separable; that is, forlinearly separable

classes each class Ci , there exists a hyperplane Hi such that all x ∈ Ci lie on its

positive side and all x ∈ Cj , j �= i lie on its negative side (see figure 10.3).
During testing, given x, ideally, we should have only one gj(x), j =

1, . . . , K greater than 0 and all others should be less than 0, but this is

not always the case: The positive half-spaces of the hyperplanes may

overlap, or, we may have a case where all gj(x) < 0. These may be taken

as reject cases, but the usual approach is to assign x to the class having

the highest discriminant:

Choose Ci if gi(x) =maxKj=1 gj(x)(10.8)

Remembering that |gi(x)|/‖wi‖ is the distance from the input point to

the hyperplane, assuming that all wi have similar length, this assigns the

216 10 Linear Discrimination

C1C2

H31

C3

H12 +

+

+

H23

x1

x 2

Figure 10.4 In pairwise linear separation, there is a separate hyperplane for

each pair of classes. For an input to be assigned to C1, it should be on the

positive side of H12 and H13 (which is the negative side of H31); we do not care

for the value of H23. In this case, C1 is not linearly separable from other classes

but is pairwise linearly separable.

point to the class (among all gj(x) > 0) to whose hyperplane the point is

most distant. This is called a linear classifier, and geometrically it divideslinear classifier

the feature space into K convex decision regions Ri (see figure 10.3).

10.4 Pairwise Separation

If the classes are not linearly separable, one approach is to divide it into

a set of linear problems. One possibility is pairwise separation of classespairwise separation

(Duda, Hart, and Stork 2001). It uses K(K − 1)/2 linear discriminants,

gij(x), one for every pair of distinct classes (see figure 10.4):

gij(x|wij , wij0) = wT
ijx +wij0

The parameters wij , j �= i are computed during training so as to have

gij(x) =

⎧⎪⎨
⎪⎩
> 0 if x ∈ Ci
≤ 0 if x ∈ Cj
don’t care otherwise

i, j = 1, . . . , K and i �= j(10.9)

that is, if xt ∈ Ck where k �= i, k �= j , then xt is not used during training

of gij(x).

10.5 Parametric Discrimination Revisited 217

During testing, we

choose Ci if ∀j �= i, gij(x) > 0

In many cases, this may not be true for any i and if we do not want

to reject such cases, we can relax the conjunction by using a summation

and choosing the maximum of

gi(x) =
∑
j �=i
gij(x)(10.10)

Even if the classes are not linearly separable, if the classes are pairwise

linearly separable—which is much more likely—pairwise separation can

be used, leading to nonlinear separation of classes (see figure 10.4). This

is another example of breaking down a complex (e.g., nonlinear) problem,

into a set of simpler (e.g., linear) problems. We have already seen decision

trees (chapter 9) that use this idea, and we will see more examples of

this in chapter 17 on combining multiple models, for example, error-

correcting output codes, and mixture of experts, where the number of

linear models is less than O(K2).

10.5 Parametric Discrimination Revisited

In chapter 5, we saw that if the class densities, p(x|Ci), are Gaussian and
share a common covariance matrix, the discriminant function is linear

gi(x) = wT
i x +wi0(10.11)

where the parameters can be analytically calculated as

wi = Σ
−1μi

wi0 = −1
2
μTi Σ

−1μi + logP(Ci)(10.12)

Given a dataset, we first calculate the estimates for μi and Σ and then

plug the estimates,mi , S, in equation 10.12 and calculate the parameters

of the linear discriminant.

Let us again see the special case where there are two classes. We define

y ≡ P(C1|x) and P(C2|x) = 1− y . Then in classification, we

choose C1 if

⎧⎪⎪⎨
⎪⎪⎩
y > 0.5
y

1−y > 1

log y
1−y > 0

and C2 otherwise

218 10 Linear Discrimination

logy/(1 − y) is known as the logit transformation or log odds of y . Inlogit

log odds the case of two normal classes sharing a common covariance matrix, the

log odds is linear:

logit(P(C1|x)) = log
P(C1|x)

1− P(C1|x)
= log

P(C1|x)
P(C2|x)

= log
p(x|C1)
p(x|C2)

+ log
P(C1)
P(C2)

= log
(2π)−d/2|Σ|−1/2 exp[−(1/2)(x − μ1)TΣ−1(x − μ1)]
(2π)−d/2|Σ|−1/2 exp[−(1/2)(x − μ2)TΣ−1(x − μ2)]

+ log
P(C1)
P(C2)

= wTx +w0(10.13)

where

w = Σ
−1(μ1 − μ2)

w0 = −1
2
(μ1 + μ2)TΣ−1(μ1 − μ2)+ log

P(C1)
P(C2)

(10.14)

The inverse of logit

log
P(C1|x)

1− P(C1|x)
= wTx +w0

is the logistic function, also called the sigmoid function (see figure 10.5):logistic

sigmoid

P(C1|x) = sigmoid(wTx +w0) = 1

1+ exp [−(wTx +w0)]
(10.15)

During training, we estimate m1,m2, S and plug these estimates in

equation 10.14 to calculate the discriminant parameters. During testing,

given x, we can either

1. calculate g(x) = wTx +w0 and choose C1 if g(x) > 0, or

2. calculate y = sigmoid(wTx +w0) and choose C1 if y > 0.5,

because sigmoid(0) = 0.5. In this latter case, sigmoid transforms the

discriminant value to a posterior probability. This is valid when there

are two classes and one discriminant; we see in section 10.7 how we can

estimate posterior probabilities for K > 2.

10.6 Gradient Descent

In likelihood-based classification, the parameters were the sufficient statis-

tics of p(x|Ci) and P(Ci), and the method we used to estimate the pa-

rameters is maximum likelihood. In the discriminant-based approach,

10.6 Gradient Descent 219

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.5 The logistic, or sigmoid, function.

the parameters are those of the discriminants, and they are optimized

to minimize the classification error on the training set. When w denotes

the set of parameters and E(w|X) is the error with parameters w on the

given training set X , we look for
w∗ = argmin

w
E(w|X)

In many cases, some of which we will see shortly, there is no analytical

solution and we need to resort to iterative optimization methods, the

most commonly employed being that of gradient descent. When E(w) isgradient descent

a differentiable function of a vector of variables, we have the gradientgradient vector

vector composed of the partial derivatives

∇wE =
[
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wd

]T
and the gradient descent procedure to minimize E starts from a random

w, and at each step, updates w, in the opposite direction of the gradient

Δwi = −η ∂E
∂wi

,∀i(10.16)

wi = wi +Δwi(10.17)

where η is called the stepsize, or learning factor, and determines how

much to move in that direction. Gradient ascent is used to maximize a

220 10 Linear Discrimination

function and goes in the direction of the gradient. When we get to a min-

imum (or maximum), the derivative is 0 and the procedure terminates.

This indicates that the procedure finds the nearest minimum that can

be a local minimum, and there is no guarantee of finding the global mini-

mum unless the function has only one minimum. The use of a good value

for η is also critical; if it is too small, the convergence may be too slow,

and a large value may cause oscillations and even divergence.

Throughout this book, we use gradient methods that are simple and

quite effective. We keep in mind, however, that once a suitable model and

an error function is defined, the optimization of the model parameters to

minimize the error function can be done by using one of many possible

techniques. There are second-order methods and conjugate gradient that

converge faster, at the expense of more memory and computation. More

costly methods like simulated annealing and genetic algorithms allow a

more thorough search of the parameter space and do not depend as much

on the initial point.

10.7 Logistic Discrimination

10.7.1 Two Classes

In logistic discrimination, we do not model the class-conditional densities,logistic

discrimination p(x|Ci), but rather their ratio. Let us again start with two classes and

assume that the log likelihood ratio is linear:

log
p(x|C1)
p(x|C2)

= wTx +wo
0(10.18)

This indeed holds when the class-conditional densities are normal (equa-

tion 10.13). But logistic discrimination has a wider scope of applicability;

for example, x may be composed of discrete attributes or may be a mix-

ture of continuous and discrete attributes.

Using Bayes’ rule, we have

logit(P(C1|x)) = log
P(C1|x)

1− P(C1|x)
= log

p(x|C1)
p(x|C2)

+ log
P(C1)
P(C2)

= wTx +w0(10.19)

10.7 Logistic Discrimination 221

where

w0 = wo
0 + log

P(C1)
P(C2)

(10.20)

Rearranging terms, we get the sigmoid function again:

y = P̂ (C1|x) = 1

1+ exp[−(wTx +w0)]
(10.21)

as our estimator of P(C1|x).
Let us see how we can learn w and w0. We are given a sample of two

classes, X = {xt , r t}, where r t = 1 if x ∈ C1 and r t = 0 if x ∈ C2.
We assume r t , given xt , is Bernoulli with probability yt ≡ P(C1|xt) as
calculated in equation 10.21:

r t |xt ∼ Bernoulli(yt)

Here, we see the difference from the likelihood-based methods where

we modeled p(x|Ci); in the discriminant-based approach, we model di-

rectly r|x. The sample likelihood is

l(w, w0|X) =
∏
t

(yt)(r
t)(1− yt)(1−r t)(10.22)

We know that when we have a likelihood function to maximize, we can

always turn it into an error function to be minimized as E = − log l, and
in our case, we have cross-entropy:cross-entropy

E(w, w0|X) = −
∑
t

r t logyt + (1− r t) log(1− yt)(10.23)

Because of the nonlinearity of the sigmoid function, we cannot solve di-

rectly and we use gradient descent to minimize cross-entropy, equivalent

to maximizing the likelihood or the log likelihood. If y = sigmoid(a) =
1/(1+ exp(−a)), its derivative is given as
dy

da
= y(1− y)

and we get the following update equations:

Δwj = −η ∂E

∂wj
= η

∑
t

(
r t

yt
− 1− r t
1− yt

)
yt(1− yt)xtj

= η
∑
t

(r t − yt)xtj , j = 1, . . . , d

Δw0 = −η ∂E

∂w0
= η

∑
t

(r t − yt)(10.24)

222 10 Linear Discrimination

For j = 0, . . . , d

wj ←rand(-0.01,0.01)
Repeat

For j = 0, . . . , d

Δwj ← 0

For t = 1, . . . , N

o← 0

For j = 0, . . . , d

o← o+wjxtj
y ← sigmoid(o)

For j = 0, . . . , d

Δwj ← Δwj + (r t − y)xtj
For j = 0, . . . , d

wj ← wj + ηΔwj
Until convergence

Figure 10.6 Logistic discrimination algorithm implementing gradient descent

for the single output case with two classes. For w0, we assume that there is an

extra input x0, which is always +1: xt0 ≡ +1,∀t .

It is best to initialize wj with random values close to 0; generally they

are drawn uniformly from the interval [−0.01,0.01]. The reason for this

is that if the initial wj are large in magnitude, the weighted sum may

also be large and may saturate the sigmoid. We see from figure 10.5

that if the initial weights are close to 0, the sum will stay in the middle

region where the derivative is nonzero and an update can take place. If

the weighted sum is large in magnitude (smaller than −5 or larger than

+5), the derivative of the sigmoid will be almost 0 and weights will not

be updated.

Pseudocode is given in figure 10.6. We see an example in figure 10.7

where the input is one-dimensional. Both the line wx + w0 and its value

after the sigmoid are shown as a function of learning iterations. We see

that to get outputs of 0 and 1, the sigmoid hardens, which is achieved by

increasing the magnitude of w , or ‖w‖ in the multivariate case.
Once training is complete and we have the final w and w0, during test-

ing, given xt , we calculate yt = sigmoid(wTxt + w0) and we choose C1
if yt > 0.5 and choose C2 otherwise. This implies that to minimize the

number of misclassifications, we do not need to continue learning un-

10.7 Logistic Discrimination 223

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

P
(C

o|x
)

10

100

1000

Figure 10.7 For a univariate two-class problem (shown with ‘◦’ and ‘×’), the
evolution of the line wx + w0 and the sigmoid output after 10, 100, and 1,000

iterations over the sample.

til all yt are 0 or 1, but only until yt are less than or greater than 0.5,

that is, on the correct side of the decision boundary. If we do continue

training beyond this point, cross-entropy will continue decreasing (|wj |
will continue increasing to harden the sigmoid), but the number of mis-

classifications will not decrease. Generally, we continue training until the

number of misclassifications does not decrease (which will be 0 if the

classes are linearly separable). Actually stopping early before we have 0early stopping

training error is a form of regularization. Because we start with weights

almost 0 and they move away as training continues, stopping early cor-

responds to a model with more weights close to 0 and effectively fewer

parameters.

Note that though we assumed the log ratio of the class densities are

linear to derive the discriminant, we estimate directly the posterior and

never explicitly estimate p(x|Ci) or P(Ci).

224 10 Linear Discrimination

10.7.2 Multiple Classes

Let us now generalize to K > 2 classes. We take one of the classes, for

example, CK , as the reference class and assume that

log
p(x|Ci)
p(x|CK)

= wT
i x +wo

i0(10.25)

Then we have

P(Ci|x)
P(CK |x)

= exp[wT
i x +wi0](10.26)

with wi0 = wo
i0 + logP(Ci)/P(CK).

We see that

K−1∑
i=1

P(Ci|x)
P(CK|x)

= 1− P(CK|x)
P(CK|x)

=
K−1∑
i=1

exp[wT
i x +wi0]

⇒ P(CK|x) =
1

1+∑K−1
i=1 exp[wT

i x +wi0]
(10.27)

and also that

P(Ci|x)
P(CK |x)

= exp[wT
i x +wi0]

⇒ P(Ci|x) =
exp[wT

i x +wi0]
1+∑K−1

j=1 exp[w
T
j x +wj0]

, i = 1, . . . , K − 1(10.28)

To treat all classes uniformly, we can write

yi = P̂(Ci|x) =
exp[wT

i x +wi0]∑K
j=1 exp[w

T
j x +wj0]

, i = 1, . . . , K(10.29)

which is called the softmax function (Bridle 1990). If the weighted sumsoftmax

for one class is sufficiently larger than for the others, after it is boosted

through exponentiation and normalization, its corresponding yi will be

close to 1 and the others will be close to 0. Thus it works like taking a

maximum, except that it is differentiable; hence the name softmax. Soft-

max also guarantees that
∑
i yi = 1.

Let us see how we can learn the parameters. In this case of K > 2

classes, each sample point is a multinomial trial with one draw; that is,

rt|xt ∼ Multk(1,yt), where y
t
i ≡ P(Ci|xt). The sample likelihood is

l({wi , wi0}i|X) =
∏
t

∏
i

(yti)
r ti(10.30)

10.7 Logistic Discrimination 225

and the error function is again cross-entropy:

E({wi , wi0}i|X) = −
∑
t

∑
i

r ti logy
t
i(10.31)

We again use gradient descent. If yi = exp(ai)/
∑
j exp(aj), we have

∂yi

∂aj
= yi(δij − yj)(10.32)

where δij is the Kronecker delta, which is 1 if i = j and 0 if i �= j (exer-

cise 3). Given that
∑
i r

t
i = 1, we have the following update equations, for

j = 1, . . . , K

Δwj = η
∑
t

∑
i

r ti
yti
yti (δij − ytj)xt

= η
∑
t

∑
i

r ti (δij − ytj)xt

= η
∑
t

⎡
⎣∑

i

r ti δij − ytj
∑
i

r ti

⎤
⎦xt

= η
∑
t

(r tj − ytj)xt

Δwj0 = η
∑
t

(r tj − ytj)(10.33)

Note that because of the normalization in softmax, wj and wj0 are af-

fected not only by xt ∈ Cj but also by xt ∈ Ci , i �= j . The discriminants

are updated so that the correct class has the highest weighted sum af-

ter softmax, and the other classes have their weighted sums as low as

possible. Pseudocode is given in figure 10.8. For a two-dimensional ex-

ample with three classes, the contour plot is given in figure 10.9, and the

discriminants and the posterior probabilities in figure 10.10.

During testing, we calculate all yk, k = 1, . . . , K and choose Ci if yi =
maxk yk. Again we do not need to continue training to minimize cross-

entropy as much as possible; we train only until the correct class has

the highest weighted sum, and therefore we can stop training earlier by

checking the number of misclassifications.

When data are normally distributed, the logistic discriminant has a

comparable error rate to the parametric, normal-based linear discrimi-

nant (McLachlan 1992). Logistic discrimination can still be used when the

class-conditional densities are nonnormal or when they are not unimodal,

as long as classes are linearly separable.

226 10 Linear Discrimination

For i = 1, . . . , K, For j = 0, . . . , d, wij ← rand(−0.01,0.01)
Repeat

For i = 1, . . . , K, For j = 0, . . . , d, Δwij ← 0

For t = 1, . . . , N

For i = 1, . . . , K

oi ← 0

For j = 0, . . . , d

oi ← oi +wijxtj
For i = 1, . . . , K

yi ← exp(oi)/
∑
k exp(ok)

For i = 1, . . . , K

For j = 0, . . . , d

Δwij ← Δwij + (r ti − yi)xtj
For i = 1, . . . , K

For j = 0, . . . , d

wij ← wij + ηΔwij
Until convergence

Figure 10.8 Logistic discrimination algorithm implementing gradient descent

for the case with K > 2 classes. For generality, we take xt0 ≡ 1,∀t .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x
1

x 2

Figure 10.9 For a two-dimensional problem with three classes, the solution

found by logistic discrimination. Thin lines are where gi(x) = 0, and the thick

line is the boundary induced by the linear classifier choosing the maximum.

10.7 Logistic Discrimination 227

−20

−10

0

10

20

x
1

x
2

g i(x
1,x

2)

0

0.2

0.4

0.6

0.8

1

x
1

x
2

P
(C

i|x
1,x

2)

Figure 10.10 For the same example in figure 10.9, the linear discriminants (top),

and the posterior probabilities after the softmax (bottom).

228 10 Linear Discrimination

The ratio of class-conditional densities is of course not restricted to be

linear (Anderson 1982; McLachlan 1992). Assuming a quadratic discrimi-

nant, we have

log
p(x|Ci)
p(x|CK)

= xTWix +wT
i x +wi0(10.34)

corresponding to and generalizing parametric discrimination with mul-

tivariate normal class-conditionals having different covariance matrices.

When d is large, just as we can simplify (regularize) Σi , we can equally do

it on Wi by taking only its leading eigenvectors into account.

As discussed in section 10.2, any specified function of the basic vari-

ables can be included as x-variates. One can, for example, write the dis-

criminant as a linear sum of nonlinear basis functions

log
p(x|Ci)
p(x|CK)

= wT
i φ(x)+wi0(10.35)

where φ(·) are the basis functions, which can be viewed as transformed

variables. In neural network terminology, this is called a multilayer per-

ceptron (chapter 11), and sigmoid is the most popular basis function.

When a Gaussian basis function is used, the model is called radial ba-

sis functions (chapter 12). We can even use a completely nonparametric

approach, for example, Parzen windows (chapter 8).

10.8 Discrimination by Regression

In regression, the probabilistic model is

r t = yt + ε(10.36)

where ε ∼ N (0, σ 2). If r t ∈ {0,1}, yt can be constrained to lie in this

range using the sigmoid function. Assuming a linear model and two

classes, we have

yt = sigmoid(wTxt +w0) = 1

1+ exp[−(wTxt +w0)]
(10.37)

Then the sample likelihood in regression, assuming r|x ∼N (y,σ 2), is

l(w, w0|X) =
∏
t

1√
2πσ

exp

[
−(r

t − yt)2
2σ 2

]
(10.38)

10.8 Discrimination by Regression 229

Maximizing the log likelihood is minimizing the sum of square errors:

E(w, w0|X) = 1

2

∑
t

(r t − yt)2(10.39)

Using gradient descent, we get

Δw = η
∑
t

(r t − yt)yt(1− yt)xt

Δw0 = η
∑
t

(r t − yt)yt(1− yt)(10.40)

This method can also be used when there are K > 2 classes. The prob-

abilistic model is

r t = yt + ε(10.41)

where ε ∼NK(0, σ 2IK). Assuming a linear model for each class, we have

yti = sigmoid(wT
i x

t +wi0) = 1

1+ exp[−(wT
i x

t +wi0)]
(10.42)

Then the sample likelihood is

l({wi , wi0}i|X) =
∏
t

1

(2π)K/2|Σ|1/2 exp
[
−‖r

t − yt‖2
2σ 2

]
(10.43)

and the error function is

E({wi , wi0}i|X) = 1

2

∑
t

‖rt − yt‖2 = 1

2

∑
t

∑
i

(r ti − yti)2(10.44)

The update equations for i = 1, . . . , K, are

Δwi = η
∑
t

(r ti − yti)yti (1− yti)xt

Δwi0 = η
∑
t

(r ti − yti)yti (1− yti)(10.45)

But note that in doing so, we do not make use of the information that

only one of yi needs to be 1 and all others are 0, or that
∑
i yi = 1. The

softmax function of equation 10.29 allows us to incorporate this extra

information we have due to the outputs’ estimating class posterior prob-

abilities. Using sigmoid outputs in K > 2 case, we treat yi as if they are

independent functions.

Note also that for a given class, if we use the regression approach, there

will be updates until the right output is 1 and all others are 0. This is not

230 10 Linear Discrimination

in fact necessary because during testing, we are just going to choose the

maximum anyway; it is enough to train only until the right output is

larger than others, which is exactly what the softmax function does.

So this approach with multiple sigmoid outputs is more appropriate

when the classes are not mutually exclusive and exhaustive. That is, for

an xt , all r ti may be 0; namely, x
t does not belong to any of the classes, or

more than one r ti may be 1, when classes overlap.

10.9 Notes

The linear discriminant, due to its simplicity, is the classifier most used

in pattern recognition (Duda, Hart, and Stork 2001; McLachlan 1992).

We discussed the case of Gaussian distributions with a common covari-

ance matrix in chapter 4 and Fisher’s linear discriminant in chapter 6,

and in this chapter we discuss the logistic discriminant. In chapter 11,

we discuss the perceptron that is the neural network implementation of

the linear discriminant. In chapter 13, we will discuss support vector

machines, another type of linear discriminant.

Logistic discrimination is covered in more detail in Anderson 1982 and

in McLachlan 1992. Logistic (sigmoid) is the inverse of logit, which is the

canonical link in case of Bernoulli samples. Softmax is its generalization

to multinomial samples. More information on such generalized lineargeneralized linear

models models is given in McCullogh and Nelder 1989.

Generalizing linear models by using nonlinear basis functions is a very

old idea. We will discuss multilayer perceptrons (chapter 11) and radial

basis functions (chapter 12) where the parameters of the basis functions

can also be learned from data while learning the discriminant. Support

vector machines (chapter 13) use kernel functions built from such basis

functions.

10.10 Exercises

1. For each of the following basis functions, describe where it is nonzero:

a. sin(x1)

b. exp(−(x1 − a)2/c)
c. exp(−‖x − a‖2/c)
d. log(x2)

10.11 References 231

e. 1(x1 > c)

f. 1(ax1 + bx2 > c)
2. For the two-dimensional case of figure 10.2, show equations 10.4 and 10.5.

3. Show that the derivative of the softmax, yi = exp(ai)/
∑
j exp(aj), is ∂yi/∂aj =

yi(δij − yj), where δij is 1 if i = j and 0 otherwise.

4. With K = 2, show that using two softmax outputs is equal to using one sig-

moid output.

5. How can we learn Wi in equation 10.34?

6. In using quadratic (or higher-order) discriminants as in equation 10.34, how

can we keep variance under control?

7. What is the implication of the use of a single η for all xj in gradient descent?

8. In the univariate case for classification as in figure 10.7, what do w and w0

correspond to?

9. Let us say for univariate x, x ∈ (2,4) belong to C1 and x < 2 or x > 4 belong

to C2. How can we separate the two classes using a linear discriminant?

10.11 References

Aizerman, M. A., E. M. Braverman, and L. I. Rozonoer. 1964. “Theoretical Foun-

dations of the Potential Function Method in Pattern Recognition Learning.”

Automation and Remote Control 25: 821–837.

Anderson, J. A. 1982. “Logistic Discrimination.” In Handbook of Statistics,

Vol. 2, Classification, Pattern Recognition and Reduction of Dimensionality,

ed. P. R. Krishnaiah and L. N. Kanal, 169–191. Amsterdam: North Holland.

Bridle, J. S. 1990. “Probabilistic Interpretation of Feedforward Classification

Network Outputs with Relationships to Statistical Pattern Recognition.” In

Neurocomputing: Algorithms, Architectures and Applications, ed. F. Fogelman-

Soulie and J. Herault, 227–236. Berlin: Springer.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2nd ed.

New York: Wiley.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. London:

Chapman and Hall.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition.

New York: Wiley.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer.

11 Multilayer Perceptrons

The multilayer perceptron is an artificial neural network structure

and is a nonparametric estimator that can be used for classification

and regression. We discuss the backpropagation algorithm to train

a multilayer perceptron for a variety of applications.

11.1 Introduction

Artificial neural network models, one of which is the perceptron

we discuss in this chapter, take their inspiration from the brain. There

are cognitive scientists and neuroscientists whose aim is to understand

the functioning of the brain (Posner 1989; Thagard 2005), and toward

this aim, build models of the natural neural networks in the brain and

make simulation studies.

However, in engineering, our aim is not to understand the brain per

se, but to build useful machines. We are interested in artificial neuralartificial neural

networks networks because we believe that they may help us build better computer

systems. The brain is an information processing device that has some

incredible abilities and surpasses current engineering products in many

domains—for example, vision, speech recognition, and learning, to name

three. These applications have evident economic utility if implemented

on machines. If we can understand how the brain performs these func-

tions, we can define solutions to these tasks as formal algorithms and

implement them on computers.

The human brain is quite different from a computer. Whereas a com-

puter generally has one processor, the brain is composed of a very large

(1011) number of processing units, namely, neurons, operating in parallel.neurons

Though the details are not known, the processing units are believed to be

234 11 Multilayer Perceptrons

much simpler and slower than a processor in a computer. What also

makes the brain different, and is believed to provide its computational

power, is the large connectivity. Neurons in the brain have connections,

called synapses, to around 104 other neurons, all operating in parallel.synapses

In a computer, the processor is active and the memory is separate and

passive, but it is believed that in the brain, both the processing and mem-

ory are distributed together over the network; processing is done by the

neurons, and the memory is in the synapses between the neurons.

11.1.1 Understanding the Brain

According to Marr (1982), understanding an information processing sys-

tem has three levels, called the levels of analysis:levels of analysis

1. Computational theory corresponds to the goal of computation and an

abstract definition of the task.

2. Representation and algorithm is about how the input and the output

are represented and about the specification of the algorithm for the

transformation from the input to the output.

3. Hardware implementation is the actual physical realization of the sys-

tem.

One example is sorting: The computational theory is to order a given

set of elements. The representation may use integers, and the algorithm

may be Quicksort. After compilation, the executable code for a particular

processor sorting integers represented in binary is one hardware imple-

mentation.

The idea is that for the same computational theory, there may be mul-

tiple representations and algorithms manipulating symbols in that repre-

sentation. Similarly, for any given representation and algorithm, there

may be multiple hardware implementations. We can use one of vari-

ous sorting algorithms, and even the same algorithm can be compiled

on computers with different processors and lead to different hardware

implementations.

To take another example, ‘6’, ‘VI’, and ‘110’ are three different repre-

sentations of the number six. There is a different algorithm for addition

depending on the representation used. Digital computers use binary rep-

resentation and have circuitry to add in this representation, which is one

11.1 Introduction 235

particular hardware implementation. Numbers are represented differ-

ently, and addition corresponds to a different set of instructions on an

abacus, which is another hardware implementation. When we add two

numbers in our head, we use another representation and an algorithm

suitable to that representation, which is implemented by the neurons. But

all these different hardware implementations—for example, us, abacus,

digital computer—implement the same computational theory, addition.

The classic example is the difference between natural and artificial fly-

ing machines. A sparrow flaps its wings; a commercial airplane does not

flap its wings but uses jet engines. The sparrow and the airplane are

two hardware implementations built for different purposes, satisfying

different constraints. But they both implement the same theory, which is

aerodynamics.

The brain is one hardware implementation for learning or pattern recog-

nition. If from this particular implementation, we can do reverse engi-

neering and extract the representation and the algorithm used, and if

from that in turn, we can get the computational theory, we can then use

another representation and algorithm, and in turn a hardware implemen-

tation more suited to the means and constraints we have. One hopes our

implementation will be cheaper, faster, and more accurate.

Just as the initial attempts to build flying machines looked very much

like birds until we discovered aerodynamics, it is also expected that the

first attempts to build structures possessing brain’s abilities will look

like the brain with networks of large numbers of processing units, until

we discover the computational theory of intelligence. So it can be said

that in understanding the brain, when we are working on artificial neural

networks, we are at the representation and algorithm level.

Just as the feathers are irrelevant to flying, in time we may discover

that neurons and synapses are irrelevant to intelligence. But until that

time there is one other reason why we are interested in understanding

the functioning of the brain, and that is related to parallel processing.

11.1.2 Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of processors have

been commercially available. The software for such parallel architectures,

however, has not advanced as quickly as hardware. The reason for this

is that almost all our theory of computation up to that point was based

236 11 Multilayer Perceptrons

on serial, one-processor machines. We are not able to use the parallel

machines we have efficiently because we cannot program them efficiently.

There are mainly two paradigms for parallel processing: In Single In-parallel processing

struction Multiple Data (SIMD) machines, all processors execute the same

instruction but on different pieces of data. In Multiple Instruction Mul-

tiple Data (MIMD) machines, different processors may execute different

instructions on different data. SIMD machines are easier to program be-

cause there is only one program to write. However, problems rarely have

such a regular structure that they can be parallelized over a SIMD ma-

chine. MIMDmachines are more general, but it is not an easy task to write

separate programs for all the individual processors; additional problems

are related to synchronization, data transfer between processors, and so

forth. SIMD machines are also easier to build, and machines with more

processors can be constructed if they are SIMD. In MIMD machines, pro-

cessors are more complex, and a more complex communication network

should be constructed for the processors to exchange data arbitrarily.

Assume now that we can have machines where processors are a lit-

tle bit more complex than SIMD processors but not as complex as MIMD

processors. Assume we have simple processors with a small amount of

local memory where some parameters can be stored. Each processor im-

plements a fixed function and executes the same instructions as SIMD

processors; but by loading different values into the local memory, they

can be doing different things and the whole operation can be distributed

over such processors. We will then have what we can call Neural Instruc-

tion Multiple Data (NIMD) machines, where each processor corresponds

to a neuron, local parameters correspond to its synaptic weights, and the

whole structure is a neural network. If the function implemented in each

processor is simple and if the local memory is small, then many such

processors can be fit on a single chip.

The problem now is to distribute a task over a network of such proces-

sors and to determine the local parameter values. This is where learning

comes into play: We do not need to program such machines and deter-

mine the parameter values ourselves if such machines can learn from

examples.

Thus, artificial neural networks are a way to make use of the parallel

hardware we can build with current technology and—thanks to learning—

they need not be programmed. Therefore, we also save ourselves the

effort of programming them.

In this chapter, we discuss such structures and how they are trained.

11.2 The Perceptron 237

Figure 11.1 Simple perceptron. xj , j = 1, . . . , d are the input units. x0 is the

bias unit that always has the value 1. y is the output unit. wj is the weight of

the directed connection from input xj to the output.

Keep in mind that the operation of an artificial neural network is a math-

ematical function that can be implemented on a serial computer—as it

generally is—and training the network is not much different from statisti-

cal techniques that we have discussed in the previous chapters. Thinking

of this operation as being carried out on a network of simple processing

units is meaningful only if we have the parallel hardware, and only if the

network is so large that it cannot be simulated fast enough on a serial

computer.

11.2 The Perceptron

The perceptron is the basic processing element. It has inputs that mayperceptron

come from the environment or may be the outputs of other perceptrons.

Associated with each input, xj ∈ 	, j = 1, . . . , d, is a connection weight,connection weight

or synaptic weight wj ∈ 	, and the output, y , in the simplest case is asynaptic weight

weighted sum of the inputs (see figure 11.1):

y =
d∑
j=1

wjxj +w0(11.1)

w0 is the intercept value to make the model more general; it is generally

modeled as the weight coming from an extra bias unit, x0, which is alwaysbias unit

238 11 Multilayer Perceptrons

+1. We can write the output of the perceptron as a dot product
y = wTx(11.2)

where w = [w0, w1, . . . , wd]
T and x = [1, x1, . . . , xd]T are augmented vec-

tors to include also the bias weight and input.

During testing, with given weights, w, for input x, we compute the

output y . To implement a given task, we need to learn the weights w, the

parameters of the system, such that correct outputs are generated given

the inputs.

When d = 1 and x is fed from the environment through an input unit,

we have

y = wx+w0

which is the equation of a line with w as the slope and w0 as the inter-

cept. Thus this perceptron with one input and one output can be used

to implement a linear fit. With more than one input, the line becomes a

(hyper)plane, and the perceptron with more than one input can be used

to implement multivariate linear fit. Given a sample, the parameters wj
can be found by regression (see section 5.8).

The perceptron as defined in equation 11.1 defines a hyperplane and as

such can be used to divide the input space into two: the half-space where

it is positive and the half-space where it is negative (see chapter 10). By

using it to implement a linear discriminant function, the perceptron can

separate two classes by checking the sign of the output. If we define s(·)
as the threshold functionthreshold function

s(a) =
{

1 if a > 0

0 otherwise
(11.3)

then we can

choose

{
C1 if s(wTx) > 0

C2 otherwise

Remember that using a linear discriminant assumes that classes are

linearly separable. That is to say, it is assumed that a hyperplanewTx = 0

can be found that separates xt ∈ C1 and xt ∈ C2. If at a later stage we
need the posterior probability—for example, to calculate risk—we need

to use the sigmoid function at the output as

o = wTx

y = sigmoid(o) = 1

1+ exp[−wTx]
(11.4)

11.2 The Perceptron 239

Figure 11.2 K parallel perceptrons. xj , j = 0, . . . , d are the inputs and yi, i =
1, . . . , K are the outputs. wij is the weight of the connection from input xj to

output yi . Each output is a weighted sum of the inputs. When used for K-class

classification problem, there is a postprocessing to choose the maximum, or

softmax if we need the posterior probabilities.

When there are K > 2 outputs, there are K perceptrons, each of which

has a weight vector wi (see figure 11.2)

yi =
d∑
j=1

wijxj +wi0 = wT
i x

y = Wx(11.5)

where wij is the weight from input xj to output yi . W is the K × (d + 1)

weight matrix of wij whose rows are the weight vectors of the K percep-

trons. When used for classification, during testing, we

choose Ci if yi =max
k
yk

In the case of a neural network, the value of each perceptron is a local

function of its inputs and its synaptic weights. However, in classification,

if we need the posterior probabilities (instead of just the code of the

winner class) and use the softmax, we also need the values of the other

outputs. So, to implement this as a neural network, we can see this as

a two-stage process, where the first stage calculates the weighted sums,

and the second stage calculates the softmax values; but we still denote

240 11 Multilayer Perceptrons

this as a single layer of output units:

oi = wT
i x

yi = expoi∑
k expok

(11.6)

Remember that by defining auxiliary inputs, the linear model can also

be used for polynomial approximation; for example, define x3 = x21, x4 =
x22, x5 = x1x2 (section 10.2). The same can also be used with perceptrons

(Durbin and Rumelhart 1989). In section 11.5, we see multilayer percep-

trons where such nonlinear functions are learned from data in a “hidden”

layer instead of being assumed a priori.

Any of the methods discussed in chapter 10 on linear discrimination

can be used to calculate wi , i = 1, . . . , K offline and then plugged into the

network. These include parametric approach with a common covariance

matrix, logistic discrimination, discrimination by regression, and support

vector machines. In some cases, we do not have the whole sample at hand

when training starts, and we need to iteratively update parameters as new

examples arrive; we discuss this case of online learning in section 11.3.

Equation 11.5 defines a linear transformation from a d-dimensional

space to a K-dimensional space and can also be used for dimensional-

ity reduction if K < d. One can use any of the methods of chapter 6 to

calculate W offline and then use the perceptrons to implement the trans-

formation, for example, PCA. In such a case, we have a two-layer network

where the first layer of perceptrons implements the linear transformation

and the second layer implements the linear regression or classification in

the new space. We note that because both are linear transformations,

they can be combined and written down as a single layer. We will see the

more interesting case where the first layer implements nonlinear dimen-

sionality reduction in section 11.5.

11.3 Training a Perceptron

The perceptron defines a hyperplane, and the neural network perceptron

is just a way of implementing the hyperplane. Given a data sample, the

weight values can be calculated offline and then when they are plugged

in, the perceptron can be used to calculate the output values.

In training neural networks, we generally use online learning where we

are not given the whole sample, but we are given instances one by one

and would like the network to update its parameters after each instance,

11.3 Training a Perceptron 241

adapting itself slowly in time. Such an approach is interesting for a num-

ber of reasons:

1. It saves us the cost of storing the training sample in an external mem-

ory and storing the intermediate results during optimization. An ap-

proach like support vector machines (chapter 13) may be quite costly

with large samples, and in some applications, we may prefer a simpler

approach where we do not need to store the whole sample and solve a

complex optimization problem on it.

2. The problem may be changing in time, which means that the sample

distribution is not fixed, and a training set cannot be chosen a priori.

For example, we may be implementing a speech recognition system

that adapts itself to its user.

3. There may be physical changes in the system. For example, in a robotic

system, the components of the system may wear out, or sensors may

degrade.

In online learning, we do not write the error function over the wholeonline learning

sample but on individual instances. Starting from random initial weights,

at each iteration we adjust the parameters a little bit to minimize the

error, without forgetting what we have previously learned. If this error

function is differentiable, we can use gradient descent.

For example, in regression the error on the single instance pair with

index t , (xt , r t), is

Et(w|xt , r t) = 1

2
(r t − yt)2 = 1

2
[r t − (wTxt)]2

and for j = 0, . . . , d, the online update is

Δwt
j = η(rt − yt)xtj(11.7)

where η is the learning factor, which is gradually decreased in time for

convergence. This is known as stochastic gradient descent.stochastic

gradient descent Similarly, update rules can be derived for classification problems using

logistic discrimination where updates are done after each pattern, instead

of summing them and doing the update after a complete pass over the

training set. With two classes, for the single instance (xt , r t) where r ti = 1

if xt ∈ C1 and r ti = 0 if xt ∈ C2, the single output is

yt = sigmoid(wTxt)

242 11 Multilayer Perceptrons

and the cross-entropy is

Et(w|xt , r t) = −r t logyt − (1− r t) log(1− yt)

Using gradient descent, we get the following online update rule for

j = 0, . . . , d:

Δwt
j = η(rt − yt)xtj(11.8)

When there are K > 2 classes, for the single instance (xt , r t) where

r ti = 1 if xt ∈ Ci and 0 otherwise, the outputs are

yti =
expwT

i x
t∑

k expw
T
kx

t

and the cross-entropy is

Et({wi}i|xt , r t) = −
∑
i

r ti logy
t
i

Using gradient descent, we get the following online update rule, for

i = 1, . . . , K, j = 0, . . . , d:

Δwt
ij = η(rti − yti)xtj(11.9)

which is the same as the equations we saw in section 10.7 except that we

do not sum over all of the instances but update after a single instance.

The pseudocode of the algorithm is given in figure 11.3, which is the

online version of figure 10.8.

Both equations 11.7 and 11.9 have the form

Update = LearningFactor· (DesiredOutput − ActualOutput) · Input(11.10)

Let us try to get some insight into what this does. First, if the actual

output is equal to the desired output, no update is done. When it is

done, the magnitude of the update increases as the difference between

the desired output and the actual output increases. We also see that if

the actual output is less than the desired output, update is positive if

the input is positive and negative if the input is negative. This has the

effect of increasing the actual output and decreasing the difference. If

the actual output is greater than the desired output, update is negative if

the input is positive and positive if the input is negative; this decreases

the actual output and makes it closer to the desired output.

11.4 Learning Boolean Functions 243

For i = 1, . . . , K

For j = 0, . . . , d

wij ← rand(−0.01,0.01)
Repeat

For all (xt , r t) ∈ X in random order
For i = 1, . . . , K

oi ← 0

For j = 0, . . . , d

oi ← oi +wijxtj
For i = 1, . . . , K

yi ← exp(oi)/
∑
k exp(ok)

For i = 1, . . . , K

For j = 0, . . . , d

wij ← wij + η(rti − yi)xtj
Until convergence

Figure 11.3 Perceptron training algorithm implementing stochastic online gra-

dient descent for the case with K > 2 classes. This is the online version of the

algorithm given in figure 10.8.

When an update is done, its magnitude depends also on the input. If

the input is close to 0, its effect on the actual output is small and there-

fore its weight is also updated by a small amount. The greater an input,

the greater the update of its weight.

Finally, the magnitude of the update depends on the learning factor, η.

If it is too large, updates depend too much on recent instances; it is as if

the system has a very short memory. If this factor is small, many updates

may be needed for convergence. In section 11.8.1, we discuss methods to

speed up convergence.

11.4 Learning Boolean Functions

In a Boolean function, the inputs are binary and the output is 1 if the

corresponding function value is true and 0 otherwise. Therefore, it can

be seen as a two-class classification problem. As an example, for learning

to AND two inputs, the table of inputs and required outputs is given in

table 11.1. An example of a perceptron that implements AND and its

244 11 Multilayer Perceptrons

Table 11.1 Input and output for the AND function.

x1 x2 r

0 0 0

0 1 0

1 0 0

1 1 1

x0=+1 x1 x2

y

-1.5
+1+1

x1

x2

+

(0,0)

(1,1)

(1,0)

(0,1)

1.5

1.5

Figure 11.4 The perceptron that implements AND and its geometric interpre-

tation.

geometric interpretation in two dimensions is given in figure 11.4. The

discriminant is

y = s(x1 + x2 − 1.5)

that is, x = [1, x1, x2]T andw = [−1.5,1,1]T . Note that y = s(x1+x2−1.5)
satisfies the four constraints given by the definition of AND function in

table 11.1, for example, for x1 = 1, x2 = 0, y = s(−0.5) = 0. Similarly it

can be shown that y = s(x1 + x2 − 0.5) implements OR.

Though Boolean functions like AND and OR are linearly separable and

are solvable using the perceptron, certain functions like XOR are not. The

table of inputs and required outputs for XOR is given in table 11.2. As

can be seen in figure 11.5, the problem is not linearly separable. This

can also be proved by noting that there are no w0, w1, and w2 values that

11.5 Multilayer Perceptrons 245

Table 11.2 Input and output for the XOR function.

x1 x2 r

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Figure 11.5 XOR problem is not linearly separable. We cannot draw a line where

the empty circles are on one side and the filled circles on the other side.

satisfy the following set of inequalities:

w0 ≤ 0

w2+ w0 > 0

w1+ w0 > 0

w1+ w2+ w0 ≤ 0

This result should not be very surprising to us since the VC dimension

of a line (in two dimensions) is three. With two binary inputs there are

four cases, and thus we know that there exist problems with two inputs

that are not solvable using a line; XOR is one of them.

11.5 Multilayer Perceptrons

A perceptron that has a single layer of weights can only approximate lin-

ear functions of the input and cannot solve problems like the XOR, where

the discrimininant to be estimated is nonlinear. Similarly, a perceptron

246 11 Multilayer Perceptrons

cannot be used for nonlinear regression. This limitation does not apply

to feedforward networks with intermediate or hidden layers between thehidden layers

input and the output layers. If used for classification, such multilayermultilayer

perceptrons perceptrons (MLP) can implement nonlinear discriminants and, if used

for regression, can approximate nonlinear functions of the input.

Input x is fed to the input layer (including the bias), the “activation”

propagates in the forward direction, and the values of the hidden units

zh are calculated (see figure 11.6). Each hidden unit is a perceptron by

itself and applies the nonlinear sigmoid function to its weighted sum:

zh = sigmoid(wT
hx) =

1

1+ exp
[
−
(∑d

j=1whjxj +wh0
)] , h = 1, . . . ,H(11.11)

The output yi are perceptrons in the second layer taking the hidden

units as their inputs

yi = vTi z =
H∑
h=1

vihzh + vi0(11.12)

where there is also a bias unit in the hidden layer, which we denote by z0,

and vi0 are the bias weights. The input layer of xj is not counted since

no computation is done there and when there is a hidden layer, this is a

two-layer network.

As usual, in a regression problem, there is no nonlinearity in the output

layer in calculating y . In a two-class discrimination task, there is one sig-

moid output unit and when there are K > 2 classes, there are K outputs

with softmax as the output nonlinearity.

If the hidden units’ outputs were linear, the hidden layer would be of no

use: linear combination of linear combinations is another linear combi-

nation. Sigmoid is the continuous, differentiable version of thresholding.

We need differentiability because the learning equations we will see are

gradient-based. Another sigmoid (S-shaped) nonlinear basis function that

can be used is the hyperbolic tangent function, tanh, which ranges from

−1 to +1, instead of 0 to +1. In practice, there is no difference between

using the sigmoid and the tanh. Still another possibility is the Gaussian,

which uses Euclidean distance instead of the dot product for similarity;

we discuss such radial basis function networks in chapter 12.

The output is a linear combination of the nonlinear basis function val-

ues computed by the hidden units. It can be said that the hidden units

make a nonlinear transformation from the d-dimensional input space to

11.5 Multilayer Perceptrons 247

Figure 11.6 The structure of a multilayer perceptron. xj , j = 0, . . . , d are the

inputs and zh, h = 1, . . . , H are the hidden units where H is the dimensionality

of this hidden space. z0 is the bias of the hidden layer. yi, i = 1, . . . , K are the

output units. whj are weights in the first layer, and vih are the weights in the

second layer.

the H-dimensional space spanned by the hidden units, and, in this space,

the second output layer implements a linear function.

One is not limited to having one hidden layer, and more hidden layers

with their own incoming weights can be placed after the first hidden layer

with sigmoid hidden units, thus calculating nonlinear functions of the

first layer of hidden units and implementing more complex functions of

the inputs. In practice, people rarely go beyond one hidden layer since

analyzing a network with many hidden layers is quite complicated; but

sometimes when the hidden layer contains too many hidden units, it may

be sensible to go to multiple hidden layers, preferring “long and narrow”

networks to “short and fat” networks.

248 11 Multilayer Perceptrons

11.6 MLP as a Universal Approximator

We can represent any Boolean function as a disjunction of conjunctions,

and such a Boolean expression can be implemented by a multilayer per-

ceptron with one hidden layer. Each conjunction is implemented by one

hidden unit and the disjunction by the output unit. For example,

x1 XOR x2 = (x1 AND ∼ x2) OR (∼ x1 AND x2)

We have seen previously how to implement AND and OR using percep-

trons. So two perceptrons can in parallel implement the two AND, and

another perceptron on top can OR them together (see figure 11.7). We see

that the first layer maps inputs from the (x1, x2) to the (z1, z2) space de-

fined by the first-layer perceptrons. Note that both inputs, (0,0) and (1,1),

are mapped to (0,0) in the (z1, z2) space, allowing linear separability in

this second space.

Thus in the binary case, for every input combination where the output

is 1, we define a hidden unit that checks for that particular conjunction of

the input. The output layer then implements the disjunction. Note that

this is just an existence proof, and such networks may not be practical

as up to 2d hidden units may be necessary when there are d inputs. Such

an architecture implements table lookup and does not generalize.

We can extend this to the case where inputs are continuous to show

that similarly, any arbitrary function with continuous input and outputs

can be approximated with a multilayer perceptron. The proof of universaluniversal

approximation approximation is easy with two hidden layers. For every input case or

region, that region can be delimited by hyperplanes on all sides using

hidden units on the first hidden layer. A hidden unit in the second layer

then ANDs them together to bound the region. We then set the weight

of the connection from that hidden unit to the output unit equal to the

desired function value. This gives a piecewise constant approximationpiecewise constant

approximation of the function; it corresponds to ignoring all the terms in the Taylor

expansion except the constant term. Its accuracy may be increased to

the desired value by increasing the number of hidden units and placing

a finer grid on the input. Note that no formal bounds are given on the

number of hidden units required. This property just reassures us that

there is a solution; it does not help us in any other way. It has been proven

that an MLP with one hidden layer (with an arbitrary number of hidden

units) can learn any nonlinear function of the input (Hornik, Stinchcombe,

and White 1989).

11.7 Backpropagation Algorithm 249

x0=+1 x1 x2

y

z
1

z
0
=+1

z
2

-0.5
-1 +1

-1+1

-0.5

+1 +1 -0.5

z1

z2

+

+

+

x1

x2

z1

z2y

Figure 11.7 The multilayer perceptron that solves the XOR problem. The hid-

den units and the output have the threshold activation function with threshold

at 0.

11.7 Backpropagation Algorithm

Training a multilayer perceptron is the same as training a perceptron;

the only difference is that now the output is a nonlinear function of the

input thanks to the nonlinear basis function in the hidden units. Con-

sidering the hidden units as inputs, the second layer is a perceptron and

we already know how to update the parameters, vij , in this case, given

the inputs zh. For the first-layer weights, whj , we use the chain rule to

calculate the gradient:

∂E

∂whj
= ∂E

∂yi

∂yi

∂zh

∂zh

∂whj

250 11 Multilayer Perceptrons

It is as if the error propagates from the output y back to the inputs

and hence the name backpropagation was coined (Rumelhart, Hinton, andbackpropagation

Williams 1986a).

11.7.1 Nonlinear Regression

Let us first take the case of nonlinear regression (with a single output)

calculated as

yt =
H∑
h=1

vhz
t
h + v0(11.13)

with zh computed by equation 11.11. The error function over the whole

sample in regression is

E(W,v|X) = 1

2

∑
t

(r t − yt)2(11.14)

The second layer is a perceptron with hidden units as the inputs, and

we use the least-squares rule to update the second-layer weights:

Δvh = η
∑
t

(r t − yt)zth(11.15)

The first layer are also perceptrons with the hidden units as the output

units but in updating the first-layer weights, we cannot use the least-

squares rule directly as we do not have a desired output specified for the

hidden units. This is where the chain rule comes into play. We write

Δwhj = −η ∂E

∂whj

= −η
∑
t

∂Et

∂yt
∂yt

∂zth

∂zth
∂whj

= −η
∑
t

−(r t − yt)︸ ︷︷ ︸
∂Et/∂yt

vh︸︷︷︸
∂yt /∂zth

zth(1− zth)xtj︸ ︷︷ ︸
∂zth/∂whj

= η
∑
t

(r t − yt)vhzth(1− zth)xtj(11.16)

The product of the first two terms (rt−yt)vh acts like the error term for

hidden unit h. This error is backpropagated from the error to the hidden

unit. (r t − yt) is the error in the output, weighted by the “responsibility”
of the hidden unit as given by its weight vh. In the third term, zh(1− zh)

11.7 Backpropagation Algorithm 251

is the derivative of the sigmoid and xtj is the derivative of the weighted

sum with respect to the weight whj . Note that the change in the first-

layer weight, Δwhj , makes use of the second-layer weight, vh. Therefore,

we should calculate the changes in both layers and update the first-layer

weights, making use of the old value of the second-layer weights, then

update the second-layer weights.

Weights, whj , vh are started from small random values initially, for ex-

ample, in the range [−0.01,0.01], so as not to saturate the sigmoids. It is

also a good idea to normalize the inputs so that they all have 0 mean and

unit variance and have the same scale, since we use a single η parameter.

With the learning equations given here, for each pattern, we compute

the direction in which each parameter needs be changed and the magni-

tude of this change. In batch learning, we accumulate these changes overbatch learning

all patterns and make the change once after a complete pass over the

whole training set is made, as shown in the previous update equations.

It is also possible to have online learning, by updating the weights af-

ter each pattern, thereby implementing stochastic gradient descent. A

complete pass over all the patterns in the training set is called an epoch.epoch

The learning factor, η, should be chosen smaller in this case and patterns

should be scanned in a random order. Online learning converges faster

because there may be similar patterns in the dataset, and the stochastic-

ity has an effect like adding noise and may help escape local minima.

An example of training a multilayer perceptron for regression is shown

in figure 11.8. As training continues, the MLP fit gets closer to the under-

lying function and error decreases (see figure 11.9). Figure 11.10 shows

how the MLP fit is formed as a sum of the outputs of the hidden units.

It is also possible to have multiple output units, in which case a number

of regression problems are learned at the same time. We have

yti =
H∑
h=1

vihz
t
h + vi0(11.17)

and the error is

E(W,V|X) = 1

2

∑
t

∑
i

(r ti − yti)2(11.18)

The batch update rules are then

Δvih = η
∑
t

(r ti − yti)zth(11.19)

252 11 Multilayer Perceptrons

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

100

200300

Figure 11.8 Sample training data shown as ‘+’, where xt ∼ U(−0.5,0.5), and
yt = f (xt)+N (0,0.1). f (x) = sin(6x) is shown by a dashed line. The evolution

of the fit of an MLP with two hidden units after 100, 200, and 300 epochs is

drawn.

Δwhj = η
∑
t

⎡
⎣∑

i

(r ti − yti)vih
⎤
⎦ zth(1− zth)xtj(11.20)

∑
i(r

t
i − yti)vih is the accumulated backpropagated error of hidden unit

h from all output units. Pseudocode is given in figure 11.11. Note that in

this case, all output units share the same hidden units and thus use the

same hidden representation, hence, we are assuming that correspond-

ing to these different outputs, we have related prediction problems. An

alternative is to train separate multilayer perceptrons for the separate

regression problems, each with its own separate hidden units.

11.7.2 Two-Class Discrimination

When there are two classes, one output unit suffices:

yt = sigmoid

⎛
⎝ H∑
h=1

vhz
t
h + v0

⎞
⎠(11.21)

11.7 Backpropagation Algorithm 253

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Training Epochs

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.9 The mean square error on training and validation sets as a function

of training epochs.

which approximates P(C1|xt) and P̂(C2|xt) ≡ 1− yt . We remember from
section 10.7 that the error function in this case is

E(W,v|X) = −
∑
t

r t logyt + (1− r t) log(1− yt)(11.22)

The update equations implementing gradient descent are

Δvh = η
∑
t

(r t − yt)zth(11.23)

Δwhj = η
∑
t

(r t − yt)vhzth(1− zth)xtj(11.24)

As in the simple perceptron, the update equations for regression and

classification are identical (which does not mean that the values are).

254 11 Multilayer Perceptrons

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

Figure 11.10 (a) The hyperplanes of the hidden unit weights on the first layer,

(b) hidden unit outputs, and (c) hidden unit outputs multiplied by the weights on

the second layer. Two sigmoid hidden units slightly displaced, one multiplied

by a negative weight, when added, implement a bump. With more hidden units,

a better approximation is attained (see figure 11.12).

11.7.3 Multiclass Discrimination

In a (K > 2)-class classification problem, there are K outputs

oti =
H∑
h=1

vihz
t
h + vi0(11.25)

and we use softmax to indicate the dependency between classes; namely,

they are mutually exclusive and exhaustive:

yti =
expoti∑
k expo

t
k

(11.26)

11.7 Backpropagation Algorithm 255

Initialize all vih and whj to rand(−0.01,0.01)
Repeat

For all (xt , r t) ∈ X in random order
For h = 1, . . . ,H

zh ← sigmoid(wT
hx

t)

For i = 1, . . . , K

yi = vTi z
For i = 1, . . . , K

Δvi = η(rti − yti)z
For h = 1, . . . ,H

Δwh = η(
∑
i(r

t
i − yti)vih)zh(1− zh)xt

For i = 1, . . . , K

vi ← vi +Δvi
For h = 1, . . . ,H

wh ← wh +Δwh

Until convergence

Figure 11.11 Backpropagation algorithm for training a multilayer perceptron

for regression with K outputs. This code can easily be adapted for two-class

classification (by setting a single sigmoid output) and to K > 2 classification (by

using softmax outputs).

where yi approximates P(Ci|xt). The error function is

E(W,V|X) = −
∑
t

∑
i

r ti logy
t
i(11.27)

and we get the update equations using gradient descent:

Δvih = η
∑
t

(r ti − yti)zth(11.28)

Δwhj = η
∑
t

⎡
⎣∑

i

(r ti − yti)vih
⎤
⎦ zth(1− zth)xtj(11.29)

Richard and Lippmann (1991) have shown that given a network of

enough complexity and sufficient training data, a suitably trained mul-

tilayer perceptron estimates posterior probabilities.

256 11 Multilayer Perceptrons

11.7.4 Multiple Hidden Layers

As we saw before, it is possible to have multiple hidden layers each with

its own weights and applying the sigmoid function to its weighted sum.

For regression, let us say, if we have a multilayer perceptron with two

hidden layers, we write

z1h = sigmoid(wT
1hx) = sigmoid

⎛
⎝ d∑
j=1

w1hjxj +w1h0

⎞
⎠ , h = 1, . . . ,H1

z2l = sigmoid(wT
2lz1) = sigmoid

⎛
⎝ H1∑
h=0

w2lhz1h +w2l0

⎞
⎠ , l = 1, . . . ,H2

y = vTz2 =
H2∑
l=1

vlz2l + v0

where w1h and w2l are the first- and second-layer weights, z1h and z2h
are the units on the first and second hidden layers, and v are the third-

layer weights. Training such a network is similar except that to train the

first-layer weights, we need to backpropagate one more layer (exercise 5).

11.8 Training Procedures

11.8.1 Improving Convergence

Gradient descent has various advantages. It is simple. It is local; namely,

the change in a weight uses only the values of the presynaptic and postsy-

naptic units and the error (suitably backpropagated). When online train-

ing is used, it does not need to store the training set and can adapt as

the task to be learned changes. Because of these reasons, it can be (and

is) implemented in hardware. But by itself, gradient descent converges

slowly. When learning time is important, one can use more sophisticated

optimization methods (Battiti 1992). Bishop (1995) discusses in detail

the application of conjugate gradient and second-order methods to the

training of multilayer perceptrons. However, there are two frequently

used simple techniques that improve the performance of the gradient

descent considerably, making gradient-based methods feasible in real ap-

plications.

11.8 Training Procedures 257

Momentum

Let us say wi is any weight in a multilayer perceptron in any layer, includ-

ing the biases. At each parameter update, successive Δwt
i values may be

so different that large oscillations may occur and slow convergence. t is

the time index that is the epoch number in batch learning and the itera-

tion number in online learning. The idea is to take a running average by

incorporating the previous update in the current change as if there is a

momentum due to previous updates:momentum

Δwt
i = −η

∂Et

∂wi
+αΔwt−1

i(11.30)

α is generally taken between 0.5 and 1.0. This approach is especially

useful when online learning is used, where as a result we get an effect of

averaging and smooth the trajectory during convergence. The disadvan-

tage is that the past Δwt−1
i values should be stored in extra memory.

Adaptive Learning Rate

In gradient descent, the learning factor η determines the magnitude of

change to be made in the parameter. It is generally taken between 0.0

and 1.0, mostly less than or equal to 0.2. It can be made adaptive for

faster convergence, where it is kept large when learning takes place and

is decreased when learning slows down:

Δη =
{
+a if Et+τ < Et

−bη otherwise
(11.31)

Thus we increase η by a constant amount if the error on the training set

decreases and decrease it geometrically if it increases. Because E may

oscillate from one epoch to another, it is a better idea to take the average

of the past few epochs as Et .

11.8.2 Overtraining

A multilayer perceptron with d inputs, H hidden units, and K outputs

has H(d+1) weights in the first layer and K(H+1) weights in the second
layer. Both the space and time complexity of an MLP is O(H · (K + d)).
When e denotes the number of training epochs, training time complexity

is O(e ·H · (K + d)).

258 11 Multilayer Perceptrons

In an application, d and K are predefined and H is the parameter that

we play with to tune the complexity of the model. We know from pre-

vious chapters that an overcomplex model memorizes the noise in the

training set and does not generalize to the validation set. For example,

we have previously seen this phenomenon in the case of polynomial re-

gression where we noticed that in the presence of noise or small samples,

increasing the polynomial order leads to worse generalization. Similarly

in an MLP, when the number of hidden units is large, the generalization

accuracy deteriorates (see figure 11.12), and the bias/variance dilemma

also holds for the MLP, as it does for any statistical estimator (Geman,

Bienenstock, and Doursat 1992).

A similar behavior happens when training is continued too long: as

more training epochs are made, the error on the training set decreases,

but the error on the validation set starts to increase beyond a certain

point (see figure 11.13). Remember that initially all the weights are close

to 0 and thus have little effect. As training continues, the most impor-

tant weights start moving away from 0 and are utilized. But if training is

continued further on to get less and less error on the training set, almost

all weights are updated away from 0 and effectively become parameters.

Thus as training continues, it is as if new parameters are added to the sys-

tem, increasing the complexity and leading to poor generalization. Learn-

ing should be stopped early to alleviate this problem of overtraining. Theearly stopping

overtraining optimal point to stop training, and the optimal number of hidden units,

is determined through cross-validation, which involves testing the net-

work’s performance on validation data unseen during training.

Because of the nonlinearity, the error function has many minima and

gradient descent converges to the nearest minimum. To be able to assess

expected error, the same network is trained a number of times start-

ing from different initial weight values, and the average of the validation

error is computed.

11.8.3 Structuring the Network

In some applications, we may believe that the input has a local structure.

For example, in vision we know that nearby pixels are correlated and

there are local features like edges and corners; any object, for example,

a handwritten digit, may be defined as a combination of such primitives.

Similarly, in speech, locality is in time and inputs close in time can be

grouped as speech primitives. By combining these primitives, longer ut-

11.8 Training Procedures 259

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Hidden Units

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.12 As complexity increases, training error is fixed but the validation

error starts to increase and the network starts to overfit.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Training Epochs

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.13 As training continues, the validation error starts to increase and

the network starts to overfit.

260 11 Multilayer Perceptrons

Figure 11.14 A structured MLP. Each unit is connected to a local group of units

below it and checks for a particular feature—for example, edge, corner, and so

forth—in vision. Only one hidden unit is shown for each region; typically there

are many to check for different local features.

terances, for example, speech phonemes, may be defined. In such a case

when designing the MLP, hidden units are not connected to all input units

because not all inputs are correlated. Instead, we define hidden units that

define a window over the input space and are connected to only a small

local subset of the inputs. This decreases the number of connections and

therefore the number of free parameters (Le Cun et al. 1989).

We can repeat this in successive layers where each layer is connected

to a small number of local units below and checks for a more compli-

cated feature by combining the features below in a larger part of the

input space until we get to the output layer (see figure 11.14). For ex-

ample, the input may be pixels. By looking at pixels, the first hidden

layer units may learn to check for edges of various orientations. Then

by combining edges, the second hidden layer units can learn to check for

combinations of edges—for example, arcs, corners, line ends—and then

combining them in upper layers, the units can look for semi-circles, rec-

tangles, or in the case of a face recognition application, eyes, mouth, and

so forth. This is the example of a hierarchical cone where features gethierarchical cone

more complex, abstract, and fewer in number as we go up the network

until we get to classes.

In such a case, we can further reduce the number of parameters by

weight sharing. Taking the example of visual recognition again, we canweight sharing

see that when we look for features like oriented edges, they may be

11.8 Training Procedures 261

Figure 11.15 In weight sharing, different units have connections to different

inputs but share the same weight value (denoted by line type). Only one set of

units is shown; there should be multiple sets of units, each checking for different

features.

present in different parts of the input space. So instead of defining in-

dependent hidden units learning different features in different parts of

the input space, we can have copies of the same hidden units looking at

different parts of the input space (see figure 11.15). During learning, we

calculate the gradients by taking different inputs, then we average these

up and make a single update. This implies a single parameter that de-

fines the weight on multiple connections. Also, because the update on a

weight is based on gradients for several inputs, it is as if the training set

is effectively multiplied.

11.8.4 Hints

The knowledge of local structure allows us to prestructure the multilayer

network, and with weight sharing it has fewer parameters. The alterna-

tive of an MLP with completely connected layers has no such structure

and is more difficult to train. Knowledge of any sort related to the ap-

plication should be built into the network structure whenever possible.

These are called hints (Abu-Mostafa 1995) and are the properties of thehints

target function that are known to us independent of the training exam-

ples.

In image recognition, there are invariance hints: the identity of an ob-

ject does not change when it is rotated, translated, or scaled (see fig-

ure 11.16). Hints are auxiliary information that can be used to guide the

learning process and are especially useful when the training set is limited.

There are different ways in which hints can be used:

262 11 Multilayer Perceptrons

A A AA

Figure 11.16 The identity of the object does not change when it is translated,

rotated, or scaled. Note that this may not always be true, or may be true up to a

point: ‘b’ and ‘q’ are rotated versions of each other. These are hints that can be

incorporated into the learning process to make learning easier.

1. Hints can be used to create virtual examples. For example, knowingvirtual examples

that the object is invariant to scale, from a given training example,

we can generate multiple copies at different scales and add them to

the training set with the same label. This has the advantage that we

increase the training set and do not need to modify the learner in any

way. The problem may be that too many examples may be needed for

the learner to learn the invariance.

2. The invariance may be implemented as a preprocessing stage. For

example, optical character readers have a preprocessing stage where

the input character image is centered and normalized for size and

slant. This is the easiest solution, when it is possible.

3. The hint may be incorporated into the network structure. Local struc-

ture and weight sharing, which we saw in section 11.8.3, is one exam-

ple where we get invariance to small translations and rotations.

4. The hint may also be incorporated by modifying the error function. Let

us say we know that x and x′ are the same from the application’s point

of view, where x′ may be a “virtual example” of x. That is, f (x) = f (x′),
when f (x) is the function we would like to approximate. Let us denote

by g(x|θ), our approximation function, for example, an MLP where θ

are its weights. Then, for all such pairs (x,x′), we define the penalty
function

Eh =
[
g(x|θ)− g(x′|θ)]2

and add it as an extra term to the usual error function:

E′ = E + λh · Eh

11.9 Tuning the Network Size 263

This is a penalty term penalizing the cases where our predictions do

not obey the hint, and λh is the weight of such a penalty (Abu-Mostafa

1995).

Another example is the approximation hint: Let us say that for x, we

do not know the exact value, f (x), but we know that it is in the interval,

[ax, bx]. Then our added penalty term is

Eh =

⎧⎪⎨
⎪⎩

0 if g(x|θ) ∈ [ax, bx]
(g(x)− ax)2 if g(x|θ) < ax
(g(x)− bx)2 if g(x|θ) > bx

This is similar to the error function used in support vector regression

(section 13.10), which tolerates small approximation errors.

Still another example is the tangent prop (Simard et al. 1992) wheretangent prop

the transformation against which we are defining the hint—for exam-

ple, rotation by an angle—is modeled by a function. The usual error

function is modified (by adding another term) so as to allow param-

eters to move along this line of transformation without changing the

error.

11.9 Tuning the Network Size

Previously we saw that when the network is too large and has too many

free parameters, generalization may not be well. To find the optimal

network size, the most common approach is to try many different ar-

chitectures, train them all on the training set, and choose the one that

generalizes best to the validation set. Another approach is to incorporate

this structural adaptation into the learning algorithm. There are two waysstructural

adaptation this can be done:

1. In the destructive approach, we start with a large network and gradu-

ally remove units and/or connections that are not necessary.

2. In the constructive approach, we start with a small network and grad-

ually add units and/or connections to improve performance.

One destructive method is weight decay where the idea is to remove un-weight decay

necessary connections. Ideally to be able to determine whether a unit or

connection is necessary, we need to train once with and once without and

264 11 Multilayer Perceptrons

check the difference in error on a separate validation set. This is costly

since it should be done for all combinations of such units/connections.

Given that a connection is not used if its weight is 0, we give each

connection a tendency to decay to 0 so that it disappears unless it is

reinforced explicitly to decrease error. For any weight wi in the network,

we use the update rule:

Δwi = −η ∂E
∂wi

− λwi(11.32)

This is equivalent to doing gradient descent on the error function with

an added penalty term, penalizing networks with many nonzero weights:

E′ = E + λ

2

∑
i

w2
i(11.33)

Simpler networks are better generalizers is a hint that we implement by

adding a penalty term. Note that we are not saying that simple networks

are always better than large networks; we are saying that if we have two

networks that have the same training error, the simpler one—namely, the

one with fewer weights—has a higher probability of better generalizing

to the validation set.

The effect of the second term in equation 11.32 is like that of a spring

that pulls each weight to 0. Starting from a value close to 0, unless the

actual error gradient is large and causes an update, due to the second

term, the weight will gradually decay to 0. λ is the parameter that deter-

mines the relative importances of the error on the training set and the

complexity due to nonzero parameters and thus determines the speed of

decay: With large λ, weights will be pulled to 0 no matter what the train-

ing error is; with small λ, there is not much penalty for nonzero weights.

λ is fine-tuned using cross-validation.

Instead of starting from a large network and pruning unnecessary con-

nections or units, one can start from a small network and add units and

associated connections should the need arise (figure 11.17). In dynamicdynamic node

creation node creation (Ash 1989), an MLP with one hidden layer with one hidden

unit is trained and after convergence, if the error is still high, another

hidden unit is added. The incoming weights of the newly added unit and

its outgoing weight are initialized randomly and trained with the previ-

ously existing weights that are not reinitialized and continue from their

previous values.

In cascade correlation (Fahlman and Lebiere 1990), each added unitcascade

correlation

11.9 Tuning the Network Size 265

Dynamic Node Creation Cascade Correlation

Figure 11.17 Two examples of constructive algorithms. Dynamic node creation

adds a unit to an existing layer. Cascade correlation adds each unit as a new

hidden layer connected to all the previous layers. Dashed lines denote the newly

added unit/connections. Bias units/weights are omitted for clarity.

is a new hidden unit in another hidden layer. Every hidden layer has

only one unit that is connected to all of the hidden units preceding it

and the inputs. The previously existing weights are frozen and are not

trained; only the incoming and outgoing weights of the newly added unit

are trained.

Dynamic node creation adds a new hidden unit to an existing hidden

layer and never adds another hidden layer. Cascade correlation always

adds a new hidden layer with a single unit. The ideal constructive method

should be able to decide when to introduce a new hidden layer and when

to add a unit to an existing layer. This is an open research problem.

Incremental algorithms are interesting because they correspond tomod-

ifying not only the parameters but also the model structure during learn-

ing. We can think of a space defined by the structure of the multilayer

perceptron and operators corresponding to adding/removing unit(s) or

layer(s) to move in this space (Aran et al. 2009). Incremental algorithms

then do a search in this state space where operators are tried (according

to some order) and accepted or rejected depending on some goodness

measure, for example, some combination of complexity and validation er-

ror. Another example would be a setting in polynomial regression where

266 11 Multilayer Perceptrons

high-order terms are added/removed during training automatically, fit-

ting model complexity to data complexity. As the cost of computation

gets lower, such automatic model selection should be a part of the learn-

ing process done automatically without any user interference.

11.10 Bayesian View of Learning

The Bayesian approach in training neural networks considers the param-

eters, namely, connection weights, wi , as random variables drawn from

a prior distribution p(wi) and computes the posterior probability given

the data

p(w|X) = p(X|w)p(w)
p(X)(11.34)

where w is the vector of all weights of the network. The MAP estimate ŵ

is the mode of the posterior

ŵMAP = argmax
w

logp(w|X)(11.35)

Taking the log of equation 11.34, we get

logp(w|X) = logp(X|w)+ logp(w)+ C

The first term on the right is the log likelihood, and the second is the

log of the prior. If the weights are independent and the prior is taken as

Gaussian,N (0,1/2λ)

p(w) =
∏
i

p(wi) where p(wi) = c · exp
[
− w2

i

2(1/2λ)

]
(11.36)

the MAP estimate minimizes the augmented error function

E′ = E + λ‖w‖2(11.37)

where E is the usual classification or regression error (negative log like-

lihood). This augmented error is exactly the error function we used in

weight decay (equation 11.33). Using a large λ assumes small variability

in parameters, puts a larger force on them to be close to 0, and takes

the prior more into account than the data; if λ is small, then the allowed

variability of the parameters is larger. This approach of removing unnec-

essary parameters is known as ridge regression in statistics.ridge regression

This is another example of regularization with a cost function, combin-regularization

11.11 Dimensionality Reduction 267

ing the fit to data and model complexity

cost = data-misfit+ λ · complexity(11.38)

The use of Bayesian estimation in training multilayer perceptrons is

treated in MacKay 1992a, b. We are going to talk about Bayesian estima-

tion in more detail in chapter 14.

Empirically, it has been seen that after training, most of the weights

of a multilayer perceptron are distributed normally around 0, justifying

the use of weight decay. But this may not always be the case. Nowlan

and Hinton (1992) proposed soft weight sharing where weights are drawnsoft weight sharing

from a mixture of Gaussians, allowing them to formmultiple clusters, not

one. Also, these clusters may be centered anywhere and not necessarily

at 0, and have variances that are modifiable. This changes the prior of

equation 11.36 to a mixture of M ≥ 2 Gaussians

p(wi) =
M∑
j=1

αjpj(wi)(11.39)

whereαj are the priors and pj(wi) ∼N (mj, s
2
j) are the component Gaus-

sians. M is set by the user and αj,mj, sj are learned from the data.

Using such a prior and augmenting the error function with its log dur-

ing training, the weights converge to decrease error and also are grouped

automatically to increase the log prior.

11.11 Dimensionality Reduction

In a multilayer perceptron, if the number of hidden units is less than the

number of inputs, the first layer performs a dimensionality reduction.

The form of this reduction and the new space spanned by the hidden

units depend on what the MLP is trained for. If the MLP is for classifica-

tion with output units following the hidden layer, then the new space is

defined and the mapping is learned to minimize classification error (see

figure 11.18).

We can get an idea of what the MLP is doing by analyzing the weights.

We know that the dot product is maximum when the two vectors are

identical. So we can think of each hidden unit as defining a template in

its incoming weights, and by analyzing these templates, we can extract

knowledge from a trained MLP. If the inputs are normalized, weights tell

us of their relative importance. Such analysis is not easy but gives us

268 11 Multilayer Perceptrons

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden 1

H
id

de
n

2

Hidden Representation

00

7

4

62

5

5

0

8

7

1
9

5

3

0

4

7

8

4
7

8

5

9

1

2

0

6

1

8

7

0

7

6

9 1

9

3

9 4

9

2

1

9
9

6

4

3

2

8

2

7
1 4

6

2
0

4

6

3

7

1

02

2

5

2

4

8

1

7

3

0

3
3

77

9

1

3

3

4

3

4

2

8

8

9

8

4

7

1

6

9

4

0

1

3

6

2

Figure 11.18 Optdigits data plotted in the space of the two hidden units of

an MLP trained for classification. Only the labels of one hundred data points are

shown. This MLP with sixty-four inputs, two hidden units, and ten outputs has 80

percent accuracy. Because of the sigmoid, hidden unit values are between 0 and

1 and classes are clustered around the corners. This plot can be compared with

the plots in chapter 6, which are drawn using other dimensionality reduction

methods on the same dataset.

some insight as to what the MLP is doing and allows us to peek into the

black box.

An interesting architecture is the autoassociator (Cottrell, Munro, andautoassociator

Zipser 1987), which is an MLP architecture where there are as many out-

puts as there are inputs, and the required outputs are defined to be equal

to the inputs (see figure 11.19). To be able to reproduce the inputs again

at the output layer, the MLP is forced to find the best representation of

the inputs in the hidden layer. When the number of hidden units is less

than the number of inputs, this implies dimensionality reduction. Once

11.11 Dimensionality Reduction 269

x
0
=+
1

x1 xd

zH

Encoder

y1 y
d

Decoder

y1 y
d

x
0
=+
1

x1 xd

zH

Linear Nonlinear

Figure 11.19 In the autoassociator, there are as many outputs as there are

inputs and the desired outputs are the inputs. When the number of hidden units

is less than the number of inputs, the MLP is trained to find the best coding of

the inputs on the hidden units, performing dimensionality reduction. On the

left, the first layer acts as an encoder and the second layer acts as the decoder.

On the right, if the encoder and decoder are multilayer perceptrons with sigmoid

hidden units, the network performs nonlinear dimensionality reduction.

the training is done, the first layer from the input to the hidden layer

acts as an encoder, and the values of the hidden units make up the en-

coded representation. The second layer from the hidden units to the

output units acts as a decoder, reconstructing the original signal from its

encoded representation.

It has been shown (Bourlard and Kamp 1988) that an MLP with one

hidden layer of units implements principal components analysis (sec-

tion 6.3), except that the hidden unit weights are not the eigenvectors

sorted in importance using the eigenvalues but span the same space as

theH principal eigenvectors. If the encoder and decoder are not one layer

but multilayer perceptrons with sigmoid nonlinearity in the hidden units,

the encoder implements nonlinear dimensionality reduction (Hinton and

Salakhutdinov 2006).

Another way to use an MLP for dimensionality reduction is through

multidimensional scaling (section 6.5). Mao and Jain (1995) show how an

MLP can be used to learn the Sammon mapping. Recalling equation 6.29,Sammon mapping

270 11 Multilayer Perceptrons

Sammon stress is defined as

E(θ|X) =
∑
r ,s

[‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖
‖xr − xs‖

]2
(11.40)

An MLP with d inputs,H hidden units, and k < d output units is used to

implement g(x|θ), mapping the d-dimensional input to a k-dimensional

vector, where θ corresponds to the weights of the MLP. Given a dataset of

X = {xt}t , we can use gradient descent to minimize the Sammon stress

directly to learn the MLP, namely, g(x|θ), such that the distances be-

tween the k-dimensional representations are as close as possible to the

distances in the original space.

11.12 Learning Time

Until now, we have been concerned with cases where the input is fed

once, all together. In some applications, the input is temporal where we

need to learn a temporal sequence. In others, the output may also change

in time. Examples are as follows:

� Sequence recognition. This is the assignment of a given sequence to

one of several classes. Speech recognition is one example where the

input signal sequence is the spoken speech and the output is the code

of the word spoken. That is, the input changes in time but the output

does not.

� Sequence reproduction. Here, after seeing part of a given sequence, the

system should predict the rest. Time-series prediction is one example

where the input is given but the output changes.

� Temporal association. This is the most general case where a particular

output sequence is given as output after a specific input sequence. The

input and output sequences may be different. Here both the input and

the output change in time.

11.12.1 Time Delay Neural Networks

The easiest way to recognize a temporal sequence is by converting it to a

spatial sequence. Then any method discussed up to this point can be uti-

lized for classification. In a time delay neural network (Waibel et al. 1989),time delay neural

network

11.12 Learning Time 271

Figure 11.20 A time delay neural network. Inputs in a time window of length T

are delayed in time until we can feed all T inputs as the input vector to the MLP.

previous inputs are delayed in time so as to synchronize with the final in-

put, and all are fed together as input to the system (see figure 11.20).

Backpropagation can then be used to train the weights. To extract fea-

tures local in time, one can have layers of structured connections and

weight sharing to get translation invariance in time. The main restriction

of this architecture is that the size of the time window we slide over the

sequence should be fixed a priori.

11.12.2 Recurrent Networks

In a recurrent network, additional to the feedforward connections, unitsrecurrent network

have self-connections or connections to units in the previous layers. This

recurrency acts as a short-term memory and lets the network remember

what happened in the past.

Most frequently, one uses a partially recurrent network where a lim-

ited number of recurrent connections are added to a multilayer percep-

tron (see figure 11.21). This combines the advantage of the nonlinear

approximation ability of a multilayer perceptron with the temporal rep-

resentation ability of the recurrency, and such a network can be used to

implement any of the three temporal association tasks. It is also possible

to have hidden units in the recurrent backward connections, these being

272 11 Multilayer Perceptrons

(a) (c)(b)

Figure 11.21 Examples of MLP with partial recurrency. Recurrent connections

are shown with dashed lines: (a) self-connections in the hidden layer, (b) self-

connections in the output layer, and (c) connections from the output to the

hidden layer. Combinations of these are also possible.

known as context units. No formal results are known to determine how

to choose the best architecture given a particular application.

If the sequences have a small maximum length, then unfolding in timeunfolding in time

can be used to convert an arbitrary recurrent network to an equivalent

feedforward network (see figure 11.22). A separate unit and connection

is created for copies at different times. The resulting network can be

trained with backpropagation with the additional requirement that all

copies of each connection should remain identical. The solution, as in

weight sharing, is to sum up the different weight changes in time and

change the weight by the average. This is called backpropagation throughbackpropagation

through time time (Rumelhart, Hinton, and Willams 1986b). The problem with this ap-

proach is the memory requirement if the length of the sequence is large.

Real time recurrent learning (Williams and Zipser 1989) is an algorithmreal time recurrent

learning for training recurrent networks without unfolding and has the advantage

that it can use sequences of arbitrary length.

11.13 Notes

Research on artificial neural networks is as old as the digital computer.

McCulloch and Pitts (1943) proposed the first mathematical model for the

artificial neuron. Rosenblatt (1962) proposed the perceptron model and a

learning algorithm in 1962. Minsky and Papert (1969) showed the limita-

11.13 Notes 273

(a) (b)

x

x3

x0

x1

x2

W

y

h

V
R

W

W

W

W R

R

R

V

h0

h3

h1

h2

y

Figure 11.22 Backpropagation through time: (a) recurrent network, and (b) its

equivalent unfolded network that behaves identically in four steps.

tion of single-layer perceptrons, for example, the XOR problem, and since

there was no algorithm to train a multilayer perceptron with a hidden

layer at that time, the work on artificial neural networks almost stopped

except at a few places. The renaissance of neural networks came with

the paper by Hopfield (1982). This was followed by the two-volume Paral-

lel Distributed Processing (PDP) book written by the PDP Research Group

(Rumelhart, McClelland, and the PDP Research Group 1986). It seems as

though backpropagation was invented independently in several places al-

most at the same time and the limitation of a single-layer perceptron no

longer held.

Starting in the mid-1980s, there has been a huge explosion of work on

artificial neural network models from various disciplines: physics, statis-

tics, psychology, cognitive science, neuroscience, and lingustics, not to

mention computer science, electrical engineering, and adaptive control.

274 11 Multilayer Perceptrons

Perhaps the most important contribution of research on artificial neu-

ral networks is this synergy that bridged various disciplines, especially

statistics and engineering. It is thanks to this that the field of machine

learning is now well established.

The field is much more mature now; aims are more modest and better

defined. One of the criticisms of backpropagation was that it was not

biologically plausible! Though the term “neural network” is still widely

used, it is generally understood that neural network models, for example,

multilayer perceptrons, are nonparametric estimators and that the best

way to analyze them is by using statistical methods.

For example, a statistical method similar to the multilayer perceptron

is projection pursuit (Friedman and Stuetzle 1981), which is written asprojection pursuit

y =
H∑
h=1

φh(w
T
hx)

the difference being that each “hidden unit” has its own separate func-

tion, φh(·), though in an MLP, all are fixed to be sigmoid. In chapter 12,

we will see another neural network structure, named radial basis func-

tions, which uses the Gaussian function at the hidden units.

There are various textbooks on artificial neural networks: Hertz, Krogh,

and Palmer 1991, the earliest, is still readable. Bishop 1995 has a pattern

recognition emphasis and discusses in detail various optimization algo-

rithms that can be used for training, as well as the Bayesian approach,

generalizing weight decay. Ripley 1996 analyzes neural networks from a

statistical perspective.

Artificial neural networks, for example, multilayer perceptrons, have

various successful applications. In addition to their various successful

applications in adaptive control, speech recognition, and vision, two are

noteworthy: Tesauro’s TD-Gammon program (Tesauro 1994) uses rein-

forcement learning (chapter 18) to train a multilayer perceptron and plays

backgammon at a master level. Pomerleau’s ALVINN is a neural network

that autonomously drives a van up to 20 miles per hour after learning by

observing a driver for five minutes (Pomerleau 1991).

11.14 Exercises

1. Show the perceptron that calculates NOT of its input.

2. Show the perceptron that calculates NAND of its two inputs.

11.15 References 275

3. Show the perceptron that calculates the parity of its three inputs.

4. Derive the update equations when the hidden units use tanh, instead of the

sigmoid. Use the fact that tanh′ = (1− tanh2).

5. Derive the update equations for an MLP with two hidden layers.

6. Consider a MLP architecture with one hidden layer where there are also direct

weights from the inputs directly to the output units. Explain when such a

structure would be helpful and how it can be trained.

7. Parity is cyclic shift invariant; for example, “0101” and “1010” have the same

parity. Propose a multilayer perceptron to learn the parity function using this

hint.

8. In cascade correlation, what are the advantages of freezing the previously

existing weights?

9. Derive the update equations for an MLP implementing Sammon mapping that

minimizes Sammon stress (equation 11.40).

10. In section 11.6, we discuss how a MLP with two hidden layers can implement

piecewise constant approximation. Show that if the weight in the last layer is

not a constant but a linear function of the input, we can implement piecewise

linear approximation.

11. Derive the update equations for soft weight sharing.

12. In the autoassociator network, how can we decide on the number of hidden

units?

13. Incremental learning of the structure of a MLP can be viewed as a state space

search. What are the operators? What is the goodness function? What type of

search strategies are appropriate? Define these in such a way that dynamic

node creation and cascade-correlation are special instantiations.

14. For the MLP given in figure 11.22, derive the update equations for the un-

folded network.

11.15 References

Abu-Mostafa, Y. 1995. “Hints.” Neural Computation 7: 639–671.

Aran, O., O. T. Yıldız, and E. Alpaydın. 2009. “An Incremental Framework Based

on Cross-Validation for Estimating the Architecture of a Multilayer Percep-

tron.” International Journal of Pattern Recognition and Artificial Intelligence

23: 159–190.

Ash, T. 1989. “Dynamic Node Creation in Backpropagation Networks.” Connec-

tion Science 1: 365–375.

276 11 Multilayer Perceptrons

Battiti, R. 1992. “First- and Second-Order Methods for Learning: Between Steep-

est Descent and Newton’s Method.” Neural Computation 4: 141–166.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

Bourlard, H., and Y. Kamp. 1988. “Auto-Association by Multilayer Perceptrons

and Singular Value Decomposition.” Biological Cybernetics 59: 291–294.

Cottrell, G. W., P. Munro, and D. Zipser. 1987. “Learning Internal Representa-

tions from Gray-Scale Images: An Example of Extensional Programming.” In

Ninth Annual Conference of the Cognitive Science Society, 462–473. Hillsdale,

NJ: Erlbaum.

Durbin, R., and D. E. Rumelhart. 1989. “Product Units: A Computationally

Powerful and Biologically Plausible Extension to Backpropagation Networks.”

Neural Computation 1: 133–142.

Fahlman, S. E., and C. Lebiere. 1990. “The Cascade Correlation Architecture.”

In Advances in Neural Information Processing Systems 2, ed. D. S. Touretzky,

524–532. San Francisco: Morgan Kaufmann.

Friedman, J. H., and W. Stuetzle. 1981. “Projection Pursuit Regression.” Journal

of the American Statistical Association 76: 817–823.

Geman, S., E. Bienenstock, and R. Doursat. 1992. “Neural Networks and the

Bias/Variance Dilemma.” Neural Computation 4: 1–58.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural

Computation. Reading, MA: Addison Wesley.

Hinton, G. E., and R. R. Salakhutdinov. 2006. “Reducing the dimensionality of

data with neural networks.” Science 313: 504–507.

Hopfield, J. J. 1982. “Neural Networks and Physical Systems with Emergent

Collective Computational Abilities.” Proceedings of the National Academy of

Sciences USA 79: 2554–2558.

Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer Feedforward Net-

works Are Universal Approximators.” Neural Networks 2: 359–366.

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zipcode

Recognition.” Neural Computation 1: 541–551.

MacKay, D. J. C. 1992a. “Bayesian Interpolation.” Neural Computation 4: 415–

447.

MacKay, D. J. C. 1992b. “A Practical Bayesian Framework for Backpropagation

Networks” Neural Computation 4: 448–472.

Mao, J., and A. K. Jain. 1995. “Artificial Neural Networks for Feature Extraction

and Multivariate Data Projection.” IEEE Transactions on Neural Networks 6:

296–317.

11.15 References 277

Marr, D. 1982. Vision. New York: Freeman.

McCulloch, W. S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immenent

in Nervous Activity.” Bulletin of Mathematical Biophysics 5: 115–133.

Minsky, M. L., and S. A. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.

(Expanded ed. 1990.)

Nowlan, S. J., and G. E. Hinton. 1992. “Simplifying Neural Networks by Soft

Weight Sharing.” Neural Computation 4: 473–493.

Pomerleau, D. A. 1991. “Efficient Training of Artificial Neural Networks for

Autonomous Navigation.” Neural Computation 3: 88–97.

Posner, M. I., ed. 1989. Foundations of Cognitive Science. Cambridge, MA: MIT

Press.

Richard, M. D., and R. P. Lippmann. 1991. “Neural Network Classifiers Estimate

Bayesian a Posteriori Probabilities.” Neural Computation 3: 461–483.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge, UK:

Cambridge University Press.

Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms. New York: Spartan.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986a. “Learning Representa-

tions by Backpropagating Errors.” Nature 323: 533–536.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986b. “Learning Internal

Representations by Error Propagation.” In Parallel Distributed Processing, ed.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, 318–362. Cam-

bridge, MA: MIT Press.

Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, eds. 1986.

Parallel Distributed Processing. Cambridge, MA: MIT Press.

Simard, P., B. Victorri, Y, Le Cun, and J. Denker. 1992. “Tangent Prop: A Formal-

ism for Specifying Selected Invariances in an Adaptive Network.” In Advances

in Neural Information Processing Systems 4, ed. J. E. Moody, S. J. Hanson, and

R. P. Lippman, 895–903. San Francisco: Morgan Kaufmann.

Tesauro, G. 1994. “TD-Gammon, A Self-Teaching Backgammon Program, Achieves

Master-Level Play.” Neural Computation 6: 215–219.

Thagard, P. 2005. Mind: Introduction to Cognitive Science. 2nd ed. Cambridge,

MA: MIT Press.

Waibel, A., T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. 1989. “Phoneme

Recognition Using Time-Delay Neural Networks.” IEEE Transactions on Acous-

tics, Speech, and Signal Processing 37: 328–339.

Williams, R. J., and D. Zipser. 1989. “A Learning Algorithm for Continually

Running Fully Recurrent Neural Networks.” Neural Computation 1: 270–280.

12 Local Models

We continue our discussion of multilayer neural networks with mod-

els where the first layer contains locally receptive units that respond

to instances in a localized region of the input space. The second layer

on top learns the regression or classification function for these local

regions. We discuss learning methods for finding the local regions of

importance as well as the models responsible in there.

12.1 Introduction

One way to do function approximation is to divide the input space into

local patches and learn a separate fit in each local patch. In chapter 7,

we discussed statistical methods for clustering that allowed us to group

input instances and model the input distribution. Competitive methods

are neural network methods for online clustering. In this chapter, we

discuss the online version of k-means, as well as two neural network

extensions, adaptive resonance theory (ART), and the self-organizing map

(SOM).

We then discuss how supervised learning is implemented once the in-

puts are localized. If the fit in a local patch is constant, then the technique

is named the radial basis function (RBF) network; if it is a linear function

of the input, it is called the mixture of experts (MoE). We discuss both

regression and classification, and also compare this approach with MLP,

which we discussed in chapter 11.

280 12 Local Models

12.2 Competitive Learning

In chapter 7, we used the semiparametric Gaussianmixture density, which

assumes that the input comes from one of k Gaussian sources. In this

section, we make the same assumption that there are k groups (or clus-

ters) in the data, but our approach is not probabilistic in that we do not

enforce a parametric model for the sources. Another difference is that

the learning methods we propose are online. We do not have the whole

sample at hand during training; we receive instances one by one and up-

date model parameters as we get them. The term competitive learningcompetitive

learning is used because it is as if these groups, or rather the units representing

these groups, compete among themselves to be the one responsible for

representing an instance. The model is also called winner-take-all; it iswinner-take-all

as if one group wins and gets updated, and the others are not updated at

all.

These methods can be used by themselves for online clustering, as

opposed to the batch methods discussed in chapter 7. An online method

has the usual advantages that (1) we do not need extra memory to store

the whole training set; (2) updates at each step are simple to implement,

for example, in hardware; and (3) the input distribution may change in

time and the model adapts itself to these changes automatically. If we

were to use a batch algorithm, we would need to collect a new sample

and run the batch method from scratch over the whole sample.

Starting in section 12.3, we will also discuss how such an approach can

be followed by a supervised method to learn regression or classification

problems. This will be a two-stage system that can be implemented by a

two-layer network, where the first stage (-layer) models the input density

and finds the responsible local model, and the second stage is that of the

local model generating the final output.

12.2.1 Online k-Means

In equation 7.3, we defined the reconstruction error as

E({mi}ki=1|X) =
1

2

∑
t

∑
i

bti‖xt −mi‖2(12.1)

where

bti =
{

1 if ‖xt −mi‖ =minl ‖xt −ml‖
0 otherwise

(12.2)

12.2 Competitive Learning 281

X = {xt}t is the sample and mi , i = 1, . . . , k are the cluster centers. bti
is 1 if mi is the closest center to xt in Euclidean distance. It is as if all

ml , l = 1, . . . , k compete and mi wins the competition because it is the

closest.

The batch algorithm, k-means, updates the centers as

mi =
∑
t b

t
ix
t∑

t b
t
i

(12.3)

which minimizes equation 12.1, once the winners are chosen using equa-

tion 12.2. As we saw before, these two steps of calculating bti and updat-

ing mi are iterated until convergence.

We can obtain online k-means by doing stochastic gradient descent,online k-means

considering the instances one by one, and doing a small update at each

step, not forgetting the effect of the previous updates. The reconstruc-

tion error for a single instance is

Et({mi}ki=1|xt) =
1

2

∑
i

bti‖xt −mi‖2 =
1

2

∑
i

d∑
j=1

bti (x
t
j −mij)

2(12.4)

where bti is defined as in equation 12.2. Using gradient descent on this,

we get the following update rule for each instance xt :

Δmij = −η ∂Et

∂mij
= ηbti (xtj −mij)(12.5)

This moves the closest center (for which bti = 1) toward the input by

a factor given by η. The other centers have their btl , l �= i equal to 0 and

are not updated (see figure 12.1). A batch procedure can also be defined

by summing up equation 12.5 over all t . Like in any gradient descent

procedure, a momentum term can also be added. For convergence, η is

gradually decreased to 0. But this implies the stability-plasticity dilemma:stability-plasticity

dilemma If η is decreased toward 0, the network becomes stable but we lose adap-

tivity to novel patterns that may occur in time because updates become

too small. If we keep η large,mi may oscillate.

The pseudocode of online k-means is given in figure 12.2. This is the

online version of the batch algorithm given in figure 7.3.

The competitive network can be implemented as a one-layer recurrent

network as shown in figure 12.3. The input layer contains the input vector

x; note that there is no bias unit. The values of the output units are the

bi and they are perceptrons:

bi =mT
i x(12.6)

282 12 Local Models

x1

x2

x

mi

Figure 12.1 Shaded circles are the centers and the empty circle is the input

instance. The online version of k-means moves the closest center along the di-

rection of (x −mi) by a factor specified by η.

Then we need to choose the maximum of the bi and set it equal to

1, and set the others, bl, l �= i to 0. If we would like to do everything

purely neural, that is, using a network of concurrently operating process-

ing units, the choosing of the maximum can be implemented through

lateral inhibition. As shown in figure 12.3, each unit has an excitatorylateral inhibition

recurrent connection (i.e., with a positive weight) to itself, and inhibitory

recurrent connections (i.e., with negative weights) to the other output

units. With an appropriate nonlinear activation function and positive

and negative recurrent weight values, such a network, after some itera-

tions, converges to a state where the maximum becomes 1 and all others

become 0 (Grossberg 1980; Feldman and Ballard 1982).

The dot product used in equation 12.6 is a similarity measure, and we

saw in section 5.5 (equation 5.26) that if mi have the same norm, then

the unit with the minimum Euclidean distance, ‖mi − x‖, is the same as

the one with the maximum dot product, mT
i x.

Here, and later when we discuss other competitive methods, we use

the Euclidean distance, but we should keep in mind that using the Eu-

clidean distance implies that all input attributes have the same variance

and that they are not correlated. If this is not the case, this should be

reflected in the distance measure, that is, by using the Mahalanobis dis-

tance, or suitable normalization should be done, for example, by PCA, at

12.2 Competitive Learning 283

Initialize mi , i = 1, . . . , k, for example, to k random xt

Repeat
For all xt ∈ X in random order

i ← argminj ‖xt −mj‖
mi ←mi + η(xt −mi)

Until mi converge

Figure 12.2 Online k-means algorithm. The batch version is given in figure 7.3.

a preprocessing stage before the Euclidean distance is used.

We can rewrite equation 12.5 as

Δmt
ij = ηbti xtj − ηbtimij(12.7)

Let us remember thatmij is the weight of the connection from xj to bi .

An update of the form, as we see in the first term

Δmt
ij = ηbti xtj(12.8)

isHebbian learning, which defines the update as the product of the valuesHebbian learning

of the presynaptic and postsynaptic units. It was proposed as a model for

neural plasticity: A synapse becomes more important if the units before

and after the connection fire simultaneously, indicating that they are cor-

related. However, with only Hebbian learning, the weights grow without

bound (xtj ≥ 0), and we need a second force to decrease the weights that

are not updated. One possibility is to explicitly normalize the weights to

have ‖mi‖ = 1; if Δmij > 0 and Δmil = 0, l �= i, once we normalize mi

to unit length, mil decrease. Another possibility is to introduce a weight

decay term (Oja 1982), and the second term of equation 12.7 can be seen

as such. Hertz, Krogh, and Palmer (1991) discuss competitive networks

and Hebbian learning in more detail and show, for example, how such

networks can learn to do PCA. Mao and Jain (1995) discuss online algo-

rithms for PCA and LDA.

As we saw in chapter 7, one problem is to avoid dead centers, namely,

the ones that are there but are not effectively utilized. In the case of com-

petitive networks, this corresponds to centers that never win the com-

petition because they are initialized far away from any input. There are

various ways we can avoid this:

1. We can initialize mi by randomly chosen input instances, and make

sure that they start from where there is data.

284 12 Local Models

x1
xd

m1

bk

m2

b2

b1

mk

Figure 12.3 The winner-take-all competitive neural network, which is a network

of k perceptrons with recurrent connections at the output. Dashed lines are re-

current connections, of which the ones that end with an arrow are excitatory and

the ones that end with a circle are inhibitory. Each unit at the output reinforces

its value and tries to suppress the other outputs. Under a suitable assignment of

these recurrrent weights, the maximum suppresses all the others. This has the

net effect that the one unit whose mi is closest to x ends up with its bi equal to

1 and all others, namely, bl, l �= i are 0.

2. We can use a leader-cluster algorithm and add units one by one, always

adding them at a place where they are needed. One example is the ART

model, which we discuss in section 12.2.2.

3. When we update, we do not update only the center of the closest unit

but some others as well. As they are updated, they also move toward

the input, move gradually toward parts of the input space where there

are inputs, and eventually win the competition. One example that we

discuss in section 12.2.3 is SOM.

4. Another possibility is to introduce a conscience mechanism (DeSieno

1988): A unit that has won the competition recently feels guilty and

allows others to win.

12.2 Competitive Learning 285

x1

x2

xa

mi

xb

ρ

Figure 12.4 The distance from xa to the closest center is less than the vigilance

value ρ and the center is updated as in online k-means. However, xb is not close

enough to any of the centers and a new group should be created at that position.

12.2.2 Adaptive Resonance Theory

The number of groups, k, should be known and specified before the pa-

rameters can be calculated. Another approach is incremental, where one

starts with a single group and adds new groups as they are needed. We

discuss the adaptive resonance theory (ART) algorithm (Carpenter andadaptive resonance

theory Grossberg 1988) as an example of an incremental algorithm. In ART,

given an input, all of the output units calculate their values and the one

most similar to the input is chosen. This is the unit with the maximum

value if the unit uses the dot product as in equation 12.6, or it is the unit

with the minimum value if the unit uses the Euclidean distance.

Let us assume that we use the Euclidean distance. If the minimum value

is smaller than a certain threshold value, named the vigilance, the updatevigilance

is done as in online k-means. If this distance is larger than vigilance, a

new output unit is added and its center is initialized with the instance.

This defines a hypersphere whose radius is given by the vigilance defining

the volume of scope of each unit; we add a new unit whenever we have

an input that is not covered by any unit (see figure 12.4).

286 12 Local Models

Denoting vigilance by ρ, we use the following equations at each update:

bi = ‖mi − xt‖ =
k

min
l=1

‖ml − xt‖(12.9) {
mk+1 ← xt if bi > ρ

Δmi = η(xt −mi) otherwise

Putting a threshold on distance is equivalent to putting a threshold on

the reconstruction error per instance, and if the distance is Euclidean and

the error is defined as in equation 12.4, this indicates that the maximum

reconstruction error allowed per instance is the square of vigilance.

12.2.3 Self-Organizing Maps

One way to avoid having dead units is by updating not only the win-

ner but also some of the other units as well. In the self-organizing mapself-organizing map

(SOM) proposed by Kohonen (1990, 1995), unit indices, namely, i as in

mi , define a neighborhood for the units. When mi is the closest center,

in addition to mi , its neighbors are also updated. For example, if the

neighborhood is of size 2, then mi−2,mi−1,mi+1,mi+2 are also updated

but with less weight as the neighborhood increases. If i is the index of

the closest center, the centers are updated as

Δml = η e(l, i)(xt −ml)(12.10)

where e(l, i) is the neighborhood function. e(l, i) = 1 when l = i and

decreases as |l − i| increases, for example, as a Gaussian,N (i, σ):

e(l, i) = 1√
2πσ

exp

[
−(l − i)

2

2σ 2

]
(12.11)

For convergence, the support of the neighborhood function decreases

in time, for example, σ decreases, and at the end, only the winner is

updated.

Because neighboring units are also moved toward the input, we avoid

dead units since they get to win competition sometime later, after a little

bit of initial help from their neighboring friends (see figure 12.5).

Updating the neighbors has the effect that, even if the centers are ran-

domly initialized, because they are moved toward the same input to-

gether, once the system converges, units with neighboring indices will

also be neighbors in the input space.

12.2 Competitive Learning 287

x1

x2

x

mi

mi-1

mi+1

mi+2

mi-2

Figure 12.5 In the SOM, not only the closest unit but also its neighbors, in

terms of indices, are moved toward the input. Here, neighborhood is 1; mi and

its 1-nearest neighbors are updated. Note here that mi+1 is far from mi , but as

it is updated with mi , and as mi will be updated when mi+1 is the winner, they
will become neighbors in the input space as well.

In most applications, the units are organized as a two-dimensional

map. That is, each unit will have two indices, mi,j , and the neighbor-

hood will be defined in two dimensions. If mi,j is the closest center, the

centers are updated as

Δmk,l = ηe(k, l, i, j)(xt −mk,l)(12.12)

where the neighborhood function is now in two dimensions. After con-

vergence, this forms a two-dimensional topographical map of the originaltopographical map

d-dimensional input space. The map contains many units in parts of

the space where density is high, and no unit will be dedicated to parts

where there is no input. Once the map converges, inputs that are close

in the original space are mapped to units that are close in the map. In

this regard, the map can be interpreted as doing a nonlinear form of

multidimensional scaling, mapping from the original x space to the two

dimensions, (i, j). Similarly, if the map is one-dimensional, the units are

placed on the curve of maximum density in the input space, as a principal

curve.

288 12 Local Models

12.3 Radial Basis Functions

In a multilayer perceptron (chapter 11) where hidden units use the dot

product, each hidden unit defines a hyperplane and with the sigmoid

nonlinearity, a hidden unit has a value between 0 and 1, coding the po-

sition of the instance with respect to the hyperplane. Each hyperplane

divides the input space in two, and typically for a given input, many of

the hidden units have nonzero output. This is called a distributed repre-distributed

representation sentation because the input is encoded by the simultaneous activation of

many hidden units.

Another possibility is to have a local representation where for a givenlocal

representation input, only one or a few units are active. It is as if these locally tuned

units partition the input space among themselves and are selective to

only certain inputs. The part of the input space where a unit has nonzero

response is called its receptive field. The input space is then paved withreceptive field

such units.

Neurons with such response characteristics are found in many parts

of the cortex. For example, cells in the visual cortex respond selectively

to stimulation that is both local in retinal position and local in angle

of visual orientation. Such locally tuned cells are typically arranged in

topogrophical cortical maps in which the values of the variables to which

the cells respond vary by their position in the map, as in a SOM.

The concept of locality implies a distance function to measure the simi-

larity between the given input x and the position of unit h,mh. Frequently

this measure is taken as the Euclidean distance, ‖x −mh‖. The response
function is chosen to have a maximum where x = mh and decreasing

as they get less similar. Commonly we use the Gaussian function (see

figure 12.6):

pth = exp

[
−‖x

t −mh‖2
2s2h

]
(12.13)

Strictly speaking, this is not Gaussian density, but we use the same

name anyway. mj and sj respectively denote the center and the spread

of the local unit j , and as such define a radially symmetric basis func-

tion. One can use an elliptic one with different spreads on different di-

mensions, or even use the full Mahalanobis distance to allow correlated

inputs, at the expense of using a more complicated model (exercise 2).

The idea in using such local basis functions is that in the input data,

there are groups or clusters of instances and for each such cluster, we

12.3 Radial Basis Functions 289

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12.6 The one-dimensional form of the bell-shaped function used in the

radial basis function network. This one hasm = 0 and s = 1. It is like a Gaussian

but it is not a density; it does not integrate to 1. It is nonzero between (m −
3s,m+ 3s), but a more conservative interval is (m− 2s,m+ 2s).

define a basis function, pth, which becomes nonzero if instance xt be-

longs to cluster h. One can use any of the online competitive methods

discussed in section 12.2 to find the centers, mh. There is a simple and

effective heuristic to find the spreads: Once we have the centers, for each

cluster, we find the most distant instance covered by that cluster and set

sh to half its distance from the center. We could have used one-third,

but we prefer to be conservative. We can also use the statistical cluster-

ing method, for example, EM on Gaussian mixtures, that we discussed in

chapter 7 to find the cluster parameters, namely, means, variances (and

covariances).

pth, h = 1, . . . ,H define a new H-dimensional space and form a new

representation of xt . We can also use bth (equation 12.2) to code the

input but bth are 0/1; p
t
h have the additional advantage that they code the

distance to their center by a value in (0,1). How fast the value decays

to 0 depends on sh. Figure 12.7 gives an example and compares such

a local representation with a distributed representation as used by theDistributed vs

local

representation

multilayer perceptron. Because Gaussians are local, typically we need

many more local units than what we would need if we were to use a

distributed representation, especially if the input is high-dimensional.

In the case of supervised learning, we can then use this new local rep-

290 12 Local Models

x1

x2

xa : (1.0, 0.0, 0.0)
xb : (0.0, 0.0, 1.0)
xc : (1.0, 1.0, 0.0)

m1

xb

m3

m2

xc

x1

x2

xa

xb

xc

+

+
w1

w2

Local representation in the
space of (p1, p2, p3)

Distributed representation in the
space of (h1, h2)

xa

xa : (1.0, 1.0)
xb : (0.0, 1.0)
xc : (1.0, 0.0)

Figure 12.7 The difference between local and distributed representations. The

values are hard, 0/1, values. One can use soft values in (0,1) and get a more in-

formative encoding. In the local representation, this is done by the Gaussian RBF

that uses the distance to the center, mi , and in the distributed representation,

this is done by the sigmoid that uses the distance to the hyperplane, wi .

resentation as the input. If we use a perceptron, we have

yt =
H∑
h=1

whp
t
h +w0(12.14)

where H is the number of basis functions. This structure is called a

radial basis function (RBF) network (Broomhead and Lowe 1988; Moodyradial basis

function and Darken 1989). Normally, people do not use RBF networks with more

than one layer of Gaussian units. H is the complexity parameter, like

the number of hidden units in a multilayer perceptron. Previously we

denoted it by k, when it corresponded to the number of centers in the

case of unsupervised learning.

Here, we see the advantage of using ph instead of bh. Because bh are

0/1, if equation 12.14 contained bh instead of the ph, it would give a

piecewise constant approximation with discontuinities at the unit region

boundaries. ph values are soft and lead to a smooth approximation, tak-

ing a weighted average while passing from one region to another. We can

easily see that such a network is a universal approximator in that it can

12.3 Radial Basis Functions 291

approximate any function with desired accuracy, given enough units. We

can form a grid in the input space to our desired accuracy, define a unit

that will be active for each cell, and set its outgoing weight, wh, to the

desired output value.

This architecture bears much similarity to the nonparametric estima-

tors, for example, Parzen windows, we saw in chapter 8, and ph may be

seen as kernel functions. The difference is that now we do not have a

kernel function over all training instances but group them using a clus-

tering method to make do with fewer kernels. H , the number of units,

is the complexity parameter, trading off simplicity and accuracy. With

more units, we approximate the training data better, but we get a com-

plex model and risk overfitting; too few may underfit. Again, the optimal

value is determined by cross-validation.

Once mh and sh are given and fixed, ph are also fixed. Then wh can be

trained easily batch or online. In the case of regression, this is a linear

regression model (with ph as the inputs) and the wh can be solved analyt-

ically without any iteration (section 4.6). In the case of classification, we

need to resort to an iterative procedure. We discussed learning methods

for this in chapter 10 and do not repeat them here.

What we do here is a two-stage process: we use an unsupervisedmethod

for determining the centers, then build a supervised layer on top of that.

This is called hybrid learning. We can also learn all parameters, includinghybrid learning

mh and sh, in a supervised manner. The radial basis function of equa-

tion 12.13 is differentiable and we can backpropagate, just as we back-

propagated in a multilayer perceptron to update the first-layer weights.

The structure is similar to a multilayer perceptron with ph as the hidden

units,mh and sh as the first-layer parameters, the Gaussian as the activa-

tion function in the hidden layer, and wh as the second-layer weights (see

figure 12.8).

But before we discuss this, we should remember that training a two-

layer network is slow. Hybrid learning trains one layer at a time and is

faster. Another technique, called the anchor method, sets the centers toanchor

the randomly chosen patterns from the training set without any further

update. It is adequate if there are many units.

On the other hand, the accuracy normally is not as high as when a

completely supervised method is used. Consider the case when the in-

put is uniformly distributed. Then k-means clustering places the units

uniformly. If the function is changing significantly in a small part of the

space, it is a better idea to have as many centers in places where the func-

292 12 Local Models

xj xd

mhj , sh

ph

p0=+1

wih

yi

x1

Figure 12.8 The RBF network where ph are the hidden units using the bell-

shaped activation function. mh, sh are the first-layer parameters, and wi are the

second-layer weights.

tion changes fast, to make the error as small as possible; this is what the

completely supervised method would do.

Let us discuss how all of the parameters can be trained in a fully su-

pervised manner. The approach is the same as backpropagation applied

to multilayer perceptrons. Let us see the case of regression with multiple

outputs. The batch error is

E({mh, sh,wih}i,h|X) = 1

2

∑
t

∑
i

(r ti − yti)2(12.15)

where

yti =
H∑
h=1

wihp
t
h +wi0(12.16)

Using gradient descent, we get the following update rule for the second-

12.3 Radial Basis Functions 293

layer weights:

Δwih = η
∑
t

(r ti − yti)pth(12.17)

This is the usual perceptron update rule, with ph as the inputs. Typ-

ically, ph do not overlap much and at each iteration, only a few ph are

nonzero and only their wh are updated. That is why RBF networks learn

very fast, and faster than multilayer perceptrons that use a distributed

representation.

Similarly, we can get the update equations for the centers and spreads

by backpropagation (chain rule):

Δmhj = η
∑
t

⎡
⎣∑

i

(r ti − yti)wih
⎤
⎦pth (x

t
j −mhj)

s2h
(12.18)

Δsh = η
∑
t

⎡
⎣∑

i

(r ti − yti)wih
⎤
⎦pth‖xt −mh‖2

s3h
(12.19)

Let us compare equation 12.18 with equation 12.5: First, here we use

ph instead of bh, which means that not only the closest one but all units

are updated, depending on their centers and spreads. Second, here the

update is supervised and contains the backpropagated error term. The

update depends not only on the input but also on the final error (rti −yti),
the effect of the unit on the output, wih, the activation of the unit, ph, and

the input, (x −mh).

In practice, equations 12.18 and 12.19 need some extra control. We

need to explicitly check that sh do not become very small or very large to

be useless; we also need to check that mh stay in the valid input range.

In the case of classification, we have

yti =
exp

[∑
h wihp

t
h +wi0

]
∑
k exp

[∑
h wkhp

t
h +wk0

](12.20)

and the cross-entropy error is

E({mh, sh,wih}i,h|X) = −
∑
t

∑
i

r ti logy
t
i(12.21)

Update rules can similarly be derived using gradient descent (exer-

cise 3).

Let us look again at equation 12.14. For any input, if ph is nonzero,

then it contributes wh to the output. Its contribution is a constant fit, as

294 12 Local Models

given by wh. Normally Gaussians do not overlap much, and one or two of

them have a nonzero ph value. In any case, only few units contribute to

the output. w0 is the constant offset and is added to the weighted sum

of the active (nonzero) units. We also see that y = w0 if all ph are 0. We

can therefore view w0 as the “default” value of y : If no Gaussian is active,

then the output is given by this value. So a possibility is to make this

“default model” a more powerful “rule.” For example, we can write

yt =
H∑
h=1

whp
t
h︸ ︷︷ ︸

exceptions

+vTxt + v0︸ ︷︷ ︸
rule

(12.22)

In this case, the rule is linear: vTxt + v0. When they are nonzero, Gaus-
sians work as localized “exceptions” and modify the output to make up

for the difference between the desired output and the rule output. Such a

model can be trained in a supervised manner, and the rule can be trained

together with the exceptions (exercise 4). We discuss a similar model, cas-

cading, in section 17.11 where we see it as a combination of two learners,

one general rule and the other formed by a set of exceptions.

12.4 Incorporating Rule-Based Knowledge

The training of any learning system can be much simpler if we manage to

incorporate prior knowledge to initialize the system. For example, priorprior knowledge

knowledge may be available in the form of a set of rules that specify the

input/output mapping that the model, for example, the RBF network, has

to learn. This occurs frequently in industrial and medical applications

where rules can be given by experts. Similarly, once a network has been

trained, rules can be extracted from the solution in such a way as to better

understand the solution to the problem.

The inclusion of prior knowledge has the additional advantage that if

the network is required to extrapolate into regions of the input space

where it has not seen any training data, it can rely on this prior knowl-

edge. Furthermore, in many control applications, the network is required

to make reasonable predictions right from the beginning. Before it has

seen sufficient training data, it has to rely primarily on this prior knowl-

edge.

In many applications we are typically told some basic rules that we try

to follow in the beginning but that are then refined and altered through

12.5 Normalized Basis Functions 295

experience. The better our initial knowledge of a problem, the faster we

can achieve good performance and the less training that is required.

Such inclusion of prior knowledge or extraction of learned knowledge

is easy to do with RBF networks because the units are local. This makes

rule extraction easier (Tresp, Hollatz, and Ahmad 1997). An example isrule extraction

IF ((x1 ≈ a) AND (x2 ≈ b)) OR (x3 ≈ c) THEN y = 0.1(12.23)

where x1 ≈ a means “x1 is approximately a.” In the RBF framework, this

rule is encoded by two Gaussian units as

p1 = exp

[
−(x1 − a)

2

2s21

]
· exp

[
−(x2 − b)

2

2s22

]
with w1 = 0.1

p2 = exp

[
−(x3 − c)

2

2s23

]
with w2 = 0.1

“Approximately equal to” is modeled by a Gaussian where the center

is the ideal value and the spread denotes the allowed difference around

this ideal value. Conjunction is the product of two univariate Gaussians

that is a bivariate Gaussian. Then, the first product term can be handled

by a two-dimensional, namely, x = [x1, x2], Gaussian centered at (a, b),

and the spreads on the two dimensions are given by s1 and s2. Disjunc-

tion is modeled by two separate Gaussians, each one handling one of the

disjuncts.

Given labeled training data, the parameters of the RBF network so con-

structed can be fine-tuned after the initial construction, using a small

value of η.

This formulation is related to the fuzzy logic approach where equa-

tion 12.23 is named a fuzzy rule. The Gaussian basis function that checksfuzzy rule

for approximate equality corresponds to a fuzzy membership functionfuzzy membership

function (Berthold 1999; Cherkassky and Mulier 1998).

12.5 Normalized Basis Functions

In equation 12.14, for an input, it is possible that all of the ph are 0. In

some applications, we may want to have a normalization step to make

sure that the values of the local units sum up to 1, thus making sure that

for any input there is at least one nonzero unit:

gth =
pth∑H
l=1 p

t
l

= exp[−‖xt −mh‖2/2s2h]∑
l exp[−‖xt −ml‖2/2s2l]

(12.24)

296 12 Local Models

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12.9 (-) Before and (- -) after normalization for three Gaussians whose

centers are denoted by ‘*’. Note how the nonzero region of a unit depends also on

the positions of other units. If the spreads are small, normalization implements

a harder split; with large spreads, units overlap more.

An example is given in figure 12.9. Taking ph as p(x|h), gh correspond
to p(h|x), the posterior probability that x belongs to unit h. It is as if

the units divide the input space among themselves. We can think of gh
as a classifier in itself, choosing the responsible unit for a given input.

This classification is done based on distance, as in a parametric Gaussian

classifier (chapter 5).

The output is a weighted sum

yti =
H∑
h=1

wihg
t
h(12.25)

where there is no need for a bias term because there is at least one

nonzero gh for each x. Using gh instead of ph does not introduce any

extra parameters; it only couples the units together: ph depends only on

mh and sh, but gh, because of normalization, depends on the centers and

spreads of all of the units.

12.6 Competitive Basis Functions 297

In the case of regression, we have the following update rules using

gradient descent:

Δwih = η
∑
t

(r ti − yti)gth(12.26)

Δmhj = η
∑
t

∑
i

(r ti − yti)(wih − yti)gth
(xtj −mhj)

s2h
(12.27)

The update rule for sh as well as the rules for classification can similarly

be derived. Let us compare these with the update rules for the RBF with

unnormalized Gaussians (equation 12.17). Here, we use gh instead of ph,

which makes a unit’s update dependent not only on its own parameters,

but also on the centers and spreads of other units as well. Comparing

equation 12.27 with equation 12.18, we see that instead of wih, we have

(wih − yti), which shows the role of normalization on the output. The

“responsible” unit wants to decrease the difference between its output,

wih, and the final output, y
t
i , proportional to its responsibility, gh.

12.6 Competitive Basis Functions

As we have seen up until now, in an RBF network the final output is

determined as a weighted sum of the contributions of the local units.

Though the units are local, it is the final weighted sum that is important

and that we want to make as close as possible to the required output. For

example, in regression we minimize equation 12.15, which is based on

the probabilistic model

p(rt |xt) =
∏
i

1√
2πσ

exp

[
−(r

t
i − yti)2
2σ 2

]
(12.28)

where yti is given by equation 12.16 (unnormalized) or equation 12.25

(normalized). In either case, we can view the model as a cooperative one

since the units cooperate to generate the final output, yti . We now discuss

the approach using competitive basis functions where we assume that thecompetitive basis

functions output is drawn from a mixture model

p(rt |xt) =
H∑
h=1

p(h|xt)p(rt |h,xt)(12.29)

p(h|xt) are the mixture proportions and p(rt |h,xt) are the mixture com-
ponents generating the output if that component is chosen. Note that

both of these terms depend on the input x.

298 12 Local Models

The mixture proportions are

p(h|x) = p(x|h)p(h)∑
l p(x|l)p(l)

(12.30)

gth = ah exp[−‖xt −mh‖2/2s2h]∑
l al exp[−‖xt −ml‖2/2s2l]

(12.31)

We generally assume ah to be equal and ignore them. Let us first take

the case of regression where the components are Gaussian. In equa-

tion 12.28, noise is added to the weighted sum; here, one component

is chosen and noise is added to its output, ytih.

Using the mixture model of equation 12.29, the log likelihood is

L({mh, sh,wih}i,h|X) =
∑
t

log
∑
h

gth exp

⎡
⎣−1

2

∑
i

(r ti − ytih)2
⎤
⎦(12.32)

where ytih = wih is the constant fit done by component h for output i,

which, strictly speaking, does not depend on x. (In section 12.8.2, we

discuss the case of competitive mixture of experts where the local fit is

a linear function of x.) We see that if gth is 1, then it is responsible for

generating the right output and needs to minimize the squared error of

its prediction,
∑
i(r

t
i − ytih)2.

Using gradient ascent to maximize the log likelihood, we get

Δwih = η
∑
t

(r ti − ytih)f th(12.33)

where

f th = gth exp[−1
2

∑
i(r

t
i − ytih)2]∑

l g
t
l exp[−1

2

∑
i(r

t
i − ytil)2]

(12.34)

p(h|r,x) = p(h|x)p(r|h,x)∑
l p(l|x)p(r|l,x)

(12.35)

gth ≡ p(h|xt) is the posterior probability of unit h given the input, and

it depends on the centers and spreads of all of the units. f th ≡ p(h|r ,xt) is
the posterior probability of unit h given the input and the desired output,

also taking the error into account in choosing the responsible unit.

Similarly, we can derive a rule to update the centers:

Δmhj = η
∑
t

(f th − gth)
(xtj −mhj)

s2h
(12.36)

12.6 Competitive Basis Functions 299

fh is the posterior probability of unit h also taking the required output

into account, whereas gh is the posterior probability using only the input

space information. Their difference is the error term for the centers. Δsh
can be similarly derived. In the cooperative case, there is no force on the

units to be localized. To decrease the error, means and spreads can take

any value; it is even possible sometimes for the spreads to increase and

flatten out. In the competitive case, however, to increase the likelihood,

units are forced to be localized with more separation between them and

smaller spreads.

In classification, each component by itself is a multinomial. Then the

log likelihood is

L({mh, sh,wih}i,h|X) =
∑
t

log
∑
h

gth

∏
i

(ytih)
r ti(12.37)

=
∑
t

log
∑
h

gth exp

⎡
⎣∑

i

r ti logy
t
ih

⎤
⎦(12.38)

where

ytih =
expwih∑
k expwkh

(12.39)

Update rules for wih,mh, and sh can be derived using gradient ascent,

which will include

f th =
gth exp[

∑
i r

t
i logy

t
ih]∑

l g
t
l exp[

∑
i r

t
i logy

t
il]

(12.40)

In chapter 7, we discussed the EM algorithm for fitting Gaussian mix-

tures to data. It is possible to generalize EM for supervised learning as

well. Actually, calculating f th corresponds to the E-step. f th ≡ p(r|h,xt)
replaces p(h|xt), which we used in the E-step in chapter 7 when the ap-

plication was unsupervised. In the M-step for regression, we update the

parameters as

mh =
∑
t f

t
hx

t∑
t f

t
h

(12.41)

Sh =
∑
t f

t
h(x

t −mh)(x
t −mh)

T∑
t f

t
h

(12.42)

wih =
∑
t f

t
hr

t
i∑

t f
t
h

(12.43)

We see that wih is a weighted average where weights are the posterior

probabilities of units, given the input and the desired output. In the case

300 12 Local Models

of classification, the M-step has no analytical solution and one needs to

resort to an iterative procedure, for example, gradient ascent (Jordan and

Jacobs 1994).

12.7 Learning Vector Quantization

Let us say we haveH units for each class, already labeled by those classes.

These units are initialized with random instances from their classes. At

each iteration, we find the unit, mi , that is closest to the input instance

in Euclidean distance and use the following update rule:{
Δmi = η(xt −mi) if xt andmi have the same class label

Δmi = −η(xt −mi) otherwise
(12.44)

If the closest center has the correct label, it is moved toward the input

to better represent it. If it belongs to the wrong class, it is moved away

from the input in the expectation that if it is moved sufficiently away, a

center of the correct class will be the closest in a future iteration. This

is the learning vector quantization (LVQ) model proposed by Kohonenlearning vector

quantization (1990, 1995).

The LVQ update equation is analogous to equation 12.36 where the

direction in which the center is moved depends on the difference between

two values: our prediction of the winner unit based on the input distances

and what the winner should be based on the required output.

12.8 Mixture of Experts

In RBFs, corresponding to each local patch we give a constant fit. In

the case where for any input, we have one gh 1 and all others 0, we get

a piecewise constant approximation where for output i, the local fit by

patch h is given by wih. From the Taylor expansion, we know that at each

point, the function can be written as

f (x) = f (a)+ (x− a)f ′(a)+ · · ·(12.45)

Thus a constant approximation is good if x is close enough to a and

f ′(a) is close to 0—that is, if f (x) is flat around a. If this is not the

case, we need to divide the space into a large number of patches, which

is particularly serious when the input dimensionality is high, due to the

curse of dimensionality.

12.8 Mixture of Experts 301

gh

wih

yi

vih

mh , sh

xj xdx1

Figure 12.10 The mixture of experts can be seen as an RBF network where the

second-layer weights are outputs of linear models. Only one linear model is

shown for clarity.

An alternative is to have a piecewise linear approximation by taking intopiecewise linear

approximation account the next term in the Taylor expansion, namely, the linear term.

This is what is done by mixture of experts (Jacobs et al. 1991). We writemixture of experts

yti =
H∑
h=1

wihg
t
h(12.46)

which is the same as equation 12.25 but here, wih, the contribution of

patch h to output i is not a constant but a linear function of the input:

wt
ih = vTihxt(12.47)

vih is the parameter vector that defines the linear function and includes

a bias term, making the mixture of experts a generalization of the RBF

network. The unit activations can be taken as normalized RBFs:

gth =
exp[−‖xt −mh‖2/2s2h]∑
l exp[−‖xt −ml‖2/2s2l]

(12.48)

This can be seen as an RBF network except that the second-layer weights

are not constants but are outputs of linear models (see figure 12.10). Ja-

cobs et al. (1991) view this in another way: They consider wh as linear

302 12 Local Models

ghwih

yi

vih

wh
Local
experts

Gating
network

mhj

xj xdx1

Figure 12.11 The mixture of experts can be seen as a model for combining

multiple models. wh are the models and the gating network is another model

determining the weight of each model, as given by gh. Viewed in this way, neither

the experts nor the gating are restricted to be linear.

models, each taking the input, and call them experts. gh are considered

to be the outputs of a gating network. The gating network works as a

classifier does with its outputs summing to 1, assigning the input to one

of the experts (see figure 12.11).

Considering the gating network in this manner, any classifier can be

used in gating. When x is high-dimensional, using local Gaussian units

may require a large number of experts and Jacobs et al. (1991) propose

to take

gth =
exp[mT

hx
t]∑

l exp[m
T
l x

t]
(12.49)

which is a linear classifier. Note that mh are no longer centers but hy-

perplanes, and as such include bias values. This gating network is imple-

menting a classification where it is dividing linearly the input region for

which expert h is responsible from the expertise regions of other experts.

As we will see again in chapter 17, the mixture of experts is a general

architecture for combining multiple models; the experts and the gating

12.8 Mixture of Experts 303

may be nonlinear, for example, contain multilayer perceptrons, instead

of linear perceptrons (exercise 6).

An architecture similar to the mixture of experts and running line

smoother (section 8.6.3) has been proposed by Bottou and Vapnik (1992).

In their approach, no training is done initially. When a test instance is

given, a subset of the data close to the test instance is chosen from the

training set (as in the k-nearest neighbor, but with a large k), a simple

model, for example, a linear classifier, is trained with this local data, the

prediction is made for the instance, and then the model is discarded. For

the next instance, a new model is created, and so on. On a handwritten

digit recognition application, this model has less error than the multilayer

perceptron, k-nearest neighbor, and Parzen windows; the disadvantage is

the need to train a new model on the fly for each test instance.

12.8.1 Cooperative Experts

In the cooperative case, yti is given by equation 12.46, and we would like

to make it as close as possible to the required output, r ti . In regression,

the error function is

E({mh, sh,wih}i,h|X) =
1

2

∑
t

∑
i

(r ti − yti)2(12.50)

Using gradient descent, second-layer (expert) weight parameters are

updated as

Δvih = η
∑
t

(r ti − yti)gthxt(12.51)

Compared with equation 12.26, we see that the only difference is that

this new update is a function of the input.

If we use softmax gating (equation 12.49), using gradient descent we

have the following update rule for the hyperplanes:

Δmhj = η
∑
t

∑
i

(r ti − yti)(wt
ih − yti)gthxtj(12.52)

If we use radial gating (equation 12.48), only the last term, ∂ph/∂mhj ,

differs.

In classification, we have

yi =
exp

[∑
h wihg

t
h

]
∑
k exp

[∑
h wkhg

t
h

](12.53)

304 12 Local Models

with wih = vTihx, and update rules can be derived to minimize the cross-

entropy using gradient descent (exercise 7).

12.8.2 Competitive Experts

Just like the competitive RBFs, we have

L({mh, sh,wih}i,h|X) =
∑
t

log
∑
h

gth exp

⎡
⎣−1

2

∑
i

(r ti − ytih)2
⎤
⎦(12.54)

where ytih = wt
ih = vihxt . Using gradient ascent, we get

Δvih = η
∑
t

(r ti − ytih)f thxt(12.55)

Δmh = η
∑
t

(f th − gth)xt(12.56)

assuming softmax gating as given in equation 12.49.

In classification, we have

L({mh, sh,wih}i,h|X) =
∑
t

log
∑
h

gth

∏
i

(ytih)
r ti(12.57)

=
∑
t

log
∑
h

gth exp

⎡
⎣∑

i

r ti logy
t
ih

⎤
⎦(12.58)

where

ytih =
expwt

ih∑
k expw

t
kh

= exp[vihxt]∑
k exp[vkhxt]

(12.59)

Jordan and Jacobs (1994) generalize EM for the competitive case with

local linear models. Alpaydın and Jordan (1996) compare cooperative

and competitive models for classification tasks and see that the coopera-

tive model is generally more accurate but the competitive version learns

faster. This is because in the cooperative case, models overlap more and

implement a smoother approximation, and thus it is preferable in regres-

sion problems. The competitive model makes a harder split; generally

only one expert is active for an input and therefore learning is faster.

12.9 Hierarchical Mixture of Experts

In figure 12.11, we see a set of experts and a gating network that chooses

one of the experts as a function of the input. In a hierarchical mixturehierarchical

mixture of experts

12.10 Notes 305

of experts, we replace each expert with a complete system of mixture of

experts in a recursive manner (Jordan and Jacobs 1994). This architecture

may be seen as a decision tree (chapter 9) where gating networks can be

seen as decision nodes. When the gating network is linear, this is like the

linear multivariate decision tree discussed in section 9.6. The difference

is that the gating network does not make a hard decision but takes a

weighted sum of contributions coming from the children. Leaf nodes are

linear models, and their predictions are averaged and propagated up the

tree. The root gives the final output, which is a weighted average of all of

the leaves. This is a soft decision tree as opposed to the decision trees we

saw before where only one path from the root to a leaf is taken.

Once an architecture is chosen—namely, the depth, the experts, and

the gating models—the whole tree can be learned from a labeled sample.

Jordan and Jacobs (1994) derive both gradient descent and EM learning

rules for such an architecture.

12.10 Notes

An RBF network can be seen as a neural network, implemented by a net-

work of simple processing units. It differs from a multilayer perceptron

in that the first and second layers implement different functions. Omo-

hundro (1987) discusses how local models can be implemented as neural

networks and also addresses hierarchical data structures for fast local-

ization of relevant local units. Specht (1991) shows how Parzen windows

can be implemented as a neural network.

Platt (1991) proposed an incremental version of RBF where new units

are added as necessary. Fritzke (1995) similarly proposed a growing ver-

sion of SOM.

Lee (1991) compares k-nearest neighbor, multilayer perceptron, and

RBF network on a handwritten digit recognition application and con-

cludes that these three methods all have small error rates. RBF net-

works learn faster than backpropagation on a multilayer perceptron but

use more parameters. Both of these methods are superior to the k-NN

in terms of classification speed and memory need. Such practical con-

straints like time, memory, and computational complexity may be more

important than small differences in error rate in real-world applications.

Kohonen’s SOM (1990, 1995) was one of the most popular neural net-

work methods, having been used in a variety of applications including

306 12 Local Models

exploratory data analysis and as a preprocessing stage before a super-

vised learner. One interesting and successful application is the travel-

ing salesman problem (Angeniol, Vaubois, and Le Texier 1988). Just like

the difference between k-means clustering and EM on Gaussian mixtures

(chapter 7), generative topographic mapping (GTM) (Bishop, Svensén, andgenerative

topographic

mapping

Williams 1998) is a probabilistic version of SOM that optimizes the log

likelihood of the data using a mixture of Gaussians whose means are con-

strained to lie on a two-dimensional manifold (for topological ordering in

low dimensions).

In an RBF network, once the centers and spreads are fixed (for example,

by choosing a random subset of training instances as centers, as in the

anchor method), training the second layer is a linear model. This model is

equivalent to support vector machines with Gaussian kernels where dur-

ing learning the best subset of instances, named the support vectors, are

chosen; we discuss them in chapter 13. Gaussian processes (chapter 14)

where we interpolate from stored training instances are also similar.

12.11 Exercises

1. Show an RBF network that implements XOR.

2. Write down the RBF network that uses elliptic units instead of radial units as

in equation 12.13.

3. Derive the update equations for the RBF network for classification (equations

12.20 and 12.21).

4. Show how the system given in equation 12.22 can be trained.

5. Compare the number of parameters of a mixture of experts architecture with

an RBF network.

6. Formalize a mixture of experts architecture where the experts and the gating

network are multilayer perceptrons. Derive the update equations for regres-

sion and classification.

7. Derive the update equations for the cooperative mixture of experts for clas-

sification.

8. Derive the update equations for the competitive mixture of experts for clas-

sification.

9. Formalize the hierarchical mixture of experts architecture with two levels.

Derive the update equations using gradient descent for regression and clas-

sification.

12.12 References 307

10. In mixture of experts, because different experts specialize in different parts

of the input space, they may need to focus on different inputs. Discuss how

dimensionality can be locally reduced in the experts.

12.12 References

Alpaydın, E., and M. I. Jordan. 1996. “Local Linear Perceptrons for Classifica-

tion.” IEEE Transactions on Neural Networks 7: 788–792.

Angeniol, B., G. Vaubois, and Y. Le Texier. 1988. “Self Organizing Feature Maps

and the Travelling Salesman Problem.” Neural Networks 1: 289–293.

Berthold, M. 1999. “Fuzzy Logic.” In Intelligent Data Analysis: An Introduction,

ed. M. Berthold and D. J. Hand, 269–298. Berlin: Springer.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1998. “GTM: The Generative

Topographic Mapping.” Neural Computation 10: 215–234.

Bottou, L., and V. Vapnik. 1992. “Local Learning Algorithms.” Neural Computa-

tion 4: 888–900.

Broomhead, D. S., and D. Lowe. 1988. “Multivariable Functional Interpolation

and Adaptive Networks.” Complex Systems 2: 321–355.

Carpenter, G. A., and S. Grossberg. 1988. “The ART of Adaptive Pattern Recog-

nition by a Self-Organizing Neural Network.” IEEE Computer 21(3): 77–88.

Cherkassky, V., and F. Mulier. 1998. Learning from Data: Concepts, Theory,

and Methods. New York: Wiley.

DeSieno, D. 1988. “Adding a Conscience Mechanism to Competitive Learning.”

In IEEE International Conference on Neural Networks, 117–124. Piscataway,

NJ: IEEE Press.

Feldman, J. A., and D. H. Ballard. 1982. “Connectionist Models and their Prop-

erties.” Cognitive Science 6: 205–254.

Fritzke, B. 1995. “Growing Cell Structures: A Self Organizing Network for Un-

supervised and Supervised Training.” Neural Networks 7: 1441–1460.

Grossberg, S. 1980. “How does the Brain Build a Cognitive Code?” Psychological

Review 87: 1–51.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural

Computation. Reading, MA: Addison Wesley.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton. 1991. “Adaptive

Mixtures of Local Experts.” Neural Computation 3: 79–87.

Jordan, M. I., and R. A. Jacobs. 1994. “Hierarchical Mixtures of Experts and the

EM Algorithm.” Neural Computation 6: 181–214.

308 12 Local Models

Kohonen, T. 1990. “The Self-Organizing Map.” Proceedings of the IEEE 78:

1464–1480.

Kohonen, T. 1995. Self-Organizing Maps. Berlin: Springer.

Lee, Y. 1991. “Handwritten Digit Recognition Using k-Nearest Neighbor, Radial

Basis Function, and Backpropagation Neural Networks.” Neural Computation

3: 440–449.

Mao, J., and A. K. Jain. 1995. “Artificial Neural Networks for Feature Extraction

and Multivariate Data Projection.” IEEE Transactions on Neural Networks 6:

296–317.

Moody, J., and C. Darken. 1989. “Fast Learning in Networks of Locally-Tuned

Processing Units.” Neural Computation 1: 281–294.

Oja, E. 1982. “A Simplified Neuron Model as a Principal Component Analyzer.”

Journal of Mathematical Biology 15: 267–273.

Omohundro, S. M. 1987. “Efficient Algorithms with Neural Network Behavior.”

Complex Systems 1: 273–347.

Platt, J. 1991. “A Resource Allocating Network for Function Interpolation.” Neu-

ral Computation 3: 213–225.

Specht, D. F. 1991. “A General Regression Neural Network.” IEEE Transactions

on Neural Networks 2: 568–576.

Tresp, V., J. Hollatz, and S. Ahmad. 1997. “Representing Probabilistic Rules

with Networks of Gaussian Basis Functions.” Machine Learning 27: 173–200.

13 Kernel Machines

Kernel machines are maximum margin methods that allow the model

to be written as a sum of the influences of a subset of the training in-

stances. These influences are given by application-specific similarity

kernels, and we discuss “kernelized” classification, regression, out-

lier detection, and dimensionality reduction, as well as how to choose

and use kernels.

13.1 Introduction

We now discuss a different approach for linear classification and regres-

sion. We should not be surprised to have so many different methods

even for the simple case of a linear model. Each learning algorithm has

a different inductive bias, makes different assumptions, and defines a

different objective function and thus may find a different linear model.

The model that we will discuss in this chapter, called the support vector

machine (SVM), and later generalized under the name kernel machine, has

been popular in recent years for a number of reasons:

1. It is a discriminant-based method and uses Vapnik’s principle to never

solve a more complex problem as a first step before the actual prob-

lem (Vapnik 1995). For example, in classification, when the task is to

learn the discriminant, it is not necessary to estimate where the class

densities p(x|Ci) or the exact posterior probability values P(Ci|x); we
only need to estimate where the class boundaries lie, that is, x where

P(Ci|x) = P(Cj |x). Similarly, for outlier detection, we do not need to

estimate the full density p(x); we only need to find the boundary sep-

arating those x that have low p(x), that is, x where p(x) < θ, for some

threshold θ ∈ (0,1).

310 13 Kernel Machines

2. After training, the parameter of the linear model, the weight vector,

can be written down in terms of a subset of the training set, which are

the so-called support vectors. In classification, these are the cases that

are close to the boundary and as such, knowing them allows knowl-

edge extraction: those are the uncertain or erroneous cases that lie in

the vicinity of the boundary between two classes. Their number gives

us an estimate of the generalization error, and, as we see below, being

able to write the model parameter in terms of a set of instances allows

kernelization.

3. As we will see shortly, the output is written as a sum of the influ-

ences of support vectors and these are given by kernel functions that

are application-specific measures of similarity between data instances.

Previously, we talked about nonlinear basis functions allowing us to

map the input to another space where a linear (smooth) solution is

possible; the kernel function uses the same idea.

4. Typically in most learning algorithms, data points are represented as

vectors, and either dot product (as in the multilayer perceptrons) or

Euclidean distance (as in radial basis function networks) is used. A

kernel function allows us to go beyond that. For example, G1 and G2

may be two graphs and K(G1, G2) may correspond to the number of

shared paths, which we can calculate without needing to represent G1

or G2 explicitly as vectors.

5. Kernel-based algorithms are formulated as convex optimization prob-

lems, and there is a single optimum that we can solve for analytically.

Therefore we are no longer bothered with heuristics for learning rates,

initializations, checking for convergence, and such. Of course, this

does not mean that we do not have any hyperparameters for model

selection; we do—any method needs them, to match the algorithm to

the data at hand.

We start our discussion with the case of classification, and then gen-

eralize to regression, outlier (novelty) detection, and then dimensionality

reduction. We see that in all cases basically we have the similar quadratic

program template to maximize the separability, or margin, of instances

subject to a constraint of the smoothness of solution. Solving for it, we

get the support vectors. The kernel function defines the space according

to its notion of similarity and a kernel function is good if we have better

separation in its corresponding space.

13.2 Optimal Separating Hyperplane 311

13.2 Optimal Separating Hyperplane

Let us start again with two classes and use labels −1/ + 1 for the two

classes. The sample is X = {xt , r t} where r t = +1 if xt ∈ C1 and r t = −1
if xt ∈ C2. We would like to find w and w0 such that

wTxt +w0 ≥ +1 for r t = +1
wTxt +w0 ≤ −1 for r t = −1

which can be rewritten as

r t(wTxt +w0) ≥ +1(13.1)

Note that we do not simply require

r t(wTxt +w0) ≥ 0

Not only do we want the instances to be on the right side of the hy-

perplane, but we also want them some distance away, for better general-

ization. The distance from the hyperplane to the instances closest to it

on either side is called the margin, which we want to maximize for bestmargin

generalization.

Very early on, in section 2.1, we talked about the concept of the margin

when we were talking about fitting a rectangle, and we said that it is

better to take a rectangle halfway between S and G, to get a breathing

space. This is so that in case noise shifts a test instance slightly, it will

still be on the right side of the boundary.

Similarly, now that we are using the hypothesis class of lines, the opti-optimal separating

hyperplane mal separating hyperplane is the one that maximizes the margin.

We remember from section 10.3 that the distance of xt to the discrimi-

nant is

|wTxt +w0|
‖w‖

which, when r t ∈ {−1,+1}, can be written as
r t(wTxt +w0)

‖w‖
and we would like this to be at least some value ρ:

r t(wTxt +w0)

‖w‖ ≥ ρ,∀t(13.2)

312 13 Kernel Machines

We would like to maximize ρ but there are an infinite number of so-

lutions that we can get by scaling w and for a unique solution, we fix

ρ‖w‖ = 1 and thus, to maximize the margin, we minimize ‖w‖. The task
can therefore be defined (see Cortes and Vapnik 1995; Vapnik 1995) as

to

min
1

2
‖w‖2 subject to r t (wTxt +w0) ≥ +1,∀t(13.3)

This is a standard quadratic optimization problem, whose complexity

depends on d, and it can be solved directly to find w and w0. Then, on

both sides of the hyperplane, there will be instances that are 1/‖w‖ away
from the hyperplane and the total margin will be 2/‖w‖.
We saw in section 10.2 that if the problem is not linearly separable,

instead of fitting a nonlinear function, one trick is to map the problem to

a new space by using nonlinear basis functions. It is generally the case

that this new space has many more dimensions than the original space,

and, in such a case, we are interested in a method whose complexity does

not depend on the input dimensionality.

In finding the optimal hyperplane, we can convert the optimization

problem to a form whose complexity depends on N , the number of train-

ing instances, and not on d. Another advantage of this new formulation

is that it will allow us to rewrite the basis functions in terms of kernel

functions, as we will see in section 13.5.

To get the new formulation, we first write equation 13.3 as an uncon-

strained problem using Lagrange multipliers αt :

Lp = 1

2
‖w‖2 −

N∑
t=1

αt[rt(wTxt +w0)− 1]

= 1

2
‖w‖2 −

∑
t

αtr t(wTxt +w0)+
∑
t

αt(13.4)

This should be minimized with respect to w, w0 and maximized with

respect to αt ≥ 0. The saddle point gives the solution.

This is a convex quadratic optimization problem because the main term

is convex and the linear constraints are also convex. Therefore, we can

equivalently solve the dual problem, making use of the Karush-Kuhn-

Tucker conditions. The dual is to maximize Lp with respect to αt , subject

to the constraints that the gradient of Lp with respect to w and w0 are 0

13.2 Optimal Separating Hyperplane 313

and also that αt ≥ 0:

∂Lp

∂w
= 0 ⇒ w =

∑
t

αtr txt(13.5)

∂Lp

∂w0
= 0 ⇒

∑
t

αtr t = 0(13.6)

Plugging these into equation 13.4, we get the dual

Ld = 1

2
(wTw)−wT

∑
t

αtr txt −w0

∑
t

αtr t +
∑
t

αt

= −1
2
(wTw)+

∑
t

αt

= −1
2

∑
t

∑
s

αtαsr trs(xt)Txs +
∑
t

αt(13.7)

which we maximize with respect to αt only, subject to the constraints∑
t

αtr t = 0, and αt ≥ 0,∀t

This can be solved using quadratic optimization methods. The size of

the dual depends on N , sample size, and not on d, the input dimensional-

ity. The upper bound for time complexity is O(N3), and the upper bound

for space complexity is O(N2).

Once we solve for αt , we see that though there are N of them, most

vanish with αt = 0 and only a small percentage have αt > 0. The set of xt

whose αt > 0 are the support vectors, and as we see in equation 13.5, w is

written as the weighted sum of these training instances that are selected

as the support vectors. These are the xt that satisfy

r t(wTxt +w0) = 1

and lie on the margin. We can use this fact to calculate w0 from any

support vector as

w0 = r t −wTxt(13.8)

For numerical stability, it is advised that this be done for all support

vectors and an average be taken. The discriminant thus found is called

the support vector machine (SVM) (see figure 13.1).support vector

machine The majority of the αt are 0, for which r t(wTxt + w0) > 1. These

are the xt that lie more than sufficiently away from the discriminant,

314 13 Kernel Machines

0 0.5 1 1.5 2
0

0.5

1

1.5

2

−1

1

Figure 13.1 For a two-class problem where the instances of the classes are

shown by plus signs and dots, the thick line is the boundary and the dashed lines

define the margins on either side. Circled instances are the support vectors.

and they have no effect on the hyperplane. The instances that are not

support vectors carry no information; even if any subset of them are

removed, we would still get the same solution. From this perspective,

the SVM algorithm can be likened to the condensed nearest neighbor al-

gorithm (section 8.5), which stores only the instances neighboring (and

hence constraining) the class discriminant.

Being a discriminant-based method, the SVM cares only about the in-

stances close to the boundary and discards those that lie in the interior.

Using this idea, it is possible to use a simpler classifier before the SVM

to filter out a large portion of such instances, thereby decreasing the

complexity of the optimization step of the SVM (exercise 1).

During testing, we do not enforce a margin. We calculate g(x) = wTx+
w0, and choose according to the sign of g(x):

Choose C1 if g(x) > 0 and C2 otherwise

13.3 The Nonseparable Case: Soft Margin Hyperplane 315

13.3 The Nonseparable Case: Soft Margin Hyperplane

If the data is not linearly separable, the algorithm we discussed earlier

will not work. In such a case, if the two classes are not linearly separable

such that there is no hyperplane to separate them, we look for the one

that incurs the least error. We define slack variables, ξt ≥ 0, which storeslack variables

the deviation from the margin. There are two types of deviation: An

instance may lie on the wrong side of the hyperplane and be misclassified.

Or, it may be on the right side but may lie in the margin, namely, not

sufficiently away from the hyperplane. Relaxing equation 13.1, we require

r t(wTxt +w0) ≥ 1− ξt(13.9)

If ξt = 0, there is no problem with xt . If 0 < ξt < 1, xt is correctly

classified but in the margin. If ξt ≥ 1, xt is misclassified (see figure 13.2).

The number of misclassifications is #{ξt > 1}, and the number of non-

separable points is #{ξt > 0}. We define soft error assoft error ∑
t

ξt

and add this as a penalty term:

Lp = 1

2
‖w‖2 + C

∑
t

ξt(13.10)

subject to the constraint of equation 13.9. C is the penalty factor as in

any regularization scheme trading off complexity, as measured by the L2
norm of the weight vector (similar to weight decay in multilayer percep-

trons; see section 11.9), and data misfit, as measured by the number of

nonseparable points. Note that we are penalizing not only the misclas-

sified points but also the ones in the margin for better generalization,

though these latter would be correctly classified during testing.

Adding the constraints, the Lagrangian of equation 13.4 then becomes

Lp = 1

2
‖w‖2 + C

∑
t

ξt −
∑
t

αt[r t (wTxt +w0)− 1+ ξt]−
∑
t

μtξt(13.11)

where μt are the new Lagrange parameters to guarantee the positivity of

ξt . When we take the derivatives with respect to the parameters and set

them to 0, we get:

∂Lp

∂w
= w −

∑
t

αtr txt = 0⇒ w =
∑
t

αtr txt(13.12)

316 13 Kernel Machines

0 0.5 1 1.5 2
0

0.5

1

1.5

2

−1 1

(a)

(c)

(d)

(b)

Figure 13.2 In classifying an instance, there are four possible cases: In (a), the

instance is on the correct side and far away from the margin; r tg(xt) > 1, ξt = 0.

In (b), ξt = 0; it is on the right side and on the margin. In (c), ξt = 1− g(xt),0 <
ξ < 1; it is on the right side but is in the margin and not sufficiently away. In (d),

ξt = 1 + g(xt) > 1; it is on the wrong side—this is a misclassification. All cases

except (a) are support vectors. In terms of the dual variable, in (a), αt = 0; in (b),

αt < C ; in (c) and (d), αt = C .

∂Lp

∂w0
=

∑
t

αtr t = 0(13.13)

∂Lp

∂ξt
= C −αt − μt = 0(13.14)

Since μt ≥ 0, this last implies that 0 ≤ αt ≤ C. Plugging these into

equation 13.11, we get the dual that we maximize with respect to αt :

Ld =
∑
t

αt − 1

2

∑
t

∑
s

αtαsr t rs(xt)Txs(13.15)

subject to∑
t

αtr t = 0 and 0 ≤ αt ≤ C,∀t

13.3 The Nonseparable Case: Soft Margin Hyperplane 317

Solving this, we see that as in the separable case, instances that lie on

the correct side of the boundary with sufficient margin vanish with their

αt = 0 (see figure 13.2). The support vectors have their αt > 0 and they

define w, as given in equation 13.12. Of these, those whose αt < C are

the ones that are on the margin, and we can use them to calculate w0;

they have ξt = 0 and satisfy r t(wTxt + w0) = 1. Again, it is better to

take an average over these w0 estimates. Those instances that are in the

margin or misclassified have their αt = C.
The nonseparable instances that we store as support vectors are the

instances that we would have trouble correctly classifying if they were

not in the training set; they would either be misclassified or classified

correctly but not with enough confidence. We can say that the number

of support vectors is an upper-bound estimate for the expected number

of errors. And, actually, Vapnik (1995) has shown that the expected test

error rate is

EN[P(error)] ≤ EN[# of support vectors]

N

where EN[·] denotes expectation over training sets of size N . The nice

implication of this is that it shows that the error rate depends on the

number of support vectors and not on the input dimensionality.

Equation 13.9 implies that we define error if the instance is on the

wrong side or if the margin is less than 1. This is called the hinge loss. Ifhinge loss

yt = wTxt + w0 is the output and r t is the desired output, hinge loss is

defined as

Lhinge(y
t , r t) =

{
0 if ytr t ≥ 1

1− ytr t otherwise
(13.16)

In figure 13.3, we compare hinge loss with 0/1 loss, squared error,

and cross-entropy. We see that different from 0/1 loss, hinge loss also

penalizes instances in the margin even though they may be on the correct

side, and the loss increases linearly as the instance moves away on the

wrong side. This is different from the squared loss that therefore is not as

robust as the hinge loss. We see that cross-entropy minimized in logistic

discrimination (section 10.7) or by the linear perceptron (section 11.3), is

a good continuous approximation to the hinge loss.

C of equation 13.10 is the regularization parameter fine-tuned using

cross-validation. It defines the trade-off between margin maximization

and error minimization: If it is too large, we have a high penalty for

nonseparable points, and we may store many support vectors and overfit.

318 13 Kernel Machines

−2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

0/1 loss

hinge loss

squared error

cross entropy

yt

lo
ss

 fo
r

rt =
 1

Figure 13.3 Comparison of different loss functions for r t = 1: 0/1 loss is 0 if

yt = 1, 1 otherwise. Hinge loss is 0 if yt > 1, 1 − yt otherwise. Squared error is

(1− yt)2. Cross-entropy is log(1/(1+ exp(−yt))).

If it is too small, we may find too simple solutions that underfit. Typically,

one chooses from [10−6,10−5, . . . ,10+5,10+6] in the log scale by looking

at the accuracy on a validation set.

13.4 ν-SVM

There is another, equivalent formulation of the soft margin hyperplane

that uses a parameter ν ∈ [0,1] instead of C (Schölkopf et al. 2000). The

objective function is

min
1

2
‖w‖2 − νρ + 1

N

∑
t

ξt(13.17)

subject to

r t(wTxt +w0) ≥ ρ − ξt, ξt ≥ 0, ρ ≥ 0(13.18)

ρ is a new parameter that is a variable of the optimization problem and

scales the margin: the margin is now 2ρ/‖w‖. ν has been shown to be a

13.5 Kernel Trick 319

lower bound on the fraction of support vectors and an upper bound on

the fraction of instances having margin errors (
∑
t #{ξt > 0}). The dual is

Ld = −1
2

∑
t

∑
s

αtαsr trs(xt)Txs(13.19)

subject to∑
t

αtr t = 0, 0 ≤ αt ≤ 1

N
,
∑
t

αt ≤ ν

When we compare equation 13.19 with equation 13.15, we see that

the term
∑
t α

t no longer appears in the objective function but is now

a constraint. By playing with ν, we can control the fraction of support

vectors, and this is advocated to be more intuitive than playing with C.

13.5 Kernel Trick

Section 10.2 demonstrated that if the problem is nonlinear, instead of

trying to fit a nonlinear model, we can map the problem to a new space

by doing a nonlinear transformation using suitably chosen basis func-

tions and then use a linear model in this new space. The linear model

in the new space corresponds to a nonlinear model in the original space.

This approach can be used in both classification and regression prob-

lems, and in the special case of classification, it can be used with any

scheme. In the particular case of support vector machines, it leads to

certain simplifications that we now discuss.

Let us say we have the new dimensions calculated through the basis

functions

z = φ(x) where zj = φj(x), j = 1, . . . , k

mapping from the d-dimensional x space to the k-dimensional z space

where we write the discriminant as

g(z) = wTz

g(x) = wTφ(x)

=
k∑
j=1

wjφj(x)(13.20)

where we do not use a separate w0; we assume that z1 = φ1(x) ≡ 1. Gen-

erally, k is much larger than d and kmay also be larger than N , and there

320 13 Kernel Machines

lies the advantage of using the dual form whose complexity depends on

N , whereas if we used the primal it would depend on k. We also use the

more general case of the soft margin hyperplane here because we have

no guarantee that the problem is linearly separable in this new space.

The problem is the same

Lp = 1

2
‖w‖2 + C

∑
t

ξt(13.21)

except that now the constraints are defined in the new space

r twTφ(xt) ≥ 1− ξt(13.22)

The Lagrangian is

Lp = 1

2
‖w‖2 + C

∑
t

ξt −
∑
t

αt
[
r twTφ(xt)− 1+ ξt

]
−
∑
t

μtξt(13.23)

When we take the derivatives with respect to the parameters and set

them to 0, we get

∂Lp

∂w
= w =

∑
t

αtr tφ(xt)(13.24)

∂Lp

∂ξt
= C − αt − μt = 0(13.25)

The dual is now

Ld =
∑
t

αt − 1

2

∑
t

∑
s

αtαsr t rsφ(xt)Tφ(xs)(13.26)

subject to∑
t

αtr t = 0 and 0 ≤ αt ≤ C,∀t

The idea in kernel machines is to replace the inner product of ba-

sis functions, φ(xt)Tφ(xs), by a kernel function, K(xt ,xs), between in-kernel function

stances in the original input space. So instead of mapping two instances

xt and xs to the z-space and doing a dot product there, we directly apply

the kernel function in the original space.

Ld =
∑
t

αt − 1

2

∑
t

∑
s

αtαsr t rsK(xt ,xs)(13.27)

13.6 Vectorial Kernels 321

The kernel function also shows up in the discriminant

g(x) = wTφ(x) =
∑
t

αtr tφ(xt)Tφ(x)

=
∑
t

αtr tK(xt ,x)(13.28)

This implies that if we have the kernel function, we do not need to map

it to the new space at all. Actually, for any valid kernel, there does exist

a corresponding mapping function, but it may be much simpler to use

K(xt ,x) rather than calculating φ(xt), φ(x) and taking the dot product.

Many algorithms have been kernelized, as we will see in later sections,kernelization

and that is why we have the name “kernel machines.”

The matrix of kernel values, K, whereKts = K(xt ,xs), is called the GramGram matrix

matrix, which should be symmetric and positive semidefinite. Recently,

it has become standard practice in sharing data sets to have available

only the K matrices without providing xt or φ(xt). Especially in bioinfor-

matics or natural language processing applications where x (or φ(x)) has

hundreds or thousands of dimensions, storing/downloading the N × N
matrix is much cheaper (Vert, Tsuda, and Schölkopf 2004); this, however,

implies that we can use only those available for training/testing and can-

not use the trained model to make predictions outside this data set.

13.6 Vectorial Kernels

The most popular, general-purpose kernel functions are

� polynomials of degree q:

K(xt ,x) = (xTxt + 1)q(13.29)

where q is selected by the user. For example, when q = 2 and d = 2,

K(x,y) = (xTy + 1)2

= (x1y1 + x2y2 + 1)2

= 1+ 2x1y1 + 2x2y2 + 2x1x2y1y2 + x21y21 + x22y22

corresponds to the inner product of the basis function (Cherkassky

and Mulier 1998):

φ(x) = [1,
√
2x1,

√
2x2,

√
2x1x2, x

2
1, x

2
2]
T

322 13 Kernel Machines

0 0.5 1 1.5 2
0

0.5

1

1.5

2

−1

1

Figure 13.4 The discriminant and margins found by a polynomial kernel of

degree 2. Circled instances are the support vectors.

An example is given in figure 13.4. When q = 1, we have the linear

kernel that corresponds to the original formulation.

� radial-basis functions:

K(xt ,x) = exp

[
−‖x

t − x‖2
2s2

]
(13.30)

defines a spherical kernel as in Parzen windows (chapter 8) where xt is

the center and s, supplied by the user, defines the radius. This is also

similar to radial basis functions that we discuss in chapter 12.

An example is shown in figure 13.5 where we see that larger spreads

smooth the boundary; the best value is found by cross-validation.

Note that when there are two parameters to be optimized using cross-

validation, for example, here C and s2, one should do a grid (factorial)

search in the two dimensions; we will discuss methods for searching

the best combination of such factors in section 19.2.

One can have a Mahalanobis kernel, generalizing from the Euclidean

distance:

K(xt ,x) = exp

[
−1
2
(xt − x)TS−1(xt − x)

]
(13.31)

13.6 Vectorial Kernels 323

0 1 2
0

1

2
(a) s2=2

−1

1

0 1 2
0

1

2
(b) s2=0.5

−1

1

0 1 2
0

1

2
(c) s2=0.25

−1−1

1

0 1 2
0

1

2
(d) s2=0.1

−1

−1

1

Figure 13.5 The boundary and margins found by the Gaussian kernel with dif-

ferent spread values, s2. We get smoother boundaries with larger spreads.

where S is a covariance matrix. Or, in the most general case,

K(xt ,x) = exp

[
−D(x

t ,x)

2s2

]
(13.32)

for some distance function D(xt ,x).

� sigmoidal functions:

K(xt ,x) = tanh(2xTxt + 1)(13.33)

where tanh(·) has the same shape with sigmoid, except that it ranges

between −1 and +1. This is similar to multilayer perceptrons that we

discussed in chapter 11.

324 13 Kernel Machines

13.7 Defining Kernels

It is also possible to define application-specific kernels. Kernels are gen-

erally considered to be measures of similarity in the sense that K(x,y)

takes a larger value as x and y are more “similar,” from the point of view

of the application. This implies that any prior knowledge we have regard-

ing the application can be provided to the learner through appropriately

defined kernels—“kernel engineering”—and such use of kernels can be

seen as another example of a “hint” (section 11.8.4).

There are string kernels, tree kernels, graph kernels, and so on (Vert,

Tsuda, and Schölkopf 2004), depending on how we represent the data

and how we measure similarity in that representation.

For example, given two documents, the number of words appearing

in both may be a kernel. Let us say D1 and D2 are two documents and

one possible representation is called bag of words where we predefinebag of words

M words relevant for the application, and we define φ(D1) as the M-

dimensional binary vector whose dimension i is 1 if word i appears in

D1 and is 0 otherwise. Then, φ(D1)
Tφ(D2) counts the number of shared

words. Here, we see that if we directly define and implement K(D1,D2)

as the number of shared words, we do not need to preselect M words

and can use just any word in the vocabulary (of course, after discarding

uninformative words like “of,” “and,” etc.) and we would not need to

generate the bag-of-words representation explicitly and it would be as if

we allowed M to be as large as we want.

Sometimes—for example, in bioinformatics applications—we can calcu-

late a similarity score between two objects, which may not necessarily be

positive semidefinite. Given two strings (of genes), a kernel measures the

edit distance, namely, how many operations (insertions, deletions, sub-edit distance

stitutions) it takes to convert one string into another; this is also called

alignment. In such a case, a trick is to define a set of M templates andalignment

represent an object as the M-dimensional vector of scores to all the tem-

plates. That is, if mi , i = 1, . . . ,M are the templates and s(xt ,mi) is the

score between xt and mi , then we define

φ(xt) = [s(xt ,m1), s(x
t ,m2), . . . , s(x

t ,mM)]
T

and we define the empirical kernel map asempirical kernel

map

K(xt ,xs) = φ(xt)Tφ(xs)
which is a valid kernel.

13.8 Multiple Kernel Learning 325

Sometimes, we have a binary score function; for example, two proteins

may interact or not, and we want to be able to generalize from this to

scores for two arbitrary instances. In such a case, a trick is to define a

graph where the nodes are the instances and two nodes are linked if they

interact, that is, if the binary score returns 1. Then we say that two nodes

that are not immediately linked are “similar” if the path between them is

short or if they are connected by many paths. This converts pairwise local

interactions to a global similarity measure, rather like defining a geodesic

distance used in Isomap (section 6.7), and it is called the diffusion kernel.diffusion kernel

If p(x) is a probability density, then

K(xt ,x) = p(xt)p(x)

is a valid kernel. This is used when p(x) is a generative model for x mea-

suring how likely it is that we see x. For example, if x is a sequence, p(x)

can be a hidden Markov model (chapter 15). With this kernel, K(xt ,x) will

take a high value if both xt and x are likely to have been generated by the

same model. It is also possible to parametrize the generative model as

p(x|θ) and learn θ from data; this is called the Fisher kernel (JaakkolaFisher kernel

and Haussler 1998).

13.8 Multiple Kernel Learning

It is possible to construct new kernels by combining simpler kernels. If

K1(x,y) and K2(x,y) are valid kernels and c a constant, then

K(x,y) =

⎧⎪⎨
⎪⎩
cK1(x,y)

K1(x,y)+K2(x,y)
K1(x,y) · K2(x,y)

(13.34)

are also valid.

Different kernels may also be using different subsets of x. We can

therefore see combining kernels as another way to fuse information from

different sources where each kernel measures similarity according to its

domain. When we have input from two representations A and B

KA(xA,yA)+KB(xB,yB) = φA(xA)
TφA(yA)+φB(xB)

TφB(yB)

= φ(x)Tφ(y)

= K(x,y)(13.35)

326 13 Kernel Machines

where x = [xA,xB] is the concatenation of the two representations. That

is, taking a sum of two kernels corresponds to doing a dot product in the

concatenated feature vectors. One can generalize to a number of kernels

K(x,y) =
m∑
i=1

Ki(x,y)(13.36)

which, similar to taking an average of classifiers (section 17.4), this time

averages over kernels and frees us from the need to choose one particular

kernel. It is also possible to take a weighted sum and also learn the

weights from data (Lanckriet et al. 2004; Sonnenburg et al. 2006):

K(x,y) =
m∑
i=1

ηiKi(x,y)(13.37)

subject to ηi ≥ 0, with or without the constraint of
∑
i ηi = 1, respectively

known as convex or conic combination. This is called multiple kernelmultiple kernel

learning learningwhere we replace a single kernel with a weighted sum. The single

kernel objective function of equation 13.27 becomes

Ld =
∑
t

αt − 1

2

∑
t

∑
s

αtαsr t rs
∑
i

ηiKi(x
t ,xs)(13.38)

which we solve for both the support vector machine parameters αt and

the kernel weights ηi . Then, the combination of multiple kernels also

appear in the discriminant

g(x) =
∑
t

αtr t
∑
i

ηiKi(x
t ,x)(13.39)

After training, ηi will take values depending on how the corresponding

kernel Ki(xt ,x) is useful in discriminating. It is also possible to localize

kernels by defining kernel weights as a parameterized function of the

input x, rather like the gating function in mixture of experts (section 17.8)

g(x) =
∑
t

αtr t
∑
i

ηi(x|θi)Ki(xt ,x)(13.40)

and the gating parameters θi are learned together with the support vector

machine parameters (Gönen and Alpaydın 2008).

When we have information coming from multiple sources in different

representations or modalities—for example, in speech recognition where

we may have both acoustic and visual lip image—the usual approach is to

feed them separately to different classifiers and then fuse the decisions;

13.9 Multiclass Kernel Machines 327

we will discuss methods for this in detail in chapter 17. Combining mul-

tiple kernels provides us with another way of integrating input from mul-

tiple sources, where there is a single classifier that uses different kernels

for inputs of different sources, for which there are different notions of

similarity (Noble 2004). The localized version can then seen be an exten-

sion of this where we can choose between sources, and hence similarity

measures, depending on the input.

13.9 Multiclass Kernel Machines

When there are K > 2 classes, the straightforward, one-vs.-all way is to

define K two-class problems, each one separating one class from all other

classes combined and learn K support vector machines gi(x), i = 1, . . . , K.

That is, in training gi(x), examples of Ci are labeled +1 and examples of

Ck, k �= i are labeled as −1. During testing, we calculate all gi(x) and

choose the maximum.

Platt (1999) proposed to fit a sigmoid to the output of a single (2-class)

SVM output to convert to a posterior probability. Similarly, one can train

one layer of softmax outputs to minimize cross-entropy to generate K >

2 posterior probabilities (Mayoraz and Alpaydın 1999):

yi(x) =
K∑
j=1

vijfj(x)+ vi0(13.41)

where fj(x) are the SVM outputs and yi are the posterior probability out-

puts. Weights vij are trained to minimize cross-entropy. Note, however,

that as in stacking (section 17.9), the data on which we train vij should

be different from the data used to train the base SVMs fj(x), to alleviate

overfitting.

Instead of the usual approach of building K two-class SVM classifiers to

separate one from all the rest, as with any other classifier, one can build

K(K − 1)/2 pairwise classifiers (see also section 10.4), each gij(x) taking

examples of Ci with the label +1, examples of Cj with the label −1, and
not using examples of the other classes. Separating classes in pairs is

normally expected to be an easier job, with the additional advantage that

because we use less data, the optimizations will be faster, noting however

that we have O(K2) discriminants to train instead of O(K).
In the general case, both one-vs.-all and pairwise separation are special

cases of the error-correcting output codes that decompose a multiclassECOC

328 13 Kernel Machines

problem to a set of two-class problems (Dietterich and Bakiri 1995) (see

also section 17.6). SVMs being two-class classifiers are ideally suited to

this (Allwein, Schapire, and Singer 2000), and it is also possible to have

an incremental approach where new two-class SVMs are added to better

separate pairs of classes that are confused, to ameliorate a poor ECOC

matrix (Mayoraz and Alpaydın 1999).

Another possibility is to write a singlemulticlass optimization problem

involving all classes (Weston and Watkins 1998):

min
1

2

K∑
i=1
‖wi‖2 + C

∑
i

∑
t

ξti(13.42)

subject to

wztx
t +wzt0 ≥ wix

t +wi0 + 2− ξti ,∀i �= zt and ξti ≥ 0

where zt contains the class index of xt . The regularization terms mini-

mizes the norms of all hyperplanes simultaneously, and the constraints

are there to make sure that the margin between the actual class and any

other class is at least 2. The output for the correct class should be at

least +1, the output of any other class should be at least −1, and the

slack variables are defined to make up any difference.

Though this looks neat, the one-vs.-all approach is generally preferred

because it solves K separate N variable problems whereas the multiclass

formulation uses K ·N variables.

13.10 Kernel Machines for Regression

Now let us see how support vector machines can be generalized for re-

gression. We see that the same approach of defining acceptable margins,

slacks, and a regularizing function that combines smoothness and error

is also applicable here. We start with a linear model, and later on we see

how we can use kernel functions here as well:

f (x) = wTx +w0

In regression proper, we use the square of the difference as error:

e2(r
t , f (xt)) = [rt − f (xt)]2

13.10 Kernel Machines for Regression 329

−8 −6 −4 −2 0 2 4 6 8
0

10

20

30

40

50

60

70

Figure 13.6 Quadratic and ε-sensitive error functions. We see that ε-sensitive

error function is not affected by small errors and also is affected less by large

errors and thus is more robust to outliers.

whereas in support vector regression, we use the ε-sensitive loss func-

tion:

eε(r
t , f (xt)) =

{
0 if |r t − f (xt)| < ε
|r t − f (xt)| − ε otherwise

(13.43)

which means that we tolerate errors up to ε and also that errors beyond

have a linear effect and not a quadratic one. This error function is there-

fore more tolerant to noise and is thus more robust (see figure 13.6). Asrobust regression

in the hinge loss, there is a region of no error, which causes sparseness.

Analogous to the soft margin hyperplane, we introduce slack variables

to account for deviations out of the ε-zone and we get (Vapnik 1995)

min
1

2
‖w‖2 + C

∑
t

(ξt+ + ξt−)(13.44)

subject to

r t − (wTx +w0) ≤ ε+ ξt+
(wTx +w0)− r t ≤ ε+ ξt−

ξt+, ξ
t
− ≥ 0

where we use two types of slack variables, for positive and negative de-

viations, to keep them positive. Actually, we can see this as two hinges

330 13 Kernel Machines

added back to back, one for positive and one for negative slacks. This

formulation corresponds to the ε-sensitive loss function given in equa-

tion 13.43. The Lagrangian is

Lp = 1

2
‖w‖2 + C

∑
t

(ξt+ + ξt−)

−
∑
t

αt+
[
ε+ ξt+ − r t + (wTx +w0)

]

−
∑
t

αt−
[
ε+ ξt− + (wTx +w0)− r t

]

−
∑
t

(μt+ξ
t
+ + μt−ξt−)(13.45)

Taking the partial derivatives, we get

∂Lp

∂w
= w −

∑
t

(αt+ − αt−)xt = 0⇒ w =
∑
t

(αt+ − αt−)xt(13.46)

∂Lp

∂w0
=

∑
t

(αt+ −αt−)xt = 0(13.47)

∂Lp

∂ξt+
= C −αt+ − μt+ = 0(13.48)

∂Lp

∂ξt−
= C −αt− − μt− = 0(13.49)

The dual is

Ld = −1
2

∑
t

∑
s

(αt+ −αt−)(αs+ −αs−)(xt)Txs

−ε
∑
t

(αt+ +αt−)−
∑
t

r t (αt+ −αt−)(13.50)

subject to

0 ≤ αt+ ≤ C , 0 ≤ αt− ≤ C ,
∑
t

(αt+ −αt−) = 0

Once we solve this, we see that all instances that fall in the tube have

αt+ = αt− = 0; these are the instances that are fitted with enough precision

(see figure 13.7). The support vectors satisfy either αt+ > 0 or αt− > 0 and

are of two types. They may be instances that are on the boundary of the

tube (either αt+ or αt− is between 0 and C), and we use these to calculate

w0. For example, assuming that αt+ > 0, we have r t = xTxt + w0 + ε.

Instances that fall outside the ε-tube are of the second type; these are

13.10 Kernel Machines for Regression 331

0 2 4 6 8
1.2

1.4

1.6

1.8

2

2.2

2.4

(a)

(b)

(c)

Figure 13.7 The fitted regression line to data points shown as crosses and the ε-

tube are shown (C = 10, ε = 0.25). There are three cases: In (a), the instance is in

the tube; in (b), the instance is on the boundary of the tube (circled instances); in

(c), it is outside the tube with a positive slack, that is, ξt+ > 0 (squared instances).

(b) and (c) are support vectors. In terms of the dual variable, in (a), αt+ = 0, αt− =
0, in (b), αt+ < C , and in (c), α

t
+ = C .

instances for which we do not have a good fit (αt+ = C), as shown in

figure 13.7.

Using equation 13.46, we can write the fitted line as a weighted sum of

the support vectors:

f (x) = wTx +w0 =
∑
t

(αt+ − αt−)(xt)Tx +w0(13.51)

Again, the dot product (xt)Txs in equation 13.50 can be replaced with

a kernel K(xt ,xs), and similarly (xt)Tx be replaced with K(xt ,x) and we

can have a nonlinear fit. Using a polynomial kernel would be similar to

fitting a polynomial (figure 13.8), and using a Gaussian kernel (figure 13.9)

would be similar to nonparametric smoothing models (section 8.6) except

that because of the sparsity of solution, we would not need the whole

training set but only a subset.

There is also an equivalent ν-SVM formulation for regression (Schölkopf

et al. 2000), where instead of fixing ε, we fix ν to bound the fraction of

support vectors. There is still a need for C though.

332 13 Kernel Machines

0 2 4 6 8
1

1.5

2

2.5

3

3.5

Figure 13.8 The fitted regression line and the ε-tube using a quadratic kernel

are shown (C = 10, ε = 0.25). Circled instances are the support vectors on the

margins, squared instances are support vectors which are outliers.

0 2 4 6 8
0

1

2

3
(a) s2 = 5

0 2 4 6 8
1

1.5

2

2.5
(b) s2 = 0.1

Figure 13.9 The fitted regression line and the ε-tube using a Gaussian kernel

with two different spreads are shown (C = 10, ε = 0.25). Circled instances are

the support vectors on the margins, and squared instances are support vectors

that are outliers.

13.11 One-Class Kernel Machines 333

13.11 One-Class Kernel Machines

Support vector machines, originally proposed for classification, are ex-

tended to regression by defining slack variables for deviations around the

regression line, instead of the discriminant. We now see how SVM can be

used for a restricted type of unsupervised learning, namely, for estimat-

ing regions of high density. We are not doing a full density estimation;

rather, we want to find a boundary (so that it reads like a classification

problem) that separates volumes of high density from volumes of low

density (Tax and Duin 1999). Such a boundary can then be used for nov-

elty or outlier detection. This is also called one-class classification.outlier detection

one-class

classification

We consider a sphere with center a and radius R that we want to en-

close as much as possible of the density, measured empirically as the

enclosed training set percentage. At the same time, trading off with it,

we want to find the smallest radius (see figure 13.10). We define slack

variables for instances that lie outside (we only have one type of slack

variable because we have examples from one class and we do not have

any penalty for those inside), and we have a smoothness measure that is

proportional to the radius:

min R2 + C
∑
t

ξt(13.52)

subject to

‖xt − a‖2 ≤ R2 + ξt and ξt ≥ 0,∀t

Adding the constraints, we get the Lagrangian, which we write keeping

in mind that ‖xt − a‖2 = (xt − a)T (xt − a):

Lp = R2 + C
∑
t

ξt −
∑
t

αt
(
R2 + ξt −

[
(xt)Txt − 2aTxt + aTa

])
−
∑
t

γtξt(13.53)

with αt ≥ 0 and γt ≥ 0 being the Lagrange multipliers. Taking the deriva-

tive with respect to the parameters, we get

∂L

∂R
= 2R − 2R

∑
t

αt = 0⇒
∑
t

αt = 1(13.54)

∂L

∂a
=

∑
t

αt(2xt − 2a) = 0⇒ a =
∑
t

αtxt(13.55)

∂L

∂ξt
= C −αt − γt = 0(13.56)

334 13 Kernel Machines

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(c)

(a)

(b)

Figure 13.10 One-class support vector machine places the smoothest boundary

(here using a linear kernel, the circle with the smallest radius) that encloses as

much of the instances as possible. There are three possible cases: In (a), the

instance is a typical instance. In (b), the instance falls on the boundary with

ξt = 0; such instances define R. In (c), the instance is an outlier with ξt > 0. (b)

and (c) are support vectors. In terms of the dual variable, we have, in (a), αt = 0;

in (b), 0 < αt < C ; in (c), αt = C .

Since γt ≥ 0, we can write this last as the constraint: 0 ≤ αt ≤ C.

Plugging these into equation 13.53, we get the dual that we maximize

with respect to αt :

Ld =
∑
t

αt(xt)Txt −
∑
t

∑
s

αtαs(xt)Txs(13.57)

subject to

0 ≤ αt ≤ C and
∑
t

αt = 1

When we solve this, we again see that most of the instances vanish

with their αt = 0; these are the typical, highly likely instances that fall

inside the sphere (figure 13.10). There are two type of support vectors

with αt > 0: There are instances that satisfy 0 < αt < C and lie on the

boundary, ‖xt −a‖2 = R2 (ξt = 0), which we use to calculate R. Instances

13.12 Kernel Dimensionality Reduction 335

that satisfy αt = C (ξt > 0) lie outside the boundary and are the outliers.

From equation 13.55, we see that the center a is written as a weighted

sum of the support vectors.

Then given a test input x, we say that it is an outlier if

‖x − a‖2 > R2

or

xtx − 2aTx + aTa > R2

Using kernel functions, allow us to go beyond a sphere and define

boundaries of arbitrary shapes. Replacing the dot product with a kernel

function, we get (subject to the same constraints):

Ld =
∑
t

αtK(xt ,xt)−
∑
t

∑
s

αtαsK(xt ,xs)(13.58)

For example, using a polynomial kernel of degree 2 allows arbitrary

quadratic surfaces to be used. If we use a Gaussian kernel (equation 13.30),

we have a union of local spheres. We reject x as an outlier if

K(x,x)− 2
∑
t

αtK(x,xt)+
∑
t

∑
s

αtαsK(xt ,xs) > R2

The third term does not depend on x and is therefore a constant (we

use this as an equality to solve for R where x is an instance on the mar-

gin). In the case of a Gaussian kernel where K(x,x) = 1, the condition

reduces to∑
t

αtKG(x,x
t) < Rc

for some constant Rc , which is analogous to the kernel density estimator

(section 8.2.2)—except for the sparseness of the solution—with a proba-

bility threshold Rc (see figure 13.11).

There is also an alternative, equivalent ν-SVM type of formulation of

one-class support vector machines that uses the canonical (1/2)‖w‖2
type of smoothness (Schölkopf et al. 2001).

13.12 Kernel Dimensionality Reduction

We know from section 6.3 that principal components analysis (PCA) re-

duces dimensionality by projecting on the eigenvectors of the covariance

336 13 Kernel Machines

0 1 2
0

0.5

1

1.5

2
(a) s2 = 1

0 1 2
0

0.5

1

1.5

2
(a) s2 = 0.1

Figure 13.11 One-class support vector machine using a Gaussian kernel with

different spreads.

matrix Σ with the largest eigenvalues, which, if data instances are cen-

tered (E[x] = 0), can be written as XTX. In the kernelized version, we

work in the space of φ(x) instead of the original x and because, as usual,

the dimensionality d of this new space may be much larger than the data

set size N , we prefer to work with the N × N matrix XXT instead of the

d × d matrix XTX. The projected data matrix is Φ = φ(X), and hence we

work on the eigenvectors of ΦTΦ and hence of the kernel matrix K.

Kernel PCA uses the eigenvectors and eigenvalues of the kernel ma-Kernel PCA

trix and this corresponds to doing a linear dimensionality reduction in

the φ(x) space. When ci and λi are the corresponding eigenvectors and

eigenvalues, the projected new k-dimensional values can be calculated as

ztj =
√
λic

t
j , j = 1, . . . , k, t = 1, . . . , N

An example is given in figure 13.12 where we first use a quadratic ker-

nel and then decrease dimensionality to two (out of five) using kernel PCA

and implement a linear SVM there. Note that in the general case (e.g., with

a Gaussian kernel), the eigenvalues do not necessarily decay and there is

no guarantee that we can reduce dimensionality using kernel PCA.

What we are doing here is multidimensonal scaling (section 6.5) using

kernel values as the similarity values. For example, by taking k = 2,

one can visualize the data in the space induced by the kernel matrix,

which can give us information as to how similarity is defined by the used

kernel. Linear discriminality reduction (LDA) (section 6.6) can similarly

13.13 Notes 337

−1 −0.5 0 0.5 1
−1

0

1
(a) Quadratic kernel in the x space

−1

1

0.9 0.95 1 1.05 1.1 1.15
−2

0

2
(b) Linear kernel in the z space

−1
1

Figure 13.12 Instead of using a quadratic kernel in the original space (a), we

can use kernel PCA on the quadratic kernel values to map to a two-dimensional

new space where we use a linear discriminant (b); these two dimensions (out of

five) explain 80 percent of the variance.

be kernelized (Müller et al. 2001).

In chapter 6, we discussed nonlinear dimensionality reduction meth-

ods, Isomap and LLE. In fact, by viewing the elements of the cost matrix

in equation 6.47 as kernel evaluations for pairs of inputs, LLE can be seen

as kernel PCA for a particular choice of kernel. The same also holds for

Isomap when a kernel function is defined as a function of the geodesic

distance on the graph.

13.13 Notes

The idea of generalizing linear models by mapping the data to a new

space through nonlinear basis functions is old, but the novelty of sup-

port vector machines is that of integrating this into a learning algorithm

whose parameters are defined in terms of a subset of data instances (the

so-called dual representation), hence also without needing to explicitlydual

representation

338 13 Kernel Machines

evaluate the basis functions and thereby also limiting complexity by the

size of the training set; this is also true for Gaussian processes where the

kernel function is called the covariance function (section 14.4).

The sparsity of the solution shows the advantage over nonparametric

estimators, such as k-nearest neighbor and Parzen windows, or Gaussian

processes, and the flexibility to use kernel functions allows working with

nonvectorial data. Because there is a unique solution to the optimization

problem, we do not need any iterative optimization procedure as we do in

neural networks. Because of all these reasons, support vector machines

are now considered to be the best, off-the-shelf learners and are widely

used in many domains, especially bioinformatics (Schölkopf, Tsuda, and

Vert 2004) and natural language processing applications, where an in-

creasing number of tricks are being developed to derive kernels (Shawe-

Taylor and Cristianini 2004).

The use of kernel functions implies a different data representation; we

no longer define an instance (object/event) as a vector of attributes by

itself, but in terms of how it is similar to or differs from other instances;

this is akin to the difference between multidimensional scaling that uses

a matrix of distances (without any need to know how they are calculated)

and principal components analysis that uses vectors in some space.

More information on support vector machines can be found in books

by Vapnik (1995, 1998) and Schölkopf and Smola (2002). The chapter

on SVM in Cherkassky and Mulier 1998 is a very readable introduction.

Burges 1998 and Smola and Schölkopf 1998 are good tutorials on SVM

classification and regression, respectively. There is a dedicated Web site

http://www.kernel-machines.org and many free software packages are

available, such as SVMlight (Joachims 2004) and LIBSVM (Chang and Lin

2008).

13.14 Exercises

1. Propose a filtering algorithm to find training instances that are very unlikely

to be support vectors.

2. In equation 13.31, how can we estimate S?

3. In the empirical kernel map, how can we choose the templates?

4. In the localized multiple kernel of equation 13.40, propose a suitable model

for ηi(x|θi) and discuss how it can be trained.

5. In kernel regression, what is the relation, if any, between ε and noise variance?

http://www.kernel-machines.org

13.15 References 339

6. In kernel regression, what is the effect of using different ε on bias and vari-

ance?

7. How can we use one-class SVM for classification?

8. In a setting as in figure 13.12, use kernel PCA with a Gaussian kernel.

9. Let us say we have two representations for the same object and associated

with each, we have a different kernel. How can we use both to implement a

joint dimensionality reduction using kernel PCA?

13.15 References

Allwein, E. L., R. E. Schapire, and Y. Singer. 2000. “Reducing Multiclass to Binary:

A Unifying Approach for Margin Classifiers.” Journal of Machine Learning

Research 1: 113–141.

Burges, C. J. C. 1998. “A Tutorial on Support Vector Machines for Pattern Recog-

nition.” Data Mining and Knowledge Discovery 2: 121–167.

Chang, C.-C., and C.-J. Lin. 2008. LIBSVM: A Library for Support Vector Machines.

http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
Cherkassky, V., and F. Mulier. 1998. Learning from Data: Concepts, Theory,

and Methods. New York: Wiley.

Cortes, C., and V. Vapnik. 1995. “Support Vector Networks.” Machine Learning

20: 273–297.

Dietterich, T. G., and G. Bakiri. 1995. “Solving Multiclass Learning Problems via

Error-Correcting Output Codes.” Journal of Artificial Intelligence Research 2:

263–286.

Gönen, M., and E. Alpaydın. 2008. “Localized Multiple Kernel Learning.” In

25th International Conference on Machine Learning, ed. A. McCallum and S.

Roweis, 352–359. Madison, WI: Omnipress.

Jaakkola, T., and D. Haussler. 1999. “Exploiting Generative Models in Discrimi-

native Classifiers.” In Advances in Neural Information Processing Systems 11,

ed. M. J. Kearns, S. A. Solla, and D. A. Cohn, 487-493. Cambridge, MA: MIT

Press.

Joachims, T. 2004. SVMlight, http://svmlight.joachims.org.

Lanckriet, G. R. G, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. 2004.

“Learning the Kernel Matrix with Semidefinite Programming.” Journal of Ma-

chine Learning Research 5: 27–72.

Mayoraz, E., and E. Alpaydın. 1999. “Support Vector Machines for Multiclass

Classification.” In Foundations and Tools for Neural Modeling, Proceedings of

IWANN’99, LNCS 1606, ed. J. Mira and J. V. Sanchez-Andres, 833–842. Berlin:

Springer.

http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/libsvm/
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/libsvm/
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/libsvm/
http://svmlight.joachims.org

340 13 Kernel Machines

Müller, K. R., S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001. “An Intro-

duction to Kernel-Based Learning Algorithms.” IEEE Transactions on Neural

Networks 12: 181–201.

Noble, W. S. 2004. “Support Vector Machine Applications in Computational Biol-

ogy.” In Kernel Methods in Computational Biology, ed. B. Schölkopf, K. Tsuda,

and J.-P. Vert, 71–92. Cambridge, MA: MIT Press.

Platt, J. 1999. “Probabilities for Support Vector Machines.” In Advances in Large

Margin Classifiers, ed. A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuur-

mans, 61–74. Cambridge, MA: MIT Press.

Schölkopf, B., J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. 2001.

“Estimating the Support of a High-Dimensional Distribution.” Neural Compu-

tation 13: 1443–1471.

Schölkopf, B., and A. J. Smola. 2002. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT

Press.

Schölkopf, B., A. J. Smola, R. C. Williamson, and P. L. Bartlett. 2000. “New

Support Vector Algorithms.” Neural Computation 12: 1207–1245.

Schölkopf, B., K. Tsuda, and J.-P. Vert, eds. 2004. Kernel Methods in Computa-

tional Biology. Cambridge, MA: MIT Press.

Shawe-Taylor, J., and N. Cristianini. 2004. Kernel Methods for Pattern Analysis.

Cambridge, UK: Cambridge University Press.

Smola, A., and B. Schölkopf. 1998. A Tutorial on Support Vector Regression,

NeuroCOLT TR-1998-030, Royal Holloway College, University of London, UK.

Sonnenburg, S., G. Rätsch, C. Schäfer, and B. Schölkopf. 2006. “Large Scale

Multiple Kernel Learning.” Journal of Machine Learning Research 7: 1531–

1565.

Tax, D. M. J., and R. P. W. Duin. 1999. “Support Vector Domain Description.”

Pattern Recognition Letters 20: 1191–1199.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer.

Vapnik, V. 1998. Statistical Learning Theory. New York: Wiley.

Vert, J.-P., K. Tsuda, and B. Schölkopf. 2004. “A Primer on Kernel Methods.”

In Kernel Methods in Computational Biology, ed. B. Schölkopf, K. Tsuda, and

J.-P. Vert, 35–70. Cambridge, MA: MIT Press.

Weston, J., and C. Watkins. 1998. “Multiclass Support Vector Machines.” Tech-

nical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway,

University of London.

14 Bayesian Estimation

In the Bayesian approach, we consider parameters as random vari-

ables having a prior distribution. We continue from where we left off

in section 4.4 and discuss three cases: estimating the parameters of

a distribution, estimating the parameters of a model, and Gaussian

processes.

14.1 Introduction

Bayesian estimation is used when we have some prior information

regarding a parameter. For example, before looking at a sample to esti-

mate the mean μ of a distribution, we may have some prior belief that

it is close to 2, between 1 and 3. Such prior beliefs are especially impor-

tant when we have a small sample. In such a case, we are interested in

combining what the data tells us, namely, the value calculated from the

sample, and our prior information.

The maximum likelihood approach we discuss in section 4.2 treats a

parameter as an unknown constant. In Bayesian estimation, as we started

discussing in section 4.4, a parameter is treated as a random variable,

which allows us to code any prior information we have using a priorprior probability

probability distribution. For example, knowing that μ is very likely to

be between 1 and 3, we write p(μ) in such a way that the bulk of the

density lies in the interval [1,3].

Using Bayes’ rule, we combine the prior and the likelihood and calculate

the posterior probability distribution:posterior

probability

p(θ|X) = p(θ)p(X|θ)
p(X)(14.1)

342 14 Bayesian Estimation

Figure 14.1 The generative graphical model. The arcs are in the direction of

sampling; first we pick θ from p(θ) and then we generate data by sampling from

p(xt |θ). The new instance x and the past sample X are independent given θ:

this is the iid assumption. If we do not know θ, they are dependent: we infer θ

from given X (shown shaded) using Bayes’ rule, which inverts the direction to

calculate p(θ|X), which can then be used to fill in x.

p(θ) is the prior density; it is what we know regarding the possible

values that θ may take before looking at the sample. p(X|θ) is the sample

likelihood; it tells us how likely our sample X is if the parameter of the

distribution takes the value θ. For example, if the instances in our sample

are between 5 and 10, such a sample is likely if μ is 7 but is less likely

if μ is 3 and even less likely if μ is 1. p(X) in the denominator is a

normalizer to make sure that the posterior p(θ|X) integrates to 1. It

is called the posterior probability because it tells us how likely θ takes

a certain value after looking at the sample. The Bayes’ rule takes the

prior distribution, combines it with what the data reveals, and generates

the posterior distribution. We then use this posterior distribution in our

later inferences.

For example, let us say that we have a past sample X drawn from some

distribution with unknown parameter θ. We can then draw one more

instance x, and we would like to calculate its probability distribution.

We can visualize this as a graphical model (chapter 16) as shown in fig-

ure 14.1. What is depicted is a generative model which represents howgenerative model

the data is generated: We first pick θ from p(θ) and use it to sample X
and also the new instance x. We write the joint as

p(x,X, θ) = p(θ)p(X|θ)p(x|θ)

14.2 Estimating the Parameter of a Distribution 343

which we use in estimating the probability of a new instance x given the

past sample X :

p(x|X) = p(x,X)
p(X) =

∫
θ p(x,X, θ)dθ

p(X) =
∫
θ p(θ)p(X|θ)p(x|θ)dθ

p(X)
=

∫
θ
p(θ|X)p(x|θ)dθ(14.2)

In calculating p(θ|X), Bayes’ rule allows us to invert the direction of

the arc and do a diagnostic inference. The inferred θ distribution is then

used to derive a prediction distribution for the new x.

We see that our estimate is a weighted sum (we replace
∫
dθ by

∑
θ if

θ is discrete valued) of estimates for all possible values of θ weighted by

how likely θ is, given the sample X .
This is the full Bayesian treatment that may not be possible if the pos-

terior is not easy to integrate. As we saw in section 4.4, in the case of the

maximum a posteriori (MAP) estimate, we use the mode of the posterior:maximum a

posteriori (MAP)

estimate
θMAP = argmax

θ
p(θ|X) and pMAP(x|X) = p(x|θMAP)

The MAP estimate corresponds to assuming that the posterior makes

a very narrow peak around a single point, that is, the mode. If the prior

p(θ) is uniform over all θ, then the mode of the posterior p(θ|X) and
the mode of the likelihood p(X|θ) are at the same point, and the MAP

estimate is equal to the maximum likelihood (ML) estimate. This implies

that using ML corresponds to assuming no a priori distinction between

different values of θ.

Let us now see how Bayesian estimation is used in different types of

distributions and applications.

14.2 Estimating the Parameter of a Distribution

14.2.1 Discrete Variables

Let us say that each instance is a multinomial variable taking one of K

distinct states (section 4.2.2). We say xti = 1 if instance t is in state i

and xtj = 0,∀j �= i. The parameters are the probabilities of states, q =
[q1, q2, . . . , qk]

T with qi, i = 1, . . . , K satisfying qi ≥ 0,∀i and ∑i qi = 1.

The sample likelihood is

p(X|q) =
N∏
t=1

K∏
i=1

q
xti
i

344 14 Bayesian Estimation

The prior distribution we use is the Dirichlet distributionDirichlet

distribution

Dirichlet(q|α) = Γ (α0)

Γ (α1) · · · Γ (αK)
K∏
i=1

q
αi−1
i

where α = [α1, . . . , αK]
T and α0 =

∑
i αi . αi being the parameters of

the prior are called the hyperparameters. Γ (x) is the Gamma functionGamma function

defined as

Γ (x) ≡
∫∞
0
ux−1e−udu

For example, xt may correspond to news documents and states may

correspond to K different news categories: sports, politics, arts, and so

on. The probabilities qi then correspond to the proportions of different

news categories, and priors on them allow us to code our prior beliefs in

these proportions; for example, we may expect to have more news related

to sports than news related to arts.

Given the prior and the likelihood, we can derive the posterior

p(q|X) ∝ p(X|q)p(q|α)
∝

∏
i

q
αi+Ni−1
i(14.3)

where Ni =
∑N
t=1 x

t
i . We see that the posterior has the same form as the

prior and we call such a prior a conjugate prior. Both the prior and theconjugate prior

likelihood have the form of product of powers of qi , and we combine

them to make up the posterior:

p(q|X) = Γ (α0 +N)
Γ (α1 +N1) · · · Γ (αK +NK)

K∏
i=1

q
αi+Ni−1
i

= Dirichlet(q|α+ n)(14.4)

where n = [N1, . . . , NK]
T and

∑
i Ni = N .

Looking at equation 14.3, we can bring an interpretation to the hyper-

parametersαi (Bishop 2006). Just as ni are counts of occurrences of state

i in a sample of N , we can view αi as counts of occurences of state i in

some imaginary sample of α0 instances. In defining the prior, we are

subjectively saying the following: in a sample of α0, I would expect αi
of them to belong to state i. Note that larger α0 implies that we have a

higher confidence (a more peaked distribution) in our subjective propor-

tions: saying that I expect to have 60 out of 100 occurrences belong to

14.2 Estimating the Parameter of a Distribution 345

state 1 has higher confidence than saying that I expect to have 6 out of

10. The posterior then is another Dirichlet that sums up the counts of

the occurences of states, imagined and actual, given by the prior and the

likelihood, respectively.

The conjugacy has a nice implication. In a sequential setting where we

receive a sequence of instances, because the posterior and the prior have

the same form, the current posterior accumulates information from all

past instances and becomes the prior for the next instance.

When the variable is binary, xt ∈ {0,1}, the multinomial sample be-

comes Bernoulli

p(X|q) =
∏
t

qx
t

(1− q)1−xt

and the Dirichlet prior reduces to the beta distribution:beta distribution

beta(q|α,β) = Γ (α+ β)
Γ (α)Γ (β)

qα−1(1− q)β−1

For example, xt may be 0 or 1 depending on whether email with in-

dex t in a random sample of size N is legitimate or spam, respectively.

Then defining a prior on q allows us to define a prior belief on the spam

probability: I would expect, on the average, α/(α+ β) of my emails to be

spam.

Beta is a conjugate prior, and for the posterior we get

p(q|A,N,α,β)∝ qA+α−1(1− p)N−A+β−1

whereA = ∑
t x

t , and we see again that we combine the occurrences in the

imaginary and the actual samples. Note that when α = β = 1, we have a

uniform prior and the posterior has the same shape as the likelihood. As

the two counts, whether α and β for the prior or α+A and β+N−A for the

posterior, increase and their difference increases, we get a distribution

that is more peaked with smaller variance (see figure 14.2). As we see

more data (imagined or actual), the variance decreases.

14.2.2 Continuous Variables

We now consider the case where instances are Gaussian distributed, p(x) ∼
N (μ,σ 2), and the parameters are μ and σ 2; we have already discussed

this briefly section 4.4. The sample likelihood is

p(X|μ,σ 2) =
∏
t

1√
2πσ

exp

[
−(x

t − μ)2
2σ 2

]
(14.5)

346 14 Bayesian Estimation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

beta(1,1)

← beta(2,3)

← beta(4,6)

← beta(20,30)

Figure 14.2 Plots of beta distributions for different sets of (α, β).

The conjugate prior for μ is Gaussian, p(μ) ∼N (μ20 , σ
2
0), and we write

the posterior as

p(μ|X) ∝ p(μ)p(X|μ)
∼ N (μN,σ

2
N)

where

μN = σ 2

Nσ 2
0 +σ 2

μ0 +
Nσ 2

0

Nσ 2
0 +σ 2

m(14.6)

1

σ 2
N

= 1

σ 2
0

+ N

σ 2
(14.7)

where m = ∑
t x

t/N is the sample average. We see that the mean of

the posterior density (which is the Bayesian estimate), μN , is a weighted

average of the prior mean μ0 and the sample meanm, with weights being

inversely proportional to their variances (see figure 14.3 for an example).

Note that because both coefficients are between 0 and 1 and sum to 1, μN
is always between μ0 and m. When the sample size N or the variance of

the prior σ 2
0 is large, the Bayes’ estimator is close to m, relying more on

the information provided by the sample. When σ 2
0 is small—that is, when

we have little prior uncertainty regarding the correct value of μ, or when

we have a small sample—our prior guess μ0 has higher effect.

σN gets smaller when either of σ0 or σ gets smaller or if N is larger.

Note also that σN is smaller than both σ0 and σ/
√
N, that is, the posterior

14.2 Estimating the Parameter of a Distribution 347

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

← p(x|μ)

p(μ)→

← p(μ|X)

Figure 14.3 20 data points are drawn from p(x) ∼ N (6,1.52), prior is p(μ) ∼
N (4,0.82), and posterior is then p(μ|X) ∼N (5.7,0.32).

variance is smaller than both prior variance and that of m. Incorporating

both results in a better posterior estimate than using any of the prior or

sample alone.

For the case of variance, we work with the precision, the reciprocal ofprecision

the variance, λ ≡ 1/σ 2. Using this, the sample likelihood is written as

p(X|λ) =
∏
t

λ1/2√
2π

exp

[
−λ
2
(xt − μ)2

]

= λN/2(2π)−N/2 exp

⎡
⎣−λ

2

∑
t

(xt − μ)2
⎤
⎦(14.8)

The conjugate prior for the precision is the Gamma distribution:Gamma distribution

p(λ) ∼ Gamma(a0, b0) = 1

Γ (a0)
b
a0
0 λ

a0−1 exp(−b0λ)

and the posterior is

p(λ|X) ∝ p(X|λ)p(λ)
∼ Gamma(aN, bN)

where

aN = a0 +N/2(14.9)

bN = b0 +
N

2
s2

348 14 Bayesian Estimation

where s2 = ∑
t(x

t − μ)2/N is the sample variance. Again, we see that

posterior estimates are weighted sum of priors and sample statistics.

14.3 Bayesian Estimation of the Parameters of a Function

We now discuss the case where we estimate the parameters, not of a dis-

tribution, but some function of the input, for regression or classification.

Again, our approach is to consider these parameters as random variables

with a prior distribution and use Bayes’ rule to calculate a posterior dis-

tribution. We can then either evaluate the full integral, approximate it, or

use the MAP estimate.

14.3.1 Regression

Let us take the case of a linear regression model:

r = wTx + ε where ε ∼N (0, β−1)(14.10)

where β is the precision of the additive noise.

The parameters are the weightsw and we have a sampleX = {xt , r t}Nt=1
where x ∈ 	d and r t ∈ 	, which we can break down into a matrix of in-

puts and a vector of desired outputs as X = [X, r]. From equation 14.10,

we have

p(rt|xt ,w, β) ∼N (wTx, β−1)

We saw previously in section 4.6 that the log likelihood is

L(X|w) ≡ logp(X|w) = logp(r,X|w)
= logp(r|X,w)+ logp(X)

where the second term is a constant, independent of the parameters. We

expand the first term as

L(r|X,w, β) = log
∏
t

p(r t|xt ,w, β)

= −N log(
√
2π)+N logβ− β

2

∑
t

(r t −wTxt)2(14.11)

For the case of the ML estimate, we find w that maximizes this, or

equivalently, minimizes the last term that is the sum of the squared error,

which can be rewritten as

E = (r − Xw)T (r − Xw)

14.3 Bayesian Estimation of the Parameters of a Function 349

Taking the derivative with respect to w and setting it to 0, we get the

maximum likelihood estimator (we have previously derived this in sec-

tion 5.8):

wML = (XTX)−1XT r(14.12)

Having calculated the parameters, we can now do prediction. Given

new input x′, the response is calculated as

r ′ = wT
MLx

′(14.13)

For nonlinear models, g(x|w), for example, a multilayer perceptron

where w are all the weights, we minimize, for example, using gradient

descent,

E(X|w) = [
r t − g(xt|w)]2

and wLSQ that minimize it is called the least squares estimator. Then, the

prediction is calculated as

r ′ = g(x′|wLSQ)

In the case of the Bayesian approach, for the parameters, we define a

Gaussian prior :Gaussian prior

p(w) ∼N (0, α−1I)

which is a conjugate prior and for the posterior, we get

p(w|X) ∼N (μN,ΣN)

where

μN = βΣNXTr(14.14)

ΣN = (αI+ βXTX)−1(14.15)

To calculate the overall output, we integrate over the full posterior

r ′ =
∫
wTx′p(w|X)dw

If we want to use a point estimate, the MAP (or Bayes’, because the

posterior is Gaussian) estimator is

wMAP = μN = β(αI+ βXTX)−1XT r(14.16)

350 14 Bayesian Estimation

and we replace the density with a single point, namely, the mean,

r ′ = wT
MAPx

′

with variance

Var(r ′) = β−1 + (x′)TΣNx′(14.17)

Comparing equation 14.16 with the ML estimate of equation 14.12, this

can be seen as regularization—that is, we add a constantα to the diagonal

to better condition the matrix to be inverted.

The prior, p(w) ∼ N (0, α−1I), says that we expect the parameters to
be close to 0 with spread inversely proportional to α. When α → 0, we

have a flat prior and the MAP estimate converges to the ML estimate.

We see in figure 14.4 that if we increase α, we force parameters to be

closer to 0 and the posterior distribution moves closer to the origin and

shrinks. If we decrease β, we assume noise with higher variance and the

posterior also has higher variance.

If we take the log of the posterior, we have

logp(w|X, r) ∝ logp(X, r|w)+ logp(w)

∝ logp(r|X,w)+ logp(w)

= −β
2

∑
t

(r t −wTxt)2 − α

2
wTw + c

which we maximize to find the MAP estimate. In the general case, given

our model g(x|w), we can write an augmented error function
Eridge(w|X) =

∑
t

[r t − g(xt |w)]2 + λ
∑
i

w2
i

with λ ≡ α/β. This is known as parameter shrinkage or ridge regres-ridge regression

sion in statistics. In section 4.8, we called this regularization and in

section 11.9, we called this weight decay in neural networks. The first

term is the negative log of the likelihood, and the second term penalizes

wi away from 0 (as dictated by α of the prior).

Though this approach reduces
∑
i w

2
i , it does not force individual wi to

0; that is, it cannot be used for feature selection, namely, to determine

which xi are redundant. For this, one can use a Laplacian prior that usesLaplacian prior

the L1 norm instead of the L2 norm (Figueiredo 2003):

p(w|α) =
∏
i

α

2
exp(−α|wi|) =

(
α

2

)d
exp

⎛
⎝−α∑

i

|wi|
⎞
⎠

14.3 Bayesian Estimation of the Parameters of a Function 351

0 5
0

1

2

3
α=1, β=2

−2 0 2
−2

0

2
prior

w
0

w

−2 0 2
−2

0

2
posterior

w
0

w

0 5
0

1

2

3
α=10, β=2

−2 0 2
−2

0

2
prior

w
0

w

−2 0 2
−2

0

2
posterior

w
0

w
0 5

0

1

2

3
α=1, β=1

−2 0 2
−2

0

2
prior

w
0

w

−2 0 2
−2

0

2
posterior

w
0

w

Figure 14.4 Bayesian linear regression for different values of α and β. To the

left: crosses are the data points and straight line is the ML solution. The MAP

solution with one standard deviation error bars are also shown dashed. Center:

prior density centered at 0 and variance 1/α. To the right: posterior density

whose mean is the MAP solution. We see that when α is increased, the variance

of the prior shrinks and the line moves closer to the flat 0 line. When β is

decreased, more noise is assumed and the posterior density has higher variance.

352 14 Bayesian Estimation

The posterior probability is no longer Gaussian and the MAP estimate

is found by minimizing

Elasso(w|X) =
∑
t

(r t −wTxt)2 + 2σ 2α
∑
i

|wi|

where σ 2 is the variance of noise (for which we plug in our estimate).

This is known as lasso (least absolute shrinkage and selection opera-lasso

tor) (Tibshirani 1996). To see why L1 induces sparseness, let us con-

sider the case with two weights [w1, w2]
T (Figueiredo 2003): ‖[1,0T‖2 =

‖[1/√2,1/√2]T‖2 = 1, whereas ‖[1,0]T‖1 = 1 < ‖[1/√2,1/√2]T‖1 =
√
2,

and therefore L1 prefers to set w2 to 0 and use a large w1, rather than

having small values for both.

14.3.2 The Use of Basis/Kernel Functions

Using the Bayes’ estimate of equation 14.14, the prediction is written as

r ′ = (x′)Tw

= β(x′)TΣNXT r

=
∑
t

β(x′)TΣNxtr t

This is the dual representation. When we can write the parameter indual

representation terms of the training data, or a subset of it as in support vector machines

(chapter 13), we can write the prediction as a function of the current

input and past data. We can rewrite this as

r ′ =
∑
t

K(x′,xt)r t(14.18)

where we define

K(x′,xt) = β(x′)TΣNxt(14.19)

We know that we can generalize the linear kernel of equation 14.19 by

using a nonlinear basis function φ(x) to map to a new space where webasis function

fit the linear model. In such a case, instead of the d-dimensional x we

have the k-dimensional φ(x) where k is the number of basis functions

and instead of N × d data matrix X, we have N × k image of the basis

functions Φ.

During test, we have

r ′ = φ(x′)Tw where w = βΣφNΦT r and ΣφN =
(
αI+ βΦTΦ

)−1

14.3 Bayesian Estimation of the Parameters of a Function 353

= βφ(x′)TΣφNΦ
Tr

=
∑
t

βφ(x′)TΣφNφ(x
t)r t

=
∑
t

K(x′,xt)r t(14.20)

where we define

K(x′,xt) = βφ(x′)TΣφNφ(xt)(14.21)

as the equivalent kernel. This is the dual representation in the space of

φ(x). We see that we can write our estimate as a weighted sum of the

effects of instances in the training set where the effect is given by the ker-kernel function

nel function K(x′,xt); this is similar to nonparametric kernel smoothers

we discuss in chapter 8, or kernel machines of chapter 13.

Error bars can be defined using

Var(r ′) = β−1 +φ(x′)TΣφNφ(x′)
An example is given in figure 14.5 for the linear, quadratic, and fourth-

degree kernels.

Just as in regression proper where we can work on the original x or

φ(x), in Bayesian regression too we can work on the preprocessed φ(x),

defining parameters in that space. Later on in this chapter, we are going

to see Gaussian processes where we can define and use K(x,xt) directly

without needing to calculate φ(x).

14.3.3 Bayesian Classification

In a two-class problem, we have a single output and assuming a linear

model, we have

P(C1|xt) = yt = sigmoid(wTxt)

The log likelihood of a Bernoulli sample is given as

L(r|X) =
∑
t

r t logyt + (1− r t) log(1− yt)

which we maximize, or minimize its negative log—the cross-entropy—to

find the ML estimate, for example, using gradient descent. This is called

logistic discrimination (section 10.7).

In the case of the Bayesian approach, we assume a Gaussian prior

p(w) =N (m0, S0)(14.22)

354 14 Bayesian Estimation

0 1 2 3 4 5 6 7 8
0

1

2

3
(a) Linear (α = 1 β = 1)

0 1 2 3 4 5 6 7 8
0

1

2

3
(b) Quadratic

0 1 2 3 4 5 6 7 8
0

1

2

3
(c) Fourth−degree

Figure 14.5 Bayesian regression using kernels with one standard deviation er-

ror bars: (a) linear: φ(x) = [1, x]T , (b) quadratic: φ(x) = [1, x, x2]T , and (c)

fourth degree: φ(x) = [1, x, x2, x3, x4]T .

and the log of the posterior is given as

logp(w|r,X) ∝ logp(w)+ logp(r|w,X)
= −1

2
(w −m0)

TS−10 (w −m0)

+
∑
t

r t logyt + (1− r t) log(1− yt)+ c(14.23)

This posterior distribution is no longer Gaussian and we cannot inte-

grate exactly. We can use Laplace approximation, which works as followsLaplace

approximation (MacKay 2003). Let us say we want to approximate some distribution

f (x), not necessarily normalized (to integrate to 1). In Laplace approxi-

mation, we find the mode of f (x), x0, fit a Gaussian q(x) centered there,

and then if we want to integrate, we integrate this fitted Gaussian instead.

To find the variance of the Gaussian, we consider the Taylor expansion

of f (·) at x = x0

log f (x) = log f (x0)−
1

2
a(x− x0)2 + · · ·

14.3 Bayesian Estimation of the Parameters of a Function 355

where

a ≡ − d

dx2
log f (x)

∣∣∣∣
x=x0

Note that the first, linear term disappears because the first derivative

is 0 at the mode. Taking exp, we have

f (x) = f (x0) exp
[
−a
2
(x− x0)2

]
To normalize f (x), we consider that in a Gaussian distribution∫

1√
2π(1/

√
a)

exp

[
−a
2
(x− x0)2

]
= 1⇒

∫
exp

[
−a
2
(x− x0)2

]
=
√
a/2π

and therefore

q(x) =
√
a/2π exp

[
−a
2
(x− x0)2

]
∼N (x0,1/a)

In the multivariate setting where x ∈ 	d , we have

log f (x) = log f (x0)−
1

2
(x − x0)TA(x − x0)+ · · ·

where A is the (Hessian) matrix of second derivatives:

A = − ∇∇ log f (x)
∣∣
x=x0

The Laplace approximation is then

f (x) = |A|1/2
(2π)d/2

exp

[
−1
2
(x − x0)TA(x − x0)

]
∼Nd(x0,A

−1)

Having now discussed how to approximate, we can now use it for the

posterior density. wMAP , which is the mode of p(w|r,X), is taken as the

mean and the covariance matrix is given by the inverse of the matrix of

the second derivatives of the negative log likelihood:

SN = −∇∇ logp(w|r,X) = S−10 +
∑
t

yt(1− yt)xt(xt)T

We then integrate over this Gaussian to estimate the class probability:

P(C1|x) = y =
∫
sigmoid(wTx)q(w)dw

where q(w) ∼ N (wMAP , S
−1
N). A further complication is that we cannot

integrate analytically over a Gaussian convolved with a sigmoid. If we use

the probit function instead, which has the same S-shape as the sigmoid,probit function

an analytical solution is possible (Bishop 2006).

356 14 Bayesian Estimation

14.4 Gaussian Processes

Let us say we have the linear model y = wTx. Then, for each w, we have

one line. Given a prior distribution p(w), we get a distribution of lines,

or to be more specific, for any w, we get a distribution of y values calcu-

lated at x as y(x|w) when w is sampled from p(w), and this is what we

mean when we talk about a Gaussian process. We know that if p(w) is

Gaussian, each y is a linear combination of Gaussians and is also Gaus-

sian; in particular, we are interested in the joint distribution of y values

calculated at the N input data points, xt , t = 1, . . . , N (MacKay 1998).

We assume a zero mean Gaussian prior

p(x) ∼N (0, α−1I)

Given the N ×d data points X and the d×1 weight vector, we write the
y outputs as

y = Xw(14.24)

which is N-variate Gaussian with

E[y] = XE[w] = 0(14.25)

Cov(y) = E[yyT] = XE[wwT]XT = 1

α
XXT ≡ K

where K is the (Gram) matrix with elements

Ki,j ≡ K(xi ,xj) = (xi)Txj

α

This is known as the covariance function in the literature of Gaussiancovariance

function processes and the idea is the same as in kernel functions: If we use a

set of basis functions φ(x), we generalize from the dot product of the

original inputs to the dot product of basis functions by a kernel

Ki,j = φ(xi)Tφ(xj)

α

The actual observed output r is given by the line with added noise,

r = y + ε where ε ∼N (0, β−1). For all N data points, we write it as

r ∼NN(0,CN) where CN = β−1I+ K(14.26)

To make a prediction, we consider the new data as the (N + 1)st data

point pair (x′, r ′), and write the joint using all N+1 data points. We have
rN+1 ∼NN(0,CN+1)(14.27)

14.4 Gaussian Processes 357

0 1 2 3 4 5 6 7 8
0

1

2

3
(a) Linear (α = 1 β = 5)

0 1 2 3 4 5 6 7 8
0

1

2

3
(b) Quadratic

0 1 2 3 4 5 6 7 8
0

1

2

3
(c) Gaussian

Figure 14.6 Gaussian process regression with one standard deviation error

bars: (a) linear kernel, (b) quadratic kernel, (c) Gaussian kernel with spread

s2 = 0.5.

where

CN+1 =
[

CN k

kT c

]

with k being the N × 1 dimensional vector of K(x′,xt), t = 1, . . . , N and

c = K(x′,x′)+β−1. Then to make a prediction, we calculate p(r ′|x′,X, r),
which is Gaussian with

E[r ′|x′] = kTC−1N r

Var(r ′|x′) = c − kTC−1N k

An example is shown in figure 14.6 using linear, quadratic, and Gaus-

sian kernels. The first two are defined as the dot product of their corre-

sponding basis functions; the Gaussian kernel is defined directly as

KG(x
i ,xj) = exp

[
−‖x

i − xj‖2
s2

]

358 14 Bayesian Estimation

The mean, which is our point estimate (if we do not integrate over the

full distribution), can also be written as a weighted sum of the kernel

effects

E[r ′|x′] =
∑
t

atK(xt ,x′)(14.28)

where at is the tth component of C−1N r . Or, we can write it as a weighted

sum of the outputs of the training data points where weights are given

by the kernel function

E[r ′|x′] =
∑
t

r twt(14.29)

where wt is the tth component of kTC−1N .

Note that we can also calculate the variance of a prediction at a point

to get an idea about uncertainty in there, and it depends on the instances

that affect the prediction in there. In the case of a Gaussian kernel, only

instances within a locality are effective and prediction variance is high

where there is little data in the vicinity (see figure 14.7).

Kernel functions can be defined and used, depending on the applica-

tion, as we have prevously discussed in the context of kernel machines

in chapter 13. The possibility of using kernel functions directly without

needing to calculate or store the basis functions offers a great flexibil-

ity. Normally, given a training set, we first calculate the parameters, for

example using equation 14.12, and then use the parameters to make pre-

dictions using equation 14.13, never needing the training set any more.

This makes sense because generally the dimensionality of the parame-

ters, which is generally O(d), is much lower than the size of the training

set N .

When we work with basis functions, however, calculating the parame-

ter explicitly may no longer be the case, because the dimensionality of

the basis functions may be very high, even infinite. In such a case, it is

cheaper to use the dual representation, taking into account the effects

of training instances using kernel functions, as we do here. This idea is

also used in nonparametric smoothers (chapter 8) and kernel machines

(chapter 13).

The requirement here is that CN be invertible and hence positive def-

inite. For this, K should be semidefinite so that after adding β−1 > 0 to

the diagonals, we get positive definiteness. We also see that the costliest

operation is this inversion of N×N matrix, which fortunately needs to be

14.5 Notes 359

−1 −0.5 0 0.5 1

−1

0

1

N = 20

−1 −0.5 0 0.5 1

−1

0

1

N = 10

−1 −0.5 0 0.5 1

−1

0

1

N = 5

Figure 14.7 Gaussian process regression using a Gaussian kernel with s2 = 0.5

and varying number of training data. We see how variance of the prediction is

larger where there is few data.

calculated only once (during training) and stored. Still, for large N , one

may need an approximation.

When we use it for classification for a two-class problem, the output is

filtered through a sigmoid, y = sigmoid(wTx), and the distribution of y is

no longer Gaussian. The derivation is similar except that the conditional

p(rN+1|xN+1,X, r) is not Gaussian either and we need to approximate,

for example, using Laplace approximation (Bishop 2006; Rasmussen and

Williams 2006).

14.5 Notes

Bayesian approaches have become popular recently with advances in com-

putational power allowing us to sample from or approximate the poste-

rior probabilities. Truth has many cloaks. This preference of simplicity

appears in many contexts as the Bayesian approach, regularization, min-

360 14 Bayesian Estimation

imum description length, or smoothing, and is at the heart of statistical

inference and hence machine learning.

On the other hand, the subjectivity of priors is disturbing and there

are objections to the Bayesian approach; see Gelman 2008, for example.

What is the use of a flat prior, and why collect data if we already have a

peaked prior? Is a conjugate prior true or merely convenient?

Just like with support vector machines, in Gaussian processes too,

there are methods by which one can construct new kernels as functions

(e.g., weighted sums) of some other kernels and these weights or ker-

nel parameters (e.g., spreads) can be optimized by a type 2 maximumtype 2 maximum
likelihood

procedure

likelihood procedure, so called because we are now optimizing not the

parameters (which are the at or wt above) but the hyperparameters on a

second level (Bishop 2006; Rasmussen and Williams 2006).

14.6 Exercises

1. For the setting of figure 14.3, observe how the posterior changes as we change

N, σ 2, and σ 2
0 .

2. Let us denote by x the number of spam emails I receive in a random sample

of n. Assume that the prior for q, the proportion of spam emails is uniform

in [0,1]. Find the posterior distribution for p(q|x).
3. As above, except that assume that p(q) ∼ N (μ0, σ

2
0). Also assume n is large

so that you can use central limit theorem and approximate binomial by a

Gaussian. Derive p(q|x).
4. What is Var(r ′) when the maximum likelihood estimator is used? Compare it

with equation 14.17.

5. In figure 14.6, how does the fit change when we change s2?

6. Propose a filtering algorithm to choose a subset of the training set in Gaussian

processes.

7. Active learning is when the learner is able to generate x itself and ask a su-active learning

pervisor to provide the corresponding r value during learning one by one,

instead of passively being given a training set. How can we implement ac-

tive learning using Gaussian processes? (Hint: Where do we have the largest

uncertainty?)

8. Let us say we have inputs from two different representations. How can we

use the approaches discussed in this chapter in such a case?

14.7 References 361

14.7 References

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York:

Springer.

Figueiredo, M. A. T. 2003. “Adaptive Sparseness for Supervised Learning.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 25: 1150–1159.

Gelman, A. 2008. “Objections to Bayesian statistics.” Bayesian Statistics 3: 445–

450.

MacKay, D. J. C. 1998. “Introduction to Gaussian Processes.” In Neural Networks

and Machine Learning, ed. C. M. Bishop, 133–166. Berlin: Springer.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms.

Cambridge, UK: Cambridge University Press.

Rasmussen, C. E. , and C. K. I. Williams. 2006. Gaussian Processes for Machine

Learning. Cambridge, MA: MIT Press.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal

of the Royal Statistical Society B 58: 267–288.

15 Hidden Markov Models

We relax the assumption that instances in a sample are independent

and introduce Markov models to model input sequences as generated

by a parametric random process. We discuss how this modeling is

done as well as introduce an algorithm for learning the parameters

of such a model from example sequences.

15.1 Introduction

Until now, we assumed that the instances that constitute a sample

are iid. This has the advantage that the likelihood of the sample is simply

the product of the likelihoods of the individual instances. This assump-

tion, however, is not valid in applications where successive instances are

dependent. For example, in a word successive letters are dependent; in

English ‘h’ is very likely to follow ‘t’ but not ‘x’. Such processes where

there is a sequence of observations—for example, letters in a word, base

pairs in a DNA sequence—cannot be modeled as simple probability dis-

tributions. A similar example is speech recognition where speech utter-

ances are composed of speech primitives called phonemes; only certain

sequences of phonemes are allowed, which are the words of the language.

At a higher level, words can be written or spoken in certain sequences to

form a sentence as defined by the syntactic and semantic rules of the

language.

A sequence can be characterized as being generated by a parametric

random process. In this chapter, we discuss how this modeling is done

and also how the parameters of such a model can be learned from a

training sample of example sequences.

364 15 Hidden Markov Models

15.2 Discrete Markov Processes

Consider a system that at any time is in one of a set of N distinct states:

S1, S2, . . . , SN . The state at time t is denoted as qt, t = 1,2, . . ., so, for

example, qt = Si means that at time t , the system is in state Si . Though we

write “time” as if this should be a temporal sequence, the methodology is

valid for any sequencing, be it in time, space, position on the DNA string,

and so forth.

At regularly spaced discrete times, the system moves to a state with a

given probability, depending on the values of the previous states:

P(qt+1 = Sj|qt = Si, qt−1 = Sk, · · ·)

For the special case of a first-orderMarkov model, the state at time t+1Markov model

depends only on state at time t , regardless of the states in the previous

times:

P(qt+1 = Sj|qt = Si, qt−1 = Sk, · · ·) = P(qt+1 = Sj|qt = Si)(15.1)

This corresponds to saying that, given the present state, the future

is independent of the past. This is just a mathematical version of the

saying, Today is the first day of the rest of your life.

We further simplify the model—that is, regularize—by assuming that

these transition probabilities are independent of time:transition

probabilities

aij ≡ P(qt+1 = Sj|qt = Si)(15.2)

satisfying

aij ≥ 0 and
N∑
j=1

aij = 1(15.3)

So, going from Si to Sj has the same probability no matter when it

happens, or where it happens in the observation sequence. A = [aij] is a
N ×N matrix whose rows sum to 1.

This can be seen as a stochastic automaton (see figure 15.1). Fromstochastic

automaton each state Si , the system moves to state Sj with probability aij , and this

probability is the same for any t . The only special case is the first state.

We define initial probabilities, πi , which is the probability that the firstinitial probabilities

state in the sequence is Si :

πi ≡ P(q1 = Si)(15.4)

15.2 Discrete Markov Processes 365

1 2

3

a11 a12

a21

a13

π3

π2π1

Figure 15.1 Example of a Markov model with three states. This is a stochastic

automaton where πi is the probability that the system starts in state Si , and aij
is the probability that the system moves from state Si to state Sj .

satisfying

N∑
i=1

πi = 1(15.5)

Π = [πi] is a vector of N elements that sum to 1.

In an observable Markov model, the states are observable. At any timeobservable Markov

model t , we know qt , and as the system moves from one state to another, we

get an observation sequence that is a sequence of states. The output of

the process is the set of states at each instant of time where each state

corresponds to a physical observable event.

We have an observation sequence O that is the state sequence O = Q =
{q1q2 · · ·qT }, whose probability is given as

P(O =Q|A,Π) = P(q1)
T∏
t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.6)

πq1 is the probability that the first state is q1, aq1q2 is the probability of

going from q1 to q2, and so on. We multiply these probabilities to get the

probability of the whole sequence.

Let us now see an example (Rabiner and Juang 1986) to help us demon-

strate. Assume we have N urns where each urn contains balls of only one

color. So there is an urn of red balls, another of blue balls, and so forth.

366 15 Hidden Markov Models

Somebody draws balls from urns one by one and shows us their color.

Let qt denote the color of the ball drawn at time t . Let us say we have

three states:

S1 : red, S2 = blue, S3 : green

with initial probabilities:

Π = [0.5,0.2,0.3]T

aij is the probability of drawing from urn j (a ball of color j) after

drawing a ball of color i from urn i. The transition matrix is, for example,

A =

⎡
⎢⎣ 0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8

⎤
⎥⎦

Given Π and A, it is easy to generate K random sequences each of

length T . Let us see how we can calculate the probability of a sequence.

Assume that the first four balls are “red, red, green, green.” This corre-

sponds to the observation sequence O = {S1, S1, S3, S3}. Its probability
is

P(O|A,Π) = P(S1) · P(S1|S1) · P(S3|S1) · P(S3|S3)
= π1 · a11 · a13 · a33
= 0.5 · 0.4 · 0.3 · 0.8 = 0.048(15.7)

Now, let us see how we can learn the parameters, Π,A. Given K se-

quences of length T , where qkt is the state at time t of sequence k, the

initial probability estimate is the number of sequences starting with Si
divided by the number of sequences:

π̂i = #{sequences starting with Si}
#{sequences} =

∑
k 1(q

k
1 = Si)
K

(15.8)

where 1(b) is 1 if b is true and 0 otherwise.

As for the transition probabilities, the estimate for aij is the number of

transitions from Si to Sj divided by the total number of transitions from

Si over all sequences:

âij =
#{transitions from Si to Sj}

#{transitions from Si}
=
∑
k

∑T−1
t=1 1(q

k
t = Si and qkt+1 = Sj)∑

k

∑T−1
t=1 1(q

k
t = Si)

(15.9)

â12 is the number of times a blue ball follows a red ball divided by the

total number of red ball draws over all sequences.

15.3 Hidden Markov Models 367

15.3 Hidden Markov Models

In a hidden Markov model (HMM), the states are not observable, but whenhidden Markov

model we visit a state, an observation is recorded that is a probabilistic function

of the state. We assume a discrete observation in each state from the set

{v1, v2, . . . , vM}:
bj(m) ≡ P(Ot = vm|qt = Sj)(15.10)

bj(m) is the observation, or emission probability, that we observe vm,m =observation

probability

emission

probability

1, . . . ,M in state Sj . We again assume a homogeneous model in which the

probabilities do not depend on t . The values thus observed constitute

the observation sequence O. The state sequence Q is not observed, that

is what makes the model “hidden,” but it should be inferred from the ob-

servation sequence O. Note that there are typically many different state

sequences Q that could have generated the same observation sequence

O, but with different probabilities; just as, given an iid sample from a

normal distribution, there are an infinite number of (μ,σ) value pairs

possible, we are interested in the one having the highest likelihood of

generating the sample.

Note also that in this case of a hidden Markov model, there are two

sources of randomness. In addition to randomly moving from one state

to another, the observation in a state is also random.

Let us go back to our example. The hidden case corresponds to the

urn-and-ball example where each urn contains balls of different colors.

Let bj(m) denote the probability of drawing a ball of color m from urn

j . We again observe a sequence of ball colors but without knowing the

sequence of urns from which the balls were drawn. So it is as if now the

urns are placed behind a curtain and somebody picks a ball at random

from one of the urns and shows us only the ball, without showing us the

urn from which it is picked. The ball is returned to the urn to keep the

probabilities the same. The number of ball colors may be different from

the number of urns. For example, let us say we have three urns and the

observation sequence is

O = {red, red, green, blue, yellow}
In the previous case, knowing the observation (ball color), we knew the

state (urn) exactly because there were separate urns for separate colors

and each urn contained balls of only one color. The observable model is

a special case of the hidden model where M = N and bj(m) is 1 if j = m

368 15 Hidden Markov Models

1 1 11
a11 a11 a11 a11

N

i

1

N

i

2

N

i

T

N

i

T-1

O1

O2 OT-1

OT

π1

πi

πN

Figure 15.2 An HMM unfolded in time as a lattice (or trellis) showing all the

possible trajectories. One path, shown in thicker lines, is the actual (unknown)

state trajectory that generated the observation sequence.

and 0 otherwise. But in the case of a hidden model, a ball could have been

picked from any urn. In this case, for the same observation sequence O,

there may be many possible state sequencesQ that could have generated

O (see figure 15.2).

To summarize and formalize, an HMM has the following elements:

1. N : Number of states in the model

S = {S1, S2, . . . , SN}

2. M : Number of distinct observation symbols in the alphabet

V = {v1, v2, . . . , vM}

3. State transition probabilities:

A = [aij] where aij ≡ P(qt+1 = Sj|qt = Si)

4. Observation probabilities:

B = [bj(m)] where bj(m) ≡ P(Ot = vm|qt = Sj)

15.4 Three Basic Problems of HMMs 369

5. Initial state probabilities:

Π = [πi] where πi ≡ P(q1 = Si)

N and M are implicitly defined in the other parameters so λ = (A,B,Π)
is taken as the parameter set of an HMM. Given λ, the model can be

used to generate an arbitrary number of observation sequences of arbi-

trary length, but as usual, we are interested in the other direction, that of

estimating the parameters of the model given a training set of sequences.

15.4 Three Basic Problems of HMMs

Given a number of sequences of observations, we are interested in three

problems:

1. Given a model λ, we would like to evaluate the probability of any given

observation sequence, O = {O1O2 · · ·OT }, namely, P(O|λ).

2. Given a model λ and an observation sequence O, we would like to find

out the state sequence Q = {q1q2 · · ·qT }, which has the highest prob-
ability of generating O; namely, we want to find Q∗ that maximizes

P(Q|O,λ).

3. Given a training set of observation sequences, X = {Ok}k, we would
like to learn the model that maximizes the probability of generating

X ; namely, we want to find λ∗ that maximizes P(X|λ).

Let us see solutions to these one by one, with each solution used to

solve the next problem, until we get to calculating λ or learning a model

from data.

15.5 Evaluation Problem

Given an observation sequence O = {O1O2 · · ·OT } and a state sequence

Q = {q1q2 · · ·qT}, the probability of observing O given the state se-

quence Q is simply

P(O|Q,λ) =
T∏
t=1

P(Ot |qt , λ) = bq1(O1) · bq2(O2) · · ·bqT (OT)(15.11)

370 15 Hidden Markov Models

which we cannot calculate because we do not know the state sequence.

The probability of the state sequence Q is

P(Q|λ) = P(q1)
T∏
t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)

T∏
t=2

P(qt |qt−1)
T∏
t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT)(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by

summing up over all possible Q:

P(O|λ) =
∑

all possible Q

P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming

that all the probabilities are nonzero. Fortunately, there is an efficient

procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation

sequence into two parts: the first one starting from time 1 until time t ,

and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given

the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by

accumulating results on the way.

� Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si, λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

� Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)

15.5 Evaluation Problem 371

N

i

1

j
aij

i

1

j

N

aij

(a) Forward (b) Backward

t t +1 t+1t

αi βj

Ot+1

Ot+1

Figure 15.3 Forward-backward procedure: (a) computation of αt(j) and (b)

computation of βt(i).

= P(O1 · · ·Ot+1|qt+1 = Sj , λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot |qt+1 = Sj, λ)P(Ot+1|qt+1 = Sj, λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot, qt+1 = Sj|λ)P(Ot+1|qt+1 = Sj, λ)
= P(Ot+1|qt+1 = Sj, λ)

∑
i

P(O1 · · ·Ot, qt = Si, qt+1 = Sj|λ)

= P(Ot+1|qt+1 = Sj, λ)∑
i

P(O1 · · ·Ot, qt+1 = Sj|qt = Si, λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj, λ)∑
i

P(O1 · · ·Ot |qt = Si, λ)P(qt+1 = Sj|qt = Si, λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj, λ)∑
i

P(O1 · · ·Ot, qt = Si|λ)P(qt+1 = Sj|qt = Si, λ)

=
⎡
⎣ N∑
i=1

αt(i)aij

⎤
⎦bj(Ot+1)(15.16)

αt(i) explains the first t observations and ends in state Si . We multiply

this by the probability aij to move to state Sj , and because there are

372 15 Hidden Markov Models

N possible previous states, we need to sum up over all such possible

previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st

observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-

ability of the observation sequence:

P(O|λ) =
N∑
i=1

P(O, qT = Si|λ)

=
N∑
i=1

αT (i)(15.17)

αT(i) is the probability of generating the full observation sequence and

ending up in state Si . We need to sum up over all such possible final

states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-

lem in a reasonable amount of time. We do not need it now but let us

similarly define the backward variable, βt(i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt(i) ≡ P(Ot+1 · · ·OT |qt = Si, λ)(15.18)

This can again be recursively computed as follows, this time going in

the backward direction:

� Initialization (arbitrarily to 1):

βT (i) = 1

� Recursion (see figure 15.3b):

βt(i) ≡ P(Ot+1 · · ·OT |qt = Si, λ)
=

∑
j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si, λ)

=
∑
j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si, λ)P(qt+1 = Sj|qt = Si, λ)

=
∑
j

P(Ot+1|qt+1 = Sj, qt = Si, λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si, λ)P(qt+1 = Sj|qt = Si, λ)
=

∑
j

P(Ot+1|qt+1 = Sj, λ)

15.6 Finding the State Sequence 373

P(Ot+2 · · ·OT |qt+1 = Sj, λ)P(qt+1 = Sj|qt = Si, λ)

=
N∑
j=1

aijbj(Ot+1)βt+1(j)(15.19)

When in state Si , we can go to N possible next states Sj , each with

probability aij . While there, we generate the (t + 1)st observation and

βt+1(j) explains all the observations after time t + 1, continuing from

there.

One word of caution about implementation is necessary here: Both αt
and βt values are calculated by multiplying small probabilities, and with

long sequences we risk getting underflow. To avoid this, at each time

step, we normalize αt(i) by multiplying it with

ct = 1∑
j αt(j)

We also normalize βt(i) by multiplying it with the same ct (βt(i) do not

sum to 1). We cannot use equation 15.17 after normalization; instead, we

have (Rabiner 1989)

P(O|λ) = 1∏
t ct

or logP(O|λ) = −
∑
t

log ct(15.20)

15.6 Finding the State Sequence

We now move on to the second problem, that of finding the state se-

quence Q = {q1q2 · · ·qT} having the highest probability of generating

the observation sequence O = {O1O2 · · ·OT }, given the model λ.
Let us define γt(i) as the probability of being in state Si at time t , given

O and λ, which can be computed as

γt(i) ≡ P(qt = Si|O,λ)(15.21)

= P(O|qt = Si, λ)P(qt = Si|λ)
P(O|λ)

= P(O1 · · ·Ot |qt = Si, λ)P(Ot+1 · · ·OT |qt = Si, λ)P(qt = Si|λ)∑N
j=1 P(O, qt = Sj|λ)

= P(O1 · · ·Ot , qt = Si|λ)P(Ot+1 · · ·OT |qt = Si, λ)∑N
j=1 P(O|qt = Sj, λ)P(qt = Sj|λ)

= αt(i)βt(i)∑N
j=1αt(j)βt(j)

(15.22)

374 15 Hidden Markov Models

Here we see how nicely αt(i) and βt(i) split the sequence between

them: the forward variable αt(i) explains the starting part of the se-

quence until time t and ends in Si , and the backward variable βt(i) takes

it from there and explains the ending part until time T .

The numerator αt(i)βt(i) explains the whole sequence given that at

time t , the system is in state Si . We need to normalize by dividing this

over all possible intermediate states that can be traversed at time t , and

guarantee that
∑
i γt(i) = 1.

To find the state sequence, for each time step t , we can choose the state

that has the highest probability:

q∗t = argmax
i
γt(i)(15.23)

but this may choose Si and Sj as the most probable states at time t and

t + 1 even when aij = 0. To find the single best state sequence (path), we

use the Viterbi algorithm, based on dynamic programming, which takesViterbi algorithm

such transition probabilities into account.

Given state sequence Q = q1q2 · · ·qT and observation sequence O =
O1 · · ·OT , we define δt(i) as the probability of the highest probability

path at time t that accounts for the first t observations and ends in Si :

δt(i) ≡ max
q1q2···qt−1

p(q1q2 · · ·qt−1, qt = Si,O1 · · ·Ot |λ)(15.24)

Then we can recursively calculate δt+1(i) and the optimal path can be

read by backtracking from T , choosing the most probable at each instant.

The algorithm is as follows:

1. Initialization:

δ1(i) = πibi(O1)

ψ1(i) = 0

2. Recursion:

δt(j) = max
i
δt−1(i)aij · bj(Ot)

ψt(j) = argmax
i
δt−1(i)aij

3. Termination:

p∗ = max
i
δT (i)

q∗T = argmax
i
δT (i)

15.7 Learning Model Parameters 375

Figure 15.4 Computation of arc probabilities, ξt(i, j).

4. Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψt(j) keeps track of the state

that maximizes δt(j) at time t − 1, that is, the best previous state. The

Viterbi algorithm has the same complexity with the forward phase, where

instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the third problem, learning an HMM from data.

The approach is maximum likelihood, and we would like to calculate

λ∗ that maximizes the likelihood of the sample of training sequences,

X = {Ok}Kk=1, namely, P(X|λ). We start by defining a new variable that

will become handy later on.

We define ξt(i, j) as the probability of being in Si at time t and in Sj at

time t + 1, given the whole observation O and λ:

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)(15.25)

which can be computed as (see figure 15.4)

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)

= P(O|qt = Si, qt+1 = Sj, λ)P(qt = Si, qt+1 = Sj|λ)
P(O|λ)

376 15 Hidden Markov Models

= P(O|qt = Si, qt+1 = Sj, λ)P(qt+1 = Sj|qt = Si, λ)P(qt = Si|λ)
P(O|λ)

=
(

1

P(O|λ)
)
P(O1 · · ·Ot |qt = Si, λ)P(Ot+1|qt+1 = Sj, λ)

P(Ot+2 · · ·OT |qt+1 = Sj, λ)aijP(qt = Si|λ)

=
(

1

P(O|λ)
)
P(O1 · · ·Ot, qt = Si|λ)P(Ot+1|qt+1 = Sj, λ)

P(Ot+2 · · ·OT |qt+1 = Sj, λ)aij
= αt(i)bj(Ot+1)βt+1(j)aij∑

k

∑
l P(qt = Sk, qt+1 = Sl,O|λ)

= αt(i)aijbj(Ot+1)βt+1(j)∑
k

∑
l αt(k)aklbl(Ot+1)βt+1(l)

(15.26)

αt(i) explains the first t observations and ends in state Si at time t . We

move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can

be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next

states:

γt(i) =
N∑
j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both

γt(i) and ξt(i, j)would be 0/1. In this case when they are not, we estimate

them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-

tering where we did and did not know the class labels, respectively. In

unsupervised clustering using EM (section 7.4), not knowing the class la-

bels, we estimated them first (in the E-step) and calculated the parameters

with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt(i)

values given the current λ = (A,B,Π), and then in the M-step, we re-

calculate λ given ξt(i, j) and γt(i). These two steps are alternated until

convergence during which, it has been shown, P(O|λ) never decreases.

15.7 Learning Model Parameters 377

Assume indicator variables zti as

zti =
{

1 if qt = Si
0 otherwise

(15.28)

and

ztij =
{

1 if qt = Si and qt+1 = Sj
0 otherwise

(15.29)

These are 0/1 in the case of an observable Markov model and are hid-

den random variables in the case of an HMM. In this latter case, we esti-

mate them in the E-step as

E[zti] = γt(i)(15.30)

E[ztij] = ξt(i, j)

In the M-step, we calculate the parameters given these estimated val-

ues. The expected number of transitions from Si to Sj is
∑
t ξt(i, j) and

the total number of transitions from Si is
∑
t γt(i). The ratio of these two

gives us the probability of transition from Si to Sj at any time:

âij =
∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts

are replaced by estimated soft counts.

The probability of observing vm in Sj is the expected number of times

vm is observed when the system is in Sj over the total number of times

the system is in Sj :

b̂j(m) =
∑T
t=1 γt(j)1(Ot = vm)∑T

t=1 γt(j)
(15.32)

When there are multiple observation sequences

X = {Ok}Kk=1
which we assume to be independent

P(X|λ) =
K∏
k=1

P(Ok|λ)

378 15 Hidden Markov Models

the parameters are now averages over all observations in all sequences:

âij =
∑K
k=1

∑Tk−1
t=1 ξkt (i, j)∑K

k=1
∑Tk−1
t=1 γkt (i)

(15.33)

b̂j(m) =
∑K
k=1

∑Tk
t=1 γ

k
t (j)1(O

k
t = vm)∑K

k=1
∑Tk
t=1 γ

k
t (j)

π̂i =
∑K
k=1 γ

k
1(i)

K

15.8 Continuous Observations

In our discussion, we assumed discrete observations modeled as a multi-

nomial

P(Ot |qt = Sj , λ) =
M∏
m=1

bj(m)
rtm(15.34)

where

r tm =
{

1 if Ot = vm
0 otherwise

(15.35)

If the inputs are continuous, one possibility is to discretize them and

then use these discrete values as observations. Typically, a vector quan-

tizer (section 7.3) is used for this purpose of converting continuous val-

ues to the discrete index of the closest reference vector. For example,

in speech recognition, a word utterance is divided into short speech seg-

ments corresponding to phonemes or part of phonemes; after prepro-

cessing, these are discretized using a vector quantizer and an HMM is

then used to model a word utterance as a sequence of them.

We remember that k-means used for vector quantization is the hard

version of a Gaussian mixture model:

p(Ot|qt = Sj , λ) =
L∑
l=1

P(Gl)p(Ot |qt = Sj,Gl , λ)(15.36)

where

p(Ot|qt = Sj ,Gl , λ) ∼N (μl ,Σl)(15.37)

and the observations are kept continuous. In this case of Gaussian mix-

tures, EM equations can be derived for the component parameters (with

15.9 The HMM with Input 379

suitable regularization to keep the number of parameters in check) and

the mixture proportions (Rabiner 1989).

Let us see the case of a scalar continuous observation, Ot ∈ 	. The

easiest is to assume a normal distribution:

p(Ot|qt = Sj, λ) ∼N (μj , σ
2
j)(15.38)

which implies that in state Sj , the observation is drawn from a normal

with mean μj and variance σ 2
j . The M-step equations in this case are

μ̂j =
∑
t γt(j)Ot∑
t γt(j)

(15.39)

σ̂ 2
j =

∑
t γt(j)(Ot − μ̂j)2∑

t γt(j)

15.9 The HMM with Input

In some applications, additional to the observation sequence Ot , we have

an input sequence, xt . We can condition the observation Ot in state Sj
on the input xt , and write P(Ot |qt = Sj, xt). In the case when the obser-

vations are continuous scalars, we replace equation 15.38 with a general-

ized model

p(Ot|qt = Sj, xt , λ) ∼N (gj(x
t |θj), σ 2

j)(15.40)

where, for example, assuming a linear model, we have

gj(x
t|wj,wj0) = wjxt +wj0(15.41)

If the observations are discrete and multinomial, we have a classifier

taking xt as input and generating a 1-of-M output, or we can generate

posterior class probabilities and keep the observations continuous.

Similarly, the state transition probabilities can also be conditioned on

the input, namely, P(qt+1 = Sj|qt = Si, xt), which is implemented by a

classifier choosing the state at time t+1 as a function of the state at time
t and the input. This is a Markov mixture of experts (Meila and JordanMarkov mixture of

experts 1996) and is a generalization of the mixture of experts architecture (sec-

tion 12.8) where the gating network keeps track of the decision it made

in the previous time step. Such an architecture is also called an input-input-output HMM

output HMM (Bengio and Frasconi 1996) and has the advantage that the

model is no longer homogeneous; different observation and transition

380 15 Hidden Markov Models

probabilities are used at different time steps. There is still a single model

for each state, parameterized by θj , but it generates different transition

or observation probabilities depending on the input seen. It is possible

that the input is not a single value but a window around time t making

the input a vector; this allows handling applications where the input and

observation sequences have different lengths.

Even if there is no other explicit input sequence, an HMM with input

can be used by generating an “input” through some prespecified function

of previous observations

xt = f (Ot−τ, . . . ,Ot−1)

thereby providing a window of size τ of contextual input.

15.10 Model Selection in HMM

Just like any model, the complexity of an HMM should be tuned so as to

balance its complexity with the size and properties of the data at hand.

One possibility is to tune the topology of the HMM. In a fully connected

(ergodic) HMM, there is transition from a state to any other state, which

makes A a full N × N matrix. In some applications, only certain transi-

tions are allowed, with the disallowed transitions having their aij = 0.

When there are fewer possible next states, N′ < N , the complexity of

forward-backward passes and the Viterbi procedure is O(NN′T) instead
of O(N2T).

For example, in speech recognition, left-to-right HMMs are used, whichleft-to-right HMMs

have their states ordered in time so that as time increases, the state in-

dex increases or stays the same. Such a constraint allows modeling se-

quences whose properties change over time as in speech, and when we

get to a state, we know approximately the states preceding it. There is

the property that we never move to a state with a smaller index, namely,

aij = 0, for j < i. Large changes in state indices are not allowed either,

namely, aij = 0, for j > i + τ. The example of the left-to-right HMM given

in figure 15.5 with τ = 2 has the state transition matrix

A =

⎡
⎢⎢⎢⎣
a11 a12 a13 0

0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

⎤
⎥⎥⎥⎦

15.10 Model Selection in HMM 381

1 2 3

a11

a12

a13

π1 4

Figure 15.5 Example of a left-to-right HMM.

Another factor that determines the complexity of an HMM is the num-

ber of states N . Because the states are hidden, their number is not known

and should be chosen before training. This is determined using prior in-

formation and can be fine-tuned by cross-validation, namely, by checking

the likelihood of validation sequences.

When used for classification, we have a set of HMMs, each one model-

ing the sequences belonging to one class. For example, in spoken word

recognition, examples of each word train a separate model, λi . Given a

new word utterance O to classify, all of the separate word models are

evaluated to calculate P(O|λi). We then use Bayes’ rule to get the poste-

rior probabilities

P(λi|O) = P(O|λi)P(λi)∑
j P(O|λj)P(λj)

(15.42)

where P(λi) is the prior probability of word i. The utterance is assigned

to the word having the highest posterior. This is the likelihood-based

approach; there is also work on discriminative HMM trained directly to

maximize the posterior probabilities. When there are several pronuncia-

tions of the same word, these are defined as parallel paths in the HMM

for the word.

In the case of a continuous input like speech, the difficult task is that of

segmenting the signal into small discrete observations. Typically, phonesphones

are used that are taken as the primitive parts, and combining them,

longer sequences (e.g., words) are formed. Each phone is recognized in

parallel (by the vector quantizer), then the HMM is used to combine them

serially. If the speech primitives are simple, then the HMM becomes com-

plex and vice versa. In connected speech recognition where the words are

not uttered one by one with clear pauses between them, there is a hierar-

chy of HMMs at several levels; one combines phones to recognize words,

382 15 Hidden Markov Models

another combines words to recognize sentences by building a language

model, and so forth.

Hybrid neural network/HMM models were also used for speech recog-

nition (Morgan and Bourlard 1995). In such a model, a multilayer percep-

tron (chapter 11) is used to capture temporally local but possibly complex

and nonlinear primitives, for example, phones, while the HMM is used to

learn the temporal structure. The neural network acts as a preprocessor

and translates the raw observations in a time window to a form that is

easier to model than the output of a vector quantizer.

An HMM can be visualized as a graphical model and evaluation in an

HMM is a special case of the belief propagation algorithm, as we will see in

chapter 16. The reason that we devote a special chapter is the widespread

successful use of this particular model, especially in automatic speech

recognition. When we discuss graphical models in detail, we will see

how the basic HMM architecture can be extended—for example, by having

multiple sequences, or by introducing hidden (latent) variables that can

simplify the model.

15.11 Notes

The HMM is a mature technology, and there are HMM-based commer-

cial speech recognition systems in actual use (Rabiner and Juang 1993;

Jelinek 1997). In section 11.12, we discussed how to train multilayer

perceptrons for recognizing sequences. HMMs have the advantage over

time delay neural networks in that no time window needs to be defined

a priori, and they train better than recurrent neural networks. HMMs are

applied to diverse sequence recognition tasks. Applications of HMMs to

bioinformatics is given in Baldi and Brunak 1998, and to natural language

processing in Manning and Schütze 1999. It is also applied to online

handwritten character recognition, which differs from optical recognition

in that the writer writes on a touch-sensitive pad and the input is a se-

quence of (x, y) coordinates of the pen tip as it moves over the pad and is

not a static image. Bengio et al. (1995) explain a hybrid system for online

recognition where an MLP recognizes individual characters, and an HMM

combines them to recognize words. Various applications of the HMM

and several extensions, for example, discriminative HMMs, are discussed

in Bengio 1999. A more recent survey of what HMMs can and cannot do

is Bilmes 2006.

15.12 Exercises 383

In any such recognition system, one critical point is to decide how

much to do things in parallel and what to leave to serial processing. In

speech recognition, phonemes may be recognized by a parallel system

that corresponds to assuming that all the phoneme sound is uttered in

one time step. The word is then recognized serially by combining the

phonemes. In an alternative system, phonemes themselves may be de-

signed as a sequence of simpler speech sounds, if the same phoneme

has many versions, for example, depending on the previous and follow-

ing phonemes. Doing things in parallel is good but only to a degree; one

should find the ideal balance of parallel and serial processing. To be able

to call anyone at the touch of a button, we would need millions of buttons

on our telephone; instead, we have ten buttons and we press them in a

sequence to dial the number.

We will discuss graphical models in chapter 16 where we will see that

HMMs can be considered a special class of graphical models and inference

and learning operations on HMMs are analogous to their counterparts in

Bayesian networks (Smyth, Heckerman, and Jordan 1997). As we will see

shortly, there are various extensions to HMMs like factorial HMMs where

at each time step, there are a number of states that collectively generate

the observation and tree-structured HMMs where there is a hierarchy of

states. The general formalism also allows us to treat continuous as well

as discrete states, known as linear dynamical systems. For some of these

models, exact inference is not possible and one needs to use approxima-

tion or sampling methods (Ghahramani 2001).

15.12 Exercises

1. Given the observable Markov model with three states, S1, S2, S3, initial prob-

abilities

Π = [0.5,0.2,0.3]T

and transition probabilities

A =

⎡
⎢⎣ 0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8

⎤
⎥⎦

generate 100 sequences of 1,000 states.

2. Using the data generated by the previous exercise, estimate Π, A and compare

with the parameters used to generate the data.

384 15 Hidden Markov Models

3. Formalize a second-order Markov model. What are the parameters? How can

we calculate the probability of a given state sequence? How can the parame-

ters be learned for the case of a observable model?

4. Show that any second- (or higher-order) Markov model can be converted to a

first-order Markov model.

5. Some researchers define a Markov model as generating an observation while

traversing an arc, instead of on arrival at a state. Is this model any more

powerful than what we have discussed?

6. Generate training and validation sequences from an HMM of your choosing.

Then train different HMMs by varying the number of hidden states on the

same training set and calculate the validation likelihoods. Observe how the

validation likelihood changes as the number of states increases.

7. If in equation 15.38 we have multivariate observations, what will be the M-

step equations?

8. Consider the urn-and-ball example where we draw without replacement. How

will it be different?

9. Let us say at any time we have two observations from two different alphabets;

for example, let us say we are observing the values of two currencies every

day. How can we implement this using HMM?

10. How can we have an incremental HMM where we add new hidden states when

necessary?

15.13 References

Baldi, P., and S. Brunak. 1998. Bioinformatics: The Machine Learning Approach.

Cambridge, MA: MIT Press.

Bengio, Y. 1999. “Markovian Models for Sequential Data.” Neural Computing

Surveys 2: 129–162.

Bengio, Y., and P. Frasconi. 1996. “Input-Output HMMs for Sequence Process-

ing.” IEEE Transactions on Neural Networks 7: 1231–1249.

Bengio, Y., Y. Le Cun, C. Nohl, and C. Burges. 1995. “LeRec: A NN/HMM Hybrid

for On-line Handwriting Recognition.” Neural Computation 7: 1289–1303.

Bilmes, J. A. 2006. “What HMMs Can Do.” IEICE Transactions on Information

and Systems E89-D: 869–891.

Ghahramani, Z. 2001. “An Introduction to Hidden Markov Models and Bayesian

Networks.” International Journal of Pattern Recognition and Artificial Intelli-

gence 15: 9–42.

15.13 References 385

Jelinek, F. 1997. Statistical Methods for Speech Recognition. Cambridge, MA:

MIT Press.

Manning, C. D., and H. Schütze. 1999. Foundations of Statistical Natural Lan-

guage Processing. Cambridge, MA: MIT Press.

Meila, M., and M. I. Jordan. 1996. “Learning Fine Motion by Markov Mixtures

of Experts.” In Advances in Neural Information Processing Systems 8, ed.

D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, 1003–1009. Cambridge,

MA: MIT Press.

Morgan, N., and H. Bourlard. 1995. “Continuous Speech Recognition: An Intro-

duction to the Hybrid HMM/Connectionist Approach.” IEEE Signal Processing

Magazine 12: 25–42.

Smyth, P., D. Heckerman, and M. I. Jordan. 1997. “Probabilistic Independence

Networks for Hidden Markov Probability Models.” Neural Computation 9:

227–269.

Rabiner, L. R. 1989. “A Tutorial on Hidden Markov Models and Selected Appli-

cations in Speech Recognition.” Proceedings of the IEEE 77: 257–286.

Rabiner, L. R., and B. H. Juang. 1986. “An Introduction to Hidden Markov

Models.” IEEE Acoustics, Speech, and Signal Processing Magazine 3: 4–16.

Rabiner, L. R., and B. H. Juang. 1993. Fundamentals of Speech Recognition. New

York: Prentice Hall.

16 Graphical Models

Graphical models represent the interaction between variables visu-

ally and have the advantage that inference over a large number of

variables can be decomposed into a set of local calculations involv-

ing a small number of variables making use of conditional indepen-

dencies. After some examples of inference by hand, we discuss the

concept of d-separation and the belief propagation algorithm on a

variety of graphs.

16.1 Introduction

Graphical models, also called Bayesian networks, belief networks, or prob-graphical models

Bayesian networks

belief networks

probabilistic

networks

abilistic networks, are composed of nodes and arcs between the nodes.

Each node corresponds to a random variable, X, and has a value corre-

sponding to the probability of the random variable, P(X). If there is a

directed arc from node X to node Y , this indicates that X has a direct

influence on Y . This influence is specified by the conditional probability

P(Y |X). The network is a directed acyclic graph (DAG); namely, there aredirected acyclic

graph no cycles. The nodes and the arcs between the nodes define the struc-

ture of the network, and the conditional probabilities are the parameters

given the structure.

A simple example is given in figure 16.1, which models that rain causes

the grass to get wet. It rains on 40 percent of the days and when it rains,

there is a 90 percent chance that the grass gets wet; maybe 10 percent of

the time it does not rain long enough for us to really consider the grass

wet enough. The random variables in this example are binary; they are

either true or false. There is a 20 percent probability that the grass gets

wet without its actually raining, for example, when a sprinkler is used.

388 16 Graphical Models

Figure 16.1 Bayesian network modeling that rain is the cause of wet grass.

We see that these three values completely specify the joint distribution

of P(R,W). If P(R) = 0.4, then P(∼R) = 0.6, and similarly P(∼W |R) = 0.1

and P(∼W |∼R) = 0.8. The joint is written as

P(R,W) = P(R)P(W |R)

We can calculate the individual (marginal) probability of wet grass by

summing up over the possible values that its parent node can take:

P(W) =
∑
R

P(R,W) = P(W |R)P(R)+ P(W |∼R)P(∼R)

= 0.9 · 0.4+ 0.2 · 0.6 = 0.48

If we knew that it rained, the probability of wet grass would be 0.9; if

we knew for sure that it did not, it would be as low as 0.2; not knowing

whether it rained or not, the probability is 0.48.

Figure 16.1 shows a causal graph in that it explains that the causecausal graph

of wet grass is rain. Bayes’ rule allows us to invert the dependencies

and have a diagnosis. For example, knowing that the grass is wet, the

probability that it rained can be calculated as follows:

P(R|W) = P(W |R)P(R)
P(W)

= 0.75

Knowing that the grass is wet increased the probability of rain from 0.4

to 0.75; this is because P(W |R) is high and P(W |∼R) is low.
We form graphs by adding nodes and arcs and generate dependencies.

X and Y are independent events ifindependence

p(X,Y) = P(X)P(Y)(16.1)

16.2 Canonical Cases for Conditional Independence 389

X and Y are conditionally independent events given a third event Z ifconditional

independence

P(X,Y |Z) = P(X|Z)P(Y |Z)(16.2)

which can also be rewritten as

P(X|Y,Z) = P(X|Z)(16.3)

In a graphical model, not all nodes are connected; actually, in general,

a node is connected to only a small number of other nodes. Certain

subgraphs imply conditional independence statements, and these allow

us to break down a complex graph into smaller subsets in which infer-

ences can be done locally and whose results are later propagated over the

graph. There are three canonical cases and larger graphs are constructed

using these as subgraphs.

16.2 Canonical Cases for Conditional Independence

Case 1: Head-to-tail Connection

Three events may be connected serially, as seen in figure 16.2a. We see

here that X and Z are independent given Y : Knowing Y tells Z everything;

knowing the state of X does not add any extra knowledge for Z; we write

P(Z|Y,X) = P(Z|Y). We say that Y blocks the path from X to Z, or in

other words, it separates them in the sense that if Y is removed, there is

no path between X to Z. In this case, the joint is written as

P(X,Y ,Z) = P(X)P(Y |X)P(Z|Y)(16.4)

Writing the joint this way implies independence:

P(Z|X,Y) = P(X,Y ,Z)

P(X, Y)
= P(X)P(Y |X)P(Z|Y)

P(X)P(Y |X) = P(Z|Y)(16.5)

Typically, X is the cause of Y and Y is the cause of Z. For example, as

seen in figure 16.2b, X can be cloudy sky, Y can be rain, and Z can be wet

grass. We can propagate information along the chain. If we do not know

the state of cloudy, we have

P(R) = P(R|C)P(C) + P(R|∼C)P(∼C) = 0.38

P(W) = P(W |R)P(R)+ P(W |∼R)P(∼R) = 0.47

Let us say, in the morning we see that the weather is cloudy; what can

we say about the probability that the grass will be wet? To do this, we

390 16 Graphical Models

Figure 16.2 Head-to-tail connection. (a) Three nodes are connected serially. X

and Z are independent given the intermediate node Y : P(Z|Y ,X) = P(Z|Y). (b)
Example: Cloudy weather causes rain, which in turn causes wet grass.

need to propagate evidence first to the intermediate node R, and then to

the query node W .

P(W |C) = P(W |R)P(R|C) + P(W |∼R)P(∼R|C) = 0.76

Knowing that the weather is cloudy increased the probability of wet

grass. We can also propagate evidence back using Bayes’ rule. Let us say

that we were traveling and on our return, see that our grass is wet; what

is the probability that the weather was cloudy that day? We use Bayes’

rule to invert the direction:

P(C|W) = P(W |C)P(C)
P(W)

= 0.65

Knowing that the grass is wet increased the probability of cloudy weather

from its default (prior) value of 0.4 to 0.65.

Case 2: Tail-to-tail Connection

X may be the parent of two nodes Y and Z, as shown in figure 16.3a. The

joint density is written as

P(X,Y ,Z) = P(X)P(Y |X)P(Z|X)(16.6)

16.2 Canonical Cases for Conditional Independence 391

Figure 16.3 Tail-to-tail connection. X is the parent of two nodes Y and Z. The

two child nodes are independent given the parent: P(Y |X,Z) = P(Y |X). In the

example, cloudy weather causes rain and also makes us less likely to turn the

sprinkler on.

Normally Y and Z are dependent through X; given X, they become

independent:

P(Y ,Z|X) = P(X,Y ,Z)

P(X)
= P(X)P(Y |X)P(Z|X)

P(X)
= P(Y |X)P(Z|X)(16.7)

When its value is known, X blocks the path between Y and Z, or in

other words, separates them.

In figure 16.3b, we see an example where cloudy weather influences

both rain and the use of the sprinkler, one positively and the other nega-

tively. Knowing that it rained, for example, we can invert the dependency

using Bayes’ rule and infer the cause:

P(C|R) = P(R|C)P(C)
P(R)

= P(R|C)P(C)∑
C P(R,C)

= P(R|C)P(C)
P(R|C)P(C) + P(R|∼C)P(∼C) = 0.89(16.8)

Note that this value is larger than P(C); knowing that it rained in-

creased the probability that the weather is cloudy.

In figure 16.3a, if X is not known, knowing Y , for example, we can infer

X which we can then use to infer Z. In figure 16.3b, knowing the state of

the sprinkler has an effect on the probability that it rained. If we know

that the sprinkler is on,

P(R|S) =
∑
C

P(R,C|S) = P(R|C)P(C|S) + P(R|∼C)P(∼C|S)(16.9)

392 16 Graphical Models

Figure 16.4 Head-to-head connection. A node has two parents that are indepen-

dent unless the child is given. For example, an event may have two independent

causes.

= P(R|C)P(S|C)P(C)
P(S)

+ P(R|∼C)P(S|∼C)P(∼C)
P(∼S)

= 0.22

This is less than P(R) = 0.45; that is, knowing that the sprinkler is

on decreases the probability that it rained because sprinkler and rain

happens for different states of cloudy weather. If the sprinkler is known

to be off, using the same approach, we find that P(R|∼S) = 0.55; the

probability of rain increases this time.

Case 3: Head-to-head Connection

In a head-to-head node, there are two parents X and Y to a single node

Z, as shown in figure 16.4a. The joint density is written as

P(X,Y ,Z) = P(X)P(Y)P(Z|X,Y)(16.10)

X and Y are independent: P(X,Y) = P(X) · P(Y) (exercise 2); they be-
come dependent when Z is known. The concept of blocking or separation

is different for this case: The path between X and Y is blocked, or they

are separated, when Z is not observed; when Z (or any of its descendants)

is observed, they are not blocked, separated, nor are independent.

16.2 Canonical Cases for Conditional Independence 393

We see for example in figure 16.4b that node W has two parents, R

and S, and thus its probability is conditioned on the values of those two,

P(W |R, S).
Not knowing anything else, the probability that grass is wet is calcu-

lated by marginalizing over the joint:

P(W) =
∑
R,S

P(W,R, S)

= P(W |R, S)P(R, S)+ P(W |∼R, S)P(∼R, S)
+P(W |R,∼S)P(R,∼S)+ P(W |∼R,∼S)P(∼R,∼S)

= P(W |R, S)P(R)P(S)+ P(W |∼R, S)P(∼R)P(S)
+P(W |R,∼S)P(R)P(∼S)+ P(W |∼R,∼S)P(∼R)P(∼S)

= 0.52

Now, let us say that we know that the sprinkler is on, and we check

how this affects the probability. This is a causal (predictive) inference:

P(W |S) =
∑
R

P(W,R|S)

= P(W |R, S)P(R|S)+ P(W |∼R, S)P(∼R|S)
= P(W |R, S)P(R)+ P(W |∼R, S)P(∼R)
= 0.92

We see that P(W |S) > P(W); knowing that the sprinkler is on, the proba-
bility of wet grass increases.

We can also calculate the probability that the sprinkler is on, given that

the grass is wet. This is a diagnostic inference.

P(S|W) = P(W |S)P(S)
P(W)

= 0.35

P(S|W) > P(S), that is, knowing that the grass is wet increased the

probability of having the sprinkler on. Now let us assume that it rained.

Then we have

P(S|R,W) = P(W |R, S)P(S|R)
P(W |R) = P(W |R, S)P(S)

P(W |R)
= 0.21

which is less than P(S|W). This is called explaining away; given thatexplaining away

we know it rained, the probability of sprinkler causing the wet grass de-

creases. Knowing that the grass is wet, rain and sprinkler become depen-

dent. Similarly, P(S|∼R,W) > P(S|W). We see the same behavior when
we compare P(R|W) and P(R|W,S) (exercise 3).

394 16 Graphical Models

Figure 16.5 Larger graphs are formed by combining simpler subgraphs over

which information is propagated using the implied conditional independencies.

We can construct larger graphs by combining such subgraphs. For ex-

ample, in figure 16.5 where we combine the two subgraphs, we can, for

example, calculate the probability of having wet grass if it is cloudy:

P(W |C) =
∑
R,S

P(W,R, S|C)

= P(W,R, S|C)+ P(W,∼R, S|C)
+P(W,R,∼S|C)+ P(W,∼R,∼S|C)

= P(W |R, S, C)P(R, S|C)
+P(W |∼R, S, C)P(∼R, S|C)
+P(W |R,∼S,C)P(R,∼S|C)
+P(W |∼R,∼S,C)P(∼R,∼S|C)

= P(W |R, S)P(R|C)P(S|C)
+P(W |∼R, S)P(∼R|C)P(S|C)
+P(W |R,∼S)P(R|C)P(∼S|C)
+P(W |∼R,∼S)P(∼R|C)P(∼S|C)

16.2 Canonical Cases for Conditional Independence 395

where we have used that P(W |R, S, C) = P(W |R, S); given R and S, W is

independent of C: R and S between them block the path between W and

C. Similarly, P(R, S|C) = P(R|C)P(S|C); given C, R and S are indepen-

dent. We see the advantage of Bayesian networks here, which explicitly

encode independencies and allow breaking down inference into calcula-

tion over small groups of variables that are propagated from evidence

nodes to query nodes.

We can calculate P(C|W) and have a diagnostic inference:

P(C|W) = P(W |C)P(C)
P(W)

The graphical representation is visual and helps understanding. The

network represents conditional independence statements and allows us

to break down the problem of representing the joint distribution of many

variables into local structures; this eases both analysis and computation.

Figure 16.5 represents a joint density of four binary variables that would

normally require fifteen values (24 − 1) to be stored, whereas here there

are only nine. If each node has a small number of parents, the complexity

decreases from exponential to linear (in the number of nodes). As we

have seen earlier, inference is also easier as the joint density is broken

down into conditional densities of smaller groups of variables:

P(C, S,R,W) = P(C)P(S|C)P(R|C)P(W |S,R)(16.11)

In the general case, when we have variables X1, . . . , Xd , we write

P(X1, . . . , Xd) =
d∏
i=1

P(Xi|parents(Xi))(16.12)

Then given any subset of Xi , namely, setting them to certain values due

to evidence, we can calculate the probability distribution of some other

subset of Xi by marginalizing over the joint. This is costly because it

requires calculating an exponential number of joint probability combina-

tions, even though each of them can be simplified as in equation 16.11.

Note, however, that given the same evidence, for different Xi , we may be

using the same intermediate values (products of conditional probabili-

ties and sums for marginalization), and in section 16.5, we will discuss

the belief propagation algorithm to do inference cheaply by doing the lo-

cal intermediate calculations once which we can use multiple times for

different query nodes.

396 16 Graphical Models

Though in this example we use binary variables, it is straightforward

to generalize for cases where the variables are discrete with any number

of possible values (with m possible values and k parents, a table of size

mk is needed for the conditional probabilities), or they can be continuous

(parameterized, e.g., p(Y |x) ∼N (μ(x|θ),σ 2); see section 16.3.3).

One major advantage to using a Bayesian network is that we do not

need to designate explicitly certain variables as input and certain others

as output. The value of any set of variables can be established through

evidence and the probabilities of any other set of variables can be in-

ferred, and the difference between unsupervised and supervised learning

becomes blurry. From this perspective, a graphical model can be thought

of as a “probabilistic database” (Jordan 2009), a machine that can answer

queries regarding the values of random variables.

In a problem, there may also be hidden variables whose values arehidden variables

never known through evidence. The advantage of using hidden variables

is that the dependency structure can be more easily defined. For exam-

ple, in basket analysis when we want to find the dependencies among

items sold, let us say we know that there is a dependency among “baby

food,” “diapers,” and “milk” in that a customer buying one of these is

very much likely to buy the other two. Instead of putting (noncausal)

arcs among these three, we may designate a hidden node “baby at home”

as the hidden cause of the consumption of these three items. When there

are hidden nodes, their values are estimated given the values of observed

nodes and filled in.

It should be stressed at this point that a link from a node X does not,

and need not, always imply a causality. It only implies a direct influence ofcausality

X over Y in the sense that the probability of Y is conditioned on the value

of X, and two nodes may have a link between them even if there is no

direct cause. It is preferable to have the causal relations in constructing

the network by providing an explanation of how the data is generated

(Pearl 2000) but such causes may not always be accessible.

16.3 Example Graphical Models

16.3.1 Naive Bayes’ Classifier

For the case of classification, the corresponding graphical model is shown

in figure 16.6a, with x as the input and C a multinomial variable taking

16.3 Example Graphical Models 397

Figure 16.6 (a) Graphical model for classification. (b) Naive Bayes’ classifier

assumes independent inputs.

one of K states for the class code. Bayes’ rule allows a diagnosis, as in

the rain and wet grass case we saw in figure 16.1:

P(C|x) = P(C)p(x|C)
P(x)

If the inputs are independent, we have the graph shown in figure 16.6b,

which is called the naive Bayes’ classifier, because it ignores possible de-naive Bayes’

classifier pendencies, namely, correlations, among the inputs and reduces a multi-

variate problem to a group of univariate problems:

p(x|C) =
d∏
j=1

p(xj|C)

We have discussed classification for this case in sections 5.5 and 5.7

for numeric and discrete x, respectively.

Clustering is also similar except that the multinomial class indicator

variable C is observed in classification, but the similar variable, Z, cluster

indicator, is not observed. The E-step of the Expectation Maximization

algorithm (section 7.4) uses Bayes’ rule to invert the arc and estimates

the cluster indicator given the input.

Figure 16.6a is a generative model of the process that creates the data.generative model

It is as if we first pick a class C at random by sampling from P(C), and

then having fixed C, we pick an x by sampling from p(x|C). Thinking of
data as sampled from a causal generative model that can be visualized

as a graph can ease understanding and also inference in many domains.

398 16 Graphical Models

Figure 16.7 Hidden Markov model can be drawn as a graphical model where qt

are the hidden states and shaded Ot are observed.

For example, in text categorization, generating a text may be thought of

as the process where an author decides to write a document on a certain

topic and then chooses the set of words accordingly. In bioinformatics,

one area among many where a graphical approach used is the model-

ing of a phylogenetic tree; namely, a directed graph whose leaves are thephylogenetic tree

current species, nonterminal nodes are past ancestors that split into mul-

tiple species during a speciation event, and the conditional probabilities

depend on the evolutionary distance between a species and its ancestor

(Jordan 2004).

16.3.2 Hidden Markov Model

Hidden Markov models (HMM), which we previously discussed in chap-hidden Markov

model ter 15, are an example of case 1 where three successive states qt−2, qt−1, qt
correspond to three states on a chain in a first-order Markov model. The

state at time t , qt , depends only on the state at time t −1, qt−1, and given
qt−1, qt is independent of qt−2

P(qt|qt−1, qt−2) = P(qt|qt−1)

as given by the state transition probability matrix A (see figure 16.7).

Each hidden variable generates a discrete observation that is observed,

as given by the observation probability matrix B. The forward-backward

procedure of hidden Markov models is a special case of belief propaga-

tion that we will discuss shortly.

16.3 Example Graphical Models 399

Figure 16.8 Different types of HMMmodel different assumptions about the way

the observed data (shown shaded) is generated from Markov sequences of latent

variables.

Different HMM types can be shown as different graphical models. In

figure 16.8a, an input-output HMM is shown (see section 15.9) where thereinput-output HMM

are two separate observed input-output sequences and there is also a

sequence of hidden states. The output observation depends both on the

state and also on the input; one can think of this as a B matrix whose

elements are not scalars but parametrized functions of the input. This

may similarly be seen as a mixture of expert architecture (section 12.8)

400 16 Graphical Models

whose gating output (hidden state) depends also on the gating value at

the previous time step.

Another HMM type that can be easily visualized is a factorial HMM,factorial HMM

where there are multiple separate hidden sequences that interact to gen-

erate a single observation sequence. An example is a pedigree whichpedigree

displays the parent-child relationship (Jordan 2004); figure 16.8b models

meiosis where the two sequences correspond to the chromosomes of the

father and the mother (which are independent), and at each locus (gene),

the offspring receives one allele from the father or the other allele from

the mother.

A coupled HMM, shown in figure 16.8c, models two parallel but relatedcoupled HMM

hidden sequences that generate two parallel observation sequences. For

example, in speech recognition, we may have one observed acoustic se-

quence of uttered words and one observed visual sequence of lip images,

each having its hidden states where the two are dependent.

In a switching HMM, shown in figure 16.8d, there are K parallel inde-switching HMM

pendent hidden state sequences and the state variable S at any one time

picks one of them and the chosen one generates the output. That is, we

switch between state sequences as we go along.

In HMM proper, though the observation may be continuous, state is

discrete; in a linear dynamical system, also known as the Kalman filter,linear dynamical

system

Kalman filter

both the state and the observations are continuous. In the basic case,

state at time t is a linear function of state at t − 1 with additive zero-

mean Gaussian noise, and, at each state, the observation is another linear

function of the state with additive zero-mean Gaussian noise. The two

linear mappings and the covariances of the two noise sources make up

the parameters. All HMM variants we discussed earlier can similarly be

generalized to use continuous states.

By suitably modifying the graphical model, one can adapt the architec-

ture to the characteristics of the process that generates the data. This

process of matching the model to the data is a model selection proce-

dure to best trade off bias and variance. The disadvantage is that exact

inference may no longer be possible on such extended HMMs, and one

would need approximation or sampling methods (Ghahramani 2001; Jor-

dan 2009).

16.3 Example Graphical Models 401

Figure 16.9 Bayesian network for linear regression.

16.3.3 Linear Regression

Linear regression can be visualized as a graphical model, as shown in fig-

ure 16.9. Input xt is drawn from a prior p(x) and the dependent variable

r t depend on the input x, weights w (drawn from a prior parameterized

by α, i.e., p(w) ∼ N (0, α−1I)), and noise ε (parameterized by β, i.e.,

p(ε) ∼N (0, β−1)):

p(rt |xt ,w) ∼N (wTxt , β−1)(16.13)

There are N such pairs in the training set, which is shown by the rect-

angular plate in the figure. Given a new input x′, the aim is to estimate

r ′, which will be E[r ′|x′,w].
The weights w are not given but they can be estimated using the train-

ing set of [X, r]. Just as in equation 16.9, where C is the cause of R and

S, where we used

P(R|S) =
∑
C

P(R,C|S) = P(R|C)P(C|S) + P(R|∼C)P(∼C|S)

402 16 Graphical Models

filling in C using S, which we in turn used to estimate R. Here, we write

p(r ′|x′, r,X) =
∫
p(r ′|x′,w)p(w|X, r)dw

=
∫
p(r ′|x′,w)p(r|X,w)p(w)

p(r)
dw

∝
∫
p(r ′|x′,w)

∏
t

p(r t |xt ,w)p(w)dw(16.14)

where the second line is due to Bayes’ rule and the third line is due to the

independence of instances in the training set.

16.4 d-Separation

We now generalize the concept of blocking and separation under the

name of d-separation, and we define it in a way so that for arbitrary sub-d-separation

sets of nodes A, B, and C, we can check if A and B are independent given

C. Jordan (2009) visualizes this as a ball bouncing over the graph and

calls this the Bayes’ ball. We set the nodes in C to their values, place aBayes’ ball

ball at each node in A, let the balls move around according to a set of

rules, and check whether a ball reaches any node in B. If this is the case,

they are dependent; otherwise, they are independent.

To check whether A and B are d-separated given C, we consider all

possible paths between any node in A and any node in B. Any such path

is blocked if

(a) the directions of the edges on the path either meet head-to-tail (case 1)

or tail-to-tail (case 2) and the node is in C, or

(b) the directions of the edges on the path meet head-to-head (case 3) and

neither that node nor any of its descendant is in C.

If all paths are blocked, we say that A and B are d-separated, that is,

independent, given C; otherwise, they are dependent. Examples are given

in figure 16.10.

16.5 Belief Propagation

Having discussed some inference examples by hand, we now are inter-

ested in an algorithm that can answer queries such as P(X|E) where X

16.5 Belief Propagation 403

Figure 16.10 Examples of d-separation. The path BCDF is blocked given C

because C is a tail-to-tail node. BEFG is blocked by F because F is a head-to-tail

node. BEFD is blocked unless F (or G) is given.

is any query node in the graph and E is any subset of evidence nodes

whose values are set to certain value. Following Pearl (1988), we start

with the simplest case of chains and gradually move on to more complex

graphs. Our aim is to find the graph operation counterparts of probabilis-

tic procedures such as Bayes’ rule or marginalization, so that the task of

inference can be mapped to general purpose graph algorithms.

16.5.1 Chains

A chain is a sequence of head-to-tail nodes with one root node without

any parent; all other nodes have exactly one parent node, and all nodes

except the very last, leaf, have a single child. If evidence is in the ances-

tors of X, we can just do a diagnostic inference and propagate evidence

down the chain; if evidence is in the descendants of X, we can do a causal

inference and propagate upward using Bayes’ rule. Let us see the general

case where we have evidence in both directions, up the chain E+ and

404 16 Graphical Models

Figure 16.11 Inference along a chain.

down the chain E− (see figure 16.11). Note that any evidence node sep-

arates X from the nodes on the chain on the other side of the evidence

and their values do not affect p(X); this is true in both directions.

We consider each node as a processor that receives messages from its

neighbors and pass it along after some local calculation. Each node X

locally calculates and stores two values: λ(X) ≡ P(E−|X) is the propa-
gated E− that X receives from its child and forwards to its parent, and

π(X) ≡ P(X|E+) is the propagated E+ that X receives from its parent

and passes on to its child.

P(X|E) = P(E|X)P(X)
P(E)

= P(E+, E−|X)P(X)
P(E)

= P(E+|X)P(E−|X)P(X)
P(E)

= P(X|E+)P(E+)P(E−|X)P(X)
P(X)P(E)

= αP(X|E+)P(E−|X) = απ(X)λ(X)(16.15)

for some normalizing constant α, not dependent on the value of X. The

second line is there because E+ and E− are independent given X, and the
third line is due to Bayes’ rule.

If a node E is instantiated to a certain value ẽ, λ(ẽ) ≡ 1 and λ(e) ≡ 0,

for e �= ẽ. The leaf node X that is not instantiated has its λ(x) ≡ 1,

for all x values. The root node X that is not instantiated takes the prior

probabilities as π values: π(x) ≡ P(x),∀x.
Given these initial conditions, we can devise recursive formulas to prop-

agate evidence along the chain.

For the π -messages, we have

π(X) ≡ P(X|E+) =
∑
U

P(X|U,E+)P(U|E+)

=
∑
U

P(X|U)P(U|E+) =
∑
U

P(X|U)π(U)(16.16)

16.5 Belief Propagation 405

where the second line follows from the fact that U blocks the path be-

tween X and E+.
For the λ-messages, we have

λ(X) ≡ P(E−|X) =
∑
Y

P(E−|X,Y)P(Y |X)

=
∑
Y

P(E−|Y)P(Y |X) =
∑
U

P(Y |X)λ(Y)(16.17)

where the second line follows from the fact that Y blocks the path be-

tween X and E−.
When the evidence nodes are set to a value, they initiate traffic and

nodes continue updating until there is convergence. Pearl (1988) views

this as a parallel machine where each node is implemented by a processor

that works in parallel with others and exchanges information through λ-

and π -messages with its parent and child.

16.5.2 Trees

Chains are restrictive because each node can have only a single parent

and a single child, that is, a single cause and a single symptom. In a

tree, each node may have several children but all nodes, except the single

root, have exactly one parent. The same belief propagation also applies

here with the difference from chains being that a node receives different

λ-messages from its children, λY(X) denoting the message X receives

from its child Y , and sends different π -messages to its children, πY(X)

denoting the message X sends to its child Y .

Again, we divide possible evidence to two parts, E− are nodes that are

in the subtree rooted at the query node X, and E+ are evidence nodes

elsewhere (see figure 16.12). Note that this second need not be an an-

cestor of X but may also be in a subtree rooted at a sibling of X. The

important point is that again X separates E+ and E− so that we can write
P(E+, E−|X) = P(E+|X)P(E−|X), and hence have
P(X|E) = απ(X)λ(X)
where again α is a normalizing constant.

λ(X) is the evidence in the subtree rooted at X, and if X has two chil-

dren Y and Z, as shown in figure 16.12, it can be calculated as

λ(X) ≡ P(E−X |X) = P(E−Y , E−Z |X)
= P(E−Y |X)P(E−Z |X) = λY (X)λZ(X)(16.18)

406 16 Graphical Models

Figure 16.12 In a tree, a node may have several children but a single parent.

In the general case if X has m children, Yj, j = 1, . . . ,m, then we multi-

ply all their λ values:

λ(X) =
m∏
j=1

λYj (X)(16.19)

Once X accumulates λ evidence from its children’s λ-messages, it prop-

agates it up to its parent:

λX(U) =
∑
X

λ(X)P(X|U)(16.20)

Similarly and in the other direction, π(X) is the evidence elsewhere

that is accumulated in P(U|E+) and passed on to X as a π -message:

π(X) ≡ P(X|E+X) =
∑
U

P(X|U)P(U|E+X) =
∑
U

P(X|U)πX(U)(16.21)

This calculated π value is then propagated down to X’s children. Note

that what Y receives from X is what X receives from its parent U and

also from its other child Z; together they make up E+Y (see figure 16.12):

πY(X) ≡ P(X|E+Y) = P(X|E+X , E−Z)

16.5 Belief Propagation 407

Figure 16.13 In a polytree, a node may have several children and several par-

ents, but the graph is singly connected; that is, there is a single chain between

Ui and Yj passing through X.

= P(E−Z |X,E+X)P(X|E+X)
P(E−Z)

= P(E−Z |X)P(X|E+X)
P(E−Z)

= αλZ(X)π(X)(16.22)

Again, if Y has not one sibling Z but multiple, we need to take a product

over all their λ values:

πYj (X) = α
∏
s �=j

λYs (X)π(X)(16.23)

16.5.3 Polytrees

In a tree, a node has a single parent, that is, a single cause. In a polytree, apolytree

node may have multiple parents, but we require that the graph be singly

connected, which means that there is a single chain between any two

nodes. If we remove X, the graph will split into two components. This is

necessary so that we can continue splitting EX into E+X and E−X , which are
independent given X (see figure 16.13).

If X has multiple parents Ui, i = 1, . . . , k, it receives π -messages from

408 16 Graphical Models

all of them, πX(Ui), which it combines as follows:

π(X) ≡ P(X|E+X) = P(X, E+U1X, E+U2X, . . . , E+UkX)
=

∑
U1

∑
U2

· · ·
∑
Uk

P(X|U1, U2, . . . , Uk)P(U1|E+U1X) · · · P(Uk|E+UkX)

=
∑
U1

∑
U2

· · ·
∑
Uk

P(X|U1, U2, . . . , Uk)
k∏
i=1

πX(Ui)(16.24)

and passes it on to its several children Yj, j = 1, . . . ,m:

πYj (X) = α
∏
s �=j

λYs (X)π(X)(16.25)

In this case when X has multiple parents, a λ-message X passes on

to one of its parents Ui combines not only the evidence X receives from

its children but also the π -messages X receives from its other parents

Ur , r �= i; they together make up E−UiX :

λX(Ui) ≡ P(E−UiX|X)
=

∑
X

∑
Ur �=i

P(E−X , E
+
Ur �=iX , X,Ur �=i|Ui)

=
∑
X

∑
Ur �=i

P(E−X , E
+
Ur �=iX|X,Ur �=i , Ui)P(X,Ur �=i|Ui)

=
∑
X

∑
Ur �=i

P(E−X |X)P(E+Ur �=iX|Ur �=i)P(X|Ur �=i , Ui)P(Ur �=i|Ui)

=
∑
X

∑
Ur �=i

P(E−X |X)
P(Ur �=i|E+Ur �=iX)P(E+Ur �=iX)

P(Ur �=i)
P(X|Ur �=i , Ui)P(Ur �=i|Ui)

= β
∑
X

∑
Ur �=i

P(E−X |X)P(Ur �=i|E+Ur �=iX)P(X|Ur �=i , Ui)

= β
∑
X

∑
Ur �=i

λ(X)
∏
r �=i
πX(Ur)P(X|U1, . . . , Uk)

= β
∑
X

λ(X)
∑
Ur �=i

P(X|U1, . . . , Uk)
∏
r �=i

πX(Ur)(16.26)

As in a tree, to find its overall λ, the parent multiplies the λ-messages

it receives from its children:

λ(X) =
m∏
j=1

λYj (X)(16.27)

16.5 Belief Propagation 409

In this case of multiple parents, we need to store and manipulate the

conditional probability given all the parents, p(X|U1, . . . , Uk), which is

costly for large k. Approaches have been proposed to decrease the com-

plexity from exponential in k to linear. For example, in a noisy OR gate,noisy OR

any of the parents is sufficient to cause the event and the likelihood does

not decrease when multiple parent events occur. If the probability that X

happens when only cause Ui happens is 1− qi
P(X|Ui,∼Up �=j) = 1− qi(16.28)

the probability that X happens when a subset T of them occur is calcu-

lated as

P(X|T) = 1−
∏
ui∈T

qi(16.29)

For example, let us say wet grass has two causes, rain and a sprinkler,

with qR = qS = 0.1; that is, both singly have a 90 percent probability of

causing wet grass. Then, P(W |R,∼ S) = 0.9 and P(W |R, S) = 0.99.

Another possibility is to write the conditional probability as some func-

tion given a set of parameters, for example, as a linear model

P(X|U1, . . . , Uk,w0, w1, . . . , wk) = sigmoid

⎛
⎝ k∑
i=1

wiUi +w0

⎞
⎠(16.30)

where sigmoid guarantees that the output is a probability between 0 and

1. During training, we can learn the parameters wi, i = 0, . . . , d, for exam-

ple, to maximize the likelihood on a sample.

16.5.4 Junction Trees

If there is a loop, that is, if there is a cycle in the underlying undirected

graph—for example, if the parents of X share a common ancestor—the

algorithm we discussed earlier does not work. In such a case, there is

more than one path on which to propagate evidence and, for example,

while evaluating the probability at X, we cannot say that X separates E

into E+X and E−X as causal (upward) and diagnostic (downward) evidence;

removing X does not split the graph into two. Conditioning them on X

does not make them independent and the two can interact through some

other path not involving X.

We can still use the same algorithm if we can convert the graph to a

polytree. We define clique nodes that correspond to a set of original vari-

ables and connect them so that they form a tree (see figure 16.14). We

410 16 Graphical Models

Figure 16.14 (a) A multiply connected graph, and (b) its corresponding junction

tree with nodes clustered.

can then run the same belief propagation algorithm with some modifica-

tions. This is the basic idea behind the junction tree algorithm (Lauritzenjunction tree

and Spiegelhalter 1988; Jensen 1996; Jordan 2009).

16.6 Undirected Graphs: Markov Random Fields

Up to now, we have discussed directed graphs where the influences are

undirectional and have used Bayes’ rule to invert the arcs. If the influ-

ences are symmetric, we represent them using an undirected graphical

model, also known as a Markov random field. For example, neighboringMarkov random

field pixels in an image tend to have the same color—that is, are correlated—

and this correlation goes both ways.

Directed and undirected graphs define conditional independence dif-

ferently, and, hence, there are probability distributions that are repre-

sented by a directed graph and not by an undirected graph, and vice

versa (Pearl 1988).

Because there are no directions and hence no distinction between the

head or the tail of an arc, the treatment of undirected graphs is simpler.

For example, it is much easier to check if A and B are independent given

C. We just check if after removing all nodes in C, we still have a path

between a node in A and a node in B. If so, they are dependent, otherwise,

if all paths between nodes in A and nodes in B pass through nodes in C

such that removal of C leaves nodes of A and nodes of B in separate

components, we have independence.

16.6 Undirected Graphs: Markov Random Fields 411

In the case of an undirected graph, we do not talk about the parent

or the child but about cliques, which are sets of nodes such that thereclique

exists a link between any two nodes in the set. A maximal clique has

the maximum number of elements. Instead of conditional probabilities

(implying a direction), in undirected graphs we have potential functionspotential function

ψC(XC) where XC is the set of variables in clique C, and we define the

joint distribution as the product of the potential functions of the maximal

cliques of the graph

p(X) = 1

Z

∏
C

ψC(XC)(16.31)

where Z is the normalization constant to make sure that
∑
X p(X) = 1:

Z =
∑
X

∏
C

ψC(X)(16.32)

It can be shown that a directed graph is already normalized (exercise 5).

Unlike in directed graphs, the potential functions in an undirected

graph do not need to have a probabilistic interpretation, and one has

more freedom in defining them. In general, we can view potential func-

tions as expressing local constraints, that is, favoring some local config-

urations over others. For example, in an image, we can define a pairwise

potential function between neighboring pixels, which takes a higher value

if their colors are similar than the case when they are different (Bishop

2006). Then, setting some of the pixels to their values given as evidence,

we can estimate the values of other pixels that are not known, for exam-

ple, due to occlusion.

If we have the directed graph, it is easy to redraw it as an undirected

graph, simply by dropping all the directions, and if a node has a single

parent, we can set the pairwise potential function simply to the condi-

tional probability. If the node has more than one parent, however, the

“explaining away” phenomenon due to the head-to-head node makes the

parents dependent, and hence we should have the parents in the same

clique so that the clique potential includes all the parents. This is done by

connecting all the parents of a node by links so that they are completely

connected among them and form a clique. This is called “marrying” the

parents, and the process is calledmoralization. Incidentally, moralizationmoralization

is one of the steps in generating a junction tree, which is undirected.

It is straightforward to adapt the belief propagation algorithm to work

on undirected graphs, and it is easier because the potential function is

412 16 Graphical Models

Figure 16.15 (a) A directed graph that would have a loop after moralization,

and (b) its corresponding factor graph that is a tree. The three factors are fa(R) ≡
P(R), fb(S) ≡ P(S), and fc(R, S,W) ≡ P(W |R, S).

symmetric and we do not need to make a difference between causal and

diagnostic evidence. Thus, we can do inference on undirected chains and

trees. But in polytrees where a node has multiple parents and moral-

ization necessarily creates loops, this would not work. One trick is to

convert it to a factor graph that uses a second kind of factor nodes infactor graph

addition to the variable nodes, and we write the joint distribution as a

product of factors (Kschischang, Frey, and Loeliger 2001)

p(X) = 1

Z

∏
S

fS(XS)(16.33)

where Xs denotes a subset of the variable nodes used by factor S. Di-

rected graphs are a special case where factors correspond to local con-

ditional distributions, and undirected graphs are another special case

where factors are potential functions over maximal cliques. The advan-

tage is that, as we can see in figure 16.15, the tree structure can be kept

even after moralization.

It is possible to generalize the belief propagation algorithm to work on

factor graphs; this is called the sum-product algorithm (Bishop 2006; Jor-sum-product

algorithm dan 2009) where there is the same idea of doing local computations once

and propagating them through the graph as messages. The difference

now is that there are two types of messages because there are two kinds

of nodes, factors and variables, and we make a distinction between their

16.7 Learning the Structure of a Graphical Model 413

messages. Note, however, that a factor graph is bipartite and one kind of

node can have a close encounter only with the second kind.

In belief propagation, or the sum-product algorithm, the aim is to find

the probability of a set of nodes X given that another set of evidence

nodes E are clamped to a certain value, that is, P(X|E). In some appli-

cations, we may be interested in finding the setting of all X that max-

imizes the full joint probability distribution p(X). For example, in the

undirected case where potential functions code locally consistent config-

urations, such an approach would propagate local constraints over the

whole graph and find a solution that maximizes global consistency. In a

graph where nodes correspond to pixels and pairwise potential functions

favor correlation, this approach would implement noise removal (Bishop

2006). The algorithm for this, named the max-product algorithm (Bishopmax-product

algorithm 2006; Jordan 2009) is the same as the sum-product algorithm where we

take the maximum (choose the most likely value) rather than the sum

(marginalize). This is analogous to the difference between the forward-

backward procedure and the Viterbi algorithm in hidden Markov models

that we discussed in chapter 15.

Note that the nodes need not correspond to low-level concepts like pix-

els; in a vision application, for instance, we may have nodes for corners of

different types or lines of different orientations with potential functions

checking for compatibility, so as to see if they can be part of the same

interpretation—remember the Necker cube, for example—so that overall

consistent solutions emerge after the consolidation of local evidences.

The complexity of the inference algorithms on polytrees or junction

trees is determined by the maximum number of parents or the size of the

largest clique, and when this is large, exact inference may be infeasible. In

such a case, one needs to use an approximation or a sampling algorithm

(Jordan 1999; Bishop 2006; Jordan 2009).

16.7 Learning the Structure of a Graphical Model

As in any approach, learning a graphical model has two parts. The first

is the learning of parameters given a structure; this is relatively easier

(Buntine 1996), and, in graphical models, conditional probability tables

or their parameterizations (as in equation 16.30) can be trained to max-

imize the likelihood, or by using a Bayesian approach if suitable priors

are known (chapter 14).

414 16 Graphical Models

The second, more difficult, and interesting part is to learn the graph

structure (Cowell et al. 1999). This is basically a model selection prob-

lem, and just like the incremental approaches for learning the structure

of a multilayer perceptron (section 11.9), we can see this as a search in

the space of all possible graphs. One can, for example, consider opera-

tors that can add/remove arcs and/or hidden nodes and then do a search

evaluating the improvement at each step (using parameter learning at

each intermediate iteration). Note, however, that to check for overfitting,

one should regularize properly, corresponding to a Bayesian approach

with a prior that favors simpler graphs (Neapolitan 2004). However, be-

cause the state space is large, it is most helpful if there is a human expert

who can manually define causal relationships among variables and cre-

ates subgraphs of small groups of variables.

16.8 Influence Diagrams

Just as in chapter 3, we generalized from probabilities to actions with

risks, influence diagrams are graphical models that allow the generaliza-influence diagrams

tion of graphical models to include decisions and utilities. An influence

diagram contains chance nodes representing random variables that we

use in graphical models (see figure 16.16). It also has decision nodes and

a utility node. A decision node represents a choice of actions. A utility

node is where the utility is calculated. Decisions may be based on chance

nodes and may affect other chance nodes and the utility node.

Inference on an influence diagram is an extension to belief propaga-

tion on a graphical model. Given evidence on some of the chance nodes,

this evidence is propagated, and for each possible decision, the utility is

calculated and the decision having the highest utility is chosen. The influ-

ence diagram for classification of a given input is shown in figure 16.16.

Given the input, the decision node decides on a class, and for each choice

we incur a certain utility (risk).

16.9 Notes

Graphical models have two advantages. One is that we can visualize the

interaction of variables and have a better understanding of the process,

for example, by using a causal generative model. The second is that by

finding graph operations that correspond to basic probabilistic proce-

16.9 Notes 415

x

choose
class

U

Figure 16.16 Influence diagram corresponding to classification. Depending on

input x, a class is chosen that incurs a certain utility (risk).

dures such as Bayes’ rule or marginalization, the task of inference can

be mapped to general-purpose graph algorithms that can be efficiently

represented and implemented.

The idea of visual representation of variables and dependencies be-

tween them as a graph, and the related factorization of a complicated

global function of many variables as a product of local functions involv-

ing a small subset of the variables for each, seems to be used in different

domains in decision making, coding, and signal processing; Kschischang,

Frey, and Loeliger (2001) give a review.

The complexity of the inference algorithms on polytrees or junction

trees is determined by the maximum number of parents or the size of the

largest clique, and when this is large exact inference may be infeasible. In

such a case, one needs to use an approximation or a sampling algorithm.

Variational approximations and Markov chain Monte Carlo (MCMC) algo-

rithms are discussed in Jordan et al. 1999, MacKay 2003, Andrieu et al.

2003, Bishop 2006, and Jordan 2009.

Graphical models are especially suited to represent Bayesian approaches

where in addition to nodes for variables, we also have nodes for hidden

parameters that influence the observed variables. We may also intro-

duce a hierarchy where we have nodes for the hyperparameters—that is,

second-level parameters for the priors of the first-level parameters, and

so on.

Hidden Markov models is one type of graphical model, and actually

any graphical model can be extended in time by unfolding it in time and

adding dependencies between successive copies. Such dynamic graphicaldynamic graphical

models models find application in areas where there is also a temporal dimension—

speech recognition, for example. In fact, a hidden Markov model is noth-

416 16 Graphical Models

Figure 16.17 A dynamic version where we have a chain of graphs to show de-

pendency in weather in consecutive days.

ing but a sequence of clustering problems where the cluster index at time

t is dependent not only on observation at time t but also on the index at

time t − 1, and Baum-Welch algorithm is Expectation-Maximization ex-

tended to also include this dependency in time. In section 6.4, we dis-

cussed factor analysis where a small number of hidden factors generate

the observation; similarly, a linear dynamical system may be viewed as a

sequence of such factor analysis models where the current factors also

depend on the previous factors.

This dynamic dependency may be added when needed. For example,

figure 16.5 models the cause of wet grass for a particular day; if we be-

lieve that yesterday’s weather has an influence on today’s weather (and

we should—it tends to be cloudy on successive days, then sunny for a

number of days, and so on), we can have the dynamic graphical model

shown in figure 16.17 where we model this dependency.

The general graphical model formalism allows us to go beyond the

power of HMM proper and lead to improved performances, for example,

in speech recognition (Zweig 2003; Bilmes and Bartels 2005). Graphical

models are also used in computer vision—for example, in information

retrieval (Barnard et al. 2003) and scene analysis (Sudderth et al. 2008).

A review of the use of graphical models in bioinformatics (and related

software) is given in Donkers and Tuyls 2008.

16.10 Exercises 417

16.10 Exercises

1. With two independent inputs in a classification problem, that is, p(x1, x2|C) =
p(x1|C)p(x2|C), how can we calculate p(x1|x2)? Derive the formula for p(xj |Ci) ∼
N (μij, σ

2
ij).

2. For a head-to-head node, show that equation 16.10 implies P(X, Y) = P(X) ·
P(Y).

3. In figure 16.4, calculate P(R|W), P(R|W,S), and P(R|W,∼S).
4. In equation 16.30, X is binary. How do we need to modify it if X can take one

of K discrete values?

5. Show that in a directed graph where the joint distribution is written as equa-

tion 16.12,
∑
x p(x) = 1.

6. Draw the Necker cube as a graphical model defining links to indicate mutually

reinforcing or inhibiting relations between different corner interpretations.

7. How can we do inference on the dynamic weather graph shown in figure 16.17?

8. Write down the graphical model for linear logistic regression for two classes

in the manner of figure 16.9.

9. Propose a suitable goodness measure that can be used in learning graph

structure as a state-space search. What are suitable operators?

10. Generally, in a newspaper, a reporter writes a series of articles on successive

days related to the same topic as the story develops. How can we model this

using a graphical model?

16.11 References

Andrieu, C., N. de Freitas, A. Doucet, and M. I. Jordan. 2003. “An Introduction

to MCMC for Machine Learning.” Machine Learning 50: 5–43.

Barnard, K., P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. I. Jordan.

2003. “Matching Words and Pictures.” Journal of Machine Learning Research

3: 1107–1135.

Bilmes, J., and C. Bartels. 2005. “Graphical Model Architectures for Speech

Recognition.” IEEE Signal Processing Magazine 22: 89–100.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York:

Springer.

Buntine, W. 1996. “A Guide to the Literature on Learning Probabilistic Networks

from Data.” IEEE Transactions on Knowledge and Data Engineering 8: 195–

210.

418 16 Graphical Models

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. 1999. Proba-

bilistic Networks and Expert Systems. New York: Springer.

Donkers, J., and K. Tuyls. 2008. “Belief Networks in Bioinformatics.” In Com-

putational Intelligence in Bioinformatics, ed. A. Kelemen, A. Abraham, and Y.

Chen, 75–111. Berlin: Springer.

Ghahramani, Z. 2001. “An Introduction to Hidden Markov Models and Bayesian

Networks.” International Journal of Pattern Recognition and Artificial Intelli-

gence 15: 9–42.

Jensen, F. 1996. An Introduction to Bayesian Networks. New York: Springer.

Jordan, M. I., ed. 1999. Learning in Graphical Models. Cambridge, MA: MIT

Press.

Jordan, M. I. 2004. “Graphical Models.” Statistical Science 19: 140–155.

Jordan, M. I. 2009. An Introduction to Probabilistic Graphical Models. Forthcom-

ing.

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. 1999. “An Introduc-

tion to Variational Methods for Graphical Models.” In Learning in Graphical

Models, ed. M. I. Jordan, 105–161. Cambridge, MA: MIT Press.

Kschischang, F. R., B. J. Frey, and H.-A. Loeliger. 2001. “Factor Graphs and

the Sum-Product Algorithm.” IEEE Transactions on Information Theory 47:

498–519.

Lauritzen, S. L., and D. J. Spiegelhalter. 1988. “Local Computations with Prob-

abilities on Graphical Structures and their Application to Expert Systems.”

Journal of Royal Statistical Society B 50: 157–224.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms.

Cambridge, UK: Cambridge University Press.

Neapolitan, R. E. 2004. Learning Bayesian Networks. Upper Saddle River, NJ:

Pearson.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-

ble Inference. San Francisco, CA: Morgan Kaufmann.

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge, UK:

Cambridge University Press.

Sudderth, E. B., A. Torralba, W. T. Freeman, and A. S. Willsky. 2008. “Describing

Visual Scenes Using Transformed Objects and Parts.” International Journal of

Computer Vision 77: 291–330.

Zweig, G. 2003. “Bayesian Network Structures and Inference Techniques for

Automatic Speech Recognition.” Computer Speech and Language 17: 173–

193.

17 Combining Multiple Learners

We discussed many different learning algorithms in the previous

chapters. Though these are generally successful, no one single al-

gorithm is always the most accurate. Now, we are going to discuss

models composed of multiple learners that complement each other

so that by combining them, we attain higher accuracy.

17.1 Rationale

In any application, we can use one of several learning algorithms,

and with certain algorithms, there are hyperparameters that affect the

final learner. For example, in a classification setting, we can use a para-

metric classifier or a multilayer perceptron, and, for example, with a mul-

tilayer perceptron, we should also decide on the number of hidden units.

The No Free Lunch Theorem states that there is no single learning algo-

rithm that in any domain always induces the most accurate learner. The

usual approach is to try many and choose the one that performs the best

on a separate validation set.

Each learning algorithm dictates a certain model that comes with a set

of assumptions. This inductive bias leads to error if the assumptions do

not hold for the data. Learning is an ill-posed problem and with finite

data, each algorithm converges to a different solution and fails under

different circumstances. The performance of a learner may be fine-tuned

to get the highest possible accuracy on a validation set, but this fine-

tuning is a complex task and still there are instances on which even the

best learner is not accurate enough. The idea is that there may be another

learner that is accurate on these. By suitably combining multiple base-base-learner

learners then, accuracy can be improved. Recently with computation and

420 17 Combining Multiple Learners

memory getting cheaper, such systems composed of multiple learners

have become popular (Kuncheva 2004).

There are basically two questions here:

1. How do we generate base-learners that complement each other?

2. How do we combine the outputs of base-learners for maximum accu-

racy?

Our discussion in this chapter will answer these two related questions.

We will see that model combination is not a trick that always increases

accuracy; model combination does always increase time and space com-

plexity of training and testing, and unless base-learners are trained care-

fully and their decisions combined smartly, we will only pay for this extra

complexity without any significant gain in accuracy.

17.2 Generating Diverse Learners

Since there is no point in combining learners that always make similar

decisions, the aim is to be able to find a set of diverse learners who differdiversity

in their decisions so that they complement each other. At the same time,

there cannot be a gain in overall success unless the learners are accurate,

at least in their domain of expertise. We therefore have this double task

of maximizing individual accuracies and the diversity between learners.

Let us now discuss the different ways to achieve this.

Different Algorithms

We can use different learning algorithms to train different base-learners.

Different algorithms make different assumptions about the data and lead

to different classifiers. For example, one base-learner may be parametric

and another may be nonparametric. When we decide on a single algo-

rithm, we give emphasis to a single method and ignore all others. Com-

bining multiple learners based on multiple algorithms, we free ourselves

from taking a decision and we no longer put all our eggs in one basket.

Different Hyperparameters

We can use the same learning algorithm but use it with different hyper-

parameters. Examples are the number of hidden units in a multilayer

17.2 Generating Diverse Learners 421

perceptron, k in k-nearest neighbor, error threshold in decision trees, the

kernel function in support vector machines, and so forth. With a Gaus-

sian parametric classifier, whether the covariance matrices are shared or

not is a hyperparameter. If the optimization algorithm uses an iterative

procedure such as gradient descent whose final state depends on the ini-

tial state, such as in backpropagation with multilayer perceptrons, the

initial state, for example, the initial weights, is another hyperparameter.

When we train multiple base-learners with different hyperparameter val-

ues, we average over this factor and reduce variance, and therefore error.

Different Input Representations

Separate base-learners may be using different representations of the same

input object or event, making it possible to integrate different types of

sensors/measurements/modalities. Different representations make dif-

ferent characteristics explicit allowing better identification. In many ap-

plications, there are multiple sources of information, and it is desirable

to use all of these data to extract more information and achieve higher

accuracy in prediction.

For example, in speech recognition, to recognize the uttered words, in

addition to the acoustic input, we can also use the video image of the

speaker’s lips as the words are spoken. This is similar to sensor fusionsensor fusion

where the data from different sensors are integrated to extract more in-

formation for a specific application.

The simplest approach is to concatenate all data vectors and treat it as

one large vector from a single source, but this does not seem theoretically

appropriate since this corresponds to modeling data as sampled from

one multivariate statistical distribution. Moreover, larger input dimen-

sionalities make the systems more complex and require larger samples

for the estimators to be accurate. The approach we take is to make sepa-

rate predictions based on different sources using separate base-learners,

then combine their predictions.

Even if there is a single input representation, by choosing random sub-

sets from it, we can have classifiers using different input features; this is

called the random subspace method (Ho 1998). This has the effect thatrandom subspace

different learners will look at the same problem from different points of

view and will be robust; it will also help reduce the curse of dimensional-

ity because inputs are fewer dimensional.

422 17 Combining Multiple Learners

Different Training Sets

Another possibility is to train different base-learners by different subsets

of the training set. This can be done randomly by drawing random train-

ing sets from the given sample; this is called bagging. Or, the learners can

be trained serially so that instances on which the preceding base-learners

are not accurate are given more emphasis in training later base-learners;

examples are boosting and cascading, which actively try to generate com-

plementary learners, instead of leaving this to chance.

The partitioning of the training sample can also be done based on lo-

cality in the input space so that each base-learner is trained on instances

in a certain local part of the input space; this is what is done by the mix-

ture of experts that we discussed in chapter 12 but that we revisit in this

context of combining multiple learners. Similarly, it is possible to define

the main task in terms of a number of subtasks to be implemented by

the base-learners, as is done by error-correcting output codes.

Diversity vs. Accuracy

One important note is that when we generate multiple base-learners, we

want them to be reasonably accurate but do not require them to be very

accurate individually, so they are not, and need not be, optimized sep-

arately for best accuracy. The base-learners are not chosen for their

accuracy, but for their simplicity. We do require, however, that the base-

learners be diverse, that is, accurate on different instances, specializing

in subdomains of the problem. What we care for is the final accuracy

when the base-learners are combined, rather than the accuracies of the

base-learners we started from. Let us say we have a classifier that is 80

percent accurate. When we decide on a second classifier, we do not care

for the overall accuracy; we care only about how accurate it is on the 20

percent that the first classifier misclassifies, as long as we know when to

use which one.

This implies that the required accuracy and diversity of the learners

also depend on how their decisions are to be combined, as we will dis-

cuss next. If, as in a voting scheme, a learner is consulted for all inputs,

it should be accurate everywhere and diversity should be enforced every-

where; if we have a partioning of the input space into regions of expertise

for different learners, diversity is already guaranteed by this partitioning

and learners need to be accurate only in their own local domains.

17.3 Model Combination Schemes 423

17.3 Model Combination Schemes

There are also different ways the multiple base-learners are combined to

generate the final output:

� Multiexpert combination methods have base-learners that work in par-multiexpert

combination allel. These methods can in turn be divided into two:

� In the global approach, also called learner fusion, given an input,

all base-learners generate an output and all these outputs are used.

Examples are voting and stacking.

� In the local approach, or learner selection, for example, in mixture

of experts, there is a gating model, which looks at the input and

chooses one (or very few) of the learners as responsible for gener-

ating the output.

� Multistage combination methods use a serial approach where the nextmultistage

combination base-learner is trained with or tested on only the instances where the

previous base-learners are not accurate enough. The idea is that the

base-learners (or the different representations they use) are sorted in

increasing complexity so that a complex base-learner is not used (or its

complex representation is not extracted) unless the preceding simpler

base-learners are not confident. An example is cascading.

Let us say that we have L base-learners. We denote by dj(x) the predic-

tion of base-learner Mj given the arbitrary dimensional input x. In the

case of multiple representations, each Mj uses a different input repre-

sentation xj . The final prediction is calculated from the predictions of

the base-learners:

y = f (d1, d2, . . . , dL|Φ)(17.1)

where f (·) is the combining function with Φ denoting its parameters.

When there are K outputs, for each learner there are dji(x), i = 1, . . . , K,

j = 1, . . . , L, and combining them, we also generate K values, yi, i =
1, . . . , K and then for example in classification, we choose the class with

the maximum yi value:

Choose Ci if yi =
K

max
k=1

yk

424 17 Combining Multiple Learners

x

w2

y

d1 dLd2

+
wL

w1

f ()

Figure 17.1 Base-learners are dj and their outputs are combined using f (·).
This is for a single output; in the case of classification, each base-learner has K

outputs that are separately used to calculate yi , and then we choose the maxi-

mum. Note that here, all learners observe the same input; it may be the case that

different learners observe different representations of the same input object or

event.

17.4 Voting

The simplest way to combine multiple classifiers is by voting, which cor-voting

responds to taking a linear combination of the learners (see figure 17.1):

yi =
∑
j

wjdji where wj ≥ 0,
∑
j

wj = 1(17.2)

This is also known as ensembles and linear opinion pools. In the sim-ensembles

linear opinion

pools

plest case, all learners are given equal weight and we have simple voting

that corresponds to taking an average. Still, taking a (weighted) sum is

only one of the possibilities and there are also other combination rules,

as shown in table 17.1 (Kittler et al. 1998). If the outputs are not poste-

rior probabilities, these rules require that outputs be normalized to the

same scale (Jain, Nandakumar, and Ross 2005).

17.4 Voting 425

Table 17.1 Classifier combination rules.

Rule Fusion function f (·)
Sum yi = 1

L

∑L
j=1 dji

Weighted sum yi =
∑
j wjdji,wj ≥ 0,

∑
j wj = 1

Median yi =medianjdji
Minimum yi =minj dji
Maximum yi =maxj dji
Product yi =

∏
j dji

Table 17.2 Example of combination rules on three learners and three classes.

C1 C2 C3
d1 0.2 0.5 0.3

d2 0.0 0.6 0.4

d3 0.4 0.4 0.2

Sum 0.2 0.5 0.3

Median 0.2 0.5 0.4

Minimum 0.0 0.4 0.2

Maximum 0.4 0.6 0.4

Product 0.0 0.12 0.032

An example of the use of these rules is shown in table 17.2, which

demonstrates the effects of different rules. Sum rule is the most intuitive

and is the most widely used in practice. Median rule is more robust to

outliers; minimum and maximum rules are pessimistic and optimistic, re-

spectively. With the product rule, each learner has veto power; regardless

of the other ones, if one learner has an output of 0, the overall output

goes to 0. Note that after the combination rules, yi do not necessarily

sum up to 1.

In weighted sum, dji is the vote of learner j for class Ci and wj is the
weight of its vote. Simple voting is a special case where all voters have

equal weight, namely, wj = 1/L. In classification, this is called plurality

voting where the class having the maximum number of votes is the win-

ner. When there are two classes, this ismajority voting where the winning

426 17 Combining Multiple Learners

class gets more than half of the votes (exercise 1). If the voters can also

supply the additional information of how much they vote for each class

(e.g., by the posterior probability), then after normalization, these can be

used as weights in a weighted voting scheme. Equivalently, if dji are the

class posterior probabilities, P(Ci|x,Mj), then we can just sum them up

(wj = 1/L) and choose the class with maximum yi .

In the case of regression, simple or weighted averaging or median can

be used to fuse the outputs of base-regressors. Median is more robust to

noise than the average.

Another possibility to find wj is to assess the accuracies of the learners

(regressor or classifier) on a separate validation set and use that infor-

mation to compute the weights, so that we give more weights to more

accurate learners. These weights can also be learned from data, as we

will discuss when we discuss stacked generalization in section 17.9.

Voting schemes can be seen as approximations under a Bayesian frame-

work with weights approximating prior model probabilities, and model

decisions approximating model-conditional likelihoods. This is BayesianBayesian model

combination model combination. For example, in classification we have wj ≡ P(Mj),

dji = P(Ci|x,Mj), and equation 17.2 corresponds to

P(Ci|x) =
∑

all modelsMj

P(Ci|x,Mj)P(Mj)(17.3)

Simple voting corresponds to a uniform prior. If we have a prior distri-

bution preferring simpler models, this would give larger weights to them.

We cannot integrate over all models; we only choose a subset for which

we believe P(Mj) is high, or we can have another Bayesian step and cal-

culate P(Mj|X), the probability of a model given the sample, and sample

high probable models from this density.

Hansen and Salamon (1990) have shown that given independent two-

class classifiers with success probability higher than 1/2, namely, better

than random guessing, by taking a majority vote, the accuracy increases

as the number of voting classifiers increases.

Let us assume that dj are iid with expected value E[dj] and variance

Var(dj), then when we take a simple average with wj = 1/L, the expected

value and variance of the output are

E[y] = E

⎡
⎣∑

j

1

L
dj

⎤
⎦ = 1

L
LE[dj] = E[dj]

17.5 Error-Correcting Output Codes 427

Var(y) = Var

⎛
⎝∑

j

1

L
dj

⎞
⎠ = 1

L2
Var

⎛
⎝∑

j

dj

⎞
⎠ = 1

L2
LVar(dj) =

1

L
Var(dj)(17.4)

We see that the expected value does not change, so the bias does not

change. But variance, and therefore mean square error, decreases as the

number of independent voters, L, increases. In the general case,

Var(y) = 1

L2
Var

⎛
⎝∑

j

dj

⎞
⎠ = 1

L2

⎡
⎣∑

j

Var(dj)+ 2
∑
j

∑
i<j

Cov(dj , di)

⎤
⎦(17.5)

which implies that if learners are positively correlated, variance (and er-

ror) increase. We can thus view using different algorithms and input

features as efforts to decrease, if not completely eliminate, the positive

correlation. In section 17.10, we will discuss pruning methods to remove

learners with high positive correlation fron an ensemble.

We also see here that further decrease in variance is possible if the

voters are not independent but negatively correlated. The error then de-

creases if the accompanying increase in bias is not higher because these

aims are contradictory; we cannot have a number of classifiers that are

all accurate and negatively correlated. In mixture of experts for example,

where learners are localized, the experts are negatively correlated but

biased (Jacobs 1997).

If we view each base-learner as a random noise function added to the

true discriminant/regression function and if these noise functions are

uncorrelated with 0 mean, then the averaging of the individual estimates

is like averaging over the noise. In this sense, voting has the effect of

smoothing in the functional space and can be thought of as a regularizer

with a smoothness assumption on the true function (Perrone 1993). We

saw an example of this in figure 4.5d, where, averaging over models with

large variance, we get a better fit than those of the individual models.

This is the idea in voting: we vote over models with high variance and

low bias so that after combination, the bias remains small and we reduce

the variance by averaging. Even if the individual models are biased, the

decrease in variance may offset this bias and still a decrease in error is

possible.

17.5 Error-Correcting Output Codes

In error-correcting output codes (ECOC) (Dietterich and Bakiri 1995), theerror-correcting

output codes

428 17 Combining Multiple Learners

main classification task is defined in terms of a number of subtasks that

are implemented by the base-learners. The idea is that the original task

of separating one class from all other classes may be a difficult prob-

lem. Instead, we want to define a set of simpler classification problems,

each specializing in one aspect of the task, and combining these simpler

classifiers, we get the final classifier.

Base-learners are binary classifiers having output −1/+ 1, and there is

a code matrix W of K × L whose K rows are the binary codes of classes

in terms of the L base-learners dj . For example, if the second row of

W is [−1,+1,+1,−1], this means that for us to say an instance belongs

to C2, the instance should be on the negative side of d1 and d4, and on

the positive side of d2 and d3. Similarly, the columns of the code matrix

defines the task of the base-learners. For example, if the third column

is [−1,+1,+1]T , we understand that the task of the third base-learner,

d3, is to separate the instances of C1 from the instances of C2 and C3
combined. This is how we form the training set of the base-learners. For

example in this case, all instances labeled with C2 and C3 form X+
3 and

instances labeled with C1 form X−
3 , and d3 is trained so that x

t ∈ X+
3 give

output +1 and xt ∈ X−
3 give output −1.

The code matrix thus allows us to define a polychotomy (K > 2 clas-

sification problem) in terms of dichotomies (K = 2 classification prob-

lem), and it is a method that is applicable using any learning algorithm to

implement the dichotomizer base-learners—for example, linear or multi-

layer perceptrons (with a single output), decision trees, or SVMs whose

original definition is for two-class problems.

The typical one discriminant per class setting corresponds to the diag-

onal code matrix where L = K. For example, for K = 4, we have

W =

⎡
⎢⎢⎢⎣
+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎤
⎥⎥⎥⎦

The problem here is that if there is an error with one of the base-

learners, there may be a misclassification because the class code words

are so similar. So the approach in error-correcting codes is to have L > K

and increase the Hamming distance between the code words. One pos-

sibility is pairwise separation of classes where there is a separate base-

learner to separate Ci from Cj , for i < j (section 10.4). In this case,

17.5 Error-Correcting Output Codes 429

L = K(K − 1)/2 and with K = 4, the code matrix is

W =

⎡
⎢⎢⎢⎣
+1 +1 +1 0 0 0

−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎦

where a 0 entry denotes “don’t care.” That is, d1 is trained to separate C1
from C2 and does not use the training instances belonging to the other

classes. Similarly, we say that an instance belongs to C2 if d1 = −1 and

d4 = d5 = +1, and we do not consider the values of d2, d3, and d6. The

problem here is that L is O(K2), and for large K pairwise separation may

not be feasible.

The approach is to set L beforehand and then find W such that the

distances between rows, and at the same time the distances between

columns, are as large as possible, in terms of Hamming distance. With

K classes, there are 2(K−1) − 1 possible columns, namely, two-class prob-

lems. This is because K bits can be written in 2K different ways and

complements (e.g., “0101” and “1010,” from our point of view, define

the same discriminant) dividing the possible combinations by 2 and then

subtracting 1 because a column of all 0s (or 1s) is useless. For example,

when K = 4, we have

W =

⎡
⎢⎢⎢⎣
−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 +1 +1 +1 +1
−1 +1 +1 −1 −1 +1 +1
+1 −1 +1 −1 +1 −1 +1

⎤
⎥⎥⎥⎦

When K is large, for a given value of L, we look for L columns out of the

2(K−1)−1. We would like these columns of W to be as different as possible

so that the tasks to be learned by the base-learners are as different from

each other as possible. At the same time, we would like the rows of W to

be as different as possible so that we can have maximum error correction

in case one or more base-learners fail.

ECOC can be written as a voting scheme where the entries of W, wij ,

are considered as vote weights:

yi =
L∑
j=1

wijdj(17.6)

and then we choose the class with the highest yi . Taking a weighted sum

and then choosing the maximum instead of checking for an exact match

430 17 Combining Multiple Learners

allows dj to no longer need to be binary but to take a value between −1
and +1, carrying soft certainties instead of hard decisions. Note that a

value pj between 0 and 1, for example, a posterior probability, can be

converted to a value dj between −1 and +1 simply as

dj = 2pj − 1

The difference between equation 17.6 and the generic voting model of

equation 17.2 is that the weights of votes can be different for different

classes, namely, we no longer have wj but wij , and also that wj ≥ 0

whereas wij are −1, 0, or +1.
One problem with ECOC is that because the code matrix W is set a pri-

ori, there is no guarantee that the subtasks as defined by the columns

of W will be simple. Dietterich and Bakiri (1995) report that the di-

chotomizer trees may be larger than the polychotomizer trees and when

multilayer perceptrons are used, there may be slower convergence by

backpropagation.

17.6 Bagging

Bagging is a voting method whereby base-learners are made different bybagging

training them over slightly different training sets. Generating L slightly

different samples from a given sample is done by bootstrap, where given

a training set X of size N , we draw N instances randomly from X with

replacement. Because sampling is done with replacement, it is possible

that some instances are drawn more than once and that certain instances

are not drawn at all. When this is done to generate L samples Xj , j =
1, . . . , L, these samples are similar because they are all drawn from the

same original sample, but they are also slightly different due to chance.

The base-learners dj are trained with these L samples Xj .

A learning algorithm is an unstable algorithm if small changes in theunstable algorithm

training set causes a large difference in the generated learner, namely, the

learning algorithm has high variance. Bagging, short for bootstrap aggre-

gating, uses bootstrap to generate L training sets, trains L base-learners

using an unstable learning procedure, and then, during testing, takes an

average (Breiman 1996). Bagging can be used both for classification and

regression. In the case of regression, to be more robust, one can take the

median instead of the average when combining predictions.

We saw before that averaging reduces variance only if the positive cor-

relation is small; an algorithm is stable if different runs of the same al-

17.7 Boosting 431

gorithm on resampled versions of the same dataset lead to learners with

high positive correlation. Algorithms such as decision trees and multi-

layer perceptrons are unstable. Nearest neighbor is stable, but condensed

nearest neighbor is unstable (Alpaydın 1997). If the original training set

is large, then we may want to generate smaller sets of size N′ < N from

them using bootstrap, since otherwise the bootstrap replicates Xj will be

too similar, and dj will be highly correlated.

17.7 Boosting

In bagging, generating complementary base-learners is left to chance and

to the unstability of the learning method. In boosting, we actively try

to generate complementary base-learners by training the next learner

on the mistakes of the previous learners. The original boosting algo-boosting

rithm (Schapire 1990) combines three weak learners to generate a strong

learner. A weak learner has error probability less than 1/2, which makesweak learner

it better than random guessing on a two-class problem, and a strongstrong learner

learner has arbitrarily small error probability.

Given a large training set, we randomly divide it into three. We use X1

and train d1. We then take X2 and feed it to d1. We take all instances

misclassified by d1 and also as many instances on which d1 is correct

from X2, and these together form the training set of d2. We then take X3

and feed it to d1 and d2. The instances on which d1 and d2 disagree form

the training set of d3. During testing, given an instance, we give it to d1
and d2; if they agree, that is the response, otherwise the response of d3 is

taken as the output. Schapire (1990) has shown that this overall system

has reduced error rate, and the error rate can arbitrarily be reduced by

using such systems recursively, that is, a boosting system of three models

used as dj in a higher system.

Though it is quite successful, the disadvantage of the original boost-

ing method is that it requires a very large training sample. The sample

should be divided into three and furthermore, the second and third clas-

sifiers are only trained on a subset on which the previous ones err. So

unless one has a quite large training set, d2 and d3 will not have training

sets of reasonable size. Drucker et al. (1994) use a set of 118,000 in-

stances in boosting multilayer perceptrons for optical handwritten digit

recognition.

Freund and Schapire (1996) proposed a variant, named AdaBoost, shortAdaBoost

432 17 Combining Multiple Learners

Training:
For all {xt, r t}Nt=1 ∈ X, initialize pt1 = 1/N

For all base-learners j = 1, . . . , L

Randomly draw Xj from X with probabilities ptj
Train dj using Xj

For each (xt , r t), calculate ytj ← dj(x
t)

Calculate error rate: εj ←
∑
t p

t
j · 1(ytj �= r t)

If εj > 1/2, then L ← j − 1; stop
βj ← εj/(1− εj)
For each (xt , r t), decrease probabilities if correct:

If ytj = r t , then ptj+1 ← βjp
t
j Else ptj+1 ← ptj

Normalize probabilities:
Zj ←

∑
t p

t
j+1; p

t
j+1 ← ptj+1/Zj

Testing:
Given x, calculate dj(x), j = 1, . . . , L

Calculate class outputs, i = 1, . . . , K:

yi =
∑L
j=1

(
log 1

βj

)
dji(x)

Figure 17.2 AdaBoost algorithm.

for adaptive boosting, that uses the same training set over and over and

thus need not be large, but the classifiers should be simple so that they

do not overfit. AdaBoost can also combine an arbitrary number of base-

learners, not three.

Many variants of AdaBoost have been proposed; here, we discuss the

original algorithm AdaBoost.M1 (see figure 17.2). The idea is to modify

the probabilities of drawing the instances as a function of the error. Let

us say ptj denotes the probability that the instance pair (x
t , r t) is drawn

to train the jth base-learner. Initially, all pt1 = 1/N . Then we add new

base-learners as follows, starting from j = 1: εj denotes the error rate

of dj . AdaBoost requires that learners are weak, that is, εj < 1/2,∀j ; if
not, we stop adding new base-learners. Note that this error rate is not

on the original problem but on the dataset used at step j . We define

βj = εj/(1 − εj) < 1, and we set ptj+1 = βjp
t
j if dj correctly classifies

xt ; otherwise, ptj+1 = ptj . Because p
t
j+1 should be probabilities, there is a

normalization where we divide ptj+1 by
∑
t p

t
j+1, so that they sum up to 1.

This has the effect that the probability of a correctly classified instance

17.7 Boosting 433

is decreased, and the probability of a misclassified instance increases.

Then a new sample of the same size is drawn from the original sample

according to these modified probabilities, ptj+1, with replacement, and is

used to train dj+1.
This has the effect that dj+1 focuses more on instances misclassified

by dj ; that is why the base-learners are chosen to be simple and not accu-

rate, since otherwise the next training sample would contain only a few

outlier and noisy instances repeated many times over. For example, with

decision trees, decision stumps, which are trees grown only one or two

levels, are used. So it is clear that these would have bias but the decrease

in variance is larger and the overall error decreases. An algorithm like the

linear discriminant has low variance, and we cannot gain by AdaBoosting

linear discriminants.

Once training is done, AdaBoost is a voting method. Given an instance,

all dj decide and a weighted vote is taken where weights are proportional

to the base-learners’ accuracies (on the training set): wj = log(1/βj). Fre-

und and Schapire (1996) showed improved accuracy in twenty-two bench-

mark problems, equal accuracy in one problem, and worse accuracy in

four problems.

Schapire et al. (1998) explain that the success of AdaBoost is due to its

property of increasing the margin. If the margin increases, the trainingmargin

instances are better separated and an error is less likely. This makes

AdaBoost’s aim similar to that of support vector machines (chapter 13).

In AdaBoost, although different base-learners have slightly different

training sets, this difference is not left to chance as in bagging, but is

a function of the error of the previous base-learner. The actual perfor-

mance of boosting on a particular problem is clearly dependent on the

data and the base-learner. There should be enough training data and the

base-learner should be weak but not too weak, and boosting is especially

susceptible to noise and outliers.

AdaBoost has also been generalized to regression: One straightforward

way, proposed by Avnimelech and Intrator (1997), checks for whether

the prediction error is larger than a certain threshold, and if so marks

it as error, then uses AdaBoost proper. In another version (Drucker

1997), probabilities are modified based on the magnitude of error, such

that instances where the previous base-learner commits a large error,

have a higher probability of being drawn to train the next base-learner.

Weighted average, or median, is used to combine the predictions of the

base-learners.

434 17 Combining Multiple Learners

x

y

d1 dLd2

+
wL

w1

f ()

gating

Figure 17.3 Mixture of experts is a voting method where the votes, as given

by the gating system, are a function of the input. The combiner system f also

includes this gating system.

17.8 Mixture of Experts Revisited

In voting, the weights wj are constant over the input space. In themixturemixture of experts

of experts architecture, which we previously discussed in section 12.8) as

a local method, as an extension of radial basis functions, there is a gating

network whose outputs are weights of the experts. This architecture can

then be viewed as a voting method where the votes depend on the input,

and may be different for different inputs. The competitive learning al-

gorithm used by the mixture of experts localizes the base-learners such

that each of them becomes an expert in a different part of the input space

and have its weight, wj(x), close to 1 in its region of expertise. The final

output is a weighted average as in voting

y =
L∑
j=1

wj(x)dj(17.7)

except in this case, both the base-learners and the weights are a function

of the input (see figure 17.3).

17.9 Stacked Generalization 435

Jacobs (1997) has shown that in the mixture of experts architecture,

experts are biased but are negatively correlated. As training proceeds,

bias decreases and expert variances increase but at the same time as

experts localize in different parts of the input space, their covariances

get more and more negative, which, due to equation 17.5, decreases the

total variance, and thus the error. In section 12.8, we considered the

case where both experts and gating are linear functions but a nonlinear

method, for example, a multilayer perceptron with hidden units, can also

be used for both. This may decrease the expert biases but risks increasing

expert variances and overfitting.

In dynamic classifier selection, similar to the gating network of mixturedynamic classifier

selection of experts, there is first a system which takes a test input and estimates

the competence of base-classifiers in the vicinity of the input. It then

picks the most competent to generate output and that output is given

as the overall output. Woods, Kegelmeyer, and Bowyer (1997) find the k

nearest training points of the test input, look at the accuracies of the base

classifiers on those, and choose the one that performs the best on them.

Only the selected base-classifier need be evaluated for that test input. To

decrease variance, at the expense of more computation, one can take a

vote over a few competent base-classifiers instead of using just a single

one.

Note that in such a scheme, one should make sure that for any re-

gion of the input space, there is a competent base-classifier; this implies

that there should be some partitioning of the learning of the input space

among the base-classifiers. This is the nice property of mixture of ex-

perts, namely, the gating model that does the selection and the expert

base-learners that it selects from are trained in a coupled manner. It

would be straightforward to have a regression version of this dynamic

learner selection algorithm (exercise 5).

17.9 Stacked Generalization

Stacked generalization is a technique proposed by Wolpert (1992) that ex-stacked

generalization tends voting in that the way the output of the base-learners is combined

need not be linear but is learned through a combiner system, f (·|Φ),
which is another learner, whose parameters Φ are also trained (see fig-

ure 17.4):

y = f (d1, d2, . . . , dL|Φ)(17.8)

436 17 Combining Multiple Learners

x

y

d1 dLd2

f ()

Figure 17.4 In stacked generalization, the combiner is another learner and is

not restricted to being a linear combination as in voting.

The combiner learns what the correct output is when the base-learners

give a certain output combination. We cannot train the combiner function

on the training data because the base-learners may be memorizing the

training set; the combiner system should actually learn how the base-

learners make errors. Stacking is a means of estimating and correcting

for the biases of the base-learners. Therefore, the combiner should be

trained on data unused in training the base-learners.

If f (·|w1, . . . , wL) is a linear model with constraints, wi ≥ 0,
∑
j wj =

1, the optimal weights can be found by constrained regression, but of

course we do not need to enforce this; in stacking, there is no restriction

on the combiner function and unlike voting, f (·) can be nonlinear. For

example, it may be implemented as a multilayer perceptron with Φ its

connection weights. The outputs of the base-learners dj define a new L-

dimensional space in which the output discriminant/regression function

is learned by the combiner function.

In stacked generalization, we would like the base-learners to be as dif-

ferent as possible so that they will complement each other, and, for this,

it is best if they are based on different learning algorithms. If we are

combining classifiers that can generate continuous outputs, for example,

posterior probabilities, it is better that they be the combined rather than

17.10 Fine-Tuning an Ensemble 437

hard decisions.

When we compare a trained combiner as we have in stacking, with a

fixed rule such as in voting, we see that both have their advantages: a

trained rule is more flexible and may have less bias, but adds extra pa-

rameters, risks introducing variance, and needs extra time and data for

training. Note also that there is no need to normalize classifier outputs

before stacking.

17.10 Fine-Tuning an Ensemble

Model combination is not a magical formula always guaranteed to de-

crease error; base-learners should be diverse and accurate—that is, they

should provide useful information. If a base-learner does not add to ac-

curacy, it can be discarded; also, of the two base-learners that are highly

correlated, one is not needed. Note that an inaccurate learner can also

worsen accuracy, for example, majority voting assumes more than half

of the classifiers to be accurate for an input. Therefore, given a set of

candidate base-learners, it may not be a good idea to use all and we may

do better by choosing a subset. This means that selecting a subset is

good not only for decreasing complexity but can also improve accuracy.

Choosing a subset from an ensemble of base-learners is similar to in-

put feature selection, and the possible approaches for ensemble selec-ensemble selection

tion are the same. We can have a forward/incremental/growing approach

where at each iteration, from a set of candidate base-learners, we add to

the ensemble the one that most improves accuracy, we can have a back-

ward/decremental/pruning approach where at each iteration, we remove

the base-learner from the ensemble whose absence leads to highest im-

provement, or we can have a floating approach where both additions and

removals are allowed. The combination scheme can be a fixed rule, such

as voting, or it can be a trained stacker. Such a selection scheme would

not include inaccurate learners, ones that are not diverse enough or are

correlated (Caruana et al. 2004; Ruta and Gabrys 2005). Different learners

may be using different representations, and such an approach also allows

choosing the best complementary representations (Demir and Alpaydın

2005).

Actually, just as in stacking, if we consider the combination as a learner

that takes base-learner outputs as inputs, what we are aiming here is

input dimensionality reduction, which we discussed in chapter 6. Again,

438 17 Combining Multiple Learners

one possibility is feature selection where we discard the uninformative

inputs and keep the useful ones; in ensemble methods, this corresponds

to choosing a subset from an ensemble of base-learners, as we discussed

earlier. Note that if we use a decision tree as the combiner it acts both as

a selector and a combiner (Ulaş et al. 2009).

The second possibility is feature extraction where from the space of

the outputs of base-learners, the aim is to go to a new, lower-dimensional

space where we remove unnecessary inputs and also remove correlations.

Merz (1999) proposes the SCANN algorithm that uses correspondence

analysis—a variant of principal components analysis (section 6.3)—on

the crisp outputs of base classifiers and combines them using the near-

est mean classifier. Actually, any linear or nonlinear feature extraction

method we discussed in chapter 6 can be used and its (preferrably contin-

uous) output can be fed to any learner. So with L learners and K outputs

each, we map from the K ·L-dimensional space to the new space of lower

dimensional, uncorrelated space of these “eigenlearners” where we train

the combiner (using a separate dataset unused to train the base-learners

and the dimensionality reducer).

Rather than drastically discarding or keeping a subset of the ensemble,

this approach uses all the base-learners, and hence all the information,

but does not decrease complexity.

17.11 Cascading

The idea in cascaded classifiers is to have a sequence of base-classifiers

dj sorted in terms of their space or time complexity, or the cost of the

representation they use, so that dj+1 is costlier than dj (Kaynak and Al-

paydın 2000). Cascading is a multistage method, and we use dj only if allcascading

preceding learners, dk, k < j are not confident (see figure 17.5). For this,

associated with each learner is a confidence wj such that we say dj is con-

fident of its output and can be used if wj > θj where 1/K < θj ≤ θj+1 < 1

is the confidence threshold. In classification, the confidence function is

set to the highest posterior: wj ≡ maxi dji ; this is the strategy used for

rejections (section 3.3).

We use learner dj if all the preceding learners are not confident:

yi = dji if wj > θj and ∀k < j,wk < θk(17.9)

Starting with j = 1, given a training set, we train dj . Then we find all

instances from a separate validation set on which dj is not confident, and

17.11 Cascading 439

x

y=d 1

d1

d2
w1>θ1

yes

no

w2>θ2

yes

no

y=d
2

... dL

y=d L

Figure 17.5 Cascading is a multistage method where there is a sequence of clas-

sifiers, and the next one is used only when the preceding ones are not confident.

these constitute the training set of dj+1. Note that unlike in AdaBoost,

we choose not only the misclassified instances but the ones for which the

previous base-learner is not confident. This covers the misclassifications

as well as the instances for which the posterior is not high enough; these

are instances on the right side of the boundary but for which the distance

to the discriminant, namely, the margin, is not large enough.

The idea is that an early simple classifier handles the majority of in-

stances, and a more complex classifier is used only for a small percent-

age, thereby not significantly increasing the overall complexity. This is

contrary to the multiexpert methods like voting where all base-learners

generate their output for any instance. If the problem space is complex,

a few base-classifiers may be cascaded increasing the complexity at each

stage. In order not to increase the number of base-classifiers, the few

instances not covered by any are stored as they are and are treated by a

440 17 Combining Multiple Learners

nonparametric classifier, such as k-NN.

The inductive bias of cascading is that the classes can be explained by

a small number of “rules” in increasing complexity, with an additional

small set of “exceptions” not covered by the rules. The rules are imple-

mented by simple base-classifiers, for example, perceptrons of increasing

complexity, which learn general rules valid over the whole input space.

Exceptions are localized instances and are best handled by a nonpara-

metric model.

Cascading thus stands between the two extremes of parametric and

nonparametric classification. The former—for example, a linear model—

finds a single rule that should cover all the instances. A nonparametric

classifier—for example, k-NN—stores the whole set of instances without

generating any simple rule explaining them. Cascading generates a rule

(or rules) to explain a large part of the instances as cheaply as possible

and stores the rest as exceptions. This makes sense in a lot of learning

applications. For example, most of the time the past tense of a verb in

English is found by adding a “–d” or “–ed” to the verb; there are also

irregular verbs—for example, “go”/“went”—that do not obey this rule.

17.12 Notes

The idea in combining learners is to divide a complex task into simpler

tasks that are handled by separately trained base-learners. Each base-

learner has its own task. If we had a large learner containing all the

base-learners, then it would risk overfitting. For example, consider tak-

ing a vote over three multilayer perceptrons, each with a single hidden

layer. If we combine them all together with the linear model combining

their outputs, this is a large multilayer perceptron with two hidden lay-

ers. If we train this large model with the whole sample, it very probably

overfits. When we train the three multilayer perceptrons separately, for

example, using ECOC, bagging, and so forth, it is as if we define a re-

quired output for the second-layer hidden nodes of the large multilayer

perceptron. This puts a constraint on what the overall learner should

learn and simplifies learning.

One disadvantage of combining is that the combined system is not in-

terpretable. For example, even though decision trees are interpretable,

bagged or boosted trees are not interpretable. Error-correcting codes with

their weights as −1/0/+ 1 allow some form of interpretability. Mayoraz

17.12 Notes 441

and Moreira (1997) discuss incremental methods for learning the error-

correcting output codes where base-learners are added when needed.

Allwein, Schapire, and Singer (2000) discuss various methods for cod-

ing multiclass problems as two-class problems. Alpaydın and Mayoraz

(1999) consider the application of ECOC where linear base-learners are

combined to get nonlinear discriminants, and they also propose methods

to learn the ECOC matrix from data.

The earliest and most intuitive approach is voting. Kittler et al. (1998)

give a review of fixed rules and also discuss an application where multi-

ple representations are combined. The task is person identification using

three representations: frontal face image, face profile image, and voice.

The error rate of the voting model is lower than the error rates when a

single representation is used. Another application is given in Alimoğlu

and Alpaydın 1997 where for improved handwritten digit recognition,

two sources of information are combined: one is the temporal pen move-

ment data as the digit is written on a touch-sensitive pad, and the other

is the static two-dimensional bitmap image once the digit is written. In

that application, the two classifiers using either of the two representa-

tions have around 5 percent error, but combining the two reduces the

error rate to 3 percent. It is also seen that the critical stage is the design

of the complementary learners and/or representations, the way they are

combined is not as critical.

Combining different modalities is used in biometrics, where the aim isbiometrics

authentication using different input sources, fingerprint, signature, face,

and so on. In such a case, different classifiers use these modalities sep-

arately and their decisions are combined. This both improves accuracy

and makes spoofing more difficult.

Noble (2004) makes a distinction between three type of combination

strategies when we have information coming from multiple sources in

different representations or modalities:

� In early integration, all these inputs are concatenated to form a single

vector that is then fed to a single classifier. Previously we discussed

why this is not a very good idea.

� In late integration, which we advocated in this chapter, different inputs

are fed to separate classifiers whose outputs are then combined, by

voting, stacking, or any other method we discussed.

� Kernel algorithms, which we discussed in chapter 13, allow a different

442 17 Combining Multiple Learners

method of integration that Noble (2004) calls intermediate integration,

as being between early and late integration. This is the multiple ker-multiple kernel

learning nel learning approach (see section 13.8) where there is a single kernel

machine classifier that uses multiple kernels for different inputs and

the combination is not in the input space as in early integration, or in

the space of decisions as in late integration, but in the space of the

basis functions that define the kernels. For different sources, there

are different notions of similarity calculated by their kernels, and the

classifier accumulates and uses them.

It has been shown by Jacobs (1995) that L dependent experts are worth

the same as L′ independent experts where L′ ≤ L. Under certain cir-

cumstances, voting models and Bayesian techniques will yield identical

results (Jacobs 1995). The priors of equation 17.3 are in turn modeled

as distributions with hyperparameters and in the ideal case, one should

integrate over the whole model-parameter space. This approach is not

generally feasible in practice and one resorts to approximation or sam-

pling. With advances in Bayesian statistics, these supra-Bayesian tech-

niques may become more important in the near future.

Combining multiple learners has been a popular topic in machine learn-

ing since the early 1990s, and research has been going on ever since.

Kuncheva (2004) discusses different aspects of classifier combination;

the book also includes a section on combination of multiple clustering

results.

AdaBoosted decision trees used to considered to be one of the best ma-

chine learning algorithms. There are also versions of AdaBoost where the

next base-learner is trained on the residual of the previous base-learner

(Hastie, Tibshirani, and Friedman 2001). Recently, it has been noticed

that ensembles do not always improve accuracy and research has started

to focus on the criteria that a good ensemble should satisfy or how to

form a good one. A survey of the role of diversity in ensembles is given

in Kuncheva 2005.

17.13 Exercises

1. If each base-learner is iid and correct with probability p > 1/2, what is the

probability that a majority vote over L classifiers gives the correct answer?

2. In bagging, to generate the L training sets, what would be the effect of using

L-fold cross-validation instead of bootstrap?

17.14 References 443

3. Propose an incremental algorithm for learning error-correcting output codes

where new two-class problems are added as they are needed to better solve

the multiclass problem.

4. In mixture of experts, we can have different experts use different input rep-

resentations. How can we design the gating network in such a case?

5. Propose a dynamic regressor selection algorithm.

6. What is the difference between voting and stacking using a linear perceptron

as the combiner function?

7. In cascading, why do we require θj+1 ≥ θj?
8. To be able to use cascading for regression, during test, a regressor should be

able to say if it is confident of its output. How can we implement this?

9. How can we combine the results of multiple clustering solutions?

10. In section 17.10, we discussed that if we use a decision tree as a combiner

in stacking, it works both as a selector and a combiner. What are the other

advantages and disadvantages?

17.14 References

Alimoğlu, F., and E. Alpaydın. 1997. “Combining Multiple Representations

and Classifiers for Pen-Based Handwritten Digit Recognition.” In Fourth In-

ternational Conference on Document Analysis and Recognition, 637–640. Los

Alamitos, CA: IEEE Computer Society.

Allwein, E. L., R. E. Schapire, and Y. Singer. 2000. “Reducing Multiclass to Binary:

A Unifying Approach for Margin Classifiers.” Journal of Machine Learning

Research 1: 113–141.

Alpaydın, E. 1997. “Voting over Multiple Condensed Nearest Neighbors.” Artifi-

cial Intelligence Review 11: 115–132.

Alpaydın, E., and E. Mayoraz. 1999. “Learning Error-Correcting Output Codes

from Data.” In Ninth International Conference on Artificial Neural Networks,

743–748. London: IEE Press.

Avnimelech, R., and N. Intrator. 1997. “Boosting Regression Estimators.” Neu-

ral Computation 11: 499–520.

Breiman, L. 1996. “Bagging Predictors.” Machine Learning 26: 123–140.

Caruana, R., A. Niculescu-Mizil, G. Crew, and A. Ksikes. 2004. “Ensemble Selec-

tion from Libraries of Models.” In Twenty-First International Conference on

Machine Learning, ed. C. E. Brodley, 137–144. New York: ACM.

Demir, C., and E. Alpaydın. 2005. “Cost-Conscious Classifier Ensembles.” Pat-

tern Recognition Letters 26: 2206–2214.

444 17 Combining Multiple Learners

Dietterich, T. G., and G. Bakiri. 1995. “Solving Multiclass Learning Problems via

Error-Correcting Output Codes.” Journal of Artificial Intelligence Research 2:

263–286.

Drucker, H. 1997. “Improving Regressors using Boosting Techniques.” In Four-

teenth International Conference on Machine Learning, ed. D. H. Fisher, 107–

115. San Mateo, CA: Morgan Kaufmann.

Drucker, H., C. Cortes, L. D. Jackel, Y. Le Cun, and V. Vapnik. 1994. “Boosting

and Other Ensemble Methods.” Neural Computation 6: 1289–1301.

Freund, Y., and R. E. Schapire. 1996. “Experiments with a New Boosting Algo-

rithm.” In Thirteenth International Conference on Machine Learning, ed. L.

Saitta, 148–156. San Mateo, CA: Morgan Kaufmann.

Hansen, L. K., and P. Salamon. 1990. “Neural Network Ensembles.” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 12: 993–1001.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York: Springer.

Ho, T. K. 1998. “The Random Subspace Method for Constructing Decision

Forests.” IEEE Transactions on Pattern Analysis and Machine Intelligence 20:

832–844.

Jacobs, R. A. 1995. “Methods for Combining Experts’ Probability Assessments.”

Neural Computation 7: 867–888.

Jacobs, R. A. 1997. “Bias/Variance Analyses for Mixtures-of-Experts Architec-

tures.” Neural Computation 9: 369–383.

Jain, A., K. Nandakumar, and A. Ross. 2005. “Score Normalization in Multi-

modal Biometric Systems.” Pattern Recognition 38: 2270–2285.

Kaynak, C., and E. Alpaydın. 2000. “MultiStage Cascading of Multiple Classi-

fiers: One Man’s Noise is Another Man’s Data.” In Seventeenth International

Conference on Machine Learning, ed. P. Langley, 455–462. San Francisco:

Morgan Kaufmann.

Kittler, J., M. Hatef, R. P. W. Duin, and J. Matas. 1998. “On Combining Clas-

sifiers.” IEEE Transactions on Pattern Analysis and Machine Intelligence 20:

226–239.

Kuncheva, L. I. 2004. Combining Pattern Classifiers: Methods and Algorithms.

Hoboken, NJ: Wiley.

Kuncheva, L. I. 2005. Special issue on Diversity in Multiple Classifier Systems.

Information Fusion 6: 1–115.

Mayoraz, E., and M. Moreira. 1997. “On the Decomposition of Polychotomies

into Dichotomies.” In Fourteenth International Conference on Machine Learn-

ing, ed. D. H. Fisher, 219–226. San Mateo, CA: Morgan Kaufmann.

17.14 References 445

Merz, C. J. 1999. “Using Correspondence Analysis to Combine Classifiers.” Ma-

chine Learning 36: 33–58.

Noble, W. S. 2004. “Support Vector Machine Applications in Computational Biol-

ogy.” In Kernel Methods in Computational Biology, ed. B. Schölkopf, K. Tsuda,

and J.-P. Vert, 71–92. Cambridge, MA: MIT Press.

Perrone, M. P. 1993. “Improving Regression Estimation: Averaging Methods

for Variance Reduction with Extensions to General Convex Measure.” Ph.D.

thesis, Brown University.

Ruta, D., and B. Gabrys. 2005. “Classifier Selection for Majority Voting.” Infor-

mation Fusion 6: 63–81.

Schapire, R. E. 1990. “The Strength of Weak Learnability.” Machine Learning 5:

197–227.

Schapire, R. E., Y. Freund, P. Bartlett, and W. S. Lee. 1998. “Boosting the Mar-

gin: A New Explanation for the Effectiveness of Voting Methods.” Annals of

Statistics 26: 1651–1686.

Ulaş, A., M. Semerci, O. T. Yıldız, and E. Alpaydın. 2009. “Incremental Construc-

tion of Classifier and Discriminant Ensembles.” Information Sciences 179:

1298–1318.

Wolpert, D. H. 1992. “Stacked Generalization.” Neural Networks 5: 241–259.

Woods, K., W. P. Kegelmeyer Jr., and K. Bowyer. 1997. “Combination of Multi-

ple Classifiers Using Local Accuracy Estimates.” IEEE Transactions on Pattern

Analysis and Machine Intelligence 19: 405–410.

18 Reinforcement Learning

In reinforcement learning, the learner is a decision-making agent

that takes actions in an environment and receives reward (or penalty)

for its actions in trying to solve a problem. After a set of trial-and-

error runs, it should learn the best policy, which is the sequence of

actions that maximize the total reward.

18.1 Introduction

Let us say we want to build a machine that learns to play chess. In

this case we cannot use a supervised learner for two reasons. First, it is

very costly to have a teacher that will take us through many games and

indicate us the best move for each position. Second, in many cases, there

is no such thing as the best move; the goodness of a move depends on the

moves that follow. A single move does not count; a sequence of moves is

good if after playing them we win the game. The only feedback is at the

end of the game when we win or lose the game.

Another example is a robot that is placed in a maze. The robot can

move in one of the four compass directions and should make a sequence

of movements to reach the exit. As long as the robot is in the maze, there

is no feedback and the robot tries many moves until it reaches the exit

and only then does it get a reward. In this case there is no opponent, but

we can have a preference for shorter trajectories, implying that in this

case we play against time.

These two applications have a number of points in common: there is

a decision maker, called the agent, that is placed in an environment (see

figure 18.1). In chess, the game-player is the decision maker and the en-

vironment is the board; in the second case, the maze is the environment

448 18 Reinforcement Learning

Figure 18.1 The agent interacts with an environment. At any state of the envi-

ronment, the agent takes an action that changes the state and returns a reward.

of the robot. At any time, the environment is in a certain state that is

one of a set of possible states—for example, the state of the board, the

position of the robot in the maze. The decision maker has a set of actions

possible: legal movement of pieces on the chess board, movement of the

robot in possible directions without hitting the walls, and so forth. Once

an action is chosen and taken, the state changes. The solution to the task

requires a sequence of actions, and we get feedback, in the form of a re-

ward rarely, generally only when the complete sequence is carried out.

The reward defines the problem and is necessary if we want a learning

agent. The learning agent learns the best sequence of actions to solve a

problem where “best” is quantified as the sequence of actions that has

the maximum cumulative reward. Such is the setting of reinforcement

learning.

Reinforcement learning is different from the learning methods we dis-

cussed before in a number of respects. It is called “learning with a critic,”

as opposed to learning with a teacher which we have in supervised learn-

ing. A critic differs from a teacher in that it does not tell us what to docritic

but only how well we have been doing in the past; the critic never informs

in advance. The feedback from the critic is scarce and when it comes, it

comes late. This leads to the credit assignment problem. After takingcredit assignment

several actions and getting the reward, we would like to assess the indi-

vidual actions we did in the past and find the moves that led us to win the

reward so that we can record and recall them later on. As we see shortly,

what a reinforcement learning program does is that it learns to generate

an internal value for the intermediate states or actions in terms of how

18.2 Single State Case: K-Armed Bandit 449

good they are in leading us to the goal and getting us to the real reward.

Once such an internal reward mechanism is learned, the agent can just

take the local actions to maximize it.

The solution to the task requires a sequence of actions, and from this

perspective, we remember the Markov models we discussed in chapter 15.

Indeed, we use a Markov decision process to model the agent. The differ-

ence is that in the case of Markov models, there is an external process that

generates a sequence of signals, for example, speech, which we observe

and model. In the current case, however, it is the agent that generates

the sequence of actions. Previously, we also made a distinction between

observable and hidden Markov models where the states are observed or

hidden (and should be inferred) respectively. Similarly here, sometimes

we have a partially observable Markov decision process in cases where

the agent does not know its state exactly but should infer it with some

uncertainty through observations using sensors. For example, in the case

of a robot moving in a room, the robot may not know its exact position

in the room, nor the exact location of obstacles nor the goal, and should

make decisions through a limited image provided by a camera.

18.2 Single State Case: K-Armed Bandit

We start with a simple example. The K-armed bandit is a hypotheticalK-armed bandit

slot machine with K levers. The action is to choose and pull one of the

levers, and we win a certain amount of money that is the reward associ-

ated with the lever (action). The task is to decide which lever to pull to

maximize the reward. This is a classification problem where we choose

one of K. If this were supervised learning, then the teacher would tell us

the correct class, namely, the lever leading to maximum earning. In this

case of reinforcement learning, we can only try different levers and keep

track of the best. This is a simplified reinforcement learning problem

because there is only one state, or one slot machine, and we need only

decide on the action. Another reason why this is simplified is that we

immediately get a reward after a single action; the reward is not delayed,

so we immediately see the value of our action.

Let us say Q(a) is the value of action a. Initially, Q(a) = 0 for all a.

When we try action a, we get reward ra ≥ 0. If rewards are deterministic,

we always get the same ra for any pull of a and in such a case, we can

just set Q(a) = ra. If we want to exploit, once we find an action a such

450 18 Reinforcement Learning

that Q(a) > 0, we can keep choosing it and get ra at each pull. However,

it is quite possible that there is another lever with a higher reward, so we

need to explore.

We can choose different actions and store Q(a) for all a. Whenever we

want to exploit, we can choose the action with the maximum value, that

is,

choose a∗ if Q(a∗) =max
a
Q(a)(18.1)

If rewards are not deterministic but stochastic, we get a different re-

ward each time we choose the same action. The amount of the reward is

defined by the probability distribution p(r|a). In such a case, we define

Qt(a) as the estimate of the value of action a at time t . It is an average of

all rewards received when action a was chosen before time t . An online

update can be defined as

Qt+1(a)← Qt(a)+ η[rt+1(a)−Qt(a)](18.2)

where rt+1(a) is the reward received after taking action a at time (t+1)st
time.

Note that equation 18.2 is the delta rule that we have used on many

occasions in the previous chapters: η is the learning factor (gradually

decreased in time for convergence), rt+1 is the desired output, and Qt(a)

is the current prediction. Qt+1(a) is the expected value of action a at time

t + 1 and converges to the mean of p(r|a) as t increases.
The full reinforcement learning problem generalizes this simple case in

a number of ways. First, we have several states. This corresponds to hav-

ing several slot machines with different reward probabilities, p(r|si, aj),
and we need to learnQ(si, aj), which is the value of taking action aj when

in state si . Second, the actions affect not only the reward but also the next

state, and we move from one state to another. Third, the rewards are de-

layed and we need to be able to estimate immediate values from delayed

rewards.

18.3 Elements of Reinforcement Learning

The learning decision maker is called the agent. The agent interacts with

the environment that includes everything outside the agent. The agent

has sensors to decide on its state in the environment and takes an action

that modifies its state. When the agent takes an action, the environment

18.3 Elements of Reinforcement Learning 451

provides a reward. Time is discrete as t = 0,1,2, . . ., and st ∈ S denotes
the state of the agent at time t where S is the set of all possible states.
at ∈ A(st) denotes the action that the agent takes at time t whereA(st)
is the set of possible actions in state st . When the agent in state st takes

the action at , the clock ticks, reward rt+1 ∈ 	 is received, and the agent

moves to the next state, st+1. The problem is modeled using a MarkovMarkov decision

process decision process (MDP). The reward and next state are sampled from their

respective probability distributions, p(rt+1|st , at) and P(st+1|st , at). Note
that what we have is a Markov system where the state and reward in

the next time step depend only on the current state and action. In some

applications, reward and next state are deterministic, and for a certain

state and action taken, there is one possible reward value and next state.

Depending on the application, a certain state may be designated as the

initial state and in some applications, there is also an absorbing terminal

(goal) state where the search ends; all actions in this terminal state tran-

sition to itself with probability 1 and without any reward. The sequence

of actions from the start to the terminal state is an episode, or a trial.episode

The policy, π , defines the agent’s behavior and is a mapping from thepolicy

states of the environment to actions: π : S → A. The policy defines the

action to be taken in any state st : at = π(st). The value of a policy π ,

Vπ(st), is the expected cumulative reward that will be received while the

agent follows the policy, starting from state st .

In the finite-horizon or episodic model, the agent tries to maximize thefinite-horizon

expected reward for the next T steps:

Vπ(st) = E[rt+1 + rt+2 + · · · + rt+T] = E
⎡
⎣ T∑
i=1

rt+i

⎤
⎦(18.3)

Certain tasks are continuing, and there is no prior fixed limit to the

episode. In the infinite-horizon model, there is no sequence limit, butinfinite-horizon

future rewards are discounted:

Vπ(st) = E[rt+1 + γrt+2 + γ2rt+3 + · · ·] = E
⎡
⎣ ∞∑
i=1

γi−1rt+i

⎤
⎦(18.4)

where 0 ≤ γ < 1 is the discount rate to keep the return finite. If γ = 0,discount rate

then only the immediate reward counts. As γ approaches 1, rewards

further in the future count more, and we say that the agent becomes

more farsighted. γ is less than 1 because there generally is a time limit

to the sequence of actions needed to solve the task. The agent may be a

452 18 Reinforcement Learning

robot that runs on a battery. We prefer rewards sooner rather than later

because we are not certain how long we will survive.

For each policy π , there is a Vπ(st), and we want to find the optimaloptimal policy

policy π∗ such that

V∗(st) =max
π

Vπ(st),∀st(18.5)

In some applications, for example, in control, instead of working with

the values of states, V(st), we prefer to work with the values of state-

action pairs, Q(st, at). V(st) denotes how good it is for the agent to be

in state st , whereas Q(st, at) denotes how good it is to perform action at
when in state st . We define Q∗(st , at) as the value, that is, the expected
cumulative reward, of action at taken in state st and then obeying the

optimal policy afterward. The value of a state is equal to the value of the

best possible action:

V∗(st) = max
at

Q∗(st , at)

= max
at

E

⎡
⎣ ∞∑
i=1

γi−1rt+i

⎤
⎦

= max
at

E

⎡
⎣rt+1 + γ ∞∑

i=1
γi−1rt+i+1

⎤
⎦

= max
at

E
[
rt+1 + γV∗(st+1)

]

V∗(st) = max
at

⎛
⎝E[rt+1]+ γ ∑

st+1
P(st+1|st , at)V∗(st+1)

⎞
⎠(18.6)

To each possible next state st+1, we move with probability P(st+1|st , at),
and continuing from there using the optimal policy, the expected cumu-

lative reward is V∗(st+1). We sum over all such possible next states, and

we discount it because it is one time step later. Adding our immediate

expected reward, we get the total expected cumulative reward for action

at . We then choose the best of possible actions. Equation 18.6 is known

as Bellman’s equation (Bellman 1957). Similarly, we can also writeBellman’s equation

Q∗(st , at) = E[rt+1]+ γ
∑
st+1

P(st+1|st , at)max
at+1

Q∗(st+1, at+1)(18.7)

Once we have Q∗(st , at) values, we can then define our policy π as

taking the action a∗t , which has the highest value among all Q∗(st , at):

π∗(st) : Choose a∗t where Q∗(st , a∗t) =max
at

Q∗(st , at)(18.8)

18.4 Model-Based Learning 453

Initialize V(s) to arbitrary values
Repeat

For all s ∈ S
For all a ∈ A

Q(s, a)← E[r|s, a] + γ∑s′∈S P(s′|s, a)V(s′)
V(s) ←maxa Q(s, a)

Until V(s) converge

Figure 18.2 Value iteration algorithm for model-based learning.

This means that if we have theQ∗(st , at) values, then by using a greedy
search at each local step we get the optimal sequence of steps that maxi-

mizes the cumulative reward.

18.4 Model-Based Learning

We start with model-based learning where we completely know the en-

vironment model parameters, p(rt+1|st , at) and P(st+1|st , at). In such a

case, we do not need any exploration and can directly solve for the opti-

mal value function and policy using dynamic programming. The optimal

value function is unique and is the solution to the simultaneous equa-

tions given in equation 18.6. Once we have the optimal value function,

the optimal policy is to choose the action that maximizes the value in the

next state:

π∗(st) = argmax
at

⎛
⎝E[rt+1|st , at]+ γ ∑

st+1∈S
P(st+1|st , at)V∗(st + 1)

⎞
⎠(18.9)

18.4.1 Value Iteration

To find the optimal policy, we can use the optimal value function, and

there is an iterative algorithm called value iteration that has been shownvalue iteration

to converge to the correct V∗ values. Its pseudocode is given in fig-

ure 18.2.

We say that the values converged if the maximum value difference be-

tween two iterations is less than a certain threshold δ:

max
s∈S

|V(l+1)(s)− V(l)(s)| < δ

454 18 Reinforcement Learning

Initialize a policy π ′ arbitrarily
Repeat

π ← π ′

Compute the values using π by
solving the linear equations
Vπ(s) = E[r|s,π(s)]+ γ∑s′∈S P(s′|s,π(s))Vπ(s′)

Improve the policy at each state
π ′(s)← argmaxa(E[r|s, a] + γ

∑
s′∈S P(s′|s, a)Vπ(s′))

Until π = π ′

Figure 18.3 Policy iteration algorithm for model-based learning.

where l is the iteration counter. Because we care only about the actions

with the maximum value, it is possible that the policy converges to the

optimal one even before the values converge to their optimal values. Each

iteration is O(|S|2|A|), but frequently there is only a small number k <
|S| of next possible states, so complexity decreases to O(k|S||A|).

18.4.2 Policy Iteration

In policy iteration, we store and update the policy rather than doing this

indirectly over the values. The pseudocode is given in figure 18.3. The

idea is to start with a policy and improve it repeatedly until there is no

change. The value function can be calculated by solving for the linear

equations. We then check whether we can improve the policy by taking

these into account. This step is guaranteed to improve the policy, and

when no improvement is possible, the policy is guaranteed to be optimal.

Each iteration of this algorithm takes O(|A||S|2 + |S|3) time that is more
than that of value iteration, but policy iteration needs fewer iterations

than value iteration.

18.5 Temporal Difference Learning

Model is defined by the reward and next state probability distributions,

and as we saw in section 18.4, when we know these, we can solve for the

optimal policy using dynamic programming. However, these methods are

costly, and we seldom have such perfect knowledge of the environment.

18.5 Temporal Difference Learning 455

The more interesting and realistic application of reinforcement learning

is when we do not have the model. This requires exploration of the en-

vironment to query the model. We first discuss how this exploration

is done and later see model-free learning algorithms for deterministic

and nondeterministic cases. Though we are not going to assume a full

knowledge of the environment model, we will however require that it be

stationary.

As we will see shortly, when we explore and get to see the value of the

next state and reward, we use this information to update the value of the

current state. These algorithms are called temporal difference algorithmstemporal

difference because what we do is look at the difference between our current estimate

of the value of a state (or a state-action pair) and the discounted value of

the next state and the reward received.

18.5.1 Exploration Strategies

To explore, one possibility is to use ε-greedy search where with prob-

ability ε, we choose one action uniformly randomly among all possible

actions, namely, explore, and with probability 1 − ε, we choose the best
action, namely, exploit. We do not want to continue exploring indefinitely

but start exploiting once we do enough exploration; for this, we start with

a high ε value and gradually decrease it. We need to make sure that our

policy is soft, that is, the probability of choosing any action a ∈ A in

state s ∈ S is greater than 0.
We can choose probabilistically, using the softmax function to convert

values to probabilities

P(a|s) = expQ(s, a)∑
b∈A expQ(s, b)

(18.10)

and then sample according to these probabilities. To gradually move

from exploration to exploitation, we can use a “temperature” variable T

and define the probability of choosing action a as

P(a|s) = exp[Q(s, a)/T]∑
b∈A exp[Q(s, b)/T]

(18.11)

When T is large, all probabilities are equal and we have exploration.

When T is small, better actions are favored. So the strategy is to start

with a large T and decrease it gradually, a procedure named annealing,

which in this case moves from exploration to exploitation smoothly in

time.

456 18 Reinforcement Learning

18.5.2 Deterministic Rewards and Actions

In model-free learning, we first discuss the simpler deterministic case,

where at any state-action pair, there is a single reward and next state

possible. In this case, equation 18.7 reduces to

Q(st, at) = rt+1 + γmax
at+1

Q(st+1, at+1)(18.12)

and we simply use this as an assignment to update Q(st, at). When in

state st , we choose action at by one of the stochastic strategies we saw

earlier, which returns a reward rt+1 and takes us to state st+1. We then
update the value of previous action as

Q̂(st , at)← rt+1 + γmax
at+1

Q̂(st+1, at+1)(18.13)

where the hat denotes that the value is an estimate. Q̂(st+1, at+1) is a later
value and has a higher chance of being correct. We discount this by γ and

add the immediate reward (if any) and take this as the new estimate for

the previous Q̂(st , at). This is called a backup because it can be viewed asbackup

taking the estimated value of an action in the next time step and “backing

it up” to revise the estimate for the value of a current action.

For now we assume that all Q̂(s, a) values are stored in a table; we will

see later on how we can store this information more succinctly when |S|
and |A| are large.
Initially all Q̂(st , at) are 0, and they are updated in time as a result

of trial episodes. Let us say we have a sequence of moves and at each

move, we use equation 18.13 to update the estimate of theQ value of the

previous state-action pair using the Q value of the current state-action

pair. In the intermediate states, all rewards and therefore values are 0,

so no update is done. When we get to the goal state, we get the reward

r and then we can update the Q value of the previous state-action pair

as γr . As for the preceding state-action pair, its immediate reward is 0

and the contribution from the next state-action pair is discounted by γ

because it is one step later. Then in another episode, if we reach this

state, we can update the one preceding that as γ2r , and so on. This way,

after many episodes, this information is backed up to earlier state-action

pairs. Q values increase until they reach their optimal values as we find

paths with higher cumulative reward, for example, shorter paths, but they

never decrease (see figure 18.4).

Note that we do not know the reward or next state functions here.

They are part of the environment, and it is as if we query them when

18.5 Temporal Difference Learning 457

G
100*

0

90

81

A

B

Figure 18.4 Example to show that Q values increase but never decrease. This

is a deterministic grid-world where G is the goal state with reward 100, all other

immediate rewards are 0, and γ = 0.9. Let us consider the Q value of the transi-

tion marked by asterisk, and let us just consider only the two paths A and B. Let

us say that path A is seen before path B, then we have γmax(0,81) = 72.9;

if afterward B is seen, a shorter path is found and the Q value becomes

γmax(100,81) = 90. If B is seen before A, the Q value is γmax(100,0) = 90;

then when A is seen, it does not change because γmax(100,81) = 90.

we explore. We are not modeling them either, though that is another

possibility. We just accept them as given and learn directly the optimal

policy through the estimated value function.

18.5.3 Nondeterministic Rewards and Actions

If the rewards and the result of actions are not deterministic, then we

have a probability distribution for the reward p(rt+1|st , at) from which

rewards are sampled, and there is a probability distribution for the next

state P(st+1|st , at). These help us model the uncertainty in the system

that may be due to forces we cannot control in the environment: for

instance, our opponent in chess, the dice in backgammon, or our lack of

knowledge of the system. For example, we may have an imperfect robot

which sometimes fails to go in the intended direction and deviates, or

advances shorter or longer than expected.

In such a case, we have

Q(st, at) = E[rt+1]+ γ
∑
st+1

P(st+1|st , at)max
at+1

Q(st+1, at+1)(18.14)

We cannot do a direct assignment in this case because for the same

458 18 Reinforcement Learning

Initialize all Q(s, a) arbitrarily
For all episodes

Initalize s
Repeat

Choose a using policy derived from Q, e.g., ε-greedy
Take action a, observe r and s′

Update Q(s, a):
Q(s, a)← Q(s, a)+ η(r + γmaxa′Q(s′, a′)−Q(s, a))

s ← s′

Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

state and action, we may receive different rewards or move to different

next states. What we do is keep a running average. This is known as the

Q learning algorithm:Q learning

Q̂(st , at)← Q̂(st , at)+ η(rt+1 + γmax
at+1

Q̂(st+1, at+1)−Q(st, at))(18.15)

We think of rt+1+γmaxat+1 Q̂(st+1, at+1) values as a sample of instances
for each (st , at) pair and we would like Q̂(st , at) to converge to its mean.

As usual η is gradually decreased in time for convergence, and it has been

shown that this algorithm converges to the optimal Q∗ values (Watkins

and Dayan 1992). The pseudocode of the Q learning algorithm is given

in figure 18.5.

We can also think of equation 18.15 as reducing the difference between

the currentQ value and the backed-up estimate, from one time step later.

Such algorithms are called temporal difference (TD) algorithms (Suttontemporal

difference 1988).

This is an off-policy method as the value of the best next action is usedoff-policy

without using the policy. In an on-policy method, the policy is used toon-policy

determine also the next action. The on-policy version of Q learning is the

Sarsa algorithm whose pseudocode is given in figure 18.6. We see thatSarsa

instead of looking for all possible next actions a′ and choosing the best,

the on-policy Sarsa uses the policy derived from Q values to choose one

next action a′ and uses its Q value to calculate the temporal difference.

On-policy methods estimate the value of a policy while using it to take

actions. In off-policy methods, these are separated, and the policy used

to generate behavior, called the behavior policy, may in fact be differ-

18.5 Temporal Difference Learning 459

Initialize all Q(s, a) arbitrarily
For all episodes

Initalize s
Choose a using policy derived from Q, e.g., ε-greedy
Repeat

Take action a, observe r and s′

Choose a′ using policy derived from Q, e.g., ε-greedy
Update Q(s, a):
Q(s, a)← Q(s, a)+ η(r + γQ(s′, a′)−Q(s, a))

s ← s′, a ← a′

Until s is terminal state

Figure 18.6 Sarsa algorithm, which is an on-policy version of Q learning.

ent from the policy that is evaluated and improved, called the estimation

policy.

Sarsa converges with probability 1 to the optimal policy and state-

action values if a GLIE policy is employed to choose actions. A GLIE

(greedy in the limit with infinite exploration) policy is where (1) all state-

action pairs are visited an infinite number of times, and (2) the policy

converges in the limit to the greedy policy (which can be arranged, e.g.,

with ε-greedy policies by setting ε = 1/t).

The same idea of temporal difference can also be used to learn V(s)

values, instead of Q(s, a). TD learning (Sutton 1988) uses the followingTD learning

update rule to update a state value:

V(st)← V(st)+ η[rt+1 + γV(st+1)− V(st)](18.16)

This again is the delta rule where rt+1 + γV(st+1) is the better, later

prediction and V(st) is the current estimate. Their difference is the tem-

poral difference, and the update is done to decrease this difference. The

update factor η is gradually decreased, and TD is guaranteed to converge

to the optimal value function V∗(s).

18.5.4 Eligibility Traces

The previous algorithms are one-step—that is, the temporal difference is

used to update only the previous value (of the state or state-action pair).

An eligibility trace is a record of the occurrence of past visits that en-eligibility trace

460 18 Reinforcement Learning

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 18.7 Example of an eligibility trace for a value. Visits are marked by an

asterisk.

ables us to implement temporal credit assignment, allowing us to update

the values of previously occurring visits as well. We discuss how this

is done with Sarsa to learn Q values; adapting this to learn V values is

straightforward.

To store the eligibility trace, we require an additional memory variable

associated with each state-action pair, e(s, a), initialized to 0. When the

state-action pair (s, a) is visited, namely, when we take action a in state

s, its eligibility is set to 1; the eligibilities of all other state-action pairs

are multiplied by γλ. 0 ≤ λ ≤ 1 is the trace decay parameter.

et(s, a) =
{

1 if s = st and a = at ,
γλet−1(s, a) otherwise

(18.17)

If a state-action pair has never been visited, its eligibility remains 0; if it

has been, as time passes and other state-actions are visited, its eligibility

decays depending on the value of γ and λ (see figure 18.7).

We remember that in Sarsa, the temporal error at time t is

δt = rt+1 + γQ(st+1, at+1)−Q(st, at)(18.18)

In Sarsa with an eligibility trace, named Sarsa(λ), all state-action pairs

18.6 Generalization 461

Initialize all Q(s, a) arbitrarily, e(s, a) ← 0,∀s, a
For all episodes

Initalize s
Choose a using policy derived from Q, e.g., ε-greedy
Repeat

Take action a, observe r and s′

Choose a′ using policy derived from Q, e.g., ε-greedy
δ← r + γQ(s′, a′)−Q(s, a)
e(s, a) ← 1

For all s, a:
Q(s, a)← Q(s, a)+ ηδe(s, a)
e(s, a) ← γλe(s, a)

s ← s′, a ← a′

Until s is terminal state

Figure 18.8 Sarsa(λ) algorithm.

are updated as

Q(s, a)← Q(s, a)+ ηδtet(s, a), ∀s, a(18.19)

This updates all eligible state-action pairs, where the update depends

on how far they have occurred in the past. The value of λ defines the

temporal credit: if λ = 0, only a one-step update is done. The algo-

rithms we discussed in section 18.5.3 are such, and for this reason they

are namedQ(0), Sarsa(0), or TD(0). As λ gets closer to 1, more of the pre-

vious steps are considered. When λ = 1, all previous steps are updated

and the credit given to them falls only by γ per step. In online updat-

ing, all eligible values are updated immediately after each step; in offline

updating, the updates are accumulated and a single update is done at

the end of the episode. Online updating takes more time but converges

faster. The pseudocode for Sarsa(λ) is given in figure 18.8. Q(λ) andSarsa(λ)

TD(λ) algorithms can similarly be derived (Sutton and Barto 1998).

18.6 Generalization

Until now, we assumed that the Q(s, a) values (or V(s), if we are esti-

mating values of states) are stored in a lookup table, and the algorithms

462 18 Reinforcement Learning

we considered earlier are called tabular algorithms. There are a num-

ber of problems with this approach: (1) when the number of states and

the number of actions is large, the size of the table may become quite

large; (2) states and actions may be continuous, for example, turning the

steering wheel by a certain angle, and to use a table, they should be dis-

cretized which may cause error; and (3) when the search space is large,

too many episodes may be needed to fill in all the entries of the table

with acceptable accuracy.

Instead of storing the Q values as they are, we can consider this a re-

gression problem. This is a supervised learning problem where we define

a regressor Q(s, a|θ), taking s and a as inputs and parameterized by a

vector of parameters, θ, to learn Q values. For example, this can be an

artificial neural network with s and a as its inputs, one output, and θ its

connection weights.

A good function approximator has the usual advantages and solves the

problems discussed previously. A good approximation may be achieved

with a simple model without explicitly storing the training instances; it

can use continuous inputs; and it allows generalization. If we know that

similar (s, a) pairs have similar Q values, we can generalize from past

cases and come up with good Q(s, a) values even if that state-action pair

has never been encountered before.

To be able to train the regressor, we need a training set. In the case

of Sarsa(0), we saw before that we would like Q(st, at) to get close to

rt+1 + γQ(st+1, at+1). So, we can form a set of training samples where

the input is the state-action pair (st , at) and the required output is rt+1 +
γQ(st+1, at+1). We can write the squared error as

Et(θ) = [rt+1 + γQ(st+1, at+1)−Q(st, at)]2(18.20)

Training sets can similarly be defined for Q(0) and TD(0), where in

the latter case we learn V(s), and the required output is rt+1 − γV(st+1).
Once such a set is ready, we can use any supervised learning algorithm

for learning the training set.

If we are using a gradient-descent method, as in training neural net-

works, the parameter vector is updated as

Δθ = η[rt+1 + γQ(st+1, at+1)−Q(st, at)]∇θt
Q(st , at)(18.21)

This is a one-step update. In the case of Sarsa(λ), the eligibility trace is

also taken into account:

Δθ = ηδtet(18.22)

18.6 Generalization 463

where the temporal difference error is

δt = rt+1 + γQ(st+1, at+1)−Q(st, at)

and the vector of eligibilities of parameters are updated as

et = γλet−1 +∇θt
Q(st , at)(18.23)

with e0 all zeros. In the case of a tabular algorithm, the eligibilities are

stored for the state-action pairs because they are the parameters (stored

as a table). In the case of an estimator, eligibility is associated with the

parameters of the estimator. We also note that this is very similar to the

momentum method for stabilizing backpropagation (section 11.8.1). The

difference is that in the case of momentum previous weight changes are

remembered, whereas here previous gradient vectors are remembered.

Depending on the model used for Q(st, at), for example, a neural net-

work, we plug its gradient vector in equation 18.23.

In theory, any regression method can be used to train the Q function,

but the particular task has a number of requirements. First, it should al-

low generalization; that is, we really need to guarantee that similar states

and actions have similar Q values. This also requires a good coding of s

and a, as in any application, to make the similarities apparent. Second,

reinforcement learning updates provide instances one by one and not as

a whole training set, and the learning algorithm should be able to do in-

dividual updates to learn the new instance without forgetting what has

been learned before. For example, a multilayer perceptron using back-

propagation can be trained with a single instance only if a small learning

rate is used. Or, such instances may be collected to form a training set

and learned altogether but this slows down learning as no learning hap-

pens while a sufficiently large sample is being collected.

Because of these reasons, it seems a good idea to use local learners to

learn the Q values. In such methods, for example, radial basis functions,

information is localized and when a new instance is learned, only a local

part of the learner is updated without possibly corrupting the informa-

tion in another part. The same requirements apply if we are estimating

the state values as V(st |θ).

464 18 Reinforcement Learning

18.7 Partially Observable States

18.7.1 The Setting

In certain applications, the agent does not know the state exactly. It is

equipped with sensors that return an observation, which the agent then

uses to estimate the state. Let us say we have a robot that navigates

in a room. The robot may not know its exact location in the room, or

what else is there in the room. The robot may have a camera with which

sensory observations are recorded. This does not tell the robot its state

exactly but gives some indication as to its likely state. For example, the

robot may only know that there is an obstacle to its right.

The setting is like a Markov decision process, except that after taking an

action at , the new state st+1 is not known, but we have an observation ot+1
that is a stochastic function of st and at : p(ot+1|st , at). This is called a

partially observable MDP (POMDP). If ot+1 = st+1, then POMDP reduces topartially

observable MDP the MDP. This is just like the distinction between observable and hidden

Markov models and the solution is similar; that is, from the observation,

we need to infer the state (or rather a probability distribution for the

states) and then act based on this. If the agent believes that it is in state

s1 with probability 0.4 and in state s2 with probability 0.6, then the value

of any action is 0.4 times the value of the action in s1 plus 0.6 times the

value of the action in s2.

The Markov property does not hold for observations. The next state

observation does not only depend on the current action and observation.

When there is limited observation, two states may appear the same but

are different and if these two states require different actions, this can

lead to a loss of performance, as measured by the cumulative reward.

The agent should somehow compress the past trajectory into a current

unique state estimate. These past observations can also be taken into

account by taking a past window of observations as input to the policy,

or one can use a recurrent neural network (section 11.12.2) to maintain

the state without forgetting past observations.

At any time, the agent may calculate the most likely state and take an

action accordingly. Or it may take an action to gather information and

reduce uncertainty, for example, search for a landmark, or stop to ask

for direction. This implies the importance of the value of information,value of

information and indeed POMDPs can be modeled as dynamic influence diagrams (sec-

tion 16.8). The agent chooses between actions based on the amount of

18.7 Partially Observable States 465

Figure 18.9 In the case of a partially observable environment, the agent has a

state estimator (SE) that keeps an internal belief state b and the policy π gener-

ates actions based on the belief states.

information they provide, the amount of reward they produce, and how

they change the state of the environment.

To keep the process Markov, the agent keeps an internal belief state btbelief state

that summarizes its experience (see figure 18.9). The agent has a state

estimator that updates the belief state bt+1 based on the last action at ,

current observation ot+1, and its previous belief state bt . There is a pol-

icy π that generates the next action at+1 based on this belief state, as

opposed to the actual state that we had in a completely observable envi-

ronment. The belief state is a probability distribution over states of the

environment given the initial belief state (before we did any actions) and

the past observation-action history of the agent (without leaving out any

information that could improve agent’s performance). Q learning in such

a case involves the belief state-action pair values, instead of the actual

state-action pairs:

Q(bt, at) = E[rt+1]+ γ
∑
bt+1

P(bt+1|bt , at)V(bt+1)(18.24)

18.7.2 Example: The Tiger Problem

We now discuss an example that is a slightly different version of the Tiger

problem discussed in Kaelbling, Littman, and Cassandra 1998, modified

as in the example in Thrun, Burgard, and Fox 2005. Let us say we are

466 18 Reinforcement Learning

standing in front of two doors, one to our left and the other to other

right, leading to two rooms. Behind one of the two doors, we do not

know which, there is a crouching tiger, and behind the other, there is

a treasure. If we open the door of the room where the tiger is, we get

a large negative reward, and if we open the door of the treasure room,

we get some positive reward. The hidden state, zL, is the location of the

tiger. Let us say p denotes the probability that tiger is in the room to the

left and therefore, the tiger is in the room to the right with probability

1− p:

p ≡ P(zL = 1)

The two actions are aL and aR , which respectively correspond to open-

ing the left or the right door. The rewards are

r(A,Z) Tiger left Tiger right

Open left −100 +80
Open right +90 −100

We can calculate the expected reward for the two actions. There are no

future rewards because the episode ends once we open one of the doors.

R(aL) = r(aL, zL)P(zL)+ r(aL, zR)P(zR) = −100p+ 80(1− p)
R(aR) = r(aR, zL)P(zL)+ r(aR, zR)P(zR) = 90p − 100(1− p)

Given these rewards, if p is close to 1, if we believe that there is a high

chance that the tiger is on the left, the right action will be to choose the

right door, and, similarly, for p close to 0, it is better to choose the left

door.

The two intersect for p around 0.5, and there the expected reward is

approximately −10. The fact that the expected reward is negative when

p is around 0.5 (when we have uncertainty) indicates the importance of

collecting information. If we can add sensors to to decrease uncertainty—

that is, move p away from 0.5 to either close to 0 or close to 1—we can

take actions with high positive rewards. That sensing action, aS , may

have a small negative reward: R(aS) = −1; this may be considered as

the cost of sensing or equivalent to discounting future reward by γ < 1

because we are postponing taking the real action (of opening one of the

doors).

18.7 Partially Observable States 467

In such a case, the expected rewards and value of the best action are

shown in figure 18.10a:

V =max(aL, aR, aS)

Let us say as sensory input, we use microphones to check whether the

tiger is behind the left or the right door. But we have unreliable sensors

(so that we still stay in the realm of partial observability). Let us say we

can only detect tiger’s presence with 0.7 probability:

P(oL|zL) = 0.7 P(oL|zR) = 0.3

P(oR|zL) = 0.3 P(oR|zR) = 0.7

If we sense oL, our belief in the tiger’s position changes:

p′ = P(zL|oL) =
P(oL|zL)P(zL)

p(oL)
= 0.7p

0.7p + 0.3(1− p)
The effect of this is shown in figure 18.10b where we plot R(aL|oL).

Sensing oL turns opening the right door into a better action for a wider

range. The better sensors we have (if the probability of correct sens-

ing moves from 0.7 closer to 1), the larger this range gets (exercise 9).

Similarly, as we see in figure 18.10c, if we sense oR, this increases the

chances of opening the left door. Note that sensing also decreases the

range where there is a need to sense (once more).

The expected rewards for the actions in this case are

R(aL|oL) = r(aL, zL)P(zL|oL)+ r(aL, zR)P(zR|oL)
= −100p′ + 80(1− p′)
= −100 · 0.7 · p

p(oL)
+ 80 · 0.3 · (1− p)

p(oL)

R(aR|oL) = r(aR, zL)P(zL|oL)+ r(aR, zR)P(zR|oL)
= 90p′ − 100(1− p′)
= 90 · 0.7 · p

p(oL)
− 100 · 0.3 · (1− p)

p(oL)

R(aS|oL) = −1
The best action is this case is the maximum of these three. Similarly, if

we sense oR , the expected rewards become

R(aL|oR) = r(aL, zL)P(zL|oR)+ r(aL, zR)P(zR|oR)
= −100 · 0.3 · p

p(oR)
+ 80 · 0.7 · (1− p)

p(oR)

468 18 Reinforcement Learning

0 0.5 1
−100

0

100
(a) Initially

E
xp

ec
te

d
re

w
ar

d

0 0.5 1
−100

0

100

(b) After sensing o
L

E
xp

ec
te

d
re

w
ar

d

0 0.5 1
−100

0

100

(c) After sensing o
R

p

0 0.5 1
−100

0

100
(d) Optimal after sensing

p

E
xp

ec
te

d
re

w
ar

d

Figure 18.10 Expected rewards and the effect of sensing in the Tiger problem.

R(aR|oR) = r(aR, zL)P(zL|oR)+ r(aR, zR)P(zR|oR)
= 90 · 0.3 · p

p(oR)
− 100 · 0.7 · (1− p)

p(oR)

R(aS|oR) = −1

To calculate the expected reward, we need to take average over both

sensor readings weighted by their probabilities:

V ′ =
∑
j

[
max
i
R(ai|oj)

]
P(Oj)

= max(R(aL|oL), R(aR|oL), R(aS|oL))P(oL)+
max(R(aL|oR),R(aR|oR),R(aS|oR))P(oR)

= max(−70p+ 24(1− p),63p− 30(1− p),−0.7p− 0.3(1− p))+
max(−30p+ 56(1− p),27p− 70(1− p),−0.3p− 0.7(1− p))

18.7 Partially Observable States 469

= max

⎛
⎜⎜⎜⎝
−100p +80(1− p)
−43p −46(1− p)
33p +26(1− p)
90p −100(1− p)

⎞
⎟⎟⎟⎠(18.25)

Note that when we multiply by P(oL), it cancels out and we get func-

tions linear in p. These five lines and the piecewise function that corre-

sponds to their maximum are shown in figure 18.10d. Note that the line,

−40p − 5(1− p), as well as the ones involving aS , are beneath others for
all values of p and can safely be pruned. The fact that figure 18.10d is

better than figure 18.10a indicates the value of information.value of

information What we calculate here is the value of the best action had we chosen aS .

For example, the first line corresponds to choosing aL after aS . So to find

the best decision with an episode of length two, we need to back this up

by subtracting −1, which is the reward of aS , and get the expected reward
for the action of sense. Equivalently, we can consider this as waiting that

has an immediate reward of 0 but discounts the future reward by some

γ < 1. We also have the two usual actions of aL and aR and we choose the

best of three; the two immediate actions and the one discounted future

action.

Let us now make the problem more interesting, as in the example of

Thrun, Burgard, and Fox 2005. Let us assume that there is a door between

the two rooms and without us seeing, the tiger can move from one room

to the other. Let us say that this is a restless tiger and it stays in the same

room with probability 0.2 and moves to the other room with probability

0.8. This means that p should also be updated as

p′ = 0.2p + 0.8(1− p)

and this updated p should be used in equation 18.25 while choosing the

best action after having chosen aS :

V ′ =max

⎛
⎜⎝ −100p′ +80(1− p′)

33p′ +26(1− p′)
90p′ −100(1− p′)

⎞
⎟⎠

Figure 18.11b corresponds to figure 18.10d with the updated p′. Now,
when planning for episodes of length two, we have the two immediate

470 18 Reinforcement Learning

0 0.5 1
−80

−60

−40

−20

0

20

40

60
(a) Tiger can move

p
E

xp
ec

te
d

re
w

ar
d

0 0.5 1
−100

−50

0

50

100
(b) Value in two steps

p

E
xp

ec
te

d
re

w
ar

d

Figure 18.11 Expected rewards change (a) if the hidden state can change, and

(b) when we consider episodes of length two.

actions of aL and aR , or we wait and sense when p changes and then we

take the action and get its discounted reward (figure 18.11b):

V2 =max

⎛
⎜⎝ −100p +80(1− p)

90p −100(1− p)
maxV ′ − 1

⎞
⎟⎠

We see that figure 18.11b is better than figure 18.10a; when wrong

actions may lead to large penalty, it is better to defer judgment, look for

extra information, and plan ahead. We can consider longer episodes by

continuing the iterative updating of p and discounting by subtracting 1

and including the two immediate actions to calculate Vt , t > 2.

The algorithm we have just discussed where the value is represented by

piecewise linear functions works only when the number of states, actions,

observations, and the episode length are all finite. Even in applications

where any of these is not small, or when any is continuous-valued, the

complexity becomes high and we need to resort to approximate algo-

rithms having reasonable complexity. Reviews of such algorithms are

given in Hauskrecht 2000 and Thrun, Burgard, and Fox 2005.

18.8 Notes

More information on reinforcement learning can be found in the textbook

by Sutton and Barto (1998) that discusses all the aspects, learning algo-

rithms, and several applications. A comprehensive tutorial is Kaelbling,

18.8 Notes 471

Littman, and Moore 1996. Recent work on reinforcement learning applied

to robotics with some impressive applications is given in Thrun, Burgard,

and Fox 2005.

Dynamic programming methods are discussed in Bertsekas 1987 and

in Bertsekas and Tsitsiklis 1996, and TD(λ) andQ-learning can be seen as

stochastic approximations to dynamic programming (Jaakkola, Jordan,

and Singh 1994). Reinforcement learning has two advantages over classi-

cal dynamic programming: first, as they learn, they can focus on the parts

of the space that are important and ignore the rest; and second, they can

employ function approximation methods to represent knowledge that al-

lows them to generalize and learn faster.

A related field is that of learning automata (Narendra and Thathacharlearning automata

1974), which are finite state machines that learn by trial and error for

solving problems like the K-armed bandit. The setting we have here is

also the topic of optimal control where there is a controller (agent) taking

actions in a plant (environment) that minimize cost (maximize reward).

The earliest use of temporal difference method was in Samuel’s check-

ers program written in 1959 (Sutton and Barto 1998). For every two suc-

cessive positions in a game, the two board states are evaluated by the

board evaluation function that then causes an update to decrease the dif-

ference. There has been much work on games because games are both

easily defined and challenging. A game like chess can easily be simulated:

the allowed moves are formal, and the goal is well defined. Despite the

simplicity of defining the game, expert play is quite difficult.

One of the most impressive application of reinforcement learning is

the TD-Gammon program that learns to play backgammon by playingTD-Gammon

against itself (Tesauro 1995). This program is superior to the previous

neurogammon program also developed by Tesauro, which was trained

in a supervised manner based on plays by experts. Backgammon is a

complex task with approximately 1020 states, and there is randomness

due to the roll of dice. Using the TD(λ) algorithm, the program achieves

master level play after playing 1,500,000 games against a copy of itself.

Another interesting application is in job shop scheduling, or finding

a schedule of tasks satisfying temporal and resource constraints (Zhang

and Dietterich 1996). Some tasks have to be finished before others can be

started, and two tasks requiring the same resource cannot be done simul-

taneously. Zhang and Dietterich used reinforcement learning to quickly

find schedules that satisfy the constraints and are short. Each state is one

schedule, actions are schedule modifications, and the program finds not

472 18 Reinforcement Learning

G

S

Figure 18.12 The grid world. The agent can move in the four compass direc-

tions starting from S. The goal state is G.

only one good schedule but a schedule for a class of related scheduling

problems.

Recently hierarchical methods have also been proposed where the prob-

lem is decomposed into a set of subproblems. This has the advantage

that policies learned for the subproblems can be shared for multiple

problems, which accelerates learning a new problem (Dietterich 2000).

Each subproblem is simpler and learning them separately is faster. The

disadvantage is that when they are combined, the policy may be subopti-

mal.

Though reinforcement learning algorithms are slower than supervised

learning algorithms, it is clear that they have a wider variety of applica-

tion and have the potential to construct better learning machines (Ballard

1997). They do not need any supervision, and this may actually be better

since then they are not biased by the teacher. For example, Tesauro’s

TD-Gammon program in certain circumstances came up with moves that

turned out to be superior to those made by the best players. The field of

reinforcement learning is developing rapidly, and we may expect to see

other impressive results in the near future.

18.9 Exercises

1. Given the grid world in figure 18.12, if the reward on reaching on the goal

is 100 and γ = 0.9, calculate manually Q∗(s, a), V∗(S), and the actions of

optimal policy.

2. With the same configuration given in exercise 1, use Q learning to learn the

18.10 References 473

optimal policy.

3. In exercise 1, how does the optimal policy change if another goal state is

added to the lower-right corner? What happens if a state of reward −100 (a
very bad state) is defined in the lower-right corner?

4. Instead of having γ < 1, we can have γ = 1 but with a negative reward of −c
for all intermediate (nongoal) states. What is the difference?

5. In exercise 1, assume that the reward on arrival to the goal state is normal

distributed with mean 100 and variance 40. Assume also that the actions are

also stochastic in that when the robot advances in a direction, it moves in the

intended direction with probability 0.5 and there is a 0.25 probability that it

moves in one of the lateral directions. Learn Q(s, a) in this case.

6. Assume we are estimating the value function for states V(s) and that we want

to use TD(λ) algorithm. Derive the tabular value iteration update.

7. Using equation 18.22, derive the weight update equations when a multilayer

perceptron is used to estimate Q.

8. Give an example of a reinforcement learning application that can be modeled

by a POMDP. Define the states, actions, observations, and reward.

9. In the tiger example, show that as we get a more reliable sensor, the range

where we need to sense once again decreases.

10. Rework the tiger example using the following reward matrix

r(A,Z) Tiger left Tiger right

Open left −100 +10
Open right 20 −100

18.10 References

Ballard, D. H. 1997. An Introduction to Natural Computation. Cambridge, MA:

MIT Press.

Bellman, R. E. 1957. Dynamic Programming. Princeton: Princeton University

Press.

Bertsekas, D. P. 1987. Dynamic Programming: Deterministic and Stochastic

Models. New York: Prentice Hall.

Bertsekas, D. P., and J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Bel-

mont, MA: Athena Scientific.

Dietterich, T. G. 2000. “Hierarchical Reinforcement Learning with the MAXQ

Value Decomposition.” Journal of Artificial Intelligence Research 13: 227–303.

474 18 Reinforcement Learning

Hauskrecht, M. 2000. “Value-Function Approximations for Partially Observable

Markov Decision Processes.” Journal of Artificial Intelligence Research 13:

33–94.

Jaakkola, T., M. I. Jordan, and S. P. Singh. 1994. “On the Convergence of Sto-

chastic Iterative Dynamic Programming Algorithms.” Neural Computation 6:

1185–1201.

Kaelbling, L. P., M. L. Littman, and A. R. Cassandra. 1998. “Planning and Acting

in Partially Observable Stochastic Domains.” Artificial Intelligence 101: 99–

134.

Kaelbling, L. P., M. L. Littman, and A. W. Moore. 1996. “Reinforcement Learning:

A Survey.” Journal of Artificial Intelligence Research 4: 237–285.

Narendra, K. S., and M. A. L. Thathachar. 1974. “Learning Automata—A Survey.”

IEEE Transactions on Systems, Man, and Cybernetics 4: 323–334.

Sutton, R. S. 1988. “Learning to Predict by the Method of Temporal Differences.”

Machine Learning 3: 9–44.

Sutton, R. S., and A. G. Barto. 1998. Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Tesauro, G. 1995. “Temporal Difference Learning and TD-Gammon.” Commu-

nications of the ACM 38(3): 58–68.

Thrun, S., W. Burgard, and D. Fox. 2005. Probabilistic Robotics. Cambridge, MA:

MIT Press.

Watkins, C. J. C. H., and P. Dayan. 1992. “Q-learning.” Machine Learning 8:

279–292.

Zhang, W., and T. G. Dietterich. 1996. “High-Performance Job-Shop Schedul-

ing with a Time-Delay TD(λ) Network.” In Advances in Neural Information

Processing Systems 8, ed. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,

1024–1030. Cambridge, MA: The MIT Press.

19 Design and Analysis of Machine

Learning Experiments

We discuss the design of machine learning experiments to assess and

compare the performances of learning algorithms in practice and

the statistical tests to analyze the results of these experiments.

19.1 Introduction

In previous chapters, we discussed several learning algorithms and

saw that, given a certain application, more than one is applicable. Now,

we are concerned with two questions:

1. How can we assess the expected error of a learning algorithm on a

problem? That is, for example, having used a classification algorithm

to train a classifier on a dataset drawn from some application, can we

say with enough confidence that later on when it is used in real life, its

expected error rate will be less than, for example, 2 percent?

2. Given two learning algorithms, how can we say one has less error than

the other one, for a given application? The algorithms compared can

be different, for example, parametric versus nonparametric, or they

can use different hyperparameter settings. For example, given a multi-

layer perceptron (chapter 11) with four hidden units and another one

with eight hidden units, we would like to be able to say which one has

less expected error. Or with the k-nearest neighbor classifier (chap-

ter 8), we would like to find the best value of k.

We cannot look at the training set errors and decide based on those.

The error rate on the training set, by definition, is always smaller than

the error rate on a test set containing instances unseen during training.

476 19 Design and Analysis of Machine Learning Experiments

Similarly, training errors cannot be used to compare two algorithms. This

is because over the training set, the more complex model having more

parameters will almost always give fewer errors than the simple one.

So as we have repeatedly discussed, we need a validation set that is dif-

ferent from the training set. Even over a validation set though, just one

run may not be enough. There are two reasons for this: First, the training

and validation sets may be small and may contain exceptional instances,

like noise and outliers, which may mislead us. Second, the learning

method may depend on other random factors affecting generalization.

For example, with a multilayer perceptron trained using backpropaga-

tion, because gradient descent converges to the nearest local minimum,

the initial weights affect the final weights, and given the exact same ar-

chitecture and training set, starting from different initial weights, there

may be multiple possible final classifiers having different error rates on

the same validation set. We thus would like to have several runs to aver-

age over such sources of randomness. If we train and validate only once,

we cannot test for the effect of such factors; this is only admissible if

the learning method is so costly that it can be trained and validated only

once.

We use a learning algorithm on a dataset and generate a learner. If we

do the training once, we have one learner and one validation error. To av-

erage over randomness (in training data, initial weights, etc.), we use the

same algorithm and generate multiple learners. We test them on multiple

validation sets and record a sample of validation errors. (Of course, all

the training and validation sets should be drawn from the same applica-

tion.) We base our evaluation of the learning algorithm on the distribution

of these validation errors. We can use this distribution for assessing the

expected error of the learning algorithm for that problem, or compare itexpected error

with the error rate distribution of some other learning algorithm.

Before proceeding to how this is done, it is important to stress a num-

ber of points:

1. We should keep in mind that whatever conclusion we draw from our

analysis is conditioned on the dataset we are given. We are not com-

paring learning algorithms in a domain independent way but on some

particular application. We are not saying anything about the expected

error of a learning algorithm, or comparing one learning algorithm

with another algorithm, in general. Any result we have is only true for

the particular application, and only insofar as that application is rep-

19.1 Introduction 477

resented in the sample we have. And anyway, as stated by the No FreeNo Free Lunch

Theorem Lunch Theorem (Wolpert 1995), there is no such thing as the “best”

learning algorithm. For any learning algorithm, there is a dataset

where it is very accurate and another dataset where it is very poor.

When we say that a learning algorithm is good, we only quantify how

well its inductive bias matches the properties of the data.

2. The division of a given dataset into a number of training and validation

set pairs is only for testing purposes. Once all the tests are complete

and we have made our decision as to the final method or hyperparam-

eters, to train the final learner, we can use all the labeled data that we

have previously used for training or validation.

3. Because we also use the validation set(s) for testing purposes, for ex-

ample, for choosing the better of two learning algorithms, or to decide

where to stop learning, it effectively becomes part of the data we use.

When after all such tests, we decide on a particular algorithm and want

to report its expected error, we should use a separate test set for this

purpose, unused during training this final system. This data should

have never been used before for training or validation and should be

large for the error estimate to be meaningful. So, given a dataset, we

should first leave some part of it aside as the test set and use the rest

for training and validation. Typically, we can leave one-third of the

sample as the test set, then use two-thirds for cross-validation to gen-

erate multiple training/validation set pairs, as we will see shortly. So,

the training set is used to optimize the parameters, given a particular

learning algorithm and model structure; the validation set is used to

optimize the hyperparameters of the learning algorithm or the model

structure; and the test set is used at the end, once both these have

been optimized. For example, with an MLP, the training set is used to

optimize the weights, the validation set is used to decide on the num-

ber of hidden units, how long to train, the learning rate, and so forth.

Once the best MLP configuration is chosen, its final error is calculated

on the test set. With k-NN, the training set is stored as the lookup ta-

ble; we optimize the distance measure and k on the validation set and

test finally on the test set.

4. In general, we compare learning algorithms by their error rates, but it

should be kept in mind that in real life, error is only one of the criteria

that affect our decision. Some other criteria are (Turney 2000):

478 19 Design and Analysis of Machine Learning Experiments

� risks when errors are generalized using loss functions, instead of

0/1 loss (section 3.3),

� training time and space complexity,

� testing time and space complexity,

� interpretability, namely, whether the method allows knowledge ex-

traction which can be checked and validated by experts, and

� easy programmability.

The relative importances of these factors change depending on the ap-

plication. For example, if the training is to be done once in the factory,

then training time and space complexity are not important; if adapt-

ability during use is required, then they do become important. Most

of the learning algorithms use 0/1 loss and take error as the single

criterion to be minimized; recently, cost-sensitive learning variants ofcost-sensitive

learning these algorithms have also been proposed to take other cost criteria

into account.

When we train a learner on a dataset using a training set and test its

accuracy on some validation set and try to draw conclusions, what we

are doing is experimentation. Statistics defines a methodology to design

experiments correctly and analyze the collected data in a manner so as

to be able to extract significant conclusions (Montgomery 2005). In this

chapter, we will see how this methodology can be used in the context of

machine learning.

19.2 Factors, Response, and Strategy of Experimentation

As in other branches of science and engineering, in machine learning too,

we do experiments to get information about the process under scrutiny.

In our case, this is a learner, which, having been trained on a dataset,

generates an output for a given input. An experiment is a test or a seriesexperiment

of tests where we play with the factors that affect the output. These

factors may be the algorithm used, the training set, input features, and

so on, and we observe the changes in the response to be able to extract

information. The aim may be to identify the most important factors,

screen the unimportant ones, or find the configuration of the factors that

optimizes the response—for example, classification accuracy on a given

test set.

19.2 Factors, Response, and Strategy of Experimentation 479

Figure 19.1 The process generates an output given an input and is affected by

controllable and uncontrollable factors.

Our aim is to plan and conduct machine learning experiments and an-

alyze the data resulting from the experiments, to be able to eliminate

the effect of chance and obtain conclusions which we can consider sta-

tistically significant. In machine learning, we target a learner having the

highest generalization accuracy and the minimal complexity (so that its

implementation is cheap in time and space) and is robust, that is, mini-

mally affected by external sources of variability.

A trained learner can be shown as in figure 19.1; it gives an output,

for example, a class code for a test input, and this depends on two type

of factors: The controllable factors, as the name suggests, are those we

have control on. The most basic is the learning algorithm used. There

are also the hyperparameters of the algorithm, for example, the number

of hidden units for a multilayer perceptron, k for k-nearest neighbor,

C for support vector machines, and so on. The dataset used and the

input representation, that is, how the input is coded as a vector, are other

controllable factors.

There are also uncontrollable factors over which we have no control,

adding undesired variability to the process, which we do not want to

affect our decisions. Among these are the noise in the data, the particular

training subset if we are resampling from a large set, randomness in the

optimization process, for example, the initial state in gradient descent

with multilayer perceptrons, and so on.

We use the output to generate the response variable—for example, av-

480 19 Design and Analysis of Machine Learning Experiments

�
�
��
�
�
�

Figure 19.2 Different strategies of experimentation with two factors and five

levels each.

erage classification error on a test set, or the expected risk using a loss

function, or some other measure, such as precision and recall, as we will

discuss shortly.

Given several factors, we need to find the best setting for best response,

or in the general case, determine their effect on the response variable. For

example, we may be using principal components analyzer (PCA) to reduce

dimensionality to d before a k-nearest neighbor (k-NN) classifier. The two

factors are d and k, and the question is to decide which combination of d

and k leads to highest performance. Or, we may be using a support vector

machine classifier with Gaussian kernel, and we have the regularization

parameter C and the spread of the Gaussian s2 to fine-tune together.

There are several strategies of experimentation, as shown in figure 19.2.strategies of

experimentation In the best guess approach, we start at some setting of the factors that we

believe is a good configuration. We test the response there and we fiddle

with the factors one (or very few) at a time, testing each combination until

we get to a state that we consider is good enough. If the experimenter has

a good intuition of the process, this may work well; but note that there is

no systematic approach to modify the factors and when we stop, we have

no guarantee of finding the best configuration.

Another strategy is to modify one factor at a time where we decide

on a baseline (default) value for all factors, and then we try different

levels for one factor while keeping all other factors at their baseline. The

major disadvantage of this is that it assumes that there is no interaction

between the factors, which may not always be true. In the PCA/k-NN

cascade we discussed earlier, each choice for d defines a different input

19.3 Response Surface Design 481

space for k-NN where a different k value may be appropriate.

The correct approach is to use a factorial design where factors are var-factorial design

ied together, instead of one at a time; this is colloquially called grid

search. With F factors at L levels each, searching one factor at a time

takes O(L · F) time, whereas a factorial experiment takes O(LF) time.

19.3 Response Surface Design

To decrease the number of runs necessary, one possibility is to run a frac-

tional factorial design where we run only a subset, another is to try to use

knowledge gathered from previous runs to estimate configurations that

seem likely to have high response. In searching one factor at a time, if we

can assume that the response is typically quadratic (with a single max-

imum, assuming we are maximizing a response value, such as the test

accuracy), then instead of trying all values, we can have an iterative pro-

cedure where starting from some initial runs, we fit a quadratic, find its

maximum analytically, take that as the next estimate, run an experiment

there, add the resulting data to the sample, and then continue fitting and

sampling, until we get no further improvement.

With many factors, this is generalized as the response surface designresponse surface

design method where we try to fit a parametric response function to the factors

as

r = g(f1, f2, . . . , fF |φ)

where r is the response and fi, i = 1, . . . , F are the factors. This fit-

ted parametric function defined given the parameters φ is our empirical

model estimating the response for a particular configuration of the (con-

trollable) factors; the effect of uncontrollable factors is modeled as noise.

g(·) is a (typically quadratic) regression model and after a small number

of runs around some baseline (as defined by a so-called design matrix),

one can have enough data to fit g(·) on. Then, we can analytically cal-

culate the values of fi where the fitted g is maximum, which we take as

our next guess, run an experiment there, get a data instance, add it to the

sample, fit g once more, and so on, until there is convergence. Whether

this approach will work well or not depends on whether the response

can indeed be written as a quadratic function of the factors with a single

maximum.

482 19 Design and Analysis of Machine Learning Experiments

19.4 Randomization, Replication, and Blocking

Let us now talk about the three basic principles of experimental design.

� Randomization requires that the order in which the runs are carriedrandomization

out should be randomly determined so that the results are indepen-

dent. This is typically a problem in real-world experiments involving

physical objects; for example, machines require some time to warm

up until they operate in their normal range so tests should be done in

random order for time not to bias the results. Ordering generally is

not a problem in software experiments.

� Replication implies that for the same configuration of (controllable)replication

factors, the experiment should be run a number of times to average

over the effect of uncontrollable factors. In machine learning, this is

typically done by running the same algorithm on a number of resam-

pled versions of the same dataset; this is known as cross-validation,

which we will discuss in section 19.6. How the response varies on

these different replications of the same experiment allows us to ob-

tain an estimate of the experimental error (the effect of uncontrollable

factors), which we can in turn use to determine how large differences

should be to be deemed statistically significant.

� Blocking is used to reduce or eliminate the variability due to nuisanceblocking

factors that influence the response but in which we are not interested.

For example, defects produced in a factory may also depend on the dif-

ferent batches of raw material, and this effect should be isolated from

the controllable factors in the factory, such as the equipment, person-

nel, and so on. In machine learning experimentation, when we use re-

sampling and use different subsets of the data for different replicates,

we need to make sure that for example if we are comparing learning

algorithms, they should all use the same set of resampled subsets,

otherwise the differences in accuracies would depend not only on the

algorithms but also on the different subsets—to be able to measure

the difference due to algorithms only, the different training sets in

replicated runs should be identical; this is what we mean by blocking.

In statistics, if there are two populations, this is called pairing and ispairing

used in paired testing.

19.5 Guidelines for Machine Learning Experiments 483

19.5 Guidelines for Machine Learning Experiments

Before we start experimentation, we need to have a good idea about what

it is we are studying, how the data is to be collected, and how we are plan-

ning to analyze it. The steps in machine learning are the same as for any

type of experimentation (Montgomery 2005). Note that at this point, it is

not important whether the task is classification or regression, or whether

it is an unsupervised or a reinforcement learning application. The same

overall discussion applies; the difference is only in the sampling distribu-

tion of the response data that is collected.

A. Aim of the Study

We need to start by stating the problem clearly, defining what the objec-

tives are. In machine learning, there may be several possibilities. As we

discussed before, we may be interested in assessing the expected error

(or some other response measure) of a learning algorithm on a particular

problem and check that, for example, the error is lower than a certain

acceptable level.

Given two learning algorithms and a particular problem as defined by

a dataset, we may want to determine which one has less generalization

error. These can be two different algorithms, or one can be a proposed

improvement of the other, for example, by using a better feature extrac-

tor.

In the general case, we may have more than two learning algorithms,

and we may want to choose the one with the least error, or order them in

terms of error, for a given dataset.

In an even more general setting, instead of on a single dataset, we may

want to compare two or more algorithms on two or more datasets.

B. Selection of the Response Variable

We need to decide on what we should use as the quality measure. Most

frequently, error is used that is the misclassification error for classifica-

tion and mean square error for regression. We may also use some variant;

for example, generalizing from 0/1 to an arbitrary loss, we may use a risk

measure. In information retrieval, we use measures such as precision and

recall; we will discuss such measures in section 19.7. In a cost-sensitive

484 19 Design and Analysis of Machine Learning Experiments

setting, not only the output but also system parameters, for example, its

complexity, are taken into account.

C. Choice of Factors and Levels

What the factors are depend on the aim of the study. If we fix an al-

gorithm and want to find the best hyperparameters, then those are the

factors. If we are comparing algorithms, the learning algorithm is a fac-

tor. If we have different datasets, they also become a factor.

The levels of a factor should be carefully chosen so as not to miss a

good configuration and avoid doing unnecessary experimentation. It is

always good to try to normalize factor levels. For example, in optimizing

k of k-nearest neighbor, one can try values such as 1, 3, 5, and so on,

but in optimizing the spread h of Parzen windows, we should not try

absolute values such as 1.0, 2.0, and so on, because that depends on the

scale of the input; it is better to find some statistic that is an indicator

of scale—for example, the average distance between an instance and its

nearest neighbor—and try h as different multiples of that statistic.

Though previous expertise is a plus in general, it is also important to

investigate all factors and factor levels that may be of importance and

not be overly influenced by past experience.

D. Choice of Experimental Design

It is always better to do a factorial design unless we are sure that the

factors do not interact, because mostly they do. Replication number de-

pends on the dataset size; it can be kept small when the dataset is large;

we will discuss this in the next section when we talk about resampling.

However, too few replicates generate few data and this will make com-

paring distributions difficult; in the particular case of parametric tests,

the assumptions of Gaussianity may not be tenable.

Generally, given some dataset, we leave some part as the test set and

use the rest for training and validation, probably many times by resam-

pling. How this division is done is important. In practice, using small

datasets leads to responses with high variance, and the differences will

not be significant and results will not be conclusive.

It is also important to avoid as much as possible toy, synthetic data

and use datasets that are collected from real-world under real-life cir-

cumstances. Didactic one- or two-dimensional datasets may help provide

19.5 Guidelines for Machine Learning Experiments 485

intuition, but the behavior of the algorithms may be completely different

in high-dimensional spaces.

E. Performing the Experiment

Before running a large factorial experiment with many factors and levels,

it is best if one does a few trial runs for some random settings to check

that all is as expected. In a large experiment, it is always a good idea to

save intermediate results (or seeds of the random number generator), so

that a part of the whole experiment can be rerun when desired. All the

results should be reproducable. In running a large experiment with many

factors and factor levels, one should be aware of the possible negative

effects of software aging.

It is important that an experimenter be unbiased during experimen-

tation. In comparing one’s favorite algorithm with a competitor, both

should be investigated equally diligently. In large-scale studies, it may

even be envisaged that testers be different from developers.

One should avoid the temptation to write one’s own “library” and in-

stead, as much as possible, use code from reliable sources; such code

would have been better tested and optimized.

As in any software development study, the advantages of good docu-

mentation cannot be underestimated, especially when working in groups.

All the methods developed for high-quality software engineering should

also be used in machine learning experiments.

F. Statistical Analysis of the Data

This corresponds to analyzing data in a way so that whatever conclusion

we get is not subjective or due to chance. We cast the questions that

we want to answer in a hypothesis testing framework and check whether

the sample supports the hypothesis. For example, the question "Is A a

more accurate algorithm than B?" becomes the hypothesis "Can we say

that the average error of learners trained by A is significantly lower than

the average error of learners trained by B?"

As always, visual analysis is helpful, and we can use histograms of error

distributions, whisker-and-box plots, range plots, and so on.

486 19 Design and Analysis of Machine Learning Experiments

G. Conclusions and Recommendations

Once all data is collected and analyzed, we can draw objective conclu-

sions. One frequently encountered conclusion is the need for further

experimentation. Most statistical, and hence machine learning or data

mining, studies are iterative. It is for this reason that we never start with

all the experimentation. It is suggested that no more than 25 percent of

the available resources should be invested in the first experiment (Mont-

gomery 2005). The first runs are for investigation only. That is also why

it is a good idea not to start with high expectations, or promises to one’s

boss or thesis advisor.

We should always remember that statistical testing never tells us if

the hypothesis is correct or false, but how much the sample seems to

concur with the hypothesis. There is always a risk that we do not have a

conclusive result or that our conclusions be wrong, especially if the data

is small and noisy.

When our expectations are not met, it is most helpful to investigate why

they are not. For example, in checking why our favorite algorithm A has

worked awfully bad on some cases, we can get a splendid idea for some

improved version of A. All improvements are due to the deficiencies of

the previous version; finding a deficiency is but a helpful hint that there

is an improvement we can make!

But we should not go to the next step of testing the improved version

before we are sure that we have completely analyzed the current data and

learned all we could learn from it. Ideas are cheap, and useless unless

tested, which is costly.

19.6 Cross-Validation and Resampling Methods

For replication purposes, our first need is to get a number of training

and validation set pairs from a dataset X (after having left out some

part as the test set). To get them, if the sample X is large enough, we

can randomly divide it into K parts, then randomly divide each part into

two and use one half for training and the other half for validation. K

is typically 10 or 30. Unfortunately, datasets are never large enough to

do this. So we should do our best with small datasets. This is done

by repeated use of the same data split differently; this is called cross-cross-validation

validation. The catch is that this makes the error percentages dependent

as these different sets share data.

19.6 Cross-Validation and Resampling Methods 487

So, given a dataset X , we would like to generate K training/validation

set pairs, {Ti ,Vi}Ki=1, from this dataset. We would like to keep the train-

ing and validation sets as large as possible so that the error estimates

are robust, and at the same time, we would like to keep the overlap be-

tween different sets as small as possible. We also need to make sure that

classes are represented in the right proportions when subsets of data are

held out, not to disturb the class prior probabilities; this is called strat-stratification

ification. If a class has 20 percent examples in the whole dataset, in all

samples drawn from the dataset, it should also have approximately 20

percent examples.

19.6.1 K-Fold Cross-Validation

In K-fold cross-validation, the datasetX is divided randomly into K equal-K-fold

cross-validation sized parts, Xi , i = 1, . . . , K. To generate each pair, we keep one of the K

parts out as the validation set and combine the remaining K − 1 parts to

form the training set. Doing this K times, each time leaving out another

one of the K parts out, we get K pairs:

V1 = X1 T1 = X2 ∪X3 ∪ · · · ∪ XK

V2 = X2 T2 = X1 ∪X3 ∪ · · · ∪ XK

...

VK = XK TK = X1 ∪X2 ∪ · · · ∪XK−1

There are two problems with this. First, to keep the training set large,

we allow validation sets that are small. Second, the training sets overlap

considerably, namely, any two training sets share K − 2 parts.

K is typically 10 or 30. As K increases, the percentage of training in-

stances increases and we get more robust estimators, but the validation

set becomes smaller. Furthermore, there is the cost of training the clas-

sifier K times, which increases as K is increased. As N increases, K can

be smaller; if N is small, K should be large to allow large enough training

sets. One extreme case of K-fold cross-validation is leave-one-out whereleave-one-out

given a dataset of N instances, only one instance is left out as the valida-

tion set (instance) and training uses the N − 1 instances. We then get N

separate pairs by leaving out a different instance at each iteration. This

is typically used in applications such as medical diagnosis, where labeled

data is hard to find. Leave-one-out does not permit stratification.

Recently, with computation getting cheaper, it has also become possi-

ble to have multiple runs of K-fold cross-validation, for example, 10×10-

488 19 Design and Analysis of Machine Learning Experiments

fold, and use average over averages to get more reliable error estimates

(Bouckaert 2003).

19.6.2 5×2 Cross-Validation

Dietterich (1998) proposed the 5×2 cross-validation, which uses training5× 2
cross-validation and validation sets of equal size. We divide the dataset X randomly into

two parts, X(1)
1 and X(2)

1 , which gives our first pair of training and vali-

dation sets, T1 = X(1)
1 and V1 = X(2)

1 . Then we swap the role of the two

halves and get the second pair: T2 = X(2)
1 and V2 = X(1)

1 . This is the first

fold; X(j)
i denotes half j of fold i.

To get the second fold, we shuffle X randomly and divide this new fold

into two, X(1)
2 and X(2)

2 . This can be implemented by drawing these from

X randomly without replacement, namely, X(1)
1 ∪X(2)

1 = X(1)
2 ∪X(2)

2 = X .
We then swap these two halves to get another pair. We do this for three

more folds and because from each fold, we get two pairs, doing five folds,

we get ten training and validation sets:

T1 = X(1)
1 V1 = X(2)

1

T2 = X(2)
1 V2 = X(1)

1

T3 = X(1)
2 V3 = X(2)

2

T4 = X(2)
2 V4 = X(1)

2
...

T9 = X(1)
5 V9 = X(2)

5

T10 = X(2)
5 V10 = X(1)

5

Of course, we can do this for more than five folds and get more train-

ing/validation sets, but Dietterich (1998) points out that after five folds,

the sets share many instances and overlap so much that the statistics

calculated from these sets, namely, validation error rates, become too de-

pendent and do not add new information. Even with five folds, the sets

overlap and the statistics are dependent, but we can get away with this

until five folds. On the other hand, if we do have fewer than five folds,

we get less data (fewer than ten sets) and will not have a large enough

sample to fit a distribution to and test our hypothesis on.

19.7 Measuring Classifier Performance 489

Table 19.1 Confusion matrix for two classes.

Predicted class

True Class Positive Negative Total

Positive tp : true positive fn : false negative p

Negative fp : false positive tn : true negative n

Total p′ n′ N

19.6.3 Bootstrapping

To generate multiple samples from a single sample, an alternative to

cross-validation is the bootstrap that generates new samples by draw-bootstrap

ing instances from the original sample with replacement. We saw the

use of bootstrapping in section 17.6 to generate training sets for differ-

ent learners in bagging. The bootstrap samples may overlap more than

cross-validation samples and hence their estimates are more dependent;

but is considered the best way to do resampling for very small datasets.

In the bootstrap, we sample N instances from a dataset of size N with

replacement. The original dataset is used as the validation set. The prob-

ability that we pick an instance is 1/N ; the probability that we do not pick

it is 1− 1/N . The probability that we do not pick it after N draws is(
1− 1

N

)N
≈ e−1 = 0.368

This means that the training data contains approximately 63.2 percent

of the instances; that is, the system will not have been trained on 36.8

percent of the data, and the error estimate will be pessimistic. The solu-

tion is replication, that is, to repeat the process many times and look at

the average behavior.

19.7 Measuring Classifier Performance

For classification, especially for two-class problems, a variety of measures

has been proposed. There are four possible cases, as shown in table 19.1.

For a positive example, if the prediction is also positive, this is a true

positive; if our prediction is negative for a positive example, this is a false

negative. For a negative example, if the prediction is also negative, we

490 19 Design and Analysis of Machine Learning Experiments

Table 19.2 Performance measures used in two-class problems.

Name Formula

error (fp + fn)/N
accuracy (tp + tn)/N = 1−error
tp-rate tp/p

fp-rate fp/n

precision tp/p′

recall tp/p = tp-rate

sensitivity tp/p = tp-rate

specificity tn/n = 1− fp-rate

have a true negative, and we have a false positive if we predict a negative

example as positive.

In some two-class problems, we make a distinction between the two

classes and hence the two type of errors, false positives and false neg-

atives. Different measures appropriate in different settings are given in

table 19.2. Let us envisage an authentication application where, for ex-

ample, users log on to their accounts by voice. A false positive is wrongly

logging on an impostor and a false negative is refusing a valid user. It is

clear that the two type of errors are not equally bad; the former is much

worse. True positive rate, tp-rate, also known as hit rate, measures what

proportion of valid users we authenticate and false positive rate, fp-rate,

also known as false alarm rate, is the proportion of impostors we wrongly

accept.

Let us say the system returns P̂(C1|x), the probability of the positive
class, and for the negative class, we have P̂(C2|x) = 1 − P̂ (C1|x), and we

choose “positive” if P̂ (C1|x) > θ. If θ is close to 1, we hardly choose the

positive class; that is, we will have no false positives but also few true

positives. As we decrease θ to increase the number of true positives, we

risk introducing false positives.

For different values of θ, we can get a number of pairs of (tp-rate,

fp-rate) values and by connecting them we get the receiver operatingreceiver operating

characteristics characteristics (ROC) curve, as shown in figure 19.3a. Note that differ-

ent values of θ correspond to different loss matrices for the two types of

error and the ROC curve can also be seen as the behavior of a classifier

19.7 Measuring Classifier Performance 491

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Figure 19.3 (a) Typical ROC curve. Each classifier has a threshold that allows

us to move over this curve, and we decide on a point, based on the relative

importance of hits versus false alarms, namely, true positives and false positives.

The area below the ROC curve is called AUC. (b) A classifier is preferred if its ROC

curve is closer to the upper-left corner (larger AUC). B and C are preferred over

A; B and C are preferred under different loss matrices.

under different loss matrices (see exercise 1).

Ideally, a classifier has a tp-rate of 1 and a fp-rate of 0, and hence a

classifier is better the more it gets closer to the upper-left corner. On

the diagonal, we make as many true decisions as false ones, and this is

the worst one can do (any classifier that is below the diagonal can be

improved by flipping its decision). Given two classifiers, we can say one

is better than the other one if it is above the other one; if two ROC curves

intersect, we can say that the two classifiers are better under different

loss conditions, as seen in figure 19.3b.

ROC allows a visual analysis; if we want to reduce the curve to a single

number we can do this by calculating the area under the curve (AUC) . AArea under the

curve classifier ideally has an AUC of 1 and AUC values of different classifiers

can be compared to give us a general performance averaged over different

loss conditions.

In information retrieval, there is a database of records; we make ainformation

retrieval

492 19 Design and Analysis of Machine Learning Experiments

ba

a

+

ca

a

+

Figure 19.4 (a) Definition of precision and recall using Venn diagrams. (b) Pre-

cision is 1; all the retrieved records are relevant but there may be relevant ones

not retrieved. (c) Recall is 1; all the relevant records are retrieved but there may

also be irrelevant records that are retrieved.

query, for example, by using some keywords, and a system (basically

a two-class classifier) returns a number of records. In the database, there

are relevant records and for a query, the system may retrieve some of

them (true positives) but probably not all (false negatives); it may also

wrongly retrieve records that are not relevant (false positives). The set of

relevant and retrieved records can be visualized using a Venn diagram, as

shown in figure 19.4a. Precision is the number of retrieved and relevantprecision

records divided by the total number of retrieved records; if precision is

1, all the retrieved records may be relevant but there may still be records

that are relevant but not retrieved. Recall is the number of retrieved rel-recall

evant records divided by the total number of relevant records; even if

recall is 1, all the relevant records may be retrieved but there may also

be irrelevant records that are retrieved, as shown in figure19.4c. As in

the ROC curve, for different threshold values, one can draw a curve for

precision vs. recall.

19.8 Interval Estimation 493

From another perspective but with the same aim, there are the two

measures of sensitivity and specificity. Sensitivity is the same as tp-ratesensitivity

specificity and recall. Specificity is how well we detect the negatives, which is the

number of true negatives divided by the total number of negatives; this

is equal to 1 minus the false alarm rate. One can also draw a sensitivity

vs. specificity curve using different thresholds.

In the case of K > 2 classes, if we are using 0/1 error, the class confu-class confusion

matrix sion matrix is a K×K matrix whose entry (i, j) contains the number of in-

stances that belong to Ci but are assigned to Cj . Ideally, all off-diagonals
should be 0, for no misclassification. The class confusion matrix allows

us to pinpoint what types of misclassification occur, namely, if there are

two classes that are frequently confused. Or, one can define K separate

two-class problems, each one separating one class from the other K − 1.

19.8 Interval Estimation

Let us now do a quick review of interval estimation that we will use in hy-interval estimation

pothesis testing. A point estimator, for example, the maximum likelihood

estimator, specifies a value for a parameter θ. In interval estimation, we

specify an interval within which θ lies with a certain degree of confidence.

To obtain such an interval estimator, we make use of the probability dis-

tribution of the point estimator.

For example, let us say we are trying to estimate the mean μ of a normal

density from a sample X = {xt}Nt=1. m = ∑
t x

t/N is the sample average

and is the point estimator to the mean. m is the sum of normals and

therefore is also normal, m ∼N (μ,σ 2/N). We define the statistic with a

unit normal distribution:unit normal

distribution

(m− μ)
σ/
√
N

∼ Z(19.1)

We know that 95 percent of Z lies in (−1.96,1.96), namely, P{−1.96 <
Z < 1.96} = 0.95, and we can write (see figure 19.5)

P

{
−1.96 <

√
N
(m − μ)

σ
< 1.96

}
= 0.95

or equivalently

P

{
m− 1.96

σ√
N
< μ < m+ 1.96

σ√
N

}
= 0.95

494 19 Design and Analysis of Machine Learning Experiments

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Unit Normal Z=N(0,1)

x

p(
x)

2.5% 2.5%

Figure 19.5 95 percent of the unit normal distribution lies between −1.96 and
1.96.

That is “with 95 percent confidence,” μ will lie within 1.96σ/
√
N units

of the sample average. This is a two-sided confidence interval. With 99two-sided

confidence

interval

percent confidence, μ will lie in (m − 2.58σ/
√
N,m + 2.58σ/

√
N); that

is, if we want more confidence, the interval gets larger. The interval gets

smaller as N , the sample size, increases.

This can be generalized for any required confidence as follows. Let us

denote zα such that

P {Z > zα} = α, 0 < α < 1

Because Z is symmetric around the mean, z1−α/2 = −zα/2, and P{X <

−zα/2} = P{X > zα/2} = α/2. Hence for any specified level of confidence
1−α, we have

P
{−zα/2 < Z < zα/2} = 1−α

and

P

{
−zα/2 <

√
N
(m− μ)

σ
< zα/2

}
= 1−α

19.8 Interval Estimation 495

or

P

{
m− zα/2 σ√

N
< μ < m + zα/2 σ√

N

}
= 1−α(19.2)

Hence a 100(1 − α) percent two-sided confidence interval for μ can be

computed for any α.

Similarly, knowing that P{Z < 1.64} = 0.95, we have (see figure 19.6)

P

{√
N
(m − μ)

σ
< 1.64

}
= 0.95

or

P

{
m− 1.64

σ√
N
< μ

}
= 0.95

and (m − 1.64σ/
√
N,∞) is a 95 percent one-sided upper confidence in-one-sided

confidence

interval

terval for μ, which defines a lower bound. Generalizing, a 100(1 − α)
percent one-sided confidence interval for μ can be computed from

P

{
m− zα σ√

N
< μ

}
= 1−α(19.3)

Similarly, the one-sided lower confidence interval that defines an upper

bound can also be calculated.

In the previous intervals, we used σ ; that is, we assumed that the vari-

ance is known. If it is not, one can plug the sample variance

S2 =
∑
t

(xt −m)2/(N − 1)

instead of σ 2. We know that when xt ∼ N (μ,σ 2), (N − 1)S2/σ 2 is chi-

square with N − 1 degrees of freedom. We also know that m and S2 are

independent. Then,
√
N(m − μ)/S is t-distributed with N − 1 degrees of

freedom (section A.3.7), denoted as
√
N(m− μ)

S
∼ tN−1(19.4)

Hence for any α ∈ (0,1/2), we can define an interval, using the values

specified by the t distribution, instead of the unit normal Zt distribution

P

{
t1−α/2,N−1 <

√
N
(m− μ)

S
< tα/2,N−1

}
= 1−α

or using t1−α/2,N−1 = −tα/2,N−1, we can write

P

{
m− tα/2,N−1 S√

N
< μ < m + tα/2,N−1 S√

N

}
= 1−α

496 19 Design and Analysis of Machine Learning Experiments

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Unit Normal Z=N(0,1)

x

p(
x)

 5%

Figure 19.6 95 percent of the unit normal distribution lies before 1.64.

Similarly, one-sided confidence intervals can be defined. The t distri-

bution has larger spread (longer tails) than the unit normal distribution,

and generally the interval given by the t is larger; this should be expected

since additional uncertainty exists due to the unknown variance.

19.9 Hypothesis Testing

Instead of explicitly estimating some parameters, in certain applications

we may want to use the sample to test some particular hypothesis con-

cerning the parameters. For example, instead of estimating the mean,

we may want to test whether the mean is less than 0.02. If the random

sample is consistent with the hypothesis under consideration, we “fail to

reject” the hypothesis; otherwise, we say that it is “rejected.” But when

we make such a decision, we are not really saying that it is true or false

but rather that the sample data appears to be consistent with it to a given

degree of confidence or not.

In hypothesis testing, the approach is as follows. We define a statistichypothesis testing

19.9 Hypothesis Testing 497

Table 19.3 Type I error, type II error, and power of a test.

Decision

Truth Fail to reject Reject

True Correct Type I error

False Type II error Correct (power)

that obeys a certain distribution if the hypothesis is correct. If the statis-

tic calculated from the sample has very low probability of being drawn

from this distribution, then we reject the hypothesis; otherwise, we fail

to reject it.

Let us say we have a sample from a normal distribution with unknown

mean μ and known variance σ 2, and we want to test a specific hypothesis

about μ, for example, whether it is equal to a specified constant μ0. It is

denoted as H0 and is called the null hypothesisnull hypothesis

H0 : μ = μ0
against the alternative hypothesis

H1 : μ �= μ0
m is the point estimate of μ, and it is reasonable to reject H0 ifm is too

far from μ0. This is where the interval estimate is used. We fail to reject

the hypothesis with level of significance α if μ0 lies in the 100(1 − α)level of

significance percent confidence interval, namely, if
√
N(m− μ0)

σ
∈ (−zα/2, zα/2)(19.5)

We reject the null hypothesis if it falls outside, on either side. This is a

two-sided test.two-sided test

If we reject when the hypothesis is correct, this is a type I error andtype I error

thus α, set before the test, defines how much type I error we can tolerate,

typical values being α = 0.1,0.05,0.01 (see table 19.3). A type II error istype II error

if we fail to reject the null hypothesis when the true mean μ is unequal

to μ0. The probability that H0 is not rejected when the true mean is μ is

a function of μ and is given as

β(μ) = Pμ
{
−zα/2 ≤ m− μ0

σ/
√
N
≤ zα/2

}
(19.6)

498 19 Design and Analysis of Machine Learning Experiments

1 − β(μ) is called the power function of the test and is equal to thepower function

probability of rejection when μ is the true value. Type II error probability

increases as μ and μ0 gets closer, and we can calculate how large a sample

we need for us to be able to detect a difference δ = |μ−μ0| with sufficient

power.

One can also have a one-sided test of the formone-sided test

H0 : μ ≤ μ0 vs H1 : μ > μ0

as opposed to the two-sided test when the alternative hypothesis is μ �=
μ0. The one-sided test with α level of significance defines the 100(1−α)
confidence interval bounded on one side in which m should lie for the

hypothesis not to be rejected. We fail to reject if
√
N

σ
(m− μ0) ∈ (−∞, zα)(19.7)

and reject outside. Note that the null hypothesis H0 also allows equality,

which means that we get ordering information only if the test rejects.

This tells us which of the two one-sided tests we should use. Whatever

claim we have should be in H1 so that rejection of the test would support

our claim.

If the variance is unknown, just as we did in the interval estimates, we

use the sample variance instead of the population variance and the fact

that
√
N(m− μ0)

S
∼ tN−1(19.8)

For example, for H0 : μ = μ0 vs H1 : μ �= μ0, we fail to reject at signifi-

cance level α if
√
N(m− μ0)

S
∈ (−tα/2,N−1, tα/2,N−1)(19.9)

which is known as the two-sided t test. A one-sided t test can be definedt test

similarly.

19.10 Assessing a Classification Algorithm’s Performance

Now that we have reviewed hypothesis testing, we are ready to see how

it is used in testing error rates. We will discuss the case of classifica-

tion error, but the same methodology applies for squared error in re-

gression, log likelihoods in unsupervised learning, expected reward in

19.10 Assessing a Classification Algorithm’s Performance 499

reinforcement learning, and so on, as long as we can write the appropri-

ate parametric form for the sampling distribution. We will also discuss

nonparametric tests when no such parametric form can be found.

We now start with error rate assessment, and, in the next section, we

discuss error rate comparison.

19.10.1 Binomial Test

Let us start with the case where we have a single training set T and a

single validation set V . We train our classifier on T and test it on V . We

denote by p the probability that the classifier makes a misclassification

error. We do not know p; it is what we would like to estimate or test a

hypothesis about. On the instance with index t from the validation set

V , let us say xt denotes the correctness of the classifier’s decision: xt is

a 0/1 Bernoulli random variable that takes the value 1 when the classi-

fier commits an error and 0 when the classifier is correct. The binomial

random variable X denotes the total number of errors:

X =
N∑
t=1

xt

We would like to test whether the error probability p is less than or

equal to some value p0 we specify:

H0 : p ≤ p0 vs. H1 : p > p0

If the probability of error is p, the probability that the classifier com-

mits j errors out of N is

P{X = j} =
(
N

j

)
pj(1− p)N−j

It is reasonable to reject p ≤ p0 if in such a case, the probability that

we see X = e errors or more is very unlikely. That is, the binomial testbinomial test

rejects the hypothesis if

P{X ≥ e} =
N∑
x=e

(
N

x

)
p0

x(1− p0)N−x < α(19.10)

where α is the significance, for example, 0.05.

500 19 Design and Analysis of Machine Learning Experiments

19.10.2 Approximate Normal Test

If p is the probability of error, our point estimate is p̂ = X/N . Then, it is
reasonable to reject the null hypothesis if p̂ is much larger than p0. How

large is large enough is given by the sampling distribution of p̂ and the

significance α.

Because X is the sum of independent random variables from the same

distribution, the central limit theorem states that for large N , X/N is

approximately normal with mean p0 and variance p0(1− p0). Then
X/N − p0√
p0(1− p0)

∼̇Z(19.11)

where ∼̇ denotes “approximately distributed.” Then, using equation 19.7,

the approximate normal test rejects the null hypothesis if this value forapproximate

normal test X = e is greater than zα. z0.05 is 1.64. This approximation will work well

as long as N is not too small and p is not very close to 0 or 1; as a rule of

thumb, we require Np ≥ 5 and N(1− p) ≥ 5.

19.10.3 t Test

The two tests we discussed earlier use a single validation set. If we run

the algorithm K times, on K training/validation set pairs, we get K error

percentages, pi, i = 1, . . . , K on the K validation sets. Let xti be 1 if the

classifier trained on Ti makes a misclassification error on instance t of

Vi ; x
t
i is 0 otherwise. Then

pi =
∑N
t=1 x

t
i

N

Given that

m =
∑K
i=1 pi
K

, S2 =
∑K
i=1(pi −m)2
K − 1

from equation 19.8, we know that we have
√
K(m− p0)

S
∼ tK−1(19.12)

and the t test rejects the null hypothesis that the classification algorithm

has p0 or less error percentage at significance level α if this value is

greater than tα,K−1. Typically, K is taken as 10 or 30. t0.05,9 = 1.83 and

t0.05,29 = 1.70.

19.11 Comparing Two Classification Algorithms 501

19.11 Comparing Two Classification Algorithms

Given two learning algorithms, we want to compare and test whether they

construct classifiers that have the same expected error rate.

19.11.1 McNemar’s Test

Given a training set and a validation set, we use two algorithms to train

two classifiers on the training set and test them on the validation set

and compute their errors. A contingency table, like the one shown here,contingency table

is an array of natural numbers in matrix form representing counts, or

frequencies:

e00: Number of examples e01: Number of examples

misclassified by both misclassified by 1 but not 2

e10: Number of examples e11: Number of examples

misclassified by 2 but not 1 correctly classified by both

Under the null hypothesis that the classification algorithms have the

same error rate, we expect e01 = e10 and these to be equal to (e01+e10)/2.
We have the chi-square statistic with one degree of freedom

(|e01 − e10| − 1)2

e01 + e10
∼ X2

1(19.13)

and McNemar’s test rejects the hypothesis that the two classification al-McNemar’s test

gorithms have the same error rate at significance level α if this value is

greater than X2
α,1. For α = 0.05, X2

0.05,1 = 3.84.

19.11.2 K-Fold Cross-Validated Paired t Test

This set usesK-fold cross-validation to get K training/validation set pairs.

We use the two classification algorithms to train on the training sets

Ti , i = 1, . . . , K, and test on the validation sets Vi . The error percentages

of the classifiers on the validation sets are recorded as p1i and p
2
i .

If the two classification algorithms have the same error rate, then we

expect them to have the samemean, or equivalently, that the difference of

their means is 0. The difference in error rates on fold i is pi = p1i −p2i . This
is a paired test; that is, for each i, both algorithms see the same trainingpaired test

and validation sets. When this is done K times, we have a distribution

of pi containing K points. Given that p1i and p
2
i are both (approximately)

502 19 Design and Analysis of Machine Learning Experiments

normal, their difference pi is also normal. The null hypothesis is that this

distribution has 0 mean:

H0 : μ = 0 vs. H1 : μ �= 0

We define

m =
∑K
i=1 pi
K

, S2 =
∑K
i=1(pi −m)2
K − 1

Under the null hypothesis that μ = 0, we have a statistic that is t-

distributed with K − 1 degrees of freedom:
√
K(m− 0)

S
=
√
K ·m
S

∼ tK−1(19.14)

Thus the K-fold cv paired t test rejects the hypothesis that two clas-K-fold cv paired t

test sification algorithms have the same error rate at significance level α if

this value is outside the interval (−tα/2,K−1, tα/2,K−1). t0.025,9 = 2.26 and

t0.025,29 = 2.05.

If we want to test whether the first algorithm has less error than the

second, we need a one-sided hypothesis and use a one-tailed test:

H0 : μ ≥ 0 vs. H1 : μ < 0

If the test rejects, our claim that the first one has significantly less error

is supported.

19.11.3 5 × 2 cv Paired t Test

In the 5 × 2 cv t test, proposed by Dietterich (1998), we perform five

replications of twofold cross-validation. In each replication, the dataset is

divided into two equal-sized sets. p
(j)
i is the difference between the error

rates of the two classifiers on fold j = 1,2 of replication i = 1, . . . ,5. The

average on replication i is pi = (p(1)i +p(2)i)/2, and the estimated variance

is s2i = (p(1)i − pi)2 + (p(2)i − pi)2.
Under the null hypothesis that the two classification algorithms have

the same error rate, p
(j)
i is the difference of two identically distributed

proportions, and ignoring the fact that these proportions are not inde-

pendent, p
(j)
i can be treated as approximately normal distributed with

0 mean and unknown variance σ 2. Then p
(j)
i /σ is approximately unit

normal. If we assume p(1)i and p(2)i are independent normals (which is

not strictly true because their training and test sets are not drawn inde-

pendently of each other), then s2i /σ
2 has a chi-square distribution with

19.11 Comparing Two Classification Algorithms 503

one degree of freedom. If each of the s2i are assumed to be independent

(which is not true because they are all computed from the same set of

available data), then their sum is chi-square with five degrees of freedom:

M =
∑5
i=1 s

2
i

σ 2
∼ X2

5

and

t = p
(1)
1 /σ√
M/5

= p
(1)
1√∑5

i=1 s
2
i /5

∼ t5(19.15)

giving us a t statistic with five degrees of freedom. The 5 × 2 cv paired t5×2 cv paired t test

test rejects the hypothesis that the two classification algorithms have the

same error rate at significance level α if this value is outside the interval

(−tα/2,5, tα/2,5). t0.025,5 = 2.57.

19.11.4 5 × 2 cv Paired F Test

We note that the numerator in equation 19.15, p(1)1 , is arbitrary; actually,

ten different values can be placed in the numerator, namely, p
(j)
i , j =

1,2, i = 1, . . . ,5, leading to ten possible statistics:

t
(j)
i = p

(j)
i√∑5

i=1 s
2
i /5

(19.16)

Alpaydın (1999) proposed an extension to the 5 × 2 cv t test that

combines the results of the ten possible statistics. If p
(j)
i /σ ∼ Z, then(

p
(j)
i

)2
/σ 2 ∼ X2

1 and their sum is chi-square with ten degrees of free-

dom:

N =
∑5
i=1

∑2
j=1

(
p
(j)
i

)2
σ 2

∼ X2
10

Placing this in the numerator of equation 19.15, we get a statistic that

is the ratio of two chi-square distributed random variables. Two such

variables divided by their respective degrees of freedom is F -distributed

with ten and five degrees of freedom (section A.3.8):

f = N/10

M/5
=
∑5
i=1

∑2
j=1

(
p
(j)
i

)2
2
∑5
i=1 s

2
i

∼ F10,5(19.17)

5 × 2 cv paired F test rejects the hypothesis that the classification algo-5× 2 cv paired F

test rithms have the same error rate at significance level α if this value is

greater than Fα,10,5. F0.05,10,5 = 4.74.

504 19 Design and Analysis of Machine Learning Experiments

19.12 Comparing Multiple Algorithms: Analysis of Variance

In many cases, we have more than two algorithms, and we would like

to compare their expected error. Given L algorithms, we train them on K

training sets, induce K classifiers with each algorithm, and then test them

on K validation sets and record their error rates. This gives us L groups

of K values. The problem then is the comparison of these L samples

for statistically significant difference. This is an experiment with a single

factor with L levels, the learning algorithms, and there are K replications

for each level.

In analysis of variance (ANOVA), we consider L independent samples,analysis of

variance each of size K, composed of normal random variables of unknown mean

μj and unknown common variance σ 2:

Xij ∼N (μj , σ
2), j = 1, . . . , L, i = 1, . . . , K,

We are interested in testing the hypothesis H0 that all means are equal:

H0 : μ1 = μ2 = · · · = μL vs. H1 : μr �= μs, for at least one pair (r, s)
The comparison of error rates of multiple classification algorithms fits

this scheme. We have L classification algorithms, and we have their error

rates on K validation folds. Xij is the number of validation errors made

by the classifier, which is trained by classification algorithm j on fold i.

Each Xij is binomial and approximately normal. If H0 is not rejected, we

fail to find a significant error difference among the error rates of the L

classification algorithms. This is therefore a generalization of the tests

we saw in section 19.11 that compared the error rates of two classifica-

tion algorithms. The L classification algorithms may be different or may

use different hyperparameters, for example, number of hidden units in a

multilayer perceptron, number of neighbors in k-nn, and so forth.

The approach in ANOVA is to derive two estimators of σ 2. One estima-

tor is designed such that it is true only when H0 is true, and the second is

always a valid estimator, regardless of whether H0 is true or not. ANOVA

then rejects H0, namely, that the L samples are drawn from the same

population, if the two estimators differ significantly.

Our first estimator to σ 2 is valid only if the hypothesis is true, namely,

μj = μ, j = 1, . . . , L. If Xij ∼N (μ,σ 2), then the group average

mj =
K∑
i=1

Xij

K

19.12 Comparing Multiple Algorithms: Analysis of Variance 505

is also normal with mean μ and variance σ 2/K. If the hypothesis is true,

thenmj, j = 1, . . . , L are L instances drawn fromN (μ,σ 2/K). Then their

mean and variance are

m =
∑L
j=1mj

L
, S2 =

∑
j (mj −m)2
L− 1

Thus an estimator of σ 2 is K · S2, namely,

σ̂ 2
b = K

L∑
j=1

(mj −m)2
L− 1

(19.18)

Each of mj is normal and (L − 1)S2/(σ 2/K) is chi-square with (L − 1)

degrees of freedom. Then, we have

∑
j

(mj −m)2
σ 2/K

∼ X2
L−1(19.19)

We define SSb, the between-group sum of squares, as

SSb ≡ K
∑
j

(mj −m)2

So, when H0 is true, we have

SSb

σ 2
∼ X2

L−1(19.20)

Our second estimator of σ 2 is the average of group variances, S2j , de-

fined as

S2j =
∑K
i=1(Xij −mj)

2

K − 1

and their average is

σ̂ 2
w =

L∑
j=1

S2j

L
=
∑
j

∑
i

(Xij −mj)
2

L(K − 1)
(19.21)

We define SSw , the within-group sum of squares:

SSw ≡
∑
j

∑
i

(Xij −mj)
2

Remembering that for a normal sample, we have

(K − 1)
S2j

σ 2
∼ X2

K−1

506 19 Design and Analysis of Machine Learning Experiments

and that the sum of chi-squares is also a chi-square, we have

(K − 1)
L∑
j=1

S2j

σ 2
∼ X2

L(K−1)

So

SSw

σ 2
∼ X2

L(K−1)(19.22)

Then we have the task of comparing two variances for equality, which

we can do by checking whether their ratio is close to 1. The ratio of

two independent chi-square random variables divided by their respective

degrees of freedom is a random variable that is F -distributed, and hence

when H0 is true, we have

F0 =
(
SSb/σ

2

L− 1

)/(
SSw/σ

2

L(K − 1)

)
= SSb/(L− 1)

SSw/(L(K − 1))
= σ̂ 2

b

σ̂ 2
w

∼ FL−1,L(K−1)(19.23)

For any given significance value α, the hypothesis that the L classifi-

cation algorithms have the same expected error rate is rejected if this

statistic is greater than Fα,L−1,L(K−1).
Note that we are rejecting if the two estimators disagree significantly.

If H0 is not true, then the variance of mj around m will be larger than

what we would normally have if H0 were true, and hence if H0 is not true,

the first estimator σ̂ 2
b will overestimate σ 2, and the ratio will be greater

than 1. For α = 0.05, L = 5 and K = 10, F0.05,4,45 = 2.6. If Xij vary around

m with a variance of σ 2, then if H0 is true, mj vary around m by σ 2/K.

If it seems as if they vary more, then H0 should be rejected because the

displacement of mj around m is more than what can be explained by

some constant added noise.

The name analysis of variance is derived from a partitioning of the total

variability in the data into its components.

SST ≡
∑
j

∑
i

(Xij −m)2(19.24)

SST divided by its degree of freedom, namely, K · L − 1 (there are K ·
L data points, and we lose one degree of freedom because m is fixed),

gives us the sample variance of Xij . It can be shown that (exercise 5) the

total sum of squares can be split into between-group sum of squares and

within-group sum of squares

SST = SSb + SSw(19.25)

19.12 Comparing Multiple Algorithms: Analysis of Variance 507

Table 19.4 The analysis of variance (ANOVA) table for a single factor model.

Source of Sum of Degrees of Mean

variation squares freedom square F0

Between SSb ≡
groups K

∑
j(mj −m)2 L− 1 MSb = SSb

L−1
MSb
MSw

Within SSw ≡
groups

∑
j

∑
i(Xij −mj)

2 L(K − 1) MSw = SSw
L(K−1)

Total SST ≡∑
j

∑
i(Xij −m)2 L ·K − 1

Results of ANOVA are reported in an ANOVA table as shown in ta-

ble 19.4. This is the basic one-way analysis of variance where there is a

single factor, for example, learning algorithm. We may consider experi-

ments with multiple factors, for example, we can have one factor for clas-

sification algorithms and another factor for feature extraction algorithms

used before, and this will be a two-factor experiment with interaction.

If the hypothesis is rejected, we only know that there is some difference

between the L groups but we do not know where. For this, we do posthocposthoc testing

testing, that is, an additional set of tests involving subsets of groups, for

example, pairs.

Fisher’s least square difference test (LSD) compares groups in a pairwiseleast square

difference test manner. For each group, we have mi ∼ N (μi, σ
2
w = MSw/K) and mi −

mj ∼N (μi −μj ,2σ 2
w). Then, under the null hypothesis that H0 : μi = μj ,

we have

t = mi −mj√
2σw

∼ tL(K−1)

We reject H0 in favor of the alternative hypothesis H1 : μ1 �= μ2 if

|t| > tα/2,L(K−1). Similarly, one-sided tests can be defined to find pairwise
orderings.

When we do a number of tests to draw one conclusion, this is called

multiple comparisons, and we need to keep in mind that if T hypothesesmultiple

comparisons are to be tested, each at significance level α, then the probability that at

least one hypothesis is incorrectly rejected is at most Tα. For example,

508 19 Design and Analysis of Machine Learning Experiments

the probability that six confidence intervals, each calculated at 95 percent

individual confidence intervals, will simultaneously be correct is at least

70 percent. Thus to ensure that the overall confidence interval is at least

100(1−α), each confidence interval should be set at 100(1−α/T). This
is called a Bonferroni correction.Bonferroni

correction Sometimes it may be the case that ANOVA rejects and none of the

posthoc pairwise tests find a significant difference. In such a case, our

conclusion is that there is a difference between the means but that we

need more data to be able to pinpoint the source of the difference.

Note that the main cost is the training and testing of L classification

algorithms on K training/validation sets. Once this is done and the values

are stored in a K×L table, calculating the ANOVA or pairwise comparison

test statistics from those is very cheap in comparison.

19.13 Comparison over Multiple Datasets

Let us say we want to compare two or more algorithms on several datasets

and not one. What makes this different is that an algorithm depending on

how well its inductive bias matches the problem will behave differently

on different datasets, and these error values on different datasets cannot

be said to be normally distributed around some mean accuracy. This im-

plies that the parametric tests that we discussed in the previous sections

based on binomials being approximately normal are no longer applicable

and we need to resort to nonparametric tests. The advantage of havingnonparametric

tests such tests is that we can also use them for comparing other statistics that

are not normal, for example, training times, number of free parameters,

and so on.

Parametric tests are generally robust to slight departures from normal-

ity, especially if the sample is large. Nonparametric tests are distribution

free but are less efficient; that is, if both are applicable, a parametric test

should be preferred. The corresponding nonparametric test will require a

larger sample to achieve the same power. Nonparametric tests assume no

knowledge about the distribution of the underlying population but only

that the values can be compared or ordered, and, as we will see, such

tests make use of this order information.

When we have an algorithm trained on a number of different datasets,

the average of its errors on these datasets is not a meaningful value, and,

for example, we cannot use such averages to compare two algorithms A

19.13 Comparison over Multiple Datasets 509

and B. To compare two algorithms, the only piece of information we can

use is if on any dataset, A is more accurate than B; we can then count the

number of times A is more accurate than B and check whether this could

have been by chance if they indeed were equally accurate. With more than

two algorithms, we will look at the average ranks of the learners trained

by different algorithms. Nonparametric tests basically use this rank data

and not the absolute values.

Before proceeding with the details of these tests, it should be stressed

that it does not make sense to compare error rates of algorithms on a

whole variety of applications. Because there is no such thing as the “best

learning algorithm,” such tests would not be conclusive. However, we can

compare algorithms on a number of datasets, or versions, of the same ap-

plication. For example, we may have a number of different datasets for

face recognition but with different properties (resolution, lighting, num-

ber of subjects, and so on), and we may use a nonparametric test to

compare algorithms on those; different properties of the datasets would

make it impossible for us to lump images from different datasets to-

gether in a single set, but we can train algorithms separately on different

datasets, obtain ranks separately, and then combine these to get an over-

all decision.

19.13.1 Comparing Two Algorithms

Let us say we want to compare two algorithms. We both train and validate

them on i = 1, . . . , N different datasets in a paired manner—that is, all the

conditions except the different algorithms should be identical. We get

results e1i and e
2
i and if we use K-fold cross-validation on each dataset,

these are averages or medians of the K values. The sign test is based onsign test

the idea that if the two algorithms have equal error, on each dataset, there

should be 1/2 probability that the first has less error than the second, and

thus we expect the first to win on N/2 datasets. Let us define

Xi =
{

1 if e1i < e
2
i

0 otherwise
and X =

N∑
i=1

Xi

Let us say we want to test

H0 : μ1 ≥ μ2 vs. H1 : μ1 < μ2

510 19 Design and Analysis of Machine Learning Experiments

If the null hypothesis is correct, X is binomial in N trials with p = 1/2.

Let us say that we saw that the first one wins on X = e datasets. Then,

the probability that we have e or less wins when indeed p = 1/2 is

P{X ≤ e} =
e∑

x=0

(
N

x

)(
1

2

)x (1
2

)N−x

and we reject if this probability is too small, that is, less than α. If there

are ties, we divide them equally to both sides; that is, if there are t ties,

we add t/2 to e (if t is odd, we ignore the odd one and decrease N by 1).

In testing

H0 : μ1 ≤ μ2 vs. H1 : μ1 > μ2

we reject if P{X ≥ e} < α.
For the two-sided test

H0 : μ1 = μ2 vs. H1 : μ1 �= μ2
we reject if e is too small or too large. If e < N/2, we reject if 2P{X ≤
e} < α; if e > N/2, we reject if 2P{X ≥ e} < α—we need to find the

corresponding tail, and we multiply it by 2 because it is a two-tailed test.

As we discussed before, nonparametric tests can be used to compare

any measurements, for example, training times. In such a case, we see

the advantage of a nonparametric test that uses order rather than aver-

ages of absolute values. Let us say we compare two algorithms on ten

datasets, nine of which are small and have training times for both algo-

rithms on the order of minutes, and one that is very large and whose

training time is on the order of a day. If we use a parametric test and

take the average of training times, the single large dataset will dominate

the decision, but when we use the nonparameric test and compare values

separately on each dataset, using the order will have the effect of normal-

izing separately for each dataset and hence will help us make a robust

decision.

We can also use the sign test as a one sample test, for example, to

check if the average error on all datasets is less than two percent, by

comparing μ1 not by the mean of a second population but by a constant

μ0. We can do this simply by plugging the constant μ0 in place of all

observations from a second sample and using the procedure used earlier;

that is, we will count how many times we get more or less than 0.02 and

check if this is too unlikely under the null hypothesis. For largeN , normal

19.13 Comparison over Multiple Datasets 511

approximation to the binomial can be used (exercise 6), but in practice,

the number of datasets may be smaller than 20. Note that the sign test

is a test on the median of a population, which is equal to the mean if the

distribution is symmetric.

The sign test only uses the sign of the difference and not its magnitude,

but we may envisage a case where the first algorithm, when it wins, al-

ways wins by a large margin whereas the second algorithm, when it wins,

always wins barely. The Wilcoxon signed rank test uses both the sign andWilcoxon signed

rank test the magniture of differences, as follows:

Let us say, additional to the sign of differences, we also calculate mi =
|e1i −e2i | and then we order them so that the smallest, mini mi , is assigned

rank 1, the next smallest is assigned rank 2, and so on. If there are ties,

their ranks are given the average value that they would receive if they

differed slightly. For example, if the magnitudes are 2,1,2,4, the ranks

are 2.5,1,2.5,4. We then calculate w+ as the sum of all ranks whose signs

are positive and w− as the sum of all ranks whose signs are negative.

The null hypothesis μ1 ≤ μ2 can be rejected in favor of the alternative

μ1 > μ2 only if w+ is much smaller than w−. Similarly, the two-sided

hypothesis μ1 = μ2 can be rejected in favor of the alternative μ1 �= μ2
only if either w+ or w−, that is, w = min(w+, w−), is very small. The

critical values for the Wilcoxon signed rank test are tabulated and for

N > 20, normal approximations can be used.

19.13.2 Multiple Algorithms

The Kruskal-Wallis test is the nonparametric version of ANOVA and isKruskal-Wallis test

a multiple sample generalization of a rank test. Given the M = L · N
observations, for example, error rates, of L algorithms on N datasets,

Xij , i = 1, . . . , L, j = 1, . . . , N , we rank them from the smallest to the

largest and assign them ranks, Rij , between 1 and M , again taking av-

erages in case of ties. If the null hypothesis

H0 : μ1 = μ2 = · · · = μL
is true, then the average of ranks of algorithm i should be approximately

halfway between 1 and M , that is, (M + 1)/2. We denote the sample

average rank of algorithm i by Ri• and we reject the hypothesis if the

average ranks seem to differ from halfway. The test statistic

H = 12

(M + 1)L

L∑
i=1

(
Ri• − M + 1

2

)

512 19 Design and Analysis of Machine Learning Experiments

is approximately chi-square distributed with L − 1 degrees of freedom

and we reject the null hypothesis if the statistic exceeds Xα,L−1.
Just like the parametric ANOVA, if the null hypothesis is rejected, we

can do posthoc testing to check for pairwise comparison of ranks. One

method for this is Tukey’s test, which makes use of the studentized rangeTukey’s test

statistic

q = Rmax − Rmin
σw

where Rmax and Rmin are the largest and smallest means (of ranks), re-

spectively, out of the L means, and σ 2
w is the average variance of ranks

around group rank averages. We reject that groups i and j have the same

ranks in favor of the alternative hypothesis that they are different if

|Ri• − Rj•| > qα(L, L(K − 1))σw

where qα(L, L(K − 1)) are tabulated. One-sided tests can also be defined

to order algorithms in terms of average rank.

Demsar (2006) proposes to use CD (critical difference) diagrams for

visualization. On a scale of 1 to L, we mark the averages, Ri•, and draw

lines of length given by the critical difference, qα(L, L(K−1))σw , between
groups, so that lines connect groups that are not statistically significantly

different.

19.14 Notes

The material related to experiment design follows the discussion from

(Montgomery 2005), which here is adapted for machine learning. A more

detailed discussion of interval estimation, hypothesis testing, and analy-

sis of variance can be found in any introductory statistics book, for ex-

ample, Ross 1987.

Dietterich (1998) discusses statistical tests and compares them on a

number of applications using different classification algorithms. A review

of ROC use and AUC calculation is given in Fawcett 2006. Demsar (2006)

reviews statistical tests for comparing classifiers over multiple datasets.

When we compare two or more algorithms, if the null hypothesis that

they have the same error rate is not rejected, we choose the simpler one,

namely, the one with less space or time complexity. That is, we use our

prior preference if the data does not prefer one in terms of error rate.

For example, if we compare a linear model and a nonlinear model and

19.15 Exercises 513

if the test does not reject that they have the same expected error rate,

we should go for the simpler linear model. Even if the test rejects, in

choosing one algorithm over another, error rate is only one of the criteria.

Other criteria like training (space/time) complexity, testing complexity,

and interpretability may override in practical applications.

This is how the posthoc test results are used in the MultiTest algorithm

(Yıldız and Alpaydın 2006) to generate a full ordering. We do L(L− 1)/2

one-sided pairwise tests to order the L algorithms, but it is very likely

that the tests will not give a full ordering but only a partial order. The

missing links are filled in using the prior complexity information to get a

full order. A topological sort gives an ordering of algorithms using both

types of information, error and complexity.

There are also tests to allow checking for contrasts. Let us say 1 and

2 are neural network methods and 3 and 4 are fuzzy logic methods. We

can then test whether the average of 1 and 2 differs from the average of

3 and 4, thereby allowing us to compare methods in general.

Another important point to note is that we are only assessing or com-

paring misclassifications. This implies that from our point of view, all

misclassifications have the same cost. When this is not the case, our

tests should be based on risks taking a suitable loss function into ac-

count. Not much work has been done in this area. Similarly, these tests

should be generalized from classification to regression, so as to be able

to assess the mean square errors of regression algorithms, or to be able

to compare the errors of two regression algorithms.

In comparing two classification algorithms, note that we are testing

only whether they have the same expected error rate. If they do, this

does not mean that they make the same errors. This is an idea that we

used in chapter 17; we can combine multiple models to improve accuracy

if different classifiers make different errors.

19.15 Exercises

1. In a two-class problem, let us say we have the loss matrix where λ11 = λ22 = 0,

λ21 = 1 and λ12 = α. Determine the threshold of decision as a function of α.
2. We can simulate a classifier with error probability p by drawing samples from

a Bernoulli distribution. Doing this, implement the binomial, approximate,

and t tests for p0 ∈ (0,1). Repeat these tests at least 1,000 times for sev-

eral values of p and calculate the probability of rejecting the null hypothesis.

What do you expect the probability of reject to be when p0 = p?

514 19 Design and Analysis of Machine Learning Experiments

3. Assume xt ∼ N (μ,σ 2) where σ 2 is known. How can we test for H0 : μ ≥ μ0
vs. H1 : μ < μ0?

4. The K-fold cross-validated t test only tests for the equality of error rates. If

the test rejects, we do not know which classification algorithm has the lower

error rate. How can we test whether the first classification algorithm does not

have higher error rate than the second one? Hint: We have to test H0 : μ ≤ 0

vs. H1 : μ > 0.

5. Show that the total sum of squares can be split into between-group sum of

squares and within-group sum of squares as SST = SSb + SSw .
6. Use the normal approximation to the binomial for the sign test.

7. Let us say we have three classification algorithms. How can we order these

three from best to worst?

8. If we have two variants of algorithm A and three variants of algorithm B, how

can we compare the overall accuracies of A and B taking all their variants into

account?

9. Propose a suitable test to compare the errors of two regression algorithms.

10. Propose a suitable test to compare the expected rewards of two reinforcement

learning algorithms.

19.16 References

Alpaydın, E. 1999. “Combined 5 × 2 cv F Test for Comparing Supervised Clas-

sification Learning Algorithms.” Neural Computation 11: 1885–1892.

Bouckaert, R. R. 2003. “Choosing between Two Learning Algorithms based on

Calibrated Tests.” In Twentieth International Conference on Machine Learn-

ing, ed. T. Fawcett and N. Mishra, 51–58. Menlo Park, CA: AAAI Press.

Demsar, J. 2006. “Statistical Comparison of Classifiers over Multiple Data Sets.”

Journal of Machine Learning Research 7: 1–30.

Dietterich, T. G. 1998. “Approximate Statistical Tests for Comparing Supervised

Classification Learning Algorithms.” Neural Computation 10: 1895–1923.

Fawcett, T. 2006. “An Introduction to ROC Analysis.” Pattern Recognition Let-

ters 27: 861–874.

Montgomery, D. C. 2005. Design and Analysis of Experiments. 6th ed., New

York: Wiley.

Ross, S. M. 1987. Introduction to Probability and Statistics for Engineers and

Scientists. New York: Wiley.

19.16 References 515

Turney, P. 2000. “Types of Cost in Inductive Concept Learning.” Paper pre-

sented at Workshop on Cost-Sensitive Learning at the Seventeenth Interna-

tional Conference on Machine Learning, Stanford University, Stanford, CA,

July 2.

Wolpert, D. H. 1995. “The Relationship between PAC, the Statistical Physics

Framework, the Bayesian Framework, and the VC Framework.” In The Mathe-

matics of Generalization, ed. D. H. Wolpert, 117–214. Reading, MA: Addison-

Wesley.

Yıldız, O. T., and E. Alpaydın. 2006. “Ordering and Finding the Best of K > 2

Supervised Learning Algorithms.” IEEE Transactions on Pattern Analysis and

Machine Intelligence 28: 392–402.

A Probability

We review briefly the elements of probability, the concept of a ran-

dom variable, and example distributions.

A.1 Elements of Probability

A random experiment is one whose outcome is not predictable with

certainty in advance (Ross 1987; Casella and Berger 1990). The set of all

possible outcomes is known as the sample space S. A sample space is

discrete if it consists of a finite (or countably infinite) set of outcomes;

otherwise it is continuous. Any subset E of S is an event. Events are

sets, and we can talk about their complement, intersection, union, and so

forth.

One interpretation of probability is as a frequency. When an experi-

ment is continually repeated under the exact same conditions, for any

event E, the proportion of time that the outcome is in E approaches some

constant value. This constant limiting frequency is the probability of the

event, and we denote it as P(E).

Probability sometimes is interpreted as a degree of belief. For example,

when we speak of Turkey’s probability of winning the World Soccer Cup

in 2010, we do not mean a frequency of occurrence, since the champi-

onship will happen only once and it has not yet occurred (at the time of

the writing of this book). What we mean in such a case is a subjective

degree of belief in the occurrence of the event. Because it is subjective,

different individuals may assign different probabilities to the same event.

518 A Probability

A.1.1 Axioms of Probability

Axioms ensure that the probabilities assigned in a random experiment

can be interpreted as relative frequencies and that the assignments are

consistent with our intuitive understanding of relationships among rela-

tive frequencies:

1. 0 ≤ P(E) ≤ 1. If E1 is an event that cannot possibly occur, then P(E1) =
0. If E2 is sure to occur, P(E2) = 1.

2. S is the sample space containing all possible outcomes, P(S) = 1.

3. If Ei, i = 1, . . . , n are mutually exclusive (i.e., if they cannot occur at the

same time, as in Ei ∩Ej = ∅, j �= i, where∅ is the null event that does

not contain any possible outcomes), we have

P

⎛
⎝ n⋃
i=1

Ei

⎞
⎠ = n∑

i=1
P(Ei)(A.1)

For example, letting Ec denote the complement of E, consisting of all

possible outcomes in S that are not in E, we have E ∩ EC = ∅ and

P(E ∪ Ec) = P(E)+ P(Ec) = 1

P(Ec) = 1− P(E)

If the intersection of E and F is not empty, we have

P(E ∪ F) = P(E)+ P(F)− P(E ∩ F)(A.2)

A.1.2 Conditional Probability

P(E|F) is the probability of the occurrence of event E given that F oc-

curred and is given as

P(E|F) = P(E ∩ F)
P(F)

(A.3)

Knowing that F occurred reduces the sample space to F , and the part

of it where E also occurred is E∩F . Note that equation A.3 is well-defined
only if P(F) > 0. Because ∩ is commutative, we have

P(E ∩ F) = P(E|F)P(F) = P(F|E)P(E)

A.2 Random Variables 519

which gives us Bayes’ formula:

P(F|E) = P(E|F)P(F)
P(E)

(A.4)

When Fi are mutually exclusive and exhaustive, namely,
⋃n
i=1 Fi = S

E =
n⋃
i=1

E ∩ Fi

P(E) =
n∑
i=1

P(E ∩ Fi) =
n∑
i=1

P(E|Fi)P(Fi)(A.5)

Bayes’ formula allows us to write

P(Fi|E) =
P(E ∩ Fi)
P(E)

= P(E|Fi)P(Fi)∑
j P(E|Fj)P(Fj)

(A.6)

If E and F are independent, we have P(E|F) = P(E) and thus

P(E ∩ F) = P(E)P(F)(A.7)

That is, knowledge of whether F has occurred does not change the prob-

ability that E occurs.

A.2 Random Variables

A random variable is a function that assigns a number to each outcome

in the sample space of a random experiment.

A.2.1 Probability Distribution and Density Functions

The probability distribution function F(·) of a random variable X for any

real number a is

F(a) = P{X ≤ a}(A.8)

and we have

P{a < X ≤ b} = F(b)− F(a)(A.9)

If X is a discrete random variable

F(a) =
∑
∀x≤a

P(x)(A.10)

520 A Probability

where P(·) is the probability mass function defined as P(a) = P{X = a}. If
X is a continuous random variable, p(·) is the probability density function

such that

F(a) =
∫ a
−∞

p(x)dx(A.11)

A.2.2 Joint Distribution and Density Functions

In certain experiments, we may be interested in the relationship between

two or more random variables, and we use the joint probability distribu-

tion and density functions of X and Y satisfying

F(x, y) = P{X ≤ x, Y ≤ y}(A.12)

Individual marginal distributions and densities can be computed by

marginalizing, namely, summing over the free variable:

FX(x) = P{X ≤ x} = P{X ≤ x, Y ≤ ∞} = F(x,∞)(A.13)

In the discrete case, we write

P(X = x) =
∑
j

P(x, yj)(A.14)

and in the continuous case, we have

pX(x) =
∫∞
−∞

p(x, y)dy(A.15)

If X and Y are independent, we have

p(x, y) = pX(x)pY(y)(A.16)

These can be generalized in a straightforward manner to more than two

random variables.

A.2.3 Conditional Distributions

When X and Y are random variables

PX|Y (x|y) = P{X = x|Y = y} = P{X = x, Y = y}
P{Y = y} = P(x, y)

PY (y)
(A.17)

A.2 Random Variables 521

A.2.4 Bayes’ Rule

When two random variables are jointly distributed with the value of one

known, the probability that the other takes a given value can be computed

using Bayes’ rule:

P(y|x) = P(x|y)PY (y)
PX(x)

= P(x|y)PY (y)∑
y P(x|y)PY (y)

(A.18)

Or, in words

posterior = likelihood× prior

evidence
(A.19)

Note that the denominator is obtained by summing (or integrating if y

is continuous) the numerator over all possible y values. The “shape” of

p(y|x) depends on the numerator with denominator as a normalizing

factor to guarantee that p(y|x) sum to 1. Bayes’ rule allows us to mod-

ify a prior probability into a posterior probability by taking information

provided by x into account.

Bayes’ rule inverts dependencies, allowing us to compute p(y|x) if
p(x|y) is known. Suppose that y is the “cause” of x, like y going on sum-

mer vacation and x having a suntan. Then p(x|y) is the probability that
someone who is known to have gone on summer vacation has a suntan.

This is the causal (or predictive) way. Bayes’ rule allows us a diagnostic

approach by allowing us to compute p(y|x): namely, the probability that
someone who is known to have a suntan, has gone on summer vacation.

Then p(y) is the general probability of anyone’s going on summer vaca-

tion and p(x) is the probability that anyone has a suntan, including both

those who have gone on summer vacation and those who have not.

A.2.5 Expectation

Expectation, expected value, or mean of a random variable X, denoted by

E[X], is the average value of X in a large number of experiments:

E[X] =
{ ∑

i xiP(xi) if X is discrete∫
xp(x)dx if X is continuous

(A.20)

It is a weighted average where each value is weighted by the probability

that X takes that value. It has the following properties (a, b ∈):
E[aX + b] = aE[X]+ b(A.21)

E[X + Y] = E[X]+ E[Y]

522 A Probability

For any real-valued function g(·), the expected value is

E[g(X)] =
{ ∑

i g(xi)P(xi) if X is discrete∫
g(x)p(x)dx if X is continuous

(A.22)

A special g(x) = xn, called the nth moment of X, is defined as

E[Xn] =
{ ∑

i x
n
i P(xi) if X is discrete∫

xnp(x)dx if X is continuous
(A.23)

Mean is the first moment and is denoted by μ.

A.2.6 Variance

Variance measures how much X varies around the expected value. If

μ ≡ E[X], the variance is defined as
Var(X) = E[(X − μ)2] = E[X2]− μ2(A.24)

Variance is the second moment minus the square of the first moment.

Variance, denoted by σ 2, satisfies the following property (a, b ∈):
Var(aX + b) = a2Var(X)(A.25) √

Var(X) is called the standard deviation and is denoted by σ . Standard

deviation has the same unit as X and is easier to interpret than variance.

Covariance indicates the relationship between two random variables.

If the occurrence of X makes Y more likely to occur, then the covariance

is positive; it is negative if X’s occurrence makes Y less likely to happen

and is 0 if there is no dependence.

Cov(X, Y) = E [(X − μX)(Y − μY)] = E[XY]− μXμY(A.26)

where μX ≡ E[X] and μY ≡ E[Y]. Some other properties are

Cov(X, Y) = Cov(Y ,X)

Cov(X,X) = Var(X)

Cov(X + Z,Y) = Cov(X, Y)+ Cov(Z, Y)

Cov

⎛
⎝∑

i

Xi, Y

⎞
⎠ =

∑
i

Cov(Xi, Y)(A.27)

Var(X + Y) = Var(X)+ Var(Y)+ 2Cov(X, Y)(A.28)

Var

⎛
⎝∑

i

Xi

⎞
⎠ =

∑
i

Var(Xi)+
∑
i

∑
j �=i

Cov(Xi,Xj)(A.29)

A.3 Special Random Variables 523

If X and Y are independent, E[XY] = E[X]E[Y] = μXμY and Cov(X, Y) =
0. Thus if Xi are independent

Var

⎛
⎝∑

i

Xi

⎞
⎠ =∑

i

Var(Xi)(A.30)

Correlation is a normalized, dimensionless quantity that is always be-

tween −1 and 1:

Corr(X, Y) = Cov(X, Y)√
Var(X)Var(Y)

(A.31)

A.2.7 Weak Law of Large Numbers

Let X = {Xt}Nt=1 be a set of independent and identically distributed (iid)

random variables each having mean μ and a finite variance σ 2. Then for

any ε > 0

P

{∣∣∣∣∣
∑
t X

t

N
− μ

∣∣∣∣∣ > ε
}
→ 0 as N →∞(A.32)

That is, the average of N trials converges to the mean as N increases.

A.3 Special Random Variables

There are certain types of random variables that occur so frequently that

names are given to them.

A.3.1 Bernoulli Distribution

A trial is performed whose outcome is either a “success” or a “failure.”

The random variable X is a 0/1 indicator variable and takes the value 1

for a success outcome and is 0 otherwise. p is the probability that the

result of trial is a success. Then

P{X = 1} = p and P{X = 0} = 1− p(A.33)

which can equivalently be written as

P{X = i} = pi(1− p)1−i , i = 0,1(A.34)

If X is Bernoulli, its expected value and variance are

E[X] = p, Var(X) = p(1− p)(A.35)

524 A Probability

A.3.2 Binomial Distribution

If N identical independent Bernoulli trials are made, the random vari-

able X that represents the number of successes that occurs in N trials is

binomial distributed. The probability that there are i successes is

P{X = i} =
(
N

i

)
pi(1− p)N−i , i = 0 . . .N(A.36)

If X is binomial, its expected value and variance are

E[X] = Np, Var(X) = Np(1− p)(A.37)

A.3.3 Multinomial Distribution

Consider a generalization of Bernoulli where instead of two states, the

outcome of a random event is one of K mutually exclusive and exhaustive

states, each of which has a probability of occurring pi where
∑K
i=1 pi =

1. Suppose that N such trials are made where outcome i occurred Ni
times with

∑k
i=1Ni = N . Then the joint distribution of N1, N2, . . . , NK is

multinomial:

P(N1, N2, . . . , NK) = N !
K∏
i=1

p
Ni
i

Ni !
(A.38)

A special case is when N = 1; only one trial is made. Then Ni are 0/1

indicator variables of which only one of them is 1 and all others are 0.

Then equation A.38 reduces to

P(N1, N2, . . . , NK) =
K∏
i=1

p
Ni
i(A.39)

A.3.4 Uniform Distribution

X is uniformly distributed over the interval [a, b] if its density function

is given by

p(x) =
{

1
b−a if a ≤ x ≤ b
0 otherwise

(A.40)

If X is uniform, its expected value and variance are

E[X] = a+ b
2

, Var(X) = (b− a)2
12

(A.41)

A.3 Special Random Variables 525

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Unit Normal Z = N(0,1)

x

p(
x)

Figure A.1 Probability density function of Z, the unit normal distribution.

A.3.5 Normal (Gaussian) Distribution

X is normal or Gaussian distributed with mean μ and variance σ 2, de-

noted asN (μ,σ 2), if its density function is

p(x) = 1√
2πσ

exp

[
−(x− μ)

2

2σ 2

]
,−∞ < x < ∞(A.42)

Many random phenomena obey the bell-shaped normal distribution, at

least approximately, and many observations from nature can be seen as a

continuous, slightly different versions of a typical value—that is probably

why it is called the normal distribution. In such a case, μ represents the

typical value and σ defines how much instances vary around the proto-

typical value.

68.27 percent lie in (μ − σ,μ + σ), 95.45 percent in (μ − 2σ,μ + 2σ),

and 99.73 percent in (μ − 3σ,μ+ 3σ). Thus P{|x− μ| < 3σ} ≈ 0.99. For

practical purposes, p(x) ≈ 0 if x < μ−3σ or x > μ+3σ . Z is unit normal,

namely,N (0,1) (see figure A.1), and its density is written as

pZ(x) = 1√
2π

exp

[
−x

2

2

]
(A.43)

526 A Probability

If X ∼ N (μ,σ 2) and Y = aX + b, then Y ∼ N (aμ + b, a2σ 2). The

sum of independent normal variables is also normal with μ = ∑
i μi and

σ 2 =∑i σ
2
i . If X isN (μ,σ 2), then

X − μ
σ

∼ Z(A.44)

This is called z-normalization.

Let X1, X2, . . . , XN be a set of iid random variables all having mean μ

and variance σ 2. Then the central limit theorem states that for large N ,central limit

theorem the distribution of

X1 +X2 + . . .+ XN(A.45)

is approximately N (Nμ,Nσ 2). For example, if X is binomial with pa-

rameters (N,p), X can be written as the sum of N Bernoulli trials and

(X −Np)/√Np(1− p) is approximately unit normal.

Central limit theorem is also used to generate normally distributed ran-

dom variables on computers. Programming languages have subroutines

that return uniformly distributed (pseudo-)random numbers in the range

[0,1]. When Ui are such random variables,
∑12
i=1Ui − 6 is approximately

Z.
Let us say Xt ∼N (μ,σ 2). The estimated sample mean

m =
∑N
t=1Xt

N
(A.46)

is also normal with mean μ and variance σ 2/N .

A.3.6 Chi-Square Distribution

If Zi are independent unit normal random variables, then

X = Z2
1 + Z2

2 + . . .+ Z2
n(A.47)

is chi-square with n degrees of freedom, namely, X ∼ X2
n , with

E[X] = n, Var(X) = 2n(A.48)

When Xt ∼N (μ,σ 2), the estimated sample variance is

S2 =
∑
t (X

t −m)2
N − 1

(A.49)

and we have

(N − 1)
S2

σ 2
∼ X2

N−1(A.50)

It is also known that m and S2 are independent.

A.4 References 527

A.3.7 t Distribution

If Z ∼ Z and X ∼ X2
n are independent, then

Tn = Z√
X/n

(A.51)

is t-distributed with n degrees of freedom with

E[Tn] = 0, n > 1, Var(Tn) = n

n − 2
, n > 2(A.52)

Like the unit normal density, t is symmetric around 0. As n becomes

larger, t density becomes more and more like the unit normal, the differ-

ence being that t has thicker tails, indicating greater variability than does

normal.

A.3.8 F Distribution

If X1 ∼ X2
n and X2 ∼ X2

m are independent chi-square random variables

with n and m degrees of freedom, respectively,

Fn,m = X1/n

X2/m
(A.53)

is F -distributed with n and m degrees of freedom with

E[Fn,m] = m

m− 2
,m > 2, Var(Fn,m) = m2(2m + 2n− 4)

n(m− 2)2(m− 4)
,m > 4(A.54)

A.4 References

Casella, G., and R. L. Berger. 1990. Statistical Inference. Belmont, CA: Duxburry.

Ross, S. M. 1987. Introduction to Probability and Statistics for Engineers and

Scientists. New York: Wiley.

Index

0/1 loss function, 51

5×2
cross-validation, 488

cv paired F test, 503

cv paired t test, 503

Active learning, 360

AdaBoost, 431

Adaptive resonance theory, 285

Additive models, 180

Agglomerative clustering, 157

AIC, see Akaike’s information

criterion

Akaike’s information criterion, 81

Alignment, 324

Analysis of variance, 504

Anchor, 291

ANOVA, see Analysis of variance

Approximate normal test, 500

Apriori algorithm, 56

Area under the curve, 491

ART, see Adaptive resonance theory

Artificial neural networks, 233

Association rule, 4, 55

Attribute, 87

AUC, see Area under the curve

Autoassociator, 268

Backpropagation, 250

through time, 272

Backup, 456

Backward selection, 111

Backward variable, 372

Bag of words, 102, 324

Bagging, 430

Base-learner, 419

Basis function, 211

cooperative vs. competitive, 297

for a kernel, 352

normalization, 295

Basket analysis, 55

Batch learning, 251

Baum-Welch algorithm, 376

Bayes’ ball, 402

Bayes’ classifier, 51

Bayes’ estimator, 68

Bayes’ rule, 49, 521

Bayesian information criterion, 81

Bayesian model combination, 426

Bayesian model selection, 82

Bayesian networks, 387

Belief networks, 387

Belief state, 465

Bellman’s equation, 452

Beta distribution, 345

Between-class scatter matrix, 130

Bias, 65

Bias unit, 237

Bias/variance dilemma, 78

BIC, see Bayesian information

criterion

Binary split, 187

530 Index

Binding, 202

Binomial test, 499

Biometrics, 441

Blocking, 482

Bonferroni correction, 508

Boosting, 431

Bootstrap, 489

C4.5, 191

C4.5Rules, 197

CART, 191, 203

Cascade correlation, 264

Cascading, 438

Case-based reasoning, 180

Causality, 396

causal graph, 388

Central limit theorem, 526

Class

confusion matrix, 493

likelihood, 50

Classification, 5

likelihood- vs.

discriminant-based, 209

Classification tree, 188

Clique, 411

Cluster, 144

Clustering, 11

agglomerative, 157

divisive, 157

hierarchical, 157

online, 281

Code word, 146

Codebook vector, 146

Coefficient of determination (of

regression), 76

Color quantization, 145

Common principal components,

119

Competitive basis functions, 297

Competitive learning, 280

Complete-link clustering, 158

Component density, 144

Compression, 8, 146

Condensed nearest neighbor, 173

Conditional independence, 389

Confidence interval

one-sided, 495

two-sided, 494

Confidence of an association rule,

55

Conjugate prior, 344

Connection weight, 237

Contingency table, 501

Correlation, 89

Cost-sensitive learning, 478

Coupled HMM, 400

Covariance function, 356

Covariance matrix, 88

Credit assignment, 448

Critic, 448

CRM, see Customer relationship

management

Cross-entropy, 221

Cross-validation, 40, 80, 486

5× 2, 488

K-fold, 487

Curse of dimensionality, 170

Customer relationship

management, 155

Customer segmentation, 155

d-separation, 402

Decision node, 185

Decision region, 53

Decision tree, 185

multivariate, 202

omnivariate, 205

soft, 305

univariate, 187

Delve repository, 17

Dendrogram, 158

Density estimation, 11

Dichotomizer, 53

Diffusion kernel, 325

Index 531

Dimensionality reduction

nonlinear, 269

Directed acyclic graph, 387

Dirichlet distribution, 344

Discount rate, 451

Discriminant, 5

function, 53

linear, 97

quadratic, 95

Discriminant adaptive nearest

neighbor, 172

Discriminant-based classification,

209

Distributed vs. local

representation, 156, 289

Diversity, 420

Divisive clustering, 157

Document categorization, 102

Doubt, 26

Dual representation, 337, 352

Dynamic classifier selection, 435

Dynamic graphical models, 415

Dynamic node creation, 264

Dynamic programming, 453

Early stopping, 223, 258

ECOC, 327, see Error-correcting

output codes

Edit distance, 324

Eigendigits, 118

Eigenfaces, 118

Eligibility trace, 459

EM, see Expectation-Maximization

Emission probability, 367

Empirical error, 24

Empirical kernel map, 324

Ensemble, 424

Ensemble selection, 437

Entropy, 188

Episode, 451

Epoch, 251

Error

type I, 497

type II, 497

Error-correcting output codes, 427

Euclidean distance, 98

Evidence, 50

Example, 87

Expectation-Maximization, 150

supervised, 299

Expected error, 476

Expected utility, 54

Experiment

design, 478

factorial, 481

strategies, 480

Explaining away, 393

Extrapolation, 35

FA, see Factor analysis

Factor analysis, 120

Factor graph, 412

Factorial HMM, 400

Feature, 87

extraction, 110

selection, 110

Finite-horizon, 451

First-order rule, 201

Fisher kernel, 325

Fisher’s linear discriminant, 129

Flexible discriminant analysis, 120

Floating search, 112

Foil, 199

Forward selection, 110

Forward variable, 370

Forward-backward procedure, 370

Fuzzy k-means, 160

Fuzzy membership function, 295

Fuzzy rule, 295

Gamma distribution, 347

Gamma function, 344

Gaussian prior, 349

Generalization, 24, 39

532 Index

Generalized linear models, 230

Generative model, 342, 397

Generative topographic mapping,

306

Geodesic distance, 133

Gini index, 189

Gradient descent, 219

stochastic, 241

Gradient vector, 219

Gram matrix, 321

Graphical models, 387

Group, 144

GTM, see Generative topographic

mapping

Hamming distance, 171

Hebbian learning, 283

Hidden layer, 246

Hidden Markov model, 367, 398

coupled, 400

factorial, 400

input-output, 379, 400

left-to-right, 380

switching, 400

Hidden variables, 57, 396

Hierarchical clustering, 157

Hierarchical cone, 260

Hierarchical mixture of experts,

304

Higher-order term, 211

Hinge loss, 317

Hint, 261

Histogram, 165

HMM, see Hidden Markov model

Hybrid learning, 291

Hypothesis, 23

class, 23

most general, 24

most specific, 24

Hypothesis testing, 496

ID3, 191

IF-THEN rules, 197

Iid (independent and identically

distributed), 41

Ill-posed problem, 38

Impurity measure, 188

Imputation, 89

Independence, 388

Inductive bias, 38

Inductive logic programming, 202

Infinite-horizon, 451

Influence diagrams, 414

Information retrieval, 491

Initial probability, 364

Input, 87

Input representation, 21

Input-output HMM, 379, 399

Instance, 87

Instance-based learning, 164

Interest of an association rule, 55

Interpolation, 35

Interpretability, 197

Interval estimation, 493

Irep, 199

Isometric feature mapping, 133

Job shop scheduling, 471

Junction tree, 410

K-armed bandit, 449

K-fold

cross-validation, 487

cv paired t test, 502

k-means clustering, 147

fuzzy, 160

online, 281

k-nearest neighbor

classifier, 172

density estimate, 169

smoother, 177

k-nn, see k-nearest neighbor

Kalman filter, 400

Karhunen-Loève expansion, 119

Kernel estimator, 167

Index 533

Kernel function, 167, 320, 353

Kernel PCA, 336

Kernel smoother, 176

kernelization, 321

Knowledge extraction, 8, 198, 295

Kolmogorov complexity, 82

Kruskal-Wallis test, 511

Laplace approximation, 354

Laplacian prior, 350

lasso, 352

Latent factors, 120

Lateral inhibition, 282

LDA, see Linear discriminant

analysis

Leader cluster algorithm, 148

Leaf node, 186

Learning automata, 471

Learning vector quantization, 300

Least square difference test, 507

Least squares estimate, 74

Leave-one-out, 487

Left-to-right HMM, 380

Level of significance, 497

Levels of analysis, 234

Lift of an association rule, 55

Likelihood, 62

Likelihood ratio, 58

Likelihood-based classification, 209

Linear classifier, 97, 216

Linear discriminant, 97, 210

Linear discriminant analysis, 128

Linear dynamical system, 400

Linear opinion pool, 424

Linear regression, 74

multivariate, 103

Linear separability, 215

Local representation, 288

Locally linear embedding, 135

Locally weighted running line

smoother, 177

Loess, see Locally weighted running

line smoother

Log likelihood, 62

Log odds, 58, 218

Logistic discrimination, 220

Logistic function, 218

Logit, 218

Loss function, 51

LSD, see Least square difference

test

LVQ, see Learning vector

quantization

Mahalanobis distance, 90

Margin, 25, 311, 433

Markov decision process, 451

Markov mixture of experts, 379

Markov model, 364

hidden, 367

learning, 366, 375

observable, 365

Markov random field, 410

Max-product algorithm, 413

Maximum a posteriori (MAP)

estimate, 68, 343

Maximum likelihood estimation, 62

McNemar’s test, 501

MDP, see Markov decision process

MDS, see Multidimensional scaling

Mean square error, 65

Mean vector, 88

Memory-based learning, 164

Minimum description length, 82

Mixture components, 144

Mixture density, 144

Mixture of experts, 301, 434

competitive, 304

cooperative, 303

hierarchical, 305

Markov, 379, 400

Mixture of factor analyzers, 155

Mixture of mixtures, 156

534 Index

Mixture of probabilistic principal

component analyzers, 155

Mixture proportion, 144

MLE, see Maximum likelihood

estimation

Model combination

multiexpert, 423

multistage, 423

Model selection, 38

MoE, see Mixture of experts

Momentum, 257

Moralization, 411

Multidimensional scaling, 125

nonlinear, 287

using MLP, 269

Multilayer perceptrons, 246

Multiple comparisons, 507

Multiple kernel learning, 326, 442

Multivariate linear regression, 103

Multivariate polynomial regression,

104

Multivariate tree, 202

Naive Bayes’ classifier, 397

discrete inputs, 102

numeric inputs, 97

Naive estimator, 166

Nearest mean classifier, 98

Nearest neighbor classifier, 172

condensed, 173

Negative examples, 21

Neuron, 233

No Free Lunch Theorem, 477

Noise, 30

Noisy OR, 409

Nonparametric estimation, 163

Nonparametric tests, 508

Null hypothesis, 497

Observable Markov model, 365

Observable variable, 48

Observation, 87

Observation probability, 367

OC1, 203

Occam’s razor, 32

Off-policy, 458

Omnivariate decision tree, 205

On-policy, 458

One-class classification, 333

One-sided confidence interval, 495

One-sided test, 498

Online k-means, 281

Online learning, 241

Optimal policy, 452

Optimal separating hyperplane, 311

Outlier detection, 9, 333

Overfitting, 39, 79

Overtraining, 258

PAC, see Probably approximately

correct

Paired test, 501

Pairing, 482

Pairwise separation, 216, 428

Parallel processing, 236

Partially observable Markov

decision process, 464

Parzen windows, 167

Pattern recognition, 6

PCA, see Principal components

analysis

Pedigree, 400

Perceptron, 237

Phone, 381

Phylogenetic tree, 398

Piecewise approximation

constant, 248, 300

linear, 301

Policy, 451

Polychotomizer, 53

Polynomial regression, 75

multivariate, 104

Polytree, 407

POMDP, see Partially observable

Markov decision process

Index 535

Positive examples, 21

Posterior probability distribution,

341

Posterior probability of a class, 50

Posterior probability of a

parameter, 67

Posthoc testing, 507

Postpruning, 194

Potential function, 212, 411

Power function, 498

Precision

in information retrieval, 492

reciprocal of variance, 347

Predicate, 201

Prediction, 5

Prepruning, 194

Principal components analysis, 113

Prior knowledge, 294

Prior probability distribution, 341

Prior probability of a class, 50

Prior probability of a parameter, 67

Probabilistic networks, 387

Probabilistic PCA, 123

Probably approximately correct

learning, 29

Probit function, 355

Product term, 211

Projection pursuit, 274

Proportion of variance, 116

Propositional rule, 201

Pruning

postpruning, 194

prepruning, 194

set, 194

Q learning, 458

Quadratic discriminant, 95, 211

Quantization, 146

Radial basis function, 290

Random Subspace, 421

Randomization, 482

RBF, see Radial basis function

Real time recurrent learning, 272

Recall, 492

Receiver operating characteristics,

490

Receptive field, 288

Reconstruction error, 119, 146

Recurrent network, 271

Reference vector, 146

Regression, 9, 35

linear, 74

polynomial, 75

polynomial multivariate, 104

robust, 329

Regression tree, 192

Regressogram, 175

Regularization, 80, 266

Regularized discriminant analysis,

100

Reinforcement learning, 13

Reject, 34, 52

Relative square error, 76

Replication, 482

Representation, 21

distributed vs. local, 288

Response surface design, 481

Ridge regression, 266, 350

Ripper, 199

Risk function, 51

Robust regression, 329

ROC, see Receiver operating

characteristics

RSE, see Relative square error

Rule

extraction, 295

induction, 198

pruning, 198

Rule support, 198

Rule value metric, 199

Running smoother

line, 177

mean, 175

536 Index

Sammon mapping, 128

using MLP, 269

Sammon stress, 128

Sample, 48

correlation, 89

covariance, 89

mean, 89

Sarsa, 458

Sarsa(λ), 461

Scatter, 129

Scree graph, 116

Self-organizing map, 286

Semiparametric density estimation,

144

Sensitivity, 493

Sensor fusion, 421

Sequential covering, 199

Sigmoid, 218

Sign test, 509

Single-link clustering, 157

Slack variable, 315

Smoother, 174

Smoothing splines, 178

Soft count, 376

Soft error, 315

Soft weight sharing, 267

Softmax, 224

SOM, see Self-organizing map

Spam filtering, 103

Specificity, 493

Spectral decomposition, 115

Speech recognition, 380

Sphere node, 203

Stability-plasticity dilemma, 281

Stacked generalization, 435

Statlib repository, 17

Stochastic automaton, 364

Stochastic gradient descent, 241

Stratification, 487

Strong learner, 431

Structural adaptation, 263

Structural risk minimization, 82

Subset selection, 110

Sum-product algorithm, 412

Supervised learning, 9

Support of an association rule, 55

Support vector machine, 313

SVM, see Support vector machine

Switching HMM, 400

Synapse, 234

Synaptic weight, 237

t distribution, 495

t test, 498

Tangent prop, 263

TD, see Temporal difference

Template matching, 98

Temporal difference, 455

learning, 458

TD(0), 459

TD-Gammon, 471

Test set, 40

Threshold, 212

function, 238

Time delay neural network, 270

Topographical map, 287

Transition probability, 364

Traveling salesman problem, 306

Triple trade-off, 39

Tukey’s test, 512

Two-sided confidence interval, 494

Two-sided test, 497

Type 2 maximum likelihood

procedure, 360

Type I error, 497

Type II error, 497

UCI repository, 17

Unbiased estimator, 65

Underfitting, 39, 79

Unfolding in time, 272

Unit normal distribution, 493

Univariate tree, 187

Universal approximation, 248

Index 537

Unobservable variable, 48

Unstable algorithm, 430

Utility function, 54

Utility theory, 54

Validation set, 40

Value iteration, 453

Value of information, 464, 469

Vapnik-Chervonenkis (VC)

dimension, 27

Variance, 66

Vector quantization, 146

supervised, 300

Version space, 24

Vigilance, 285

Virtual example, 262

Viterbi algorithm, 374

Voronoi tesselation, 172

Voting, 424

Weak learner, 431

Weight

decay, 263

sharing, 260

sharing soft, 267

vector, 212

Wilcoxon signed rank test, 511

Winner-take-all, 280

Within-class scatter matrix, 130

Wrappers, 138

z, see Unit normal distribution

z-normalization, 91, 526

Zero-one loss, 51

	1776e9a528c7d95fae3d2ffc4005dbf69fccc0050207b585af18e87dda3dc2eb.pdf
	0104bc28f07ff492c341fbf8089c67ab8a10b2dbde23057844e30f45bdf34224.pdf
	Contents

	6e76cccb097ee826f75d261b29750152ca78be00f2710ae4e2d28b0f4222d0dd.pdf
	d5acf2b9d7f7a9622e000c480a9eed52fb0722f55ed3446b68b27cfce016970b.pdf
	Series Foreword
	Figures
	Tables
	Preface
	Acknowledgments
	Notes for the Second Edition
	Notations
	1 Introduction
	2 Supervised Learning
	3 Bayesian Decision Theory
	4 Parametric Methods
	5 Multivariate Methods
	6 Dimensionality Reduction
	7 Clustering
	8 Nonparametric Methods
	9 Decision Trees
	10 Linear Discrimination
	11 Multilayer Perceptrons
	12 Local Models
	13 Kernel Machines
	14 Bayesian Estimation
	15 Hidden Markov Models
	16 Graphical Models
	17 Combining Multiple Learners

	18 Reinforcement Learning
	19 Design and Analysis of Machine Learning Experiments
	A Probability
	Index

