
www.allitebooks.com

Table of Contents

Preface 1

Chapter 1: Introduction to MEAN 7

Three-tier web application development 8

The evolution of JavaScript 9

Introducing MEAN 10

Installing MongoDB 11
Installing MongoDB on Windows 12

Running MongoDB manually 12
Running MongoDB as a Windows Service 13

Installing MongoDB on Mac OS X and Linux 14
Installing MongoDB from binaries 14
Install MongoDB using a package manager 15

Using the MongoDB shell 16
Installing Node.js 17

Installing Node.js on Windows 17
Installing Node.js on Mac OS X 19
Installing Node.js on Linux 20
Running Node.js 20

Introducing NPM 21

Using NPM 21
The installation process of NPM 22
Managing dependencies using the package.json ile 24

Summary 27

Chapter 2: Getting Started with Node.js 29

Introduction to Node.js 30

JavaScript event-driven programming 31
Node.js event-driven programming 33

JavaScript closures 34

Node modules 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

CommonJS modules 36
Node.js core modules 38
Node.js third-party modules 39
Node.js ile modules 39
Node.js folder modules 39

Developing Node.js web applications 40

Meet the Connect module 42
Connect middleware 44
Understanding the order of Connect middleware 46
Mounting Connect middleware 47

Summary 48

Chapter 3: Building an Express Web Application 49
Introduction to Express 49

Installing Express 50

Creating your irst Express application 51
The application, request, and response objects 52

The application object 52
The request object 53
The response object 54

External middleware 55

Implementing the MVC pattern 55

Application folder structure 56
Horizontal folder structure 56
Vertical folder structure 58
File-naming conventions 61
Implementing the horizontal folder structure 62

Coniguring an Express application 66
Environment coniguration iles 69

Rendering views 70

Coniguring the view system 71
Rendering EJS views 72

Serving static iles 73
Coniguring sessions 75
Summary 77

Chapter 4: Introduction to MongoDB 79
Introduction to NoSQL 79

Introducing MongoDB 82
Key features of MongoDB 83

The BSON format 83
MongoDB ad hoc queries 84
MongoDB indexing 85

Table of Contents

[iii]

MongoDB replica set 86
MongoDB sharding 87

MongoDB shell 88
MongoDB databases 89
MongoDB collections 89
MongoDB CRUD operations 91

Creating a new document 91
Creating a document using insert() 91
Creating a document using update() 91
Creating a document using save() 92

Reading documents 92
Finding all the collection documents 92
Using an equality statement 92
Using query operators 93
Building AND/OR queries 93

Updating existing documents 93
Updating documents using update() 94
Updating documents using save() 94

Deleting documents 95
Deleting all documents 95

Summary 96

Chapter 5: Introduction to Mongoose 97

Introducing Mongoose 97

Installing Mongoose 98
Connecting to MongoDB 98

Understanding Mongoose schemas 100
Creating the user schema and model 100
Registering the User model 101
Creating new users using save() 101
Finding multiple user documents using ind() 104

Advanced querying using ind() 105
Reading a single user document using indOne() 106
Updating an existing user document 107
Deleting an existing user document 108

Extending your Mongoose schema 110

Deining default values 110
Using schema modiiers 111

Predeined modiiers 111
Custom setter modiiers 112
Custom getter modiiers 113

Adding virtual attributes 114
Optimizing queries using indexes 114

Deining custom model methods 116

Table of Contents

[iv]

Deining custom static methods 116
Deining custom instance methods 117

Model validation 117

Predeined validators 118
Custom validators 119

Using Mongoose middleware 120
Using pre middleware 120
Using post middleware 120

Using Mongoose DBRef 121
Summary 123

Chapter 6: Managing User Authentication Using Passport 125
Introducing Passport 126

Installing Passport 126
Coniguring Passport 127

Understanding Passport strategies 129
Using Passport's local strategy 129

Installing Passport's local strategy module 129
Coniguring Passport's local strategy 130

Adapting the User model 132
Creating the authentication views 135
Modifying the user controller 137

Displaying lash error messages 139
Wiring the user's routes 143

Understanding Passport OAuth strategies 145
Setting up OAuth strategies 145

Handling OAuth user creation 145
Using Passport's Facebook strategy 147
Using Passport's Twitter strategy 151
Using Passport's Google strategy 155

Summary 160

Chapter 7: Introduction to AngularJS 161

Introducing AngularJS 162

Key concepts of AngularJS 162

The core module of AngularJS 162
The angular global object 162

AngularJS modules 162
Application modules 163
External modules 163
Third-party modules 163

Two-way data binding 164
Dependency injection 165

Dependency injection in AngularJS 166

Table of Contents

[v]

AngularJS directives 167
Core directives 167
Custom directives 168

Bootstrapping an AngularJS application 168
Automatic bootstrap 168
Manual bootstrap 169

Installing AngularJS 169

Meeting the Bower dependencies manager 169
Coniguring the Bower dependencies manager 170
Installing AngularJS using Bower 171
Coniguring AngularJS 171

Structuring an AngularJS application 172

Bootstrapping your AngularJS application 176
AngularJS MVC entities 177

AngularJS views 179
AngularJS controllers and scopes 180

AngularJS routing 182

Installing the ngRoute module 183
Coniguring the URL scheme 184
AngularJS application routes 185

AngularJS services 187

AngularJS prebundled services 187
Creating AngularJS services 188
Using AngularJS services 189

Managing AngularJS authentication 189

Rendering the user object 190
Adding the Authentication service 191
Using the Authentication service 193

Summary 194

Chapter 8: Creating a MEAN CRUD Module 195
Introducing CRUD modules 196
Setting up the Express components 196

Creating the Mongoose model 196
Setting up the Express controller 198

The error handling method of the Express controller 198
The create() method of the Express controller 199
The list() method of the Express controller 199
The read() middleware of the Express controller 200
The update() method of the Express controller 201
The delete method of the Express controller 202
Implementing an authentication middleware 203
Implementing an authorization middleware 204

Table of Contents

[vi]

Wiring the Express routes 204
Coniguring the Express application 206

Introducing the ngResource module 207

Installing the ngResource module 208
Using the $resource service 210

Implementing the AngularJS MVC module 211

Creating the AngularJS module service 212
Setting up the AngularJS module controller 212

The create() method of the AngularJS controller 213
The ind() and indOne() methods of the AngularJS controller 214
The update() method of the AngularJS controller 215
The delete() method of the AngularJS controller 215

Implementing the AngularJS module views 216
The create-article view 216
The view-article view 217
The edit-article view 218
The list-articles view 219

Wiring the AngularJS module routes 220
Finalizing your module implementation 221

Summary 223

Chapter 9: Adding Real-time Functionality Using Socket.io 225
Introducing WebSockets 226

Introducing Socket.io 227

The Socket.io server object 228
Socket.io handshaking 229
The Socket.io coniguration middleware 229

The Socket.io client object 230
Socket.io events 231

Handling events 232
Emitting events 233

Socket.io namespaces 234
Socket.io server namespaces 234
Socket.io client namespaces 235

Socket.io rooms 235
Joining and leaving rooms 235
Emitting events to rooms 236

Installing Socket.io 237

Coniguring the Socket.io server 238
Coniguring the Socket.io session 239

Installing the connect-mongo and cookie-parser modules 240
Coniguring the connect-mongo module 241
Coniguring the Socket.io session 243

Table of Contents

[vii]

Building a Socket.io chat 244
Setting the event handlers of the chat server 244
Creating the Socket service 247
Creating the chat controller 248
Creating the chat view 249
Adding chat routes 250
Finalizing the chat implementation 251

Summary 253

Chapter 10: Testing MEAN Applications 255

Introducing JavaScript testing 256

TDD, BDD, and unit testing 256
Test frameworks 258
Assertion libraries 258
Test runners 258

Testing your Express application 259

Introducing Mocha 259
Introducing Should.js 260
Introducing SuperTest 261
Installing Mocha 261
Installing the Should.js and SuperTest modules 262
Coniguring your test environment 263
Writing your irst Mocha test 264

Testing the Express model 265
Testing the Express controller 267

Running your Mocha test 269
Testing your AngularJS application 271

Introducing the Jasmine framework 271
AngularJS unit tests 272

Introducing Karma test runner 272
Installing the Karma command-line tool 273
Installing Karma's dependencies 273
Coniguring the Karma test runner 274
Mocking AngularJS components 276
Writing AngularJS unit tests 277
Writing your irst unit test 281
Running your AngularJS unit tests 284

AngularJS E2E tests 284
Introducing the Protractor test runner 285
Installing the Protractor test runner 286
Coniguring the Protractor test runner 287
Writing your irst E2E test 287
Running your AngularJS E2E tests 288

Summary 289

Table of Contents

[viii]

Chapter 11: Automating and Debugging MEAN Applications 291

Introducing the Grunt task runner 292

Installing the Grunt task runner 292
Coniguring Grunt 294

Running your application using Grunt 295
Testing your application using Grunt 297
Linting your application using Grunt 301
Watching ile changes using Grunt 304

Debugging Express with node-inspector 308

Installing node-inspector's grunt task 308
Coniguring node-inspector's grunt task 310
Running the debug grunt task 313

Debugging AngularJS with Batarang 314
Using Batarang 315

Batarang Models 316
Batarang Performance 317
Batarang Dependencies 318

Summary 319

Index 321

Preface
Back in the spring of 1995, web browsers were very different from present day web
browsers. It had been 4 years since the release of World Wide Web (the irst internet
browser written by Tim Berners-Lee), 2 years since the initial release of Mosaic, and
Internet Explorer 1.0 was a few months months away from release. The World Wide
Web began to show signs of popularity, and though some of the big companies
showed interest in the ield, the main disruptor back then was a small company
named Netscape.

Netscape's already popular browser Netscape Navigator, was in the works for its
second version, when the client engineering team and co-founder Marc Anderseen
decided that Navigator 2.0 should embed a programming language. The task was
assigned to a software engineer named Branden Eich, who completed it in 10 days
between May 6 and May 15, 1995, naming the language Mocha, then LiveScript, and
eventually JavaScript.

Netscape Navigator 2.0 was released in September 1995 and transformed the way
we perceived the web browser. By August 1996, Internet Explorer 3.0 introduced
its own implementation of JavaScript, and in November of that year, Netscape had
announced that they had submitted JavaScript to ECMA for standardization. In June
1997, the ECMA-262 speciication was published, making JavaScript the de facto
standard programming language for the Web.

For years, JavaScript was denigrated by many as the programming language for
amateurs. JavaScript's architecture, fragmented implementation, and original
"amateur" audience made professional programmers dismiss it. But then AJAX was
introduced, and when Google released their Gmail and Google Maps applications
in the mid-2000s, it suddenly became clear that AJAX technology could transform
websites into web applications. This inspired the new generation of web developers
to take JavaScript development to next level.

Preface

[2]

What began with the irst generation of utility libraries, such as jQuery and
Prototype, soon got boosted by Google's next great contribution, the Chrome
browser and its V8 JavaScript engine, released in end of 2008. The V8 engine, with
its JIT compiling capabilities, greatly enhanced JavaScript performance. This led to a
new era in JavaScript development.

2009 was JavaScript's annus mirabilis; suddenly, platforms such as Node.js enabled
developers to run JavaScript on the server, databases such as MongoDB popularized
and simpliied the use of JSON storage, and frameworks such as AngularJS started
making use of the powerful new browsers. Almost 20 years after its original
debut, JavaScript is now everywhere. What used to be an "amateur" programming
language, capable of executing small scripts, is now one of the most popular
programming languages in the world. The rise of open source collaboration tools,
along with the devoted involvement of talented engineers, created one of the richest
communities in the world, and the seeds planted by many contributors are now
lourishing in a burst of sheer creativity.

The practical implications are enormous. What was once a fragmented team of
developers, each an expert in his own domain, can now become a homogeneous
team capable of developing leaner, more agile software together using a single
language across all layers.

There are many full-stack JavaScript frameworks out there, some built by great
teams, some address important issues, but none of them are as open and modular as
the MEAN stack. The idea is simple, we'll take MongoDB as the database, Express
as the web framework, AngularJS as the frontend framework, and Node.js as the
platform, and combine them together in a modular approach that will ensure the
lexibility needed in modern software development. MEAN's approach relies on the
communities around each of the open source modules keeping it updated and stable,
ensuring that if one of the modules becomes useless, we can just seamlessly replace it
with a better-suited one.

I would like to welcome you to the JavaScript revolution and assure you I will do my
best to help you become a full-stack JavaScript developer.

In this book, we'll help you set up your environment and explain how to connect the
different MEAN components together using the best modules. You'll be introduced
to the best practices of maintaining your code clear and simple and how to avoid
common pitfalls. We'll walk through building your authentication layer and adding
your irst entity. You'll learn how to leverage JavaScript nonblocking architecture in
building real-time communication between your server and client applications. Finally,
we'll show you how to cover your code with the proper tests and what tools to use to
automate your development process.

Preface

[3]

What this book covers
Chapter 1, Introduction to MEAN, introduce you to the MEAN stack and shows you
how to install the different prerequisites on each OS.

Chapter 2, Getting Started with Node.js, explains the basics of Node.js and how it is
used in web application development.

Chapter 3, Building an Express Web Application, explains how to create and structure an
Express application by implementing the MVC pattern.

Chapter 4, Introduction to MongoDB, explains the basics of MongoDB and how it can
be used to store your application data.

Chapter 5, Introduction to Mongoose, shows how to use a Mongoose to connect an
Express application with a MongoDB database.

Chapter 6, Managing User Authentication Using Passport, explains how to manage your
users' authentication and offer them diverse login options.

Chapter 7, Introduction to AngularJS, explains how to implement an AngularJS
application in conjunction with your Express application.

Chapter 8, Creating a MEAN CRUD Module, explains how to write and use your
MEAN application's entities.

Chapter 9, Adding Real-time Functionality Using Socket.io, shows you how to create and
use real-time communication between your client and server.

Chapter 10, Testing MEAN Applications, explains how to automatically test the
different parts of your MEAN application.

Chapter 11, Automating and Debugging MEAN Applications, explains how to develop
your MEAN application more eficiently.

What you need for this book
This book is suitable for beginner and intermediate web developers with basic
knowledge in HTML, CSS, and modern JavaScript development.

Who this book is for
Web developers interested in learning how to build modern web applications using
MongoDB, Express, AngularJS, and Node.js.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"It also contains the pointer of an exports object as a property."

A block of code is set as follows:

var message = 'Hello';

exports.sayHello = function(){

 console.log(message);

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var connect = require('connect');

var app = connect();

app.listen(3000);

console.log('Server running at http://localhost:3000/');

Any command-line input or output is written as follows:

$ node server

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once you
click on the Next button, the installation should begin."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to MEAN
The MEAN stack is a powerful, full-stack JavaScript solution that comprises
four major building blocks: MongoDB as the database, Express as the web server
framework, AngularJS as the web client framework, and Node.js as the server
platform. These building blocks are being developed by different teams and
involve a substantial community of developers and advocates pushing forward the
development and documentation of each component. The main strength of the stack
lies in its centralization of JavaScript as the main programming language. However,
the problem of connecting these tools together can lay the foundation for scaling and
architecture issues, which can dramatically affect your development process.

In this book, I will try to present the best practices and known issues of building a
MEAN application, but before you begin with actual MEAN development, you will
irst need to set up your environment. This chapter will cover a bit of a programming
overview but mostly present the proper ways of installing the basic perquisites of a
MEAN application. By the end of this chapter, you'll learn how to install and conigure
MongoDB and Node.js on all the common operating systems and how to use Node's
package manager. In this chapter, we're going to cover the following topics:

• Introduction to the MEAN stack architecture

• Installing and running MongoDB on Windows, Linux, and Mac OS X

• Installing and running Node.js on Windows, Linux, and Mac OS X

• Introduction to Node.js Package Manager (NPM) and how to use it to install
Node modules

Introduction to MEAN

[8]

Three-tier web application development
Most web applications are built in a three-tier architecture that consists of
three important layers: data, logic, and presentation. In web applications, the
application structure usually breaks down to database, server, and client, while in
modern web development, it can also be broken into database, server logic, client
logic, and client UI.

A popular paradigm of implementing this model is the MVC architectural pattern.
In the MVC paradigm, the logic, data, and visualization are separated into three
types of objects, each handling its own tasks. The View handles the visual part,
taking care of user interaction. The Controller responds to system and user events,
commanding the Model and View to change appropriately. The Model handles data
manipulation, responding to requests for information or changing its state according
to the Controller's instructions. A simple visual representation of MVC is shown in
the following diagram:

Common MVC architecture communication

In the 25 years of web development, many technology stacks became popular
building three-tier web applications; among those now ubiquitous stacks, you can
ind the LAMP stack, the .NET stack, and a rich variety of other frameworks and
tools. The main problem with these stacks is that each tier demands a knowledge
base that usually exceeds the abilities of a single developer, making teams bigger
than they should be, less productive, and exposed to unexpected risks.

Chapter 1

[9]

The evolution of JavaScript
JavaScript is an interpreted computer programming language that was built for the
Web. First implemented by the Netscape Navigator web browser, it became the
programming language that web browsers use to execute client-side logic. In the
mid 2000s, the shift from websites to web applications, along with the release of
faster browsers, gradually created a community of JavaScript developers writing
more complex applications. These developers started creating libraries and tools
that shortened development cycles, giving birth to a new generation of even more
advanced web applications, which in turn created a continuous demand for better
browsers. This cycle went on for a few years, where the vendors kept improving
their browsers and JavaScript developers kept pushing the boundaries. The real
revolution began in 2008, when Google released its Chrome browser, along with
its fast JIT-compiling V8 JavaScript engine. Google's V8 engine made JavaScript
run so much faster that it completely transformed web application development.
More importantly, the release of the engine's source code allowed developers to
start reimagining JavaScript outside of the browser. One of the irst products of this
revolution was Node.js.

After looking into other options for a while, programmer Ryan Dahl found that V8
engine it his non-blocking I/O experiment called Node.js. The idea was simple: help
developers build non-blocking units of code to allow better use of system resources
and create more responsive applications. The result was a minimal yet powerful
platform, which utilized JavaScript's non-blocking nature outside of the browser.
Node's elegant module system enabled developers to freely extend the platform
using third-party modules to achieve almost any functionality. The reaction by the
online community was a creation of various tools from modern web frameworks to
robotics server platforms. However, server-side JavaScript was only the beginning.

When Dwight Merriman and Eliot Horowitz set out to build their scalable hosting
solution back in 2007, they already had a lot of experience with building web
applications. However, the platform they built did not succeed as planned, so in 2009
they decided to take it apart and open source its components, including a V8-based
database called MongoDB. Derived from the word humongous, MongoDB was a
scalable NoSQL database that used a JSON-like data model with dynamic schemas.
MongoDB gained a lot of traction right away by giving developers the lexibility they
needed when dealing with complex data, while providing RDBMS features such as
advanced queries and easy scaling—features that eventually made MongoDB one of
the leading NoSQL solutions. JavaScript broke another boundary. But the JavaScript
revolutionaries haven't forgotten where it all began; in fact, the popularization of
modern browsers created a new wave of JavaScript frontend frameworks.

Introduction to MEAN

[10]

Back in 2009, while building their JSON as a platform service, developers Miško
Hevery and Adam Abrons noticed that the common JavaScript libraries weren't
enough. The nature of their rich web application raised the need for a more
structured framework that would reduce grunt work and maintain an organized
code base. Abandoning the original idea, they decided to focus on the development
of their frontend framework and open sourced the project, naming it AngularJS.
The idea was to bridge the gap between JavaScript and HTML and help popularize
single page application development. The result was a rich web framework,
which presented frontend web developers with concepts such as two-way data
binding, cross-component dependency injection, and MVC-based components.
AngularJS along with other MVC frameworks revolutionized web development by
transforming the once unmaintainable frontend code base into a structured code
base that can support more advanced development paradigms such as TDD.

The rise of open source collaboration tools, along with the devoted involvement of
these talented engineers, created one of the richest communities in the world. More
importantly, these major advancements allowed the development of three-tier web
applications to be uniied under JavaScript as the programming language across all
three layers—an idea that is commonly referred to as the full-stack JavaScript. The
MEAN stack is just a single example of this idea.

Introducing MEAN
MEAN is an abbreviation for MongoDB, Express, AngularJS, and Node.js. The
concept behind it is to use only JavaScript - driven solutions to cover the different
parts of your application. The advantages are great and are as follows:

• A single language is used throughout the application

• All the parts of the application can support and often enforce the use of the
MVC architecture

• Serialization and deserialization of data structures is no longer needed
because data marshaling is done using JSON objects

However, there are still a few important questions that remain unanswered:

• How do you connect all the components together?
• Node.js has a huge ecosystem of modules, so which modules should

you use?
• JavaScript is paradigm agnostic, so how can you maintain the MVC

application structure?
• JSON is a schema-less data structure, so how and when should you

model your data?

Chapter 1

[11]

• How do you handle user authentication?
• How should you use the Node.js non-blocking architecture to support

real-time interactions?
• How can you test your MEAN application code base?
• What kind of JavaScript development tools can you use to expedite your

MEAN application development process?

In this book, I'll try to answer these questions and many more, but before we can
go any further, you will irst need to install the basic prerequisites.

Installing MongoDB
For MongoDB's stable versions, the oficial MongoDB website supplies linked
binaries that provide the easiest way to install MongoDB on Linux, Mac OS X, and
Windows. Notice that you need to download the right architecture version for your
operating system. If you use Windows or Linux, make sure to download either the
32-bit or 64-bit version according to your system architecture. Mac users are safe to
download the 64-bit version.

The MongoDB versioning scheme works in such a way that only even
version numbers mark stable releases, and so versions 2.2.x and 2.4.x are
stable, while 2.1.x and 2.3.x are unstable releases and should not be used
in production. The latest stable version of MongoDB is 2.6.x.

When you visit the download page at http://mongodb.org/downloads, you'll
be offered a download of an archive containing the binaries you need to install
MongoDB. After downloading and extracting the archive ile, you will need to locate
the mongod binary, which is usually located in the bin folder. The mongod process
runs the main MongoDB server process, which can be used as a standalone server
or a single node of a MongoDB replica set. In our case, we will use MongoDB as a
standalone server. The mongod process requires a folder to store the database iles in
(the default folder is /data/db) and a port to listen to (the default port is 27017). In
the following subsections, we'll go over the setup steps for each operating system;
we'll begin with the common Windows installation process.

It is recommended that you learn more about MongoDB by visiting the
oficial documentation at https://mongodb.org.

http://mongodb.org/downloads
https://mongodb.org

Introduction to MEAN

[12]

Installing MongoDB on Windows
Once you have downloaded the right version, unpack the archive ile, and move the
folder to C:\mongodb. MongoDB uses a default folder to store its iles. On Windows,
the default location is C:\data\db, so in the command prompt, go to C:\ and issue
the following command:

> md data\db

You can tell the mongod service to use an alternative path for the data
iles using the --dbpath command-line lag.

Once you've moved the MongoDB iles to the right folder and inished creating the
data folders, you'll get two options while running the main MongoDB service.

Running MongoDB manually
To run MongoDB manually, you will need to run the mongod binary. So, open the
command prompt and issue the following command:

> C:\mongodb\bin\mongod.exe

The preceding command will run the main MongoDB service that starts listening
to the default 27017 port. If everything goes well, you should see a console output
similar to the following screenshot.

Running the MongoDB server on Windows

Chapter 1

[13]

Depending on the Windows security level, a security alert dialog, which notiies you
about the blocking of some service features, will be issued. If this occurs, select a
private network and click on Allow Access.

You should be aware that the MongoDB service is self-contained, so
you can alternatively run it from any folder of your choice.

Running MongoDB as a Windows Service
The more popular approach is running MongoDB automatically after every
reboot cycle. Before you begin setting up MongoDB as a Windows Service, it's
considered good practice to specify a path for the MongoDB log and coniguration
iles. Start by creating a folder for these iles by running the following command in
your command prompt:

> md C:\mongodb\log

Then, you'll be able to create a coniguration ile using the --logpath command-line
lag, so in the command prompt, issue the following command:

> echo logpath=C:\mongodb\log\mongo.log > C:\mongodb\mongod.cfg

When you have your coniguration ile in place, open a new command prompt
window with administrative privileges by right-clicking on the command prompt
icon and clicking on Run as administrator. In the new command prompt window,
install the MongoDB service by running the following command:

> sc.exe create MongoDB binPath= "\"C:\mongodb\bin\mongod.exe\" --service
--config=\"C:\mongodb\mongod.cfg\"" DisplayName= "MongoDB 2.6" start=
"auto"

If the service was successfully created, you will get the following log message:

[SC] CreateService SUCCESS

Notice that the install process will only succeed if your coniguration ile is set
correctly and contains the logpath option. After installing your MongoDB service,
you can run it by executing the following command in the administrative command
prompt window:

> net start MongoDB

www.allitebooks.com

http://www.allitebooks.org

Introduction to MEAN

[14]

Downloading the example code

You can download the example code iles for all the Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the iles e-mailed to you.

Be aware that the MongoDB coniguration ile can be modiied to accommodate your
needs. You can learn more about it by visiting http://docs.mongodb.org/manual/
reference/configuration-options/.

Installing MongoDB on Mac OS X and Linux
In this section, you'll learn the different ways of installing MongoDB on Unix-based
operating systems. Let's begin with the simplest way to install MongoDB, which
involves downloading MongoDB's precompiled binaries.

Installing MongoDB from binaries
You can download the right version of MongoDB using the download page at
http://www.mongodb.org/downloads. Alternatively, you can do this via CURL by
executing the following command:

$ curl -O http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.4.tgz

Notice that we have downloaded the Mac OS X 64-bit version, so make sure you alter
the command to it the version suitable for your machine. After the downloading
process is over, unpack the ile by issuing the following command in your command-
line tool:

$ tar -zxvf mongodb-osx-x86_64-2.6.4.tgz

Now, change the name of the extracted folder to a simpler folder name by running
the following command:

$ mv mongodb-osx-x86_64-2.6.4 mongodb

MongoDB uses a default folder to store its iles. On Linux and Mac OS X, the default
location is /data/db, so in your command-line tool run the following command:

$ mkdir -p /data/db

You may experience some troubles creating this folder. This
is usually a permission issue, so use sudo or super user when
running the preceding command.

http://docs.mongodb.org/manual/reference/configuration-options/
http://docs.mongodb.org/manual/reference/configuration-options/
http://www.mongodb.org/downloads

Chapter 1

[15]

The preceding command will create the data and db folders because the –p lag
creates parent folders as well. Notice that the default folder is located outside of
your home folder, so do make sure you set the folder permission by running the
following command:

$ chown -R $USER /data/db

Now that you have everything prepared, use your command-line tool and go to the
bin folder to run the mongod service as follows:

$ cd mongodb/bin

$ mongod

This will run the main MongoDB service, which will start listening to the default
27017 port. If everything goes well, you should see a console output similar to the
following screenshot:

Running the MongoDB server on Mac OS X

Install MongoDB using a package manager
Sometimes the easiest way to install MongoDB is by using a package manager. The
downside is that some package managers are falling behind in supporting the latest
version. Luckily, the team behind MongoDB also maintains the oficial packages
for RedHat, Debian, and Ubuntu, as well as a Hombrew package for Mac OS X.
Note that you'll have to conigure your package manager repository to include the
MongoDB servers to download the oficial packages.

Introduction to MEAN

[16]

To install MongoDB on Red Hat Enterprise, CentOS, or Fedora using Yum, follow
the instructions at http://docs.mongodb.org/manual/tutorial/install-
mongodb-on-red-hat-centos-or-fedora-linux/.

To install MongoDB on Ubuntu using APT, follow the instructions at
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/.

To install MongoDB on Debian using APT, follow the instructions at
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian/.

To install MongoDB on Mac OS X using Homebrew, follow the instructions at
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/.

Using the MongoDB shell
MongoDB archive ile includes the MongoDB shell, which allows to you to interact
with your server instance using the command line. To start the shell, navigate to the
MongoDB bin folder and run the mongo service as follows:

$ cd mongodb/bin

$ mongo

If you successfully installed MongoDB, the shell will automatically connect to your
local instance, using the test database. You should see a console output similar to
the following screenshot:

Running the MongoDB shell on Mac OS X

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-red-hat-centos-or-fedora-linux/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-red-hat-centos-or-fedora-linux/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/

Chapter 1

[17]

To test your database, run the following command:

> db.articles.insert({title: "Hello World"})

The preceding command will create a new article collection and insert a JSON
object containing a title property. To retrieve the article object, execute the
following command:

> db.articles.find()

The console will output the following message:

{ _id : ObjectId("52d02240e4b01d67d71ad577"), title: "Hello World " }

Congratulations! This means your MongoDB instance is working properly and
you have successfully managed to interact with it using the MongoDB shell. In
the upcoming chapters, you'll learn more about MongoDB and how to use the
MongoDB shell.

Installing Node.js
For the stable versions, the oficial Node.js website supplies linked binaries that
provide the easiest way to install Node.js on Linux, Mac OS X, and Windows. Note
that you need to download the right architecture version for your operating system.
If you use Windows or Linux, make sure to download either the 32-bit or 64-bit
version according to your system architecture. Mac users are safe to download the
64-bit version.

The Node.js version scheme works in a way similar to that of MongoDB,
where even version numbers mark stable releases, and so versions 0.8.x
and 0.10.x are stable, while 0.9.x and 0.11.x are unstable releases and
should not be used in production. The latest stable version of Node.js is
0.10.x.

Installing Node.js on Windows
Installing Node.js on a Windows machine is a simple task that can be easily
accomplished using the standalone installer. To begin with, navigate to the
http://nodejs.org/download/ page and download the right .msi ile. Notice
there are 32-bit and 64-bit versions, so make sure you download the right one
for your system.

http://nodejs.org/download/

Introduction to MEAN

[18]

After downloading the installer, run it. If you get any security dialog boxes, just click
on the Run button and the installation wizard should start. You will be prompted
with an installation screen similar to the following screenshot:

Node.js Windows installation wizard

Once you click on the Next button, the installation should begin. A few moments
later, you'll see a conirmation screen similar to the following screenshot, telling you
Node.js was successfully installed:

Node.js Windows installation confirmation

Chapter 1

[19]

Installing Node.js on Mac OS X
Installing Node.js on Mac OS X is a simple task that can be easily accomplished using
the standalone installer. Start by navigating to the http://nodejs.org/download/
page and download the .pkg ile.

After downloading the installer, run it and you will be prompted with an installation
screen similar to the following screenshot:

Node.js Mac OS X Installation Wizard

Click on Continue and the installation process should begin. The installer will ask you
to conirm the license agreement and then offer you to select the folder destination.
Choose the option most suitable for you before clicking on the Continue button again.
The installer will then ask you to conirm the installation information and ask you for
your user password. A few moments later, you'll see a conirmation screen similar to
the following screenshot, telling you that Node.js was successfully installed:

Node.js Mac OS X installation confirmation

http://nodejs.org/download/

Introduction to MEAN

[20]

Installing Node.js on Linux
To install Node.js on a Linux machine, you'll have to use the tarball ile from the
oficial website. The best way of doing so is to download the latest version and then
build and install the source code using the make command. Start by navigating to
the http://nodejs.org/download/ page, and download the suitable .tar.gz ile.
Then, expand the ile and install Node.js by issuing the following commands:

$ tar -zxf node-v0.10.31.tar.gz

$ cd node-v0.10.31

$./configure && make && sudo make install

If everything goes well, this will install Node.js on your machine. Note that these
commands are for the Node.js 0.10.31 version, so remember to replace the version
number to the version you downloaded. If you encounter any problems, the
team behind Node.js has created a set of alternative installation options for you,
documented at https://github.com/joyent/node/wiki/installation.

It is recommended that you learn more about Node.js by visiting the
oficial documentation at https://nodejs.org.

Running Node.js
After you successfully installed Node.js, you will now be able to start experimenting
with it using the provided command-line interface (CLI). Go to your command-line
tool and execute the following command:

$ node

This will start the Node.js CLI, which will wait for a JavaScript input. To test the
installation, run the following command:

> console.log('Node is up and running!');

Node is up and running!

undefined

This is nice, but you should also try to execute a JavaScript ile. Start by creating a ile
named application.js that contains the following code:

console.log('Node is up and running!');

http://nodejs.org/download/
https://github.com/joyent/node/wiki/installation
https://nodejs.org

Chapter 1

[21]

To run it, you'll have to pass the ile name as the irst argument to Node CLI by
issuing the following command:

$ node application.js

Node is up and running!

Congratulations! You have just created your irst Node.js application. To stop the
CLI, press CTRL + D or CTRL + C.

Introducing NPM
Node.js is a platform, which means its features and APIs are kept to a minimum.
To achieve more complex functionality, it uses a module system that allows you to
extend the platform. The best way to install, update, and remove Node.js modules is
using the NPM. NPM has the following main features:

• A registry of packages to browse, download, and install third-party modules

• A CLI tool to manage local and global packages

Conveniently, NPM is installed during the Node.js installation process, so let's
quickly jump in and learn how to use it.

Using NPM
To understand how NPM works, we're going to install the Express web framework
module, which you'll use in the upcoming chapters. NPM is a robust package
manager, which keeps a centralized registry for public modules. To browse the
available public packages, visit the oficial website at https://npmjs.org/.

Most of the packages in the registry are open source and contributed by the
Node.js community developers. When developing an open source module, the
package author can decide to publish it to the central registry, allowing other
developers to download and use it in their projects. In the package coniguration
ile, the author will choose a name that will later be used as a unique identiier to
download that package.

It is recommended you learn more about Node.js by visiting the oficial
documentation at https://npmjs.org.

https://npmjs.org/
https://npmjs.org

Introduction to MEAN

[22]

The installation process of NPM
It is important to remember that NPM has two installation modes: local and global.
The default local mode is used more often and installs the third-party packages in
a local node_modules folder placed inside your application folder. It has no effect
system-wise, and is used to install the packages your application needs, without
polluting your system with unnecessary global iles.

The global mode is used to install packages you want Node.js to use globally.
Usually these are CLI tools, such as Grunt, that you'll meet in the upcoming chapters.
Most of the time, the package author will speciically instruct you to install the
package globally. Therefore, whenever in doubt, use the local mode. The global
mode will usually install the packages in the /usr/local/lib/node_modules folder
for Unix-based systems and the C:\Users\%USERNAME%\AppData\Roaming\npm\
node_modules folder for Windows-based systems, making it available to any Node.
js application running on the system.

Installing a package using NPM
Once you ind the right package, you'll be able to install it using the npm install
command as follows:

$ npm install <Package Unique Name>

Installing a module globally is similar to its local counterpart, but you'll have to add
the –g lag as follows:

$ npm install –g <Package Unique Name>

You may ind out that your user doesn't have the right permissions to
install packages globally, so you'll have to use the root user or install it
using sudo.

For example, to locally install Express, you'll need to navigate to your application
folder and issue the following command:

$ npm install express

Chapter 1

[23]

The preceding command will install the latest stable version of the Express package
in your local node_modules folder. Furthermore, NPM supports a wide range of
semantic versioning, so to install a speciic version of a package, you can use the npm
install command as follows:

$ npm install <Package Unique Name>@<Package Version>

For instance, to install the second major version of the Express package, you'll need
to issue the following command:

$ npm install express@2.x

This will install the latest stable version of Express 2. Note that this syntax enables
NPM to download and install any minor version of Express 2. To learn more
about the supported semantic versioning syntax, it is recommended that you visit
https://github.com/isaacs/node-semver.

When a package has dependencies, NPM will automatically resolve those
dependencies, installing the required packages in a node_modules folder inside the
package folder. In the preceding example, the Express dependencies will be installed
under node_modules/express/node_modules.

Removing a package using NPM
To remove an installed package, you'll have to navigate to your application folder
and run the following command:

$ npm uninstall < Package Unique Name>

NPM will then look for the package and try to remove it from the local node_
modules folder. To remove a global package, you'll need to use the -g lag as follows:
$ npm uninstall –g < Package Unique Name>

Updating a package using NPM
To update a package to its latest version, issue the following command:

$ npm update < Package Unique Name>

NPM will download and install the latest version of this package even if it doesn't
exist yet. To update a global package, use the following command:

$ npm update –g < Package Unique Name>

www.allitebooks.com

https://github.com/isaacs/node-semver
http://www.allitebooks.org

Introduction to MEAN

[24]

Managing dependencies using the package.json ile
Installing a single package is nice, but pretty soon, your application will need to
use several packages, and so you'll need a better way to manage these package
dependencies. For this purpose, NPM allows you to use a coniguration ile named
package.json in the root folder of your application. In your package.json ile,
you'll be able to deine various metadata properties of your application, including
properties such as the name, version, and author of your application. This is also
where you deine your application dependencies.

The package.json ile is basically a JSON ile that contains the different attributes
you'll need to describe your application properties.

An application using the latest Express and Grunt packages will have a package.
json ile as follows:

{
 "name" : "MEAN",
 "version" : "0.0.1",
 "dependencies" : {
 "express" : "latest",
 "grunt" : "latest"
 }
}

Your application name and version properties are required, so removing
these properties will prevent NPM from working properly.

Creating a package.json ile
While you can manually create a package.json ile, an easier approach would be
to use the npm init command. To do so, use your command-line tool and issue the
following command:

$ npm init

NPM will ask you a few questions about your application and will automatically
create a new package.json ile for you. A sample process should look similar to the
following screenshot:

Chapter 1

[25]

Using NPM init on Mac OS X

After creating your package.json ile, you'll need to modify it and add a
dependencies property. Your inal package.json ile should look like the following
code snippet:

{

 "name": "MEAN",

 "version": "0.0.1",

 "description": "My First MEAN Application",

 "main": "server.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [

 "MongoDB",

 "Express",

 "AngularJS",

 "Node.js"

Introduction to MEAN

[26]

],

 "author": "Amos Haviv",

 "license": "MIT",

 "dependencies": {

 "express": "latest",

 "grunt": "latest"

 }

}

In the preceding code example, we used the latest keyword to tell
NPM to install the latest versions of these packages. However, it is highly
recommended that you use speciic version numbers or range to prevent
your application dependencies from changing during development
cycles. This is because new package versions might not be backward
compatible with older versions, which will cause major issues in your
application.

Installing the package.json dependencies
After creating your package.json ile, you'll be able to install your application
dependencies by navigating to your application's root folder and using the npm
install command as follows:

$ npm install

NPM will automatically detect your package.json ile and will install all your
application dependencies, placing them under a local node_modules folder. An
alternative and sometimes better approach to install your dependencies is to use the
following npm update command:

$ npm update

This will install any missing packages and will update all of your existing
dependencies to their speciied version.

Updating the package.json ile
Another robust feature of the npm install command is the ability to install a new
package and save the package information as a dependency in your package.json
ile. This can be accomplished using the --save optional lag when installing a
speciic package. For example, to install the latest version of Express and save it as a
dependency, you can issue the following command:

$ npm install express --save

Chapter 1

[27]

NPM will install the latest version of Express and will add the express package
as a dependency to your package.json ile. For clarity reasons, in the upcoming
chapters, we'll prefer to manually edit the package.json ile; however, this useful
feature can come in pretty handy in your daily development cycles.

It is recommended that you learn more about NPM's vast coniguration
options by visiting the oficial documentation at https://npmjs.org/
doc/json.html.

Summary
In this chapter, you learned how to install MongoDB and how to connect to your
local database instance using the MongoDB shell. You also learned how to install
Node.js and use the Node.js CLI. You learned about NPM and discovered how to use
it to download and install Node.js packages. You also learned how to easily manage
your application dependencies using the package.json ile. In the next chapter,
we'll discuss some Node.js basics and you'll build your irst Node.js web application.

https://npmjs.org/doc/json.html
https://npmjs.org/doc/json.html

Getting Started with Node.js
In the previous chapter, you set up your environment and discovered the basic
development principles of Node.js. This chapter will cover the proper way of
building your irst Node.js web application. You'll go through the basics of JavaScript
event-driven nature and how to utilize it to build Node.js applications. You'll also learn
about the Node.js module system and how to build your irst Node.js web application.
You'll then proceed to the Connect module and learn about its powerful middleware
approach. By the end of this chapter, you'll know how to use Connect and Node.js to
build simple yet powerful web applications. We'll cover the following topics:

• Introduction to Node.js

• JavaScript closures and event-driven programming

• Node.js event-driven web development

• CommonJS modules and the Node.js module system

• Introduction to the Connect web framework

• Connect's middleware pattern

Getting Started with Node.js

[30]

Introduction to Node.js
At JSConf EU 2009, a developer named Ryan Dahl went onstage to present his
project named Node.js. Starting in 2008, Dahl looked at the current web trends and
discovered something odd in the way web applications worked. The introduction of
the AJAX technology a few years earlier transformed static websites into dynamic
web applications, but the fundamental building block of web development didn't
follow this trend. The problem was that web technologies didn't support two-way
communication between the browser and the server. The test case he used was the
Flickr upload ile feature, where the browser was unable to know when to update the
progress bar as the server could not inform it of how much of the ile was uploaded.

Dahl's idea was to build a web platform that would gracefully support the push
of data from the server to the browser, but it wasn't that simple. When scaling
to common web usage, the platform had to support hundreds (and sometimes
thousands) of ongoing connections between the server and the browser. Most web
platforms used expensive threads to handle requests, which meant keeping a fair
amount of idle threads in order to keep the connection alive. So Dahl used a different
approach. He understood that using non-blocking sockets could save a lot in terms
of system resources and went as far as proving this could be done using C. Given
that this technique could be implemented in any programming language and the fact
that Dahl thought working with non-blocking C code was a tedious task, he decided
to look for a better programming language.

When Google announced Chrome and its new V8 JavaScript engine in late 2008, it
was obvious that JavaScript could run faster than before—a lot faster. V8's greatest
advantage over other JavaScript engines was the compiling of JavaScript code
to native machine code before executing it. This and other optimizations made
JavaScript a viable programming language capable of executing complex tasks. Dahl
noticed that and decided to try a new idea: non-blocking sockets in JavaScript. He
took the V8 engine, wrapped it with the already solid C code, and created the irst
version of Node.js.

After a very warm response from the community, he went on to expand the Node
core. The V8 engine wasn't built to run in a server environment, so Node.js had to
extend it in a way that made more sense in a server context. For example, browsers
don't usually need access to the ilesystem, but when running server code, this
becomes essential. The result was that Node.js wasn't just a JavaScript execution
engine, but a platform capable of running complex JavaScript applications that were
simple to code, highly eficient, and easily scalable.

Chapter 2

[31]

JavaScript event-driven programming
Node.js uses the event-driven nature of JavaScript to support non-blocking
operations in the platform, a feature that enables its excellent eficiency. JavaScript
is an event-driven language, which means that you register code to speciic events,
and that code will be executed once the event is emitted. This concept allows you
to seamlessly execute asynchronous code without blocking the rest of the program
from running.

To understand this better, take a look at the following Java code example:

System.out.print("What is your name?");

String name = System.console().readLine();

System.out.print("Your name is: " + name);

In this example, the program executes the irst and second lines, but any code
after the second line will not be executed until the user inputs their name. This is
synchronous programming, where I/O operations block the rest of the program
from running. However, this is not how JavaScript works.

Because it was originally written to support browser operations, JavaScript was
designed around browser events. Even though it has vastly evolved since its early
days, the idea was to allow the browser to take the HTML user events and delegate
them to JavaScript code. Let's have a look at the following HTML example:

What is your name?

<input type="text" id="nameInput">

<input type="button" id="showNameButton" value="Show Name">

<script type="text/javascript">

var showNameButton = document.getElementById('showNameButton');

showNameButton.addEventListener('click', function() {

 alert(document.getElementById('nameInput').value);

});

// Rest of your code...

</script>

In the preceding example, we have a textbox and a button. When the button is
pressed, it will alert the value inside the textbox. The main function to watch here is
the addEventListener() method. As you can see it takes two arguments: the name
of the event and an anonymous function that will run once the event is emitted. We
usually refer to arguments of the latter kind as a callback function. Notice that any
code after the addEventListener() method will execute accordingly regardless of
what we write in the callback function.

Getting Started with Node.js

[32]

As simple as this example is, it illustrates well how JavaScript uses events to
execute a set of commands. Since the browser is single-threaded, using synchronous
programming in this example would freeze everything else in the page, which would
make every web page extremely unresponsive and impair the web experience in
general. Thankfully, this is not how it works. The browser manages a single thread to
run the entire JavaScript code using an inner loop, commonly referred to as the event
loop. The event loop is a single-threaded loop that the browser runs ininitely. Every
time an event is emitted, the browser adds it to an event queue. The loop will then
grab the next event from the queue in order to execute the event handlers registered
to that event. After all of the event handlers are executed, the loop grabs the next
event, executes its handlers, grabs the next event, and so on. You can see a visual
representation of this process in the following diagram:

The event loop cycle

While the browser usually deals with user-generated events (such as button
clicks), Node.js has to deal with various types of events that are generated from
different sources.

Chapter 2

[33]

Node.js event-driven programming
When developing web server logic, you will probably notice a lot of your system
resources are wasted on blocking code. For instance, let's observe the following PHP
database interactions:

$output = mysql_query('SELECT * FROM Users');

echo($output);

Our server will try querying the database that will then perform the select
statement and return the result to the PHP code, which will eventually output the
data as a response. The preceding code blocks any other operation until it gets the
result from the database. This means the process, or more commonly, the thread, will
stay idle, consuming system resources while it waits for other processes.

To solve this issue, many web platforms have implemented a thread pool system that
usually issues a single thread per connection. This kind of multithreading may seem
intuitive at irst, but has some signiicant disadvantages, as follows:

• Managing threads becomes a complex task

• System resources are wasted on idle threads

• Scaling these kinds of applications cannot be done easily

This is tolerable while developing one-sided web applications, where the browser
makes a quick request that ends with a server response. But, what happens when
you want to build real-time applications that keep a long-living connection between
the browser and the server? To understand the real-life consequences of these design
choices, take a look at the following graphs. They present a famous performance
comparison between Apache, which is a blocking web server, and NGINX, which
uses a non-blocking event loop. The following screenshot shows concurrent request
handling in Apache versus Nginx (http://blog.webfaction.com/2008/12/a-
little-holiday-present-10000-reqssec-with-nginx-2/):

www.allitebooks.com

http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-reqssec-with-nginx-2/
http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-reqssec-with-nginx-2/
http://www.allitebooks.org

Getting Started with Node.js

[34]

In the preceding screenshot, you can see how Apache's request handling ability is
degrading much faster than Nginx's. But, an even clearer impact can be seen in the
following screenshot, where you can witness how Nginx's event loop architecture
affects memory consumption:

Concurrent connections impact on memory allocation in Apache versus Nginx

(http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-
reqssec-with-nginx-2/)

As you can see from the results, using event-driven architecture will help
you dramatically reduce the load on your server while leveraging JavaScript's
asynchronous behavior in building your web application. This approach is
made possible thanks to a simple design pattern, which is called closure by
JavaScript developers.

JavaScript closures
Closures are functions that refer to variables from their parent environment. Using
the closure pattern enables variables from the parent() function to remain bound to
the closure. Let's take a look at the following example:

function parent() {

 var message = "Hello World";

 function child() {

 alert (message);

 }

 child();

}

parent();

http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-reqssec-with-nginx-2/
http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-reqssec-with-nginx-2/

Chapter 2

[35]

In the preceding example, you can see how the child() function has access to a
variable deined in the parent() function. But this is a simple example, so let's see a
more interesting one:

function parent() {

 var message = 'Hello World';

 function child() {

 alert (message);

 }

 return child;

}

var childFN = parent()

childFN();

This time, the parent() function returned the child() function, and the child()
function is called after the parent() function has already been executed. This is
counterintuitive to some developers because usually the parent() function's local
variables should only exist while the function is being executed. This is what closures
are all about! A closure is not only the function, but also the environment in which
the function was created. In this case, the childFN() is a closure object that consists
of the child() function and the environment variables that existed when the closure
was created, including the message variable.

Closures are very important in asynchronous programming because JavaScript
functions are irst-class objects that can be passed as arguments to other functions.
This means that you can create a callback function and pass it as an argument to an
event handler. When the event will be emitted, the function will be invoked, and it
will be able to manipulate any variable that existed when the callback function was
created even if its parent function was already executed. This means that using the
closure pattern will help you utilize event-driven programming without the need to
pass the scope state to the event handler.

Getting Started with Node.js

[36]

Node modules
JavaScript has turned out to be a powerful language with some unique features
that enable eficient yet maintainable programming. Its closure pattern and event-
driven behavior have proven to be very helpful in real-life scenarios, but like all
programming languages, it isn't perfect, and one of its major design laws is the
sharing of a single global namespace.

To understand the problem, we need to go back to JavaScript's browser origins. In
the browser, when you load a script into your web page, the engine will inject its
code into an address space that is shared by all the other scripts. This means that
when you assign a variable in one script, you can accidently overwrite another
variable already deined in a previous script. While this could work with a small
code base, it can easily cause conlicts in larger applications, as errors will be dificult
to trace. It could have been a major threat for Node.js evolution as a platform, but
luckily a solution was found in the CommonJS modules standard.

CommonJS modules
CommonJS is a project started in 2009 to standardize the way of working with
JavaScript outside the browser. The project has evolved since then to support a variety
of JavaScript issues, including the global namespace issue, which was solved through a
simple speciication of how to write and include isolated JavaScript modules.

The CommonJS standards specify the following three key components when
working with modules:

• require(): This method is used to load the module into your code.

• exports: This object is contained in each module and allows you to expose
pieces of your code when the module is loaded.

• module: This object was originally used to provide metadata information
about the module. It also contains the pointer of an exports object as a
property. However, the popular implementation of the exports object as a
standalone object literally changed the use case of the module object.

Chapter 2

[37]

In Node's CommonJS module implementation, each module is written in a single
JavaScript ile and has an isolated scope that holds its own variables. The author of
the module can expose any functionality through the exports object. To understand
it better, let's say we created a module ile named hello.js that contains the
following code snippet:

var message = 'Hello';

exports.sayHello = function(){

 console.log(message);

}

Also, let's say we created an application ile named server.js, which contains the
following lines of code:

var hello = require('./hello');

hello.sayHello();

In the preceding example, you have the hello module, which contains a variable
named message. The message variable is self-contained in the hello module, which
only exposes the sayHello() method by deining it as a property of the exports
object. Then, the application ile loads the hello module using the require()
method, which will allow it to call the sayHello() method of the hello module.

A different approach to creating modules is exposing a single function using the
module.exports pointer. To understand this better, let's revise the preceding
example. A modiied hello.js ile should look as follows:

module.exports = function() {

 var message = 'Hello';

 console.log(message);

}

Then, the module is loaded in the server.js ile as follows:

var hello = require('./hello');

hello();

In the preceding example, the application ile uses the hello module directly as a
function instead of using the sayHello() method as a property of the hello module.

Getting Started with Node.js

[38]

The CommonJS module standard allows the endless extension of the Node.js platform
while preventing the pollution of Node's core; without it, the Node.js platform
would become a mess of conlicts. However, not all modules are the same, and while
developing a Node application, you will encounter several types of modules.

You can omit the .js extension when requiring modules. Node will
automatically look for a folder with that name, and if it doesn't ind
one, it will look for an applicable .js ile.

Node.js core modules
Core modules are modules that were compiled into the Node binary. They come
prebundled with Node and are documented in great detail in its documentation. The
core modules provide most of the basic functionalities of Node, including ilesystem
access, HTTP and HTTPS interfaces, and much more. To load a core module, you just
need to use the require method in your JavaScript ile. An example code, using the
fs core module to read the content of the environment hosts ile, would look like the
following code snippet:

fs = require('fs');

fs.readFile('/etc/hosts', 'utf8', function (err, data) {

 if (err) {

 return console.log(err);

 }

 console.log(data);

});

When you require the fs module, Node will ind it in the core modules folder. You'll
then be able to use the fs.readFile() method to read the ile's content and print it
in the command-line output.

To learn more about Node's core modules, it is recommended that you
visit the oficial documentation at http://nodejs.org/api/.

http://nodejs.org/api/

Chapter 2

[39]

Node.js third-party modules
In the previous chapter, you learned how to use NPM to install third-party modules.
As you probably remember, NPM installs these modules in a folder named node_
modules under the root folder of your application. To use third-party modules, you
can just require them as you would normally require a core module. Node will irst
look for the module in the core modules folder and then try to load the module from
the module folder inside the node_modules folder. For instance, to use the express
module, your code should look like the following code snippet:

var express = require('express');

var app = express();

Node will then look for the express module in the node_modules folder and load it
into your application ile, where you'll be able to use it as a method to generate the
express application object.

Node.js ile modules
In previous examples, you saw how Node loads modules directly from iles. These
examples describe a scenario where the iles reside in the same folder. However, you
can also place your modules inside a folder and load them by providing the folder
path. Let's say you moved your hello module to a modules folder. The application ile
would have to change, so Node would look for the module in the new relative path:

var hello = require('./modules/hello');

Note that the path can also be an absolute path, as follows:

var hello = require('/home/projects/first-example/modules/hello');

Node will then look for the hello module in that path.

Node.js folder modules
Although this is not common with developers that aren't writing third-party Node
modules, Node also supports the loading of folder modules. Requiring folder
modules is done in the same way as ile modules, as follows:

var hello = require('./modules/hello');

Getting Started with Node.js

[40]

Now, if a folder named hello exists, Node will go through that folder looking
for a package.json ile. If Node inds a package.json ile, it will try parsing it,
looking for the main property, with a package.json ile that looks like the following
code snippet:

{

 "name" : "hello",

 "version" : "1.0.0",

 "main" : "./hello-module.js"

}

Node will try to load the ./hello/hello-module.js ile. If the package.json ile
doesn't exist or the main property isn't deined, Node will automatically try to load
the ./hello/index.js ile.

Node.js modules have been found to be a great solution to write complex JavaScript
applications. They have helped developers organize their code better, while NPM
and its third-party modules registry helped them to ind and install one of the many
third-party modules created by the community. Ryan Dahl's dream of building
a better web framework ended up as a platform that supports a huge variety of
solutions. But the dream was not abandoned; it was just implemented as a third-
party module named express.

Developing Node.js web applications
Node.js is a platform that supports various types of applications, but the most
popular kind is the development of web applications. Node's style of coding
depends on the community to extend the platform through third-party modules;
these modules are then built upon to create new modules, and so on. Companies
and single developers around the globe are participating in this process by creating
modules that wrap the basic Node APIs and deliver a better starting point for
application development.

There are many modules to support web application development but none as
popular as the Connect module. The Connect module delivers a set of wrappers
around the Node.js low-level APIs to enable the development of rich web application
frameworks. To understand what Connect is all about, let's begin with a basic
example of a basic Node web server. In your working folder, create a ile named
server.js, which contains the following code snippet:

var http = require('http');

http.createServer(function(req, res) {

 res.writeHead(200, {

Chapter 2

[41]

 'Content-Type': 'text/plain'

 });

 res.end('Hello World');

}).listen(3000);

console.log('Server running at http://localhost:3000/');

To start your web server, use your command-line tool, and navigate to your working
folder. Then, run the node CLI tool and run the server.js ile as follows:

$ node server

Now open http://localhost:3000 in your browser, and you'll see the Hello
World response.

So how does this work? In this example, the http module is used to create a small
web server listening to the 3000 port. You begin by requiring the http module and
use the createServer() method to return a new server object. The listen()
method is then used to listen to the 3000 port. Notice the callback function that is
passed as an argument to the createServer() method.

The callback function gets called whenever there's an HTTP request sent to the web
server. The server object will then pass the req and res arguments, which contain
the information and functionality needed to send back an HTTP response. The
callback function will then do the following two steps:

1. First, it will call the writeHead() method of the response object. This method
is used to set the response HTTP headers. In this example, it will set the
Content-Type header value to text/plain. For instance, when responding
with HTML, you just need to replace text/plain with html/plain.

2. Then, it will call the end() method of the response object. This method
is used to inalize the response. The end() method takes a single string
argument that it will use as the HTTP response body. Another common way
of writing this is to add a write() method before the end() method and then
call the end() method, as follows:

res.write('Hello World');

res.end();

This simple application illustrates the Node coding style where low-level APIs are
used to simply achieve certain functionality. While this is a nice example, running
a full web application using the low-level APIs will require you to write a lot of
supplementary code to support common requirements. Fortunately, a company
called Sencha has already created this scaffolding code for you in the form of a Node
module called Connect.

Getting Started with Node.js

[42]

Meet the Connect module
Connect is a module built to support interception of requests in a more modular
approach. In the irst web server example, you learned how to build a simple web
server using the http module. If you wish to extend this example, you'd have to
write code that manages the different HTTP requests sent to your server, handles
them properly, and responds to each request with the correct response.

Connect creates an API exactly for that purpose. It uses a modular component
called middleware, which allows you to simply register your application logic to
predeined HTTP request scenarios. Connect middleware are basically callback
functions, which get executed when an HTTP request occurs. The middleware can
then perform some logic, return a response, or call the next registered middleware.
While you will mostly write custom middleware to support your application needs,
Connect also includes some common middleware to support logging, static ile
serving, and more.

The way a Connect application works is by using an object called dispatcher.
The dispatcher object handles each HTTP request received by the server and
then decides, in a cascading way, the order of middleware execution. To understand
Connect better, take a look at the following diagram:

Chapter 2

[43]

The preceding diagram illustrates two calls made to the Connect application: the irst
one should be handled by a custom middleware and the second is handled by the
static iles middleware. Connect's dispatcher initiates the process, moving on to the
next handler using the next() method, until it gets to middleware responding with
the res.end() method, which will end the request handling.

In the next chapter, you'll create your irst Express application, but Express is based
on Connect's approach, so in order to understand how Express works, we'll begin
with creating a Connect application.

In your working folder, create a ile named server.js that contains the following
code snippet:

var connect = require('connect');

var app = connect();

app.listen(3000);

console.log('Server running at http://localhost:3000/');

As you can see, your application ile is using the connect module to create a new
web server. However, Connect isn't a core module, so you'll have to install it using
NPM. As you already know, there are several ways of installing third-party modules.
The easiest one is to install it directly using the npm install command. To do so,
use your command-line tool, and navigate to your working folder. Then execute the
following command:

$ npm install connect

NPM will install the connect module inside a node_modules folder, which will
enable you to require it in your application ile. To run your Connect web server,
just use Node's CLI and execute the following command:

$ node server

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Node.js

[44]

Node will run your application, reporting the server status using the console.log()
method. You can try reaching your application in the browser by visiting http://
localhost:3000. However, you should get a response similar to what is shown in
the following screenshot:

Connect application's empty response

What this response means is that there isn't any middleware registered to handle the
GET HTTP request. This means two things:

• You've successfully managed to install and use the Connect module

• It's time for you to write your irst Connect middleware

Connect middleware
Connect middleware is just JavaScript function with a unique signature.
Each middleware function is deined with the following three arguments:

• req: This is an object that holds the HTTP request information

• res: This is an object that holds the HTTP response information and allows
you to set the response properties

• next: This is the next middleware function deined in the ordered set of
Connect middleware

Chapter 2

[45]

When you have a middleware deined, you'll just have to register it with the Connect
application using the app.use() method. Let's revise the previous example to
include your irst middleware. Change your server.js ile to look like the following
code snippet:

var connect = require('connect');

var app = connect();

var helloWorld = function(req, res, next) {

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

};

app.use(helloWorld);

app.listen(3000);

console.log('Server running at http://localhost:3000/');

Then, start your connect server again by issuing the following command in your
command-line tool:

$ node server

Try visiting http://localhost:3000 again. You will now get a response similar to
that in the following screenshot:

Connect application's response

Congratulations, you've just created your irst Connect middleware!

Getting Started with Node.js

[46]

Let's recap. First, you added a middleware function named helloWorld(), which
has three arguments: req, res, and next. In your middleware, you used the res.
setHeader() method to set the response Content-Type header and the res.end()
method to set the response text. Finally, you used the app.use() method to register
your middleware with the Connect application.

Understanding the order of Connect middleware
One of Connect's greatest features is the ability to register as many middleware
functions as you want. Using the app.use() method, you'll be able to set a series of
middleware functions that will be executed in a row to achieve maximum lexibility
when writing your application. Connect will then pass the next middleware function
to the currently executing middleware function using the next argument. In each
middleware function, you can decide whether to call the next middleware function
or stop at the current one. Notice that each Connect middleware function will be
executed in irst-in-irst-out (FIFO) order using the next arguments until there are no
more middleware functions to execute or the next middleware function is not called.

To understand this better, we will go back to the previous example and add
a logger function that will log all the requests made to the server in the command
line. To do so, go back to the server.js ile and update it to look like the following
code snippet:

var connect = require('connect');

var app = connect();

var logger = function(req, res, next) {

 console.log(req.method, req.url);

 next();

};

var helloWorld = function(req, res, next) {

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

};

app.use(logger);

app.use(helloWorld);

app.listen(3000);

console.log('Server running at http://localhost:3000/');

Chapter 2

[47]

In the preceding example, you added another middleware called logger(). The
logger() middleware uses the console.log() method to simply log the request
information to the console. Notice how the logger() middleware is registered
before the helloWorld() middleware. This is important as it determines the order
in which each middleware is executed. Another thing to notice is the next() call
in the logger() middleware, which is responsible for calling the helloWorld()
middleware. Removing the next() call would stop the execution of middleware
function at the logger() middleware, which means that the request would hang
forever as the response is never ended by calling the res.end() method.

To test your changes, start your connect server again by issuing the following
command in your command-line tool:

$ node server

Then, visit http://localhost:3000 in your browser and notice the console output
in your command-line tool.

Mounting Connect middleware
As you may have noticed, the middleware you registered responds to any request
regardless of the request path. This does not comply with modern web application
development because responding to different paths is an integral part of all web
applications. Fortunately, Connect middleware supports a feature called mounting,
which enables you to determine which request path is required for the middleware
function to get executed. Mounting is done by adding the path argument to the app.
use() method. To understand this better, let's revisit our previous example. Modify
your server.js ile to look like the following code snippet:

var connect = require('connect');

var app = connect();

var logger = function(req, res, next) {

 console.log(req.method, req.url);

 next();

};

var helloWorld = function(req, res, next) {

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

};

Getting Started with Node.js

[48]

var goodbyeWorld = function(req, res, next) {

 res.setHeader('Content-Type', 'text/plain');

 res.end('Goodbye World');

};

app.use(logger);

app.use('/hello', helloWorld);

app.use('/goodbye', goodbyeWorld);

app.listen(3000);

console.log('Server running at http://localhost:3000/');

A few things have been changed in the previous example. First, you mounted
the helloWorld() middleware to respond only to requests made to the /hello
path. Then, you added another (a bit morbid) middleware called goodbyeWorld()
that will respond to requests made to the /goodbye path. Notice how, as a logger
should do, we left the logger() middleware to respond to all the requests made
to the server. Another thing you should be aware of is that any requests made to
the base path will not be responded by any middleware because we mounted the
helloWorld() middleware to a speciic path.

Connect is a great module that supports various features of common web applications.
Connect middleware is super simple as it is built with a JavaScript style in mind. It
allows the endless extension of your application logic without breaking the nimble
philosophy of the Node platform. While Connect is a great improvement over writing
your web application infrastructure, it deliberately lacks some basic features you're
used to having in other web frameworks. The reason lies in one of the basic principles
of the Node community: create your modules lean and let other developers build their
modules on top of the module you created. The community is supposed to extend
Connect with its own modules and create its own web infrastructures. In fact, one very
energetic developer named TJ Holowaychuk, did it better than most when he released
a Connect-based web framework known as Express.

Summary
In this chapter, you learned how Node.js harnesses JavaScript's event-driven
behavior to its beneit. You also learned how Node.js uses the CommonJS module
system to extend its core functionality. You learned about the basic principles of
Node.js web applications and discovered the Connect web module. You created
your irst Connect application and learned how to use middleware functions. In the
next chapter, we'll tackle the irst piece of the MEAN puzzle, when we discuss the
Connect-based web framework called Express.

Building an Express
Web Application

This chapter will cover the proper way of building your irst Express application.
You'll begin by installing and coniguring the Express module, and then learn about
Express' main APIs. We'll discuss Express request, response, and application objects
and learn how to use them. We'll then cover the Express routing mechanism and
learn how to properly use it. We'll also discuss the structure of the application folder
and how you can utilize different structures for different project types. By the end of
this chapter, you'll learn how to build a full Express application. In this chapter, we'll
cover the following topics:

• Installing Express and creating a new Express application

• Organizing your project's structure

• Coniguring your Express application
• Using the Express routing mechanism

• Rendering EJS views

• Serving static iles
• Coniguring an Express session

Introduction to Express
To say that TJ Holowaychuk is a productive developer would be a huge
understatement. TJ's involvement in the Node.js community is almost unmatched by
any other developer, and with more than 500 open source projects, he's responsible
for some of the most popular frameworks in the JavaScript ecosystem.

Building an Express Web Application

[50]

One of his greatest projects is the Express web framework. The Express framework
is a small set of common web application features, kept to a minimum in order
to maintain the Node.js style. It is built on top of Connect and makes use of its
middleware architecture. Its features extend Connect to allow a variety of common
web applications' use cases, such as the inclusion of modular HTML template
engines, extending the response object to support various data format outputs, a
routing system, and much more.

So far, we have used a single server.js ile to create our application. However,
when using Express you'll learn more about better project structure, properly
coniguring your application, and breaking your application logic into different
modules. You'll also learn how to use the EJS template engine, managing sessions,
and adding a routing scheme. By the end of this section, you'll have a working
application skeleton that you'll use for the rest of the book. Let's begin our journey of
creating your irst Express application.

Installing Express
Up until now, we used npm to directly install external modules for our Node
application. You could, of course, use this approach and install Express by typing the
following command:

$ npm install express

But, directly installing modules isn't really scalable. Think about it for a second:
you're going to use many Node modules in your application, transfer it between
working environments, and probably share it with other developers. So, installing
the project modules this way will soon become a dreadful task. Instead, you should
start using the package.json ile that organizes your project metadata and helps
you manage your application dependencies. Begin by creating a new working folder
and a new package.json ile inside it, which contains the following code snippet:

{

 "name" : "MEAN",

 "version" : "0.0.3",

 "dependencies" : {

 "express" : "~4.8.8"

 }

}

Chapter 3

[51]

In the package.json ile, note that you included three properties, the name and
version of your application and the dependencies property that deines what
modules should be installed before your application can run. To install your
application dependencies, use your command-line tool, and navigate to your
application folder, and then issue the following command:

$ npm install

NPM will then install the Express module because it is currently the only
dependency deined in your package.json ile.

Creating your irst Express application
After creating your package.json ile and installing your dependencies, you can
now create your irst Express application by adding your already familiar server.js
ile with the following lines of code:

var express = require('express');

var app = express();

app.use('/', function(req, res) {

 res.send('Hello World');

});

app.listen(3000);

console.log('Server running at http://localhost:3000/');

module.exports = app;

You should already recognize most of the code. The irst two lines require the
Express module and create a new Express application object. Then, we use the app.
use() method to mount a middleware function with a speciic path, and the app.
listen() method to tell the Express application to listen to the port 3000. Notice
how the module.exports object is used to return the application object. This will
later help us load and test our Express application.

This new code should also be familiar to you because it resembles the code you
used in the previous Connect example. This is because Express wraps the Connect
module in several ways. The app.use() method is used to mount a middleware
function, which will respond to any HTTP request made to the root path. Inside
the middleware function, the res.send() method is then used to send the
response back. The res.send() method is basically an Express wrapper that sets
the Content-Type header according to the response object type and then sends a
response back using the Connect res.end() method.

Building an Express Web Application

[52]

When passing a buffer to the res.send() method, the Content-Type
header will be set to application/octet-stream. When passing
a string, it will be set to text/html and when passing an object or an
array, it will be set to application/json.

To run your application, simply execute the following command in your command-
line tool:

$ node server

Congratulations! You have just created your irst Express application. You can test it
by visiting http://localhost:3000 in your browser.

The application, request, and response
objects
Express presents three major objects that you'll frequently use. The application
object is the instance of an Express application you created in the irst example and is
usually used to conigure your application. The request object is a wrapper of Node's
HTTP request object and is used to extract information about the currently handled
HTTP request. The response object is a wrapper of Node's HTTP response object and
is used to set the response data and headers.

The application object
The application object contains the following methods to help you conigure your
application:

• app.set(name, value): This is used to set environment variables that
Express will use in its coniguration.

• app.get(name): This is used to get environment variables that Express is
using in its coniguration.

• app.engine(ext, callback): This is used to deine a given template
engine to render certain ile types, for example, you can tell the EJS template
engine to use HTML iles as templates like this: app.engine('html',
require('ejs').renderFile).

• app.locals: This is used to send application-level variables to all rendered
templates.

Chapter 3

[53]

• app.use([path], callback): This is used to create an Express middleware
to handle HTTP requests sent to the server. Optionally, you'll be able to
mount middleware to respond to certain paths.

• app.VERB(path, [callback...], callback): This is used to deine one or
more middleware functions to respond to HTTP requests made to a certain
path in conjunction with the HTTP verb declared. For instance, when you
want to respond to requests that are using the GET verb, then you can just
assign the middleware using the app.get() method. For POST requests you'll
use app.post(), and so on.

• app.route(path).VERB([callback...], callback): This is used to deine
one or more middleware functions to respond to HTTP requests made to a
certain uniied path in conjunction with multiple HTTP verbs. For instance,
when you want to respond to requests that are using the GET and POST
verbs, you can just assign the appropriate middleware functions using app.
route(path).get(callback).post(callback).

• app.param([name], callback): This is used to attach a certain
functionality to any request made to a path that includes a certain routing
parameter. For instance, you can map logic to any request that includes the
userId parameter using app.param('userId', callback).

There are many more application methods and properties you can use, but using
these common basic methods enables developers to extend Express in whatever way
they ind reasonable.

The request object
The request object also provides a handful of helping methods that contain the
information you need about the current HTTP request. The key properties and
methods of the request object are as follows:

• req.query: This is an object containing the parsed query-string parameters.

• req.params: This is an object containing the parsed routing parameters.

• req.body: This is an object used to retrieve the parsed request body. This
property is included in the bodyParser() middleware.

• req.param(name): This is used to retrieve a value of a request parameter.
Note that the parameter can be a query-string parameter, a routing
parameter, or a property from a JSON request body.

www.allitebooks.com

http://www.allitebooks.org

Building an Express Web Application

[54]

• req.path, req.host, and req.ip: These are used to retrieve the current
request path, host name, and remote IP.

• req.cookies: This is used in conjunction with the cookieParser()
middleware to retrieve the cookies sent by the user-agent.

The request object contains many more methods and properties that we'll
discuss later in this book, but these methods are what you'll usually use in a
common web application.

The response object
The response object is frequently used when developing an Express application
because any request sent to the server will be handled and responded using the
response object methods. It has several key methods, which are as follows:

• res.status(code): This is used to set the response HTTP status code.

• res.set(field, [value]): This is used to set the response HTTP header.

• res.cookie(name, value, [options]): This is used to set a response
cookie. The options argument is used to pass an object deining common
cookie coniguration, such as the maxAge property.

• res.redirect([status], url): This is used to redirect the request to a
given URL. Note that you can add an HTTP status code to the response.
When not passing a status code, it will be defaulted to 302 Found.

• res.send([body|status], [body]): This is used for non-streaming
responses. This method does a lot of background work, such as setting the
Content-Type and Content-Length headers, and responding with the
proper cache headers.

• res.json([status|body], [body]): This is identical to the res.send()
method when sending an object or array. Most of the times, it is used as
syntactic sugar, but sometimes you may need to use it to force a JSON
response to non-objects, such as null or undeined.

• res.render(view, [locals], callback): This is used to render a view
and send an HTML response.

The response object also contains many more methods and properties to handle
different response scenarios, which you'll learn about later in this book.

Chapter 3

[55]

External middleware
The Express core is minimal, yet the team behind it provides various predeined
middleware to handle common web development features. These types of
middleware vary in size and functionality and extend Express to provide a better
framework support. The popular Express middleware are as follows:

• Morgan: This is an HTTP request logger middleware.

• body-parser: This is a body-parsing middleware that is used to parse the
request body, and it supports various request types.

• method-override: This is a middleware that provides HTTP verb support
such as PUT or DELETE in places where the client doesn't support it.

• Compression: This is a compression middleware that is used to compress the
response data using gzip/deflate.

• express.static: This middleware used to serve static iles.
• cookie-parser: This is a cookie-parsing middleware that populates the

req.cookies object.

• Session: This is a session middleware used to support persistent sessions.

There are many more types of Express middleware that enable you to shorten your
development time, and even a larger number of third-party middleware.

To learn more about the Connect and Express middleware, visit the
Connect module's oficial repository page at https://github.com/
senchalabs/connect#middleware. If you'd like to browse the third-
party middleware collection, visit Connect's wiki page at https://
github.com/senchalabs/connect/wiki.

Implementing the MVC pattern
The Express framework is pattern agnostic, which means it doesn't support any
predeined syntax or structure as do some other web frameworks. Applying the
MVC pattern to your Express application means that you can create speciic folders
where you place your JavaScript iles in a certain logical order. All those iles are
basically CommonJS modules that function as logical units. For instance, models
will be CommonJS modules containing a deinition of Mongoose models placed in
the models folder, views will be HTML or other template iles placed in the views
folder, and controllers will be CommonJS modules with functional methods placed
in the controllers folder. To illustrate this better, it's time to discuss the different
types of an application structure.

https://github.com/senchalabs/connect#middleware
https://github.com/senchalabs/connect#middleware
https://github.com/senchalabs/connect/wiki
https://github.com/senchalabs/connect/wiki

Building an Express Web Application

[56]

Application folder structure
We previously discussed better practices while developing a real application, where
we recommended the use of the package.json ile over directly installing your
modules. However, this was only the beginning; once you continue developing
your application, you'll soon ind yourself wondering how you should arrange
your project iles and break them into logical units of code. JavaScript, in general,
and consequently the Express framework, are agnostic about the structure of your
application as you can easily place your entire application in a single JavaScript
ile. This is because no one expected JavaScript to be a full-stack programming
language, but it doesn't mean you shouldn't dedicate special attention to organizing
your project. Since the MEAN stack can be used to build all sorts of applications
that vary in size and complexity, it is also possible to handle the project structure in
various ways. The decision is often directly related to the estimated complexity of
your application. For instance, simple projects may require a leaner folder structure,
which has the advantage of being clearer and easier to manage, while complex
projects will often require a more complex structure and a better breakdown of the
logic since it will include many features and a bigger team working on the project.
To simplify this discussion, it would be reasonable to divide it into two major
approaches: a horizontal structure for smaller projects and a vertical structure for
feature-rich applications. Let's begin with a simple horizontal structure.

Horizontal folder structure
A horizontal project structure is based on the division of folders and iles by their
functional role rather than by the feature they implement, which means that all
the application iles are placed inside a main application folder that contains an
MVC folder structure. This also means that there is a single controllers folder
that contains all of the application controllers, a single models folder that contains
all of the application models, and so on. An example of the horizontal application
structure is as follows:

Chapter 3

[57]

Let's review the folder structure:

• The app folder is where you keep your Express application logic and is
divided into the following folders that represent a separation of functionality
to comply with the MVC pattern:

 ° The controllers folder is where you keep your Express
application controllers

 ° The models folder is where you keep your Express application models

 ° The routes folder is where you keep your Express application
routing middleware

 ° The views folder is where you keep your Express application views

• The config folder is where you keep your Express application coniguration
iles. In time you'll add more modules to your application and each module
will be conigured in a dedicated JavaScript ile, which is placed inside this
folder. Currently, it contains several iles and folders, which are as follows:

 ° The env folder is where you'll keep your Express application
environment configuration files

 ° The config.js file is where you'll configure your Express application

 ° The express.js file is where you'll initialize your Express application

Building an Express Web Application

[58]

• The public folder is where you keep your static client-side iles and is
divided into the following folders that represent a separation of functionality
to comply with the MVC pattern:

 ° The config folder is where you keep your AngularJS
application configuration files

 ° The controllers folder is where you keep your
AngularJS application controllers

 ° The css folder is where you keep your CSS files

 ° The directives folder is where you keep your
AngularJS application directives

 ° The filters folder is where you keep your AngularJS
application filters

 ° The img folder is where you keep your image files

 ° The views folder is where you keep your AngularJS
application views

 ° The application.js file is where you initialize your
AngularJS application

• The package.json ile is the metadata ile that helps you to organize your
application dependencies.

• The server.js ile is the main ile of your Node.js application, and it will
load the express.js ile as a module to bootstrap your Express application.

As you can see, the horizontal folder structure is very useful for small projects where
the number of features is limited, and so iles can be conveniently placed inside
folders that represent their general roles. Nevertheless, to handle large projects,
where you'll have many iles that handle certain features, it might be too simplistic.
In that case, each folder could be overloaded with too many iles, and you'll get lost
in the chaos. A better approach would be to use a vertical folder structure.

Vertical folder structure
A vertical project structure is based on the division of folders and iles by the feature
they implement, which means each feature has its own autonomous folder that
contains an MVC folder structure. An example of the vertical application structure is
as follows:

Chapter 3

[59]

As you can see, each feature has its own application-like folder structure. In this
example, we have the core feature folder that contains the main application iles
and the feature folder that include the feature's iles. An example feature would be
a user management feature that includes the authentication and authorization logic.
To understand this better, let's review a single feature's folder structure:

• The server folder is where you keep your feature's server logic and is
divided into the following folders that represent a separation of functionality
to comply with the MVC pattern:

 ° The controllers folder is where you keep your feature's Express
controllers

 ° The models folder is where you keep your feature's Express models

 ° The routes folder is where you keep your feature's Express
routing middleware

Building an Express Web Application

[60]

 ° The views folder is where you keep your feature's Express views

 ° The config folder is where you keep your feature's server
configuration files

 ° The env folder is where you keep your feature's environment
server configuration files

 ° The feature.server.config.js file is where you configure
your feature

• The client folder is where you keep your feature client-side iles and is
divided into the following folders that represent a separation of functionality
to comply with the MVC pattern:

 ° The config folder is where you keep your feature's AngularJS
configuration files

 ° The controllers folder is where you keep your feature's
AngularJS controllers

 ° The css folder is where you keep your feature's CSS files

 ° The directives folder is where you keep your feature's
AngularJS directives

 ° The filters folder is where you keep your feature's AngularJS filters

 ° The img folder is where you keep your feature's image files

 ° The views folder is where you keep your feature's AngularJS views

 ° The feature1.client.module.js file is where you initialize your
feature's AngularJS module

As you can see, the vertical folder structure is very useful for large projects where the
number of features is unlimited and each feature includes a substantial amount of
iles. It will allow large teams to work together and maintain each feature separately,
and it can also be useful to share features between different applications.

Although these are two distinctive types of most application structures, the reality
is that the MEAN stack can be assembled in many different ways. It's even likely for
a team to structure their project in a way that combines these two approaches, so
essentially it is up to the project leader to decide which structure to use. In this book,
we'll use the horizontal approach for reasons of simplicity, but we'll incorporate the
AngularJS part of our application in a vertical manner to demonstrate the lexibility
of the MEAN stack's structure. Keep in mind that everything presented in this book
can be easily restructured to accommodate your project's speciications.

Chapter 3

[61]

File-naming conventions
While developing your application, you'll soon notice that you end up with many
iles with the same name. The reason is that MEAN applications often have a parallel
MVC structure for both the Express and AngularJS components. To understand this
issue, take a look at a common vertical feature's folder structure:

As you can see, enforcing the folder structure helps you understand each ile's
functionality, but it will also cause several iles to have the same name. This is because
an application's feature is usually implemented using several JavaScript iles, each
having a different role. This issue can cause some confusion for the development team,
so to solve this, you'll need to use some sort of a naming convention.

The simplest solution would be to add each ile's functional role to the ile name, so
a feature controller ile will be named feature.controller.js, a feature model
ile will be named feature.model.js, and so on. However, things get even more
complicated when you consider the fact that MEAN applications use JavaScript
MVC iles for both the Express and AngularJS applications. This means that you'll
often have two iles with the same name; for instance, a feature.controller.js
ile might be an Express controller or an AngularJS controller. To solve this issue, it
is also recommended that you extend iles names with their execution destination.
A simple approach would be to name our Express controller feature.server.
controller.js and our AngularJS controller feature.client.controller.js.
This might seem like overkill at irst, but you'll soon discover that it's quite helpful to
quickly identify the role and execution destination of your application iles.

Building an Express Web Application

[62]

It is important to remember that this is a best practice convention.
You can easily replace the controller, model, client, and
server keywords with your own keywords.

Implementing the horizontal folder structure
To begin structuring your irst MEAN project, create a new project folder with the
following folders inside it:

Once you created all the preceding folders, go back to the application's root folder,
and create a package.json ile that contains the following code snippet:

{

 "name" : "MEAN",

 "version" : "0.0.3",

 "dependencies" : {

 "express" : "~4.8.8"

 }

}

Now, in the app/controllers folder, create a ile named index.server.
controller.js with the following lines of code:

exports.render = function(req, res) {

 res.send('Hello World');

};

Chapter 3

[63]

Congratulations! You just created your irst Express controller. This code is probably
looking very familiar; that's because it's a copy of the middleware you created in
the previous examples. What you do here is using the CommonJS module pattern
to deine a function named render(). Later on, you'll be able to require this module
and use this function. Once you've created a controller, you'll need to use Express
routing functionality to utilize the controller.

Handling request routing
Express supports the routing of requests using either the app.route(path).
VERB(callback) method or the app.VERB(path, callback) method, where
VERB should be replaced with a lowercase HTTP verb. Take a look at the following
example:

app.get('/', function(req, res) {

 res.send('This is a GET request');

});

This tells Express to execute the middleware function for any HTTP request using
the GET verb and directed to the root path. If you'd like to deal with POST requests,
your code should be as follows:

app.post('/', function(req, res) {

 res.send('This is a POST request');

});

However, Express also enables you to deine a single route and then chain several
middleware to handle different HTTP requests. This means the preceding code
example could also be written as follows:

app.route('/').get(function(req, res) {

 res.send('This is a GET request');

}).post(function(req, res) {

 res.send('This is a POST request');

});

Another cool feature of Express is the ability to chain several middleware in a
single routing deinition. This means middleware functions will be called in order,
passing them to the next middleware so you could determine how to proceed with
middleware execution. This is usually used to validate requests before executing the
response logic. To understand this better, take a look at the following code:

var express = require('express');

var hasName = function(req, res, next) {

 if (req.param('name')) {

Building an Express Web Application

[64]

 next();

 } else {

 res.send('What is your name?');

 }

};

var sayHello = function(req, res, next) {

 res.send('Hello ' + req.param('name'));

};

var app = express();

app.get('/', hasName, sayHello);

app.listen(3000);

console.log('Server running at http://localhost:3000/');

In the preceding code, there are two middleware functions named hasName() and
sayHello(). The hasName() middleware is looking for the name parameter; if it inds
a deined name parameter, it will call the next middleware function using the next
argument. Otherwise, the hasName() middleware will handle the response by itself.
In this case, the next middleware function would be the sayHello() middleware
function. This is possible because we've added the middleware function in a row using
the app.get() method. It is also worth noticing the order of the middleware functions
because it determines which middleware function is executed irst.

This example demonstrates well how routing middleware can be used to perform
different validations when determining what the response should be. You can of
course leverage this functionality to perform other tasks, such as validating user
authentication and resources' authorization. For now though, let's just continue with
our example.

Adding the routing ile
The next ile you're going to create is your irst routing ile. In the app/routes folder,
create a ile named index.server.routes.js with the following code snippet:

module.exports = function(app) {

 var index = require('../controllers/index.server.controller');

 app.get('/', index.render);

};

Chapter 3

[65]

Here you did a few things: irst, you used the CommonJS module pattern again. As
you may recall the CommonJS module pattern supports both the exporting of several
functions like you did with your controller and the use of a single module function
like you did here. Next, you required your index controller and used its render()
method as a middleware to GET requests made to the root path.

The routing module function accepts a single argument called app, so
when you call this function, you'll need to pass it the instance of the
Express application.

All that you have left to do is to create the Express application object and bootstrap it
using the controller and routing modules you just created. To do so, go to the config
folder and create a ile named express.js with the following code snippet:

var express = require('express');

module.exports = function() {

 var app = express();

 require('../app/routes/index.server.routes.js')(app);

 return app;

};

In the preceding code snippet, you required the Express module then used the
CommonJS module pattern to deine a module function that initializes the Express
application. First, it creates a new instance of an Express application, and then it
requires your routing ile and calls it as a function passing it the application instance
as an argument. The routing ile will use the application instance to create a new
routing coniguration and will call the controller's render() method. The module
function ends by returning the application instance.

The express.js ile is where we conigure our Express application. This
is where we add everything related to the Express coniguration.

To inalize your application, you'll need to create a ile named server.js in the root
folder and copy the following code:

var express = require('./config/express');

var app = express();

app.listen(3000);

module.exports = app;

console.log('Server running at http://localhost:3000/');

Building an Express Web Application

[66]

This is it! In the main application ile, you connected all the loose ends by requiring
the Express coniguration module and then using it to retrieve your application
object instance, and listen to the 3000 port.

To start your application, navigate to your application's root folder using your
command-line tool, and install your application dependencies using npm, as follows:

$ npm install

Once the installation process is over, all you have to do is start your application
using Node's command-line tool:

$ node server

Your Express application should now run! To test it, navigate to
http://localhost:3000.

In this example, you learned how to properly build your Express application. It
is important that you notice the different ways you used the CommonJS module
pattern to create your iles and require them across the application. This pattern will
often repeat itself in this book.

Coniguring an Express application
Express comes with a pretty simple coniguration system, which enables you to
add certain functionality to your Express application. Although there are predeined
coniguration options that you can change to manipulate the way it works, you
can also add your own key/value coniguration options for any other usage.
Another robust feature of Express is the ability to conigure your application
based on the environment it's running on. For instance, you may want to use the
Express logger in your development environment and not in production, while
compressing your responses body might seem like a good idea when running in a
production environment.

To achieve this, you will need to use the process.env property. The process.env
is a global variable that allows you to access predeined environment variables,
and the most common one is the NODE_ENV environment variable. The NODE_ENV
environment variable is often used for environment-speciic conigurations. To
understand this better, let's go back to the previous example and add some external
middleware. To use these middleware, you will irst need to download and install
them as your project dependencies.

Chapter 3

[67]

To do so, edit your package.json ile to look like the following code snippet:

{

 "name": "MEAN",

 "version": "0.0.3",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0"

 }

}

As we previously stated, the morgan module provides a simple logger
middleware, the compression module will provides response compression, the
body-parser module provides several middleware to handle request data, and the
method-override module provides DELETE and PUT HTTP verbs legacy support. To
use these modules, you will need to modify your config/express.js ile to look
like the following code snippet:

var express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 require('../app/routes/index.server.routes.js')(app);

 return app;

};

Building an Express Web Application

[68]

As you can see, we just used the process.env.NODE_ENV variable to determine our
environment and conigure the Express application accordingly. We simply used the
app.use() method to load the morgan() middleware in a development environment
and the compress() middleware in a production environment. The bodyParser.
urlencoded(), bodyParser.json(), and methodOverride() middleware will
always load, regardless of the environment.

To inalize your coniguration, you'll need to change your server.js ile to look like
the following code snippet:

process.env.NODE_ENV = process.env.NODE_ENV || 'development';

var express = require('./config/express');

var app = express();

app.listen(3000);

module.exports = app;

console.log('Server running at http://localhost:3000/');

Notice how the process.env.NODE_ENV variable is set to the default 'development'
value if it doesn't exist. This is because, often, the NODE_ENV environment variable is
not properly set.

It is recommended that you set the NODE_ENV environment variable in
your operating system prior to running your application.

In a Windows environment, this can be done by executing the following
command in your command prompt:

> set NODE_ENV=development

While in a Unix-based environment, you should simply use the following
export command:

$ export NODE_ENV=development

To test your changes, navigate to your application's root folder using your
command-line tool and install your application dependencies using npm, as follows:

$ npm install

Once the installation process is over, all you have to do is start your application
using Node's command-line tool:

$ node server

Chapter 3

[69]

Your Express application should now run! To test it, navigate to http://
localhost:3000, and you'll be able to see the logger in action in your command-line
output. However, the process.env.NODE_ENV environment variable can be used
even more sophisticatedly when dealing with more complex coniguration options.

Environment coniguration iles
During your application development, you will often need to conigure third-
party modules to run differently in various environments. For instance, when
you connect to your MongoDB server, you'll probably use different connection
strings in your development and production environments. Doing so in the current
setting will probably cause your code to be illed with endless if statements, which
will generally be harder to maintain. To solve this issue, you can manage a set
of environment coniguration iles that holds these properties. You will then be
able to use the process.env.NODE_ENV environment variable to determine which
coniguration ile to load, thus keeping your code shorter and easier to maintain.
Let's begin by creating a coniguration ile for our default development environment.
To do so, create a new ile inside your config/env folder and call it development.
js. Inside your new ile, paste the following lines of code:

module.exports = {

 // Development configuration options

};

As you can see, your coniguration ile is currently just an empty CommonJS module
initialization; don't worry about it, we'll soon add the irst coniguration option,
but irst, we'll need to manage the coniguration iles loading. To do so, go to your
application config folder and create a new ile named config.js. Inside your new
ile, paste the following lines of code:

module.exports = require('./env/' + process.env.NODE_ENV + '.js');

As you can see, this ile simply loads the correct coniguration ile according to the
process.env.NODE_ENV environment variable. In the upcoming chapters, we'll use
this ile, which will load the correct environment coniguration ile for us. To manage
other environment conigurations, you'll just need to add a dedicated environment
coniguration ile and properly set the NODE_ENV environment variable.

Building an Express Web Application

[70]

Rendering views
A very common feature of web frameworks is the ability to render views. The basic
concept is passing your data to a template engine that will render the inal view
usually in HTML. In the MVC pattern, your controller uses the model to retrieve
the data portion and the view template to render the HTML output as described
in the next diagram. The Express extendable approach allows the usage of many
Node.js template engines to achieve this functionality. In this section, we'll use the
EJS template engine, but you can later replace it with other template engines. The
following diagram shows the MVC pattern in rendering application views:

Express has two methods for rendering views: app.render(), which is used to
render the view and then pass the HTML to a callback function, and the more
common res.render(), which renders the view locally and sends the HTML as
a response. You'll use res.render() more frequently because you usually want
to output the HTML as a response. However, if, for an instance, you'd like your
application to send HTML e-mails, you will probably use app.render(). Before we
begin exploring the res.render() method, let's irst conigure our view system.

Chapter 3

[71]

Coniguring the view system
In order to conigure the Express view system, you will need to use the EJS template
engine. Let's get back to our example and install the EJS module. You should begin
by changing your package.json ile to look like the following code snippet:

{

 "name": "MEAN",

 "version": "0.0.3",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "ejs": "~1.0.0"

 }

}

Now install the EJS module by navigating in the command line to your project's root
folder and issue the following command:

$ npm update

After NPM inishes installing the EJS module, you'll be able to conigure Express to
use it as the default template engine. To conigure your Express application, go back
to the config/express.js ile and change it to look like the following lines of code:

var express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

Building an Express Web Application

[72]

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 require('../app/routes/index.server.routes.js')(app);

 return app;

};

Notice how we use the app.set() method to conigure the Express application
views folder and template engine. Let's create your irst view.

Rendering EJS views
EJS views basically consist of HTML code mixed with EJS tags. EJS templates will
reside in the app/views folder and will have the .ejs extension. When you'll use the
res.render() method, the EJS engine will look for the template in the views folder,
and if it inds a complying template, it will render the HTML output. To create your
irst EJS view, go to your app/views folder, and create a new ile named index.ejs
that contains the following HTML code snippet:

<!DOCTYPE html>

<html>

 <head>

 <title><%= title %></title>

 </head>

 <body>

 <h1><%= title %></h1>

 </body>

</html>

This code should be mostly familiar to you except for the <%= %> tag. These tags are
the way to tell the EJS template engine where to render the template variables—in
this case, the title variable. All you have left to do is conigure your controller to
render this template and automatically output it as an HTML response. To do so, go
back to your app/controllers/index.server.controller.js ile, and change it
to look like the following code snippet:

exports.render = function(req, res) {

 res.render('index', {

 title: 'Hello World'

 })

};

Chapter 3

[73]

Notice the way the res.render() method is used. The irst argument is the name
of your EJS template without the .ejs extension, and the second argument is an
object containing your template variables. The res.render() method will use the
EJS template engine to look for the ile in the views folder that we set in the config/
express.js ile and will then render the view using the template variables. To test
your changes, use your command-line tool and issue the following command:

$ node server

Well done, you have just created your irst EJS view! Test your application by
visiting http://localhost:3000 where you'll be able to see the rendered HTML.

EJS views are simple to maintain and provides an easy way to create your
application views. We'll elaborate a bit more on EJS templates later in this book;
however, not as much as you would expect because in MEAN applications, most of
the HTML rendering is done in the client side using AngularJS.

Serving static iles
In any web application, there is always a need to serve static iles. Fortunately,
Express comes prebundled with the express.static() middleware, which
provides this feature. To add static ile support to the previous example, just make
the following changes in your config/express.js ile:

var express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

Building an Express Web Application

[74]

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 require('../app/routes/index.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

The express.static() middleware takes one argument to determine the location of
the static folder. Notice how the express.static() middleware is placed below the
call for the routing ile. This order matters because if it were above it, Express would
irst try to look for HTTP request paths in the static iles folder. This would make the
response a lot slower as it would have to wait for a ilesystem I/O operation.

To test your static middleware, add an image named logo.png to the public/img
folder and then make the following changes in your app/views/index.ejs ile:

<!DOCTYPE html>

<html>

 <head>

 <title><%= title %></title>

 </head>

 <body>

 <h1><%= title %></h1>

 </body>

</html>

Now run your application using node's command-line tool:

$ node server

To test the result, visit http://localhost:3000 in your browser and watch how
Express is serving your image as a static ile.

Chapter 3

[75]

Coniguring sessions
Sessions are a common web application pattern that allows you to keep track of the
user's behavior when they visit your application. To add this functionality, you will
need to install and conigure the express-session middleware. To do so, start by
modifying your package.json ile like this:

{

 "name": "MEAN",

 "version": "0.0.3",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0"

 }

}

Then, install the express-session module by navigating to your project's root
folder in the command line and issuing the following command:

$ npm update

Once the installation process is inished, you'll be able to conigure your Express
application to use the express-session module. The express-session module
will use a cookie-stored, signed identiier to identify the current user. To sign the
session identiier, it will use a secret string, which will help prevent malicious session
tampering. For security reasons, it is recommended that the cookie secret be different
for each environment, which means this would be an appropriate place to use our
environment coniguration ile. To do so, change the config/env/development.js
ile to look like the following code snippet:

module.exports = {

 sessionSecret: 'developmentSessionSecret'

};

Building an Express Web Application

[76]

Since it is just an example, feel free to change the secret string. For other
environments, just add the sessionSecret property in their environment
coniguration iles. To use the coniguration ile and conigure your Express
application, go back to your config/express.js ile and change it to look like
the following code snippet:

var config = require('./config'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 require('../app/routes/index.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

Chapter 3

[77]

Notice how the coniguration object is passed to the express.session()
middleware. In this coniguration object, the secret property is deined using
the coniguration ile you previously modiied. The session middleware adds a
session object to all request objects in your application. Using this session object,
you can set or get any property that you wish to use in the current session. To test
the session, change the app/controller/index.server.controller.js ile as
follows:

exports.render = function(req, res) {

 if (req.session.lastVisit) {

 console.log(req.session.lastVisit);

 }

 req.session.lastVisit = new Date();

 res.render('index', {

 title: 'Hello World'

 });

};

What you did here is basically record the time of the last user request. The controller
checks whether the lastVisit property was set in the session object, and if so,
outputs the last visit date to the console. It then sets the lastVisit property to
the current time. To test your changes, use node's command-line tool to run your
application, as follows:

$ node server

Now test your application by visiting http://localhost:3000 in your browser and
watching the command-line output.

Summary
In this chapter, you created your irst Express application and learned how to
properly conigure it. You arranged your iles and folders in an organized structure
and discovered alternative folder structures. You also created your irst Express
controller and learned how to call its methods using Express' routing mechanism.
You rendered your irst EJS view and learned how to serve static iles. You also
learned how to use express-session to track your users' behavior. In the next
chapter, you'll learn how to save your application's persistent data using MongoDB.

Introduction to MongoDB
MongoDB is an exciting new breed of database. The leader of the NoSQL movement
is emerging as one of the most useful database solutions in the world. Designed with
web applications in mind, Mongo's high throughput, unique BSON data model, and
easily scalable architecture provides web developers with better tools to store their
persistent data. But the move from relational databases to NoSQL solutions can be
an overwhelming task, which can be easily simpliied by understanding MongoDB's
design goals. In this chapter, we'll cover the following topics:

• Understanding the NoSQL movement and MongoDB design goals
• MongoDB BSON data structure

• MongoDB collections and documents

• MongoDB query language

• Working with the MongoDB shell

Introduction to NoSQL
In the past couple of years, web application development usually required the usage
of a relational database to store persistent data. Most developers are already pretty
comfortable with using one of the many SQL solutions. So, the approach of storing
a normalized data model using a mature relational database became the standard.
Object-relational mappers started to crop up, giving developers proper solutions to
marshal their data between the different parts of their application. But as the Web grew
larger, more scaling problems were presented to a larger base of developers. To solve
this problem, the community created a variety of key-value storage solutions that were
designed for better availability, simple querying, and horizontal scaling. This new
kind of data store became more and more robust, offering many of the features of the
relational databases. During this evolution, different storage design patterns emerged,
including key-value storage, column storage, object storage, and the most popular one,
document storage.

Introduction to MongoDB

[80]

In a common relational database, your data is stored in different tables, often
connected using a primary to foreign key relation. Your program will later
reconstruct the model using various SQL statements to arrange the data in some
kind of hierarchical object representation. Document-oriented databases handle data
differently. Instead of using tables, they store hierarchical documents in standard
formats, such as JSON and XML.

To understand this better, let's have a look at an example of a typical blog post. To
construct this blog post model using a SQL solution, you'll probably have to use at
least two tables. The irst one would contain post information while the second would
contain post comments. A sample table structure can be seen in the following diagram:

In your application, you'll use an object-relational mapping library or direct SQL
statements to select the blog post record and the post comments records to create
your blog post object. However, in a document-based database, the blog post will be
stored completely as a single document that can later be queried. For instance, in a
database that stores documents in a JSON format, your blog post document would
probably look like the following code snippet:

{

 "title": "First Blog Post",

 "comments": [

]

}

Chapter 4

[81]

This demonstrates the main difference between document-based databases and
relational databases. So, while working with relational databases, your data is stored
in different tables, with your application assembling objects using table records.
Storing your data as holistic documents will allow faster read operations since
your application won't have to rebuild the objects with every read. Furthermore,
document-oriented databases have other advantages.

While developing your application, you often encounter another problem: model
changes. Let's assume you want to add a new property to each blog post. So, you
go ahead and change your posts table and then go to your application data layer
and add that property to your blog post object. But as your application already
contains several blog posts, all existing blog post objects will have to change as well,
which means that you'll have to cover your code with extra validation procedures.
However, document-based databases are often schemaless, which means you can
store different objects in a single collection of objects without changing anything in
your database. Although this may sound like a call-for-trouble for some experienced
developers, the freedom of schemaless storage has several advantages.

For example, think about an e-commerce application that sells used furniture. Think
about your products table for a moment: a chair and a closet might have some
common features, such as the type of wood, but a customer might also be interested
in the number of doors the closet has. Storing the closet and chair objects in the same
table means they could be stored in either a table with a large number of empty
columns or using the more practical entity-attribute-value pattern, where another table
is used to store key-value attributes. However, using schemaless storage will allow
you to deine different properties for different objects in the same collection, while still
enabling you to query this collection using common properties, such as wood type.
This means your application, and not the database, will be in charge of enforcing the
data structure, which can help you speed up your development process.

While there are many NoSQL solutions that solve various development issues,
usually around caching and scale, the document-oriented databases are rapidly
becoming the leaders of the movement. The document-oriented database's ease of
use, along with its standalone persistent storage offering, even threatens to replace
the traditional SQL solutions in some use cases. And although there are a few
document-oriented databases, none are as popular as MongoDB.

Introduction to MongoDB

[82]

Introducing MongoDB
Back in 2007, Dwight Merriman and Eliot Horowitz formed a company named
10gen to create a better platform to host web applications. The idea was to create a
hosting as a service that will allow developers to focus on building their application
rather than handle hardware management and infrastructure scaling. Soon, they
discovered the community wasn't keen on giving up so much of the control over
their application's infrastructure. As a result, they released the different parts of the
platform as open source projects.

One such project was a document-based database solution called MongoDB. Derived
from the word humongous, MongoDB was able to support complex data storage,
while maintaining the high-performance approach of other NoSQL stores. The
community cheerfully adopted this new paradigm, making MongoDB one of the
fastest-growing databases in the world. With more than 150 contributors and over
10,000 commits, it also became one the most popular open source projects.

MongoDB's main goal was to create a new type of database that combined the
robustness of a relational database with the fast throughput of distributed key-
value data stores. With the scalable platform in mind, it had to support simple
horizontal scaling while sustaining the durability of traditional databases. Another
key design goal was to support web application development in the form of
standard JSON outputs. These two design goals turned out to be MongoDB's greatest
advantages over other solutions as these aligned perfectly with other trends in web
development, such as the almost ubiquitous use of cloud virtualization hosting or
the shift towards horizontal, instead of vertical, scaling.

First dismissed as another NoSQL storage layer over the more viable relational
database, MongoDB evolved way beyond the platform where it was born. Its
ecosystem grew to support most of the popular programming platforms, with
the various community-backed drivers. Along with this, many other tools were
formed including different MongoDB clients, proiling and optimization tools,
administration and maintenance utilities, as well as a couple of VC-backed hosting
services. Even major companies such as eBay and The New York Times began to
use MongoDB data storage in their production environment. To understand why
developers prefer MongoDB, it's time we dive into some of its key features.

Chapter 4

[83]

Key features of MongoDB
MongoDB has some key features that helped it become so popular. As we mentioned
before, the goal was to create a new breed between traditional database features
and the high performance of NoSQL stores. As a result, most of its key features
were created to evolve beyond the limitations of other NoSQL solutions while
integrating some of the abilities of relational databases. In this section, you'll learn
why MongoDB can become your preferred database when approaching modern web
application developments.

The BSON format
One of the greatest features of MongoDB is its JSON-like storage format named
BSON. Standing for Binary JSON, the BSON format is a binary-encoded serialization
of JSON-like documents, and it is designed to be more eficient in size and speed,
allowing MongoDB's high read/write throughput.

Like JSON, BSON documents are a simple data structure representation of objects
and arrays in a key-value format. A document consists of a list of elements, each with
a string typed ield name and a typed ield value. These documents support all of the
JSON speciic data types along with other data types, such as the Date type.

Another big advantage of the BSON format is the use of the _id ield as primary key.
The _id ield value will usually be a unique identiier type, named ObjectId, that is
either generated by the application driver or by the mongod service. In the event the
driver fails to provide a _id ield with a unique ObjectId, the mongod service will
add it automatically using:

• A 4-byte value representing the seconds since the Unix epoch

• A 3-byte machine identiier
• A 2-byte process ID

• A 3-byte counter, starting with a random value

Introduction to MongoDB

[84]

So, a BSON representation of the blog post object from the previous example would
look like the following code snippet:

{

 "_id": ObjectId("52d02240e4b01d67d71ad577"),

 "title": "First Blog Post",

 "comments": [

 ...

]

}

The BSON format enables MongoDB to internally index and map document
properties and even nested documents, allowing it to scan the collection eficiently
and more importantly, to match objects to complex query expressions.

MongoDB ad hoc queries
One of the other MongoDB design goals was to expand the abilities of ordinary
key-value stores. The main issue of common key-value stores is their limited query
capabilities, which usually means your data is only queryable using the key ield,
and more complex queries are mostly predeined. To solve this issue, MongoDB
drew its inspiration from the relational databases dynamic query language.

Supporting ad hoc queries means that the database will respond to dynamically
structured queries out of the box without the need to predeine each query. It is able
to do this by indexing BSON documents and using a unique query language. Let's
have a look at the following SQL statement example:

SELECT * FROM Posts WHERE Title LIKE '%mongo%';

This simple statement is asking the database for all the post records with a title
containing the word mongo. Replicating this query in MongoDB will be as follows:

db.posts.find({ title:/mongo/ });

Running this command in the MongoDB shell will return all the posts whose title
ield contains the word mongo. You'll learn more about the MongoDB query language
later in this chapter, but for now it is important to remember that it is almost as
query-able as your traditional relational database. The MongoDB query language
is great, but it raises the question of how eficiently these queries run when the
database gets larger. Like relational databases, MongoDB solves this issue using a
mechanism called indexing.

Chapter 4

[85]

MongoDB indexing
Indexes are a unique data structure that enables the database engine to eficiently
resolve queries. When a query is sent to the database, it will have to scan through
the entire collection of documents to ind those that match the query statement. This
way, the database engine processes a large amount of unnecessary data, resulting in
poor performance.

To speed up the scan, the database engine can use a predeined index, which maps
documents ields and can tell the engine which documents are compatible with this
query statement. To understand how indexes work, let's say we want to retrieve all
the posts that have more than 10 comments. For instance, if our document is deined
as follows:

{
 "_id": ObjectId("52d02240e4b01d67d71ad577"),
 "title": "First Blog Post",
 "comments": [

],
 "commentsCount": 12
}

So, a MongoDB query that requests for documents with more than 10 comments
would be as follows

db.posts.find({ commentsCount: { $gt: 10 } });

To execute this query, MongoDB would have to go through all the posts and check
whether the post has commentCount larger than 10. But if a commentCount index
was deined, then MongoDB would only have to check which documents have
commentCount larger than 10, before retrieving these documents. The following
diagram illustrates how a commentCount index would work:

Introduction to MongoDB

[86]

MongoDB replica set
To provide data redundancy and improved availability, MongoDB uses an
architecture called replica set. Replication of databases helps protect your data to
recover from hardware failure and increase read capacity. A replica set is a set of
MongoDB services that host the same dataset. One service is used as the primary
and the other services are called secondaries. All of the set instances support read
operations, but only the primary instance is in charge of write operations. When a
write operation occurs, the primary will inform the secondaries about the changes
and make sure they've applied it to their datasets' replication. The following diagram
illustrates a common replica set:

The workflow of a replica set with primary and two secondaries

Another robust feature of the MongoDB replica set is its automatic failover. When
one of the set members can't reach the primary instance for more than 10 seconds,
the replica set will automatically elect and promote a secondary instance as the new
primary. When the old primary comes back online, it will rejoin the replica set as a
secondary instance.

Replication is a very robust feature of MongoDB that is derived directly
from its platform origin and is one of the main features that makes MongoDB
production-ready. However, it is not the only one.

To learn more about MongoDB replica sets, visit http://docs.
mongodb.org/manual/replication/.

http://docs.mongodb.org/manual/replication/
http://docs.mongodb.org/manual/replication/

Chapter 4

[87]

MongoDB sharding
Scaling is a common problem with a growing web application. The various approaches
to solve this issue can be divided into two groups: vertical scaling and horizontal
scaling. The differences between the two are illustrated in the following diagram:

Vertical scaling with a single machine versus horizontal scaling with multiple machines

Vertical scaling is easier and consists of increasing single machine resources,
such as RAM and CPU, in order to handle the load. However, it has two major
drawbacks: irst, at some level, increasing a single machine's resources becomes
disproportionately more expensive compared to splitting the load between several
smaller machines. Secondly, the popular cloud-hosting providers limit the size of the
machine instances you can use. So, scaling your application vertically can only be
done up to a certain level.

Horizontal scaling is more complicated and is done using several machines. Each
machine will handle a part of the load, providing better overall performance. The
problem with horizontal database scaling is how to properly divide the data between
different machines and how to manage the read/write operations between them.

Luckily MongoDB supports horizontal scaling, which it refers to as sharding.
Sharding is the process of splitting the data between different machines, or shards.
Each shard holds a portion of the data and functions as a separate database.
The collection of several shards together is what forms a single logical database.
Operations are performed through services called query routers, which ask the
coniguration servers how to delegate each operation to the right shard.

To learn more about MongoDB sharding, visit http://docs.mongodb.
org/manual/sharding/.

http://docs.mongodb.org/manual/sharding/
http://docs.mongodb.org/manual/sharding/

Introduction to MongoDB

[88]

These features and many others are what make MongoDB so popular. Though there
are many good alternatives, MongoDB is becoming more and more ubiquitous
among developers and is on its way to becoming the leading NoSQL solution.
After this brief overview, it's time we dive in a little deeper.

MongoDB shell
If you followed Chapter 1, Introduction to MEAN, you should have a working
instance of MongoDB in your local environment. To interact with MongoDB, you'll
use the MongoDB shell that you encountered in Chapter 1, Introduction to MEAN.
The MongoDB shell is a command-line tool that enables the execution of different
operations using a JavaScript syntax query language.

In order to explore the different parts of MongoDB, let's start the MongoDB shell by
running the mongo executable, as follows:

$ mongo

If MongoDB has been properly installed, you should see an output similar to what is
shown in the following screenshot:

Notice how the shell is telling you the current shell version, and that it has connected
to the default test database.

Chapter 4

[89]

MongoDB databases
Each MongoDB server instance can store several databases. Unless speciically
deined, the MongoDB shell will automatically connect to the default test database.
Let's switch to another database called mean by executing the following command:

> use mean

You'll see a command-line output telling you that the shell switched to the mean
database. Notice that you didn't need to create the database before using it because
in MongoDB, databases and collections are lazily created when you insert your
irst document. This behavior is consistent with MongoDB's dynamic approach to
data. Another way to use a speciic database is to run the shell executable with the
database name as an argument, as follows:

$ mongo mean

The shell will then automatically connect to the mean database. If you want
to list all the other databases in the current MongoDB server, just execute the
following command:

> show dbs

This will show you a list of currently available databases that have at least one
document stored.

MongoDB collections
A MongoDB collection is a list of MongoDB documents and is the equivalent of a
relational database table. A collection is created when the irst document is being
inserted. Unlike a table, a collection doesn't enforce any type of schema and can host
different structured documents.

To perform operations on a MongoDB collection, you'll need to use the collection
methods. Let's create a posts collection and insert the irst post. In order to do this,
execute the following command in the MongoDB shell:

> db.posts.insert({"title":"First Post", "user": "bob"})

After executing the preceding command, it will automatically create the posts
collection and insert the irst document. To retrieve the collection documents,
execute the following command in the MongoDB shell:

> db.posts.find()

Introduction to MongoDB

[90]

You should see a command-line output similar to what is shown in the following
screenshot:

This means that you have successfully created the posts collection and inserted
your irst document.

To show all available collections, issue the following command in the
MongoDB shell:

> show collections

The MongoDB shell will output the list of available collections, which in your case
are the posts collection and another collection called system.indexes, which holds
the list of your database indexes.

If you'd like to delete the posts collection, you will need to execute the drop()
command as follows:

> db.posts.drop()

The shell will inform you that the collection was dropped, by responding with a
true output.

Chapter 4

[91]

MongoDB CRUD operations
Create, read, update, and delete (CRUD) operations, are the basic interactions you
perform with a database. To execute CRUD operations over your database entities,
MongoDB provides various collection methods.

Creating a new document
You're already familiar with the basic method of creating a new document using
the insert() method, as you previously did in earlier examples. Besides the
insert() method, there are two more methods called update() and save() to
create new objects.

Creating a document using insert()
The most common way to create a new document is to use the insert() method.
The insert method takes a single argument that represents the new document.
To insert a new post, just issue the following command in the MongoDB shell:

> db.posts.insert({"title":"Second Post", "user": "alice"})

Creating a document using update()
The update() method is usually used to update an existing document. You can also
use it to create a new document, if no document matches the query criteria, using the
following upsert lag:

> db.posts.update({

 "user": "alice"

}, {

 "title": "Second Post",

 "user": "alice"

}, {

 upsert: true

})

In the preceding example, MongoDB will look for a post created by alice and try to
update it. Considering the fact that the posts collection doesn't have a post created
by alice and the fact you have used the upsert lag, MongoDB will not ind an
appropriate document to update and will create a new document instead.

Introduction to MongoDB

[92]

Creating a document using save()
Another way of creating a new document is by calling the save() method, passing it
a document that either doesn't have an _id ield or has an _id ield that doesn't exist
in the collection:

> db.posts.save({"title":"Second Post", "user": "alice"})

This will have the same effect as the update() method and will create a new
document instead of updating an existing one.

Reading documents
The find() method is used to retrieve a list of documents from a MongoDB
collection. Using the find() method, you can either request for all the documents
in a collection or use a query to retrieve speciic documents.

Finding all the collection documents
To retrieve all the documents in the posts collection, you should either pass an
empty query to the find() method or not pass any arguments at all. The following
query will retrieve all the documents in the posts collection:

> db.posts.find()

Furthermore, performing the same operation can also be done using the
following query:

> db.posts.find({})

These two queries are basically the same and will return all the documents in the
posts collection.

Using an equality statement
To retrieve a speciic document, you can use an equality condition query that will grab
all the documents, which comply with that condition. For instance, to retrieve all the
posts created by alice, you will need to issue the following command in the shell:

> db.posts.find({ "user": "alice" })

This will retrieve all the documents that have the user property equal to alice.

Chapter 4

[93]

Using query operators
Using an equality statement may not be enough. To build more complex queries,
MongoDB supports a variety of query operators. Using query operators, you can
look for different sorts of conditions. For example, to retrieve all the posts that were
created by either alice or bob, you can use the following $in operator:

> db.posts.find({ "user": { $in: ["alice", "bob"] } })

There are plenty of other query operators you can learn about by visiting
http://docs.mongodb.org/manual/reference/operator/
query/#query-selectors.

Building AND/OR queries
When you build a query, you may need to use more than one condition. Like in
SQL, you can use AND/OR operators to build multiple condition query statements. To
perform an AND query, you simply add the properties you'd like to check to the query
object. For instance, take look at the following query:

> db.posts.find({ "user": "alice", "commentsCount": { $gt: 10 } })

It is similar to the find() query you've previously used but adds another condition
that veriies the document's commentCount property and will only grab documents
that were created by alice and have more than 10 comments. An OR query is a bit
more complex because it involves the $or operator. To understand it better, take a
look at another version of the previous example:

> db.posts.find({ $or: [{ "user": "alice" }, { "user": "bob" }] })

Like the query operators example, this query will also grab all the posts created by
either bob or alice.

Updating existing documents
Using MongoDB, you have the option of updating documents using either the
update() or save() methods.

http://docs.mongodb.org/manual/reference/operator/query/#query-selectors
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

Introduction to MongoDB

[94]

Updating documents using update()
The update() method takes three arguments to update existing documents. The
irst argument is the selection criteria that indicate which documents to update,
the second argument is the update statement, and the last argument is the options
object. For instance, in the following example, the irst argument is telling MongoDB
to look for all the documents created by alice, the second argument tells it to
updates the title ield, and the third is forcing it to execute the update operation on
all the documents it inds:

> db.posts.update({

 "user": "alice"

}, {

 $set: {

 "title": "Second Post"

 }

}, {

 multi: true

})

Notice how the multi property has been added to the options object. The update()
method's default behavior is to update a single document, so by setting the multi
property, you tell the update() method to update all the documents that comply
with the selection criteria.

Updating documents using save()
Another way of updating an existing document is by calling the save() method,
passing it a document that contains an _id ield. For instance, the following
command will update an existing document with an _id ield that is equal to Object
Id("50691737d386d8fadbd6b01d"):

> db.posts.save({

 "_id": ObjectId("50691737d386d8fadbd6b01d"),

 "title": "Second Post",

 "user": "alice"

});

It's important to remember that if the save() method is unable to ind an
appropriate object, it will create a new one instead.

Chapter 4

[95]

Deleting documents
To remove documents, MongoDB utilizes the remove() method. The remove()
method can accept up to two arguments. The irst one is the deletion criteria,
and the second is a Boolean argument that indicates whether or not to remove
multiple documents.

Deleting all documents
To remove all the documents from a collection, you will need call the remove()
method with no deletion criteria at all. For example, to remove all the posts
documents, you'll need to execute the following command:

> db.posts.remove()

Notice that the remove() method is different from the drop() method as it will not
delete the collection or its indexes. To rebuild your collection with different indexes,
it is preferred that you use the drop() method.

Deleting multiple documents
To remove multiple documents that match a criteria from a collection, you will need
to call the remove() method with a deletion criteria. For example, to remove all the
posts made by alice, you'll need to execute the following command:

> db.posts.remove({ "user": "alice" })

Note that this will remove all the documents created by alice, so be careful when
using the remove() method.

Deleting a single document
To remove a single document that matches a criteria from a collection, you will need
to call the remove() method with a deletion criteria and a Boolean stating that you
only want to delete a single document. For example, to remove the irst post made by
alice, you'll need to execute the following command:

> db.posts.remove({ "user": "alice" }, true)

This will remove the irst document that was created by alice and leave other
documents even if they match the deletion criteria.

Introduction to MongoDB

[96]

Summary
In this chapter, you learned about NoSQL databases and how they can be useful
for modern web development. You also learned about the emerging leader of the
NoSQL movement, MongoDB. You took a deeper dive in understanding the various
features that makes MongoDB such a powerful solution and learned about its basic
terminology. Finally, you caught a glimpse of MongoDB's powerful query language
and how to perform all four CRUD operations. In the next chapter, we'll discuss how
to connect Node.js and MongoDB together using the popular Mongoose module.

Introduction to Mongoose
Mongoose is a robust Node.js ODM module that adds MongoDB support to
your Express application. Mongoose uses schemas to model your entities, offers
predeined validation along with custom validations, allows you to deine virtual
attributes, and uses middleware hooks to intercept operations. The Mongoose
design goal is to bridge the gap between the MongoDB schemaless approach and
the requirements of real-world application development. In this chapter, you'll go
through the following basic features of Mongoose:

• Mongoose schemas and models

• Schema indexes, modiiers, and virtual attributes
• Using the model's methods and perform CRUD operations

• Verifying your data using predeined and custom validators
• Using middleware to intercept the model's methods

Introducing Mongoose
Mongoose is a Node.js module that provides developers with the ability to model
objects and save them as MongoDB documents. While MongoDB is a schemaless
database, Mongoose offers you the opportunity to enjoy both strict and loose schema
approaches when dealing with Mongoose models. Like with any other Node.js
module, before you can start using it in your application, you will irst need to install
it. The examples in this chapter will continue directly from those in the previous
chapters; so for this chapter, copy the inal example from Chapter 3, Building an
Express Web Application, and let's start from there.

Introduction to Mongoose

[98]

Installing Mongoose
Once you've installed and veriied that your MongoDB local instance is running,
you'll be able connect it using the Mongoose module. First, you will need to install
Mongoose in your application modules folders, so change your package.json ile
to look like the following code snippet:

{

 "name": "MEAN",

 "version": "0.0.5",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "mongoose": "~3.8.15"

 }

}

To install your application dependencies, go to your application folder and issue the
following command in your command-line tool:

$ npm install

This will install the latest version of Mongoose in your node_modules folder. After
the installation process has successfully inished, the next step will be to connect to
your MongoDB instance.

Connecting to MongoDB
To connect to MongoDB, you will need to use the MongoDB connection URI. The
MongoDB connection URI is a string URL that tells the MongoDB drivers how to
connect to the database instance. The MongoDB URI is usually constructed as follows:

mongodb://username:password@hostname:port/database

Since you're connecting to a local instance, you can skip the username and password
and use the following URI:

mongodb://localhost/mean-book

Chapter 5

[99]

The simplest thing to do is deine this connection URI directly in your config/
express.js coniguration ile and use the Mongoose module to connect to the
database as follows:

var uri = 'mongodb://localhost/mean-book';

var db = require('mongoose').connect(uri);

However, since you're building a real application, saving the URI directly in the
config/express.js ile is a bad practice. The proper way to store application
variables is to use your enviornment coniguration ile. Go to your config/env/
development.js ile and change it to look like the following code snippet:

module.exports = {

 db: 'mongodb://localhost/mean-book',

 sessionSecret: 'developmentSessionSecret'

};

Now in your config folder, create a new ile named mongoose.js that contains
the following code snippet:

var config = require('./config'),

 mongoose = require('mongoose');

module.exports = function() {

 var db = mongoose.connect(config.db);

 return db;

};

Notice how you required the Mongoose module and connected to the MongoDB
instance using the db property of your coniguration object. To initialize your
Mongoose coniguration, go back to your server.js ile, and change it to look like
the following code snippet:

process.env.NODE_ENV = process.env.NODE_ENV || 'development';

var mongoose = require('./config/mongoose'),

 express = require('./config/express');

var db = mongoose();

var app = express();

app.listen(3000);

module.exports = app;

console.log('Server running at http://localhost:3000/');

Introduction to Mongoose

[100]

That's it, you have installed Mongoose, updated your coniguration ile, and
connected to your MongoDB instance. To start your application, use your
command-line tool, and navigate to your application folder to execute the
following command:

$ node server

Your application should be running and connected to the MongoDB local instance.

If you experience any problems or get this output: Error: failed
to connect to [localhost:27017], make sure your MongoDB
instance is running properly.

Understanding Mongoose schemas
Connecting to your MongoDB instance was the irst step but the real magic of the
Mongoose module is the ability to deine a document schema. As you already know,
MongoDB uses collections to store multiple documents, which aren't required
to have the same structure. However, when dealing with objects, it is sometime
necessary for documents to be similar. Mongoose uses a Schema object to deine the
document list of properties, each with its own type and constraints, to enforce the
document structure. After specifying a schema, you will go on to deine a Model
constructor that you'll use to create instances of MongoDB documents. In this
section, you'll learn how to deine a user schema and model, and how to use a model
instance to create, retrieve, and update user documents.

Creating the user schema and model
To create your irst schema, go to the app/models folder and create a new ile named
user.server.model.js. In this ile, paste the following lines of code:

var mongoose = require('mongoose'),

 Schema = mongoose.Schema;

var UserSchema = new Schema({

 firstName: String,

 lastName: String,

 email: String,

 username: String,

 password: String

});

mongoose.model('User', UserSchema);

Chapter 5

[101]

In the preceding code snippet, you did two things: irst, you deined your
UserSchema object using the Schema constructor, and then you used the schema
instance to deine your User model. Next, you'll learn how to use the User model to
perform CRUD operations in your application's logic layer.

Registering the User model
Before you can start using the User model, you will need to include the user.
server.model.js ile in your Mongoose coniguration ile in order to register
the User model. To do so, change your config/mongoose.js ile to look like the
following code snippet:

var config = require('./config'),

 mongoose = require('mongoose');

module.exports = function() {

 var db = mongoose.connect(config.db);

 require('../app/models/user.server.model');

 return db;

};

Make sure that your Mongoose coniguration ile is loaded before any other
coniguration in the server.js ile. This is important since any module that is loaded
after this module will be able to use the User model without loading it by itself.

Creating new users using save()
You can start using the User model right away, but to keep things organized, it is
better that you create a Users controller that will handle all user-related operations.
Under the app/controllers folder, create a new ile named users.server.
controller.js and paste the following lines of code:

var User = require('mongoose').model('User');

exports.create = function(req, res, next) {

 var user = new User(req.body);

Introduction to Mongoose

[102]

 user.save(function(err) {

 if (err) {

 return next(err);

 } else {

 res.json(user);

 }

 });

};

Let's go over this code. First, you used the Mongoose module to call the model
method that will return the User model you previously deined. Next, you create
a controller method named create(), which you will later use to create new users.
Using the new keyword, the create() method creates a new model instance, which
is populated using the request body. Finally, you call the model instance's save()
method that either saves the user and outputs the user object, or fail, passing the
error to the next middleware.

To test your new controller, let's add a set of user-related routes that call the
controller's methods. Begin by creating a ile named users.server.routes.js
inside the app/routes folder. In this newly created ile, paste the following lines
of code:

var users = require('../../app/controllers/users.server.controller');

module.exports = function(app) {

 app.route('/users').post(users.create);

};

Since your Express application will serve mainly as a RESTful API for the AngularJS
application, it is a best practice to build your routes according to the REST principles.
In this case, the proper way to create a new user is to use an HTTP POST request to
the base users route as you deined here. Change your config/express.js ile to
look like the following code snippet:

var config = require('./config'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session');

module.exports = function() {

 var app = express();

Chapter 5

[103]

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

That's it! To test it out, go to your root application folder and execute the
following command:

$ node server

Your application should be running. To create a new user, perform an HTTP
POST request to the base users route, and make sure the request body includes
the following JSON:

{

 "firstName": "First",

 "lastName": "Last",

 "email": "user@example.com",

 "username": "username",

 "password": "password"

}

Introduction to Mongoose

[104]

Another way to test your application would be to execute the following curl
command in your command-line tool:

$ curl -X POST -H "Content-Type: application/json" -d
'{"firstName":"First", "lastName":"Last","email":"user@example.com","user
name":"username","password":"password"}' localhost:3000/users

You are going to execute many different HTTP requests to test your
application. curl is a useful tool, but there are several other tools
speciically designed for this task; we recommend that you ind your
favorite one and use it from now on.

Finding multiple user documents using ind()
The find() method is a model method that retrieves multiple documents stored
in the same collection using a query and is a Mongoose implementation of the
MongoDB find() collection method. To understand this better, add the following
list() method in your app/controllers/users.server.controller.js ile:

exports.list = function(req, res, next) {

 User.find({}, function(err, users) {

 if (err) {

 return next(err);

 } else {

 res.json(users);

 }

 });

};

Notice how the new list() method uses the find() method to retrieve an array of
all the documents in the users collection. To use the new method you created, you'll
need to register a route for it, so go to your app/routes/users.server.routes.js
ile and change it to look like the following code snippet:

var users = require('../../app/controllers/users.server.controller');

module.exports = function(app) {

 app.route('/users')

 .post(users.create)

 .get(users.list);

};

Chapter 5

[105]

All you have left to do is run your application by executing the following command:

$ node server

Then, you will be able to retrieve a list of your users by visiting
http://localhost:3000/users in your browser.

Advanced querying using ind()
In the preceding code example, the find() method accept two arguments,
a MongoDB query object and a callback function, but it can accept up to four
parameters:

• Query: This is a MongoDB query object

• [Fields]: This is an optional string object that represents the document
ields to return

• [Options]: This is an optional options object

• [Callback]: This is an optional callback function

For instance, to retrieve only the usernames and e-mails of your users, you would
modify your call to look like the following lines of code:

User.find({}, 'username email', function(err, users) {

 ...

});

Furthermore, you can also pass an options object when calling the find() method,
which will manipulate the query result. For instance, to paginate through the users
collection and retrieve only a subset of your users collection, you can use the skip
and limit options as follows:

User.find({}, 'username email', {

 skip: 10,

 limit: 10

}, function(err, users) {

 ...

});

This will return a subset of up to 10 user documents while skipping the irst
10 documents.

To learn more about query options, it is recommended that you visit
Mongoose oficial documentation at http://mongoosejs.com/
docs/api.html.

http://mongoosejs.com/docs/api.html
http://mongoosejs.com/docs/api.html

Introduction to Mongoose

[106]

Reading a single user document using

indOne()
Retrieving a single user document is done using the findOne() method, which
is very similar to the find() method, but retrieves only the irst document of the
subset. To start working with a single user document, we'll have to add two new
methods. Add the following lines of code at the end of your app/controllers/
users.server.controller.js ile:

exports.read = function(req, res) {

 res.json(req.user);

};

exports.userByID = function(req, res, next, id) {

 User.findOne({

 _id: id

 }, function(err, user) {

 if (err) {

 return next(err);

 } else {

 req.user = user;

 next();

 }

 });

};

The read() method is simple to understand; it is just responding with a
JSON representation of the req.user object, but what is creating the req.user
object? Well, the userById() method is the one responsible for populating the
req.user object. You will use the userById() method as a middleware to deal with
the manipulation of single documents when performing read, delete, and update
operations. To do so, you will have to modify your app/routes/users.server.
routes.js ile to look like the following lines of code:

var users = require('../../app/controllers/users.server.controller');

module.exports = function(app) {

 app.route('/users')

 .post(users.create)

 .get(users.list);

 app.route('/users/:userId')

 .get(users.read);

 app.param('userId', users.userByID);

};

Chapter 5

[107]

Notice how you added the users.read() method with a request path containing
userId. In Express, adding a colon before a substring in a route deinition means
that this substring will be handled as a request parameter. To handle the population
of the req.user object, you use the app.param() method that deines a middleware
to be executed before any other middleware that uses that parameter. Here, the
users.userById() method will be executed before any other middleware registered
with the userId parameter, which in this case is the users.read() middleware. This
design pattern is useful when building a RESTful API, where you often add request
parameters to the routing string.

To test it out, run your application using the following command:

$ node server

Then, navigate to http://localhost:3000/users in your browser, grab one of
your users' _id values, and navigate to http://localhost:3000/users/[id],
replacing the [id] part with the user's _id value.

Updating an existing user document
The Mongoose model has several available methods to update an existing
document. Among those are the update(), findOneAndUpdate(), and
findByIdAndUpdate() methods. Each of the methods serves a different level of
abstraction, easing the update operation when possible. In our case, and since we
already use the userById() middleware, the easiest way to update an existing
document would be to use the findByIdAndUpdate() method. To do so, go back
to your app/controllers/users.server.controller.js ile, and add a new
update() method:

exports.update = function(req, res, next) {

 User.findByIdAndUpdate(req.user.id, req.body, function(err, user) {

 if (err) {

 return next(err);

 } else {

 res.json(user);

 }

 });

};

Introduction to Mongoose

[108]

Notice how you used the user's id ield to ind and update the correct document. The
next thing you should do is wire your new update() method in your users' routing
module. Go back to your app/routes/users.server.routes.js ile and change it
to look like the following code snippet:

var users = require('../../app/controllers/users.server.controller');

module.exports = function(app) {

 app.route('/users')

 .post(users.create)

 .get(users.list);

 app.route('/users/:userId')

 .get(users.read)

 .put(users.update);

 app.param('userId', users.userByID);

};

Notice how you used the route you previously created and just chained the
update() method using the route's put() method. To test your update() method,
run your application using the following command:

$ node server

Then, use your favorite REST tool to issue a PUT request, or use curl and execute this
command, replacing the [id] part with a real document's _id property:

$ curl -X PUT -H "Content-Type: application/json" -d '{"lastName":
"Updated"}' localhost:3000/users/[id]

Deleting an existing user document
The Mongoose model has several available methods to remove an existing
document. Among those are the remove(), findOneAndRemove(), and
findByIdAndRemove() methods. In our case, and since we already use the
userById() middleware, the easiest way to remove an existing document would be
to simply use the remove() method. To do so, go back to your app/controllers/
users.server.controller.js ile, and add the following delete() method:

exports.delete = function(req, res, next) {

 req.user.remove(function(err) {

 if (err) {

 return next(err);

Chapter 5

[109]

 } else {

 res.json(req.user);

 }

 })

};

Notice how you use the user object to remove the correct document. The next thing
you should do is use your new delete() method in your users' routing ile. Go
to your app/routes/users.server.routes.js ile and change it to look like the
following code snippet:

var users = require('../../app/controllers/users.server.controller');

module.exports = function(app) {

 app.route('/users')

 .post(users.create)

 .get(users.list);

 app.route('/users/:userId')

 .get(users.read)

 .put(users.update)

 .delete(users.delete);

 app.param('userId', users.userByID);

};

Notice how you used the route you previously created and just chained the
delete() method using the route's delete() method. To test your delete method,
run your application using the following command:

$ node server

Then, use your favorite REST tool to issue a DELETE request, or use curl
and execute the following command, replacing the [id] part with a real
document's _id property:

$ curl -X DELETE localhost:3000/users/[id]

This completes the implementation of the four CRUD operations, giving you a brief
understanding of the Mongoose model capabilities. However, these methods are just
examples of the vast features included with Mongoose. In the next section, you'll
learn how to deine default values, power your schema ields with modiiers, and
validate your data.

Introduction to Mongoose

[110]

Extending your Mongoose schema
Performing data manipulations is great, but to develop complex applications, you
will need your ODM module to do more. Luckily, Mongoose supports various other
features that help you safely model your documents and keep your data consistent.

Deining default values
Deining default ield values is a common feature for data modeling frameworks.
You can add this functionality directly in your application's logic layer, but that
would be messy and is generally a bad practice. Mongoose offers to deine default
values at the schema level, helping you organize your code better and guarantee
your documents' validity.

Let's say you want to add a created date ield to your UserSchema. The created
date ield should be initialized at creation time and save the time the user document
was initially created; a perfect example of when you can utilize a default value. To do
so, you'll have to change your UserSchema, so go back to your app/models/user.
server.model.js ile and change it to look like the following code snippet:

var mongoose = require('mongoose'),

 Schema = mongoose.Schema;

var UserSchema = new Schema({

 firstName: String,

 lastName: String,

 email: String,

 username: String,

 password: String,

 created: {

 type: Date,

 default: Date.now

 }

});

mongoose.model('User', UserSchema);

Notice how the created ield is added and its default value deined. From now on,
every new user document will be created with a default creation date that represents
the moment the document was created. You should also notice that every user
document created prior to this schema change will be assigned a created ield
representing the moment you queried for it, since these documents don't have
the created ield initialized.

Chapter 5

[111]

To test your new changes, run your application using the following command:

$ node server

Then, use your favorite REST tool to issue a POST request or use cURL, and execute
the following command:

$ curl -X POST -H "Content-Type: application/json" -d
'{"firstName":"First", "lastName":"Last","email":"user@example.com","user
name":"username","password":"password"}' localhost:3000/users

A new user document will be created with a default created ield initialized at the
moment of creation.

Using schema modiiers
Sometimes, you may want to perform a manipulation over schema ields before
saving them or presenting them to the client. For this purpose, Mongoose uses a
feature called modiiers. A modiier can either change the ield's value before saving
the document or represent it differently at query time.

Predeined modiiers
The simplest modiiers are the predeined ones included with Mongoose. For
instance, string-type ields can have a trim modiier to remove whitespaces, an
uppercase modiier to uppercase the ield value, and so on. To understand how
predeined modiiers work, let's make sure the username of your users is clear from
a leading and trailing whitespace. To do so, all you have to do is change your app/
models/user.server.model.js ile to look like the following code snippet:

var mongoose = require('mongoose'),

 Schema = mongoose.Schema;

var UserSchema = new Schema({

 firstName: String,

 lastName: String,

 email: String,

 username: {

 type: String,

 trim: true

 },

 password: String,

 created: {

Introduction to Mongoose

[112]

 type: Date,

 default: Date.now

 }

});

mongoose.model('User', UserSchema);

Notice the trim property added to the username ield. This will make sure your
username data will be kept trimmed.

Custom setter modiiers
Predeined modiiers are great, but you can also deine your own custom setter
modiiers to handle data manipulation before saving the document. To understand
this better, let's add a new website ield to your User model. The website ield should
begin with 'http://' or 'https://', but instead of forcing your customer to add
this in the UI, you can simply write a custom modiier that validates the existence of
these preixes and adds them when necessary. To add your custom modiier, you will
need to create the new website ield with a set property as follows:

var UserSchema = new Schema({

 ...

 website: {

 type: String,

 set: function(url) {

 if (!url) {

 return url;

 } else {

 if (url.indexOf('http://') !== 0 && url.indexOf('https://')
!== 0) {

 url = 'http://' + url;

 }

 return url;

 }

 }

 },

 ...

});

Now, every user created will have a properly formed website URL that is modiied
at creation time. But what if you already have a big collection of user documents?
You can of course migrate your existing data, but when dealing with big datasets, it
would have a serious performance impact, so you can simply use getter modiiers.

Chapter 5

[113]

Custom getter modiiers
Getter modiiers are used to modify existing data before outputting the documents to
next layer. For instance, in our previous example, a getter modiier would sometimes
be better to change already existing user documents by modifying their website
ield at query time instead of going over your MongoDB collection and updating
each document. To do so, all you have to do is change your UserSchema like the
following code snippet:

var UserSchema = new Schema({

 ...

 website: {

 type: String,

 get: function(url) {

 if (!url) {

 return url;

 } else {

if (url.indexOf('http://') !== 0 && url.indexOf('https://') !== 0) {

 url = 'http://' + url;

 }

 return url;

 }

 }

 },

 ...

});

UserSchema.set('toJSON', { getters: true });

You simply changed the setter modiier to a getter modiier by changing the set
property to get. But the important thing to notice here is how you conigured your
schema using UserSchema.set(). This will force Mongoose to include getters when
converting the MongoDB document to a JSON representation and will allow the
output of documents using res.json() to include the getter's behavior. If you didn't
include this, you would have your document's JSON representation ignoring the
getter modiiers.

Modiiers are powerful and can save you a lot of time, but they should
be used with caution to prevent unpredicted application behavior. It
is recommended you visit http://mongoosejs.com/docs/api.
html for more information.

http://mongoosejs.com/docs/api.html
http://mongoosejs.com/docs/api.html

Introduction to Mongoose

[114]

Adding virtual attributes
Sometimes you may want to have dynamically calculated document properties,
which are not really presented in the document. These properties are called
virtual attributes and can be used to address several common requirements. For
instance, let's say you want to add a new fullName ield, which will represent the
concatenation of the user's irst and last names. To do so, you will have to use the
virtual() schema method, so a modiied UserSchema would include the following
code snippet:

UserSchema.virtual('fullName').get(function() {

 return this.firstName + ' ' + this.lastName;

});

UserSchema.set('toJSON', { getters: true, virtuals: true });

In the preceding code example, you added a virtual attribute named fullName
to your UserSchema, added a getter method to that virtual attribute, and then
conigured your schema to include virtual attributes when converting the MongoDB
document to a JSON representation.

But virtual attributes can also have setters to help you save your documents as you
prefer instead of just adding more ield attributes. In this case, let's say you wanted
to break an input's fullName ield into your irst and last name ields. To do so, a
modiied virtual declaration would look like the following code snippet:

UserSchema.virtual('fullName').get(function() {

 return this.firstName + ' ' + this.lastName;

}).set(function(fullName) {

 var splitName = fullName.split(' ');

 this.firstName = splitName[0] || '';

 this.lastName = splitName[1] || '';

});

Virtual attributes are a great feature of Mongoose, allowing you to modify document
representation as they're being moved through your application's layers without
getting persisted to MongoDB.

Optimizing queries using indexes
As we previously discussed, MongoDB supports various types of indexes to
optimize query execution. Mongoose also supports the indexing functionality
and even allows you to deine secondary indexes.

Chapter 5

[115]

The basic example of indexing is the unique index, which validates the uniqueness
of a document ield across a collection. In our example, it is common to keep
usernames unique, so in order to tell that to MongoDB, you will need to modify
your UserSchema deinition to include the following code snippet:

var UserSchema = new Schema({

 ...

 username: {

 type: String,

 trim: true,

 unique: true

 },

 ...

});

This will tell MongoDB to create a unique index for the username ield of the users
collections. Mongoose also supports the creation of secondary indexes using the
index property. So, if you know that your application will use a lot of queries
involving the email ield, you could optimize these queries by creating an e-mail
secondary index as follows:

var UserSchema = new Schema({

 ...

 email: {

 type: String,

 index: true

 },

 ...

});

Indexing is a wonderful feature of MongoDB, but you should keep in mind that
it might cause you some trouble. For example, if you deine a unique index on a
collection where data is already stored, you might encounter some errors while
running your application until you ix the issues with your collection data. Another
common issue is Mongoose's automatic creation of indexes when the application
starts, a feature that could cause major performance issues when running in a
production environment.

Introduction to Mongoose

[116]

Deining custom model methods
Mongoose models are pretty packed with both static and instance predeined
methods, some of which you already used before. However, Mongoose also lets you
deine your own custom methods to empower your models, giving you a modular
tool to separate your application logic properly. Let's go over the proper way of
deining these methods.

Deining custom static methods
Model static methods give you the liberty to perform model-level operations, such
as adding extra find methods. For instance, let's say you want to search users by
their username. You could of course deine this method in your controller, but that
wouldn't be the right place for it. What you're looking for is a static model method.
To add a static method, you will need to declare it as a member of your schema's
statics property. In our case, adding a findOneByUsername() method would look
like the following code snippet:

UserSchema.statics.findOneByUsername = function (username,
 callback) {

 this.findOne({ username: new RegExp(username, 'i') }, callback);

};

This method is using the model's findOne() method to retrieve a user's document
that has a certain username. Using the new findOneByUsername() method would be
similar to using a standard static method by calling it directly from the User model
as follows:

User.findOneByUsername('username', function(err, user){

 ...

});

You can of course come up with many other static methods; you'll probably need
them when developing your application, so don't be afraid to add them.

Chapter 5

[117]

Deining custom instance methods
Static methods are great, but what if you need methods that perform instance
operations? Well, Mongoose offers support for those too, helping you slim down
your code base and properly reuse your application code. To add an instance
method, you will need to declare it as a member of your schema's methods property.
Let's say you want to validate your user's password with an authenticate()
method. Adding this method would then be similar to the following code snippet:

UserSchema.methods.authenticate = function(password) {

 return this.password === password;

};

This will allow you to call the authenticate() method from any User model
instance as follows:

user.authenticate('password');

As you can see, deining custom model methods is a great way to keep your project
properly organized while making reuse of common code. In the upcoming chapters,
you'll discover how both the instance and static methods can be very useful.

Model validation
One of the major issues when dealing with data marshaling is validation. When users
input information to your application, you'll often have to validate that information
before passing it on to MongoDB. While you can validate your data at the logic layer
of your application, it is more useful to do it at the model level. Luckily, Mongoose
supports both simple predeined validators and more complex custom validators.
Validators are deined at the ield level of a document and are executed when the
document is being saved. If a validation error occurs, the save operation is aborted
and the error is passed to the callback.

Introduction to Mongoose

[118]

Predeined validators
Mongoose supports different types of predeined validators, most of which are
type-speciic. The basic validation of any application is of course the existence
of value. To validate ield existence in Mongoose, you'll need to use the required
property in the ield you want to validate. Let's say you want to verify the existence
of a username ield before you save the user document. To do so, you'll need to
make the following changes to your UserSchema:

var UserSchema = new Schema({

 ...

 username: {

 type: String,

 trim: true,

 unique: true,

 required: true

 },

 ...

});

This will validate the existence of the username ield when saving the document,
thus preventing the saving of any document that doesn't contain that ield.

Besides the required validator, Mongoose also includes type-based predeined
validators, such as the enum and match validators for strings. For instance, to validate
your email ield, you would need to change your UserSchema as follows:

var UserSchema = new Schema({

 ...

 email: {

 type: String,

 index: true,

 match: /.+\@.+\..+/

 },

 ...

});

The usage of a match validator here will make sure the email ield value matches
the given regex expression, thus preventing the saving of any document where the
e-mail doesn't conform to the right pattern.

Chapter 5

[119]

Another example is the enum validator, which can help you deine a set of strings
that are available for that ield value. Let's say you add a role ield. A possible
validation would look like this:

var UserSchema = new Schema({

 ...

 role: {

 type: String,

 enum: ['Admin', 'Owner', 'User']

 },

 ...

});

The preceding condition will allow the insertion of only these three possible strings,
and thus prevent you from saving the document.

To learn more about predeined validators, it is recommended you
to visit http://mongoosejs.com/docs/validation.html for
more information.

Custom validators
Other than predeined validators, Mongoose also enables you to deine your own
custom validators. Deining a custom validator is done using the validate property.
The validate property value should be an array consisting of a validation function
and an error message. Let's say you want to validate the length of your user's
password. To do so, you would have to make these changes in your UserSchema:

var UserSchema = new Schema({

 ...

 password: {

 type: String,

 validate: [

 function(password) {

 return password.length >= 6;

 },

 'Password should be longer'

]

 },

 ...

});

http://mongoosejs.com/docs/validation.html

Introduction to Mongoose

[120]

This validator will make sure your user's password is at least six characters long, or
else it will prevent the saving of documents and pass the error message you deined
to the callback.

Mongoose validation is a powerful feature that allows you to control your model
and supply proper error handling, which you can use to help your users understand
what went wrong. In the upcoming chapters, you'll see how you can use Mongoose
validators to handle the user's input and prevent common data inconsistencies.

Using Mongoose middleware
Mongoose middleware are functions that can intercept the process of the init,
validate, save, and remove instance methods. Middleware are executed at the
instance level and have two types: pre middleware and post middleware.

Using pre middleware
Pre middleware gets executed before the operation happens. For instance, a
pre-save middleware will get executed before the saving of the document. This
functionality makes pre middleware perfect for more complex validations and
default values assignment.

A pre middleware is deined using the pre() method of the schema object,
so validating your model using a pre middleware will look like the following
code snippet:

UserSchema.pre('save', function(next) {

 if (...) {

 next()

 } else {

 next(new Error('An Error Occured'));

 }

});

Using post middleware
A post middleware gets executed after the operation happens. For instance, a post-
save middleware will get executed after saving the document. This functionality
makes post middleware perfect to log your application logic.

Chapter 5

[121]

A post middleware is deined using the post() method of the schema object, so
logging your model's save() method using a post middleware will look something
like the following code snippet:

UserSchema.post('save', function(next) {

 if(this.isNew) {

 console.log('A new user was created.');

 } else {

 console.log('A user updated is details.');

 }

});

Notice how you can use the model isNew property to understand whether a model
instance was created or updated.

Mongoose middleware are great for performing various operations, including
logging, validation, and performing various data consistency manipulations. But
don't worry if you feel overwhelmed right now because later in this book, you'll
understand them better.

To learn more about middleware, it is recommended that you visit
http://mongoosejs.com/docs/middleware.html.

Using Mongoose DBRef
Although MongoDB doesn't support joins, it does support the reference of a
document to another document using a convention named DBRef. Mongoose
includes support for DBRefs using the ObjectID schema type and the use of the ref
property. Mongoose also supports the population of the parent document with the
child document when querying the database.

To understand this better, let's say you create another schema for blog posts called
PostSchema. Because a user authors a blog post, PostSchema will contain an author
ield that will be populated by a User model instance. So, a PostSchema will have to
look like the following code snippet:

var PostSchema = new Schema({

 title: {

 type: String,

 required: true

 },

http://mongoosejs.com/docs/middleware.html

Introduction to Mongoose

[122]

 content: {

 type: String,

 required: true

 },

 author: {

 type: Schema.ObjectId,

 ref: 'User'

 }

});

mongoose.model('Post', PostSchema);

Notice the ref property telling Mongoose that the author ield will use the User
model to populate the value.

Using this new schema is a simple task. To create a new blog post, you will need
to retrieve or create an instance of the User model, create an instance of the Post
model, and then assign the post author property with the user instance. An
example of this should be as follows:

var user = new User();

user.save();

var post = new Post();

post.author = user;

post.save();

Mongoose will create a DBRef in the MongoDB post document and will later use it to
retrieve the referenced document.

Since the DBRef is only an ObjectID reference to a real document, Mongoose will
have to populate the post instance with the user instance. To do so, you'll have
to tell Mongoose to populate the post object using the populate() method when
retrieving the document. For instance, a find() method that populates the author
property will look like the following code snippet:

Post.find().populate('author').exec(function(err, posts) {

 ...

});

Mongoose will then retrieve all the documents in the posts collection and populate
their author attribute.

Chapter 5

[123]

DBRefs are an awesome feature of MongoDB. Mongoose's support for this feature
enables you to calmly rely on object references to keep your model organized. Later
in this book, we'll use DBRef to support our application logic.

To ind out more about DBRefs, it is recommended that you visit
http://mongoosejs.com/docs/populate.html.

Summary
In this chapter, you met the robust Mongoose model. You connected to your
MongoDB instance and created your irst Mongoose schema and model. You also
learned how to validate your data and modify it using Schema modiiers and
Mongoose middleware. You were introduced to virtual attributes and modiiers,
and you learned to use them to change the representation of your documents. You
also discovered the MongoDB DBRef feature and the way Mongoose utilizes that
feature. In the next chapter, we'll go over the Passport authentication module,
which will use your User model to address user authentication.

http://mongoosejs.com/docs/populate.html

Managing User
Authentication Using

Passport
Passport is a robust Node.js authentication middleware that helps you to
authenticate requests sent to your Express application. Passport uses strategies
to utilize both local authentication and OAuth authentication providers, such as
Facebook, Twitter, and Google. Using Passport strategies, you'll be able to seamlessly
offer different authentication options to your users while maintaining a uniied User
model. In this chapter, you'll go through the following basic features of Passport:

• Understanding Passport strategies

• Integrating Passport into your users' MVC architecture

• Using Passport's local strategy to authenticate users

• Utilizing Passport OAuth strategies

• Offering authentication through social OAuth providers

Managing User Authentication Using Passport

[126]

Introducing Passport
Authentication is a vital part of most web applications. Handling user registration
and sign-in is an important feature, which can sometimes present a development
overhead. Express, with its lean approach, lacks this feature, so, as is usual with
node, an external module is needed. Passport is a Node.js module that uses the
middleware design pattern to authenticate requests. It allows developers to offer
various authentication methods using a mechanism called strategies, which allows
you to implement a complex authentication layer while keeping your code clean and
simple. Just as with any other Node.js module, before you can start using it in your
application, you will irst need to install it. The examples in this chapter will continue
directly from those in previous chapters. So for this chapter, copy the inal example
from Chapter 5, Introduction to Mongoose, and let's start from there.

Installing Passport
Passport uses different modules, each representing a different authentication
strategy, but all of which depend on the base Passport module. To install the
Passport base module in your application's modules folders, change your package.
json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.6",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1"

 }

}

Before you continue developing your application, make sure you install the new
Passport dependency. To do so, go to your application's folder, and issue the
following command in your command-line tool:

$ npm install

Chapter 6

[127]

This will install the speciied version of Passport in your node_modules folder.
Once the installation process has successfully inished, you will need to conigure
your application to load the Passport module.

Coniguring Passport
To conigure Passport, you will need to set it up in a few steps. To create the Passport
coniguration ile, go to the config folder and create a new ile named passport.js.
Leave it empty for now; we will return to it in a bit. Next, you'll need to require the
ile you just created, so change your server.js ile, as follows:

process.env.NODE_ENV = process.env.NODE_ENV || 'development';

var mongoose = require('./config/mongoose'),

 express = require('./config/express'),

 passport = require('./config/passport');

var db = mongoose();

var app = express();

var passport = passport();

app.listen(3000);

module.exports = app;

console.log('Server running at http://localhost:3000/');

Next, you'll need to register the Passport middleware in your Express application.
To do so, change your config/express.js ile, as follows:

var config = require('./config'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session'),

 passport = require('passport');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

Managing User Authentication Using Passport

[128]

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 app.use(passport.initialize());

 app.use(passport.session());

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

Let's go over the code you just added. First, you required the Passport module, and
then you registered two middleware: the passport.initialize() middleware,
which is responsible for bootstrapping the Passport module and the passport.
session() middleware, which is using the Express session to keep track of your
user's session.

Passport is now installed and conigured, but to start using it, you will have to
install at least one authentication strategy. We'll begin with the local strategy, which
provides a simple username/password authentication layer; but irst, let's discuss
how Passport strategies work.

Chapter 6

[129]

Understanding Passport strategies
To offer its various authentication options, Passport uses separate modules that
implement different authentication strategies. Each module provides a different
authentication method, such as username/password authentication and OAuth
authentication. So, in order to offer Passport-supported authentication, you'll need
to install and conigure the strategies modules that you'd like to use. Let's begin
with the local authentication strategy.

Using Passport's local strategy
Passport's local strategy is a Node.js module that allows you to implement a
username/password authentication mechanism. You'll need to install it like any
other module and conigure it to use your User Mongoose model. Let's begin by
installing the local strategy module.

Installing Passport's local strategy module
To install Passport's local strategy module, you'll need to change your package.json
ile, as follows:

{

 "name": "MEAN",

 "version": "0.0.6",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0"

 }

}

Then, go to your application's root folder, and issue the following command in your
command-line tool:

$ npm install

Managing User Authentication Using Passport

[130]

This will install the speciied version of the local strategy module in your node_
modules folder. When the installation process has successfully inished, you'll
need to conigure Passport to use the local strategy.

Coniguring Passport's local strategy
Each authentication strategy you'll use is basically a node module that lets you deine
how that strategy will be used. In order to maintain a clear separation of logic, each
strategy should be conigured in its own separated ile. In your config folder, create
a new folder named strategies. Inside this new folder, create a ile named local.
js that contains the following code snippet:

var passport = require('passport'),

 LocalStrategy = require('passport-local').Strategy,

 User = require('mongoose').model('User');

module.exports = function() {

 passport.use(new LocalStrategy(function(username, password, done) {

 User.findOne({

 username: username

 }, function(err, user) {

 if (err) {

 return done(err);

 }

 if (!user) {

 return done(null, false, {

 message: 'Unknown user'

 });

 }

 if (!user.authenticate(password)) {

 return done(null, false, {

 message: 'Invalid password'

 });

 }

 return done(null, user);

 });

 }));

};

Chapter 6

[131]

The preceding code begins by requiring the Passport module, the local strategy
module's Strategy object, and your User Mongoose model. Then, you register
the strategy using the passport.use() method that uses an instance of the
LocalStrategy object. Notice how the LocalStrategy constructor takes a
callback function as an argument. It will later call this callback when trying to
authenticate a user.

The callback function accepts three arguments—username, password, and a done
callback—which will be called when the authentication process is over. Inside the
callback function, you will use the User Mongoose model to ind a user with that
username and try to authenticate it. In the event of an error, you will pass the error
object to the done callback. When the user is authenticated, you will call the done
callback with the user Mongoose object.

Remember the empty config/passport.js ile? Well, now that you have your
local strategy ready, you can go back and use it to conigure the local authentication.
To do so, go back to your config/passport.js ile and paste the following lines
of code:

var passport = require('passport'),

 mongoose = require('mongoose');

module.exports = function() {

 var User = mongoose.model('User');

 passport.serializeUser(function(user, done) {

 done(null, user.id);

 });

 passport.deserializeUser(function(id, done) {

 User.findOne({

 _id: id

 }, '-password -salt', function(err, user) {

 done(err, user);

 });

 });

 require('./strategies/local.js')();

};

Managing User Authentication Using Passport

[132]

In the preceding code snippet, the passport.serializeUser() and passport.
deserializeUser() methods are used to deine how Passport will handle user
serialization. When a user is authenticated, Passport will save its _id property to the
session. Later on when the user object is needed, Passport will use the _id property
to grab the user object from the database. Notice how we used the ield options
argument to make sure Mongoose doesn't fetch the user's password and salt
properties. The second thing the preceding code does is including the local strategy
coniguration ile. This way, your server.js ile will load the Passport coniguration
ile, which in turn will load its strategies coniguration ile. Next, you'll need to
modify your User model to support Passport's authentication.

Adapting the User model
In the previous chapter, we started discussing the User model and created its
basic structure. In order to use the User model in your MEAN application, you'll
have to modify it to address a few authentication process requirements. These
changes will include modifying UserSchema, adding a pre middleware, and adding
some new instance methods. To do so, go to your app/models/user.js ile, and
change it as follows:

var mongoose = require('mongoose'),

 crypto = require('crypto'),

 Schema = mongoose.Schema;

var UserSchema = new Schema({

 firstName: String,

 lastName: String,

 email: {

 type: String,

 match: [/.+\@.+\..+/, "Please fill a valid e-mail address"]

 },

 username: {

 type: String,

 unique: true,

 required: 'Username is required',

 trim: true

 },

 password: {

 type: String,

 validate: [

 function(password) {

 return password && password.length > 6;

 }, 'Password should be longer'

]

Chapter 6

[133]

 },

 salt: {

 type: String

 },

 provider: {

 type: String,

 required: 'Provider is required'

 },

 providerId: String,

 providerData: {},

 created: {

 type: Date,

 default: Date.now

 }

});

UserSchema.virtual('fullName').get(function() {

 return this.firstName + ' ' + this.lastName;

}).set(function(fullName) {

 var splitName = fullName.split(' ');

 this.firstName = splitName[0] || '';

 this.lastName = splitName[1] || '';

});

UserSchema.pre('save', function(next) {

 if (this.password) {

 this.salt = new
 Buffer(crypto.randomBytes(16).toString('base64'), 'base64');

 this.password = this.hashPassword(this.password);

 }

 next();

});

UserSchema.methods.hashPassword = function(password) {

 return crypto.pbkdf2Sync(password, this.salt, 10000,
 64).toString('base64');

};

UserSchema.methods.authenticate = function(password) {

 return this.password === this.hashPassword(password);

};

Managing User Authentication Using Passport

[134]

UserSchema.statics.findUniqueUsername = function(username, suffix,
 callback) {

 var _this = this;

 var possibleUsername = username + (suffix || '');

 _this.findOne({

 username: possibleUsername

 }, function(err, user) {

 if (!err) {

 if (!user) {

 callback(possibleUsername);

 } else {

 return _this.findUniqueUsername(username, (suffix || 0) +
 1, callback);

 }

 } else {

 callback(null);

 }

 });

};

UserSchema.set('toJSON', {

 getters: true,

 virtuals: true

});

mongoose.model('User', UserSchema);

Let's go over these changes. First, you added four ields to your UserSchema object:
a salt property, which you'll use to hash your password; a provider property,
which will indicate the strategy used to register the user; a providerId property,
which will indicate the user identiier for the authentication strategy; and a
providerData property, which you'll later use to store the user object retrieved
from OAuth providers.

Next, you created a pre-save middleware to handle the hashing of your users'
passwords. It is widely known that storing a clear text version of your users'
passwords is a very bad practice that can result in the leakage of your users'
passwords. To handle this issue, your pre-save middleware performs two
important steps: irst, it creates an autogenerated pseudo-random hashing salt,
and then it replaces the current user password with a hashed password using the
hashPassword() instance method.

Chapter 6

[135]

You also added two instance methods: a hashPassword() instance method, which
is used to hash a password string by utilizing Node.js' crypto module, and an
authenticate() instance method, which accepts a string argument, hashes it,
and compares it to the current user's hashed password. Finally, you added the
findUniqueUsername() static method, which is used to ind an available unique
username for new users. You'll use this method later in this chapter when you
deal with OAuth authentication.

That completes the modiications in your User model, but there are a few other
things to care of before you can test your application's authentication layer.

Creating the authentication views
Just as with any web application, you will need to have signup and sign-in pages in
order to handle user authentication. We'll create those views using the EJS template
engine, so in your app/views folder, create a new ile named signup.ejs. In your
newly created ile, paste the following code snippet:

<!DOCTYPE html>

<html>

<head>

 <title>

 <%=title %>

 </title>

</head>

<body>

 <% for(var i in messages) { %>

 <div class="flash"><%= messages[i] %></div>

 <% } %>

 <form action="/signup" method="post">

 <div>

 <label>First Name:</label>

 <input type="text" name="firstName" />

 </div>

 <div>

 <label>Last Name:</label>

 <input type="text" name="lastName" />

 </div>

 <div>

 <label>Email:</label>

 <input type="text" name="email" />

 </div>

 <div>

Managing User Authentication Using Passport

[136]

 <label>Username:</label>

 <input type="text" name="username" />

 </div>

 <div>

 <label>Password:</label>

 <input type="password" name="password" />

 </div>

 <div>

 <input type="submit" value="Sign up" />

 </div>

 </form>

</body>

</html>

The signup.ejs view simply contains an HTML form, an EJS tag, which renders the
title variable, and an EJS loop, which renders the messages list variable. Go back
to your app/views folder, and create another ile named signin.ejs. Inside this ile,
paste the following code snippet:

<!DOCTYPE html>

<html>

<head>

 <title>

 <%=title %>

 </title>

</head>

<body>

 <% for(var i in messages) { %>

 <div class="flash"><%= messages[i] %></div>

 <% } %>

 <form action="/signin" method="post">

 <div>

 <label>Username:</label>

 <input type="text" name="username" />

 </div>

 <div>

 <label>Password:</label>

 <input type="password" name="password" />

 </div>

 <div>

 <input type="submit" value="Sign In" />

 </div>

 </form>

</body>

</html>

Chapter 6

[137]

As you can notice, the signin.ejs view is even simpler and also contains an HTML
form, an EJS tag, which renders the title variable, and an EJS loop, which renders
the messages list variable. Now that you have your model and views set, it's time to
connect them using your Users controller.

Modifying the user controller
To alter the Users controller, go to your app/controllers/users.server.
controller.js ile, and change its content, as follows:

var User = require('mongoose').model('User'),

 passport = require('passport');

var getErrorMessage = function(err) {

 var message = '';

 if (err.code) {

 switch (err.code) {

 case 11000:

 case 11001:

 message = 'Username already exists';

 break;

 default:

 message = 'Something went wrong';

 }

 } else {

 for (var errName in err.errors) {

 if (err.errors[errName].message) message = err.errors[errName].
message;

 }

 }

 return message;

};

exports.renderSignin = function(req, res, next) {

 if (!req.user) {

 res.render('signin', {

 title: 'Sign-in Form',

 messages: req.flash('error') || req.flash('info')

 });

 } else {

 return res.redirect('/');

Managing User Authentication Using Passport

[138]

 }

};

exports.renderSignup = function(req, res, next) {

 if (!req.user) {

 res.render('signup', {

 title: 'Sign-up Form',

 messages: req.flash('error')

 });

 } else {

 return res.redirect('/');

 }

};

exports.signup = function(req, res, next) {

 if (!req.user) {

 var user = new User(req.body);

 var message = null;

 user.provider = 'local';

 user.save(function(err) {

 if (err) {

 var message = getErrorMessage(err);

 req.flash('error', message);

 return res.redirect('/signup');

 }

 req.login(user, function(err) {

 if (err) return next(err);

 return res.redirect('/');

 });

 });

 } else {

 return res.redirect('/');

 }

};

exports.signout = function(req, res) {

 req.logout();

 res.redirect('/');

};

Chapter 6

[139]

The getErrorMessage() method is a private method that returns a uniied error
message from a Mongoose error object. It is worth noticing that there are two
possible errors here: a MongoDB indexing error handled using the error code and a
Mongoose validation error handled using the err.errors object.

The next two controller methods are quite simple and will be used to render the
sign-in and signup pages. The signout() method is also simple and uses the req.
logout() method, which is provided by the Passport module to invalidate the
authenticated session.

The signup() method uses your User model to create new users. As you can see,
it irst creates a user object from the HTTP request body. Then, try saving it to
MongoDB. If an error occurs, the signup() method will use the getErrorMessage()
method to provide the user with an appropriate error message. If the user creation
was successful, the user session will be created using the req.login() method. The
req.login() method is exposed by the Passport module and is used to establish a
successful login session. After the login operation is completed, a user object will be
signed to the req.user object.

The req.login() will be called automatically while using the passport.
authenticate() method, so a manual call for req.login() is primarily

used when registering new users.

In the preceding code though, a module you're not yet familiar with is used. When
an authentication process is failing, it is common to redirect the request back to the
signup or sign-in pages. This is done here when an error occurs, but how can your
user tell what exactly went wrong? The problem is that when redirecting to another
page, you cannot pass variables to that page. The solution would be to use some
sort of mechanism to pass temporary messages between requests. Fortunately, that
mechanism already exists in the form of a node module named Connect-Flash.

Displaying lash error messages
The Connect-Flash module is a node module that allows you to store temporary
messages in an area of the session object called flash. Messages stored on the flash
object will be cleared once they are presented to the user. This architecture makes the
Connect-Flash module perfect to transfer messages before redirecting the request to
another page.

Managing User Authentication Using Passport

[140]

Installing the Connect-Flash module
To install the Connect-Flash module in your application's modules folders, you'll
need to change your package.json ile, as follows:

{

 "name": "MEAN",

 "version": "0.0.6",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0"

 }

}

As usual, before you can continue developing your application, you will need
to install your new dependency. Go to your application's folder, and issue the
following command in your command-line tool:

$ npm install

This will install the speciied version of the Connect-Flash module in your node_
modules folder. When the installation process is successfully inished, your next step
would be to conigure your Express application to use the Connect-Flash module.

Coniguring Connect-Flash module
To conigure your Express application to use the new Connect-Flash module,
you'll have to require the new module in your Express coniguration ile and use the
app.use() method to register it with your Express application. To do so, make the
following changes in your config/express.js ile:

var config = require('./config'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

Chapter 6

[141]

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session'),

 flash = require('connect-flash'),

 passport = require('passport');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 app.use(flash());

 app.use(passport.initialize());

 app.use(passport.session());

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

This will tell your Express application to use Connect-Flash and create the new
lash area in the application session.

Managing User Authentication Using Passport

[142]

Using Connect-Flash module
Once installed, the Connect-Flash module exposes the req.flash() method,
which allows you to create and retrieve lash messages. To understand it better, let's
observe the changes you've made to your Users controller. First, let's take a look
at the renderSignup() and renderSignin() methods, which are responsible for
rendering the sign-in and signup pages:

exports.renderSignin = function(req, res, next) {

 if (!req.user) {

 res.render('signin', {

 title: 'Sign-in Form',

 messages: req.flash('error') || req.flash('info')

 });

 } else {

 return res.redirect('/');

 }

};

exports.renderSignup = function(req, res, next) {

 if (!req.user) {

 res.render('signup', {

 title: 'Sign-up Form',

 messages: req.flash('error')

 });

 } else {

 return res.redirect('/');

 }

};

As you can see, the res.render() method is executed with the title and messages
variables. The messages variable uses req.flash() to read the messages written to
the lash. Now if you'll go over the signup() method, you'll notice the following line
of code:

req.flash('error', message);

This is how error messages are written to the lash, again using the req.flash()
method. After you learned how to use the Connect-Flash module, you might have
noticed that we're lacking a signin() method. This is because Passport provides
you with an authentication method, which you can use directly in your routing
deinition. To wrap up, let's proceed to the last part that needs to be modiied: the
Users routing deinition ile.

Chapter 6

[143]

Wiring the user's routes
Once you have your model, controller, and views conigured, all that is left to do is
deine the user's routes. To do so, make the following changes in your app/routes/
users.server.routes.js ile:

var users = require('../../app/controllers/users.server.controller'),

 passport = require('passport');

module.exports = function(app) {

 app.route('/signup')

 .get(users.renderSignup)

 .post(users.signup);

 app.route('/signin')

 .get(users.renderSignin)

 .post(passport.authenticate('local', {

 successRedirect: '/',

 failureRedirect: '/signin',

 failureFlash: true

 }));

 app.get('/signout', users.signout);

};

As you can notice, most of the routes deinitions here are basically directing to
methods from your user controller. The only different route deinition is the one
where you're handling any POST request made to the /signin path using the
passport.authenticate() method.

When the passport.authenticate() method is executed, it will try to authenticate
the user request using the strategy deined by its irst argument. In this case, it will
try to authenticate the request using the local strategy. The second parameter this
method accepts is an options object, which contains three properties:

• successRedirect: This property tells Passport where to redirect the request
once it successfully authenticated the user

• failureRedirect: This property tells Passport where to redirect the request
once it failed to authenticate the user

• failureFlash: This property tells Passport whether or not to use
lash messages

Managing User Authentication Using Passport

[144]

You've almost completed the basic authentication implementation. To test it out,
make the following changes to the app/controllers/index.server.controller.
js ile:

exports.render = function(req, res) {

 res.render('index', {

 title: 'Hello World',

 userFullName: req.user ? req.user.fullName : ''

 });

};

This will pass the authenticated user's full name to your home page template. You
will also have to make the following changes in your app/views/index.ejs ile:

<!DOCTYPE html>

<html>

 <head>

 <title><%= title %></title>

 </head>

 <body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 </body>

</html>

That's it! Everything is ready to test your new authentication layer. Go to your root
application folder and use the node command-line tool to run your application:

$ node server

Test your application by visiting http://localhost:3000/signin and
http://localhost:3000/signup. Try signing up, and then sign in and don't
forget to go back to your home page to see how the user details are saved through
the session.

Chapter 6

[145]

Understanding Passport OAuth
strategies
OAuth is an authentication protocol that allows users to register with your web
application using an external provider, without the need to input their username and
password. OAuth is mainly used by social platforms, such as Facebook, Twitter, and
Google, to allow users to register with other websites using their social account.

To learn more about how OAuth works, visit the OAuth protocol

website at http://oauth.net/.

Setting up OAuth strategies
Passport support the basic OAuth strategy, which enables you to implement any
OAuth-based authentication. However, it also supports a user authentication through
major OAuth providers using wrapper strategies that help you avoid the need to
implement a complex mechanism by yourself. In this section, we'll review the top
OAuth providers and how to implement their Passport authentication strategy.

Before you begin, you will have to contact the OAuth provider and create a

developer application. This application will have both an OAuth client ID

and an OAuth client secret, which will allow you to verify your application

against the OAuth provider.

Handling OAuth user creation
The OAuth user creation should be a bit different than the local signup() method.
Since users are signing up using their proile from other providers, the proile details
are already present, which means you will need to validate them differently. To do
so, go back to your app/controllers/users.server.controller.js ile, and add
the following module method:

exports.saveOAuthUserProfile = function(req, profile, done) {

 User.findOne({

 provider: profile.provider,

 providerId: profile.providerId

 }, function(err, user) {

 if (err) {

 return done(err);

 } else {

http://oauth.net/

Managing User Authentication Using Passport

[146]

 if (!user) {

 var possibleUsername = profile.username ||
 ((profile.email) ? profile.email.split('@')[0] : '');

 User.findUniqueUsername(possibleUsername, null,
 function(availableUsername) {

 profile.username = availableUsername;

 user = new User(profile);

 user.save(function(err) {

 if (err) {

 var message = _this.getErrorMessage(err);

 req.flash('error', message);

 return res.redirect('/signup');

 }

 return done(err, user);

 });

 });

 } else {

 return done(err, user);

 }

 }

 });

};

This method accepts a user proile, and then looks for an existing user with
these providerId and provider properties. If it inds the user, it calls the
done() callback method with the user's MongoDB document. However, if it
cannot ind an existing user, it will ind a unique username using the User
model's findUniqueUsername() static method and save a new user instance.
If an error occurs, the saveOAuthUserProfile() method will use the req.
flash() and getErrorMessage() methods to report the error; otherwise, it will
pass the user object to the done() callback method. Once you have igured out
the saveOAuthUserProfile() method, it is time to implement the irst OAuth
authentication strategy.

Chapter 6

[147]

Using Passport's Facebook strategy
Facebook is probably the world's largest OAuth provider. Many modern web
applications offer their users the ability to register with the web application using
their Facebook proile. Passport supports Facebook OAuth authentication using the
passport-facebook module. Let's see how you can implement a Facebook-based
authentication in a few simple steps.

Installing Passport's Facebook strategy
To install Passport's Facebook module in your application's modules folders, you'll
need to change your package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.6",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3"

 }

}

Before you can continue developing your application, you will need to install the
new Facebook strategy dependency. To do so, go to your application's root folder,
and issue the following command in your command-line tool:

$ npm install

This will install the speciied version of Passport's Facebook strategy in your
node_modules folder. Once the installation process has successfully inished,
you will need to conigure the Facebook strategy.

Managing User Authentication Using Passport

[148]

Coniguring Passport's Facebook strategy
Before you begin coniguring your Facebook strategy, you will have to go to
Facebook's developer home page at https://developers.facebook.com/, create
a new Facebook application, and set the local host as the application domain. After
coniguring your Facebook application, you will get a Facebook application ID and
secret. You'll need those to authenticate your users via Facebook, so let's save them
in our environment coniguration ile. Go to the config/env/development.js ile
and change it as follows:

module.exports = {

 db: 'mongodb://localhost/mean-book',

 sessionSecret: 'developmentSessionSecret',

 facebook: {

 clientID: 'Application Id',

 clientSecret: 'Application Secret',

 callbackURL: 'http://localhost:3000/oauth/facebook/callback'

 }

};

Don't forget to replace Application Id and Application Secret with your
Facebook application's ID and secret. The callbackURL property will be passed to
the Facebook OAuth service, which will redirect to that URL after the authentication
process is over.

Now, go to your config/strategies folder, and create a new ile named facebook.
js that contains the following code snippet:

var passport = require('passport'),

 url = require('url'),

 FacebookStrategy = require('passport-facebook').Strategy,

 config = require('../config'),

 users = require('../../app/controllers/users.server.controller');

module.exports = function() {

 passport.use(new FacebookStrategy({

 clientID: config.facebook.clientID,

 clientSecret: config.facebook.clientSecret,

 callbackURL: config.facebook.callbackURL,

 passReqToCallback: true

 },

 function(req, accessToken, refreshToken, profile, done) {

 var providerData = profile._json;

 providerData.accessToken = accessToken;

 providerData.refreshToken = refreshToken;

https://developers.facebook.com/

Chapter 6

[149]

 var providerUserProfile = {

 firstName: profile.name.givenName,

 lastName: profile.name.familyName,

 fullName: profile.displayName,

 email: profile.emails[0].value,

 username: profile.username,

 provider: 'facebook',

 providerId: profile.id,

 providerData: providerData

 };

 users.saveOAuthUserProfile(req, providerUserProfile, done);

 }));

};

Let's go over the preceding code snippet for a moment. You begin by requiring the
Passport module, the Facebook Strategy object, your environmental coniguration
ile, your User Mongoose model, and the Users controller. Then, you register
the strategy using the passport.use() method and creating an instance of a
FacebookStrategy object. The FacebookStrategy constructor takes two arguments:
the Facebook application information and a callback function that it will call later
when trying to authenticate a user.

Take a look at the callback function you deined. It accepts ive arguments: the HTTP
request object, an accessToken object to validate future requests, a refreshToken
object to grab new access tokens, a proile object containing the user proile, and a
done callback to be called when the authentication process is over.

Inside the callback function, you will create a new user object using the Facebook
proile information and the controller's saveOAuthUserProfile() method, which
you previously created, to authenticate the current user.

Remember the config/passport.js ile? Well, now that you have your Facebook
strategy conigured, you can go back to it and load the strategy ile. To do so, go
back to the config/passport.js ile and change it, as follows:

var passport = require('passport'),

 mongoose = require('mongoose');

module.exports = function() {

 var User = mongoose.model('User');

Managing User Authentication Using Passport

[150]

 passport.serializeUser(function(user, done) {

 done(null, user.id);

 });

 passport.deserializeUser(function(id, done) {

 User.findOne({

 _id: id

 }, '-password -salt', function(err, user) {

 done(err, user);

 });

 });

 require('./strategies/local.js')();

 require('./strategies/facebook.js')();

};

This will load your Facebook strategy coniguration ile. Now, all that is left to do is
set the routes needed to authenticate users via Facebook and include a link to those
routes in your sign-in and signup pages.

Wiring Passport's Facebook strategy routes
Passport OAuth strategies support the ability to authenticate users directly using the
passport.authenticate() method. To do so, go to app/routes/users.server.
routes.js, and append the following lines of code after the local strategy routes
deinition:

app.get('/oauth/facebook', passport.authenticate('facebook', {

 failureRedirect: '/signin'

}));

app.get('/oauth/facebook/callback', passport.authenticate('facebook',
{

 failureRedirect: '/signin',

 successRedirect: '/'

}));

The irst route will use the passport.authenticate() method to start the
user authentication process, while the second route will use the passport.
authenticate() method to inish the authentication process once the user has
linked their Facebook proile.

Chapter 6

[151]

That's it! Everything is set up for your users to authenticate via Facebook. All you
have to do now is go to your app/views/signup.ejs and app/views/signin.ejs
iles, and add the following line of code right before the closing BODY tag:

Sign in with Facebook

This will allow your users to click on the link and register with your application via
their Facebook proile.

Using Passport's Twitter strategy
Another popular OAuth provider is Twitter, and a lot of web applications offer
their users the ability to register with the web application using their Twitter
proile. Passport supports the Twitter OAuth authentication method using the
passport-twitter module. Let's see how you can implement a Twitter-based
authentication in a few simple steps.

Installing Passport's Twitter strategy
To install Passport's Twitter strategy module in your application's modules folders,
you'll need to change your package.json ile, as follows:

{
 "name": "MEAN",
 "version": "0.0.6",
 "dependencies": {
 "express": "~4.8.8",
 "morgan": "~1.3.0",
 "compression": "~1.0.11",
 "body-parser": "~1.8.0",
 "method-override": "~2.2.0",
 "express-session": "~1.7.6",
 "ejs": "~1.0.0",
 "connect-flash": "~0.1.1",
 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2"

 }

}

Before you continue developing your application, you will need to install the new
Twitter strategy dependency. Go to your application's root folder, and issue the
following command in your command-line tool:

$ npm install

Managing User Authentication Using Passport

[152]

This will install the speciied version of Passport's Twitter strategy in your
node_modules folder. Once the installation process has successfully inished,
you will need to conigure the Twitter strategy.

Coniguring Passport's Twitter strategy
Before we begin coniguring your Twitter strategy, you will have to go to the Twitter
developers' home page at https://dev.twitter.com/ and create a new Twitter
application. After coniguring your Twitter application, you will get a Twitter
application ID and secret. You'll need them to authenticate your users via Twitter,
so let's add them in our environment coniguration ile. Go to the config/env/
development.js ile, and change it as follows:

module.exports = {

 db: 'mongodb://localhost/mean-book',

 sessionSecret: 'developmentSessionSecret',

 facebook: {

 clientID: 'Application Id',

 clientSecret: 'Application Secret',

 callbackURL: 'http://localhost:3000/oauth/facebook/callback'

 },

 twitter: {

 clientID: 'Application Id',

 clientSecret: 'Application Secret',

 callbackURL: 'http://localhost:3000/oauth/twitter/callback'

 }

};

Don't forget to replace Application Id and Application Secret with your
Twitter application's ID and secret. The callbackURL property will be passed
to the Twitter OAuth service, which will redirect the user to that URL after the
authentication process is over.

As stated earlier, in your project, each strategy should be conigured in its own
separated ile, which will help you keep your project organized. Go to your config/
strategies folder, and create a new ile named twitter.js containing the
following lines of code:

var passport = require('passport'),

 url = require('url'),

 TwitterStrategy = require('passport-twitter').Strategy,

 config = require('../config'),

 users = require('../../app/controllers/users.server.controller');

https://dev.twitter.com/

Chapter 6

[153]

module.exports = function() {

 passport.use(new TwitterStrategy({

 consumerKey: config.twitter.clientID,

 consumerSecret: config.twitter.clientSecret,

 callbackURL: config.twitter.callbackURL,

 passReqToCallback: true

 },

 function(req, token, tokenSecret, profile, done) {

 var providerData = profile._json;

 providerData.token = token;

 providerData.tokenSecret = tokenSecret;

 var providerUserProfile = {

 fullName: profile.displayName,

 username: profile.username,

 provider: 'twitter',

 providerId: profile.id,

 providerData: providerData

 };

 users.saveOAuthUserProfile(req, providerUserProfile, done);

 }));

};

You begin by requiring the Passport module, the Twitter Strategy object, your
environmental coniguration ile, your User Mongoose model, and the Users
controller. Then, you register the strategy using the passport.use() method, and
create an instance of a TwitterStrategy object. The TwitterStrategy constructor
takes two arguments: the Twitter application information and a callback function
that it will call later when trying to authenticate a user.

Take a look at the callback function you deined. It accepts ive arguments: the HTTP
request object, a token object and a tokenSecret object to validate future requests,
a proile object containing the user proile, and a done callback to be called when the
authentication process is over.

Inside the callback function, you will create a new user object using the Twitter
proile information and the controller's saveOAuthUserProfile() method, which
you previously created, to authenticate the current user.

Managing User Authentication Using Passport

[154]

Now that you have your Twitter strategy conigured, you can go back to the config/
passport.js ile and load the strategy ile as follows:

var passport = require('passport'),

 mongoose = require('mongoose');

module.exports = function() {

 var User = mongoose.model('User');

 passport.serializeUser(function(user, done) {

 done(null, user.id);

 });

 passport.deserializeUser(function(id, done) {

 User.findOne({

 _id: id

 }, '-password -salt', function(err, user) {

 done(err, user);

 });

 });

 require('./strategies/local.js')();

 require('./strategies/facebook.js')();

 require('./strategies/twitter.js')();

};

This will load your Twitter strategy coniguration ile. Now all that is left to do is set
the routes needed to authenticate users via Twitter and include a link to those routes
in your sign-in and signup pages.

Wiring Passport's Twitter strategy routes
To add Passport's Twitter routes, go to your app/routes/users.server.routes.js
ile, and paste the following code after the Facebook strategy routes:

app.get('/oauth/twitter', passport.authenticate('twitter', {

 failureRedirect: '/signin'

}));

app.get('/oauth/twitter/callback', passport.authenticate('twitter', {

 failureRedirect: '/signin',

 successRedirect: '/'

}));

Chapter 6

[155]

The irst route will use the passport.authenticate() method to start the user
authentication process, while the second route will use passport.authenticate()
method to inish the authentication process once the user has used their Twitter
proile to connect.

That's it! Everything is set up for your user's Twitter-based authentication. All you
have to do is go to your app/views/signup.ejs and app/views/signin.ejs iles
and add the following line of code right before the closing BODY tag:

Sign in with Twitter

This will allow your users to click on the link and register with your application via
their Twitter proile.

Using Passport's Google strategy
The last OAuth provider we'll implement is Google as a lot of web applications
offer their users the ability to register with the web application using their Google
proile. Passport supports the Google OAuth authentication method using the
passport-google-oauth module. Let's see how you can implement a Google-based
authentication in a few simple steps.

Installing Passport's Google strategy
To install Passport's Google strategy module in your application's modules folders,
you'll need to change your package.json ile, as follows:

{

 "name": "MEAN",

 "version": "0.0.6",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

Managing User Authentication Using Passport

[156]

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5"

 }

}

Before you can continue developing your application, you will need to install the
new Google strategy dependency. Go to your application's root folder, and issue the
following command in your command-line tool:

$ npm install

This will install the speciied version of Passport's Google strategy in your
node_modules folder. Once the installation process has successfully inished,
you will need to conigure the Google strategy.

Coniguring Passport's Google strategy
Before we begin coniguring your Google strategy, you will have to go to the Google
developers' home page at https://console.developers.google.com/and create a
new Google application. In your application's settings, set the JAVASCRIPT ORIGINS
property to http://localhost and the REDIRECT URIS property to http://
localhost/oauth/google/callback. After coniguring your Google application,
you will get a Google application ID and secret. You'll need them to authenticate
your users via Google, so let's add them in our environment coniguration ile. Go to
the config/env/development.js ile, and change it as follows:

module.exports = {
 db: 'mongodb://localhost/mean-book',
 sessionSecret: 'developmentSessionSecret',
 facebook: {
 clientID: 'Application Id',
 clientSecret: 'Application Secret',
 callbackURL:
 'http://localhost:3000/oauth/facebook/callback'
 },
 twitter: {
 clientID: 'Application Id',
 clientSecret: 'Application Secret',
 callbackURL: 'http://localhost:3000/oauth/twitter/callback'
 },
 google: {
 clientID: 'Application Id',
 clientSecret: 'Application Secret',
 callbackURL: 'http://localhost:3000/oauth/google/callback'
 }
};

https://console.developers.google.com/

Chapter 6

[157]

Don't forget to replace Application Id and Application Secret with your
Google application's ID and secret. The callbackURL property will be passed
to the Google OAuth service, which will redirect the user to that URL after the
authentication process is over.

To implement the Google authentication strategy, go to your config/strategies
folder, and create a new ile named google.js containing the following lines
of code:

var passport = require('passport'),

 url = require('url'),

 GoogleStrategy = require('passport-google-oauth').OAuth2Strategy,

 config = require('../config'),

 users = require('../../app/controllers/users.server.controller');

module.exports = function() {

 passport.use(new GoogleStrategy({

 clientID: config.google.clientID,

 clientSecret: config.google.clientSecret,

 callbackURL: config.google.callbackURL,

 passReqToCallback: true

 },

 function(req, accessToken, refreshToken, profile, done) {

 var providerData = profile._json;

 providerData.accessToken = accessToken;

 providerData.refreshToken = refreshToken;

 var providerUserProfile = {

 firstName: profile.name.givenName,

 lastName: profile.name.familyName,

 fullName: profile.displayName,

 email: profile.emails[0].value,

 username: profile.username,

 provider: 'google',

 providerId: profile.id,

 providerData: providerData

 };

 users.saveOAuthUserProfile(req, providerUserProfile, done);

 }));

};

Managing User Authentication Using Passport

[158]

Let's go over the preceding code snippet for a moment. You begin by requiring the
Passport module, the Google Strategy object, your environmental coniguration
ile, your User Mongoose model, and the Users controller. Then, you register
the strategy using the passport.use() method and create an instance of a
GoogleStrategy object. The GoogleStrategy constructor takes two arguments: the
Google application information and a callback function that it will later call when
trying to authenticate a user.

Take a look at the callback function you deined. It accepts ive arguments: the HTTP
request object, an accessToken object to validate future requests, a refreshToken
object to grab new access tokens, a proile object containing the user proile, and a
done callback to be called when the authentication process is over.

Inside the callback function, you will create a new user object using the Google
proile information and the controller's saveOAuthUserProfile() method, which
you previously created, to authenticate the current user.

Now that you have your Google strategy conigured, you can go back to the config/
passport.js ile and load the strategy ile, as follows:

var passport = require('passport'),

 mongoose = require('mongoose');

module.exports = function() {

 var User = mongoose.model('User');

 passport.serializeUser(function(user, done) {

 done(null, user.id);

 });

 passport.deserializeUser(function(id, done) {

 User.findOne({

 _id: id

 }, '-password -salt', function(err, user) {

 done(err, user);

 });

 });

 require('./strategies/local.js')();

 require('./strategies/facebook.js')();

 require('./strategies/twitter.js')();

 require('./strategies/google.js')();

};

Chapter 6

[159]

This will load your Google strategy coniguration ile. Now all that is left to do is
set the routes required to authenticate users via Google and include a link to those
routes in your sign-in and signup pages.

Wiring Passport's Google strategy routes
To add Passport's Google routes, go to your app/routes/users.server.routes.js
ile, and paste the following lines of code after the Twitter strategy routes:

app.get('/oauth/google', passport.authenticate('google', {

 failureRedirect: '/signin',

 scope: [

 'https://www.googleapis.com/auth/userinfo.profile',

 'https://www.googleapis.com/auth/userinfo.email'

],

}));

app.get('/oauth/google/callback', passport.authenticate('google', {

 failureRedirect: '/signin',

 successRedirect: '/'

}));

The irst route will use the passport.authenticate() method to start the
user authentication process, while the second route will use the passport.
authenticate() method to inish the authentication process once the user used
their Google proile to connect.

That's it! Everything is set up for your user's Google-based authentication. All you
have to do is go to your app/views/signup.ejs and app/views/signin.ejs iles
and add the following line of code right before the closing BODY tag:

Sign in with Google

This will allow your users to click on the link and register with your application
via their Google proile. To test your new authentication layers, go to your root
application folder and use the node command-line tool to run your application:

$ node server

Managing User Authentication Using Passport

[160]

Test your application by visiting http://localhost:3000/signin and http://
localhost:3000/signup. Try signing up and signing in using the new OAuth
methods. Don't forget to visit your home page to see how the user details are saved
throughout the session.

Passport has similar support for many additional OAuth providers. To

learn more, it is recommended that you visit http://passportjs.
org/guide/providers/.

Summary
In this chapter, you learned about the Passport authentication module. You
discovered its strategies and how to handle their installation and coniguration.
You also learned how to properly register your users and how to authenticate their
requests. You went through Passport's local strategy and learned how to authenticate
users using a username and password and how Passport supports the different
OAuth authentication providers. In the next chapter, you'll discover the last piece of
the MEAN puzzle, when we introduce you to AngularJS.

http://passportjs.org/guide/providers/
http://passportjs.org/guide/providers/

Introduction to AngularJS
The last piece of the MEAN puzzle is, of course, AngularJS. Back in 2009, while
building their JSON as platform service, developers Miško Hevery and Adam
Abrons noticed that the common JavaScript libraries weren't enough. The nature
of their rich web applications raised the need for a more structured framework that
would reduce redundant work and keep the project code organized. Abandoning
their original idea, they decided to focus on the development of their framework,
naming it AngularJS and releasing it under an open source license. The idea was to
bridge the gap between JavaScript and HTML and to help popularize single-page
application development. In this chapter, we'll cover the following topics:

• Understanding the key concepts of AngularJS

• Introducing Bower's frontend dependencies manager

• Installing and coniguring AngularJS
• Creating and organizing an AngularJS application

• Utilizing Angular's MVC architecture properly

• Utilizing AngularJS services and implementing the Authentication service

Introduction to AngularJS

[162]

Introducing AngularJS
AngularJS is a frontend JavaScript framework designed to build single-page
applications using the MVC architecture. The AngularJS approach is to extend
the functionality of HTML using special attributes that bind JavaScript business
logic with HTML elements. The AngularJS ability to extend HTML allows cleaner
DOM manipulation through client-side templating and two-way data binding
that seamlessly synchronizes between models and views. AngularJS also improves
the application's code structure and testability using MVC and dependency
injection. Although starting with AngularJS is easy, writing larger applications
is a more complex task, which requires a broader understanding of the framework's
key concepts.

Key concepts of AngularJS
With its two-way data binding, AngularJS makes it very easy to get started with
your irst application. However, when progressing into real-world application
development, things can get more complicated. So, before we can continue with
our MEAN application development, it would be best to clarify a few key concepts
of AngularJS.

The core module of AngularJS
The core module of AngularJS is loaded with everything you need to bootstrap your
application. It contains several objects and entities that enable the basic operation of
an AngularJS application.

The angular global object
The angular global object contains a set of methods that you'll use to create and
launch your application. It's also worth noticing that the angular object wraps
a leaner subset of jQuery called jqLite, which enables Angular to perform basic
DOM manipulation. Another key feature of the angular object is its static methods,
which you'll use to create, manipulate, and edit the basic entities of your application
including, the creation and retrieval of modules.

AngularJS modules
With AngularJS, everything is encapsulated in modules. Whether you choose to
work with a single application module or break your application into various
modules, your AngularJS application will rely on at least one module to operate.

Chapter 7

[163]

Application modules
Every AngularJS application needs at least one module to bootstrap, and we'll refer
to this module as the application module. AngularJS modules are created and
retrieved using the angular.module(name, [requires], [configFn]) method,
which accepts three arguments:

• name: This is a string deining the module name
• requires: This is an array of strings deining other modules as dependencies
• configFN: This is a function that will run when the module is being registered

When calling the angular.module() method with a single argument, it will
retrieve an existing module with that name; if it can't ind one, it will throw an
error. However, when calling the angular.module() method with multiple
arguments, AngularJS will create a module with the given name, dependencies, and
coniguration function. Later in this chapter, you will use the angular.module()
method with the name of your module and a list of dependencies to create your
application module.

External modules
The AngularJS team has decided to support the continuous development of the
framework by breaking Angular's functionality into external modules. These
modules are being developed by the same team that creates the core framework
and are being installed separately to provide extra functionality that is not required
by the core framework to operate. Later in this chapter, you'll see an example of an
external module, when we discuss the routing of an application.

Third-party modules
In the same way the AngularJS team supports its external modules, it also
encourages outside vendors to create third-party modules, which extends the
framework functionality and provides developers with an easier starting point.
Later in this book, you will encounter third-party modules that will help you
speed up your application development.

Introduction to AngularJS

[164]

Two-way data binding
One of the most popular features of AngularJS is its two-way data binding
mechanism. Two-way data binding enables AngularJS applications to always keep
the model synchronized with the view and vice versa. This means that what the
view renders is always the projection of the model. To understand this better, the
AngularJS team provides the following diagram:

Traditional one-way data binding

As you can see from the preceding diagram, most templating systems bind the
model with templates in one direction. So, every time the model changes, the
developer has to make sure that these changes relect in the view. A good example
is our EJS template engine, which binds the application data and EJS template to
produce an HTML page. Fortunately, AngularJS templates are different. Take a look
at the following diagram:

AngularJS two-way data binding

Chapter 7

[165]

AngularJS uses the browser to compile HTML templates, which contain special
directives and binding instructions that produce a live view. Any events that happen
in the view automatically update the model, while any changes occurring in the
model immediately get propagated to the view. This means the model is always
the single source of data for the application state, which substantially improves the
development process. Later in this chapter, you will learn about AngularJS scopes
and how controllers and views use them in referring to the application model.

Dependency injection
A dependency injection is a software design pattern popularized by a software
engineer named Martin Fowler. The main principle behind dependency injection is
the inversion of control in a software development architecture. To understand this
better, let's have a look at the following notifier example:

var Notifier = function() {

 this.userService = new UserService();

};

Notifier.prototype.notify = function() {

 var user = this.userService.getUser();

 if (user.role === 'admin') {

 alert('You are an admin!');

 } else {

 alert('Hello user!');

 }

};

Our Notifier class creates an instance of a userService, and when the notify ()
method is called, it alerts a different message based on the user role. Now this can
work pretty well, but what happens when you want to test your Notifier class?
You will create a Notifier instance in your test, but won't be able to pass a mock
userService object to test the different results of the notify method. Dependency
injection solves this by moving the responsibility of creating the userService object
to the creator of the Notifier instance, whether it is another object or a test. This
creator is often referred to as the injector. A revised, injection-dependent version of
this example will be as follows:

var Notifier = function(userService) {

 this.userService = userService;

};

Introduction to AngularJS

[166]

Notifier.prototype.notify = function() {

 var user = this.userService.getUser();

 if (user.role === 'admin') {

 alert('You are an admin!');

 } else {

 alert('Hello user!');

 }

};

Now, whenever you create an instance of the Notifier class, the injector will
be responsible for injecting a userService object into the constructor, making it
possible to control the behavior of the Notifier instance outside of its constructor,
a design often described as inversion of control.

Dependency injection in AngularJS
Now that you know how dependency injection works, let's review the
implementation AngularJS uses. To understand this better, let's go over the
following example of a module's controller () method, which creates an
AngularJS controller:

angular.module('someModule').controller('SomeController',
function($scope) {

 ...

});

In this example, the controller method accepts two arguments: the controller's
name and the controller's constructor function. The controller's constructor function
is being injected with an AngularJS object named $scope. AngularJS knows how
to inject the right object here because its injector object can read the function
argument's names. But developers often use a minifying service to obfuscate and
minimize JavaScript iles for production deployment needs. A minifying service
will make our controller look as follows:

angular.module('someModule').controller('SomeController', function(a)
{ ... });

So, now the AngularJS injector won't be able to understand which object it should
inject. To solve this, AngularJS provides better syntax to annotate dependencies.
Instead of passing a function as a second argument, you can pass an annotated array
of dependencies that won't change when miniied and will let the injector know
which dependencies this controller constructor is expecting.

Chapter 7

[167]

An annotated version of our controller will be as follows:

angular.module('someModule').controller('SomeController', ['$scope',
function($scope) {

}]);

Now, even if you obfuscate your code, the list of dependencies will stay intact, so the
controller can function properly.

While we used the controller() method to explain this
principle, it is also valid with any other AngularJS entity.

AngularJS directives
We previously stated that AngularJS extends HTML instead of building against it.
The mechanism that allows this is called directives. AngularJS directives are markers,
usually attributes or element names, which enable the AngularJS compiler to attach a
speciied behavior to a DOM element and its children elements. Basically, directives
are the way AngularJS interacts with DOM elements and are what enables the basic
operation of an AngularJS application. What makes this feature even more special is
the ability to write your own custom directives that it imparts.

Core directives
AngularJS comes prebundled with necessary directives, which deine the
functionality of an Angular application. A directive is usually placed on an element
as an attribute or deined as the element name. In this section, we'll review the most
popular core directives, but you will encounter more of Angular's directives along
the book examples.

The most basic directive is called ng-app and is placed on the DOM element (usually
the page's body or html tag) you want Angular to use as the root application
element. A body tag with the ng-app directive will be as follows:

<body ng-app></body>

We'll discuss the ng-app directive in greater detail in the next section, but for now,
let's discuss other common core directives included in Angular's core:

• ng-controller: This tells the compiler which controller class to use to
manage this element view

• ng-model: This is placed on input elements and binds the input value to a
property on the model

Introduction to AngularJS

[168]

• ng-show/ng-hide: This shows and hides an element according to a
Boolean expression

• ng-repeat: This iterates over a collection and duplicates the element for
each item

We'll explain how to use each of these directives throughout the book, but it is also
important to remember that these are just a small portion of the vast selection of
AngularJS core directives, and while we introduce more directives ahead, it would
probably be best for you to explore them yourself using the AngularJS oficial
documentation at http://docs.angularjs.org/api/.

Custom directives
We won't discuss custom directives in this book but it is worth mentioning that you
can also write your own custom directives. Custom directives make it possible for
you to obfuscate redundant code, keep your application cleaner and more readable,
and improve the way you can test your application.

Third-party vendors have created a lot of supplemental, open source
directives, which can substantially expedite your development process.

Bootstrapping an AngularJS application
Bootstrapping an AngularJS application means that we tell Angular which DOM
element is the root element of the application and when to initiate the Angular
application. This could be done either automatically after the page assets are
loaded or manually using JavaScript. Manual bootstrapping is usually useful when
you'd like to control the bootstrap low to make sure certain logic is being executed
before the AngularJS application is started, while automatic bootstrap is useful in
simpler scenarios.

Automatic bootstrap
To automatically bootstrap the AngularJS application, you will need to use the
ng-app directive. Once the application JavaScript iles are loaded, AngularJS will
look for DOM elements marked with this directive and will bootstrap an individual
application for each element. The ng-app directive can be placed as an attribute
without a value or with the name of the module that you'd like to use as the main
application module. It is important to remember that you should create this module
using the angular.module() method, or AngularJS will throw an exception
and won't bootstrap your application.

http://docs.angularjs.org/api/

Chapter 7

[169]

Manual bootstrap
To manually bootstrap an application, you will need to use the angular.
bootstrap(element, [modules], [config]) method, which accepts
three arguments:

• element: This is the DOM element where you want to bootstrap your
application

• modules: This is an array of strings deining the modules you want to attach
to the application

• config: This an object deining coniguration options for the application

Usually, we'll call this function in when the page is loaded using the jqLite
document-ready event.

After going through this quick overview of the AngularJS key concepts, we can
now continue with the implementation of an AngularJS application in our MEAN
application. The examples in this chapter will continue directly from those in
previous chapters, so for this chapter, copy the inal example from Chapter 6,
Managing User Authentication Using Passport, and let's start from there.

Installing AngularJS
Since AngularJS is a frontend framework, installing it requires the inclusion of
Angular's JavaScript iles in the main page of your application. This could be done
in various ways, and the easiest one would be to download the iles you need and
store them in the public folder. Another approach is to use Angular's CDN and
load the iles directly from the CDN server. While these two approaches are simple
and easy to understand, they both have a strong law. Loading a single third-party
JavaScript ile is readable and direct, but what happens when you start adding more
vendor libraries to your project? More importantly, how can you manage your
dependencies versions? In the same way, the Node.js ecosystem solved this
issue by using npm. Frontend dependencies can be managed using a similar tool
called Bower.

Meeting the Bower dependencies manager
Bower is a package manager tool, designed to download and maintain frontend,
third-party libraries. Bower is a Node.js module, so to begin using it, you will have
to install it globally using npm:

$ npm install -g bower

Introduction to AngularJS

[170]

Your OS user might not have the necessary permissions to install
packages globally, so use a super user or sudo.

Once you have Bower installed, it's time to learn how to use it. Like npm, Bower uses
a dedicated JSON ile to indicate which packages and what versions to install. To
manage your frontend packages, go to the root folder of your application and create
a ile named bower.json containing the following lines of code:

{
 name: MEAN,
 version: 0.0.7,
 dependencies: { }
}

As you're already experienced with the package.json ile, this structure should
already look familiar. Basically, you deine your project metadata and describe its
frontend packages using the dependencies property. You'll populate this ield in
a moment, but there is one more detail to notice regarding Bower's coniguration.

In order to use Bower, you will also need to install Git. Visit
http://git-scm.com/ to download and install Git on your system.
If you're using Windows, make sure you enabled Git on the
command prompt or use the Git bash tool for all Bower-related
commands.

Coniguring the Bower dependencies manager
Bower installation process downloads the packages content and automatically
place them under a bower_components default folder in the root application
folder. Since these are frontend packages that should be served as static iles, and
considering that our MEAN application only serves static iles placed under the
public folder, you will have to change the default installation location for Bower
packages. Coniguring the Bower installation process is done using a dedicated
coniguration ile called .bowerrc.

To install your frontend packages in a different location, go to the root folder of
your application and create a ile named .bowerrc that contains the following
lines of code:

{
 directory: public/lib
}

Chapter 7

[171]

From now on, when you run the Bower installation process, third-party packages
will be placed under the public/lib folder.

You can learn more about Bower's features by visiting the oficial
documentation at http://bower.io.

Installing AngularJS using Bower
Once you have Bower installed and conigured, it is time to use it and install the
AngularJS framework. Go back to your bower.json ile and change it as follows:

{

 name: MEAN,

 version: 0.0.7,

 dependencies: {

 angular: ~1.2

 }

}

This will have Bower installing the latest 1.2.x Version of AngularJS. To start the
installation process, navigate to the application's folder in your command-line tool
and run the following command:

$ bower install

This will fetch the AngularJS package iles and place them under the public/lib/
angular folder. Once you have AngularJS installed, it is time to add it to your
project's main application page. Since AngularJS is a single-page framework, the
entire application logic will take place in the same Express application page.

Coniguring AngularJS
To start using AngularJS, you will need to include the framework JavaScript ile
in your main EJS view. In our case, we will use the app/views/index.ejs ile as
the main application page. Go to your app/views/index.ejs ile and change it,
as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

Introduction to AngularJS

[172]

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

</body>

</html>

Now that you have AngularJS installed and included in the main application page,
it is time to understand how to organize your AngularJS application's structure.

Structuring an AngularJS application
As you might remember from Chapter 3, Building an Express Web Application, your
application's structure depends on the complexity of your application. We previously
decided to use the horizontal approach for the entire MEAN application; however,
as we stated before, MEAN applications can be constructed in various ways, and
an AngularJS application structure is a different topic, which is often discussed by
the community and the AngularJS development team. There are many doctrines for
different purposes, some of which are a bit more complicated, while others offer a
simpler approach. In this section, we'll introduce a recommended structure. Since
AngularJS is a frontend framework, you'll use the public folder of our Express
application as the root folder for the AngularJS application so that every ile is
available statically.

The AngularJS team offers several options to structure your application according to
its complexity. A simple application will have a horizontal structure where entities
are arranged in modules and folders according to their type, and a main application
ile is placed at the root folder of the application. An example application structure
of that kind can be viewed in the following screenshot:

Chapter 7

[173]

As you can notice, this is a very comfortable solution for small applications with a
few entities. However, your application might be more complex with several different
features and many more entities. This structure cannot handle an application of that
sort since it obfuscates the behavior of each application ile, will have a bloated folder
with too many iles, and will generally be very dificult to maintain. For this purpose,
the AngularJS team offers a different approach to organizing your iles in a vertical
manner. A vertical structure positions every ile according to its functional context,
so different types of entities can be sorted together according to their role in a feature
or section. This is similar to the vertical approach we introduced in Chapter 3, Building
an Express Web Application. However, the difference is that only AngularJS sections or
logical units will have a standalone module folder structure with a module ile placed
in the root module folder.

Introduction to AngularJS

[174]

An example of an AngularJS application vertical structure can be seen in the
following screenshot:

Chapter 7

[175]

As you can notice, each module has its own folder structure with subfolders for
different types of entities. This allows you to encapsulate each section, but there is
still a minor problem with this structure. As you develop your AngularJS application,
you will discover that you end up with many iles having the same name since they
serve different functionalities of the same section. This is a common issue, which can
be very inconvenient when using your IDE or text editor. A better approach would be
to use the naming convention that we introduced in Chapter 3, Building an Express Web
Application. The following screenshot shows a clearer structure:

Each ile is placed in a proper folder with a proper ilename that usefully describes
what sort of code it contains. Now that you know the basic best practices of naming
and structuring your application, let's go back to the example project and start
building your AngularJS application.

Introduction to AngularJS

[176]

Bootstrapping your AngularJS
application
To bootstrap your application and start using AngularJS, we will use the manual
bootstrapping mechanism. This will allow you to better control the initialization
process of your application. To do so, clear the contents of the public folder except
for the Bower lib folder. Then, create a ile named application.js inside the
public folder, and paste the following code in it:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName
, []);

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

As you can notice, irst you created a variable containing the main application's
module name, which you then used to create a the main application module
following the angular.module() method. Then, you used the angular object jqLite
functionality to bind a function to the document-ready event. In that function, you
used the angular.bootstrap() method to initiate a new AngularJS application
using the main application module.

The next thing you need to do is include this JavaScript ile in your index.ejs view.
You should also throw in an Angular example code to validate that everything is
working properly. Go to the app/views/index.ejs ile and change it, as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

Chapter 7

[177]

 <section>

 <input type="text" id="text1" ng-model="name">

 <input type="text" id="text2" ng-model="name">

 </section>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Here, you included the new application JavaScript ile and added two text boxes
that used the ng-model directive to illustrate Angular's data binding. Once you've
made these changes, everything is ready to test your AngularJS application. In your
command-line tool, navigate to the MEAN application's root folder, and run your
application with the help of the following command:

$ node server

When your application is running, use your browser and open your application URL
at http://localhost:3000. You should see two textboxes next to each other. Try
typing in one of the text boxes, and you should see Angular's two-way data binding
in action. In the next section, you'll learn how to use AngularJS MVC entities.

AngularJS MVC entities
AngularJS is an opinioned framework that allows you to use the MVC design
pattern to create rich and maintainable web applications. In this section, you'll learn
about views, controllers, and how the data model is implemented using the scope
object. To begin with implementing the MVC pattern, create a module folder named
example in your public folder. In the example folder, create two subfolders named
controllers and views. Now that you have your example module structured,
create a ile named example.client.module.js inside the public/example folder.
In this ile, you're going to create a new AngularJS module using the angular.
module() method. In the public/example/example.client.module.js ile,
paste the following code:

angular.module('example', []);

Introduction to AngularJS

[178]

This will create an AngularJS module, but you still need to include the module ile
in your application page and the module as a dependency of your main application
module. Let's begin by removing the two-textboxes code examples and adding a new
SCRIPT tag that loads your module ile. To do so, change your app/views/index.
ejs ile as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Now add the example module as a dependency of the main application module by
going to your public/application.js ile and changing it, as follows:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['example']);

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

Chapter 7

[179]

Once you're done, test your changes by running your MEAN application and
verifying that there are no JavaScript errors. You shouldn't witness any changes in
your application since we haven't utilized the new example module yet. When you're
sure your new module is properly deined, move on to the next section to learn how
to use AngularJS views.

AngularJS views
AngularJS views are HTML templates rendered by the AngularJS compiler to
produce a manipulated DOM on your page. To start with your irst view, create a
new example.client.view.html ile inside your public/example/views folder,
and paste the following lines of code:

<section>

 <input type=text id=text1 ng-model=name>

 <input type=text id=text2 ng-model=name>

</section>

To use this template as a view, you'll have to go back to your app/views/index.ejs
ile and change it again, as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-include="'example/views/example.client.view.html'"></
section>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Introduction to AngularJS

[180]

In the preceding code snippet, you used the new ng-include directive, which
loads a template from a speciied path, compiles it into a view, and then places
the rendered result inside the directive DOM element. To test your view, use your
command-line tool, and navigate to the MEAN application's root folder. Then run
your application by typing the following command:

$ node server

Once your application is running, use your browser, and open the application URL
at http://localhost:3000. You should see the two-textboxes example again; try
typing in one of the textboxes, and see how the data binding works the same way
inside views. Views are great, but what makes them even better are controllers.

AngularJS controllers and scopes
Controllers are basically constructor functions, which AngularJS uses to create a new
instance of a controller object. Their purpose is to augment data model reference
objects called scopes. Therefore, the AngularJS team rightfully deines a scope as the
glue between the view and the controller. Using a scope object, the controller can
manipulate the model, which automatically propagates these changes to the view
and vice versa.

Controller instances are usually created when you use the ng-controller directive.
The AngularJS compiler uses the controller name from the directive to instantiate a
new controller instance, while utilizing dependency injection to pass the scope object
to that controller instance. The controller is then used either to set up the scope initial
state or to extend its functionality.

Since DOM elements are arranged in a hierarchical structure, scopes mimic that
hierarchy. This means that each scope has a parent scope up until the parentless
object called the root scope. This is important, because aside from referencing their
own model, scopes can also inherit the model of their parent scopes. So if a model
property cannot be found in a current scope object, Angular will look for this
property in the parent scope, and so on, until it inds the property or reaches the
root scope.

To understand this better, let's use a controller to set an initial model state for our
view. Inside your public/example/controllers folder, create a new ile called
example.client.controller.js containing the following code snippet:

angular.module('example').controller('ExampleController', ['$scope',

 function($scope) {

 $scope.name = 'MEAN Application';

 }

]);

Chapter 7

[181]

Let's review this for a moment. First, you used the angular.module() method
to retrieve your example module. Then, you used the AngularJS module's
controller() method to create a new ExampleController constructor function. In
your constructor function, you applied the dependency injection to inject the $scope
object. Finally, you used the $scope object to deine a name property, which will later
be used by your view. To use this controller, you'll need to include its JavaScript ile
in the main application's page and add the ng-controller directive to your view.
Start by changing your app/views/index.ejs as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-include="'example/views/example.client.view.html'"></
section>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Now change your public/example/views/example.client.view.html ile
as follows:

<section ng-controller=ExampleController>

 <input type=text id=text1 ng-model=name>

 <input type=text id=text2 ng-model=name>

</section>

Introduction to AngularJS

[182]

That's it! To test your new controller, use your command-line tool, and navigate to
the MEAN application's root folder. Then run your application as follows:

$ node server

Once your application is running, use your browser and open your application URL
at http://localhost:3000. You should see the two-textboxes example again but
with an initial value already set up.

While views, controllers, and scopes are a great way to build your application,
AngularJS has much more to offer. In the next section, you'll drop the ng-include
directive and learn how to use the ngRoute module to manage your application
routing.

AngularJS routing
An AngularJS MVC implementation would not be complete if it didn't offer
some way of controlling the application URL routing. While you could leverage
the ng-include directive to offer some routing features, it would be a mess to use
it with multiple views. For that purpose, the AngularJS team developed the ngRoute
module that allows you to deine URL paths and their corresponding templates,
which will be rendered whenever the user navigates to those paths.

Since AngularJS is a single-page framework, ngRoute will manage the routing
entirely in the browser. This means that instead of fetching web pages from the
server, AngularJS will load the deined template, compile it, and place the result
inside a speciic DOM element. The server will only serve the template as a static
ile but won't respond to the URL changing. This change will also turn our Express
server into a more API-oriented backend. Let's begin by installing the ngRoute
module using Bower.

The ngRoute module has two URL modes: a legacy mode using the
URL hash part to support older browsers and an HTML5 mode using
the history API supported by newer browsers. In this book, we'll use the
legacy mode to offer broader browser compatibility.

Chapter 7

[183]

Installing the ngRoute module
Installing the ngRoute module is easy; simply go to your bower.json ile and change
it as follows:

{

 name: MEAN,

 version: 0.0.7,

 dependencies: {

 angular: ~1.2,

 angular-route: ~1.2

 }

}

Now use your command-line tool to navigate to the MEAN application root folder,
and install the new ngRoute module:

$ bower update

When bower inishes installing the new dependency, you would see a new folder
named angular-route in your public/lib folder. Next, you will need to include
the module ile in your application main page, so edit your app/views/index.ejs
ile as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-include="'example/views/example.client.view.html'"></
section>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

Introduction to AngularJS

[184]

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Finally, you will need to add the ngRoute module as a dependency for your main
application's module, so change your public/application.js ile as follows:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngRoute', 'example']);

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

When you're done with these changes, the ngRoute module will be set up and ready
to be conigured and used.

Coniguring the URL scheme
The ngRoute module's default behavior is to use the URL hash part for routing. Since
it is usually used for in-page linking, when the hash part changes, the browser will
not make a request to the server. This enables AngularJS to support older browsers
while maintaining a decent routing scheme. So, a common AngularJS route would
be similar to this one: http://localhost:3000/#/example.

However, single-page applications have one major problem. They are not indexable
by search engine crawlers and can suffer from poor SEO. To solve this issue, the
major search engine makers offer developers a way to mark their application as a
single-page application. That way, the search engine crawlers know your application
is using AJAX to render new paths and can wait for the result before it leaves your
page. To mark your application routes as single-page application routes, you will
need to use a routing scheme called Hashbangs. Hashbangs are implemented by
adding an exclamation mark right after the hash sign, so an example URL would
be http://localhost:3000/#!/example.

Chapter 7

[185]

Luckily, AngularJS supports Hashbangs coniguration using a module coniguration
block and the $locationProvider service of AngularJS. To conigure your application
routing, go to the public/application.js ile and make the following changes:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngRoute', 'example']);

mainApplicationModule.config(['$locationProvider',

 function($locationProvider) {

 $locationProvider.hashPrefix('!');

 }

]);

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

Once you're done coniguring the application's URL scheme, it's time to use the
ngRoute module and conigure your irst route.

AngularJS application routes
The ngRoute module packs several key entities to manage your routes. We'll begin
with the $routeProvider object, which provides several methods to deine your
AngularJS application routing behavior. To use the $routeProvider object, you will
need to create a module coniguration block, inject the $routeProvider object, and
use it to deine your routes. Begin by creating a new folder named config inside the
public/example folder. In your new folder, create a ile named example.client.
routes.js containing the following lines of code:

angular.module('example').config(['$routeProvider',

 function($routeProvider) {

 $routeProvider.

 when('/', {

 templateUrl: 'example/views/example.client.view.html'

 }).

 otherwise({

 redirectTo: '/'

 });

 }

]);

Introduction to AngularJS

[186]

Let's review the preceding code snippet for a moment. You used the angular.
module() method to grab the example module and executed the config() method to
create a new coniguration block. Then, you applied DI to inject the $routeProvider
object to your coniguration function, and the $routeProvider.when() method to
deine a new route. The irst argument of the $routeProvider.when() method is
the route's URL, and the second one is an options object, where you deined your
template's URL. Finally, you used the $routeProvider.otherwise() method to
deine the behavior of the router when the user navigates to an undeined URL.
In this case, you simply redirected the user request to the route you deined before.

Another entity that is packed in the ngRoute module is the ng-view directive. The
ng-view directive tells the AngularJS router which DOM element to use to render
the routing views. When the user navigates to a speciied URL, AngularJS will
render the template inside the DOM element marked with this directive. So, to
inalize your routing coniguration, you will need to include the new JavaScript ile
in your main application page and add an element with the ng-view directive. To do
so, change your app/views/index.ejs ile as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (userFullName) { %>

 <h2>Hello <%=userFullName%> </h2>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-view></section>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

Chapter 7

[187]

 <script type="text/javascript" src="/example/config/example.client.
routes.js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Once you're done, everything will be set up to test your routing coniguration. Use
your command-line tool, and navigate to the MEAN application's root folder. Then,
run your application with the help of the following command:

$ node server

Once your application is running, use your browser and navigate to http://
localhost:3000. You will notice that the AngularJS router redirects your request
to http://localhost:3000/#!/. This means your routing coniguration works and
you should see the two-textboxes example again.

To learn more about the ngRoute module, it is recommended that you
visit its oficial documentation at http://docs.angularjs.org/api/
ngRoute.

AngularJS services
AngularJS services are singleton entities that are usually used to share information
between different entities of the same AngularJS application. Services can be used
to fetch data from your server, share cached data, and inject global objects into
other AngularJS components. Since there is a single instance of each service, it is
also possible to use two-way data binding between different unrelated entities of
your AngularJS application. There are two kinds of services: AngularJS prebundled
services and custom services. Let's begin by reviewing the former.

AngularJS prebundled services
AngularJS comes prebundled with many services to abstract common development
tasks. Commonly used services include:

• $http: This is an AngularJS service used to handle AJAX requests

• $resource: This is an AngularJS service used to handle RESTful APIs

• $location: This is an AngularJS service used to handle URL manipulations

• $q: This is an AngularJS service used to handle promises

http://docs.angularjs.org/api/ngRoute
http://docs.angularjs.org/api/ngRoute

Introduction to AngularJS

[188]

• $rootScope: This is an AngularJS service that returns the root scope object

• $window: This is an AngularJS service that returns the browser window object

There are many other services as well as extra module services that the AngularJS
team constantly maintains, but one of the most powerful features of AngularJS is
the ability to deine your own custom services.

You can learn more about AngularJS built-in services by visiting the
oficial documentation at http://docs.angularjs.org/api/.

Creating AngularJS services
Whether to wrap global objects for better testability or for the purpose of sharing
your code, creating custom services is a vital part of AngularJS application
development. Creating services can be done using one of three module methods:
provider(), service(),and factory(). Each of these methods allows you to deine
a service name and service function that serve different purposes:

• provider(): This is the most verbose method, which provides the most
comprehensive way to deine a service.

• service(): This is used to instantiate a new singleton object from the service
function. You should use it when you're deining a service as a prototype.

• factory(): This is used to provide the value returning from the invoked
service function. You should use it when you want to share objects and
data across your application.

In your daily development, you'll probably use either the factory() or service()
methods since the provider() is usually overkill. An example service created using
the factory() method will be as follows:

angular.module('example').factory('ExampleService', [

 function() {

 return true;

 }

]);

An example service created using the service() method will be as follows:

angular.module('example').service('ExampleService', [

 function() {

 this.someValue = true;

http://docs.angularjs.org/api/

Chapter 7

[189]

 this.firstMethod = function() {

 }

 this.secondMethod = function() {

 }

 }

]);

You'll feel more comfortable using each method when you get further ahead with
developing your MEAN application.

You can learn more about creating AngularJS custom services by looking
at the oficial documentation at http://docs.angularjs.org/
guide/providers.

Using AngularJS services
Using AngularJS services is very easy since they can be injected into AngularJS
components. Your example controller will be able to use ExampleService when
you inject it, as follows:

angular.module('example').controller('ExampleController', ['$scope',
'ExampleService',

 function($scope, ExampleService) {

 $scope.name = 'MEAN Application';

 }

]);

This will make ExampleService available to the controller, which can use it to share
information or consume shared information. Let's see how you can use the services
to solve one of the main pitfalls when developing a MEAN application.

Managing AngularJS authentication
Managing an AngularJS authentication is one of the most discussed issues of the
AngularJS community. The problem is that while the server holds the information
about the authenticated user, the AngularJS application is not aware of that
information. One solution is to use the $http service and ask the server about
the authentication status; however, this solution is lawed since all the AngularJS
components will have to wait for the response to return causing inconsistencies and
development overhead. A better solution would be to make the Express application
render the user object directly in the EJS view and then use an AngularJS service to
wrap that object.

http://docs.angularjs.org/guide/providers
http://docs.angularjs.org/guide/providers

Introduction to AngularJS

[190]

Rendering the user object
To render the authenticated user object, you'll have to make several changes.
Let's begin by changing the app/controllers/index.server.controller.js
ile, as follows:

exports.render = function(req, res) {

 res.render('index', {

 title: 'Hello World',

 user: JSON.stringify(req.user)

 });

};

Next, go to your app/views/index.ejs ile and make the following changes:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (user) { %>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-view></section>

 <script type="text/javascript">

 window.user = <%- user || 'null' %>;

 </script>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/example/config/example.client.
routes.js"></script>

Chapter 7

[191]

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

This will render the user object as a JSON representation right in your main view
application. When the AngularJS application bootstraps, the authentication state
will already be available. If the user is authenticated, the user object will become
available; otherwise, the user object will be NULL. Let's see how you can use
AngularJS services to share the user information.

Adding the Authentication service
Before you can create your Authentication service, it would be best to create a
speciic module that will hold all user-related logic. We'll call this module the users
module. In your public folder, create a new folder named users. In this folder,
create a folder named services and a ile named users.client.module.js. In the
users.client.module.js ile, create your angular module, as follows:

angular.module('users', []);

Now create your service ile named authentication.client.service.js inside
your public/users/services folder. In your new service ile, paste the following
code snippet:

angular.module('users').factory('Authentication', [

 function() {

 this.user = window.user;

 return {

 user: this.user

 };

 }

]);

Notice how we referenced the window.user object from the AngularJS service.
The last thing you should do is include the module and service iles in your main
application page. Go to app/views/index.ejs and add your new JavaScript iles,
as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

Introduction to AngularJS

[192]

 <% if (user) { %>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-view></section>

 <script type="text/javascript">

 window.user = <%- user || 'null' %>;

 </script>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/example/config/example.client.
routes.js"></script>

 <script type="text/javascript" src="/users/users.client.module.
js"></script>

 <script type="text/javascript" src="/users/services/authentication.
client.service.js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Next, you will need to include your new user module as the main application module
dependency. Another important change would be to solve Facebook's redirect bug that
adds a hash part to the application's URL after the OAuth authentication round-trip.
To do so, modify your public/application.js ile as follows:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngRoute', 'users', 'example']);

Chapter 7

[193]

mainApplicationModule.config(['$locationProvider',

 function($locationProvider) {

 $locationProvider.hashPrefix('!');

 }

]);

if (window.location.hash === '#_=_') window.location.hash = '#!';

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

That's it! Your new user module should now be available as well as its
Authentication service. The inal step will be to use the Authentication service
inside another AngularJS component.

Using the Authentication service
The dificult part is behind you since all you have left to do is inject the
Authentication service to your desired AngularJS entity, and you'll be able to use
the user object. Let's use the Authentication service inside our example controller.
Open your public/example/controllers/example.client.controller.js ile
and make the following changes:

angular.module('example').controller('ExampleController', ['$scope',
'Authentication',

 function($scope, Authentication) {

 $scope.name = Authentication.user ? Authentication.user.fullName :
'MEAN Application';

 }

]);

In the preceding code snippet, you injected the Authentication service to the
controller and used it to reference the model name ield to the user fullName ield.
To test your Authentication service, use your command-line tool and navigate to
the MEAN application's root folder. Then run your application:

$ node server

Once your application is running, use your browser and navigate to http://
localhost:3000/#!/. Try to sign in, and you should see the user's full name
in the two-textboxes example.

Introduction to AngularJS

[194]

Summary
In this chapter, you learned about the basic principles of AngularJS. You went
through Angular's key concepts and learned how they it in the architecture of the
AngularJS application. You also learned how to use Bower to install AngularJS and
how to structure and bootstrap your application. You discovered AngularJS MVC
entities and how they work together. You also used the ngRoute module to conigure
your application routing scheme. Near the end of this chapter, you learned about
AngularJS services and how to use them to manage users' authentication. In the
next chapter, you'll connect everything you learned so far to create your irst
MEAN CRUD module.

Creating a MEAN
CRUD Module

In the previous chapters, you learned how to set up each framework and how
to connect them all together. In this chapter, you're going to implement the basic
operational building blocks of a MEAN application, the CRUD module. CRUD
modules consist of a base entity with the basic functionality of creating, reading,
updating, and deleting entity instances. In a MEAN application, your CRUD
module is built from the server-side Express components and an AngularJS
client module. In this chapter, we'll cover the following topics:

• Setting up the Mongoose model

• Creating the Express controller

• Wiring the Express routes

• Creating and organizing the AngularJS module

• Introduction to the AngularJS ngResource module

• Implementing the AngularJS module MVC

Creating a MEAN CRUD Module

[196]

Introducing CRUD modules
CRUD modules are the basic building block of a MEAN application. Each CRUD
module consists of a two MVC structure supporting the module Express and
AngularJS functionality. The Express part is built upon a Mongoose model, an
Express controller, and an Express routes ile. The AngularJS module is a bit more
complex and contains a set of views, and an AngularJS controller, service, and
routing coniguration. In this chapter, you'll learn how to combine these components
together to build an example Article CRUD module. The examples in this chapter
will continue directly from those in previous chapters, so copy the inal example
from Chapter 7, Introduction to AngularJS, and let's start from there.

Setting up the Express components
Let's begin with the Express part of the module. First, you'll create a Mongoose
model that will be used to save and validate your articles. Then, you'll move on
to the Express controller that will deal with the business logic of your module.
Finally, you'll wire the Express routes to produce a RESTful API for your
controller methods. We'll begin with the Mongoose model.

Creating the Mongoose model
The Mongoose model will consist of four simple properties that will represent
our Article entity. Let's begin by creating the Mongoose model ile in the
app/models folder, create a new ile named article.server.model.js that
contains the following code snippet:

var mongoose = require('mongoose'),

 Schema = mongoose.Schema;

var ArticleSchema = new Schema({

 created: {

 type: Date,

 default: Date.now

 },

 title: {

 type: String,

 default: '',

 trim: true,

 required: 'Title cannot be blank'

 },

 content: {

Chapter 8

[197]

 type: String,

 default: '',

 trim: true

 },

 creator: {

 type: Schema.ObjectId,

 ref: 'User'

 }

});

mongoose.model('Article', ArticleSchema);

You should be familiar with this code snippet, so let's quickly go over this model. First,
you included your model dependencies and then you used the Mongoose Schema
object to create a new ArticleSchema. The ArticleSchema deines four model ields:

• created: This is a date ield that represents the time at which the article
was created

• title: This is a string ield that represents the article title; notice how
you used the required validation to make sure all articles have a title

• content: This is a string ield that represents the article content
• creator: This is a reference object that represents the user who created

the article

In the end, you registered the Article Mongoose model to allow you to use it in
the Articles Express controller. Next, you'll need to make sure your application
is loading the model ile, so go back to the config/mongoose.js ile and change
it as follows:

var config = require('./config'),

 mongoose = require('mongoose');

module.exports = function() {

 var db = mongoose.connect(config.db);

 require('../app/models/user.server.model');

 require('../app/models/article.server.model');

 return db;

};

This will load your new model ile and make sure your application can use your
Article model. Once you have your model conigured, you'll be able to create
your Articles controller.

Creating a MEAN CRUD Module

[198]

Setting up the Express controller
The Express controller is responsible for managing articles related functionality
on the server side. It is built to offer the basic CRUD operations to manipulate
the MongoDB article documents. To begin writing the Express controller, go to
your app/controllers folder and create a new ile named articles.server.
controller.js. In your newly created ile, add the following dependencies:

var mongoose = require('mongoose'),

 Article = mongoose.model('Article');

In the preceding lines of code, you basically just included your Article mongoose
model. Now, before you begin creating the CRUD methods, it is recommended
that you create an error handling method for validation and other server errors.

The error handling method of the Express controller
In order to handle Mongoose errors, it is preferable to write a simple error handling
method that will take care of extracting a simple error message from the Mongoose
error object and provide it to your controller methods. Go back to your app/
controllers/articles.server.controller.js ile and append the following
lines of code:

var getErrorMessage = function(err) {

 if (err.errors) {

 for (var errName in err.errors) {

 if (err.errors[errName].message) return err.errors[errName].
 message;

 }

 } else {

 return 'Unknown server error';

 }

};

The getErrorMessage() method gets the Mongoose error object passed as an
argument then iterates over the errors collection and extract the irst message.
This is done because you don't want to overwhelm your users with multiple
error messages at once. Now that you have error handling set up, it is time to
write your irst controller method.

Chapter 8

[199]

The create() method of the Express controller
The create() method of the Express controller will provide the basic functions
to create a new article document. It will use the HTTP request body as the JSON
base object for the document and will use the model save() method to save it to
MongoDB. To implement the create() method, append the following lines of code
in your app/controllers/articles.server.controller.js ile:

exports.create = function(req, res) {
 var article = new Article(req.body);
 article.creator = req.user;

 article.save(function(err) {
 if (err) {
 return res.status(400).send({
 message: getErrorMessage(err)
 });
 } else {
 res.json(article);
 }
 });
};

Let's go over the create() method code. First, you created a new Article model
instance using the HTTP request body. Next, you added the authenticated Passport
user as the article creator(). Finally, you used the Mongoose instance save()
method to save the article document. In the save() callback function, it is worth
noticing how you either return an error response and an appropriate HTTP error
code or the new article object as a JSON response. Once you're done with the
create() method, you will move on to implement the read operation. The read
operation consists of two methods, one that retrieves a list of articles and a second
method that retrieves a particular article. Let's begin with the method that lists a
collection of articles.

The list() method of the Express controller
The list() method of the Express controller will provide the basic operations to
retrieve a list of existing articles. It will use the model's find() method to retrieve all
the documents in the articles collection then output a JSON representation of this list.
To implement the list() method, append the following lines of code in your app/
controllers/articles.server.controller.js ile:

exports.list = function(req, res) {

 Article.find().sort('-created').populate('creator', 'firstName
 lastName fullName').exec(function(err, articles) {

 if (err) {

Creating a MEAN CRUD Module

[200]

 return res.status(400).send({
 message: getErrorMessage(err)
 });
 } else {
 res.json(articles);
 }
 });
};

In this controller method, notice how you used the find() function of Mongoose to
get the collection of article documents, and while we could add a MongoDB query
of some sort, for now we'll retrieve all the documents in the collection. Next, you'll
notice how the articles collection is sorted using the created property. Then, you can
see how the populate() method of Mongoose was used to add some user ields
to the creator property of the articles objects. In this case, you populated the
firstName, lastName, and fullName properties of the creator user object.

The rest of the CRUD operations involve a manipulation of a single existing article
document. You could of course implement the retrieval of the article document in
each method by itself, basically repeating this logic. However, the Express router
has a neat feature for handling route parameters, so before you'll implement the
rest of your Express CRUD functionality, you'll irst learn how to leverage the
route parameter middleware to save some time and code redundancy.

The read() middleware of the Express controller
The read() method of the Express controller will provide the basic operations to
read an existing article document from the database. Since you're writing a sort of
a RESTful API, the common usage of this method will be handled by passing the
article's ID ield as a route parameter. This means that your requests to the server
will contain an articleId parameter in their paths.

Fortunately, the Express router provides the app.param() method for handling
route parameters. This method allows you to attach a middleware for all requests
containing the articleId route parameter. The middleware itself will then use the
articleId provided to ind the proper MongoDB document and add the retrieved
article object to the request object. This will allow all the controller methods that
manipulate an existing article to obtain the article object from the Express request
object. To make this clearer, let's implement the route parameter middleware. Go
to your app/controllers/articles.server.controller.js ile and append the
following lines of code:

exports.articleByID = function(req, res, next, id) {

 Article.findById(id).populate('creator', 'firstName lastName
 fullName').exec(function(err, article) {

Chapter 8

[201]

 if (err) return next(err);
 if (!article) return next(new Error('Failed to load article '
 + id));

 req.article = article;
 next();
 });
};

As you can see, the middleware function signature contains all the Express
middleware arguments and an id argument. It then uses the id argument to ind an
article and reference it using the req.article property. Notice how the populate()
method of the Mongoose model was used to add some user ields to the creator
property of the article object. In this case, you populated the firstName, lastName,
and fullName properties of the creator user object.

When you connect your Express routes, you'll see how to add the articleByID()
middleware to different routes, but for now let's add the read() method of the
Express controller, which will return an article object. To add the read() method,
append the following lines of code to your app/controllers/articles.server.
controller.js ile:

exports.read = function(req, res) {

 res.json(req.article);

};

Quite simple, isn't it? That's because you already took care of obtaining the article
object in the articleByID() middleware, so now all you have to do is just output the
article object as a JSON representation. We'll connect the middleware and routes in
next sections but before we'll do that, let's inish implementing the Express controller
CRUD functionality.

The update() method of the Express controller
The update() method of the Express controller will provide the basic operations to
update an existing article document. It will use the existing article object as the
base object, and then update the title and content ields using the HTTP request
body. It will also use the model save() method to save the changes to the database.
To implement the update() method, go to your app/controllers/articles.
server.controller.js ile and append the following lines of code:

exports.update = function(req, res) {

 var article = req.article;

 article.title = req.body.title;

Creating a MEAN CRUD Module

[202]

 article.content = req.body.content;

 article.save(function(err) {

 if (err) {

 return res.status(400).send({

 message: getErrorMessage(err)

 });

 } else {

 res.json(article);

 }

 });

};

As you can see, the update() method also makes the assumption that you already
obtained the article object in the articleByID() middleware. So, all you have
to do is just update the title and content ields, save the article, and then output
the updated article object as a JSON representation. In case of an error, it will
output the appropriate error message using the getErrorMessage() method you
wrote before and an HTTP error code. The last CRUD operation left to implement
is the delete() method; so let's see how you can add a simple delete() method to
your Express controller.

The delete() method of the Express controller
The delete() method of the Express controller will provide the basic operations to
delete an existing article document. It will use the model remove() method to delete
the existing article from the database. To implement the delete() method, go to
your app/controllers/articles.server.controller.js ile and append the
following lines of code:

exports.delete = function(req, res) {

 var article = req.article;

 article.remove(function(err) {

 if (err) {

 return res.status(400).send({

 message: getErrorMessage(err)

 });

 } else {

 res.json(article);

 }

 });

};

Chapter 8

[203]

Again, you can see how the delete() method also makes use of the already
obtained article object by the articleByID() middleware. So, all you have to
do is just invoke the Mongoose model's remove() method and then output the
deleted article object as a JSON representation. In case of an error, it will instead
output the appropriate error message using the getErrorMessage() method you
wrote before and an HTTP error code.

Congratulations! You just inished implementing your Express controller's CRUD
functionality. Before you continue to wire the Express routes that will invoke these
methods, let's take some time to implement two authorization middleware.

Implementing an authentication middleware
While building your Express controller, you probably noticed that most methods
require your user to be authenticated. For instance, the create() method won't
be operational if the req.user object is not assigned. While you can check this
assignment inside your methods, this will enforce you to implement the same
validation code over and over. Instead you can just use the Express middleware
chaining to block unauthorized requests from executing your controller methods.
The irst middleware you should implement will check whether a user is
authenticated at all. Since it is an authentication-related method, it would be best to
implement it in the Express users controller, so go to the app/controllers/users.
server.controller.js ile and append the following lines of code:

exports.requiresLogin = function(req, res, next) {

 if (!req.isAuthenticated()) {

 return res.status(401).send({

 message: 'User is not logged in'

 });

 }

 next();

};

The requiresLogin() middleware uses the Passport initiated req.
isAuthenticated() method to check whether a user is currently authenticated.
If it inds out the user is indeed signed in, it will call the next middleware in
the chain; otherwise it will respond with an authentication error and an HTTP
error code. This middleware is great, but if you want to check whether a speciic
user is authorized to perform a certain action, you will need to implement an
article speciic authorization middleware.

Creating a MEAN CRUD Module

[204]

Implementing an authorization middleware
In your CRUD module, there are two methods that edit an existing article document.
Usually, the update() and delete() methods should be restricted so that only the
user who created the article will be able to use them. This means you need to authorize
any request made to these methods to validate whether the current article is being
edited by its creator. To do so, you will need to add an authorization middleware
to your Articles controller, so go to the app/controllers/articles.server.
controller.js ile and append the following lines of code:

exports.hasAuthorization = function(req, res, next) {

 if (req.article.creator.id !== req.user.id) {

 return res.status(403).send({

 message: 'User is not authorized'

 });

 }

 next();

};

The hasAuthorization() middleware is using the req.article and req.user
objects to verify that the current user is the creator of the current article. This
middleware also assumes that it gets executed only for requests containing the
articleId route parameter. Now that you have all your methods and middleware
in place, it is time to wire the routes that enable their execution.

Wiring the Express routes
Before we begin wiring the Express routes, let's do a quick overview of the RESTful
API architectural design. The RESTful API provides a coherent service structure
that represents a set of actions you can perform on an application resource. This
means the API uses a predeined route structure along with the HTTP method
name to provide context for HTTP requests. Though the RESTful architecture can be
applied in different ways, a RESTful API usually complies with a few simple rules:

• A base URI per resource, in our case http://localhost:3000/articles

• A data structure, usually JSON, passed in the request body

• Usage of standard HTTP methods (for example, GET, POST, PUT, and DELETE)

Chapter 8

[205]

Using these three rules, you'll be able to properly route HTTP requests to use the
right controller method. So, your articles API will consist of ive routes:

• GET http://localhost:3000/articles: This will return a list of articles

• POST http://localhost:3000/articles : This will create and return a
new article

• GET http://localhost:3000/articles/:articleId: This will return a
single existing article

• PUT http://localhost:3000/articles/:articleId: This will update
and return a single existing article

• DELETE http://localhost:3000/articles/:articleId: This will delete
and return a single article

As you probably noticed, these routes already have corresponding controller
methods. You even have the articleId route parameter middleware already
implemented, so all that is left to do is implement the Express routes. To do so,
go to the app/routes folder and create a new ile named articles.server.
routes.js. In your newly created ile, paste the following code snippet:

var users = require('../../app/controllers/users.server.controller'),

 articles = require('../../app/controllers/articles.server.
controller');

module.exports = function(app) {

 app.route('/api/articles')

 .get(articles.list)

 .post(users.requiresLogin, articles.create);

 app.route('/api/articles/:articleId')

 .get(articles.read)

 .put(users.requiresLogin, articles.hasAuthorization, articles.
update)

 .delete(users.requiresLogin, articles.hasAuthorization, articles.
delete);

 app.param('articleId', articles.articleByID);

};

Creating a MEAN CRUD Module

[206]

In the preceding code snippet, you did several things. First, you required the users
and articles controllers, and then you used the Express app.route() method
to deine the base routes for your CRUD operations. You used the Express routing
methods to wire each controller method to a speciic HTTP method. You can
also notice how the POST method uses the users.requiresLogin() middleware
since a user need to log in before they can create a new article. The same way the
PUT and DELETE methods use both the users.requiresLogin() and articles.
hasAuthorization() middleware, since users can only edit and delete the articles
they created. Finally, you used the app.param() method to make sure every route
that has the articleId parameter will irst call the articles.articleByID()
middleware. Next, you'll need to do is conigure your Express application to load
your new Article model and routes ile.

Coniguring the Express application
In order to use your new Express assets, you have to conigure your Express
application to load your route ile. To do so, go back to your config/express.js
ile and change it as follows:

var config = require('./config'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session'),

 flash = require('connect-flash'),

 passport = require('passport');

module.exports = function() {

 var app = express();

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

Chapter 8

[207]

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 app.use(flash());

 app.use(passport.initialize());

 app.use(passport.session());

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 require('../app/routes/articles.server.routes.js')(app);

 app.use(express.static('./public'));

 return app;

};

This is it, your articles RESTful API is ready! Next, you'll learn how simple it is to
use the ngResource module to let your AngularJS entities communicate with it.

Introducing the ngResource module
In Chapter 7, Introduction to AngularJS, we mentioned the $http service as means of
communication between the AngularJS application and your backend API. While
the $http service provides the developer with a low-level interface for the HTTP
request, the AngularJS team igured out they could better help developers when
it comes to RESTful APIs. Since the REST architecture is well structured, much of
the client code dealing with AJAX requests could be obfuscated using a higher-
level interface. For this purpose, the team created the ngResource module, which
provides the developer with an easy way to communicate with a RESTful data
source. It does so by presenting a factory, which creates an ngResource object
that can handle the basic routes of a RESTful resource. We'll explain how it works in
next sections but ngResource is an external module, so irst you'll need to install it
using Bower.

Creating a MEAN CRUD Module

[208]

Installing the ngResource module
Installing the ngResource module is easy, simply go to your bower.json ile and
change it as follows:

{

 "name": "MEAN",

 "version": "0.0.8",

 "dependencies": {

 "angular": "~1.2",

 "angular-route": "~1.2",

 "angular-resource": "~1.2"

 }

}

Now, use your command-line tool to navigate to the MEAN application's root folder
and install the new ngResource module:

$ bower update

When Bower inishes installing the new dependency, you will see a new folder
named angular-resource in your public/lib folder. Next, you will need to
include the module ile in your application's main page, so edit your app/views/
index.ejs ile as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <% if (user) { %>

 Sign out

 <% } else { %>

 Signup

 Signin

 <% } %>

 <section ng-view></section>

 <script type="text/javascript">

 window.user = <%- user || 'null' %>;

 </script>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

Chapter 8

[209]

 <script type="text/javascript" src="/lib/angular-resource/angular-
resource.js"></script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/example/config/example.client.
routes.js"></script>

 <script type="text/javascript" src="/users/users.client.module.
js"></script>

 <script type="text/javascript" src="/users/services/authentication.
client.service.js"></script>

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

Finally, you will need to add the ngResource module as a dependency for your main
application module, so change your public/application.js ile as follows:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngResource', 'ngRoute', 'users', 'example']);

mainApplicationModule.config(['$locationProvider',

 function($locationProvider) {

 $locationProvider.hashPrefix('!');

 }

]);

if (window.location.hash === '#_=_') window.location.hash = '#!';

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

When you're done with these changes, the ngResource module will be set up and
ready to use.

Creating a MEAN CRUD Module

[210]

Using the $resource service
The ngResource module provides the developer with a new factory that can be
injected to AngularJS entities. The $resource factory uses a base URL and a set of
coniguration options to allow the developer easy communication with RESTful
endpoints. To use the ngResource module, you have to call the $resource factory
method, which will return a $resource object. The $resource factory method
accepts four arguments:

• Url: This is a parameterized base URL with parameters preixed by a
colon such as /users/:userId

• ParamDefaults: These are the default values for the URL parameters,
which can include hardcoded values or a string preixed with @ so the
parameter value is extracted from the data object

• Actions: These are objects representing custom methods you can use to
extend the default set of resource actions

• Options: These are objects representing custom options to extend the
default behavior of $resourceProvider

The returned ngResource object will have several methods to handle the default
RESTful resource routes, and it can optionally be extended by custom methods.
The default resource methods are as follows:

• get(): This method uses a GET HTTP method and expects a JSON
object response

• save(): This method uses a POST HTTP method and expects a JSON
object response

• query(): This method uses a GET HTTP method and expects a JSON
array response

• remove(): This method uses a DELETE HTTP method and expects a
JSON object response

• delete(): This method uses a DELETE HTTP method and expects a
JSON object response

Calling each of these methods will use the $http service and invoke an HTTP
request with the speciied HTTP method, URL, and parameters. The $resource
instance method will then return an empty reference object that will be populated
once the data is returned from the server. You can also pass a callback function
that will get called once the reference object is populated. A basic usage of the
$resource factory method would be as follows:

var Users = $resource('/users/:userId', {

 userId: '@id'

Chapter 8

[211]

});

var user = Users.get({

 userId: 123

}, function() {

 user.abc = true;

 user.$save();

});

Notice how you can also use the $resource methods from the populated reference
object. This is because the $resource methods returns a $resource instance populated
with the data ields. In the next section, you'll learn how to use the $resource factory
to communicate with your Express API.

Implementing the AngularJS MVC module
The second part of your CRUD module is the AngularJS MVC module. This module
will contain an AngularJS service that will communicate with the Express API using
the $resource factory, an AngularJS controller that will contain the client-side module
logic, and a set of views that provide your users with an interface to perform CRUD
operations. Before you begin creating your AngularJS entities, let's irst create the
module initial structure. Go to your application's public folder and create a new
folder named articles. In this new folder, create the module initialization ile
named articles.client.module.js and paste the following line of code:

angular.module('articles', []);

This will handle module initialization for you, but you will also need to add your
new module as a dependency of your main application module. To do so, change
your public/application.js ile as follows:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngResource', 'ngRoute', 'users', 'example', 'articles']);

mainApplicationModule.config(['$locationProvider',

 function($locationProvider) {

 $locationProvider.hashPrefix('!');

 }

]);

if (window.location.hash === '#_=_') window.location.hash = '#!';

Creating a MEAN CRUD Module

[212]

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

This will take care of loading your new module, so you can move on to create your
module entities. We'll begin with the module service.

Creating the AngularJS module service
In order for your CRUD module to easily communicate with the API endpoints,
it is recommended that you use a single AngularJS service that will utilize the
$resource factory method. To do so, go to your public/articles folder and
create a new folder named services. In this folder, create a new ile named
articles.client.service.js and add the following lines of code:

angular.module('articles').factory('Articles', ['$resource',
function($resource) {

 return $resource('api/articles/:articleId', {

 articleId: '@_id'

 }, {

 update: {

 method: 'PUT'

 }

 });

}]);

Notice how the service uses the $resource factory with three arguments: the base
URL for the resource endpoints, a routing parameter assignment using the article's
document _id ield, and an actions argument extending the resource methods with
an update() method that uses the PUT HTTP method. This simple service provides
you with everything you need to communicate with your server endpoints, as you
will witness in the next section.

Setting up the AngularJS module controller
As you already know, most of the module logic is usually implemented in an
AngularJS controller. In this case, the controller should be able to provide you with
all the methods needed to perform CRUD operations. You'll begin by creating the
controller ile. To do so, go to your public/articles folder and create a new folder
named controllers. In this folder, create a new ile named articles.client.
controller.js with the following code snippet:

angular.module('articles').controller('ArticlesController', ['$scope',
'$routeParams', '$location', 'Authentication', 'Articles',

Chapter 8

[213]

 function($scope, $routeParams, $location, Authentication, Articles)
{

 $scope.authentication = Authentication;

 }

]);

Notice how your new ArticlesController is using four injected services:

• $routeParams: This is provided with the ngRoute module and holds
references to route parameters of the AngularJS routes you'll deine next

• $location: This allows you to control the navigation of your application

• Authentication: You created this service in the previous chapter and it
provides you with the authenticated user information

• Articles: You created this service in the previous section and it provides
you with a set of methods to communicate with RESTful endpoints

Another thing that you should notice is how your controller binds the
Authentication service to the $scope object so that views will be able to use
it as well. Once you have the controller deined, it will be easy to implement
the controller CRUD methods.

The create() method of the AngularJS controller
The create() method of our AngularJS controller will provide the basic operations
for creating a new article. To do so, it will use the title and content form ields
from the view that called the method, and it will use the Articles service to
communicate with the corresponding RESTful endpoint and save the new article
document. To implement the create() method, go to your public/articles/
controllers/articles.client.controller.js ile and append the following
lines of code inside your controller's constructor function:

$scope.create = function() {

 var article = new Articles({

 title: this.title,

 content: this.content

 });

 article.$save(function(response) {

 $location.path('articles/' + response._id);

 }, function(errorResponse) {

 $scope.error = errorResponse.data.message;

 });

};

Creating a MEAN CRUD Module

[214]

Let's go over the create() method functionality. First, you used the title and content
form ields, and then the Articles resource service to create a new article resource.
Then, you used the article resource $save() method to send the new article object
to the corresponding RESTful endpoint, along with two callbacks. The irst callback
will be executed when the server responds with a success (200) status code, marking
a successful HTTP request. It will then use the $location service to navigate to the
route that will present the created article. The second callback will be executed when
the server responds with an error status code, marking a failed HTTP request. The
callback will then assign the error message to the $scope object, so the view will be
able to present it to the user.

The ind() and indOne() methods of the AngularJS
controller
Your controller will contain two read methods. The irst will take care of retrieving a
single article and the second will retrieve a collection of articles. Both methods will
use the Articles service to communicate with the corresponding RESTful endpoints.
To implement these methods, go to your public/articles/controllers/articles.
client.controller.js ile and append the following lines code inside your
controller's constructor function:

$scope.find = function() {

 $scope.articles = Articles.query();

};

$scope.findOne = function() {

 $scope.article = Articles.get({

 articleId: $routeParams.articleId

 });

};

In the preceding code, you deined two methods: the find() method that will
retrieve a list of articles and a findOne() method that will retrieve a single article
based on the articleId route parameter, which the function obtains directly from
the URL. The find() method uses the resource query() method because it expects
a collection, while the findOne() method is using the resource get() method to
retrieve a single document. Notice how both methods are assigning the result to
the $scope variable so that views could use it to present the data.

Chapter 8

[215]

The update() method of the AngularJS controller
The update() method of the AngularJS controller will provide the basic operations
for updating an existing article. To do so, it will use the $scope.article variable,
then update it using the view inputs, and the Articles service to communicate with
the corresponding RESTful endpoint and save the updated document. To implement
the update() method, go to your public/articles/controllers/articles.
client.controller.js ile and append the following lines of code inside your
controller's constructor function:

$scope.update = function() {

 $scope.article.$update(function() {

 $location.path('articles/' + $scope.article._id);

 }, function(errorResponse) {

 $scope.error = errorResponse.data.message;

 });

};

In the update() method, you used the resource article's $update() method to
send the updated article object to the corresponding RESTful endpoint, along
with two callbacks. The irst callback will be executed when the server responds
with a success (200) status code, marking a successful HTTP request. It will then
use the $location service to navigate to the route that will present the updated
article. The second callback will be executed when the server responds with an error
status code, marking a failed HTTP request. The callback will then assign the error
message to the $scope object so that the view will be able to present it to the user.

The delete() method of the AngularJS controller
The delete() method of the AngularJS controller will provide the basic operations
for deleting an existing article. Since the user might delete an article from the list
view as well as the read view, the method will either use the $scope.article or
$scope.articles variables. This means that it should also address the issue of
removing the deleted article from the $scope.articles collection if necessary.
The Articles service will be used again to communicate with the corresponding
RESTful endpoint and delete the article document. To implement the delete()
method, go to your public/articles/controllers/articles.client.
controller.js ile and append the following lines of code inside your controller's
constructor function:

$scope.delete = function(article) {

 if (article) {

 article.$remove(function() {

 for (var i in $scope.articles) {

 if ($scope.articles[i] === article) {

Creating a MEAN CRUD Module

[216]

 $scope.articles.splice(i, 1);

 }

 }

 });

 } else {

 $scope.article.$remove(function() {

 $location.path('articles');

 });

 }

};

The delete() method will irst igure out whether the user is deleting an article from a
list or directly from the article view. It will then use the article's $remove() method
to call the corresponding RESTful endpoint. If the user deleted the article from a list
view, it will then remove the deleted object from the articles collection; otherwise, it
will delete the article then redirect the user back to the list view.

Once you inish setting up your controller, the next step is to implement the AngularJS
views that will invoke the controller methods, and then connect them to the AngularJS
routing mechanism.

Implementing the AngularJS module views
The next component of your CRUD module is the module views. Each view will
take care of providing the user with an interface to execute the CRUD methods you
created in the previous section. Before you begin creating the views, you will irst
need to create the views folder. Go to the public/articles folder, create a new
folder named views, and then follow the instructions given in the next section to
create your irst view.

The create-article view
The create-article view will provide your user with an interface to create a new
article. It will contain an HTML form and will use your controller's create method
to save the new article. To create your view, go to the public/articles/views
folder and create a new ile named create-article.client.view.html. In your
new ile, paste the following code snippet:

<section data-ng-controller="ArticlesController">

<h1>New Article</h1>

 <form data-ng-submit="create()" novalidate>

 <div>

 <label for="title">Title</label>

Chapter 8

[217]

 <div>

 <input type="text" data-ng-model="title" id="title"
placeholder="Title" required>

 </div>

 </div>

 <div>

 <label for="content">Content</label>

 <div>

 <textarea data-ng-model="content" id="content" cols="30"
rows="10" placeholder="Content"></textarea>

 </div>

 </div>

 <div>

 <input type="submit">

 </div>

 <div data-ng-show="error">

 <strong data-ng-bind="error">

 </div>

 </form>

</section>

The create-article view contains a simple form with two text input ields and
a submit button. The text ields use the ng-model directive to bind the user input
to the controller scope, and as you speciied in the ng-controller directive, this
controller will be your ArticlesController. It is also important to notice the ng-
submit directive you placed on the form element. This directive tells AngularJS to
call a speciic controller method when the form is submitted; in this case, the form
submission will execute your controller's create() method. The last thing you
should notice is the error message at the end of the form that will be shown in
case of a creation error.

The view-article view
The view-article view will provide your user with an interface to view an existing
article. It will contain a set of HTML elements and will use your controller's findOne()
method to get an existing article. Your view will also contain a set of buttons only
visible to the article creator that will allow the creator to delete the article or navigate
to the update-article view. To create the view, go to the public/articles/views
folder and create a new ile named view-article.client.view.html. In your new
ile, paste the following code snippet:

<section data-ng-controller="ArticlesController" data-ng-
init="findOne()">

 <h1 data-ng-bind="article.title"></h1>

Creating a MEAN CRUD Module

[218]

 <div data-ng-show="authentication.user._id == article.creator._id">

 edit

 delete

 </div>

 <small>

 Posted on

 <em data-ng-bind="article.created | date:'mediumDate'">

 by

 <em data-ng-bind="article.creator.fullName">

 </small>

 <p data-ng-bind="article.content"></p>

</section>

The view-article view contains a simple set of HTML elements presenting the
article information using the ng-bind directive. Similar to what you did in the
create-article view, you used the ng-controller directive to tell the view to use
the ArticlesController. However, since you need to load the article information,
your view uses the ng-init directive to call the controller's findOne() method
when the view is loaded. It is also important to notice how you used the ng-show
directive to present the article edit and delete links only to the creator of the article.
The irst link will direct the user to the update-article view, while the second one
will call the delete() method of your controller.

The edit-article view
The edit-article view will provide your user with an interface to update an existing
article. It will contain an HTML form and will use your controller's update() method
to save the updated article. To create this view go to the public/articles/views
folder and create a new ile named edit-article.client.view.html. In your new
ile, paste the following code snippet:

<section data-ng-controller="ArticlesController" data-ng-
init="findOne()">

 <h1>Edit Article</h1>

 <form data-ng-submit="update()" novalidate>

 <div>

 <label for="title">Title</label>

 <div>

 <input type="text" data-ng-model="article.title" id="title"
placeholder="Title" required>

 </div>

 </div>

 <div>

 <label for="content">Content</label>

Chapter 8

[219]

 <div>

 <textarea data-ng-model="article.content" id="content"
cols="30" rows="10" placeholder="Content"></textarea>

 </div>

 </div>

 <div>

 <input type="submit" value="Update">

 </div>

 <div data-ng-show="error">

 <strong data-ng-bind="error">

 </div>

 </form>

</section>

The edit-article view contains a simple form with two text input ields and a
submit button. In the edit-article view, the text ields use the ng-model directive
to bind the user input to the controller's scope.article object. Since you need to
load the article information before editing it, your view uses the ng-init directive to
call the controller's findOne() method when the view is loaded. It is also important
to notice the ng-submit directive you placed on the form element. This time, the
directive tells AngularJS that the form submission should execute your controller's
update() method. The last thing you should notice is the error message in the end
of the form that will be shown in the case of an editing error.

The list-articles view
The list-articles view will provide your user with an interface to view the
list of existing articles. It will contain a set of HTML elements and will use your
controller's find() method to get the collection of articles. Your view will also
use the ng-repeat directive to render a list of HTML elements, each representing
a single article. If there aren't any existing articles, the view will offer the user
to navigate to the create-article view. To create your view, go to the
public/articles/views folder and create a new ile named list-articles.
client.view.html. In your new ile, paste the following code snippet:

<section data-ng-controller="ArticlesController" data-ng-
init="find()">

 <h1>Articles</h1>

 <li data-ng-repeat="article in articles">

 <a data-ng-href="#!/articles/{{article._id}}" data-ng-
bind="article.title">

Creating a MEAN CRUD Module

[220]

 <small data-ng-bind="article.created | date:'medium'"></small>

 <small>/</small>

 <small data-ng-bind="article.creator.fullName"></small>

 <p data-ng-bind="article.content"></p>

 <div data-ng-hide="!articles || articles.length">

 No articles yet, why don't you <a href="/#!/articles/
create">create one?

 </div>

</section>

The list-articles view contains a simple set of repeating HTML elements that
represent the list of articles. It uses the ng-repeat directive to duplicate the list item
for every article in the collection and displays each article's information using the
ng-bind directive. In the same way as in other views, you used the ng-controller
directive to connect the view to your ArticlesController. However, since you
need to load the articles list, your view also uses the ng-init directive to call the
controller's find method when the view is loaded. It is also important to notice how
you used the ng-hide directive to ask the user to create a new article in case there
are no existing articles.

By implementing your AngularJS views, you came very close to inishing your irst
CRUD module. All that is left to do is wire the module's routes.

Wiring the AngularJS module routes
To complete your CRUD module, you will need to connect your views to your
AngularJS application routing mechanism. This means that you'll need to have a
route speciied for each view you created. To do so, go to the public/articles
folder and create a new config folder. In your config folder, create a new ile
named articles.client.routes.js that contains the following code:

angular.module('articles').config(['$routeProvider',

 function($routeProvider) {

 $routeProvider.

 when('/articles', {

 templateUrl: 'articles/views/list-articles.client.view.html'

 }).

 when('/articles/create', {

 templateUrl: 'articles/views/create-article.client.view.html'

 }).

 when('/articles/:articleId', {

Chapter 8

[221]

 templateUrl: 'articles/views/view-article.client.view.html'

 }).

 when('/articles/:articleId/edit', {

 templateUrl: 'articles/views/edit-article.client.view.html'

 });

 }

]);

As you can see, each view will be assigned with its own route. The last two views,
which handle an existing article, will also include the articleId route parameters
in their URL deinition. This will enable your controller to extract the articleId
parameter using the $routeParams service. Having your routes deined is the last
thing you will have to conigure in your CRUD module. All that is left to do is
include your module iles in the main application page and provide the user with
some links to your CRUD module views.

Finalizing your module implementation
To complete your module implementation, you have to include the module
JavaScript iles in your main application page and change the example view from the
previous chapter to properly show the links to your new module routes. Let's begin
by changing your main application page; go to your app/views/index.ejs ile and
modify it as follows:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

<head>

 <title><%= title %></title>

</head>

<body>

 <section ng-view></section>

 <script type="text/javascript">

 window.user = <%- user || 'null' %>;

 </script>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

 <script type="text/javascript" src="/lib/angular-resource/angular-
resource.js"></script>

Creating a MEAN CRUD Module

[222]

 <script type="text/javascript" src="/articles/articles.client.
module.js"></script>

 <script type="text/javascript" src="/articles/controllers/articles.
client.controller.js"></script>

 <script type="text/javascript" src="/articles/services/articles.
client.service.js"></script>

 <script type="text/javascript" src="/articles/config/articles.
client.routes.js"></script>

 <script type="text/javascript" src="/example/example.client.module.
js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/example/config/example.client.
routes.js"></script>

 <script type="text/javascript" src="/users/users.client.module.
js"></script>

 <script type="text/javascript" src="/users/services/authentication.
client.service.js"></script>

 <!--Bootstrap AngularJS Application-->

 <script type="text/javascript" src="/application.js"></script>

</body>

</html>

As you can probably see, the authentication links were also removed from the main
page. However, don't worry; we'll add them in our home view of the example
module. To do so, go to the public/example/views/example.client.view.html
ile and change it as follows:

<section ng-controller="ExampleController">

 <div data-ng-show="!authentication.user">

 Signup

 Signin

 </div>

 <div data-ng-show="authentication.user">

 <h1>Hello </
span></h1>

 Signout

 List Articles

 Create Article

 </div>

</section>

Chapter 8

[223]

Notice how the example view now shows the authentication links when the user is
not authenticated and your articles module links once the user is signed in. To make
this work, you will also need to make a slight change in your ExampleController.
Go to the public/example/controllers/example.client.controller.js ile
and change the way you use your Authentication service:

angular.module('example').controller('ExampleController', ['$scope',
'Authentication',

 function($scope, Authentication) {

 $scope.authentication = Authentication;

 }

]);

This change will allow your example view to fully use the Authentication service.
This is it! Everything is ready for you to test your new CRUD module. Use your
command-line tool and navigate to the MEAN application's root folder. Then run
your application:

$ node server

Once your application is running, use your browser and navigate to http://
localhost:3000/#!/. You will see the sign up and sign in links; try signing
in and watch how the home view changes. Then, try navigating to the http://
localhost:3000/#!/articles URL and see how the list-articles view
suggests that you create a new article. Continue to create a new article and try
to edit and delete it using the views you previously created. Your CRUD module
should be fully operational.

Summary
In this chapter, you learned how to build your irst CRUD module. You started by
deining the Mongoose model and Express controller and learned how implement
each CRUD method. You also authorized your controller methods using Express
middleware. Then, you deined a RESTful API for your module methods. You
discovered the ngRersource module and learned how to use to the $resource
factory to communicate with your API. Then, you created your AngularJS entities
and implemented the AngularJS CRUD functionality. After connecting the four
parts of a MEAN application and creating your irst CRUD module, in the next
chapter you'll use Socket.io to add real-time connectivity between your server and
client applications.

Adding Real-time
Functionality Using Socket.io

In previous chapters, you learned how to build your MEAN application and how
to create CRUD modules. These chapters covered the basic functionalities of a web
application; however, more and more applications require real-time communication
between the server and browser. In this chapter, you'll learn how to connect your
Express and AngularJS applications in real time using the Socket.io module.
Socket.io enables Node.js developers to support real-time communication using
WebSockets in modern browsers and legacy fallback protocols in older browsers.
In this chapter, we'll cover the following topics:

• Setting up the Socket.io module

• Coniguring the Express application
• Setting up the Socket.io/Passport session
• Wiring Socket.io routes

• Using the Socket.io client object

• Building a simple chat room

Adding Real-time Functionality Using Socket.io

[226]

Introducing WebSockets
Modern web applications such as Facebook, Twitter, or Gmail are incorporating
real-time capabilities, which enable the application to continuously present the
user with recently updated information. Unlike traditional applications, in real-time
applications the common roles of browser and server can be reversed since the server
needs to update the browser with new data, regardless of the browser request state.
This means that unlike the common HTTP behavior, the server won't wait for the
browser's requests. Instead, it will send new data to the browser whenever this
data becomes available.

This reverse approach is often called Comet, a term coined by a web developer
named Alex Russel back in 2006 (the term was a word play on the AJAX term; both
Comet and AJAX are common household cleaners in the US). In the past, there were
several ways to implement a Comet functionality using the HTTP protocol.

The irst and easiest way is XHR polling. In XHR polling, the browser makes periodic
requests to the server. The server then returns an empty response unless it has new
data to send back. Upon a new event, the server will return the new event data to
the next polling request. While this works quite well for most browsers, this method
has two problems. The most obvious one is that using this method generates a
large number of requests that hit the server with no particular reason, since a lot of
requests are returning empty. The second problem is that the update time depends
on the request period. This means that new data will only get pushed to the browser
on the next request, causing delays in updating the client state. To solve these issues,
a better approach was introduced: XHR long polling.

In XHR long polling, the browser makes an XHR request to the server, but a
response is not sent back unless the server has a new data. Upon an event, the
server responds with the event data and the browser makes a new long polling
request. This cycle enables a better management of requests, since there is only
a single request per session. Furthermore, the server can update the browser
immediately with new information, without having to wait for the browser's next
request. Because of its stability and usability, XHR long polling has become the
standard approach for real-time applications and was implemented in various
ways, including Forever iFrame, multipart XHR, JSONP long polling using script
tags (for cross-domain, real-time support), and the common long-living XHR.

However, all these approaches were actually hacks using the HTTP and XHR
protocols in a way they were not meant to be used. With the rapid development
of modern browsers and the increased adoption of the new HTML5 speciications,
a new protocol emerged for implementing real-time communication: the full
duplex WebSockets.

Chapter 9

[227]

In browsers that support the WebSockets protocol, the initial connection between
the server and browser is made over HTTP and is called an HTTP handshake.
Once the initial connection is made, the browser and server open a single ongoing
communication channel over a TCP socket. Once the socket connection is
established, it enables bidirectional communication between the browser and server.
This enables both parties to send and retrieve messages over a single communication
channel. This also helps to lower server load, decrease message latency, and unify
PUSH communication using a standalone connection.

However, WebSockets still suffer from two major problems. First and foremost
is browser compatibility. The WebSockets speciication is fairly new, so older
browsers don't support it, and though most modern browsers now implement the
protocol, a large group of users are still using these older browsers. The second
problem is HTTP proxies, irewalls, and hosting providers. Since WebSockets use
a different communication protocol than HTTP, a lot of these intermediaries don't
support it yet and block any socket communication. As it has always been with the
Web, developers are left with a fragmentation problem, which can only be solved
using an abstraction library that optimizes usability by switching between protocols
according to the available resources. Fortunately, a popular library called Socket.
io was already developed for this purpose, and it is freely available for the Node.js
developer community.

Introducing Socket.io
Created in 2010 by JavaScript developer, Guillermo Rauch, Socket.io aimed to
abstract Node.js' real-time application development. Since then, it has evolved
dramatically, released in nine major versions before being broken in its latest
version into two different modules: Engine.io and Socket.io.

Previous versions of Socket.io were criticized for being unstable, since they irst tried
to establish the most advanced connection mechanisms and then fallback to more
primitive protocols. This caused serious issues with using Socket.io in production
environments and posed a threat to the adoption of Socket.io as a real-time library.
To solve this, the Socket.io team redesigned it and wrapped the core functionality
in a base module called Engine.io.

The idea behind Engine.io was to create a more stable real-time module, which irst
opens a long-polling XHR communication and then tries to upgrade the connection
to a WebSockets channel. The new version of Socket.io uses the Engine.io module
and provides the developer with various features such as events, rooms, and
automatic connection recovery, which you would otherwise implement by yourself.
In this chapter's examples, we will use the new Socket.io 1.0, which is the irst
version to use the Engine.io module.

Adding Real-time Functionality Using Socket.io

[228]

Older versions of Socket.io prior to Version 1.0 are not using the new
Engine.io module and therefore are much less stable in production
environments.

When you include the Socket.io module, it provides you with two objects: a socket
server object that is responsible for the server functionality and a socket client object
that handles the browser's functionality. We'll begin by examining the server object.

The Socket.io server object
The Socket.io server object is where it all begins. You start by requiring the Socket.
io module, and then use it to create a new Socket.io server instance that will interact
with socket clients. The server object supports both a standalone implementation
and the ability to use it in conjunction with the Express framework. The server
instance then exposes a set of methods that allow you to manage the Socket.io server
operations. Once the server object is initialized, it will also be responsible for serving
the socket client JavaScript ile for the browser.

A simple implementation of the standalone Socket.io server will look as follows:

var io = require('socket.io')();

io.on('connection', function(socket){ /* ... */ });

io.listen(3000);

This will open a Socket.io over the 3000 port and serve the socket client ile at the
URL http://localhost:3000/socket.io/socket.io.js. Implementing the
Socket.io server in conjunction with an Express application will be a bit different:

var app = require('express')();

var server = require('http').Server(app);

var io = require('socket.io')(server);

io.on('connection', function(socket){ /* ... */ });

server.listen(3000);

This time, you irst use the http module of Node.js to create a server and wrap the
Express application. The server object is then passed to the Socket.io module and
serves both the Express application and the Socket.io server. Once the server is
running, it will be available for socket clients to connect. A client trying to establish a
connection with the Socket.io server will start by initiating the handshaking process.

Chapter 9

[229]

Socket.io handshaking
When a client wants to connect the Socket.io server, it will irst send a handshake
HTTP request. The server will then analyze the request to gather the necessary
information for ongoing communication. It will then look for coniguration
middleware that is registered with the server and execute it before iring the
connection event. When the client is successfully connected to the server, the
connection event listener is executed, exposing a new socket instance.

Once the handshaking process is over, the client is connected to the server and all
communication with it is handled through the socket instance object. For example,
handling a client's disconnection event will be as follows:

var app = require('express')();

var server = require('http').Server(app);

var io = require('socket.io')(server);

io.on('connection', function(socket){

 socket.on('disconnect', function() {

 console.log('user has disconnected');

 });

});

server.listen(3000);

Notice how the socket.on() method adds an event handler to the disconnection
event. Although the disconnection event is a predeined event, this approach works
the same for custom events as well, as you will see in the following sections.

While the handshake mechanism is fully automatic, Socket.io does provide you with
a way to intercept the handshake process using a coniguration middleware.

The Socket.io coniguration middleware
Although the Socket.io coniguration middleware existed in previous versions, in the
new version it is even simpler and allows you to manipulate socket communication
before the handshake actually occurs. To create a coniguration middleware, you
will need to use the server's use() method, which is very similar to the Express
application's use() method:

var app = require('express')();

var server = require('http').Server(app);

var io = require('socket.io')(server);

io.use(function(socket, next) {

 /* ... */

Adding Real-time Functionality Using Socket.io

[230]

 next(null, true);

});

io.on('connection', function(socket){

 socket.on('disconnect', function() {

 console.log('user has disconnected');

 });

});

server.listen(3000);

As you can see, the io.use() method callback accepts two arguments: the socket
object and a next callback. The socket object is the same socket object that will be
used for the connection and it holds some connection properties. One important
property is the socket.request property, which represents the handshake HTTP
request. In the following sections, you will use the handshake request to incorporate
the Passport session with the Socket.io connection.

The next argument is a callback method that accepts two arguments: an error object
and Boolean value. The next callback tells Socket.io whether or not to proceed with
the handshake process, so if you pass an error object or a false value to the next
method, Socket.io will not initiate the socket connection. Now that you have a
basic understanding of how handshaking works, it is time to discuss the Socket.io
client object.

The Socket.io client object
The Socket.io client object is responsible for the implementation of the browser
socket communication with the Socket.io server. You start by including the Socket.io
client JavaScript ile, which is served by the Socket.io server. The Socket.io JavaScript
ile exposes an io() method that connects to the Socket.io server and creates the
client socket object. A simple implementation of the socket client will be as follows:

<script src="/socket.io/socket.io.js"></script>

<script>

 var socket = io();

 socket.on('connect', function() {

 /* ... */

 });

</script>

Chapter 9

[231]

Notice the default URL for the Socket.io client object. Although this can be altered,
you can usually leave it like this and just include the ile from the default Socket.io
path. Another thing you should notice is that the io() method will automatically
try to connect to the default base path when executed with no arguments; however,
you can also pass a different server URL as an argument.

As you can see, the socket client is much easier to implement, so we can move on to
discuss how Socket.io handles real-time communication using events.

Socket.io events
To handle the communication between the client and the server, Socket.io uses a
structure that mimics the WebSockets protocol and ires events messages across
the server and client objects. There are two types of events: system events, which
indicate the socket connection status, and custom events, which you'll use to
implement your business logic.

The system events on the socket server are as follows:

• io.on('connection', ...): This is emitted when a new socket
is connected

• socket.on('message', ...): This is emitted when a message is sent
using the socket.send() method

• socket.on('disconnect', ...): This is emitted when the socket is
disconnected

The system events on the client are as follows:

• socket.io.on('open', ...): This is emitted when the socket client opens
a connection with the server

• socket.io.on('connect', ...): This is emitted when the socket client is
connected to the server

• socket.io.on('connect_timeout', ...): This is emitted when the socket
client connection with the server is timed out

• socket.io.on('connect_error', ...): This is emitted when the socket
client fails to connect with the server

• socket.io.on('reconnect_attempt', ...): This is emitted when the
socket client tries to reconnect with the server

• socket.io.on('reconnect', ...): This is emitted when the socket client
is reconnected to the server

Adding Real-time Functionality Using Socket.io

[232]

• socket.io.on('reconnect_error', ...): This is emitted when the socket
client fails to reconnect with the server

• socket.io.on('reconnect_failed', ...): This is emitted when the
socket client fails to reconnect with the server

• socket.io.on('close', ...): This is emitted when the socket client closes
the connection with the server

Handling events
While system events are helping us with connection management, the real magic
of Socket.io relies on using custom events. In order to do so, Socket.io exposes two
methods, both on the client and server objects. The irst method is the on() method,
which binds event handlers with events and the second method is the emit()
method, which is used to ire events between the server and client objects.

An implementation of the on() method on the socket server is very simple:

var app = require('express')();

var server = require('http').Server(app);

var io = require('socket.io')(server);

io.on('connection', function(socket){

 socket.on('customEvent', function(customEventData) {

 /* ... */

 });

});

server.listen(3000);

In the preceding code, you bound an event listener to the customEvent event. The
event handler is being called when the socket client object emits the customEvent
event. Notice how the event handler accepts the customEventData argument that is
passed to the event handler from the socket client object.

An implementation of the on() method on the socket client is also straightforward:

<script src="/socket.io/socket.io.js"></script>

<script>

 var socket = io();

 socket.on('customEvent', function(customEventData) {

 /* ... */

 });

</script>

Chapter 9

[233]

This time the event handler is being called when the socket server emits the
customEvent event that sends customEventData to the socket client event handler.

Once you set your event handlers, you can use the emit() method to send events
from the socket server to the socket client and vice versa.

Emitting events
On the socket server, the emit() method is used to send events to a single socket
client or a group of connected socket clients. The emit() method can be called
from the connected socket object, which will send the event to a single socket client,
as follows:

io.on('connection', function(socket){

 socket.emit('customEvent', customEventData);

});

The emit() method can also be called from the io object, which will send the event
to all connected socket clients, as follows:

io.on('connection', function(socket){

 io.emit('customEvent', customEventData);

});

Another option is to send the event to all connected socket clients except from the
sender using the broadcast property, as shown in the following lines of code:

io.on('connection', function(socket){

 socket.broadcast.emit('customEvent', customEventData);

});

On the socket client, things are much simpler. Since the socket client is only
connected to the socket server, the emit() method will only send the event to the
socket server:

var socket = io();

socket.emit('customEvent', customEventData);

Although these methods allow you to switch between personal and global events,
they still lack the ability to send events to a group of connected socket clients. Socket.
io offers two options to group sockets together: namespaces and rooms.

Adding Real-time Functionality Using Socket.io

[234]

Socket.io namespaces
In order to easily control socket management, Socket.io allow developers to split
socket connections according to their purpose using namespaces. So instead of
creating different socket servers for different connections, you can just use the
same server to create different connection endpoints. This means that socket
communication can be divided into groups, which will then be handled separately.

Socket.io server namespaces
To create a socket server namespace, you will need to use the socket server of()
method that returns a socket namespace. Once you retain the socket namespace, you
can just use it the same way you use the socket server object:

var app = require('express')();

var server = require('http').Server(app);

var io = require('socket.io')(server);

io.of('/someNamespace').on('connection', function(socket){

 socket.on('customEvent', function(customEventData) {

 /* ... */

 });

});

io.of('/someOtherNamespace').on('connection', function(socket){

 socket.on('customEvent', function(customEventData) {

 /* ... */

 });

});

server.listen(3000);

In fact, when you use the io object, Socket.io actually uses a default empty
namespace as follows:

io.on('connection', function(socket){

/* ... */

});

The preceding lines of code are actually equivalent to this:

io.of('').on('connection', function(socket){

/* ... */

});

Chapter 9

[235]

Socket.io client namespaces
On the socket client, the implementation is a little different:

<script src="/socket.io/socket.io.js"></script>

<script>

 var someSocket = io('/someNamespace');

 someSocket.on('customEvent', function(customEventData) {

 /* ... */

 });

 var someOtherSocket = io('/someOtherNamespace');

 someOtherSocket.on('customEvent', function(customEventData) {

 /* ... */

 });

</script>

As you can see, you can use multiple namespaces on the same application without
much effort. However, once sockets are connected to different namespaces, you
will not be able to send an event to all these namespaces at once. This means that
namespaces are not very good for a more dynamic grouping logic. For this purpose,
Socket.io offers a different feature called rooms.

Socket.io rooms
Socket.io rooms allow you to partition connected sockets into different groups in a
dynamic way. Connected sockets can join and leave rooms, and Socket.io provides
you with a clean interface to manage rooms and emit events to the subset of sockets
in a room. The rooms functionality is handled solely on the socket server but can
easily be exposed to the socket client.

Joining and leaving rooms
Joining a room is handled using the socket join() method, while leaving a room
is handled using the leave() method. So, a simple subscription mechanism can be
implemented as follows:

io.on('connection', function(socket) {

 socket.on('join', function(roomData) {

 socket.join(roomData.roomName);

 })

Adding Real-time Functionality Using Socket.io

[236]

 socket.on('leave', function(roomData) {

 socket.leave(roomData.roomName);

 })

});

Notice that the join() and leave() methods both take the room name as the
irst argument.

Emitting events to rooms
To emit events to all the sockets in a room, you will need to use the in() method.
So, emitting an event to all socket clients who joined a room is quite simple and can
be achieved with the help of the following code snippets:

io.on('connection', function(socket){

 io.in('someRoom').emit('customEvent', customEventData);

});

Another option is to send the event to all connected socket clients in a room except
the sender by using the broadcast property and the to() method:

io.on('connection', function(socket){

 socket.broadcast.to('someRoom').emit('customEvent',
customEventData);

});

This pretty much covers the simple yet powerful room functionality of Socket.io.
In the next section, you will learn how implement Socket.io in your MEAN
application, and more importantly, how to use the Passport session to identify
users in the Socket.io session. The examples in this chapter will continue directly
from those in previous chapters, so copy the inal example from Chapter 8, Creating
a MEAN CRUD Module, and let's start from there.

While we covered most of Socket.io features, you can learn more about
Socket.io by visiting the oficial project page at https://socket.io.

https://socket.io

Chapter 9

[237]

Installing Socket.io
Before you can use the Socket.io module, you will need to install it using npm. To do
so, change your package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.9",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0"

 }

}

To install the Socket.io module, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

As usual, this will install the speciied version of Socket.io in your node_modules
folder. When the installation process is successfully over, your will need be to
conigure your Express application to work in conjunction with the Socket.io
module and start your socket server.

Adding Real-time Functionality Using Socket.io

[238]

Coniguring the Socket.io server
After you've installed the Socket.io module, you will need to start the socket server
in conjunction with the Express application. For this, you will have to make the
following changes in your config/express.js ile:

var config = require('./config'),

 http = require('http'),

 socketio = require('socket.io'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session'),

 flash = require('connect-flash'),

 passport = require('passport');

module.exports = function() {

 var app = express();

 var server = http.createServer(app);

 var io = socketio.listen(server);

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 app.use(session({

 saveUninitialized: true,

 resave: true,

 secret: config.sessionSecret

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

Chapter 9

[239]

 app.use(flash());

 app.use(passport.initialize());

 app.use(passport.session());

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 require('../app/routes/articles.server.routes.js')(app);

 app.use(express.static('./public'));

 return server;

};

Let's go over the changes you made to your Express coniguration. After including
the new dependencies, you used the http core module to create a server object
that wraps your Express app object. You then used the socket.io module and its
listen() method to attach the Socket.io server with your server object. Finally, you
returned the new server object instead of the Express application object. When the
server starts, it will run your Socket.io server along with your Express application.

While you can already start using Socket.io, there is still one major problem with
this implementation. Since Socket.io is a standalone module, requests that are
sent to it are detached from the Express application. This means that the Express
session information is not available in a socket connection. This raises a serious
obstacle when dealing with your Passport authentication in the socket layer of
your application. To solve this issue, you will need to conigure a persistent session
storage, which will allow you to share your session information between the Express
application and Socket.io handshake requests.

Coniguring the Socket.io session
To conigure your Socket.io session to work in conjunction with your Express
sessions, you have to ind a way to share session information between Socket.io and
Express. Since the Express session information is currently being stored in memory,
Socket.io will not be able to access it properly. So, a better solution would be to store
the session information in your MongoDB. Fortunately, there is node module named
connect-mongo that allows you to store session information in a MongoDB instance
almost seamlessly. To retrieve the Express session information, you will need some
way to parse the signed session cookie information. For this purpose, you'll also
install the cookie-parser module, which is used to parse the cookie header and
populate the HTTP request object with cookies-related properties.

Adding Real-time Functionality Using Socket.io

[240]

Installing the connect-mongo and cookie-parser

modules
Before you can use the connect-mongo and cookie-parser modules, you will need
to install it using npm. To do so, change your package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.9",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 }

}

To install the new modules, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

As usual, this will install the speciied versions of the connect-mongo and
cookie-parser modules in your node_modules folder. When the installation
process is successfully over, your next step will be to conigure your Express
application to use connect-mongo as session storage.

Chapter 9

[241]

Coniguring the connect-mongo module
To conigure your Express application to store session information using the
connect-mongo module, you will have to make a few changes. First, you will need to
change your config/express.js ile as follows:

var config = require('./config'),

 http = require('http'),

 socketio = require('socket.io'),

 express = require('express'),

 morgan = require('morgan'),

 compress = require('compression'),

 bodyParser = require('body-parser'),

 methodOverride = require('method-override'),

 session = require('express-session'),

 MongoStore = require('connect-mongo')(session),

 flash = require('connect-flash'),

 passport = require('passport');

module.exports = function(db) {

 var app = express();

 var server = http.createServer(app);

 var io = socketio.listen(server);

 if (process.env.NODE_ENV === 'development') {

 app.use(morgan('dev'));

 } else if (process.env.NODE_ENV === 'production') {

 app.use(compress());

 }

 app.use(bodyParser.urlencoded({

 extended: true

 }));

 app.use(bodyParser.json());

 app.use(methodOverride());

 var mongoStore = new MongoStore({

 db: db.connection.db

 });

 app.use(session({

 saveUninitialized: true,

 resave: true,

Adding Real-time Functionality Using Socket.io

[242]

 secret: config.sessionSecret,

 store: mongoStore

 }));

 app.set('views', './app/views');

 app.set('view engine', 'ejs');

 app.use(flash());

 app.use(passport.initialize());

 app.use(passport.session());

 require('../app/routes/index.server.routes.js')(app);

 require('../app/routes/users.server.routes.js')(app);

 require('../app/routes/articles.server.routes.js')(app);

 app.use(express.static('./public'));

 return server;

};

In the preceding code snippet, you conigured a few things. First, you loaded the
connect-mongo module, and then passed the Express session module to it. Then,
you created a new connect-mongo instance and passed it your Mongoose connection
object. Finally, you used the Express session store option to let the Express session
module know where to store the session information.

As you can see, your Express coniguration method requires a db argument. This
argument is the Mongoose connection object, which will be passed to the Express
coniguration method from the server.js ile when it requires the express.js ile.
So, go to your server.js ile and change it as follows:

process.env.NODE_ENV = process.env.NODE_ENV || 'development';

var mongoose = require('./config/mongoose'),

 express = require('./config/express'),

 passport = require('./config/passport');

var db = mongoose();

var app = express(db);

var passport = passport();

app.listen(3000);

module.exports = app;

console.log('Server running at http://localhost:3000/');

Chapter 9

[243]

Once the Mongoose connection is created, the server.js ile will call the express.
js module method and pass the Mongoose database property to it. In this way,
Express will persistently store the session information in your MongoDB database
so that it will be available for the Socket.io session. Next, you will need to conigure
your Socket.io handshake middleware to use the connect-mongo module and
retrieve the Express session information.

Coniguring the Socket.io session
To conigure the Socket.io session, you'll need to use the Socket.io coniguration
middleware and retrieve your session user. Begin by creating a new ile named
socketio.js in your config folder to store all your Socket.io-related conigurations.
In your new ile, add the following lines of code:

var config = require('./config'),

 cookieParser = require('cookie-parser'),

 passport = require('passport');

module.exports = function(server, io, mongoStore) {

 io.use(function(socket, next) {

 cookieParser(config.sessionSecret)(socket.request, {},
function(err) {

 var sessionId = socket.request.signedCookies['connect.sid'];

 mongoStore.get(sessionId, function(err, session) {

 socket.request.session = session;

 passport.initialize()(socket.request, {}, function() {

 passport.session()(socket.request, {}, function() {

 if (socket.request.user) {

 next(null, true);

 } else {

 next(new Error('User is not authenticated'), false);

 }

 })

 });

 });

 });

 });

 io.on('connection', function(socket) {

/* ... */

 });

};

Adding Real-time Functionality Using Socket.io

[244]

Let's go over the new Socket.io coniguration ile. First, you required the necessary
dependencies, and then you used the io.use() coniguration method to intercept
the handshake process. In your coniguration function, you used the Express
cookie-parser module to parse the handshake request cookie and retrieve the
Express sessionId. Then, you used the connect-mongo instance to retrieve
the session information from the MongoDB storage. Once you retrieved the
session object, you used the passport.initialize() and passport.session()
middleware to populate the session's user object according to the session
information. If a user is authenticated, the handshake middleware will call the
next() callback and continue with the socket initialization; otherwise, it will use the
next() callback in a way that informs Socket.io that a socket connection cannot be
opened. This means that only authenticated users can open a socket communication
with the server and prevent unauthorized connections to your Socket.io server.

To complete your Socket.io server coniguration, you will need to call the Socket.io
coniguration module from your express.js ile. Go to your config/express.js
ile and paste the following line of code right before you return the server object:

require('./socketio')(server, io, mongoStore);

This will execute your Socket.io coniguration method and will take care of setting
the Socket.io session. Now that you have everything conigured, let's see how you
can use Socket.io and MEAN to easily build a simple chat.

Building a Socket.io chat
To test your Socket.io implementation, you will build a simple chat application.
Your chat will be constructed from several server event handlers, but most of the
implementation will take place in your AngularJS application. We'll begin with
setting the server event handlers.

Setting the event handlers of the chat server
Before implementing the chat client in your AngularJS application, you'll irst
need to create a few server event handlers. You already have a proper application
structure, so you won't implement the event handlers directly in your coniguration
ile. Instead, it would be better to implement your chat logic by creating a new ile
named chat.server.controller.js inside your app/controllers folder. In your
new ile, paste the following lines of code:

module.exports = function(io, socket) {

 io.emit('chatMessage', {

 type: 'status',

Chapter 9

[245]

 text: 'connected',

 created: Date.now(),

 username: socket.request.user.username

 });

 socket.on('chatMessage', function(message) {

 message.type = 'message';

 message.created = Date.now();

 message.username = socket.request.user.username;

 io.emit('chatMessage', message);

 });

 socket.on('disconnect', function() {

 io.emit('chatMessage', {

 type: 'status',

 text: 'disconnected',

 created: Date.now(),

 username: socket.request.user.username

 });

 });

};

In this ile, you implemented a couple of things. First, you used the io.emit()
method to inform all the connected socket clients about the newly connected user.
This was done by emitting the chatMessage event, and passing a chat message
object with the user information and the message text, time, and type. Since you
took care of handling the user authentication in your socket server coniguration,
the user information is available from the socket.request.user object.

Next, you implemented the chatMessage event handler that will take care of
messages sent from the socket client. The event handler will add the message type,
time, and user information, and it will send the modiied message object to all
connected socket clients using the io.emit() method.

Our last event handler will take care of handling the disconnect system event.
When a certain user is disconnected from the server, the event handler will notify
all the connected socket clients about this event by using the io.emit() method.
This will allow the chat view to present the disconnection information to other users.

Adding Real-time Functionality Using Socket.io

[246]

You now have your server handlers implemented, but how will you conigure the
socket server to include these handlers? To do so, you will need to go back to your
config/socketio.js ile and slightly modify it:

var config = require('./config'),

 cookieParser = require('cookie-parser'),

 passport = require('passport');

module.exports = function(server, io, mongoStore) {

 io.use(function(socket, next) {

 cookieParser(config.sessionSecret)(socket.request, {},
function(err) {

 var sessionId = socket.request.signedCookies['connect.sid'];

 mongoStore.get(sessionId, function(err, session) {

 socket.request.session = session;

 passport.initialize()(socket.request, {}, function() {

 passport.session()(socket.request, {}, function() {

 if (socket.request.user) {

 next(null, true);

 } else {

 next(new Error('User is not authenticated'), false);

 }

 })

 });

 });

 });

 });

 io.on('connection', function(socket) {

 require('../app/controllers/chat.server.controller')(io, socket);

 });

};

Notice how the socket server connection event is used to load the chat controller.
This will allow you to bind your event handlers directly with the connected socket.

Congratulations, you've successfully completed your server implementation! Next,
you'll see how easy it is to implement the AngularJS chat functionality. Let's begin
with the AngularJS service.

Chapter 9

[247]

Creating the Socket service
The provided Socket.io client method is used to open a connection with the socket
server and return a client instance that will be used to communicate with the server.
Since it is not recommended to use global JavaScript objects, you can leverage the
services singleton architecture and wrap your socket client.

Let's begin by creating the public/chat module folder. Then, create the public/
chat/chat.client.module.js initialization ile with the following line of code:

angular.module('chat', []);

Now, proceed to create a public/chat/services folder for your socket service.
In the public/chat/services folder, create a new ile named socket.client.
service.js that contains the following code snippet:

angular.module('chat').service('Socket', ['Authentication',
'$location', '$timeout',

 function(Authentication, $location, $timeout) {

 if (Authentication.user) {

 this.socket = io();

 } else {

 $location.path('/');

 }

 this.on = function(eventName, callback) {

 if (this.socket) {

 this.socket.on(eventName, function(data) {

 $timeout(function() {

 callback(data);

 });

 });

 }

 };

 this.emit = function(eventName, data) {

 if (this.socket) {

 this.socket.emit(eventName, data);

 }

 };

 this.removeListener = function(eventName) {

 if (this.socket) {

Adding Real-time Functionality Using Socket.io

[248]

 this.socket.removeListener(eventName);

 }

 };

 }

]);

Let's review this code for a moment. After injecting the services, you checked
whether the user is authenticated using the Authentication service. If the user
is not authenticated, you redirected the request back to the home page using the
$location service. Since AngularJS services are lazily loaded, the Socket service
will only load when requested. This will prevent unauthenticated users from using
the Socket service. If the user is authenticated, the service socket property is set by
calling the io() method of Socket.io.

Next, you wrapped the socket emit(), on(), and removeListenter() methods with
compatible service methods. It is worth checking the service on() method. In this
method, you used a common AngularJS trick that involves the $timeout service.
The problem we need to solve here is that AngularJS data binding only works for
methods that are executed inside the framework. This means that unless you notify
the AngularJS compiler about third-party events, it will not know about changes
they cause in the data model. In our case, the socket client is a third-party library
that we integrate in a service, so any events coming from the socket client might
not initiate a binding process. To solve this problem, you can use the $apply and
$digest methods; however, this often causes an error, since a digest cycle might
already be in progress. A cleaner solution is to use $timeout trick. The $timeout
service is a wrapper around the window.setTimeout() method, so calling it without
the timeout argument will basically take care of the binding issue without any
impact on user experience

Once you have the Socket service ready, all you have to do is implement the chat
controller and chat view. Let's begin by deining the chat controller.

Creating the chat controller
The chat controller is where you implement your AngularJS chat functionality.
To implement your chat controller, you'll irst need to create a public/chat/
controllers folder. In this folder, create a new ile named chat.client.
controller.js that contains the following code snippet:

angular.module('chat').controller('ChatController', ['$scope',
'Socket',

 function($scope, Socket) {

 $scope.messages = [];

Chapter 9

[249]

 Socket.on('chatMessage', function(message) {

 $scope.messages.push(message);

 });

 $scope.sendMessage = function() {

 var message = {

 text: this.messageText,

 };

 Socket.emit('chatMessage', message);

 this.messageText = '';

 }

 $scope.$on('$destroy', function() {

 Socket.removeListener('chatMessage');

 })

 }

]);

In the controller, you irst created a messages array and then implemented the
chatMessage event listener that will add retrieved messages to this array. Next,
you created a sendMessage() method that will send new messages by emitting the
chatMessage event to the socket server. Finally, you used the in-built $destroy
event to remove the chatMessage event listener from the socket client. The $destory
event will be emitted when the controller instance is deconstructed. This is important
because the event handler will still get executed unless you remove it.

Creating the chat view
The chat view will be constructed from a simple form and a list of chat messages.
To implement your chat view, you'll irst need to create a public/chat/views
folder. In this folder, create a new ile named chat.client.view.html that contains
the following code snippet:

<section data-ng-controller="ChatController">

 <div data-ng-repeat="message in messages" data-ng-switch="message.
type">

 <strong data-ng-switch-when='status'>

 is

Adding Real-time Functionality Using Socket.io

[250]

 :

 </div>

 <form ng-submit="sendMessage();">

 <input type="text" data-ng-model="messageText">

 <input type="submit">

 </form>

</section>

In this view, you used the ng-repeat directive to render the messages list and
the ng-switch directive to distinguish between status messages and regular
messages. You also used the AngularJS date ilter to properly present the message
time. Finally, you inished the view with a simple form that uses the ng-submit
directive to invoke the sendMessage() method. Next, you will need to add a chat
route to present this view.

Adding chat routes
To present the view, you will need to add a new route for it. To do so, irst create the
public/chat/config folder. In this folder, create a new ile named chat.client.
routes.js that contains the following code snippet:

angular.module('chat').config(['$routeProvider',

 function($routeProvider) {

 $routeProvider.

 when('/chat', {

 templateUrl: 'chat/views/chat.client.view.html'

 });

 }

]);

This should already be a familiar pattern, so let's proceed to inalize the
chat implementation.

Chapter 9

[251]

Finalizing the chat implementation
To inalize your chat implementation, you will need to make a few changes in your
main application page and include the Socket.io client ile and your new chat iles.
Go to the app/views/index.ejs ile and make the following changes:

<!DOCTYPE html>

<html xmlns:ng="http://angularjs.org">

 <head>

 <title><%= title %></title>

 </head>

 <body>

 <section ng-view></section>

 <script type="text/javascript">

 window.user = <%- user || 'null' %>;

 </script>

 <script type="text/javascript" src="/socket.io/socket.io.js"></
script>

 <script type="text/javascript" src="/lib/angular/angular.js"></
script>

 <script type="text/javascript" src="/lib/angular-route/angular-
route.js"></script>

 <script type="text/javascript" src="/lib/angular-resource/angular-
resource.js"></script>

 <script type="text/javascript" src="/articles/articles.client.
module.js"></script>

 <script type="text/javascript" src="/articles/controllers/
articles.client.controller.js"></script>

 <script type="text/javascript" src="/articles/services/articles.
client.service.js"></script>

 <script type="text/javascript" src="/articles/config/articles.
client.routes.js"></script>

 <script type="text/javascript" src="/example/example.client.
module.js"></script>

 <script type="text/javascript" src="/example/controllers/example.
client.controller.js"></script>

 <script type="text/javascript" src="/example/config/example.
client.routes.js"></script>

Adding Real-time Functionality Using Socket.io

[252]

 <script type="text/javascript" src="/users/users.client.module.
js"></script>

 <script type="text/javascript" src="/users/services/
authentication.client.service.js"></script>

 <script type="text/javascript" src="/chat/chat.client.module.
js"></script>

 <script type="text/javascript" src="/chat/services/socket.client.
service.js"></script>

 <script type="text/javascript" src="/chat/controllers/chat.client.
controller.js"></script>

 <script type="text/javascript" src="/chat/config/chat.client.
routes.js"></script>

 <script type="text/javascript" src="/application.js"></script>

 </body>

</html>

Notice how we irst added the Socket.io ile. It's always a good practice to include
third-party libraries before your application iles. Now, you'll need to change the
public/application.js ile to include your new chat module:

var mainApplicationModuleName = 'mean';

var mainApplicationModule = angular.module(mainApplicationModuleName,
['ngResource', 'ngRoute', 'users', 'example', 'articles', 'chat']);

mainApplicationModule.config(['$locationProvider',

 function($locationProvider) {

 $locationProvider.hashPrefix('!');

 }

]);

if (window.location.hash === '#_=_') window.location.hash = '#!';

angular.element(document).ready(function() {

 angular.bootstrap(document, [mainApplicationModuleName]);

});

To inish up your chat implementation, change your public/example/views/
example.client.view.html ile and add a new chat link:

<section ng-controller="ExampleController">

 <div data-ng-show="!authentication.user">

 Signup

Chapter 9

[253]

 Signin

 </div>

 <div data-ng-show="authentication.user">

 <h1>Hello </
span></h1>

 Signout

 Chat

 List Articles

 Create Article

 </div>

</section>

Once you are inished with these changes, your new chat example should be ready
to use. Use your command-line tool and navigate to the MEAN application's root
folder. Then, run your application by typing the following command:

$ node server

Once your application is running, open two different browsers and sign up with
two different users. Then, navigate to http://localhost:3000/#!/chat and try
sending chat messages between your two clients. You'll be able to see how chat
messages are being updated in real time. Your MEAN application now supports
real-time communication.

Summary
In this chapter, you learned how the Socket.io module works. You went over the
key features of Socket.io and learned how the server and client communicate. You
conigured your Socket.io server and learned how to integrate it with your Express
application. You also used the Socket.io handshake coniguration to integrate the
Passport session. In the end, you built a fully functional chat example and learned
how to wrap the Socket.io client with an AngularJS service. In the next chapter, you'll
learn how to write and run tests to cover your application code.

Testing MEAN Applications
In previous chapters, you learned to build your real-time MEAN application. You
went through Express and AngularJS basics and learned to connect all the parts
together. However, when your application becomes bigger and more complex, you'll
soon ind out that it's very dificult to manually verify your code. You will then need
to start testing your application automatically. Fortunately, testing a web application,
which was once a complicated task, has become much easier with the help of new tools
and suitable testing frameworks. In this chapter, you'll learn to cover your MEAN
application code using modern test frameworks and popular tools. We'll cover the
following topics:

• Introducing JavaScript TDD and BDD

• Setting up your testing environment

• Installing and coniguring the Mocha test framework
• Writing Express model and controller tests

• Installing and coniguring the Karma test runner
• Using Jasmine to unit test your AngularJS entities

• Writing and running end-to-end (E2E) AngularJS tests

Testing MEAN Applications

[256]

Introducing JavaScript testing
As you already know, in the past couple of years, JavaScript has evolved dramatically.
It was once a simple scripting language made for small web applications, but now it's
the backbone for complex architectures, both in the server and the browser. However,
this evolution has put developers in a situation where they need to manually manage
a large code base that remained uncovered in terms of automated testing. While our
fellow Java, .NET, or Ruby developers have been safely writing and running their tests,
JavaScript developers remained in an uncharted territory, with the burden of iguring
out how to properly test their applications. Lately, this void has been illed with the
formation of new tools and testing frameworks written by the talented JavaScript
community members. In this chapter, we'll cover some of these popular tools, but keep
in mind that this ield is very new and is constantly changing, so you'll also have to
keep an eye out for newly emerging solutions.

In this chapter, we'll discuss two major types of tests: unit tests and E2E tests. Unit
tests are written to validate the functionality of isolated units of code. This means
a developer should aspire to write each unit test to cover the smallest testable part
of the application. For example, a developer might write unit tests to validate that
an ORM method works properly and gives the right validation errors as an output.
However, quite often a developer will choose to write unit tests that verify bigger
code units, mostly because these units perform an isolated operation together. If a
developer wants to test a process that includes many of the software components
combined, he will write an E2E test. E2E tests are written to validate cross-application
functionality. These tests often force the developer to use more than one tool and cover
different parts of the application in the same test, including UI, server, and database
components. An example would be an E2E test that validates the signup process.
Identifying the right tests is one of the crucial steps in writing a proper test suite for
your application. However, setting appropriate conventions for the development
team can make this process much easier.

Before we begin discussing JavaScript-speciic tools, let's irst look at a quick
overview of the TDD paradigm and how it affects our daily development cycles.

TDD, BDD, and unit testing
Test-driven development (TDD) is a software development paradigm developed
by software engineer and agile methodology advocate Kent Beck. In TDD, the
developer starts by writing a (initially failing) test, which deines the requirements
expected from an isolated unit of code. The developer is then required to implement
the minimum amount of code that passes the test. When the test is successfully passed,
the developers clean up the code and verify that all the tests are passing. The following
diagram describes TDD cycles in a visual manner:

Chapter 10

[257]

It is important to remember that although TDD has become a popular approach in
modern software development, it is very dificult to implement in its purest form. To
ease this process and improve team communication, a new approach was developed
on top of TDD, called BDD, or behavior-driven development. The BDD paradigm is
a subset of TDD, created by Dan North, which helps developers identify the scope of
their unit tests and express their test process in a behavioral terminology. Basically
TDD provides the wireframe for writing tests, and BDD provides the vocabulary
to shape the way tests are written. Usually a BDD test framework provides the
developer with a set of self-explanatory methods to describe the test process.

Although BDD provides us with a mechanism for writing tests, running these
tests in a JavaScript environment is still a complicated task. Your application will
probably run on different browsers and even different versions of the same browser.
So, running the tests you wrote on a single browser will not provide you with proper
coverage. To solve this issue, the JavaScript community has developed a various set
of tools for writing, evaluating, and properly running your tests.

Testing MEAN Applications

[258]

Test frameworks
Although you can start writing your tests using your own library, you'll soon ind
out that it is not very scalable and requires you to build a complex infrastructure.
Fortunately, a respectable effort has been put into solving this issue, which resulted
in several popular test frameworks that allow you to write your tests in a structured
and common way. These test frameworks usually provide a set of methods to
encapsulate tests. It is also very common for a test framework to provide some
sort of API that enables you to run tests and integrate the results with other tools
in your development cycle.

Assertion libraries
Though test frameworks provide the developer with a way to create and organize
tests, they often lack the ability to actually test a Boolean expression that represents
the test result. For instance, the Mocha test framework, which we'll introduce in the
next section, doesn't provide the developer with an assertion tool. For this purpose,
the community has developed several assertion libraries, which allows you to
examine a certain predicate. The developer uses assertion expressions to indicate
a predicate that should be true in the test context. When running the test, the
assertion is evaluated, and if it turns out to be false, the test will fail.

Test runners
Test runners are utilities that enable the developer to easily run and evaluate
tests. A test runner usually uses a deined testing framework along with a set of
preconigured properties to evaluate test results in different contexts. For instance,
a test runner can be conigured to run tests with different environment variables
or run the same test on different testing platforms (usually browsers). We will
present two different test runners in the AngularJS test section.

Now that we overviewed a set of terms associated with testing, we can inally
explain how to test the different parts of your MEAN application. Although your
code is written entirely in JavaScript, it does run on different platforms with different
scenarios. In order to mitigate the testing process, we divided it into two different
sections: testing Express components and testing AngularJS components. Let's begin
with testing your Express application components.

Chapter 10

[259]

Testing your Express application
In the Express part of your MEAN application, your business logic is mostly
encapsulated inside controllers; however, you also have Mongoose models that
obfuscate many tasks, including data manipulation and validations. So, to properly
cover your Express application code, you will need to write tests that cover both
models and controllers. In order to do so, you will use Mocha as your test framework,
the Should.js assertion library for your models, and the SuperTest HTTP assertion
library for your controllers. You will also need to create a new test environment
coniguration ile that will provide you with special coniguration options for testing
purposes, for example, a dedicated MongoDB connection string. By the end of this
section, you will learn to use the Mocha command-line tool to run and evaluate
your test results. We'll begin with presenting the Mocha test framework.

Introducing Mocha
Mocha is a versatile test framework developed by Express creator TJ Holowaychuk.
It supports both BDD and TDD unit tests, uses Node.js to run the tests, and allows
the developer to run both synchronous and asynchronous tests. Since Mocha is
minimal by structure, it doesn't include a built-in assertion library; instead, it
supports the integration of popular assertion frameworks. It comes packed with a set
of different reporters to present the test results and includes many features, such as
pending tests, excluding tests, and skipping tests. The main interaction with Mocha is
done using the command-line tool provided, which lets you conigure the way tests
are executed and reported.

The BDD interface for Mocha tests includes several descriptive methods, which enable
the developer to easily describe the test scenario. These methods are as follows:

• describe(description, callback): This is the basic method that wraps
each test suite with a description. The callback function is used to deine
test speciications or subsuites.

• it(description, callback): This is the basic method that wraps each
test speciication with a description. The callback function is used to deine
the actual test logic.

• before(callback): This is a hook function that is executed once before
all the tests in a test suite.

• beforeEach(callback): This is a hook function that is executed before
each test speciication in a test suite.

Testing MEAN Applications

[260]

• after(callback): This is a hook function that is executed once after all
the tests in a test suite are executed.

• afterEach(callback): This is a hook function that is executed after each
test speciication in a test-suite is executed.

Using these basic methods will allow you to deine unit tests by utilizing the BDD
paradigm. However, any test cannot be concluded without including an assertion
expression that determines the developer's expectations from the covered code.
To support assertions, you will need to use an assertion library.

You can learn more about Mocha's features by visiting the oficial
documentation at http://visionmedia.github.io/mocha/.

Introducing Should.js
The Should.js library, also developed by TJ Holowaychuk, aims to help developers
write readable and expressive assertion expressions. Using Should.js, you'll be
able to keep your test code better organized and produce useful error messages.
The Should.js library extends Object.prototype with a non-enumerable getter that
allows you to express how that object should behave. One of Should.js' powerful
features is that every assertion returns a wrapped object, so assertions can be chained.
This means that you can write readable expressions that pretty much describe
the assertions associated with the tested object. For example, a chained assertion
expression would be as follows:

user.should.be.an.Object.and.have.property('name', 'tj');

Notice how each helper property returns a Should.js object, which
can be chained using another helper property (be, an, have, and
so on) or tested using assertion properties and methods (Object,
property()). You can learn more about Should.js features by
visiting the oficial documentation at https://github.com/
shouldjs/should.js.

While Should.js does an excellent job in testing objects, it will not help you with
testing your HTTP endpoints. To do so, you will need to use a different kind of
assertion library. This is where the minimal modularity of Mocha comes in handy.

http://visionmedia.github.io/mocha/
https://github.com/shouldjs/should.js
https://github.com/shouldjs/should.js

Chapter 10

[261]

Introducing SuperTest
SuperTest is another assertion library developed by TJ Holowaychuk, which differs
from other assertion libraries by providing developers with an abstraction layer that
makes HTTP assertions. This means that instead of testing objects, it will help you
to create assertion expressions that test HTTP endpoints. In your case, it will help
you to test your controller endpoints, thus covering the code that's exposed to the
browser. To do so, it will make use of the Express application object and test the
responses returned from your Express endpoints. An example SuperTest assertion
expression is as follows:

request(app).get('/user')
 .set('Accept', 'application/json')
 .expect('Content-Type', /json/)
 .expect(200, done);

Notice how each method can be chained to another assertion expression.
This will allow you to make several assertions on the same response
using the expect() method. You can learn more about SuperTest's
features by visiting the oficial documentation at https://github.
com/visionmedia/supertest.

In the next section, you will learn how to leverage Mocha, Should.js, and SuperTest
to test both your models and your controllers. Let's begin by installing these
dependencies and properly coniguring the test environment. The examples in this
chapter will continue directly from those in previous chapters, so copy the inal
example from Chapter 9, Adding Real-time Functionality Using Socket.io, and let's take
it from there.

Installing Mocha
Mocha is basically a Node.js module that provides command-line capabilities to run
tests. The easiest way to use Mocha is to irst install it as a global node module using
npm. To do so, just issue the following command in your command-line tool:

$ npm install –g mocha

As usual, this will install the latest version of Mocha in your global node_modules
folder. When the installation process is successfully inished, you'll be able to use the
Mocha utility from your command line. Next, you'll need to install the Should.js and
SuperTest assertion libraries in your project.

You may experience some trouble installing global modules. This is
usually a permission issue, so use sudo or super user when running
the global install command.

https://github.com/visionmedia/supertest
https://github.com/visionmedia/supertest

Testing MEAN Applications

[262]

Installing the Should.js and SuperTest

modules
Before you can start writing your tests, you will need to install both Should.js and
SuperTest using npm. To do so, change your project's package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.10",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0"

 }

}

As you can notice, we used a new property in the package.json ile called
devDependencies. This npm feature will allow us to conigure development-oriented
dependencies separately from other application dependencies. It means that when
we deploy our application to a production environment, you'll get faster installation
time and decreased project size. However, when you run the install command in
other environments, these packages will be installed just like any other dependency.

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

Chapter 10

[263]

This will install the speciied versions of Should.js and SuperTest in your project's
node_modules folder. When the installation process is successfully inished, you
will be able to use these modules in your tests. Next, you'll need to prepare your
project for testing by creating a new environment coniguration ile and setting
up your test environment.

Coniguring your test environment
Since you're going to run tests that include database manipulation, it would be safer
to use a different coniguration ile to run tests. Fortunately, your project is already
conigured to use different coniguration iles according to the NODE_ENV variable.
While the application automatically uses the config/env/development.js ile,
when running in a test environment, we will make sure to set the NODE_ENV variable
to test. All you need to do is create a new coniguration ile named test.js in the
config/env folder. In this new ile, paste the following code snippet:

module.exports = {

 db: 'mongodb://localhost/mean-book-test',

 sessionSecret: 'Your Application Session Secret',

 viewEngine: 'ejs',

 facebook: {

 clientID: 'APP_ID',

 clientSecret: 'APP_SECRET',

 callbackURL: 'http://localhost:3000/oauth/facebook/callback'

 },

 twitter: {

 clientID: 'APP_ID',

 clientSecret: 'APP_SECRET',

 callbackURL: 'http://localhost:3000/oauth/twitter/callback'

 },

 google: {

 clientID: 'APP_ID',

 clientSecret: 'APP_SECRET',

 callbackURL: 'http://localhost:3000/oauth/google/callback'

 }

};

As you can notice, we changed the db property to use a different MongoDB database.
Other properties remain the same, but you can change them later to test different
conigurations of your application.

You'll now need to create a new folder for your test iles. To do so, go to your app
folder and create a new folder named tests. Once you're done setting up your
environment, you can continue to the next section and write your irst tests.

Testing MEAN Applications

[264]

Writing your irst Mocha test
Before you begin writing your tests, you will irst need to identify and break your
Express application's components into testable units. Since most of your application
logic is already divided into models and controllers, the obvious way to go about
this would be to test each model and controller individually. The next step would be
to break this component into logical units of code and test each unit separately. For
instance, take each method in your controller and write a set of tests for each method.
You can also decide to test a couple of your controller's methods together when each
method doesn't perform any signiicant operation by itself. Another example would
be to take your Mongoose model and test each model method.

In BDD, every test begins by describing the test's purpose in a natural language.
This is done using the describe() method, which lets you deine the test scenario's
description and functionality. Describe blocks can be nested, which enables you to
further elaborate on each test. Once you have your test's descriptive structure ready,
you will be able to deine a test speciication using the it() method. Each it() block
will be regarded as a single unit test by the test framework. Each test will also include a
single assertion expression or multiple assertion expressions. The assertion expressions
will basically function as Boolean test indicators for your test assumptions. When an
assertion expression fails, it will usually provide the test framework with a traceable
error object.

While this pretty much explains most of the tests you'll encounter, you'll also be
able to use supportive methods that execute certain functionality in context with
your tests. These supportive methods can be conigured to run before or after a set of
tests, and even before or after each test is executed.

In the following examples, you'll learn to easily use each method to test the articles
module that you created in Chapter 8, Creating a MEAN CRUD Module. For the sake of
simplicity, we will only implement a basic test suite for each component. This test suite
could and should be largely expanded to ultimately provide decent code coverage.

Although TDD clearly states that tests should be written before you start
coding features, the structure of this book forces us to write tests that
examine an already existing code. If you wish to implement real TDD in
your development process, you should be aware that development cycles
should begin by irst writing the appropriate tests.

Chapter 10

[265]

Testing the Express model
In the model's test example, we'll write two tests that verify the model save method.
To begin testing your Article Mongoose model, you will need to create a new ile
named article.server.model.tests.js in your app/tests folder. In your new
ile, paste the following lines of code:

var app = require('../../server.js'),

 should = require('should'),

 mongoose = require('mongoose'),

 User = mongoose.model('User'),

 Article = mongoose.model('Article');

var user, article;

describe('Article Model Unit Tests:', function() {

 beforeEach(function(done) {

 user = new User({

 firstName: 'Full',

 lastName: 'Name',

 displayName: 'Full Name',

 email: 'test@test.com',

 username: 'username',

 password: 'password'

 });

 user.save(function() {

 article = new Article({

 title: 'Article Title',

 content: 'Article Content',

 user: user

 });

 done();

 });

 });

 describe('Testing the save method', function() {

 it('Should be able to save without problems', function() {

Testing MEAN Applications

[266]

 article.save(function(err) {

 should.not.exist(err);

 });

 });

 it('Should not be able to save an article without a title',
function() {

 article.title = '';

 article.save(function(err) {

 should.exist(err);

 });

 });

 });

 afterEach(function(done) {

 Article.remove(function() {

 User.remove(function() {

 done();

 });

 });

 });

});

Let's start breaking down the test code. First, you required your module
dependencies and deined your global variables. Then, you began your test using
a describe() method, which informs the test tool this test is going to examine the
Article model. Inside the describe block, we began by creating new user and
article objects using the beforeEach() method. The beforeEach() method is
used to deine a block of code that runs before each test is executed. You can also
replace it with the before() method, which will only get executed once, before
all the tests are executed. Notice how the beforeEach() method informs the test
framework that it can continue with the tests execution by calling the done()
callback. This will allow the database operations to be completed before actually
executing the tests.

Next, you created a new describe block indicating that you were about to test
the model save method. In this block, you created two tests using the it() method.
The irst test used the article object to save a new article. Then, you used the
Should.js assertion library to validate that no error occurred. The second test checked
the Article model validation by assigning an invalid value to the title property.
This time, the Should.js assertion library was used to validate that an error actually
occured when trying to save an invalid article object.

Chapter 10

[267]

You inished your tests by cleaning up the Article and User collections using the
afterEach() method. Like with the beforeEach() method, this code will run after
each test is executed, and can also be replaced with an after() method. The done()
method is also used here in the same manner.

Congratulations, you created your irst unit test! As we stated earlier, you can
continue expanding this test suite to cover more of the model code, which you
probably will when dealing with more complicated objects. Next, we'll see how you
can write more advanced unit tests when covering your controller's code.

Testing the Express controller
In the controller test example, we'll write two tests to check the controller's
methods that retrieve articles. When setting out to write these tests, we have two
options: either test the controller's methods directly or use the deined controller's
Express routes in the tests. Although it is preferable to test each unit separately,
we would choose to go with the second option since our routes' deinition is quite
simple, so we can beneit from writing more inclusive tests. To begin testing your
articles controller, you will need to create a new ile named articles.server.
controller.tests.js in your app/tests folder. In your new ile, paste the
following code snippet:

var app = require('../../server'),

 request = require('supertest'),

 should = require('should'),

 mongoose = require('mongoose'),

 User = mongoose.model('User'),

 Article = mongoose.model('Article');

var user, article;

describe('Articles Controller Unit Tests:', function() {

 beforeEach(function(done) {

 user = new User({

 firstName: 'Full',

 lastName: 'Name',

 displayName: 'Full Name',

 email: 'test@test.com',

 username: 'username',

 password: 'password'

 });

 user.save(function() {

 article = new Article({

Testing MEAN Applications

[268]

 title: 'Article Title',

 content: 'Article Content',

 user: user

 });

 article.save(function(err) {

 done();

 });

 });

 });

 describe('Testing the GET methods', function() {

 it('Should be able to get the list of articles', function(done){

 request(app).get('/api/articles/')

 .set('Accept', 'application/json')

 .expect('Content-Type', /json/)

 .expect(200)

 .end(function(err, res) {

 res.body.should.be.an.Array.and.have.lengthOf(1);

 res.body[0].should.have.property('title', article.title);

 res.body[0].should.have.property('content', article.
content);

 done();

 });

 });

 it('Should be able to get the specific article', function(done) {

 request(app).get('/api/articles/' + article.id)

 .set('Accept', 'application/json')

 .expect('Content-Type', /json/)

 .expect(200)

 .end(function(err, res) {

 res.body.should.be.an.Object.and.have.property('title',
article.title);

 res.body.should.have.property('content', article.content);

 done();

 });

 });

 });

 afterEach(function(done) {

Chapter 10

[269]

 Article.remove().exec();

 User.remove().exec();

 done();

 });

});

Just as with your model test, irst you required your module dependencies and deined
your global variables. Then, you started your test using a describe() method, which
informs the test tool this test is going to examine the Articles controller. Inside
the describe block, we began by creating new user and article objects using the
beforeEach() method. This time, we saved the article before initiating the tests, and
then continued with test execution by calling the done() callback.

Next, you created a new describe block indicating that you were about to test the
controllers' GET methods. In this block, you created two tests using the it() method.
The irst test uses the SuperTest assertion library to issue an HTTP GET request at the
endpoint that returns the list of articles. It then examines the HTTP response variables,
including the content-type header and the HTTP response code. When it veriies the
response is returned properly, it uses three Should.js assertion expressions to test the
response body. The response body should be an array of articles that includes a single
article that should be similar to the article you created in the beforeEach() method.

The second test uses the SuperTest assertion library to issue an HTTP GET request
at the endpoint that returns a single article. It then examines the HTTP response
variables including the content-type header and the HTTP response code. Once
it veriies that the response is returned properly, it uses three Should.js assertion
expressions to test the response body. The response body should be a single article
object and should be similar to the article you created in the beforeEach() method.

Just as before, you inished your tests by cleaning up the Article and User
collections using the afterEach() method. Once you're done setting up the testing
environment and creating your tests, all you have left to do is run them using
Mocha's command-line tool.

Running your Mocha test
To run your Mocha test, you need to use Mocha's command-line utility that you
previously installed. To do so, use your command-line tool and navigate to your
project's base folder. Then, issue the following command:

$ NODE_ENV=test mocha --reporter spec app/tests

Testing MEAN Applications

[270]

Windows users should irst execute the following command:

> set NODE_ENV=test

Then run Mocha using the following command:

> mocha --reporter spec app/tests

The preceding command will do a few things. First, it will set the NODE_ENV variable
to test, forcing your MEAN application to use the test environment coniguration
ile. Then, it will execute the Mocha command-line utility, with the --reporter
lag, telling Mocha to use the spec reporter and the path to your tests folder. The
test results should be reported in your command-line tool and will be similar to
the following screenshot:

Mocha's test results

This concludes the test coverage of your Express application. You can use
these methods to expand your test suite and dramatically improve application
development. It is recommended that you set your test conventions from the
beginning of your development process; otherwise, writing tests can become an
overwhelming experience. Next, you'll learn to test your AngularJS components
and write E2E tests.

Chapter 10

[271]

Testing your AngularJS application
For years, testing frontend code was a complex task. Running tests across different
browsers and platforms was complicated, and since most of the application code
was unstructured, test tools mainly focused on UI E2E tests. However, the shift
towards MVC frameworks allowed the community to create better test utilities,
improving the way developers write both unit and E2E tests. In fact, the AngularJS
team is so focused on testing that every feature developed by the team is designed
with testability in mind.

Furthermore, platform fragmentation also created a new layer of tools called test
runners, which allow developers to easily run their tests in different contexts and
platforms. In this section, we'll focus on tools and frameworks associated with
AngularJS applications, explaining how to best use them to write and run both
unit and E2E tests. We'll start with the test framework that will serve us in both
cases, the Jasmine test framework.

Although we can use Mocha or any other test framework, using
Jasmine is currently the easiest and most common approach when
testing AngularJS applications.

Introducing the Jasmine framework
Jasmine is an opinionated BDD framework developed by the Pivotal organization.
Conveniently, Jasmine uses the same terminology as Mocha's BDD interface, including
the describe(), it(), beforeEach(), and afterEach() methods. However, unlike
Mocha, Jasmine comes prebundled with assertion capabilities using the expect()
method chained with assertion methods called Matchers. Matchers are basically
functions that implement a Boolean comparison between an actual object and an
expected value. For instance, a simple test using the toBe() matcher is as follows:

describe('Matchers Example', function() {

 it('Should present the toBe matcher example', function() {

 var a = 1;

 var b = a;

 expect(a).toBe(b);

 expect(a).not.toBe(null);

 });

});

Testing MEAN Applications

[272]

The toBe() matcher uses the === operator to compare objects. Jasmine includes plenty
of other matchers and even enables developers to add custom matchers. Jasmine also
includes other robust features to allow more advanced test suites. In the next section,
we'll focus on how to use Jasmine to easily test your AngularJS components.

You can learn more about Jasmine's features by visiting
the oficial documentation at http://jasmine.github.
io/2.0/introduction.html.

AngularJS unit tests
In the past, web developers who wanted to write unit tests to cover their frontend
code had to struggle with determining their test scope and properly organizing their
test suite. However, the inherent separation of concerns in AngularJS forces the
developer to write isolated units of code, making the testing process much simpler.
Developers can now quickly identify the units they need to test, and so controllers,
services, directives, and any other AngularJS component can be tested as standalone
units. Furthermore, the extensive use of dependency injection in AngularJS enables
developers to switch contexts and easily cover their code with an extensive test suite.
However, before you begin writing tests for your AngularJS application, you will
irst need to prepare your test environment beginning with the Karma test runner.

Introducing Karma test runner
The Karma test runner is a utility developed by the AngularJS team that helps
developers with executing tests in different browsers. It does so by starting a web
server that runs source code with test code on selected browsers, reporting the tests
result back to the command-line utility. Karma offers real test results for real devices
and browsers, low control for IDEs and the command line, and framework-agnostic
testability. It also provides developers with a set of plugins that enables them to run
tests with the most popular test frameworks. The team also provides special plugins
called browser launchers that enable Karma to run tests on selected browsers.

In our case, we will use the Jasmine test framework along with a PhantomJS browser
launcher. However, testing real applications will require you to expand Karma's
coniguration to include more launchers and execute tests on the browsers you
intend to support.

http://jasmine.github.io/2.0/introduction.html
http://jasmine.github.io/2.0/introduction.html

Chapter 10

[273]

PhantomJS is a headless WebKit browser often used in programmable
scenarios where you don't need a visual output; that's why it its
perfectly for testing purposes. You can learn more about PhantomJS
by visiting the oficial documentation at http://phantomjs.org/
documentation/.

Installing the Karma command-line tool
The easiest way to start using Karma is to globally install the command-line
tool provided using npm. To do so, just issue the following command in your
command-line tool:

$ npm install -g karma-cli

This will install the latest version of Karma's command-line utility in your global
node_modules folder. When the installation process is successfully inished, you'll
be able to use the Karma utility from your command line. Next, you'll need to install
Karma's project dependencies.

You may experience some trouble installing global modules. This is
usually a permission issue, so use sudo or super user when running
the global install command.

Installing Karma's dependencies
Before you can start writing your tests, you will need to install Karma's dependencies
using npm. To do so, change your package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.10",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

http://phantomjs.org/documentation/
http://phantomjs.org/documentation/

Testing MEAN Applications

[274]

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4"

 }

}

As you can see, you added Karma's core package, Karma's Jasmine plugin, and
Karma's PhantomJS launcher to your devDependencies property. To install your
new dependencies, go to your application's root folder and issue the following
command in your command-line tool:

$ npm install

This will install the speciied version of Karma's core package, Karma's Jasmine
plugin, and Karma's PhantomJS launcher in your project's node_modules folder.
When the installation process is successfully inished, you will be able to use these
modules to run your tests. Next, you'll need to conigure Karma's execution by
adding a Karma coniguration ile.

Coniguring the Karma test runner
In order to control Karma's test execution, you will need to conigure Karma using a
special coniguration ile placed at the root folder of your application. When executed,
Karma will automatically look for the default coniguration ile named karma.conf.
js in the application's root folder. You can also indicate your coniguration ile name
using a command-line lag, but for simplicity reasons we'll use the default ilename.
To start coniguring Karma, create a new ile in your application folder, and name it
karma.conf.js. In your new ile, paste the following code snippet:

module.exports = function(config) {

 config.set({

 frameworks: ['jasmine'],

 files: [

Chapter 10

[275]

 'public/lib/angular/angular.js',

 'public/lib/angular-resource/angular-resource.js',

 'public/lib/angular-route/angular-route.js',

 'public/lib/angular-mocks/angular-mocks.js',

 'public/application.js',

 'public/*[!lib]*/*.js',

 'public/*[!lib]*/*[!tests]*/*.js',

 'public/*[!lib]*/tests/unit/*.js'

],

 reporters: ['progress'],

 browsers: ['PhantomJS'],

 captureTimeout: 60000,

 singleRun: true

 });

};

As you can see, Karma's coniguration ile is used to set the way Karma executes
tests. In this case, we used the following settings:

• frameworks: This tells Karma to use the Jasmine framework.

• files: This sets the list of iles that Karma will include in its tests. Notice
that you can use glob patterns to indicate iles pattern. In this case, we
included all of our library iles and module iles, excluding our test iles.

• reporters: This sets the way Karma reports its tests results.

• browsers: This is a list of browsers Karma will test on. Note that we can
only use the PhantomJS browser since we haven't installed any other
launcher plugin.

• captureTimeout: This sets the timeout for Karma tests execution.

• singleRun: This forces Karma to quit after it inishes the tests execution.

These properties are project-oriented, which means it will change according to
your requirements. For instance, you'll probably include more browser launchers
in real-world applications.

You can learn more about Karma's coniguration by visiting the oficial
documentation at http://karma-runner.github.io/0.12/
config/configuration-file.html.

http://karma-runner.github.io/0.12/config/configuration-file.html
http://karma-runner.github.io/0.12/config/configuration-file.html

Testing MEAN Applications

[276]

Mocking AngularJS components
While testing an AngularJS application, it is recommended that unit tests execute
quickly and separately from the backend server. This is because we want the unit
tests to be as isolated as possible and work in a synchronous manner. This means
we need to control the dependency injection process and provide mock components
that emulate real components' operation. For instance, most of the components that
communicate with the backend server are usually using the $http service or some
sort of abstraction layer, such as the $resource service. Furthermore, the $http
service sends requests to the server using the $httpBackend service. This means
that by injecting a different $httpBackend service, we can send fake HTTP requests
that won't hit a real server. As we previously stated, the AngularJS team is very
committed to testing, so they already created these tools for us, wrapping these mock
components in the ngMock module.

Introducing ngMock
The ngMock module is an external module provided by the AngularJS team.
It contains several AngularJS mock utilities that can be used mostly for testing
purposes. In essence, the ngMock module provides developers with a couple of
important mock methods and a set of mock services. There are two ngMock methods
that you'll probably use frequently: the angular.mock.module() method, which
you'll use to create mock module instances, and the angular.mock.inject()
method, which you'll use to inject mock dependencies. Both of these methods
are also published on the window object for ease of use.

The ngMock module also provides developers with a set of mock services, including
a mock exception service, timeout service, and log service. In our case, we'll use the
$httpBackend mock service to handle HTTP requests in our tests.

The $httpBackend service allows developers to deine mock responses to HTTP
requests. It does so by providing two methods that enable you to determine the
response data returned by the mock backend. The irst method is $httpBackend.
expect(), which is strictly used for unit testing. It allows developers to make
assertions about HTTP requests made by the application, and fails the test if these
request are not made by the test and even if they're made in the wrong order.
A simple usage of the $httpBackend.expect() method is as follows:

$httpBackend.expect('GET', '/user').respond({userId: 'userX'});

Chapter 10

[277]

This will force the AngularJS $http service to return a mock response and
will fail the test if a request that fulill the assertion is not executed. The second
method is $httpBackend.when(), which allows developers to loosely deine a
mock backend without making any assertion about tests requests. A simple usage
of the $httpBackend.when() method is as follows:

$httpBackend.when('GET', '/user').respond({userId: 'userX'});

However, this time, there isn't any assertion made about the tests requests. It simply
tells the $http service to return a certain response for any request fulilling this
deinition. We'll start using the ngMock module in a moment, but irst we'll explain
how to install it.

Installing ngMock
Installing the ngMock module is easy; simply go to your bower.json ile and change
it as follows:

{
 "name": "MEAN",
 "version": "0.0.10",
 "dependencies": {
 "angular": "~1.2",
 "angular-route": "~1.2",
 "angular-resource": "~1.2",
 "angular-mocks": "~1.2"
 }
}

Now, use your command-line tool to navigate to the MEAN application's root folder,
and install the new ngMock module:

$ bower update

When Bower inishes installing the new dependency, you will see a new folder
named angular-mocks in your public/lib folder. If you take a look at your Karma
coniguration ile, you will notice that we already included the ngMock JavaScript ile
in the files property. Once you're done with the installation process, you can start
writing your AngularJS unit tests.

Writing AngularJS unit tests
Once you're done coniguring your test environment, writing unit tests becomes
an easy task. To do so, you will use the ngMock module's supplied tools to test each
component. While the general structure is the same, each entity test is a bit different
and involves subtle changes. In this section, you'll learn how to test the major
AngularJS entities. Let's begin with testing a module.

Testing MEAN Applications

[278]

Testing modules
Testing a module is very simple. All you have to do is check that the module is
properly deined and exists in the test context. The following is an example unit test:

describe('Testing MEAN Main Module', function() {

 var mainModule;

 beforeEach(function() {

 mainModule = angular.module('mean');

 });

 it('Should be registered', function() {

 expect(mainModule).toBeDefined();

 });

});

Notice how we use the beforeEach() and angular.module() methods to load the
module before we run the test. When the test speciication is executed, it will use the
toBeDefined() Jasmine matcher to validate that the module was actually deined.

Testing controllers
Testing controllers is a bit trickier. In order to test a controller, you will need to
use ngMock's inject() method and create a controller instance. So, a unit test
that minimally covers your ArticlesController will be as follows:

describe('Testing Articles Controller', function() {

 var _scope, ArticlesController;

 beforeEach(function() {

 module('mean');

 inject(function($rootScope, $controller) {

 _scope = $rootScope.$new();

 ArticlesController = $controller('ArticlesController', {

 $scope: _scope

 });

 });

 });

 it('Should be registered', function() {

 expect(ArticlesController).toBeDefined();

 });

 it('Should include CRUD methods', function() {

Chapter 10

[279]

 expect(_scope.find).toBeDefined();

 expect(_scope.findOne).toBeDefined();

 expect(_scope.create).toBeDefined();

 expect(_scope.delete).toBeDefined();

 expect(_scope.update).toBeDefined();

 });

});

Again, we used the beforeEach() method to create the controller before test
speciications were executed. However, this time, we used the module() method
to register the main application module and the inject() method to inject
Angular's $controller and $rootScope services. Then, we used the $rootScope
service to create a new scope object and the $controller service to create a new
ArticlesController instance. The new controller instance will utilize the mock
_scope object, so we can use it to validate the existence of controller's properties.
In this case, the second spec will validate the existence of the controller's basic
CRUD methods.

Testing services
Testing services will be very similar to testing controllers. It is even simpler since
we can directly inject the service into our tests. A unit test that minimally covers
your Articles service will be as follows:

describe('Testing Articles Service', function() {

 var _Articles;

 beforeEach(function() {

 module('mean');

 inject(function(Articles) {

 _Articles = Articles;

 });

 });

 it('Should be registered', function() {

 expect(_Articles).toBeDefined();

 });

 it('Should include $resource methods', function() {

 expect(_Articles.get).toBeDefined();

 expect(_Articles.query).toBeDefined();

 expect(_Articles.remove).toBeDefined();

 expect(_Articles.update).toBeDefined();

 });

});

Testing MEAN Applications

[280]

We use the beforeEach() method to inject the service before running the specs.
This, validates the service's existence and conirms that the service includes a set
of $resource methods.

Testing routes
Testing routes is even simpler. All you have to do is inject the $route service and test
the routes collection. A unit test that test for an Articles route will be as follows:

describe('Testing Articles Routing', function() {

 beforeEach(module('mean'));

 it('Should map a "list" route', function() {

 inject(function($route) {

 expect($route.routes['/articles'].templateUrl).
toEqual('articles/views/list-articles.view.html');

 });

 });

});

Notice that we're testing a single route and only the templateUrl property, so a real
test speciication will probably be more extensive.

Testing directives
Although we haven't elaborated on directives, they can still be a vital part of an
AngularJS application. Testing directives will usually require you to provide an
HTML template and use Angular's $compile service. A basic unit test that tests
the ngBind directive will be as follows:

describe('Testing The ngBind Directive', function() {

 beforeEach(module('mean'));

 it('Should bind a value to an HTML element', function() {

 inject(function($rootScope, $compile) {

 var _scope = $rootScope.$new();

 element = $compile('<div data-ng-bind="testValue"></div>')(_
scope);

 _scope.testValue = 'Hello World';

 _scope.$digest();

 expect(element.html()).toEqual(_scope.testValue);

 });

 });

});

Chapter 10

[281]

Let's go over this test code. First, we created a new scope object, and then we used
the $compile service to compile the HTML template with the scope object. We set
the model testValue property and ran a digest cycle using the $digest() method
to bind the model with the directive. We inish our test by validating that the model
value is indeed rendered.

Testing ilters
Like with directives, we didn't discuss ilters too much. However, they too can be a
vital part of an AngularJS application. Testing ilters is very similar to the way we
test other AngularJS components. A basic unit test that tests Angular's lowercase
ilter will be as follows:

describe('Testing The Lowercase Filter', function() {

 beforeEach(module('mean'));

 it('Should convert a string characters to lowercase', function() {

 inject(function($filter) {

 var input = 'Hello World';

 var toLowercaseFilter = $filter('lowercase');

 expect(toLowercaseFilter(input)).toEqual(input.toLowerCase());

 });

 });

});

As you can see, testing a ilter requires the usage of the $filter service to create
a ilter instance. Then, you just processed your input and validated the ilter
functionality. In this case, we used JavaScript's toLowerCase() method to validate
that the lowercase ilter actually works.

While these examples illustrate pretty well the basics of writing AngularJS unit tests,
you should keep in mind that the tests can be much more complex. Let's see how we
can use the ngMock module to test one of our ArticlesController methods.

Writing your irst unit test
A common requirement is testing your controller's methods. Since the
ArticlesController methods use the $http service to communicate with the
server, it would be appropriate to use the $httpBackend mock service. To begin
writing the ArticlesController unit test, you will irst need to create a new tests
folder inside the public/articles folder. In the public/articles/tests folder,
create a new folder for unit tests, called unit. Finally, in your public/articles/
tests/unit folder, create a new ile named articles.client.controller.unit.
tests.js.

Testing MEAN Applications

[282]

In your new ile, paste the following code snippet:

describe('Testing Articles Controller', function() {

 var _scope, ArticlesController;

 beforeEach(function() {

 module('mean');

 jasmine.addMatchers({

 toEqualData: function(util, customEqualityTesters) {

 return {

 compare: function(actual, expected) {

 return {

 pass: angular.equals(actual, expected)

 };

 }

 };

 }

 });

 inject(function($rootScope, $controller) {

 _scope = $rootScope.$new();

 ArticlesController = $controller('ArticlesController', {

 $scope: _scope

 });

 });

 });

 it('Should have a find method that uses $resource to retrieve a list
of articles', inject(function(Articles) {

 inject(function($httpBackend) {

 var sampleArticle = new Articles({

 title: 'An Article about MEAN',

 content: 'MEAN rocks!'

 });

 var sampleArticles = [sampleArticle];

 $httpBackend.expectGET('api/articles').respond(sampleArticles);

 _scope.find();

 $httpBackend.flush();

 expect(_scope.articles).toEqualData(sampleArticles);

 });

 }));

Chapter 10

[283]

 it('Should have a findOne method that uses $resource to retreive a
single of article', inject(function(Articles) {

 inject(function($httpBackend, $routeParams) {

 var sampleArticle = new Articles({

 title: 'An Article about MEAN',

 content: 'MEAN rocks!'

 });

 $routeParams.articleId = 'abcdef123456789012345678';

 $httpBackend.expectGET(/api\/articles\/([0-9a-fA-F]{24})$/).
respond(sampleArticle);

 _scope.findOne();

 $httpBackend.flush();

 expect(_scope.article).toEqualData(sampleArticle);

 });

 }));

});

Let's break down the test code. First, you required your module dependencies, and
deined your global variables. You started your test using a describe() method,
which informs the test tool this test is going to examine ArticlesController. Inside
the describe block, we began by creating a new controller and scope objects using
the beforeEach() method.

Inside the beforeEach() method, we created a new custom Jasmine Matcher,
called toEqualData. This matcher will compare a regular object and a $resource
wrapped object using the angular.equal() method. We added this matcher because
$resource adds quite a few properties to our objects, so the basic comparison matcher
will not work.

You then created the irst speciication that is going to test the controller's find()
method. The trick here is to use the $httpBackend.expectGET() method, which sets
a new backend request assertion. This means that the test expects an HTTP request
that fulills this assertion, and will respond with a certain response. You then used the
controller's find() method, which will create a pending HTTP request. The cycle ends
when you call the $httpBackend.flush() method, which will simulate the server's
response. You concluded the test by testing your model's values.

The second speciication is almost identical to the irst one but will test the
controller's findOne() method. On top of the $httpBackend service, it also uses the
$routeParams service to set the articleId route parameter. Now that you have your
irst unit test, let's see how you can execute it using Karma's command-line utility.

Testing MEAN Applications

[284]

Running your AngularJS unit tests
To run your AngularJS tests, you will need to use Karma's command-line utility
you previously installed. To do so, use your command-line tool and navigate to
your project's base folder. Then issue the following command:

$ NODE_ENV=test karma start

Windows users should irst execute the following command:

> set NODE_ENV=test

Then run Karma using the following command:

> karma start

The preceding command will do a few things. First, it will set the NODE_ENV variable
to test, forcing your MEAN application to use the test environment coniguration
ile. Then, it will execute the Karma command-line utility. The test results should
be reported in your command-line tool similar to the following screenshot:

Karma's test results

This concludes the unit test coverage of your AngularJS application. It is recommended
that you use these methods to expand your test suite and include more components
tests. In the next section, you'll learn about AngularJS E2E testing, and to write and run
a cross-application E2E test.

AngularJS E2E tests
While unit tests serve as a irst layer to keep our applications covered, it is sometimes
necessary to write tests that involve several components together that react with a
certain interface. The AngularJS team often refers to these tests as E2E tests.

Chapter 10

[285]

To understand this better, let's say Bob is an excellent frontend developer who keeps
his Angular code well tested. Alice is also an excellent developer, but she works on
the backend code, making sure her Express controllers and models are all covered.
In theory, this team of two does a superb job, but when they inish writing the login
feature of their MEAN application, they suddenly discover it's failing. When they dig
deeper, they ind out that Bob's code is sending a certain JSON object, while Alice's
backend controller is expecting a slightly different JSON object. The fact is that both of
them did their job, but the code is still failing. You might say this is the team leader's
fault, but we've all been there at some point or another, and while this is just a small
example, modern applications tend to become very complex. This means that you
cannot just trust manual testing or even unit tests. You will need to ind a way to test
features across the entire application, and this is why E2E tests are so important.

Introducing the Protractor test runner
To execute E2E tests, you will need some sort of tool that emulates user behavior.
In the past, the AngularJS team advocated a tool called Angular scenario test runner.
However, they decided to abandon this tool and create a new test runner called
Protractor. Protractor is a dedicated E2E test runner that simulates human interactions
and runs tests using the Jasmine test framework. It is basically a Node.js tool, which
uses a neat library called WebDriver. WebDriver is an open source utility that allows
programmable control over a web browser behavior. As we stated, Protractor is using
Jasmine by default, so tests will look very similar to the unit tests you wrote before,
but Protractor also provides you with several global objects as follows:

• browser: This is a WebDriver instance wrapper, which allows you to
communicate with the browser.

• element: This is a helper function to manipulate HTML elements.

• by: This is a collection of element locator functions. You can use it to ind
elements by a CSS selector, their ID, or even by the model property they're
bound to.

• protractor: This is a WebDriver namespace wrapper containing a set of
static classes and variables.

Using these utilities, you'll be able to perform browser operations inside your tests'
speciications. For instance, the browser.get() method will load a page for you to
perform tests on. It is important to remember that Protractor is a dedicated tool for
AngularJS applications, so the browser.get() method will throw an error if the
page it tries to load doesn't include the AngularJS library. You'll write your irst E2E
test in a moment, but irst let's install Protractor.

Testing MEAN Applications

[286]

Protractor is a very young tool, so things are bound to change
rapidly. It is recommended that you learn more about Protractor
by visiting the oficial repository page at https://github.
com/angular/protractor.

Installing the Protractor test runner
Protractor is a command-line tool, so you'll need to globally install it using npm.
To do so, just issue the following command in your command-line tool:

$ npm install -g protractor

This will install the latest version of Protractor command-line utilities in your
global node_modules folder. When the installation process is successfully inished,
you'll be able to use Protractor from your command line.

You may experience some trouble installing global modules. This
is usually a permission issue, so use sudo or super user when
running the global install command.

Since Protractor will need a working WebDriver server, you will either need
to use a Selenium server or install a standalone WebDriver server. You can
download and install a standalone server by issuing the following command
in your command-line tool:

$ webdriver-manager update

This will install the Selenium standalone server, which you'll later use to handle
Protractor's tests. The next step would be to conigure Protractor's execution options.

You can learn more about WebDriver by visiting the oficial
project page at https://code.google.com/p/selenium/
wiki/WebDriverJs.

https://github.com/angular/protractor
https://github.com/angular/protractor
https://code.google.com/p/selenium/wiki/WebDriverJs
https://code.google.com/p/selenium/wiki/WebDriverJs

Chapter 10

[287]

Coniguring the Protractor test runner
In order to control Protractor's test execution, you will need to create a Protractor
coniguration ile in the root folder of your application. When executed, Protractor
will automatically look for a coniguration ile named protractor.conf.js in your
application's root folder. You can also indicate your coniguration ilename using
a command-line lag, but for simplicity reasons, we'll use the default ilename. So
begin by creating a new ile named protractor.conf.js in your application's root
folder. In your new ile, paste the following lines of code:

exports.config = {

 specs: ['public/*[!lib]*/tests/e2e/*.js']

}

Our Protractor's coniguration ile is very basic and only includes one property. The
specs property basically tells Protractor where to ind the test iles. This coniguration
is project-oriented, which means that it will change according to your requirements.
For instance, you'll probably change the list of browsers you want your tests to run on.

You can learn more about Protractor's coniguration by going over
the example coniguration ile at https://github.com/angular/
protractor/blob/master/docs/referenceConf.js.

Writing your irst E2E test
Since E2E tests are quite complicated to write and read, we'll begin with a simple
example. In our example, we'll test the Create Article page and try to create a new
article. Since we didn't log in irst, an error should occur and be presented to the
user. To implement this test, go to your public/articles/tests folder and create
a new folder named e2e. Inside your new folder, create a new ile named articles.
client.e2e.tests.js. Finally, in your new ile, paste the following code snippet:

describe('Articles E2E Tests:', function() {

 describe('New Article Page', function() {

 it('Should not be able to create a new article', function() {

 browser.get('http://localhost:3000/#!/articles/create');

 element(by.css('input[type=submit]')).click();

 element(by.binding('error')).getText().then(function(errorText)
{

 expect(errorText).toBe('User is not logged in');

 });

 });

 });

});

https://github.com/angular/protractor/blob/master/docs/referenceConf.js
https://github.com/angular/protractor/blob/master/docs/referenceConf.js

Testing MEAN Applications

[288]

The general test structure should already be familiar to you; however, the test itself
is quite different. We began by requesting the Create Article page using the
browser.get() method. Then, we used the element() and by.css() methods to
submit the form. Finally, we found the error message element using by.binding()
and validated the error text. While this is a simple example, it illustrates well the
way E2E tests work. Next we'll use Protractor to run this test.

Running your AngularJS E2E tests
Running Protractor is a bit different than using Karma and Mocha. Protractor needs
your application to run so that it can access it just like a real user does. So let's begin
by running the application; navigate to your application's root folder and use your
command-line tool to start the MEAN application as follows:

$ NODE_ENV=test node server

Windows users should irst execute the following command:

> set NODE_ENV=test

Then run their application using the following command:

> node server

This will start your MEAN application using the test environment coniguration ile.
Now, open a new command-line window and navigate to your application's root
folder. Then, start the Protractor test runner by issuing the following command:

$ protractor

Protractor should run your tests and report the results in your command-line
window as shown in the following screenshot:

Protractor's test results

Chapter 10

[289]

Congratulations! You now know how to cover your application code with E2E tests.
It is recommended that you use these methods to expand your test suite and include
extensive E2E tests.

Summary
In this chapter, you learned to test your MEAN application. You learned about testing
in general and the common TDD/BDD testing paradigms. You then used the Mocha
test framework and created controller and model unit tests, where you utilized
different assertion libraries. Then, we discussed the methods of testing AngularJS,
where you learned the difference between unit and E2E testing. We then proceeded to
unit test your AngularJS application using the Jasmine test framework and the Karma
test runner. Then, you learned how to create and run E2E tests using Protractor. After
you've built and tested your real-time MEAN application, in the next chapter, you'll
learn how to dramatically improve your development cycle time using some popular
automation tools.

Automating and Debugging
MEAN Applications

In the previous chapters, you learned how to build and test your real-time MEAN
application. You learned how to connect all the MEAN components and how to use
test frameworks to test your application. While you can continue developing your
application using the same methods used in the previous chapters, you can also
speed up development cycles by using supportive tools and frameworks. These
tools will provide you with a solid development environment through automation
and abstraction. In this chapter, you'll learn how to use different community tools to
expedite your MEAN application's development. We'll cover the following topics:

• Introduction to Grunt

• Using Grunt tasks and community tasks

• Debugging your Express application using node-inspector

• Debugging your AngularJS application's internals using Batarang

Automating and Debugging MEAN Applications

[292]

Introducing the Grunt task runner
MEAN application development, and any other software development in general,
often involves redundant repetition. Daily operations such as running, testing,
debugging, and preparing your application for the production environment becomes
monotonous and should be abstracted by some sort of an automation layer. You may
be familiar with Ant or Rake, but in JavaScript projects, the automation of repetitive
tasks can be easily done using the Grunt task runner. Grunt is a Node.js command-
line tool that uses custom and third-party tasks to automate a project's build process.
This means you can either write your own automated tasks, or better yet, take
advantage of the growing Grunt eco-system and automate common operations using
third-party Grunt tasks. In this section, you'll learn how to install, conigure, and use
Grunt. The examples in this chapter will continue directly from those in previous
chapters, so copy the inal example from Chapter 10, Testing MEAN Applications,
and let's take it from there.

Installing the Grunt task runner
The easiest way to get started with Grunt is by using the Grunt command-line utility.
To do so, you will need to globally install the grunt-cli package by issuing the
following command in your command-line tool:

$ npm install -g grunt-cli

This will install the latest version of Grunt CLI in your global node_modules folder.
When the installation process is successfully inished, you'll be able to use the Grunt
utility from your command line.

You may experience some troubles installing global modules. This is
usually a permission issue, so use sudo or super user when running the
global install command.

To use Grunt in your project, you will need to install a local Grunt module using npm.
Furthermore, third-party tasks are also installed as packages using npm. For instance,
a common third-party task is the grunt-env task, which lets developers set Node's
environment variables. This task is installed as a node module, which Grunt can
later use as a task. Let's locally install the grunt and grunt-env modules. To do so,
change your project's package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.11",

 "dependencies": {

Chapter 11

[293]

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

This will install the speciied versions of the grunt and grunt-env modules in your
project's node_modules folder. When the installation process is successfully inished,
you'll be able to use Grunt in your project. However, irst you'll need to conigure
Grunt using the Gruntfile.js coniguration ile.

Automating and Debugging MEAN Applications

[294]

Coniguring Grunt
In order to conigure Grunt's operation, you will need to create a special
coniguration ile placed at the root folder of your application. When Grunt
is executed, it will automatically look for the default coniguration ile named
Gruntfile.js in the application's root folder. You can also indicate your
coniguration ilename using a command-line lag, but we'll use the default
ilename for simplicity.

To conigure Grunt and use the grunt-env task, create a new ile in your
application's root folder and name it Gruntfile.js. In your new ile, paste the
following code snippet:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 dev: {

 NODE_ENV: 'development'

 },

 test: {

 NODE_ENV: 'test'

 }

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.registerTask('default', ['env:dev']);

};

As you can see, the grunt coniguration ile uses a single module function to inject
the grunt object. Then, you used the grunt.initConfig() method to conigure
your third-party tasks. Notice how you conigured the grunt-env task in the
coniguration object, where you basically created two environment variables
sets: one for testing and the other for development. Next, you used the grunt.
loadNpmTasks() method to load the grunt-env module. Be aware that you will
need to call this method for any new third-party task you add to the project. Finally,
you created a default grunt task using the grunt.registerTask() method. Notice
how the grunt.registerTask() method accepts two arguments: the irst one sets
the task name and the second argument is a collection of other grunt tasks that will
be executed when the parent task is used. This is a common pattern of grouping
different tasks together to easily automate several operations. In this case, the
default task will only run the grunt-env tasks to set the NODE_ENV variable for your
development environment.

Chapter 11

[295]

To use the default task, navigate to your application's root folder and issue the
following command in your command-line tool:

$ grunt

This will run the grunt-env task and set the NODE_ENV variable for your development
environment. This is just a simple example, so let's see how we can use grunt to
automate more complex operations.

You can learn more about Grunt's coniguration by visiting the oficial
documentation page at http://gruntjs.com/configuring-tasks.

Running your application using Grunt
Running your application using the node command-line tool may not seem like a
redundant task. However, when continuously developing your application, you
will soon notice that you stop and start your application server quite often. To
help with this task, there is unique tool called Nodemon. Nodemon is a Node.js
command-line tool that functions as a wrapper to the simple node command-line
tool, but watches for changes in your application iles. When Nodemon detects ile
changes, it automatically restarts the node server to update the application. Although
Nodemon can be used directly, it is also possible to use it as a Grunt task. To do so,
you will need to install the third-party grunt-nodemon task and then conigure it in
your Grunt coniguration ile. Let's begin by installing the grunt-nodemon module.
Start by changing your project's package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.11",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

http://gruntjs.com/configuring-tasks

Automating and Debugging MEAN Applications

[296]

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1",

 "grunt-nodemon": "~0.3.0"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

This will install the speciied version of the grunt-nodemon module in your project's
node_modules folder. When the installation process is successfully inished, you
will need to conigure the Nodemon Grunt task. To do so, change your project's
Gruntfile.js ile as follows:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 test: {

 NODE_ENV: 'test'

 },

 dev: {

 NODE_ENV: 'development'

 }

 },

 nodemon: {

 dev: {

 script: 'server.js',

 options: {

 ext: 'js,html',

Chapter 11

[297]

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 }

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.loadNpmTasks('grunt-nodemon');

 grunt.registerTask('default', ['env:dev', 'nodemon']);

};

Let's go over these changes. First, you changed the coniguration object passed to the
grunt.initConfig() method. You added a new nodemon property and created a
development environment coniguration. The script property is used to deine the
main script ile, in this case, the server.js ile. The options property conigures
Nodemon's operation and tells it to watch both the HTML and JavaScript iles that
are placed in your config and app folders. The last changes you've made load the
grunt-nodemon module and add the nodemon task as a subtask of the default task.

To use your modiied default task, go to your application's root folder and issue the
following command in your command-line tool:

$ grunt

This will run both the grunt-env and grunt-nodemon tasks and start your
application server.

You can learn more about Nodemon's coniguration by visiting the oficial
documentation page at https://github.com/remy/nodemon.

Testing your application using Grunt
Since you have to run three different test tools, running your tests can also be
a tedious task. However, Grunt can assist you by running Mocha, Karma, and
Protractor for you. To do so, you will need to install the grunt-karma, grunt-
mocha-test, and grunt-protractor-runner modules and then conigure them in
your Grunt's coniguration ile. Start by changing your project's package.json ile as
follows:

{

 "name": "MEAN",

 "version": "0.0.11",

https://github.com/remy/nodemon

Automating and Debugging MEAN Applications

[298]

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1",

 "grunt-nodemon": "~0.3.0",

 "grunt-mocha-test": "~0.11.0",

 "grunt-karma": "~0.9.0",

 "grunt-protractor-runner": "~1.1.4"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

Chapter 11

[299]

This will install the speciied versions of the grunt-karma, grunt-mocha-test,
and grunt-protractor-runner modules in your project's node_modules folder.
However, you'll also need to download and install Protractor's standalone
WebDriver server by issuing the following command in your command-line tool:

$ node_modules/grunt-protractor-runner/node_modules/protractor/bin/
webdriver-manager update

When the installation process is successfully inished, your will need to
conigure your new Grunt tasks. To do so, change your project's Gruntfile.js
ile as follows:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 test: {

 NODE_ENV: 'test'

 },

 dev: {

 NODE_ENV: 'development'

 }

 },

 nodemon: {

 dev: {

 script: 'server.js',

 options: {

 ext: 'js,html',

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 }

 },

 mochaTest: {

 src: 'app/tests/**/*.js',

 options: {

 reporter: 'spec'

 }

 },

 karma: {

 unit: {

 configFile: 'karma.conf.js'

 }

 },

 protractor: {

 e2e: {

Automating and Debugging MEAN Applications

[300]

 options: {

 configFile: 'protractor.conf.js'

 }

 }

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.loadNpmTasks('grunt-nodemon');

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.loadNpmTasks('grunt-karma');

 grunt.loadNpmTasks('grunt-protractor-runner');

 grunt.registerTask('default', ['env:dev', 'nodemon']);

 grunt.registerTask('test', ['env:test', 'mochaTest', 'karma',
'protractor']);

};

Let's go over these changes. First, you changed the coniguration object passed to
the grunt.initConfig() method. You added a new mochaTest coniguration
property with a src property that tells the Mocha task where to look for the test
iles and an options property that sets Mocha's reporter. You also added a new
karma coniguration property that uses the configFile property to set Karma's
coniguration ilename and a new protractor coniguration property that uses
the configFile property to set Protractor's coniguration ile name. You inished
by loading the grunt-karma, grunt-mocha-test, and grunt-protractor-
runner modules and creating a new test task containing mochaTest, karma, and
protractor as subtasks.

To use your new test task, go to your application's root folder and issue the
following command in your command-line tool:

$ grunt test

This will run the grunt-env, mochaTest, karma, and protractor tasks and will run
your application tests.

Chapter 11

[301]

Linting your application using Grunt
In software development, linting is the identiication of suspicious code usage
using dedicated tools. In a MEAN application, linting can help you avoid common
mistakes and coding errors in your daily development cycles. Let's see how you can
use Grunt to lint your project's CSS and JavaScript iles. To do so, you will need to
install and conigure the grunt-contrib-csslint module, which lints CSS iles,
and the grunt-contrib-jshint modules, which lints JavaScript iles. Start by
changing your project's package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.11",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1",

 "grunt-nodemon": "~0.3.0",

Automating and Debugging MEAN Applications

[302]

 "grunt-mocha-test": "~0.11.0",

 "grunt-karma": "~0.9.0",

 "grunt-protractor-runner": "~1.1.4",

 "grunt-contrib-jshint": "~0.10.0",

 "grunt-contrib-csslint": "~0.2.0"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

This will install the speciied versions of the grunt-contrib-csslint and grunt-
contrib-jshint modules in your project's node_modules folder. When the
installation process is successfully inished, your will need to conigure your new
Grunt tasks. To do so, change your project's Gruntfile.js ile as follows:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 test: {

 NODE_ENV: 'test'

 },

 dev: {

 NODE_ENV: 'development'

 }

 },

 nodemon: {

 dev: {

 script: 'server.js',

 options: {

 ext: 'js,html',

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 }

 },

 mochaTest: {

 src: 'app/tests/**/*.js',

 options: {

 reporter: 'spec'

 }

 },

Chapter 11

[303]

 karma: {

 unit: {

 configFile: 'karma.conf.js'

 }

 },

 jshint: {

 all: {

 src: ['server.js', 'config/**/*.js', 'app/**/*.js', 'public/
js/*.js', 'public/modules/**/*.js']

 }

 },

 csslint: {

 all: {

 src: 'public/modules/**/*.css'

 }

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.loadNpmTasks('grunt-nodemon');

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.loadNpmTasks('grunt-karma');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-csslint');

 grunt.registerTask('default', ['env:dev', 'nodemon']);

 grunt.registerTask('test', ['env:test', 'mochaTest', 'karma']);

 grunt.registerTask('lint', ['jshint', 'csslint']);

};

Let's go over these changes. First, you changed the coniguration object passed
to the grunt.initConfig() method. You added a new jshint coniguration
with an src property that tells the linter task which JavaScript iles to test. You also
added a new csslint coniguration with an src property that tells the linter task
which CSS iles to test. You inished by loading the grunt-contrib-jshint and
grunt-contrib-csslint modules, and creating a new lint task containing jshint
and csslint as subtasks.

To use your new lint task, go to your application's root folder and issue the following
command in your command-line tool:

$ grunt lint

Automating and Debugging MEAN Applications

[304]

This will run the jshint and csslint tasks and will report the results in your
command-line tool. Linters are great tools to validate your code; however, in this
form, you would need to run the lint task manually. A better approach would be
to automatically run the lint task whenever you modify a ile.

Watching ile changes using Grunt
Using the current Grunt coniguration, Nodemon will restart your application
whenever certain iles change. However, what if you want to run other tasks when
iles change? For this, you will need to install the grunt-contrib-watch module,
which will be used to watch for ile changes, and the grunt-concurrent module that
is used to run multiple Grunt tasks concurrently. Start by changing your project's
package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.11",

 "dependencies": {

 "express": "~4.8.8",

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

Chapter 11

[305]

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1",

 "grunt-nodemon": "~0.3.0",

 "grunt-mocha-test": "~0.11.0",

 "grunt-karma": "~0.9.0",

 "grunt-protractor-runner": "~1.1.4",

 "grunt-contrib-jshint": "~0.10.0",

 "grunt-contrib-csslint": "~0.2.0",

 "grunt-contrib-watch": "~0.6.1",

 "grunt-concurrent": "~1.0.0"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

This will install the speciied versions of the grunt-contrib-watch and grunt-
concurrent modules in your project's node_modules folder. When the installation
process is successfully inished, your will need to conigure your new grunt tasks.
To do so, change your project's Gruntfile.js ile as follows:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 test: {

 NODE_ENV: 'test'

 },

 dev: {

 NODE_ENV: 'development'

 }

 },

 nodemon: {

 dev: {

 script: 'server.js',

 options: {

 ext: 'js,html',

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 }

 },

 mochaTest: {

Automating and Debugging MEAN Applications

[306]

 src: 'app/tests/**/*.js',

 options: {

 reporter: 'spec'

 }

 },

 karma: {

 unit: {

 configFile: 'karma.conf.js'

 }

 },

 protractor: {

 e2e: {

 options: {

 configFile: 'protractor.conf.js'

 }

 }

 },

 jshint: {

 all: {

 src: ['server.js', 'config/**/*.js', 'app/**/*.js', 'public/
js/*.js', 'public/modules/**/*.js']

 }

 },

 csslint: {

 all: {

 src: 'public/modules/**/*.css'

 }

 },

 watch: {

 js: {

 files: ['server.js', 'config/**/*.js', 'app/**/*.js', 'public/
js/*.js', 'public/modules/**/*.js'],

 tasks: ['jshint']

 },

 css: {

 files: 'public/modules/**/*.css',

 tasks: ['csslint']

 }

 },

 concurrent: {

 dev: {

 tasks: ['nodemon', 'watch'],

 options: {

Chapter 11

[307]

 logConcurrentOutput: true

 }

 }

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.loadNpmTasks('grunt-nodemon');

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.loadNpmTasks('grunt-karma');

 grunt.loadNpmTasks('grunt-protractor-runner');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-csslint');

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.loadNpmTasks('grunt-concurrent');

 grunt.registerTask('default', ['env:dev', 'lint', 'concurrent']);

 grunt.registerTask('test', ['env:test', 'mochaTest', 'karma',
'protractor']);

 grunt.registerTask('lint', ['jshint', 'csslint']);

};

First, you changed the coniguration object passed to the grunt.initConfig()
method. You added a new watch coniguration property with two subconigurations.
The irst one is to watch the JavaScript iles and the second is to watch the CSS iles.
These watch conigurations will automatically run the jshint and csslint tasks
whenever ile changes are detected. Then, you created a new coniguration for the
concurrent task that will run both the nodemon and watch tasks concurrently.
Notice that the concurrent task will log the console output of these tasks since
you set the logConcurrentOutput option to true. You inished by loading the
grunt-contrib-watch and grunt-concurrent modules and modifying your
default task to use the concurrent task.

To use your modiied default task, navigate to your application's root folder and
issue the following command in your command-line tool:

$ grunt

This will run the lint and concurrent tasks that will start your application and
report the results in your command-line tool.

Automating and Debugging MEAN Applications

[308]

Grunt is a powerful tool with a growing ecosystem of third-party tasks to perform
any task from minimizing iles to project deployment. Grunt also encouraged the
community to create new types of task runners, which are also gaining popularity
such as Gulp. So, it is highly recommended that you visit Grunt's home page at
http://gruntjs.com/ to ind the best automation tools suitable for your needs.

Debugging Express with node-inspector
Debugging the Express part of your MEAN application can be a complicated task.
Fortunately, there is a great tool that solves this issue called node-inspector. Node-
inspector is a debugging tool for Node.js applications that use the Blink (a WebKit
Fork) Developer Tools. In fact, developers using Google's Chrome browser will
notice that node-inspector's interface is very similar to the Chrome Developer Tools'
interface. Node-inspector supports some pretty powerful debugging features:

• Source code iles navigation
• Breakpoints manipulation

• Stepping over, stepping in, stepping out, and resuming execution

• Variable and properties inspection

• Live code editing

When running node-inspector, it will create a new web server and attach to your
running MEAN application source code. To debug your application, you will need
to access the node-inspector interface using a compatible web browser. You will then
be able to use node-inspector to debug your application code using node-inspector's
interface. Before you begin, you'll need to install and conigure node-inspector and
make a few small changes in the way you run your application. You can use node-
inspector independently or by using the node-inspector Grunt task. Since your
application is already conigured to use Grunt, we'll go with the Grunt task solution.

Installing node-inspector's grunt task
To use node-inspector, you will need to install the grunt-node-inspector module.
To do so, change your project's package.json ile as follows:

{

 "name": "MEAN",

 "version": "0.0.11",

 "dependencies": {

 "express": "~4.8.8",

http://gruntjs.com/

Chapter 11

[309]

 "morgan": "~1.3.0",

 "compression": "~1.0.11",

 "body-parser": "~1.8.0",

 "method-override": "~2.2.0",

 "express-session": "~1.7.6",

 "ejs": "~1.0.0",

 "connect-flash": "~0.1.1",

 "mongoose": "~3.8.15",

 "passport": "~0.2.1",

 "passport-local": "~1.0.0",

 "passport-facebook": "~1.0.3",

 "passport-twitter": "~1.0.2",

 "passport-google-oauth": "~0.1.5",

 "socket.io": "~1.1.0",

 "connect-mongo": "~0.4.1",

 "cookie-parser": "~1.3.3"

 },

 "devDependencies": {

 "should": "~4.0.4",

 "supertest": "~0.13.0",

 "karma": "~0.12.23",

 "karma-jasmine": "~0.2.2",

 "karma-phantomjs-launcher": "~0.1.4",

 "grunt": "~0.4.5",

 "grunt-env": "~0.4.1",

 "grunt-nodemon": "~0.3.0",

 "grunt-mocha-test": "~0.11.0",

 "grunt-karma": "~0.9.0",

 "grunt-protractor-runner": "~1.1.4",

 "grunt-contrib-jshint": "~0.10.0",

 "grunt-contrib-csslint": "~0.2.0",

 "grunt-contrib-watch": "~0.6.1",

 "grunt-concurrent": "~1.0.0",

 "grunt-node-inspector": "~0.1.5"

 }

}

To install your new dependencies, go to your application's root folder and issue the
following command in your command-line tool:

$ npm install

This will install the speciied version of the grunt-node-inspector module in your
project's node_modules folder. When the installation process is successfully inished,
your will need to conigure your new grunt task.

Automating and Debugging MEAN Applications

[310]

Coniguring node-inspector's grunt task
The node-inspector's grunt task coniguration is very similar to other tasks'
coniguration. However, it will also force you to make a few changes in other tasks
as well. To conigure the node-inspector task, change your project's Gruntfile.js
ile as follows:

module.exports = function(grunt) {

 grunt.initConfig({

 env: {

 test: {

 NODE_ENV: 'test'

 },

 dev: {

 NODE_ENV: 'development'

 }

 },

 nodemon: {

 dev: {

 script: 'server.js',

 options: {

 ext: 'js,html',

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 },

 debug: {

 script: 'server.js',

 options: {

 nodeArgs: ['--debug'],

 ext: 'js,html',

 watch: ['server.js', 'config/**/*.js', 'app/**/*.js']

 }

 }

 },

 mochaTest: {

 src: 'app/tests/**/*.js',

 options: {

 reporter: 'spec'

 }

 },

 karma: {

 unit: {

 configFile: 'karma.conf.js'

 }

 },

Chapter 11

[311]

 protractor: {

 e2e: {

 options: {

 configFile: 'protractor.conf.js'

 }

 }

 },

 jshint: {

 all: {

 src: ['server.js', 'config/**/*.js', 'app/**/*.js', 'public/
js/*.js', 'public/modules/**/*.js']

 }

 },

 csslint: {

 all: {

 src: 'public/modules/**/*.css'

 }

 },

 watch: {

 js: {

 files: ['server.js', 'config/**/*.js', 'app/**/*.js', 'public/
js/*.js', 'public/modules/**/*.js'],

 tasks: ['jshint']

 },

 css: {

 files: 'public/modules/**/*.css',

 tasks: ['csslint']

 }

 },

 concurrent: {

 dev: {

 tasks: ['nodemon', 'watch'],

 options: {

 logConcurrentOutput: true

 }

 },

 debug: {

 tasks: ['nodemon:debug', 'watch', 'node-inspector'],

 options: {

 logConcurrentOutput: true

 }

 }

 },

 'node-inspector': {

Automating and Debugging MEAN Applications

[312]

 debug: {}

 }

 });

 grunt.loadNpmTasks('grunt-env');

 grunt.loadNpmTasks('grunt-nodemon');

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.loadNpmTasks('grunt-karma');

 grunt.loadNpmTasks('grunt-protractor-runner');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-csslint');

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.loadNpmTasks('grunt-concurrent');

 grunt.loadNpmTasks('grunt-node-inspector');

 grunt.registerTask('default', ['env:dev', 'lint',
'concurrent:dev']);

 grunt.registerTask('debug', ['env:dev', 'lint',
'concurrent:debug']);

 grunt.registerTask('test', ['env:test', 'mochaTest', 'karma',
'protractor']);

 grunt.registerTask('lint', ['jshint', 'csslint']);

};

Let's go over these changes. First, you changed the coniguration object passed to
the grunt.initConfig() method. You began by modifying the nodemon task by
adding a new debug subtask. The debug subtask will use the nodeArgs property to
start your application in debug mode. Then, you modiied the concurrent task by
adding a new debug subtask as well. This time, the debug subtask is simply using
the nodemon:debug task and the new node-inspector task. Near the end of the
coniguration object, you minimally conigured the new node-inspector task and
then loaded the grunt-node-inspector module. You inished by creating a debug
task and modifying your default task.

You can learn more about node-inspector's coniguration by visiting
the oficial project at https://github.com/node-inspector/
node-inspector.

https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector

Chapter 11

[313]

Running the debug grunt task
To use your new debug task, navigate to your application's root folder and issue the
following command in your command-line tool:

$ grunt debug

This will run your application in a debug mode and start the node-inspector server.
The output in your command-line tool should be similar to the following screenshot:

As you can see, the node-inspector task invites you to start debugging the
application by visiting http://127.0.0.1:8080/debug?port=5858 using a
compatible browser. Open this URL in Google Chrome and you should see an
interface similar to the following screenshot:

Debugging with node-inspector

Automating and Debugging MEAN Applications

[314]

As you can see, you'll get a list of your project iles on the left-hand side panel, a ile
content viewer in the middle panel, and a debug panel on the right-hand side panel.
This means your node-inspector task is running properly and identiies your
Express project. You can start debugging your project by setting some breakpoints
and testing your components' behavior.

Node-inspector will only work on browsers that use the Blink
engine, such as Google Chrome or Opera.

Debugging AngularJS with Batarang
Debugging most of the AngularJS part of your MEAN application is usually done
in the browser. However, debugging the internal operations of AngularJS can be
a bit trickier. For this purpose, the AngularJS team created a Chrome extension
called Batarang. Batarang extends the Chrome Developer Tools with a new tab
where you can debug different aspects of your AngularJS application. Installing
Batarang is quite straightforward; all you have to is to visit the Chrome web store
at https://chrome.google.com/webstore/detail/angularjs-batarang/
ighdmehidhipcmcojjgiloacoafjmpfk and install the Chrome extension.

Batarang will only work on the Google Chrome browser.

https://chrome.google.com/webstore/detail/angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk
https://chrome.google.com/webstore/detail/angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk

Chapter 11

[315]

Using Batarang
Once you're done installing Batarang, use Chrome to navigate to your application
URL. Then, open the Chrome Developer Tools panel and you should see an AngularJS
tab. Click on it and a panel similar to the following screenshot should open:

Batarang Tool

Note that you need to enable Batarang using the Enable checkbox at the top of the
panel. Batarang has four tabs you can use: Models, Performance, Dependencies, and
Options. The last tab is the Help section where you can learn more about Batarang.

Automating and Debugging MEAN Applications

[316]

Batarang Models
To explore your AngularJS application models, make sure you've enabled
Batarang and click on the Models tab. You should see a panel similar to the
following screenshot:

Batarang models

On the left side of the panel, you'll be able to see the page scopes hierarchy.
When selecting a scope, you'll be able to see the scope model on the right. In the
preceding screenshot, you can see the scope model for the articles example from
the previous chapters.

Chapter 11

[317]

Batarang Performance
To explore your AngularJS application performance, make sure you enabled
Batarang and click on the Performance tab. You should see a panel similar to the
following screenshot:

Batarang performance

On the left side of the panel, you'll be able to see a tree of your application's watched
expressions. On the right-hand side of the panel, you'll be able to see the relative
and absolute performance status of all of your application's watched expressions. In
the preceding screenshot, you'll be able to see the performance report for the articles
example from the previous chapters.

Automating and Debugging MEAN Applications

[318]

Batarang Dependencies
To explore your AngularJS services' dependencies, make sure you enabled Batarang
and then click on the Dependencies tab. You should see a panel similar to the
following screenshot:

Batarang dependencies

In the Dependencies tab, you'll be able to see a visualization of the application's
services dependencies. When hovering with your mouse over one of the services,
the selected service will be colored green and the selected service dependencies
will turn red.

Batarang options
To highlight your AngularJS components' elements, make sure you've enabled
Batarang and then click on the Options tab. You should see a panel similar to
the following screenshot:

Chapter 11

[319]

Batarang options

When you enable one of the options, Batarang will highlight the respective feature
of the application. Scopes will have a red outline, bindings will have a blue outline,
and applications will have a green outline.

Batarang is a simple yet powerful tool. Used right, it can save you a lot of time of
endlessly looking around and using console logging. Make sure you understand
each tab and try to explore your application yourself.

Summary
In this chapter, you learned how to automate your MEAN application's development.
You also learned how to debug the Express and AngularJS parts of your application.
We discussed Grunt and its powerful ecosystem of third-party tasks. You learned
how to implement common tasks and how to group them together in your own
custom tasks. Then, you installed and conigured the node-inspector tool and learned
how to use Grunt and node-inspector to debug your Express code. Near the end of
this chapter, you learned about the Batarang Chrome extension. You went through
Batarang's features and found out how to debug your AngularJS internals.

Since it's the last chapter of this book, you should now know how to build, run, test,
debug, and automate your MEAN application.

The next step is up to you.

Index

Symbols

$http service 207
$resource service

using 210, 211
$resource factory method, arguments

Actions 210
Options 210
ParamDefaults 210
Url 210

$routeProvider object 185
.bowerrc coniguration ile 170
--dbpath command-line lag 12
--logpath command-line lag 13

A

ad hoc queries, MongoDB 84
after(callback) method 260
afterEach(callback) method 260
AND/OR queries

building 93
angular.bootstrap() method

conig argument 169
element argument 169
modules argument 169

angular global object 162
AngularJS

about 162
application structure 172-175
coniguring 171
debugging, with Batarang 314
installing 169
installing, Bower used 171
key concepts 162
MVC entities 177, 178

routing 182
services 187
URL, for core directives 168

AngularJS application
bootstrapping 176
E2E tests 284, 285
testing 271
testing, with Jasmine 271, 272
unit tests 272

AngularJS application bootstrap
about 168
automatic bootstrap 168
manual bootstrap 169

AngularJS application routes
deining 185-187

AngularJS authentication
Authentication service, adding 191-193
Authentication service, using 193
managing 189
user object, rendering 190, 191

AngularJS components
mocking 276

AngularJS core directives
about 167, 168
ng-app directive 167
ng-controller directive 167
ng-hide directive 168
ng-model directive 167
ng-repeat directive 168
ng-show directive 168

AngularJS custom directives 168
AngularJS custom services

URL, for documentation 189
AngularJS directives

about 167
core directives 167, 168

[322]

custom directives 168
AngularJS in-built services

$http 187
$location 187
$q 187
$resource 187
$rootScope 188
$window 188
about 187
URL, for documentation 188

AngularJS, key concepts
AngularJS application bootstrap 168
AngularJS directives 167
core module 162
dependency injection 165, 166
modules 162
two-way data binding 164, 165

AngularJS module controller
create method 213, 214
creating 212, 213
delete method 215, 216
read method 214
update method 215

AngularJS module routes
wiring 220

AngularJS module service
creating 212

AngularJS module views
create view 216, 217
edit view 218, 219
implementing 216
list view 219, 220
read view 217

AngularJS MVC module
controller, creating 212, 213
implementing 211, 212
routes, wiring 220
service, creating 212
views, implementing 216

angular.module() method
about 168
conigFN argument 163
name argument 163
requires argument 163

Angular scenario test runner 285
app folder, horizontal folder structure

about 57

controllers folder 57
models folder 57
routes folder 57
views folder 57

application
executing, Grunt used 295-297
linting, Grunt used 301-303
testing, Grunt used 297-300

application dependencies
installing 26
managing, package.json ile used 24

application folder structure, MVC pattern
about 56
ile-naming conventions 61
horizontal folder structure 56
horizontal folder structure,

implementing 62, 63
vertical folder structure 58

application modules 163
application object

about 52
app.engine(ext, callback) method 52
app.get(name) method 52
app.locals method 52
app.param([name], callback) method 53
app.route(path).VERB([callback...],

callback) method 53
app.set(name, value) method 52
app.use([path], callback) method 53
app.VERB(path, [callback...], callback)

method 53
application structure, AngularJS 172-175
app.listen() method 51
app.use() method 45, 51, 140, 142
ArticleSchema

content ield 197
created ield 197
creator reference object 197
title ield 197

ArticlesController, services
$location 213
$routeParams 213
Articles 213
Authentication 213

assertion libraries 258
authenticate() method 117

[323]

Authentication service
adding 191-193
using 193

authentication views, Passport
creating 135-137

authorization middleware 204
automatic bootstrap 168

B
Batarang

about 314
AngularJS, debugging with 314
AngularJS tab 315
Dependencies tab 318
Models tab 316
Options tab 318, 319
Performance tab 317
reference link, for installing 314
using 315

BDD 256, 257
before(callback) method 259
beforeEach() method 259, 266
behavior-driven development. See BDD
binaries

MongoDB, installing from 14, 15
Binary JSON. See BSON format
Blink 308
bodyParser.json() middleware 68
body-parser module 67
bodyParser.urlencoded() middleware 68
bootstrapping, AngularJS application

performing 176, 177
Bower

about 169
coniguring 170
URL 170
used, for installing AngularJS 171

browser.get() method 285
BSON format

about 83
advantage 83

C

callback function 41
chat controller, Socket.io chat

creating 248, 249

chat routes, Socket.io chat
creating 250

chat view, Socket.io chat
creating 249, 250

child() function 35
client folder, vertical folder structure

about 60
conig folder 60
controllers folder 60
css folder 60
directives folder 60
feature1.client.module.js ile 60
ilters folder 60
img folder 60
views folder 60

closures 34, 35
collection documents

retrieving 92
collections, MongoDB 89, 90
Comet 226
command-line interface (CLI) 20
CommonJS

about 36
modules 36-38

components, CommonJS
exports object 36
module object 36
require() method 36

compression module 67
compress() middleware 68
conig folder, horizontal folder structure

about 57
conig.js ile 57
env folder 57
express.js ile 57

coniguration, AngularJS 171
coniguration, Bower 170
coniguration, Connect-Flash

module 140, 141
coniguration, Express application test

environment 263
coniguration, Grunt 294
coniguration, Karma test runner 274, 275
coniguration middleware, Socket.io server

object 229, 230
coniguration, node-inspector's

grunt task 310-312

[324]

coniguration, Passport 127, 128
coniguration, Passport local

strategy 130, 131
coniguration, Passport's Facebook

strategy 148-150
coniguration, Passport's Google

strategy 156-159
coniguration, Passport's Twitter

strategy 152-154
coniguration, Protractor test runner 287
coniguration, Socket.io session

about 239, 243, 244
connect-mongo module,

coniguring 241, 242
connect-mongo module, installing 240
cookie-parser module, installing 240

coniguration system, Express application
about 66-68
environment coniguration iles 69

coniguration, URL scheme 184, 185
Connect-Flash module

about 139
coniguring 140, 141
installing 140
using 142

Connect middleware
about 44-46
mounting 47, 48
next argument 44
ordering 46
req argument 44
res argument 44

Connect module
about 42-44
Connect middleware 44-46

connect-mongo module
coniguring 241, 242
installing 240

Connect wiki page
URL 55

console.log() method 44
Controller 8
controllers, AngularJS 180-182
cookie-parser module

installing 240

core module, AngularJS
about 162
angular global object 162

core modules, Node.js
about 38
URL, for documentation 38

create-article view 216, 217
create() method 102, 199, 213, 214
createServer() method 41
CRUD modules

about 196
AngularJS MVC module,

implementing 211, 212
Express components, setting 196
implementing 221-223

custom getter modiiers 113
custom setter modiiers 112
custom validators 119, 120

D

databases, MongoDB 89
DBRef

about 121
URL 123
using 121-123

debug grunt task, node-inspector
running 313, 314

delete() method 109, 202, 203, 215, 216
Dependencies tab, Batarang 318
dependency injection

about 165, 166
working with 166, 167

describe() method 259, 266
dispatcher object 42
document

creating, insert() method used 91
creating, save() method used 92
creating, update() method used 91
deleting 95
updating, save() method used 94
updating, update() method used 94

document-based databases
versus relational databases 81

drop() method 95

[325]

E

E2E tests 256
E2E tests, AngularJS application

about 284, 285
executing 288, 289
Protractor test runner 285, 286
Protractor test runner, coniguring 287
Protractor test runner, installing 286
writing 287, 288

edit-article view 218, 219
EJS views

rendering 72, 73
emit() method 232, 233
end() method 41
end-to-end tests. See E2E tests
equality statement

using 92
error handling method

creating 198
event handlers, Socket.io chat

setting up 244-246
existing documents

updating 93
expect() method 261
Express

about 49, 50
application object 52
debugging, with node-inspector 308
installing 50, 51
request object 53
response object 54

Express application
coniguration system 66-68
coniguring 206, 207
creating 51
executing 52
Mocha test, writing 264
test environment, coniguring 263
testing 259
testing, with Mocha 259, 260
testing, with Should.js 260
testing, with SuperTest 261

Express components
Express application, coniguring 206, 207
Express controller, setting 198
Express routes, setting 204-206

Mongoose model, creating 196, 197
setting 196

Express controller
authorization middleware 204
create() method 199
creating 63
delete() method 202, 203
error handling method 198
list() method 199, 200
read() method 200, 201
setting 198
update() method 201
users controller authentication

middleware 203
Express framework

MVC pattern, implementing 55
express.js ile 65
Express middleware

about 55
body-parser 55
Compression 55
cookie-parser 55
express.static 55
method-override 55
Morgan 55
Session 55
URL 55

Express routes
setting 204-206

express-session module
installing 75

express.static() middleware 74
Express view system

coniguring 71, 72
Express web framework 50
external modules 163

F

Facebook's developer
URL 148

factory method 188
failureFlash property 143
failureRedirect property 143
ile changes

monitoring, Grunt used 304-307
ile modules 39

[326]

ile-naming conventions, MVC pattern 61
indByIdAndRemove() method 108
indByIdAndUpdate() method 107
ind() method

[Callback] parameter 105
[Fields] parameter 105
[Options] parameter 105
about 92, 214
Query parameter 105
used, for querying users 105
used, for searching multiple user

documents 104
indOneAndRemove() method 108
indOneAndUpdate() method 107
indOne() method

about 214
used, for reading single user

document 106, 107
irst-in-irst-out (FIFO) 46
folder modules 39, 40
fs.readFile() method 38

G

getErrorMessage() method 139, 198
get() method 214
Google developers

URL 156
Grunt

coniguring 294
URL 308
URL, for coniguration 295
used, for executing

application 295-297
used, for linting application 301-303
used, for monitoring ile

changes 304-307
used, for testing application 297-300

grunt-concurrent module
installing 304

grunt-contrib-csslint module
installing 301

grunt-contrib-jshint module
installing 301

grunt-contrib-watch module
installing 304

grunt-env task 292

grunt.initConig() method 294
grunt-karma module

installing 297
grunt.loadNpmTasks() method 294
grunt-mocha-test module

installing 297
grunt-nodemon module

installing 295
grunt-protractor-runner module

installing 297
grunt.registerTask() method 294
grunt task, node-inspector

coniguring 310-312
installing 308, 309

Grunt task runner
about 292
Grunt, coniguring 294
installing 292, 293

H

handshaking process, Socket.io
server object 229

hasAuthorization() middleware 204
Hashbangs scheme 184
hasName() middleware 64
horizontal folder structure, MVC pattern

about 56
app folder 57
conig folder 57
implementing 62, 63
package.json ile 58
public folder 58
request routing, handling 63
routing ile, creating 64, 65
server.js ile 58

horizontal scaling 87
http module 41

I

implementation, Socket.io chat
inalizing 251-253

indexes
about 85
used, for optimizing queries 114, 115

indexing, MongoDB 85

[327]

insert() method
about 91
used, for creating document 91

installation, AngularJS
about 169
Bower 169
Bower, coniguring 170
Bower used 171

installation, application dependencies 26
installation, Connect-Flash module 140
installation, Grunt task runner 292, 293
installation, Karma command-line tool 273
installation, Karma dependencies 273, 274
installation, Mocha 261
installation, MongoDB

from binaries 14, 15
MongoDB shell, using 16, 17
on Linux 14
on Mac OS X 14
on Windows 12
package manager used 15, 16
performing 11

installation, Mongoose 98
installation, ngMock module 277
installation, ngResource module 208, 209
installation, ngRoute module 183, 184
installation, node-inspector's

grunt task 308, 309
installation, Node.js

on Linux 20
on Mac OS X 19
on Windows 17, 18
performing 17

installation, NPM
global mode 22
local mode 22
package, installing 22, 23
package, removing 23
package, updating 23
performing 22

installation, package
NPM used 22, 23

installation, Passport 126
installation, Passport's local strategy 129
installation, Passport's Facebook

strategy 147

installation, Passport's Google
strategy 155, 156

installation, Passport's Twitter strategy 151
installation, Protractor test runner 286
installation, Should.js 262
installation, Socket.io

about 237
Socket.io server, coniguring 238
Socket.io session, coniguring 239

installation, SuperTest 262
installation, WebDriver 286
instance methods 117
inversion of control 166
it(description, callback) method 259

J

Jasmine
AngularJS application, testing with 271, 272
URL, for documentation 272

JavaScript
about 256
closures 34, 35
history 9

JavaScript event-driven programming 31, 32
JavaScript testing

about 256
assertion libraries 258
BDD 256, 257
TDD 256, 257
test frameworks 258
test runners 258
unit tests 256, 257

join() method 235
jqLite 162

K

Karma command-line tool
installing 273

Karma coniguration ile, settings
browsers 275
captureTimeout 275
iles 275
frameworks 275
reporters 275
singleRun 275

[328]

Karma dependencies
installing 273, 274

Karma test runner
about 272
coniguring 274
URL, for coniguring 275

key features, MongoDB
ad hoc queries 84
BSON format 83, 84
indexing 85
replica set 86
sharding 87

L

lastVisit property 77
leave() method 235
linting, application

Grunt used 301-303
Linux

Node.js, installing on 20
list-articles view 219, 220
listen() method 41
list() method 104, 199, 200
local strategy, Passport

about 129
coniguring 130, 131
installing 129
using 129

logger() middleware 47

M

Mac OS X
Node.js, installing on 19

make command 20
manual bootstrap 169
MEAN

about 10
advantages 10

MEAN application
testing 255

methodOverride() middleware 68
method-override module 67
Mocha

about 259, 260
installing 261
URL, for documentation 260

used, for testing Express
application 259, 260

Mocha test
executing 269, 270
Express controller, testing 267, 269
Express model, testing 265-267
writing 264

mocking, AngularJS components
about 276
ngMock module 276
ngMock module, installing 277

Model 8
models, Mongoose

about 116
instance methods 117
static methods 116

Models tab, Batarang 316
model validation

about 117
custom validators 119, 120
predeined validators 118, 119

modiiers, Mongoose schema
about 111
custom getter modiiers 113
custom setter modiiers 112
predeined modiiers 111, 112
URL 113

module function 65
modules, AngularJS

about 162
application modules 163
external modules 163
third-party modules 163

modules, CommonJS 36-38
modules, Node.js

about 36
CommonJS modules 36-38
core modules 38
ile modules 39
folder modules 39, 40
third-party modules 39

MongoDB
about 79, 82
executing, on Windows 12
goals 82
installing 11
installing, from binaries 14, 15

[329]

installing, package manager used 15, 16
key features 83
Mongoose, connecting to 98-100
reference links, for installation 16
URL, for documentation 11
URL, for downloading 11, 14

MongoDB ad hoc queries 84
MongoDB as Windows Service

executing, on Windows 13
MongoDB collections 89, 90
MongoDB coniguration ile

URL 14
MongoDB CRUD operations

about 91
document, creating 91
document, reading 92
documents, deleting 95
existing documents, updating 93

MongoDB databases 89
MongoDB, Express, AngularJS,

and Node.js. See MEAN
MongoDB indexing 85
MongoDB replica set

about 86
URL 86

MongoDB sharding
about 87
URL 87

MongoDB shell
about 88
using 16, 17

Mongoose
about 97
connecting, to MongoDB 98-100
DBRef 121-123
installing 98
models 116
schema 100
URL, for documentation 105

Mongoose middleware
about 120
post middleware, using 120
pre middleware, using 120
URL 121
using 120

Mongoose model
creating 196, 197

morgan module 67
multiple documents

deleting 95
multithreading

disadvantages 33
MVC

Controller 8
Model 8
View 8

MVC entities, AngularJS
about 177, 178
controllers 180-182
scopes 180-182
views 179, 180

MVC pattern
application folder structure 56
implementing 55

N

next() method 43
ng-app directive 167
ng-controller directive 167
ng-hide directive 168
ngMock module

about 276
installing 277

ng-model directive 167
ng-repeat directive 168
ngResource module

$resource factory, using 210, 211
about 207
installing 208, 209

ngRoute module
about 182
installing 183, 184
URL, for documentation 187

ng-show directive 168
NODE_ENV environment variable 66
node-inspector

about 308
debug grunt task, running 313, 314
grunt task, coniguring 310-312
grunt task, installing 308, 309
URL, for coniguration 312
used, for debugging Express 308

[330]

Node.js
executing 20
history 30
installing 17
installing, on Mac OS X 19
installing, on Windows 17, 18
JavaScript event-driven

programming 31, 32
modules 36
URL, for downloading 17, 19, 20
URL, for installation options 20
web applications development 40, 41

Node.js event-driven programming 33, 34
Node.js Package Manager. See NPM
Nodemon

about 295
URL, for coniguration 297

NoSQL
overview 79-81

NPM
about 7, 21
application dependencies managing,

package.json ile used 24
features 21
installing 22
URL 21
URL, for documentation 27
using 21

npm init command 24
npm install command 22, 26
npm update command 26

O
OAuth

about 145
URL 145

OAuth strategies
about 145
OAuth user creation, handling 145, 146
Passport's Facebook strategy 147
Passport's Google strategy 155
Passport's Twitter strategy 151
setting up 145

OAuth user creation
handling 145, 146

Options tab, Batarang 318, 319

P

package
installing, NPM used 22, 23
removing, NPM used 23
updating, NPM used 23

package.json ile
application dependencies, installing 26
creating 24-26, 50
updating 26
used, for managing application

dependencies 24
package manager

used, for installing MongoDB 15, 16
parent() function 34
Passport

about 125
coniguring 127, 128
installing 126
URL, for guide 160

passport.authenticate() method 143
passport.initialize() middleware 128
passport.session() middleware 128
Passport's Facebook strategy

coniguring 148-150
installing 147
routes, deining 150
using 147

Passport's Google strategy
coniguring 156-159
installing 155, 156
routes, deining 159, 160
using 155

Passport strategies
about 129
authentication views, creating 135-137
local strategy 129
OAuth strategies 145
user controller, modifying 137-139
user model, adapting 132-135
user's routes, deining 143, 144

Passport's Twitter strategy
coniguring 152-154
installing 151
routes, deining 154, 155
using 151

Performance tab, Batarang 317

[331]

PhantomJS
about 273
URL, for documentation 273

post() method 121
post middleware

about 120
using 120

predeined modiiers 111, 112
predeined validators 118, 119
pre() method 120
pre middleware

about 120
using 120

process.env.NODE_ENV variable 68, 69
process.env property 66
Protractor

about 286
URL 286
URL, for coniguring 287

protractor.conf.js ile
about 287
specs property 287

Protractor, global objects
browser 285
by 285
element 285
protractor 285

Protractor test runner
about 285, 286
coniguring 287
installing 286

provider method 188
public folder, horizontal folder structure

about 58
application.js ile 58
conig folder 58
controllers folder 58
css folder 58
directives folder 58
ilters folder 58
img folder 58
views folder 58

Q

query() method 214

query operators
URL 93
using 93

R

read() method 106, 200, 201
relational databases

versus document-based databases 81
remove() method 95, 108
replica set, MongoDB 86
replication 86
req.lash() method 142
req.login() method 139
request object

about 53
req.body method 53
req.cookies method 54
req.host method 54
req.ip method 54
req.param(name) method 53
req.params method 53
req.path method 54
req.query method 53

request routing
handling 63

requiresLogin() middleware 203
req.user object 106
resource methods

delete() method 210
get() method 210
query() method 210
remove() method 210
save() method 210

response object
about 54
res.cookie(name, value, [options])

method 54
res.json([status|body], [body]) method 54
res.redirect([status], url) method 54
res.render(view, [locals], callback)

method 54
res.send([body|status], [body])method 54
res.set(ield, [value]) method 54
res.status(code) method 54

res.render() method 72, 73
res.send() method 51

[332]

routing, AngularJS
about 182
AngularJS application routes,

deining 185-187
ngRoute module, installing 183, 184
URL scheme, coniguring 184, 185

routing ile
creating 64, 65

S

save() method
about 91
used, for creating document 92
used, for creating new users 101-103
used, for updating document 94

sayHello() middleware 64
scaling

about 87
horizontal scaling 87
vertical scaling 87

schema, Mongoose
about 100
default values, deining 110
existing user document, deleting 108, 109
existing user document, updating 107, 108
extending 110
modiiers 111
multiple user documents, searching with

ind() method 104
queries, optimizing with indexes 114, 115
single user document, reading with

indOne() method 106, 107
user model, creating 100, 101
user model, registering 101
user schema, creating 100, 101
users, creating with save() method 101-103
users, querying with ind() method 105
virtual attributes, adding 114

scopes, AngularJS 180-182
server folder, vertical folder structure

about 59
conig folder 60
controllers folder 59
models folder 59
routes folder 59
views folder 60

server.js ile 101
service method 188
services, AngularJS

about 187
creating 188
custom service 187
in-built services 187
prebundled services 187
using 189

sessions
about 75
coniguring 75-77

sharding 87
Should.js

about 260
installing 262
URL, for documentation 260
used, for testing Express application 260

signout() method 139
signup() method 139
single document

deleting 95
Socket.io

installing 237
URL, for oficial project page 236

Socket.io chat
building 244
chat controller, creating 248, 249
chat implementation,

inalizing 251-253
chat routes, adding 250
chat view, creating 249, 250
event handlers, setting of chat

server 244-246
Socket service, creating 247, 248

Socket.io client namespaces 235
Socket.io client object 230
Socket.io coniguration

middleware 229, 230
Socket.io events

about 231
events, emitting 233
events, handling 232, 233
system events, on client 231, 232
system events, on socket server 231

Socket.io handshaking 229

[333]

Socket.io namespaces
about 234
client namespaces 235
server namespaces 234

Socket.io rooms
about 235
events, emitting to rooms 236
room, joining 235
room, leaving 235

Socket.io server
coniguring 238, 239

Socket.io server namespaces 234
Socket.io server object 228
Socket.io session

coniguring 239, 243, 244
socket.on() method 229
Socket service, Socket.io chat

creating 247, 248
static iles

serving 73, 74
static methods 116
successRedirect property 143
SuperTest

about 261
installing 262
URL, for documentation 261
used, for testing Express application 261

system events, client
socket.io.on('close', ...) 232
socket.io.on('connect', ...) 231
socket.io.on('connect_error', ...) 231
socket.io.on('connect_timeout', ...) 231
socket.io.on('open', ...) 231
socket.io.on('reconnect', ...) 231
socket.io.on('reconnect_attempt', ...) 231
socket.io.on('reconnect_error', ...) 232
socket.io.on('reconnect_failed', ...) 232

system events, socket server
io.on('connection', ...) 231
socket.on('disconnect', ...) 231
socket.on('message', ...) 231

T

test-driven development (TDD) 256, 257
test environment, Express application

coniguring 263

test frameworks 258
test runners 258
tests

E2E tests 256
unit tests 256

third-party modules 39, 163
three-tier web application development 8
Twitter developers

URL 152
two-way data binding 164, 165
typical blog post example 80

U
unit tests 256
unit tests, AngularJS application

about 272
AngularJS components, mocking 276
ArticleControllers unit test,

writing 281-283
controllers, testing 278, 279
directives, testing 280, 281
executing 284
ilters, testing 281
Karma command-line tool, installing 273
Karma dependencies, installing 273, 274
Karma test runner 272
Karma test runner, coniguring 274, 275
modules, testing 278
routes, testing 280
services, testing 279
writing 277

unit tests, JavaScript testing 256, 257
update() method

about 91, 107, 201, 215
used, for creating document 91
used, for updating document 94

URL scheme
coniguring 184, 185

userById() method 106
user controller, Passport

Connect-Flash module 139
modifying 137-139

User model, Mongoose schemas
 registering 101

User model, Passport
adapting 132-135

[334]

user object, AngularJS authentication
rendering 190, 191

users controller authentication
middleware 203

users routes, Passport
deining 143, 144

V

validate property 119
vertical folder structure, MVC pattern

about 58, 59
client folder 60
server folder 59

vertical scaling 87
View 8
view-article view 217
views

rendering 70
views, AngularJS 179, 180
virtual attributes

adding, to Mongoose schema 114

W

web applications development, Node.js
about 40, 41
Connect module 42-44

WebDriver
about 285
installing 286
URL 286

WebSockets 226, 227
Windows

MongoDB as Windows Service,
executing on 13

MongoDB, executing on 12
MongoDB, installing on 12
Node.js, installing on 17, 18

writeHead() method 41

X
XHR long polling 226
XHR polling 226

	68ca66992c223a70a877b5563e9649a1363455c6913f34e8be60b7524a2161e7.pdf
	Cover

	MEAN Web Development
	Table of Contents
	Preface
	Chapter 1: Introduction to MEAN
	Three-tier web application development
	The evolution of JavaScript
	Introducing MEAN
	Installing MongoDB
	Installing MongoDB on Windows
	Running MongoDB manually
	Running MongoDB as a Windows Service

	Installing MongoDB on Mac OS X and Linux
	Installing MongoDB from binaries
	Install MongoDB using a package manager

	Using the MongoDB shell

	Installing Node.js
	Installing Node.js on Windows
	Installing Node.js on Mac OS X
	Installing Node.js on Linux
	Running Node.js

	Introducing NPM
	Using NPM
	The installation process of NPM
	Managing dependencies using the package.json file

	Summary

	Chapter 2: Getting Started with Node.js
	Introduction to Node.js
	JavaScript event-driven programming
	Node.js event-driven programming

	JavaScript closures
	Node modules
	CommonJS modules
	Node.js core modules
	Node.js third-party modules
	Node.js file modules
	Node.js folder modules

	Developing Node.js web applications
	Meet the Connect module
	Connect middleware
	Understanding the order of Connect middleware
	Mounting Connect middleware

	Summary

	Chapter 3: Building an Express Web Application
	Introduction to Express
	Installing Express
	Creating your first Express application
	The application, request, and response objects
	The application object
	The request object
	The response object

	External middleware
	Implementing the MVC pattern
	Application folder structure
	Horizontal folder structure
	Vertical folder structure
	Files naming conventions
	Implementing the horizontal folder structure

	Configuring an Express application
	Environment configuration files

	Rendering views
	Configuring the view system
	Rendering EJS views

	Serving static files
	Configuring sessions
	Summary

	Chapter 4: Introduction to MongoDB
	Introduction to NoSQL
	Introducting MongoDB
	Key features of MongoDB
	The BSON format
	MongoDB ad hoc queries
	MongoDB indexing
	MongoDB replica set
	MongoDB sharding

	MongoDB shell
	MongoDB databases
	MongoDB collections
	MongoDB CRUD operations
	Creating a new document
	Creating a document using insert()
	Creating a document using update()
	Creating a document using save()

	Reading documents
	Finding all the collection documents
	Using an equality statement
	Using query operators
	Building AND/OR queries

	Updating existing documents
	Updating documents using update()
	Updating documents using save()

	Deleting documents
	Deleting all documents

	Summary

	Chapter 5: Introduction to Mongoose
	Introducing Mongoose
	Installing Mongoose
	Connecting to MongoDB

	Understanding Mongoose schemas
	Creating the user schema and model
	Registering the user model
	Creating new users using save()
	Finding multiple user documents using find()
	Advanced querying using find()

	Reading a single user document using findOne()
	Updating an existing user document
	Deleting an existing user document

	Extending your Mongoose schema
	Defining default values
	Using schema modifiers
	Predefined modifiers
	Custom setter modifiers
	Custom getter modifiers

	Adding virtual attributes
	Optimizing queries using indexes

	Defining custom model methods
	Defining custom static methods
	Defining custom instance methods

	Model validation
	Predefined validators
	Custom validators

	Using Mongoose middleware
	Using pre middleware
	Using post middleware

	Using Mongoose DBRef
	Summary

	Chapter 6: Managing User Authentication Using Passport
	Introducing Passport
	Installing Passport
	Configuring Passport

	Understanding Passport strategies
	Using Passport's local strategy
	Installing Passport's local strategy module
	Configuring Passport's local strategy

	Adapting the User model
	Creating the authentication views
	Modifying the user controller
	Displaying flash error messages

	Wiring the user's routes

	Understanding Passport OAuth strategies
	Setting up OAuth strategies
	Handling OAuth user creation
	Using Passport's Facebook strategy
	Using Passport's Twitter strategy
	Using Passport's Google strategy

	Summary

	Chapter 7: Introduction to AngularJS
	Introducing AngularJS
	Key concepts of AngularJS
	The core module of AngularJS
	The angular global object

	AngularJS modules
	Application modules
	External modules
	Third-party modules

	Two-way data binding
	Dependency injection
	Dependency injection in AngularJS

	AngularJS directives
	Core directives
	Custom directives

	Bootstrapping an AngularJS application
	Automatic bootstrap
	Manual bootstrap

	Installing AngularJS
	Meeting the Bower dependencies manager
	Configuring the Bower dependencies manager
	Installing AngularJS using Bower
	Configuring AngularJS

	Structuring an AngularJS application
	Bootstrapping your AngularJS application
	AngularJS MVC entities
	AngularJS views
	AngularJS controllers and scopes

	AngularJS routing
	Installing the ngRoute module
	Configuring the URL scheme
	AngularJS application routes

	AngularJS services
	AngularJS prebundled services
	Creating AngularJS services
	Using AngularJS services

	Managing AngularJS authentication
	Rendering the user object
	Adding the Authentication service
	Using the Authentication service

	Summary

	Chapter 8: Creating a MEAN CRUD Module
	Introducing CRUD modules
	Setting up the Express components
	Creating the Mongoose model
	Setting up the Express controller
	The error handling method of the Express controller
	The create() method of the Express controller
	The list () method of the Express controller
	The read() middleware of the Express controller
	The update() method of the Express controller
	The delete method of the Express controller
	Implementing an authentication middleware
	Implementing an authorization middleware

	Wiring the Express routes
	Configuring the Express application

	Introducing the ngResource module
	Installing the ngResource module
	Using the $resource service

	Implementing the AngularJS MVC module
	Creating the AngularJS module service
	Setting up the AngularJS module controller
	The create() method of the AngularJS controller
	The find () and findOne() methods of the AngularJS controller
	The update() method of the AngularJS controller
	The delete() method of the AngularJS controller

	Implementing the AngularJS module views
	The create-article view
	The view-article view
	The edit-article view
	The list-articles view

	Wiring the AngularJS module routes

	Finalizing your module implementation
	Summary

	Chapter 9: Adding Real-time Functionality Using Socket.io
	Introducing WebSockets
	Introducing Socket.io
	The Socket.io server object
	Socket.io handshaking
	The Socket.io configuration middleware

	The Socket.io client object
	Socket.io events
	Handling events
	Emitting events

	Socket.io namespaces
	Socket.io server namespaces
	Socket.io client namespaces

	Socket.io rooms
	Joining and leaving rooms
	Emitting events to rooms

	Installing Socket.io
	Configuring the Socket.io server
	Configuring the Socket.io session
	Installing the connect-mongo and cookie-parser modules
	Configuring the connect-mongo module
	Configuring the Socket.io session

	Building a Socket.io chat
	Setting the event handlers of the chat server
	Creating the Socket service
	Creating the chat controller
	Creating the chat view
	Adding chat routes
	Finalizing the chat implementation

	Summary

	Chapter 10: Testing MEAN Applications
	Introducing JavaScript testing
	TDD, BDD, and unit testing
	Test frameworks
	Assertion libraries
	Test runners

	Testing your Express application
	Introducing Mocha
	Introducing Should.js
	Introducing SuperTest
	Installing Mocha
	Installing the Should.js and SuperTest modules
	Configuring your test environment
	Writing your first Mocha test
	Testing the Express model
	Testing the Express controller

	Running your Mocha test

	Testing your AngularJS application
	Introducing the Jasmine framework
	AngularJS unit tests
	Introducing Karma test runner
	Installing the Karma command-line tool
	Installing Karma's dependencies
	Configuring the Karma test runner
	Mocking AngularJS components
	Writing AngularJS unit tests
	Writing your first unit test
	Running your AngularJS unit tests

	AngularJS E2E tests
	Introducing the Protractor test runner
	Installing the Protractor test runner
	Configuring the protractor test runner
	Writing your first E2E test
	Running your AngularJS E2E tests

	Summary

	Chapter 11: Automating and Debugging MEAN Applications
	Introducing the Grunt task runner
	Installing the Grunt task runner
	Configuring Grunt
	Running your application using Grunt
	Testing your application using Grunt
	Linting your application using Grunt
	Watching file changes using Grunt

	Debugging Express with node-inspector
	Installing node-inspector's grunt task
	Configuring node-inspector's grunt task
	Running the debug grunt task

	Debugging AngularJS with Batarang
	Using Batarang
	Batarang Models
	Batarang Performance
	Batarang Dependencies

	Summary

	MEAN Web Development
	Index

