
M A N N I N G

Masato Hagiwara

https://chools.in                           https://choolsgroup.com              https://choolskool.com



v

contents
preface xi
acknowledgments xiii
about this book xiv
about the author xvii
about the cover illustration xviii

PART 1 BASICS ............................................................ 1

1 Introduction to natural language processing 3
1.1 What is natural language processing (NLP)? 4

What is NLP? 4 ■ What is not NLP? 6 ■ AI, ML, DL, and 
NLP 8 ■ Why NLP? 10

1.2 How NLP is used 12
NLP applications 13 ■ NLP tasks 15

1.3 Building NLP applications 21
Development of NLP applications 21 ■ Structure of NLP 
applications 24

2 Your first NLP application 26
2.1 Introducing sentiment analysis 27
2.2 Working with NLP datasets 28

What is a dataset? 28 ■ Stanford Sentiment Treebank 29
Train, validation, and test sets 30 ■ Loading SST datasets using 
AllenNLP 33

https://chools.in                           https://choolsgroup.com              https://choolskool.com



CONTENTSvi

2.3 Using word embeddings 34
What are word embeddings? 34 ■ Using word embeddings 
for sentiment analysis 36

2.4 Neural networks 37
What are neural networks? 37 ■ Recurrent neural networks 
(RNNs) and linear layers 38 ■ Architecture for sentiment 
analysis 39

2.5 Loss functions and optimization 41
2.6 Training your own classifier 43

Batching 43 ■ Putting everything together 44

2.7 Evaluating your classifier 45
2.8 Deploying your application 46

Making predictions 46 ■ Serving predictions 46

3 Word and document embeddings 49
3.1 Introducing embeddings 50

What are embeddings? 50 ■ Why are embeddings 
important? 50

3.2 Building blocks of language: Characters, words, 
and phrases 52
Characters 52 ■ Words, tokens, morphemes, and phrases 53
N-grams 53

3.3 Tokenization, stemming, and lemmatization 54
Tokenization 54 ■ Stemming 55 ■ Lemmatization 56

3.4 Skip-gram and continuous bag of words (CBOW) 57
Where word embeddings come from 57 ■ Using word 
associations 58 ■ Linear layers 59 ■ Softmax 61
Implementing Skip-gram on AllenNLP 62 ■ Continuous 
bag of words (CBOW) model 67

3.5 GloVe 68
How GloVe learns word embeddings 68 ■ Using pretrained 
GloVe vectors 69

3.6 fastText 72
Making use of subword information 72 ■ Using the 
fastText toolkit 73

3.7 Document-level embeddings 74
3.8 Visualizing embeddings 76

https://chools.in                           https://choolsgroup.com              https://choolskool.com



CONTENTS vii

4 Sentence classification 80
4.1 Recurrent neural networks (RNNs) 81

Handling variable-length input 81 ■ RNN abstraction 82
Simple RNNs and nonlinearity 84

4.2 Long short-term memory units (LSTMs) and gated 
recurrent units (GRUs) 88
Vanishing gradients problem 88 ■ Long short-term memory 
(LSTM) 90 ■ Gated recurrent units (GRUs) 92

4.3 Accuracy, precision, recall, and F-measure 93
Accuracy 93 ■ Precision and recall 94 ■ F-measure 96

4.4 Building AllenNLP training pipelines 96
Instances and fields 97 ■ Vocabulary and token 
indexers 98 ■ Token embedders and RNNs 99
Building your own model 100 ■ Putting it all 
together 101

4.5 Configuring AllenNLP training pipelines 102
4.6 Case study: Language detection 105

Using characters as input 106 ■ Creating a dataset 
reader 106 ■ Building the training pipeline 108
Running the detector on unseen instances 110

5 Sequential labeling and language modeling 112
5.1 Introducing sequential labeling 113

What is sequential labeling? 113 ■ Using RNNs 
to encode sequences 115 ■ Implementing a Seq2Seq 
encoder in AllenNLP 117

5.2 Building a part-of-speech tagger 118
Reading a dataset 118 ■ Defining the model and the 
loss 119 ■ Building the training pipeline 121

5.3 Multilayer and bidirectional RNNs 122
Multilayer RNNs 122 ■ Bidirectional RNNs 124

5.4 Named entity recognition 126
What is named entity recognition? 127 ■ Tagging 
spans 128 ■ Implementing a named entity 
recognizer 128

5.5 Modeling a language 130
What is a language model? 130 ■ Why are language models 
useful? 131 ■ Training an RNN language model 132

https://chools.in                           https://choolsgroup.com              https://choolskool.com



CONTENTSviii

5.6 Text generation using RNNs 133
Feeding characters to an RNN 134 ■ Evaluating text using 
a language model 134 ■ Generating text using a language 
model 136

PART 2 ADVANCED MODELS .....................................  139

6 Sequence-to-sequence models 141
6.1 Introducing sequence-to-sequence models 142
6.2 Machine translation 101 144
6.3 Building your first translator 147

Preparing the datasets 148 ■ Training the model 150
Running the translator 153

6.4 How Seq2Seq models work 154
Encoder 154 ■ Decoder 156 ■ Greedy decoding 158
Beam search decoding 161

6.5 Evaluating translation systems 163
Human evaluation 163 ■ Automatic evaluation 163

6.6 Case study: Building a chatbot 165
Introducing dialogue systems 165 ■ Preparing a dataset 166
Training and running a chatbot 167 ■ Next steps 169

7 Convolutional neural networks 171
7.1 Introducing convolutional neural networks (CNNs) 172

RNNs and their shortcomings 172 ■ Pattern matching 
for sentence classification 173 ■ Convolutional neural 
networks (CNNs) 174

7.2 Convolutional layers 174
Pattern matching using filters 175 ■ Rectified linear unit 
(ReLU) 176 ■ Combining scores 178

7.3 Pooling layers 179
7.4 Case study: Text classification 180

Review: Text classification 180 ■ Using CnnEncoder 181
Training and running the classifier 182

8 Attention and Transformer 184
8.1 What is attention? 185

Limitation of vanilla Seq2Seq models 185 ■ Attention 
mechanism 186

https://chools.in                           https://choolsgroup.com              https://choolskool.com



CONTENTS ix

8.2 Sequence-to-sequence with attention 187
Encoder-decoder attention 188 ■ Building a Seq2Seq 
machine translation with attention 189

8.3 Transformer and self-attention 192
Self-attention 192 ■ Transformer 195 ■ Experiments 197

8.4 Transformer-based language models 200
Transformer as a language model 200 ■ Transformer-XL 203
GPT-2 205 ■ XLM 207

8.5 Case study: Spell-checker 208
Spell correction as machine translation 208 ■ Training a spell-
checker 210 ■ Improving a spell-checker 213

9 Transfer learning with pretrained language models 218
9.1 Transfer learning 219

Traditional machine learning 219 ■ Word embeddings 220
What is transfer learning? 220

9.2 BERT 222
Limitations of word embeddings 222 ■ Self-supervised learning 224
Pretraining BERT 225 ■ Adapting BERT 226

9.3 Case study 1: Sentiment analysis with BERT 229
Tokenizing input 230 ■ Building the model 232
Training the model 233

9.4 Other pretrained language models 236
ELMo 236 ■ XLNet 237 ■ RoBERTa 239
DistilBERT 240 ■ ALBERT 241

9.5 Case study 2: Natural language inference with BERT 243
What is natural language inference? 243 ■ Using BERT 
for sentence-pair classification 244 ■ Using Transformers 
with AllenNLP 246

PART 3 PUTTING INTO PRODUCTION .......................  253

10 Best practices in developing NLP applications 255
10.1 Batching instances 256

Padding 256 ■ Sorting 257 ■ Masking 259

10.2 Tokenization for neural models 261
Unknown words 261 ■ Character models 262 ■ Subword 
models 263

https://chools.in                           https://choolsgroup.com              https://choolskool.com



CONTENTSx

10.3 Avoiding overfitting 265
Regularization 265 ■ Early stopping 268 ■ Cross-
validation 269

10.4 Dealing with imbalanced datasets 270
Using appropriate evaluation metrics 270 ■ Upsampling and 
downsampling 271 ■ Weighting losses 272

10.5 Hyperparameter tuning 273
Examples of hyperparameters 274 ■ Grid search vs. random 
search 275 ■ Hyperparameter tuning with Optuna 276

11 Deploying and serving NLP applications 280
11.1 Architecting your NLP application 281

Before machine learning 282 ■ Choosing the right 
architecture 282 ■ Project structure 283 ■ Version 
control 285

11.2 Deploying your NLP model 286
Testing 286 ■ Train-serve skew 288 ■ Monitoring 289
Using GPUs 289

11.3 Case study: Serving and deploying NLP applications 292
Serving models with TorchServe 292 ■ Deploying models with 
SageMaker 296

11.4 Interpreting and visualizing model predictions 298
11.5 Where to go from here 302

index 305

https://chools.in                           https://choolsgroup.com              https://choolskool.com



xi

preface
Having worked at the intersection of machine learning (ML), natural language pro-
cessing (NLP), and education for the last two decades, I have always been passionate
about education and helping people learn new technologies. That’s why I didn’t think
twice when I heard about the opportunity of publishing a book on NLP.

 The field of artificial intelligence (AI) went through a lot of changes over the past
several years, including the explosive popularization of neural network–based meth-
ods and the advent of large, pretrained language models. This change made advanced
language technologies possible, many of which you interact with daily—voice-based
virtual assistants, speech recognition, and machine translation, to name a few. How-
ever, the “technology stack” of NLP, characterized by the use of pretrained models
and transfer learning, has finally stabilized in the last few years and is expected to
remain so, at least for the next couple of years. This is why I think now is a good time
to start learning about NLP.

 Developing a book on AI is never easy. It feels like you are chasing a moving target
that doesn’t slow down and wait for you. When I started writing this book, the Trans-
former had just been published, and BERT did not yet exist. Over the course of writ-
ing, AllenNLP, the main NLP framework we use in this book, went through two major
updates. Few people were using Hugging Face Transformer, a widely popular deep
NLP library currently used by many practitioners all over the world. Within two years,
the landscape of the NLP field changed completely, due to the advent of the Trans-
former and pretrained language models such as BERT. The good news is that the
basics of modern machine learning, including word and sentence embeddings, RNNs,
and CNNs, have not become obsolete and remain important. This book intends to cap-
ture this “core” of ideas and concepts that help you build real-world NLP applications. 



PREFACExii

 Many great books about ML and deep learning in general are on the market, but
some of them focus heavily on math and theories. There’s a gap between what’s
taught in books and what the industry needs. I hope this book will serve to bridge
this gap.
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about this book
Real-World Natural Language Processing is not a typical NLP textbook. We focus on build-
ing real-world NLP applications. Real-world’s meaning here is twofold: first, we pay
attention to what it takes to build real-world NLP applications. As a reader, you will
learn not just how to train NLP models but also how to design, develop, deploy, and
monitor them. Along the way, you will also learn the basic building blocks of modern
NLP models, as well as recent developments in the NLP field that are useful for build-
ing NLP applications. Second, unlike most introductory books, we take a top-down
approach to teaching. Instead of a bottom-up approach, spending page after page
showing neural network theories and mathematical formulae, we focus on quickly
building NLP applications that “just work.” We then dive deeper into individual con-
cepts and models that make up NLP applications. You’ll also learn how to build
end-to-end custom NLP applications tailored to your needs using these basic building
blocks.

Who should read this book

This book is written mainly for software engineers and programmers who are looking
to learn the basics of NLP and how to build NLP applications. We assume that you, the
reader, have basic programming and software engineering skills in Python. This book
also comes in handy if you are already working on machine learning but would like to
move into the NLP field. Either way, you don’t need any prior knowledge of ML or
NLP. You don’t need any math knowledge to read this book, although basic under-
standing of linear algebra might be helpful. There is not a single mathematical for-
mula in this book.
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How this book is organized: A roadmap

This book consists of three parts that span a total of 11 chapters. Part 1 covers the
basics of NLP, where we learn how to quickly build an NLP application with AllenNLP
for basic tasks such as sentiment analysis and sequence labeling.

 Chapter 1 begins by introducing the “what” and “why” of NLP—what is NLP,
what is not NLP, how NLP technologies are used, and how NLP is related to other
fields of AI.

 Chapter 2 demonstrates how to build your very first NLP application, a sentiment
analyzer, and introduces the basics of modern NLP models—word embeddings
and recurrent neural networks (RNNs)—along the way.

 Chapter 3 introduces two important building blocks of NLP applications, word
and sentence embeddings, and demonstrates how to use and train them.

 Chapter 4 discusses one of the simplest but most important NLP tasks, sentence
classification, and how to use RNNs for this task.

 Chapter 5 covers sequence labeling tasks such as part-of-speech tagging and
named entity extraction. It also touches upon a related technique, language
modeling.

Part 2 covers advanced NLP topics including sequence-to-sequence models, the Trans-
former, and how to leverage transfer learning and pretrained language models to
build powerful NLP applications.

 Chapter 6 introduces sequence-to-sequence models, which transform one
sequence into another. We build a simple machine translation system and a
chatbot within an hour.

 Chapter 7 discusses another type of popular neural network architecture, con-
volutional neural networks (CNNs).

 Chapter 8 provides a deep dive into the Transformer, one of the most import-
ant NLP models today. We’ll demonstrate how to build an improved machine
translation system and a spell-checker using the Transformer.

 Chapter 9 builds upon the previous chapter and discusses transfer learning, a pop-
ular technique in modern NLP, with pretrained language models such as BERT.

Part 3 covers topics that become relevant when you develop NLP applications that are
robust to real-world data, and deploy and serve them.

 Chapter 10 details best practices when developing NLP applications, including
batching and padding, regularization, and hyperparameter optimization.

 Chapter 11 concludes the book by covering how to deploy and serve NLP mod-
els. It also covers how to explain and interpret ML models.

About the code 

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
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like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download from the Manning
website at https://www.manning.com/books/real-world-natural-language-processing
and from GitHub at https://github.com/mhagiwara/realworldnlp.

 Most of the code can also be run on Google Colab, which is a free web-based plat-
form where you can run your machine learning code on hardware accelerators,
including GPUs. 

liveBook discussion forum

Purchase of Real-World Natural Language Processing includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users.
To access the forum, go to https://livebook.manning.com/book/real-world-natural
-language-processing/discussion. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

The two NLP frameworks we use heavily in this book, AllenNLP and Hugging Face
Transformers, both have great online courses (https://guide.allennlp.org/ and
https://huggingface.co/course) where you can learn the basics of NLP and how to
use the libraries to solve a variety of NLP tasks.

https://www.manning.com/books/real-world-natural-language-processing
https://github.com/mhagiwara/realworldnlp
https://livebook.manning.com/book/real-world-natural-language-processing/discussion
https://livebook.manning.com/book/real-world-natural-language-processing/discussion
https://livebook.manning.com/book/real-world-natural-language-processing/discussion
https://livebook.manning.com/#!/discussion
https://guide.allennlp.org/
https://huggingface.co/course
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The figure on the cover of Real-World Natural Language Processing is captioned “Bulgare,”
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Part 1

Basics

Welcome to the beautiful and exciting world of natural language process-
ing (NLP)! NLP is a subfield of artificial intelligence (AI) that concerns compu-
tational approaches to processing, understanding, and generating human
languages. NLP is used in many technologies you interact with in your daily life—
spam filtering, conversational assistants, search engines, and machine translation.
This first part of the book is intended to give you a gentle introduction to the field
and bring you up to speed with how to build practical NLP applications.

 In chapter 1, we’ll begin by introducing the “what” and “why” of NLP—what
is NLP, what is not NLP, how NLP technologies are used, and how it’s related to
other fields of AI.

 In chapter 2, you’ll build a complete, working NLP application—a sentiment
analyzer—within an hour with the help of a powerful NLP framework, Allen-
NLP. You’ll also learn to use basic machine learning (ML) concepts, including
word embeddings and recurrent neural networks (RNNs). Don’t worry if this sounds
intimidating—we’ll introduce you to the concepts gradually and provide an
intuitive explanation.

 Chapter 3 provides a deep dive into the one of the most important concepts
for deep learning approaches to NLP—word and sentence embeddings. The
chapter demonstrates how to use and even train them using your own data.

 Chapters 4 and 5 cover fundamental NLP tasks, sentence classification and
sequence labeling. Though simple, these tasks have a wide range of applica-
tions, including sentiment analysis, part-of-speech tagging, and named entity
recognition. 

 This part familiarizes you with some basic concepts of modern NLP and we’ll
build useful NLP applications along the way.



2 CHAPTER 



3

Introduction to natural
language processing

This is not an introductory book to machine learning or deep learning. You won’t
learn how to write neural networks in mathematical terms or how to compute gra-
dients, for example. But don’t worry, even if you don’t have any idea what they are.
I’ll explain those concepts as needed, not mathematically but conceptually. In fact,
this book contains no mathematical formulae—not a single one. Also, thanks to
modern deep learning libraries, you don’t really need to understand the math to
build practical NLP applications. If you are interested in learning the theories and
the math behind machine learning and deep learning, you can find a number of
great resources out there.

This chapter covers
 What natural language processing (NLP) is, what it is not, 

and why it’s such an interesting, yet challenging, field

 How NLP relates to other fields, including artificial 
intelligence (AI) and machine learning (ML)

 What typical NLP applications and tasks are

 How a typical NLP application is developed and structured
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 But you do need to be at least comfortable enough to write in Python and know its
ecosystems. However, you don’t need to be an expert in software engineering topics.
In fact, this book’s purpose is to introduce software engineering best practices for
developing NLP applications. You also don’t need to know NLP in advance. Again,
this book is designed to be a gentle introduction to the field. 

 You need Python version 3.6.1 or higher and AllenNLP 2.5.0 or higher to run the
code examples in this book. Note that we do not support Python 2, mainly because
AllenNLP (https://allennlp.org/), the deep natural language processing framework
I’m going to heavily use in this book, supports only Python 3. If you haven’t done so, I
strongly recommend upgrading to Python 3 and familiarizing yourself with the latest
language features such as type hints and new string-formatting syntax. This will be
helpful, even if you are developing non-NLP applications.

 Don’t worry if you don’t have a Python development environment ready. Most of
the examples in this book can be run via the Google Colab platform (https://
colab.research.google.com). You need only a web browser to build and experiment
with NLP models!

 This book will use PyTorch (https://pytorch.org/) as its main choice of deep learn-
ing framework. This was a difficult decision for me, because several deep learning
frameworks are equally great choices for building NLP applications, namely, Tensor-
Flow, Keras, and Chainer. A few factors make PyTorch stand out among those
frameworks—it’s a flexible and dynamic framework that makes it easier to prototype
and debug NLP models; it’s becoming increasingly popular within the research com-
munity, so it’s easy to find open source implementations of major models; and the
deep NLP framework AllenNLP mentioned earlier is built on top of PyTorch.

1.1 What is natural language processing (NLP)?
NLP is a principled approach to processing human language. Formally, it is a subfield
of artificial intelligence (AI) that refers to computational approaches to process,
understand, and generate human language. The reason it is part of AI is because lan-
guage processing is considered a huge part of human intelligence. The use of lan-
guage is arguably the most salient skill that separates humans from other animals.

1.1.1 What is NLP?

NLP includes a range of algorithms, tasks, and problems that take human-produced
text as an input and produce some useful information, such as labels, semantic repre-
sentations, and so on, as an output. Other tasks, such as translation, summarization,
and text generation, directly produce text as output. In any case, the focus is on pro-
ducing some output that is useful per se (e.g., a translation) or as input to other down-
stream tasks (e.g., parsing). I’ll touch upon some popular NLP applications and tasks
in section 1.3.

 You might wonder why NLP explicitly has “natural” in its name. What does it mean
for a language to be natural? Are there any unnatural languages? Is English natural?
Which is more natural: Spanish or French?

https://allennlp.org/
https://colab.research.google.com
https://colab.research.google.com
https://pytorch.org/
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 The word “natural” here is used to contrast natural languages with formal lan-
guages. In this sense, all the languages humans speak are natural. Many experts
believe that language emerged naturally tens of thousands of years ago and has
evolved organically ever since. Formal languages, on the other hand, are types of lan-
guages that are invented by humans and have strictly and explicitly defined syntax
(i.e., what is grammatical) and semantics (i.e., what it means).

 Programming languages such as C and Python are good examples of formal lan-
guages. These languages are defined in such a strict way that it is always clear what is
grammatical and ungrammatical. When you run a compiler or an interpreter on the
code you write in those languages, you either get a syntax error or not. The compiler
won’t say something like, “Hmm, this code is maybe 50% grammatical.” Also, the behav-
ior of your program is always the same if it’s run on the same code, assuming external
factors such as the random seed and the system states remain constant. Your interpreter
won’t show one result 50% of the time and another the other 50% of the time.

 This is not the case for human languages. You can write a sentence that is maybe
grammatical. For example, do you consider the phrase “The person I spoke to”
ungrammatical? There are some grammar topics where even experts disagree with
each other. This is what makes human languages interesting but challenging, and why
the entire field of NLP even exists. Human languages are ambiguous, meaning that
their interpretation is often not unique. Both structures (how sentences are formed)
and semantics (what sentences mean) can have ambiguities in human language. As an
example, let’s take a close look at the next sentence:

 He saw a girl with a telescope.

When you read this sentence, who do you think has a telescope? Is it the boy, who’s
using a telescope to see a girl (from somewhere far), or the girl, who has a telescope
and is seen by the boy? There seem to be at least two interpretations of this sentence
as shown in figure 1.1.

Figure 1.1 Two interpretations of “He saw a girl with a telescope.”
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The reason you are confused upon reading this sentence is because you don’t know
what the phrase “with a telescope” is about. More technically, you don’t know what
this prepositional phrase (PP) modifies. This is called a PP-attachment problem and is a
classic example of syntactic ambiguity. A syntactically ambiguous sentence has more
than one interpretation of how the sentence is structured. You can interpret the sen-
tence in multiple ways, depending on which structure of the sentence you believe.

 Another type of ambiguity that may arise in natural language is semantic ambiguity.
This is when the meaning of a word or a sentence, not its structure, is ambiguous. For
example, let’s look at the following sentence:

 I saw a bat.

There is no question how this sentence is structured. The subject of the sentence is “I”
and the object is “a bat,” connected by the verb “saw.” In other words, there is no syn-
tactical ambiguity in it. But how about its meaning? “Saw” has at least two meanings.
One is the past tense of the verb “to see.” The other is to cut some object with a saw. Sim-
ilarly, “a bat” can mean two very different things: is it a nocturnal flying mammal or a
piece of wood used to hit a ball? All in all, does this sentence mean that I observed a noc-
turnal flying mammal or that I cut a baseball or cricket bat? Or even (cruelly) that I cut
a nocturnal animal with a saw? You never know, at least from this sentence alone.

 Ambiguity is what makes natural languages rich but also challenging to process.
We can’t simply run a compiler or an interpreter on a piece of text and just “get it.”
We need to face the complexities and subtleties of human languages. We need a scien-
tific, principled approach to deal with them. That’s what NLP is all about.

 Welcome to the beautiful world of natural languages.

1.1.2 What is not NLP?

Now let’s consider the following scenario and think how you’d approach this prob-
lem: you are working as a junior developer at a midsized company that has a
consumer-facing product line. It’s 3 p.m. on a Friday. The rest of the team is becoming
more and more restless as the weekend approaches. That’s when your boss drops by at
your cubicle.

 “Hey, got a minute? I’ve got something interesting to show you. I just sent it to
you.”

 Your boss just sent you an email with a huge zip file attached to it.
 “OK, so this is a giant TSV file. It contains all the responses to the survey questions

about our product. I just got this data from the marketing team.”
 Obviously, the marketing team has been collecting user opinions about one of the

products through a series of survey questions online. 
 “The survey questions include standard ones like ‘How did you know about our

product?’ and ‘How do you like our product?’ There is also a free-response question,
where our customers can write whatever they feel about our product. The thing is, the
marketing team realized there was a bug in the online system and the answers to the
second question were not recorded in the database at all.”
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 “Wait, so there’s no way to tell how the customers are feeling about our product?”
This sounds weirdly familiar. This must be a copy-and-paste error. When you first cre-
ated an online data-collection interface, you copied and pasted the backend code
without modifying the ID parameters, resulting in a loss of some data fields. 

 “So,” your boss continues. “I was wondering if we can recover the lost data some-
how. The marketing team is a little desperate now because they need to report the
results to the VP early next week.” 

 At this point, your bad feeling has been confirmed. Unless you come up with a way
to get this done as quickly as possible, your weekend plans will be ruined. 

 “Didn’t you say you were interested in some machine learning? I think this is a per-
fect project for you. Anyway, it’d be great if you can give it a stab and let me know what
you find. Do you think you can have some results by Monday?”

 “Well, I’ll give it a try.” 
 You know “no” is not an acceptable answer here. Satisfied with your answer, your

boss smiles and walks off. 
 You start by skimming the TSV file. To your relief, its structure is fairly standard—it

has several fields such as timestamps and submission IDs. At the end of each line is a
lengthy field for the free-response question. Here they are, you think. At least you
know where to look for some clues.

 After a quick glance over the field, you find responses such as “A very good prod-
uct!” and “Very bad. It crashes all the time!” Not too bad, you think. At least you can
capture these simple cases. You start by writing the following method that captures
those two cases:

def get_sentiment(text):
    """Return 1 if text is positive, -1 if negative.
       Otherwise, return 0."""
    if 'good' in text:
        return 1
    elif 'bad' in text:
        return -1
    return 0

Then you run this method on the responses in the file and log the results, along with
the original input. As intended, this method seems to be able to capture a dozen or so
of the responses that contains “good” or “bad.” 

 But then you start to see something alarming, as shown next:

 “I can’t think of a single good reason to use this product”: positive
 “It’s not bad.”: negative

Oops, you think. Negation. Yeah, of course. But this is pretty easy to deal with. You
modify the method as follows:

def get_sentiment(text):
    """Return 1 if text is positive, -1 if negative.
       Otherwise, return 0."""
    sentiment = 0
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    if 'good' in text:
        sentiment = 1
    elif 'bad' in text:
        sentiment = -1
    if 'not' in text or "n't" in text:
        sentiment *= -1
    return sentiment

You run the script again. This time, it seems to be behaving as intended, until you see
an even more complicated example:

 “The product is not only cheap but also very good!”: negative

Hmm, you think. This is probably not as straightforward as I initially thought after all.
Maybe the negation has to be somewhere near “good” or “bad” for it to be effective.
Wondering what steps you could take next, you scroll down to see more examples,
which is when you see responses like these:

 “I always wanted this feature badly!”: negative
 “It’s very badly made.”: negative

You silently curse to yourself. How could a single word in a language have two com-
pletely opposite meanings? At this point, your little hope for enjoying the weekend
has already disappeared. You are already wondering what excuses you use with your
boss next Monday.

 
 As a reader of this book, you’ll know better. You’ll know that NLP is not about

throwing a bunch of ifs and thens at natural language text. It is a more principled
approach to processing natural language. In the following chapters, you’ll learn how
you should approach this problem before writing a single line of code and how to
build a custom-made NLP application just for your task at hand.

1.1.3 AI, ML, DL, and NLP

Before delving into the details of NLP, it’d be useful to clarify how it relates to other,
similar fields. Most of you have at least heard about artificial intelligence (AI) and
machine learning (ML). You may also have heard of deep learning (DL), because it’s
generating a lot of buzz in popular media these days. Figure 1.2 illustrates how those
different fields overlap with each other.

 Artificial intelligence (AI) is a broad umbrella field that is concerned with achiev-
ing human-like intelligence using machines. It encompasses a wide range of subfields,
including machine learning, natural language processing, computer vision, and
speech recognition. The field also includes subfields such as reasoning, planning, and
search, which do not fall under either machine learning or natural language process-
ing and are not in the scope of this book.

 Machine learning (ML) is usually considered a subfield of artificial intelligence that
is about improving computer algorithms through experience and data. This includes
learning a general function that maps inputs to outputs based on past experience
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(supervised learning), drawing hidden patterns and structures from data (unsuper-
vised learning), and learning how to act in a dynamic environment based on indirect
rewards (reinforcement learning). Throughout this book, we’ll make a heavy use of
supervised machine learning, which is the main paradigm for training NLP models.

 Deep learning (DL) is a subfield of machine learning that usually uses deep neural
networks. These neural network models are called “deep” because they consist of a
number of layers. A layer is just a fancy word for a substructure of neural networks. By
having many stacked layers, deep neural networks can learn complex representations
of data and can capture highly complicated relationships between the input and the
output.

 As the amount of available data and computational resources increases, modern
NLP makes a heavier and heavier use of machine learning and deep learning. Modern
NLP applications and tasks are usually built on top of machine learning pipelines and
trained from data. But also notice in figure 1.2 that a part of NLP does not overlap with
machine learning. Traditional methods such as counting words and measuring similar-
ities between text are usually not considered to be machine learning techniques per se,
although they can be important building blocks for ML-based models.

 I’d also like to mention some other fields that are related to NLP. One such field is
computational linguistics (CL). As its name suggests, computational linguistics is a sub-
field of linguistics that uses computational approaches to study human language. The
main distinction between CL and NLP is that the former encompasses scientific
approaches to study language, whereas the latter is concerned with engineering

Artificial
intelligence (AI)

Machine
learning (ML)

Natural
language

processing
 (NLP) 

Deep
learning (DL)

Figure 1.2 The relationship 
among different fields: AI, 
ML, DL, and NLP
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approaches for making computers perform something useful related to language.
People often use those terms interchangeably, partly due to some historical reasons.
For example, the most prestigious conference in the field of NLP is called ACL, which
actually stands for “the Association for Computational Linguistics!”

 Another related field is text mining. Text mining is a type of data mining targeted at
textual data. Its focus is on drawing useful insights from unstructured textual data,
which is a type of text data that is not formatted in a form that is easily interpretable by
computers. Such data is usually collected from various sources, such as crawling the
web and social media. Although its purpose is slightly different from that of NLP,
these two fields are similar, and we can use the same tools and algorithms for both. 

1.1.4 Why NLP?

If you are reading this, you have at least some interest in NLP. Why is NLP exciting?
Why is it worth learning more about NLP and, specifically, real-world NLP?

 The first reason is that NLP is booming. Even without the recent AI and ML boom,
NLP is more important than ever. We are witnessing the advent of practical NLP appli-
cations in our daily lives, such as conversational agents (think Apple Siri, Amazon
Alexa, and Google Assistant) and near human-level machine translation (think Google
Translate). A number of NLP applications are already an integral part of our day-to-day
activities, such as spam filtering, search engines, and spelling correction, as we’ll discuss
later. The number of Stanford students enrolled in NLP classes grew fivefold from
2008 to 2018 (http://realworldnlpbook.com/ch1.html#tweet1). Similarly, the number
of attendees for EMNLP (Empirical Methods in Natural Language Processing), one
of the top NLP conferences, doubled within just one year (http://realworldnlpbook
.com/ch1.html#tweet2). Other major NLP conferences are also experiencing similar
increases in participants and paper submissions (http://realworldnlpbook.com/ch1
.html#nivre17).

 The second reason is that NLP is an evolving field. The field of NLP itself has a
long history. The first experiment to build a machine translation system, called The
Georgetown–IBM Experiment, was attempted back in 1954. For more than 30 years since
this experiment, most NLP systems relied on handwritten rules. Yes, it was not much
different from what you just saw in section 1.1.1. The first milestone, which came in
the late 1980s, was the use of statistical methods and machine learning for NLP. Many
NLP systems started leveraging statistical models trained from data. This led to some
recent successes in NLP, including, most notably, IBM Watson. The second milestone
was more drastic. Starting around the late 2000s, the use of so-called deep learning,
that is, deep neural network models, took the field by storm. By the mid-2010s, deep
neural network models became the new standard in the field. 

 This second milestone was so drastic and fast that it’s worth noting here. New neural
network–based NLP models are not only more effective but also a lot simpler. For exam-
ple, it used to take a lot of expertise and effort to replicate even a simple, baseline
machine translation model. One of the most popular open source software packages
for statistical machine translation, called Moses (http://www.statmt.org/moses/), is a

http://realworldnlpbook.com/ch1.html#tweet1
http://realworldnlpbook.com/ch1.html#tweet2
http://realworldnlpbook.com/ch1.html#tweet2
http://realworldnlpbook.com/ch1.html#tweet2
http://realworldnlpbook.com/ch1.html#nivre17
http://realworldnlpbook.com/ch1.html#nivre17
http://realworldnlpbook.com/ch1.html#nivre17
http://www.statmt.org/moses/


11What is natural language processing (NLP)?

behemoth, consisting of 100,000s of lines of code and dozens of supporting modules
and tools. Experts spent hours just installing the software and making it work. On the
other hand, as of 2018, anyone with some prior programming experience could run a
neural machine translation system more powerful than traditional statistical models
with a fraction of the code size—less than a few thousand lines of code (e.g., see Tensor-
Flow’s neural machine translation tutorial at https://github.com/tensorflow/nmt).
Also, the new neural network models are trained “end-to-end,” which means that those
big, monolithic networks take the input and directly produce the output. Entire models
are trained to match the desired output. On the other hand, traditional machine learn-
ing models consist of (at least) several submodules. These submodules are trained sep-
arately using different machine learning algorithms. In this book, I’ll mainly discuss
modern neural network–based approaches to NLP but also touch upon some tradi-
tional concepts as well.

 The third and final reason is that NLP is challenging. Understanding and produc-
ing language is the central problem of artificial intelligence, as we saw in the previous
section. The accuracy and performance in major NLP tasks such as speech recogni-
tion and machine translation got drastically better in the past decade or so. But
human-level understanding of language is far from being solved.

 To verify this quickly, open up your favorite machine translation service (or simply
Google Translate), and type this sentence: “I saw her duck.” Try to translate it to Span-
ish or some other language you understand. You should see words like “pato,” which
means “a duck” in Spanish. But did you notice another interpretation of this sen-
tence? See figure 1.3 for the two interpretations. The word “duck” here could be a
verb meaning “to crouch down.” Try adding another sentence after this, such as “She
tried to avoid a flying ball.” Did the machine translation change the first translation in
any way? The answer is probably no. You should still see the same “pato” in the transla-
tion. As you can see, most (if not all) commercial machine translation systems that are
available as of today do not understand the context outside of the sentence that is
being translated. A lot of research effort is spent on this problem in academia, but this
is still one of many problems in NLP that is considered unsolved.

Figure 1.3 Two interpretations 
of “I saw her duck.”

https://github.com/tensorflow/nmt
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Compared to other AI fields such as robotics and computer vision, language has its
own quirks. Unlike images, utterances and sentences have variable length. You can say
a very short sentence (“Hello.”) or a very long one (“A quick brown fox . . .”). Most
machine learning algorithms are not good at dealing with something of variable
length, and you need to come up with ways to represent languages with something
more fixed. If you look back at the history of the field, NLP is largely concerned with
the problem of how to represent language mathematically. Vector space models and
word embeddings (discussed in chapter 3) are some examples of this. 

 Another characteristic of language is that it is discrete. What this means is that
things in languages are separate as concepts. For example, if you take a word “rat” and
change its first letter to the next one, you’ll have “sat.” In computer memory, the dif-
ference is just a single bit. However, there is no relationship between those two words
except they both end with “at,” and maybe a rat can sit. There is no such thing as
something that is in between “rat” and “sat.” These two are totally discrete, separate
concepts that happen to have similar spelling. On the other hand, if you take an
image of a car and change the value of a pixel by a single bit, you still have a car that is
almost identical to the one before this change. Maybe it has a slightly different color.
In other words, images and sounds are continuous, meaning that you can make small
modifications without greatly affecting what they are. Many mathematical toolkits,
such as vectors, matrices, and functions, are good at dealing with something continu-
ous. The history of NLP is actually a history of challenging this discreteness of lan-
guage, and only recently have we begun to see some successes on this front, for
example, with word embeddings.

1.2 How NLP is used
As I mentioned previously, NLP is already an integral part of our daily life. In modern
life, a larger and larger portion of our daily communication is done online, and our
online communication is still largely conducted in natural language text. Think of
your favorite social networking services, such as Facebook and Twitter. Although you
can post photos and videos, a large portion of communication is still in text. As long
as you are dealing with text, there is a need for NLP. For example, how do you know if
a particular post is spam? How do you know which posts are the ones you are most
likely to “like?” How do you know which ads you are most likely to click?

 Because many large internet companies need to deal with text in one way or
another, chances are many of them are already using NLP. You can also confirm this
from their “careers” page—you’ll see that they are always hiring NLP engineers and
data scientists. NLP is also used to a varying extent in many other industries and prod-
ucts including, but not limited to, customer service, e-commerce, education, enter-
tainment, finance, and health care, which all involve text in some ways.

 Many NLP systems and services can be classified into or built by combining some
major types of NLP applications and tasks. In this section, I’m going to introduce
some of the most popular applications of NLP as well as common NLP tasks.
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1.2.1 NLP applications

An NLP application is a software application whose main purpose is to process natural
language text and draw some useful information from it. Similar to general software
applications, it can be implemented in various ways, such as an offline data-processing
script, an offline standalone application, a backend service, or a full-stack service with
a frontend, depending on its scope and use cases. It can be built for end users to use
directly, for other backend services to consume its output, or for other businesses to
use as a SaaS (software as a service). 

 You can use many NLP applications out of the box, such as machine translation
software and major SaaS products (e.g., Google Cloud API), if your requirement is
generic and doesn’t require a high level of customization. You can also build your own
NLP applications if you need customizations and/or you need to deal with a specific
target domain. This is exactly what you’ll learn throughout this book!

MACHINE TRANSLATION

Machine translation is probably one of the most popular and easy-to-understand NLP
applications. Machine translation (MT) systems translate a given text from one lan-
guage to another language. An MT system can be implemented as a full-stack service
(e.g., Google Translate), as well as a pure backend service (e.g., NLP SaaS products).
The language the input text is written in is called the source language, whereas the one
for the output is called the target language. MT encompasses a wide range of NLP prob-
lems, including language understanding and generation, because MT systems need
to understand the input and then generate the output. MT is one of the most well-
studied areas in NLP, and it was one of the earliest applications of NLP as well.

 One challenge in MT is the tradeoff between fluency and adequacy. Translation
needs to be fluent, meaning that the output has to sound natural in the target lan-
guage. Translation also needs to be adequate, meaning that the output has to reflect
the meaning expressed by the input as closely as possible. These two are often in con-
flict, especially when the source and the target languages are not very similar (e.g.,
English and Mandarin Chinese). You can write a sentence that is a precise, verbatim
translation of the input, but doing so often leads to something that doesn’t sound nat-
ural in the target language. On the other hand, you can make up something that
sounds natural but might not reflect the precise meaning. Good human translators
address this tradeoff in a creative way. It’s their job to come up with translations that
are natural in the target language while reflecting the meaning of the original.

GRAMMATICAL AND SPELLING ERROR CORRECTION

Most major web browsers nowadays support spelling correction. Even if you forget
how to spell “Mississippi,” you can do your best and type what you remember, and the
browser highlights it with a correction. Some word-processing software applications,
including recent versions of Microsoft Word, do more than just correct spelling. They
point out grammatical errors such as uses of “it’s” instead of “its.” This is not an easy
feat, because both words are, in a sense, “correct” (no mistakes in spelling), and the
system needs to infer whether they are used correctly from the context. Some
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commercial products (most notably, Grammarly, https://www.grammarly.com/) spe-
cialize in grammatical error correction. Some products go a long way and point out
incorrect usage of punctuation and even writing styles. These products are popular
among both native and non-native speakers of the language.

 Research into grammatical error correction has been active due to the increasing
number of non-native English speakers. Traditionally, grammatical error correction
systems for non-native English speakers dealt with individual types of mistakes one by
one. For example, you could think of a subcomponent of the system that detects and
corrects only incorrect uses of articles (a, an, the, etc.), which is very common among
non-native English speakers. More recent approaches to grammatical error correction
are similar to the ones for machine translation. You can think of the (potentially
incorrect) input as one language and the corrected output as another. Then your job
is to “translate” between these two languages! 

SEARCH ENGINE

Another application of NLP that is already an integral part of our daily lives is search
engines. Few people would think of search engines as an NLP application, yet NLP
plays such an important role in making search engines useful that they are worth men-
tioning here.

 Page analysis is one area where NLP is heavily used for search engines. Ever won-
der why you don’t see any “hot dog” pages when you search for “dogs?” If you have any
experience building your own full-text search engines using open source software
such as Solr and Elasticsearch, and if you simply used a word-based index, your search
result pages would be littered with “hot dogs,” even when you want just “dogs.” Major
commercial search engines solve this problem by running the page content being
indexed through NLP pipelines that recognize that “hot dogs” are not a type of
“dogs.” But the extent and types of NLP pipelines that go into page analysis is confi-
dential information for search engines and is difficult to know.

 Query analysis is another NLP application in search engines. If you have noticed
Google showing a box with pictures and bios when you search for a celebrity or a box
with the latest news stories when you search for certain current events, that’s query anal-
ysis in action. Query analysis identifies the intent (what the user wants) of the query and
shows relevant information accordingly. A common way to implement query analysis is
to make it a classification problem, where an NLP pipeline classifies queries into classes
of intent (e.g., celebrity, news, weather, videos), although again, the details of how com-
mercial search engines run query analysis are usually highly confidential.

 Finally, search engines are not only about analyzing pages and classifying queries.
They have many other functionalities that make your searches easier, one of which is
query correction. This comes into play when you make a spelling or a grammatical mis-
take when formulating the query, and Google and other major search engines show cor-
rections with labels such as “showing results for:” and “Did you mean.” How this works
is somewhat similar to grammatical error correction that I mentioned earlier, except it
is optimized for the types of mistakes and queries that search engine users use.

https://www.grammarly.com/


15How NLP is used

DIALOG SYSTEMS

Dialog systems are machines that humans can have conversations with. The field of
dialog systems has a long history. One of the earliest dialog systems, ELIZA, was devel-
oped in 1966. 

 But it’s only recently that dialog systems have found their ways into our daily lives.
We have seen an almost exponential increase in their popularity in recent years, mainly
driven by the availability of consumer-facing “conversational AI” products such as Ama-
zon Alexa and Google Assistant. In fact, according to a survey in 2018, 20% of US homes
already own a smart speaker. You may also remember being mind-blown watching the
keynote at Google IO in 2018, where Google’s conversational AI called Google Duplex
was shown making a phone call to a hair salon and a restaurant, having natural conver-
sations with the staff at the business, and making an appointment on behalf of its user. 

 The two main types of dialog systems are task-oriented and chatbots. Task-oriented
dialog systems are used to achieve specific goals (for example, reserving a plane
ticket), obtaining some information, and, as we saw, making a reservation at a restau-
rant. Task-oriented dialog systems are usually built as an NLP pipeline consisting of
several components, including speech recognition, language understanding, dialog
management, response generation, and speech synthesis, which are usually trained
separately. Similar to machine translation, though, there are new deep learning
approaches where dialog systems (or their subsystems) are trained end-to-end.

 The other type of dialog system is chatbots, whose main purpose is to have conver-
sations with humans. Traditional chatbots are usually managed by a set of handwritten
rules (e.g., when the human says this, say that). Recently, the use of deep neural net-
works, particularly sequence-to-sequence models and reinforcement learning, has
become increasingly popular. However, because the chatbots do not serve particular
purposes, the evaluation of chatbots, that is, assessing how good a particular chatbot
is, remains an open question.

1.2.2 NLP tasks

Behind the scenes, many NLP applications are built by combining multiple NLP com-
ponents that solve different NLP problems. In this section, I introduce some notable
NLP tasks that are commonly used in NLP applications.

TEXT CLASSIFICATION

Text classification is the process of classifying pieces of text into different categories.
This NLP task is one of the simplest yet most widely used. You might not have heard of
the term “text classification” before, but I bet most of you benefit from this NLP task
every day. For example, spam filtering is one type of text classification. It classifies
emails (or other types of text, such as web pages) into two categories—spam or not
spam. This is why you get very few spam emails when you use Gmail and you see so few
spammy (low-quality) web pages when you use Google. 

 Another type of text classification is called sentiment analysis, which is what we saw
in section 1.1. Sentiment analysis is used to automatically identify subjective informa-
tion, such as opinions, emotions, and feelings, within text. 
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PART-OF-SPEECH TAGGING

A part of speech (POS) is a category of words that share the similar grammatical proper-
ties. In English, for example, nouns describe the names of things like objects, animals,
people, and concepts, among many other things. A noun can be used as a subject of a
verb, an object of a verb, and an object of a preposition. Verbs, in contrast, describe
actions, states, and occurrences. Other English parts of speech include adjectives
(green, furious), adverbs (cheerfully, almost), determiners (a, the, this, that), prepositions
(in, from, with), conjunctions (and, yet, because), and many others. Almost all languages
have nouns and verbs, but other parts of speech differ from language to language. For
example, many languages, such as Hungarian, Turkish, and Japanese, have postposi-
tions instead of prepositions, which are placed after words to add some extra meaning
to them. A group of NLP researchers came up with a set of tags that cover frequent
parts of speech that exist in most languages, called a universal part-of-speech tagset
(http://realworldnlpbook.com/ch1.html#universal-pos). This tagset is widely used for
language-independent tasks.

 Part-of-speech tagging is the process of tagging each word in a sentence with a cor-
responding part-of-speech tag. Some of you may have done this at school. As an exam-
ple, let’s take the sentence “I saw a girl with a telescope.” The POS tags for this
sentence are shown in figure 1.4.

These tags come from the Penn Treebank POS tagset, which is the most popular stan-
dard corpus for training and evaluating various NLP tasks such as POS tagging and
parsing. Traditionally, POS tagging was solved by sequential labeling algorithms such
as hidden Markov models (HMMs) and conditional random fields (CRFs). Recently,

Input sentence

POS tags

PRP

I saw a

VBD DT

girl

NN

with

IN

a telescope .

DT NN .

POS tag

DT

IN

Description

Determiner

Preposition

NN Noun (singular or mass)

PRP Pronoun

VBD Verb (past tense) Figure 1.4 Part-of-
speech (POS) tagging

http://realworldnlpbook.com/ch1.html#universal-pos
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recurrent neural networks (RNNs) have become a popular and practical choice for
training a POS tagger with high accuracy. The results of POS tagging are often used as
the input to other downstream NLP tasks, such as machine translation and parsing.
I’ll cover part-of-speech tagging in more detail in chapter 5.

PARSING

Parsing is the task of analyzing the structure of a sentence. Broadly speaking, there are
two main types of parsing, constituency parsing and dependency parsing, which we’ll dis-
cuss in detail next.

 Constituency parsing uses context-free grammars to represent natural language sen-
tences. (See http://mng.bz/GO5q for a brief introduction to context-free grammars).
A context-free grammar is a way to specify how smaller building blocks of a language
(e.g., words) are combined to form larger building blocks (e.g., phrases and clauses)
and eventually sentences. To put it another way, it specifies how the largest unit (a sen-
tence) is broken down to phrases and clauses and all the way down to words. The ways
the linguistic units interact with each other are specified by a set of production rules as
follows:

S -> NP VP

NP -> DT NN | PRN | NP PP
VP -> VBD NP | VBD PN PP
PP -> IN NP

DT -> a
IN -> with
NN -> girl | telescope
PRN -> I
VBD -> saw

A production rule describes a transformation from the symbol on the left-hand side
(e.g., “S”) to the symbols on the right-hand side (e.g., “NP VP”). The first rule means
that a sentence is a noun phrase (NP) followed by a verb phrase (VP). Some of the
symbols (e.g., DT, NN, VBD) may look familiar to you—yes, they are the POS tags we
just saw in the POS tagging section. In fact, you can consider POS tags as the smallest
grammatical categories that behave in similar ways (because they are!).

 Now the parser’s job is to figure out how to reach the final sym-
bol (in this case, “S”) starting from the raw words in the sentence.
You can think of those rules as transformation rules from the sym-
bols on the right to the ones on the left by traversing the arrow
backward. For example, using the rule “DT  a” and “NN  girl,”
you can convert “a girl” to “DT NN.” Then, if you use “NP  DT
NN,” you can reduce the entire phrase to “NP.” If you illustrate this
process in a tree-like diagram, you get something like the one
shown in figure 1.5.

NP

DT NN

a girl

Figure 1.5
Subtree for 
“a girl”

http://mng.bz/GO5q
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Tree structures that are created in the process of parsing are called parse trees, or sim-
ply parses. The figure is a subtree because it doesn’t cover the entirety of the tree (i.e.,
it doesn’t show all the way from “S” to words). Using the sentence “I saw a girl with a
telescope” that we discussed earlier and see if you can parse it by hand. If you keep
breaking down the sentence using the production rules until you get the final “S” sym-
bol, you get the tree-like structure shown in figure 1.6.

Figure 1.6 Parse tree for “I saw a girl with a telescope.”

Don’t worry if the tree in figure 1.6 is different from what you got. Actually, there’s
another parse tree that is a valid parse of this sentence, shown in figure 1.7.

Figure 1.7 Another parse tree for “I saw a girl with a telescope.”
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If you look at those two trees carefully, you’ll notice a difference where the “PP” (prep-
ositional phrase) is located, or attached. In fact, these two parse trees correspond to
the two different interpretations of this sentence we discussed in section 1.1. The first
tree (figure 1.6), where the PP attaches the verb “saw,” corresponds to the interpreta-
tion where the boy is using a telescope to see the girl. In the second tree (figure 1.7),
where the PP attaches to the noun “a girl,” the boy saw the girl who has a telescope.
Parsing is a great step forward to reveal the structure and the semantics of a sentence,
but in cases like this one, parsing alone cannot uniquely decide what is the single most
likely interpretation of a sentence.

 The other type of parsing is called dependency parsing. Dependency parsing uses
dependency grammars to describe the structure of sentences, not in terms of phrases
but in terms of words and the binary relations between them. For example, the result
of dependency parsing of the earlier sentence is shown in figure 1.8.

Figure 1.8 Dependency parse for “I saw a girl with a telescope.”

Notice that each relation is directional and labeled. A relation specifies which word
depends on which word and the type of relationship between the two. For example,
the relation connecting “a” to “girl” is labeled “det,” meaning the first word is the
determiner of the second. If you take the most central word, “saw,” and pull it upward,
you’ll notice that these words and relations form a tree. Such trees are called depen-
dency trees.

 One advantage of dependency grammars is that they are agnostic regarding some
word-order changes, meaning that the order of certain words in the sentence will not
change the dependency tree. For example, in English, there is some freedom as to
where to put an adverb in a sentence, especially when the adverb describes the man-
ner in which the action referred to by the verb is done. For example, “I carefully
painted the house” and “I painted the house carefully” are both acceptable and mean
the same thing. If you represent these sentences by a dependency grammar, the word
“carefully” always modifies the verb “painted,” and the two sentences have completely
identical dependency trees. Dependency grammars capture more than just phrasal
structures of sentences—they capture something more fundamental about the rela-
tionship of the words. Therefore, dependency parsing is considered an important step
toward semantic analysis of natural language. A group of researchers is working on a

I saw a girl with a telescope
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formal language-independent dependency grammar, called Universal Dependencies,
that is linguistically motivated and applicable to many languages, similar to the univer-
sal POS tagset.

TEXT GENERATION

Text generation, also called natural language generation (NLG), is the process of gener-
ating natural language text from something else. In a broader sense, machine transla-
tion, which we discussed previously, involves a text-generation problem, because MT
systems need to generate text in the target language. Similarly, summarization, text
simplification, and grammatical error correction all produce natural language text as
output and are instances of text-generation tasks. Because all of these tasks take natu-
ral language text as their input, they are called text-to-text generation. 

 Another class of text-generation task is called data-to-text generation. For those
tasks, the input is data that is not text. For example, a dialog system needs to generate
natural utterances based on the current state of the conversation. A publisher may
wish to generate news text based on events such as sports game outcomes and weather.
There is also a growing interest in generating natural language text that best describes
a given image, called image captioning.

 Finally, a third class of text classification is unconditional text generation, where
natural language text is generated randomly from a model. You can train models so
that they can generate random academic papers, Linux source code, or even poems
and play scripts. For example, Andrej Karpathy trained an RNN model from all of
Shakespeare’s works and succeeded in generating pieces of text that look exactly like
his work (http://realworldnlpbook.com/ch1.html#karpathy15), as shown next:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

http://realworldnlpbook.com/ch1.html#karpathy15
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Traditionally, text generation has been solved by handcrafted templates and rules for
generating text from some information. You can think of this as the reverse of parsing,
where rules are used to infer information about natural language text, as we discussed
earlier. In recent years, neural network models are an increasingly popular choice for
natural language generation, be it text-to-text generation (sequence-to-sequence
models), data-to-text generation (encoder-decoder models), and unconditional text
generation (neural language models and generative adversarial networks, or GANs).
We’ll discuss text generation more in chapter 5.

1.3 Building NLP applications
In this section, I’m going to show you how NLP applications are typically developed
and structured. Although details may vary on a case-by-case basis, understanding the
typical process helps you plan and budget before you start developing an application.
It also goes a long way if you know best practices in developing NLP applications
beforehand.

1.3.1 Development of NLP applications

The development of NLP applications is a highly iterative process, consisting of many
phases of research, development, and operations (figure 1.9). Most learning materials
such as books and online tutorials focus mainly on the training phase, although all the
other phases of application development are equally important for real-world NLP
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applications. In this section, I briefly introduce what each stage involves. Note that no
clear boundary exists between these phases. It is not uncommon that application
developers (researchers, engineers, managers, and other stakeholders) go back and
forth between some of these phases through trial and error.

DATA COLLECTION

Most modern NLP applications are based on machine learning. Machine learning, by
definition, requires data on which NLP models are trained (remember the definition
of ML we talked about previously—it’s about improving algorithms through data). In
this phase, NLP application developers discuss how to formulate the application as an
NLP/ML problem and what kind of data should be collected. Data can be collected
from humans (e.g., by hiring in-house annotators and having them go through a bunch
of text instances), crowdsourcing (e.g., using platforms such as Amazon Mechanical
Turk), or automated mechanisms (e.g., from application logs or clickstreams). 

 You may choose not to use machine learning approaches for your NLP application
at first, which could totally be the right choice depending on various factors, such as
time, budgets, the complexity of the task, and the expected amount of data you might
be able to collect. Even in that case, it may be a good idea to collect a small amount of
data for validation purposes. I’ll talk more about training, validation, and testing of
NLP applications in chapter 11.

ANALYSIS AND EXPERIMENTING

After collecting the data, you move on to the next phase where you analyze and run
some experiments. For analyses, you usually look for signals such as: What are the
characteristics of the text instances? How are the training labels distributed? Can you
come up with signals that are correlated with the training labels? Can you come up
with some simple rules that can predict the training labels with reasonable accuracy?
Should we even use ML? This list goes on and on. This analysis phase includes aspects
of data science, where various statistical techniques may come in handy. 

 You run experiments to try a number of prototypes quickly. The goal in this phase
is to narrow down the possible set of approaches to a couple of promising ones, before
you go all-in and start training a gigantic model. By running experiments, you wish to
answer questions including: What types of NLP tasks and approaches are appropriate
for this NLP application? Is this a classification, parsing, sequence labeling, regression,
text generation, or some other problem? What is the performance of the baseline
approach? What is the performance of the rule-based approach? Should we even use
ML? What is the estimate of training and serving time for the promising approaches?

 I call these first two phases the “research” phase. The existence of this phase is
arguably the biggest difference between NLP applications and other generic software
systems. Due to its nature, it is difficult to predict the performance and the behavior
of a machine learning system, or an NLP system, for that matter. At this point, you
might not have written a single line of production code, and that’s totally fine. The
point of this research phase is to prevent you from wasting your effort writing produc-
tion code that turns out to be useless at a later stage. 
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TRAINING

At this point you have pretty clear ideas what the approaches will be for your NLP
application. This is when you start adding more data and computational resources
(e.g., GPUs) for training your model. It is not uncommon for modern NLP models to
take days if not weeks to train, especially if they are based on neural network models.
It is always a good practice to gradually ramp up the amount of the data and the size
of the model you train. You don’t want to spend weeks training a gigantic neural net-
work model only to find that a smaller and simpler model performs just as well, or
even worse, that you introduced a bug in the model and that the model you spent
weeks training is simply useless!

 It is critical at this phase that you keep your training pipeline reproducible.
Chances are, you will need to run this several times with different sets of hyperparam-
eters, which are tuning values set before starting the model’s learning process. It is
also likely that you will need to run this pipeline several months later, if not years. I’ll
touch upon some best practices when training NLP/ML models in chapter 10.

IMPLEMENTATION

When you have a model that is working with acceptable performance, you move on to
the implementation phase. This is when you start making your application “produc-
tion ready.” This process basically follows software engineering best practices, includ-
ing: writing unit and integration tests for your NLP modules, refactoring your code,
having your code reviewed by other developers, improving the performance of your
NLP modules, and dockerizing your application. I’ll talk more about this process in
chapter 11.

DEPLOYING

Your NLP application is finally ready to deploy. You can deploy your NLP application
in many ways—it can be an online service, a recurring batch job, an offline applica-
tion, or an offline one-off task. If this is an online service that needs to serve its predic-
tions in real time, it is a good idea to make this a microservice to make it loosely coupled
with other services. In any case, it is a good practice to use continuous integration
(CI) for your application, where you run tests and verify that your code and model are
working as intended every time you make changes to your application.

MONITORING

An important final step for developing NLP applications is monitoring. This not only
includes monitoring the infrastructure such as server CPU, memory, and request
latency, but also higher-level ML statistics such as the distributions of the input and the
predicted labels. Some of the important questions to ask at this stage are: What do the
input instances look like? Are they what you expected when you built your model?
What do the predicted labels look like? Does the predicted label distribution match
the one in the training data? The purpose of the monitoring is to check that the model
you built is behaving as intended. If the incoming text or data instances or the pre-
dicted labels do not match your expectation, you may have an out-of-domain problem,
meaning that the domain of the natural language data you are receiving is different
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from the one in which your model is trained. Machine learning models are usually not
good at dealing with out-of-domain data, and the prediction accuracy may suffer. If this
issue becomes obvious, it may be a good idea to repeat the whole process again, start-
ing from collecting more in-domain data.

1.3.2 Structure of NLP applications

The structures of modern, machine learning–based NLP applications are becoming
surprisingly similar for two main reasons—one is that most modern NLP applications
rely on machine learning to some degree, and they should follow best practices for
machine learning applications. The other is that, due to the advent of neural network
models, a number of NLP tasks, including text classification, machine translation, dia-
log systems, and speech recognition, can now be trained end-to-end, as I mentioned
before. Some of these tasks used to be hairy, enormous monsters with dozens of com-
ponents with complex plumbing. Now, however, some of these tasks can be solved by
less than 1,000 lines of Python code, provided that there’s enough data to train the
model end-to-end.

 Figure 1.10 illustrates the typical structure of a modern NLP application. There are
two main infrastructures: the training and the serving infrastructure. The training
infrastructure is usually offline and serves the purpose of training the machine learning
model necessary for the application. It takes the training data, converts it to some data
structure that can be handled by the pipeline, and further processes it by transforming
the data and extracting the features. This part varies greatly from task to task. Finally,
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Model
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Figure 1.10 Structure of typical NLP applications
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if the model is a neural network, data instances are batched and fed to the model, which
is optimized to minimize the loss. Don’t worry if you don’t understand what I’m talking
about in that last sentence—we’ll talk about those technical terms used with neural net-
works in chapter 2. The trained model is usually serialized and stored to be passed to
the serving infrastructure.

 The serving infrastructure’s job is to, given a new instance, produce the prediction,
such as classes, tags, or translations. The first part of this infrastructure, which reads the
instance and transforms it into some numbers, is similar to the one for training. In fact,
you must keep the dataset reader and the transformer identical. Otherwise, discrepan-
cies will arise in the way those two process the data, also known as training-serving skew.
After the instance is processed, it’s fed to the pretrained model to produce the predic-
tion. I’ll talk more about designing your NLP applications in chapter 11.

Summary
 Natural language processing (NLP) is a subfield of artificial intelligence (AI)

that refers to computational approaches to process, understand, and generate
human language.

 One of the challenges for NLP is ambiguity in natural languages. There is syn-
tactic and semantic ambiguity.

 Where there is text, there is NLP. Many tech companies use NLP to draw infor-
mation from a large amount of text. Typical NLP applications include machine
translation, grammatical error correction, search engines, and dialog systems.

 NLP applications are developed in an iterative way, with more emphasis on the
research phase.

 Many modern NLP applications rely heavily on machine learning (ML) and are
structurally similar to ML systems.



26

Your first NLP application

In section 1.1.2, we saw how not to do NLP. In this chapter, we are going to discuss
how to do NLP in a more principled, modern way. Specifically, we’d like to build a
sentiment analyzer using a neural network. Even though the sentiment analyzer we
are going to build is a simple application and the library (AllenNLP) takes care of
most heavy lifting, it is a full-fledged NLP application that covers a lot of basic com-
ponents of modern NLP and machine learning. I’ll introduce important terms and
concepts along the way. Don’t worry if you don’t understand some concepts at first.
We will revisit most of the concepts introduced here in later chapters.

This chapter covers
 Building a sentiment analyzer using AllenNLP

 Applying basic machine learning concepts 
(datasets, classification, and regression)

 Employing neural network concepts (word 
embeddings, recurrent neural networks, linear 
layers)

 Training the model through reducing loss

 Evaluating and deploying your model



27Introducing sentiment analysis

2.1 Introducing sentiment analysis
In the scenario described in section 1.1.2, you wanted to extract users’ subjective opin-
ions from online survey results. You have a collection of textual data in response to a
free-response question, but you are missing the answers to the “How do you like our
product?” question, which you’d like to recover from the text. This task is called senti-
ment analysis, which is a text analytic technique used in the automatic identification
and categorization of subjective information within text. The technique is widely used
in quantifying opinions, emotions, and so on that are written in an unstructured way
and, thus, hard to quantify otherwise. Sentiment analysis is applied to a wide variety of
textual resources such as survey, reviews, and social media posts.

 In machine learning, classification means categorizing something into a set of pre-
defined, discrete categories. One of the most basic tasks in sentiment analysis is the
classification of polarity, that is, to classify whether the expressed opinion is positive,
negative, or neutral. You could use more than three classes, for example, strongly pos-
itive, positive, neutral, negative, or strongly negative. This may sound familiar to you if
you have used a website (such as Amazon) where people can review things using a five-
point scale expressed by the number of stars.

 Classification of polarity is one type of sentence classification task. Another type of
sentence classification task is spam filtering, where each sentence is categorized into
two classes—spam or not spam. It’s called binary classification if there are only two
classes. If there are more than two classes (the five-star classification system mentioned
earlier, for example), it’s called multiclass classification. 

 In contrast, when the prediction is a continuous value instead of discrete catego-
ries, it’s called regression. If you’d like to predict the price of a house based on its prop-
erties, such as its neighborhood, numbers of bedrooms and bathrooms, and square
footage, it’s a regression problem. If you attempt to predict stock prices based on the
information collected from news articles and social media posts, it’s also a regression
problem. (Disclaimer: I’m not suggesting this is an appropriate approach to stock
price prediction. I’m not even sure if it works.) As I mentioned earlier, most linguistic
units such as characters, words, and part-of-speech tags are discrete. For this reason,
most uses of machine learning in NLP are classification, not regression. 

NOTE Logistic regression, a widely used statistical model, is usually used for clas-
sification, even though it has “regression” in its name. Yes, I know it’s confusing!

Many modern NLP applications, including the sentiment analyzer we are going to
build in this chapter (shown in figure 2.1), are built based on the supervised machine
learning paradigm. Supervised machine learning is one type of machine learning
where the algorithm is trained with data that has supervision signals—the desired out-
come for individual input. The algorithm is trained in such a way that it reproduces
the signals as closely as possible. For sentiment analysis, this means that the system is
trained on data that contains the desired labels for each input sentence.
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Figure 2.1 Sentiment analysis pipeline

2.2 Working with NLP datasets
As we discussed in the previous section, many modern NLP applications are devel-
oped using supervised machine learning, where algorithms are trained from data
annotated with desired outcomes, instead of using handwritten rules. Almost by defi-
nition, data is a critical part for machine learning, and it is important to understand
how it is structured and used with machine learning algorithms. 

2.2.1 What is a dataset?

A dataset simply means a collection of data. If you are familiar with relational data-
bases, you can think of a dataset as a dump of one table. It consists of pieces of data
that follow the same format. In database terms, each piece of the data corresponds to
a record, or a row in a table. A record can have any number of fields, which corre-
spond to columns in a database.

 In NLP, records in a dataset are usually some type of linguistic units, such as words,
sentences, or documents. A dataset of natural language texts is called a corpus (plural:
corpora). As an example, let’s think of a (hypothetical) dataset for spam filtering. Each
record in this dataset is a pair of a piece of text and a label, where the text is a sen-
tence or a paragraph (e.g., from an email) and the label specifies whether the text is
spam. Both the text and the label are the fields of a record.

 Some NLP datasets and corpora have more complex structures. For example, a
dataset may contain a collection of sentences, where each sentence is annotated with
detailed linguistic information, such as part-of-speech tags, parse trees, dependency
structures, and semantic roles. If a dataset contains a collection of sentences anno-
tated with their parse trees, the dataset is called a treebank. The most famous example
of this is Penn Treebank (PTB) (http://realworldnlpbook.com/ch2.html#ptb), which
has been serving as the de facto standard dataset for training and evaluating NLP tasks
such as part-of-speech (POS) tagging and parsing.

 A closely related term to a record is an instance. In machine learning, an instance is
a basic unit for which the prediction is made. For example, in the spam-filtering task
mentioned earlier, an instance is one piece of text, because predictions (spam or not
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spam) are made for individual texts. An instance is usually created from a record in a
dataset, as is the case for the spam-filtering task, but this is not always the case—for
example, if you take a treebank and use it to train an NLP task that detects all nouns
in a sentence, then each word, not a sentence, becomes an instance, because predic-
tion (noun or not noun) is made for each word. Finally, a label is a piece of informa-
tion attached to some linguistic unit in a dataset. A spam-filtering dataset has labels
that correspond to whether each text is a spam. A treebank may have one label per
word for its part of speech. Labels are usually used as training signals (i.e., answers for
the training algorithm) in a supervised machine learning setting. See figure 2.2 for a
depiction of these parts of a dataset.

Figure 2.2 Datasets, records, fields, instances, and labels

2.2.2 Stanford Sentiment Treebank

To build a sentiment analyzer, we are going to use the Stanford Sentiment Treebank
(SST; https://nlp.stanford.edu/sentiment/), one of the most widely used sentiment
analysis datasets as of today. Go ahead and download the dataset from the Train,
Dev, Test Splits in PTB Tree Format link. One feature that differentiates SST from
other datasets is the fact that sentiment labels are assigned not only to sentences but
also to every word and phrase in sentences. For example, some excerpts from the
dataset follow:

(4
  (2 (2 Steven) (2 Spielberg))
    (4
      (2 (2 brings) (3 us))
      (4 (2 another) (4 masterpiece))))

Field Field Field FieldRecord

Field Field Field FieldRecord

Dataset Dataset

Label Instance

Label Instance

Label InstanceField Field Field FieldRecord

https://nlp.stanford.edu/sentiment/
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(1
  (2 It)
  (1
    (1 (2 (2 's) (1 not))
      (4 (2 a) (4 (4 great) (2 (2 monster) (2 movie)))))
    (2 .)))

Don’t worry about the details for now—these trees are written in S-expressions that
are painfully hard to read for humans (unless you are a Lisp programmer). Notice the
following:

 Each sentence is annotated with sentiment labels (4 and 1).
 Each word is also annotated, for example, (4 masterpiece) and (1 not).
 Every single phrase is also annotated, for example, (4 (2 another) 

(4 masterpiece)).

This property of the dataset enables us to study the complex semantic interactions
between words and phrases. For example, let’s consider the polarity of the following
sentence as a whole:

 The movie was actually neither that funny, nor super witty.

The above statement would definitely be a negative, although, if you focus on the indi-
vidual words (such as funny, witty), you might be fooled into thinking it’s a positive. If
you built a simple classifier that takes “votes” from individual words (e.g., the sentence
is positive if a majority of its words are positive), such classifiers would have difficulties
classifying this example correctly. To correctly classify the polarity of this sentence, you
need to understand the semantic impact of the negation “neither . . . nor.” For this
property, SST has been used as the standard benchmark for neural network models
that can capture the syntactic structures of sentences (http://realworldnlpbook.com/
ch2.html#socher13). However, in this chapter, we are going to ignore all the labels
assigned to internal phrases and use only labels for sentences.

2.2.3 Train, validation, and test sets

Before we move on to show how to use SST datasets and start building our own senti-
ment analyzer, I’d like to touch upon some important concepts in machine learning.
In NLP and ML, it is common to use a couple of different types of datasets to develop
and evaluate models. A widely used best practice is to use three different types of data-
set splits—train, validation, and test sets.

 A train (or training) set is the main dataset used to train the NLP/ML models.
Instances from the train set are usually fed to the ML training pipeline directly and
used to learn parameters of the model. Train sets are usually the biggest among the
three types of splits discussed here.

 A validation set (also called a dev or development set) is used for model selection. Model
selection is a process where appropriate NLP/ML models are selected among all pos-
sible models that can be trained using the train set, and here’s why it’s necessary. Let’s
think of a situation where you have two machine learning algorithms, A and B, with

http://realworldnlpbook.com/ch2.html#socher13
http://realworldnlpbook.com/ch2.html#socher13
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which you want to train an NLP model. You use both algorithms and obtain models A
and B. Now, how can you know which model is better?

 “That’s easy,” you might say. “Evaluate them both on the train set.” At first glance,
this may sound like a good idea. You run both models A and B on the train set and see
how they perform in terms of metrics such as accuracy. Why do people bother to use a
separate validation set for selecting models?

 The answer is overfitting—another important concept in NLP and ML. Overfitting is
a situation where a trained model fits the train set so well that it loses its generalizability.
Let’s think of an extreme case to illustrate the point here. Assume algorithm B is a very,
very powerful one that remembers everything as-is. Think of it as a big associative array
(or dict in Python) that can store all the pairs of instances and labels it has ever
encountered. For the spam-filtering task, this means that the model stores the exact
texts and their labels as they are presented when the model is being trained. If the exact
same text is presented when the model is evaluated, it just returns what’s stored as its
label. On the other hand, if the presented text is even slightly different from any other
texts it has in memory, the model has no clue, because it’s never seen it before.

 How do you think this model would perform if it was evaluated on the train set? The
answer is . . . yes, 100%! Because the model remembers all the instances from the train
set, it can just “replay” the entire dataset and classify it perfectly. Now, would this algo-
rithm make a good spam filter if you installed it on your email software? Absolutely not!
Because countless spam emails look very similar to existing ones but are slightly differ-
ent, or completely new, the model has no clue if the input email is even one character
different from what’s stored in the memory, and the model would be useless when
deployed in production. In other words, it has poor (in fact, zero) generalizability.

 How could you prevent choosing such a model? By using a validation set! A valida-
tion set consists of separate instances that are collected in a similar way to the train set.
Because they are independent from the train set, if you run your trained model on the
validation set, you’ll get a good idea how the model would perform outside the train
set. In other words, the validation set gives a proxy for the model’s generalizability.
Imagine if the model trained by the earlier “remember all” algorithm was evaluated
on a validation set. Because the instances in the validation set are similar to but inde-
pendent from the ones in the train set, you’d get very low accuracy and know the
model would perform poorly, even before deploying it.

 The validation set is also used for tuning hyperparameters. A hyperparameter is a
parameter about a machine learning algorithm or about a model that is being trained.
For example, if you repeat the training loop (also called an epoch—see later for more
explanation) for N times, this N is a hyperparameter. If you increase the number of lay-
ers of the neural network, you just changed one hyperparameter about the model.
Machine learning algorithms and models usually have a number of hyperparameters,
and it is crucial to tune them for them to perform optimally. You can do this by training
multiple models with different hyperparameters and evaluating them on a validation
set. In fact, you can think of models with different hyperparameters as separate models,
even if they have the same structure, and hyperparameter tuning can be considered
one type of model selection.



32 CHAPTER 2 Your first NLP application

 Finally, a test set is used to evaluate the model using a new, unseen set of data. It
consists of instances that are independent from the train and validation sets. It gives
you a good idea how the model would perform “in the wild.” 

 You might wonder why yet another separate dataset is necessary for evaluating the
model’s generalizability. Can’t you just use the validation set for this? Again, you
shouldn’t rely solely on a train set and a validation set to measure the generalizability
of your model, because your model could also overfit to the validation set in a subtle
way. This point is less intuitive, but let me give you an example. Imagine you are fran-
tically experimenting with a ton of different spam-filtering models. You wrote a script
that automatically trains a spam-filtering model. The script also automatically evalu-
ates the trained models on the validation set. If you run this script 1,000 times with dif-
ferent combinations of algorithms and hyperparameters and pick one model with the
highest validation set performance, would it also perform the best on the completely
new, unseen instances? Probably not. If you try a large number of models, some of
them happen to perform relatively well on the validation set purely by chance
(because the predictions inherently have some noise, and/or because those models
happen to have some characteristics that make them perform better on the validation
set), but this is no guarantee that those models perform well outside of the validation
set. In other words, it could be possible to overfit the model to the validation set.

 In summary, when training NLP models, use a train set to train your model candi-
dates, use a validation set to choose good ones, and use a test set to evaluate them.
Many public datasets used for NLP and ML evaluation are already split into train/
validation/test sets. If you just have a single dataset, you can split it into those three
datasets by yourself. An 80:10:10 split is commonly used. Figure 2.3 depicts the train/
validation/test split as well as the entire training pipeline.
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2.2.4 Loading SST datasets using AllenNLP

Finally, let’s see how we can actually load datasets in code. In the remainder of this
chapter, we assume that you have already installed AllenNLP (version 2.5.0) and the
corresponding version of the allennlp-models package by running the following:

pip install allennlp==2.5.0
pip install allennlp-models==2.5.0

and imported necessary classes and modules as shown here:

from itertools import chain
from typing import Dict

import numpy as np
import torch
import torch.optim as optim
from allennlp.data.data_loaders import MultiProcessDataLoader
from allennlp.data.samplers import BucketBatchSampler
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules.seq2vec_encoders import Seq2VecEncoder, 

PytorchSeq2VecWrapper
from allennlp.modules.text_field_embedders import TextFieldEmbedder, 

BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.nn.util import get_text_field_mask
from allennlp.training import GradientDescentTrainer
from allennlp.training.metrics import CategoricalAccuracy, F1Measure
from allennlp_models.classification.dataset_readers.stanford_sentiment_

tree_bank import \
    StanfordSentimentTreeBankDatasetReader

Unfortunately, as of this writing, AllenNLP does not officially support Windows. But
don’t worry—all the code in this chapter (and all the code in this book, for that mat-
ter) is available as Google Colab notebooks (http://www.realworldnlpbook.com/
ch2.html#sst-nb), where you can run and modify the code and see the results. 

 You also need to define the following two constants used in the code snippets:

EMBEDDING_DIM = 128
HIDDEN_DIM = 128

AllenNLP already supports an abstraction called DatasetReader, which takes care of
reading a dataset from the original format (be it raw text or some exotic XML-based
format) and returns it as a collection of instances. We are going to use Stanford-
SentimentTreeBankDatasetReader(), which is a type of DatasetReader that
specifically deals with SST datasets, as shown here:

reader = StanfordSentimentTreeBankDatasetReader()
train_path = 'https:/./s3.amazonaws.com/realworldnlpbook/data/

stanfordSentimentTreebank/trees/train.txt'
dev_path = 'https:/./s3.amazonaws.com/realworldnlpbook/data/

stanfordSentimentTreebank/trees/dev.txt'

http://www.realworldnlpbook.com/ch2.html#sst-nb
http://www.realworldnlpbook.com/ch2.html#sst-nb
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This snippet will create a dataset reader for SST datasets and define the paths for the
train and dev text files.

2.3 Using word embeddings
From this section on, we’ll start building the neural network architecture for the senti-
ment analyzer. Architecture is just another word for the structure of neural networks.
Building neural networks is a lot like building structures such as houses. The first step
is to figure out how to feed the input (e.g., sentences for sentiment analysis) into the
network.

 As we have seen previously, everything in NLP is discrete, meaning there is no pre-
dictable relationship between the forms and the meanings (remember “rat” and “sat”).
On the other hand, neural networks are best at dealing with something numerical and
continuous, meaning everything in neural networks needs to be float numbers. How
can we “bridge” between these two worlds—discrete and continuous? The key is the use
of word embeddings, which we are going to discuss in detail in this section.

2.3.1 What are word embeddings?

Word embeddings are one of the most important concepts in modern NLP. Technically,
an embedding is a continuous vector representation of something that is usually dis-
crete. A word embedding is a continuous vector representation of a word. If you are
not familiar with the concept of vectors, vector is a mathematical name for single-
dimensional arrays of numbers. In simpler terms, word embeddings are a way to rep-
resent each word with a 300-element array (or an array of any other size) filled with
nonzero float numbers. It is conceptually very simple. Then, why has it been so
important and prevalent in modern NLP?

 As I mentioned in chapter 1, the history of NLP is actually the history of continu-
ous battle against “discreteness” of language. In the eyes of computers, “cat” is no
closer to “dog” than it is to “pizza.” One way to deal with discrete words programmati-
cally is to assign indices to individual words as follows (here we simply assume that
these indices are assigned alphabetically):

 index("cat") = 1

 index("dog") = 2

 index("pizza") = 3

 …

These assignments are usually managed by a lookup table. The entire, finite set of
words that one NLP application or task deals with is called vocabulary. But this method
isn’t any better than dealing with raw words. Just because words are now represented
by numbers doesn’t mean you can do arithmetic operations on them and conclude
that “cat” is equally similar to “dog” (difference between 1 and 2), as “dog” is to
“pizza” (difference between 2 and 3). Those indices are still discrete and arbitrary.

  “What if we can represent them on a numerical scale?” some NLP researchers
wondered decades ago. Can we think of some sort of numerical scale where words are



35Using word embeddings

represented as points, so that
semantically closer words (e.g.,
“dog” and “cat,” which are both
animals) are also geometrically
closer? Conceptually, the numeri-
cal scale would look like the one
shown in figure 2.4.

 This is a step forward. Now we can represent the fact that “cat” and “dog” are more
similar to each other than “pizza” is to those words. But still, “pizza” is slightly closer to
“dog” than it is to “cat.” What if you wanted to place it somewhere that is equally far
from “cat” and “dog?” Maybe only one dimension is too limiting. How about adding
another dimension to this, as shown in figure 2.5?

 Much better! Because computers are really good at dealing with multidimensional
spaces (because you can just represent points by arrays), you can simply keep doing
this until you have a sufficient number of dimensions. Let’s have three dimensions. In
this 3-D space, you can represent those three words as follows:

 vec("cat") = [0.7, 0.5, 0.1] 

 vec("dog") = [0.8, 0.3, 0.1]

 vec("pizza") = [0.1, 0.2, 0.8]

Figure 2.6 illustrates this three-dimensional space.
 The x -axis (the first element) here represents some concept of “animal-ness” and

the z -axis (the third dimension) corresponds to “food-ness.” (I’m making these num-
bers up, but you get the point.) This is essentially what word embeddings are. You just
embedded those words in a three-dimensional space. By using those vectors, you
already “know” how the basic building blocks of the language work. For example, if
you wanted to identify animal names, then you would just look at the first element of
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each word vector and see if the value is high enough. This is a great jump start com-
pared to the raw word indices!

 You may be wondering where those numbers come from in practice. These num-
bers are actually “learned” using some machine learning algorithms and a large text
dataset. We’ll discuss this further in chapter 3.

 By the way, we have a much simpler method to “embed” words into a multidimen-
sional space. Think of a multidimensional space that has as many dimensions as there
are words. Then, give to each word a vector that is filled with zeros but just one 1, as
shown next:

 vec("cat") = [1, 0, 0] 

 vec("dog") = [0, 1, 0]

 vec("pizza") = [0, 0, 1]

Notice that each vector has only one 1 at the position corresponding to the word’s
index. These special vectors are called one-hot vectors. These vectors are not very useful
themselves in representing semantic relationship between those words—the three
words are all at the equal distance from each other—but they are still (a very dumb
kind of) embeddings. They are often used as the input to a machine learning algo-
rithm when embeddings are not available.

2.3.2 Using word embeddings for sentiment analysis

First, we create dataset loaders that take care of loading data and passing it to the
training pipeline, as shown next (more discussion on this data later in this chapter):

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(reader, train_path,
                                           batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(reader, dev_path,
                                           batch_sampler=sampler)

AllenNLP provides a useful Vocabulary class that manages mappings from some lin-
guistic units (such as characters, words, and labels) to their IDs. You can tell the class
to create a Vocabulary instance from a set of instances as follows:

vocab = Vocabulary.from_instances(chain(train_data_loader.iter_instances(),
                                        dev_data_loader.iter_instances()),
                                  min_count={'tokens': 3})

Then, you need to initialize an Embedding instance, which takes care of converting
IDs to embeddings, as shown in the next code snippet. The size (dimension) of the
embeddings is determined by EMBEDDING_DIM:

token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
                            embedding_dim=EMBEDDING_DIM)

Finally, you need to specify which index names correspond to which embeddings and
pass it to BasicTextFieldEmbedder as follows:

word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})
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Now you can use word_embeddings to convert words (or more precisely, tokens,
which I’ll talk more about in chapter 3) to their embeddings. 

2.4 Neural networks
An increasingly large number of modern NLP applications are built using neural net-
works. You may have seen many amazing things that modern neural network models
can achieve in the domain of computer vision and game playing (such as self-driving
cars and Go-playing algorithms defeating human champions), and NLP is no excep-
tion. We are going to use neural networks for most of the NLP examples and applica-
tions we are going to build in this book. In this section, we discuss what neural
networks are and why they are powerful.

2.4.1 What are neural networks?

Neural networks are at the core of modern NLP (and many other related AI fields,
such as computer vision). It is such an important, vast research topic that it’d take a
book (or maybe several books) to fully explain what it is and all the related models,
algorithms, and so on. In this section, I’ll briefly explain the gist of it and will go into
more details in later chapters as needed.

 In short, a neural network (also called an artificial neural network) is a generic mathe-
matical model that transforms a vector to another vector. That’s it. Contrary to what
you may have read and heard in popular media, its essence is simple. If you are famil-
iar with programming terms, think of it as a function that takes a vector, does some
computation inside, and produces another vector as the return value. Then why is it
such as big deal? How is it different from normal functions in programming?

 The first difference is that neural networks are trainable. Think of it not just as a
fixed function but more as a “template” for a set of related functions. If you use a pro-
gramming language and write a function that includes several mathematical equa-
tions with some constants, you always get the same result if you feed the same input.
On the contrary, neural networks can receive “feedback” (how close the output is to
your desired output) and adjust their internal constants. Those “magic” constants are
called weights or, more generally, parameters. Next time you run it, you expect that its
answer is closer to what you want. 

 The second difference is its mathematical power. It’d be overly complicated if you
were to use your favorite programming language and write a function that does, for
example, sentiment analysis, if at all possible. (Remember the poor software engineer
from chapter 1?) In theory, given enough model power and training data, neural net-
works are known to be able to approximate any continuous functions. This means
that, whatever your problem is, neural networks can solve it if there’s a relationship
between the input and the output and if you provide the model with enough compu-
tational power and training data.

 Neural networks achieve this by learning functions that are not linear. What does it
mean for a function to be linear? A linear function is a function where, if you change
the input by x, the output will always change by c * x, where c is a constant number.
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For example, 2.0 * x is linear, because the return value always increases by 2.0 if you
change x by 1.0. If you plot this on a graph, the relationship between the input and
the output forms a straight line, which is why it’s called linear. On the other hand,
2.0 * x * x is not linear, because how much the return value changes depends not
only on how much you change x but also on the value of x.

 What this means is that a linear function cannot capture a more complex relation-
ship between the input and the output and between the input variables. On the con-
trary, natural phenomena such as language are highly nonlinear. If you change the
input by x (e.g., a word in a sentence), how much the output changes depends not
only on how much x is changed but also on many other factors such as the value of x
itself (e.g., what word you changed x to) and what other variables (e.g., the context
of x) are. Neural networks, which are nonlinear mathematic models, have the poten-
tial to capture such complex interactions.

2.4.2 Recurrent neural networks (RNNs) and linear layers

Two special types of neural network components are important for sentiment
analysis—recurrent neural networks (RNNs) and linear layers. I’ll explain them in
detail in later chapters, but I’ll briefly describe what they are and their roles in senti-
ment analysis (or in general, sentence classification).

 A recurrent neural network (RNN) is a neural network with loops, as shown in figure
2.7. It has an internal structure that is applied to the input again and again. Using
the programming analogy, it’s like writing a function that contains for word in
sentence: that loops over each word in the input sentence. It can either output the
interim values of the internal variables of the loop, or the final values of the variables
after the loop is finished, or both. If you just take the final values, you can use an RNN
as a function that transforms a sentence to a vector with a fixed length. In many NLP
tasks, you can use an RNN to transform a sentence to an embedding of the sentence.
Remember word embeddings? They were fixed-length representation of words. Simi-
larly, RNNs can produce fixed-length representation of sentences.

Figure 2.7 Recurrent neural network (RNN)
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 Another type of neural network component we’ll be using here is linear layers. A
linear layer, also called a fully connected layer, transforms a vector to another vector in a
linear fashion. As mentioned earlier, layer is just a fancier term for a substructure of
neural networks, because you can stack them on top of each other to form a larger
structure.

 Remember, neural networks can learn nonlinear relationships between the input
and the output. Why would we want something that is more constrained (linear) at
all? Linear layers are used for compressing (or less often, expanding) vectors by
reducing (or increasing) the dimensionality. For example, assume you receive a 64-
dimensional vector (an array of 64 float numbers) from an RNN as a sentence embed-
ding, but all you care about is a smaller number of values that are essential for your
prediction. In sentiment analysis, you may care about only five values that correspond
to five different sentiment labels, namely, strongly positive, positive, neutral, negative,
and strongly negative. But you have no idea how to extract those five values from the
embedded 64 values. This is exactly where a linear layer comes in handy—you can add
a layer that transforms a 64-dimensional vector to a 5-dimensional one, and the neural
networks figure out how to do that well, as shown in figure 2.8.

Figure 2.8 Linear layer

2.4.3 Architecture for sentiment analysis

Now you are ready to put the components together to build the neural network for
the sentiment analyzer. First, you need to create the RNN as follows: 

encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

Don’t worry too much about PytorchSeq2VecWrapper and batch_first=True.
Here, you are creating an RNN (or more specifically, one type of RNN called LSTM,
which stands for long short-term memory). The size of the input vector is EMBEDDING_DIM,
which we saw earlier, and that of the output vector is HIDDEN_DIM. 
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 Next, you need to create a linear layer, as shown here:

self.linear = torch.nn.Linear(in_features=encoder.get_output_dim(),
                              out_features=vocab.get_vocab_size('labels'))

The size of the input vector is defined by in_features, whereas out_features is
that of the output vector. Because we are transforming the sentence embedding to a
vector whose elements correspond to five sentiment labels, we need to specify the size
of the encoder output and obtain the total number of labels from vocab.

 Finally, we can connect those components and build a model as shown in the fol-
lowing code.

class LstmClassifier(Model):
    def __init__(self,
                 word_embeddings: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 vocab: Vocabulary,
                 positive_label: str = '4') -> None:
        super().__init__(vocab)
        self.word_embeddings = word_embeddings

        self.encoder = encoder

        self.linear = torch.nn.Linear(in_features=encoder.get_output_dim(),
                                      

out_features=vocab.get_vocab_size('labels'))

        self.loss_function = torch.nn.CrossEntropyLoss()   

    def forward(self,    
                tokens: Dict[str, torch.Tensor],
                label: torch.Tensor = None) -> torch.Tensor:
        mask = get_text_field_mask(tokens)

        embeddings = self.word_embeddings(tokens)
        encoder_out = self.encoder(embeddings, mask)
        logits = self.linear(encoder_out)

        output = {"logits": logits}
        if label is not None:
            self.accuracy(logits, label)
            self.f1_measure(logits, label)
            output["loss"] = self.loss_function(logits, label)  

        return output

I want you to focus on the forward() function which is the most important function
that every neural network model has. Its role is to take the input, pass it through sub-
components of the neural network, and produce the output. Although the function
has some unfamiliar logics that we haven’t covered yet (such as mask and loss),

Listing 2.1 Building a sentiment analyzer model

Defines the 
loss function 
(cross entropy)

The forward() function 
is where most of the 
computation happens 
in a model.

Computes the loss and
assigns it to the “loss” key

of the returned dict
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what’s important here is the fact that you can chain the subcomponents of the model
(word embeddings, RNN, and the linear layer) as if they were functions that trans-
form the input (tokens), and you get something called logits at the end of the pipe-
line. Logit is a term in statistics that has a specific meaning, but here, you can think of
it as something like a score for a class. The higher the score is for a specific label, the
more confident that the label is the correct one.

2.5 Loss functions and optimization
Neural networks are trained using supervised learning. As mentioned earlier, super-
vised learning is a type of machine learning that learns a function that maps inputs to
outputs based on a large amount of labeled data. So far, I covered only about how
neural networks take an input and produce an output. How can we make it so that
neural networks produce the output that we actually want?

 Neural networks are not just like regular functions that you usually write in pro-
gramming languages. They are trainable, meaning that they can receive some feedback
and change their internal parameters so that they can produce more accurate out-
puts, even for the same inputs next time around. Notice there are two parts to this—
receiving feedback and adjusting parameters, which are done through loss functions
and optimization, respectively, which I’ll explain next.

 A loss function is a function that measures how far an output of a machine learning
model is from a desired one. The difference between an actual output and a desired
one is called the loss. Loss is also called cost in some contexts. Either way, the bigger
the loss, the worse it is, and you want it as close to zero as possible. Take sentiment
analysis, for example. If the model thinks a sentence is 100% negative, but the train-
ing data says it’s strongly positive, the loss will be big. On the other hand, if the model
thinks a sentence is maybe 80% negative and the training label is indeed negative, the
loss will be small. It will be zero if both match exactly.

 PyTorch provides a wide range of functions to compute losses. What we need here
is called cross-entropy loss, which is often used for classification problems, as shown
here:

self.loss_function = torch.nn.CrossEntropyLoss()

It can be used later by passing a prediction and labels from the training set as follows:

output["loss"] = self.loss_function(logits, label)

Then, this is where the magic happens. Neural networks, thanks to their mathematical
properties, know how to change their internal parameters to make the loss smaller.
Upon receiving some large loss, the neural network goes, “Oops, sorry, that was my
mistake, but I’ll do better next round!” and changes its parameters. Remember I
talked about a function that you write in a programming language that has some
magic constants in it? Neural networks act like that function but know exactly how to
change the magic constants to reduce the loss. They do this for each and every
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instance in the training data, so that they can produce more correct answers for as
many instances as possible. Of course, they can’t reach the perfect answer after adjust-
ing the parameters only once. It requires multiple passes, called epochs, over the train-
ing data. Figure 2.9 shows the overall training procedure for neural networks.

Figure 2.9 Overall training procedure for neural networks

The process where a neural network computes an output from an input using the cur-
rent set of parameters is called the forward pass. This is why the main function in listing
2.1 is called forward(). The way the loss is fed back to the neural network is called
backpropagation. An algorithm called stochastic gradient descent (SGD) is often used to
minimize the loss. The process where the loss is minimized is called optimization, and
the algorithm (such as SGD) used to achieve this is called the optimizer. You can initial-
ize an optimizer using PyTorch as follows:

optimizer = optim.Adam(model.parameters())

Here, we are using one type of optimizer called Adam. There are many types of opti-
mizers proposed in the neural network community, but the consensus is that there is
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no single optimization algorithm that works well for any problem, and you should be
ready to experiment with multiple ones for your own problem. 

 OK, that was a lot of technical terms. You don’t need to know the details of those
algorithms for now, but it’d be helpful if you learn just the terms and what they
roughly mean. If you write the entire training process in Python pseudocode, it will
appear as shown in listing 2.2. Note that there are two nested loops, one over epochs
and another over instances.

MAX_EPOCHS = 100
model = Model()

for epoch in range(MAX_EPOCHS):
    for instance, label in train_set:
        prediction = model.forward(instance)
        loss = loss_function(prediction, label)
        new_model = optimizer(model, loss)
        model = new_model

2.6 Training your own classifier
In this section, we are going to train our own classifier using AllenNLP’s training
framework. I’ll also touch upon the concept of batching, an important practical con-
cept that is used in training neural network models.

2.6.1 Batching

So far, I have left out one piece of detail—batching. We assumed that an optimization
step happens for each and every instance, as you saw in the earlier pseudocode. In
practice, however, we usually group a number of instances together and feed them to
a neural network, updating model parameters per each group, not per each instance.
We call this group of instances a batch.

 Batching is a good idea for a couple of reasons. The first is stability. Any data is
inherently noisy. Your dataset may contain sampling and labeling errors. If you update
your model parameters for every instance, and if some instances contain errors, the
update is influenced too much by the noise. But if you group instances into batches
and compute the loss for the entire batch, not for individual instances, you can “aver-
age out” small errors and the feedback to your model stabilizes. 

 The second reason is speed. Training neural networks involves a huge number of
arithmetic operations such as matrix additions and multiplications, and it is often
done on GPUs (graphics processing units). Because GPUs are designed so that they
can process a huge number of arithmetic operations in parallel, it is often efficient if
you pass a large amount of data and process it at once instead of passing instances one
by one. Think of a GPU as a factory overseas that manufactures products based on
your specifications. Because factories are often optimized for manufacturing a small
variety of products at a large quantity, and there is overhead in communicating and

Listing 2.2 Pseudocode for the neural network training loop
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shipping products, it is more efficient if you make a small number of orders for manu-
facturing a large quantity of products instead of making a large number of orders for
manufacturing a small quantity of products, even if you want the same quantity of
products in total in either way.

 It is easy to group instances into batches using AllenNLP. The framework uses
PyTorch’s DataLoader abstraction, which takes care of receiving instances and
returning batches. We’ll use a BucketBatchSampler that groups instances into
buckets of similar lengths, as shown in the next code snippet. I’ll discuss why it’s
important in later chapters:

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(reader, train_path, 

batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(reader, dev_path, 

batch_sampler=sampler)

The parameter batch_size specifies the size of the batch (the number of instances
in a batch). There is often a “sweet spot” in adjusting this parameter. It should be
large enough to have any effect of the batching I mentioned earlier, but also small
enough so that batches fit in the GPU memory, because factories have the maximum
capacity of products they can manufacture at once. 

2.6.2 Putting everything together

Now you are ready to train your sentiment analyzer. We assume that you already
defined and initialized your model as follows:

model = LstmClassifier(word_embeddings, encoder, vocab)

See the full code listing (http://www.realworldnlpbook.com/ch2.html#sst-nb) for
what the model looks like and how to use it.

 AllenNLP provides the Trainer class, which acts as a framework for putting all the
components together and managing the training pipeline, as shown here:

trainer = GradientDescentTrainer(
    model=model,
    optimizer=optimizer,
    data_loader=train_data_loader,
    validation_data_loader=dev_data_loader,
    patience=10,
    num_epochs=20,
    cuda_device=-1)

trainer.train()

You provide the model, optimizer, iterator, train set, dev set, and the number of
epochs you want to the trainer and invoke the train method. The last parameter,
cuda_device, tells the trainer which device (CPU or GPU) to use to use for training.
Here, we are explicitly using the CPU. This will run the neural network training loop
described in listing 2.2 and display the progress, including the evaluation metrics. 

http://www.realworldnlpbook.com/ch2.html#sst-nb
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2.7 Evaluating your classifier
When training an NLP/ML model, you should always monitor how the loss changes
over time. If the training is working as expected, you should see the loss decrease over
time. It doesn’t always decrease each epoch, but it should decrease as a general trend,
because this is exactly what you told the optimizer to do. If it’s increasing or showing
weird values (such as NaN), it’s usually a sign that your model is too limiting or there’s
a bug in your code.

 In addition to the loss, it is important to monitor other evaluation metrics you care
about in your task. Loss is a purely mathematical concept that measures the closeness
between your model and the answer, but smaller losses do not always guarantee better
performance in the NLP task. 

 You can use a number of evaluation metrics, depending on the nature of your NLP
task, but some that you need to know no matter what task you are working on include
accuracy, precision, recall, and F-measure. Roughly speaking, these metrics measure
how precisely your model’s predictions match the expected answers defined by the
dataset. For now, it suffices to know that they are used to measure how good your clas-
sifier is (more details coming in chapter 4). 

 To monitor and report evaluation metrics during training using AllenNLP, you
need to implement the get_metrics() method in your model class, which returns a
dict from metric names to their values, as shown next.

   def get_metrics(self, reset: bool = False) -> Dict[str, float]:
        return {'accuracy': self.accuracy.get_metric(reset),
                **self.f1_measure.get_metric(reset)}

self.accuracy and self.f1_measure are defined in __init__() as follows:

    self.accuracy = CategoricalAccuracy()
    self.f1_measure = F1Measure(positive_index)

When you run trainer.train() with the metrics defined, you’ll see progress bars
like these after every epoch:

accuracy: 0.7268, precision: 0.8206, recall: 0.8703, f1: 0.8448, batch_loss: 
0.7609, loss: 0.7194 ||: 100%|##########| 267/267 [00:13<00:00, 19.28it/s]

accuracy: 0.3460, precision: 0.3476, recall: 0.3939, f1: 0.3693, batch_loss: 
1.5834, loss: 1.9942 ||: 100%|##########| 35/35 [00:00<00:00, 119.53it/s]

You can see that the training framework reports these metrics both for the train and the
validation sets. This is useful not only for evaluating your model but also for monitoring
the progress of the training. If you see any unusual values, such as extremely low or high
numbers, you’ll know that something is wrong, even before the training completes.

 You may have noticed a large gap between the train and the validation metrics.
Specifically, the metrics for the train set are a lot higher than those for the validation

Listing 2.3  Defining evaluation metrics
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set. This is a common symptom of overfitting, which I mentioned earlier, where a
model fits to a train set so well that it loses generalizability outside of it. This is why it’s
important to monitor the metrics using a validation set as well, because you won’t
know if it’s just doing well or overfitting only by looking at the training set metrics!

2.8 Deploying your application
The final step in making your own NLP application is deploying it. Training your
model is only half the story. You need to set it up so that it can make predictions for
new instances it has never seen. Making sure the model is serving predictions is criti-
cal in real-world NLP applications, and a lot of development efforts may go into this
stage. In this section, I’m going to show what it’s like to deploy the model we just
trained using AllenNLP. This topic is discussed in more detail in chapter 11.

2.8.1 Making predictions

To make predictions for new instances your model has never seen (called test
instances), you need to pass them through the same neural network pipeline as you
did for training. It has to be exactly the same—otherwise, you’ll risk skewing the
result. This is called training-serving skew, which I’ll explain in chapter 11.

 AllenNLP provides a convenient abstraction called predictors, whose job it is to
receive an input in its raw form (e.g., raw string), pass it through the preprocessing
and neural network pipeline, and give back the result. I wrote a specific predictor for
SST called SentenceClassifierPredictor (http://realworldnlpbook.com/ch2
.html#predictor), which you can call as follows:

predictor = SentenceClassifierPredictor(model, dataset_reader=reader)
logits = predictor.predict('This is the best movie ever!')['logits']

Note that the predictor returns the raw output from the model, which is logits in this
case. Remember, logits are some sort of scores corresponding to target labels, so if you
want the predicted label itself, you need to convert it to the label. You don’t need to
understand all the details for now, but this can be done by first taking the argmax of
the logits, which returns the index of the logit with the maximum value, and then by
looking up the label by the ID, as follows:

label_id = np.argmax(logits)
print(model.vocab.get_token_from_index(label_id, 'labels'))

If this prints out a “4,” congratulations! Label “4” corresponds to “very positive,” so
your sentiment analyzer just predicted that the sentence “This is the best movie ever!”
is very positive, which is indeed correct.

2.8.2 Serving predictions

Finally, you can easily deploy the trained model using AllenNLP. If you use a JSON
configuration file (which I’ll explain in chapter 4), you can save your trained model
onto disk and then quickly fire up a web-based interface where you can make requests

http://realworldnlpbook.com/ch2.html#predictor
http://realworldnlpbook.com/ch2.html#predictor
http://realworldnlpbook.com/ch2.html#predictor
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to your model. To do this, you need to install allennlp-server, a plugin for Allen-
NLP that provides a web interface for prediction, as follows:

git clone https:/./github.com/allenai/allennlp-server
pip install --editable allennlp-server

Assuming your model is saved under examples/sentiment/model, you can run a
Python-based web application using the following AllenNLP command:

$ allennlp serve \ 
    --archive-path examples/sentiment/model/model.tar.gz \
    --include-package examples.sentiment.sst_classifier \
    --predictor sentence_classifier_predictor \
    --field-name sentence

If you open http:/./localhost:8000/ using your browser, you’ll see the interface shown
in figure 2.10.

Figure 2.10 Running the sentiment analyzer on a web browser

Try typing some sentences in the sentence text box, and click Predict. You should see
the logits values on the right side of the screen. They are just a raw array of logits and
hard to read, but you can see that the fourth value (which corresponds to the label
“very positive”) is the largest and the model is working as expected.

 You can also directly make POST requests to the backend from the command line
as follows:

curl -d '{"sentence": "This is the best movie ever!"}'
    -H "Content-Type: application/json" \
    -X POST http:/./localhost:8000/predict
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This should return the same JSON as you saw above:

{"logits":[-0.2549717128276825,-0.35388273000717163,
-0.0826418399810791,0.7183976173400879,0.23161858320236206]}

OK, that’s it for now. We covered a lot in this chapter, but don’t worry—I just wanted
to show you that it is easy to build an NLP application that actually works. You may
have found some books or online tutorials about neural networks and deep learning
intimidating, or you may have even given up on learning before creating anything
that works. Notice that I didn’t even mention any concepts such as neurons, activa-
tions, gradient, and partial derivatives, which other learning materials teach at the
very beginning. These concepts are indeed important and helpful to know, but thanks
to powerful frameworks such as AllenNLP, you are also able to build practical NLP
applications without fully understanding their details. In later chapters, I’ll go into
more details and discuss these concepts as needed.

Summary
 Sentiment analysis is a text analytic technique to automatically identify subjec-

tive information within text, such as its polarity (positive or negative).
 Train, dev, and test sets are used to train, choose, and evaluate machine learn-

ing models.
 Word embeddings represent the meaning of words using vectors of real

numbers.
 Recurrent neural networks (RNNs) and linear layers are used to convert a vec-

tor to another vector of different size.
 Neural networks are trained using an optimizer so that the loss (discrepancy

between the actual and the desired output) is minimized.
 It is important to monitor the metrics for the train and the dev sets during

training to avoid overfitting.
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Word and document
embeddings

In chapter 2, I pointed out that neural networks can deal only with numbers,
whereas almost everything in natural language is discrete (i.e., separate concepts).
To use neural networks in your NLP application, you need to convert linguistic
units to numbers, such as vectors. For example, if you wish to build a sentiment
analyzer, you need to convert the input sentence (sequence of words) into a
sequence of vectors. In this chapter, we’ll discuss word embeddings, which are the
key to achieving this bridging. We’ll also touch upon a couple of fundamental

This chapter covers
 What word embeddings are and why they 

are important

 How the Skip-gram model learns word 
embeddings and how to implement it

 What GloVe embeddings are and how to use 
pretrained vectors

 How to use Doc2Vec and fastText to train more 
advanced embeddings

 How to visualize word embeddings
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linguistic components that are important in understanding embeddings and neural
networks in general.

3.1 Introducing embeddings
As we discussed in chapter 2, an embedding is a real-valued vector representation of
something that is usually discrete. In this section, we’ll revisit what embeddings are
and discuss in detail what roles they play in NLP applications.

3.1.1 What are embeddings?

A word embedding is a real-valued vector representation of a word. If you find the
concept of vectors intimidating, think of them as single-dimensional arrays of float
numbers, like the following:

 vec("cat") = [0.7, 0.5, 0.1] 

 vec("dog") = [0.8, 0.3, 0.1]

 vec("pizza") = [0.1, 0.2, 0.8]

Because each array contains three elements, you can plot them as points in a 3-D
space as in figure 3.1. Notice that semantically-related words (“cat” and “dog”) are
placed close to each other.

NOTE In fact, you can embed (i.e., represent by a list of numbers) not just
words but also almost anything—characters, sequences of characters, sen-
tences, or categories. You can embed any categorical variables using the same
method, although in this chapter, we’ll focus on two of the most important
concepts in NLP—words and sentences.

3.1.2 Why are embeddings important?

Why are embeddings important? Well, word embeddings are not just important but
essential for using neural networks to solve NLP tasks. Neural networks are pure math-
ematical computation models that can deal only with numbers. They can’t do symbolic
operations, such as concatenating two strings or conjugating a verb to past tense, unless

x

y

z

Cat

Pizza

Dog

Figure 3.1 Word embeddings on a 3-D space
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these items are all represented by numbers and arithmetic operations. On the other
hand, almost everything in NLP, such as words and labels, is symbolic and discrete. This
is why you need to bridge these two worlds, and using embeddings is a way to do it. See
figure 3.2 for an overview on how to use word embeddings for an NLP application.

Word embeddings, just like any other neural network models, can be trained, because
they are simply a collection of parameters (or “magic constants,” which we talked
about in the previous chapter). Embeddings are used with your NLP model in the fol-
lowing three scenarios:

 Scenario 1: Train word embeddings and your model at the same time using the
train set for your task.

 Scenario 2: First, train word embeddings independently using a larger text data-
set. Alternatively, obtain pretrained word embeddings from somewhere else.
Then initialize your model using the pretrained word embeddings, and train
them and your model at the same time using the train set for your task.

 Scenario 3: Same as scenario 2, except you fix word embeddings while you train
your model.

In the first scenario, word embeddings are initialized randomly and trained in con-
junction with your NLP model using the same dataset. This is basically how we built the
sentiment analyzer in chapter 2. Using an analogy, this is like having a dance teacher
teach a baby to walk and dance at the same time. It is not an entirely impossible feat (in
fact, some babies might end up being better, maybe more creative dancers by skipping
the walking part, but don’t try this at home), but rarely a good idea. Babies would

NLP
model

 

Prediction

Training data

Large text data

Word 
embeddings

Words

dog

chocolate

bark
cat

Figure 3.2 Using word 
embeddings with NLP models
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probably have a much better chance if they are taught how to stand and walk properly
first, and then how to dance.

 Similarly, it’s not uncommon to train an NLP model and word embeddings as its
subcomponent at the same time. But many large-scale, high-performance NLP mod-
els usually rely on external word embeddings that are pretrained using larger datasets
(scenarios 2 and 3). Word embeddings can be learned from unlabeled large text
datasets—that is, a large amount of plain text data (e.g., Wikipedia dumps), which are
usually more readily available than the train datasets for your task (e.g., the Stanford
Sentiment Treebank). By leveraging such large textual data, you can teach your model
a lot about how natural language works even before it sees a single instance from the
dataset for your task. Training a machine learning model on one task and repurposing
it for another task is called transfer learning, which is becoming increasingly popular in
many machine learning domains, NLP included. We’ll further discuss transfer learn-
ing in chapter 9.

 Using the dancing baby analogy again, most healthy babies figure out how to stand
and walk themselves. They may get some help from adults, usually from their close
caregivers such as parents. This form of “help,” however, is usually a lot more abun-
dant and cheaper than the “training signal” you get from a hired dance teacher, which
is why it’s a lot more effective if they learn how to walk first, then move on to dancing.
Many skills used for walking transfer to dancing.

 The difference between scenarios 2 and 3 is whether the word embeddings are
adjusted, or fine-tuned, while your NLP model is trained. Whether or not this is effec-
tive may depend on your task and the dataset. Teaching your toddler ballet may have a
good effect on how they walk (e.g., by improving their posture), which in turn could
have a positive effect on how they dance, but scenario 3 doesn’t allow this to happen.

 The only remaining question you might have is: Where do embeddings come
from? I mentioned earlier that they can be trained from a large amount of plain text.
This chapter explains how this is possible and what models are used to achieve this.

3.2 Building blocks of language: Characters, words, and phrases
Before I explain word-embedding models, I’m going to touch upon some basic
concepts of language, such as characters, words, and phrases. It helps to understand
these concepts when you design the structure of your NLP application. Figure 3.3
shows some examples of those concepts.

3.2.1 Characters

A character (also called a grapheme in linguistics) is the smallest unit of a writing system.
In written English, “a,” “b,” and “z” are characters. Characters do not necessarily carry
meaning by themselves or represent any fixed sound when spoken, although in some
languages (e.g., Chinese), most do. A typical character in many languages can be rep-
resented by a single Unicode codepoint (by string literals such as "\uXXXX" in Python),
but this is not always the case. Many languages use a combination of more than one Uni-
code codepoint (e.g., accent marks) to represent a single character. Punctuation
marks, such as “.” (period), “,” (comma), and “?” (question mark), are also characters.
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3.2.2 Words, tokens, morphemes, and phrases

A word is the smallest unit in a language that can be uttered independently and that
usually carries some meaning. In English, “apple,” “banana,” and “zebra” are words.
In most written languages that use alphabetic scripts, words are usually separated by
spaces or punctuation marks. In some languages, like Chinese, Japanese, and Thai,
however, words are not explicitly delimited by spaces and require a preprocessing step
called word segmentation to identify words in a sentence.

 A closely related concept to a word in NLP is a token. A token is a string of contigu-
ous characters that play a certain role in a written language. Most words (“apple,”
“banana,” “zebra”) are also tokens when written. Punctuation marks such as the excla-
mation mark (“!”) are tokens but not words, because you can’t utter them in isolation.
Word and token are often used interchangeably in NLP. In fact, when you see “word”
in NLP text (including this book), it often means “token,” because most NLP tasks
deal only with written text that is processed in an automatic way. Tokens are the out-
put of a process called tokenization, which I’ll explain more below.

 Another closely related concept is morpheme. A morpheme is the smallest unit of
meaning in a language. A typical word consists of one or more morphemes. For exam-
ple, “apple” is a word and also a morpheme. “Apples” is a word comprised of two mor-
phemes, “apple” and “-s,” which is used to signify the noun is plural. English contains
many other morphemes, including “-ing,” “-ly,” “-ness,” and “un-.” The process for iden-
tifying morphemes in a word or a sentence is called morphological analysis, and it has a
wide range of NLP/linguistics applications, but this is outside the scope of this book.

 A phrase is a group of words that play a certain grammatical role. For example, “the
quick brown fox” is a noun phrase (a group of words that behaves like a noun),
whereas “jumps over the lazy dog” is a verb phrase. The concept of phrase may be
used somewhat liberally in NLP to simply mean any group of words. For example, in
many NLP literatures and tasks, words like “Los Angeles” are treated as phrases,
although, linguistically speaking, they are closer to a word.

3.2.3 N-grams

Finally, you may encounter the concept of n-grams in NLP. An n-gram is a contiguous
sequence of one or more occurrences of linguistic units, such as characters and words.
For example, a word n-gram is a contiguous sequence of words, such as “the” (one

Characters Words Morphemes

Tokens Phrases Word n-grams

The quick brown fox jumps over the lazy dog.

A brown

The quick brown fox
the lazy dogThe fox the .

brown jump -sdog overb q .

quick brown
brown fox jumps Figure 3.3 Building blocks 

of language used in NLP 
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word), “quick brown” (two words), “brown fox jumps” (three words). Similarly, a char-
acter n-gram is composed of characters, such as “b” (one character), “br” (two charac-
ters), “row” (three characters), and so on, which are all character n-grams made from
“brown.” An n-gram of size 1 (when n = 1) is called a unigram. N-grams of size 2 and 3
are called a bigram and a trigram, respectively.

 Word n-grams are often used as proxies for phrases in NLP, because if you enumer-
ate all the n-grams of a sentence, they often contain linguistically interesting units that
correspond to phrases such as “Los Angeles” and “take off.” In a similar vein, we use
character n-grams when we want to capture subword units that roughly correspond to
morphemes. In NLP, when you see “n-grams” (without a qualifier), they are often word
n-grams.

NOTE Interestingly, in search and information retrieval, n-grams often mean
character n-grams used for indexing documents. Be mindful which type of
n-grams are implied by the context when you read papers.

3.3 Tokenization, stemming, and lemmatization
We covered some basic linguistic units often encountered in NLP. In this section, I
introduce some steps where linguistic units are processed in a typical NLP pipeline. 

3.3.1 Tokenization

Tokenization is a process where the input text is split into smaller units. There are two
types of tokenization: word and sentence tokenization. Word tokenization splits a sen-
tence into tokens (rough equivalent to words and punctuation), which I mentioned
earlier. Sentence tokenization, on the other hand, splits a piece of text that may include
more than one sentence into individual sentences. If you say tokenization, it usually
means word tokenization in NLP.

 Many NLP libraries and frameworks support tokenization out of the box, because
it is one of the most fundamental and widely used preprocessing steps in NLP. In what
follows, I show you how to do tokenization using two popular NLP libraries—NLTK
(https://www.nltk.org/) and spaCy (https://spacy.io/).

NOTE Before running the example code in this section, make sure the libraries
are both installed. In a typical Python environment, they can be installed by run-
ning pip install nltk and pip install spacy. After installation, you need
to download the necessary data and models by running python -c "import
nltk; nltk.download('punkt')" for NLTK, and python -m spacy down-
load en for spaCy from the command line. You can also run all the examples in
this section via Google Colab (http://realworldnlpbook.com/ch3.html#tokeni
zation) without installing any Python environments or dependencies.

To use the default word and sentence tokenizers from NLTK, you can import them
from nltk.tokenize package as follows:

>>> import nltk
>>> from nltk.tokenize import word_tokenize, sent_tokenize

http://realworldnlpbook.com/ch3.html#tokenization
http://realworldnlpbook.com/ch3.html#tokenization
http://realworldnlpbook.com/ch3.html#tokenization
https://www.nltk.org/
https://spacy.io/
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You can call these methods with a string, and they return a list of words or sentences as
follows:

>>> s = '''Good muffins cost $3.88\nin New York.  Please buy me two of 
them.\n\nThanks.'''

>>> word_tokenize(s)
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please',
 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']

>>> sent_tokenize(s)
['Good muffins cost $3.88\nin New York.', 'Please buy me two of them.',
 'Thanks.']

NLTK implements a wide range of tokenizers in addition to the default one we used
here. Its documentation page (https://www.nltk.org/api/nltk.tokenize.html) is a
good starting point if you are interested in exploring more options.

 You can tokenize words and sentences as follows using spaCy:

>>> import spacy
>>> nlp = spacy.load('en_core_web_sm')

>>> doc = nlp(s)

>>> [token.text for token in doc]
['Good', 'muffins', 'cost', '$', '3.88', '\n', 'in', 'New', 'York', '.', ' ',
 'Please', 'buy', 'me', 'two', 'of', 'them', '.', '\n\n', 'Thanks', '.']

>>> [sent.string.strip() for sent in doc.sents]
['Good muffins cost $3.88\nin New York.', 'Please buy me two of them.', 'Thanks.']

Note that the results from NLTK and spaCy are slightly different. For example, spaCy’s
word tokenizer leaves newlines ('\n') intact. The behavior of tokenizers differs from
one implementation to another, and there is no single standard solution that every
NLP practitioner agrees upon. Although standard libraries such as NLTK and spaCy
give a good baseline, be ready to experiment depending on your task and data. Also, if
you are dealing with languages other than English, your options may vary (and might
be quite limited depending on the language). If you are familiar with the Java ecosys-
tem, Stanford CoreNLP (https://stanfordnlp.github.io/CoreNLP/) is another good
NLP framework worth checking out. 

 Finally, an increasingly popular and important tokenization method for neural
network-based NLP models is byte-pair encoding (BPE). Byte-pair encoding is a purely
statistical technique to split text into sequences of characters in any language, relying
not on heuristic rules (such as spaces and punctuations) but only on character statis-
tics from the dataset. We’ll study byte-pair encoding more in depth in chapter 10.

3.3.2 Stemming

Stemming is a process for identifying word stems. A word stem is the main part of a word
after stripping off its affixes (prefixes and suffixes). For example, the word stem of
“apples” (plural) is “apple.” The stem of “meets” (with a third-person singular s) is

https://www.nltk.org/api/nltk.tokenize.html
https://stanfordnlp.github.io/CoreNLP/
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“meet.” The word stem of “unbelievable” is “believe.” It is often a part that remains
unchanged after inflection.

 Stemming—that is, normalizing words to something closer to their original
forms—has great benefits in many NLP applications. In search, for example, you can
improve the chance of retrieving relevant documents if you index documents using
word stems instead of words. In many feature-based NLP pipelines, you’d be able to
alleviate the OOV (out-of-vocabulary) problem by dealing with word stems instead.
For example, even if your dictionary doesn’t have an entry for “apples,” you can
instead use its stem “apple” as a proxy. 

 The most popular algorithm used for stemming English words is called the Porter
stemming algorithm, originally written by Martin Porter. It consists of a number of rules
for rewriting affixes (e.g., if a word ends with “-ization,” change it to “-ize”). NLTK
implements a version of the algorithm as the PorterStemmer class, which can be
used as follows:

>>> from nltk.stem.porter import PorterStemmer
>>> stemmer = PorterStemmer()

>>> words = ['caresses', 'flies', 'dies', 'mules', 'denied',
...          'died', 'agreed', 'owned', 'humbled', 'sized',
...          'meetings', 'stating', 'siezing', 'itemization',
...          'sensational', 'traditional', 'reference', 'colonizer',
...          'plotted']
>>> [stemmer.stem(word) for word in words]
['caress', 'fli', 'die', 'mule', 'deni',
 'die', 'agre', 'own', 'humbl', 'size',
 'meet', 'state', 'siez', 'item',
 'sensat', 'tradit', 'refer', 'colon',
 'plot']

Stemming is not without its limitations. In many cases, it can be too aggressive. For
example, as you can see from the previous example, the Porter stemming algorithm
changes both “colonizer” and “colonize” to just “colon.” I can’t imagine many applica-
tions would be happy to treat those three words as an identical entry. Also, many stem-
ming algorithms do not consider the context or even the parts of speech. In the
previous example, “meetings” is changed to “meet,” but you could argue that “meet-
ings” as a plural noun should be stemmed to “meeting,” not “meet.” For those rea-
sons, as of today, few NLP applications use stemming.

3.3.3 Lemmatization

A lemma is the original form of a word that you often find as a head word in a dictio-
nary. It is also the base form of the word before inflection. For example, the lemma of
“meetings” (as a plural noun) is “meeting.” The lemma of “met” (a verb past form) is
“meet.” Notice that it differs from stemming, which simply strips off affixes from a
word and cannot deal with such irregular verbs and nouns.

 It is straightforward to run lemmatization using NLTK, as shown here:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
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>>> [lemmatizer.lemmatize(word) for word in words]
['caress', 'fly', 'dy', 'mule', 'denied',
 'died', 'agreed', 'owned', 'humbled', 'sized',
 'meeting', 'stating', 'siezing', 'itemization',
 'sensational', 'traditional', 'reference', 'colonizer',
 'plotted']

And the spaCy code looks like this:

>>> doc = nlp(' '.join(words))
>>> [token.lemma_ for token in doc]
['caress', 'fly', 'die', 'mule', 'deny',
 'die', 'agree', 'own', 'humble', 'sized',
 'meeting', 'state', 'siezing', 'itemization',
 'sensational', 'traditional', 'reference', 'colonizer',
 'plot']

Note that lemmatization inherently requires that you know the part of speech of the
input word, because the lemma depends on it. For example, “meeting” as a noun
should be lemmatized to “meeting,” whereas the result should be “meet” if it’s a verb.
WordNetLemmatizer in NLTK treats everything as a noun by default, which is why
you see many unlemmatized words in the result (“agreed,” “owned,” etc.). On the
other hand, spaCy automatically infers parts of speech from the word form and the
context, which is why most of the lemmatized words are correct in its result. Lemmati-
zation is more resource-intensive than stemming because it requires statistical analysis
of the input and/or some form of linguistic resources such as dictionaries, but it has a
wider range of applications in NLP due to its linguistic correctness.

3.4 Skip-gram and continuous bag of words (CBOW)
In previous sections, I explained what word embeddings are and how they are used in
NLP applications. In this section, we’ll start exploring how to calculate word embed-
dings from large textual data using two popular algorithms—Skip-gram and CBOW.

3.4.1 Where word embeddings come from

In section 3.1, I explained that word embeddings represent each word in the vocabu-
lary using a single-dimensional array of float numbers:

 vec("cat") = [0.7, 0.5, 0.1] 

 vec("dog") = [0.8, 0.3, 0.1]

 vec("pizza") = [0.1, 0.2, 0.8]

Now, there’s one important piece of information missing from the discussion so far.
Where do those numbers come from? Do we hire a group of experts and have them
come up with those numbers? It would be virtually impossible to assign them by hand.
Hundreds of thousands of unique words exist in a typical large corpus, and the arrays
should be at least around 100-dimensional long to be effective, which means you need
to tweak more than tens of millions of numbers.

 More importantly, what should those numbers look like? How do you determine
whether you should assign a 0.8 to the first element of the “dog” vector, or 0.7, or any
other number?
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 The answer is that those numbers are also trained using a training dataset and a
machine learning model like any other model in this book. In what follows, I’ll intro-
duce and implement one of the most popular models to train word embeddings—the
Skip-gram model.

3.4.2 Using word associations

First, let’s step back and think how humans learn concepts such as “a dog.” I don’t
think any of you have ever been explicitly taught what a dog is. You knew this thing
called “dog” since you were a toddler without anyone else telling you, “Oh by the way,
there’s this thing called ‘dog’ in this world. It’s a four-legged animal that barks.” How
is this possible? You acquire the concept through a large amount of physical (touch-
ing and smelling dogs), cognitive (seeing and hearing dogs), and linguistic (reading
and hearing about dogs) interactions with the external world.

 Now let’s think about what it takes to teach the concept of “dog” to a computer.
Can we get a computer to “experience” interactions with the external world related to
the concept of a dog? Although typical computers cannot move around and have
interactions with actual dogs (well, not yet, as of this writing), one possible way to do
this without teaching the computer what “dog” means is to use association relative to
other words. For example, what words tend to appear together with the word “dog” if
you look at its appearances in a large text corpus? “Pet,” “tail,” “smell,” “bark,”
“puppy”—there can be countless options. How about “cat”? Maybe “pet,” “tail,” “fur,”
“meow,” “kitten,” and so on. Because “dog” and “cat” have a lot in common conceptu-
ally (they are both popular pet animals with a tail, etc.), these two sets of context
words also have large overlap. In other words, you can guess how close two words are
to each other by looking at what other words appear in the same context. This is
called the distributional hypothesis, and it has a long history in NLP.

NOTE There’s a related term used in artificial
intelligence—distributed representations. Distributed
representations of words are simply another name
for word embeddings. Yes, it’s confusing, but both
terms are commonly used in NLP.

We are now one step closer. If two words have a lot of
context words in common, we can give similar vectors
to those two words. You can think of a word vector as a
“compressed” representation of its context words. Then
the question becomes: how can you “decompress” a
word vector to obtain its context words? How can you
even represent a set of context words mathematically?
Conceptually, we’d like to come up with a model that
does something like the one in figure 3.4.

 One way to represent a set of words mathematically
is to assign a score to each word in the vocabulary.

dog

Decompressor

Word 
embeddings

Context words

bark

pet

smell

puppy

Figure 3.4 Decompressing a 
word vector
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Instead of representing context words as a set, we can think of them as an associative
array (dict in Python) from words to their “scores” that correspond to how related
each word is to “dog,” as shown next:

{"bark": 1.4,
 "chocolate": 0.1,
 ...,
 "pet": 1.2,
 ...,
 "smell": 0.6,
 ...}

The only remaining piece of the model is how to come up with those “scores.” If you
sort this list by word IDs (which may be assigned alphabetically), the scores can be
conveniently represented by an N-dimensional vector, where N is the size of the entire
vocabulary (the number of unique context words we consider), as follows:

[1.4, 0.1, ..., 1.2, ..., 0.6, ...]

All the “decompressor” needs to do is expand the word-embedding vector (which has
three dimensions) to another vector of N dimensions.

 This may sound very familiar to some of you—yes, it’s exactly what linear layers
(aka fully connected layers) do. I briefly talked about linear layers in section 2.4.2, but
this is a perfect time to go deeper into what they really do.

3.4.3 Linear layers

Linear layers transform a vector into another vector in a linear fashion, but how
exactly do they do this? Before talking about vectors, let’s simplify and start with num-
bers. How would you write a function (say, a method in Python) that transforms a
number into another one in a linear fashion? Remember, being linear means the out-
put always changes by a fixed amount (say, w) if you change the input by 1, no matter
what the value of the input is. For example, 2.0 * x is a linear function, because the
value always increases by 2.0 if you increase x by 1, no matter what value x is. You can
write a general version of such a function as follows:

def linear(x):
    return w * x + b

Let’s now assume the parameters w and b are fixed and defined somewhere else. You
can confirm that the output (the return value) always changes by w if you increase or
decrease x by 1. b is the value of the output when x = 0. It is called a bias in machine
learning.

 Now, what if there are two input variables, say, x1 and x2? Can you still write a
function that transforms two input variables into another number in a linear way? Yes,
and there’s very little change required to do this, as shown next:

def linear2(x1, x2):
    return w1 * x1 + w2 * x2 + b
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You can confirm its linearity by checking that the output changes by w1 if you
change x1 by 1, and the output changes by w2 if you change x2 by 1, regardless of
the value of the other variable. Bias b is still the value of the output when x1 and x2
are both 0.

 For example, assume we have w1 = 2.0, w2 = -1.0, and b = 1. For an input (1, 1),
the function returns 2. If you increase x1 by 1 and give (2, 1) as the input, you’ll get
4, which is w1 more than 2. If you increase x2 by 1 and give (1, 2) as the input, you’ll
get 1, which is 1 less (or w2 more) than 2.

 At this point, we can start thinking about generalizing this to vectors. What if there
are two output variables, say, y1 and y2? Can you still write a linear function with
respect to the two inputs? Yes, you can simply duplicate the linear transformation
twice, with different weights and biases, as follows:

def linear3(x1, x2):
    y1 = w11 * x1 + w12 * x2 + b1
    y2 = w21 * x1 + w22 * x2 + b2
    return [y1, y2]

OK, it’s getting a little bit complicated, but you effectively wrote a function for a linear
layer that transforms a two-dimensional vector into another two-dimensional vector! If
you increase the input dimension (the number of input variables), this method would
get horizontally long (i.e., more additions per line), whereas if you increase the out-
put dimension, this method would get vertically long (i.e., more lines). 

 In practice, deep learning libraries and frameworks implement linear layers in a
more efficient, generic way, and often most of the computation happens on a GPU.
However, knowing how linear layers—the most important, simplest form of neural
networks—work conceptually should be essential for understanding more complex
neural network models.

NOTE In AI literature, you may encounter the concept of perceptrons. A per-
ceptron is a linear layer with only one output variable, applied to a classifica-
tion problem. If you stack multiple linear layers (= perceptrons), you get a
multilayer perceptron, which is basically another name for a feedforward neural
network with some specific structures.

Finally, you may be wondering where the constants w and b you saw in this section
come from. These are exactly the “magic constants” that I talked about in section
2.4.1. You adjust these constants so that the output of the linear layer (and the neural
network as a whole) gets closer to what you want through a process called optimization.
These magic constants are also called parameters of a machine learning model.

 Putting this all together, the structure we want for the Skip-gram model is shown in
figure 3.5. This network is very simple. It takes a word embedding as an input and
expands it via a linear layer to a set of scores, one for each context word. Hopefully
this is not as intimidating as many people think! 
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3.4.4 Softmax

Now let’s talk about how to “train” the Skip-gram model and learn the word embed-
dings we want. The key here is to turn this into a classification task, where the model
predicts what words appear in the context. The “context” here simply means a window
of a fixed size (e.g., 5 + 5 words on both sides) centered around the target word (e.g.,
“dog”). See figure 3.6 for an illustration when the window size is 2. This is actually a
“fake” task because we are not interested
in the prediction of the model per se, but
rather in the by-product (word embed-
dings) produced while training the
model. In machine learning and NLP, we
often make up a fake task to train some-
thing else as a by-product. 

NOTE This setting of machine learning, where the training labels are auto-
matically created from a given dataset, can also be called self-supervised learn-
ing. Recent popular techniques, such as word embeddings and language
modeling, all use self-supervision. 

It is relatively easy to make a neural network solve a classification task. You need to do
the following two things:

 Modify the network so that it produces a probability distribution.
 Use cross entropy as the loss function (we’ll cover this in detail shortly).

Word
embeddings

bark chocolate pet smell

…

…

Linear
layer

 

Scores

dog Figure 3.5 Skip-gram model structure

Target word

Context words Context words

I heard a dog barking in the distance.

Figure 3.6 Target word and context words 
(when window size = 2)
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 You can use something called softmax to do the first. Softmax is a function that
turns a vector of K float numbers to a probability distribution, by first “squashing” the
numbers so that they fit a range between 0.0–1.0, and then normalizing them so that
the sum equals 1. If you are not familiar with the concept of probabilities, replace
them with confidence. A probability distribution is a set of confidence values that the
network places on individual predictions (in this case, context words). Softmax does
all this while preserving the relative ordering of the input float numbers, so large
input numbers still have large probability values in the output distribution. Figure 3.7
illustrates this conceptually.

Another component required to turn a neural network into a classifier is cross entropy.
Cross entropy is a loss function used to measure the distance between two probability
distributions. It returns zero if two distributions match exactly and higher values if the
two diverge. For classification tasks, we use cross entropy to compare the following:

 Predicted probability distribution produced by the neural network (output of
softmax) 

 Target probability distribution, where the probability of the correct class is 1.0
and everything else is 0.0

The predictions made by the Skip-gram model get closer and closer to the actual con-
text words, and word embeddings are learned at the same time.

3.4.5 Implementing Skip-gram on AllenNLP

It is relatively straightforward to turn this model into working code using AllenNLP.
Note that all the code listed in this section can be executed on the Google Colab note-
book (http://realworldnlpbook.com/ch3.html#word2vec-nb). First, you need to
implement a dataset reader that reads a plain text corpus and turns it into a set of
instances that can be consumed by the Skip-gram model. The details of the dataset
reader are not critical to the discussion here, so I’m going to omit the full code listing.
You can clone the code repository of this book (https://github.com/mhagiwara/
realworldnlp) and import it as follows:

from examples.embeddings.word2vec import SkipGramReader

A B C D

…

…

Scores Probability 
distribution

Softmax …

A B C D…
Figure 3.7 Softmax

http://realworldnlpbook.com/ch3.html#word2vec-nb
https://github.com/mhagiwara/realworldnlp
https://github.com/mhagiwara/realworldnlp
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Alternatively, if you are interested, you can see the full code from http://realworldnlp-
book.com/ch3.html#word2vec. You can use the reader as follows:

reader = SkipGramReader()
text8 = reader.read('https:/./realworldnlpbook.s3.amazonaws.com/data/text8/

text8')

Also, be sure to import all the necessary modules and define some constants in this
example, as shown next:

from collections import Counter

import torch
import torch.optim as optim
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules.token_embedders import Embedding
from allennlp.training.trainer import GradientDescentTrainer
from torch.nn import CosineSimilarity
from torch.nn import functional

EMBEDDING_DIM = 256
BATCH_SIZE = 256

We are going to use the text8 (http://mattmahoney.net/dc/textdata) dataset in this
example. The dataset is an excerpt from Wikipedia and is often used for training toy
word embedding and language models. You can iterate over the instances in the data-
set. token_in is the input token to the model, and token_out is the output (the
context word): 

>>> for inst in text8:
>>>     print(inst)
...
Instance with fields:
  token_in: LabelField with label: ideas in namespace: 'token_in'.'
  token_out: LabelField with label: us in namespace: 'token_out'.'

Instance with fields:
  token_in: LabelField with label: ideas in namespace: 'token_in'.'
  token_out: LabelField with label: published in namespace: 'token_out'.'

Instance with fields:
  token_in: LabelField with label: ideas in namespace: 'token_in'.'
  token_out: LabelField with label: journal in namespace: 'token_out'.'

Instance with fields:
  token_in: LabelField with label: in in namespace: 'token_in'.'
  token_out: LabelField with label: nature in namespace: 'token_out'.'

Instance with fields:
  token_in: LabelField with label: in in namespace: 'token_in'.'
  token_out: LabelField with label: he in namespace: 'token_out'.'

http://mattmahoney.net/dc/textdata
http://realworldnlpbook.com/ch3.html#word2vec
http://realworldnlpbook.com/ch3.html#word2vec
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Instance with fields:
  token_in: LabelField with label: in in namespace: 'token_in'.'
  token_out: LabelField with label: announced in namespace: 'token_out'.'
...

Then, you can build the vocabulary, as we did in chapter 2, as shown next:

vocab = Vocabulary.from_instances(
    text8, min_count={'token_in': 5, 'token_out': 5})

Note that we are using min_count, which sets the lower bound on the number of
occurrences for each token. Also, let’s define the data loader we use for training as
follows:

data_loader = SimpleDataLoader(text8, batch_size=BATCH_SIZE)
data_loader.index_with(vocab)

Let’s then define an Embedding object that holds all the word embeddings we’d like
to learn:

embedding_in = Embedding(num_embeddings=vocab.get_vocab_size('token_in'),
                         embedding_dim=EMBEDDING_DIM)

Here, EMBEDDING_DIM is the length of each word vector (number of float numbers).
A typical NLP application uses word vectors of a couple hundred dimensions long (in
this example, 256), but this value depends greatly on the task and the datasets. It is
often suggested that you use longer word vectors as your training data grows.

 Finally, you need to implement the body of the Skip-gram model, as shown next.

class SkipGramModel(Model):   

    def __init__(self, vocab, embedding_in):
        super().__init__(vocab)

        self.embedding_in = embedding_in   

        self.linear = torch.nn.Linear(
            in_features=EMBEDDING_DIM,
            out_features=vocab.get_vocab_size('token_out'),
            bias=False)   

    def forward(self, token_in, token_out):   
        
        embedded_in = self.embedding_in(token_in)   
        
        logits = self.linear(embedded_in)   

        loss = functional.cross_entropy(logits, token_out)  

        return {'loss': loss}

Listing 3.1 Skip-gram model implemented in AllenNLP

AllenNLP requires every model 
to be inherited from Model.

The embedding object is passed from 
outside rather than defined inside.

This creates a linear
layer (note that we
don’t need biases).

The body of neural network computation 
is implemented in forward().

Converts input tensors 
(word IDs) to word 
embeddings

Applies the
linear layer

Computes 
the loss
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A few things to note:

 AllenNLP requires every model to be inherited from Model, which can be
imported from allennlp.models.

 Model’s initializer (__init__) takes a Vocabulary instance and any other
parameters or submodels defined externally. It also defines any internal param-
eters or models.

 The main computation of the model is defined in forward(). It takes all the
fields from instances (in this example, token_in and token_out) as tensors
(multidimensional arrays) and returns a dict that contains the 'loss' key,
which will be used by the optimizer to train the model.

You can train this model using the following code.

reader = SkipGramReader()
text8 = reader.read(' https:/./realworldnlpbook.s3.amazonaws.com/data/text8/

text8')

vocab = Vocabulary.from_instances(
    text8, min_count={'token_in': 5, 'token_out': 5})

data_loader = SimpleDataLoader(text8, batch_size=BATCH_SIZE)
data_loader.index_with(vocab)

embedding_in = Embedding(num_embeddings=vocab.get_vocab_size('token_in'),
                         embedding_dim=EMBEDDING_DIM)

model = SkipGramModel(vocab=vocab,
                      embedding_in=embedding_in)
optimizer = optim.Adam(model.parameters())

trainer = GradientDescentTrainer(
    model=model,
    optimizer=optimizer,
    data_loader=data_loader,
    num_epochs=5,
    cuda_device=CUDA_DEVICE)
trainer.train()

Training takes a while, so I recommend truncating the training data first, say, by using
only the first one million tokens. You can do this by inserting text8 = list(text8)
[:1000000] after reader.read(). After the training is finished, you can get related
words (words with the same meanings) using the method shown in listing 3.3. This
method first obtains the word vector for a given word (token), then computes how
similar it is to every other word vector in the vocabulary. The similarity is calculated
using something called the cosine similarity. In simple terms, the cosine similarity is the
opposite of the angle between two vectors. If two vectors are identical, the angle
between them is zero, and the similarity will be 1, which is the largest possible value. If

Listing 3.2 Code for training the Skip-gram model
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two vectors are perpendicular, the angle is 90 degrees, and the cosine will be 0. If the
vectors are in totally opposite directions, the cosine will be –1.

def get_related(token: str, embedding: Model, vocab: Vocabulary, 
                num_synonyms: int = 10):
    token_id = vocab.get_token_index(token, 'token_in')
    token_vec = embedding.weight[token_id]
    cosine = CosineSimilarity(dim=0)
    sims = Counter()

    for index, token in 
vocab.get_index_to_token_vocabulary('token_in').items():

        sim = cosine(token_vec, embedding.weight[index]).item()
        sims[token] = sim

    return sims.most_common(num_synonyms)

If you run this for words “one” and “december,” you get the lists of related words
shown in table 3.1. Although you can see some words that are not related to the query
word, overall, the results look good. 

One final note: you need to implement a couple of techniques if you want to use Skip-
gram to train high-quality word vectors in practice, namely, negative sampling and
subsampling of high-frequency words. Although they are important concepts, they
can be a distraction if you are just starting out and would like to learn the basics of
NLP. If you are interested in learning more, check out this blog post that I wrote on
this topic: http://realworldnlpbook.com/ch3.html#word2vec-blog.

Listing 3.3 Method to obtain related words using word embeddings

Table 3.1 Related words for “one” and “december"

“one” “december”

one december

nine january

eight nixus

six londini

five plantarum

seven june

three smissen

four february

d qanuni

actress october

http://realworldnlpbook.com/ch3.html#word2vec-blog
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3.4.6 Continuous bag of words (CBOW) model

Another word-embedding model that is often mentioned along with the Skip-gram
model is the continuous bag of words (CBOW) model. As a close sibling of the Skip-
gram model, proposed at the same time (http://realworldnlpbook.com/ch3.html#
mikolov13), the architecture of the CBOW model looks similar to that of the Skip-
gram model but flipped upside down. The “fake” task the model is trying to solve is
to predict the target word from a set of its context words. This is also similar to fill-in-
the-blank type of questions. For example, if you see a sentence “I heard a ___ barking
in the distance,” most of you can probably guess the answer “dog” instantly. Figure
3.8 shows the structure of this model.

Figure 3.8 Continuous bag of words (CBOW) model

I’m not going to implement the CBOW model from scratch here for a couple of rea-
sons. It should be straightforward to implement if you understand the Skip-gram
model. Also, the accuracy of the CBOW model measured on word semantic tasks is
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http://realworldnlpbook.com/ch3.html#mikolov13
http://realworldnlpbook.com/ch3.html#mikolov13
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usually slightly lower than that of Skip-gram, and CBOW is less often used in NLP than
Skip-gram. Both models are implemented in the original Word2vec (https://code
.google.com/archive/p/word2vec/) toolkit, if you want to try them yourself, although
the vanilla Skip-gram and CBOW models are less and less often used nowadays because
of the advent of more recent, powerful word-embedding models (such as GloVe and
fastText) that are covered in the rest of this chapter. 

3.5 GloVe
In the previous section, I implemented Skip-gram and showed how you can train
your word embeddings using large text data. But what if you wanted to build your
own NLP applications leveraging high-quality word embeddings while skipping all
the hassle? What if you couldn’t afford the computation and data required to train
word embeddings? 

 Instead of training word embeddings, you can always download pretrained word
embeddings published by somebody else, which many NLP practitioners do. In this
section, I’m going to introduce another popular word-embedding model—GloVe,
named after Global Vectors. Pretrained word embeddings generated by GloVe are prob-
ably the most widely used embeddings in NLP applications today. 

3.5.1 How GloVe learns word embeddings

The main difference between the two models described earlier and GloVe is that the
former is local. To recap, Skip-gram uses a prediction task where a context word
(“bark”) is predicted from the target word (“dog”). CBOW basically does the opposite
of this. This process is repeated as many times as there are word tokens in the dataset.
It basically scans the entire dataset and asks the question, “Can this word be predicted
from this other word?” for every single occurrence of words in the dataset.

 Let’s think how efficient this algorithm is. What if there were two or more identical
sentences in the dataset? Or very similar sentences? In that case, Skip-gram would
repeat the exact same set of updates multiple times. “Can ‘bark’ be predicted from
‘dog’?” you might ask. But chances are you already asked that exact same question a
couple of hundred sentences ago. If you know that the words “dog” and “bark” appear
together in the context N times in the entire dataset, why repeat this N times? It’s as if
you were adding “1” N times to something else (x + 1 + 1 + 1 + ... + 1) when you could
simply add N to it (x + N). Could we somehow use this global information directly?

 The design of GloVe is motivated by this insight. Instead of using local word
co-occurrences, it uses aggregated word co-occurrence statistics in the entire dataset.
Let’s say “dog” and “bark” co-occur N times in the dataset. I’m not going into the
details of the model, but roughly speaking, the GloVe model tries to predict this num-
ber N from the embeddings of both words. Figure 3.9 illustrates this prediction task. It
still makes some predictions about word relations, but notice that it makes one predic-
tion per a combination of word types, but Skip-gram does so for every combination of
word tokens!

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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TOKEN AND TYPE As mentioned in section 3.3.1, a token is an occurrence of a
word in text. There may be multiple occurrences of the same word in a cor-
pus. A type, on the other hand, is a distinctive, unique word. For example, in
the sentence “A rose is a rose is a rose,” there are eight tokens but only three
types (“a,” “rose,” and “is”). If you are familiar with object-oriented program-
ming, they are roughly equivalent to instance and class. There can be multi-
ple instances of a class, but there is only one class for a concept.

3.5.2 Using pretrained GloVe vectors

In fact, not many NLP practitioners train GloVe vectors from scratch by themselves.
More often, we download and use word embeddings, which are pretrained using large
text corpora. This is not only quick but usually beneficial in making your NLP applica-
tions more accurate, because those pretrained word embeddings (often made public
by the inventor of word-embedding algorithms) are usually trained using larger data-
sets and more computational power than most of us can afford. By using pretrained
word embeddings, you can “stand on the shoulders of giants” and quickly leverage
high-quality linguistic knowledge distilled from large text corpora.

 In the rest of this section, let’s see how we can download and search for similar
words using pretrained GloVe embeddings. First, you need to download the data file.
The official GloVe website (https://nlp.stanford.edu/projects/glove/) provides multi-
ple word-embedding files trained using different datasets and vector sizes. You can
pick any one you like (although the file size could be large, depending on which one
you choose) and unzip it. In what follows, we assume you save it under the relative
path data/glove/.

 Most word-embedding files are formatted in a similar way. Each line contains a
word, followed by a sequence of numbers that correspond to its word vector. There
are as many numbers as there are dimensions (in the GloVe files distributed on the
website above, you can tell the dimensionality from the filename suffix in the form of

dog bark

Word
embeddings

Co-occurrenceN(“dog”, “bark”)

GloVe

Figure 3.9 GloVe

https://nlp.stanford.edu/projects/glove/
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xxxd). Each field is delimited by a space. Here is an excerpt from one of the GloVe
word-embedding files:

...
if 0.15778 0.17928 -0.45811 -0.12817 0.367 0.18817 -4.5745 0.73647 ...
one 0.38661 0.33503 -0.25923 -0.19389 -0.037111 0.21012 -4.0948 0.68349 ...
has 0.08088 0.32472 0.12472 0.18509 0.49814 -0.27633 -3.6442 1.0011 ...
...

As we did in section 3.4.5, what we’d like to do is to take a query word (say, “dog”) and
find its neighbors in the N-dimensional space. One way to do this is to calculate the
similarity between the query word and every other word in the vocabulary and sort the
words by their similarities, as shown in listing 3.3. Depending on the size of the vocab-
ulary, this approach could be very slow. It’s like linearly scanning an array to find an
element instead of using binary search. 

 Instead, we’ll use approximate nearest neighbor algorithms to quickly search for
similar words. In a nutshell, these algorithms enable us to quickly retrieve nearest
neighbors without computing the similarity between every word pair. In particular,
we’ll use Annoy (https://github.com/spotify/annoy), a library for approximate
neighbor search released from Spotify. You can install it by running pip install
annoy. It implements a popular approximate nearest neighbor algorithm called
locally sensitive hashing (LSH) using random projection.

 To use Annoy to search similar words, you first need to build an index, which can be
done as shown in listing 3.4. Note that we are also building a dict from word indices
to words and saving it to a separate file to facilitate the word lookup later (listing 3.5).

from annoy import AnnoyIndex
import pickle

EMBEDDING_DIM = 300
GLOVE_FILE_PREFIX = 'data/glove/glove.42B.300d{}'

def build_index():
    num_trees = 10

    idx = AnnoyIndex(EMBEDDING_DIM)

    index_to_word = {}
    with open(GLOVE_FILE_PREFIX.format('.txt')) as f:
        for i, line in enumerate(f):
            fields = line.rstrip().split(' ')
            vec = [float(x) for x in fields[1:]]
            idx.add_item(i, vec)
            index_to_word[i] = fields[0]

    idx.build(num_trees)
    idx.save(GLOVE_FILE_PREFIX.format('.idx'))
    pickle.dump(index_to_word,
                open(GLOVE_FILE_PREFIX.format('.i2w'), mode='wb'))

Listing 3.4 Building an Annoy index

https://github.com/spotify/annoy
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Reading a GloVe embedding file and building an Annoy index can be quite slow, but
once it’s built, accessing it and retrieving similar words can be performed very quickly.
This configuration is similar to search engines, where an index is built to achieve near
real-time retrieval of documents. This is suitable for applications where retrieval of
similar items in real time is required but update of the dataset happens less frequently.
Examples include search engines and recommendation engines.

def search(query, top_n=10):
    idx = AnnoyIndex(EMBEDDING_DIM)
    idx.load(GLOVE_FILE_PREFIX.format('.idx'))
    index_to_word = pickle.load(open(GLOVE_FILE_PREFIX.format('.i2w'),
                                     mode='rb'))
    word_to_index = {word: index for index, word in index_to_word.items()}
    
    query_id = word_to_index[query]
    word_ids = idx.get_nns_by_item(query_id, top_n)
    for word_id in word_ids:
        print(index_to_word[word_id])

If you run this for the words “dog” and “december,” you’ll get the lists of the 10 most-
related words shown in table 3.2.

You can see that each list contains many related words to the query word. You see the
identical words at the top of each list—this is because the cosine similarity of two iden-
tical vectors is always 1, its maximum possible value. 

Listing 3.5 Using an Annoy index to retrieve similar words

Table 3.2 Related words for “dog” and “december"

“dog” “december”

dog december

puppy january

cat october

cats november

horse september

baby february

bull august

kid july

kids april

monkey march
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3.6 fastText
In the previous section, we saw how to download pretrained word embeddings and
retrieve related words. In this section, I’ll explain how to train word embeddings using
your own text data using fastText, a popular word-embedding toolkit. This is handy
when your textual data is not in a general domain (e.g., medical, financial, legal, and
so on) and/or is not in English.

3.6.1 Making use of subword information

All the word-embedding methods we’ve seen so far in this chapter assign a distinct
word vector for each word. For example, word vectors for “dog” and “cat” are treated
distinctly and are independently trained at the training time. At first glance, there
seems to be nothing wrong about this. After all, they are separate words. But what if
the words were, say, “dog” and “doggy?” Because “-y” is an English suffix that denotes
some familiarity and affection (other examples include “grandma” and “granny” and
“kitten” and “kitty”), these pairs of words have some semantic connection. However,
word-embedding algorithms that treat words as distinct cannot make this connection.
In the eyes of these algorithms, “dog” and “doggy” are nothing more than, say,
word_823 and word_1719.

 This is obviously limiting. In most languages, there’s a strong connection between
word orthography (how you write words) and word semantics (what they mean). For
example, words that share the same stems (e.g., “study” and “studied,” “repeat” and
“repeatedly,” and “legal” and “illegal”) are often related. By treating them as separate
words, word-embedding algorithms are losing a lot of information. How can they
leverage word structures and reflect the similarities in the learned word embeddings? 

 fastText, an algorithm and a word-embedding library developed by Facebook, is
one such model. It uses subword information, which means information about linguistic
units that are smaller than words, to train higher-quality word embeddings. Specifi-
cally, fastText breaks words down to character n-grams (section 3.2.3) and learns
embeddings for them. For example, if the target word is “doggy,” it first adds special
symbols at the beginning and end of the word and learns embeddings for <do, dog,
ogg, ggy, gy>, when n = 3. The vector for “doggy” is simply the sum of all these vec-
tors. The rest of the architecture is quite similar to that of Skip-gram. Figure 3.10
shows the structure of the fastText model.

 Another benefit in leveraging subword information is that it can alleviate the out-of-
vocabulary (OOV) problem. Many NLP applications and models assume a fixed vocab-
ulary. For example, a typical word-embedding algorithm such as Skip-gram learns word
vectors only for the words that were encountered in the train set. However, if a test set
contains words that did not appear in the train set (which are called OOV words), the
model would be unable to assign any vectors to them. For example, if you train Skip-
gram word embeddings from books published in the 1980s and apply them to modern
social media text, how would it know what vectors to assign to “Instagram”? It won’t.
On the other hand, because fastText uses subword information (character n-grams), it
can assign word vectors to any OOV words, as long as they contain character n-grams
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seen in the training data (which is almost always the case). It can potentially guess it’s
related to something quick (“Insta”) and pictures (“gram”).

3.6.2 Using the fastText toolkit

Facebook provides the open source for the fastText toolkit, a library for training the
word-embedding model discussed in the previous section. In the remainder of this
section, let’s see how it feels like to use this library to train word embeddings.

 First, go to their official documentation (http://realworldnlpbook.com/ch3.html
#fasttext) and follow the instruction to download and compile the library. It is just a
matter of cloning the GitHub repository and running make from the command line
in most environments. After compilation is finished, you can run the following com-
mand to train a Skip-gram-based fastText model:

$ ./fasttext skipgram -input ../data/text8 -output model

We are assuming there’s a text data file under ../data/text8 that you’d like to use
as the training data, but change this if necessary. This will create a model.bin file,
which is a binary representation of the trained model. After training the model, you
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can obtain word vectors for any words, even for the ones that you’ve never seen in the
training data, as follows:

$ echo "supercalifragilisticexpialidocious" \
| ./fasttext print-word-vectors model.bin
supercalifragilisticexpialidocious 0.032049 0.20626 -0.21628 -0.040391 -

0.038995 0.088793 -0.0023854 0.41535 -0.17251 0.13115 ...

3.7 Document-level embeddings
All the models I have described so far learn embeddings for individual words. If you are
concerned only with word-level tasks such as inferring word relationships, or if they are
combined with more powerful neural network models such as recurrent neural net-
works (RNNs), they can be very useful tools. However, if you wish to solve NLP tasks that
are concerned with larger linguistic structures such as sentences and documents using
word embeddings and traditional machine learning tools such as logistic regression
and support vector machines (SVMs), word-level embedding methods are still limited.
How can you represent larger linguistic units such as sentences using vector represen-
tations? How can you use word embeddings for sentiment analysis, for example?

 One way to achieve this is to simply use the average of all word vectors in a sen-
tence. You can average vectors by taking the average of first elements, second ele-
ments, and so on and make a new vector by combining these averaged numbers. You
can use this new vector as an input to traditional machine learning models. Although
this method is simple and can be effective, it is also very limiting. The biggest issue is
that it cannot take word order into consideration. For example, both sentences “Mary
loves John.” and “John loves Mary.” would have exactly the same vectors if you simply
averaged word vectors for each word in the sentence.

 NLP researchers have proposed models and algorithms that can specifically address
this issue. One of the most popular is Doc2Vec, originally proposed by Le and Mikolov
in 2014 (https://cs.stanford.edu/~quocle/paragraph_vector.pdf). This model, as its
name suggests, learns vector representations for documents. In fact, “document” here
simply means any variable-length piece of text that contains multiple words. Similar
models are also called under many similar names such as Sentence2Vec, Paragraph2Vec,
paragraph vectors (this is what the authors of the original paper used), but in essence,
they all refer to the variations of the same model.

 In the rest of this section, I’m going to discuss one of the Doc2Vec models called
distributed memory model of paragraph vectors (PV-DM). The model looks very similar to
CBOW, which we studied earlier in this chapter, but with one key difference—one
additional vector, called paragraph vector, is added as an input. The model predicts the
target word from a set of context words and the paragraph vector. Each paragraph is
assigned a distinct paragraph vector. Figure 3.11 shows the structure of this PV-DM
model. Also, PV-DM uses only context words that come before the target word for pre-
diction, but this is a minor difference.

 What effect would this paragraph vector have on the prediction task? Now you
have some extra information from the paragraph vector for predicting the target
word. As the model tries to maximize the prediction accuracy, you can expect that the

https://cs.stanford.edu/~quocle/paragraph_vector.pdf
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paragraph vector is updated so that it provides some useful “context” information in
the sentence that is not collectively captured by the context word vectors. As a by-
product, the model learns something that reflects the overall meaning of each para-
graph, along with word vectors.

 Several open source libraries and packages support Doc2Vec models, but one of
the most widely used is Gensim (https://radimrehurek.com/gensim/), which can be
installed by running pip install gensim. Gensim is a popular NLP toolkit that sup-
ports a wide range of vector and topic models such as TF-IDF (term frequency and
inverse document frequency), LDA (latent semantic analysis), and word embeddings. 

 To train a Doc2Vec model using Gensim, you first need to read a dataset and con-
vert documents to TaggedDocument. This can be done using the read_corpus()
method shown here:

from gensim.utils import simple_preprocess
from gensim.models.doc2vec import TaggedDocument

def read_corpus(file_path):
    with open(file_path) as f:
        for i, line in enumerate(f):
            yield TaggedDocument(simple_preprocess(line), [i])
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We are going to use a small dataset consisting of the first 200,000 English sentences
taken from the Tatoeba project (https://tatoeba.org/). You can download the dataset
from http://mng.bz/7l0y. Then you can use Gensim’s Doc2Vec class to train the
Doc2Vec model and retrieve similar documents based on the trained paragraph vec-
tors, as demonstrated next.

    from gensim.models.doc2vec import Doc2Vec
    
    train_set = list(read_corpus('data/mt/sentences.eng.200k.txt'))
    model = Doc2Vec(vector_size=256, min_count=3, epochs=30)
    model.build_vocab(train_set)
    model.train(train_set,
                total_examples=model.corpus_count,
                epochs=model.epochs)

    query_vec = model.infer_vector(
        ['i', 'heard', 'a', 'dog', 'barking', 'in', 'the', 'distance'])
    sims = model.docvecs.most_similar([query_vec], topn=10)
    for doc_id, sim in sims:
        print('{:3.2f} {}'.format(sim, train_set[doc_id].words)) 

This will show you a list of documents similar to the input document “I heard a dog
barking in the distance,” as follows:

0.67 ['she', 'was', 'heard', 'playing', 'the', 'violin']
0.65 ['heard', 'the', 'front', 'door', 'slam']
0.61 ['we', 'heard', 'tigers', 'roaring', 'in', 'the', 'distance']
0.61 ['heard', 'dog', 'barking', 'in', 'the', 'distance']
0.60 ['heard', 'the', 'door', 'open']
0.60 ['tom', 'heard', 'the', 'door', 'open']
0.60 ['she', 'heard', 'dog', 'barking', 'in', 'the', 'distance']
0.59 ['heard', 'the', 'door', 'close']
0.59 ['when', 'he', 'heard', 'the', 'whistle', 'he', 'crossed', 'the', 'street']
0.58 ['heard', 'the', 'telephone', 'ringing']

Notice that most of the retrieved sentences here are related to hearing sound. In fact,
an identical sentence is in the list, because I took the query sentence from Tatoeba in
the first place! Gensim’s Doc2Vec class has a number of hyperparameters that you can
use to tweak the model. You can read further about the class on their reference page
(https://radimrehurek.com/gensim/models/doc2vec.html).

3.8 Visualizing embeddings
In the final section of this chapter, we are going to shift our focus on visualizing word
embeddings. As we’ve done earlier, retrieving similar words given a query word is a
great way to quickly check if word embeddings are trained correctly. But it gets tiring
and time-consuming if you need to check a number of words to see if the word
embeddings are capturing semantic relationships between words as a whole.

Listing 3.6 Training a Doc2Vec model and retrieving similar documents

https://tatoeba.org/
http://mng.bz/7l0y
https://radimrehurek.com/gensim/models/doc2vec.html
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 As mentioned earlier, word embeddings are simply N-dimensional vectors, which
are also “points” in an N-dimensional space. We were able to see those points visually
in a 3-D space in figure 3.1 because N was 3. But N is typically a couple of hundred in
most word embeddings, and we cannot simply plot them on an N-dimensional space.

 A solution is to reduce the dimension down to something that we can see (two or
three dimensions) while preserving relative distances between points. This technique
is called dimensionality reduction. We have a number of ways to reduce dimensionality,
including PCA (principal component analysis) and ICA (independent component
analysis), but by far the most widely used visualization technique for word embeddings
is called t-SNE (t-distributed Stochastic Neighbor Embedding, pronounced “tee-snee).
Although the details of t-SNE are outside the scope of this book, the algorithm tries to
map points to a lower-dimensional space by preserving the relative neighboring rela-
tionship between points in the original high-dimensional space.

 The easiest way to use t-SNE is to use Scikit-Learn (https://scikit-learn.org/), a
popular Python library for machine learning. After installing it (usually just a matter
of running pip install scikit-learn), you can use it to visualize the GloVe vec-
tors read from a file as shown next (we use Matplotlib to draw the plot).

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

def read_glove(file_path):
    with open(file_path) as f:
        for i, line in enumerate(f):
            fields = line.rstrip().split(' ')
            vec = [float(x) for x in fields[1:]]
            word = fields[0]
            yield (word, vec)

words = []
vectors = []
for word, vec in read_glove('data/glove/glove.42B.300d.txt'):
    words.append(word)
    vectors.append(vec)

model = TSNE(n_components=2, init='pca', random_state=0)
coordinates = model.fit_transform(vectors)

plt.figure(figsize=(8, 8))

for word, xy in zip(words, coordinates):
    plt.scatter(xy[0], xy[1])
    plt.annotate(word,
                 xy=(xy[0], xy[1]),
                 xytext=(2, 2),
                 textcoords='offset points')

plt.xlim(25, 55)
plt.ylim(-15, 15)
plt.show()

Listing 3.7 Using t-SNE to visualize GloVe embeddings

https://scikit-learn.org/
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In listing 3.7, I used xlim() and ylim() to limit the plotted range to magnify some
areas that are of interest to us. You may want to try different values to focus on other
areas in the plot.

 The code in listing 3.7 generates the plot shown in figure 3.12. There’s a lot of
interesting stuff going on here, but at a quick glance, you will notice the following
clusters of words that are semantically related:

 Bottom-left: web-related words (posts, article, blog, comments, . . . ).
 Upper-left: time-related words (day, week, month, year, . . . ).
 Middle: numbers (0, 1, 2, . . . ). Surprisingly, these numbers are lined up in an

increasing order toward the bottom. GloVe figured out which numbers are
larger purely from a large amount of textual data.

 Bottom-right: months (january, february, . . . ) and years (2004, 2005, . . . ).
Again, the years seem to be lined up in an increasing order, almost in parallel
with the numbers (0, 1, 2, . . . ).

Figure 3.12 GloVe embeddings visualized by t-SNE
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If you think about it, it’s an incredible feat for a purely mathematical model to figure
out these relationships among words, all from a large amount of text data. Hopefully,
now you know how much of an advantage it is if the model knows “july” and “june” are
closely related compared to needing to figure everything out starting from word_823
and word_1719.

Summary
 Word embeddings are numeric representations of words, and they help convert

discrete units (words and sentences) to continuous mathematical objects
(vectors).

 The Skip-gram model uses a neural network with a linear layer and softmax to
learn word embeddings as a by-product of the “fake” word-association task.

 GloVe makes use of global statistics of word co-occurrence to train word embed-
dings efficiently.

 Doc2Vec and fastText learn document-level embeddings and word embeddings
with subword information, respectively.

 You can use t-SNE to visualize word embeddings.
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Sentence classification

In this chapter, we are going to study the task of sentence classification, where an
NLP model receives a sentence and assigns some label to it. A spam filter is an
application of sentence classification. It receives an email message and assigns
whether or not it is spam. If you want to classify news articles into different topics

This chapter covers
 Handling variable-length input with recurrent neural 

networks (RNN)

 Working with RNNs and their variants (LSTMs and 
GRUs)

 Using common evaluation metrics for classification 
problems

 Developing and configuring a training pipeline using 
AllenNLP

 Building a language detector as a sentence 
classification task
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(business, politics, sports, and so on), it’s also a sentence-classification task. Sentence
classification is one of the simplest NLP tasks that has a wide range of applications,
including document classification, spam filtering, and sentiment analysis. Specifically,
we are going to revisit the sentiment classifier we introduced in chapter 2 and discuss
its components in detail. At the end of this section, we are going to study another
application of sentence classification—language detection.

4.1 Recurrent neural networks (RNNs)
The first step in sentence classification is to represent variable-length sentences using
neural networks (RNNs). In this section, I’m going to present the concept of recur-
rent neural networks, one of the most important concepts in deep NLP. Many modern
NLP models use RNNs in some way. I’ll explain why they are important, what they do,
and introduce their simplest variant.

4.1.1 Handling variable-length input

The Skip-gram network structure shown in the previous chapter was simple. It takes a
word vector of a fixed size, runs it through a linear layer, and obtains a distribution of
scores over all the context words. The structure and the size of the input, output, and
the network are all fixed throughout the training.

 However, many, if not most, of what we deal with in NLP are sequences of variable
lengths. For example, words, which are sequences of characters, can be short (“a,”
“in”) or long (“internationalization”). Sentences (sequences of words) and docu-
ments (sequences of sentences) can be of any lengths. Even characters, if you look at
them as sequences of strokes, can be simple (e.g., “O” and “L” in English) or more
complex (e.g., “鬱” is a Chinese character meaning “depression” which, depressingly,
has 29 strokes). 

 As we discussed in the previous chapter, neural networks can handle only numbers
and arithmetic operations. That was why we needed to convert words and documents
to numbers through embeddings. We used linear layers to convert a fixed-length vec-
tor into another. But to do something similar with variable-length inputs, we need to
figure out how to structure the neural networks so that they can handle them.

 One idea is to first convert the input (e.g., a sequence of words) to embeddings,
that is, a sequence of vectors of floating-point numbers, then average them. Let’s
assume the input sentence is sentence = ["john", "loves", "mary", "."], and
you already know word embeddings for each word in the sentence v("john"),
v("loves"), and so on. The average can be obtained with the following code and
illustrated in figure 4.1:

result = (v("john") + v("loves") + v("mary") + v(".")) / 4
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This method is quite simple and is actually used in many NLP applications. However,
it has one critical issue, which is that it cannot take word order into account. Because
the order of input elements doesn’t affect the result of averaging, you’d get the same
vector for both “Mary loves John” and “John loves Mary.” Although it’s up to the task
in hand, it’s hard to imagine many NLP applications would want this kind of behavior.

 If we step back and reflect how we humans read language, this “averaging” is far
from actuality. When we read a sentence, we don’t usually read individual words in iso-
lation and remember them first, then move on to figuring out what the sentence
means. We usually scan the sentence from the beginning, one word at a time, while
holding what the “partial” sentence means up until the part you are reading in our
short-term memory. In other words, you maintain some sort of mental representation
of the sentence while you read it. When you reach the end of the sentence, the mental
representation is its meaning. 

 Can we design a neural network structure that simulates this incremental reading
of the input? The answer is a resounding yes. That structure is called recurrent neural
networks (RNNs), which I’ll explain in detail next.

4.1.2 RNN abstraction

If you break down the reading process mentioned earlier, its core is the repetition of
the following series of operations:

1 Read a word.
2 Based on what has been read so far (your “mental state”), figure out what the

word means.
3 Update the mental state.
4 Move on to the next word.

Let’s see how this works using a concrete example. If the input sentence is sentence
= ["john", "loves", "mary", "."], and each word is already represented as a
word-embedding vector. Also, let’s denote your “mental state” as state, which is ini-
tialized by init_state(). Then, the reading process is represented by the following
incremental operations:

state = init_state()
state = update(state, v("john"))

Average

result

sentence

v("john") v("loves") v("mary") v(".")

Figure 4.1 Averaging 
embedding vectors
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state = update(state, v("loves"))
state = update(state, v("mary"))
state = update(state, v("."))

The final value of state becomes the representation of the entire sentence from this
process. Notice that if you change the order in which these words are processed (e.g.,
by flipping “John” and “Mary”), the final value of state also changes, meaning that the
state also encodes some information about the word order.

 You can achieve something similar if you can design a network substructure that is
applied to each element of the input while updating some internal states. RNNs are neu-
ral network structures that do exactly this. In a nutshell, an RNN is a neural network with
a loop. At its core is an operation that is applied to every element in the input as they
come in. If you wrote what RNNs do in Python pseudocode, it’d be like the following:

def rnn(words):
    state = init_state()
    for word in words:
        state = update(state, word)
    return state

Notice that there is state that gets initialized first and passed around during the iter-
ation. For every input word, state is updated based on the previous state and the
input using the function update. The network substructure corresponding to this
step (the code block inside the loop) is called a cell. This stops when the input is
exhausted, and the final value of state becomes the result of this RNN. See figure 4.2
for the illustration. 

 You can see the parallelism here. When you are reading a sentence (sequence of
words), your internal mental representation of the sentence, state, is updated after
reading each word. You can assume that the final state encodes the representation of
the entire sentence. 

 The only remaining work is to design two functions—init_state() and
update(). The state is usually initialized with zero (i.e., a vector filled with zeros), so

init_state()

state

update update update update

v("john") v("loves") v("mary") v(".")

Recurrent neural network (RNN)

Figure 4.2 RNN abstraction
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you usually don’t have to worry about how to go about defining the former. It’s more
important how you design update(), which determines the characteristics of the RNN.

4.1.3 Simple RNNs and nonlinearity

In section 3.4.3, I talked about how to implement a linear layer with an arbitrary num-
ber of inputs and outputs. Can we do something similar and implement update(),
which is basically a function that takes two input variables and produces one output
variable? After all, a cell is a neural network with its own input and output, right? The
answer is yes, and it looks like this:

def update_simple(state, word):
    return f(w1 * state + w2 * word + b)

Notice that this is strikingly similar to the linear2() function in section 3.4.3. In
fact, if you ignore the difference in variable names, it’s exactly the same except for the
f() function. An RNN defined by this type of the update function is called a simple
RNN or Elman RNN, which is, as its name suggests, one of the simplest RNN structures.

 You may be wondering, then, what is this function f() doing here? What does it
look like? Do we need it here at all? The function, called an activation function or non-
linearity, takes a single input (or a vector) and transforms it (or every element of a vec-
tor) in a nonlinear fashion. Many kinds of nonlinearities exist, and they play an
indispensable role in making neural networks truly powerful. What they exactly do and
why they are important requires some math to understand, which is outside the scope
of this book, but I’ll attempt an intuitive explanation with a simple example next.

 Imagine you are building an RNN that recognizes “grammatical” English sentences.
Differentiating grammatical sentences from ungrammatical ones is itself a difficult NLP
problem, which is, in fact, a well-established research area (see section 1.2.1), but here,
let’s simplify it and consider agreement only between the subject and the verb. Let’s fur-
ther simplify it and assume that there are only four words in this “language”—“I,” “you,”
“am,” and “are.” If the sentence is either “I am” or “you are,” it’s grammatically correct.
The other two combinations, “I are” and “you am,” are incorrect. What you want to
build is an RNN that outputs 1 for the correct sentences while producing 0 for the
incorrect ones. How would you go about building such a neural network?

 The first step in almost every modern NLP model is to represent words with
embeddings. As mentioned in the previous chapter, they are usually learned from a
large dataset of natural language text, but here, we are simply going to give them
some predefined values, as shown in figure 4.3.

 Now, let’s imagine there was no activation function. The previous update_
simple() function simplifies to the following:

def update_simple_linear(state, word):
    return w1 * state + w2 * word + b

We will assume the initial value of state is simply [0, 0], because the specific initial val-
ues are not relevant to the discussion here. The RNN takes the first word embedding,
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x1, updates state, takes the second word embedding, x2, then produces the final
state, which is a two-dimensional vector. Finally, the two elements in this vector are
summed and converted to result. If result is close to 1, the sentence is grammati-
cal. Otherwise, it is not. If you apply the update_simple_linear() function twice
and simplify it a little bit, you get the following function, which is all this RNN does,
after all:

w1 * w2 * x1 + w2 * x2 + w1 * b + b

Remember, w1, w2, and b are parameters of the model (aka “magic constants”) that
need to be trained (adjusted). Here, instead of adjusting these parameters using a
training dataset, let’s assign some arbitrary values and see what happens. For example,
when w1 = [1, 0], w2 = [0, 1], and b = [0, 0], the input and the output of this RNN
will be as shown in figure 4.4.

Figure 4.4 Input and output when w1 = [1, 0], w2 = [0, 1], and b = [0, 0] without 
an activation function
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Figure 4.3 Recognizing grammatical English sentences using an RNN
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If you look at the values of result, this RNN groups ungrammatical sentences (e.g.,
“I are”) with grammatical ones (e.g., “you are”), which is not the desired behavior.
How about we try another set of values for the parameters? Let’s use w1 = [1, 0], w2
= [-1, 0], and b = [0, 0] and see what happens (see figure 4.5 for the result).

Figure 4.5 Input and output when w1 = [1, 0], w2 = [-1, 0], and b = [0, 0] 
without an activation function

This is much better, because the RNN is successful in grouping ungrammatical sen-
tences by assigning 0 to both “I are” and “you am.” However, it also assigns completely
opposite values (2 and –2) to grammatical sentences (“I am” and “you are”). 

 I’m going to stop here, but as it turns out, you cannot use this neural network to
differentiate grammatical sentences from ungrammatical ones, no matter how hard
you try. Despite the values you assign to the parameters, this RNN cannot produce
results that are close enough to the desired values and, thus, are able to group sen-
tences by their grammaticality.

 Let’s step back and think why this is the case. If you look at the previous update
function, all it does is multiply the input by some value and add them up. In more spe-
cific terms, it only transforms the input in a linear fashion. The result of this neural net-
work always changes by some constant amount when you change the value of the
input by some amount. But this is obviously not desirable—you want the result to be 1
only when the input variables are some specific values. In other words, you don’t want
this RNN to be linear; you want it to be nonlinear.

 To use an analogy, imagine you can use only assignment (“=”), addition (“+”), and
multiplication (“*”) in your programming language. You can tweak the input values to
some degree to come up with the result, but you can’t write more complex logic in
such a restricted setting. 

 Now let’s put the activation function f() back and see what happens. The specific
activation function we are going to use is called the hyperbolic tangent function, or more
commonly, tanh, which is one of the most commonly used activation functions in neu-
ral networks. The details of this function are not important in this discussion, but in a
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nutshell, it behaves as follows: tanh doesn’t do much to the input when it is close to
zero, for example, 0.3 or –0.2. In other words, the input passes through the function
almost unchanged. When the input is far from zero, tanh tries to squeeze it between
–1 and 1. For example, when the input is large (say, 10.0), the output becomes very
close to 1.0, whereas when it is small (say, –10.0), the output becomes almost –1.0.
This creates an effect similar to the OR logical gate (or an AND gate, depending on
the weights) if two or more variables are fed into the activation function. The output
of the gate becomes ON (~1) and OFF (~–1) depending on the input.

 When w1 = [-1, 2], w2 = [-1, 2], b = [0, 1], and the tanh activation func-
tion is used, the result of the RNN becomes a lot closer to what we desire (see figure
4.6). If you round them to the closest integers, the RNN successfully groups sentences
by their grammaticality.

Figure 4.6 Input and output when w1 = [-1, 2], w2 = [-1, 2], and b = [0, 1] 
with an activation function

To use the same analogy, using activation functions in your neural networks is like
using ANDs and ORs and IFs in your programming language, in addition to basic
math operations like addition and multiplication. In this way, you can write complex
logic and model complex interactions between input variables, like the example in
this section. 

NOTE This example I use in this section is a slightly modified version of the
popular XOR (or exclusive-or) example commonly seen in deep learning text-
books. This is the most basic and simplest example that can be solved by neu-
ral networks but not by other linear models.

Some final notes on RNNs—they are trained just like any other neural networks. The
final outcome is compared with the desired outcome using the loss function, then the
difference between the two—the loss—is used for updating the “magic constants.”
The magic constants are, in this case, w1, w2, and b in the update_simple() func-
tion. Note that the update function and its magic constants are identical across all the
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timesteps in the loop. This means that what RNNs are learning is a general form of
updates that can be applied to any situation. 

4.2 Long short-term memory units (LSTMs) 
and gated recurrent units (GRUs)
In fact, the simple RNNs that we discussed earlier are rarely used in real-world NLP
applications due to one problem called the vanishing gradients problem. In this section,
I’ll show the issue associated with simple RNNs and how more popular RNN architec-
tures, namely LSTMs and GRUs, solve this particular problem.

4.2.1 Vanishing gradients problem

Just like any programming language, if you know the length of the input, you can
rewrite a loop without using one. An RNN can also be rewritten without using a loop,
which makes it look just like a regular neural network with many layers. For example,
if you know that there are only six words in the input, the rnn() from earlier can be
rewritten as follows:

def rnn(sentence):
    word1, word2, word3, word4, word5, word6 = sentence
    state = init_state()
    
    state = update(state, word1)
    state = update(state, word2)
    state = update(state, word3)
    state = update(state, word4)
    state = update(state, word5)
    state = update(state, word6)

    return state

Representing RNNs without loops is called unrolling. Now we know what update()
looks like for a simple RNN (update_simple), so we can replace the function calls
with their bodies, as shown here:

def rnn_simple(sentence):
    word1, word2, word3, word4, word5, word6 = sentence
    state = init_state()

    state = f(w1 * f(w1 * f(w1 * f(w1 * f(w1 * f(w1 * state + w2 * word1 + b) 
+ w2 * word2 + b) + w2 * word3 + b) + w2 * word4 + b) + w2 * word5 + b) 
+ w2 * word6 + b)

    return state

This is getting a bit ugly, but I just want you to notice the very deeply nested function
calls and multiplications. Now, recall the task we wanted to accomplish in the previous
section—classifying grammatical English sentences by recognizing subject-verb agree-
ment. Let’s say the input is sentence = ["The", "books", "I", "read", "yes-
terday", "were"]. In this case, the innermost function call processes the first word
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“The,” the next one processes the second word “books,” and so on, all the way to the
outermost function call, which processes “were.” If we rewrite the previous pseudocode
slightly, as shown in the next code snippet, you can understand it more intuitively:

def is_grammatical(sentence):
    word1, word2, word3, word4, word5, word6 = sentence
    state = init_state()

    state = process_main_verb(w1 *
        process_adverb(w1 *
            process_relative_clause_verb(w1 *
                process_relative_clause_subject(w1 *
                    process_main_subject(w1 *
                        process_article(w1 * state + w2 * word1 + b) +
                    w2 * word2 + b) +
                w2 * word3 + b) +
            w2 * word4 + b) + 
        w2 * word5 + b) + 
    w2 * word6 + b)

    return state

To recognize that the input is indeed a grammatical English sentence (or a prefix of a
sentence), the RNN needs to retain the information about the subject (“the books”)
in state until it sees the verb (“were”) without being distracted by anything in
between (“I read yesterday”). In the previous pseudocode, the states are represented
by the return values of function calls, so the information about the subject (return
value of process_main_subject) needs to propagate all the way up in this chain
until it reaches the outermost function (process_main_verb). This is starting to
sound like a difficult task.

 Things don’t look any better when it comes to training this RNN. RNNs, as well as
any other neural networks, are trained using an algorithm called backpropagation. Back-
propagation is a process where the components of a neural network communicate with
previous components on how to adjust the parameters to minimize the loss. This is how
it works for this particular case. First, you look at the outcome, that is, the return value
of is_grammatical()and compare it with what you desire. The difference between
these two is called the loss. The outermost function, is_grammatical(), basically has
four ways to decrease the loss to make its output closer to what is desired—1) adjust w1
while fixing the return value of the nested function process_adverb(), 2) adjust w2,
3) adjust b, or 4) adjust the return value of process_adverb() while fixing the param-
eters. Adjusting the parameters (w1, w2, and b) is the easy part because the function
knows the exact effect of adjusting each parameter to its return value. Adjusting the
return value of the previous function, however, is not easy, because the caller has no
idea about the inner workings of the function. Because of this, the caller tells the pre-
vious function (callee) to adjust its return values to minimize the loss. See figure 4.7 for
how the loss is propagated back to the parameters and previous functions.
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Figure 4.7 Backpropagation of loss

The nested function calls repeat this process and plays the Telephone game until the
message reaches the innermost function. By that time, because the message needs to
pass through many layers, it becomes so weak and obscure (or so strong and skewed
because of some misunderstanding) that the inner functions have a difficult time fig-
uring out what they did wrong.

 Technically, the deep learning literature calls this the vanishing gradients problem. A
gradient is a mathematical term that corresponds to the message signal that each func-
tion receives from the next one that states how exactly they should improve their pro-
cess (how to change their magic constants). The reverse Telephone game, where
messages are passed backward from the final function (= loss function), is called back-
propagation. I’m not going into the mathematical details of these terms, but it is use-
ful to understand them at least conceptually.

 Because of the vanishing gradients problem, simple RNNs are difficult to train and
rarely used in practice nowadays. 

4.2.2 Long short-term memory (LSTM)

The way the nested functions mentioned earlier process information about grammar
seems too inefficient. After all, why doesn’t the outermost function (is_grammati-
cal) tell the particular function in charge (e.g., process_main_subject) what
went wrong directly, instead of playing the Telephone game? It can’t, because the mes-
sage can change its shape entirely after each function call because of w2 and f(). The
outermost function cannot tell which function was responsible for which part of the
message from only the final output. 

 How could we address this inefficiency? Instead of passing the information
through an activation function every time and changing its shape completely, how
about adding and subtracting information relevant to the part of the sentence being
processed at each step? For example, if process_main_subject() can directly add
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information about the subject to some type of “memory,” and the network can make
sure the memory passes through the intermediate functions intact, is_grammati-
cal()will have a much easier time telling the previous functions what to do to adjust
its output.

 Long short-term memory units (LSTMs) are a type of RNN cell that is proposed based
on this insight. Instead of passing around states, LSTM cells share a “memory” that
each cell can remove old information from and/or add new information to, some-
thing like an assembly line in a manufacturing factory. Specifically, LSTM RNNs use
the following function for updating states:

def update_lstm(state, word):
    cell_state, hidden_state = state

    cell_state *= forget(hidden_state, word)
    cell_state += add(hidden_state, word)

    hidden_state = update_hidden(hidden_state, cell_state, word)

    return (cell_state, hidden_state)

Although this looks relatively complicated compared to its simple version, if you break
it down to subcomponents, it’s not that difficult to understand what is going on here,
as described next and shown in figure 4.8:

 The LSTM states comprise two halves—the cell state (the “memory” part) and
the hidden state (the “mental representation” part).

 The function forget() returns a value between 0 and 1, so multiplying by this
number means erasing old memory from cell_state. How much to erase is
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Figure 4.8 LSTM update function
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determined from hidden_state and word (input). Controlling the flow of
information by multiplying by a value between 0 and 1 is called gating. LSTMs
are the first RNN architecture that uses this gating mechanism.

 The function add()returns a new value added to the memory. The value again
is determined from hidden_state and word.

 Finally, hidden_state is updated using a function, whose value is computed
from the previous hidden state, the updated memory, and the input word.

I abstracted the update function by hiding some mathematical details in the functions
forget(), add(), and update_hidden(), which are not important for the discus-
sion here. If you are interested in understanding LSTMs more deeply, I refer you to a
wonderful blog post Chris Olah wrote on this topic (http://colah.github.io/posts/
2015-08-Understanding-LSTMs/). 

 Because LSTMs have this cell state that stays constant across different timesteps
unless explicitly modified, they are easier to train and relatively well behaved. Because
you have a shared “memory” and functions are adding and removing information
related to different parts of the input sentence, it is easier to pinpoint which function
did what and what went wrong. The error signal from the outermost function can
reach responsible functions more directly.

 A word on the terminology—LSTM refers to one particular type of architecture
mentioned here, but people use “LSTMs” to mean RNNs with LSTM cells. Also, “RNN”
is often used to mean “simple RNN,” introduced in section 4.1.3. When you see “RNNs”
in the literature, you need to be aware of which exact architectures they are using.

4.2.3 Gated recurrent units (GRUs)

Another RNN architecture, called Gated Recurrent Units (GRUs), uses the gating
mechanism. The philosophy behind GRUs is similar to that of LSTMs, but GRUs
use only one set of states instead of two halves. The update function for GRUs is
shown next:

def update_gru(state, word): 
    new_state = update_hidden(state, word)

    switch = get_switch(state, word)

    state = swtich * new_state + (1 – switch) * state

    return state

Instead of erasing or updating the memory, GRUs use a switching mechanism. The
cell first computes the new state from the old state and the input. It then computes
switch, a value between 0 and 1. The state is chosen between the new state and the
old one based on the value of switch. If it’s 0, the old state passes through intact. If
it’s 1, it’s overwritten by the new state. If it’s somewhere in between, the state will be a
mix of two. See figure 4.9 for an illustration of the GRU update function.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 4.9 GRU update function

Notice that the update function for GRUs is much simpler than that for the LSTMs.
Indeed, it has fewer parameters (magic constants) that need to be trained compared
to LSTMs. Because of this, GRUs are faster to train than LSTMs.

 Finally, although we introduced two different types of RNN architecture, LSTM
and GRU, there’s no consensus in the community on which type of architecture is the
best for all applications. You often need to treat them as a hyperparameter and exper-
iment with different configurations. Fortunately, it is easy to experiment with different
types of RNN cells as long as you are using modern deep learning frameworks such as
PyTorch and TensorFlow. 

4.3 Accuracy, precision, recall, and F-measure
In section 2.7, I briefly talked about some metrics that we use for evaluating the per-
formance of a classification task. Before we move on to actually building a sentence
classifier, I’d like to further discuss the evaluation metrics we are going to use—what
they mean and what they actually measure.

4.3.1 Accuracy

Accuracy is probably the simplest of all the evaluation metrics that we talk about here.
In a classification setting, accuracy is the fraction of instances that your model got
right. For example, if there are 10 emails and your spam-filtering model got 8 of them
correct, the accuracy of your prediction is 0.8, or 80% (see figure 4.10).

 Though simple, accuracy is not without its limitations. Specifically, accuracy can be
misleading when the test set is imbalanced. An imbalanced dataset contains multiple
class labels that greatly differ in their numbers. For example, if a spam-filtering dataset
is imbalanced, it may contain 90% nonspam emails and 10% spams. In such a case,
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even a stupid classifier that labels everything as nonspam would be able to achieve an
accuracy of 90%. As an example, if a “stupid” classifier classifies everything as “non-
spam” in figure 4.10, it would still achieve an accuracy of 70% (7 out of 10 instances).
If you look at this number in isolation, you might be fooled into thinking the perfor-
mance of the classifier is actually great. When you are using accuracy as a metric, it is
always a good idea to compare with the hypothetical, stupid classifier (majority vote) as
a baseline.

4.3.2 Precision and recall

The rest of the metrics—precision, recall, and F-measure—are used in a binary classi-
fication setting. The goal of a binary classification task is to identify one class (called a
positive class) from the other (called a negative class). In the spam-filtering setting, the
positive class is spam, whereas the negative class is nonspam.

 The Venn diagram in figure 4.11 contains four subregions: true positives, false pos-
itives, false negatives, and true negatives. True positives (TP) are instances that are
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predicted as positive (= spam) and are indeed in the positive class. False positives (FP)
are instances that are predicted as positive (= spam) but are actually not in the positive
class. These are noises in the prediction, that is, innocent nonspam emails that are mis-
takenly caught by the spam filter and end up in the spam folder of your email client.

 On the other hand, false negatives (FN) are instances that are predicted as nega-
tive but are actually in the positive class. These are spam emails that slip through the
spam filter and end up in your inbox. Finally, true negatives (TN) are instances that
are predicted as negative and are indeed in the negative class (nonspam emails in
your inbox).

 Precision is the fraction of instances that the model classifies as positive that are
indeed correct. For example, if your spam filter identifies three emails as spam, and
two of them are indeed spam, the precision will be 2/3, or about 66%. 

 Recall is somewhat opposite of precision. It is the fraction of positive instances in
your dataset that are identified as positive by your model. Again, using spam filtering
as an example, if your dataset contains three spam emails and your model identifies
two of them as spam successfully, the recall will be 2/3, or about 66%.

 Figure 4.11 shows the relationship between predicted and true labels as well as
recall and precision. 

Figure 4.11 Precision and recall
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4.3.3 F-measure

You may have noticed a tradeoff between precision and recall. Imagine there’s a spam
filter that is very, very careful in classifying emails. It outputs only one out of several
thousand emails as spam, but when it does, it is always correct. This is not a difficult
task, because some spam emails are pretty obvious—if they contain a word “v1@gra”
in the text and it’s sent from someone in the spam blacklist, it should be pretty safe to
mark it as a spam. What would the precision of this spam filter be? 100%. Similarly,
there’s another spam filter that is very, very careless in classifying emails. It classifies
every single email as spam, including the ones from your colleagues and friends. Its
recall? 100%. Would any of these two spam filters be useful? Hardly!

 As you’ve seen, improving precision or recall alone while ignoring the other is not
a good practice, because of the tradeoff between them. It’s like you were looking only
at your body weight when you are on a diet. You lost 10 pounds? Great! But what if you
are seven feet tall? Not so much. You need to take into account both your height and
weight—how much is too much depends on the other variable. That’s why there are
measures like BMI (body mass index) that take both measures into account. Similarly,
researchers came up with this metric called F-measure, which is an average (or, more pre-
cisely speaking, a harmonic mean) of precision and recall. Most often, a special case
called F1-measure is used, which is the equally weighted version of F-measure. In a clas-
sification setting, it is a good practice to measure and try to maximize the F-measure.

4.4 Building AllenNLP training pipelines
In this section, we are going to revisit the sentiment analyzer we built in chapter 2 and
discuss how to build its training pipeline in more detail. Although I already showed
the important steps for building an NLP application using AllenNLP, in this section
we will dive deep into some important concepts and abstractions. Understanding
these concepts is important not just in using AllenNLP but also in designing NLP
applications in general, because NLP applications are usually built using these abstrac-
tions in some way or the other. 

 To run the code in this section, you need to import the necessary classes and mod-
ules, as shown in the following code snippet (the code examples in this section can also
be accessed via Google Colab, http://www.realworldnlpbook.com/ch2.html#sst-nb):

from itertools import chain
from typing import Dict

import numpy as np
import torch
import torch.optim as optim
from allennlp.data.data_loaders import MultiProcessDataLoader
from allennlp.data.samplers import BucketBatchSampler
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules.seq2vec_encoders import Seq2VecEncoder, 

PytorchSeq2VecWrapper

http://www.realworldnlpbook.com/ch2.html#sst-nb
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from allennlp.modules.text_field_embedders import TextFieldEmbedder, 
BasicTextFieldEmbedder

from allennlp.modules.token_embedders import Embedding
from allennlp.nn.util import get_text_field_mask
from allennlp.training.metrics import CategoricalAccuracy, F1Measure
from allennlp.training.trainer import GradientDescentTrainer
from allennlp_models.classification.dataset_readers.stanford_sentiment_tree_

bank import \
    StanfordSentimentTreeBankDatasetReader

4.4.1 Instances and fields

As mentioned in section 2.2.1, an instance is the atomic unit for which a prediction is
made by a machine learning algorithm. A dataset is a collection of instances of the
same form. The first step in most NLP applications is to read in or receive some data
(e.g., from a file or via network requests) and convert them to instances so that the
NLP/ML algorithm can consume them.

 AllenNLP supports an abstraction called DatasetReader whose job is to read in
some input (raw strings, CSV files, JSON data structures from network requests, and so
on) and convert it to instances. AllenNLP already provides a wide range of dataset read-
ers for major formats used in NLP, such as the CoNLL format (used in popular shared
tasks for language analysis) and the Penn Treebank (a popular dataset for syntactic
parsing). To read the Standard Sentiment Treebank, you can use the built-in
StanfordSentimentTreeBankDatasetReader, which we used earlier in chapter 2.
You can also write your own dataset reader just by overriding some core methods from
DatasetReader.

 The AllenNLP class Instance represents a single instance. An instance can have
one or more fields, which hold some type of data. For example, an instance for the
sentiment analysis task has two fields—the text body and the label—which can be cre-
ated by passing a dictionary of fields to its constructor as follows:

Instance({'tokens': TextField(tokens),
          'label': LabelField(sentiment)})

Here we assumed that you already created tokens, which is a list of tokens, and sen-
timent, a string label corresponding to the sentiment class, from reading the input
file. AllenNLP supports other types of fields, depending on the task. 

 The read()method of DatasetReader returns an iterator over instances, which
enables you to enumerate the generated instances and visually check them, as shown
in the following snippet:

reader = StanfordSentimentTreeBankDatasetReader()

train_dataset = reader.read('path/to/sst/dataset/train.txt')
dev_dataset = reader.read('path/to/sst/dataset/dev.txt')

for inst in train_dataset + dev_dataset:
    print(inst)
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In many cases, you access your dataset readers through data loaders. A data loader is
an AllenNLP abstraction (which is really a thin wrapper around PyTorch’s data load-
ers) that handles the data and iterates over batched instances. You can specify how
instances are sorted, grouped into batches, and fed to the training algorithm by sup-
plying a batch sampler. Here, we are using a BucketBatchSampler, which does this
by sorting instances by their length and grouping instances with similar lengths into a
single batch, as shown next: 

reader = StanfordSentimentTreeBankDatasetReader()

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(
    reader, train_path, batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(
    reader, dev_path, batch_sampler=sampler)

4.4.2 Vocabulary and token indexers

The second step in many NLP applications is to build the vocabulary. In computer sci-
ence, vocabulary is a theoretical concept that represents the set of all possible words in
a language. In NLP, though, it often means just the set of all unique tokens that
appeared in a dataset. It is simply impossible to know all the possible words in a lan-
guage, nor is it necessary for an NLP application. What is stored in a vocabulary is
called a vocabulary item (or just an item). A vocabulary item is usually a word, although
depending on the task at hand, it can be any form of linguistic units, including charac-
ters, character n-grams, and labels for linguistic annotation.

 AllenNLP provides a class called Vocabulary. It not only takes care of storing
vocabulary items that appeared in a dataset, but it also holds mappings between
vocabulary items and their IDs. As mentioned earlier, neural networks and machine
learning models in general can deal only with numbers, and there needs to be a way
to map discrete items such as words to some numerical representations such as word
IDs. The vocabulary is also used to map the results of an NLP model back to the origi-
nal words and labels so that humans can actually read them.

 You can create a Vocabulary object from instances as follows:

vocab = Vocabulary.from_instances(chain(train_data_loader.iter_instances(), 
                                        dev_data_loader.iter_instances()),
                                  min_count={'tokens': 3})

A couple of things to note here: first, because we are dealing with iterators (returned
by the data loaders’ iter_instances()method), we need to use the chain method
from itertools to enumerate all the instances in both datasets. 

 Second, AllenNLP’s Vocabulary class supports namespaces, which are a system to
separate different sets of items so that they don’t get mixed up. Here’s why they are
useful—say you are building a machine translation system, and you just read a dataset
that contains English and French translations. Without namespaces, you’d have just
one set that contains all words in English and French. This is usually not a big issue
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because English words (“hi,” “thank you,” “language”) and French words (“bonjour,”
“merci, “langue”) look quite different in most cases. However, a number of words look
exactly the same in both languages. For example, “chat” means “talk” in English and
“cat” in French, but it’s hard to imagine anybody wanting to mix those two words and
assign the same ID (and embeddings). To avoid this conflict, Vocabulary imple-
ments namespaces and assigns separate sets of items of different types.

 You may have noticed the form_instances() function call has a min_count
argument. For each namespace, this specifies the minimum number of occurrences in
the dataset that is necessary for an item to be included in the vocabulary. All the items
that appear less frequently than this threshold are treated as “unknown” items. Here’s
why this is a good idea: in a typical language, a very small number of words appear a
lot (in English: “the,” “a,” “of”) and a very large number of words appear very infre-
quently. This usually exhibits a long tail distribution of word frequencies. But it is not
likely that these super infrequent words add anything useful to the model, and pre-
cisely because they appear infrequently, it is difficult to learn any useful patterns from
them anyway. Also, because there are so many of them, they inflate the size of the
vocabulary and the number of model parameters. In such a case, a common practice
in NLP is to cut this long tail and collapse all the infrequent words to a single entity
<UNK> (for “unknown” words).

 Finally, a token indexer is an AllenNLP abstraction that takes in a token and returns
its index, or a list of indices that represent the token. In most cases, there’s a one-to-
one mapping between unique tokens and their indices, but depending on your
model, you may need more advanced ways to index the tokens (such as using charac-
ter n-grams).

 After you create a vocabulary, you can tell the data loaders to index the tokens with
the specified vocabulary, as shown in the next code snippet. This means that the
tokens that the data loaders read from the datasets are converted to integer IDs
according to the vocabulary’s mappings:

train_data_loader.index_with(vocab)
dev_data_loader.index_with(vocab)

4.4.3 Token embedders and RNNs

After you index words using a vocabulary and token indexers, you need to convert them
to embeddings. An AllenNLP abstraction called TokenEmbedder takes word indices as
an input and produces word embedding vectors as an output. You can embed words
using continuous vectors in many ways, but if all you want is to map unique tokens to
embedding vectors one-to-one, you can use the Embedding class as follows:

token_embedding = Embedding(
    num_embeddings=vocab.get_vocab_size('tokens'),
    embedding_dim=EMBEDDING_DIM)

This will create an Embedding instance that takes word IDs and converts them to
fixed-length vectors in a one-to-one fashion. The number of unique words this
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instance can support is given by num_embeddings, which is equal to the size of the
tokens vocabulary namespace. The dimensionality of embeddings (i.e., the length of
embedded vectors) is given by embedding_dim.

 Next, let’s define our RNN and convert a variable-length input (a list of embedded
words) to a fixed-length vector representation of the input. As we discussed in section
4.1, you can think of an RNN as a neural network structure that consumes a sequence
of things (words) and returns a fixed-length vector. AllenNLP abstracts such models
into the Seq2VecEncoder class, and you can create an LSTM RNN by using
PytorchSeq2VecWrapper as follows:

encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

A lot is happening here, but essentially this wraps PyTorch’s LSTM implementation
(torch.nn.LSTM) and makes it pluggable to the rest of the AllenNLP pipeline. The
first argument to torch.nn.LSTM() is the dimensionality of the input vector, and the
second one is that of LSTM’s internal state. The last one, batch_first, specifies the
structure of the input/output tensors for batching, but you usually don’t have to
worry about its details as long as you are using AllenNLP.

NOTE In AllenNLP, everything is batch first, meaning that the first dimen-
sion of any tensor is always equal to the number of instances in a batch.

4.4.4 Building your own model

Now that we defined all the subcomponents, we are ready to build the model that exe-
cutes the prediction. Thanks to AllenNLP’s well-designed abstractions, you can easily
build your model by inheriting AllenNLP’s Model class and overriding the
forward() method. You don’t usually need to be aware of details such as the shapes
and dimensions of tensors. The following listing defines the LSTM RNN used for clas-
sifying sentences.

@Model.register("lstm_classifier")
class LstmClassifier(Model):   
    def __init__(self,
                 embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 vocab: Vocabulary,
                 positive_label: str = '4') -> None:
        super().__init__(vocab)
        self.embedder = embedder
        self.encoder = encoder

        self.linear = torch.nn.Linear(   
            in_features=encoder.get_output_dim(),
            out_features=vocab.get_vocab_size('labels'))

Listing 4.1 LSTM sentence classifier

AllenNLP models 
inherit Model.

Creates a linear layer to convert the RNN 
output to a vector of another length
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        positive_index = vocab.get_token_index(
            positive_label, namespace='labels')
        self.accuracy = CategoricalAccuracy()
        self.f1_measure = F1Measure(positive_index)    

        self.loss_function = torch.nn.CrossEntropyLoss()  

    def forward(self,    
                tokens: Dict[str, torch.Tensor],
                label: torch.Tensor = None) -> torch.Tensor:
        mask = get_text_field_mask(tokens)

        embeddings = self.embedder(tokens)
        encoder_out = self.encoder(embeddings, mask)
        logits = self.linear(encoder_out)

        output = {"logits": logits}   
        if label is not None:
            self.accuracy(logits, label)
            self.f1_measure(logits, label)
            output["loss"] = self.loss_function(logits, label)

        return output

    def get_metrics(self, reset: bool = False) -> Dict[str, float]:
        return {'accuracy': self.accuracy.get_metric(reset),    
                **self.f1_measure.get_metric(reset)}

Every AllenNLP Model inherits from PyTorch’s Module class, meaning you can use
PyTorch’s low-level operations if necessary. This gives you a lot of flexibility in defining
your model while leveraging AllenNLP’s high-level abstractions.  

4.4.5 Putting it all together

Finally, we finish this section by implementing the entire pipeline to train the senti-
ment analyzer, as shown next. 

EMBEDDING_DIM = 128
HIDDEN_DIM = 128

reader = StanfordSentimentTreeBankDatasetReader()

train_path = 'path/to/sst/dataset/train.txt'
dev_path = 'path/to/sst/dataset/dev.txt'

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(  
    reader, train_path, batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(
    reader, dev_path, batch_sampler=sampler)

Listing 4.2 Training pipeline for the sentiment analyzer

F1Measure() requires the label 
ID for the positive class. '4' 
means “very positive.”

Cross-entropy loss 
is used for 
classification tasks. 
CrossEntropyLoss 
directly takes logits 
(no softmax needed).

Instances are 
destructed to 
individual fields 
and passed to 
forward().

Output of forward() is a dict, 
which contains a “loss” key.

Returns accuracy, 
precision, recall, 
and F1-measure 
as the metrics

Defines how to construct 
the data loaders
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vocab = Vocabulary.from_instances(chain(train_data_loader.iter_instances(), 
                                        dev_data_loader.iter_instances()),
                                  min_count={'tokens': 3})

train_data_loader.index_with(vocab)
dev_data_loader.index_with(vocab)

token_embedding = Embedding(
    num_embeddings=vocab.get_vocab_size('tokens'),
    embedding_dim=EMBEDDING_DIM)

word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})

encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

model = LstmClassifier(word_embeddings, encoder, vocab)   

optimizer = optim.Adam(model.parameters())   

trainer = GradientDescentTrainer(   
    model=model,
    optimizer=optimizer,
    data_loader=train_data_loader,
    validation_data_loader=dev_data_loader,
    patience=10,
    num_epochs=20,
    cuda_device=-1)

trainer.train()

The training pipeline completes when the Trainer instance is created and invoked
with train(). You pass all the ingredients that you need for training—the model,
optimizer, data loaders, datasets, and a bunch of hyperparameters.

 An optimizer implements an algorithm for adjusting the parameters of the model
to minimize the loss. Here, we are using one type of optimizer called Adam, which is a
good “default” optimizer to use as your first option. However, as I mentioned in chap-
ter 2, you often need to experiment with many different optimizers that work best for
your model.

4.5 Configuring AllenNLP training pipelines
You may have noticed that very little of listing 4.2 is actually specific to the sentence-
classification problem. Indeed, loading datasets, initializing a model, and plugging an
iterator and an optimizer into the trainer are all common steps across almost every
NLP training pipeline. What if you want to reuse the same training pipeline for many
related tasks without writing the training script from scratch? Also, what if you want to
experiment with different sets of configurations (e.g., different hyperparameters, neu-
ral network architectures) and save the exact configurations you tried?

 For those problems, AllenNLP provides a convenient framework where you can
write configuration files in the JSON format. The idea is that you write the specifics of
your training pipeline—for example, which dataset reader to use, which models and

Initializes 
the model

Defines the 
optimizer

Initializes 
the trainer
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their subcomponents to use, and what hyper-parameters to use for training—in a
JSON-formatted file (more precisely, AllenNLP uses a format called Jsonnet, which is a
superset of JSON). Instead of rewriting your model file or the training script, you feed
the configuration file to the AllenNLP executable, and the framework takes care of
running the training pipeline. If you want to try a different configuration for your
model, you simply change the configuration file (or make a new one) and run the
pipeline again, without changing the Python code. This is a great practice for making
your experiment manageable and reproducible. You need to manage only the config-
uration files and their results—the same configuration always yields the same result.

 A typical AllenNLP configuration file consists of three main parts—the dataset,
your model, and the training pipeline. The first part, shown next, specifies which
dataset files to use and how:

"dataset_reader": {
    "type": "sst_tokens"
  },
  "train_data_path": "https:/./s3.amazonaws.com/realworldnlpbook/data/

stanfordSentimentTreebank/trees/train.txt",
  "validation_data_path": "https:/./s3.amazonaws.com/realworldnlpbook/data/

stanfordSentimentTreebank/trees/dev.txt"

Three keys are in this part: dataset_reader, train_data_path, and valida-
tion_data_path. The first key, dataset_reader, specifies which DatasetReader
to use to read the files. Dataset readers, models, and predictors, as well as many other
types of modules in AllenNLP, can be registered using the decorator syntax and be
referred to from configuration files. For example, if you peek at the following code
where StanfordSentimentTreeBankDatasetReader is defined

@DatasetReader.register("sst_tokens")
class StanfordSentimentTreeBankDatasetReader(DatasetReader): 
    ...

you notice that it is decorated by @DatasetReader.register("sst_tokens").
This registers StanfordSentimentTreeBankDatasetReader under the name
sst_tokens, which allows you to refer it by "type": "sst_tokens" from the con-
figuration files.

 In the second part of the configuration file, you specify the main model to be
trained as follows:

"model": {
    "type": "lstm_classifier",

    "embedder": {
      "token_embedders": {
        "tokens": {
          "type": "embedding",
          "embedding_dim": embedding_dim
        }
      }
    },
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    "encoder": {
      "type": "lstm",
      "input_size": embedding_dim,
      "hidden_size": hidden_dim
    }
}

As mentioned before, models in AllenNLP can be registered using the decorator syn-
tax and be referred from the configuration files via the type key. For example, the
LstmClassifier class referred here is defined as follows:

@Model.register("lstm_classifier")
class LstmClassifier(Model):
    def __init__(self,
                 embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 vocab: Vocabulary,
                 positive_label: str = '4') -> None:

Other keys in the model definition JSON dict correspond to the names of the
parameters of the model constructor. In the previous definition, because Lstm-
Classifier’s constructor takes two parameters, word_embeddings and encoder
(in addition to vocab, which is passed by default and can be omitted, and
positive_label, for which we are going to use the default value), the model defini-
tion has two corresponding keys, the values of which are also model definitions and
follow the same convention.

 In the final part of the configuration file, the data loader and the trainer are speci-
fied. The convention here is similar to the model definition—you specify the type of
the class along with other parameters passed to the constructor as follows:

  "data_loader": {
    "batch_sampler": {
      "type": "bucket",
      "sorting_keys": ["tokens"],
      "padding_noise": 0.1,
      "batch_size" : 32
    }
  },
  "trainer": {
    "optimizer": "adam",
    "num_epochs": 20,
    "patience": 10
  }

You can see the full JSON configuration file in the code repository (http://realworld-
nlpbook.com/ch4.html#sst-json). Once you define the JSON configuration file, you
can simply feed it to the allennlp command as follows:

allennlp train examples/sentiment/sst_classifier.jsonnet \
    --serialization-dir sst-model \
    --include-package examples.sentiment.sst_classifier

http://realworldnlpbook.com/ch4.html#sst-json
http://realworldnlpbook.com/ch4.html#sst-json
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The --serialization-dir specifies where the trained model (along with addi-
tional information such as serialized vocabulary data) is going to be stored. You also
need to specify the module path to LstmClassifier using --include-package so
that the configuration file can find the registered class.

 As we saw in chapter 2, when the training is finished, you can launch a simple web-
based demo interface using the following command:

$ allennlp serve \ 
    --archive-path sst-model/model.tar.gz \
    --include-package examples.sentiment.sst_classifier \
    --predictor sentence_classifier_predictor \
    --field-name sentence

4.6 Case study: Language detection
In this final section of the chapter, we are going to discuss another scenario—
language detection—which can also be formulated as a sentence-classification task. A
language-detection system, given a piece of text, detects the language the text is writ-
ten in. It has a wide range of uses in other NLP applications. For example, a web
search engine may want to detect the language a web page is written in before process-
ing and indexing it. Google Translate also switches the source language automatically
based on what is typed in the input textbox.

 Let’s see what this actually looks like. Can you tell the language of each of the fol-
lowing lines? These sentences are all taken from the Tatoeba project (https://
tatoeba.org/).

 Contamos con tu ayuda.
 Bitte überleg es dir.
 Parti için planları tartıştılar.
 Je ne sais pas si je peux le faire.
 Você estava em casa ontem, não estava?
 Ĝi estas rapida kaj efika komunikilo.
 Ha parlato per un'ora.
 Szeretnék elmenni és meginni egy italt.
 Ttwaliɣ nezmer ad nili d imeddukal.
 

The answer is: Spanish, German, Turkish, French, Portuguese, Esperanto, Italian,
Hungarian, and Berber. I chose them from the top 10 most popular languages on
Tatoeba that are written in the roman alphabet. You may not be familiar with some of
the languages listed here. For those of you who are not, Esperanto is a constructed
auxiliary language invented in the late 19th century. Berber is actually a group of
related languages spoken in some parts of North Africa that are cousins of Semitic lan-
guages such as Arabic.

 Maybe you were able to recognize some of these languages, even though you
don’t actually speak them. I’d like you to step back and think how you did it. It’s quite

https://tatoeba.org/
https://tatoeba.org/
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interesting that people can do this without actually being able to speak the language,
because these languages are all written in the roman alphabet and could look quite
similar to each other. You may have recognized some unique diacritic marks (accents)
for some of the languages—for example, “ü” for German and “ã” for Portuguese.
These are a strong clue for these languages. Or you just knew some words—for exam-
ple, “ayuda” for Spanish (meaning “help”) and “pas” in French (“ne . . . pas” is a
French negation syntax). It appears that every language has its own characteristics—
be it some unique characters or words—that makes it easy to tell it apart from others.
This is starting to sound a lot like a kind of problem that machine learning is good at
solving. Can we build an NLP system that can do this automatically? How should we go
about building it?

4.6.1 Using characters as input

A language detector can also be built in a similar way to the sentiment analyzer. You
can use an RNN to read the input text and convert it to some internal representation
(hidden states). You can then use a linear layer to convert them to a set of scores cor-
responding to how likely the text is written in each language. Finally, you can use
cross-entropy loss to train the model.

 One major difference between the sentiment analyzer and the language detector
is how you feed the input into an RNN. When building the sentiment analyzer, we
used the Stanford Sentiment Treebank and were able to assume that the input text is
always English and already tokenized. But this is not the case for language detection.
In fact, you don’t even know whether the input text is written in a language that can
be tokenized easily—what if the sentence is written in Chinese? Or in Finnish, which is
infamous for its complex morphology? You could use a tokenizer that is specific to the
language if you know what language it is, but we are building the language detector
because we don’t know what language it is in the first place. This sounds like a typical
chicken-and-egg problem.

 To address this issue, we are going to use characters instead of tokens as the input
to an RNN. The idea is to break down the input into individual characters, even includ-
ing whitespace and punctuation, and feed them to the RNN one at a time. Using char-
acters is a common practice used when the input can be better represented as a
sequence of characters (such as Chinese, or of an unknown origin), or when you’d like
to make the best use of internal structures of words (such as the fastText model we men-
tioned in chapter 3). The RNN’s powerful representational power can still capture inter-
actions between characters and some common words and n-grams mentioned earlier.

4.6.2 Creating a dataset reader

For this language-detection task, I created the train and the validation datasets from
the Tatoeba project by taking the 10 most popular languages on Tatoeba that use the
roman alphabet and by sampling 10,000 sentences for the train set and 1,000 for the
validation set. An excerpt of this dataset follows:
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por De entre os designers, ele escolheu um jovem ilustrador e deu-lhe a 
tarefa.

por A apresentação me fez chorar.
tur Bunu denememize gerek var mı?
tur O korkutucu bir parçaydı.
ber Tebḍamt aɣrum-nni ɣef sin, naɣ?
ber Ad teddud ad twalid taqbuct n umaḍal n tkurt n uḍar deg Brizil?
eng Tom works at Harvard.
eng They fixed the flat tire by themselves.
hun Az arca hirtelen elpirult.
hun Miért aggodalmaskodsz? Hiszen még csak egy óra van!
epo Sidiĝu sur la benko.
epo Tiu ĉi kutime funkcias.
fra Vu d'avion, cette île a l'air très belle.
fra Nous boirons à ta santé.
deu Das Abnehmen fällt ihm schwer.
deu Tom war etwas besorgt um Maria.
ita Sono rimasto a casa per potermi riposare.
ita Le due più grandi invenzioni dell'uomo sono il letto e la bomba atomica: 

il primo ti tiene lontano dalle noie, la seconda le elimina.
spa He visto la película.
spa Has hecho los deberes.

The first field is a three-letter language code that describes which language the text is
written in. The second field is the text itself. The fields are delimited by a tab character.
You can obtain the datasets from the code repository (https://github.com/mhagiwara/
realworldnlp/tree/master/data/tatoeba).

 The first step in building a language detector is to prepare a dataset reader that can
read datasets in this format. In the previous example (the sentiment analyzer), because
AllenNLP already provides StanfordSentimentTreeBankDatasetReader, you
just needed to import and use it. In this scenario, however, you need to write your
own. Fortunately, writing a dataset reader that can read this particular format is not
that difficult. To write a dataset reader, you just need to do the following three things:

 Create your own dataset reader class by inheriting DatasetReader.
 Override the text_to_instance() method that takes raw text and converts it

to an instance object.
 Override the_read() method that reads the content of a file and yields

instances, by calling text_to_instance() above.

The complete dataset reader for the language detector is shown in listing 4.3. We also
assume that you already imported necessary modules and classes as follows:

from typing import Dict

import numpy as np
import torch
import torch.optim as optim
from allennlp.common.file_utils import cached_path
from allennlp.data.data_loaders import MultiProcessDataLoader

https://github.com/mhagiwara/realworldnlp/tree/master/data/tatoeba
https://github.com/mhagiwara/realworldnlp/tree/master/data/tatoeba
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from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.fields import LabelField, TextField
from allennlp.data.instance import Instance
from allennlp.data.samplers import BucketBatchSampler
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.data.tokenizers.character_tokenizer import CharacterTokenizer
from allennlp.data.vocabulary import Vocabulary
from allennlp.modules.seq2vec_encoders import PytorchSeq2VecWrapper
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.training import GradientDescentTrainer
from overrides import overrides

from examples.sentiment.sst_classifier import LstmClassifier

class TatoebaSentenceReader(DatasetReader):    
    def __init__(self,
                 token_indexers: Dict[str, TokenIndexer]=None):
        super().__init__()
        self.tokenizer = CharacterTokenizer()   
        self.token_indexers = token_indexers or {'tokens': 

SingleIdTokenIndexer()}

    @overrides
    def text_to_instance(self, tokens, label=None):  
        fields = {}

        fields['tokens'] = TextField(tokens, self.token_indexers)
        if label:
            fields['label'] = LabelField(label)

        return Instance(fields)

    @overrides
    def _read(self, file_path: str):
        file_path = cached_path(file_path)   
        with open(file_path, "r") as text_file:
            for line in text_file:
                lang_id, sent = line.rstrip().split('\t')

                tokens = self.tokenizer.tokenize(sent)

                yield self.text_to_instance(tokens, lang_id)    

Note that the dataset reader in listing 4.3 uses CharacterTokenizer() to tokenize
text into characters. Its tokenize() method returns a list of tokens, which are Allen-
NLP objects that represent tokens but actually contain characters in this scenario. 

4.6.3 Building the training pipeline

Once you build the dataset reader, the rest of the training pipeline looks similar to
that of the sentiment analyzer. In fact, we can reuse the LstmClassifier class we

Listing 4.3 Dataset reader for the language detector 

Every new dataset 
reader inherits 
DatasetReader.

Uses CharacterTokenizer() 
to tokenize text into 
characters

Label will be None 
at test time.

If file_path is an URL, returns the 
actual path to a cached file on disk

Yields instances using
text_to_instance(),

defined earlier
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defined previously without any modification. The entire training pipeline is shown in
listing 4.4. You can access the Google Colab notebook of the entire code from here:
http://realworldnlpbook.com/ch4.html#langdetect.

EMBEDDING_DIM = 16
HIDDEN_DIM = 16

reader = TatoebaSentenceReader()
train_path = 'https:/./s3.amazonaws.com/realworldnlpbook/data/tatoeba/

sentences.top10langs.train.tsv'
dev_path = 'https:/./s3.amazonaws.com/realworldnlpbook/data/tatoeba/

sentences.top10langs.dev.tsv'

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(
    reader, train_path, batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(
    reader, dev_path, batch_sampler=sampler)

vocab = Vocabulary.from_instances(train_data_loader.iter_instances(),
                                  min_count={'tokens': 3})
train_data_loader.index_with(vocab)
dev_data_loader.index_with(vocab)

token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
                            embedding_dim=EMBEDDING_DIM)
word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})
encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

model = LstmClassifier(word_embeddings,
                       encoder,
                       vocab,
                       positive_label='eng')

train_dataset.index_with(vocab)
dev_dataset.index_with(vocab)

optimizer = optim.Adam(model.parameters())

trainer = GradientDescentTrainer(
    model=model,
    optimizer=optimizer,
    data_loader=train_data_loader,
    validation_data_loader=dev_data_loader,
    patience=10,
    num_epochs=20,
    cuda_device=-1)

trainer.train()

Listing 4.4 Training pipeline for the language detector

http://realworldnlpbook.com/ch4.html#langdetect
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When you run this training pipeline, you’ll get the metrics on the dev set that are in
the ballpark of the following:

accuracy: 0.9461, precision: 0.9481, recall: 0.9490, f1_measure: 0.9485, 
loss: 0.1560

This is not bad at all! This means that the trained detector makes only one mistake out
of about 20 sentences. Precision of 0.9481 means there’s only one false positive (non-
English sentence) out of 20 instances that are classified as English. Recall of 0.9490
means there’s only one false negative (English sentence that was missed by the detec-
tor) out of 20 true English instances.

4.6.4 Running the detector on unseen instances

Finally, let’s try running the detector we just trained on a set of unseen instances
(instances that didn’t appear either in the train or the validation sets). It is always a
good idea to try feeding a small number of instances to your model and observe how
it behaves. 

 The recommended way for feeding instances into a trained AllenNLP model is to
use a predictor, as we did in chapter 2. But here I’d like to do something simpler and
instead write a method that, given a piece of text and a model, runs the prediction
pipeline. To run a model on arbitrary instances, you can call the model’s forward_
on_instances() method, as shown in the following snippet:

def classify(text: str, model: LstmClassifier):
    tokenizer = CharacterTokenizer()
    token_indexers = {'tokens': SingleIdTokenIndexer()}

    tokens = tokenizer.tokenize(text)
    instance = Instance({'tokens': TextField(tokens, token_indexers)})
    logits = model.forward_on_instance(instance)['logits']
    label_id = np.argmax(logits)
    label = model.vocab.get_token_from_index(label_id, 'labels')

    print('text: {}, label: {}'.format(text, label))

This method first takes the input (text and model) and passes it through a tokenizer
to create an instance object. Then it calls model’s forward_on_instance() method
to retrieve the logits, the scores for target labels (languages). It gets the label ID that
corresponds to the maximum logit value by calling np.argmax and then converts it to
the label text by using the vocabulary object associated with the model. 

 When I ran this method on some sentences that are not in the two datasets, I got
the following results. Note that the result you get may be different from mine due to
some randomness:

text: Take your raincoat in case it rains., label: fra
text: Tu me recuerdas a mi padre., label: spa
text: Wie organisierst du das Essen am Mittag?, label: deu
text: Il est des cas où cette règle ne s'applique pas., label: fra
text: Estou fazendo um passeio em um parque., label: por
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text: Ve, postmorgaŭ jam estas la limdato., label: epo
text: Credevo che sarebbe venuto., label: ita
text: Nem tudja, hogy én egy macska vagyok., label: hun
text: Nella ur nli qrib acemma deg tenwalt., label: ber
text: Kurşun kalemin yok, deǧil mi?, label: tur

These predictions are almost perfect, except the very first sentence—it is English, not
French. It is surprising that the model makes a mistake on such a seemingly easy sen-
tence while it predicts more difficult languages (such as Hungarian) perfectly. But
remember, how difficult the language is for English speakers has nothing to do with
how difficult it is for a computer to classify. In fact, some of the “difficult” languages
such as Hungarian and Turkish here have very clear signals (accent marks and unique
words) that make it easy to detect them. On the other hand, lack of clear signals in the
first sentence may have made it more difficult to classify it from other languages. 

 As a next step, you could try a couple of things: for example, you can tweak some
of the hyperparameters to see how the evaluation metrics and the final prediction
results change. You can also try a larger number of test instances to see how exactly
the mistakes are distributed (e.g., between which two languages). You can also zero in
on some of the instances and see why the model made such mistakes. These are all
important practices when you are working on real-world NLP applications. I’ll discuss
these topics in detail in chapter 10.

Summary
 A recurrent neural network (RNN) is a neural network with a loop. It can trans-

form a variable-length input to a fixed-length vector.
 Nonlinearity is a crucial component that makes neural networks truly powerful.
 LSTMs and GRUs are two variants of RNN cells and are easier to train than

vanilla RNNs.
 You use accuracy, precision, recall, and F-measure for classification problems.
 AllenNLP provides useful NLP abstractions such as dataset readers, instances,

and vocabulary. It also provides a way to configure the training pipeline in the
JSON format.

 You can build a language detector as a sentence-classification application simi-
lar to the sentiment analyzer.
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Sequential labeling
and language modeling

In this chapter, we are going to discuss sequential labeling—an important NLP
framework where systems tag individual words with corresponding labels. Many
NLP applications, such as part-of-speech tagging and named entity recognition,
can be framed as sequential-labeling tasks. In the second half of the chapter, I’ll
introduce the concept of language models, one of the most fundamental yet excit-
ing topics in NLP. I’ll talk about why they are important and how to use them to
evaluate and even generate some natural language text.

This chapter covers
 Solving part-of-speech (POS) tagging and named 

entity recognition (NER) using sequential labeling

 Making RNNs more powerful—multilayer and 
bidirectional recurrent neural networks (RNNs)

 Capturing statistical properties of language using 
language models

 Using language models to evaluate and generate 
natural language text
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5.1 Introducing sequential labeling
In the previous chapter, we discussed sentence classification, where the task is to
assign some label to a given sentence. Spam filtering, sentiment analysis, and lan-
guage detection are some concrete examples of sentence classification. Although
many real-world NLP problems can be formulated as a sentence-classification task,
this method can also be quite limited, because the model, by definition, allows us to
assign only a single label to the whole sentence. But what if you wanted something
more granular? For example, what if you wanted to do something with individual
words, not just with the sentence? The most typical scenario you encounter is when
you want to extract something from the sentence, which cannot be easily solved by
sentence classification. This is where sequential labeling comes into play.

5.1.1 What is sequential labeling?

Sequential labeling is an NLP task where, given a sequence such as a sentence, the NLP
system assigns a label to each element (e.g., word) of the input sequence. This con-
trasts with sentence classification, where a label is assigned just to the input sentence.
Figure 5.1 illustrates this contrast.

Figure 5.1 Sentence classification vs. sequential labeling

But why is this even a good idea? When do we need a label per word? A typical scenario
where sequential labeling comes in handy is when you want to analyze a sentence and
produce some linguistic information per word. For example, part-of-speech (POS) tag-
ging, which I mentioned in chapter 1, produces a POS tag such as nouns, verbs, and
prepositions for each word in the input sentence and is a perfect match for sequential
labeling. See figure 5.2 for an illustration.

 POS tagging is one of the most fundamental, important NLP tasks. Many English
words (and words in many other languages as well) are ambiguous, meaning that they
have multiple possible interpretations. For example, the word “book” can be used to
describe a physical or electronic object consisting of pages (“I read a book”) or an

Sentence classification Sequential labeling

Input sentence

word1 word2 word3 wordn

label

...

Input sentence

label1

word1 word2 word3 wordn...

label2 label3 labeln
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action for reserving something (“I need to book a flight”). Downstream NLP tasks, such
as parsing and classification, benefit greatly by knowing what each appearance of
“book” actually means to process the input sentence. If you were to build a speech syn-
thesis system, you must know the POS of certain words to pronounce them correctly—
“lead” as a noun (a kind of metal) rhymes with “bed,” whereas “lead” as a verb (to direct,
guide) rhymes with “bead.” POS tagging is an important first step toward solving this
ambiguity.

 Another scenario is when you want to extract some pieces of information from a
sentence. For example, if you want to extract subsequences (phrases) such as noun
phrases and verb phrases, this is also a sequential-labeling task. How can you achieve
extraction using labeling? The idea is to mark the beginning and the end (or the
beginning and the continuation, depending on how you represent it) of the desired
piece of information using labeling. An example of this is named entity recognition
(NER), which is a task to identify mentions to real-world entities, such as proper
nouns and numerical expressions, from a sentence (illustrated in figure 5.3.). 

Figure 5.3 Named entity recognition (NER) using sequential labeling

Notice that all the words that are not part of any named entities are tagged as O (for
“Outside”). For now, you can ignore some cryptic labels in figure 5.3 such as B-GPE
and I-MONEY. I’ll talk more about how to formulate NER as a sequential-labeling
problem in section 5.4.

Part-of-speech (POS) tagging

Input sentence

POS tags

NOUN

Time flies like
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Figure 5.2 Part-of-speech (POS) 
tagging using sequential labeling

Named entity recognition (NER)
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5.1.2 Using RNNs to encode sequences

In sentence classification, we used recurrent neural networks (RNNs) to convert an
input of variable length into a fixed-length vector. The fixed-length vector, which is
converted to a set of “scores” by a linear layer, captures the information about the
input sentence that is necessary for deriving the sentence label. As a reminder, what
this RNN does can be represented by the following pseudocode and the diagram
shown in figure 5.4: 

def rnn_vec(words):
    state = init_state()
    for word in words:
        state = update(state, word)
    return state

Figure 5.4 Recurrent neural network (RNN) for sentence classification

What kind of neural network could be used for sequential tagging? We seem to need
some information for every input word in the sentence, not just at the end. If you look
at the pseudocode for rnn_vec() carefully, you can notice that we already have infor-
mation for every word in the input, which is captured by state. The function just
happens to return only the final value of state, but there is no reason we can’t store
intermediate values of state and return them as a list instead, as in the following
function:

def rnn_seq(words):
    state = init_state()
    states = []
    for word in words:
        state = update(state, word)
        states.append(state)
    return states

init_state()

state

update update update update

v("john") v("loves") v("mary") v(".")

Recurrent neural network (RNN)
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If you apply this function to the “time flies” example shown in figure 5.2 and unroll
it—that is, write it without using a loop—it will look like the following:

state = init_state()
states = []
state = update(state, v("time"))
states.append(state)
state = update(state, v("flies"))
states.append(state)
state = update(state, v("like"))
states.append(state)
state = update(state, v("an"))
states.append(state)
state = update(state, v("arrow"))
states.append(state)
state = update(state, v("."))
states.append(state)

Note that v() here is a function that returns the embedding for the given word. This
can be visualized as shown in figure 5.5. Notice that for each input word word, the net-
work produces the corresponding state that captures some information about word.
The length of the list states is the same as that of words. The final value of states,
that is, states[-1], is identical to the return value of rnn_vec() from earlier.

Figure 5.5 Recurrent neural network (RNN) for sequential labeling

If you think of this RNN as a black box, it takes a sequence of something (e.g., word
embeddings) and converts it to a sequence of vectors that encode some information
about individual words in the input, so this architecture is called a Seq2Seq (for
“sequence-to-sequence”) encoder in AllenNLP.

 The final step is to apply a linear layer to each state of this RNN to derive a set of
scores that correspond to how likely each label is. If this is a part-of-speech tagger, we

Recurrent 
neural 
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(RNN)

init_state()
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state state
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need one score for the label NOUN,
another for VERB, and so on for
each and every word. This conver-
sion is illustrated in figure 5.6. Note
that the same linear layer (with the
same set of parameters) is applied to
every state.

 To sum up, we can use almost the
same structure for sequential label-
ing as the one we used for sentence
classification. The only difference is
the former produces a hidden state
per each word, not just per sentence.
To derive scores used for determin-
ing labels, a linear layer is applied to
every hidden state. 

5.1.3 Implementing a Seq2Seq encoder 
in AllenNLP

AllenNLP implements an abstract
class called Seq2SeqEncoder for
abstracting all Seq2Seq encoders that
take in a sequence of vectors and
return another sequence of modified
vectors. In theory, you can inherit the
class and implement your own Seq2Seq encoder. In practice, however, you most likely
will use one of the off-the-shelf implementations that PyTorch/AllenNLP provide, such
as LSTM and GRU. Remember, when we built the encoder for the sentiment analyzer,
we used PyTorch’s built-in torch.nn.LSTM and wrapped it with PytorchSeq2Vec-
Wrapper, as shown next, which makes it compatible with AllenNLP’s abstraction:

encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

AllenNLP also implements PytorchSeq2SeqWrapper, which takes one of PyTorch’s
built-in RNN implementations and makes it compliant with AllenNLP’s Seq2Seq-
Encoder, so there’s very little change you need to initialize a Seq2Seq encoder, as
shown here:

encoder = PytorchSeq2SeqWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

That’s it! There are a couple more things to note, but there’s surprisingly few changes
you need to make to the sentence classification code to make it work for sequential
labeling. This is thanks to the powerful abstraction of AllenNLP—most of the time

v("time") v("flies") v("like")

state state

logits

RNN

update update update

state

Linear
layer

 

…

NOUN VERB …

Figure 5.6 Applying a linear layer to RNN
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you need to worry only about how individual components interact with each other,
not about how these components work internally. 

5.2 Building a part-of-speech tagger
In this section, we are going to build our first sequential-labeling application—a part-
of-speech (POS) tagger. You can see the entire code for this section on the Google
Colab notebook (http://realworldnlpbook.com/ch5.html#pos-nb). We assume that
you have already imported all necessary dependencies as follows:

from itertools import chain
from typing import Dict

import numpy as np
import torch
import torch.optim as optim

from allennlp.data.data_loaders import MultiProcessDataLoader
from allennlp.data.samplers import BucketBatchSampler
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder, 

PytorchSeq2SeqWrapper
from allennlp.modules.text_field_embedders import TextFieldEmbedder, 

BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.nn.util import get_text_field_mask, 

sequence_cross_entropy_with_logits
from allennlp.training.metrics import CategoricalAccuracy
from allennlp.training import GradientDescentTrainer
from 

allennlp_models.structured_prediction.dataset_readers.universal_dependen
cies import UniversalDependenciesDatasetReader

from realworldnlp.predictors import UniversalPOSPredictor

5.2.1 Reading a dataset

As we saw in chapter 1, a part of speech (POS) is a category of words that share similar
grammatical properties. Part-of-speech tagging is the process of tagging each word in
a sentence with a corresponding part-of-speech tag. A training set for POS tagging fol-
lows a tagset, which is a set of predefined POS tags for the language.

 To train a POS tagger, we need a dataset where every word in every sentence is
tagged with its corresponding POS tag. In this experiment, we are going to use the
English Universal Dependencies (UD) dataset. Universal Dependencies is a language-
independent dependency grammar framework developed by a group of researchers.
UD also defines a tagset called the Universal part-of-speech tagset (http://realworldnlp-
book.com/ch1.html#universal-pos). The use of UD and the Universal POS tagset has
been very popular in the NLP community, especially for language-independent tasks
and models such as POS tagging and parsing.

http://realworldnlpbook.com/ch5.html#pos-nb
http://realworldnlpbook.com/ch1.html#universal-pos
http://realworldnlpbook.com/ch1.html#universal-pos
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 We are going to use one subcorpus of UD called A Gold Standard Universal Depen-
dencies Corpus for English, which is built on top of the English Web Treebank (EWT)
(http://realworldnlpbook.com/ch5.html#ewt) and can be used under a Creative
Commons license. You can download the entire dataset from the dataset page (http://
realworldnlpbook.com/ch5.html#ewt-data), if needed.

 Universal Dependencies datasets are distributed in a format called the CoNLL-U
format (http://universaldependencies.org/docs/format.html). The AllenNLP models
package already implements a dataset reader called UniversalDependencies-
DatasetReader that reads datasets in this format and returns a collection of
instances that include information like word forms, POS tags, and dependency rela-
tionship, so all you need to do is initialize and use it as follows:

reader = UniversalDependenciesDatasetReader()
train_path = ('https:/./s3.amazonaws.com/realworldnlpbook/data/'
              'ud-treebanks-v2.3/UD_English-EWT/en_ewt-ud-train.conllu')
dev_path = ('https:/./s3.amazonaws.com/realworldnlpbook/'
            'data/ud-treebanks-v2.3/UD_English-EWT/en_ewt-ud-dev.conllu')

Also, don’t forget to initialize data loaders and a Vocabulary instance, too, as shown
next:

sampler = BucketBatchSampler(batch_size=32, sorting_keys=["words"])
train_data_loader = MultiProcessDataLoader(
    reader, train_path, batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(
    reader, dev_path, batch_sampler=sampler)

vocab = Vocabulary.from_instances(chain(train_data_loader.iter_instances(),
                                        dev_data_loader.iter_instances()))
train_data_loader.index_with(vocab)
dev_data_loader.index_with(vocab)

5.2.2 Defining the model and the loss

The next step for building a POS tagger is to define the model. In the previous sec-
tion, we already saw that you can initialize a Seq2Seq encoder with very little modifica-
tion using AllenNLP’s built-in PytorchSeq2VecWrapper. Let’s define other
components (word embeddings and LSTM) and some variables necessary for the
model as follows:

EMBEDDING_SIZE = 128
HIDDEN_SIZE = 128

token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
                            embedding_dim=EMBEDDING_SIZE)
word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})

lstm = PytorchSeq2SeqWrapper(
    torch.nn.LSTM(EMBEDDING_SIZE, HIDDEN_SIZE, batch_first=True))

http://realworldnlpbook.com/ch5.html#ewt
http://realworldnlpbook.com/ch5.html#ewt-data
http://realworldnlpbook.com/ch5.html#ewt-data
http://universaldependencies.org/docs/format.html
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Now we are ready to define the body of the POS tagger model, as shown here.

class LstmTagger(Model):
    def __init__(self,
                 embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 vocab: Vocabulary) -> None:
        super().__init__(vocab)
        self.embedder = embedder
        self.encoder = encoder
        
        self.linear = torch.nn.Linear(
            in_features=encoder.get_output_dim(),
            out_features=vocab.get_vocab_size('pos'))
        
        self.accuracy = CategoricalAccuracy()    

    def forward(self,
                words: Dict[str, torch.Tensor],
                pos_tags: torch.Tensor = None,
                **args) -> Dict[str, torch.Tensor]:   
        mask = get_text_field_mask(words)

        embeddings = self.embedder(words)
        encoder_out = self.encoder(embeddings, mask)
        tag_logits = self.linear(encoder_out)

        output = {"tag_logits": tag_logits}
        if pos_tags is not None:
            self.accuracy(tag_logits, pos_tags, mask)
            output["loss"] = sequence_cross_entropy_with_logits(
                tag_logits, pos_tags, mask)   

        return output

    def get_metrics(self, reset: bool = False) -> Dict[str, float]:
        return {"accuracy": self.accuracy.get_metric(reset)}

Notice that the code shown in listing 5.1 is very similar to the code for LstmClassi-
fier (listing 4.1), which we used for building a sentiment analyzer. In fact, except for
some naming differences, only one fundamental difference exists—the type of loss
function.

 Recall that we used a loss function called cross entropy for sentence classification
tasks, which basically measures how far apart two distributions are. If the model pro-
duces a high probability for the true label, the loss will be low. Otherwise, it will be
high. But this assumed that there is only one label per sentence. How can we measure
how far the prediction is from the true label when there is one label per word?

Listing 5.1 POS tagger model

We use accuracy to 
evaluate the POS tagger.

We need **args to capture 
unnecessary instance 
fields that AllenNLP 
automatically destructures.

The Seq2Seq encoder is
trained using a sequence

cross-entropy loss.
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 The answer is: still use the
cross entropy, but average it
over all the elements in the
input sequence. For POS tag-
ging, you compute the cross
entropy per word as if it were
an individual classification
task, sum it over all the words
in the input sentence, and
divide by the length of the sen-
tence. This will give you a num-
ber reflecting how well your
model is predicting the POS
tags for the input sentence on
average. See figure 5.7 for an
illustration.

 As for the evaluation met-
ric, POS taggers are usually
evaluated using accuracy,
which we are going to use here.
Average human performance
on POS tagging is around 97%,
whereas the state-of-the-art
POS taggers slightly outper-
form this (http://realworldnlp
book.com/ch5.html#pos-sota).
You need to note that accuracy
is not without a problem, however—assume there is a relatively rare POS tag (e.g.,
SCONJ, which means subordinating conjugation), which accounts for only 2% of total
tokens, and a POS tagger messes it up every time it appears. If the tagger gets the rest
of the tokens all correct, it still achieves 98% accuracy. 

5.2.3 Building the training pipeline

Now we are ready to move on to building the training pipeline. As with the previous
tasks, training pipelines in AllenNLP look very similar to each other. See the next list-
ing for the training code.

model = LstmTagger(word_embeddings, encoder, vocab)

optimizer = optim.Adam(model.parameters())

Listing 5.2 Training pipeline for POS tagger
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Figure 5.7 Computing loss for sequence

http://realworldnlpbook.com/ch5.html#pos-sota
http://realworldnlpbook.com/ch5.html#pos-sota
http://realworldnlpbook.com/ch5.html#pos-sota
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trainer = GradientDescentTrainer(
    model=model,
    optimizer=optimizer,
    data_loader=train_data_loader,
    validation_data_loader=dev_data_loader,
    patience=10,
    num_epochs=10,
    cuda_device=-1)

trainer.train()

When you run this code, AllenNLP alternates between two phases: 1) training the
model using the train set, and 2) evaluating it using the validation set for each epoch,
while monitoring the loss and accuracy on both sets. Validation set accuracy plateaus
around 88% after several epochs. After the training is over, you can run the model for
an unseen instance as shown next:

predictor = UniversalPOSPredictor(model, reader)
tokens = ['The', 'dog', 'ate', 'the', 'apple', '.']
logits = predictor.predict(tokens)['tag_logits']
tag_ids = np.argmax(logits, axis=-1)

print([vocab.get_token_from_index(tag_id, 'pos') for tag_id in tag_ids])

This code uses UniversalPOSPredictor, a predictor that I wrote for this particular
POS tagger. Although its details are not important, you can look at its code if you are
interested (http://realworldnlpbook.com/ch5#upos-predictor). If successful, this will
show a list of POS tags: ['DET', 'NOUN', 'VERB', 'DET', 'NOUN', 'PUNCT'],
which is indeed a correct POS tag sequence for the input sentence.

5.3 Multilayer and bidirectional RNNs
As we’ve seen so far, RNNs are a powerful tool for building NLP applications. In this
section, I talk about their structural variants—multilayer and bidirectional
RNNs—which are even more powerful components for building highly accurate NLP
applications.

5.3.1 Multilayer RNNs

If you look at an RNN as a black box, it is a neural network structure that converts a
sequence of vectors (word embeddings) into another sequence of vectors (hidden
states). The input and output sequences are of the same length, usually the number of
input tokens. This means that you can repeat this “encoding” process multiple times by
stacking RNNs on top of each other. The output (hidden states) of one RNN becomes
the input of another RNN that is just above the previous one. A substructure (such as
a single RNN) of a bigger neural network is called a layer, because you can stack them
together like layers. The structure of a two-layered RNN is shown in figure 5.8.

http://realworldnlpbook.com/ch5#upos-predictor
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Why is this a good idea? If you think of a layer of RNN as a machine that takes in some-
thing concrete (e.g., word embeddings) and extracts some abstract concepts (e.g.,
scores for POS tags), you can expect that, by repeating this process, RNNs are able to
extract increasingly more abstract concepts as the number of layers increases.
Although not fully theoretically proven, many real-world NLP applications use multi-
layer RNNs. For example, Google’s Neural Machine Translation (NMT) system uses a
stacked RNN consisting of eight layers for both the encoder and the decoder (http://
realworldnlpbook.com/ch5.html#nmt-paper).

 To use multilayer RNNs in your NLP application, all you need to do is change how
the encoder is initialized. Specifically, you need to specify only the number of layers

Layer 1

Layer 2
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...update update update update update

...update update update update update

init_state()

state state state state state

logits

Linear
layer

 

…
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Figure 5.8 Two-layered RNN

http://realworldnlpbook.com/ch5.html#nmt-paper
http://realworldnlpbook.com/ch5.html#nmt-paper
http://realworldnlpbook.com/ch5.html#nmt-paper
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using the num_layers parameter, as shown in the next code snippet, and AllenNLP
makes sure that the rest of the training pipeline works as-is:

encoder = PytorchSeq2SeqWrapper(
    torch.nn.LSTM(
        EMBEDDING_SIZE, HIDDEN_SIZE, num_layers=2, batch_first=True))

If you change this line and rerun the POS tagger training pipeline, you will notice that
accuracy on the validation set is almost unchanged or slightly lower than the previous
model with a single-layer RNN. This is not surprising—information required for POS
tagging is mostly superficial, such as the identity of the word being tagged and neigh-
boring words. Very rarely does it require deep understanding of the input sentence.
On the other hand, adding layers to an RNN is not without additional cost. It slows
down the training and inference and increases the number of parameters, which
makes it susceptible to overfitting. For this small experiment, adding layers to the
RNN seems to do more harm than good. When you change the structure of the net-
work, always remember to verify its effect on a validation set.

5.3.2 Bidirectional RNNs

So far, we’ve been feeding words to RNNs as they come in—from the beginning of the
sentence to the end. This means that when an RNN is processing a word, it can lever-
age only the information it has encountered so far, which is the word’s left context.
True, you can get a lot of information from a word’s left context. For example, if a
word is preceded by a modal verb (e.g., “can”), it is a strong signal that the next word
is a verb. However, the right context holds a lot of information as well. For example, if
you know that the next word is a determiner (e.g., “a”), it is a strong signal that “book”
on its left is a verb, not a noun. 

 Bidirectional RNNs (or simply biRNNs) solve this problem by combining two
RNNs with opposite directions. A forward RNN is a forward-facing RNN that we’ve
been using so far in this book—it scans the input sentence left to right and uses the
input word and all the information on its left to update the state. A backward RNN, on
the other hand, scans the input sentence right to left. It uses the input word and all
the information on its right to update the state. This is equivalent to flipping the
order of the input sentence and feeding it to a forward RNN. The final hidden states
produced by biRNNs are concatenations of hidden states from the forward and back-
ward RNNs. See figure 5.9 for an illustration.

 Let’s use a concrete example to illustrate this. Assume the input sentence is “time
flies like an arrow” and you’d like to know the POS tag for the word “like” in the mid-
dle of this sentence. The forward RNN processes “time” and “flies,” and by the time it
reaches “like,” its internal state (A in figure 5.9) encodes all the information about
“time flies like.” Similarly, the backward RNN processes “arrow” and “an,” and by
the time it reaches “like,” the internal state (B in figure 5.9) has encoded all the infor-
mation about “like an arrow.” The internal state from the biRNN for “like” is the
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concatenation of these two states (A + B). You literally stitch together two vectors—no
mathematical operations involved. As a result, the internal state for “like” encodes all
the information from the entire sentence. This is a great improvement over just know-
ing half the sentence!

 Implementing a biRNN is similarly easy—you just need to add the bidirec-
tional=True flag when initializing the RNN as follows:

encoder = PytorchSeq2SeqWrapper(
    torch.nn.LSTM(
        EMBEDDING_SIZE, HIDDEN_SIZE, bidirectional=True, batch_first=True))

If you train the POS tagger with this change, the validation set accuracy will jump
from ~88% to 91%. This implies that incorporating the information on both sides of
the word is effective for POS tagging.

 Note that you can combine the two techniques introduced in this section by stack-
ing bidirectional RNNs. The output from one layer of biRNN (concatenation of a
forward and a backward layer) becomes the input to another layer of biRNN (see
figure 5.10). You can implement this by specifying both flags—num_layers and
bidirectional—when initializing the RNN in PyTorch/AllenNLP.

init_state()

update

update

update

update

update

update

update

update

...

state state state state

Forward
layer

 

 

init_state()

update

update

update

update

update

update

update

update

...

...

 

Backward
layer

   

logits

Linear
layer

 

v("time") v("flies") v("like") v(".")

…

NOUN VERB …

(A) (B)

Figure 5.9 Bidirectional RNN



126 CHAPTER 5 Sequential labeling and language modeling

Figure 5.10 Two-layered bidirectional RNN

5.4 Named entity recognition
Sequential labeling can be applied to many information extraction tasks, not just to
part-of-speech tagging. In this section, I’ll introduce the task of named entity recogni-
tion (NER) and demonstrate how to build an NER tagger using sequential labeling.
The code for this section can be viewed and executed via the Google Colab platform
(http://realworldnlpbook.com/ch5#ner-nb).
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5.4.1 What is named entity recognition?

As mentioned earlier, named entities are mentions of real-world entities such as
proper nouns. Common named entities that are usually covered by NER systems
include the following:

 Personal name (PER): Alan Turing, Lady Gaga, Elon Musk
 Organization (ORG): Google, United Nations, Giants
 Location (LOC): Mount Rainer, Bali Island, Nile
 Geopolitical entity (GPE): UK, San Francisco, Southeast Asia

However, different NER systems deal with different sets of named entities. The con-
cept of named entities is a bit overloaded in NLP to mean any mentions that are of
interest to the application’s user. For example, in the medical domain, you may want
to extract mentions to names of drugs and chemical compounds. In the financial
domain, companies, products, and stock symbols may be of interest. In many
domains, numerical and temporal expressions are also considered.

 Identifying named entities is in itself important, because named entities (who,
what, where, when, and so on) are often what most people are interested in. But NER
is also an important first step for many other NLP applications. One such task is rela-
tion extraction: extracting all relations between named entities from the given docu-
ment. For example, given a press release document, you may want to extract an event
described in the release, such as which company purchased which other company for
what price. This often assumes that all the parties are already identified via NER.
Another task that is closely related to NER is entity linking, where mentions of named
entities are linked to some knowledge base, such as Wikipedia. When Wikipedia is
used as a knowledge base, entity linking is also called Wikification.

 But you may be wondering, what’s so difficult about simply extracting named enti-
ties? If they are just proper nouns, can you simply compile a dictionary of, say, all the
celebrities (or all the countries, or whatever you are interested in) and use it? The
idea is, whenever the system encounters a noun, it would run the name through this
dictionary and tag the mention if it appears in it. Such dictionaries are called gazetteers,
and many NER systems do use them as a component. 

 However, relying solely on such dictionaries has one major issue—ambiguity. Ear-
lier we saw that a single word type could have multiple parts of speech (e.g., “book” as
a noun and a verb), and named entities are no exception. For example, “Georgia” can
be the name of a country, a US state, towns and communities across the United States
(Georgia, Indiana; Georgia, Nebraska), a film, a number of songs, ships, and a per-
sonal name. Simple words like “book” could also be named entities, including: Book
(a community in Louisiana), Book/Books (a surname), The Books (an American
band), and so on. Simply matching mentions against dictionaries would tell you noth-
ing about their identities if they are ambiguous. 

 Fortunately, sentences often offer clues that can be used to disambiguate the men-
tions. For example, if the sentence reads “I live in Georgia,” it’s usually a strong signal
that “Georgia” is a name of a place, not a film or a person’s name. NER systems use a
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combination of signals about the mentions themselves (e.g., whether they are in a pre-
defined dictionary) and about their context (whether they are preceded or followed
by certain words) to determine their tags. 

5.4.2 Tagging spans

Unlike POS tagging, where each word is assigned a POS tag, mentions to named enti-
ties can span over more than one word, for example, “the United States” and “World
Trade Organization.” A span in NLP is simply a range over one or more contiguous
words. How can we use the same sequential tagging framework to model spans?

 A common practice in NLP is to use some form of encoding to convert spans into
per-word tags. The most common encoding scheme used in NER is called IOB2 tag-
ging. It represents spans by a combination of the positional tag and the category tag.
Three types of positional tags follow:

 B (Beginning): assigned to the first (or the only) token of a span
 I (Inside): assigned to all but the first token of a span
 O (Outside): assigned to all words outside of any spans

Now, let’s take a look at the NER example we saw earlier and is shown in figure 5.11.
The token “Apple” is the first (and the only) token of ORG (for “organization”), and it
is assigned a B-ORG tag. Similarly, “UK”, the first and the only token of GPE (for “geo-
political entity”), is assigned B-GPE. For “$1” and “billion,” the first and the second
tokens of a monetary expression (MONEY), B-MONEY and I-MONEY are assigned,
respectively. All the other tokens are given O. 

Figure 5.11 Named entity recognition (NER) using sequential labeling

The rest of the pipeline for solving NER is very similar to that of part-of-speech tag-
ging: both are concerned with assigning an appropriate tag for each word and can be
solved by RNNs. In the next section, we are going to build a simple NER system using
neural networks. 

5.4.3 Implementing a named entity recognizer

To build an NER system, we use the Annotated Corpus for Named Entity Recognition
prepared by Abhinav Walia published on Kaggle (http://realworldnlpbook.com/

Named entity recognition (NER)

Apple is looking to buy UK startup for $1 billion

B-ORG O O O O B-GPE O O B-MONEYI-MONEY

Input sentence

NER tags

http://realworldnlpbook.com/ch5.html#ner-data
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ch5.html#ner-data). In what follows, I’m going to assume that you downloaded and
expanded the dataset under data/entity-annotated-corpus. Alternatively, you
can use the copy of the dataset I uploaded to S3 (http://realworldnlpbook.com/
ch5.html#ner-data-s3), which is what the following code does. I wrote a dataset reader
for this dataset (http://realworldnlpbook.com/ch5.html#ner-reader), so you can sim-
ply import (or copy and paste) it and use it:

reader = NERDatasetReader('https:/./s3.amazonaws.com/realworldnlpbook/'
                          'data/entity-annotated-corpus/ner_dataset.csv')

Because the dataset is not separated into train, validation, and test sets, the dataset
reader will separate it into train and validation splits for you. All you need to do is
specify which split you want when you initialize data loaders, as shown here:

sampler = BucketBatchSampler(batch_size=16, sorting_keys=["tokens"])
train_data_loader = MultiProcessDataLoader(
    reader, 'train', batch_sampler=sampler)
dev_data_loader = MultiProcessDataLoader(
    reader, 'dev', batch_sampler=sampler)

The RNN-based sequential tagging model and the rest of the training pipeline look
almost the same as the previous example (POS tagger). The only difference is how we
evaluate our NER model. Because most of the tags for a typical NER dataset are simply
“O,” using tag accuracy is misleading—a stupid system that tags everything “O” would
achieve very high accuracy. Instead, NER is usually evaluated as an information
extraction task, where the goal is to extract named entities from texts, not just to tag
them. We’d like to evaluate NER systems based on the “cleanness” of retrieved named
entities (how many of them are actual entities) and their “completeness” (how many of
actual entities the system was able to retrieve). Does any of this sound familiar to you?
Yes, these are the definition of recall and precision we talked about in section 4.3.
Because there are usually multiple types of named entities, these metrics (precision,
recall, and F1-measure) are computed per entity type. 

NOTE If these metrics are computed while ignoring entity types, it’s called a
micro average. For example, the micro-averaged precision is the total number
of true positives of all types divided by the total number of retrieved named
entities regardless of the type. On the other hand, if these metrics are com-
puted per entity type and are then averaged, it’s called a macro average. For
example, if the precision for PER and GPE is 80% and 90%, respectively, its
macro average is 85%. What AllenNLP computes in the following is the micro
average.

AllenNLP implements SpanBasedF1Measure, which computes per-type metrics
(precision, recall, and F1-measure) as well as the average. You can define the metric in
__init__() of your model as follows:

self.f1 = SpanBasedF1Measure(vocab, tag_namespace='labels')

http://realworldnlpbook.com/ch5.html#ner-data
http://realworldnlpbook.com/ch5.html#ner-reader
http://realworldnlpbook.com/ch5.html#ner-data-s3
http://realworldnlpbook.com/ch5.html#ner-data-s3
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And use it to get metrics during training and validation, as shown next:

def get_metrics(self, reset: bool = False) -> Dict[str, float]:
    f1_metrics = self.f1.get_metric(reset)
    return {'accuracy': self.accuracy.get_metric(reset),
            'prec': f1_metrics['precision-overall'],
            'rec': f1_metrics['recall-overall'],
            'f1': f1_metrics['f1-measure-overall']}

If you run this training pipeline, you get an accuracy around 0.97, and precision,
recall, F1-measure will all hover around 0.83. You can also use the predict() method
to obtain named entity tags for an unseen sentence as 

tokens = ['Apple', 'is', 'looking', 'to', 'buy', 'UK', 'startup',
          'for', '$1', 'billion', '.']
labels = predict(tokens, model)
print(' '.join('{}/{}'.format(token, label)
               for token, label in zip(tokens, labels)))

which produces the following:

Apple/B-org is/O looking/O to/O buy/O UK/O startup/O for/O $1/O billion/O ./O

This is not perfect—the NER tagger got the first named entity (“Apple”) correct but
missed two others (“UK” and “$1 billion”). If you look at the training data, the men-
tion “UK” never appears, and no monetary values are tagged. It is not surprising that
the system is struggling to tag entities that it has never seen before. In NLP (and also
machine learning in general), the characteristic of the test instances needs to match
that of the train data for the model to be fully effective. 

5.5 Modeling a language
In this section, I’ll switch gears a little bit and introduce language models, which is one
of the most important concepts in NLP. We’ll discuss what they are, why they are
important, and how to train them using the neural network components we’ve intro-
duced so far.

5.5.1 What is a language model?

Imagine you are asked to predict what word comes next given a partial sentence: “My
trip to the beach was ruined by bad ___.” What words could come next? Many things
could ruin a trip to a beach, but most likely it’s bad weather. Maybe it’s bad-mannered
people at the beach, or maybe it’s bad food that the person had eaten before the trip,
but most would agree that “weather” is a likely word that comes after this partial sen-
tence. Few other nouns (people, food, dogs) and words of other parts of speech (be, the,
run, green) are as appropriate as “weather” in this context.

 What you just did is to assign some belief (or probability) to an English sentence. You
just compared several alternatives and judged how likely they are as English sentences.
Most people would agree that the probability of “My trip to the beach was ruined by bad
weather” is a lot higher than “My trip to the beach was ruined by bad dogs.”
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 Formally, a language model is a statistical model that gives a probability to a piece of
text. An English language model would assign higher probabilities to sentences that
look like English. For example, an English language model would give a higher prob-
ability to “My trip to the beach was ruined by bad weather” than it does to “My trip to
the beach was ruined by bad dogs” or even “by weather was trip my bad beach the
ruined to.” The more grammatical and the more “sense” the sentence makes, the
higher the probability is.

5.5.2 Why are language models useful?

You may be wondering what use such a statistical model has. Although predicting the
next word might come in handy when you are answering fill-in-the-blank questions for
an exam, what particular roles do language models play in NLP?

 The answer is, it is essential for any systems that generate natural language. For
example, machine translation systems, which generate a sentence in a language given
a sentence in another language, would benefit greatly from high-quality language mod-
els. Why? Let’s say we’d like to translate a Spanish sentence “Está lloviendo fuerte” into
English (“It is raining hard”). The last word “fuerte” has several English equivalents—
strong, sharp, loud, heavy, and so on. How would you determine which English equivalent
is the most appropriate in this context? There could be many approaches to solve this
problem, but one of the simplest is to use an English language model and rerank sev-
eral different translation candidates. Assuming you’ve finished translating up to “It is
raining,” you would simply replace the word “fuerte” with all the equivalents you can
find in a Spanish–English dictionary, which generates “It is raining strong,” “It is raining
sharp,” “It is raining loud,” “It is raining hard.” Then all you need to do is ask the lan-
guage model which one of these candidates has the highest probability.

NOTE In fact, neural machine translation models can be thought of as a vari-
ation of a language model that generates sentences in the target language
conditioned on its input (sentences in the source language). Such a language
model is a called a conditional language model as opposed to an unconditional
language model, which we discuss here. We’ll discuss machine translation mod-
els in chapter 6.

A similar situation arises in speech recognition, too, which is another task that gener-
ates text given spoken audio input. For example, if somebody uttered “You’re right,”
how would a speech recognition system know it’s actually “you’re right?” Because
“you’re” and “your” can have the same pronunciation, and so can “right” and “write”
and even “Wright” and “rite,” the system output could be any one of “You’re write,”
“You’re Wright,” “You’re rite,” “Your right,” “Your write,” “Your Wright,” and so on.
Again, the simplest approach to resolving this ambiguity is to use a language model.
An English language model would properly rerank these candidates and determine
“you’re right” is the most likely transcription.

 In fact, humans do this type of disambiguation all the time, though unconsciously.
When you are having a conversation with somebody else at a large party, the actual
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audio signal you receive is often very noisy. Most people can still understand each
other without any issues because people’s language models help them “correct” what
you hear and interpolate any missing parts. You’ll notice this most if you try to con-
verse in a less proficient, second language—you’d have a lot harder time understand-
ing the other person in a noisy environment, because your language model is not as
good as your first language’s.

5.5.3 Training an RNN language model

At this point, you may be wondering what the connection is between predicting the
next word and assigning a probability to a sentence. These two are actually equivalent.
Instead of explaining the theory behind it, which requires you to understand some
math (especially probability theory), I’ll attempt an intuitive example next without
going into mathematical details.

 Imagine you want to estimate the chance of tomorrow’s weather being rainy and
the ground wet. Let’s simplify this and assume there are only two types of weather,
sunny and rainy. There are only two outcomes for the ground: dry or wet. This is
equivalent to estimating the probably of a sequence: [rain, wet].

 Further assume that there’s a 50-50 chance of rain on a given day. After raining,
the ground is wet with a 90% chance. Then, what is the probability of the rain and the
ground being wet? It’s simply 50% times 90%, which is 45%, or 0.45. If we know the
probability of one event happening after another, you can simply multiply two proba-
bilities to get the total probability for the sequence. This is called the chain rule in
probability theory.

 Similarly, if you can correctly estimate the probability of one word occurring after a
partial sentence, you can simply multiply it with the probability of the partial sen-
tence. Starting from the first word, you can keep doing this until you reach the end of
the sentence. For example, if you’d like to compute the probability for “The trip to
the beach was . . . ,” you can multiply the following:

 The probability of “The” occurring at the beginning of a sentence
 The probability of “trip” occurring after “The”
 The probability of “to” occurring after “The trip”
 The probability of “the” occurring after “The trip to”
 And so on

This means that to build a language model, you need a model that predicts the proba-
bility (or, more precisely, the probability distribution) of the next word given the con-
text. You may have noticed that this sounds a little familiar. Indeed, what’s done here is
very similar to the sequential-labeling models that we’ve been talking about in this
chapter. For example, a part-of-speech (POS) tagging model predicts the probability
distribution over the possible POS tags given the context. A named entity recognition
(NER) model does it for the possible named entity tags. The difference is that a lan-
guage model does it for the possible next words, given what the model has encountered
so far. Hopefully it’s starting to make some sense why I talk about language models in
this chapter!
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 In summary, to build a language model, you tweak an RNN-based sequence-labeling
model a little bit so that it gives the estimates for the next word, instead of POS or NER
tags. In chapter 3, I talked about the Skip-gram model, which predicts the words in a
context given the target word. Notice the similarity here—both models predict the
probability over possible words. The input to the Skip-gram model is just a single word,
whereas the input to the language model is the partial sequence. You can use a similar
mechanism for converting one vector to another using a linear layer, then converting
it to a probability distribution using softmax, as we discussed in chapter 3. The archi-
tecture is shown in figure 5.12.

Figure 5.12 Architecture of RNN-based language model

The way RNN-based language models are trained is similar to other sequential-labeling
models. The loss function we use is the sequential cross-entropy loss, which measures
how “off” the predicted words are from actual words. The cross-entropy loss is com-
puted per word and averaged over all words in the sentence.

5.6 Text generation using RNNs
We saw that language models give probabilities to natural language sentences. But the
more fun part is you can generate natural language sentences from scratch using a
language model! In the final section of this chapter, we are going to build a language
model. You can use the trained model to evaluate and generate English sentences.
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You can find the entire script for this subsection on a Google Colab notebook (http://
realworldnlpbook.com/ch5.html#lm-nb).

5.6.1 Feeding characters to an RNN

In the first half of this section, we are going to build an English language model and
train it using a generic English corpus. Before we start, we note that the RNN lan-
guage model we build in this chapter operates on characters, not on words or tokens.
All the RNN models we’ve seen so far operate on words, which means the input to the
RNN was always sequences of words. On the other hand, the RNN we are going to use
in this section takes sequences of characters as the input. 

 In theory, RNNs can operate on sequences of anything, be it tokens or characters
or something completely different (e.g., waveform for speech recognition), as long as
they are something that can be turned into vectors. In building language models,
we often feed characters, even including whitespace and punctuations as the input,
treating them as words of length 1. The rest of the model works exactly the same—
individual characters are first embedded (converted to vectors) and then fed into the
RNN, which is in turn trained so that it can best predict the distribution over the char-
acters that are likely to come next. 

 You have a couple of considerations when you are deciding whether you should
feed words or characters to an RNN. Using characters will definitely make the RNN
less efficient, meaning that it would need more computation to “figure out” the same
concept. For example, a word-based RNN can receive the word “dog” at a timestep
and update its internal states, whereas a character-based RNN would not able to do it
until it receives three elements d, o, and g, and probably “_” (whitespace). A character-
based RNN needs to “learn” that a sequence of these three characters means some-
thing special (the concept of “dog”).

 On the other hand, by feeding characters to RNNs, you can bypass many issues
arising from dealing with tokens. One such issue is related to out-of-vocabulary (or
OOV) words. When training a word-based RNN, you usually fix the entire set of vocab-
ulary, often by enumerating all words that appeared in the train set. But whenever it
encounters an OOV word in the test set, it doesn’t know what to do with it. Often-
times, it assigns a special token <UNK> to all OOV words and treats them in the same
way, which is not ideal. A character-based RNN, on the contrary, can still operate on
individual characters, so it may be able to figure out what “doggy” means, for example,
based on the rules it has learned by observing “dog” in the train set, even though it
has never seen the exact word “doggy” before.

5.6.2 Evaluating text using a language model

Let’s start building a character-based language model. The first step is to read a plain
text dataset file and generate instances for training the model. I’m going to show how
to construct an instance without using a dataset reader for a demonstration purpose.
Suppose you have a Python string object text that you’d like to turn into an instance
for training a language model. First you need to segment it into characters using
CharacterTokenizer as follows:

http://realworldnlpbook.com/ch5.html#lm-nb
http://realworldnlpbook.com/ch5.html#lm-nb
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from allennlp.data.tokenizers import CharacterTokenizer

tokenizer = CharacterTokenizer()
tokens = tokenizer.tokenize(text)

Note that tokens here is a list of Token objects. Each Token object contains a single
character, instead of a single word. Then you insert the <START> and <END> symbols
at the beginning and at the end of the list as shown next:

from allennlp.common.util import START_SYMBOL, END_SYMBOL

tokens.insert(0, Token(START_SYMBOL))
tokens.append(Token(END_SYMBOL))

Inserting special symbols like these at the beginning and end of each sentence is a
common practice in NLP. With these symbols, models can distinguish between occur-
rences of a token in the middle of a sentence versus at the beginning/end of a sentence.
For example, a period is a lot more likely to occur at the end of a sentence (“. <END>”)
than the beginning (“<START> .”), to which a language model can give two very differ-
ent probabilities, which is impossible to do without the use of these symbols.

 Finally, you can construct an instance by specifying individual text fields. Notice
that the “output” of a language model is identical to the input, simply shifted by one
token, as shown here:

from allennlp.data.fields import TextField
from allennlp.data.instance import Instance

input_field = TextField(tokens[:-1], token_indexers)
output_field = TextField(tokens[1:], token_indexers)
instance = Instance({'input_tokens': input_field,
                     'output_tokens': output_field})

Here token_indexers specifies how individual tokens are mapped into IDs. We sim-
ply use SingleIdTokenIndexer we’ve been using so far as follows:

from allennlp.data.token_indexers import TokenIndexer 

token_indexers = {'tokens': SingleIdTokenIndexer()}

Figure 5.13 shows an instance created from this process. 

Figure 5.13 Instance for training a language model
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The rest of the training pipeline, as well as the model, is very similar to that for sequen-
tial labeling mentioned earlier in this chapter. See the Colab notebook for more details.
As shown in the next code snippet, after the model is fully trained, you can construct
instances from new texts, turn them into instances, and compute the loss, which basi-
cally measures how successful the model was in predicting what comes next:

predict('The trip to the beach was ruined by bad weather.', model)
{'loss': 1.3882852}

predict('The trip to the beach was ruined by bad dogs.', model)
{'loss': 1.5099115}

predict('by weather was trip my bad beach the ruined to.', model)
{'loss': 1.8084583}

The loss here is the cross-entropy loss between the predicted and the expected charac-
ters. The more “unexpected” the characters there are, the higher the values will be, so
you can use these values to measure how natural the input is as English text. As
expected, natural sentences (such as the first one) are given scores that are lower than
unnatural sentences (such as the last one).

NOTE If you calculate 2 to the power of the cross entropy, the value is called
perplexity. Given a fixed natural language text, perplexity becomes lower
because the language model is better at predicting what comes next, so it is
commonly used for evaluating the quality of language models in the literature.

5.6.3 Generating text using a language model

The most interesting aspect of (fully trained) language models is that they can predict
possible characters that may appear next given some context. Specifically, they can give
you a probability distribution over possible characters that may come next, from which
you choose to determine the next character. For example, if the model has generated
“t” and “h,” and the LM is trained on generic English text, it would probably assign a
high probability on the letter “e,” generating common English words including the,
they, them, and so on. If you start this process from the <START> token and keep doing
this until you reach the end of the sentence (i.e., by generating <END>), you can gen-
erate an English sentence from scratch. By the way, this is another reason why tokens
such as <START> and <END> are useful—you need something to feed to the RNN to
kick off the generation, and you also need to know when the sentence stops.

 Let’s look at this process in a Python-like pseudocode next:

def generate():
    state = init_state()
    token = <START>
    tokens = [<START>]
    while token != <END>:
        state = update(state, token)
        probs = softmax(linear(state))
        token = sample(probs)
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        tokens.append(token)
    return tokens

This loop looks very similar to the one for updating RNNs with one key difference:
here, we are not receiving any input but instead are generating characters and feed-
ing them as the input. In other words, the RNN operates on the sequence of charac-
ters that the RNN itself generated so far. Such models that operate on past sequences
they produced are called autoregressive models. See figure 5.14 for an illustration of this.

Figure 5.14 Generating text using an RNN

In the previous code snippet, init_state() and update() functions are the ones
that initialize and update the hidden states of the RNN, as we’ve seen earlier. In gener-
ating text, we assume that the model and its parameters are already trained on a large
amount of natural language text. softmax() is a function to run Softmax on the
given vector, and linear() is the linear layer to expand/shrink the size of the vector.
The function sample() returns a character according to the given probability distri-
bution. For example, if the distribution is “a”: 0.6, “b”: 0.3, “c”: 0.1, it will choose “a”
60% of the time, “b” 30% of the time, and “c” 10% of the time. This ensures that the
generated string is different every time while every string is likely to look like a real
English sentence. 

NOTE You can use PyTorch’s torch.multinomial() for sampling an ele-
ment from a probability distribution.

If you train this language model using the English sentences from Tatoeba and gener-
ate sentences according to this algorithm, the system will produce something similar
to the following cherry-picked examples:

You can say that you don't know it, and why decided of yourself.
Pike of your value is to talk of hubies.
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The meeting despoit from a police?
That's a problem, but us?
The sky as going to send nire into better.
We'll be look of the best ever studented.
There's you seen anything every's redusention day.
How a fail is to go there.
It sad not distaples with money.
What you see him go as famous to eat!

This is not a bad start! If you look at these sentences, there are many words and
phrases that make sense as valid English (You can say that, That’s a problem, to go there, see
him go, etc.). Even when the system generates peculiar words (despoit, studented, redusen-
tion, distaples), they look almost like real English words because they all basically follow
morphological and phonological rules of English. This means that the language
model was successful in learning the basic building blocks of English, such as how to
arrange letters (orthography), how to form words (morphology), and how to form
basic sentence structures (syntax).

 However, if you look at sentences as a whole, few of them make any sense (e.g.,
What you see him go as famous to eat!). This means the language model we trained falls
short of modeling semantic consistency of sentences. This is potentially because our
model is not powerful enough (our LSTM-RNN needs to compress everything about
the sentence into a 256-dimensional vector) or the training dataset is too small (just
10,000 sentences), or both. But you can easily imagine that if we keep increasing the
model capacity as well as the size of the train set, the model gets incredibly good at
producing realistic natural language text. In February 2019, OpenAI announced that
it developed a huge language model based on the Transformer model (which we’ll
cover in chapter 8) trained on 40 GB of internet text. The model shows that it can
produce realistic-looking text that shows near-perfect grammar and long-term topical
consistency given a prompt. In fact, the model was so good that OpenAI decided not
to release the large model they had trained due to their concerns about malicious use
of the technology. But it is important to keep in mind that, no matter how intelligent
the output looks, their model is trained on the same principle as our toy example in
this chapter—just trying to predict the next character!

Summary
 Sequential-labeling models tag each word in the input with a label, which can

be achieved by recurrent neural networks (RNNs).
 Part-of-speech (POS) tagging and named entity recognition (NER) are two

instances of sequential-labeling tasks.
 Multilayer RNNs stack multiple layers of RNNs, whereas bidirectional RNNs

combine forward and backward RNNs to encode the entire sentence.
 Language models assign probabilities to natural language text, which is

achieved by predicting the next word.
 You can use a trained language model to assess how “natural” a natural lan-

guage sentence is or even to generate realistic-looking text from scratch.



Part 2

Advanced models

The field of NLP has seen rapid progress in the past few years. Specifically,
the advent of the Transformer and pretrained language models such as BERT
have completely changed the landscape of the field and how practitioners build
NLP applications. This part of the book will help you catch up with these latest
developments.

 Chapter 6 introduces sequence-to-sequence models, an important class of
models that will enable you to build more complex applications such as machine
translation systems and chatbots. Chapter 7 discusses another type of popular
neural network architecture, convolutional neural networks (CNNs).

 Chapters 8 and 9 are arguably the most important and exciting chapters of this
book. They cover the Transformer and transfer learning methods (such as BERT)
respectively. We’ll demonstrate how to build advanced NLP applications such as
high-quality machine translation and spell-checkers, using those technologies.

 By the time you finish reading this part, you’ll feel confident that you can
now solve a wide range of NLP tasks with what you have learned so far.
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Sequence-to-sequence models

In this chapter, we are going to discuss sequence-to-sequence (Seq2Seq) models,
which are some of the most important complex NLP models and are used for a wide
range of applications, including machine translation. Seq2Seq models and their
variations are already used as the fundamental building blocks in many real-world
applications, including Google Translate and speech recognition. We are going to
build a simple neural machine translation system using a powerful framework to

This chapter covers
 Building a machine translation system using Fairseq

 Transforming one sentence to another using a 
Seq2Seq model

 Using a beam search decoder to generate better 
output

 Evaluating the quality of machine translation 
systems

 Building a dialogue system (chatbot) using a 
Seq2Seq model
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learn how the models work and how to generate the output using greedy and beam
search algorithms. At the end of this chapter, we will build a chatbot—an NLP applica-
tion with which you can have a conversation. We’ll also discuss the challenges and lim-
itations of simple Seq2Seq models.

6.1 Introducing sequence-to-sequence models
In the previous chapter, we discussed two types of powerful NLP models, namely,
sequential labeling and language models. To recap, a sequence-labeling model takes a
sequence of some units (e.g., words) and assigns a label (e.g., a part-of-speech (POS)
tag) to each unit, whereas a language model takes a sequence of some units (e.g.,
words) and estimates how probable the given sequence is in the domain in which the
model is trained. You can also use a language model to generate realistic-looking text
from scratch. See figure 6.1 for the overview of these two models.

Figure 6.1 Sequential labeling and language models

Although these two models are useful for a number of NLP tasks, for some, you may
want the best of both worlds—you may want your model to take some input (e.g., a
sentence) and generate something else (e.g., another sentence) in response. For
example, if you wish to translate some text written in one language into another, you
need your model to take a sentence and produce another. Can you do this with
sequential-labeling models? No, because they can produce only the same number of
output labels as there are tokens in the input sentence. This is obviously too limiting
for translation—one expression in a language (say, “Enchanté” in French) can have
an arbitrarily large or small number of words in another (say, “Nice to meet you” in
English). Can you do this with language models? Again, not really. Although you can
generate realistic-looking text using language models, you have almost no control
over the text they generate. In fact, language models do not take any input.

 But if you look at figure 6.1 more carefully, you might notice something. The
model on the left (the sequential-labeling model) takes a sentence as its input and
produces some form of representations, whereas the model on the right produces a

time flies like arrow .

NOUN VERB

...

ADP NOUN PUNKT

<START> The quick dog .

The quick

...

brown . <END>

Sequential labeling Language model
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sentence with variable length that looks like natural language text. We already have
the components needed to build what we want, that is, a model that takes a sentence
and transforms it into another. The only missing part is a way to connect these two so
that we can control what the language model generates.

 In fact, by the time the model on the left finishes processing the input sentence,
the RNN has already produced its abstract representation, which is encoded in the
RNN’s hidden states. If you can simply connect these two so that the sentence repre-
sentation is passed from left to right and the language model can generate another
sentence based on the representation, it seems like you can achieve what you wanted
to do in the first place!

 Sequence-to-sequence models—or Seq2Seq models, in short—are built on this
insight. A Seq2Seq model consists of two subcomponents—an encoder and a decoder.
See figure 6.2 for an illustration. An encoder takes a sequence of some units (e.g., a
sentence) and converts it into some internal representation. A decoder, on the other
hand, generates a sequence of some units (e.g., a sentence) from the internal repre-
sentation. As a whole, a Seq2Seq model takes a sequence and generates another
sequence. As with the language model, the generation stops when the decoder pro-
duces a special token, <END>, which enables a Seq2Seq model to generate an output
that can be longer or shorter than the input sequence.

Figure 6.2 Sequence-to-sequence model

Many variants of Seq2Seq models exist, depending on what architecture you use for
the encoder, what architecture you use for the decoder, and how information flows
between the two. This chapter covers the most basic type of Seq2Seq model—simply
connecting two RNNs via the sentence representation. We’ll discuss more advanced
variants in chapter 8.

 Machine translation is the first, and by far the most popular, application of
Seq2Seq models. However, the Seq2Seq architecture is a generic model applicable to
numerous NLP tasks. In one such task, summarization, an NLP system takes a long
text (e.g., a news article) and produces its summary (e.g., a news headline). A Seq2Seq

Maria no baba verde .

...
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Mary did witch .

Mary did

...

not . <END>
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Sentence
representation

 



144 CHAPTER 6 Sequence-to-sequence models

model can be used to “translate” the longer text into the shorter one. Another task is
a dialogue system, or a chatbot. If you think of a user’s utterance as the input and the
system’s response as the output, the dialogue system’s job is to “translate” the former
into the latter. Later in this chapter, we will discuss a case study where we actually build
a chatbot using a Seq2Seq model. Yet another (somewhat surprising) application is
parsing—if you think of the input text as one language and its syntax representation
as another, you can parse natural language texts with a Seq2Seq model.1

6.2 Machine translation 101
We briefly touched upon machine translation in section 1.2.1. To recap, machine
translation (MT) systems are NLP systems that translate a given text from one lan-
guage to another. The language the input text is written in is called the source language,
whereas the one for the output is called the target language. The combination of the
source and target languages is called the language pair. 

 First, let’s look at a couple of examples to see what it’s like and why it’s difficult to
translate a foreign language to English (or any other language you understand). In
the first example, let’s translate a Spanish sentence, “Maria no daba una bofetada a la
bruja verde.” to the English counterpart, “Mary did not slap the green witch.” A com-
mon practice in illustrating the
process of translation is to draw
how words or phrases of the same
meaning map between the two sen-
tences. Correspondence of linguis-
tic units between two instances is
called alignment. Figure 6.3 shows
the alignment between the Spanish
and English sentences.

 Some words (e.g., “Maria” and “Mary,” “bruja” and “witch,” and “verde” and
“green”) match exactly one to one. However, some expressions (e.g., “daba una bofe-
tada” and “slap”) differ in such a significant way that you can only align phrases
between Spanish and English. Finally, even where there’s one-to-one correspondence
between words, the way words are arranged, or word order, may differ between the two
languages. For example, adjectives are added after nouns in Spanish (“la bruja
verde”) whereas in English, they come before nouns (“the green witch”). Spanish and
English are linguistically similar in terms of grammar and vocabulary, especially when
compared to, say, Chinese and English, although this single example shows translating
between the two may be a challenging task.

1 See Oriol Vinyals et al., “Grammar as a Foreign Language,” (2015; https://arxiv.org/abs/1412.7449) for more
details.

Maria

Mary did not slap the green witch

no daba una bofetada a la bruja verde

Figure 6.3 Translation and word alignment between 
Spanish and English

https://arxiv.org/abs/1412.7449
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 Things start to look more complicated
between Mandarin Chinese and English.
Figure 6.4 illustrates the alignment between
a Chinese sentence (“Bushi yu Shalong jux-
ing le huitan.”) and its English translation
(“Bush held a talk with Shalon.”). Although
Chinese uses ideographic characters of its
own, we use romanized sentences here for
simplicity.

 You can now see more crossing arrows in the figure. Unlike English, Chinese prep-
ositional phrases such as “with Shalon” are usually attached to verbs from the left.
Also, the Chinese language doesn’t explicitly mark tense, and MT systems (and
human translators alike) need to “guess” the correct tense to use for the English trans-
lation. Finally, Chinese-to-English MT systems also need to infer the correct number
(singular or plural) of each noun, because Chinese nouns are not explicitly marked
according to their number (e.g., “huitan” just means “talk” with no explicit mention
of number). This is a good example showing how the difficulty of translation depends
on the language pair. Development of MT systems between linguistically different lan-
guages (such as Chinese and English) is usually more challenging than those between
linguistically similar ones (such as Spanish and Portuguese).

 Let’s take a look at one more example—
translating from Japanese to English, illus-
trated in figure 6.5. All the arrows in the fig-
ure are crossed, meaning that the word
order is almost exactly opposite in these two
sentences. In addition to the fact that Japa-
nese prepositional phrases (“to music”) and
relative clauses attach from the left like Chi-
nese, objects (such as “listening” in “I love
listening” in the example) come before the
verb. In other words, Japanese is an SOV (subject-object-verb) language, whereas all
the other languages we mentioned so far (English, Spanish, and Chinese) are SVO
(subject-verb-object) languages. Structural differences are a reason why direct, word-
to-word translation doesn’t work very well.

NOTE This word-order classification system of language (such as SOV and
SVO) is often used in linguistic typology. The vast majority of world lan-
guages are either SOV (most common) or SVO (slightly less common),
although a small number of languages follow other word-order systems,
such as VSO (verb-subject-object), used by Arabic and Irish, for example.
Very few languages (less than 3% of all languages) follow other types (VOS,
OVS, and OSV).

Bushi yu Shalong juxing le huitan

Bush held a talk with Shalon

Figure 6.4 Translation and word alignment 
between Mandarin Chinese and English

Ongaku

I love listening to music

wo kiku no ga daisuki desu

Figure 6.5 Translation and word alignment 
between Japanese and English
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Besides the structural differences shown in the previous figures, many other factors can
make MT a difficult task. One such factor is lexical difference. If you are translating, for
example, the Japanese word “ongaku” to the English “music,” there’s little ambiguity.
“Ongaku” is almost always “music.” However, if you are translating, say, the English word
“brother” to Chinese, you face ambiguity, because Chinese uses distinct words for
“elder brother” and “younger brother.” In an even more extreme case, if you are trans-
lating “cousin” to Chinese, you have eight different choices, because in the Chinese
family system, you need to use distinct words depending on whether your cousin is
maternal or paternal, female or male, and older or younger than you.

 Another factor that makes MT challenging is omission. You can see that in figure
6.5, there’s no Japanese word for “I.” In languages such as Chinese, Japanese, Spanish,
and many others, you can omit the subject pronoun when it’s clear from the context
and/or the verb form. This is called zero pronoun, and it can become a problem when
translating from a pronoun-dropping language to a language where it happens less
often (e.g., English).

 One of the earliest MT systems, developed during the Georgetown-IBM experi-
ment, was built to translate Russian sentences into English during the Cold War. But
all it did was not much different from looking up each word in a bilingual dictionary
and replacing it with its translation. The three examples shown above should be
enough to convince you that simply replacing word by word is too limiting. Later sys-
tems incorporated a larger set of lexicons and grammar rules, but these rules are writ-
ten manually by linguists and are not enough to capture the complexities of language
(again, remember the poor software engineer from chapter 1). 

 The main paradigm for MT that remained dominant both in academia and indus-
try before the advent of neural machine translation (NMT) is called statistical machine
translation (SMT). The idea behind it is simple: learn how to translate from data, not
by manually crafting rules. Specifically, SMT systems learn how to translate from data-
sets that contain a collection of texts in the source language and their translation in
the target language. Such datasets are called parallel corpora (or parallel texts, or bitexts).
By looking at a collection of paired sentences in both languages, the algorithm seeks
patterns of how words in one language should be translated to another. The resulting
statistical model is called a translation model. At the same time, by looking at a collec-
tion of target sentences, the algorithm can learn what valid sentences in the target lan-
guages should look like. Sounds familiar? This is exactly what a language model is all
about (see the previous chapter). The final SMT model combines these two models
and produces output that is a plausible translation of the input and is a valid, fluent
sentence in the target language on its own.

 Around 2015, the advent of powerful neural machine translation (NMT) models
subverted the dominance of SMT. SMT and NMT have two key differences. First, by
definition, NMT is based on neural networks, which are well known for their power to
model language accurately. As a result, target sentences generated by NMT tend to be
more fluent and natural than those generated by SMT. Second, NMT models are
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trained end-to-end, as I briefly touched on in chapter 1. This means that NMT models
consist of a single neural network that takes an input and directly produces an output,
instead of a patchwork of submodels and submodules that you need to train inde-
pendently. As a result, NMT models are simpler to train and smaller in code size than
SMT models.

 MT is already used in many different industries and aspects of our lives. Translat-
ing foreign text into a language that you understand to grasp its meaning quickly is
called gisting. If the text is deemed important enough after gisting, it may be sent to
formal, manual translation. Professional translators also use MT for their work. Often-
times, the source text is first translated to the target language using an MT system,
then the produced text is edited by human translators. Such editing is called postedit-
ing. The use of automated systems (called computer-aided translation, or CAT) can accel-
erate the translation process and reduce the cost. 

6.3 Building your first translator
In this section, we are going to build a working MT system. Instead of writing any
Python code to do that, we’ll make the most of existing MT frameworks. A number of
open source frameworks make it easier to build MT systems, including Moses (http://
www.statmt.org/moses/) for SMT and OpenNMT (http://opennmt.net/) for NMT.
In this section, we will use Fairseq (https://github.com/pytorch/fairseq), an NMT
toolkit developed by Facebook that is becoming more and more popular among NLP
practitioners these days. The following aspects make Fairseq a good choice for devel-
oping an NMT system quickly: 1) it is a modern framework that comes with a number
of predefined state-of-the-art NMT models that you can use out of the box; 2) it is very
extensible, meaning you can quickly implement your own model by following their
API; and 3) it is very fast, supporting multi-GPU and distributed training by default.
Thanks to its powerful models, you can build a decent quality NMT system within a
couple of hours.

 Before you start, install Fairseq by running pip install fairseq in the root of
your project directory. Also, run the following commands in your shell to download
and expand the dataset (you may need to install unzip if you are using Ubuntu by
running sudo apt-get install unzip):2

$ mkdir -p data/mt
$ wget https://realworldnlpbook.s3.amazonaws.com/data/mt/tatoeba.eng_spa.zip
$ unzip tatoeba.eng_spa.zip -d data/mt

We are going to use Spanish and English parallel sentences from the Tatoeba project,
which we used previously in chapter 4, to train a Spanish-to-English MT system. The
corpus consists of approximately 200,000 English sentences and their Spanish transla-
tions. I went ahead and already formatted the dataset so that you can use it without

2  Note that $ at the beginning of every line is rendered by the shell, and you don’t need to type it.

http://www.statmt.org/moses/
http://www.statmt.org/moses/
http://opennmt.net/
https://github.com/pytorch/fairseq
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worrying about obtaining the data, tokenizing the text, and so on. The dataset is
already split into train, validate, and test subsets.

6.3.1 Preparing the datasets

As mentioned previously, MT systems (both SMT and NMT) are machine learning
models and thus are trained from data. The development process of MT systems looks
similar to any other modern NLP systems, as shown in figure 6.6. First, the training
portion of the parallel corpus is preprocessed and used to train a set of NMT model
candidates. Next, the validation portion is used to choose the best-performing model
out of all the candidates. This process is called model selection (see chapter 2 for a
review). Finally, the best model is tested on the test portion of the dataset to obtain
evaluation metrics, which reflect how good the model is.

Figure 6.6 Pipeline for building an NMT system

The first step in MT development is preprocessing the dataset. But before preprocess-
ing, you need to convert the dataset into an easy-to-use format, which is usually plain
text in NLP. In practice, the raw data for training MT systems come in many different
formats, for example, plain text files (if you are lucky), XML formats of proprietary
software, PDF files, and database records. Your first job is to format the raw files so
that source sentences and their target translations are aligned sentence by sentence.
The resulting file is often a TSV file where each line is a tab-separated sentence pair,
which looks like the following:

Let's try something.                   Permíteme intentarlo.
Muiriel is 20 now.                     Ahora, Muiriel tiene 20 años.
I just don't know what to say.         No sé qué decir.
You are in my way.                     Estás en mi camino.
Sometimes he can be a strange guy.     A veces él puede ser un chico raro.
…

Train data

Source Target
Source Target

Validation data

NMT models

Test data

Preprocessing Preprocessing

Training

Source Target

NMT model Metrics

Model selection

Preprocessing

Evaluation
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After the translations are aligned, the parallel corpus is fed into the preprocessing
pipeline. Specific operations applied in this process differ from application to applica-
tion, and from language to language, but the following steps are most common:

1 Filtering
2 Cleaning
3 Tokenization

In the filtering step, any sentence pairs that are not suitable for training an MT system
are removed from the dataset. What makes a sentence pair not suitable depends on
many factors, but, for example, any sentence pair where either text is too long (say,
more than 1,000 words) is not useful, because most MT models are not capable of
modeling such a long sentence. Also, any sentence pairs where one sentence is too
long but the other is too short are probably noise caused by a data processing or align-
ment error. For example, if a Spanish sentence is 10 words long, the length of its
English translation should fall within a 5- to 15-word range. Finally, if, for any reason,
the parallel corpus contains any languages other than the source and target lan-
guages, you should remove such sentence pairs. This happens a lot more often than
you’d imagine—many documents are multilingual due to, for example, quotes, expla-
nation, or code switching (mixing more than one language in a sentence). Language
detection (see chapter 4) can help detect such anomalies.

 After filtering, sentences in the dataset can be cleaned further. This process may
include such things as removal of HTML tags and any special characters and normal-
ization of characters (e.g., traditional and simplified Chinese) and spelling (e.g.,
American and British English).

 If the target language uses scripts such as the Latin (a, b, c, …) or Cyrillic (а, б, в, …)
alphabets, which distinguish upper- and lowercases, you may want to normalize case. By
doing so, your MT system will group “NLP” with “nlp” and “Nlp.” This step is usually a
good thing, because by having three different representations of a single concept, the
MT model needs to learn that they are in fact a single concept purely from the data.
Normalizing cases also reduces the number of distinct words, which makes training and
prediction faster. However, this also groups “US” and “Us” and “us,” which might not be
a desirable behavior, depending on the type of data and the domain you are working
with. In practice, such decisions, including whether to normalize cases, are carefully
made by observing their effect on the validation data performance.

Data cleaning for machine translation and NLP
Note that the cleaning techniques mentioned here are not specific to MT. Any NLP
applications and tasks can benefit from a carefully crafted pipeline of filtering and
cleaning operations. However, cleaning of the training data is particularly important
for MT, because the consistency of translation goes a long way in building a robust
MT model. If your training data uses “NLP” in some cases and “nlp” in others, the
model will have a difficulty figuring out the proper way to translate the word, whereas
humans would easily understand that the two words represent a single concept.
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At this point, the dataset is still a bunch of strings of characters. Most MT systems
operate on words, so you need to tokenize the input (section 3.3) to identify words.
Depending on the language, you may need to run a different pipeline (e.g., word seg-
mentation is needed for Chinese and Japanese).

 The Tatoeba dataset you downloaded and expanded earlier has already gone
through all this preprocessing pipeline. Now you are ready to hand the dataset over to
Fairseq. The first step is to tell Fairseq to convert the input files to the binary format so
that the training script can read them easily, as follows:

$ fairseq-preprocess \
      --source-lang es \
      --target-lang en \
      --trainpref data/mt/tatoeba.eng_spa.train.tok \
      --validpref data/mt/tatoeba.eng_spa.valid.tok \
      --testpref data/mt/tatoeba.eng_spa.test.tok \
      --destdir data/mt-bin \
      --thresholdsrc 3 \
      --thresholdtgt 3

When this succeeds, you should see a message Wrote preprocessed data to data/
mt-bin on your terminal. You should also find the following group of files under the
data/mt-bin directory:

dict.en.txt dict.es.txt  test.es-en.en.bin  test.es-en.en.idx  test.es-
en.es.bin  test.es-en.es.idx  train.es-en.en.bin  train.es-en.en.idx  
train.es-en.es.bin  train.es-en.es.idx  valid.es-en.en.bin  valid.es-
en.en.idx  valid.es-en.es.bin  valid.es-en.es.idx

One of the key functionalities of this preprocessing step is to build the vocabulary
(called the dictionary in Fairseq), which is a mapping from vocabulary items (usually
words) to their IDs. Notice the two dictionary files in the directory, dict.en.txt and
dict.es.txt. MT deals with two languages, so the system needs to maintain two
mappings, one for each language.

6.3.2 Training the model

Now that the train data is converted into the binary format, you are ready to train the
MT model. Invoke the fairseq-train command with the directory where the
binary files are located, along with several hyperparameters, as shown next:

$ fairseq-train \
    data/mt-bin \
    --arch lstm \
    --share-decoder-input-output-embed \
    --optimizer adam \
    --lr 1.0e-3 \
    --max-tokens 4096 \
    --save-dir data/mt-ckpt
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You don’t have to worry about understanding what most of the parameters here mean
(just yet). At this point, you need to know only that you are training a model using the
data stored in the directory specified by the first parameter (data/mt-bin) using an
LSTM architecture (--arch lstm) with a bunch of other hyperparameters, and sav-
ing the results in data/mt-ckpt (short for “checkpoint”).

 When you run this command, your terminal will show two types of progress bars
alternatively—one for training and another for validating, as shown here:

| epoch 001:  16%|???▏                | 61/389 [00:13<01:23,  3.91it/s, 
loss=8.347, ppl=325.58, wps=17473, ups=4, wpb=3740.967, bsz=417.180, 
num_updates=61, lr=0.001, gnorm=2.099, clip=0.000, oom=0.000, wall=17, 
train_wall=12]

| epoch 001 | valid on 'valid' subset | loss 4.208 | ppl 18.48 | num_updates 
389

The lines corresponding to validation results are easily distinguishable by their
contents—they say “valid” subset. For each epoch, the training process alternates two
stages: training and validation. An epoch, a concept used in machine learning, means
one pass through the entire train data. In the training stage, the loss is calculated
using the training data, then the model parameters are adjusted in such a way that the
new set of parameters lowers the loss. In the validation stage, the model parameters
are fixed, and a separate dataset (validation set) is used to measure how well the
model is performing against the dataset.

 I mentioned in chapter 1 that validation sets are used for model selection, a pro-
cess where the best machine learning model is chosen among all the possible models
trained from a single training set. Here, by alternating between training and valida-
tion stages, we use the validation set to check the performance of all the intermediary
models (i.e., the model after the first epoch, the one after two epochs, and so on). In
other words, we use the validation stage to monitor the progress of the training. 

 Why is this a good idea? We gain many benefits by inserting the validation stage
after every epoch, but the most important one is to avoid overfitting—the very reason
why a validation data is important in the first place. To illustrate this further, let’s look
at how the loss changes over the course of the training of our Spanish-to-English MT
model, for both the train and the validation sets, as shown in figure 6.7.

 As the training continues, the train loss becomes smaller and smaller and gradually
approaches zero, because this is exactly what we told the optimizer to do: decrease the
loss as much as possible. Checking whether the train loss is decreasing steadily epoch
after epoch is a good “sanity check” that your model and the training pipeline are
working as expected.

 On the other hand, if you look at the validation loss, it goes down at first for several
epochs, but after a certain point, it gradually goes back up, forming a U-shaped
curve—a typical sign of overfitting. After several epochs of training, your model fits
the train set so well that it begins to lose its generalizability on the validation set.
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Figure 6.7 Train and validation loss

Let’s use a concrete example in MT to illustrate what’s really going on when a model is
overfitted. For example, if your training data contains the English sentence “It is rain-
ing hard” and its Spanish translation “Esta lloviendo fuerte,” with no other sentences
having the word “hard” in them, the overfitted model may believe that “fuerte” is the
only possible translation of “hard.” A properly fitted model might leave some wiggle
room for other Spanish words to appear as a translation for “hard,” but an overfitted
MT system would always translate “hard” to “fuerte,” which is the “correct” thing to do
according to the train set but obviously not ideal if you’d like to build a robust MT sys-
tem. For example, the best way to translate “hard” in “She is trying hard” is not “fuerte.”

 If you see your validation loss starting to creep up, there’s little point keeping the
training process running, because chances are, your model has already overfitted to
the data to some extent. A common practice in such a situation, called early stopping, is
to terminate the training. Specifically, if your validation loss is not improving for a cer-
tain number of epochs, you stop the training and use the model at the point when the
validation loss was the lowest. The number of epochs you wait until the training is ter-
minated is called patience. In practice, the metric you care about the most (such as
BLEU; see section 6.5.2) is used for early stopping instead of the validation loss.

 OK, that was enough about training and validating for now. The graph in figure
6.7 indicates that the validation loss is lowest around epoch 8, so you can stop (by
pressing Ctrl + C) the fairseq-train command after around 10 epochs; otherwise,
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the command would keep running indefinitely. Fairseq will automatically save the best
model parameters (in terms of the validation loss) to the checkpoint_best.pt file.

WARNING Note that the training may take a long time if you are just using a
CPU. Chapter 11 explains how to use GPUs to accelerate the training.

6.3.3 Running the translator

After the model is trained, you can invoke the fairseq-interactive command to
run your MT model on any input in an interactive way. You can run the command by
specifying the binary file location and the model parameter file as follows:

$ fairseq-interactive \
    data/mt-bin \
    --path data/mt-ckpt/checkpoint_best.pt \
    --beam 5 \
    --source-lang es \
    --target-lang en

After you see the prompt Type the input sentence and press return, try typing
(or copying and pasting) the following Spanish sentences one by one:

¡ Buenos días !
¡ Hola !
¿ Dónde está el baño ?
¿ Hay habitaciones libres ?
¿ Acepta tarjeta de crédito ?
La cuenta , por favor .

Note the punctuation and the whitespace in these sentences—Fairseq assumes that
the input is already tokenized. Your results may vary slightly, depending on many fac-
tors (the training of deep learning models usually involves some randomness), but
you get something along the line of the following (I added boldface for emphasis):

¡ Buenos días !
S-0     ¡ Buenos días !
H-0     -0.20546913146972656    Good morning !
P-0     -0.3342 -0.3968 -0.0901 -0.0007
¡ Hola !
S-1     ¡ Hola !
H-1     -0.12050756067037582    Hi !
P-1     -0.3437 -0.0119 -0.0059
¿ Dónde está el baño ?
S-2     ¿ Dónde está el baño ?
H-2     -0.24064254760742188    Where &apos;s the restroom ?
P-2     -0.0036 -0.4080 -0.0012 -1.0285 -0.0024 -0.0002
¿ Hay habitaciones libres ?
S-3     ¿ Hay habitaciones libres ?
H-3     -0.25766071677207947    Is there free rooms ?
P-3     -0.8187 -0.0018 -0.5702 -0.1484 -0.0064 -0.0004
¿ Acepta tarjeta de crédito ?
S-4     ¿ Acepta tarjeta de crédito ?
H-4     -0.10596384853124619    Do you accept credit card ?
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P-4     -0.1347 -0.0297 -0.3110 -0.1826 -0.0675 -0.0161 -0.0001
La cuenta , por favor .
S-5     La cuenta , por favor .
H-5     -0.4411449432373047     Check , please .
P-5     -1.9730 -0.1928 -0.0071 -0.0328 -0.0001

Most of the output sentences here are almost perfect, except the fourth one (I would
translate to “Are there free rooms?”). Even considering the fact that these sentences
are all simple examples you can find in any travel Spanish phrasebook, this is not a
bad start for a system built within an hour!

6.4 How Seq2Seq models work
In this section, we will dive deep into the individual components that constitute a
Seq2Seq model, which include the encoder and the decoder. We’ll also cover the algo-
rithms used for decoding the target sentence—greedy decoding and beam search
decoding.

6.4.1 Encoder

As we saw in the beginning of this chapter, the encoder of a Seq2Seq model is not
much different from the sequential-labeling models we covered in chapter 5. Its main
job is to take the input sequence (usually a sentence) and convert it into a vector rep-
resentation of a fixed length. You can use an LSTM-RNN as shown in figure 6.8.

Figure 6.8 Encoder of a Seq2Seq model

Unlike sequential-labeling models, we need only the final hidden state of an RNN,
which is then passed to the decoder to generate the target sentence. You can also use
a multilayer RNN as an encoder, in which case the sentence representation is the con-
catenation of the output of each layer, as illustrated in figure 6.9.
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Figure 6.9 Using a multilayer RNN as an encoder

Similarly, you can use a bidirectional (or even a bidirectional multilayer) RNN as an
encoder. The final sentence representation is a concatenation of the output of the for-
ward and the backward layers, as shown in figure 6.10.

Figure 6.10 Using a bidirectional RNN as an encoder
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NOTE This is a small detail, but remember that an LSTM cell produces two
types of output: the cell state and the hidden state (see section 4.2.2 for
review). When using LSTM for encoding a sequence, we usually just use the
final hidden state while discarding the cell state. Think of the cell state as
something like a temporary loop variable used for computing the final out-
come (the hidden state). See figure 6.11 for an illustration.

Figure 6.11 An encoder using LSTM cells

6.4.2 Decoder

Likewise, the decoder of a Seq2Seq model is similar to the language model we cov-
ered in chapter 5. In fact, they are identical except for one crucial difference—a
decoder takes an input from the encoder. The language models we covered in chapter
5 are called unconditional language models because they generate language without any
input or precondition. On the other hand, language models that generate language
based on some input (condition) are called conditional language models. A Seq2Seq
decoder is one type of conditional language model, where the condition is the sen-
tence representation produced by the encoder. See figure 6.12 for an illustration of
how a Seq2Seq decoder works.
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Just as with language models, Seq2Seq decoders generate text from left to right. Like
the encoder, you can use an RNN to do this. A decoder can also be a multilayer RNN.
However, a decoder cannot be bidirectional—you cannot generate a sentence from
both sides. As was mentioned in chapter 5, models that operate on the past sequence
they produced are called autoregressive models. 

How the decoder behaves is a bit different between the training and the prediction
stages. Let’s see how it is trained first. At the training stage, we know exactly how the
source sentence should be translated into the target sentence. In other words, we
know exactly what the decoder should produce, word by word. Because of this, decod-
ers are trained in a similar way to how sequential-labeling models are trained (see
chapter 5).

 First, the decoder is fed the sentence representation produced by the encoder and
a special token <START>, which indicates the start of a sentence. The first RNN cell
processes these two inputs and produces the first hidden state. The hidden state vec-
tor is fed to a linear layer that shrinks or expands this vector to match the size of the
vocabulary. The resulting vector then goes through softmax, which converts it to a
probability distribution. This distribution dictates how likely each word in the vocabu-
lary is to come next. 

 Then, this is where the training happens. If the input is “Maria no daba una bofetada
a la bruja verde,” then we would like the decoder to produce its English equivalent:
“Mary did not slap the green witch.” This means that we would like to maximize the
probability that the first RNN cell generates “Mary” given the input sentence. This is a
multiclass classification problem we have seen many times so far in this book—word
embeddings (chapter 3), sentence classification (chapter 4), and sequential labeling
(chapter 5). You use the cross-entropy loss to measure how far apart the desired out-
come is from the actual output of your network. If the probability for “Mary” is large,
then good—the network incurs a small loss. On the other hand, if the probability for
“Mary” is small, then the network incurs a large loss, which encourages the optimization
algorithm to change the parameters (magic constants) by a large amount.

Non-autoregressive models
If you think simply generating text from left to right is too limiting, you have a good
point. Humans also do not always write language linearly—we often revise, add, and
delete words and phrases afterward. Also, generating text in a linear fashion is not
very efficient. The latter half of a sentence needs to wait until its first half is com-
pleted, which makes it very difficult to parallelize the generation process. As of this
writing, researchers are putting a lot of effort into developing non-autoregressive MT
models that do not generate the target sentence in a linear fashion (see, for example,
this paper from Salesforce Research: https://arxiv.org/abs/1711.02281). However,
they haven’t exceeded autoregressive models in terms of translation quality, and
most research and production MT systems still adopt autoregressive models.

https://arxiv.org/abs/1711.02281
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 Then, we move on to the next
cell. The next cell receives the hid-
den state computed by the first cell
and the word “Mary,” regardless of
what the first cell generated. Instead of
feeding the token generated by the
previous cell, as we did when gener-
ating text using a language model,
we constrain the input to the
decoder so that it won’t “go astray.”
The second cell produces the hid-
den state based on these two
inputs, which is then used to com-
pute the probability distribution for
the second word. We compute the
cross-entropy loss by comparing the
distribution against the desired out-
put “did” and move on to the next
cell. We keep doing this until we
reach the final token, which is
<END>. The total loss for the sen-
tence is the average of all the losses
incurred for all the words in the
sentence, as shown in figure 6.13.

Finally, the loss computed this
way is used to adjust the model
parameters of the decoder, so that
it can generate the desired output

the next time around. Note that the parameters of the encoder are also adjusted in
this process, because the loss propagates all the way back to the encoder through the
sentence representation. If the sentence representation produced by the encoder is
not good, the decoder won’t be able to produce high-quality target sentences no mat-
ter how hard it tries.

6.4.3 Greedy decoding

Now let’s look at how the decoder behaves at the prediction stage, where a source sen-
tence is given to the network, but we don’t know what the correct translation should
be. At this stage, a decoder behaves a lot like the language models we discussed in
chapter 5. It is fed the sentence representation produced by the encoder, as well as a
special token <START>, which indicates the start of a sentence. The first RNN cell pro-
cesses these two inputs and produces the first hidden state, which is then fed to the lin-
ear layer and the softmax layer to produce the probability distribution over the target
vocabulary. Here comes the key part—unlike the training phase, you don’t know the
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correct word to come next, so
you have multiple options. You
can choose any random word
that has a reasonably high prob-
ability (say, “dog”), but proba-
bly the best you can do is pick
the word whose probability is
the highest (you are lucky if it’s
“Mary”). The MT system pro-
duces the word that was just
picked and then feeds it to the
next RNN cell. This is repeated
until the special token <END> is
encountered. Figure 6.14 illus-
trates this process.

 OK, so are we all good, then?
Can we move on to evaluating
our MT system, because it is
doing everything it can to pro-
duce the best possible transla-
tion? Not so fast—many things
could go wrong by decoding the
target sentence in this manner. 

 First of all, the goal of MT
decoding is to maximize the
probability of the target sentence as a whole, not just individual words. This is exactly
what you trained the network to do—to produce the largest probability for correct sen-
tences. However, the way words are picked at each step described earlier is to maximize
the probability of that word only. In other words, this decoding process guarantees only
the locally maximum probability. This type of myopic, locally optimal algorithm is
called greedy in computer science, and the decoding algorithm I just explained is called
greedy decoding. However, just because you are maximizing the probability of individual
words at each step doesn’t mean you are maximizing the probability of the whole sen-
tence. Greedy algorithms, in general, are not guaranteed to produce the globally opti-
mal solution, and using greedy decoding can leave you stuck with suboptimal
translations. This is not very intuitive to understand, so let me use a simple example to
illustrate this.

 When you are picking words at each timestep, you have multiple words to pick
from. You pick one of them and move on to the next RNN cell, which produces
another set of possible words to pick from, depending on the word you picked previ-
ously. This can be represented using a tree structure like the one shown in figure 6.15.
The diagram shows how the word you pick at one timestep (e.g., “did”) branches out
to another set of possible words (“you” and “not”) to pick from at the next timestep.
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Figure 6.15 A decoding decision tree

Each transition from word to word is labeled with a score, which corresponds to how
large the probability of choosing that transition is. Your goal here is to maximize the
total sum of the scores when you traverse one path from timestep 1 to 4. Mathemati-
cally, probabilities are real numbers between 0 to 1, and you should multiply (instead
of add) each probability to get the total, but I’m simplifying things here. For example,
if you go from “Mary” to “did,” then on to “you” and “do,” you just generated a sen-
tence “Mary did you do” and the total score is 1 + 5 + 1 = 7.

 The greedy decoder we saw earlier will face two choices after it generates “did” at
timestep 2: either generate “you” with a score of 5 or “not” with a score of 3. Because
all it does is pick the one with the highest score, it will pick “you” and move on. Then
it will face another branch after timestep 3—generating “do” with a score of 1 or gen-
erating “know” with a score of 2. Again, it will pick the largest score, and you will end
up with the translation “Mary did you know” whose score is 1+ 5 + 1 = 8.

 This is not a bad result. At least, it is not as bad as the first path, which sums up to a
score of 7. By picking the maximum score at each branch, you are making sure that
your final result is at least decent. However, what if you picked “not” at timestep 3? At
first glance, this doesn’t seem like a good idea, because the score you get is only 3,
which is smaller than you’d get by taking the other path, 5. But at the next timestep,
by generating “slap,” you get a score of 5. In retrospect, this was the right thing to
do—in total, you get 1 + 3 + 5 = 9, which is larger than any scores you’d get by taking
the other “you” path. By sacrificing short-term rewards, you are able to gain even
larger rewards in the long run. But due to the myopic nature of the greedy decoder, it
will never choose this path—it can’t backtrack and change its mind once it’s taken one
branch over another.

 Choosing which way to go to maximize the total score seems easy if you look at the
toy example in figure 6.15, but in reality, you can’t “foresee” the future—if you are at
timestep t, you can’t predict what will happen at timestep t + 1 and onward, until you
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actually choose one word and feed it to the RNN. But the path that maximizes the
individual probability is not necessarily the optimal solution. You just can’t try every
possible path and see what score you’d get, either, because the vocabulary usually con-
tains tens of thousands of unique words, meaning the number of possible paths is
exponentially large.

 The sad truth is that you can’t realistically expect to find the optimal path that
maximizes the probability for the entire sentence within a reasonable amount of time.
But you can avoid being stuck (or at least, make it less likely to be stuck) with a sub-
optimal solution, which is what the beam search decoder does.

6.4.4 Beam search decoding

Let’s think what you would do if you were in the same situation. Let’s use an analogy
and say you are a college sophomore and need to decide which major to pursue by the
end of the school year. Your goal is to maximize the total amount of income (or happi-
ness or whatever thing you care about) over the course of your lifetime, but you don’t
know which major is the best for this. You can’t simply try every possible major and see
what happens after a couple of years—there are too many majors and you can’t go
back in time. Also, just because some particular majors look appealing in the short
run (e.g., choosing an economics major may lead to some good internship opportuni-
ties at large investment banks) doesn’t mean that path is the best in the long run (see
what happened in 2008). 

 In such a situation, one thing you could do is to hedge your bet by pursuing more
than one major (as a double major or a minor) at the same time instead of commit-
ting 100% to one particular major. After a couple of years, if the situation is more dif-
ferent than you had imagined, you can still change your mind and pursue another
option, which is not possible if you choose your major greedily (i.e., based only on the
short-term prospects).

 The main idea of beam search decoding is similar to this—instead of committing
to one path, it purses multiple paths (called hypotheses) at the same time. In this way,
you leave some room for “dark horses,” that is, hypotheses that had low scores at first
but may prove promising later. Let’s see this in action using the example in figure
6.16, a slightly modified version of figure 6.15.

 The key idea of beam search decoding is to use a beam (figure 6.16 bottom), which
you can think of as some sort of buffer that can retain multiple hypotheses at the same
time. The size of the beam, that is, the number of hypotheses it can retain, is called the
beam width. Let’s use a beam of size 2 and see what happens. Initially, your first hypoth-
esis consists of only one word, “Mary,” and a score of 0. When you move on to the next
word, the word you chose is appended to the hypothesis, and the score is incremented
by the score of the path you have just taken. For example, when you move on to “did,”
it will make a new hypothesis consisting of “Mary did” and a score of 1.

 If you have multiple words to choose from at any particular timestep, a hypothesis
can spawn multiple child hypotheses. At timestep 2, you have three different
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choices—“you,” “not,” and “n’t”—which generate three new child hypotheses: [Mary
did you] (6), [Mary did not] (4), and [Mary did n’t] (3). And here’s the key part of
beam search decoding: because there’s only so much room in the beam, any hypothe-
ses that are not good enough fall off of the beam after sorting them by their scores.
Because the beam can hold up to only two hypotheses in this example, anything
except the top two gets kicked out of the beam, which leaves [Mary did you] (6) and
[Mary did not] (4).

 At timestep 3, each remaining hypothesis can spawn up to two child hypotheses.
The first one ([Mary did you] (6)) will generate [Mary did you know] (8) and [Mary
did you do] (7), whereas the second one ([Mary did not] (4)) turns into [Mary did
not slap] (9). These three hypotheses are sorted by their scores, and the best two will
be returned as the result of the beam search decoding.

 Congratulations—now your algorithm was able to find the path that maximizes the
total sum of the scores. By considering multiple hypotheses at the same time, beam
search decoding can increase the chance that you will find better solutions. However,
it is never perfect—notice that an equally good path [Mary did n’t do] with a score of
9 fell out of the beam as early as timestep 3. To “rescue” it, you’d need to increase the
beam width to 3 or larger. In general, the larger the beam width, the higher the
expected quality of the translation results will be. However, there’s a tradeoff: because
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the computer needs to consider multiple hypotheses, it will be linearly slower as the
beam width increases.

 In Fairseq, you can use the --beam option to change the beam size. In the exam-
ple in section 6.3.3, I used --beam 5 to use a beam width of 5. You were already using
beam search without noticing. If you invoke the same command with --beam 1,
which means you are using greedy decoding instead of a beam search, you may get
slightly different results. When I tried this, I got almost the same results except the last
one: “counts, please,” which is not a great translation for “La cuenta, por favor.” This
means using a beam search indeed helps improve the translation quality!

6.5 Evaluating translation systems
In this section, I’d like to briefly touch on the topic of evaluating machine translation
systems. Accurately evaluating MT systems is an important topic, both in theory and
practice.

6.5.1 Human evaluation

The simplest and the most accurate way to evaluate MT systems’ output is to use
human evaluation. After all, language is translated for humans. Translations that are
deemed good by humans should be good.

 As mentioned previously, we have a few considerations for what makes a translation
good. There are two most important and commonly used concepts for this—adequacy
(also called fidelity) and fluency (also closely related to intelligibility). Adequacy is the
degree to which the information in the source sentence is reflected in the translation.
If you can reconstruct a lot of information expressed by the source sentence by reading
its translation, then the translation has high adequacy. Fluency is, on the other hand,
how natural the translation is in the target language. If you are translating into English,
for example, “Mary did not slap the green witch” is a fluent translation, whereas “Mary
no had a hit with witch, green” is not, although both translations are almost equally
adequate. Note that these two aspects are somewhat independent—you can think of a
translation that is fluent but not adequate (e.g., “Mary saw a witch in the forest” is a per-
fectly fluent but inadequate translation) and vice versa, like the earlier example. MT
systems that produce output that is both adequate and fluent are desirable.

 An MT system is usually evaluated by presenting its translations to human annota-
tors and having them judge its output on a 5- or 7-point scale for each aspect. Fluency
is easier to judge because it requires only monolingual speakers of the target sentence,
whereas adequacy requires bilingual speakers of both the source and target languages.

6.5.2 Automatic evaluation

Although human evaluation gives the most accurate assessment to MT systems’ qual-
ity, it’s not always feasible. In most cases, you cannot afford to hire human evaluators
to assess an MT system’s output every time you need it. If you are dealing with lan-
guage pairs that are not common, you might not be able to find bilingual speakers for
evaluating adequacy at all.
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 But more importantly, you need to constantly evaluate and monitor an MT sys-
tem’s quality when you are developing one. For example, if you use a Seq2Seq model
to train an NMT system, you need to reevaluate its performance every time you adjust
one of the hyperparameters. Otherwise, you wouldn’t know whether your change has
a good or bad effect on its final performance. Even worse, if you were to do something
like early stopping (see section 6.3.2) to determine when to stop the training process,
you would need to evaluate its performance after every epoch. You can’t possibly hire
somebody and have them evaluate your intermediate models at each epoch—that
would be a terribly slow way to develop an MT system. It’s also a huge waste of time,
because the output of initial models is largely garbage and does not warrant human
evaluation. A large amount of correlation exists between the outputs of intermediate
models, and human evaluators would be spending a lot of time evaluating very similar,
if not identical, sentences.

 For this reason, it’d be desirable if we could use some automatic way to assess trans-
lation quality. The way this works is similar to some automatic metrics for other NLP
tasks that we saw earlier, such as accuracy, precision, recall, and F1-measure for classifi-
cation. The idea is to create the desirable output for each input instance in advance
and compare a system’s output against it. This is usually done by preparing a set of
human-created translations called reference for each source sentence and calculating
some sort of similarity between the reference and a system’s output. Once you create
the reference and define the metric, you can automatically evaluate translation quality
as many times as you want.

 One of the simplest ways to compute the similarity between the reference and a
system output is to use the word error rate (WER). WER reflects how many errors the
system made compared to the reference, measured by the relative number of inser-
tions, deletions, and substitutions. The concept is similar to the edit distance, except
that WER is counted for words, not characters. For example, when the reference sen-
tence is “Mary did not slap the green witch” and a system translation is “Mary did hit
the green wicked witch,” you need three “edits” to match the latter to the former—
insert “not,” replace “hit” with “slap,” and delete “wicked.” If you divide three by the
length of the reference (= 7), it’s your WER (= 3/7, or 0.43). The lower the WER, the
better the quality of your translation.

 Although WER is simple and easy to compute, it is not widely used for evaluating
MT systems nowadays. One reason is related to multiple references. There may be
multiple, equally valid translations for a single source sentence, but it is not clear how
to apply WER when there are multiple references. A slightly more advanced and by far
the most commonly used metric for automatic evaluation in MT is BLEU (bilingual
evaluation understudy). BLEU solves the problem of multiple references by using
modified precision. I’ll illustrate this next using a simple example.

 In the following table, we are evaluating a candidate (a system’s output) “the the
the the the the the” (which is, by the way, a terrible translation) against two refer-
ences: “the cat is on the mat” and “there is a cat on the mat.” The basic idea of BLEU
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is to calculate the precision of all unique words in the candidate. Because there’s only
one unique word in the candidate, “the,” if you calculate its precision, it will automati-
cally become the candidate’s score, which is 1, or 100%. But there seems to be some-
thing wrong about this.

Because only two “thes” exist in the references, the spurious “thes” generated by the
system shouldn’t count toward the precision. In other words, we should treat them as
false positives. We can do this by capping the denominator of precision by the maxi-
mum number of occurrences of that word in any of the references. Because it’s 2 in
this case (in reference 1), its modified precision will be 2/7, or about 29%. In prac-
tice, BLEU uses not only unique words (i.e., unigrams) but also all unique sequences
of words (n-grams) up to a length of 4 in the candidate and the references. 

 However, we can game this metric in another way—because it’s based on precision,
not on recall, an MT system can easily obtain high scores by producing very few words
that the system is confident about. In the previous example, you can simply produce
“cat” (or even more simply, “the”), and the BLEU score will be 100%, which is obvi-
ously not a good translation. BLEU solves this issue by introducing the brevity penalty,
which discounts the score if the candidate is shorter than the references.

 Development of accurate automatic metrics has been an active research area.
Many new metrics are proposed and used to address the shortcomings of BLEU. We
barely scratched the surface in this section. Although new metrics show higher cor-
relations with human evaluations and are claimed to be better, BLEU is still by far the
most widely used metric, mainly due to its simplicity and long tradition.

6.6 Case study: Building a chatbot
In this section, I’m going to go over another application of a Seq2Seq model—a chat-
bot, which is an NLP application with which you can have a conversation. We are
going to build a very simple yet functional chatbot using a Seq2Seq model and discuss
techniques and challenges in building intelligent agents.

6.6.1 Introducing dialogue systems

I briefly touched upon dialogue systems in section 1.2.1. To recap, two main types of
dialogue systems exist: task-oriented and chatbots. Although task-oriented dialogue
systems are used to achieve some specific goals, such as making a reservation at a
restaurant and obtaining some information, chatbots are used to have conversations
with humans. Conversational technologies are currently a hot topic among NLP prac-
titioners, due to the success and proliferation of commercial conversational AI sys-
tems such as Amazon Alexa, Apple Siri, and Google Assistant. 

Candidate the the the the the the the

Reference 1 the cat is on the mat

Reference 2 there is a cat on the mat
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 You may not have a clue as to how we can get started with building an NLP applica-
tion that can have conversations. How can we build something “intelligent” that
“thinks” so that it can generate meaningful responses to human input? This seems far-
fetched and difficult. But if you step back and look at a typical conversation we have
with other people, how much of it is actually “intelligent?” If you are like most of us, a
large fraction of the conversation you are having is autopilot: “How are you?” “I’m
doing good, thanks” “Have a good day” “You, too!” and so on. You may also have a set
of “template” responses to a lot of everyday questions such as “What do you do?” and
“Where are you from?” These questions can be answered just by looking at the input.
Even more complex questions like “What’s your favorite restaurant in X?” (where X is
the name of a neighborhood in your city) and “Did you see any Y movies lately?”
(where Y is a genre) can be answered just by “pattern matching” and retrieving rele-
vant information from your memory. 

 If you think of a conversation as a set of “turns” where the response is generated by
pattern matching against the previous utterance, this starts to look a lot like a typical
NLP problem. In particular, if you regard dialogues as a problem where an NLP sys-
tem is simply converting your question to its response, this is exactly where we can
apply the Seq2Seq models we covered in this chapter so far. We can treat the previous
(human’s) utterance as a foreign sentence and have the chatbot “translate” it into
another language. Even though these two languages are both English in this case, it is
a common practice in NLP to treat the input and the output as two different lan-
guages and apply a Seq2Seq model to them, including summarization (longer text to
a shorter one) and grammatical error correction (text with errors to one without).

6.6.2 Preparing a dataset

In this case study, we are going to use The Self-dialogue Corpus (https://github.com/
jfainberg/self_dialogue_corpus), a collection of 24,165 conversations. What’s special
about this dataset is that these conversations are not actual ones between two people,
but fictitious ones written by one person who plays both sides. You could use several
conversation datasets for text-based chatbots (e.g., the OpenSubtitles dataset, http://
opus.nlpl.eu/OpenSubtitles-v2018.php), but these datasets are often noisy and often
contain obscenities. By collecting made-up conversations instead, the Self-dialogue
Corpus improves the quality for half the original cost (because you need only one per-
son versus two people!).

 The same as earlier, I tokenized and converted the corpus into a format that is
interpretable by Fairseq. You can obtain the converted dataset as follows:

$ mkdir -p data/chatbot
$ wget https://realworldnlpbook.s3.amazonaws.com/data/chatbot/selfdialog.zip
$ unzip selfdialog.zip -d data/chatbot

You can use the following combination of the paste command (to stitch files hori-
zontally) and the head command to peek at the beginning of the training portion.

https://github.com/jfainberg/self_dialogue_corpus
https://github.com/jfainberg/self_dialogue_corpus
http://opus.nlpl.eu/OpenSubtitles-v2018.php
http://opus.nlpl.eu/OpenSubtitles-v2018.php
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Note that we are using fr (for “foreign,” not “French”) to denote the “language” we
are translating from:

$ paste data/chatbot/selfdialog.train.tok.fr data/chatbot/
selfdialog.train.tok.en | head 

...
Have you played in a band ?    What type of band ?
What type of band ?    A rock and roll band .
A rock and roll band .    Sure , I played in one for years .
Sure , I played in one for years .    No kidding ?
No kidding ?    I played in rock love love .
I played in rock love love .    You played local ?
You played local ?    Yes
Yes    Would you play again ?
Would you play again ?    Why ?
...

As you can see, each line consists of an utterance (on the left) and a response to it (on
the right). Notice that this dataset has the same structure as the Spanish-English paral-
lel corpus we used in section 6.3.1. The next step is to run the fairseq-preprocess
command to convert it to a binary format as follows:

$ fairseq-preprocess \
    --source-lang fr \
    --target-lang en \
    --trainpref data/chatbot/selfdialog.train.tok \
    --validpref data/chatbot/selfdialog.valid.tok \
    --destdir data/chatbot-bin \
    --thresholdsrc 3 \
    --thresholdtgt 3

Again, this is similar to what we ran for the Spanish translator example. Just pay atten-
tion to what you specify as the source language—we are using fr instead of es here.

6.6.3 Training and running a chatbot

Now that the training data for the chatbot is ready, let’s train a Seq2Seq model from
this data. You can invoke the fairseq-train command with almost identical param-
eters to the last time, as shown next:

$ fairseq-train \
    data/chatbot-bin \
    --arch lstm \
    --share-decoder-input-output-embed \
    --optimizer adam \
    --lr 1.0e-3 \
    --max-tokens 4096 \
    --save-dir data/chatbot-ckpt

As previously, pay attention to how the validation loss changes every epoch. When I
tried this, the validation loss decreased for about five epochs but then started to slowly
creep back up. Feel free to stop the training command by pressing Ctrl + C after you
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observe the validation loss leveling out. Fairseq will automatically save the best model
(measured by the validation loss) to checkpoint_best.pt.

 Finally, you can run the chatbot model by invoking the fairseq-interactive
command, as shown here:

$ fairseq-interactive \
    data/chatbot-bin \
    --path data/chatbot-ckpt/checkpoint_best.pt \
    --beam 5 \
    --source-lang fr \
    --target-lang en

As with the previous example, you can type your source sentences and have a conver-
sion with your chatbot by having them “translate” to another language! Here’s part of
a conversation that I had with the model that I trained (I added boldface for clarity).
Again, your results might be different:

Hi !
S-0     Hi !
H-0     -1.011711835861206      Hey .
P-0     -0.6860 -2.1352 -0.2140
How are you ?
S-1     How are you ?
H-1     -0.6552960276603699     Doing good , you ?
P-1     -0.6472 -0.8651 -1.0960 -0.9257 -0.3337 -0.0640
Good .
S-2     Good .
H-2     -0.8540937900543213     Do you have a favorite team ?
P-2     -2.3027 -0.0550 -1.7088 -0.4403 -0.1763 -2.0262 -0.1150 -0.0085
Yeah I like the Seahawks .
S-3     Yeah I like the Seahawks .
H-3     -0.6036218404769897     Do you have a favorite team ?
P-3     -2.7614 -0.0525 -1.0905 -0.3178 -0.3213 -0.1049 -0.1701 -0.0106
How about you ?
S-4     How about you ?
H-4     -1.2329542636871338     I 'm a big fan of them .
P-4     -0.7648 -1.8435 -1.6808 -1.2868 -0.2102 -0.1362 -3.5273 -1.0031 -0.6438
What 's your favorite movie ?
S-5     What 's your favorite movie ?
H-5     -0.8238655924797058     Oh , that 's a tough one . I 'd have to say 

Ghost Busters .
P-5     -3.2622 -0.3213 -1.4815 -0.1012 -0.3417 -0.3069 -0.2432 -0.6954 -

1.0858 -2.3246 -0.4296 -0.0039 -0.0905 -2.6429 -0.1676 -0.3853 -0.1221
Oh yeah , I like that movie too .
S-6     Oh yeah , I like that movie too .
H-6     -1.0659444332122803     Yeah , that 's a good one .
P-6     -2.0782 -0.1724 -2.5089 -0.9560 -1.5034 -0.9040 -0.4471 -0.5435 -0.4801

In this example, the conversation looks natural. Because the Self-dialogue Corpus is
built by restricting the set of possible conversation topics, the conversation is more
likely to go smoothly if you stay on such topics (movie, sports, music, and so on).



169Case study: Building a chatbot

 However, as soon as you start talking about unfamiliar topics, the chatbot loses its
confidence in its answers, as shown next:

What 's your name ?
S-0     What 's your name ?
H-0     -0.9807574152946472     I do n't know , but I do n't think I 've

                           heard of them .
P-0     -1.4680 -2.2938 -0.0635 -1.0242 -1.2039 -0.5201 -0.3381 -2.2612 -

0.1665 -1.6033 -0.6112 -1.5515 -0.8739 -0.8453 -1.0143 -0.4702 -0.3637
What do you do ?
S-1     What do you do ?
H-1     -1.170507788658142      I do n't know .
P-1     -0.9807 -2.1846 -0.3276 -0.9733 -1.3650 -1.1919
Are you a student ?
S-2     Are you a student ?
H-2     -0.9505285024642944     I 'm not sure .
P-2     -1.5676 -1.5270 -0.6944 -0.2493 -0.8445 -0.8204

This is a well-known phenomenon—a simple Seq2Seq-based chatbot quickly regresses
to producing cookie-cutter answers such as “I don’t know” and “I’m not sure” when-
ever asked about something it’s not familiar with. This has to do with the way we
trained this chatbot. Because we trained the model so that it minimizes the loss in the
training data, the best strategy it can take to reduce the loss is to produce something
applicable to as many input sentences as possible. Very generic phrases such as “I
don’t know” can be an answer for many questions, so it’s a great way to play it safe and
reduce the loss!

6.6.4 Next steps

Although our chatbot can produce realistic-looking responses for many inputs, it’s far
from perfect. One issue that it’s not great at dealing with is proper nouns. You can see
this when you ask questions that solicit specific answers, like the following:

What 's your favorite show ?
S-0     What 's your favorite show ?
H-0     -0.9829921722412109     I would have to say <unk> .
P-0     -0.8807 -2.2181 -0.4752 -0.0093 -0.0673 -2.9091 -0.9338 -0.3705

Here <unk> is the catch-all special symbol for unknown words. The chatbot is trying to
answer something, but that something occurs too infrequently in the training data to
be treated as an independent word. This is an issue seen in simple NMT systems in gen-
eral. Because the models need to cram everything about a word in a 200-something-
dimensional vector of numbers, many details and distinctions between similar words
are sacrificed. Imagine compressing all the information about all the restaurants in
your city into a 200-dimensional vector!

 Also, the chatbot we trained doesn’t have any “memory” or any notion of context
whatsoever. You can test this by asking a series of related questions as follows:

Do you like Mexican food ?
S-0     Do you like Mexican food ?
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H-0     -0.805641770362854      Yes I do .
P-0     -1.0476 -1.1101 -0.6642 -0.6651 -0.5411
Why do you like it ?
S-1     Why do you like it ?
H-1     -1.2453081607818604     I think it 's a great movie .
P-1     -0.7999 -2.1023 -0.7766 -0.7130 -1.4816 -2.2745 -1.5750 -1.0524 -0.4324

In the second question, the chatbot is having difficulties understanding the context
and produces a completely irrelevant response. To answer such questions correctly,
the model needs to understand that the pronoun “it” refers to a previous noun,
namely, “Mexican food” in this case. The task where NLP systems resolve which men-
tions refer to which entities in the real world is called coreference resolution. The system
also needs to maintain some type of memory to keep track of what was discussed so far
in the dialogue. 

 Finally, the simple Seq2Seq models we discussed in this chapter are not great at
dealing with long sentences. If you look back at figure 6.2, you’ll understand why—the
model reads the input sentence using an RNN and represents everything about the
sentence using a fixed-length sentence representation vector and then generates the
target sentence from that vector. It doesn’t matter whether the input is “Hi!” or “The
quick brown fox jumped over the lazy dog.” The sentence representation becomes a
bottleneck, especially for longer input. Because of this, neural MT models couldn’t
beat traditional phrase-based statistical MT models until around 2015, when a mecha-
nism called attention was invented to tackle this very problem. We’ll discuss attention
in detail in chapter 8. 

Summary
 Sequence-to-sequence (Seq2Seq) models transform one sequence into another

using an encoder and a decoder.
 You can use the fairseq framework to build a working MT system within an

hour.
 A Seq2Seq model uses a decoding algorithm to generate the target sequence.

Greedy decoding maximizes the probability at each step, whereas beam search
tries to find better solutions by considering multiple hypotheses at once.

 A metric called BLEU is commonly used for automatically evaluating MT systems.
 A simple chatbot can be built by using a Seq2Seq model and a conversation

dataset.
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Convolutional
neural networks

In previous chapters, we covered linear layers and RNNs, two main neural network
architectures commonly used in NLP. In this chapter, we introduce another import-
ant class of neural networks called convolutional neural networks (CNNs). CNNs have
different characteristics than RNNs that make them suitable for NLP tasks where
detecting linguistic patterns is important, such as text classification.

This chapter covers
 Solving text classification by detecting patterns

 Using convolutional layers to detect patterns 
and produce scores

 Using pooling layers to aggregate the scores 
produced by convolution

 Building a convolutional neural network (CNN) 
by combining convolution and pooling

 Building a CNN-based text classifier using 
AllenNLP
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7.1 Introducing convolutional neural networks (CNNs)
This section introduces convolutional neural networks (CNNs), another type of neu-
ral network architecture that operates in a different way from how RNNs work. CNNs
are particularly good at pattern-matching tasks and are increasingly popular in the
NLP community.

7.1.1 RNNs and their shortcomings

In chapter 4, we covered sentence classification, which is an NLP task that receives
some text as the input and produces a label for it. We also discussed how to use recur-
rent neural networks (RNNs) for that task. As a refresher, an RNN is a type of neural
network that has a “loop” in it, which processes the input sequence one element at a
time from the beginning until the end. The internal loop variable, which is updated at
every step, is called the hidden state. When the RNN finishes processing the entire
sequence, the hidden state at the final timestep represents the compressed content of
the input sequence, which can be used for NLP tasks including sentence classification.
Alternatively, you can take out the hidden state after every step and use it to assign
labels (such as PoS and named entity tags) to individual words. The structure that is
applied repeatedly in the loop is called a cell. An RNN with a simple multiplication
and nonlinearity is called a vanilla or an Elman RNN. On the other hand, LSTM and
GRU-based RNNs use more complicated cells that employ memory and gating.

 RNNs are a powerful tool in modern NLP with a wide range of applications; how-
ever, they are not without shortcomings. First, RNNs are slow—they need to scan the
input sequence element by element no matter what. Their computational complexity
is proportional to the length of the input sequences. Second, due to their sequential
nature, RNNs are hard to parallelize. Think of a multilayer RNN where multiple RNN
layers are stacked on top of each other (as shown in figure 7.1). In a naive implemen-
tation, each layer needs to wait until all the layers below it finish processing the input.

 Third, the RNN structure is simply overkill and inefficient for some tasks. For
example, recall the task of detecting grammatical English sentences that we covered
in chapter 4. In its simplest form, the task is to recognize valid and invalid subject-verb
agreement in a two-word sentence. If a sentence contains phrases such as “I am” and
“you are,” it’s grammatical. If it contains “I are” or “you am,” it’s not. In chapter 4, we
built a simple LSTM-RNN with a nonlinearity to recognize the grammaticality of two-
word sentences with a vocabulary of four words. But what if you need to classify
whether an arbitrary long sentence with a very large vocabulary is grammatical? Sud-
denly, this process starts to sound very complex. Your LSTM needs to learn to pick up
the signal (subject-verb agreement) from a large amount of noise (all other words and
phrases that have nothing to do with agreement), while learning to do all this using
the update operation that gets repeated for every single element of the input.

 But if you think about it, no matter how long the sentence is or how large the
vocabulary is, your network’s job should still be quite simple—if the sentence contains
valid collocations (such as “I am” and “you are”), it’s grammatical. Otherwise, it’s not.
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The task is actually not very far from the “if-then” sentiment analyzer that we saw in
chapter 1. It is obvious that the structure of LSTM RNNs is overkill for this task, where
simple pattern matching over words and phrases would suffice.

7.1.2 Pattern matching for sentence classification

If you look at text classification in general, many tasks can be effectively solved by this
“pattern matching.” Take spam filtering, for example—if you want to detect spam
emails, simply look for words and phrases such as “v1agra” and “business opportunity”
without even reading the entire email; it doesn’t matter where these patterns appear. If
you want to detect sentiment from movie reviews, detecting positive and negative words
such as “amazing” and “awful” would go a long way. In other words, learning and detect-
ing such local linguistic patterns, regardless of their location, is an effective and effi-
cient strategy for text-classification tasks, and possibly for other NLP tasks as well.

 In chapter 3, we learned the concept of n-grams—contiguous sequences of one or
more words. They are often used in NLP as proxies for more formally defined linguis-
tic units such as phrases and clauses. If there’s some tool that can wade through a
large amount of noise in text and detect n-grams that serve as signals, it would be a
great fit for text classification.

Layer 1

Layer 2

init_state()

...update update update update update

...update update update update update

init_state()

state state state state state

v("time") v("flies") v("like") v("arrow") v(".")

Figure 7.1 Multilayer RNN
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7.1.3 Convolutional neural networks (CNNs)

Convolutional neural networks, or CNNs, do exactly this. A CNN is a type of neural
network that involves a mathematical operation called convolution, which, put simply,
detects local patterns that are useful for the task at hand. A CNN usually consists of
one or more convolutional layers, which do convolution, and pooling layers, which
are responsible for aggregating the result of convolution. See figure 7.2 for a diagram.
Sections 7.2 and 7.3 provide some detail of convolutional layers and pooling layers,
respectively.

CNNs, which are inspired by the visual system in the human brain, have been widely
used for computer vision tasks such as image classification and object detection. In
recent years, the use of CNNs has been increasingly popular in NLP, especially for
tasks such as text classification, sequential labeling, and machine translation.

7.2 Convolutional layers
In this section, we’ll discuss convolutional layers, the essential part of the CNN archi-
tecture. The term convolution may sound a bit scary, but at its essence, it’s just pattern
matching. We’ll use diagrams and intuitive examples to illustrate how it really works.

Convolutional neural network (CNN)

Convolutional
layer

 

Pooling
layer

 

v("i") v("am") v("a") v("student") v(".")

Linear
layer

 

Softmax

Distribution
over

labels
 

Figure 7.2
Convolutional 
neural network
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7.2.1 Pattern matching using filters

Convolutional layers are the most important component in CNNs. As mentioned ear-
lier, convolutional layers apply a mathematical operation called convolution to input
vectors and produce output. But what is convolution? Understanding the strict defini-
tion of convolution requires knowing linear algebra, so we’ll use some analogy and
concrete examples to understand it. Imagine holding a rectangular-shaped patch of
colored glass with complex patterns (like the stained glass you see in a church) and
sliding it over the input sequence while looking through it. If the input pattern
matches that of the patch, more light goes through the glass and you get larger output
values. If the input pattern does not look like that of the patch or looks the opposite,
you get smaller output values. In other words, you are looking for particular patterns
in the input sequence using a patch of colored glass.

 This analogy is a little bit too vague, so let’s revisit the grammaticality-detection
example we used in chapter 4 and see how we’d apply a convolutional layer to the
task. To recap, our neural network receives a two-word sentence as an input and needs
to distinguish grammatical sequences from ungrammatical ones. There are only four
words in the vocabulary—“I,” “you,” “am,” and “are,” which are represented by word
embeddings. Similarly, there are only four possibilities for the input sentence—“I
am,” “I are,” “you am,” and “you are.” You want the network to produce 1s for the first
and the last cases and 0s for others. See figure 7.3 for an illustration.

Figure 7.3 Recognizing grammatical English sentences

Now, let’s represent word embeddings as patterns. We’ll draw a black circle for value
–1 and a white one for 1. Then you can represent each word vector as a pair of two circles
(see the table on the left in figure 7.3). Similarly, you can represent each two-word sen-
tence as a small “patch” of two vectors, or four circles (see the table on the right in figure
7.3). Our task is beginning to look more like a pattern-recognition task, where the net-
work needs to learn black-and-white patterns that correspond to grammatical sentences.

 Then, let’s think of a “filter” of the same size (two circles × two circles) that acts as
the colored glass we talked about earlier. Each circle of this filter is also either black or
white, corresponding to values –1 and 1. You are going to look at a pattern through
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this filter and determine whether the pattern is the one you are looking for. You do this
by putting the filter over a pattern and counting the number of color matches between
the two. For each one of four positions, you get a score of +1 if the colors match (black-
black or white-white) and a score of –1 if they don’t (black-white or white-black). Your
final score is the sum of four scores, which varies from –4 (no matches) to +4 (four
matches). See figure 7.4 for some examples.

 The score you get varies depending on the pattern and the filter, but as you can see
in the figure, the score becomes larger when the filter looks similar to the pattern and
becomes smaller when the two are not similar. You get the largest score (4) when the
two match exactly and the smallest score (–4) when the two are exactly opposite. The
filter acts as a pattern detector against the input. Although this is a very simplified
example, it basically shows what a convolutional layer is doing. In convolutional neu-
ral networks, such filters are called kernels.

 In a more general setting, you have an input sentence of arbitrary length, and you
slide a kernel over the sentence from left to right. See figure 7.5 for an illustration of
this. The kernel is repeatedly applied to two consecutive words to produce a sequence
of scores. Because the kernel we are using here covers two words, it is said to have a
size of 2. Also, because there are two dimensions in the input embeddings (which are
called channels), the number of the kernel’s input channels is 2.

 
 

NOTE The reason embedding dimensions are called channels is because
CNNs are most commonly applied to computer vision tasks where the input is
often a 2-D image of different channels that correspond to intensities of dif-
ferent colors (such as red, green, and blue). In computer vision, kernels are
two dimensional and move over the input 2-D images, which is also called 2-D
convolution. In NLP, however, kernels are usually one-dimensional (1-D convo-
lution) and have only one size.

7.2.2 Rectified linear unit (ReLU)

As the next step, let’s think about how we can get the desired output (the Desired col-
umn in figure 7.3) using kernels. How about if we use the filter shown in the second col-
umn of figure 7.4? The kernel, which we’ll call kernel 1 from now on, matches the first
pattern exactly and gives it a high score, while giving zero or negative scores to others.
Figure 7.6 shows the score (called score 1) when kernel 1 is applied to each pattern.
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Let’s forget the magnitude of the scores for now and focus on their signs (positive and
negative). The signs for the first three patterns match between Score 1 and Desired,
but not for the last pattern. To score it correctly—that is, to give it a positive score—
you need to use another filter that matches the last pattern exactly. Let’s call this
kernel 2. Figure 7.7 shows the score (called score 2) when kernel 2 is applied to each
pattern.

 Kernel 2 can give correct scores that match the signs of the desired ones for the
last three patterns, but not for the first one. But if you observe figures 7.6 and 7.7 care-
fully, it looks like you could get closer to the desired scores if there was a way to some-
how disregard the output when a kernel gives negative scores and then combine the
scores from multiple kernels. 

 Let’s think of a function that clamps any negative input to zero while passing any
positive values through unchanged. In Python, this function can be written as follows:

def f(x):
    if x >= 0:
        return x
    else:
        return 0

or even simpler 

def f(x):
    return max(0, x)

You can disregard negative values by applying this function to score 1 and score 2, as
shown in figures 7.8 and 7.9.
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This function, which is called a rectified linear unit, or ReLU (pronounced “rel-you”), is
one of the simplest yet most commonly used activation functions in deep learning. It
is often used with a convolutional layer, and although it is very simple (all it does is just
clamp negative values to zero), it is still an activation function that enables neural net-
works to learn complex nonlinear functions (see chapter 4 for why nonlinear activa-
tion functions are important). It also has favorable mathematical properties that make
it easier to optimize the network, although the theoretical details are beyond the
scope of this book.

7.2.3 Combining scores

If you look at both figures 7.8 and 7.9, the “clamped” scores—shown in the f(Score 1)
and f(Score 2) columns—capture the desired scores at least partially. All you need to
do is combine them together (by summing) and adjust the range (by dividing by 4).
Figure 7.10 shows the result of this.

Figure 7.10 Combining the results from two kernels

After combining, the scores match the desired outcomes exactly. All we did so far was
design kernels that match the patterns we want to detect and then simply combine the
scores. Compare this to the RNN example we worked on in section 4.1.3, where we
needed to use some complicated numeric computation to derive the parameters.
Hopefully this example is enough to show you how simple and powerful CNNs can be
for text classification!
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 The example we worked on in this section is simply for introducing the basic con-
cepts of CNNs, so we cut many corners. First, in practice, patterns and kernels are not
just black and white but contain real-valued numbers. The score after applying a ker-
nel to a pattern is obtained not by counting color matches but through a mathemati-
cal operation called inner product, which captures the similarity between the two.
Second, the scores produced by kernels aren’t combined by some arbitrary operation
(like we did in this section) but usually by a linear layer (see section 3.4.3), which can
learn a linear transformation against the input to produce the output. Finally, kernels
and the weights (magic constants w and b) in the final linear layer are all trainable
parameters of a CNN, meaning that their values are adjusted so that the CNN can pro-
duce the desired scores.

7.3 Pooling layers
In the previous section, we assumed that the input is just a
combination of two words—subjects and verbs—although
in practice, the input to a CNN can be of arbitrary length.
Your CNN needs to not only detect patterns but also find
them in a potentially large amount of noise in the input. As
we saw in section 7.2, you slide a kernel over the sentence
from left to right, and the kernel is repeatedly applied to
two consecutive words to produce a sequence of scores.
The remaining question is what to do with these produced
scores. Specifically, what operation should we use in the “?”
position in figure 7.11 to derive the desired score? This
operation needs to have some properties—it must be
something that can be applied to an arbitrarily large num-
ber of scores, because the sentence can be very long. It also
needs to aggregate the scores in a way that is agnostic to
where the target pattern (word embeddings for “I am”) is
in the input sentence. Can you figure out the answer?

 The simplest thing you can do to aggregate the scores is to take their maximum.
Because the largest score in figure 7.11 is 4, it will become the output of this layer.
This aggregation operation is called pooling, and the neural network substructure that
does pooling is called a pooling layer. You can also do other types of mathematical oper-
ations that do aggregation, such as taking the average, although taking the maximum
(called max pooling) is most commonly used.

 The pooled score will be fed to a linear layer, optionally combined with scores
from other kernels, and used as a predicted score. This entire process is illustrated in
figure 7.12. Now we have a fully functional CNN!

 As with other neural networks we’ve seen so far, the output from the linear layer is
fed to softmax to produce a probability distribution over labels. These predicted val-
ues are then compared with the true labels to produce the loss and used for optimiz-
ing the network.
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Figure 7.11 Aggregating 
scores to derive the 
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   Before we wrap up, a few more words on
CNNs: notice that the CNN in figure 7.12
produces the same prediction value no mat-
ter where the search pattern (“I am”) is in
the input sentence. This is due to the kernel
locality as well as the property of the max
pooling layer we just added. In general,
CNNs produce the same prediction, even if
the input sentence is modified by shifting by
a few words. In a technical term, the CNN is
called transformation invariant, which is an
important property of CNNs. This property
is perhaps more intuitive if you use an
image recognition example. An image of a
cat is still an image of a cat, no matter where
the cat is in the image. Similarly, a grammat-
ical English sentence (e.g., “I am a student”)
is still grammatical, even if the sentence is
transformed by adding a few words (e.g.,
“that’s right”) to the beginning, making it
“That’s right, I am a student.”

 Because the kernels in a CNN do not depend on each other (unlike RNNs, where
one cell needs to wait until all the preceding cells finish processing the input), CNNs
are computationally efficient. GPUs can process these kernels in parallel without wait-
ing on other kernels’ output. Due to this property, CNNs are usually faster than RNNs
of similar size.

7.4 Case study: Text classification
Now that we know the basics of CNNs, in this section we are going to build an NLP
application using a CNN and see how it works in practice. As mentioned previously,
one of the most popular and straightforward applications of CNNs in NLP is text clas-
sification. CNNs are good at detecting patterns (such as salient words and phrases in
text), which is also the key to accurate text classification. 

7.4.1 Review: Text classification

We already covered text classification in chapters 2 and 4, but to recap, text classifica-
tion is a task where an NLP system assigns a label to a given piece of text. If the text is
an email and the label is whether the email is spam, it’s spam filtering. If the text is a
document (such as a news article) and the label is its topic (such as politics, business,
technology, or sports), it’s called document classification. Many other variants of text
classification exist, depending on what the input and the output are. But the task we’ll
be working on in this section is again sentiment analysis, where the input is some text
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Figure 7.12 A full CNN with multiple kernels
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in which the writer’s subjective opinions are expressed (such as movie and product
reviews) and the output is the label for the opinion (such as positive or negative, or
even the number of stars), also called polarity.

 In chapters 2 and 4, we built an NLP system that detected the polarity given a
movie review using the Stanford Sentiment Treebank, a dataset containing movie
reviews and their polarity (strongly positive, positive, neutral, negative, or strongly
negative). In this section, we will build the same text classifier but with a CNN instead
of an RNN. The good news is that we can reuse most of the code we wrote in chapter 2
in this section—in fact, we need to modify only a few lines of code to swap the RNN
with a CNN. This is largely thanks to AllenNLP’s powerful, well-designed abstractions,
which let you work with many modules with different architectures through the com-
mon interfaces. Let’s see this in action next.

7.4.2 Using CnnEncoder

Remember that back in section 4.4, we defined our LstmClassifier for text classifi-
cation as follows:

class LstmClassifier(Model):
    def __init__(self,
                 embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 vocab: Vocabulary,
                 positive_label: str = '4') -> None:
    ...

We hadn’t put much thought into what this definition meant, but from this construc-
tor we can see that the model is built on top of two subcomponents: a TextField-
Embedder called embedder and a Seq2VecEncoder called encoder, in addition to
the vocabulary and the string for the positive label, which are not relevant to our dis-
cussion here. We discussed word embeddings in chapter 3 at length, although we only
briefly touched on the encoder. What does this Seq2VecEncoder actually mean?

 In AllenNLP, Seq2VecEncoder is a class of neural network architectures that take
a sequence of vectors (or tensors in general) and return a single vector. An RNN, one
example of this, takes a variable-length input consisting of multiple vectors and con-
verts it into a single vector at the last cell. We created an instance of Seq2VecEncoder
based on an LSTM-RNN using the following code:

encoder = PytorchSeq2VecWrapper(
    torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))

But as long as your component has the same input and output specifications, you can
use any neural network architecture as a Seq2VecEncoder. In programming lan-
guage, Seq2VecEncoder is analogous to an interface in Java (and in many other
languages)—interfaces define what your class looks like and what it does, but they do
not care about how your class does it. In fact, your model can do something as simple
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as just summing up all the input vectors to produce the output, without any complex
transformations such as nonlinearities. This is, in fact, what BagOfEmbeddings-
Encoder—one of the Seq2VecEncoders implemented in AllenNLP—does.

 Next, we use a CNN to “squash” a sequence of vectors into a single vector. A CNN-
based Seq2VecEncoder is implemented as CnnEncoder in AllenNLP, which can be
instantiated as follows:

encoder = CnnEncoder(
    embedding_dim=EMBEDDING_DIM,
    num_filters=8,
    ngram_filter_sizes=(2, 3, 4, 5))

In this example, embedding_dim specifies the dimensionality of the input embed-
dings. The second argument, num_filters, tells how many filters (or kernels, as
explained in section 7.2.1) will be used per n-gram. The final argument, ngram_
filter_sizes, specifies the list of n-gram sizes, which are the sizes of these kernels.
Here, we are using n-gram sizes of 2, 3, 4, and 5, meaning there are 8 kernels for
bigrams, 8 kernels for trigrams, and so on, up to 5-grams. In total, this CNN can learn
32 different kernels to detect patterns. CnnEncoder runs these results from the ker-
nels through a max pooling layer and comes up with a single vector that summarizes
the input.

 The rest of the training pipeline looks almost identical to the LSTM version we
saw in chapter 2. The entire code is available on Google Colab (http://www.realworld
nlpbook.com/ch7.html#cnn-nb). There is one caveat: because some n-gram filters
have a wide shape (e.g., 4- and 5-grams), you need to make sure that each text field is
at least that long, even when the original text is short (e.g., just one or two words).
You need to know how batching and padding work in AllenNLP (which we’ll cover in
chapter 10) to fully understand how to deal with this, but in a nutshell, you need to
specify the token_min_padding_length parameter when initializing the token
indexer as follows:

token_indexer = SingleIdTokenIndexer(token_min_padding_length=5)
reader = StanfordSentimentTreeBankDatasetReader(
    token_indexers={'tokens': token_indexer})

7.4.3 Training and running the classifier

When you run the script, you’ll see something like the following log output at the end
of the training: 

{'best_epoch': 1,
 'best_validation_accuracy': 0.40236148955495005,
 'best_validation_f1_measure': 0.37362638115882874,
 'best_validation_loss': 1.346440097263881,
 'best_validation_precision': 0.4722222089767456,
 'best_validation_recall': 0.30909091234207153,
 'epoch': 10,
 'peak_cpu_memory_MB': 601.656,
 'training_accuracy': 0.993562734082397,

http://www.realworldnlpbook.com/ch7.html#cnn-nb
http://www.realworldnlpbook.com/ch7.html#cnn-nb
http://www.realworldnlpbook.com/ch7.html#cnn-nb
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 'training_cpu_memory_MB': 601.656,
 'training_duration': '0:01:10.138277',
 'training_epochs': 10,
 'training_f1_measure': 0.994552493095398,
 'training_loss': 0.03471498479299275,
 'training_precision': 0.9968798756599426,
 'training_recall': 0.9922360181808472,
 'training_start_epoch': 0,
 'validation_accuracy': 0.35149863760217986,
 'validation_f1_measure': 0.376996785402298,
 'validation_loss': 3.045241366113935,
 'validation_precision': 0.3986486494541168,
 'validation_recall': 0.35757574439048767}

This means that the training accuracy reaches ~99%, whereas the validation accuracy
tops around 40%. Again, this is a typical symptom of overfitting, where your model is
so powerful that it fits the training data well, but it doesn’t generalize to the validation
and test datasets as well. Our CNN has many filters that can remember salient patterns
in the training data, but these patterns are not necessarily the ones that help predict
the labels for the validation instances. We are not worried too much about overfitting
in this chapter. See chapter 10 for common techniques for avoiding overfitting.

 If you want to make predictions for new instances, you can use the same Predic-
tor as we did in chapter 2. Predictors in AllenNLP are a thin wrapper around your
trained model, which take care of formatting the input and output in a JSON format
and feeding the instance to the model. You can use the following snippet to make pre-
dictions using your trained CNN model:

predictor = SentenceClassifierPredictor(model, dataset_reader=reader)
logits = predictor.predict('This is the best movie ever!')['logits']
label_id = np.argmax(logits)

print(model.vocab.get_token_from_index(label_id, 'labels'))

Summary
 CNNs use filters called kernels and an operation called convolution to detect

local linguistic patterns in the input.
 An activation function called ReLU, which clamps negative values to zero, is

used with convolution layers.
 CNNs then use pooling layers to aggregate the result from the convolutional

layer.
 CNN prediction is transformation invariant, meaning it remains unchanged

even after linear modification of the input.
 You can use a CNN-based encoder as a Seq2VecEncoder in AllenNLP by mod-

ifying a few lines of code of your text classifier.
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Attention and Transformer

Our focus so far in this book has been recurrent neural networks (RNNs), which are
a powerful model that can be applied to various NLP tasks such as sentiment analysis,
named entity recognition, and machine translation. In this chapter, we will intro-
duce an even more powerful model—the Transformer1—a new type of encoder-
decoder neural network architecture based on the concept of self-attention. It is
without a doubt the most important NLP model since it appeared in 2017. Not only

This chapter covers
 Using attention to produce summaries of the 

input and improve the quality of Seq2Seq models

 Replacing RNN-style loops with self-attention, a 
mechanism for the input to summarize itself 

 Improving machine translation systems with the 
Transformer model

 Building a high-quality spell-checker using the 
Transformer model and publicly available datasets

1 Vaswani et al., “Attention Is All You Need,” (2017). https://arxiv.org/abs/1706.03762.

https://arxiv.org/abs/1706.03762
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is it a powerful model itself (for machine translation and various Seq2Seq tasks, for
example), but it is also used as the underlying architecture that powers numerous mod-
ern NLP pretrained models, including GPT-2 (section 8.4.3) and BERT (section 9.2).
The developments in modern NLP since 2017 can be best summarized as “the era of the
Transformer.”

 In this chapter, we start with attention, a mechanism that made a breakthrough in
machine translation, then move on to introducing self-attention, the concept that
forms the foundation of the Transformer model. We will build two NLP applications—
a Spanish-to-English machine translator and a high-quality spell-checker—and learn
how to apply the Transformer model to your everyday applications. As we’ll see later,
the Transformer models can improve the quality of NLP systems over RNNs by a large
margin and achieve almost human-level performance in some tasks, such as translation
and generation. 

8.1 What is attention?
In chapter 6, we covered Seq2Seq models—NLP models that transform one sequence
to another using an encoder and a decoder. Seq2Seq is a versatile and powerful para-
digm with many applications, although the “vanilla” Seq2Seq models are not without
limitation. In this section, we discuss the Seq2Seq models’ bottleneck and motivate
the use of an attention mechanism.

8.1.1 Limitation of vanilla Seq2Seq models

Let’s remind ourselves how Seq2Seq models work. Seq2Seq models consist of an
encoder and a decoder. The decoder takes a sequence of tokens in the source lan-
guage and runs it through an RNN, which produces a fixed-length vector at the end.
This fixed-length vector is a representation of the input sentence. The decoder, which
is another RNN, takes this vector and produces a sequence in the target language,
token by token. Figure 8.1 illustrates how Spanish sentences are translated into
English with a vanilla Seq2Seq model.

Figure 8.1 A bottleneck in a vanilla Seq2Seq model

Maria no baba verde .

...

<START> Mary did witch .

Mary did

...

not . <END>
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Sentence
representation

Bottleneck!
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This Seq2Seq architecture is quite simple and powerful, but it is known that its vanilla
version (shown in figure 8.1) does not translate sentences as well as other traditional
machine translation algorithms (such as phrase-based statistical machine translation
models). You may be able to guess why this is the case if you look at its structure
carefully—its encoder is trying to “compress” all the information in the source sen-
tence into the sentence representation, which is a vector of some fixed length (e.g.,
256 floating-point numbers), and the decoder is trying to restore the entire target sen-
tence just from that vector. The size of the vector is fixed no matter how long (or how
short) the source sentence is. The intermediate vector is a huge bottleneck. If you
think of how humans actually translate between languages, this sounds quite difficult
and somewhat unusual. Professional translators do not just read the source sentence
and write down its translation in one breath. They refer to the source sentences as
many times as necessary to translate the relevant parts in the target sentence.

 Compressing all the information into one vector may (and does) work for short
sentences, as we’ll see later in section 8.2.2, but it becomes increasingly difficult as the
sentences get longer and longer. Studies have shown that the translation quality of a
vanilla Seq2Seq model gets worse as the sentence gets longer.2 

8.1.2 Attention mechanism

Instead of relying on a single, fixed-length vector to represent all the information in a
sentence, the decoder would have a much easier time if there was a mechanism where
it can refer to some specific part of the encoder as it generates the target tokens. This
is similar to how human translators (the decoder) reference the source sentence (the
encoder) as needed. 

 This can be achieved by using attention, which is a mechanism in neural networks
that focuses on a specific part of the input and computes its context-dependent sum-
mary. It is like having some sort of key-value store that contains all of the input’s infor-
mation and then looking it up with a query (the current context). The stored values
are not just a single vector but usually a list of vectors, one for each token, associated
with corresponding keys. This effectively increases the size of the “memory” the
decoder can refer to when it’s making a prediction.

 Before we discuss how the attention mechanism works for Seq2Seq models, let’s
see it in action in a general form. Figure 8.2 illustrates a generic attention mechanism
with the following features: 

1 The inputs to an attention mechanism are the values and their associated keys.
The input values can take many different forms, but in NLP, they are almost
always lists of vectors. For Seq2Seq models, the keys and values here are the hid-
den states of the encoder, which represent token-by-token encoding of the
input sentence. 

2 Bahdanau et al., “Neural Machine Translation by Jointly Learning to Align and Translate,” (2014). https://
arxiv.org/abs/1409.0473.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
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Figure 8.2 Using an attention mechanism to summarize the input

2 Each key associated with a value is compared against the query using an atten-
tion function f. By applying f to the query and each one of the keys, you get a
set of scores, one per key-value pair, which are then normalized to obtain a set
of attention weights. The specific function f depends on the architecture
(more on this later). For Seq2Seq models, this gives you a distribution over the
input tokens. The more relevant an input token is, the larger the weight it gets.

3 The input values are weighted by their corresponding weights obtained in step 2
and summed up to compute the final summary vector. For Seq2Seq models, this
summary vector is appended to the decoder hidden states to aid the translation
process.

Because of step 3, the output of an attention mechanism is always a weighted sum of
the input vectors, but how they are weighted is determined by the attention weights,
which are in turn are calculated from the keys and the query. In other words, what an
attention mechanism computes is a context (query)-dependent summary of the input. Down-
stream components of a neural network (e.g., the decoder of an RNN-based Seq2Seq
model, or the upper layers of a Transformer model) use this summary to further pro-
cess the input.

 In the following sections, we will learn the two most commonly used types of atten-
tion mechanisms in NLP—encoder-decoder attention (also called cross-attention; used
in both RNN-based Seq2Seq models and the Transformer) and self-attention (used in
the Transformer).

8.2 Sequence-to-sequence with attention
In this section, we’ll learn how the attention mechanism is applied to an RNN-based
Seq2Seq model for which the attention mechanism was first invented. We’ll study how
it works with specific examples, and then we’ll experiment with Seq2Seq models with
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and without the attention mechanism using fairseq to observe how it affects the
translation quality.

8.2.1 Encoder-decoder attention

As we saw earlier, attention is a mechanism for creating a summary of the input under
a specific context. We used a key-value store and a query as an analogy for how it
works. Let’s see how an attention mechanism is used with RNN-based Seq2Seq models
using the concrete examples that follow.  

 Figure 8.3 illustrates a Seq2Seq model with attention. It looks complex at first, but
it is just an RNN-based Seq2Seq model with some extra “things” added on top of the
encoder (the lightly shaded box in top left corner of the figure). If you ignore what’s
inside and see it as a black box, all it does is simply take a query and return some sort
of summary created from the input. The way it computes this summary is just a variant
of the generic form of attention we covered in section 8.1.2. It proceeds as follows:

1 The input to the attention mechanism is the list of hidden states computed by
the encoder. These hidden states are used as both keys and values (i.e., the keys
and the values are identical). The encoder hidden state at a certain token (e.g.,
at token “no”) reflects the information about that token and all the tokens lead-
ing up to it (if the RNN is unidirectional) or the entire sentence (if the RNN is
bidirectional).

2 Let’s say you finished decoding up to “Mary did.” The hidden states of the
decoder at that point are used as the query, which is compared against every key
using function f. This produces a list of attention scores, one per each key-value

Maria no daba verde .

...

<START> Mary did witch .

Mary did

...

not . <END>

Context
vector

Keys
Values

Attention
weights

Attention mechanism

fffff

Softmax

Weighted
sum
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Figure 8.3 Adding an attention mechanism to an RNN-based Seq2Seq model (the lightly shaded box)
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pair. These scores determine which part of the input the decoder should attend
to when it’s trying to generate a word that follows “Mary did.”

3 These scores are converted to a probability distribution (a set of positive values
that sum to one), which is used to determine which vectors should get the most
attention. The return value from this attention mechanism is the sum of all val-
ues, weighted by the attention scores after normalizing with softmax.

You may be wondering what the attention function f looks like. A couple of variants of
f are possible, depending on how it computes the attention scores between the key
and the query, but these details do not matter much here. One thing to note is that in
the original paper proposing the attention mechanism,3 the authors used a “mini”
neural network to calculate attention scores from the key and the query.

 This “mini” network-based attention function is not something you just plug in to
an RNN model post hoc and expect it to work. It is optimized as part of the entire
network—that is, as the entire network gets optimized by minimizing the loss func-
tion, the attention mechanism also gets better at generating summaries because doing
so well also helps the decoder generate better translation and lower the loss function.
In other words, the entire network, including the attention mechanism, is trained end
to end. This usually means that, as the network is optimized, the attention mechanism
starts to learn to focus only on the relevant part of the input, which is usually where
the target tokens are aligned with the source tokens. In other words, attention is calcu-
lating some sort of “soft” word alignment between the source and the target tokens.

8.2.2 Building a Seq2Seq machine translation with attention

In section 6.3, we built our first machine translation (MT) system using fairseq, an
NMT toolkit developed by Facebook. Using the parallel dataset from Tatoeba, we built
an LSTM-based Seq2Seq model to translate Spanish sentences into English.

 In this section, we are going to experiment with a Seq2Seq machine translation sys-
tem and see how attention affects the translation quality. We assume that you’ve already
gone through the steps we took when we built the MT system by downloading the data-
set and running the fairseq-preprocess and fairseq-train commands (section
6.3). After that, you ran the fairseq-interactive command to interactively trans-
late Spanish sentences into English. You might have noticed that the translation you get
from this MT system that took you just 30 minutes to build was actually decent. In fact,
the model architecture we used (--arch lstm) has an attention mechanism built in by
default. Notice when you ran the following fairseq-train command

$ fairseq-train \
    data/mt-bin \
    --arch lstm \
    --share-decoder-input-output-embed \
    --optimizer adam \

3 Bahdanau et al., “Neural Machine Translation by Jointly Learning to Align and Translate,” (2014). https://
arxiv.org/abs/1409.0473.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
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    --lr 1.0e-3 \
    --max-tokens 4096 \
    --save-dir data/mt-ckpt

you should have seen the dump of what your model looks like in your terminal as
follows:

...
LSTMModel(
  (encoder): LSTMEncoder(
    (embed_tokens): Embedding(16832, 512, padding_idx=1)
    (lstm): LSTM(512, 512)
  )
  (decoder): LSTMDecoder(
    (embed_tokens): Embedding(11416, 512, padding_idx=1)
    (layers): ModuleList(
      (0): LSTMCell(1024, 512)
    )
    (attention): AttentionLayer(
      (input_proj): Linear(in_features=512, out_features=512, bias=False)
      (output_proj): Linear(in_features=1024, out_features=512, bias=False)
    )
  )
)
...

This tells you that your model has an encoder and a decoder, but the decoder also has
a component called attention (which is of type AttentionLayer), shown in bold in
the code snippet. This is exactly the “mini-network” that we covered in section 8.2.1. 

 Now let’s train the same model, but without attention. You can add --decoder-
attention 0 to fairseq-train to disable the attention mechanism, while keeping
everything else the same, as shown here:

$ fairseq-train \
      data/mt-bin \
      --arch lstm \
      --decoder-attention 0 \
      --share-decoder-input-output-embed \
      --optimizer adam \
      --lr 1.0e-3 \
      --max-tokens 4096 \
      --save-dir data/mt-ckpt-no-attn

When you run this, you’ll see a similar dump, shown next, that shows the architecture
of the model but without attention:

LSTMModel(
  (encoder): LSTMEncoder(
    (embed_tokens): Embedding(16832, 512, padding_idx=1)
    (lstm): LSTM(512, 512)
  )
  (decoder): LSTMDecoder(
    (embed_tokens): Embedding(11416, 512, padding_idx=1)
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    (layers): ModuleList(
      (0): LSTMCell(1024, 512)
    )
  )
)

As we saw in section 6.3.2, the training process alternates between training and valida-
tion. In the training phase, the parameters of the neural network are optimized by the
optimizer. In the validation phase, these parameters are fixed, and the model is run on
a held-out portion of the dataset called the validation set. In addition to making sure the
training loss decreases, you should be looking at the validation loss during training,
because it better represents how well the model generalizes outside the training data. 

 During this experiment, you should observe that the lowest validation loss
achieved by the attention model is around 1.727, whereas that for the attention-less
model is around 2.243. Lower loss values mean the model is fitting the dataset better,
so this indicates the attention is helping improve the translation. Let’s see if this is
actually the case. As we’ve done in section 6.3.2, you can generate translations interac-
tively by running the following fairseq-interactive command:

$ fairseq-interactive \
    data/mt-bin \
    --path data/mt-ckpt/checkpoint_best.pt \
    --beam 5 \
    --source-lang es \
    --target-lang en

In table 8.1, we compare the translations generated by the model with and without
attention. The translations you get from the attention-based model are the same as
the ones we saw in section 6.3.3. Notice that the translations you get from the
attention-less model are a lot worse than those from the attention model. If you look
at the translations for “¿Hay habitaciones libres?” and “Maria no daba una bofetada a
la bruja verde,” you see unfamiliar tokens “<unk>” (for “unknown”) in them. What’s
happening here?

Table 8.1 Translation generated by the model with and without attention

Spanish (input) With attention Without attention

¡Buenos días! Good morning! Good morning!

¡Hola! Hi! Hi!

¿Dónde está el baño? Where’s the restroom? Where’s the toilet?

¿Hay habitaciones libres? Is there free rooms? Are there <unk> rooms?

¿Acepta tarjeta de crédito? Do you accept credit card? Do you accept credit card?

La cuenta, por favor. The bill, please. Check, please.

Maria no daba una bofetada a la 
bruja verde.

Maria didn’t give the green witch. Mary wasn’t a <unk> of the 
pants.
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These are special tokens that are assigned to out-of-vocabulary (OOV) words. We
touched upon OOV words in section 3.6.1 (when we introduced the concept of sub-
words used for FastText). Most NLP applications operate within a fixed vocabulary,
and whenever they encounter or try to produce words that are outside that pre-
defined set, the words are replaced with a special token, <unk>. This is akin to a spe-
cial value (such as None in Python) returned when a method doesn’t know what to do
with the input. Because these sentences contain certain words (I suspect they are
“libres” and “bofetada”), the Seq2Seq model without attention, whose memory is lim-
ited, didn’t know what to do with them and simply fell back on a safest thing to do,
which is to produce a generic, catch-all symbol, <unk>. On the other hand, you can
see that attention prevents the system from producing these symbols and helps
improve the overall quality of the produced translations. 

8.3 Transformer and self-attention
In this section, we are going to learn how the Transformer model works and, specifi-
cally, how it generates high-quality translations by using a new mechanism called self-
attention. Self-attention creates a summary of the entire input, but it does this for each
token using the token as the context. 

8.3.1 Self-attention

As we’ve seen before, attention is a mechanism that creates a context-dependent sum-
mary of the input. For RNN-based Seq2Seq models, the input is the encoder hidden
states, whereas the context is the decoder hidden states. The core idea of the Trans-
former, self-attention, also creates a summary of the input, except for one key
difference—the context in which the summary is created is also the input itself. See
figure 8.4 for a simplified illustration of a self-attention mechanism.

 Why is this a good thing? Why does it
even work? As we discussed in chapter 4,
RNNs can also create a summary of the
input by looping over the input tokens
while updating an internal variable (hid-
den states). This works—we previously saw
that RNNs can generate good translations
when combined with attention, but they
have one critical issue: because RNNs pro-
cess the input sequentially, it becomes pro-

gressively more difficult to deal with long-range dependencies between tokens as the
sentence gets longer. 

 Let’s look at a concrete example. If the input sentence is “The Law will never be per-
fect, but its application should be just,” understanding what the pronoun “its” refers to
(“The Law”) is important for understanding what the sentence means and for any sub-
sequent tasks (such as translating the sentence accurately). However, if you use an RNN

Maria no daba

Embeddings
(input)

Summaries
(output)

Figure 8.4 Self-attention transforms the 
input into summaries.
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to encode this sentence, to learn this coreference relationship, the RNN needs to learn
to remember the noun “The Law” in the hidden states first, then wait until the loop
encounters the target pronoun (“its”) while learning to ignore everything unrelated in
between. This sounds like a complicated trick for a neural network to learn. 

 But things shouldn’t be that complicated. Singular possessive pronouns like “its”
usually refer to their nearest singular nouns that appear before them, regardless of
the words in between, so simple rules like “replace it with the nearest noun that
appeared before” will suffice. In other words, such “random access” is better suited in
this situation than “sequential access” is. Self-attention is better at learning such long-
range dependencies, as we’ll see later.

 Let’s walk through how self-attention works with an example. Let’s assume we are
translating Spanish into English and would like to encode the first few words, “Maria
no daba,” in the input sentence. Let’s also focus on one specific token, “no,” and how
its embeddings are computed from the entire input. The first step is to compare the
target token against all tokens in the input. Self-attention does this by converting the
target into a query by using projection WQ as well as converting all the tokens into keys
using projection WK and computing attention weights using function f. The attention
weights computed by f are normalized and converted to a probability distribution by
the softmax function. Figure 8.5 illustrates these steps where attention weights are
computed. As with the encoder-decoder attention mechanism we covered in section
8.2.1, these weights determine how to “mix” values we obtained from the input
tokens. For words like “its,” we expect that the weight will be higher for related words
such as “Law” in the example shown earlier. 

In the next step, the vector corresponding to each input token is converted to a value
vector by projection WV. Each projected value is weighted by the corresponding atten-
tion weight and is summed up to produce a summary vector. See figure 8.6 for an
illustration.

 This would be it if this were the “regular” encoder-decoder attention mechanism.
You need only one summary vector per each token during decoding. However, one key
difference between encoder-decoder attention and self-attention is the latter repeats

Maria no daba

Maria daba

ff f

Embeddings

Keys

Query

Attention weights

Embeddings

no(target)

WK WK

WQ

WK Figure 8.5 Computing attention 
weights from keys and queries
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this process for every single token in the input. As shown in figure 8.7, this produces a
new set of embeddings for the input, one for each token.

 Each summary produced by self-attention takes all the tokens in the input
sequence into consideration, but with different weights. It is, therefore, straightfor-
ward for words like “its” to incorporate some information from related words, such as
“The Law,” no matter how far apart these two words are. Using an analogy, self-atten-
tion produces summaries through random access over the input. This is in contrast to
RNNs, which allow only sequential access over the input, and is one of the key reasons
why the Transformer is such a powerful model for encoding and decoding natural
language text.

 We need to cover one final piece of detail to fully understand self-attention. As it is,
the self-attention mechanism illustrated previously can use only one aspect of the input
sequence to generate summaries. For example, if you want self-attention to learn which
word each pronoun refers to, it can do that—but you may also want to “mix in” infor-
mation from other words based on some other linguistic aspects. For example, you may
want to refer to some other words that the pronoun modifies (“applications,” in this
case). The solution is to have multiple sets of keys, values, and queries per token and
compute multiple sets of attention weights to “mix” values that focus on different
aspects of the input. The final embeddings are a combination of summaries generated
this way. This mechanism is called multihead self-attention (figure 8.8).

 You would need to learn some additional details if you were to fully understand how
a Transformer layer works, but this section has covered the most important concepts.
If you are interested in more details, check out The Illustrated Transformer (http://
jalammar.github.io/illustrated-transformer/), a well-written guide for understanding

Maria no daba

Maria no daba

f
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Attention weights

Embeddings

Values

Weighted values
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Figure 8.6 Calculating the sum of all values 
weighted by attention weights
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Embeddings
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Figure 8.7 Producing summaries for the entire 
input sequence (details are omitted)

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
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the Transformer model with easy-to-understand illustrations. Also, if you are interested
in implementing the Transformer model from scratch in Python, check out “The Anno-
tated Transformer” (http://nlp.seas.harvard.edu/2018/04/03/attention.html).

8.3.2 Transformer

The Transformer model doesn’t just use a sin-
gle step of self-attention to encode or decode
natural language text. It applies self-attention
repeatedly to the inputs to gradually trans-
form them. As with multilayer RNNs, the
Transformer also groups a series of transfor-
mation operations into a layer and applies it
repeatedly. Figure 8.9 shows one layer of the
Transformer encoder.

 A lot is going on within each layer, and it’s
not our goal to explain every bit of its detail—
you need to understand only that the multi-
head self-attention is at its core, followed by
transformation by a feed-forward neural net-
work (“FF” in figure 8.9). Residual connec-
tions and normalization layers are introduced

ff f

Embeddings

Keys

Queries

Attention weights

Embeddings

Values

Weighted values

New embeddings

Maria no daba

Maria no daba

ff f

Figure 8.8 Multihead self-attention produces summaries with multiple 
keys, values, and queries.
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to make it easier to train the model, although the details of these operations are out-
side the scope of this book. The Transformer model applies this layer repeatedly to
transform the input from something literal (raw word embeddings) to something
more abstract (the “meaning” of the sentence). In the original Transformer paper,
Vaswani et al. used six layers for machine translation, although it is not uncommon for
larger models to use 10–20 layers these days.

 At this point, you may have noticed that the self-attention operation is completely
independent of positions. In other words, the embedded results of self-attention
would be completely identical even if, for example, we flipped the word order
between “Maria” and “daba,” because the operation looks only at the word itself and
the aggregated embeddings from other words, regardless of where they are. This is
obviously very limiting—what a natural language sentence means depends a lot on
how its words are ordered. How does the Transformer encode word order, then?

    The Transformer model solves this prob-
lem by generating some artificial embed-
dings that differ from position to position
and adding them to word embeddings
before they are fed to the layers. These
embeddings, called positional encoding and
shown in figure 8.10, are either generated
by some mathematical function (such as
sine curves) or learned during training
per position. This way, the Transformer
can distinguish between “Maria” at the
first position and “Maria” at the third posi-
tion, because they have different posi-
tional encoding.
  Figure 8.11 shows the Transformer
decoder. Although a lot is going on, make
sure to notice two important things. First,
you’ll notice one extra mechanism called
cross-attention inserted between the self-
attention and feed-forward networks. This

cross-attention mechanism is similar to the encoder-decoder attention mechanism we
covered in section 8.2. This works exactly the same as self-attention, except that the
values for the attention come from the encoder, not the decoder, summarizing the
information extracted from the encoder.

 Finally, the Transformer model generates the target sentence in exactly the same
way as RNN-based Seq2Seq models we’ve previously learned in section 6.4. The
decoder is initialized by a special token <START> and produces a probability distribu-
tion over possible next tokens. From here, you can proceed by choosing the token with
the maximum probability (greedy decoding, as shown in section 6.4.3) or keeping a few
tokens with the highest probability while searching for the path that maximizes the
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total score (beam search, as shown in section 6.4.4). In fact, if you look at the Trans-
former decoder as a black box, the way it produces the target sequence is exactly the
same as RNNs, and you can use the same set of decoding algorithms. In other words, the
decoding algorithms covered in section 6.4 are generic ones that are agnostic of the
underlying decoder architecture.

8.3.3 Experiments

Now that we know how the Transformer model works, let’s build a machine transla-
tion system with it. The good news is the sequence-to-sequence toolkit, Fairseq,
already supports the Transformer-based models (along with other powerful models),
which can be specified by the --arch transformer option when you train the
model. Assuming that you have already preprocessed the dataset we used to build the
Spanish-to-English machine translation, you need to tweak only the parameters you
give to fairseq-train, as shown next:

fairseq-train \
  data/mt-bin \

<START> Mary did

Mary did
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  --arch transformer \
  --share-decoder-input-output-embed \
  --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
  --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
  --dropout 0.3 --weight-decay 0.0 \
  --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
  --max-tokens 4096 \
  --save-dir data/mt-ckpt-transformer

Note that this might not even run on your laptop. You really need GPUs to train the
Transformer models. Also note that training can take hours even with GPUs. See sec-
tion 11.5 for more information on using GPUs.

 A number of cryptic parameters appear here, but you don’t need to worry about
them. You can see the model structure when you run this command. The entire
model dump is quite long, so we are omitting some intermediate layers in listing 8.1.
If you look carefully, you’ll see that the structure of the layers corresponds to the fig-
ures we showed earlier.

TransformerModel(
  (encoder): TransformerEncoder(
    (embed_tokens): Embedding(16832, 512, padding_idx=1)
    (embed_positions): SinusoidalPositionalEmbedding()
    (layers): ModuleList(
      (0): TransformerEncoderLayer(
        (self_attn): MultiheadAttention(     
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_
         affine=True)
        (fc1): Linear(in_features=512, out_features=2048, bias=True)   
        (fc2): Linear(in_features=2048, out_features=512, bias=True)
        (final_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
      )
      ...
      (5): TransformerEncoderLayer(
        (self_attn): MultiheadAttention(
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
        (fc1): Linear(in_features=512, out_features=2048, bias=True)
        (fc2): Linear(in_features=2048, out_features=512, bias=True)
        (final_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
      )
    )
  )
  (decoder): TransformerDecoder(
    (embed_tokens): Embedding(11416, 512, padding_idx=1)

Listing 8.1 Transformer model dump from Fairseq

Self-attention of 
the encoder

Feed-forward
network of

the encoder
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    (embed_positions): SinusoidalPositionalEmbedding()
    (layers): ModuleList(
      (0): TransformerDecoderLayer(
        (self_attn): MultiheadAttention(   
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
        (encoder_attn): MultiheadAttention(    
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_
         affine=True)
        (fc1): Linear(in_features=512, out_features=2048, bias=True)    
        (fc2): Linear(in_features=2048, out_features=512, bias=True)
        (final_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
      )
      ...
      (5): TransformerDecoderLayer(
        (self_attn): MultiheadAttention(
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
        (encoder_attn): MultiheadAttention(
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_
         affine=True)
        (fc1): Linear(in_features=512, out_features=2048, bias=True)
        (fc2): Linear(in_features=2048, out_features=512, bias=True)
        (final_layer_norm): LayerNorm((512,), eps=1e-05, 

elementwise_affine=True)
      )
    )
  )
)

When I ran this, the validation loss converges after around epoch 30, at which point
you can stop the training. The result I got by translating the same set of Spanish sen-
tences into English follows:

¡ Buenos días !
S-0     ¡ Buenos días !
H-0     -0.0753164291381836     Good morning !
P-0     -0.0532 -0.0063 -0.1782 -0.0635
¡ Hola !
S-1     ¡ Hola !
H-1     -0.17134985327720642    Hi !
P-1     -0.2101 -0.2405 -0.0635
¿ Dónde está el baño ?
S-2     ¿ Dónde está el baño ?
H-2     -0.2670585513114929     Where &apos;s the toilet ?
P-2     -0.0163 -0.4116 -0.0853 -0.9763 -0.0530 -0.0598

Self-attention 
of the decoder

Encoder-decoder 
of the decoder

Feed-forward
network of

the decoder
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¿ Hay habitaciones libres ?
S-3     ¿ Hay habitaciones libres ?
H-3     -0.26301929354667664    Are there any rooms available ?
P-3     -0.1617 -0.0503 -0.2078 -1.2516 -0.0567 -0.0532 -0.0598
¿ Acepta tarjeta de crédito ?
S-4     ¿ Acepta tarjeta de crédito ?
H-4     -0.06886537373065948    Do you accept credit card ?
P-4     -0.0140 -0.0560 -0.0107 -0.0224 -0.2592 -0.0606 -0.0594
La cuenta , por favor .
S-5     La cuenta , por favor .
H-5     -0.08584468066692352    The bill , please .
P-5     -0.2542 -0.0057 -0.1013 -0.0335 -0.0617 -0.0587
Maria no daba una bofetada a la bruja verde .
S-6     Maria no daba una bofetada a la bruja verde .
H-6     -0.3688890039920807     Mary didn &apos;t slapped the green witch .
P-6     -0.2005 -0.5588 -0.0487 -2.0105 -0.2672 -0.0139 -0.0099 -0.1503 -

0.0602

You can see most of these English translations here are almost perfect. It is quite sur-
prising that the model translated the most difficult sentence (“Maria no daba . . .”)
almost perfectly. This is probably enough to convince us that the Transformer is a
powerful translation model. After its advent, this model became the de facto standard
in research and commercial machine translation.

8.4 Transformer-based language models
In section 5.5, we introduced language models, which are statistical models that give a
probability to a piece of text. By decomposing text into a sequence of tokens, lan-
guage models can estimate how “probable” the given text is. In section 5.6, we demon-
strated that by leveraging this property, language models can also be used to generate
new texts out of thin air!

 The Transformer is a powerful model that achieves impressive results in Seq2Seq
tasks (such as machine translation), although its architecture can also be used for
modeling and generating language. In this section, we learn how to use the Trans-
former for modeling language and generating realistic texts.

8.4.1 Transformer as a language model

In section 5.6, we built a language-generation model based on a character LSTM-
RNN. To recap, given a prefix (a partial sentence generated so far), the model uses an
LSTM-based RNN (a neural network with a loop) to produce a probability distribu-
tion over possible next tokens, as shown in figure 8.12. 

 We noted earlier that, by regarding the Transformer decoder as a black box, you can
use the same set of decoding algorithms (greedy, beam search, and so on) as we intro-
duced earlier for RNNs. This is also the case for language generation—by thinking of
the neural network as a black box that produces some sort of score given a prefix, you
can use the same logic to generate texts, no matter the underlying model. Figure 8.13
shows how an architecture similar to the Transformer can be used for language gener-
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ation. Except for a few minor differences (such as lack of cross-attention), the structure
is almost identical to the Transformer decoder.

 The following snippet shows Python-like pseudocode for generating text with the
Transformer model. Here, model() is the main function where the model computa-
tion happens—it takes the tokens, converts them to embeddings, adds positional
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Figure 8.12 Generating text using an RNN
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encoding, and passes them through all the Transformer layers, returning the final hid-
den states back to the caller. The caller then passes them through a linear layer to con-
vert them to logits, which in turn get converted to a probability distribution by
softmax:

def generate():
    token = <START>
    tokens = [<START>]
    while token != <END>:
        hidden = model(tokens)
        probs = softmax(linear(hidden))
        token = sample(probs)
        tokens.append(token)
    return tokens

In fact, decoding for Seq2Seq models and language generation with language models
are very similar tasks, where the output sequence is produced token by token, feeding
itself back to the network, as shown in the previous code snippet. The only difference
is that the former has some form of input (the source sentence) whereas the latter
does not (the model feeds itself). These two tasks are also called unconditional and con-
ditional generation, respectively. Figure 8.14 illustrates these three components (net-
work, task, and decoding) and how they can be combined to solve a specific problem.

Figure 8.14 Three components of language generation and Seq2Seq tasks

In the rest of this section, we are going to experiment with some Transformer-based
language models and generate natural language texts using them. We’ll be using the
transformers library (https://huggingface.co/transformers/) developed by Hug-
ging Face, which has become a standard, go-to library for NLP researchers and engi-
neers working with Transformer models in the past few years. It comes with a number
of state-of-the-art model implementations including GPT-2 (this section) and BERT
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Spanish translator (section 8.3.3): Transformer × Seq2Seq × Beam search

GPT-2 etc. (section 8.4): Transformer × Language model × Sampling

https://huggingface.co/transformers/
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(next chapter), along with pretrained model parameters that you can load and use
right away. It also provides a simple, consistent interface through which you can inter-
act with powerful NLP models.

8.4.2 Transformer-XL

In many cases, you want to load and use pretrained models provided by third parties
(most often the developer of the model), instead of training them from scratch.
Recent Transformer models are fairly complex (usually with hundreds of millions of
parameters) and are trained with huge datasets (tens of gigabytes of text). This would
require GPU resources that only large institutions and tech giants can afford. It is not
completely uncommon that some of these models take days to train, even with more
than a dozen GPUs! The good news is the implementation and pretrained model
parameters for these huge Transformer models are usually made publicly available by
their creators so that anyone can integrate them into their NLP applications.

 In this section, we’ll first check out Transformer-XL, a variant of the Transformer
developed by the researchers at Google Brain. Because there is no inherent “loop” in
the original Transformer model, unlike RNNs, the original Transformer is not good at
dealing with super-long context. In training language models with the Transformer, you
first split long texts into shorter chunks of, say, 512 words, and feed them to the model
separately. This means the model is unable to capture dependencies longer than 512
words. Transformer-XL4 addresses this issue by making a few improvements over the
vanilla Transformer model (“XL” means extra-long). Although the details of these
changes are outside the scope of this book, in a nutshell, the model reuses its hidden
states from the previous segment, effectively creating a loop that passes information
between different segments of texts. It also improves the positional encoding scheme
we touched on earlier to make it easier for the model to deal with longer texts.

 You can install the transformers library just by running pip install trans-
formers from the command line. The main abstractions you’ll be interacting with are
tokenizers and models. The tokenizers split a raw string into a sequence of tokens,
whereas the model defines the architecture and implements the main logic. The model
and the pretrained weights usually depend on a specific tokenization scheme, so you
need to make sure you are using the tokenizer that is compatible with the model.

 The easiest way to initialize a tokenizer and a model with some specified pre-
trained weights is use the AutoTokenizer and AutoModelWithLMHead classes and
call their from_pretrained() methods as follows:

import torch
from transformers import AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('transfo-xl-wt103')
model = AutoModelWithLMHead.from_pretrained('transfo-xl-wt103')

4 Dai et al., “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context,” (2019). https://
arxiv.org/abs/1901.02860.

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
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The parameter to from_pre-

trained() is the name of the
model/pretrained weights. This is a
Transformer-XL model trained on a
dataset called wt103 (WikiText103).
    You may be wondering what this
“LMHead” part in AutoModelWith-
LMHead means. An LM (language
model) head is a specific layer added
to a neural network that converts its
hidden states to a set of scores that
determine which tokens to generate
next. These scores (also called logits)
are then fed to a softmax layer to
obtain a probability distribution over
possible next tokens (figure 8.15).
We would like a model with an LM
head because we are interested in
generating text by using the Trans-
former as a language model. How-
ever, depending on the task, you may
also want a Transformer model with-
out an LM head and just want to use
its hidden states. That’s what we’ll do
in the next chapter.
    The next step is to initialize the
prefix for which you would like your
language model to write the rest of

the story. You can use tokenizer.encode() to convert a string into a list of token
IDs, which are then converted to a tensor. We’ll also initialize a variable past for cach-
ing the internal states and making the inference faster, as shown next:

generated = tokenizer.encode("On our way to the beach")
context = torch.tensor([generated])
past = None

Now you are ready to generate the rest of the text. Notice the next code is similar to
the pseudocode we showed earlier. The idea is simple: get the output from the model,
sample a token using the output, and feed it back to the model. Rinse and repeat.

for i in range(100):
    output = model(context, mems=past)
    token = sample_token(output.prediction_scores)

    generated.append(token.item())
    context = token.view(1, -1)
    past = output.mems
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You need to do some housekeeping to make the shape of the tensors compatible with
the model, which we can ignore for now. The sample_token() method here takes
the output of the model, converts it to a probability distribution, and samples a single
token from it. I’m not showing the entire code for the method, but you can check the
Google Colab notebook (http://realworldnlpbook.com/ch8.html#xformer-nb) for
more details. Also, here we wrote the generation algorithm from scratch, but if you
need more full-fledged generation (such as beam search), check out the official
example script from the developers of the library: http://mng.bz/wQ6q.

 After finishing the generation, you can convert the token IDs back into a raw string
by calling tokenizer.decode()as follows:

print(tokenizer.decode(generated))

The following “story” is what I got when I ran this:

On our way to the beach, she finds, she finds the men who are in the group to 
be " in the group ". This has led to the perception that the " group " 
in the group is " a group of people in the group with whom we share a 
deep friendship, and which is a common cause to the contrary. " <eos> 
<eos> = = Background = = <eos> <eos> The origins of the concept of " 
group " were in early colonial years with the English Civil War. The 
term was coined by English abolitionist John

This is not a bad start. I like the way the story is trying to be consistent by sticking with
the concept of “group.” However, because the model is trained on Wikipedia text
only, its generation is not realistic and looks a little bit too formal.

8.4.3 GPT-2

GPT-2 (which stands for generative pretraining), developed by OpenAI, is probably
the most famous language model to date. You may have heard the story about a lan-
guage model generating natural language texts that are so realistic that you cannot
tell them from those written by humans. Technically, GPT-2 is just a huge Transformer
model, just like the one we introduced earlier. The main difference is its size (the larg-
est model has 48 layers!) and the fact that the model is trained on a huge amount of
natural language text collected from the web. The OpenAI team publicly released the
implementation and the pretrained weights, so we can easily try out the model.

 Initialize the tokenizer and the model for GPT-2 as you have done for Transformer-
XL, as shown next:

tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = AutoModelWithLMHead.from_pretrained('gpt2-large')

Then generate text using the next code snippet:

generated = tokenizer.encode("On our way to the beach")
context = torch.tensor([generated])
past = None

http://mng.bz/wQ6q
http://realworldnlpbook.com/ch8.html#xformer-nb
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for i in range(100):
    output = model(context, past_key_values=past)
    token = sample_token(output.logits)

    generated.append(token.item())
    context = token.unsqueeze(0)
    past = output.past_key_values

print(tokenizer.decode(generated))

You may have noticed how little this code snippet changed from the one for
Transformer-XL. In many cases, you don’t need to make any modifications when
switching between different models. This is why the transformers library is so
powerful—you can try out and integrate a variety of state-of-the-art Transformer-based
models into your application with a simple, consistent interface. As we’ll see in the
next chapter, this library is also integrated into AllenNLP, which makes it easy to build
powerful NLP applications with state-of-the-art models.

 When I tried this, the GPT-2 generated the following beautifully written passage:

On our way to the beach, there was a small island that we visited for the 
first time. The island was called 'A' and it is a place that was used by 
the French military during the Napoleonic wars and it is located in the 
south-central area of the island.

A is an island of only a few hundred meters wide and has no other features to 
distinguish its nature. On the island there were numerous small beaches 
on which we could walk. The beach of 'A' was located in the...

Notice how naturally it reads. Also, the GPT-2 model is good at staying consistent—
you can see the name of the island, “A,” is consistently used throughout the passage.
As far as I checked, there is no real island named A in the world, meaning that this is
something the model simply made up. It is a great feat that the model remembered
the name it just coined and successfully wrote a story around it!

 Here’s another passage that GPT-2 generated with a prompt: 'Real World
Natural Language Processing' is the name of the book:

'Real World Natural Language Processing' is the name of the book. It has all 
the tools you need to write and program natural language processing 
programs on your computer. It is an ideal introductory resource for 
anyone wanting to learn more about natural language processing. You can 
buy it as a paperback (US$12), as a PDF (US$15) or as an e-book 
(US$9.99).

The author's blog has more information and reviews.

The free 'Real World Natural Language Processing' ebook has all the necessary 
tools to get started with natural language processing. It includes a 
number of exercises to help you get your feet wet with writing and 
programming your own natural language processing programs, and it 
includes a few example programs. The book's author, Michael Karp has 
also written an online course about Natural Language Processing.
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'Real World Natural Language Processing: Practical Applications' is a free 
e-book that explains how to use natural language processing to solve 
problems of everyday life (such as writing an email, creating and

As of February 2019, when GPT-2 was released, I had barely begun writing this book,
so I doubt GPT-2 knew anything about it. For a language model that doesn’t have any
prior knowledge about the book, this is an amazing job, although I have to note that it
got the price and the name of the author wrong.

8.4.4 XLM

Finally, as an interesting example, we will experiment with multilingual language gen-
eration. XLM (cross-lingual language model), proposed by researchers at Facebook
AI Research, is a Transformer-based cross-lingual language model that can generate
and encode texts in multiple languages.5 By learning how to encode multilingual
texts, the model can be used for transfer learning between different languages. We’ll
cover transfer learning in chapter 9.

 You can start by initializing the tokenizer and the model and initialize it with the
pretrained weights as follows:

tokenizer = AutoTokenizer.from_pretrained('xlm-clm-enfr-1024')
model = AutoModelWithLMHead.from_pretrained('xlm-clm-enfr-1024')

Here, we are loading an XLM model (xlm), trained with a causal language modeling
(CLM) objective (clm) in English and French (enfr). CLM is just a fancier way to
describe what we’ve been doing in this chapter—predicting the next token based on a
prefix. XLM is usually used for encoding multilingual texts for some downstream tasks
such as text classification and machine translation, but we are simply using it as a lan-
guage model to generate texts. See listing 8.2 for the code snippet for generating mul-
tilingual text with XLM. You can again reuse most of the earlier code snippet,
although you also need to specify what language you are working in (note the lang =
0 line). Also, here we are generating text from scratch by supplying just the BOS
token (whose index is zero).

generated = [0] # start with just <s>
context = torch.tensor([generated])
lang = 0 # English

for i in range(100):
    langs = torch.zeros_like(context).fill_(lang)
    output = model(context, langs=langs)
    token = sample_token(output)

5 Lample and Conneau, “Cross-Lingual Language Model Pretraining,” (2019). https://arxiv.org/abs/1901
.07291.

Listing 8.2 Generating multilingual text with XLM

https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
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    generated.append(token.item())
    context = torch.tensor([generated])

print(tokenizer.decode(generated))

When I ran this, I got the following:

<s>and its ability to make decisions on the basis of its own. " </s>The 
government has taken no decisions on that matter, " Mr Hockey said. </
s>A lot of the information is very sensitive. </s>The new research and 
information on the Australian economy, which is what we're going to get 
from people, and the information that we are going to be looking at, 
we're going to be able to provide and we 'll take it forward. </s>I'm 
not trying to make sure we're not

Then, let’s change lang to 1 (which means French) and run the same snippet again,
which gives you the next bit of text:

<s></s>En revanche, les prix des maisons individuelles n' ont guère augmenté 
( - 0,1 % ). </s>En mars dernier, le taux de la taxe foncière, en légère 
augmentation à la hausse par rapport à février 2008. </s>" Je n' ai 
jamais eu une augmentation " précise ". </s>" Je me suis toujours dit 
que ce n' était pas parce que c' était une blague. </s>En effet, j' 
étais un gars de la rue " </s>Les jeunes sont des gens qui avaient beau-
coup d' humour... "

Although the quality of generation is not as great as GPT-2, which we experimented
with earlier, it is refreshing to see that a single model can produce texts both in
English and French. These days, it is increasingly common to build multilingual
Transformer-based NLP models to solve NLP problems and tasks in multiple lan-
guages at the same time. This also became possible thanks to the Transformer’s pow-
erful capacity to model the complexity of language.

8.5 Case study: Spell-checker
In the final section of this chapter, we will build a practical NLP application—a spell-
checker—with the Transformer. In the modern world, spell-checkers are everywhere.
Chances are your web browser is equipped with a spell-checker that tells you when you
make a spelling mistake by underlining misspelled words. Many word processors and
editors also run spell-checkers by default. Some applications (including Google Docs
and Microsoft Word) even point out simple grammatical errors, too. Ever wondered
how they work? We’ll learn how to formulate this as an NLP problem, prepare the
dataset, train, and improve the model next. 

8.5.1 Spell correction as machine translation

Spell-checkers receive a piece of text such as “tisimptant too spll chck ths dcment,”
detect spelling and grammatical errors, if any, and fix all errors: “It’s important to
spell-check this document.” How can you solve this task with NLP technologies? How
can such systems be implemented? 



209Case study: Spell-checker

 The simplest thing you could do is tokenize the input text into words and check if
each word is in a dictionary. If it’s not, you look for the closest valid word in the dictio-
nary according to some measure such as the edit distance and replace with that word.
You repeat this until there are no words to fix. This word-by-word fixing algorithm is
widely used by many spell-checkers due to its simplicity.

 However, this type of spell-checker has several issues. First, just like the first word in
the example, “tisimptant,” how do you know which part of the sentence is actually a
word? The default spell-checker for my copy of Microsoft Word indicates it’s a mis-
spelling of “disputant,” although it would be obvious to any English speakers that it is
actually a misspelling of two (or more) words. The fact that users can also misspell
punctuation (including whitespace) makes everything complicated. Second, just
because some word is in a dictionary doesn’t mean it’s not an error. For example, the
second word in the example, “too” is a misspelling of “to,” but both are valid words
that are in any English dictionary. How can you tell if the former is wrong in this con-
text? Third, all these decisions are made out of context. One of the spell-checkers I
tried shows “thus” as a candidate to replace “ths” in this example. However, from this
context (before a noun), it is obvious that “this” is a more appropriate candidate,
although both “this” and “thus” are one edit distance away from “ths,” meaning they
are equally valid options according to the edit distance. 

 You would be able to solve some of these issues by adding some heuristic rules. For
example, “too” is more likely a misspelling of “to” before a verb, and “this” is more
likely before a noun than “thus.” But this method is obviously not scalable. Remember
the poor junior developer from section 1.1.2? Language is vast and full of exceptions.
You cannot just keep writing such rules to deal with the full complexity of language.
Even if you are able to write rules for such simple words, how would you tell that
“tisimptant” is actually two words? Would you try to split this word at every possible
position to see if split words resemble existing words? What if the input was in a lan-
guage that is written without whitespace, like Chinese and Japanese?

 At this point, you may realize this “split and fix” approach is going nowhere. In
general, when designing an NLP application, you should think in terms of the follow-
ing three aspects:

 Task—What is the task being solved? Is it a classification, sequential-labeling, or
sequence-to-sequence problem?

 Model—What model are you going to use? Is it a feed-forward network, an RNN,
or the Transformer?

 Dataset—Where are you obtaining the dataset to train and validate your model? 

Based on my experience, a vast majority of NLP applications nowadays can be solved by
combining these aspects. How about spell-checkers? Because they take a piece of text
as the input and produce the fixed string, it’d be most straightforward if we solve this
as a Seq2Seq task using the Transformer model. In other words, we will be building a
machine translation system that translates noisy inputs with spelling/grammatical
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errors into clean, errorless outputs as shown in figure 8.16. You can regard these two
sides as two different “languages” (or “dialects” of English).

 At this point, you may be wondering where we are obtaining the dataset. This is
often the most important (and the most difficult) part in solving real-world NLP prob-
lems. Fortunately, we can use a public dataset for this task. Let’s dive in and start build-
ing a spell-checker.

8.5.2 Training a spell-checker

We will be using GitHub Typo Corpus (https://github.com/mhagiwara/github-typo
-corpus) as the dataset to train a spell-checker. The dataset, created by my collaborator
and me, consists of hundreds of thousands of “typo” edits automatically harvested
from GitHub. It is the largest dataset of spelling mistakes and their corrections to
date, which makes it a perfect choice for training a spell-checker.

 One decision we need to make before preparing the dataset and training a model
is what to use as the atomic linguistic unit on which the model operates. Many NLP mod-
els use tokens as the smallest unit (i.e., RNN/Transformer is fed a sequence of tokens),
but a growing number of NLP models use word or sentence pieces as the basic units (section
10.4). What should we use as the smallest unit for spelling correction? As with many
other NLP models, using words as the input sounds like a good “default” thing to do at
first. However, as we saw earlier, the concept of tokens is not well suited for spelling
correction—users can mess up with punctuation, which makes everything overly com-
plex if you are dealing with tokens. More importantly, because NLP models need to
operate on a fixed vocabulary, the spell-corrector vocabulary would need to include
every single misspelling of every single word it encountered during the training. This
would make it unnecessarily expensive to train and maintain such an NLP model.

 For these reasons, we will be using characters as the basic unit for our spell-checker,
as we did in section 5.6. Using characters has several advantages—it can keep the size
of the vocabulary quite small (usually less than one hundred for a language with a small
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Figure 8.16 Training a spell-checker as an MT system that translates “noisy” sentences 
into “clean” ones
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set of alphabets such as English). You don’t need to worry about bloating your vocabu-
lary, even with a noisy dataset full of typos, because typos are just different arrangements
of characters. You can also treat punctuation marks (even whitespace) as one of the
characters in the vocabulary. This makes the preprocessing step extremely easy because
you don’t need any linguistic toolkits (such as tokenizers) for doing this.

NOTE Using characters is not without disadvantages. One main issue is using
them will increase the length of sequences, because you need to break every-
thing up into characters. This makes the model large and slower to train.

First, let’s prepare the dataset for training a spell-checker. All the necessary data and
code for building a spell-checker are included in this repository: https://github.com/
mhagiwara/xfspell. The tokenized and split datasets are located under data/gtc (as
train.tok.fr, train.tok.en, dev.tok.fr, dev.tok.en). The suffixes en and fr
are a commonly used convention in machine translation—“fr” means “foreign lan-
guage” and “en” means English, because many MT research projects were originally
motivated by people wanting to translate some foreign language into English. Here,
we are using “fr” and “en” to mean just “noisy text before spelling correction” and
“clean text after spelling correction.”

 Figure 8.17 shows an excerpt from the dataset for spelling correction created from
GitHub Typo Corpus. Notice that text is segmented into individual characters, even
whitespaces (replaced by “_”). Any characters outside common alphabets (upper- and
lowercase letters, numbers, and some common punctuation marks) are replaced with
“#.” You can see that the dataset contains diverse corrections, including simple typos
(pubilc -> public on line 670, HYML -> HTML on line 672), trickier errors (mxnet
as not -> mxnet is not on line 681, 22th -> 22nd on line 682), and even lines without
any corrections (line 676). This looks like a good resource to use for training a
spell-checker.

Figure 8.17 Training data for spelling correction

https://github.com/mhagiwara/xfspell
https://github.com/mhagiwara/xfspell
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The first step for training a spell-checker (or any other Seq2Seq model) is to prepro-
cess the datasets. Because the dataset is already split and formatted, all you need to do
is run fairseq-preprocess to convert the datasets into a binary format as follows:

fairseq-preprocess --source-lang fr --target-lang en \
    --trainpref data/gtc/train.tok \
    --validpref data/gtc/dev.tok \
    --destdir bin/gtc

Then you can start training your model right away using the following code.

fairseq-train \
    bin/gtc \
    --fp16 \
    --arch transformer \
    --encoder-layers 6 --decoder-layers 6 \
    --encoder-embed-dim 1024 --decoder-embed-dim 1024 \
    --encoder-ffn-embed-dim 4096 --decoder-ffn-embed-dim 4096 \
    --encoder-attention-heads 16 --decoder-attention-heads 16 \
    --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.997)' --adam-eps 1e-09 --clip-norm 

25.0 \
    --lr 1e-4 --lr-scheduler inverse_sqrt --warmup-updates 16000 \
    --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \
    --weight-decay 0.00025 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
    --max-tokens 4096 \
    --save-dir models/gtc01 \
    --max-epoch 40

You don’t need to worry about most of the hyperparameters here—this set of parame-
ters worked fairly well for me, although some other combinations of parameters may
work better. However, you may want to pay attention to some of the parameters
related to the size of the model, namely:

 Number of layers (--[encoder|decoder]-layers)
 Embedding dimension of self-attention (--[encoder|decoder]-embed-dim)
 Embedding dimension of feed-forward layers (--[encoder/decoder]-ffn-

embed-dim)
 Number of attention heads (--[encoder|decoder]-attention-heads)

These parameters determine the capacity of the model. In general, the larger these
parameters are, the larger capacity the model would have, although as a result the
model would also require more data, time, and GPU resources to train. Another
important parameter is --max-tokens, which specifies the number of tokens loaded
onto a single batch. If you are experiencing out-of-memory errors on a GPU, try
adjusting this parameter.

Listing 8.3 Training a spell-checker
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 After the training is finished, you can run the following command to make predic-
tions using the trained model:

echo "tisimptant too spll chck ths dcment." \
    | python src/tokenize.py \
    | fairseq-interactive bin/gtc \
    --path models/gtc01/checkpoint_best.pt \
    --source-lang fr --target-lang en --beam 10 \
    | python src/format_fairseq_output.py

Because the fairseq-interactive interface can also take source text from the
standard input, we are directly providing the text using the echo command. The
Python script src/format_fairseq_output.py, as its name suggests, formats the
output from fairseq-interactive and shows the predicted target text. When I ran
this, I got the following:

tisimplement too spll chck ths dcment.

This is rather disappointing. The spell-checker learned to somehow fix “imptant” to
“implement,” although it failed to correct any other words. I suspect a couple of rea-
sons for this. The training data used, GitHub Typo Corpus, is heavily biased toward
software-related language and corrections, which might have led to the wrong correc-
tion (imptant -> implement). Also, the training data might have just been too small
for the Transformer to be effective. How could we improve the model so that it can fix
spellings more accurately? 

8.5.3 Improving a spell-checker

As we discussed earlier, one main reason the spell-checker is not working as expected
might be because the model wasn’t exposed to a more diverse, larger amount of mis-
spellings during training. But as far as I know, no such large datasets of diverse mis-
spellings are publicly available for training a general-domain spell-checker. How could
we obtain more data for training a better spell-checker?

 This is where we need to be creative. One idea is to artificially generate noisy text
from clean text. If you think of it, it is very difficult (especially for a machine learning
model) to fix misspellings, whereas it is very easy to “corrupt” clean text to simulate
how people make typos, even for a computer. For example, we can take some clean
text (which is available from, for example, scraped web text almost indefinitely) and
replace some letters at random. If you pair artificially generated noisy text created this
way with the original, clean text, this will effectively create a new, larger dataset on
which you can train an even better spell-checker!

 The remaining issue we need to address is how to “corrupt” clean text to generate
realistic spelling errors that look like the ones made by humans. You can write a
Python script that, for example, replaces, deletes, and/or swaps letters at random,
although there is no guarantee that typos made this way are similar to those made by
humans and that the resulting artificial dataset will provide useful insights for the
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Transformer model. How can we model the fact that, for example, humans are more
likely to type “too” in place of “to” than they do “two”? 

 This is starting to sound familiar again. We can use the data to simulate the typos!
But how? This is where we need to be creative again—if you “flip” the direction of the
original dataset we used to train the spell-checker, you can observe how humans make
typos. If you treat the clean text as the source language and the noisy text as the target
and train a Seq2Seq model for that direction, you are effectively training a “spell-
corruptor”—a Seq2Seq model that inserts realistic-looking spelling errors into clean
text. See Figure 8.18 for an illustration.

Figure 8.18 Using back-translation to generate artificial noisy data

This technique of using the “inverse” of the original training data to artificially gener-
ate a large amount of data in the source language from a real corpus in the target lan-
guage is called back-translation in the machine learning literature. It is a popular
technique to improve the quality of machine translation systems. As we’ll show next, it
is also effective for improving the quality of spell-checkers.

  You can easily train a spell corruptor just by swapping the source and the target lan-
guages. You can do this by supplying “en” (clean text) as the source language and “fr”
(noisy text) as the target language when you run fairseq-preprocess as follows:

fairseq-preprocess --source-lang en --target-lang fr \
    --trainpref data/gtc/train.tok \
    --validpref data/gtc/dev.tok \
    --destdir bin/gtc-en2fr

Fairseq

Fairseq

Clean text Artificial
noisy text

Spell corruptor

Spell-checker

Clean text Noisy text
Target source

Source Target

tisimptant too spll chck
ths dcment

It's important to spell check
this document
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We are not going over the training process again—you can use almost the same
fairseq-train command to start the training. Just don’t forget to specify a different
directory for --save-dir. After you finish training, you can check whether the spell-
ing corrupter can indeed corrupt the input text as expected:

$ echo 'The quick brown fox jumps over the lazy dog.' | python src/
tokenize.py \ 

    | fairseq-interactive \
    bin/gtc-en2fr \
    --path models/gtc-en2fr/checkpoint_best.pt \
    --source-lang en --target-lang fr \
    --beam 1 --sampling --sampling-topk 10 \
    | python src/format_fairseq_output.py
The quink brown fox jumps ove-rthe lazy dog.

Note the extra options that I added earlier, which are shown in bold. It means that the
fairseq-interactive command uses sampling (from top 10 tokens with largest
probabilities) instead of beam search. When corrupting clean text, it is often better to
use sampling instead of beam search. To recap, sampling picks the next token ran-
domly according to the probability distribution after the softmax layer, whereas beam
search tries to find the “best path” that maximizes the score of the output sequence.
Although beam search can find better solutions when translating some text, we want
noisy, more diverse output when corrupting clean text. Past research6 has also shown
that sampling (instead of beam search) works better for augmenting data via back-
translation.

 From here, the sky’s the limit. You can collect as much clean text as you want, gen-
erate noisy text from it using the corruptor you just trained, and increase the size of
the training data. There is no guarantee that the artificial errors look like the real
ones made by humans, but this is not a big deal because 1) the source (noisy) side is
used only for encoding, and 2) the target (clean) side data is always “real” data written
by humans, from which the Transformer can learn how to generate real text. The
more text data you collect, the more confident the model will get about what error-
free, real text looks like.

 I won’t go over every step I took to increase the size of the data, but here’s the sum-
mary of what I did and what you can also do. Collect as much clean and diverse text
data from publicly available datasets, such as Tatoeba and Wikipedia dumps. My favor-
ite way to do this is to use OpenWebTextCorpus (https://skylion007.github.io/Open-
WebTextCorpus/), an open source project to replicate the dataset on which GPT-2 was
originally trained. It consists of a huge amount (40 GB) of high-quality web text
crawled from all outbound links from Reddit. Because the entire dataset would take
days, if not weeks, just to preprocess and run the corruptor on, you can take a subset
(say, 1/1000th) and add it to the dataset. I took 1/100th of the dataset, preprocessed it,
and ran the corruptor to obtain the noisy-clean parallel dataset. This 1/100th subset

6 Edunov et al.,”Understanding Back-Translation at Scale,” (2018). https://arxiv.org/abs/1808.09381.

https://arxiv.org/abs/1808.09381
https://skylion007.github.io/OpenWebTextCorpus/
https://skylion007.github.io/OpenWebTextCorpus/
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alone added more than five million pairs (in comparison, the original training set con-
tains only ~240k pairs). Instead of training from scratch, you can download the pre-
trained weights and try the spell-checker from the repository.

 The training took several days, even on multiple GPUs, but when it was done, the
result was very encouraging. Not only can it accurately fix spelling errors, as shown here

$ echo "tisimptant too spll chck ths dcment." \
    | python src/tokenize.py \
    | fairseq-interactive \
    bin/gtc-bt512-owt1k-upper \
    --path models/bt05/checkpoint_best.pt \
    --source-lang fr --target-lang en --beam 10 \
    | python src/format_fairseq_output.py
    It's important to spell check this document.

but the spell-checker also appears to understand the grammar of English to some
degree, as shown here:

$ echo "The book wer about NLP." |
    | python src/tokenize.py \
    | fairseq-interactive \
   ...
The book was about NLP.

$ echo "The books wer about NLP." |
    | python src/tokenize.py \
    | fairseq-interactive \
   ...
The books were about NLP.

This example alone may not prove that the model really understands the grammar
(namely, using the correct verb depending on the number of the subject). It might
just be learning some association between consecutive words, which can be achieved
by any statistical NLP model, such as n-gram language models. However, even after
you make the sentences more complicated, the spell-checker shows amazing resil-
ience, as shown in the next code snippet:

$ echo "The book Tom and Jerry put on the yellow desk yesterday wer about NLP." |
    | python src/tokenize.py \
    | fairseq-interactive \
   ...
The book Tom and Jerry put on the yellow desk yesterday was about NLP.

$ echo "The books Tom and Jerry put on the yellow desk yesterday wer about 
NLP." |

    | python src/tokenize.py \
    | fairseq-interactive \
   ...
The books Tom and Jerry put on the yellow desk yesterday were about NLP.

From these examples, it is clear that the model learned how to ignore irrelevant noun
phrases (such as “Tom and Jerry” and “yellow desk”) and focus on the noun
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(“book(s)”) that determines the form of the verb (“was” versus “were”). We are more
confident that it understands the basic sentence structure. All we did was collect a
large amount of clean text and trained the Transformer model on it, combined with
the original training data and the corruptor. Hopefully through these experiments,
you were able to feel how powerful the Transformer model can be!

Summary
 Attention is a mechanism in neural networks that focuses on a specific part of

the input and computes its context-dependent summary. It works like a “soft”
version of a key-value store.

 Encoder-decoder attention can be added to Seq2Seq models to improve their
translation quality.

 Self-attention is an attention mechanism that produces the summary of the
input by summarizing itself.

 The Transformer model applies self-attention repeatedly to gradually transform
the input.

 High-quality spell-checkers can be built using the Transformer and a technique
called back-translation.
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Transfer learning with
pretrained language models

The year 2018 is often called “an inflection point” in the history of NLP. A promi-
nent NLP researcher, Sebastian Ruder (https://ruder.io/nlp-imagenet/), dubbed
this change “NLP’s ImageNet moment,” where he used the name of a popular com-
puter vision dataset and powerful models pretrained on it, pointing out that similar
changes were underway in the NLP community as well. Powerful pretrained lan-
guage models such as ELMo, BERT, and GPT-2 achieved state-of-the-art perfor-
mance in many NLP tasks and completely changed how we build NLP models
within months. 

This chapter covers
 Using transfer learning to leverage knowledge 

from unlabeled textual data

 Using self-supervised learning to pretrain large 
language models such as BERT

 Building a sentiment analyzer with BERT and 
the Hugging Face Transformers library

 Building a natural language inference model 
with BERT and AllenNLP

https://ruder.io/nlp-imagenet/
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 One important concept underlying these powerful pretrained language models is
transfer learning, a technique for improving the performance of one task using a model
trained on another task. In this chapter, we’ll first introduce the concept, then move
on to introducing BERT, the most popular pretrained language model proposed for
NLP. We’ll cover how BERT is designed and pretrained, as well as how to use the
model for downstream NLP tasks including sentiment analysis and natural language
inference. We’ll also touch on other popular pretrained models including ELMo and
RoBERTa.

9.1 Transfer learning
We start this chapter by introducing transfer learning, a powerful machine learning
concept fundamental to many pretrained language models (PLMs) in this chapter. 

9.1.1 Traditional machine learning

In traditional machine learning, before the advent of pretrained language models,
NLP models were trained on a per-task basis, and they were useful only for the type of
the task they were trained for (figure 9.1). For example, if you wanted a sentiment
analysis model, you needed to use a dataset annotated with the desired output (e.g.,
negative, neutral, and positive labels), and the trained model was useful only for senti-
ment analysis. If you needed to build another model for part-of-speech (POS) tagging
(an NLP task to identify the part of speech of words; see section 5.2 for a review), you
needed to do this all over again by collecting training data and training a POS tagging
model from scratch. You could not “reuse” your sentiment analysis model for POS tag-
ging, no matter how good your model was, because these two were trained for two fun-
damentally different tasks. However, these tasks both operated on the same language
and all this seemed wasteful. For example, knowing that “wonderful,” “awesome,” and
“great” are all adjectives that have positive meaning would help both sentiment analysis

Training

Model 1Training data 1 Task 1

Training

Model 2Training data 2 Task 2

Training

Model 3Training data 3 Task 3

Figure 9.1 In traditional 
machine learning, each 
trained model was used 
for just one task.
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and part-of-speech tagging. Under the traditional machine learning paradigm, not
only did we need to prepare training data large enough to teach “common sense” like
this to the model, but individual NLP models also needed to learn such facts about the
language from scratch, solely from the given data.

9.1.2 Word embeddings

At this point, you may realize this sounds somewhat familiar. Recall our discussion in
section 3.1 on word embeddings and why they are important. To recap, word embed-
dings are vector representations of words that are learned so that semantically similar
words share similar representations. As a result, vectors for “dog” and “cat,” for exam-
ple, end up being located in a close proximity in a high-dimensional space. These rep-
resentations are trained on an independent, large textual corpus without any training
signals, using algorithms such as Skip-gram and CBOW, often collectively called
Word2vec (section 3.4). 

 After these word embeddings are trained, downstream NLP tasks can use them as
the input to their models (which are often neural networks, but not necessarily).
Because these embeddings already capture semantic relationship between words (e.g.,
dogs and cats are both animals), these tasks no longer need to learn how the language
works from scratch, which gives them the upper hand in the task they are trying to
solve. The model can now focus on learning higher-level concepts that cannot be cap-
tured by word embeddings (e.g., phrases, syntax, and semantics) and the task-specific
patterns learned from the given annotated data. This is why using word embeddings
gives a performance boost to many NLP models.

 In chapter 3, we likened this to teaching a baby (= an NLP model) how to dance.
By letting babies learn how to walk steadily first (= training word embeddings), dance
teachers (= task-specific datasets and training objectives) can focus on teaching spe-
cific dance moves without worrying whether babies can even stand and walk properly.
This “phased training” approach makes everything easier if you want to teach another
skill to the baby (e.g., teaching martial arts) because they already have a good grasp of
the fundamental skill (walking).

 The beauty of all this is that word embeddings can be learned independently of
the downstream tasks. These word embeddings are pretrained, meaning their training
happens before the training of downstream NLP tasks. Using the dancing baby anal-
ogy, dance teachers can safely assume that all the incoming dance students have
already learned how to stand and walk properly. Pretrained word embeddings created
by the developers of the algorithm are often freely available, and anyone can down-
load and integrate them into their NLP applications. This process is illustrated in
figure 9.2.

9.1.3 What is transfer learning?

If you generalize what you did with word embeddings earlier, you took the outcome of
one task (i.e., predicting word cooccurrence with embeddings) and transferred the
knowledge gleaned from it to another one (i.e., sentiment analysis, or any other NLP
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tasks). In machine learning, this process is called transfer learning, which is a collection
of related techniques to improve the performance of a machine learning model in a
task using data and/or models trained in a different task. Transfer learning always
consists of two or more steps—a machine learning model is first trained for one task
(called pretraining), which is then adjusted and used in another (called adaptation). If
the same model is used for both tasks, the second step is called fine-tuning, because
you are tuning the same model slightly but for a different task. See figure 9.3 for an
illustration of transfer learning in NLP.

Figure 9.3 Leveraging transfer learning helps build a better NLP model.

Transfer learning has become the dominant way for building high-quality NLP models
in the past few years for two main reasons. Firstly, thanks to powerful neural network
models such as the Transformer and self-supervised learning (see section 9.2.2), it
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Figure 9.2 Leveraging word embeddings helps build a better NLP model.
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became possible to bootstrap high-quality embeddings from an almost unlimited
amount of natural language text. These embeddings take into account the structure,
context, and semantics of natural language text to a great extent. Secondly, thanks to
transfer learning, anyone can incorporate these powerful pretrained language models
into their NLP applications, even without access to a lot of textual resources, such as
web-scale corpora, or compute resources, such as powerful GPUs. The advent of these
new technologies (the Transformer, self-supervised learning, pretrained language
models, and transfer learning) moved the field of NLP to a completely new stage and
pushed the performance of many NLP tasks to a near-human level. In the following
subsections, we’ll see transfer learning in action by actually building NLP models
while leveraging PLMs such as BERT.

 Note that the concept called domain adaptation is closely related to transfer learn-
ing. Domain adaptation is a technique where you train a machine learning model in
one domain (e.g., news) and adapt it to another domain (e.g., social media), but
these are for the same task (e.g., text classification). On the other hand, the transfer
learning we cover in this chapter is applied to different tasks (e.g., language modeling
versus text classification). You can achieve the same effect using the transfer learning
paradigm covered in this chapter, and we do not specifically cover domain adaptation
as a separate topic. Interested readers can learn more about domain adaptation from
a recent review paper.1

9.2 BERT
In this section, we will cover BERT in detail. BERT (Bidirectional Encoder Represen-
tations from Transformers)2 is by far the most popular and most influential pretrained
language model to date that revolutionized how people train and build NLP models.
We will first introduce contextualized embeddings and why they are important, then move
on to explaining self-supervised learning, which is an important concept in pretrain-
ing language models. We’ll cover two self-supervised tasks used for pretraining BERT,
namely, masked language models and next-sentence prediction, and cover ways to
adapt BERT for your applications. 

9.2.1 Limitations of word embeddings

Word embeddings are a powerful concept that can give your application a boost in the
performance, although they are not without limitation. One obvious issue is that they
cannot take context into account. Words you see in natural language are often poly-
semous, meaning they may have more than one meaning, depending on their con-
text. However, because word embeddings are trained per token type, all the different
meanings are compressed into a single vector. For example, training a single vector

1 Ramponi and Plank, “Neural Unsupervised Domain Adaptation in NLP—A Survey,” (2020). https://arxiv.org/
abs/2006.00632.

2 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “BERT: Pre-Training of Deep Bidirec-
tional Transformers for Language Understanding,” (2018). https://arxiv.org/abs/1810.04805.

https://arxiv.org/abs/2006.00632
https://arxiv.org/abs/2006.00632
https://arxiv.org/abs/1810.04805
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for “dog” or “apple” cannot deal with the fact that “hot dog” or “Big Apple” are not a
type of animal or fruit, respectively. As another example, consider what “play” means
in these sentences: “They played games,” “I play Chopin,” “We play baseball,” and
“Hamlet is a play by Shakespeare” (these sentences are all from Tatoeba.org). These
occurrences of “play” have different meanings, and assigning a single vector wouldn’t
help much in downstream NLP tasks (e.g., in classifying the topic into sports, music,
and art). 

 Due to this limitation, NLP researchers started exploring ways to transform the
entire sentence into a series of vectors that consider the context, called contextualized
embeddings or simply contextualization. With these representations, all the occurrences
of “play” in the previous examples would have different vectors assigned, helping
downstream tasks disambiguate different uses of the word. Notable milestones in con-
textualized embeddings include CoVe3 and ELMo (section 9.3.1), although the big-
gest breakthrough was achieved by BERT, a Transformer-based pretrained language
model, which is the focus of this section.

 We learned the Transformer
uses a mechanism called self-
attention to gradually transform
the input sequence by summariz-
ing it. The core idea of BERT is
simple: it uses the Transformer
(the Transformer encoder, to be
precise) to transform the input
into contextualized embeddings.
The Transformer transforms the
input through a series of layers
by gradually summarizing the
input. Similarly, BERT contextu-
alizes the input through a series
of Transformer encoder layers.
This is illustrated in figure 9.4.

 Because BERT is based on the Transformer architecture, it inherits all the
strengths of the Transformer. Its self-attention mechanism enables it to “random
access” over the input and capture long-term dependencies among input tokens.
Unlike traditional language models (such as the one based on LSTM that we covered
in section 5.5) that can make predictions in only one direction, the Transformer can
take into account the context in both directions. Using the sentence “Hamlet is a play
by Shakespeare” as an example, the contextualized embedding for “play” can incorpo-
rate the information from both “Hamlet” and “Shakespeare,” which makes it easier to
capture its “dramatic work for the stage” meaning of “play.”

3 Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher, “Learned in Translation: Contextual-
ized Word Vectors,” in NIPS 2017.
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Figure 9.4 BERT processes input through attention layers 
to produce contextualized embeddings.
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 If this concept is as simple as “BERT is just a Transformer encoder,” why does it
deserve an entire section here? Because we haven’t answered two important practical
questions yet: how to train and adapt the model. Neural network models, no matter
how powerful, are useless without specific strategies for training and where to get the
training data. Also, transfer learning is useless without specific strategies for adapting
the pretrained model. We will discuss these questions in the following subsections.

9.2.2 Self-supervised learning

The Transformer, which was originally proposed for machine translation, is trained
using parallel text. Its encoder and decoder are optimized to minimize the loss func-
tion, which is the cross entropy defined by the difference between the decoder output
and the expected, correct translation. However, the purpose of pretraining BERT is to
derive high-quality contextualized embeddings, and BERT has only an encoder. How
can we “train” BERT so that it is useful for downstream NLP tasks?

 If you think of BERT just as another way of deriving embeddings, you can draw
inspiration from how word embeddings are trained. Recall that in section 3.4, to train
word embeddings, we make up a “fake” task where surrounding words are predicted
with word embeddings. We are not interested in the prediction per se but rather the
“by-product” of the training, which is the word embeddings derived as the parameters
of the model. This type of training paradigm where the data itself provides training
signals is called self-supervised learning, or simply self-supervision, in modern machine
learning. Self-supervised learning is still one type of supervised learning from the
model’s point of view—the model is trained in such a way that it minimizes the loss
function defined by the training signal. It is where the training signal comes from that
is different. In supervised learning, training signals usually come from human annota-
tions. In self-supervised learning, training signals come from the data itself with no
human intervention.

 With increasingly larger datasets and more powerful models, self-supervised learn-
ing has become a popular way to pretrain NLP models in the past several years. But
why does it work so well? Two factors contribute to this—one is that the type of self-
supervision here is trivially simple to create (just extracting surrounding words for
Word2vec), but it requires deep understanding of the language to solve it. For exam-
ple, reusing the example from the language model we discussed in chapter 5, to
answer “My trip to the beach was ruined by bad ___,” not only does the system need to
understand the sentence but it also needs to be equipped with some sort of “common
sense” for what type of things could ruin a trip to a beach (e.g., bad weather, heavy
traffic). The knowledge required to predict the surrounding words ranges from sim-
ple collocation/association (e.g., The Statue of ____ in New ____), syntactic and
grammatical (e.g., “My birthday is ___ May”), and semantic (the previous example).
Second, there is virtually no limit on the amount of data used for self-supervision,
because all you need is clean, plain text. You can download large datasets (e.g., Wiki-
pedia dump) or crawl and filter web pages, which is a popular way to train many pre-
trained language models.
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9.2.3 Pretraining BERT

Now that we all understand how useful self-supervised learning can be for pretraining
language models, let’s see how we can use it for pretraining BERT. As mentioned ear-
lier, BERT is just a Transformer encoder that transforms the input into a series of
embeddings that take context into account. For pretraining word embeddings, you
could simply predict surrounding words based on the embeddings of the target word.
For pretraining unidirectional language models, you could simply predict the next
token based on the tokens that come before the target. But for bidirectional language
models such as BERT, you cannot use these strategies, because the input for the pre-
diction (contextualized embeddings) also depends on what comes before and after
the input. This sounds like a chicken-and-egg problem.

 The inventors of BERT solved this with a brilliant idea called masked language model
(MLM), where they drop (mask) words randomly in a given sentence and let the
model predict what the dropped word is. Specifically, after replacing a small percent-
age of words in a sentence with a
special placeholder, BERT uses
the Transformer to encode the
input and then uses a feed-
forward layer and a softmax lay-
ers to derive a probability distri-
bution over possible words that
can fill in that blank. Because
you already know the answer
(because you dropped the words
in the first place), you can use the
regular cross entropy to train the
model, as illustrated in figure 9.5. 

 Masking and predicting
words is not a completely new
idea—it’s closely related to cloze
tests, where the test-taker is asked
to replace the removed words in
a sentence. This test form is
often used to assess how well stu-
dents can understand the language. As we saw earlier, completing missing words in a
natural language text requires deep understanding of the language, ranging from
simple associations to semantic relationships. As a result, by telling the model to solve
this fill-in-the-blank type of task over a huge amount of textual data, the neural net-
work model is trained so that it can produce contextualized embeddings that incorpo-
rate deep linguistic knowledge.

 You may be wondering what this input [MASK] is and what you actually need to do
if you want to implement pretraining BERT yourself. In training neural networks,

Statue of [MASK]

Liberty

in

Transformer layer

Transformer layer

Softmax

BERT

Figure 9.5 Pretraining BERT with a masked language 
model
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people often use special tokens such as [MASK] that we mentioned here. These spe-
cial tokens are just like other (naturally occurring) tokens such as the words “dog”
and “cat,” except they don’t occur in text naturally (you can’t find any [MASK] in nat-
ural language corpora, no matter how hard you look) and the designers of the neural
networks define what they mean. The model will learn to give representations to these
tokens so that it can solve the task at hand. Other special tokens include BOS (begin-
ning of sentence), EOS (end of sentence), and UNK (unknown word), which we
already encountered in earlier chapters.

 Finally, BERT is pretrained not just with the masked language model but also with
another type of task called next-sentence prediction (NSP), where two sentences are given
to BERT and the model is asked to predict whether the second sentence is the “real”
next sentence of the first. This is another type of self-supervised learning (“fake” task)
for which the training data can be created in an unlimited manner without much
human intervention, because you can extract two consecutive sentences (or just stitch
together two sentences at random) from any corpus and make the training data for
this task. The rationale behind this task is that by training with this objective, the
model will learn how to infer the relationship of two sentences. However, the effective-
ness of this task has been actively debated (e.g., RoBERTa dropped this task whereas
ALBERT replaced it with another task called sentence-order prediction), and we will not
go into the details of this task here.

 All this pretraining sounds somewhat complex, but good news is that you rarely
need to implement this step yourself. Similar to word embeddings, developers and
researchers of these language models pretrain their models on a huge amount of nat-
ural language text (usually 10 GB-plus or even 100 GB-plus of uncompressed text)
with many GPUs and make the pretrained models publicly available so that anyone
can use them.

9.2.4 Adapting BERT

At the second (and final) stage of transfer learning, a pretrained model is adapted to
the target task so that the latter can leverage signals learned by the former. There are
two main ways to adapt BERT to individual downstream tasks: fine-tuning and feature
extraction. In fine-tuning, the neural network architecture is slightly modified so that it
can produce the type of predictions for the task in question, and the entire network is
continuously trained on the training data for the task so that the loss function is mini-
mized. This is exactly the way you train a neural network for NLP tasks, such as senti-
ment analysis, with one important difference—BERT “inherits” the model weights
learned through pretraining, instead of being initialized randomly and trained from
scratch. In this way, the downstream task can leverage the powerful representations
learned by BERT through pretraining on a large amount of data.

 The exact way the BERT architecture is modified varies, depending on the final
task, but here I’m going to describe the simplest case where the task is to predict some
sort of label for a given sentence. This is also called a sentence-prediction task, which
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includes sentiment analysis, which we covered in chapter 2. For downstream tasks to
be able to extract representations for a sentence, BERT prepends a special token
[CLS] (for classification) to every sentence at the pretraining phase. You can extract
the hidden states of BERT with this token and use them as the representation of the
sentence. As with other classification tasks, a linear layer can compress this representa-
tion into a set of “scores” that correspond to how likely each label is the correct
answer. You can then use softmax to derive a probability distribution. For example, if
you are working on a sentiment analysis dataset with five labels (strongly negative to
strongly positive), you’ll use a linear layer to reduce the dimensionality to 5. This type
of linear layer combined with softmax, which is plugged into a larger pretrained
model such as BERT, is often called a head. In other words, we are attaching a classifica-
tion head to BERT to solve a sentence-prediction task. The weights for the entire net-
work (the head and BERT) are adjusted so that the loss function is minimized. This
means that the BERT weights initialized with pretrained ones also are adjusted (fine-
tuned) through backpropagation. See figure 9.6 for an illustration.

Figure 9.6 Pretraining and fine-tuning BERT with an attached classification head

Another variation in fine-tuning BERT uses all the embeddings, averaged over the
input tokens. In this method, called mean over time or bag of embeddings, all the embed-
dings produced by BERT are summed up and divided by the length of input, just like
the bag-of-words model, to produce a single vector. This method is less popular than
using the CLS special token but may work better depending on the task. Figure 9.7
illustrates this.
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Figure 9.7 Pretraining and fine-tuning BERT using mean over time and a classification head

Another way to adapt BERT for downstream NLP tasks is feature extraction. Here BERT
is used to extract features, which are simply a sequence of contextualized embeddings
produced by the final layer of BERT. You can simply feed these vectors to another
machine learning model as features and make predictions, as shown in figure 9.8.

Figure 9.8 Pretraining and using BERT for feature extraction
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Graphically, this approach looks similar to fine-tuning. After all, you are feeding the
output from BERT to another ML model. However, there are two subtle but import-
ant differences: first, because you are no longer optimizing the neural network, the
second ML model doesn’t have to be a neural network. Some machine learning tasks
(e.g., unsupervised clustering) are not what neural networks are good at solving, and
feature extraction offers a perfect solution in these situations. Also, you are free to use
more “traditional” ML algorithms, such as SVMs (support vector machines), decision
trees, and gradient-boosted methods (such as GBDT, or gradient-boosted decision
trees), which may offer a better tradeoff in terms of computational cost and perfor-
mance. Second, because BERT is used only as a feature extractor, there is no back-
propagation and its internal parameters won’t be updated during the adaptation
phase. In many cases, you get better accuracy in the downstream task if you fine-tune
the BERT parameters, because by doing so, you are also teaching BERT to get better
at the task at hand. 

 Finally, note that these two are not the only ways to adapt BERT. Transfer learning
is an actively researched topic, not just in NLP but also in many fields of artificial intel-
ligence, and we have many other ways to use pretrained language models to make the
best of them. If you are interested in learning more, I recommend checking out the
tutorial given at NAACL 2019 (one of the top NLP conferences) titled “Transfer
Learning in Natural Language Processing” (http://mng.bz/o8qp).

9.3 Case study 1: Sentiment analysis with BERT
In this section, we will build a sentiment analyzer (again), but this time with BERT.
Instead of AllenNLP, we will use the Transformers library developed by Hugging Face,
which we used for making predictions with language models in the previous chapter.
All the code here is accessible on a Google Colab notebook (http://www.realworldnlp-
book.com/ch9.html#sst). The code snippets you see in this section all assume that
you import related modules, classes, and methods as follows:

import torch
from torch import nn, optim
from transformers import AutoTokenizer, AutoModel, AdamW, 

get_cosine_schedule_with_warmup

In the Transformers library, you specify the pretrained models by their names. We’ll
use the cased BERT-base model ('bert-base-cased') throughout this section, so
let’s define a constant first as follows: 

BERT_MODEL = 'bert-base-cased'

The Transformers library also supports other pretrained BERT models, which you
can see in their documentation (https://huggingface.co/transformers/pretrained_
models.html). If you want to use other models, you can simply replace this constant
with the name of the model you want to use, and the rest of the code works as-is in
many cases (but not always).

http://mng.bz/o8qp
http://www.realworldnlpbook.com/ch9.html#sst
http://www.realworldnlpbook.com/ch9.html#sst
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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9.3.1 Tokenizing input

The first step we took for building an NLP model is to build a dataset reader.
Although AllenNLP (or more precisely speaking, the allennlp-modules package)
is shipped with a dataset reader for the Stanford Sentiment Treebank, the dataset
reader’s output is compatible only with AllenNLP. In this section, we are going to write
a simple method that reads the dataset and returns a sequence of batched input
instances.

 Tokenization is one of the most important steps in processing natural language
input. As we saw in the previous chapter, tokenizers in the Transformers library can be
initialized with the AutoTokenizer.from_pretrained() class method as follows:

tokenizer = AutoTokenizer.from_pretrained(BERT_MODEL)

Because different pretrained models use different tokenizers, it is important to initial-
ize the one that matches the pretrained model you are going to use by supplying the
same model name.

 You can use the tokenizer to convert between a string and a list of token IDs back
and forth, as shown next:

>>> token_ids = tokenizer.encode('The best movie ever!')

[101, 1109, 1436, 2523, 1518, 106, 102]

>>> tokenizer.decode(token_ids)

'[CLS] The best movie ever! [SEP]'

Notice that BERT’s tokenizer added two special tokens—[CLS] and [SEP]—to your
sentence. As discussed earlier, CLS is a special token used to extract the embedding
for the entire input, whereas SEP is used to separate two sentences if your task involves
making predictions on a pair of sentences. Because we are making predictions for sin-
gle sentences here, there’s no need to pay much attention to this token. We’ll discuss
sentence-pair classification tasks later in section 9.5.

 Deep neural networks rarely operate on single instances. They usually are trained
on and make predictions for batches of instances for stability and performance rea-
sons. The tokenizer also supports converting the given input in batches by invoking
the __call__ method (i.e., just use the object as a method) as follows:

>>> result = tokenizer(
>>>    ['The best movie ever!', 'Aweful movie'],
>>>    max_length=10,
>>>    pad_to_max_length=True,
>>>    truncation=True,
>>>    return_tensors='pt')

When you run this, each string in the input list is tokenized and then resulting tensors
are padded with 0s to have the same lengths. Padding here means adding 0s at the end
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of each sequence so that individual instances have the same length and can be bundled
as a single tensor, which is needed for more efficient computation (we’ll cover padding
in more detail in chapter 10). The method call contains several other parameters that
control the maximum length (max_length=10, meaning to pad everything to the
length of 10), whether to pad to the maximum length, whether to truncate sequences
that are too long, and the type of the returned tensors (return_tensors='pt',
meaning it returns PyTorch tensors). The result of this tokenizer() call is a dictio-
nary that contains the following three keys and three different types of packed tensors:

>>> result['input_ids']

tensor([[ 101, 1109, 1436, 2523, 1518,  106,  102,    0,    0,    0],
        [ 101,  138, 7921, 2365, 2523,  102,    0,    0,    0,    0]])

>>> result['token_type_ids']

tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

>>> result['attention_mask']

tensor([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]])

The input_ids tensor is a packed version of token IDs converted from the texts.
Notice that each row is a vectorized token ID padded with 0s so that its length is always
10. The token_type_ids tensor specifies which sentence each token comes from. As
with the SEP special token earlier, this is relevant only if you are working with sen-
tence pairs, which is why the tensor is simply filled with just 0s. The attention_mask
tensor specifies which tokens the Transformer should attend to. Because there are no
tokens at the padded elements (0s in input_ids), the corresponding elements in
attention_mask are all 0s, and attention to these tokens is simply ignored. Masking
is a common technique often used in neural networks to ignore irrelevant elements in
batched tensors like the ones shown here. Chapter 10 covers masking in more detail.

 As you see here, the Transformers library’s tokenizers do more than just
tokenizing—they take a list of strings and create batched tensors for you, including the
auxiliary tensors (token_type_ids and attention_mask). You just need to create
lists of strings from your dataset and pass them to tokenizer()to create batches to
pass on to the model. This logic for reading datasets is rather boring and a bit lengthy,
so I packaged it in a method named read_dataset, which is not shown here. If you
are interested, you can check the Google Colab notebook mentioned earlier. Using
this method, you can read a dataset and convert it to a list of batches as follows:

train_data = read_dataset('train.txt', batch_size=32, tokenizer=tokenizer, 
max_length=128)

dev_data = read_dataset('dev.txt', batch_size=32, tokenizer=tokenizer, 
max_length=128)
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9.3.2 Building the model

In the next step, we’ll build the model to classify texts into their sentiment labels. The
model we build here is nothing but a thin wrapper around BERT. All it does is pass the
input through BERT, take out its embedding at CLS, pass it through a linear layer to
convert to a set of scores (logits), and compute the loss.

 Note that we are building a PyTorch Module, not an AllenNLP Model, so make
sure to inherit from nn.Module, although the structure of these two types of models
are usually very similar (because AllenNLP’s Models inherit from PyTorch Modules).
You need to implement __init__(), where you define and initialize submodules of
the model, and forward(), where the main computation (“forward pass”) happens.
The entire code snippet is shown next.

class BertClassifier(nn.Module):
    def __init__(self, model_name, num_labels):
        super(BertClassifier, self).__init__()
        self.bert_model = AutoModel.from_pretrained(model_name)    

        self.linear = nn.Linear(self.bert_model.config.hidden_size, 
num_labels)   

        self.loss_function = nn.CrossEntropyLoss()

    def forward(self, input_ids, attention_mask, token_type_ids, label=None):
        bert_out = self.bert_model(     
          input_ids=input_ids,
          attention_mask=attention_mask,
          token_type_ids=token_type_ids)
        
        logits = self.linear(bert_out.pooler_output)    

        loss = None
        if label is not None:
            loss = self.loss_function(logits, label)    

        return loss, logits

The module first defines the BERT model (via the AutoModel.from_pretrained()
class method), a linear layer (nn.Linear), and the loss function (nn.CrossEntropy-
Loss) in __init__(). Note that the module has no way of knowing the number of
labels it needs to classify into, so we are passing it as a parameter (num_labels).

 In the forward() method, it first calls the BERT model. You can simply pass the
three types of tensors (input_ids, attention_mask, and token_type_ids) to the
model. The model returns a data structure that contains last_hidden_state
and pooler_output among other things, where last_hidden_state is a sequence
of hidden states of the last layer, whereas pooler_output is a pooled output, which
is basically the embedding at CLS transformed with a linear layer. Because we are

Listing 9.1 Sentiment analysis model with BERT

Initializes 
BERT

Defines a 
linear layer

Applies 
BERT

Applies the 
linear layer

Computes 
the loss
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interested only in the pooled output that represents the entire input, we’ll pass the lat-
ter to the linear layer. Finally, the method computes the loss (if the label is supplied)
and returns it, along with the logits, which are used for making predictions and mea-
suring the accuracy.

 Pay attention to the way we designed the method signature—it takes the three ten-
sors we inspected earlier with their exact names. This lets us simply destruct a batch
and pass it to the forward method, as shown here:

>>> model(**train_data[0])

(tensor(1.8050, grad_fn=<NllLossBackward>),
 tensor([[-0.5088,  0.0806, -0.2924, -0.6536, -0.2627],
         [-0.3816,  0.3512, -0.1223, -0.5136, -0.4421],
         ...
         [-0.4220,  0.3026, -0.1723, -0.4913, -0.4106],
         [-0.3354,  0.3871, -0.0787, -0.4673, -0.4169]],
        grad_fn=<AddmmBackward>))

Notice that the return value of the forward pass is a tuple of the loss and the logits.
Now you are ready to train your model!

9.3.3 Training the model

In the third and the final step of this case study, we will train and validate the model.
Although AllenNLP took care of the training process in the previous chapters, in this
section we’ll write our own training loop from scratch so we can better understand
what it takes to train a model yourself. Note that you can also choose to use the library’s
own Trainer class (https://huggingface.co/transformers/main_classes/trainer.html),
which works similarly to AllenNLP’s Trainer, to run the training loop by specifying its
parameters.

 We covered the basics of training loops in section 2.5, but to recap, in modern
machine learning, every training loop looks somewhat similar. If you write it in
pseudocode, it would look like the one shown as follows. 

MAX_EPOCHS = 100
model = Model()

for epoch in range(MAX_EPOCHS):
    for batch in train_set:
        loss, prediction = model.forward(**batch)
        new_model = optimizer(model, loss)
        model = new_model

This training loop is almost identical to listing 2.2, except it operates on batches instead
of single instances. The dataset yields a series of batches, which are then passed to
the forward method of the model. The method returns the loss, which is then used to

Listing 9.2 Pseudocode for the neural network training loop

https://huggingface.co/transformers/main_classes/trainer.html
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optimize the model. It is also common for the model to return the predictions so that
the caller can use the result to compute some metrics, such as accuracy.

 Before we move on to writing our own training loop, we need to note two things—
it is customary to alternate between training and validation during each epoch. In the
training phase, the model is optimized (the “magic constants” are changed) based on
the loss function and the optimizer. The training data is used during this phase. In the
validation phase, the model’s parameters are fixed, and its accuracy of prediction is
measured against validation data. Although the loss is not used for optimization
during validation, it is common to compute it to monitor how the loss changes during
the course of the training, as we did in section 6.3.

 Another thing to note is that when training Transformer-based models such as
BERT, we usually use warm-up, a process where the learning rate (how much to change
the magic constants) is gradually increased for the first few thousand steps. A step
here is just another name for one execution of backpropagation, which corresponds
to the inner loop of listing 9.2. This is useful for stabilizing training. We are not going
into the mathematical details of warm-up and controlling the learning rate here—we
just note that a learning rate scheduler is usually used for controlling the learning rate
over the course of the training. With the Transformers library, you can define an opti-
mizer (AdamW) and a learning controller as follows:

optimizer = AdamW(model.parameters(), lr=1e-5)
scheduler = get_cosine_schedule_with_warmup(
    optimizer,
    num_warmup_steps=100,
    num_training_steps=1000)

The controller we are using here (get_cosine_schedule_with_warmup) increases
the learning rate from zero to the maximum during the first 100 steps, then gradually
decreases it afterward (based on the cosine function, which is where it got its name).
If you plot how the learning rate changes over time, it’ll look like the graph in
figure 9.9.

Figure 9.9 With a cosine learning rate schedule with warm-up, the learning rate ramps up 
first, then declines following a cosine function.

Now we are ready to train our BERT-based sentiment analyzer. The next listing shows
our training loop.
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for epoch in range(epochs):
    print(f'epoch = {epoch}')
    
    model.train()    

    losses = []
    total_instances = 0
    correct_instances = 0
    for batch in train_data:
        batch_size = batch['input_ids'].size(0)
        move_to(batch, device)     

        optimizer.zero_grad()     
        
        loss, logits = model(**batch)   
        loss.backward()    
        optimizer.step()
        scheduler.step()
    
        losses.append(loss)
        
        total_instances += batch_size
        correct_instances += torch.sum(torch.argmax(logits, dim=-1) 

   == batch['label']).item()   
    
    avr_loss = sum(losses) / len(losses)
    accuracy = correct_instances / total_instances
    print(f'train loss = {avr_loss}, accuracy = {accuracy}')

When you train a model using PyTorch (and, consequently, AllenNLP and Transform-
ers, two libraries that are built on top of it), remember to call model.train() to turn
on the “training mode” of the model. This is important because some layers such as
BatchNorm and dropout behave differently between training and evaluation (we’ll
cover dropout in chapter 10). On the other hand, when you validate or test your
model, be sure to call model.eval().

 The code in listing 9.3 does not show the validation phase, but the code for valida-
tion would look almost the same as that for training. When you validate/test your
model, pay attention to the following:

 As mentioned previously, make sure to call model.eval() before validating/
testing your model.

 Optimization calls (loss.backward(), optimizer.step(), and sched-
uler.step()) are not necessary because you are not updating the model.

 Losses are still recorded and reported for monitoring. Be sure to wrap your for-
ward pass call with with torch.no_grad()—this will disable gradient com-
putation and save memory.

 Accuracy is computed in exactly the same way (this is the point of validation!).

Listing 9.3 Training loop for the BERT-based sentiment analyzer

Turns on the 
training mode

Moves the batch to 
GPU (if available)

Remember to reset the gradients
(in PyTorch gradients accumulate).

Forward
pass

Backpropagation

Computes the accuracy by counting 
the number of correct instances
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When I ran this, I got the following output to stdout (with intermediate epochs
omitted):

epoch = 0
train loss = 1.5403757095336914, accuracy = 0.31624531835205993
dev loss = 1.7507736682891846, accuracy = 0.2652134423251589
epoch = 1
...
epoch = 8
train loss = 0.4508829712867737, accuracy = 0.8470271535580525
dev loss = 1.687158465385437, accuracy = 0.48319709355131696
epoch = 9
...

The dev accuracy peaked around 0.483 at epoch 8 and didn’t improve after that. Com-
pared to the result we got from LSTM (dev accuracy ~0.35, in chapter 2) and CNN
(dev accuracy ~0.40, in chapter 7), this is the best result we have achieved on this data-
set. We’ve done very little hyperparameter tuning, so it’s too early to conclude that
BERT is the best model of the three we compared, but we at least know that it is a
strong baseline to start from!

9.4 Other pretrained language models
BERT is neither the first nor the last of popular pretrained language models (PLMs)
commonly used in the NLP community nowadays. In this section, we’ll learn several
other popular PLMs and how they are different from BERT. Most of these models are
already implemented and publicly available from the Transformers library, so you
can integrate them with your NLP application by changing just a couple of lines of
your code. 

9.4.1 ELMo

ELMo (Embeddings from Language Models), proposed4 in early 2018, is one of the
earliest PLMs for deriving contextualized embeddings using unlabeled texts. Its core
idea is simple—train an LSTM-based language model (similar to the one we trained
back in chapter 5) and use its hidden states as additional “features” for downstream
NLP tasks. Because the language model is trained to predict the next token given the
previous context, the hidden states can encode the information needed to “under-
stand the language.” ELMo does the same with another, backward LM and combines
the embeddings from both directions so that it can also encode the information in
both directions. See figure 9.10 for an illustration.

 After pretraining LMs in both directions, downstream NLP tasks can simply use the
ELMo embeddings as features. Note that ELMo uses multilayer LSTM, so the features
are the sum of hidden states taken from different layers, weighted in a task-specific way.
The inventors of ELMo showed that adding these features improves the performance

4 Peters et al., “Deep Contextualized Word Representations,” (2018). https://arxiv.org/abs/1802.05365.

https://arxiv.org/abs/1802.05365
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of a wide range of NLP tasks, including sentiment analysis, named entity recognition,
and question answering. Although ELMo is not implemented in Hugging Face’s Trans-
formers library, you can use it with AllenNLP fairly easily.5

 ELMo is a historically important PLM, although it is not often used in research or
production anymore today—it predates BERT (and the advent of the Transformer)
and there are other PLMs (including BERT) that outperform ELMo and are widely
available today. 

9.4.2 XLNet

XLNet, proposed in 2019, is an important successor of BERT and often referenced as
one of the most powerful PLMs as of today. XLNet addresses two main issues of how
BERT is trained: train-test skew and the independence of masks. The first issue has to

5 See here for the detailed documentation on how to use ELMo with AllenNLP: https://allennlp.org/elmo.
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Figure 9.10 ELMo computes contextualized embeddings by combining forward and backward LSTMs.

https://allennlp.org/elmo


238 CHAPTER 9 Transfer learning with pretrained language models

do with how BERT is pretrained using the masked language model (MLM) objective.
During training time, BERT is trained so that it can accurately predict masked tokens,
whereas during prediction, it just sees the input sentence, which does not contain any
masks. This means that there’s a discrepancy of information to which BERT is
exposed to between training and testing, and that creates the train-test skew problem.

 The second issue has to do with how BERT makes predictions for masked tokens.
If there is more than one [MASK] token in the input, BERT makes predictions for
them in parallel. There doesn’t seem to be anything wrong with this approach at first
glance—for example, if the input was “The Statue of [MASK] in New [MASK],” the
model wouldn’t have difficulties answering this as “Liberty” and “York.” If the input
was “The Statue of [MASK] in Washington, [MASK],” most of you (and probably a
language model) would predict “Lincoln” and “DC.” However, what if the input was
the following:

The Statue of [MASK] in [MASK] [MASK]

Then there is no information to bias your prediction one way or the other. BERT
won’t learn the fact that “The Statue of Liberty in Washington, DC” or “The Statue of
Lincoln in New York” don’t make much sense during the training from this example,
because these predictions are all made in parallel. This is a good example showing
that you cannot simply make independent predictions on tokens and combine them
to create a sentence that makes sense.

NOTE This issue is related to the multimodality of natural language, which
means there are multiple modes in the joint probability distribution, and
combinations of best decisions made independently do not necessarily lead to
globally best decisions. Multimodality is a big challenge in natural language
generation.

To address this issue, instead of making predictions in parallel, you can make predic-
tions sequentially. In fact, this is exactly what typical language models do—generate
tokens from left to right, one by one. However, here we have a sentence interspersed
with masked tokens, and predictions depend not only on the tokens on the left (e.g.,
“The Statue of ” in the previous example) but also on the right (“in”). XLNet solves
this by generating missing tokens in a random order, as shown in figure 9.11. For
example, you can choose to generate “New” first, which gives a strong clue for the
next words, “York” and “Liberty,” and so on. Note that prediction is still made based
on all the tokens generated previously. If the model chose to generate “Washington”
first, then the model would proceed to generate “DC” and “Lincoln” and would never
mix up these two.

 XLNet is already implemented in the Transformers library, and you can use the
model with only a few lines of code change.6 

6  See https://huggingface.co/transformers/model_doc/xlnet.html for the documentation.

https://huggingface.co/transformers/model_doc/xlnet.html
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Figure 9.11 XLNet generates tokens in an arbitrary order.

9.4.3 RoBERTa

RoBERTa (from “robustly optimized BERT”)7 is another important PLM that is com-
monly used in research and industry. RoBERTa revisits and modifies many training
decisions of BERT, which makes it match or even exceed the performance of post-
BERT PLMs, including XLNet, which we covered earlier. My personal impression is
that RoBERTa is the second most referenced PLM after BERT as of this writing (mid-
2020), and it shows robust performance in many downstream NLP tasks in English. 

 RoBERTa makes several improvements over BERT, but the most important (and
the most straightforward) is the amount of its training data. The developers of
RoBERTa collected five English corpora of varying sizes and domains, which total over
160 GB of text (versus 16 GB used for training BERT). Simply by using a lot more data
for training, RoBERTa overperforms some of the other powerful PLMs, including
XLNet, in downstream tasks after fine-tuning. The second modification has to do with
the next-sentence prediction (NSP) objective we touched on in section 9.2.3, where
BERT is pretrained to classify whether the second sentence is the “true” sentence that
follows the first one in a corpus. The developers of RoBERTa found that, by removing
NSP (and training with the MLM objective only), the performance of downstream

7 Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” (2019). https://arxiv.org/abs/
1907.11692.
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tasks stays about the same or slightly improves. In addition to these, they also revisited
the batch size and the way masking is done for MLM. Combined, the new pretrained
language model achieved the state-of-the-art results on downstream tasks such as ques-
tion answering and reading comprehension.

 Because RoBERTa uses the identical architecture to BERT and both are imple-
mented in Transformers, switching to RoBERTa is extremely easy if your application
already uses BERT.

NOTE Similar to BERT versus RoBERTa, the cross-lingual language model
XLM (covered in section 8.4.4) has its “robustly optimized” sibling called
XLM-R (short for XML-RoBERTa).8 XLM-R pretrains on 100 languages and
shows competitive performance on many cross-lingual NLP tasks.

9.4.4 DistilBERT

Although pretrained models such as BERT and RoBERTa are powerful, they are com-
putationally expensive, not just for pretraining but also for tuning and making predic-
tions. For example, BERT-base (the regular-sized BERT) and BERT-large (the larger
counterpart) have 110 million and 340 million parameters, respectively, and virtually
every input has to go through this huge network to get predictions. If you were to fine-
tune and make predictions with a BERT-based model (such as the one we built in sec-
tion 9.3), you’d most certainly need a GPU, which is not always available, depending
on your computational environment. For example, if you’d like to run some real-time
text analytics on a mobile phone, BERT wouldn’t be a great choice (and it might not
even fit in the memory).

 To reduce the computational requirement of modern large neural networks,
knowledge distillation (or simply distillation) is often used. This is a machine learning
technique where, given a large pretrained model (called the teacher model), a smaller
model (called the student model) is trained to mimic the behavior of the larger model.
See figure 9.12 for more details. The student model is trained with the masked lan-
guage model (MLM) loss (same as BERT), as well as the cross-entropy loss between
the teacher and the student. This pushes the student model to produce the probabil-
ity distribution over predicted tokens that are as similar to the teacher as possible.

 Researchers at Hugging Face developed a distilled version of BERT called Distil-
BERT,9 which is 40% smaller and 60% faster while retraining 97% of task performance
compared to BERT. You can use DistilBERT by simply replacing the model name you
pass to AutoModel.from_pretrained() for BERT (e.g., bert-base-cased) with
distilled versions (e.g., distilbert-base-cased), while keeping the rest of your
code the same.

8 Conneau et al., “Unsupervised Cross-lingual Representation Learning at Scale,” (2019). https://arxiv.org/
abs/1911.02116.

9 Sanh et al., “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,” (2019). https://
arxiv.org/abs/1910.01108.

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
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9.4.5 ALBERT

Another pretrained language model that addresses the computational complexity
problem of BERT is ALBERT,10 short for “A Lite BERT.” Instead of resorting to know-
ledge distillation, ALBERT makes a few changes to its model and the training procedure. 

 One design change ALBERT makes to its model is how it handles word embed-
dings. In most deep NLP models, word embeddings are represented by and stored in
a big lookup table that contains one word embedding vector per word. This way of
managing embeddings is usually fine for smaller models such as RNNs and CNNs.
However, for Transformer-based models such as BERT, the dimensionality (i.e., the
length) of input needs to match that of the hidden states, which is usually as big as 768
dimensions. This means that the model needs to maintain a big lookup table of size V
times 768, where V is the number of unique vocabulary items. Because in many NLP
models V is also large (e.g., 30,000), the resulting lookup table becomes huge and
takes up a lot of memory and computation.

 ALBERT addresses this issue by decomposing word embedding lookup into two
stages, as shown in figure 9.13. The first stage is similar to how word embeddings are
retrieved from a mapping table, except that the output dimensionality of word
embedding vectors is smaller (say, 128 dimensions). In the next stage, these shorter

10 Lan et al., “ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations,” (2020).
https://arxiv.org/abs/1909.11942.
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vectors are expanded using a linear layer so that they match the desired input dimen-
sionality of the model (say, 768). This is similar to how we expanded word embed-
dings with the Skip-gram model (section 3.4). Thanks to this decomposition, ALBERT
needs to store only two smaller lookup tables (V × 128, plus 128 × 768) instead of one
big look-up table (V × 768).

 Another design change that ALBERT implements is parameter sharing between
Transformer layers. Transformer models use a series of self-attention layers to trans-
form the input vector. The way these layers transform the input is usually different
from layer to layer—the first layer may transform the input one way (e.g., capture
basic phrases), and the second one may do so another way (e.g., capture some syntac-
tic information). However, this means that the model needs to retain all the necessary
parameters (projections for keys, queries, and values) per each layer, which is expen-
sive and takes up a lot of memory. Instead, ALBERT’s layers all share the same set of
parameters, meaning that the model applies the same transformation repeatedly to
the input. These parameters are adjusted in such a way that the series of transforma-
tions are effective for predicting the objective, even though they are identical.

 Finally, ALBERT uses a training objective called sentence-order prediction (SOP) for
pretraining, instead of the next-sentence prediction (NSP) adopted by BERT. As men-
tioned earlier, the developers of RoBERTa and some others found out that the NSP
objective is basically useless and decided to eliminate it. ALBERT replaces NSP with
sentence-order prediction (SOP), a task where the model is asked to predict the
ordering of two consecutive segments of text. For example:11

 (A) She and her boyfriend decided to go for a long walk. (B) After walking for
over a mile, something happened.

 (C) However, one of the teachers around the area helped me get up. (D) At
first, no one was willing to help me up.

11 These examples are taken from ROCStories: https://cs.rochester.edu/nlp/rocstories/.
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In the first example, you can tell that A happens before B. In the second, the order is
flipped, and D should come before C. This is an easy feat for humans, but a difficult
task for machines—an NLP model needs to learn to ignore superficial topical signals
(e.g., “go for a long walk,” “walking for over a mile,” “helped me get up,” and “help me
up”) and focus on discourse-level coherence. Training with this objective makes the
model more robust and effective for deeper natural language understanding tasks.

 As a result, ALBERT was able to scale up its training and outperform BERT-large
with fewer parameters. As with DistilBERT, the model architecture of ALBERT is
almost identical to that of BERT, and you can use it by simply supplying the model
name when you call AutoModel.from_pretrained() (e.g., albert-base-v1).

9.5 Case study 2: Natural language inference with BERT
In this  final section of this chapter, we will build an NLP model for natural language
inference, a task where the system predicts logical relationship between sentences.
We’ll use AllenNLP for building the model while demonstrating how to integrate
BERT (or any other Transformer-based pretrained models) into your pipeline. 

9.5.1 What is natural language inference?

Natural language inference (or NLI, for short) is the task of determining the logical rela-
tionship between a pair of sentences. Specifically, given one sentence (called premise)
and another sentence (called hypothesis), you need to determine whether the hypo-
thesis is logically inferred from the premise. This is easier to see in the following
examples.12

In the first example, the hypothesis (“The man is sleeping”) clearly contradicts the
premise (“A man inspects . . .”) because someone cannot be inspecting something
while asleep. In the second example, you cannot tell if the hypothesis contradicts or is
entailed by the premise (especially the “laughing at the cats” part), which makes the
relationship “neutral.” In the third example, you can logically infer the hypothesis
from the premise—in other words, the hypothesis is entailed by the premise.

 As you can guess, NLI can be tricky even for humans. The task requires not only
lexical knowledge (e.g., plural of “man” is “men,” soccer is one type of sport) but also

Premise Hypothesis Label

A man inspects the uniform of a figure in 
some East Asian country.

The man is sleeping. contradiction

An older and younger man smiling. Two men are smiling and laughing at 
the cats playing on the floor.

neutral

A soccer game with multiple males playing. Some men are playing a sport. entailment

12 These examples are taken from http://nlpprogress.com/english/natural_language_inference.html.

http://nlpprogress.com/english/natural_language_inference.html
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some “common sense” (e.g., you cannot inspect while sleeping). NLI is one of the
most typical natural language understanding (NLU) tasks. How can you build an NLP
model to solve this task?

 Fortunately, NLI is a well-studied field in NLP. The most popular dataset for NLI,
the Standard Natural Language Inference (SNLI) corpus (https://nlp.stanford.edu/
projects/snli/), has been used in numerous NLP studies as a benchmark. In what fol-
lows, we’ll build a neural NLI model with AllenNLP and learn how to use BERT for
this particular task. 

 Before moving on, make sure that you have AllenNLP (we use version 2.5.0) and
the AllenNLP model’s modules installed. You can install them by running the follow-
ing code:

pip install allennlp==2.5.0
pip install allennlp-models==2.5.0

This also installs the Transformers library as a dependency.

9.5.2 Using BERT for sentence-pair classification

Before we start building the model, notice that every input to the NLI task consists of
two pieces: a premise and a hypothesis. Most of the NLP tasks we covered in this book
had just one part—usually a single sentence—as the input to the model. How can we
build a model that makes predictions for instances that are pairs of sentences?

 We have multiple ways to deal with multipart input for NLP models. We can
encode each sentence with an encoder and apply some mathematical operations
(e.g., concatenation, subtractions) to the result to derive an embedding for the pair
(which, by the way, is the basic idea of Siamese networks13). Researchers have also
come up with more complex neural network models with attention (such as BiDAF14).

 However, there’s inherently nothing preventing BERT from accepting more than
one sentence. Because the Transformer accepts a sequence of any tokens, you can
simply concatenate the two sentences and feed them to the model. If you are worried
about the model mixing up the two sentences, you can separate them with a special
token, [SEP]. You can also add different values to each sentence as an extra signal to
the model. BERT uses these two techniques to solve sentence-pair classification tasks
such as NLI with little modification to the model.

 The rest of the pipeline proceeds in a similar way to other classification tasks. A
special token [CLS] is appended to every sentence pair, from which the final embed-
ding of the input is extracted. Finally, you can use a classification head to convert the
embedding into a set of values (called logits) corresponding to the classes. This is illus-
trated in figure 9.14.

13 Reimers and Gurevych, “Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks,” (2019).
https://arxiv.org/abs/1908.10084.

14 Seo et al., “Bidirectional Attention Flow for Machine Comprehension,” (2018). https://arxiv.org/abs/1611
.01603.

https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1611.01603
https://arxiv.org/abs/1611.01603
https://arxiv.org/abs/1611.01603
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In practice, concatenating and inserting special tokens are both taken care of by
SnliReader, an AllenNLP dataset reader specifically built for dealing with the SNLI
dataset. You can initialize the dataset and observe how it turns the data into AllenNLP
instances with the following snippet:

from allennlp.data.tokenizers import PretrainedTransformerTokenizer
from allennlp_models.pair_classification.dataset_readers import SnliReader

BERT_MODEL = 'bert-base-cased'
tokenizer = PretrainedTransformerTokenizer(model_name=BERT_MODEL, 

add_special_tokens=False)

reader = SnliReader(tokenizer=tokenizer)
dataset_url = 'https://realworldnlpbook.s3.amazonaws.com/data/snli/

snli_1.0_dev.jsonl'
for instance in reader.read():
    print(instance)

The dataset reader takes a JSONL (JSON line) file from the Stanford NLI corpus and
turns it into a series of AllenNLP instances. We specify the URL of a dataset file that I
put online (S3). Note that you need to specify add_special_tokens=False when
initializing the tokenizer. This sounds a little bit strange—aren’t the special tokens the
very things we need to add here? This is necessary because the dataset reader (Snli-
Reader), not the tokenizer, will take care of the special tokens. If you were to use the
Transformer library only (without AllenNLP), you wouldn’t need this option.

 The previous snippet produces the following dump of generated instances:

Instance with fields:
         tokens: TextField of length 29 with text:

Transformer layer

Transformer layer

Softmax

Contradict Neutral Entail

Sentence 1 Sentence 2

BERT

[CLS]A soccer ...[SEP]Some men ...

Figure 9.14 Feeding 
and classifying a pair of 
sentences with BERT
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                [[CLS], Two, women, are, em, ##bracing, while, holding, to, 
go, packages,

                ., [SEP], The, sisters, are, hugging, goodbye, while, hold-
ing, to, go, 

                packages, after, just, eating, lunch, ., [SEP]]
                and TokenIndexers : {'tokens': 'SingleIdTokenIndexer'}
         label: LabelField with label: neutral in namespace: 'labels'.'

Instance with fields:
         tokens: TextField of length 20 with text:
                [[CLS], Two, women, are, em, ##bracing, while, holding, to, 

go, packages,
                ., [SEP], Two, woman, are, holding, packages, ., [SEP]]
                and TokenIndexers : {'tokens': 'SingleIdTokenIndexer'}
         label: LabelField with label: entailment in namespace: 'labels'.'

Instance with fields:
         tokens: TextField of length 23 with text:
                [[CLS], Two, women, are, em, ##bracing, while, holding, to, 

go, packages,
                ., [SEP], The, men, are, fighting, outside, a, del, ##i, ., 

[SEP]]
                and TokenIndexers : {'tokens': 'SingleIdTokenIndexer'}
         label: LabelField with label: contradiction in namespace: 'labels'.'
...

Notice that every sentence is tokenized, and the sentences are concatenated and sepa-
rated by [SEP] special tokens. Each instance also has a label field containing the gold
label. 

NOTE You may have noticed some weird characters in the tokenized results,
such as ##bracing and ##i. These are the results of byte-pair encoding (BPE),
a tokenization algorithm for splitting words into what’s called subword units.
We’ll cover BPE in detail in chapter 10.

9.5.3 Using Transformers with AllenNLP

Now we are ready to build our model with AllenNLP. The good news is you don’t need
to write any Python code to build an NLI model thanks to AllenNLP’s built-in
modules—all you need to do is write a Jsonnet config file (as we did in chapter 4).
AllenNLP also integrates Hugging Face’s Transformer library seamlessly, so you usu-
ally need to make little change, even if you want to integrate Transformer-based mod-
els such as BERT into your existing models.

 You need to make changes to the following four components when integrating
BERT into your model and pipeline:

 Tokenizer—As you did in section 9.3 earlier, you need to use a tokenizer that
matches the pretrained model you are using.

 Token indexer—Token indexers turn tokens into integer indices. Because pre-
trained models come with their own predefined vocabularies, it is important
that you use a matching token indexer.
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 Token embedder—Token embedders turn tokens into embeddings. This is where
the main computation of BERT happens.

 Seq2Vec encoder—The raw output from BERT is a sequence of embeddings. You
need a Seq2Vec encoder to turn it into a single embedding vector.

Don’t worry if this sounds intimidating—in most cases, all you need to do is remember
to initialize the right modules with the name of the model you want. I’ll walk you
through these steps next.

 First, let’s define the dataset we use for reading and converting the SNLI dataset.
We already did this with Python code earlier, but here we will write the corresponding
initialization in Jsonnet. First, let’s define the model name we’ll use throughout the
pipeline using the following code. One of the cool features of Jsonnet over vanilla
JSON is you can define and use variables:

local bert_model = "bert-base-cased";

The first section of the config file where the dataset is initialized looks like the following:

"dataset_reader": {
    "type": "snli",
    "tokenizer": {
        "type": "pretrained_transformer",
        "model_name": bert_model,
        "add_special_tokens": false
    },
    "token_indexers": {
        "bert": {
            "type": "pretrained_transformer",
            "model_name": bert_model,
        }
    }
},

At the top level, this is initializing a dataset reader specified by the type snli, which is
the SnliReader we experimented with previously. The dataset reader takes two
parameters—tokenizer and token_indexers. For the tokenizer, we initialize a
PretrainedTransformerTokenizer (type: pretrained_transformer) with a
model name. Again, this is the tokenizer we initialized and used earlier in the Python
code. Notice how the Python code and the Jsonnet config file correspond to each
other nicely. Most of AllenNLP modules are designed in such a way that there’s nice
correspondence between these two, as shown in the following table.

Python code Jsonnet config

tokenizer = 
PretrainedTransformerTokenizer(
    model_name=BERT_MODEL, 
    add_special_tokens=False)

"tokenizer": {
    "type": "pretrained_transformer",
    "model_name": bert_model,
    "add_special_tokens": false
}
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The section for initializing a token indexer may look a bit confusing. It is initializing
a PretrainedTransformerIndexer (type: pretrained_transformer) with a
model name. The indexer will store the indexed result to a section named bert (the
key corresponding to the token indexer). Fortunately, this code is a boilerplate that
changes little from model to model, and chances are you can simply copy and paste
this section when you work on a new Transformer-based model.

 As for the training/validation data, we can use the ones in this book’s S3 reposi-
tory, shown here:

"train_data_path": "https://realworldnlpbook.s3.amazonaws.com/data/snli/
snli_1.0_train.jsonl",

"validation_data_path": "https://realworldnlpbook.s3.amazonaws.com/data/snli/
snli_1.0_dev.jsonl",

Now we are ready to move on to defining our model:

"model": {
    "type": "basic_classifier",

    "text_field_embedder": {
        "token_embedders": {
            "bert": {
                "type": "pretrained_transformer",
                "model_name": bert_model
            }
        }
    },
    "seq2vec_encoder": {
        "type": "bert_pooler",
        "pretrained_model": bert_model
    }
},

At the top level, this section is defining a BasicClassifier model (type: basic_
classifier). It is a generic text classification model that embeds the input, encodes
it with a Seq2Vec encoder, and classifies it with a classification head (with a softmax
layer). You can “plug in” embedders and encoders of your choice as the subcompo-
nents of the model. For example, you can embed the tokens via word embeddings and
encode the sequence with an RNN (this is what we did in chapter 4). Alternatively, you
can encode the sequence with a CNN, as we did in chapter 7. This is where the design
of AllenNLP excels—the generic model specifies only what (e.g., a TextField-
Embedder and a Seq2VecEncoder) but not exactly how (e.g., word embeddings,
RNNs, BERT). You can use any submodules for embedding/encoding input, as long
as those submodules conform to the specified interfaces (i.e., they are subclasses of
the required classes).

 In this case study, we will use BERT to embed the input sequence first. This is
achieved by a special token embedder, PretrainedTransformerEmbedder (type:
pretrained_transformer), which takes the result of a Transformer tokenizer, puts
it through a pretrained BERT model, and produces the embedded input. You need to
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pass this embedder as the value for the bert key (the one you specified for
token_indexers earlier) of the token_embedders parameter.

 The raw output from BERT, however, is a sequence of embeddings. Because we are
interested in classifying the given pair of sentences, we need to extract the embed-
dings for the entire sequence, which can be done by taking out the embeddings corre-
sponding to the CLS special token. AllenNLP implements a type of Seq2VecEncoder
called BertPooler (type: bert_pooler) that does exactly this.

 After embedding and encoding the input, the basic classifier model takes care of
the rest—the embeddings go through a linear layer that converts them into a set of
logits, and the entire network is trained with a cross-entropy loss, just like other classi-
fication models. The entire config file is shown here.

local bert_model = "bert-base-cased";

{
    "dataset_reader": {
        "type": "snli",
        "tokenizer": {
            "type": "pretrained_transformer",
            "model_name": bert_model,
            "add_special_tokens": false
        },
        "token_indexers": {
            "bert": {
                "type": "pretrained_transformer",
                "model_name": bert_model,
            }
        }
    },
    "train_data_path": "https://realworldnlpbook.s3.amazonaws.com/data/snli/

snli_1.0_train.jsonl",
    "validation_data_path": "https://realworldnlpbook.s3.amazonaws.com/data/

snli/snli_1.0_dev.jsonl",

    "model": {
        "type": "basic_classifier",

        "text_field_embedder": {
            "token_embedders": {
                "bert": {
                    "type": "pretrained_transformer",
                    "model_name": bert_model
                }
            }
        },
        "seq2vec_encoder": {
            "type": "bert_pooler",
            "pretrained_model": bert_model,
        }
    },

Listing 9.4 Config file for training an NLI model with BERT
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    "data_loader": {
        "batch_sampler": {
            "type": "bucket",
            "sorting_keys": ["tokens"],
            "padding_noise": 0.1,
            "batch_size" : 32
        }
    },
    "trainer": {
        "optimizer": {
            "type": "huggingface_adamw",
            "lr": 5.0e-6
        },
        "validation_metric": "+accuracy",
        "num_epochs": 30,
        "patience": 10,
        "cuda_device": 0
    }
}

It’s OK if you are not familiar with what’s going on in the data_loader and trainer
sections. We’ll discuss these topics (batching, padding, optimizing, hyperparameter
tuning) in chapter 10. After saving this config file under examples/nli/snli_
transformers.jsonnnet, you can start the training process by running the follow-
ing code:

allennlp train examples/nli/snli_transformers.jsonnet --serialization-dir 
models/snli

This will run for a while (even on a fast GPU such as Nvidia V100) and produce a large
amount of log messages on stdout. The following is a snippet of log messages I got
after four epochs:

...
allennlp.training.trainer - Epoch 4/29
allennlp.training.trainer - Worker 0 memory usage MB: 6644.208
allennlp.training.trainer - GPU 0 memory usage MB: 8708
allennlp.training.trainer - Training
allennlp.training.trainer - Validating
allennlp.training.tensorboard_writer -                        Training |  Validation
allennlp.training.tensorboard_writer - accuracy           |     0.933  |     0.908
allennlp.training.tensorboard_writer - gpu_0_memory_MB    |  8708.000  |       N/A
allennlp.training.tensorboard_writer - loss               |     0.190  |     0.293
allennlp.training.tensorboard_writer - reg_loss           |     0.000  |     0.000
allennlp.training.tensorboard_writer - worker_0_memory_MB |  6644.208  |       N/A
allennlp.training.checkpointer - Best validation performance so far. Copying weights 
to 'models/snli/best.th'.
allennlp.training.trainer - Epoch duration: 0:21:39.687226
allennlp.training.trainer - Estimated training time remaining: 9:04:56
...

Pay attention to the validation accuracy (0.908). This looks very good considering that
this is a three-class classification and the random baseline would be just 0.3. In
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comparison, when I replaced BERT with an LSTM-based RNN, the best validation
accuracy I got was around ~0.68. We need to run experiments more carefully to make
a fair comparison between different models, but this result seems to suggest that
BERT is a powerful model for solving natural language understanding problems.

Summary
 Transfer learning is a machine learning concept where a model learned for one

task is applied to another by transferring knowledge between them. It is an
underlying concept for many modern, powerful, pretrained models.

 BERT is a Transformer encoder pretrained with masked language modeling
and next-sentence prediction objectives to produce contextualized embed-
dings, a series of word embeddings that take context into account.

 ELMo, XLNet, RoBERTa, DistilBERT, and ALBERT are other popular pre-
trained models commonly used in modern deep NLP.

 You can build BERT-based NLP applications by using Hugging Face’s Trans-
formers library directly, or by using AllenNLP, which integrates the Transform-
ers library seamlessly.
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Part 3

Putting into production

In parts 1 and 2, we learned a lot about the “modeling” part of the modern
NLP, including word embeddings, RNNs, CNNs, and the Transformer. However,
you still need to learn how to effectively train, serve, deploy, and interpret those
models for building robust and practical NLP applications. 

 Chapter 10 touches upon important machine learning techniques and best
practices when developing NLP applications, including batching and padding,
regularization, and hyperparameter optimization.

 Finally, if chapters 1 to 10 are about building NLP models, chapter 11 covers
everything that happens outside NLP models. The chapter covers how to deploy,
serve, explain, and interpret NLP models.
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Best practices in developing
NLP applications

We’ve covered a lot of ground so far, including deep neural network models such as
RNNs, CNNs, and the Transformer, and modern NLP frameworks such as AllenNLP
and Hugging Face Transformers. However, we’ve paid little attention to the details
of training and inference. For example, how do you train and make predictions effi-
ciently? How do you avoid having your model overfit? How do you optimize hyper-
parameters? These factors could make a huge impact on the final performance and
generalizability of your model. This chapter covers these important topics that you

This chapter covers
 Making neural network inference more efficient 

by sorting, padding, and masking tokens

 Applying character-based and BPE tokenization
for splitting text into tokens

 Avoiding overfitting via regularization

 Dealing with imbalanced datasets by using 
upsampling, downsampling, and loss weighting

 Optimizing hyperparameters
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need to consider to build robust and accurate NLP applications that perform well in
the real world.

10.1 Batching instances
In chapter 2, we briefly mentioned batching, a machine learning technique where
instances are grouped together to form batches and sent to the processor (CPU or,
more often, GPU). Batching is almost always necessary when training large neural
networks—it is critical for efficient and stable training. In this section, we’ll dive into
some more techniques and considerations related to batching.

10.1.1 Padding

Training large neural networks requires a number of linear algebra operations such as
matrix addition and multiplication, which involve executing basic mathematical oper-
ations on many, many numbers at once. This is why it requires specialized hardware
such as GPUs, processors designed to execute such operations in a highly parallelized
manner. Data is sent to the GPU as tensors, which are just high-dimensional arrays of
numbers, along with some instructions as to what types of mathematical operations it
needs to execute. The result is sent back as another tensor.

 In chapter 2, we likened GPUs to factories overseas that are highly specialized and
optimized for manufacturing the same type of products in a large quantity. Because
there is considerable overhead in communicating and shipping products, it is more
efficient if you make a small number of orders for manufacturing a large quantity of
products by shipping all the required materials in batches, rather than shipping mate-
rials on demand.

 Materials and products are usually shipped back and forth in standardized contain-
ers. If you have ever loaded a moving pod or trailer yourself (or observed someone
else do it), you may know that there are many considerations that are important for
safe and reliable shipping. You need to put furniture and boxes in tightly so that they
don’t shift around in transition. You need to wrap them with blankets and fix them
with ropes to prevent them from being damaged. You need to put heavy stuff at the
bottom so that lighter stuff won’t get crushed, and so on.

 Batches in machine learning are similar to containers for shipping stuff in the real
world. Just like shipping containers are all the same size and rectangular, batches in
machine learning are just rectangular tensors packed with numbers of the same type.
If you want to “ship” multiple instances of different shapes in a single batch to the
GPU, you need to pack them so that the packed numbers form a rectangular tensor. 

 In NLP, we often deal with sequences of text in different lengths. Because batches
have to be rectangular, we need to do padding, (i.e., append special tokens, <PAD>, to
each sequence so that each row of the tensor has the same length. You need as many
padding tokens as necessary to make the sequences the same length, which means
that you need to pad short sequences until they are all as long as the longest sequence
in the same batch. This is illustrated in figure 10.1.
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Figure 10.1 Padding and batching. Black squares are tokens, gray ones are EOS tokens, and white ones are 
padding.

In reality, each token in natural language text is often represented as a vector of
length D, generated by the word embeddings method. This means that each batched
tensor is a three-dimensional tensor that has a “depth” of D. In many NLP models,
sequences are represented as batches of size N × L × D (see figure 10.2), where N, L, D
are the number of instances per batch, the maximum length of the sequences, and
the dimension of word embeddings, respectively.

Figure 10.2 Padding and batching of embedded sequences create rectangular, three-dimensional tensors.

This is starting to look more like real containers!

10.1.2 Sorting

Because each batch has to be rectangular, if one batch happens to include both short
sequences and long sequences, you need to add a lot of padding to short sequences so
that they are as long as the longest sequence in the same batch. This often leads to
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some wasted space in the batch—see “batch 1” in figure 10.3 for an illustration. The
shortest sequence (six tokens) needs to be padded with eight more tokens to be
equally long as the longest sequence (14 tokens). Wasted space in a tensor means
wasted memory and computation, so it is best avoided, but how?

Figure 10.3 Sorting instances before batching (right) reduces the total number of tensors.

You can reduce the amount of padding by putting instances of similar size in the same
batch. If shorter instances are batched only with other equally shorter ones, they don’t
need to get padded with many padding tokens. Similarly, if longer instances are
batched only with other longer ones, they don’t need a lot of padding either, because
they are already long. One idea is to sort instances by their length and batch accord-
ingly. Figure 10.3 compares two situations—one in which the instances are batched in
their original order, and the other where instances are first sorted before batching.
The numbers below each batch indicate how many tokens are required to represent
the batch, including the padding tokens. Notice that the number of total tokens is
reduced from 144 to 120 by sorting. Because the number of tokens in the original sen-
tences doesn’t change, this is purely because sorting reduced the number of padding

Batch 1 
(4 × 14 = 56)

Batch 2 
(4 × 11 = 44)

Batch 3 
(4 × 11 = 44)

Batch 1 
(4 × 7 = 28)

Batch 2 
(4 × 9 = 36)

Batch 3 
(4 × 14 = 56)

Pad & batch Pad & batch

Sort

Total 
(56 + 44 + 44 = 144)

Total 
(28 + 36 + 56 = 120)
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tokens. Smaller batches require less memory to store and less computation to process,
so sorting instances before batching improves the efficiency of training.

 All these techniques sound somewhat complicated, but the good news is, you
rarely need to write code for sorting, padding, and batching instances yourself as long
as you use high-level frameworks such as AllenNLP. Recall that we used a combination
of DataLoader and BucketBatchSampler for building our sentiment analysis
model back in chapter 2 as follows:

train_data_loader = DataLoader(train_dataset,
                               batch_sampler=BucketBatchSampler(
                                   train_dataset,
                                   batch_size=32,
                                   sorting_keys=["tokens"]))

The sorting_keys given to BucketBatchSampler specifies which field to use for
sorting. As you can guess from its name, by specifying “tokens” you are telling the data
loader to sort the instances by the number of tokens (which is what you want in most
cases). The pipeline will take care of padding and batching automatically, and the
data loader will give you a series of batches you can feed into your model.

10.1.3 Masking

One final detail that you need
to pay attention to is masking.
Masking is an operation where
you ignore some part of the net-
work that corresponds to pad-
ding. This becomes relevant
especially when you are dealing
with a sequential-labeling or a
language-generation model. To
recap, sequential labeling is a
task where the system assigns a
label per token in the input
sequence. We built a POS tagger
with a sequential labeling model
(RNN) in chapter 5. 

 As shown in figure 10.4,
sequential-labeling models are
trained by minimizing the per-
token loss aggregated across all
tokens in a given sentence. We
do this because we’d like to min-
imize the number of “errors”
the network makes per token.
This is fine as long as we are
dealing with “real” tokens
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Figure 10.4 Loss for a sequence is the sum of per-
token cross entropy.
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(“time,” “flies,” and “like” in the figure), although it becomes an issue when the input
batch includes padded tokens. Because they exist just to pad the batch, they should be
ignored when computing the total loss.

 We usually do this by creating an extra vector for masking the loss. The vector for
masking has the same length as the input, whose elements are 1s for “real” tokens and
0s for padding. When computing the total loss, you can simply take an element-wise
product between the per-token loss and the mask and then sum up the result.

 Fortunately, as long as you are building standard sequential-labeling models with
AllenNLP, you rarely need to implement masking yourself. Remember, in chapter 5,
we wrote the forward pass of the POS tagger model as shown in listing 10.1. Here, we
get the mask vector from the get_text_field_mask() helper function and com-
pute the final loss with sequence_cross_entropy_with_logits().

    def forward(self,
                words: Dict[str, torch.Tensor],
                pos_tags: torch.Tensor = None,
                **args) -> Dict[str, torch.Tensor]:
        mask = get_text_field_mask(words)

        embeddings = self.embedder(words)
        encoder_out = self.encoder(embeddings, mask)
        tag_logits = self.linear(encoder_out)

        output = {"tag_logits": tag_logits}
        if pos_tags is not None:
            self.accuracy(tag_logits, pos_tags, mask)
            output["loss"] = sequence_cross_entropy_with_logits(
                tag_logits, pos_tags, mask)

        return output

If you take a peek at what’s inside mask (e.g., by inserting a print statement in this
forward method), you’ll see the following tensor made of binary (True or False)
values:

tensor([[ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True],

Listing 10.1 Forward pass of the POS tagger
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Each row of this tensor corresponds to one sequence of tokens, and locations with
False are where padding occurred. The loss function (sequence_cross_entropy
_with_logits) receives the prediction, the ground truth (the correct labels), and
the mask and computes the final loss while ignoring all the elements marked as
False.

10.2 Tokenization for neural models
In chapter 3, we covered the basic linguistic units (words, characters, and n-grams)
and how to compute their embeddings. In this section, we will go deeper and focus on
how to analyze texts and obtain these units—a process called tokenization. Neural net-
work models pose a set of unique challenges on how to deal with tokens, and we’ll
cover some of the modern models to deal with these challenges.

10.2.1 Unknown words

A vocabulary is a set of tokens that an NLP model deals with. Many neural NLP models
operate within a fixed, finite set of tokens. For example, when we built a sentiment ana-
lyzer in chapter 2, the AllenNLP pipeline first tokenized the training dataset and con-
structed a Vocabulary object that consists of all unique tokens that appeared more
than, say, three times. The model then uses an embedding layer to convert tokens into
word embeddings, which are some abstract representation of the input tokens.

 So far, so good, right? But the number of all words in the world is not finite. We
constantly make up new words that didn’t exist before (I don’t think people talked
about “NLP” a hundred years ago). What if the model receives a word that it has never
seen during training? Because the word is not part of the vocabulary, the model can-
not even convert it to an index, let alone look up its embeddings. Such words are
called out-of-vocabulary (OOV) words, and they are one of the biggest problems when
building NLP applications. 

 By far the most common (but not the best) way to deal with this problem is to rep-
resent all the OOV tokens as a special token, which is conventionally named UNK (for
“unknown”). The idea is that every time the model sees a token that is not part of the
vocabulary, it pretends it saw a special token UNK instead and proceeds as usual. This
means that the vocabulary and the embedding table both have a designated “slot” for
UNK so that the model can deal with words that it has never seen. The embeddings (and
any other parameters) for UNK are trained in the same manner as other regular tokens.

 Do you see any problems with this approach? Treating all OOV tokens with a single
UNK token means that they are collapsed into a single embedding vector. It doesn’t
matter if the word is “NLP” or “doggy”—as long as it’s something unseen, it always gets
treated as a UNK token and assigned the same vector, which becomes a generic, catch-
all representation of various words. Because of this, the model cannot tell the differ-
ences among OOV words, no matter what the identity of the words is.

 This may be fine if you are building, for example, a sentiment analyzer. OOV
words are, by definition, very rare and might not affect the prediction of most of the
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input sentences. However, this becomes a huge problem if you are building a machine
translation system or a conversational engine. It wouldn’t be a usable MT system or a
chatbot if it produces “I don’t know” every time it sees new words! In general, the
OOV problem is more serious for language-generation systems (including machine
translation and conversational AI) compared to NLP systems for prediction (senti-
ment analysis, POS tagging, and so on).

 How can we do better? OOV tokens are such a big problem in NLP that there has
been a lot of research work on how to deal with them. In the following subsections,
we’ll cover character-based and subword-based models, two techniques commonly
used for building robust neural NLP models.

10.2.2 Character models

The simplest yet effective solution for dealing with the OOV problem is to treat char-
acters as tokens. Specifically, we break the input text into individual characters, even
including punctuation and whitespace, and treat them as if they are regular tokens.
The rest of the application is unchanged—“word” embeddings are assigned to charac-
ters, which are further processed by the model. If the model produces text, it does so
character-by-character.

 In fact, we used a character-level model in chapter 5 when we built a language gen-
erator. Instead of generating text word-by-word, the RNN produces text one character
at a time, as illustrated in figure 10.5. Thanks to this strategy, the model was able to
produce words that look like English but actually aren’t. Notice a number of peculiar
words (despoit, studented, redusention, distaples) that resemble English words in the out-
put shown in listing 10.2. If the model operated on words, it produces only known
words (or UNKs when unsure), and this wouldn’t have been possible. 

Figure 10.5 A language-generation model that generates text character-by-
character (including whitespace)
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You can say that you don't know it, and why decided of yourself.
Pike of your value is to talk of hubies.
The meeting despoit from a police?
That's a problem, but us?
The sky as going to send nire into better.
We'll be look of the best ever studented.
There's you seen anything every's redusention day.
How a fail is to go there.
It sad not distaples with money.
What you see him go as famous to eat!

Character-based models are versatile and put few assumptions on the structure of the
language. For languages with small sets of alphabets (like English), it effectively eradi-
cates unknown words, because almost any words, no matter how rare they are, can be
broken down into characters. Tokenizing into characters is also an effective strategy
for languages with large alphabets (like Chinese), although you need to watch out for
“unknown character” problems.

 However, this strategy is not without drawbacks. The biggest issue is its inefficiency.
To encode a sentence, the network (be it an RNN or the Transformer) needs to go
over all the characters in it. For example, a character-based model needs to process
“t,” “h,” “e,” and “_” (whitespace) to process a single word “the,” whereas a word-based
model can finish this in a single step. This inefficiency takes its biggest toll on the
Transformers, where the attention computation increases quadratically when the
input sequence gets longer.

10.2.3 Subword models

So far, we studied two extremes—the word-based approach is efficient but not great at
dealing with unknown words. The character-based approach is great at dealing with
unknown words but is inefficient. Is there something in between? Can we use some
tokenization that is both efficient and robust to unknown words?

 Subword models are a recent invention that addresses this problem for neural net-
works. In subword models, the input text is segmented into a unit called subwords,
which simply means something smaller than words. There is no formal linguistic defi-
nition as to what subwords actually are, but they roughly correspond to part of words
that appear frequently. For example, one way to segment “dishwasher” is “dish + wash
+ er,” although some other segmentation is possible.

 Some varieties of algorithms (such as WordPiece1 and SentencePiece2) tokenize
input into subwords, but by far the most widely used is byte-pair encoding (BPE).3 BPE was

Listing 10.2 Generated sentences by a character-based language model

1 Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation,” (2016). https://arxiv.org/abs/1609.08144.

2 Kudo, “Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Can-
didates,” (2018). https://arxiv.org/abs/1804.10959.

3 Sennrich et al., “Neural Machine Translation of Rare Words with Subword Units,” (2016). https://arxiv.org/
abs/1508.07909.

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
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originally invented as a compression algorithm,4 but since 2016, it’s been widely used as
a tokenization method for neural models, particularly in machine translation.

 The basic concept of BPE is to keep frequent words (such as “the” and “you”) and
n-grams (such as “-able” and “anti-”) unsegmented, while breaking up rarer words
(such as “dishwasher”) into subwords (“dish + wash + er”). Keeping frequent words
and n-grams together helps the model process those tokens efficiently, whereas break-
ing up rare words ensures there are no UNK tokens, because everything can be ulti-
mately broken up into individual characters, if necessary. By flexibly choosing where
to tokenize based on the frequency, BPE achieves the best of two worlds—being effi-
cient while addressing the unknown word problem.

 Let’s see how BPE determines where to tokenize with real examples. BPE is a
purely statistical algorithm (it doesn’t use any language-dependent information) and
operates by merging the most frequently occurring pair of consecutive tokens, one at
a time. First, BPE tokenizes all the input texts into individual characters. For example,
if your input is four words low, lowest, newer, and wider, it will tokenize them into
l o w _, l o w e s t _, n e w e r _, w i d e r _. Here, “_” is a special sym-
bol that indicates the end of each word. Then, the algorithm identifies any two con-
secutive elements that appear most often. In this example, the pair l o appears most
often (two times), so these two characters are merged, yielding lo w _, lo w e s t
_, n e w e r _, w i d e r _. Then, lo w will be merged into low, e r into er, er
_ into er_, at which time you have low _, low e s t _, n e w er_, w i d er_.
This process is illustrated in figure 10.6.

Figure 10.6 BPE learns subword units by iteratively merging consecutive units that cooccur frequently.

4 See https://www.derczynski.com/papers/archive/BPE_Gage.pdf.
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Notice that, after four merge operations, lowest is segmented into low e s t where
frequent substrings such as low are merged together whereas infrequent ones such as
est are broken apart. To segment a new input (e.g., lower), the same sequence of
merge operations is applied in order, yielding low e r _. If you start from 52 unique
letters (26 upper- and lowercase letters), you will end up with 52 + N unique tokens in
your vocabulary, where N is the number of merge operations executed. In this way,
you have complete control over the size of the vocabulary.

 In practice, you rarely need to implement BPE (or any other subword tokenization
algorithms) yourself. These algorithms are implemented in many open source libraries
and platforms. Two popular options are Subword-NMT (https://github.com/rsenn-
rich/subword-nmt) and SentencePiece (https://github.com/google/sentencepiece)
(which also supports a variant of subword tokenization using a unigram language
model). Many of the default tokenizers shipped with NLP frameworks, such as the one
implemented in Hugging Face Transformers, support subword tokenization.

10.3 Avoiding overfitting
Overfitting is one of the most common and important issues you need to address when
building any machine learning applications. An ML model is said to overfit when it
fits the given data so well that it loses its generalization ability to unseen data. In other
words, the model may capture the training data very well and show good performance
on it, but it may not be able to capture its inherent patterns well and shows poor per-
formance on data that the model has never seen before. 

 Because overfitting is so prevalent in machine learning, researchers and practi-
tioners have come up with a number of algorithms and techniques to combat overfit-
ting in the past. In this section, we’ll learn two such techniques—regularization and
early stopping. These are popular in any ML applications (not just NLP) and worth
getting under your belt.

10.3.1 Regularization

Regularization in machine learning refers to techniques that encourage the simplicity
and the generalization of the model. You can think of it as one form of penalty you
impose on your ML model to ensure that it is as generic
as possible. What does it mean? Say you are building an
“animal classifier” by training word embeddings from a
corpus and by drawing a line between animals and
other stuff in this embedding space (i.e., you represent
each word as a multidimensional vector and classify
whether the word describes an animal based on the
coordinates of the vector). Let’s simplify this problem a
lot and assume that each word is a two-dimensional vec-
tor, and you end up with the plot shown in figure 10.7.
You can now visualize how a machine learning model
makes a classification decision by drawing lines where

bat hot

dog

cat

chocolate

pizza

Figure 10.7 Animal vs. non-
animal classification plot

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
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the decision flips between different classes (animals and non-animals), which is called
the classification boundary. How would you draw a classification boundary so that ani-
mals (blue circles) are separated from everything else (triangles)?

 One simple way to separate animals is to draw one straight line, as in the first plot
in figure 10.8. This simple classifier makes several mistakes (in classifying words like
“hot” and “bat”), but it correctly classifies the majority of data points. This sounds like
a good start.

Figure 10.8 Classification boundaries with increasing complexity

What if you are told that the decision boundary doesn’t have to be a straight line? You
may want to draw something like the one shown in the middle in figure 10.8. This one
looks better—it makes fewer mistakes than the first one, although it is still not perfect.
It appears tractable for a machine learning model because the shape is simple. 

 But there’s nothing that stops you here. If you want to make as few errors as possi-
ble, you can also draw something wiggly like the one shown in the third plot. That
decision boundary doesn’t even make any classification errors, which means that we
achieved 100% classification accuracy!

 Not so fast—remember that up until here, we’ve been thinking only about the
training time, but the main purpose of machine learning models is to achieve good
classification performance at the test time (i.e., they need to classify unobserved, new
instances as correctly as possible). Now let’s think about how the three decision bound-
aries described earlier fare at test time. If we assume the test instances are distributed
similarly to the training instances we saw in figure 10.8, the new “animal” points are
most likely to fall in the upper-right region of the plot. The first two decision boundar-
ies will achieve decent accuracy by classifying the majority of new instances correctly.
But how about the third one? Training instances such as “hot” shown in the plot are
most likely exceptions rather than the norm, so the curved sections of the decision
boundary that tried to accommodate as many training instances as possible may do
more harm than good at the test time by inadvertently misclassifying test instances.
This is exactly what overfitting looks like—the model fits the training data so well that
it sacrifices its generalization ability, which is what’s happening here.
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 Then, the question is, how can we avoid having your model look like the third
decision boundary? After all, it is doing a very good job correctly classifying the train-
ing data. If you looked only at the training accuracy and/or the loss, there would be
nothing to stop you from choosing it. One way to avoid overfitting is to use a separate,
held-out dataset (called a validation set ; see section 2.2.3) to validate the performance
of your model. But can we do this even without using a separate dataset?

 The third decision boundary just doesn’t look right—it’s overly complex. With all
other things being equal, we should prefer simpler models, because in general, sim-
pler models generalize better. This is also in line with Occam’s razor, which states that
a simpler solution is preferable to a more complex one. How can we balance between
the training fit and the simplicity of the model?

 This is where regularization comes into play. Think of regularization as additional
constraints imposed on the model so that simpler and/or more general models are
preferred. The model is optimized so that it achieves the best training fit while being
as generic as possible.

 Numerous regularization techniques have been proposed in machine learning
because overfitting is such an important topic. We are going to introduce only a few
of the most important ones—L2 regularization (weight decay), dropout, and early
stopping.

L2 REGULARIZATION

L2 regularization, also called weight decay, is one of the most common regularization
methods not just for NLP or deep learning but for a wide range of ML models. We are
not going into its mathematical details, but in short, L2 regularization adds a penalty
for the complexity of a model measured by how large its parameters are. To represent
a complex classification boundary, an ML model needs to adjust a large number of
parameters (the “magic constants”) to extreme values, measured by the L2 loss, which
captures how far away they are from zero. Such models incur a larger L2 penalty, which
is why L2 encourages simpler models. If you are interested in learning more about L2
regularization (and other related topics about NLP in general), check out textbooks
such as Speech and Language Processing by Jurafsky and Martin (https://web.stanford
.edu/~jurafsky/slp3/5.pdf) or Goodfellow et al.’s Deep Learning (https://www.deep
learningbook.org/contents/regularization.html).

DROPOUT

Dropout is another popular regularization technique commonly used with neural net-
works. Dropout works by randomly “dropping” neurons during training, where a “neu-
ron” is basically a dimension of an intermediate layer and “dropping” means to mask it
with zeros. You can think of dropout as a penalty to the model’s structural complexity
and its reliance on particular features and values. As a result, the network tries to make
the best guess with the remaining smaller number of values, which forces it to general-
ize well. Dropout is easy to implement and effective in practice and is used as a default
regularization method in many deep learning models. For more information on drop-
out, the regularization chapter of the Goodfellow book mentioned earlier provides a
good introduction and mathematical details of regularization techniques.

https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/regularization.html
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10.3.2 Early stopping

Another popular approach for combatting overfitting in machine learning is early stop-
ping. Early stopping is a relatively simple technique where you stop training your
model when the model performance stops improving, usually measured by the valida-
tion set loss. In chapter 6, we plotted learning curves when we built an English-
Spanish machine translation model (shown again in figure 10.9). Notice that the vali-
dation loss curve flattens out around the eighth epoch and starts to creep up after
that, which is a sign of overfitting. Early stopping would detect this, stop the training,
and use the result from the best epoch when the loss is lowest. In general, early stop-
ping has a “patience” parameter, which is the number of nonimproving epochs for
early stopping to kick in. When patience is 10 epochs, for example, the training pipe-
line will wait 10 epochs after the loss stops improving to stop the training.

Figure 10.9 The validation loss curve flattens out around the eighth epoch and creeps back up.

Why does early stopping help mitigate overfitting? What does it have to do with model
complexity? Without getting into mathematical details, it takes some time (training
epochs) for the model to learn complex, overfitted decision boundaries. Most models
start from something simple (e.g., straight decision lines) and gradually increase their
complexity over the course of training. By stopping the training early, early stopping
can prevent the model from becoming overly complex.

 Many machine learning frameworks have built-in support for early stopping. For
example, AllenNLP’s trainer supports early stopping by default. Recall that we used
the following configuration in section 9.5.3 when we trained a BERT-based natural
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language inference model, where we used early stopping (with patience = 10) without
paying much attention. This allows the trainer to stop if the validation metric doesn’t
improve for 10 epochs: 

    "trainer": {
        "optimizer": {
            "type": "huggingface_adamw",
            "lr": 1.0e-5
        },
        "num_epochs": 20,
        "patience": 10,
        "cuda_device": 0
    }

10.3.3 Cross-validation

Cross-validation is not exactly a regularization method, but it is one of the techniques
commonly used in machine learning. A common situation in building and validating
a machine learning model is this—you have only a couple of hundred instances avail-
able for training. As we’ve seen so far in this book, you can’t train a reliable ML model
just on the training set—you need a separate set for validation, and preferably another
separate set for testing. How much you use for validation/testing depends on the task
and the data size, but in general, it is advised that you set aside 5–20% of your training
instances for validation and testing. This means that if your training data is small, your
model is validated and tested on just a few dozen instances, which can make the esti-
mated metrics unstable. Also, how you choose these instances has a large impact on
the evaluation metrics, which is not ideal.

 The basic idea of cross-validation is to iterate this phase (splitting the dataset into
training and validation portions) multiple times with different splits to improve the
stability of the result. Specifically, in a typical setting called k-fold cross validation, you
first split the dataset into k different portions of equal size called folds. You use one of
the folds for validation while training the model on the rest (k – 1 folds), and repeat
this process k times, using a different fold for validation every time. See figure 10.10
for an illustration.

Figure 10.10 In k-fold cross validation, the dataset is split into k equally sized 
folds and one is used for validation.
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The validation metrics are computed for every fold, and the final metrics are averaged
over all iterations. This way, you can obtain a more stable estimate of the evaluation
metrics that are not impacted heavily by the way the dataset is split. 

 The use of cross-validation in deep learning models is not common, because these
models require a large amount of data, and you don’t need cross-validation if you
have a large dataset, although its use is more common for more traditional and indus-
trial settings where the amount of training data is limited.

10.4 Dealing with imbalanced datasets
In this section, we’ll focus on one of the most common problems you may encounter in
building NLP and ML models—the class imbalance problem. The goal of a classifica-
tion task is to assign one of the classes (e.g., spam or nonspam) to each instance (e.g.,
an email), but these classes are rarely distributed evenly. For example, in spam filtering,
the number of nonspam emails is usually larger than the number of spam emails. In

document classification, some topics (such as poli-
tics or sports) are usually more popular than other
topics. Classes are said to be imbalanced when some
classes have way more instances than others (see fig-
ure 10.11 for an example). 
   Many classification datasets have imbalanced
classes, which poses some additional challenges
when you train your classifier. The signals your
model gets from smaller classes are overwhelmed by
larger classes, which causes your model to perform
poorly on minority classes. In the following subsec-
tions, I’m going to discuss some techniques you can
consider when faced with an imbalanced dataset.

10.4.1 Using appropriate evaluation metrics

Before you even begin tweaking your dataset or your model, make sure you are vali-
dating your model with an appropriate metric. In section 4.3, we discussed why it is a
bad idea to use accuracy as your evaluation metric when the dataset is imbalanced. In
one extreme case, if 90% of your instances belong to class A and the other 10%
belong to class B, even a stupid classifier that assigns class A to everything can achieve
90% accuracy. This is called a majority class baseline. A slightly more clever (but still stu-
pid) classifier that randomly assigns label A 90% of the time and label B 10% of the
time without even looking at the instance will achieve 0.9 * 0.9 + 0.1 * 0.1 = 82% accu-
racy. This is called a random baseline, and the more imbalanced your dataset is, the
higher the accuracy of these baseline models will become.

 But this kind of random baseline is rarely a good model for minority classes. Imag-
ine what would happen to class B if you used the random baseline. Because it will
assign class A 90% of the time no matter what, 90% of the instances belonging to class
B will be assigned class A. In other words, the accuracy of this random baseline for
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class B is only 10%. If this was a spam filter, it would let 90% of spam emails go
through, no matter what the content is, just because 90% of emails you receive are not
spam! This would make a terrible spam filter.

 If your dataset is imbalanced and you care about the classification performance on
the minority class, you should consider using metrics that are more appropriate for
such settings. For example, if your task is a “needle in a haystack” type of setting, where
the goal is to find a very small number of instances among others, you may want to use
the F1-measure instead of accuracy. As we saw in chapter 4, the F-measure is some sort
of average between precision (how hay-free your prediction is) and recall (how much
of the needle you actually found). Because the F1-measure is calculated per class,
it does not underrepresent minority classes. If you’d like to measure the model’s over-
all performance including majority classes, you can compute the macro-averaged
F-measure, which is simply an arithmetic average of F-measures computed per class.

10.4.2 Upsampling and downsampling

Now let’s look at concrete techniques that can mitigate the class imbalance problem.
First of all, if you can collect more labeled training data, you should seriously consider
doing that first. Unlike academic and ML competition settings where the dataset is
fixed while you tweak your model, in a real-world setting you are free to do whatever is
necessary to improve your model (of course, as long as it’s lawful and practical).
Often, the best thing you can do to improve a model’s generalization is expose it to
more data.

 If your dataset is imbalanced and the model is making biased predictions, you
can either upsample or downsample your data so that classes have roughly equal
representations. 

 In upsampling (see the second figure in figure 10.12), you artificially increase the
size of the minority class by copying the instances multiple times. Take the scenario we
discussed earlier for example—if you duplicate the instances of class B and add eight
extra copies of each instance to the dataset, they have an equal number of instances.
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Figure 10.12 Upsampling and downsampling
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This can mitigate the biased prediction issue. More sophisticated data augmentation
algorithms such as SMOTE5 are available, although they are not widely used in NLP,
due to the inherent difficulty in generating linguistic examples artificially.

 If your model is biased not because the minority class is too small but because the
majority class is too large, you can instead choose to downsample (the third figure in
figure 10.12). In downsampling, you artificially decrease the size of the majority class by
choosing a subset of the instances belonging to that class. For example, if you sample
one out of nine instances from class A, you’ll end up with the equal number of instances
in classes A and B. You can downsample in multiple ways—the easiest is to randomly
choose the subset. If you would like to make sure that the downsampled dataset still pre-
serves the diversity in the original data, you can try stratified sampling, where you sample
some number of instances per group defined by some attributes. For example, if you
have too many nonspam emails and want to downsample, you can group them by the
sender’s domain first, then sample a fixed number of emails per domain. This will
ensure that your sampled dataset will contain a diverse set of domains.

 Note that neither upsampling nor downsampling is a magic bullet. If you “correct”
the distribution of classes too aggressively, you risk making unfair predictions for the
majority class, if that’s what you care about. Always make sure to check your model
with a held-out validation set with appropriate evaluation metrics. 

10.4.3 Weighting losses

Another approach for mitigating the class imbalance problem is to use weighting
when computing the loss, instead of making modification to your training data.
Remember that the loss function is used to measure how “off” the model’s prediction
for an instance is compared against the ground truth. When you measure how bad the
model’s prediction is, you can tweak the loss so that it penalizes more when the
ground truth belongs to the minority class.

    Let’s take a look at a concrete example. The
binary cross-entropy loss, a common loss func-
tion used for training a binary classifier, looks
like the curve shown in figure 10.13, when the
correct label is 1. The x -axis is the predicted
probability of the target class, and the y -axis is the
amount of loss the prediction will incur. When
the prediction is perfectly correct (probability
= 1), there’s no penalty, whereas as the predic-
tion gets worse (probability < 1), the loss goes up.
   If you care more about the model’s perfor-
mance on the minority class, you can tweak this
loss. Specifically, you can change the shape of
this loss (by simply multiplying it by a constant

5 Chawla et al., “SMOTE: Synthetic Minority Over-Sampling Technique,” (2002). https://arxiv.org/abs/
1106.1813.
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Figure 10.13 Binary cross-entropy loss 
(when the correct label is 1)

https://arxiv.org/abs/1106.1813
https://arxiv.org/abs/1106.1813
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number) just for that class so that the model
incurs a larger loss when it makes mistakes on the
minority class. One such tweaked loss curve is
shown in the figure 10.14 as the top curve. This
weighting has the same effect as upsampling the
minority class, although modifying the loss is
computationally cheaper because you don’t need
to actually increase the amount of training data.

 It is easy to implement loss weighting in
PyTorch and AllenNLP. PyTorch’s binary cross-
entropy implementation BCEWithLogitLoss
already supports different weights for different
classes. You simply need to pass the weight as the
pos_weight parameter as follows:

>>> import torch
>>> import torch.nn as nn

>>> input = torch.randn(3)
>>> input
tensor([-0.5565,  1.5350, -1.3066])

>>> target = torch.empty(3).random_(2)
>>> target
tensor([0., 0., 1.])

>>> loss = nn.BCEWithLogitsLoss(reduction='none')
>>> loss(input, target)
tensor([0.4531, 1.7302, 1.5462])

>>> loss = nn.BCEWithLogitsLoss(reduction='none', 
pos_weight=torch.tensor(2.))

>>> loss(input, target)
tensor([0.4531, 1.7302, 3.0923])

In this code snippet, we randomly generate prediction (input) and the ground truth
(target). There are three instances in total, two of which are of class 0 (majority)
and one belongs to class 1 (minority). We first compute the loss without weighting by
calling the BCEWithLogitsLoss object, which returns the three loss values, one for
each instance. We then compute the loss with weighting by passing the weight 2—this
means that the wrong prediction will be penalized twice as much if the target class is
positive (class 1). Notice that the third element corresponding to class 1 is twice as
large as the one returned by the unweighted loss function. 

10.5 Hyperparameter tuning
In this final section of this chapter, we’ll discuss hyperparameter tuning. Hyperparame-
ters are parameters about the model and the training algorithm. This term is used in
contrast with parameters, which are numbers that are used by the model to make

Prediction
0

Lo
ss

1

Figure 10.14 Weighted binary cross 
entropy loss



274 CHAPTER 10 Best practices in developing NLP applications

predictions from the input. This is what we’ve been calling “magic constants” through-
out this book—they work like constants in programming languages, although their
exact values are automatically adjusted by optimization so that the prediction matches
the desired output as closely as possible.

 Correctly tuning hyperparameters is critical for many machine learning models to
work properly and achieve their highest potential, and ML practitioners spend a lot of
time tuning hyperparameters. Knowing how to tune hyperparameters effectively has a
huge impact on your productivity in building NLP and ML systems.

10.5.1 Examples of hyperparameters

Hyperparameters are “meta”-level parameters—unlike model parameters, they are
used not to make predictions but for controlling the structure of the model and how
the model is trained. For example, if you are working on word embeddings or an
RNN, how many hidden units (dimensions) to use for representing words is one
important hyperparameter. The number of RNN layers to use is another hyperparam-
eter. In addition to these two hyperparameters (the number of hidden units and lay-
ers), the Transformer model we covered in chapter 9 has a number of other
parameters, such as the number of attention heads and the dimension of the feed-
forward network. Even the type of architecture you use, such as RNN versus Trans-
former, can be thought of as one hyperparameter.

 Besides, the optimization algorithm you use may have hyperparameters, too. For
example, the learning rate (section 9.3.3), one of the most important hyperparame-
ters in many ML settings, determines how much to tweak the model parameters per
optimization step. The number of epochs (iterations through the training dataset) is
also an important hyperparameter, too.

 So far, we have been paying little attention to those hyperparameters, let alone
optimizing them. However, hyperparameters can have a huge impact on the perfor-
mance of machine learning models. In fact, many ML models have a “sweet spot” of
hyperparameters that makes them most effective, whereas using a set of hyperparame-
ters outside of this spot may make the model perform poorly. 

 Many ML practitioners tune hyperparameters by hand. This means that you start
from a set of hyperparameters that look reasonable and measure the model’s perfor-
mance on a validation set. Then you change one or more of the hyperparameters
slightly and measure the performance again. You repeat this process several times
until you hit the “plateau,” where any change of hyperparameters provides only a mar-
ginal improvement.

 One issue with this manual tuning approach is that it is slow and arbitrary. Let’s say
you start from one set of hyperparameters. How do you know which ones to adjust
next, and how much? How do you know when to stop? If you have experience tuning
a wide range of ML models, you might have some “hunch” about how these models
respond to certain hyperparameter changes, but if not, it’s like shooting in the dark.
Hyperparameter tuning is such an important topic that ML researchers have been
working on better and more organized ways to optimize them.
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10.5.2 Grid search vs. random search

We understand that manual optimization of hyperparameters is inefficient, but how
should we go about optimizing them, then? We have two more-organized ways of tun-
ing hyperparameters—grid search and random search. 

 In grid search, you simply try every possible combination of the hyperparameter val-
ues you want to optimize. For example, let’s assume your model has just two hyperpa-
rameters—the number of RNN layers and the embedding dimension. You first define
reasonable ranges for these two hyperparameters, for example, [1, 2, 3] for the num-
ber of layers and [128, 256, 512] for the dimensionality. Then grid search measures
the model’s validation performance for every combination—(1, 128), (1, 256),
(1, 512), (2, 128), . . . , (3, 512)—and simply picks the best-performing combination.
If you plot these combinations on a 2-D plot, it looks like a grid (see the illustration in
figure 10.15), which is why this is called grid search. 

 Grid search is a simple and intuitive way to optimize the hyperparameters. How-
ever, if you have many hyperparameters and/or their ranges are large, this method
gets out of hand. The number of possible combinations is exponential, which makes it
impossible to explore all of them in a reasonable amount of time.

Figure 10.15 Grid search vs. random search for hyperparameter tuning. 
(Adapted from Bergstra and Bengio, 2012; https://www.jmlr.org/papers/
volume13/bergstra12a/bergstra12a.pdf.)

A better alternative to grid search is random search. In random search, instead of trying
every possible combination of hyperparameter values, you randomly sample the val-
ues and measure the model’s performance on a specified number of combinations
(which are called trials). For example, in the previous example, random search may
choose (2, 87), (1, 339), (2, 101), (3, 254), and so on until it hits the specified number
of trials. See the illustration in figure 10.15 (right).
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 Unless your hyperparameter search space is very small (like the first example), ran-
dom search is usually recommended over grid search if you want to optimize hyper-
parameters efficiently. Why? In many machine learning settings, not every hyper-
parameter is made equal—there are usually only a small number of hyperparameters
that actually matter for the performance, whereas many others do not. Grid search
will waste a lot of computation searching for the best combination of hyperparameters
that do not really matter, while being unable to explore the few hyperparameters that
do matter in detail (figure 10.15, left). On the other hand, random search can
explore many possible points on the axis that matters for the performance (figure
10.15, right). Notice that random search can find a better model by exploring more
points on the x -axis with the same number of trials (total of nine trials).

10.5.3 Hyperparameter tuning with Optuna

OK, we’ve covered some ways to tune hyperparameters including manual, grid, and
random search, but how should you go about implementing it in practice? You can
always write your own for-loop (or “for-loops,” in the case of grid search), although it
would quickly get tiring if you need to write this type of boilerplate code for every
model and task you work on. 

 Hyperparameter optimization is such a universal topic that many ML researchers
and engineers have been working on better algorithms and software libraries. For exam-
ple, AllenNLP has its own library called Allentune (https://github.com/allenai/allen-
tune) that you can easily integrate with your AllenNLP training pipeline. In the
remainder of this section, however, I’m going to introduce another hyperparameter
tuning library called Optuna (https://optuna.org/) and show how to use it with Allen-
NLP to optimize your hyperparameters. Optuna implements state-of-the-art algorithms
that search for optimal hyperparameters efficiently and provides integration with a wide
range of machine learning frameworks, including TensorFlow, PyTorch, and AllenNLP.

 First, we assume that you have installed AllenNLP (1.0.0+) and the Optuna plugin
for AllenNLP. These can be installed by running the following:

pip install allennlp
pip install allennlp_optuna

Also, as instructed by the official documentation (https://github.com/himkt/allennlp
-optuna), you need to register the plugin with AllenNLP by running the next code:

echo 'allennlp_optuna' >> .allennlp_plugins

We are going to use the LSTM-based classifier for the Stanford Sentiment Treebank
dataset we built in chapter 2. You can find the AllenNLP config file in the book repos-
itory (http://www.realworldnlpbook.com/ch10.html#config). Note that you need to
reference the variables (std.extVar) for Optuna to have control over the parameters.
Specifically, you need to define them at the beginning of the config file:

local embedding_dim = std.parseJson(std.extVar('embedding_dim'));
local hidden_dim = std.parseJson(std.extVar('hidden_dim'));
local lr = std.parseJson(std.extVar('lr'));

https://github.com/allenai/allentune
https://github.com/allenai/allentune
https://github.com/himkt/allennlp-optuna
https://github.com/himkt/allennlp-optuna
https://github.com/himkt/allennlp-optuna
http://www.realworldnlpbook.com/ch10.html#config
https://optuna.org/
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Then, you need to tell Optuna which parameters to optimize. You can do this by writ-
ing a JSON file (hparams.json (http://www.realworldnlpbook.com/ch10.html#
hparams)). You need to specify every hyperparameter you want Optuna to optimize
with its types and ranges as follows:

[
    {
        "type": "int",
        "attributes": {
            "name": "embedding_dim",
            "low": 64,
            "high": 256
        }
    },
    {
        "type": "int",
        "attributes": {
            "name": "hidden_dim",
            "low": 64,
            "high": 256
        }
    },
    {
        "type": "float",
        "attributes": {
            "name": "lr",
            "low": 1e-4,
            "high": 1e-1,
            "log": true
        }
    }
]

Next, invoke this command to start the optimization:

allennlp tune \
    examples/tuning/sst_classifier.jsonnet \
    examples/tuning/hparams.json \
    --include-package examples \
    --serialization-dir result \
    --study-name sst-lstm \
    --n-trials 20 \
    --metrics best_validation_accuracy \
    --direction maximize

Note that we are running 20 trials (--n-trials) with validation accuracy (--metrics
best_validation_accuracy) as the metric to maximize (--direction maxi-
mize). If you do not specify the metric and the direction, by default Optuna tries to
minimize the validation loss.

 This will take a while, but after all the trials are finished you will see the following
one-line summary of the optimization:

Trial 19 finished with value: 0.3469573115349682 and parameters: 
{'embedding_dim': 120, 'hidden_dim': 82, 'lr': 0.00011044322486693224}. 
Best is trial 14 with value: 0.3869209809264305.

http://www.realworldnlpbook.com/ch10.html#hparams
http://www.realworldnlpbook.com/ch10.html#hparams
http://www.realworldnlpbook.com/ch10.html#hparams
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Finally, Optuna supports a wide range of visualization of the optimization result,
including very nice contour plots (http://www.realworldnlpbook.com/ch10.html#
contour), but here we'll simply use its web-based dashboard to quickly inspect the
optimization process. All you need to do is invoke its dashboard from the command
line as follows:

optuna dashboard --study-name sst-lstm --storage sqlite:///allennlp_optuna.db

Now you can access http:/./localhost:5006/dashboard to see the dashboard,
shown in figure 10.16.

Figure 10.16 The Optuna dashboard shows the evaluation metrics of the parameters for each trial.

From this dashboard you can quickly see not only that your optimal trial was trial #14
but also the optimal hyperparameters at each trial.

Summary
 Instances are sorted, padded, and batched together for more efficient

computation.
 Subword tokenization algorithms such as BPE split words into units smaller than

words to mitigate the out-of-vocabulary problem in neural network models.

http://www.realworldnlpbook.com/ch10.html#contour
http://www.realworldnlpbook.com/ch10.html#contour
http://www.realworldnlpbook.com/ch10.html#contour


279Summary

 Regularization (such as L2 and dropout) is a technique to encourage model
simplicity and generalizability in machine learning.

 You can use data upsampling, downsampling, or loss weights for addressing the
data imbalance issue.

 Hyperparameters are parameters about the model or the training algorithm.
They can be optimized using manual, grid, or random search. Even better, use
hyperparameter optimization libraries such as Optuna, which integrates easily
with AllenNLP.
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Deploying and serving
NLP applications

Where chapters 1 through 10 of this book are about building NLP models, this chap-
ter covers everything that happens outside NLP models. Why is this important? Isn’t
NLP all about building high-quality ML models? It may come as a surprise if you
don’t have much experience with production NLP systems, but a large portion of an
NLP system has very little to do with NLP at all. As shown in figure 11.1, only a tiny
fraction of a typical real-world ML system is the ML code, but the “ML code” part is
supported by numerous components that provide various functionalities, including
data collection, feature extraction, and serving. Let’s use a nuclear power plant as an
analogy. In operating a nuclear power plant, only a tiny fraction concerns nuclear

This chapter covers
 Choosing the right architecture for your NLP 

application

 Version-controlling your code, data, and model

 Deploying and serving your NLP model

 Interpreting and analyzing model predictions 
with LIT (Language Interpretability Tool)
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reaction. Everything else is a vast and complex infrastructure that supports safe and effi-
cient generation and transportation of materials and electricity—how to use the gen-
erated heat to turn the turbine to make electricity, how to cool and circulate water
safely, how to transmit the electricity efficiently, and so on. All those supporting infra-
structures have little to do with nuclear physics.

 Partly due to the “AI hype” in popular media, I personally think people pay too
much attention to the ML modeling part and too little attention to how to serve the
model in a useful way. After all, the goal of your product is to deliver values to the
users, not provide them with the raw predictions of the model. Even if your model is
99% accurate, it’s not useful if you cannot make the most of the prediction so that
users can benefit from them. Using the previous analogy, users want to power their
appliances and light their houses with electricity and do not care much how exactly
the electricity is generated in the first place.

 In the rest of this chapter, we’ll discuss how to architect your NLP applications—we
focus on some of the best practices when it comes to designing and developing NLP
applications in a reliable and effective manner. Then we talk about deploying your
NLP models—this is how we bring the NLP models to production and serve their
predictions.

11.1 Architecting your NLP application
Machine learning engineering is still software engineering. All the best practices (decou-
pled software architectures, well-designed abstractions, clean and readable code, ver-
sion control, continuous integration, etc.) apply to ML engineering as well. In this
section, we’ll discuss some best practices specific to designing and building NLP/ML
applications. 

ML model

Feature pipeline

…

Serving infrastructure

Training infrastructure

Testing Monitoring

Deployment infrastructure

Data 
pipeline

Visualization 
& 

interpretation

Figure 11.1 A typical ML system consists of many different components, and the ML code is 
only a tiny fraction of it. We cover the highlighted components in this chapter.
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11.1.1 Before machine learning

I understand this is a book about NLP and ML, but you should seriously think about
whether you need ML at all for your product before you start working on your NLP
application. Building an ML system is no easy feat—it requires a lot of money and
time to collect data, train models, and serve predictions. If you can solve your prob-
lem by writing some rules, by all means do so. As a rule of thumb, if a deep learning
model can achieve an accuracy of 80%, a simpler, rule-based model can take you at
least halfway there.

 Also, you should consider using existing solutions, if any. Many open source NLP
libraries (including AllenNLP and Transformers, the two libraries that we’ve been
using extensively throughout the book) exist that come with a wide range of pretrained
models. Cloud service providers (such as AWS AI services (https://aws.amazon.com/
machine-learning/ai-services/), Google Cloud AutoML (https://cloud.google.com/
automl), and Microsoft Azure Cognitive Services (https://azure.microsoft.com/en-us/
services/cognitive-services/)) offer a wide range of ML-related APIs for many domains,
including NLP. If your task is something that can be solved using their offerings with no
or little modification, that’d usually be a cost-efficient way to build your NLP applica-
tion. After all, the most expensive component of any NLP application is usually highly
skilled talent (i.e., your salary), and you should think twice before you go all-in and
build in-house NLP solutions.

 In addition, you shouldn’t rule out “traditional” machine learning approaches.
We’ve paid little attention to traditional ML models in this book, but you can find rich
literature of statistical NLP models that were mainstream before the advent of deep
NLP methods. Quickly building a prototype with statistical features (such as n-grams)
and ML models (such as SVM) is often a great start. Non-deep algorithms such as
gradient-boosted decision trees (GBDTs) often work almost as well as, if not better than,
deep learning methods at a fraction of the cost.

 Finally, I always recommend that practitioners start by developing the validation
set and choosing the right evaluation metric first, even before starting to choose the
right ML approach. A validation set doesn’t need to be big, and most people can
afford to sit down for a couple of hours and manually annotate a couple of hundred
instances. Doing this offers many benefits—first, by solving the task manually, you get
a feel of what’s important when it comes to solving the problem and whether it’s
something that a machine can really solve automatically. Second, by putting yourself
in the machine’s shoes, you gain a lot of insights into the task (what the data looks
like, how the input and output data are distributed, and how they are related), which
become valuable when it comes to actually designing an ML system to solve it. 

11.1.2 Choosing the right architecture

Except for rare occasions where the output of an ML system is the end product itself
(such as machine translation), NLP modules usually interact with a larger system that
collectively provide some values to the end users. For example, a spam filter is usually
implemented as a module or a microservice embedded in a larger application (email

https://aws.amazon.com/machine-learning/ai-services/
https://aws.amazon.com/machine-learning/ai-services/
https://cloud.google.com/automl
https://cloud.google.com/automl
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
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service). Voice assistant systems are usually large, complex combinations of many ML/
NLP subcomponents, including voice recognition, sentence-intent classification, ques-
tion answering, and speech generation, that interact with each other. Even machine
translation models can be one tiny component in a larger complex system if you
include data pipelines, the backend, and the translation interface that the end users
interact with.

 An NLP application can take many forms. Surprisingly, many NLP components
can be structured as a one-off task that takes some static data as its input and produces
transformed data as its output. For example, if you have a static database of some doc-
uments and you’d like to classify them by their topics, your NLP classifier can be a sim-
ple one-off Python script that runs this classification task. If you’d like to extract
common entities (e.g., company names) from the same database, you can write a
Python script that runs a named entity recognition (NER) model to do it. Even a text-
based recommender engine that finds objects based on textual similarity can be a
daily task that reads from and writes data to the database. You don’t need to architect
a complex software system with many services talking to each other.

 Many other NLP components can be structured as a (micro)service that runs pre-
diction in batches, which is the architecture that I recommend for many scenarios.
For example, a spam filter doesn’t need to classify every single email as soon as they
arrive—the system can queue a certain number of emails that arrive at the system and
pass the batched emails to the classifier service. The NLP application usually commu-
nicates with the rest of the system via some intermediary (e.g., a RESTful API or a
queuing system). This configuration is great for applications that require some fresh-
ness for their prediction (after all, users do not want to wait for hours until their
emails arrive to their inbox), but the requirement is not that strict.

 Finally, NLP components can also be designed so that they serve real-time predic-
tion. This is necessary when, for example, an audience needs real-time subtitles for a
speech. Another example is when the system wants to show ads based on the user’s
real-time behavior. For these cases, the NLP service needs to receive a stream of input
data (such as audio or user events) and produce another stream of data (such as tran-
scribed text or ad-click probabilities). Real-time streaming frameworks such as Apache
Flink (https://flink.apache.org/) are often used for processing such stream data.
Also, if your application is based on a server-client architecture, as with typical mobile
and web apps, and you want to show some real-time prediction to the users, you can
choose to run ML/NLP models on the client side, such as the web browser or the
smartphones. Client-side ML frameworks such as TensorFlow.js (https://www.tensor-
flow.org/js), Core ML (https://developer.apple.com/documentation/coreml), and
ML Kit (https://developers.google.com/ml-kit) can be used for such purposes.

11.1.3 Project structure

Many NLP applications follow somewhat similar project structures. A typical NLP proj-
ect may need to manage datasets to train a model from, intermediate files generated
by preprocessing data, model files produced as a result of training, source code for

https://developers.google.com/ml-kit
https://developer.apple.com/documentation/coreml
https://flink.apache.org/
https://www.tensorflow.org/js
https://www.tensorflow.org/js
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training and inference, and log files that store additional information about the train-
ing and inference.

 Because typical NLP applications have many components and directories in com-
mon, it’d be useful if you simply follow best practices as your default choice when
starting a new project. Here are my recommendations for structuring your NLP
projects:

 Data management—Make a directory called data and put all the data in it. It
may also be helpful to subdivide this into raw, interim, and result directories.
The raw directory contains the unprocessed dataset files you obtained exter-
nally (such as the Stanford Sentiment Treebank we’ve been using throughout
this book) or built internally. It is very critical that you do not modify any files in
this raw directory by hand. If you need to make changes, write a script that runs
some processing against the raw files and then writes the result to the interim
directory, which serves as a place for intermediate results. Or make a patch file
that manages the “diff ” you made to the raw file, and version-control the patch
files instead. The final results such as predictions and metrics should be stored
in the result directory.

 Virtual environment—It is strongly recommended that you work in a virtual envi-
ronment so that your dependencies are separated and reproducible. You can
use tools like Conda (https://docs.conda.io/en/latest/) (my recommenda-
tion) and venv (https://docs.python.org/3/library/venv.html) to set up a sepa-
rate environment for your project and use pip to install individual packages.
Conda can export the environment configuration into an environment.yml
file, which you can use to recover the exact Conda environment. You can also
keep track of pip packages for the project in a requirements.txt file. Even
better, you can use Docker containers to manage and package the entire ML
environment. This greatly reduces dependency-related issues and simplifies
deployment and serving.

 Experiment management—Training and inference pipelines for an NLP applica-
tion usually consist of several steps, such as preprocessing and joining the data,
converting them into features, training and running the model, and converting
the results back to a human-readable format. These steps can easily get out of
hand if you try to remember to manage them manually. A good practice is to
keep track of the steps for the pipeline in a shell script file so that the experi-
ments are reproducible with a single command, or use dependency manage-
ment software such as GNU Make, Luigi (https://github.com/spotify/luigi),
and Apache Airflow (https://airflow.apache.org/).

 Source code—Python source code is usually put in a directory of the same name
as the project, which is further subdivided into directories such as data (for
data-processing code), model (for model code), and scripts (for putting
scripts for training and other one-off tasks).

https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/
https://github.com/spotify/luigi
https://airflow.apache.org/
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11.1.4 Version control

You probably don’t need to be convinced that version-controlling your source code is
important. Tools like Git help you keep track of the changes and manage different
versions of the source code. Development of NLP/ML applications is usually an itera-
tive process where you (often with other people) make many changes to the source
code and experiment with many different models. You can easily end up with a num-
ber of slightly different versions of the same code. 

 In addition to version-controlling your source code, it is also important to version-
control your data and models. This means that you should version-control your training
data, source code, and models separately, as shown in the dotted-line boxes in figure
11.2. This is one of the major differences between regular software projects and ML
applications. Machine learning is about improving computer algorithms through
data. By definition, the behavior of any ML system depends on data it is fed. This
could lead to a situation where the behavior of the system is different even if you use
the same code.

 Tools like Git Large File Storage (https://git-lfs.github.com/) and DVC (https://
dvc.org) can version-control your data and models in a seamless way. Even if you are
not using these tools, you should at least manage different versions as separate files
that are named clearly.

Figure 11.2 Machine learning components to version-control: training data, source code, and models
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In a larger and more complex ML project, you may want to version-control your
model and your feature pipeline separately, because the behavior of an ML model can
be different depending on how you preprocess the input, even with the same model
and input data. This will also mitigate the train-serve skew problem we’ll discuss later
in section 11.3.2.

 Finally, when working on ML applications, you will experiment with a lot of different
settings—different combinations of training datasets, feature pipelines, models, and
hyperparameters—which can easily get out of control. I recommend keeping track of
the training settings using some experiment management system, such as Weights &
Biases (https://wandb.ai/), but you can also use something as simple as a spreadsheet
in which you enter experiment information manually. When keeping track of experi-
ments, be sure to record the following information for each experiment:

 Versions of the model code, feature pipeline, and the training data used
 Hyperparameters used to train the model
 Evaluation metrics for the training and the validation data

Platforms like AllenNLP support experiment configuration by default, which makes
the first two items easy. Tools like TensorBoard, which is supported by AllenNLP and
Hugging Face out of the box, make it trivial to keep track of various metrics.

11.2 Deploying your NLP model
In this section, we’ll move on to the deployment stage, where your NLP application is
put on a server and becomes available for use. We’ll discuss practical considerations
when deploying NLP/ML applications.

11.2.1 Testing

As with software engineering, testing is an important part of building reliable NLP/
ML applications. The most fundamental and important tests are unit tests, which
automatically check whether small units of software (such as methods and classes) are
working as expected. In NLP/ML applications, it is important to unit-test your feature
pipeline. For example, if you write a method that converts raw text into a tensor repre-
sentation, make sure that it works for typical and corner cases with unit tests. In my
experience, this is where bugs often sneak in. Reading a dataset, building a vocabulary
from a corpus, tokenizing, converting tokens into integer IDs—these are all essential
yet error-prone steps in preprocessing. Fortunately, frameworks such as AllenNLP
offer standardized, well-tested components for these steps, which makes building NLP
applications easier and bug-free.

 In addition to unit tests, you need to make sure that your model learns what it’s told
to learn. This corresponds to testing logic errors in regular software engineering—
types of errors where the software runs without crashing yet produces incorrect results.
This type of error is more difficult to catch and fix in NLP/ML, because you need more
insight into how the learning algorithm works mathematically. Moreover, many ML

https://wandb.ai/
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algorithms involve some randomness, such as random initialization and sampling,
which makes testing even more difficult.

 One recommended technique for testing NLP/ML models is sanity checks against
the model output. You can start with a small and simple model and just a few toy
instances with obvious labels. If you are testing a sentiment analysis model, for exam-
ple, this goes as follows:

 Create a small and simple model for debugging, such as a toy encoder that sim-
ply averages the input word embeddings with a softmax layer on top.

 Prepare a few toy instances, such as “The best movie ever!” (positive) and “This
is an awful movie!” (negative).

 Feed these instances to the model, and train it until convergence. Because we
are using a very small dataset without a validation set, the model will heavily
overfit to the instances, and that’s totally fine. Check whether the training loss
goes down as expected.

 Feed the same instances to the trained model, and check whether the predicted
labels match the expected ones.

 Try the steps above with more toy instances and a larger model.

As a related technique, I always recommend you start with a smaller dataset, especially
if the original dataset is large. Because training NLP/ML models takes a long time
(hours or even days), you often find that your code has some errors only after your
training is finished. You can subsample your training data, for example, by simply tak-
ing one out of every 10 instances, so that your entire training finishes quickly. Once
you are sure that your model works as expected, you can gradually ramp up the
amount of data you use for training. This technique is also great for quickly iterating
and experimenting with many different architectures and hyperparameter settings.
When you have just started building your model, you don’t usually have clear under-
standing of the best models for your task. With a smaller dataset, you can quickly vali-
date a large number of different options (RNN versus Transformers, different
tokenizers, etc.) and narrow down the set of candidate models that work best. One
caveat to this approach is that the best model architectures and hyperparameters may
depend on the size of the training data. Because of this, don’t forget to run the valida-
tion against the full dataset, too.

 Finally, you can use integration tests to verify whether the individual components
of your application work in combination. For NLP, this usually means running the
whole pipeline to see if the prediction is correct. Similar to the unit tests, you can pre-
pare a small number of instances where the expected prediction is clear and run them
against the trained model. Note that these instances are not for measuring how good
the model is, but rather to serve as a sanity check whether your model can produce
correct predictions for “obvious” cases. It is a good practice to run integration tests
every time a new model or code is deployed. This is usually part of continuous integra-
tion (CI) used for regular software engineering.



288 CHAPTER 11 Deploying and serving NLP applications

11.2.2 Train-serve skew

One common source of errors in ML applications is called train-serve skew, a situation
where there’s a discrepancy between how instances are processed at the training and
the inference times. This could occur in various situations, but let’s discuss a concrete
example. Say you are building a sentiment-analyzer system with AllenNLP and would
like to convert texts into instances. You usually start writing a data loader first, which
reads the dataset and produces instances. Then you write a Python script or a config
file that tells AllenNLP how the model should be trained. You train and validate your
model. So far, so good. However, when it comes to using the model for prediction,
things look slightly different. You need to write a predictor, which, given an input text,
converts it into an instance and passes it to the model’s forward method. Notice that
now you have two independent pipelines that preprocess the input—one for the train-
ing in the dataset reader, and another for the inference in the predictor.

 What happens if you want to modify the way the input text is processed? For exam-
ple, let’s say you find something you want to improve in your tokenization process,
and you make changes to how input text is tokenized in your data loader. You update
your data loader code, retrain the model, and deploy the model. However, you forgot
to update the corresponding tokenization code in your predictor, effectively creating
a discrepancy in how input is tokenized between training and serving. This is illus-
trated in figure 11.3.

Figure 11.3 Train-serve skew is caused by discrepancies in how input is processed between training and serving.
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The best way to fix this—or even better, to prevent this from happening in the first
place—is to share as much of the feature pipeline as possible between the training and
the serving infrastructure. A common practice in AllenNLP is to implement a method
called _text_to_instance() in the dataset reader, which takes an input and returns
an instance. By making sure that both the dataset reader and the predictor refer to the
same method, you can minimize the discrepancy between the pipelines.

 In NLP, the fact that input text is tokenized and converted to numerical values
makes debugging your model even more difficult. For example, an obvious bug in
tokenization that you can spot easily with your naked eyes can be quite difficult to
identify if everything is numerical values. A good practice is to log some intermediate
results into a log file that you can inspect later. 

 Finally, note that some behaviors of neural networks do differ between training
and serving. One notable example is dropout, a regularization method we briefly
covered in section 10.3.1. To recap, dropout regularizes the model by randomly mask-
ing activation values in a neural network. This makes sense in training, because by
removing activations, the model learns to make robust predictions based on available
values. However, remember to turn it off at the serving time, because you don’t want
your model to randomly drop neurons. PyTorch models implement methods—
train() and eval()—that switch between the training and prediction modes,
affecting how layers like dropout behave. If you are implementing a training loop
manually, remember to call model.eval()to disable dropout. The good news is that
frameworks such as AllenNLP can handle this automatically as long as you are using
their default trainer.

11.2.3 Monitoring

As with other software services, deployed ML systems should be monitored continu-
ously. In addition to the usual server metrics (e.g., CPU and memory usage), you
should also monitor metrics related to the input and the output of the model. Specifi-
cally, you can monitor some higher-level statistics such as the distribution of input val-
ues and output labels. As mentioned earlier, logic errors, which are a type of error that
causes the model to produce wrong results without crashing it, are the most common
and hardest to find in ML systems. Monitoring those high-level statistics makes it eas-
ier to find them. Libraries and platforms like PyTorch Serve and Amazon SageMaker
(discussed in section 11.3) support monitoring by default.

11.2.4 Using GPUs

Training large modern ML models almost always requires hardware accelerators such
as GPUs. Recall that back in chapter 2, we used overseas factories as an analogy for
GPUs, which are designed to execute a huge number of arithmetic operations such as
vector and matrix addition and multiplications in parallel. In this subsection, we’ll
cover how to use GPUs to accelerate the training and prediction of ML models.
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 If you don’t own GPUs or have never used cloud-based GPU solutions before, the
easiest way to “try” GPUs for free is to use Google Colab. Go to its URL (https://
colab.research.google.com/), create a new notebook, go to the Runtime menu, and
choose “Change runtime type.” This will bring up the dialog box shown in figure 11.4.

Choose GPU as the type of the hardware accelerator, and type !nvidia-smi in a
code block and execute it. Some detailed information about your GPU is displayed, as
shown next:

 
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.56       Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   39C    P8     9W /  70W |      3MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

The nvidia-smi command (short for Nvidia System Management Interface) is a
handy tool for checking information about Nvidia GPUs on the machine. From the
previous snippet, you can see the version of the driver and CUDA (an API and a

Figure 11.4 Google Colab 
allows you to choose the type 
of hardware accelerator.

https://colab.research.google.com/
https://colab.research.google.com/
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library for interacting with GPUs), type of GPUs (Tesla T4), available and used mem-
ory (15109 MiB and 3 MiB), and the list of processes that currently use GPUs (there
aren’t any). The most typical use of this command is to check how much memory your
current process(es) use, because in GPU programming, you can easily get an out-of-
memory error if your program uses more memory than is available.

 If you use cloud infrastructures such as AWS (Amazon Web Services) and GCP
(Google Cloud Platform), you’ll find a wide array of virtual machine templates that
you can use to quickly create cloud instances that support GPUs. For example, GCP
has Nvidia’s official GPU-optimized images for PyTorch and TensorFlow, which you
can use as templates to launch your GPU instances. AWS offers Deep Learning AMIs
(Amazon Machine Images), which preinstall basic GPU libraries such as CUDA, as
well as deep learning libraries such as PyTorch. With these templates, you don’t need
to install necessary drivers and libraries manually—you can start building your ML
applications right away. Note that although these templates are free, you do need to
pay for the infrastructure. The price for GPU-enabled virtual machines is usually sig-
nificantly higher than CPU machines. Make sure to check their price before you keep
them running for an extended period of time.

 If you are setting up GPU instances from scratch, you can find detailed instruc-
tions1 for how to set up necessary drivers and libraries. To build NLP applications
with the libraries that we covered in this book (namely, AllenNLP and Transformers),
you need to install CUDA drivers and toolkits, as well as a PyTorch version that sup-
ports GPU.

 If your machine has GPU(s), you can enable GPU acceleration by specifying
cuda_device in an AllenNLP config file as follows:

    "trainer": {
        "optimizer": {
            "type": "huggingface_adamw",
            "lr": 1.0e-5
        },
        "num_epochs": 20,
        "patience": 10,
        "cuda_device": 0
}

This tells the trainer to use the first GPU for training and validating the AllenNLP
model. 

 If you are writing PyTorch code from scratch, you need to manually transfer your
model and tensors to the GPU. Using an analogy, this is when your materials get
shipped to an overseas factory in container ships. First, you can specify the device
(GPU ID) to use, and invoke the to() method of tensors and models to move them

1 GCP: https://cloud.google.com/compute/docs/gpus/install-drivers-gpu; AWS: https://docs.aws.amazon
.com/AWSEC2/latest/UserGuide/install-nvidia-driver.html.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-nvidia-driver.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-nvidia-driver.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-nvidia-driver.html
https://cloud.google.com/compute/docs/gpus/install-drivers-gpu
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between devices. For example, you can use the following code snippet to run text gen-
eration on a GPU with Hugging Face Transformers:

device = torch.device('cuda:0')
tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
model = AutoModelWithLMHead.from_pretrained("gpt2-large")

generated = tokenizer.encode("On our way to the beach ")
context = torch.tensor([generated])

model = model.to(device)
context = context.to(device)

The rest is identical to the code we used in section 8.4.

11.3 Case study: Serving and deploying NLP applications
In this section, we will go over a case study where we serve and deploy an NLP model
built with Hugging Face. Specifically, we’ll take a pretrained language generation
model (DistilGPT2), serve it with TorchServe, and deploy it to a cloud server using
Amazon SageMaker. 

11.3.1 Serving models with TorchServe

As you have seen, deploying an NLP application is more than just writing an API for
your ML model. You need to take care of a number of production-related consider-
ations, including how to deal with high traffic by parallelizing model inference with
multiple workers, how to store and manage different versions of multiple ML models,
how to consistently handle pre- and postprocessing of the data, and how to monitor
the health of the server as well as various metrics about the data. 

 Because these problems are so common, ML practitioners have been working on
general-purpose platforms for serving and deploying ML models. In this section, we’ll
use TorchServe (https://github.com/pytorch/serve), an easy-to-use framework for
serving PyTorch models jointly developed by Facebook and Amazon. TorchServe is
shipped with many functionalities that can address the issues mentioned earlier.

 TorchServe can be installed by running the following:

pip install torchserve torch-model-archiver

In this case study, we’ll use a pretrained language model called DistilGPT2. DistilGPT2
is a smaller version of GPT-2 built using a technique called knowledge distillation.
Knowledge distillation (or simply distillation) is a machine learning technique where a
smaller model (called a student) is trained in such a way that it mimics the predictions
produced by a larger model (called a teacher). It is a great way to train a smaller model
that produces high quality output, and it often produces a better model than training
a smaller model from scratch.

 First, let’s download the pretrained DistilGPT2 model from the Hugging Face
repository by running the following commands. Note that you need to install Git

https://github.com/pytorch/serve


293Case study: Serving and deploying NLP applications

Large File Storage (https://git-lfs.github.com/), a Git extension for handling large
files under Git:

git lfs install
git clone https://huggingface.co/distilgpt2

This creates a subdirectory called distilgpt2, which contains files such as config.json
and pytorch_model.bin.

 As the next step, you need write a handler for TorchServe, a lightweight wrapper
class that specifies how to initialize your model, preprocess and postprocess the input,
and run the inference on the input. Listing 11.1 shows the handler code for serving
the DistilGPT2 model. In fact, nothing in the handler is specific to the particular
model we use (DistilGPT2). You can use the same code for other GPT-2–like models,
including the original GPT-2 models, as long as you use the Transformers library.

from abc import ABC
import logging

import torch
from ts.torch_handler.base_handler import BaseHandler

from transformers import GPT2LMHeadModel, GPT2Tokenizer

logger = logging.getLogger(__name__)

class TransformersLanguageModelHandler(BaseHandler, ABC):
    def __init__(self):
        super(TransformersLanguageModelHandler, self).__init__()
        self.initialized = False
        self.length = 256
        self.top_k = 0
        self.top_p = .9
        self.temperature = 1.
        self.repetition_penalty = 1.

    def initialize(self, ctx):           
        self.manifest = ctx.manifest
        properties = ctx.system_properties
        model_dir = properties.get("model_dir")
        self.device = torch.device(
            "cuda:" + str(properties.get("gpu_id"))
            if torch.cuda.is_available()
            else "cpu"
        )

        self.model = GPT2LMHeadModel.from_pretrained(model_dir)
        self.tokenizer = GPT2Tokenizer.from_pretrained(model_dir)

        self.model.to(self.device)
        self.model.eval()

Listing 11.1 Handler for TorchServe

Initializes 
the model

https://git-lfs.github.com/
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        logger.info('Transformer model from path {0} loaded 
successfully'.format(model_dir))

        self.initialized = True

    def preprocess(self, data):             
        text = data[0].get("data")
        if text is None:
            text = data[0].get("body")
        text = text.decode('utf-8')

        logger.info("Received text: '%s'", text)

        encoded_text = self.tokenizer.encode(
            text,
            add_special_tokens=False,
            return_tensors="pt")

        return encoded_text

    def inference(self, inputs):            
        output_sequences = self.model.generate(
            input_ids=inputs.to(self.device),
            max_length=self.length + len(inputs[0]),
            temperature=self.temperature,
            top_k=self.top_k,
            top_p=self.top_p,
            repetition_penalty=self.repetition_penalty,
            do_sample=True,
            num_return_sequences=1,
        )

        text = self.tokenizer.decode(
            output_sequences[0],
            clean_up_tokenization_spaces=True)

        return [text]

    def postprocess(self, inference_output):   
        return inference_output

_service = TransformersLanguageModelHandler()

def handle(data, context):                    
    try:
        if not _service.initialized:
            _service.initialize(context)

        if data is None:
            return None

        data = _service.preprocess(data)
        data = _service.inference(data)
        data = _service.postprocess(data)

Preprocesses and tokenizes
the incoming data

Runs inference 
on the data

Postprocesses 
the prediction

The handler method 
called by TorchServe
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        return data
    except Exception as e:
        raise e

Your handler needs to inherit from BaseHandler and override a few methods includ-
ing initialize() and inference(). Your handler script also includes handle(),
a top-level method where the handler is initialized and called.

 The next step is to run torch-model-archiver, which is a command-line tool
that packages your model and your handler, as follows:

torch-model-archiver \
    --model-name distilgpt2 \
    --version 1.0 \
    --serialized-file distilgpt2/pytorch_model.bin \
    --extra-files "distilgpt2/config.json,distilgpt2/vocab.json,distilgpt2/

tokenizer.json,distilgpt2/merges.txt" \
    --handler ./torchserve_handler.py

The first two options specify the name and the version of the model. The next option,
serialized-file, specifies the main weight file of the PyTorch model you want to
package (which usually ends with .bin or .pt). You can also add any extra files (speci-
fied by extra-files) that are needed for the model to run. Finally, you need to pass
the handler file you just wrote to the handler option.

 When finished, this creates a file named distilgpt2.mar (.mar stands for
“model archive”) in the same directory. Let’s create a new directory named model_
store and move the .mar file there as follows. This directory serves as a model store,
a place where all the model files are stored and served from:

mkdir model_store
mv distilgpt2.mar model_store

Now you are ready to spin up TorchServe and start serving your model! All you need is
to run the following command:

torchserve --start --model-store model_store --models distilgpt2=distilgpt2.mar

When the server is fully up, you can start making the HTTP requests to the server. It
exposes a couple of endpoints, but if you just want to run inference, you need to
invoke http://127.0.0.1:8080/predictions/ with the model name as follows:

curl -d "data=In a shocking finding, scientist discovered a herd of unicorns 
living in a remote, previously unexplored valley, in the Andes 
Mountains. Even more surprising to the researchers was the fact that the 
unicorns spoke perfect English." -X POST http://127.0.0.1:8080/
predictions/distilgpt2

Here, we are using a prompt from OpenAI’s original post about GPT-2 (https://
openai.com/blog/better-language-models/). This returns the generated sentences,
shown next. The generated text is of decent quality, considering that the model is a
distilled, smaller version:

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
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In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English. They used to speak
the Catalan language while working there, and so the unicorns were not just part of
the local herd, they were also part of a population that wasn't much less diverse than
their former national-ethnic neighbors, who agreed with them.

“In a sense they learned even better than they otherwise might have been,” says
Andrea Rodriguez, associate professor of language at the University of California,
Irvine. “They told me that everyone else was even worse off than they thought.”

The findings, like most of the research, will only support the new species that their
native language came from. But it underscores the incredible social connections
between unicorns and foreigners, especially as they were presented with a hard new
platform for studying and creating their own language.

“Finding these people means finding out the nuances of each other, and dealing with
their disabilities better,” Rodriguez says.

 …

When you are finished, you can run the following command to stop serving:

torchserve --stop

11.3.2 Deploying models with SageMaker

Amazon SageMaker is a managed platform for training and deploying machine learn-
ing models. It enables you to spin up a GPU server, run a Jupyter Notebook inside it,
build and train ML models there, and directly deploy them in a hosted environment.
Our next step is to deploy the machine learning model as a cloud SageMaker end-
point so that production systems can make requests to it. The concrete steps for
deploying an ML model with SageMaker consist of the following:

1 Upload your model to S3.
2 Register and upload your inference code to Amazon Elastic Container Registry

(ECR).
3 Create a SageMaker model and an endpoint.
4 Make requests to the endpoint.

We are going to follow the official tutorial (http://mng.bz/p9qK) with a slight modifi-
cation. First, let’s go to the SageMaker console (https://console.aws.amazon.com/
sagemaker/home) and start a notebook instance. When you open the notebook, run
the following code to install the necessary packages and start a SageMaker session:

!git clone https://github.com/shashankprasanna/torchserve-examples.git
!cd torchserve-examples

!git clone https://github.com/pytorch/serve.git
!pip install serve/model-archiver/

http://mng.bz/p9qK
https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home
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import boto3, time, json
sess    = boto3.Session()
sm      = sess.client('sagemaker')
region  = sess.region_name
account = boto3.client('sts').get_caller_identity().get('Account')

import sagemaker
role = sagemaker.get_execution_role()
sagemaker_session = sagemaker.Session(boto_session=sess)

bucket_name = sagemaker_session.default_bucket()

The variable bucket_name contains a string like sagemaker-xxx-yyy where xxx is
the region name (like us-east-1). Take note of this name—you need it to upload
your model to S3 in the next step.

 Next, you need to upload your model to an S3 bucket by running the following
commands from the machine where you just created the .mar file (not from the Sage-
Maker notebook instance). Before uploading, you first need to compress your .mar
file into a tar.gz file, a format supported by SageMaker. Remember to replace sage-
maker-xxx-yyy with the actual bucket name specified by bucket_name:

cd model_store
tar cvfz distilgpt2.tar.gz distilgpt2.mar
aws s3 cp distilgpt2.tar.gz s3://sagemaker-xxx-yyy/torchserve/models/

The next step is to register and push the TorchServe inference code to ECR. Before
you start, in your SageMaker notebook instance, open torchserve-examples/
Dockerfile and modify the following line (add --no-cache-dir transformers):

RUN pip install --no-cache-dir psutil \
                --no-cache-dir torch \
                --no-cache-dir torchvision \
                --no-cache-dir transformers

Now you can build a Docker container and push it to ECR as follows:

registry_name = 'torchserve'
!aws ecr create-repository --repository-name torchserve

image_label = 'v1'
image = f'{account}.dkr.ecr.{region}.amazonaws.com/

{registry_name}:{image_label}'

!docker build -t {registry_name}:{image_label} .
!$(aws ecr get-login --no-include-email --region {region})
!docker tag {registry_name}:{image_label} {image}
!docker push {image}

Now you are ready to create a SageMaker model and create an endpoint for it, as
shown next:

import sagemaker
from sagemaker.model import Model
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from sagemaker.predictor import RealTimePredictor
role = sagemaker.get_execution_role()

model_file_name = 'distilgpt2'

model_data = f's3://{bucket_name}/torchserve/models/{model_file_name}.tar.gz'
sm_model_name = 'torchserve-distilgpt2'

torchserve_model = Model(model_data = model_data, 
                         image_uri = image,
                         role = role,
                         predictor_cls=RealTimePredictor,
                         name = sm_model_name)
endpoint_name = 'torchserve-endpoint-' + time.strftime("%Y-%m-%d-%H-%M-%S", 

time.gmtime())
predictor = torchserve_model.deploy(instance_type='ml.m4.xlarge',
                                    initial_instance_count=1,
                                    endpoint_name = endpoint_name)

The predictor object is something you can call directly to run the inference as follows:

response = predictor.predict(data="In a shocking finding, scientist 
discovered a herd of unicorns living in a remote, previously unexplored 
valley, in the Andes Mountains. Even more surprising to the researchers 
was the fact that the unicorns spoke perfect English.")

The content of the response should look something like this:

b'In a shocking finding, scientist discovered a herd of unicorns living in a 
remote, previously unexplored valley, in the Andes Mountains. Even more 
surprising to the researchers was the fact that the unicorns spoke 
perfect English. The unicorns said they would take a stroll in the 
direction of scientists over the next month or so.\n\n\n\n\nWhen 
contacted by Animal Life and Crop.com, author Enrique Martinez explained 
how he was discovered and how the unicorns\' journey has surprised him. 
According to Martinez, the experience makes him more interested in 
research and game development.\n"This is really what I want to see this 
year, and in terms of medical research, I want to see our population 
increase."<|endoftext|>'

Congratulations! We just completed our journey—we started building an ML model
in chapter 2 and came all the way to deploying it to a cloud platform in this chapter.

11.4 Interpreting and visualizing model predictions
People often talk about the metrics and leaderboard performance on standardized
datasets, but analyzing and visualizing model predictions and internal states is import-
ant for NLP applications in the real world. Although deep learning models can be
really good at what they do, often reaching human-level performance on some NLP
tasks, those deep models are black boxes, and it is difficult to know why they make cer-
tain predictions. 

 Because of this (somewhat troubling) property of deep learning models, a growing
field in AI called explainable AI (XAI) is working to develop methods to explain the
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predictions and behavior of ML models. Interpreting ML models is useful for
debugging—it gives you a lot of clues if you know why it made certain predictions. In
some domains such as medical applications and self-driving cars, making ML models
explainable is critical for legal and practical reasons. In this final section of the chap-
ter, we’ll go over a case study where we use the Language Interpretability Tool (LIT)
(https://pair-code.github.io/lit/) for visualizing and interpreting the predictions and
behavior of NLP models.

 LIT is an open source toolkit developed by Google and offers a browser-based
interface for interpreting and visualizing ML predictions. Note that it is framework
agnostic, meaning that it works with any Python-based ML frameworks of choice,
including AllenNLP and Hugging Face Transformers.2 LIT offers a wide range of fea-
tures, including the following:

 Saliency map—Visualizing in color which part of the input played an important
role to reach the current prediction

 Aggregate statistics—Showing aggregate statistics such as dataset metrics and con-
fusion matrices

 Counterfactuals—Observing how model predictions change for generated new
examples

In the remainder of this section, let’s take one of the AllenNLP models we trained
(the BERT-based sentiment analysis model in chapter 9) and analyze it via LIT. LIT
offers a set of extensible abstractions such as datasets and models to make it easier to
work with any Python-based ML models.

 First, let’s install LIT. It can be installed with a single call of pip as follows:

pip install lit-nlp

Next, you need to wrap your dataset and model with the abstract classes defined by
LIT. Let’s create a new script called run_lit.py, and import the necessary modules
and classes, as shown here:

import numpy as np

from allennlp.models.archival import load_archive
from allennlp.predictors.predictor import Predictor
from lit_nlp import dev_server
from lit_nlp import server_flags
from lit_nlp.api import dataset as lit_dataset
from lit_nlp.api import model as lit_model
from lit_nlp.api import types as lit_types

from examples.sentiment.sst_classifier import LstmClassifier
from examples.sentiment.sst_reader import 

StanfordSentimentTreeBankDatasetReaderWithTokenizer

2 There is another toolkit called AllenNLP Interpret (https://allennlp.org/interpret) that offers a similar set of
features for understanding NLP models, although it is specifically designed to interact with AllenNLP models.

https://allennlp.org/interpret
https://pair-code.github.io/lit/
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The next code shows how to define a dataset for LIT. Here, we are creating a toy data-
set that consists of just four hardcoded examples, but in practice, you may want to
read a real dataset that you want to explore. Remember to define the spec() method
that returns the type specification of the dataset:

class SSTData(lit_dataset.Dataset):
    def __init__(self, labels):
        self._labels = labels
        self._examples = [
            {'sentence': 'This is the best movie ever!!!', 'label': '4'},
            {'sentence': 'A good movie.', 'label': '3'},
            {'sentence': 'A mediocre movie.', 'label': '1'},
            {'sentence': 'It was such an awful movie...', 'label': '0'}
        ]

    def spec(self):
        return {
            'sentence': lit_types.TextSegment(),
            'label': lit_types.CategoryLabel(vocab=self._labels)
        }

Now, we are ready to define the main model, as shown next.

class SentimentClassifierModel(lit_model.Model):
    def __init__(self):
        cuda_device = 0
        archive_file = 'model/model.tar.gz'
        predictor_name = 'sentence_classifier_predictor'

        archive = load_archive(                         
            archive_file=archive_file,
            cuda_device=cuda_device
        )

        predictor = Predictor.from_archive(archive, 
predictor_name=predictor_name)

        self.predictor = predictor                         
        label_map = 

archive.model.vocab.get_index_to_token_vocabulary('labels')
        self.labels = [label for _, label in sorted(label_map.items())]

    def predict_minibatch(self, inputs):
        for inst in inputs:
            pred = self.predictor.predict(inst['sentence'])     
            tokens = self.predictor._tokenizer.tokenize(inst['sentence'])
            yield {
                'tokens': tokens,
                'probas': np.array(pred['probs']),
                'cls_emb': np.array(pred['cls_emb'])
            }

Listing 11.2 Defining the main model for LIT

Loads the 
AllenNLP archive

Extracts and sets 
the predictor

Runs the predict
method of

the predictor
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    def input_spec(self):
        return {
            "sentence": lit_types.TextSegment(),
            "label": lit_types.CategoryLabel(vocab=self.labels, 

required=False)
        }

    def output_spec(self):
        return {
            "tokens": lit_types.Tokens(),
            "probas": lit_types.MulticlassPreds(parent="label", 

vocab=self.labels),
            "cls_emb": lit_types.Embeddings()
        }

In the constructor (__init__), we are loading an AllenNLP model from an archive
file and creating a predictor from it. We are assuming that your model is put under
model/model.tar.gz and hard-coding its path, but feel free to modify this, depending
on where your model is located.

 The model prediction is computed in predict_minibatch(). Given the input
(which is simply an array of dataset instances), it runs the model via the predictor and
returns the result. Note that the predictions are made instance-by-instance, although
in practice, you should consider making predictions in batches because it will improve
throughput for larger input data. The method also returns the embeddings for pre-
dicted classes (as cls_emb), which will be used for visualizing embeddings (figure
11.5).

 Finally, here’s the code for running the LIT server:

model = SentimentClassifierModel()
models = {"sst": model}
datasets = {"sst": SSTData(labels=model.labels)}

lit_demo = dev_server.Server(models, datasets, **server_flags.get_flags())
lit_demo.serve()

After running the script above, go to http:/./localhost:5432/ on your browser.
You should see a screen similar to the one shown in figure 11.5. You can see an array
of panels corresponding to various information about the data and predictions,
including embeddings, the dataset table and editor, classification results, and saliency
maps (which shows contributions of tokens computed via an automated method
called LIME 3).

 Visualizing and interacting with model predictions are a great way to get insights
into how the model works and how you should improve it. 

 

3 Ribeiro et al., “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier,” (2016). https://
arxiv.org/abs/1602.04938.

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
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Figure 11.5 LIT can show saliency maps, aggregate statistics, and embeddings for analyzing your 
model and predictions.

11.5 Where to go from here
In this book, we’ve only scratched the surface of this vast, long-historied field of natu-
ral language processing. If you are interested in learning the practical aspects of NLP
further, Natural Language Processing in Action by Hobson Lane and others (Manning
Publications, 2019) and Practical Natural Language Processing by Sowmya Vajjala and
others (O’Reilly, 2020) can be a good next step. Machine Learning Engineering by
Andriy Burkov (True Positive Inc., 2020) is also a good book to learn engineering top-
ics for machine learning in general.

 If you are interested in learning more mathematical and theoretical aspects of
NLP, I’d recommend giving some popular textbooks a try, such as Speech and Language
Processing by Dan Jurafsky and James H. Martin (Prentice Hall, 2008)4 and Introduction
to Natural Language Processing by Jacob Eisenstein (MIT Press, 2019). Foundations of Sta-
tistical Natural Language Processing by Christopher D. Manning and Hinrich Schütze
(Cambridge, 1999), though a bit outdated, is also a classic textbook that can give you
a solid foundation for a wide variety of NLP methods and models.

4 You can read the draft of the third edition (2021) for free at https://web.stanford.edu/~jurafsky/slp3/.

https://web.stanford.edu/~jurafsky/slp3/
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 Also remember that you can often find great resources online for free. A free Allen-
NLP course, “A Guide to Natural Language Processing with AllenNLP” (https://guide
.allennlp.org/), and the documentation for Hugging Face Transformers (https://
huggingface.co/transformers/index.html) are great places to go to if you want to learn
those libraries in depth.

 Finally, the most effective way to learn NLP is actually doing it yourself. If you have
problems for your hobby, work, or anything that involves dealing with natural lan-
guage text, think whether any of the techniques you learned in this book are applica-
ble. Is it a classification, tagging, or sequence-to-sequence problem? Which models do
you use? How do you get the training data? How do you evaluate your model? If you
don’t have NLP problems laying around, don’t worry—head over to Kaggle, where
you can find a number of NLP-related competitions in which you can “get your hands
dirty” and gain NLP experience while working on real-world problems. NLP confer-
ences and workshops often host shared tasks, where participants can compete on a
common task, datasets, and evaluation metrics, which are also a great way to learn fur-
ther if you want to deep dive into a particular field of NLP.

Summary
 Machine learning code is usually a small portion in real-world NLP/ML systems,

supported by a complex infrastructure for data collection, feature extraction,
and model serving and monitoring.

 NLP modules can be developed as a one-off script, a batch prediction service,
or a real-time prediction service. 

 It is important to version-control your model and data, in addition to the source
code. Beware of train-serve skew that causes discrepancies between the training
and the testing times.

 You can easily serve PyTorch models with TorchServe and deploy them to Ama-
zon SageMaker.

 Explainable AI is a new field for explaining and interpreting ML models and
their predictions. You can use LIT (Language Interpretability Tool) to visualize
and interpret model predictions.

https://guide.allennlp.org/
https://guide.allennlp.org/
https://guide.allennlp.org/
https://huggingface.co/transformers/index.html
https://huggingface.co/transformers/index.html
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