
Practical
Machine Learning
with AWS

Process, Build, Deploy, and Productionize
Your Models Using AWS
—
Himanshu Singh

iii

Table of Contents

Part I: Introduction to Amazon Web Services �� 1

Chapter 1: Cloud Computing and AWS �� 3

What Is the Cloud? �� 3

Control of Cloud Systems �� 4

Public Cloud ��� 5

Private Cloud ��� 5

Community Cloud �� 5

Hybrid Cloud �� 5

Cloud Services �� 5

Infrastructure as a Service �� 6

Platform as a Service �� 6

Software as a Service ��� 6

Anything as a Service �� 6

Introduction to Amazon Web Services �� 7

AWS Management Console ��� 8

AWS Command-Line Interface �� 11

AWS Storage Services��� 12

Amazon S3 �� 13

Amazon Elastic File System �� 14

AWS Storage Gateway ��� 15

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

iv

AWS Compute Services ��� 18

Amazon EC2 �� 19

Other Services ��� 22

Amazon Elastic Container Registry ��� 22

AWS Networking and Content Delivery Services �� 23

Amazon VPC ��� 23

Amazon API Gateway ��� 25

Amazon CloudFront ��� 26

Conclusion �� 28

Chapter 2: AWS Pricing and Cost Management �� 29

Understanding the Pricing of AWS �� 29

AWS Free Tier �� 31

Factors Affecting Pricing in AWS ��� 31

AWS Cost Optimization �� 32

Right-Sizing ��� 32

Using Reserved Instances ��� 36

Using Spot Instances ��� 37

Using the Cost Explorer ��� 38

AWS Trusted Advisor ��� 41

Pricing of AWS Services �� 43

Conclusion �� 44

Chapter 3: Security in Amazon Web Services��� 45

The SSR Model of AWS ��� 45

Compliance �� 47

Physical and Environmental Security �� 48

Business Continuity Management ��� 48

Network Security ��� 49

AWS Account Security Features �� 50

Passwords for Authentication �� 51

Multifactor Authentication ��� 51

Table of ConTenTs

v

Access Keys for API Authentication ��� 51

X�509 Certificates �� 52

AWS Identity and Access Management ��� 52

Federation of Users in AWS ��� 54

How Access Management Is Done in AWS �� 55

Attribute-Based Access Control ��� 57

AWS Web Application Firewall ��� 59

AWS Shield �� 60

AWS Firewall Manager �� 61

Conclusion �� 62

Part II: Machine Learning in AWS �� 63

Chapter 4: Introduction to Machine Learning ��� 65

Introduction to Machine Learning and Artificial Intelligence �� 65

Supervised Learning �� 66

Unsupervised Learning �� 67

Reinforcement Learning �� 68

Deep Learning ��� 70

Machine Learning in AWS ��� 71

Amazon SageMaker �� 72

Understanding How SageMaker Works ��� 74

Preprocessing of Data in SageMaker �� 76

Model Training in SageMaker �� 77

Model Deployment in SageMaker �� 79

Built-in SageMaker Algorithms �� 81

Custom Algorithms in SageMaker ��� 84

Other Machine Learning Services by AWS �� 85

Amazon Comprehend �� 85

Amazon Polly ��� 85

Amazon Rekognition �� 86

Amazon Translate �� 87

Table of ConTenTs

vi

Amazon Transcribe �� 87

Amazon Textract �� 88

Conclusion �� 88

Chapter 5: Data Processing in AWS �� 89

Preprocessing in Jupyter Notebook �� 89

Preprocessing Using SageMaker’s Scikit-Learn Container ��� 98

Creating Your Own Preprocessing Code Using ScriptProcessor ��� 105

Creating a Docker Container �� 105

Building and Pushing the Image �� 106

Using a ScriptProcessor Class ��� 107

Using Boto3 to Run Processing Jobs �� 108

Installing Boto3 �� 109

Initializing Boto3 �� 110

Making Dockerfile Changes and Pushing the Image ��� 110

Creating a Processing Job ��� 111

Monitoring Processing Jobs Using CloudWatch �� 115

Conclusion �� 117

Chapter 6: Building and Deploying Models in SageMaker ������������������������������������ 119

Exploring the Linear Learner Algorithm �� 119

Overview of Linear Regression �� 119

Overview of Logistic Regression ��� 120

SageMaker Application of Linear Learner ��� 121

Exploring the XGBoost Algorithm �� 126

Gradient Boosting Algorithm �� 126

XGBoost Algorithm ��� 127

SageMaker Application of XGBoost ��� 128

Exploring the Blazing Text Algorithm ��� 133

Skip Gram Architecture of Word Vectors Generation ��� 133

Continuous Bag of Words Architecture of Word Vectors Generation ������������������������������������ 134

SageMaker Application of Blazing Text �� 135

Table of ConTenTs

vii

Exploring the Image Classification Algorithm ��� 137

ResNet ��� 138

SageMaker Application of Image Classification �� 140

Exploring the SeqToSeq Algorithm �� 145

Recurrent Neural Networks ��� 145

Encoder-Decoder Architecture��� 146

SageMaker Application of SeqToSeq ��� 147

Conclusion �� 154

Chapter 7: Using CloudWatch with SageMaker �� 155

Amazon CloudWatch ��� 155

CloudWatch Logs �� 157

Training Jobs ��� 157

Processing Jobs �� 160

CloudWatch Metrics �� 162

Conclusion �� 165

Chapter 8: Running a Custom Algorithm in SageMaker ��������������������������������������� 167

The Problem Statement �� 167

Running the Model �� 168

Transforming Code to Use SageMaker Resources �� 169

Creating the Training Script ��� 169

Creating the Inference Script��� 173

Configuring the Endpoint Generation Files �� 175

Setting Up the Dockerfile ��� 176

Pushing the Docker Image to ECR ��� 179

Training the Model �� 182

Deploying the Model ��� 183

Doing Real-Time Inference ��� 183

Doing Batch Transformation �� 184

Conclusion �� 188

Table of ConTenTs

viii

Chapter 9: Making an End-to-End Pipeline in SageMaker ������������������������������������ 189

Overview of Step Functions �� 189

Upgrading Step Functions ��� 190

Defining the Required Parameters �� 191

Setting Up the Required Roles �� 192

Adding a Policy to the Existing SageMaker Role ��� 192

Creating a New IAM Role for Step Functions ��� 193

Setting Up the Training Step ��� 196

Setting Up the Endpoint Configuration Step �� 198

Setting Up the Endpoint Step �� 198

Creating a Chain of the Steps ��� 199

Defining the Workflow and Starting Operation �� 199

Exploring the Jobs in Step Functions �� 200

Exploring the JSON File That Can Be Passed as Input �� 203

Conclusion �� 203

Part III: Other AWS Services �� 205

Chapter 10: Machine Learning Use Cases in AWS �� 207

Use Case 1: Natural Language Processing Using Amazon Comprehend ����������������������������������� 207

Analysis of Text �� 207

Custom Classification �� 210

Use Case 2: Sales Forecasting Using Amazon Forecast�� 215

Creating a Dataset Group �� 216

Defining Column Attributes �� 216

Importing Data ��� 217

Making Predictions �� 218

Use Case 3: Image Text Extraction Using Amazon Textract ��� 222

Extracting Tabular Information �� 222

Extracting Form Data ��� 224

Conclusion �� 225

Table of ConTenTs

ix

 Appendix A: Creating a Root User Account to Access the
Amazon Management Console ��� 227

 Appendix B: Creating an IAM Role �� 229

 Appendix C: Creating an IAM User �� 231

 Appendix D: Creating an S3 Bucket �� 233

 Appendix E: Creating a SageMaker Notebook Instance �� 235

Index ��� 237

Table of ConTenTs

PART I

Introduction to Amazon
Web Services

3
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_1

CHAPTER 1

Cloud Computing
and AWS
This chapter covers the different components of cloud computing and of Amazon Web

Services (AWS). After reading the chapter, you’ll understand the different important

components of AWS, which will make it easier to understand the machine learning

components of AWS.

 What Is the Cloud?
So, what is the cloud? If you look at memes shared across the internet, you might think

the cloud is nothing but someone else’s computer that you can use from your own

computing device, for your own personal use. Then the question arises, why do we

need the other computer when we have our own? It’s because our computer may not

have things that the other system has. Maybe your budget when buying a system was

less than the other person’s, and he therefore has more computational power to use. So,

instead of buying a new system with more computational power, you can just access the

other system for some amount of time and then return to your own system. This is the

benefit that the cloud provides. And, by the way, we all know the other system is not just

any normal system. Cloud systems are provided by big companies such as Amazon and

Google. So even if you are trying to buy a new system with as much computational power

as cloud systems, you will not be able to afford it.

Formally speaking, the cloud is a particular computing service that is present at a

different remote location that we can access using networking or the internet. Cloud

services may include storage services, infrastructure services, software services, or

any other specific services that you need. Figure 1-1 shows how different devices are

connected to cloud systems at a remote location.

https://doi.org/10.1007/978-1-4842-6222-1_1#DOI

4

If we are able to access any of the services present at the remote location using the

internet or networking, then we call this cloud computing.

 Control of Cloud Systems
Obviously, if someone is allowing access to use their personal system over the internet,

then they may want to restrict access in some ways. Or, they may want one group of

people to have full access, but another group to have limited access. This is done to avoid

security issues and not expose the vulnerabilities present in the system. To solve this

problem, cloud computing comes in four types.

• Public cloud

• Private cloud

• Hybrid cloud

• Community cloud

Figure 1-1. How different devices are connected to cloud systems at a remote
location

Chapter 1 Cloud Computing and aWS

5

 Public Cloud
When the entire cloud infrastructure is open for public consumption, then it is called a
public cloud. Examples are the email services provided by Google or Yahoo.

 Private Cloud
When only a specific group of people can access the services provided by a cloud, then
it is called a private cloud. An example is when people in an organization can access the
resources present in the organization’s cloud, but no one from outside the organization
can access the same resources.

 Community Cloud
When a cloud service is accessible to a group of organizations, then it is called a
community cloud. For example, different organizations can access the services of AWS
or the Google Cloud Platform by registering. So, the same services are available to all the
organizations that have paid for it, but not to anyone else.

 Hybrid Cloud
When a cloud service provides both options (i.e., services of a public and private cloud),
then it is termed a hybrid cloud. An example is using two services of AWS. When we train
a model using SageMaker training, it is a private task for specific organizations because
it contains sensitive data and other things, but when we train a model and then share
the endpoint publicly, it is a public cloud because whoever has the link can access that
endpoint. (You’ll learn more about SageMaker in later chapters.)

 Cloud Services
Now that you have learned about the different ways of accessing a cloud, let’s dive
deeper and look at the services that a cloud platform may provide. We can group these
services into four domains.

• Infrastructure as a service (IaaS)

• Platform as a service (PaaS)

• Software as a service (SaaS)

• Anything as a service (XaaS)

Chapter 1 Cloud Computing and aWS

6

 Infrastructure as a Service
As the name suggests, when a cloud service provider gives access to users to the

infrastructure that it has built, it is considered an IaaS. For example, a cloud provider

may give access to virtual machines, physical machines, storage devices, etc. For

example, we can use Google Drive to store information on the cloud, since Google is

providing its hard drives as a service. AWS also provides machines called EC2 instances

that individuals can use to do operations that require higher computational power.

 Platform as a Service
Sometimes, instead of requiring an entire infrastructure, we want only a specific

development runtime where we can write our code or make games or websites. This

way the cost of building an entire infrastructure can be reduced. This type of service is

a PaaS. For example, we can use Google Colaboratory for writing Python or R code. In

addition, we can use AWS SageMaker to train and put a machine learning model into

production. There are other service providers as well such as Microsoft Azure, Google

Cloud Platform, IBM Cloud, etc.

 Software as a Service
When we don’t want the runtime, but we want to use a specific software application

with its built-in runtime, we don’t need a PaaS, which would give us the runtime as well

as dependencies and software we’d need to install. Hence, there are cloud services that

provide specific software for specific uses, called SaaS. Examples of SaaS are Amazon

Ground Truth, which is used for data management, and Office 365 by Microsoft.

 Anything as a Service
The first three types of services have been on the market for quite some time, but now,

because of the advancement in technology, cloud service providers are providing almost

anything as a cloud service. For example, we can now draw sketches of web pages and

give them to Azure, which converts them into HTML pages. In addition, you can play

online songs by just talking to Alexa, which is connected to AWS. All this comes under

the umbrella of XaaS.

Chapter 1 Cloud Computing and aWS

7

Let’s now dive deeper into a specific cloud service provider, called Amazon Web

Services (AWS).

 Introduction to Amazon Web Services
AWS provides global cloud computing services across many countries and is currently

responsible for handling the infrastructure of many companies, including small and

large enterprises. According to the AWS documentation, currently AWS caters to

hundreds of thousands of businesses in 190 countries.

AWS provides more than 150 services that can be used on demand and can be paid

for based on the time used. Currently, AWS has data servers in a lot of regions, and you

can choose to use only one region’s server that is closest to your users. The following is

the list of data servers across the globe:

• North America

• Ohio (US East)

• Oregon (US West)

• Northern California (US West)

• Northern Virginia (US West)

• Gov Cloud (US East and US West)

• Canada (Central)

• South America

• Sao Paulo

• Europe/Middle East/Africa

• London (Europe)

• Stockholm (Europe)

• Frankfurt (Europe)

• Paris (Europe)

• Bahrain (Middle East)

• Ireland (Europe)

Chapter 1 Cloud Computing and aWS

8

• Asia Pacific

• Singapore (Asia Pacific)

• Beijing (Mainland China)

• Sydney (Asia Pacific)

• Tokyo (Asia Pacific)

• Seoul (Asia Pacific)

• Ningxia (Mainland China)

• Osaka (Asia Pacific)

• Mumbai (Asia Pacific)

• Hong Kong (Asia Pacific)

As I mentioned, AWS has more than 150 services. The question is, how do you access

them? Is there a single centralized place from where they can be accessed? Well, yes!

This place is called the AWS Management Console. Let’s look at some of the features of

this console and how it is really helpful to users.

 AWS Management Console
With the AWS Management Console (AMC), not only can you access the services, but it

provides some other cool features as well. Some of them are as follows:

• Once you have created an account on AWS and logged in to AMS,

then your session remains active only for 12 hours. After that, you

need to log in again. Obviously, this time limit is customizable. This

feature is provided for security reasons.

• Not only can you access AMS from the Web, but you can use the

mobile app as well. The AMS app is present both on IOS and on

Android devices.

Chapter 1 Cloud Computing and aWS

9

• AMS provides access to different learning resources, articles,

documentation, videos, etc., which help us in understanding the

different services of AWS.

• You can even customize and personalize AMS based on your usage

and needs.

After logging in to AWS, you will see the following features:

• Search button to find specific services

• Recently visited services by a user

• List of all the services

• Links to automated workflows

• Link to learning resources

Figures 1-2, 1-3, 1-4, and 1-5 show the different screens of AMS.

Figure 1-2. Find Services feature and recently visited services on AMS

Chapter 1 Cloud Computing and aWS

10

Figure 1-3. Learning resources on AMS

Figure 1-4. Automation on AMS

Chapter 1 Cloud Computing and aWS

11

We will look at how to log in to AWS and visit AMS in detail in the next section about

machine learning. Now, let’s move to the next feature of AWS called the AWS Command- Line

Interface (AWS CLI).

 AWS Command-Line Interface
If AMC gives you a visual interface to access the AWS services, the CLI gives you some

advanced power to access the same services through the console. It is used by advanced

developers who have spent some time with AWS. You just need to download a single

tool, and then you can use it to control different services, write scripts, and have control

over the automation of services.

Figure 1-5. List of all services on AMS

Chapter 1 Cloud Computing and aWS

12

AWS provides a lot of resources such as reference documents, GitHub repositories,

forums, etc., for understanding AWS CLI. Though one can use AWS CLI from the default

console such as the command prompt of Windows or terminals of Linux and Mac, there

is a dedicated AWS shell that provides some advanced functionalities. Some of them are

as follows:

• Autocompletion support

• Inline documentation of commands

• OS shell commands, which can also be executed from the same shell

We will be using the CLI a lot when we will cover machine learning in detail.

Therefore, we will look at its practical aspects directly in that section.

Because AWS provides so many services, covering all of them is not possible in

one book. Moreover, this book is about machine learning, so it doesn’t make any sense

to cover every service here. But, we will discuss three services that I think are really

important and commonly used. The following are the services that we are going to

discuss here:

• AWS Storage Services

• AWS Compute Services

• AWS Networking and Content Delivery Services

Let’s start the discussion with the first one, Storage Services.

 AWS Storage Services
When we work on a cloud platform and use its services, obviously we’ll have a lot of

data depending on the requirements. For example, if we are building a website, then we

will have images, videos, and lots of other things to store. If we have a machine learning

model, then we will have terabytes of data to handle. This data can be both structured

and unstructured. Similarly, for business purposes, we can have multiple Excel sheets

or presentations. All these data types must be stored somewhere in the cloud, and the

cloud platform should provide this facility.

Chapter 1 Cloud Computing and aWS

13

AWS provides a lot of options for data storage, and we’ll discuss three of them in this

section.

• Amazon S3

• Amazon Elastic File System (EFS)

• AWS Storage Gateway

 Amazon S3
One of the most used services of AWS is Amazon Simple Storage System (S3). It provides

you with an interface where you can store your data in a similar way to how you store it

in your local file system. You can create folders and multiple subdirectories to organize

your data. The following are some of the basic features Amazon S3 provides:

• It provides scalability, which is currently leading in the industry.

• It provides real-time data availability.

• It provides security and optimized performance.

• It has a durability of 99.9999999… percent (11 nines).

S3 is really simple to use. First let’s understand some of the naming conventions used

by Amazon S3.

 Buckets

A bucket is just like a folder in your local file system. It is a container used for storing

your files.

 Objects

The files that you store in S3 are termed objects. All the objects are stored inside the

buckets.

 Keys

Every object that you store will be given a unique identifier called a key. Also, not only

objects but buckets are provided with unique keys.

Chapter 1 Cloud Computing and aWS

14

Does S3 only provide simple storage, as its name suggests? I will say yes and no. Yes,

because its main use is storage only, and it is really simple. No, because it has lots of

other features revolving around the storage feature that make it a go-to service for every

customer. Let’s see what those features are that make S3 so powerful.

• Based on how frequently data is being used, S3 provides different

types of storage classes.

• S3 STANDARD: Data that needs to be frequently accessed

• S3 STANDARD_IA: Data that needs to be less frequently accessed

• S3 GLACIER: Data that we want to archive

• Storage without security is nothing. AWS provides access control to

the buckets that you have created. You can accomplish this using

policies. The following are the three levels of control based on policies

that we can apply:

• Who can access which bucket?

• From which network can the buckets be accessed?

• At what time should the buckets be accessed?

• You can also create versions of your objects. For example, if the

same Excel sheet is updated five times, then five versions of it can be

created.

In this entire book, Amazon S3 is the service that we will be using continuously with

machine learning services. We will discuss the services in detail in the next section.

 Amazon Elastic File System
Amazon Elastic File System (EFS) is an elastic network file system that most of the

AWS cloud services are compatible with. It is called elastic because it is scalable as

well as shrinkable. If you upload a smaller amount of data, then it shrinks its size to

accommodate that data. But if you upload a larger amount of data, then it can scale up

its size. Scaling up can be in the petabytes as well. EFS works with the latest version of

NFS, which is NFSv4.1. Hence, it is compatible with almost everything that you want to

develop.

Chapter 1 Cloud Computing and aWS

15

Tip using network File System (nFS), you can store, edit, delete, and perform
other operations similar to how you perform them in your local system. it is a
kind of distributed file system that uses network-attached storage (naS). the
current version of nFS provides advanced features such as strong authentication,
file caching, and support for Windows File System. nFS can be accessed now on
global Wans.

Just like S3, EFS provides two kinds of file storage.

• Standard Access

• Infrequent Access

When we want to access data frequently, we use Standard Access, while infrequently

used data can be stored in Infrequent Access EFS. Also, just like S3, you can authenticate

and authorize data in EFS and encrypt it further. Finally, you can add policies, just like

S3, for maintaining access control.

 AWS Storage Gateway
AWS Storage Gateway is a hybrid infrastructure provided by AWS. If you want to use your

on-premise infrastructure for all your storage needs but still you want some functionality

by which you can use the cloud storage services of AWS, then Storage Gateway is the best

solution.

Storage Gateway provides three kinds of solutions.

• File Gateway

• Volume Gateway

• Tape Gateway

 File Gateway

Using this service, all the files are stored in S3. It gives you a virtual application with

which you can manage all your files in S3. Retrieving/storing files is done using protocols

such as Network File System or Server Message Block. The virtual software that we are

talking about is nothing but a virtual machine with which you manage your files. This

can be with VMware ESXi or Microsoft Hyper-V.

Chapter 1 Cloud Computing and aWS

16

 Volume Gateway

Instead of files, you can directly store volumes in the cloud that you can later mount as

Internet Small Computer System Interface (iSCSI). Again, the software that is deployed

on-premise is a virtual machine. The following kinds of volumes are supported:

• Cached volumes

• Stored volumes

Having cached volumes means storing the data entirely in S3, and then the

frequently used data is cached in the local system. Figure 1-6 shows the cached volume

gateway architecture provided by AWS.

Figure 1-6 is divided into three parts. The left part shows the actual users using the

local architecture. The middle component is the local infrastructure of an organization.

The right component has an S3 connection for the data backup.

When you store your entire data locally and then back up the snapshot versions of

this data on the cloud, then it is the stored volume support of Volume Gateway. We can

use this in the case of disaster recovery. For example, if you lose your local data, you can

download the latest snapshot from the cloud. Again, we use S3 as the storage service

here. Figure 1-7 shows the architecture of a storage volume.

Figure 1-6. Cached volumes, Storage Gateway architecture

Chapter 1 Cloud Computing and aWS

17

The architecture in Figure 1-7 is almost the same as Figure 1-6, but instead of storing

the entire data, we are storing only snapshots of the locally saved data.

 Tape Gateway

This is used for archiving data. For this we can use Amazon S3 Glacier or Deep Archive

as the storage service. This can also be deployed locally using virtual machines. The

architecture given in Figure 1-8 shows how tape gateway works.

Figure 1-7. Stored volumes, Storage Gateway architecture

Chapter 1 Cloud Computing and aWS

18

You can see in the architecture that different infrastructures are storing the data in

their respective S3 buckets. Later, the data of all the S3 buckets is combined and then

stored in the Amazon S3 Glacier. Virtual tapes are nothing but a means of storing data.

Just like how physical tapes were empty and then filled at the time when they were used,

similarly virtual tapes can also be blank and can be filled with data as per your needs.

Now that we have seen how Storage Services of AWS operates and looked at different

services, let’s move on and explore the compute services.

 AWS Compute Services
In the previous section, you learned how to store data using AWS services. In this section,

we will look at some compute services provided by AWS. When we run an application,

play games, or develop something, we require the computational power of the system.

We measure this in terms of the RAM, processor, graphics card, etc. Sometimes we may

have a big system requirement but not be able to get it due to lack of money or lack of

Figure 1-8. Tape gateway, Storage Gateway architecture

Chapter 1 Cloud Computing and aWS

19

resources. That is the reason why Amazon provides different kinds of services for all

computational requirements. In this section, we will discuss the following AWS compute

services:

• Amazon EC2

• Amazon ECR

 Amazon EC2
Elastic Component Cloud (EC2) reduces the burden for a user to invest in hardware

requirements. Whatever the requirement, EC2 allows you to create that many virtual

servers where immediately the work can be processed. In addition, instead of having

a static infrastructure, it is dynamic. This means that if a sudden surge in computation

requirements occurs, EC2 automatically scales itself up, without disrupting the ongoing

processes.

The following are some of the features that EC2 gives its users:

• It provides an environment where we can do our computation-heavy

work. This is done in a virtual computing environment with what

AWS calls instances.

• Whatever your software or hardware needs, you can configured them

using the service Amazon Machine Images (AMIs).

• It provides security to all the instances you spin up. It also provides

security groups that help the user configure firewalls, ports, IP ranges,

etc.

In addition, there are a lot of other services that help the users in their day-to-day

coding and development life.

The instance types that EC2 provides can be grouped into the following categories:

• General purpose

• Compute optimized

• Memory optimized

• Storage optimized

• Accelerated computing

Chapter 1 Cloud Computing and aWS

20

 General-Purpose Types

These types provide a balance of computational power, storage, and networking. They

are further divided into the following groups:

• A1

• T3

• T2

• M6g

• M5

• M5a

• M5n

• M4

 Compute Optimized

When the work requires high computational usage and requires heavy processors, you

can use compute-optimized instances. They can be used for media tasks, scientific tasks,

fast web servers, or even game servers. They can be grouped into the following types:

• C5

• C5n

• C4

You can find more information about these groups at https://aws.amazon.com/

ec2/instance-types/.

 Memory Optimized

If the work requires working with large datasets, you need memory-optimized instances.

They are grouped into the following types:

• R

• R5a

• R5n

Chapter 1 Cloud Computing and aWS

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

21

• R4

• X1e

• X1

• High Memory

• z1d

 Accelerated Computing

For all machine learning and deep learning applications, these kinds of instances are

preferred. These systems are really fast, and their precision is also very high. They can be

grouped into the following types:

• P3

• P2

• Inf1

• G4

• G3

• F1

 Storage Optimized

This type is best if you want to work on huge datasets and want less latency with faster

read and write operations. They can be grouped into the following types:

• I3

• I3en

• D2

• H1

You can find detailed information about every instance types at https://aws.

amazon.com/ec2/instance-types/.

Chapter 1 Cloud Computing and aWS

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

22

Other Services
AWS also provides other services with most of the previous instance types. This is done

to give you financial benefits based on your usage. These services include the following:

• On-demand instances

• Reserved instances

• Spot instances

If you think your work is not going to take a lot of time, like for days or months, then

you can go for on-demand instances. These instances are charged on a per-hour basis.

Whatever compute or memory and storage size you want, you can use that, but the

payment will be based on the hours used.

Reserved instances are for longer-term usage, and hence the discount that a person

receives is up to 75 percent of the on-demand instances. This also provides options to

change types.

There are times when a lot of EC2 instances get unused. Spot instances let you take

advantage of those instances, and you can get up to a 90 percent discount as compared

to on-demand instances when using spot instances.

 Amazon Elastic Container Registry
In recent times, Docker has taken the industry by storm. It allows companies to separate

their infrastructure from their coding. In simple words, Docker provides you with a

platform where you can develop and ship code efficiently without worrying about the

underlying architecture. Amazon ECR is a repository for all the Docker images that you

want to run in AWS.

Once you spin up an EC2 instance, you have an option to run any Docker image on

that instance. AWS has its own prebuilt Docker images that you can import, or you can

have your own custom-made Docker images uploaded on ECR and then imported inside

the EC2 instance.

Chapter 1 Cloud Computing and aWS

23

Amazon ECR has the following components:

• Registry

• Authentication token

• Repository

• Policy

• Image

The registry is like a normal register, where you want to make an entry to every image

that you upload to ECR. To make sure that only the right person is able to access the ECR

for uploading images, authentication tokens are used. The repository is the place that

actually stores your Docker images. Images are your actual Docker files. These are the

files that you have created containing all your dependencies. You use the image to store

them in ECR and import them in EC2.

You will understand the operations of ECR in detail when we cover SageMaker in

later chapters.

 AWS Networking and Content Delivery Services
In this section, we will discuss three important services of AWS in this domain.

• Amazon VPC

• Amazon API Gateway

• Amazon CloudFront

 Amazon VPC
Amazon Virtual Private Cloud (VPC) is a virtual network that we create so that we can

segregate certain things from the entire user domain. It acts just like a normal cloud,

but instead of having separate infrastructures, there is only one cloud infrastructure but

multiple virtual clouds made over it. For example, we can make a separate virtual cloud

for the marketing, finance, and operations departments. Only its own set of users know

what is happening in each cloud, but actually all the files that are being stored are on the

same storage, which is being shared by all the departments. Therefore, each cloud can

have its own security policies, access levels, etc.

Chapter 1 Cloud Computing and aWS

24

Amazon VPC is the same, except it also provides a scalable AWS architecture.

Amazon VPC has the following components:

• Subnet: Each virtual private cloud can be accessed only by a set of IP

addresses. Any request coming from an address outside the list is not

given access. This list is called a subnet.

• Route table: As I said, a virtual private cloud has the same underlying

infrastructure as local cloud. But AWS provides its own features as

well. One of the features is load balancing, meaning if the load of

the server becomes very high, then we can divert the traffic to an

alternate server. Once we are working in VPC, we must know the

routes to where the traffic needs to be directed. These routes are

stored in route tables.

• Internet gateway: Through the Internet gateway, all of your virtual

private clouds are able to contact the underlying EC2 instances.

• Endpoint: If we want to connect our virtual private cloud to any of the

services provided by AWS, we can just use the VPC endpoint service

provided by Amazon VPC.

Figure 1-9 shows an architecture where the Internet is used for VPC usage.

Chapter 1 Cloud Computing and aWS

25

If you look at the architecture in Figure 1-9, you can see that inside VPC we have

two EC2 instances, each with a public IP address and a private IP address. The public IP

address is used if you want to access the services from outside the VPC, while the private

one is used to access the same services from the inside of VPC. You can see that there is a

router that uses route tables to know different routes and then uses an Internet gateway

for the access. You also have an IP address and a port number for the VPC (172.31.0.0 is

the IP address and 16 is the port number in Figure 1-9).

 Amazon API Gateway
Before understanding API Gateway, I will give a brief introduction about application

programming interfaces (APIs). An API is a service that we use to make two or more

applications talk with each other. For example, when we use Facebook to upload an

image or a video, we are using the upload API of Facebook, and whenever we are liking,

commenting, or sharing, we are using another API of Facebook. Therefore, in the current

development scenario, each small service is developed and then converted into an

Figure 1-9. Amazon VPC architecture

Chapter 1 Cloud Computing and aWS

26

API (the REST API is one of the types of API that is most used) and then can be used

using the networking protocols. Amazon API Gateway provides you with the services to

efficiently manage these APIs.

Amazon API Gateway can be used to create, publish, maintain, monitor, and secure

different kinds of APIs such as REST, HTTP, or the WebSocket API. These APIs can be made not

only to have their own applications, but they can also access and use different AWS services.

Figure 1-10 shows the architecture of API Gateway.

In Figure 1-10, Amazon CloudWatch is used for monitoring the logs of any services

provided by AWS and API Gateway in the current state. API Gateway Cache provides you

with an option to reduce the latency by storing the most used components. All the APIs

can be connected to different services of AWS as well like AWS Lambda, EC2, Kinesis

(Used for Live Data Analytics), DynamoDB (Cloud Database), etc. It can be used by any

third-party applications as well.

 Amazon CloudFront
There are a lot of services present on the Web that provide us with a lot of options to build

websites and serve them to the end users. AWS can be counted as one of them, but it

provides features that the others don’t provide. AWS gives the option of less latency. To

understand latency in a little detail, imagine you are opening a website whose servers are

Figure 1-10. Architecture of API Gateway

Chapter 1 Cloud Computing and aWS

27

in India, but you are in North Korea (assuming that the Internet is provided to its citizens).

Now, since the servers are pretty far away, it will take a lot of time to use any service

provided by the website. But if, instead, the website was deployed in AWS, then instead

of using the servers present in India, a person would be able to use the servers present in

South Korea. Because the server is closer to the country, the pages will open faster.

How does AWS do it? The answer is its service called CloudFront. How does

CloudFront do that? It does that by using the edge locations provided by AWS. When you

make a website, it has both static and dynamic content such as HTML pages, CSS and

JavaScript, etc. So, if a request to use the website comes from the location where your

server is not present, CloudFront distributes all the contents of the website to the Edge

Location nearest to the place from where the request was made. Therefore, now opening

the website becomes faster as the content is being delivered from a nearest server.

To know more about edge locations, please visit this link: https://aws.amazon.com/

cloudfront/features/.

In Figure 1-11, you can see how CloudFront is used for this distribution. Let’s see

what each step represents in the image.

 1. All the files that your website is going to use are stored in an AWS

service like S3, or it can be your own HTTP server. (Steps 1 and 2.)

 2. Now you initiate the CloudFront distribution by providing the link

to your S3 or HTTP server. (Step 3.)

 3. A domain name, specific to CloudFront, is provided to your

distribution. It can be changed as well. (Step 4.)

 4. CloudFront sends the configuration of the distribution it has just

created to all the edge locations present across the world. Here the

cache of your files is created. (Step 5.)

Chapter 1 Cloud Computing and aWS

https://aws.amazon.com/cloudfront/features/
https://aws.amazon.com/cloudfront/features/

28

 Conclusion
This finishes the basic introduction about cloud computing and the Amazon version of

the cloud: AWS. In this chapter, you saw different concepts related to cloud computing

and learned about different components of AWS. We have not seen all the services of

AWS, as there are more than 150 of them. They all cannot be covered in a single book,

but we have covered all the important ones as far as this book is concerned.

In the next chapter, we will be looking at the security aspects of AWS and different

types of services provided to make our applications secure.

Figure 1-11. Amazon CloudFront service

Chapter 1 Cloud Computing and aWS

29
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_2

CHAPTER 2

AWS Pricing and Cost
Management
In the previous chapter, we looked at some concepts of cloud computing and explored a

few of the important services provided by AWS. In this chapter, we will look at how AWS

charges us for the services it provides and how we can get the best out of AWS with the

least amount of burden on our pocketbooks as possible.

 Understanding the Pricing of AWS
As per the documentation, AWS tries to make our lives simpler by charging us the same

way as we get charged for using electricity or water. This means we pay only for whatever

we are going to use. When we have an infrastructure present on our premises, we have

to pay for everything, even if we are not using it. In AWS, it is not the same. This is called

pay-as-you-go.

In Figures 2-1 and 2-2, AWS tries to show the difference in pricing between two

architectures. When we look at Figure 2-1, we see that even when we are not using

the infrastructure, the part denoted by the red shaded region, we are still paying for it.

Hence, in the end, you see that every month the charges keep increasing, and by the end

of the year you end up paying a lot.

https://doi.org/10.1007/978-1-4842-6222-1_2#DOI

30

Instead, Figure 2-2 shows that one pays more if it uses more, while in the remaining

days it is much less. Hence, the cost savings in the case of AWS is much more. Another

way that AWS helps us to save money is by using the reserve functionality provided.

By reserved instances, AWS means that you pay for a service of AWS up front, for

a longer time of usage. This means the resources and infrastructure required for that

service at a later time are reserved, and hence no one else can use those reserved

services and infrastructure. As you are asking to use an entire service for a longer amount

of time, this means AWS will keep on earning from those services. The infrastructure

will never be idle in terms of money. Therefore, to make things easier for the companies

opting for reserved instances, AWS charges them less. It is sometimes less than 70

percent of the on-demand instances that we talked about in the previous chapter.

Now, before going into the details of AWS pricing, let’s first look at the AWS Free Tier,

including what services we can use for free and for how much time.

Figure 2-1. Pricing in on-premise infrastructure

Figure 2-2. Pricing in AWS infrastructure

Chapter 2 aWS priCing and CoSt ManageMent

31

 AWS Free Tier
AWS offers free services in three areas.

• Services that are always free

• Services that are free for around 12 months

• Services that are available on a trial basis

The following are some of the services that are always free:

• DynamoDB is free for 25 GB storage.

• AWS Lambda is always free for 1 million requests per month, and up

to 3.2 million of compute time.

• 1 million objects can be stored in Amazon Glue for free.

The following are some of the services that are free for about 12 months:

• 5 GB of Amazon S3

• 750 hours of EC2 instances per month, supporting t2.micro and

t3.micro

• 50 K units of text in Amazon Comprehend

The following are the services that are available on a trial basis:

• 250 hours/month of Amazon SageMaker using t2.medium for two

months

• 50 hours/month of Amazon SageMaker using m4.xlarge for two

months

• 125 hours/month of hosting in Amazon SageMaker for two months

 Factors Affecting Pricing in AWS
AWS calculates pricing based upon these three elements:

• Computation

• Storage

• Data transfer

Chapter 2 aWS priCing and CoSt ManageMent

32

AWS doesn’t charge you for the incoming transmission of data or data transmission

between two or more services of AWS only. But, whatever data goes outside the AWS

network (an outbound data transmission), it does charge you for that. It depends upon

the amount of data transferred. The more data, the lower the price per gigabyte.

As mentioned, for computations the charge is calculated on an hourly basis, and for

storage it is calculated in gigabytes. Now that we know which factors affect AWS pricing,

we must know how we can optimize the cost in AWS.

 AWS Cost Optimization
We can create a cost-effective AWS architecture by following the four simple steps given

here:

• Right-sizing your services

• Using reserved instances

• Using a spot market

• Using the Cost Explorer

 Right-Sizing
The term right-sizing means that you only use a service that you need. This means you

only use the compute power that you require or only use the storage that you need. You

must not over-provision it and neither should you compromise on the capacity. AWS

provides you with services that help you in right-sizing through autoscaling, which

includes up scaling, down scaling, scaling out, and scaling in based on the usage.

To right-size, the organization should perfectly know the needs and usage pattern

required and then take advantage of AWS’s elasticity to right-size. Through this, the

organization can save up to 70 percent of the total cost. Also, one must remember that it

is not a one-time affair. This means the companies have to periodically plan their needs

and pattern and make changes accordingly. Therefore, one can say that right-sizing is an

ongoing process.

Chapter 2 aWS priCing and CoSt ManageMent

33

How do you decide when it is the perfect time to perform right sizing again? For this,

AWS has given us some tools that can be used for making these sorts of decisions.

• Amazon CloudWatch: You can know about the amount of CPU

utilized, the throughput of the network, the disk I/O operations, etc.,

and then use this information to decide whether revised right-sizing

is required.

• AWS Cost Optimization: This provides you with the

recommendations about the right-sizing based on the current

utilization. We will discuss this more in the upcoming section.

• AWS Cost Explorer: You can use the Cost Explorer to understand what

are the prime drivers of the cost incurred to the company. Based on

that, the right decisions can be made.

• AWS Trusted Advisor: This helps you know more about idle or

underutilized resources.

The following are some of the factors that can be taken into consideration while

deciding about the optimal right-sizing. These factors can be grouped into the following

categories:

• Right-sizing based upon performance data

• Right-sizing based upon usage needs

• Right-sizing by stopping instances

• Right-sizing based upon selection of right instance family

• Right-sizing based upon selection of database instances

When it comes to the analysis of performance data, one should identify the instances

that are idle or are underutilized. For this, one can look at the CPU and memory usage of

the instances. This can be done using CloudWatch or any other tools mentioned earlier.

Amazon recommends that those instances with a maximum CPU or memory usage of

less than 40 percent for a four-week period can be right-sized.

Chapter 2 aWS priCing and CoSt ManageMent

34

When it comes to analyzing the usage needs, one must take into consideration the

following:

• If the load remains constant for a longer period of time, we can opt

for reserved instances, instead of on-demand or spot instances. We

will talk about reserved instances in detail in the next section.

• If the load is not constant, but we can say that in approximately equal

intervals or during specific scenarios the load increases or decreases,

then we can use the autoscaling features of AWS EC2 instances.

• All loads that are considered to be flexible, which means they are

used only when required and then can be turned off, can use on-

demand or spot instances.

When we run our normal systems such as laptops or desktops, we turn them off

when not in use. The same thing can be done with AWS. All those instances that have

been idle for more than two weeks can be stopped or terminated. Once an instance is

stopped, the company stops paying for the EC2 instance. But remember, for every EC2

instance there is an EBS volume associated with it. The volume remains alive, and you

still keep paying for it. If you want to terminate the instance, the attached EBS volume

gets deleted as well; hence, there is no cost for EBS. But, if you want to rerun that

instance, then some re-provisioning should be done to get back the EBS volume. One

of the best ways can be to store the snapshot of EBS volumes so that during termination

or even during deletion, the EBS volumes can be stored in the form of snapshots as a

backup.

 What Is an EBS Volume?

Before understanding Amazon Elastic Block Storage (EBS), we must know what a

block device is. A block device, in simple terms, is a device that is used to store your

information. Therefore, all the disk drives like HDD or SSD are the block devices. They

are platform independent, which means you can give them any operating system, and

a block device will work. Inside a block device all your files are stored and which can be

accessed using any instance and operating system.

Now, when we talk about EBS, it allows this block storage in Amazon EC2 instances.

It provides you with the feature to attach multiple EBS volumes in one single EC2

instance or one EBS volume to multiple EC2 instances.

Chapter 2 aWS priCing and CoSt ManageMent

35

We can decide to select the perfect instance for our workloads, and we can also

change it based on two options: changing the instance in the same family and changing

the instance to a different family. We can change the instance to another instance in the

same family based on the following metrics:

• Count of vCPUs

• Looking at the memory

• Looking at network throughput

• Looking at the attached storage

But, when we change the instance to another instance in a different family, we

consider the following metrics:

• Selecting the right virtualization type

• Selecting whether you need VPC support

• Selecting the right platform

• Selecting whether to upgrade hardware requirements or not

For the first three points, we must be sure that the configuration before the upgrade

is the same as after the upgrade. For the last point, it must require efforts to move the

entire architecture to an upgraded EC2 instance. We talked about different families of

EC2 instances in the previous chapter.

 What Are Virtualization Types?
Linux machines in AWS support two types of virtualization: paravirtual (PV) and

hardware virtual machine (HVM). The difference between these two instances is in how

the operating system boots and how it takes advantage of additional configurations like

CPUs, storage, etc.

 Right-Sizing Database Instances
Last but not the least, we can right-size the database instances. For this, the following

metrics must be kept in mind:

• Either you scale up or you scale down your database instances, or the

storage size remains the same.

• We can separately change the storage size of the database instance.

Chapter 2 aWS priCing and CoSt ManageMent

36

• AWS takes licenses seriously. Therefore, whatever database a person

is using, the right licenses must be there.

• You can select the right-sizing time of your database instances. It

can be done immediately or at a specific window like during the

maintenance time.

This concludes our discussion about right-sizing in AWS. Next, we must learn more

about reserved instances.

 Using Reserved Instances
Reserved instances are all about commitment. While you are purchasing the reserve

compatible services of AWS, at that time only must you decide whether you want to go

for a long-term commitment or your requirements will change periodically. If it is long-

term, then you can opt for reserved services, and this can lead to a reduction in hourly

cost of that service. The following are the services provided by AWS that offer a reserve

facility:

• Amazon EC2

• Amazon RDS

• Amazon ElastiCache

• Amazon RedShift

• Amazon DynamoDB

One must be absolutely sure to use reserved instances, as the lock-in period is either

one year or three years. That means you must pay for either the entire one year or three

years beforehand. After the payment is done, no matter how much you use the instance,

you will not get any money back, like on-demand instances. Therefore, once you pay for

the lock-in period, you can get a discount up to 75% of that of on-demand instances, but

then you will not get dynamic pricing for the usage patterns.

Reserved instances come up with the following payment options:

• No up-front payment

• Partial up-front payment

• All up-front payment

Chapter 2 aWS priCing and CoSt ManageMent

37

As the names suggest, no up-front payment means you don’t pay any amount at the

start. Partial up-front payment means you may pay some amount at the start, while all

up-front payment means that you pay the complete amount at the start. For the no up-

front scenario, the customers are charged at the discounted hourly rate. But, since AWS

is not sure whether customers are going to pay, it requires a contractual agreement with

them, and it also looks at the past relationship of those customers with AWS. For partial

up-front payment, the same thing is followed. The remaining amount is charged at a

discounted hourly rate.

Reserved instances come under two offerings.

• Standard reserved instances

• Convertible reserved instances

With standard reserved instances, the instances can be increased in size or

availability zones can be modified, or they can also be sold in the reserved instances

marketplace. Convertible reserved instances, on the other hand, can be exchanged

with other convertible instances that may have new attributes such as instance family,

instance type, platform, etc. They cannot be sold in the marketplace.

There is also a limit on the number of reserved instances that can be purchased in

a month. For a particular region, 20 regional instances and 20 zonal instances can be

purchased in a month. A regional instance is an instance that is available for a complete

region, while a zonal instance is an instance available to a specific availability zone.

 Using Spot Instances
As already discussed in the previous chapter, spot instances are those instances that are

running idle and currently AWS is not generating any money from it. These instances can

be taken by companies and can achieve discounts up to 90 percent of the on-demand

instances. Remember, as these are the instances that are currently idle, that doesn’t

mean they will always be idle. This means that whenever the use of them goes up again,

EC2 gives you a two-minute notice and then interrupts the session of your spot instance.

Obviously, every great thing has disadvantages. Another way by which your spot instance

can be terminated is when the cost incurred by you increases the threshold defined.

Chapter 2 aWS priCing and CoSt ManageMent

38

We must know about the scenarios in which one must use the spot instances.

Amazon recommends using the spot instances for the following scenarios:

• Making fault-tolerant and flexible applications

• Web servers

• API back ends

• CI/CD pipeline (DevOps)

• Hadoop data processing

• Image rendering

• Stateless web services

• Big data analytics

• Parallel computations

Once you have an on-demand instance, you can ask for spot instances to handle

some extra functionalities that your application has. For this you can request spot

instances by launching a wizard in EC2. You just need to tell the number of instances, the

type of instances, the availability zone, and the maximum price that you’re willing to pay

for the same.

 Using the Cost Explorer
Once you have decided on the type of service to use, whether reserved, on-demand, or

spot, you can analyze your usage and costs incurred using a tool provided by AWS called

the Cost Explorer. There are three types of reports that the Cost Explorer provides to help

you: reporting on the usage and cost incurred in the past 12 months, forecasting how

much you are going to spend in the next three months based on your past usage, and

getting recommendations as well on the type of instances to use.

If you open the Cost Explorer dashboard, it will come with a default view, as shown

in Figure 2-3.

Chapter 2 aWS priCing and CoSt ManageMent

39

Looking at the dashboard, we can say that a Cost Explorer consists of the following

components:

• Cost Explorer Costs

• Cost Explorer Trends

• Daily Unblended Costs

• Monthly Unblended Costs

• Net Unblended Costs

• Recent Cost Explorer Reports

• Amortized Costs

 Cost Explorer Costs

This component tells you about two metrics: current cost comparison with the previous

month’s cost and current forecast comparison with the actuals of the previous month.

The Cost Explorer shows the current cost of the month, until a certain date, as a chart

and then compares that with the cost incurred for the same period in the previous

month. It also forecasts for the remaining days of the month and then compares that

with how much cost was actually incurred in the previous month. This helps the user

decide on various factors, such as right-sizing, reducing the usage, etc.

Figure 2-3. AWS Cost Explorer dashboard

Chapter 2 aWS priCing and CoSt ManageMent

40

 Cost Explorer Trends

This section tells you about the cost trend of different services that a user is using. It

shows the top trends in the dashboard, but the user can drill down to look at the trends

of all the services and can further drill down to a particular service and look at the

different costs that have accounted for that trend.

 Daily Unblended Cost

First we must understand what an unblended cost is. It is the cost charged by AWS to

a user, at a particular moment of time. For example, if AWS charged me $100 for using

an EC2 instance at 10:45 a.m., then it will contribute to my Daily Unblended Cost.

Generally, it is considered the most important cost data, as it tells you about the cost at

the time it occurred. Obviously, you can use different filters to change the view of your

Cost Explorer’s unblended cost section. You can download the information as well in

the form of a CSV. One thing should be clear: unblended cost does not show the refund

amount that a user has received in a specific period.

 Monthly Unblended Cost

As the name suggests, instead of looking at the Daily Unblended Cost information, you

can change the granularity to a monthly level. This can give you an overall picture for

the months, and you can then proceed to look at the Daily Unblended Cost of a specific

month where you may find anomalies or you want to investigate further.

 Net Unblended Cost

Net cost considers the total cost that has been incurred to you, adjusts for the discounts

that have been given to you for the same period, and then presents you with the

information. If a user wants, they can actually include or exclude any other adjustments

such as refunds or credits given by AWS.

 Recent Cost Explorer Reports

This metric includes a list of all the reports that a user has accessed in the past, with

timestamps and links to each. You can just click the link and view the report again.

Chapter 2 aWS priCing and CoSt ManageMent

41

 Amortized Costs

Generally amortized cost is a kind of normalized cost information. For example, if we

consider a month, different service usage costs will be charged daily, and we can take

a look at that in the unblended cost section. But, if we have taken a reserved instance,

for example, then probably every first day of the month the entire month’s cost will be

charged. You will see a sudden spike there in the chart. Therefore, instead of dealing

with all these sorts of spikes, the information can be normalized and distributed, and

then it can give us a better overall picture. Figure 2-4 shows us the difference between

unblended cost and amortized cost perfectly.

Now that we have looked at how AWS Cost Explorer works, let’s explore how AWS
Trusted Advisor works as well.

 AWS Trusted Advisor
As we already know, AWS is the market leader when it comes to cloud computing
services. Since it has a lot of clients, it knows the usage pattern statistics of everyone.
Based on that, there are some best practices that AWS has come up with. They fall into
the following categories:

• Cost optimization

• Security

• Fault tolerance

• Performance

• Service limits

Figure 2-4. Difference between unblended and amortized costs

Chapter 2 aWS priCing and CoSt ManageMent

42

We have already seen some of the factors that influence cost optimization in this

chapter. We will be talking about the remaining factors in the next chapter. But, keeping

all these factors in mind, a user can be charged a minimum cost with the maximum

performance. AWS Trusted Advisor takes into consideration all these factors and

provides its own recommendations that would help users to attain the minimum cost

possible. How Trusted Advisor works is perfectly represented in Figure 2-5.

It works just like the antivirus protection software in your personal systems, which

provide you with the malware and other related insights. Here, instead of malware

insights, you get insights on the five categories that I specified earlier. The insights can

look like Figure 2-6.

Figure 2-6. AWS Trusted Advisor insights

Figure 2-5. AWS Trusted Advisor

Chapter 2 aWS priCing and CoSt ManageMent

43

A green check mark specifies things we are doing in the right way. Yellow

exclamation points are the warnings that need to be catered to or they may lead to

problems. Red exclamation points mean that the recommendations should be looked at

immediately as they are already affecting the cost, performance, security, etc.

The following are some of the benefits of using AWS Trusted Advisor:

• Trusted Advisor provides you with live notifications once you log

in to your AWS account. If you enable it, then it can also send you

periodic notifications via email.

• If you want, then you can make changes in the reports generated by

Trusted Advisor. You can include or exclude items.

• When the Trusted Advisor makes a recommendation, it provides a

link that takes you to the AWS Management Console where you can

sort out the warnings.

 Pricing of AWS Services
Now that we have looked at different ways of finding out the cost incurred for using

AWS services and how to optimize them, let’s look at where to find more information;

see Table 2-1.

Table 2-1. Cost Links

AWS Service AWS Pricing Page

on demand eC2 instances https://aws.amazon.com/ec2/pricing/on-demand/

Spot eC2 instances https://aws.amazon.com/ec2/spot/pricing/

reserved eC2 instances https://aws.amazon.com/ec2/pricing/reserved-

instances/pricing/

amazon S3 https://aws.amazon.com/s3/pricing/

amazon VpC https://aws.amazon.com/vpc/pricing/

amazon SageMaker https://aws.amazon.com/sagemaker/pricing/

amazon rdS https://aws.amazon.com/rds/pricing/

Chapter 2 aWS priCing and CoSt ManageMent

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/vpc/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/rds/pricing/

44

For information about other services, you can log in to the AWS Management

Console and then switch to the service of your choice and look at its pricing section.

 Conclusion
In this chapter, you learned how AWS charges for its services and how you can effectively

use some of the AWS services to minimize your costs. This chapter helps you decide

which services to opt for according to your budget and needs.

In the next chapter, you will be looking at the security aspects of AWS in detail. You

will also look at how AWS handles fault tolerance and how you can effectively make an

architecture that will serve the AWS services based on organizational hierarchy.

Chapter 2 aWS priCing and CoSt ManageMent

45
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_3

CHAPTER 3

Security in Amazon
Web Services
In this chapter, we will look at the security aspects of AWS. As you know, AWS has

hundreds of services serving thousands of customers, so a small compromise in its

security could lead to a huge loss for a particular company and therefore even for AWS

itself. That’s why AWS has some concrete security practices, along with dedicated

security services that take care of the entire umbrella of AWS features.

This chapter is dedicated to some of the most important parts of these services. By

the end of this chapter, you will understand the underlying security of AWS and will also

be able to implement different security features in the products you are using.

 The SSR Model of AWS
When it comes to security, AWS follows the shared security responsibility (SSR) model.

This model is simple: the responsibility should be shared between the customer and

AWS. Specifically, AWS is responsible for the security of the entire infrastructure that it

lends to its customers. The customer, on the other hand, is responsible for whatever it

keeps in that infrastructure. Figure 3-1 shows the SSR model of AWS.

https://doi.org/10.1007/978-1-4842-6222-1_3#DOI

46

The following are some of the responsibilities of AWS:

• AWS takes care of the entire infrastructure, which includes the

hardware, software, networking, and other facilities that AWS uses to

run its services.

• AWS provides reports about its operations regularly by organizing

third-party audits. Its compliances, security standards, and

regulations are all verified.

• For most of the services, basic security tasks are also done by AWS,

such as installing guest operating systems, patching databases,

configuring firewalls, and doing disaster recovery.

The following are some of the responsibilities of customers and users:

• After the services have been booked and the basic security has been

taken care of by AWS, it is the customer's responsibility to perform

all the necessary security configuration and management tasks. This

may include updating the OS, installing security patches, configuring

the firewall, etc.

Figure 3-1. Shared security model of AWS

Chapter 3 SeCurity in amazon Web ServiCeS

47

• The customer must set up user accounts using the Amazon Identity

and Access Management (IAM) service. This will allow the customer

to give each of its users different credentials and hence access to

different services.

• The customer must set up multifactor authentication for each

account.

We will discuss Amazon IAM and multifactor authentication in more depth later in

this chapter.

AWS provides high-level security to its customers, which can be grouped into these

categories:

• Compliance requirements

• Physical and environmental security

• Business continuity management

• Network security

 Compliance
AWS’s infrastructure is based on several IT security standards, including the following:

• SOC 1/SSAE 16/ISAE 3402 (formerly SAS 70)

• SOC 2

• SOC 3

• FISMA, DIACAP, and FedRAMP

• DOD CSM Levels 1–5

• PCI DSS Level 1

• ISO 9001/ISO 27001/ISO 27017/ISO 27018

In addition, AWS follows some industry-specific standards.

• Criminal Justice Information Services (CJIS)

• Cloud Security Alliance (CSA)

• Family Educational Rights and Privacy Act (FERPA)

Chapter 3 SeCurity in amazon Web ServiCeS

48

• Health Insurance Portability and Accountability Act (HIPAA)

• Motion Picture Association of America (MPAA)

 Physical and Environmental Security
For the physical and environment safety of the infrastructure, AWS follows these

standards:

• Only authorized people are allowed inside the premises of AWS data

centers, even if they are employees of AWS or Amazon.

• Automatic fire detection sensors and suppressants are installed in the

facility.

• Not only do AWS data centers have a consistent electrical power

supply, but they also have a powerful UPS so that in case of a power

failure, the operations never stop.

• There are temperature control devices installed and continuously

monitored by personnel so that the optimal temperature is

maintained inside the data center.

• AWS decommissions any hardware following strict norms so that the

data is never compromised.

 Business Continuity Management
Lots of companies are moving to cloud platforms, and they do not their business

operations interrupted because of AWS. When companies move their entire business

infrastructure to AWS, all of their data resides there. Even a few hours of interruption

can cause huge losses to companies. Therefore, AWS needs to be stringent in devising

its infrastructure plan so that this does not happen. To ensure business continuity

management, AWS has taken a lot of measures.

• All the data centers of AWS are live 24/7/365. So, if a particular data

center fails, then the first thing AWS does is to move the data traffic

away from the affected area.

• Using AWS, customers can put their data into multiple geographic

regions, and inside each region the data can be put into multiple

Chapter 3 SeCurity in amazon Web ServiCeS

49

availability zones. The availability zones are made in such a way that

they are independent from all the other availability zones in the same

region. So, if one of the areas where the availability zone is present

has a chance of being affected by floods in a specific season, for

example, then all the remaining availability zones in the same region

are put in locations that will never be affected by the same flood.

• Each data center is backed up by UPS and on-site backup generation

facilities. Also, to further improve the security, power from different

gridlines is provided inside the facility so that if one fails, the other

remains effective.

 Network Security
As we saw in the previous section, AWS has made its data centers resilient to calamities.

But, a threat bigger than that is intrusion on the network. As technology advances, so

do the skills of hackers. So, how does AWS tackle its network security? Well, let’s explore

some of the measures that AWS has taken to make its network secure.

• There is a firewall that secures your incoming and outgoing traffic.

This is the most basic yet most powerful first step for network

security.

• AWS has access control lists (ACLs) that contain a set of policies that

decides who can access what services of AWS and what information

goes to which service. These ACLs are regularly updated, and they

are automatically pushed using the AWS tool called ACLManage.

• There can be a lot of entry points from where the information can

flow into AWS servers, and the same is true with the exit points.

Therefore, in such a scenario, managing those entry and exit points

can become really difficult. Therefore, to deal with this issue, AWS

has secure access points. Using them, AWS has only a limited number

of access points through which comprehensive monitoring of all

incoming and outgoing transmission takes place. These access points

are called API endpoints, and only HTTPS access is allowed to have a

secure connection.

Chapter 3 SeCurity in amazon Web ServiCeS

50

• AWS provides the option of additional security to its customers

through Amazon VPC. We discussed VPC in Chapter 1.

• For AWS there are two types of clients. One is its regular customers,

while the other is its own corporate network. AWS doesn’t give any

special privileges to its corporate network while accessing the AWS

services. For AWS employees, if they want to access any AWS service

first, they have to raise a ticket, and if it gets approved, then they can

get access. Also, for security purposes, everything that the employee

does is logged securely.

• There are many automated monitoring tools that AWS has so that

it can monitor the server and network usage, scanning the ports

for inbound and outbound transmission, detecting unauthorized

intrusion attempts, etc.

 AWS Account Security Features
In the previous sections, we saw how AWS has made its infrastructure secure. In this

section, we will look at how AWS makes its customers’ AWS accounts secure. The first

thing that AWS does is to secure every account with credentials. There are different ways

in which AWS uses credentials for authentication.

• Passwords

• Cryptographic keys

• Digital signatures

• Certificates

• Multifactor authentication

Once you have created the credentials for your account, it is easy to download

the report of credentials from the Security Credentials page. The information that is

included in the report tell us about whether the account uses a password, whether the

password is retirable, when was the password last changed, when the keys were last

rotated, and whether multifactor authentication is enabled.

Chapter 3 SeCurity in amazon Web ServiCeS

51

In AWS we can create multiple access keys and define multiple certificates as well.

This is done to rotate them continuously for security reasons. When they are being

rotated and we want business continuity to not be affected, we can use concurrent keys

and certificates. We can use AWS IAM to rotate the keys. We will learn about the keys and

certificates in more detail in the next section.

 Passwords for Authentication
If you want to access AWS services, passwords are really important. They grant you the

first level of access inside AWS. Passwords are created at the time of account creation and

can be changed any time through the Security Credentials page. AWS allows passwords

of up to 128 characters, and they must have special character combinations to be strong

enough.

If your organization’s infrastructure is entirely hosted on AWS, you can create

password policies so that new passwords must follow your security policy. This assures

that the strongest of passwords are created.

 Multifactor Authentication
This is an additional level of security that a customer may opt for. Multifactor

authentication requires that after the customer has successfully entered the username

and password, the user will have to provide a specific and unique six-digit code for

authentication. If that is successful, then the person will be allowed to enter the account.

This six-digit code is received by the customer to one of its authenticated devices. It can

be a smartphone, email, or phone number. As the person logs in, a code is received that

should be entered, and then successful login takes place.

 Access Keys for API Authentication
An API is a feature where a request is sent to a piece of code encapsulated behind the

API and the person receives the output. Now, the coding logic inside an API may be

allowing the user to access sensitive information. So, the request that is sent to these

APIs must be authenticated as well, which means only the right user must get the access

to the API. This is done through a digital signature. This digital signature is generated

by passing the request text and secret access key to a hash function responsible for the

Chapter 3 SeCurity in amazon Web ServiCeS

52

cryptography. This hash function encrypts the message and then sends it to the API.

This in turn gets decrypted at the API end; the secret key is checked, and then the entry

is provided.

Currently, digital signatures use a protocol named HMAC-SHA256 that is in its fourth

version. One more level of security in digital signature verification is that a timestamp

is added to the request. If the timestamps of the digital signature being generated and

being received by the API are different by greater than 15 minutes, the request is denied.

 X.509 Certificates
When we want two or more web services to talk to each other, we use SOAP-based

requests. To make these sorts of requests secure, we use X.509 certificates. These

certificates consist of three parts.

• A public key

• A private key

• Additional metadata

The first step is to generate the digital signature by using the process that we looked

at in the previous section. Now, we use this digital signature and the certificate to send

the request. First, AWS tries to verify that the authenticated user is sending the request

by decrypting the digital signature and verifying it. After that, the certificate that has

been sent is matched by AWS with the certificate uploaded by the authenticated user in

their own AWS account. If everything is green, the request is sent forward; otherwise, it’s

denied.

 AWS Identity and Access Management
Just like we have the Amazon Management Console to access all the AWS services,

similarly for all the security requirements we have AWS Identity and Access

Management. All authentication or authorization can be managed from IAM. We can

make users, define roles, give permissions, assign policies, and do a lot of other things,

all from IAM. Hence, this is a service that everyone who is using AWS, either for machine

learning or for web development, must know about.

Chapter 3 SeCurity in amazon Web ServiCeS

53

The first thing that a person looking to use AWS services has to do is to create a root

user account. This account can be accessed through a username and password, and it

gives the users indefinite access to all the services that it has been registered to. But, AWS

discourages us from always logging in using the root user account as it can compromise

the security of the organization. That’s why, instead of using the root user, we can

create different users using the IAM service. These are called IAM users. The admin can

give permissions to all these users, ask them for their own passwords, assign different

policies, and hence make the entire infrastructure simple yet secure.

To understand this in a much better way, let’s look at an example. Suppose there

is an organization with 5,000 employees. There will be a board of directors, CEO, CTO,

presidents, managers, architects, engineers, and other employees. First, we cannot give

everyone root access, which should not require any explanation. So, the organization

can create IAM users. But, the permissions given to the top-level management will be

different from the permissions to the employees lower in the hierarchy. Even in the top

management, maybe the people on the board of directors have only read-only access

to specific services that have dashboards or visualization supports (for example Splunk

Dashboard), but a CTO has a kind of root access. Similarly, the engineers will have

access to the services that they have been hired for. Machine learning engineers may

have access to SageMaker, data engineers may have access to EMR or DynamoDB, and

so on. Hence, we can conclude with this example that different users require different

permissions, and all of this can be done using AWS IAM.

Once an IAM user is defined, it will have its own password. Once the person logs in,

the user will see only those services they have permission to use. Other services will ask

for credentials or deny the access. Note that an IAM user may not be an actual person.

It could be a software service. For example, say a company has made a website hosted

on a different platform, but uses certain AWS services like S3 or DynamoDB. Hence,

the website should continuously be talking to these services. To authenticate that the

right software talks to the AWS services, an IAM user is made for these services, and the

website accesses the respective services with its own credentials.

But, organizations do already have their own infrastructure, and each employee

from any hierarchy of management has an email ID and password. When the employee

has to use AWS, they will have a new ID and password. That means the person will have

to remember and secure two accounts: the corporate account and the AWS account.

Wouldn’t it be awesome if AWS provided a way so that an employee just needs to log in

Chapter 3 SeCurity in amazon Web ServiCeS

54

to the corporate account and automatically get logged in to the AWS account? AWS does

have a solution for this called federated users.

 Federation of Users in AWS
If an employee has an account in the corporate network and a corporation has an

account in the AWS network, then once the employee logs in to the corporate network,

the user identity can be federated by the organization to the AWS network. This way, it

eases the login hassles for corporate employees inside AWS. See Figure 3-2.

The following are some features of federation:

• Corporate networks use single sign-on (SSO) that makes the

federation possible. After this, the automated login happens, and the

employee reaches the Amazon Management Console without having

to log in again.

• Even if a person has accounts in platforms such as Gmail, Facebook,

Amazon, etc., they can be used for SSO.

Figure 3-2. Federation of users

Chapter 3 SeCurity in amazon Web ServiCeS

55

 How Access Management Is Done in AWS
In common terminology, access management can also be called authorization. A person

or a service that logs in to the AWS account is called a principal entity. The principal

entity is authenticated using IAM (it is used to authenticate an IAM role or a user).

Once the authentication is done, the policies attached to the particular user or role are

checked. These policies help determine what permissions are given to the principal

entity. They are created and attached to different IAM identities such as users, roles, or

groups. Now, if the principal entity sends a request for a service but the permission for

the usage of that service is not defined in the policies, then the access will be denied.

This is how access management is done in AWS.

Policies can be applied based on IAM roles, resources, or access control lists. An

example of a role is a data engineer. All the IAM users with the role of data engineer will

be assigned the same policy. This means everyone in that role will be able to access the

same resources with the same level of permissions. Policies that are applied on resources

put restrictions on the usage of a specific resource. For example, we can create a policy

that gives users the permission to read a DynamoDB table but not create one. ACLs are

used when we want to apply cross-platform policies.

An example of a role-based policy is given here. We have defined a JSON file that

shows the policy defined on DynamoDB.

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Action": "dynamodb:*",

 "Resource": "arn:aws:dynamodb:us-east-2:123456789012:table/Books"

 }

}

This gives the user permission to use the Books table present in DynamoDB. This

makes it clear that to assign policies, JSON files must be created, and these files must be

attached to respective entities. Policies not only can be attached to specific entities, but

to a group of entities as well. These are called IAM groups; see Figure 3-3.

Chapter 3 SeCurity in amazon Web ServiCeS

56

Figure 3-3 defines multiple IAM users and groups them into three IAM groups:

Admins, Developers, and Test. Now, the policies can be applied on the entire group,

which gets automatically applied to its members. But, one thing to notice here is that if

a specific member has not been given permission for a service, then even though the

group has access to that service, the member will still not have permission to access that

service.

Where can we find a summary of all the policies defined? There are three tables in

the IAM console that give us detailed information about policies. These tables are as

follows:

• Policy summary

• Service summary

• Action summary

When we open the policy summary, we will see a list of services on which the

policies have been defined. We can click any of the services to go to that particular

service’s summary table. The summary table tells all the actions that can be performed

on that particular service and the permissions attached to those actions. You can

click any of the actions, and then you can come to the action summary that gives the

permissions that have been granted to that particular action. Figure 3-4 sums these

tables up for you.

Figure 3-3. IAM groups

Chapter 3 SeCurity in amazon Web ServiCeS

57

Policies can be divided into two kinds: identity- and resource-based policies. As

the names suggest, when the policies are attached to IAM roles, users, or groups, they

are called identity-based policies, whereas when we attach them to resources such as S3

buckets or DynamoDB, they are called resource-based policies.

 Attribute-Based Access Control
Before talking about attribute-based access control (ABAC), we must understand AWS

tags. These are some attributes that are attached to IAM users, roles, groups, or even

AWS resources. These tags are useful when we have a big organization and we want to

make policies for the employees. How are tags useful? Let’s look at an example.

A company making machine learning products has shifted its entire architecture

to AWS. Now it is making models on Amazon SageMaker, doing data engineering

using Amazon EMR, making websites, APIs, and doing database management using

DynamoDB and CloudFormation, and for security using various other AWS services

such as CloudWatch, TrustedAdvisor, etc. Now, let’s also assume that the company

has about 5,000 employees. Providing IAM roles and then attaching policies to every

employee would be a tedious task. So, what do we do? That’s when tags and ABAC

come into the picture.

Figure 3-4. Policy, service, and action summaries

Chapter 3 SeCurity in amazon Web ServiCeS

58

Imagine two machine learning engineers; one only uses SageMaker and S3 buckets,

while the other one uses EMR in addition to the services that the other engineer uses.

The organization can create two tags for different usages. Suppose one tag is called

basic-machine-learning, and the other one is called advanced-machine-learning. All the

machine learning engineers and junior data scientists can be given the first tag while

defining their IAM role. Senior data scientists and solution architects can be given the

second tag. Now when a junior data scientist tries to access EMR, the tag is checked, and

its respective policies are looked at. Immediately the permission will be denied, as the

policies are not enough to provide this access. But if a solution architect tries to access

the same tag which junior data scientist accessed, he will be granted the access as the

associated policies with the tag give the appropriate permission to the person. These

tags are also called as attributes, and hence this process is called attribute-based access

control (ABAC).

How can we say that the ABAC process is better than the traditional process? Let’s

look at some of the differences between them. The traditional process is also called

role- based access control (RBAC).

• The first difference is that in RBAC every time a new resource is

added, the policies attached to a role or user must be updated—not

only for one role, but for all the roles. Instead, in ABAC, only the tag

needs to be updated.

• Because of these tags, ABAC has much fewer policies compared to

RBAC and hence is easier to manage.

In the second part of this book, we will look at the entire process of creating the

root credentials and then defining roles, users, groups, etc., using IAM. In this section,

we have covered the theoretical aspects of it. Practically we will be looking at the

applications in the next section.

There are some other services that AWS provides to increase the security of the

applications.

• AWS WAF

• AWS Shield

• AWS Firewall Manager

Let’s discuss each service one by one.

Chapter 3 SeCurity in amazon Web ServiCeS

59

 AWS Web Application Firewall
All the HTTP or HTTPS requests that are sent to specific AWS services like Amazon API

Gateway, Amazon CloudFront, or Application Load Balancer are monitored by AWS Web

Application Firewall (WAF). WAF allows you to control the access to the content. It does

this based on certain conditions and rules. Some of these rules are listed here:

• Allow every HTTP/HTTPS request except the ones that are explicitly

specified.

• Block every HTTP/HTTPS request except the ones that are explicitly

specified.

• Count the requests and match the properties defined in the requests

with the properties mentioned in WAF. If the count of the properties

that are the same matches, then allow the requests; otherwise, block

them.

The conditions that are matched to allow or block the requests follow some

characteristics. The following are some of those characteristics:

• Monitor the IP address to see where the request originated.

• Look at the country from where the request originated.

• Analyze the values present in the request headers.

• Regular expressions can be made that search for specific patterns in

the string and then make the decision of acceptance or rejection.

• Check whether SQL code is present, which can be malicious.

• Check whether scripts are present, which can be malicious.

WAF can also be used to protect the applications that are hosted inside ECR. ECR

allows you to efficiently manage Docker containers inside clusters. To define the rules

and conditions in WAF, the following features can be used:

• Web ACLs

• Rules

• Rule groups

Chapter 3 SeCurity in amazon Web ServiCeS

60

First, an ACL can be created that monitors the access to specific AWS resources.

Then rules can be assigned to these ACLs that will act as a firewall and monitor the

requests. Each rule is a kind of a statement with a condition, which is termed the

inspection criteria. If the condition is met, then either the requests are allowed or they

are blocked. We can also use rule groups, which are groups of statements containing

conditions that can be attached to your ACL and hence indirectly to AWS resources.

 AWS Shield
Before looking at the AWS Shield service, we must first understand a cyberattack called a

distributed denial of service (DDoS), as AWS Shield helps to mitigate it.

Every web service or server has some bandwidth to serve as much of its current

user base as possible, while handling more traffic during peak times. To conduct a

DDoS attack, cybercriminals flood the service or server with so much traffic that either

it becomes difficult for the users to operate or the entire service or server crashes. If

the traffic is generated from a single system, the attack will not be that effective. That’s

why the traffic is generated from multiple systems in parallel, and the target is attacked.

Figure 3-5 shows a visual representation of a DDoS attack.

AWS WAF can be used to block these sorts of attacks, but for advanced security we

can also use AWS Shield Standard and AWS Shield Advanced. By default all the services

that we use in AWS come with AWS Standard Shield, at no extra cost. To use AWS

Advanced Shield, users need to pay a little extra.

There are two specific layers in a network that get compromised with cyberattacks:

the network and transport layers. AWS Standard Shield monitors both these layers

Figure 3-5. DDoS attack

Chapter 3 SeCurity in amazon Web ServiCeS

61

and provides protection. If AWS Standard Shield is used with Amazon CloudFront or

Route53, then it provides some additional benefits as well.

For additional protection, for example, if you want to protect applications running

in EC2 or Elastic Load Balancer, a user can opt for AWS Advanced Shield. Advanced

Shield provides security not only for the network and transport layers but also for the

application layer. Figure 3-6 shows the different layers inside a network, using the Open

Source Interconnection (OSI) model of networking.

 AWS Firewall Manager
To ensure AWS WAF and AWS Shield operate smoothly and efficiently, AWS Firewall

Manager can be used. AWS Firewall Manager is responsible for automatically applying

all the rules defined on the resources and services. This holds true even when new

resources are added in AWS. Because of this automatic capability, AWS Firewall Manager

provides lots of advantages.

• If a group of resources is following a specific tag, AWS Firewall

Manager can automatically apply some custom rules.

Figure 3-6. OSI seven-layer model

Chapter 3 SeCurity in amazon Web ServiCeS

62

• AWS Firewall Manager allows you to create and manage your own

rules or the rules bought from the marketplace.

• It is generally beneficial to use AWS Firewall Manager if you have

many users in an organization.

 Conclusion
In this chapter, you learned about various security aspects of AWS. This finishes our first

part of this book, where we covered all the basics related to AWS. Now, we will move

on to the second part of the book where we will look at how to make machine learning

models using AWS. In the next chapter, we will look at the concepts from this chapter

more practically and become experts not only in making the machine learning models

but in using various other services such as S3 buckets, DynamoDB, the security tools

of AWS, etc. You will also learn how to make the models efficient and how they can be

automated.

Chapter 3 SeCurity in amazon Web ServiCeS

PART II

Machine Learning in AWS

65
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_4

CHAPTER 4

Introduction to Machine
Learning
This chapter covers two main topics. First, you’ll be introduced to machine learning and

its components, and then, you’ll look at the different services that AWS provides to help

you make machine learning models.

 Introduction to Machine Learning and Artificial
Intelligence
Machine learning and artificial intelligence are two terms that are used a lot in the

industry nowadays. Most of the time people think they are synonyms of each other with

no major differences. However, they are different. Artificial intelligence is the field of

computer science and mathematics that tries to mimic human-like behavior and make

decisions similar to humans. Machine learning can be considered a subset of artificial

intelligence where we make a machine learn through the historical data provided and

then use the learned behavior to predict an outcome if we get similar information in

the future. So, machine learning is all about prediction and recommendations, while

anything where we enable a machine to think like a human is artificial intelligence.

For example, we converse with Alexa just like it is a human. The Alpha Zero robot

can defeat chess champions as if it was a super-intelligent human being. Cars can now

drive automatically without the help of humans, making their own decisions live on

the road. All these are the examples of artificial intelligence agents, because they are

behaving just like humans.

When we try to forecast sales for the next six months, predict whether a stock is going

to move upward or downward in the coming days, or guess whether a machine is able

to understand the context of a paragraph and classify whether it is talking negatively or

https://doi.org/10.1007/978-1-4842-6222-1_4#DOI

66

positively about certain things, we are talking about machine learning. Here we have

trained the models by giving past data, and then the machine predicts the outcome of

the future incoming data.

Why exactly do we want machines to learn and assist us in our day-to-day lives? The

following are some of the compelling reasons:

• We as humans make decisions by learning from our surroundings.

But we are limited to this exposure to information. Also, the chances

of making mistakes as a human for new scenarios are high. That’s

why we have the saying, “After all, I am only human.” Machines, on

the other hand, can be given as much information as possible. They

can be given as much complex information as possible. Hence, after

getting trained, they can make their own decisions based on the

surroundings. Of course, we cannot have a machine make decisions

independently, but they can assist humans in decision-making.

• In the past, people were making systems that were rule-based. This

means if a certain scenario occurs, then do this; otherwise, do that.

But, today, data is becoming complex, and all four Vs of data—

volume, veracity, velocity, and variety—are at their peak. Therefore,

making rule-based systems is next to impossible. Machine learning

systems help us to understand this complex unstructured data and

make decisions.

Machine learning solves these problems with three types of learning.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

 Supervised Learning
Supervised learning is a branch of machine learning where we know exactly what has

happened in the past, and then we try to predict if the same result will occur if some

mix of the situation that happened in the past occurs again. For example, for the past

six years we have collected the rain and snow data for some villages. Specifically, we

collected different information about humidity, pressure, temperature, etc., whenever it

Chapter 4 IntroduCtIon to MaChIne LearnIng

67

rained or snowed. We trained a machine learning model based on that data. Now, if we

know the humidity, pressure, and temperature information for the upcoming days, can

we predict that it’s going to rain or snow? This is supervised learning.

In supervised learning terminology, the factors of humidity, pressure, temperature,

etc., are called the independent variables. The factor that we are trying to predict, that is,

whether it is going to rain or snow, is called the dependent variable.

Figure 4-1 shows a supervised learning framework. You can see that there is a

supervisor who checks whether the predicted output is the same as the expected output.

Based on that, an adjustment is made, and this adjustment is different for different

machine learning algorithms. Finally, we get our predicted output.

 Unsupervised Learning
In this branch of machine learning, we don’t have a guiding variable, which means that

the dependent variable is not present. Hence, the main aim of unsupervised learning is

to first understand the patterns present inside the data and then put the data that follows

a similar pattern in the same group. Therefore, we can have clusters with similar features,

or we can have similar products that are bought together, etc. Let’s understand this with

the help of an example.

Figure 4-1. Supervised learning

Chapter 4 IntroduCtIon to MaChIne LearnIng

68

When we go to a retail shop, such as Ikea, we can see a lot of products. We have gone

there with the intention of buying a specific item. We also buy some other items. At the

time of billing, the cashier will ask us for our mobile number through which they can

identify unique customers. Now, since we liked the product, we went to the shop again

and bought other necessary things. This shop has become our favorite one, and all our

shopping is done there for three years. Using unsupervised machine learning, now the

shop can utilize our purchase history and can start recommending different products.

For example, if we recently bought curtains, it may suggest some other decorative items.

Figure 4-2 shows the unsupervised learning framework. In this diagram you can see

that in the Interpretation section a hidden pattern of similarity is found, and based on

that, similar items are put in the same place, as we can see in the output.

You can find this sort of example not only in physical shops but also on e-commerce

websites.

 Reinforcement Learning
Reinforcement learning is a unique domain of machine learning where a machine tries

to learn by itself by analyzing different scenarios. This is done by giving the machine

Figure 4-2. Unsupervised learning

Chapter 4 IntroduCtIon to MaChIne LearnIng

69

rewards for every successful task it does and giving a penalty if it fails to do a task. The

machine has the aim of getting as many rewards as possible. With this model, machines

learn to operate in different scenarios automatically. Let’s look at an example.

A robot wants to learn to walk. First the environment provided to it is a plain road.

For every successful step, maybe 50 reward points are given, but for every fall, 100

penalty points are taken. The robot takes the first step and falls, so it receives the penalty.

It does this multiple times and keeps on falling. Finally, it takes a step and doesn’t fall.

Hence, it receives reward points. This time, the robot knows what it has done to get its

first reward. Now, it will try not to fall every time so that it can get the maximum number

of rewards. Once it has trained itself to learn to walk, the environment can be changed,

and multiple obstacles can be introduced. Again, the robot will start exploring different

options to get the maximum rewards. This is how reinforcement learning takes place.

In reinforcement learning, there is a combination of two approaches: exploration

and exploitation. Exploration means that the robot should look at multiple options in

the environment so that it can learn every difficulty present. Exploitation means that

whatever the robot does, it has to keep getting the maximum number of reward points.

The robot explores and maximizes the reward points, and hence it learns how to operate

in tough situations. Reinforcement learning is out of the scope of this book, but we will

be covering other aspects of machine learning in detail in this book.

Figure 4-3 shows what a reinforcement learning process looks like.

Figure 4-3. Reinforcement learning

Chapter 4 IntroduCtIon to MaChIne LearnIng

70

There is one more type of machine learning that requires a dedicated discussion:

deep learning.

 Deep Learning
What do we humans exactly think? How do we make decisions? Obviously, it is the brain

that is responsible, but it is not entirely responsible for making decisions. The brain will

only perform when some information reaches it, but to make this information reach the

brain, there are some other very small yet important components responsible. These are

called neurons. They are the first ones that receive the information, and then through a

series of neurons, this information is transferred to the brain, which in return makes a

decision. This chain of neurons is called a neural network or biological neural network.

Figure 4-4 shows a simple biological neuron and its components.

Mathematical and computer experts researched whether it is possible to mimic this

human behavior of receiving information and then making decisions. This research led

to the field artificial neural networks, which constitutes a major part of deep learning.

These neural networks perform in a similar way to how a biological neural network

performs. They receive the information, and then through a series of mathematical

equations, like forward and backward propagation, gradient descent, activation

functions, etc., they make the decisions. We will be discussing this later in the book.

Figure 4-5 shows an artificial neural network consisting of multiple artificial neurons

present inside hidden layers.

Figure 4-4. Biological neuron

Chapter 4 IntroduCtIon to MaChIne LearnIng

71

Now that we have seen a general introduction to machine learning, let’s explore the

different services of AWS that help users to build machine learning models.

 Machine Learning in AWS
We will be discussing the following AWS services in this section:

• Amazon SageMaker

• Amazon Comprehend

• Amazon Polly

• Amazon Rekognition

• Amazon Ground Truth

• Amazon Textract

• Amazon Translate

• Amazon Transcribe

• Amazon Lex

Figure 4-5. Artificial neural networks

Chapter 4 IntroduCtIon to MaChIne LearnIng

72

Let’s start by exploring the first, and the most important service, Amazon SageMaker.

 Amazon SageMaker
Amazon SageMaker is one of the most important services used across industries.

Therefore, it is the base of all the chapters in this book, and understanding the service is

imperative, so I will be giving a detailed explanation of it compared to the other machine

learning services of Amazon.

Machine learning is not about only building a model; in fact, in my experience,

a minimum amount of time is given to model building as compared to feature

engineering, data preparation, or model serving. SageMaker makes the life of a data

scientist much easier by providing services that you can use to prepare data, build

models, test them, and then deploy them into production environments. It provides

most of the common algorithms for building your machine learning models, and if you

want to make any custom model not supported by SageMaker, then it has a facility to do

so by using a bring-your-own container service. It also provides a distributed training

option that can make your models run faster, as compared to a single-node run.

Amazon SageMaker comes with following features:

• SageMaker Studio

This is an application where you can build, train, validate, process,

and deploy the models. It’s a single place to do everything.

• SageMaker Ground Truth

This is used to create a labeled dataset.

• Studio Notebooks

This is one of the latest features of SageMaker that includes the

single sign-on feature, faster startup time, and one-click file

sharing.

• Preprocessing

This is used for analyzing and exploring data. It does feature

engineering and transformation of data, as well as all the other

things required to prepare the data for machine learning.

Chapter 4 IntroduCtIon to MaChIne LearnIng

73

• Debugger

This has different debugging usages, such as tracking the

hyperparameters whose values keep changing during the model

training. It can even alert if something abnormal happens with the

parameters or with the data.

• Auto-pilot

Without writing a single line of code, if you want SageMaker to

take care of your model building, either regression or classification

problems, auto-pilot is the feature to use. It is generally for users

who have less coding experience.

• Reinforcement Learning

This provides an interface to run a reinforcement learning

algorithm, which runs on a reward and penalty architecture.

• Batch Transform

After building the model, if you want to get predictions on a subset

of data or you want to preprocess a subset of data, you can use the

batch transform feature of SageMaker.

• Model Monitor

This is used to check whether the model quality is persistent or

deviates from the standard model.

Chapter 4 IntroduCtIon to MaChIne LearnIng

74

 Understanding How SageMaker Works
Figure 4-6 shows the stepwise process of how SageMaker works.

This diagram is valid not only for SageMaker, but for any machine learning models

that we make. They all undergo the same process. These are the main steps that the

process follows:

 1. Fetch data

This is the first step for building any machine learning model.

Once we have decided on the problem statement that we have to

solve, we have to accumulate all the data related to it. The data

can be in the format of a database table, Excel sheets, text files,

Word documents, images, etc. Once we know about all the data

sources, these files need to be put inside a single repository so that

the model knows about the location.

 2. Clean the data

Our data can have null values, outliers, misspelled words,

corrupted files, etc. All these things need to be explored and

sorted out before the data is being given to the model. There are a

lot of statistical methods as well that are used for data cleaning,

Figure 4-6. SageMaker process

Chapter 4 IntroduCtIon to MaChIne LearnIng

75

 3. Prepare data

Once we have made our data clean, it is time to prepare our data.

This includes all the transformations done on the data, scaling

and normalization processes, combination of features or splitting

of features, etc. After all these things are done, it has to be stored at

a specific place so that the model knows the reference to the clean

and prepared data files.

The first three steps that we have seen, all these things can be

done inside the SageMaker Jupyter Notebook, and after that, the

cleaned data can be stored inside an S3 bucket.

 4. Train the model

Once the data is prepared, we need to train the model. The first

thing is to select the model that needs to be applied. The models

can be chosen from the list of built-in algorithms that SageMaker

provides, or custom models can also be used by making your own

containers and uploading them to AWS or buying them from the

AWS marketplace.

Also, for training the model, we must decide on what kind of

computation is required. Selection can be made based on the

RAM size or number of GPU counts, etc. It is decided based on

how big the dataset is or how complex the model is.

 5. Evaluate the trained model

Once the model is successfully trained on the dataset, it needs to

be evaluated before deploying it for production. For this, multiple

metrics can be used. For regression models, RMSE scores can be

used, while for classification models precision and recall can be

used. Once the metric crosses the decided threshold, only then

can it be moved toward production.

Chapter 4 IntroduCtIon to MaChIne LearnIng

76

 6. Deploy the model to production

It is easy to deploy the model in SageMaker. Generally, in normal

scenarios one has to make APIs and then serve the model through

an endpoint. For all this, coding requirements are necessary.

But, in SageMaker, with minimal coding efforts the model can be

converted into an API endpoint, and after that live or batch model

inference can be started. Also, to deploy the model, another

computational instance can be chosen, which generally takes less

RAM or GPUs as compared to the training model instance.

 7. Monitor the model

Once the model starts serving in production, we can keep

monitoring the model’s performance. We can measure for which

data points the model is performing well, as well as the areas it is

not. This process is called knowing the ground truth.

 8. Repeat the process when more data comes (retraining)

Finally, as and when new data comes, the model can be retrained,

and all the previous steps can be repeated. All this can be done

with zero downtime. This means that the old model keeps serving

until the new model is put into production.

 Preprocessing of Data in SageMaker
As we talked about in the previous section, before we give the data to any model, we first

clean it and preprocess it. We can do this in SageMaker in multiple ways.

• Using SageMaker Jupyter Notebook to write Python scripts for

processing data

• Using a SageMaker batch transform script to process data before

getting the inference

• Using Script Processor to write processing script on the data

Using one of these approaches, the data can be processed, and then any of the

SageMaker training models can be called to do the training on this processed data. We

can use popular Python libraries such as Scikit-Learn or TensorFlow for this purpose. If

Chapter 4 IntroduCtIon to MaChIne LearnIng

77

your script involves some other libraries, then you can upload your own script inside a

Docker container. You’ll learn more about this in later chapters.

 Model Training in SageMaker
Figure 4-7 shows how exactly model training happens as well as how the model

deployment happens. In this section, we will talk about the training part, while in the

next section we will cover the deployment part.

Figure 4-7. SageMaker training and deployment process

Chapter 4 IntroduCtIon to MaChIne LearnIng

78

To understand how model training in SageMaker works, we will look at the bottom

part of the image. We can see that there are five sections contributing to it.

• S3 bucket for training data

• Helper code

• Training code

• Training code image

• S3 bucket for model artifacts

Training a model in SageMaker is called a training job. Any algorithm that is

executed in SageMaker requires the training data to be present in an S3 bucket. This

is because the compute instances that are used for training the model are called

dynamically during model execution, and they are not persistent. This means the data

that is stored there will be deleted once the job is done. Hence, we can save the data in

S3, and the model will always know from where to fetch the data, by means of an S3 URL.

The coding part, which is written in Python, consists of two sections. The first

section, the helper code, helps you in processing the data, fetching the data, storing the

output, etc. The second section, the training code, actually does the model training for

you by applying the selected algorithm on the data.

The training code image is a Docker container image that is stored in the ECR of

AWS. It contains all the packages and software required for executing your code. It also

contains your training and deployment scripts that you write. We package everything

required inside one container and push it to ECR. Then, we just pass the URL of the

image to the algorithm selected, and automatically the training script runs. We need

to understand that SageMaker works based on Docker containers, and hence it is

imperative for users to understand Docker before learning SageMaker.

Finally, once the model training is done, the model-related parameter values should

be stored in S3; as mentioned, once the training job is done, compute instances are

deleted, and hence we will lose all our learned parameters. That’s why S3 becomes the

common point to store all the information.

One thing to notice here is that the Docker image is built by you, but still we have not

selected the hardware requirements. Therefore, when we call the SageMaker algorithm and

when we pass the parameters such as the S3 URL and Docker Image URL, then only can we

pass the type of instance that we have to choose. These instances are the EC2 instances that

Chapter 4 IntroduCtIon to MaChIne LearnIng

79

we saw in Chapter 1. Once we have chosen the instance, the Docker image is downloaded

on that instance, along with the training data. Finally, the model training starts.

We will look at all these aspects of training the model in SageMaker in the upcoming

chapters.

 Model Deployment in SageMaker
Once the model training is done, all the learned parameters are stored in the S3 bucket and

called model artifacts. These model artifacts will be used during inference (or predictions).

In Figure 4-7 the bottom part was the model training part; now we will discuss the upper

part, which is the model deployment part. It consists of the following sections:

• URL reference to model artifacts in S3 bucket

• Helper and inference code

• Inference code image

• Endpoint

• Client

The helper and inference code consists of processing scripts and prediction scripts.

Also, it includes the format in which the predictions need to be sent or saved. For the

predictions, the model artifacts generated during the training part are used.

SageMaker removes the training compute requirements with the deployment

compute requirements. This is because training may require big instances with stronger

computational power, but for predictions we do not require that many big instances.

Hence, the predictions can be done with smaller instances as well. This helps save a lot

of cost.

We can use the same Docker image that we built for training a model for the

inference by just adding a few extra Python scripts that help in deployment. That may

include using packages such as Flask, Gunicorn, etc. To start the deployment, we need

to pass the model artifacts the URL, the ECR image URL, and the compute instance that

we need. By giving these three parameters, the deployment is made, and an endpoint is

created.

The endpoint is a place where we send requests in a particular format, maybe CSV

or JSON, and get the response from the model. This is called a RESTful API. The model

that is created is served through this API, and the data on which we want predictions is

Chapter 4 IntroduCtIon to MaChIne LearnIng

80

sent as a CSV, row by row, and we get the predictions in the same way. These are POST

and GET requests. We can expose this endpoint to any client objects. It can be a website,

a mobile app, an IOT device, or anything else. We just need some records sent to the

endpoint and to get the predictions.

Endpoints are used when we make live predictions. Hence, they keep running until

and unless we manually stop them or add a timeout condition. But suppose we want the

predictions for a subset of data, maybe 5,000 rows, and we don’t want a live endpoint.

Then SageMaker supports something called a batch transform. Using this approach,

we provide the same parameters that we provided to deployment code, but one extra

parameter is provided. It is the link to the data on which inference is needed. This data

is again stored in S3 and hence downloaded to the instance when prediction is required.

After the prediction is done, predictions are stored in S3, and then the compute instance

is stopped immediately. Figure 4-8 shows the process of batch transform in SageMaker.

We will look at both the approaches, endpoint generation and batch transform, in

the upcoming chapters.

Figure 4-8. Batch processing

Chapter 4 IntroduCtIon to MaChIne LearnIng

81

 Built-in SageMaker Algorithms
The following are all the algorithms that SageMaker provides:

• Blazing text

This algorithm is used for problem statements involving text

classification. It is an optimized version of the Word2Vec

algorithm and can be used for multiple tasks such as sentiment

analysis, named entity recognition, etc.

• DeepAR forecasting

This algorithm is used in the domain of univariate time-series

forecasting using RNNs. It can be used to train on multiple similar

time-series data, and it outperforms the ARIMA or exponential

smoothing methods in most of the scenarios.

• Factorization machines

This is a general-purpose algorithm that can be used both for

regression and for classification tasks. For classification, it only

supports binary classification problems.

• Image classification

This is built on ResNet (CNN model) for multilabel classification

of images. It can be trained from scratch if the dataset available is

big; otherwise, transfer learning can be applied if the size of the

dataset is small.

• IP insights

This algorithm is used for a special use case—finding the usage

patterns for IPv4 addresses. It can be used to find out whether the

IP address from which a user is sending a request is anomalous.

• K-means

This algorithm is used to find clusters of data that are following

similar patterns. It is an optimized version of the statistical

k-means clustering algorithm.

Chapter 4 IntroduCtIon to MaChIne LearnIng

82

• K-nearest neighbor

It is used for the classification of data by using an approach

finding the nearest neighbors. It is an optimized version of the

k-nearest neighbor statistical algorithm.

• Latent Dirichlet allocation

This is an algorithm used to find out topics present inside

documents, and hence the domain of application is also called

topic modeling. It is an unsupervised learning approach used to

find out categories from a bunch of documents.

• Linear learner

The is a normal simple and multiple linear regression algorithm

having the capacity to perform logistic regression as well on the

classification problems.

• Neural topic model

This is again a topic modeling approach, where the topics

are extracted from a bunch of documents by finding out their

statistical distributions. This algorithm can be used in the domain

on text summarization or recommendations.

• Object2Vec

This is used for generating the vectors for the objects, and it is

similar to the Word2Vec algorithm. The only thing is that it is a

generalized version of it. Using this approach, a lot of optimized

and efficient classification and regression can be made giving us

better performance.

• Object detection

Finding and recognizing objects present in an image is the main

task of this algorithm. It contains a single deep neural network

to perform this operation. The framework used in this model is

single-shot multibox detector (SSD) and uses VGGNet and ResNet

as a base.

Chapter 4 IntroduCtIon to MaChIne LearnIng

83

• Principal component analysis

This is based on finding the importance of variables and then

combining variables based on the similarity. It is used for the

dimensionality reduction of data so that the number of variables

can be reduced based on combining their importance using the

concept of eigenvalues and eigenvectors.

• Random cut forest

This algorithm is used to find patterns present inside the datasets

and then find those patterns that deviate from all the general

patterns present in the dataset. For example, why is there an

unnecessary spike in time-series data? Why is a particular data

point not being able to be classified? These are a few of the

multiple uses of the random cut forest method.

• Semantic segmentation

This is used for developing computer vision applications. It is a

pixel-level approach algorithm where each pixel is labeled based

on the data. It can be used in the domain of self-driving cars,

medical imaging, etc.

• SeqtoSeq modeling

This is used when we have a sequence of input and we have

to generate a sequence of outputs. For example, we can have

sequences of input in German and need to translate the sequence

into English. Similarly, it can be used for time-series data, images,

and other text applications. This algorithm uses RNNs and CNNs

with an attention- based approach.

• XGBoost

This is one of the highly optimized versions of ensemble trees that

uses the concept of gradient boosting approach as well as takes

the power of multithreading and multiprocessing to give awesome

inference on the datasets. It is one of the most used algorithms,

not only in SageMaker but elsewhere.

Chapter 4 IntroduCtIon to MaChIne LearnIng

84

We will be seeing most of these algorithms and their practical implementations in

the upcoming chapters.

 Custom Algorithms in SageMaker
In the previous section, we saw the different algorithms that SageMaker supports. But

what if you want to use a different algorithm that SageMaker doesn’t support? For

example, instead of blazing text, what if you want to use BERT models? In that scenario,

we can use custom Docker images, and in SageMaker terms this is called bring-your-

own-models. As you saw earlier, all we need is a Docker image for training and inference,

training files in S3 bucket, output S3 bucket location, etc. So, to make your custom

models run in SageMaker, you’ll have to follow these steps:

 1. Write the training script.

 2. Test the training script inside the Docker container after installing

all the important packages in Docker.

 3. Edit the inference script inside Docker. This will be a script written

probably in Python and Flask.

 4. Test the inference script.

 5. Once everything works fine, push the Docker image along with the

training and inference script onto ECR.

 6. You can now call this algorithm by passing the URL of ECR.

We will look at how to make a custom algorithm in SageMaker in the upcoming

chapters.

There are a lot of other features in SageMaker that we will keep discussing throughout

this book. But, for now, this introduction suffices. In the upcoming chapters we will be

delving deeper into SageMaker and how to execute the code and algorithms in it.

Let’s now explore some other machine learning services that AWS provides beyond

SageMaker.

Chapter 4 IntroduCtIon to MaChIne LearnIng

85

 Other Machine Learning Services by AWS
Let’s start this section by looking at Amazon Comprehend, a service dedicated to text

analytics in AWS.

 Amazon Comprehend
Amazon Comprehend is a service provided by AWS for NLP-related tasks. If a company

has a group of documents and some extraction from them is needed so that a specific

insight can be drawn out, then Amazon Comprehend is the service to use. Same tasks

can be done in SageMaker as well, but Comprehend requires the least amount of coding.

This is an ideal solution for people with less coding experience. The following are key

elements that can be extracted from the documents:

• Entities such as organizations, places, names, etc.

• Key phrases in the documents

• The language and the sentiments of the sentences

• The syntax and syntactical structure of sentences

In addition to these features, custom classifiers can be built that can sort the

document into categories based on similarity. Also, in addition to the default entities

that can be extracted, custom entities can be extracted from documents. This can be

done by training the base model of Amazon Comprehend. All the NLP tasks of Amazon

Comprehend have a base of neural networks. That means all the tasks performed are

deep learning based and can be customized as well.

Also, we can do topic modeling using Amazon Comprehend when we can find key

topics present in all the documents based on the frequency and distribution of words.

For this task, Amazon recommends a minimum of 1,000 documents.

 Amazon Polly
Amazon Polly is the service provided by AWS for speech synthesis. Whatever text that

you give to Polly, it will be converted into lifelike speech. It supports multiple languages

and can be customized to the voice of our choice. The base of Amazon Polly is neural

networks, just like Comprehend. It is called a neural text-to-speech (NTTS) model. This is

the reason why Polly has the most human-like voice as compared to its competitors.

Chapter 4 IntroduCtIon to MaChIne LearnIng

86

The pronouncing accuracy of Polly is super high, and it includes abbreviations,

acronym expansions, and date/time interpretations; it also supports homograph

disambiguation. This means that the words that have the same spellings but different

meanings based on the sentence in which they are used can also be understood by Polly.

This process is called context-aware analysis.

Polly offers both male and female voices and supports three British English voices

and eight US English voices. Polly even supports voices that can sound like newscasters.

 Amazon Rekognition
Amazon Rekognition is used for understanding the objects present inside an image or a

video and then extracting them. The objects may include people, text, scenes, activities,

inappropriate content, etc. It has a capability for facial analysis, facial comparison, and

face searching. Like other services, Amazon Rekognition has a back end of deep learning

with neural networks used to understand the patterns.

Amazon Rekognition’s development is ongoing, which means the data is

continuously updated and given to the model, with an increased number of labels. This

means that the accuracy of the model keeps getting better for different categories. Some

of the common use cases of Amazon Rekognition are as follows:

• Searching an image or a video for the presence of an object

• Using facial feature–based authentication

• Understanding emotional expressions such as happy, sad,

enthusiastic, etc.

• Using demographic information such as gender, place, type, etc.

• Detecting adult and violent content present in videos or images

• Recognizing and extracting textual content from the images

We can also train Amazon Rekognition on custom labels, if required for a specific

dataset related to a problem statement.

Chapter 4 IntroduCtIon to MaChIne LearnIng

87

 Amazon Translate
Machine translation is one of the applications of NLP where we translate one language to

another language. Amazon has made a service totally dedicated to this use case wherein

it supports neural machine translation from multiple languages to multiple languages. It

is called Amazon Translate.

This service is based on an encoder-decoder architecture similar to BERT and

other language models. Here, first the input language is understood using encoder

architecture, and then the task of translation is done using the decoder architecture. It

also uses something called an attention layer that tries to understand the context of a

sentence by understanding the relationship between the words. Combining all these

things with a neural network like long short-term memory (LSTM), the process of

translation is achieved.

 Amazon Transcribe
When we have multiple audio files and we want to convert whatever is spoken in a

clip into text, we can use Amazon Transcribe. It has multiple applications including a

combination of some other Amazon services. Here are some examples:

• A news clip can be first converted from speech to text using

Transcribe, then it can be converted to your language of choice using

Translate, and finally it can be read out aloud using Polly.

• Customer service calls can be recorded and transcribed. Finally,

Comprehend can be used to understand different aspects of the

transcribed text.

• It can be used to provide real-time subtitles.

Amazon Transcribe can be used to identify speakers based on the voice. It can

be used to tell the difference between the one asking the question and the answerer,

supposedly in a recorded press conference. Also, if you feel like Transcribe is not able

to understand a few words, then you can increase the vocabulary of Transcribe by

providing a custom vocabulary.

Chapter 4 IntroduCtIon to MaChIne LearnIng

88

 Amazon Textract
Amazon Textract is used to detect text present inside a document that can be in PDF

format or image format. It can also extract information from tabular data, or other types

of document formats that can include applications such as financial reports extraction,

medical records extraction, etc. Like other services, Textract is also built on a deep neural

network architecture, where the weights are updated almost daily by having access to

more than a billion images and videos. Textract can also be used to extract data from

forms, CSV sheets, websites, etc.

 Conclusion
In this chapter, you got a machine learning–specific overview of AWS. In the next chapter,

we will be looking at data processing using SageMaker and explore other services as well,

which will help us in data processing.

Chapter 4 IntroduCtIon to MaChIne LearnIng

89
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_5

CHAPTER 5

Data Processing in AWS
Data processing is one of the first steps of the machine learning pipeline. As different

sources of data have different formats, it becomes almost impossible to handle all the

formats inside the model. Hence, we give the data a synchronous structure, and then we

try to process different unwanted sections of it. These sections include the null values,

outliers, dummification of categorical columns, standardization of numerical columns,

etc. We can use SageMaker effectively to process the data in all these domains. This

chapter assumes that you have knowledge about different data processing techniques

and their implementation in Python. This chapter will be dedicated to using SageMaker

to do this.

 Preprocessing in Jupyter Notebook
In between receiving the raw data and feeding the data to the model, there are a lot of

steps the data goes through. These steps are the data processing steps. Data processing

includes feature selection, feature transformation, feature imputation, feature

normalization, etc. Once all these steps are done, we proceed to splitting the data into a

training set and a validation set, which are finally given to the model.

In this section, we will be looking at some of the basic data processing steps that we

can follow.

 1. Loading the raw data

 2. Imputing the null values, which means how to replace the null

values with some actual values.

 3. Splitting the data into categorical and numerical data frames

 4. “Dummifying” categorical data

 5. Imputing the remaining null values

https://doi.org/10.1007/978-1-4842-6222-1_5#DOI

90

 6. Concatenating the categorical and numerical data frames

 7. Normalizing the final data frame

 8. Splitting the data into train and validation sets

This chapter assumes that you have hands-on knowledge of Pandas, Numpy, and

Scikit-Learn. These packages are required for the data processing steps. If not, then it is

recommended that you explore these packages to get some hands-on experience before

moving on to learning SageMaker.

The dataset that we will be using for processing is the Big Mart sales dataset, which

can be downloaded from Kaggle at www.kaggle.com/devashish0507/big-mart-sales-

prediction.

This dataset contains a lot of information related to the sales of items in a retail shop.

The task is to predict the sales of items. We will not be looking at the prediction part in

this chapter. Rather, we’ll be exploring only the data processing part of the process. Let’s

start by reading the train file using the Pandas framework.

import pandas as pd

data = pd.read_csv("Train.csv")

Now the entire CSV sheet’s columns are saved in a data frame object named data.

Next, let’s explore the top five rows of the dataset.

data.head()

This is going to give us the output shown in Figure 5-1.

Figure 5-1. Top five rows of data

Chapter 5 Data proCessing in aWs

http://www.kaggle.com/devashish0507/big-mart-sales-prediction
http://www.kaggle.com/devashish0507/big-mart-sales-prediction

91

As you can see, there are a lot of other columns as well that are not shown in

Figure 5-1. So, let’s look at the shape of the data as well as the list of all the columns.

print(data.shape)

print("***")

print(data .columns)

This gives us the output shown in Figure 5-2.

As we can see, there are 8,523 rows and 12 columns. Also, we can see the names of all

the columns in the list given.

As we have seen in the steps of processing, the next step is to impute the null values.

So, let’s take a look at all the columns that have null values.

data.isna().sum()

This code gives us the output shown in Figure 5-3.

Figure 5-2. Shape of data and columns

Figure 5-3. Null values exploration

Chapter 5 Data proCessing in aWs

92

So, there are two columns with null values: Item_Weight and Outlet_Size. We can use

the normal imputation methods provided by Scikit-Learn to impute these null values. But,

instead, we will be using the help of nearby columns to fill in these null values. Let’s look at

the data types of these columns, as that is going to help us in making imputation strategies.

print(data['Item_Weight'].dtype)

print(data['Outlet_Size'].dtype)

The output shows that the Item_Weight column is a float, while the Outlet_Size

column is categorical (or an object). We will first impute the Item_weight column. If we

find the mean of Item_Weight and group it by Item_Type, then we can see that different

item types have different means. See Figure 5-4.

data.groupby(['Item_Type']).mean()['Item_Weight']

Looking at the output, what we can do is to impute all the null values of Item_Weight

using the mean, respective of the Item_Type. This we can do by executing the following

lines of code:

for i in data.Item_Type.value_counts().index:

 data.loc[(data['Item_Weight'].isna()) & (data['Item_Type'] == i),

['Item_Weight']] = \

 data.loc[data['Item_Type'] == 'Fruits and Vegetables', ['Item_

Weight']].mean()[0]

Figure 5-4. Mean of item weight based on item type

Chapter 5 Data proCessing in aWs

93

Now, if we check the null values again, we get Figure 5-5.

So, we successfully imputed the null values of the Item_Weight column. For Outlet_

Size, what we will do next is to first split the data into numerical and categorical data

frames and then impute the null values.

import numpy as np

cat_data = data.select_dtypes(object)

num_data = data.select_dtypes(np.number)

Now we have all the categorical columns in cat_data. We can check for the presence

of null values again. See Figure 5-6.

cat_data.isna().sum()

Figure 5-5. Removed numerical null values

Figure 5-6. Categorical data null values

Chapter 5 Data proCessing in aWs

94

So, the null value still exists. If we look at the categories present in the Outlet_Size

columns, we will see there are three. See Figure 5-7.

cat_data.Outlet_Size.value_counts()

But, if we look at the count of these categories based on the Outlet_Type, then it

looks like Figure 5-8.

cat_data.groupby(['Outlet_Type','Outlet_Size']).count()

In this figure, we can see that the maximum Small outlet size is for Grocery Store,

Small for Supermarket Type1, and Medium for Supermarket Type2 and Supermarket

Type3. So, we will impute the null values accordingly, based on the outlet type.

cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_Type'] ==

'Grocery Store'), ['Outlet_Size']] = 'Small'

cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_Type'] ==

'Supermarket Type1'), ['Outlet_Size']] = 'Small'

cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_Type'] ==

'Supermarket Type2'), ['Outlet_Size']] = 'Medium'

cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_Type'] ==

'Supermarket Type3'), ['Outlet_Size']] = 'Medium'

Figure 5-7. Categories and their counts

Figure 5-8. Grouping outlet size with type

Chapter 5 Data proCessing in aWs

95

We can now check the null values for confirmation. See Figure 5-9.

Finally, all the null values have been successfully removed. Remember, we can use

the fillna() method of Pandas to do the same thing. Also, we can impute values using

different other approaches such as backward fill, forward fill, interpolation, etc. You can

experiment with all those approaches on your own.

Now that we have taken care of all the null values, we will do one last thing before

moving on to dummification. If we look at the categories of the Item Fat Content column,

we will see that there are the same values present in different ways. See Figure 5-10.

cat_data.Item_Fat_Content.value_counts()

LF means Low Fat, reg means Regular, and low fat is just the lowercase version of

Low Fat. Let’s rectify all of this.

cat_data.loc[cat_data['Item_Fat_Content'] == 'LF' , ['Item_Fat_Content']] =

'Low Fat'

cat_data.loc[cat_data['Item_Fat_Content'] == 'reg' , ['Item_Fat_Content']] =

'Regular'

cat_data.loc[cat_data['Item_Fat_Content'] == 'low fat' , ['Item_Fat_

Content']] = 'Low Fat'

Figure 5-9. All null values removed

Figure 5-10. Duplicates

Chapter 5 Data proCessing in aWs

96

Now, we will see the values shown in Figure 5-11.

So, this task was done successfully. Next, let’s apply label encoding on the categorical

data frame. We will use the Scikit-Learn package for this.

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

cat_data = cat_data.apply(le.fit_transform)

The output results in the data frame shown in Figure 5-12.

cat_data.head()

We will concatenate the two data frames, categorical and numerical, and then

normalize the columns. Also, we will remove two of the columns before that, one in

Item_Identifier and the second in Item_Sales. Item_Identifier is not really an

important column, while Item_Sales will be our dependent variable; hence, it cannot be

in the independent variables list. See Figure 5-13.

from sklearn.preprocessing import StandardScaler

ss = StandardScaler()

num_data = pd.DataFrame(ss.fit_transform(num_data.drop(['Item_Outlet_Sales'],

axis=1)), columns = num_data.drop(['Item_Outlet_Sales'],axis=1).columns)

cat_data = pd.DataFrame(ss.fit_transform(cat_data.drop(['Item_Identifier'],

axis=1)), columns = cat_data.drop(['Item_Identifier'], axis=1).columns)

Figure 5-11. Duplicates removed

Figure 5-12. Label encoding output

Chapter 5 Data proCessing in aWs

97

final_data = pd.concat([num_data,cat_data],axis=1)

final_data.head()

Now, we have our final data ready. We have used a standard scaler class to normalize

all the numerical values to their z-scores. We will be using final_data as independent

variables, while we will extract Item Sales as dependent variables.

X = final_data

y = data['Item_Outlet_Sales']

The last step is to get our training and validation sets. For this we will use the class

model_selection provided by Scikit-Learn. We will take 10 percent of our data as a

validation set while remaining as a test set.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1,

random_state=5)

This marks the last step of data processing. Now we can use it to train any kind of

model that we want. The code lines that I have shown can be executed in any Jupyter

Notebook, either in the localhost or in the cloud. The only requirement is that the

necessary packages must be installed.

In the next section, I will show you how to run the same code in SageMaker using the

Scikit-Learn container provided by the SageMaker service. The script remains the same,

but the process changes, as we have to continuously talk with the S3 bucket and define

the instances as well. We will explore this in detail in the next section.

Figure 5-13. Standard scaling output

Chapter 5 Data proCessing in aWs

98

 Preprocessing Using SageMaker’s Scikit-Learn
Container
We use SageMaker to take advantage of multiple things, especially the computation

power, API generation, and ease of storage. Therefore, to achieve these things, the

code must be written in a specific format. We will use the same code that we saw in the

previous section, but we’ll make some changes in the overall structure so that it becomes

compatible with SageMaker.

First, the data should be in the S3 bucket. We have already put our Train.csv file in

the bucket, in the first section of this chapter. Once that is done, we can start writing our

code. First, we will define the role of the user and the region in which we are using the

SageMaker service.

import boto3

import sagemaker

from sagemaker import get_execution_role

region = boto3.session.Session().region_name

role = get_execution_role()

The Boot3 package tries to extract the region name automatically if we are using the

SageMaker notebook. If we are working from the localhost notebook, then it needs to be

custom defined. We will look at that part in the last part of this book. get_execution_

role() extracts the current role with which the user has signed in. It can be the root user

or IAM role.

Now that we have defined the region and role, the next step will be to define our

Scikit-Learn container. As mentioned in the first part of the book, SageMaker operates

on Docker containers. All the built-in algorithms are nothing but Docker containers,

and even the custom algorithm must be put inside the Docker container and uploaded

to ECR. Since we will be using Scikit-Learn to process our data, already SageMaker has a

processing container for that. We just need to instantiate it and then use it.

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(framework_version='0.20.0',

 role=role,

 instance_type='ml.m5.xlarge',

 instance_count=1)

Chapter 5 Data proCessing in aWs

99

In the previous code, we created an object called SKLearnProcessor. The parameters

passed tell about the version of Scikit-Learn to use, the IAM role to be passed to the

instance, the type of compute instance to be used, and finally the number of compute

instances to be spinned up. Once this is done, any Python script that we write and that

uses Scikit-Learn can be used inside this container.

Now, let’s check whether our data is accessible from SageMaker.

import pandas as pd

input_data = 's3://slytherins-test/Train.csv'

df = pd.read_csv(input_data)

df.head()

slytherins-test is the name of the S3 bucket that we created earlier in the chapter.

Train.csv is the data that we uploaded. If everything works perfectly, you’ll get the

output shown in Figure 5-14.

If you are getting any error, make sure that the bucket as well as the data has been

given public access. We have talked about this in the previous part of the book.

Now, it’s time to define our processing script that will be run inside the container. We

have already written this script in the previous part. We will just restructure the code and

save it inside a file named preprocessing.py.

import argparse

import os

import warnings

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder

Figure 5-14. Data overview

Chapter 5 Data proCessing in aWs

100

from sklearn.exceptions import DataConversionWarning

warnings.filterwarnings(action='ignore', category=DataConversionWarning)

Here we have defined all the columns that are present in our data

columns = ['Item_Identifier', 'Item_Weight', 'Item_Fat_Content',

'Item_Visibility','Item_Type', 'Item_MRP', 'Outlet_Identifier',

'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type',

'Outlet_Type', 'Item_Outlet_Sales']

This method will help us in printing the shape of our data

def print_shape(df):

 print('Data shape: {}'.format(df.shape))

if __name__=='__main__':

 # At the time of container execution we will use this parser to define

our train validation split. Default kept is 10%

 parser = argparse.ArgumentParser()

 parser.add_argument('--train-test-split-ratio', type=float,

default=0.1)

 args, _ = parser.parse_known_args()

 print('Received arguments {}'.format(args))

 # This is the data path inside the container where the Train.csv will

be downloaded and saved

 input_data_path = os.path.join('/opt/ml/processing/input', 'Train.csv')

 print('Reading input data from {}'.format(input_data_path))

 data = pd.read_csv(input_data_path)

 data = pd.DataFrame(data=data, columns=columns)

 for i in data.Item_Type.value_counts().index:

 data.loc[(data['Item_Weight'].isna()) & (data['Item_Type'] == i),

['Item_Weight']] = \

 data.loc[data['Item_Type'] == 'Fruits and Vegetables', ['Item_

Weight']].mean()[0]

 cat_data = data.select_dtypes(object)

 num_data = data.select_dtypes(np.number)

Chapter 5 Data proCessing in aWs

101

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Grocery Store'), ['Outlet_Size']] = 'Small'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type1'), ['Outlet_Size']] = 'Small'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type2'), ['Outlet_Size']] = 'Medium'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type3'), ['Outlet_Size']] = 'Medium'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'LF' , ['Item_Fat_

Content']] = 'Low Fat'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'reg' , ['Item_Fat_

Content']] = 'Regular'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'low fat' , ['Item_Fat_

Content']] = 'Low Fat'

 le = LabelEncoder()

 cat_data = cat_data.apply(le.fit_transform)

 ss = StandardScaler()

 num_data = pd.DataFrame(ss.fit_transform(num_data), columns = num_data.

columns)

 cat_data = pd.DataFrame(ss.fit_transform(cat_data), columns = cat_data.

columns)

 final_data = pd.concat([num_data,cat_data],axis=1)

 print('Data after cleaning: {}'.format(final_data.shape))

 X = final_data.drop(['Item_Outlet_Sales'], axis=1)

 y = data['Item_Outlet_Sales']

 split_ratio = args.train_test_split_ratio

 print('Splitting data into train and test sets with ratio {}'.

format(split_ratio))

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=split_ratio, random_state=0)

Chapter 5 Data proCessing in aWs

102

 # This defines the output path inside the container from where all the

csv sheets will be taken and uploaded to S3 Bucket

 train_features_output_path = os.path.join('/opt/ml/processing/train',

'train_features.csv')

 train_labels_output_path = os.path.join('/opt/ml/processing/train',

'train_labels.csv')

 test_features_output_path = os.path.join('/opt/ml/processing/test',

'test_features.csv')

 test_labels_output_path = os.path.join('/opt/ml/processing/test',

'test_labels.csv')

 print('Saving training features to {}'.format(train_features_output_

path))

 pd.DataFrame(X_train).to_csv(train_features_output_path, header=False,

index=False)

 print('Saving test features to {}'.format(test_features_output_path))

 pd.DataFrame(X_test).to_csv(test_features_output_path, header=False,

index=False)

 print('Saving training labels to {}'.format(train_labels_output_path))

 y_train.to_csv(train_labels_output_path, header=False, index=False)

 print('Saving test labels to {}'.format(test_labels_output_path))

 y_test.to_csv(test_labels_output_path, header=False, index=False)

As we can see, the previous code is the same as the code in the previous part of the

book; all we have done is defined the place where the data will be stored inside the

container and the place where the output will be stored and then uploaded to the S3

bucket from there. Once this script is defined, we are good to go now. All we have to

do is spin up the instantiated container, pass this script as a parameter, pass the data

as a parameter, pass the directory where output files will be stored, and finally pass the

destination S3 bucket.

from sagemaker.processing import ProcessingInput, ProcessingOutput

sklearn_processor.run(code='preprocessing.py',

 inputs=[ProcessingInput(

 source=input_data,

 destination='/opt/ml/processing/input')],

Chapter 5 Data proCessing in aWs

103

 outputs=[ProcessingOutput(output_name='train_data',

 source='/opt/ml/processing/train',

 destination='s3://slytherins-test/'),

 ProcessingOutput(output_name='test_data',

 source='/opt/ml/processing/test',

 destination='s3://slytherins-test/')],

 arguments=['--train-test-split-ratio', '0.1']

)

In the previous code, we have passed all the parameters. Also, we have defined the

argument that tells about the split percentage. Inside the preprocessing.py script, we

have code that parses this argument.

Figure 5-15 shows what will happen next.

The processing job will take some time to finish. It first launches an instance (which

is similar to booting up an operating system), and then it downloads the sklearn image

on the instance. Then data is downloaded to the instance. Then the processing job starts.

When the job finishes, the training and test data is stored back to S3. Then the entire

operation finishes. Once the job is finished, we can get detailed information about the

job by using the following script:

preprocessing_job_description = sklearn_processor.jobs[-1].describe()

Figure 5-15. How the processing job works

Chapter 5 Data proCessing in aWs

104

Let’s use this script to get the S3 bucket location of the training and test datasets:

output_config = preprocessing_job_description['ProcessingOutputConfig']

for output in output_config['Outputs']:

 if output['OutputName'] == 'train_data':

 preprocessed_training_data = output['S3Output']['S3Uri']

 if output['OutputName'] == 'test_data':

 preprocessed_test_data = output['S3Output']['S3Uri']

Now, we can check the output by reading the data using Pandas.

training_features = pd.read_csv(preprocessed_training_data + 'train_

features.csv', nrows=10, header=None)

print('Training features shape: {}'.format(training_features.shape))

training_features.head(10)

This gives us the output shown in Figure 5-16.

This finishes the entire processing job that can be done using SklearnProcessor.

The next step will always be to define the algorithm for machine learning. We will look at

that in the next chapters.

But suppose instead of using a predefined container by SageMaker, like

ScriptProcessor, we want to make our own container and run a script on that. In that

case, we can use a class of SageMaker called ScriptProcessor. Let’s explore that in the

next section.

Figure 5-16. Processed data

Chapter 5 Data proCessing in aWs

105

 Creating Your Own Preprocessing Code Using
ScriptProcessor
In the previous section, we used SkLearnProcessor, which is a built-in container

provided by SageMaker. But, many times, we have to write some code that cannot only

be executed in a SageMaker’s predefined containers. For that we have to make our own

containers. We will be looking at making our own containers while training a machine

learning model as well. In this section, we will make a container that performs the same

tasks as the SKlearnProcessor container. The only difference is that it’s not prebuilt; we

will build it from scratch.

To use custom containers for processing jobs, we use a class provided by SageMaker

named ScriptProcessor. Before giving inputs to ScriptProcessor, the first task is to

create our Docker container and push it to ECR.

 Creating a Docker Container
For this we will be creating a file named Dockerfile with no extension. Inside this

we will be downloading an image of a minimal operating system and then install our

packages inside it. So, our minimal operating system will be Linux based, and we will

have Python, Scikit-Learn, and Pandas installed inside it.

FROM python:3.7-slim-buster

RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3

ENV PYTHONUNBUFFERED=TRUE

ENTRYPOINT ["python3"]

The previous script must be present inside the Dockerfile. The first line, FROM

python:3.7-slim-buster, tells about the minimal operating system that needs to be

downloaded from Docker Hub. This only contains Python 3.7 and the minimal packages

required to run Python. But, we need to install other packages as well. That’s why we will

use the next line, RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3. This will

install Pandas, Scikit-Learn, Numpy, and other important packages. The next line, ENV

PYTHONUNBUFFERED=TRUE, is an advanced instruction that tells Python to log messages

immediately. This helps in debugging purposes. Finally, the last line, ENTRYPOINT

["python3"], tells about how our preprocessing.py file should execute.

Chapter 5 Data proCessing in aWs

106

 Building and Pushing the Image
Now that our Docker file is ready, we need to build this image and then push it to

Amazon ECR, which is a Docker image repository service. To build and push this image,

the following information will be required:

• Account ID

• Repository name

• Region

• Tag given to the image

All this information can be initialized using the following script:

import boto3

account_id = boto3.client('sts').get_caller_identity().get('Account')

ecr_repository = 'sagemaker-processing-container'

tag = ':latest'

region = boto3.session.Session().region_name

Once we have this information, we can start the process by first defining the ECR

repository address and then executing some command-line scripts.

processing_repository_uri = '{}.dkr.ecr.{}.amazonaws.com/{}'.

format(account_id, region, ecr_repository + tag)

Create ECR repository and push docker image

! docker build -t $ecr_repository docker # This builds the image

! $(aws ecr get-login --region $region --registry-ids $account_id --no-

include- email) # Logs in to AWS

! aws ecr create-repository --repository-name $ecr_repository # Creates ECR

Repository

! docker tag {ecr_repository + tag} $processing_repository_uri # Tags the

image to differentiate it from other images

! docker push $processing_repository_uri # Pushes image to ECR

If everything works fine, then your image will successfully be pushed to ECR. You can

go to the ECR service and check the repository. You can see the view in Figure 5-17.

Chapter 5 Data proCessing in aWs

107

 Using a ScriptProcessor Class
Now that our image is ready, we can start using the ScriptProcessor class. We will

execute the same code, preprocessing.py, inside this container. Just like how we did in

SKLearnProcessor, we will create an object of the class first.

from sagemaker.processing import ScriptProcessor, ProcessingInput,

ProcessingOutput

from sagemaker import get_execution_role

role = get_execution_role()

script_processor = ScriptProcessor(command=['python3'],

 image_uri=processing_repository_uri,

 role=role,

 instance_count=1,

 instance_type='ml.m5.xlarge')

Once the object is created, we can use it to run our preprocessing.py file.

input_data = 's3://slytherins-test/Train.csv'

script_processor.run(code='preprocessing.py',

 inputs=[ProcessingInput(

 source=input_data,

 destination='/opt/ml/processing/input')],

 outputs=[ProcessingOutput(source='/opt/ml/processing/train',

destination='s3://slytherins-test/'),

 ProcessingOutput(source='/opt/ml/processing/test',

destination='s3://slytherins-test/')])

Figure 5-17. Image pushed to ECR

Chapter 5 Data proCessing in aWs

108

You will find the code to be almost the same as the SKLearnProcessor code. It will

give the same output as well. Finally, once the processing job is done, we can check the

output again in the same way.

preprocessing_job_description = script_processor.jobs[-1].describe()

output_config = preprocessing_job_description['ProcessingOutputConfig']

for output in output_config['Outputs']:

 if output['OutputName'] == 'output-1':

 preprocessed_training_data = output['S3Output']['S3Uri']

 if output['OutputName'] == 'output-2':

 preprocessed_test_data = output['S3Output']['S3Uri']

import pandas as pd

training_features = pd.read_csv(preprocessed_training_data + 'train_

features.csv', nrows=10, header=None)

print('Training features shape: {}'.format(training_features.shape))

training_features.head(n=10)

The output that you’ll get will be the same as shown in Figure 5-16.

In this section, we saw how we can create our own containers and run processing

scripts. This becomes important in many situations. For example, if we want to use

BERT-based preprocessing on an NLP task, we will have to create a container for that,

as SageMaker doesn’t provide us with BERT-based services. We will be exploring more

about custom containers while creating training and inference jobs in later chapters.

In the past two sections, we have worked on the Jupyter Notebook inside the

SageMaker container. But, most of the time, especially during production, we have to

run the code in a different system. For that we will have to use the Boto3 API for the

authentication and execution. In the next section, we will see how to use Boto3 for

running our custom script.

 Using Boto3 to Run Processing Jobs
As mentioned, we use the Boto3 package to access the services of AWS from any other

computer, including your localhost. So, in this section, we will be running the custom

Docker container script that we saw in the previous section, using Boto3.

Chapter 5 Data proCessing in aWs

109

 Installing Boto3
The first step for using Boto3 is to install it inside the localhost environment. Along with

Boto3, we have to install awscli, which will help us in authentication with AWS and s3fs,

which in turn will help us in talking with the S3 bucket. To install it, we will be using pip,

as shown here:

pip install boto3

pip install awscli

pip install s3fs

Once the installation finishes, we need to configure the credentials of AWS. For this,

we will run the following command:

aws configure

This will ask you for the following four inputs:

• AWS access key

• AWS secret access key

• Default region name

• Default output format

Once we provide this information, we can easily use Boto3 to connect with the AWS

services. I have already shown you how to get the access key and secret access key when

creating the IAM roles. The default region name will be us-east-2, but you can recheck

this by looking at the top-right corner of your AWS management console. It will tell you

the location. As you can see in Figure 5-18, I have passed in the required information.

Once this part is done, we can start our Jupyter Notebook (local system notebook)

and create a notebook using the same environment inside which we have installed all

the packages and configured AWS.

Figure 5-18. Setting AWS credentials

Chapter 5 Data proCessing in aWs

110

 Initializing Boto3
Inside the notebook, the first step will be to initialize Boto3. For this we will use the

following script:

import boto3

import s3fs

region = boto3.session.Session().region_name

client = boto3.client('sagemaker')

In the previous step, the region was set up by you. The same region will be

extracted and stored inside the variable region. Next is to set up Boto3. Boto3 can be

set up for all the services of AWS. Currently, we will be using SageMaker; hence, we

will call the class client of Boto3 and initialize it with SageMaker (client = boto3.

client('sagemaker')).

 Making Dockerfile Changes and Pushing the Image
Now, we will use the Boto3 API to call the processing job method. This will create the

same processing job that we saw in the previous section. But, minor changes will be

required, and we will explore them one by one.

We will use the method create_processing_job to run the data processing job.

To learn more about this method, or all the methods related to SageMaker provided by

Boto3, you can visit https://boto3.amazonaws.com/v1/documentation/api/latest/

reference/services/sagemaker.html.

But, before that, we have to make some changes in our Docker container and

our processing Python file. For the Docker container, we will need to copy our

preprocessing.py script inside it so that the Boto3 method can run the script directly.

For this we will make the following changes to our Dockerfile:

FROM python:3.7-slim-buster

RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3

ENV PYTHONUNBUFFERED=TRUE

ENV PATH="/opt/ml/code:${PATH}"

COPY preprocessing.py /opt/ml/code/preprocessing.py

WORKDIR /opt/ml/code

Chapter 5 Data proCessing in aWs

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html

111

We have added three new lines to our existing Dockerfile. The line ENV PATH="/opt/

ml/code:${PATH}" sets up the environment path to /opt/ml/code. We will be placing

our script, preprocessing.py, inside it with COPY preprocessing.py /opt/ml/code/

preprocessing.py. Finally, we will be making our working directory the same folder:

WORKDIR /opt/ml/code. This is required so that the Docker container will know where

the script file is present, and it will help in its execution.

Once we have made changes in the Dockerfile, we will make changes to the script

that builds the image and pushes it to the ECR. The only change that we need to do is

add a line that gives the permission to the container to play with the preprocessing.py

script. Otherwise, Docker may not have the permission to open and look at its contents.

Create ECR repository and push docker image

! chmod +x docker/preprocessing.py # This line gives read and write access

to the preprocessing script

! docker build -t $ecr_repository docker # This builds the image

! $(aws ecr get-login --region $region --registry-ids $account_id --no-

include- email) # Logs in to AWS

! aws ecr create-repository --repository-name $ecr_repository # Creates ECR

Repository

! docker tag {ecr_repository + tag} $processing_repository_uri # Tags the

image to differentiate it from other images

! docker push $processing_repository_uri # Pushes image to ECR

Once this step is done, we will be ready to run our Boto3 processing job.

 Creating a Processing Job
In a nutshell, we need information about four sections to create a processing job using

Boto3.

• Input data information (ProcessingInput)

• Output data information (ProcessingOutput)

• Resource information (ProcessingResources)

• Container information (AppSpecification)

Chapter 5 Data proCessing in aWs

112

As you can see in the following code, all the previous information is provided. The

code is again similar to the code we saw in the previous section; it is just that Boto3

needs information that should be manually put inside it as parameters, while when we

run the code from inside SageMaker, most of the information is automatically extracted.

response = client.create_processing_job(# Initialize the method

 ProcessingInputs=[

 {

 'InputName': "Training_Input", # Give Input Job a name

 'S3Input': {

 'S3Uri': input_data, # URL from where the data

needs to be taken

 'LocalPath': '/opt/ml/processing/input',

Local directory where the data will be downloaded

 'S3DataType': 'S3Prefix', # What kind of Data is it?

 'S3InputMode': 'File' # Is it a file or a

continuous stream of data?

 }

 },

],

 ProcessingOutputConfig={

 'Outputs': [

 {

 'OutputName': 'Training', # Giving Output Name

 'S3Output': {

 'S3Uri': 's3://slytherins-test/',

Where the output needs to be stored

 'LocalPath': '/opt/ml/processing/train',

Local directory where output needs to be searched

 'S3UploadMode': 'EndOfJob' # Upload is done when

the job finishes

 },

 'OutputName': 'Testing',

 'S3Output': {

 'S3Uri': 's3://slytherins-test/',

 'LocalPath': '/opt/ml/processing/test',

Chapter 5 Data proCessing in aWs

113

 'S3UploadMode': 'EndOfJob'

 }

 },

],

 },

 ProcessingJobName='preprocessing-job-test', # Giving a name to the

entire job. It should

be unique

 ProcessingResources={

 'ClusterConfig': {

 'InstanceCount': 1, # How many instances are

required?

 'InstanceType': 'ml.m5.xlarge', # What's the instance

type?

 'VolumeSizeInGB': 5 # What should be the

instance size?

 }

 },

 AppSp {

 'ImageUri': '809912564797.dkr.ecr.us-east-2.amazonaws.com/

sagemaker-processing-container:latest',

Docker Image URL

 'ContainerEntrypoint': [

 'Python3','preprocessing.py' # How to run the script

]

 },

 RoleArn='arn:aws:iam::809912564797:role/sagemaker-full-accss',

IAM role definition

)

RoleArn defines the IAM role that will be needed to run the code. We have already

made this role in the activity section. I also explained how to copy the ARN during IAM

role creation.

Chapter 5 Data proCessing in aWs

114

The previous code will start the processing job. But, you will not see any output. To

know the status of the job, you can use CloudWatch, which I will talk about in the next

section. For now, we will get help from the Boto3 method describe_processing_job to

get the information. We can do this by writing the following code:

client.describe_processing_job(

 ProcessingJobName='processing-job-test'

)

This will give us detailed information about the job, as shown in Figure 5-19.

You will find the key ProcessingJobStatus, which tells about the status, and if the

job fails, you will get a reason for the failure key as well. So, now we have seen the three

ways of data processing provided by SageMaker. Let’s explore how we can monitor these

jobs in the next section.

Figure 5-19. Processing job description

Chapter 5 Data proCessing in aWs

115

 Monitoring Processing Jobs Using CloudWatch
CloudWatch is an amazing service provided by Amazon that helps you monitor almost

every job, be it training, inference, or processing jobs. In this section, we will be looking

at the usage of CloudWatch to monitor processing Jobs. In later chapters, we will explore

it for other machine learning techniques as well.

First, once we log in to the AWS Management Console, we must go to Services and

then search for CloudWatch and open it. Then look for the Logs section in the panel on

the right and click it. See Figure 5-20.

Figure 5-20. CloudWatch menu

Chapter 5 Data proCessing in aWs

116

Here you can see all the log groups, depending upon the AWS services that we have

used. Since we have used only two services so far, SageMaker and Processing, you’ll

easily find the information, as shown in Figure 5-21.

We will click the ProcessingJobs section and search for the processing job name that

we gave to our job. Once we find it, click the link. It will give us some output similar to

Figure 5-22.

If you have any errors, you can find them listed here as well, based on the processing

job’s name. That’s why I mentioned before that the name should be unique. There are a

lot of other sections as well in CloudWatch, but for now they are not important. We will

explore them when the need arises.

One thing to remember here is that inside the SageMaker console, you won’t find

the logs of the processing jobs. That’s why you have to come to CloudWatch to find the

job. For most training jobs, transformation jobs, etc., you’ll find the logs directly in the

console of SageMaker—but not for processing jobs.

Figure 5-21. Jobs information in CloudWatch

Figure 5-22. Job logs in CloudWatch

Chapter 5 Data proCessing in aWs

117

 Conclusion
This chapter was all about the processing of raw data using SageMaker. In the next

chapter, we will look at most of the built-in algorithms of SageMaker in detail. We will

start with the processing of raw data and then move on to training the model and saving

the model artifacts to an S3 bucket.

Chapter 5 Data proCessing in aWs

119
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_6

CHAPTER 6

Building and Deploying
Models in SageMaker
In this chapter, we will be exploring some of SageMaker’s built-in algorithms that

are widely used in the industry. We will be exploring the algorithms from the general

domain, natural language processing domain, computer vision domain, and forecasting

domain.

 Exploring the Linear Learner Algorithm
The linear learner algorithm of SageMaker is similar to the regression algorithms in the

machine learning domain. We can make multiple linear regression, logistic regression,

and multinomial logistic regression models using the linear learner algorithm. In this

section, we will look at how this algorithm can be used for linear regression and logistic

regression. We will use the Big Mart dataset that we used in the previous chapter to apply

this algorithm. Before delving into how to apply linear learner in SageMaker, let’s take a

brief look at linear and logistic regression.

 Overview of Linear Regression
Linear regression is one of the most basic yet most important algorithms in machine

learning. It is used to fit a line (or a curve in the case of nonlinear regression) on the

observations and then interpolate the fitted line to get the predictions. To fit the line, we

use an approach that is called least squares estimations, which gives us our coefficient

values. These coefficient values are determined in such a way that the mean of the errors

is approximately zero. Errors are the Euclidean distance of each observation from the

fitted line. Figure 6-1 shows simple linear regression used to fit a line.

https://doi.org/10.1007/978-1-4842-6222-1_6#DOI

120

Linear regression is used to predict numerical values. There are various versions of

regression, namely, ridge regression, lasso regression, elastic net regression, Gaussian

regression, etc.

 Overview of Logistic Regression
Logistic regression is the transformation of linear regression in such a way that the range

of prediction is from 0 to 1. This is done by passing the equation of linear regression

to a sigmoid function. Therefore, the straight line that we saw in linear regression gets

converted into an S-shaped curve with an upper limit of 1 and a lower limit of 0, as

shown in Figure 6-2.

Figure 6-1. Simple linear regression

Figure 6-2. Logistic regression

Chapter 6 Building and deploying Models in sageMaker

121

Once logistic regression predicts a value, it is taken as a probability of prediction for

binary classification use cases. As a default, if prediction exceeds 0.5, then a success class

is predicted; otherwise, a failure class is predicted. The threshold of 0.5 is customizable

so that we can attain better precision and recall (which will be discussed in detail in

the next chapter). Logistic regression for multiclass classification is called multinomial

logistic regression, and instead of using sigmoid, it uses the softmax function.

 SageMaker Application of Linear Learner
The first step will be to read the dataset from the S3 bucket, preprocess the columns

to remove the null values, and apply scaling and encoding. We saw how to preprocess

the dataset and get to the dependent and independent variables in the previous

chapter. Therefore, we will start this section directly by applying the algorithm on the

preprocessed dataset. We will define the role and buckets so that SageMaker can talk to

different services properly.

import boto3

from sagemaker import get_execution_role

bucket = 'slytherins-test'

prefix = 'linear-learner'

role = get_execution_role()

Now, we need to decide what algorithm needs to be applied, that is, linear or logistic

regression. We will start with logistic regression. To make a logistic regression model,

we need a categorical column. We know that our target variable is Sales, and it is a

numerical column; hence, logistic regression cannot be applied. So, we will bin the

Sales columns into four categories, and then we can start applying algorithms.

y_binned = pd.cut(y['Item_Outlet_Sales'], 4, labels=['A', 'B', 'C', 'D'])

Chapter 6 Building and deploying Models in sageMaker

122

The previous code bins y into the four categories of A, B, C, and D, each having an

equal range. You can see the output here:

Now that we have our categorical column as a target variable, we will apply label

encoding on it so that each category can be represented by an integer.

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

temp = le.fit(y_binned)

y_final = temp.transform(y_binned)

Now that we have our final target variable defined and stored in y_final, we will

use it to train the model. As mentioned in the previous chapter, SageMaker runs the

algorithm inside Docker containers, and hence the data should be stored in an S3 bucket

so that the containers can access them. Our next step will be to store the data in S3. For

our linear learner algorithm, we will use a data format called the RecordIO-Protobuf

format. Using this data format helps you with a faster training time, and you can train

models in live data mode (called pipe mode). We can convert our independent and target

variables to RecordIO format using the following lines of code:

import io

import numpy as np

import sagemaker.amazon.common as smac

vectors = np.array(X.values, dtype='float32')

labels = np.array(y_final, dtype='float32')

buf = io.BytesIO()

smac.write_numpy_to_dense_tensor(buf, vectors, labels)

buf.seek(0)

Chapter 6 Building and deploying Models in sageMaker

123

The previous lines convert the data into RecordIO format and then open the

temporary file so that it can be directly inserted into S3. A RecordIO file is used by

breaking a big file into chunks and then using these chunks for analysis. This file helps us

create streaming jobs in SageMaker, which makes the training fast. To send it, we will use

the next lines of code:

key = 'recordio-pb-data'

boto3.resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train',

key)).upload_fileobj(buf)

s3_train_data = 's3://{}/{}/train/{}'.format(bucket, prefix, key)

print('uploaded training data location: {}'.format(s3_train_data))

This will upload the data to S3 and close the buffer that we created. Now, our basic

steps are done. All we need to do is to make the connection and train the model. The first

step will be to initialize our linear learner algorithm Docker container.

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(boto3.Session().region_name, 'linear-learner')

After initializing, let’s pass the required parameters for linear learner and initialize

the algorithm.

sess = sagemaker.Session()

linear = sagemaker.estimator.Estimator(container,

 role,

 train_instance_count=1,

 train_instance_type='ml.m4.xlarge',

 output_path=output_location,

 sagemaker_session=sess)

As we know, the regression algorithms have a few hyperparameters that need to be

defined, such as the number of variables, batch size, etc. We will next define these values.

linear.set_hyperparameters(feature_dim=11,

 predictor_type='multiclass_classifier',

 mini_batch_size=100,

 num_classes=4)

Chapter 6 Building and deploying Models in sageMaker

124

As everything is defined now, next we will start the training.

linear.fit({'train': s3_train_data})

You will see the output given next at the start, and then the training will start.

It will take some time for the model to be trained. Once the model is trained, we can

deploy the model as an endpoint, and then we can start the testing. To deploy the model,

we will use the deploy function.

linear_predictor = linear.deploy(initial_instance_count=1,

 instance_type='ml.m4.xlarge')

It will take some time to deploy the model and then create the endpoint. Once done,

we can start the prediction. To start the prediction, we have to first tell what kind of data

the endpoint will be receiving. Then we will have to serialize the data. This format helps

to efficiently transfer and store the data, regaining the original data perfectly. We can

serialize our test data by using the following code:

from sagemaker.predictor import csv_serializer, json_deserializer

linear_predictor.content_type = 'text/csv'

linear_predictor.serializer = csv_serializer

linear_predictor.deserializer = json_deserializer

Now, whatever data we will be sending to the endpoint, it will be serialized and sent

to the model. A prediction will come in a serialized manner, and then we will see the

data in its original structure. To predict, we will be using the test data.

result = linear_predictor.predict(test_vectors[0])

print(result)

Chapter 6 Building and deploying Models in sageMaker

125

The previous line gives us the prediction for a single row. But if we want predictions

for multiple rows, we can use the following code:

import numpy as np

predictions = []

for array in np.array_split(test_vectors, 100):

 result = linear_predictor.predict(array)

 predictions += [r['predicted_label'] for r in result['predictions']]

predictions = np.array(predictions)

The previous code takes 100 rows at a time and then stores the predictions for

them in the variable predictions. We can now look at the model metrics using the

following code:

from sklearn.metrics import precision_score, recall_score, f1_score

print(precision_score(labels, predictions, average='weighted'))

print(recall_score(labels, predictions, average='weighted'))

print(f1_score(labels, predictions, average='weighted'))

This will give us the following results:

We can use Cloud Metrics as well to visualize different metrics for the model, but we

will explore that in the next chapter.

Remember that once the endpoints are created, they will always run, until we stop

them manually or through a script. After running all the previous code, our endpoint is

still running. So, we’ll stop it so that it will not incur us any cost.

sagemaker.Session().delete_endpoint(linear_predictor.endpoint)

Chapter 6 Building and deploying Models in sageMaker

126

The previous line stops the endpoint and deletes it. We have performed multinomial

logistic regression in the previous example. We can use linear regression as well to predict

numerical values. For that we will make the following changes in the previous code:

linear.set_hyperparameters(feature_dim=11,

 predictor_type='regression',

 mini_batch_size=100)

Also, don’t forget to use the original target variable in the Big Mart dataset (the

Sales column) and not the binned one. In the next section, we will apply the XGBoost

algorithm on the same dataset and compare its performance with logistic regression.

 Exploring the XGBoost Algorithm
XGBoost stands for extreme gradient boosting. In this section, we will first understand

how a normal gradient descent algorithm works and how XGBoost makes it much more

efficient. We will apply this algorithm on the multiclass classification of the Big Mart

dataset. Let’s start this section by taking a look at the two algorithms.

 Gradient Boosting Algorithm
Boosting is a technique that comes inside the domain of ensemble trees in machine

learning. In this algorithm, multiple decision trees are combined to give the final

predictions. Other approaches in ensemble trees include bagging and random forests.

Boosting differs from the other approaches by the way it combines multiple trees.

When the first decision tree is made (generally its CART decision tree), then all the

observations are given equal weight. The model, once trained, is applied on the same

dataset. Then the second decision tree is made. In this decision tree, all the observations

that were wrongly classified in the first decision tree are given more weight, while others

are given less weight. This is done by increasing the weights of the observations that are

difficult to classify while reducing the weights of all other observations. This process is

repeated, and then finally the last decision tree gives us the final predictions. Therefore,

it is said that each decision tree is boosted by the previous decision trees, which is why

it’s called boosting. There are different kinds of boosting approaches such as AdaBoost,

gradient boost, light GBM, XGBoost, etc. See Figure 6-3.

Chapter 6 Building and deploying Models in sageMaker

127

In gradient boosting, the weights given to the parameters are learned using the

gradient descent approach. First the loss function is defined, which can be mean

squared error in case of regression problems, or a logit function in the case of

classification problems. This loss function is minimized after every decision tree is

made and added to the next decision tree. The final aim is to minimize the overall loss

function, which in return gives the best weight values for all the observations.

 XGBoost Algorithm
The XGBoost algorithm is based upon the gradient boosting framework. XGBoost

is a super-optimized version of gradient boosting, as it harnesses the power of

computational resources so well that for small to medium size datasets, it majorly

outperforms neural networks. The following are some of the major benefits of using

XGBoost:

• Multithreaded operations are supported, and therefore the multiple

trees that are built use a parallelization concept, and hence we can

utilize large numbers of decision trees less often to give us more

accurate predictions.

• Hardware performance can be maximized using approaches such as

cache and buffers, out-of-core computations, etc.

• XGBoost attaches regularization factors in decision trees, and

hence the problem of overfitting and underfitting is taken care of. It

supports both L1 and L2 regularization.

• XGBoost automatically learns the missing values by understanding

the neighborhood.

Figure 6-3. Gradient boosting

Chapter 6 Building and deploying Models in sageMaker

128

• Optimal split points are found using an approach called the weighted

quantile sketch algorithm.

• Cross-validation is performed at each step, automatically, to find the

best values of the hyperparameters. Therefore, there is no need to

write custom code.

You can find a detailed overview of the XGBoost algorithm at https://arxiv.org/

pdf/1603.02754.pdf.

 SageMaker Application of XGBoost
Just like in the previous algorithm, the first step will be defining the bucket and setting up

the path.

import os

import boto3

import re

import sagemaker

role = sagemaker.get_execution_role()

region = boto3.Session().region_name

bucket = 'slytherins-test'

prefix = 'xgboost'

bucket_path = 'https://s3-{}.amazonaws.com/{}'.format(region, bucket)

We will now follow the same steps of preprocessing the dataset, the steps that we saw

in the previous section and the previous chapter. We will proceed from the part where

we have the binned target variable. In the XGBoost algorithm, we will be using the CSV

dataset, as compared to the previous one where we used RecordIO-Protobuf. We will

save our data and store it in S3.

data_final.to_csv('train.csv', header=None, index=False)

boto3.Session(region_name=region).resource('s3').Bucket(bucket).

Object(prefix + '/train.csv').upload_file('train.csv')

Chapter 6 Building and deploying Models in sageMaker

https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf

129

The next step will be to initialize the Docker image of XGBoost.

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(region, 'xgboost', '1.0-1')

Once the container is initialized, we will initialize the algorithm and run the model.

import boto3

from time import gmtime, strftime

job_name = 'xgboost-classification-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

create_training_params = \

{

 "AlgorithmSpecification": {

 "TrainingImage": container,

 "TrainingInputMode": "File"

 },

 "RoleArn": role,

 "OutputDataConfig": {

 "S3OutputPath": bucket_path + "/" + prefix + "/xgboost"

 },

 "ResourceConfig": {

 "InstanceCount": 1,

 "InstanceType": "ml.m4.xlarge",

 "VolumeSizeInGB": 5

 },

 "TrainingJobName": job_name,

 "HyperParameters": {

 "max_depth":"5",

 "eta":"0.2",

 "gamma":"4",

 "min_child_weight":"6",

 "subsample":"0.7",

 "silent":"0",

 "objective":"multi:softmax",

Chapter 6 Building and deploying Models in sageMaker

130

 "num_round":"50",

 "num_class":"4"

 },

 "StoppingCondition": {

 "MaxRuntimeInSeconds": 3600

 },

 "InputDataConfig": [

 {

 "ChannelName": "train",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": bucket_path + "/" + prefix + '/',

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 "ContentType": "csv",

 "CompressionType": "None"

 },

 {

 "ChannelName": "validation",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": bucket_path + "/" + prefix + '/',

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 "ContentType": "csv",

 "CompressionType": "None"

 }

]

}

client = boto3.client('sagemaker', region_name=region)

client.create_training_job(**create_training_params)

Chapter 6 Building and deploying Models in sageMaker

131

Let’s understand the previous code.

 1. In the algorithm specification, we will pass the initialized Docker

container and the type of data. Here we are using a CSV file;

hence, the data type will be file.

 2. In RoleArn, we will be passing the IAM role. It is mandatory to

pass this because it will define what resources we have the access

to. We can go to the IAM roles section and note the ARN of the

roles that we have created there.

 3. S3OutputPath defines where in S3 our model files will be stored.

 4. Next, we have to configure our resources. We will specify the

resource count, resource type, and storage. Remember, the bigger

the resource you choose, the more the cost you bear. Before

deciding on this, visit the Cost Explorer and look at the cost of the

resource that you want to choose.

 5. Hyperparameters of the XGBoost algorithm need to be set in the

next section.

 6. The next section talks about the maximum time you want the

resource to run. If the running time exceeds that time, the job will

automatically stop.

 7. Finally, we pass the input data configuration and type in the last

section.

This JSON format, once filled, spins up the container, and the training starts. We can

get to know the metrics and logs for the model using Cloud Metrics and CloudWatch,

which we will look at in the next chapter. Here we will write a script that will keep telling

us whether the training is in progress. Once the training finishes or some error happens,

the script informs us.

import time

status = client.describe_training_job(TrainingJobName=job_name)

['TrainingJobStatus']

print(status)

while status !='Completed' and status!='Failed':

 time.sleep(60)

Chapter 6 Building and deploying Models in sageMaker

132

 status = client.describe_training_job(TrainingJobName=job_name)

['TrainingJobStatus']

 print(status)

Once the training finishes, we get the output shown here:

Just like in the previous section, once the model is trained, we can prepare and

expose an endpoint that the predictions can use. To expose the endpoint, the following

script for XGBoost algorithm can be used:

create_endpoint_response = client.create_endpoint(

 EndpointName="xgboost-bigmart-endpoint",

 EndpointConfigName="xgboost-bigmart-config")

This will spin up the endpoint, and later the predictions can be made using it. Next,

we can test the model by using the invoke_endpoint() method.

runtime_client = boto3.client('runtime.sagemaker', region_name=region)

response = runtime_client.invoke_endpoint(EndpointName=endpoint_name,

 ContentType='text/csv',

 Body=test_data)

To read the predictions, we can use following script:

result = response['Body'].read()

result = result.decode("utf-8")

result = result.split(',')

result = [math.ceil(float(i)) for i in result]

label = payload.strip(' ').split()[0]

print ('Label: ',label,'\nPrediction: ', result[0])

Chapter 6 Building and deploying Models in sageMaker

133

We can do batch predictions as well, just like the linear learner. You can find the code

for batch predictions in the GitHub repository. Don’t forget to delete the endpoint after

the predictions.

client.delete_endpoint(EndpointName=endpoint_name)

 Exploring the Blazing Text Algorithm
The blazing text algorithm is used for generating word embeddings for the textual

data. Later these embeddings can be given to any machine learning model to do any

classification tasks. In this section, we will first understand the blazing text algorithm

and then apply it on the text8 dataset.

The blazing text algorithm is a highly optimized version of the word2vec algorithm

that allows faster training and inference and supports distributed training as well. Once

the vectors are generated using this algorithm, we can use them for different tasks such

as text classification, summarization, translation, etc. It supports two architectures,

similar to that of word2vec.

• Skip gram architecture

• Continuous bag of words architecture

Let’s briefly discuss these architectures.

 Skip Gram Architecture of Word Vectors Generation
The skip gram algorithm is used to generate word vectors by finding words that are

most similar to each other. This algorithm tries to understand the context of a sentence.

To do that, it takes a word as input and then tries to predict all the words that have

similar context. Figure 6-4 shows the architecture, taken from the research paper at

https://arxiv.org/pdf/1301.3781.pdf (Mikolov el al.)

Chapter 6 Building and deploying Models in sageMaker

https://arxiv.org/pdf/1301.3781.pdf

134

To understand the context and generate word vectors, a small neural network

architecture is used with hidden layers that have no activation functions. In the

beginning, each word is encoded using the one-hot encoding algorithm and then fed to

the network. A weight is assigned to the hidden layer, whose value is learned through a

loss function. Once the model is trained, it can be used for generating word vectors or

directly used for text classification models.

 Continuous Bag of Words Architecture of Word Vectors
Generation
The continuous bag of words (CBOW) method, you could say, is the reverse of skip

gram. It understands the context and then tries to predict the word in that context. For

example, if the sentence is “Delhi is the capital of India” and we then write “Delhi is the

capital,” then it should predict India. The architecture is again the same, where we have a

hidden layer and an output layer. Each word passed to the network is one-hot encoded.

See Figure 6-5.

Figure 6-4. Skip gram algorithm

Chapter 6 Building and deploying Models in sageMaker

135

 SageMaker Application of Blazing Text
Before starting the coding, we must understand the dataset for which we will be

generating the word vectors using the blazing text algorithm. The dataset that we’ll be

using is called the text8 dataset. It is a small, cleaned version of the entire Wikipedia text.

The entire Wikipedia dump is called wiki9, which is then cleaned and converted into fil9.

A subset (100 MB) of this cleaned dataset is taken and called text8. We can download the

dataset from http://mattmahoney.net/dc/text8.zip.

As you may already know by now, the data downloaded must be sent to the S3

bucket so that our resources and the algorithm container can access it. We can upload

the data using the following script:

train_channel = prefix + '/train'

sess.upload_data(path='text8', bucket=bucket, key_prefix=train_channel)

Let’s store the path to this dataset in a variable.

s3_train_data = 's3://{}/{}'.format(bucket, train_channel)

Figure 6-5. CBOW algorithm

Chapter 6 Building and deploying Models in sageMaker

http://mattmahoney.net/dc/text8.zip

136

Remember to define all the required fields before executing this code, namely,

bucket, role, etc. We have already seen how to define them in the previous sections. We

can also look at the GitHub repo to understand the complete code.

Now that we have stored the data and defined the path, the next step will be to

initialize the blazing text Docker container.

container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name,

"blazingtext", "latest")

Once the container is ready, we have to initialize the instance/resource.

bt_model = sagemaker.estimator.Estimator(container,

 role,

 train_instance_count=1,

 train_instance_type='ml.m4.xlarge',

 train_volume_size = 5,

 train_max_run = 360000,

 input_mode= 'File',

 output_path=s3_output_location,

 sagemaker_session=sess)

Don’t forget to define the S3 output location before running this code.

s3_output_location = 's3://{}/{}/output'.format(bucket, prefix)

All the parameters are self-explanatory, and we already looked at them in the

previous section. Remember, the ml.m4.xlarge instance comes under the free tier. So if

you want to play around with different algorithms, always use this instance. Next, we will

set up the algorithm hyperparameters.

bt_model.set_hyperparameters(mode="batch_skipgram",

 epochs=5,

 min_count=5,

 sampling_threshold=0.0001,

 learning_rate=0.05,

 window_size=5,

 vector_dim=100,

 negative_samples=5,

 batch_size=11,

Chapter 6 Building and deploying Models in sageMaker

137

 evaluation=True,

 subwords=False)

We have already looked at these parts of the algorithm at the start of this section.

Now we will pass the data as a JSON file to train the algorithm. Before doing that, we

must tell the algorithm that the data is coming from S3. This information was passed in

the previous algorithm using JSON. Here we will pass it using the following script:

train_data = sagemaker.session.s3_input(s3_train_data, content_type='text/

plain', s3_data_type='S3Prefix')

data_channels = {'train': train_data}

bt_model.fit(inputs=data_channels, logs=True)

The logs parameter will not only train the model but will also show the model

output in the same Jupyter Notebook. Otherwise, we would have to look at the output in

the CloudWatch. The next steps will be the same as before. Deploy the model and test it.

bt_endpoint = bt_model.deploy(initial_instance_count = 1,instance_type =

'ml.m4.xlarge')

words = ["awesome", "blazing"]

payload = {"instances" : words}

response = bt_endpoint.predict(json.dumps(payload))

vecs = json.loads(response)

print(vecs)

Here we will get the output, which will be the word vectors generated for the words

awesome and blazing. Finally, we will delete the model endpoint.

sess.delete_endpoint(bt_endpoint.endpoint)

In the next section, we will look at the image classification algorithm in SageMaker.

 Exploring the Image Classification Algorithm
SageMaker’s image classification algorithm is based upon a special convolutional neural

network architecture called a ResNet. Before looking at the application of this algorithm,

let’s first explore and understand the ResNet architecture used for image classification.

Chapter 6 Building and deploying Models in sageMaker

138

 ResNet
A ResNet is an architecture that is based on the framework of convolutional neural

networks and used for problem statements such as image classification. To understand

a ResNet, we must first look at the operation of convolutional neural networks. See

Figure 6-6.

A typical CNN consists of the following operations:

 1. The first operation is the convolution operation, which is also

considered an application of filters. We apply different filters on

the image so that we can get different versions of the same image,

which helps us understand the image perfectly. But, instead of

hard-coding the filters, the values of these filters are learned using

the backpropagation approach.

 2. The next step is called pooling or subsampling. Here, we reduce

the size of the image so that the training time becomes faster.

There are different types of pooling approaches such as max-

pooling, average-pooling, etc.

 3. The previous two processes are repeated multiple times, and then

the final pooling operation’s output is given to a fully connected

neural network layer. Here the major learning happens, and finally

the classification task is done.

Figure 6-6. Convolutional neural network, 10.1109/
ICEngTechnol.2017.8308186

Chapter 6 Building and deploying Models in sageMaker

139

A problem with the previous architecture is when the network is made too deep;

that’s when the backpropagation process suffers. Inside the backpropagation process

the gradients turn to zero, and hence the learning stops. This phenomenon is called

vanishing gradients. Therefore, to solve this issue during a deep CNN training, ResNets

come into picture. Figure 6-7 shows the architecture of a ResNet.

ResNet’s major key is that it allows the flow of gradients in the backward direction.

Also, the inputs are bypassed every two convolutions. These two workarounds in CNNs

solve the problem of vanishing gradients. To learn more about ResNet, please visit

https://arxiv.org/pdf/1512.03385.pdf. Covered next is the 34-layered residual

network.

Figure 6-7. Source: https://arxiv.org/pdf/1512.03385.pdf

Chapter 6 Building and deploying Models in sageMaker

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf

140

 SageMaker Application of Image Classification
For this algorithm, we will be using a dataset called Caltech256. It contains about 30,000

images of 256 object categories. These categories include ak47, grasshopper, bathtub,

etc. We can explore more about this dataset or download the dataset from http://www.

vision.caltech.edu/Image_Datasets/Caltech256/.

So, in this section, our task is to create a machine learning algorithm that classifies

the image into these 256 categories. We will start by defining our roles, regions, etc., that

we have already seen in the previous sections. Next, let’s initialize the Docker container

of the image classification algorithm.

training_image = get_image_uri(boto3.Session().region_name, 'image-

classification')

Already we have these images categorized into train and validation sets. We can use

these images directly. We can download the images from here:

http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec

http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec

Let’s move these images to our S3 bucket. These images are in RecordIO-Protobuf

format, as the algorithm expects them in that format only. Let’s create a function this

time that uploads files to S3.

def upload_to_s3(channel, file):

 s3 = boto3.resource('s3')

 data = open(file, "rb")

 key = channel + '/' + file

 s3.Bucket(bucket).put_object(Key=key, Body=data)

We will now define the folders inside the bucket where we will save the data.

s3_train_key = "image-classification/train"

s3_validation_key = "image-classification/validation"

All that is left is to store the image files in S3.

upload_to_s3(s3_train_key, 'caltech-256-60-train.rec')

upload_to_s3(s3_validation_key, 'caltech-256-60-val.rec')

Chapter 6 Building and deploying Models in sageMaker

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec

141

Let’s define the parameters related to the algorithm, which we will use to train the model.

num_layers = "18"

image_shape = "3,224,224"

num_training_samples = "15420"

num_classes = "257"

mini_batch_size = "64"

epochs = "2"

learning_rate = "0.01"

The number of layers define the depth of the network. The image shape is 224×224

with three channels (RGB). The total number of images in the training dataset is 15,420.

We have a total of 257 classes, 256 objects, and one extra class for others. We define the

batch size of 64, which tells that in one go how many images will enter the network. We

define the epochs as 2, which means the model will be trained on the whole training

dataset two times. Finally, the learning rate is chosen as 0.1, which will decide the

number of steps taken to converge and reach the local minima.

We can now define the algorithm. We have already initialized the container.

s3 = boto3.client('s3')

job_name_prefix = 'imageclassification'

job_name = job_name_prefix + '-' + time.strftime('-%Y-%m-%d-%H-%M-%S',

time.gmtime())

training_params = \

{

 "AlgorithmSpecification": {

 "TrainingImage": training_image,

 "TrainingInputMode": "File"

 },

 "RoleArn": role,

 "OutputDataConfig": {

 "S3OutputPath": 's3://{}/{}/output'.format(bucket, job_name_prefix)

 },

 "ResourceConfig": {

 "InstanceCount": 1,

Chapter 6 Building and deploying Models in sageMaker

142

 "InstanceType": "ml.p2.xlarge",

 "VolumeSizeInGB": 50

 },

 "TrainingJobName": job_name,

 "HyperParameters": {

 "image_shape": image_shape,

 "num_layers": str(num_layers),

 "num_training_samples": str(num_training_samples),

 "num_classes": str(num_classes),

 "mini_batch_size": str(mini_batch_size),

 "epochs": str(epochs),

 "learning_rate": str(learning_rate)

 },

 "StoppingCondition": {

 "MaxRuntimeInSeconds": 360000

 },

 "InputDataConfig": [

 {

 "ChannelName": "train",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": s3_train,

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 "ContentType": "application/x-recordio",

 "CompressionType": "None"

 },

 {

 "ChannelName": "validation",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": s3_validation,

Chapter 6 Building and deploying Models in sageMaker

143

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 "ContentType": "application/x-recordio",

 "CompressionType": "None"

 }

]

}

We already know most of the parameters in the previous JSON, as we have covered

them in the XGBoost algorithm. The following are some of the unique parameters in this

algorithm:

• ContentType is application/x-recordio. As I already mentioned,

image classification expects only the RecordIO-Protobuf data format.

• S3DataDistributionType is fully replicated, which means if we

use multiple instances for parallel training, then the dataset will be

replicated in all the instances.

• The instance type we are using is p2.xlarge as image classification

expects an instance having a graphics card. Be aware that the p2 and

p3 instances are not at all free, and they are chargeable.

Once we are done with algorithm specifications, we will start the training process.

sagemaker = boto3.client(service_name='sagemaker')

sagemaker.create_training_job(**training_params)

status = sagemaker.describe_training_job(TrainingJobName=job_name)

['TrainingJobStatus']

print(status)

while status !='Completed' and status!='Failed':

 time.sleep(60)

 status = client.describe_training_job(TrainingJobName=job_name)

['TrainingJobStatus']

 print(status)

As shown, this code will start the training and then inform us whether the training

successfully finished. Once the training is finished, we will deploy the model and then do

Chapter 6 Building and deploying Models in sageMaker

144

the predictions. Again, the process will be the same as the ones we saw in the previous

algorithms.

endpoint_response= sagemaker.create_endpoint(

 EndpointName="image-classification-caltech-endpoint",

 EndpointConfigName="image-classification-caltech-config")

This will take some time and spin up the resource required for the endpoint

generation. Once the endpoint is generated, we can start the predictions.

Let’s download an image and use it for testing our model. We can download a

bathtub image and check whether the model predicts it perfectly.

! wget -O /tmp/test.jpg http://www.vision.caltech.edu/Image_Datasets/

Caltech256/images/008.bathtub/008_0007.jpg

The previous line will directly download the image to your system. If your system is

not Linux, then you can directly go to the link and download the image. Next, we need to

read the image and then pass it to the endpoint.

with open('/tmp/test.jpg', 'rb') as f:

 payload = f.read()

 payload = bytearray(payload)

response = runtime.invoke_endpoint(EndpointName=endpoint_name,

 ContentType='application/x-image',

 Body=payload)

result = response['Body'].read()

result = json.loads(result)

The variable result consists of probabilities of prediction for all the classes. We

need to find the class that has the maximum probability. That means if we can get the

argument that has the maximum probability, that will be our predicted class. For this we

can use the np.argmax() function.

index = np.argmax(result)

Now, we can use this index to extract the label. We can create a list of all the labels in

the same sequence as they are present in the dataset, and then we can pass the index to

predict the label. Suppose we save all the classes in the variable object_classes. Next

we can print the prediction.

Chapter 6 Building and deploying Models in sageMaker

145

print("Result: label - " + object_categories[index] + ", probability - " +

str(result[index]))

You can find the entire code in the GitHub repository. Also, don’t forget to delete the

endpoint once all the operations are done.

sage.delete_endpoint(EndpointName=endpoint_name)

 Exploring the SeqToSeq Algorithm
Amazon’s sequence-to-sequence algorithm is based upon recurrent neural networks,

convolutional neural networks, and an encoder-decoder architecture to understand the

context more efficiently. The next section is a brief overview of the RNN and encoder-

decoder architectures.

 Recurrent Neural Networks
When we deal with sequential data or time-based data, it becomes necessary to

remember a few things from the past and understand how it can be used to predict

the outcome. This is not possible with using normal artificial neural networks or

convolutional neural networks. Therefore, a new architecture called RNN is used

whenever we deal with sequential data. Figure 6-8 shows a simple RNN architecture.

Figure 6-8. Recurrent neural networks

Chapter 6 Building and deploying Models in sageMaker

146

For example, in text classification, each word of the text is taken, some neural
network–based computations are applied, and important aspects are stored and then
passed to the next RNN layer. Storage happens in h, words are sent through x, while the
output is received through y. The words are not directly passed, but they are converted
into vectors and then passed. We can use algorithms such as word2vec, glove, or blazing
text in SageMaker to generate these word vectors.

There are various modifications to RNNs that solve the shortcomings present in the
original versions. Two of the most used are long short-term memory (LSTM) and gated
recurrent units (GRU).

 Encoder-Decoder Architecture
Figure 6-9 shows a typical encoder and decoder architecture.

Figure 6-9. Encoders and decoders

An encoder is mostly used to not only memorize the past and give accurate
predictions but also to understand the context of the text passed. We can use normal
RNNs or LSTMS and GRUs. Once the encoders look at all the word vectors, they generate
the encoder vectors and pass them to the decoder. The encoder vector suffices all the
information that the encoder has received, and the decoder uses it to make efficient
predictions.

The decoder takes these encoder vectors, feeds them to RNNs of its own, and then
applies a softmax activation function to give the output. The best advantage of this
architecture, apart from understanding the context, is its ability to take variable-length

input and give variable-length output.

Chapter 6 Building and deploying Models in sageMaker

147

 SageMaker Application of SeqToSeq
Let’s understand the algorithm in more detail by applying it to the machine translation

use case; that is, let’s translate something from English to German. The first few steps will

remain the same, as we saw in the previous algorithms.

from time import gmtime, strftime

import time

import numpy as np

import os

import json

import boto3

import re

from sagemaker import get_execution_role

region_name = boto3.Session().region_name

bucket = 'slytherins-test'

prefix = 'seq2seq-E2G'

role = get_execution_role()

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(region_name, 'seq2seq')

So, in the previous steps we have defined the container of the algorithm and defined

our bucket and the folder inside where the entire model-related files will be saved. The

next step will be to have a dataset. The Seq2Seq algorithm has two approaches. In the

first, you can use the pretrained model available for the predictions. So, for our example,

a model already exists that is trained on English to German machine translation. Or, we

can train the model on our own corpus and then use it for the predictions. This process

may take a lot of time, but it is the best when used for domain-specific translation tasks.

We will first see how to train the model on a corpus, and then we will use the

pretrained model for predictions. The data that we will be using is news data. We will

have files that contain news commentary in English and its translation in German. We

can get these files from http://data.statmt.org/wmt17/translation-task/.

Chapter 6 Building and deploying Models in sageMaker

http://data.statmt.org/wmt17/translation-task/

148

Let’s download the data from inside the notebook and create our training and

validation sets.

! wget http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/

corpus.tc.de.gz

! wget http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/

corpus.tc.en.gz

! gunzip corpus.tc.de.gz

! gunzip corpus.tc.en.gz

! mkdir validation

! curl http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/

dev.tgz | tar xvzf - -C validation

The previous files that we have downloaded are big, around 250 MB each. So, if we

train the model on the entire dataset, it may take days to finish. Therefore, we can take a

subset of the entire data and use it for training.

! head -n 10000 corpus.tc.en > corpus.tc.en.small

! head -n 10000 corpus.tc.de > corpus.tc.de.small

The previous subset created has 10,000 rows. We will use this small dataset for

training. The next step will be to generate English and German vocabulary from the

previous files. This will use the tokenization and other NLP components to generate the

vocabulary.

%%bash

python3 create_vocab_proto.py \

 --train-source corpus.tc.en.small \

 --train-target corpus.tc.de.small \

 --val-source validation/newstest2014.tc.en \

 --val-target validation/newstest2014.tc.de

The previous Python script takes as input the source English text and target German

text. It applies the preprocessing to generate the vocabulary. Finally, it saves the English

and German vocabulary in the validation folder. We use %%bash to run any command-

line scripts inside the notebook. This is a Jupyter magic function.

Chapter 6 Building and deploying Models in sageMaker

149

Now that our dataset has been created, we need to send it to our S3 bucket.

def upload_to_s3(bucket, prefix, channel, file):

 s3 = boto3.resource('s3')

 data = open(file, "rb")

 key = prefix + "/" + channel + '/' + file

 s3.Bucket(bucket).put_object(Key=key, Body=data)

upload_to_s3(bucket, prefix, 'train', 'train.rec')

upload_to_s3(bucket, prefix, 'validation', 'val.rec')

upload_to_s3(bucket, prefix, 'vocab', 'vocab.src.json')

upload_to_s3(bucket, prefix, 'vocab', 'vocab.trg.json')

The code that we just executed generates two files. One is the vocabulary that is

generated, and the second is the RecordIO-Protobuf version of the data. We will upload

both of these files to S3 using the previous code.

All the basic steps are complete now, and we want to now initialize the algorithm. We

will do that using the code shown here:

job_name = 'seq2seq-E2G'

print("Training job", job_name)

create_training_params = \

{

 "AlgorithmSpecification": {

 "TrainingImage": container,

 "TrainingInputMode": "File"

 },

 "RoleArn": role,

 "OutputDataConfig": {

 "S3OutputPath": "s3://{}/{}/".format(bucket, prefix)

 },

 "ResourceConfig": {

 # Seq2Seq does not support multiple machines. Currently, it only

supports single machine, multiple GPUs

 "InstanceCount": 1,

 "InstanceType": "ml.m4.xlarge", # We suggest one of ["ml.

p2.16xlarge", "ml.p2.8xlarge", "ml.p2.xlarge"]

Chapter 6 Building and deploying Models in sageMaker

150

 "VolumeSizeInGB": 5

 },

 "TrainingJobName": job_name,

 "HyperParameters": {

 # Please refer to the documentation for complete list of parameters

 "max_seq_len_source": "60",

 "max_seq_len_target": "60",

 "optimized_metric": "bleu",

 "batch_size": "64", # Please use a larger batch size (256 or 512)

if using ml.p2.8xlarge or ml.p2.16xlarge

 "checkpoint_frequency_num_batches": "1000",

 "rnn_num_hidden": "512",

 "num_layers_encoder": "1",

 "num_layers_decoder": "1",

 "num_embed_source": "512",

 "num_embed_target": "512"

 },

 "StoppingCondition": {

 "MaxRuntimeInSeconds": 48 * 3600

 },

 "InputDataConfig": [

 {

 "ChannelName": "train",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": "s3://{}/{}/train/".format(bucket, prefix),

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 },

 {

 "ChannelName": "vocab",

 "DataSource": {

 "S3DataSource": {

Chapter 6 Building and deploying Models in sageMaker

151

 "S3DataType": "S3Prefix",

 "S3Uri": "s3://{}/{}/vocab/".format(bucket, prefix),

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 },

 {

 "ChannelName": "validation",

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": "s3://{}/{}/validation/".format(bucket, prefix),

 "S3DataDistributionType": "FullyReplicated"

 }

 },

 }

]

}

sagemaker_client = boto3.Session().client(service_name='sagemaker')

sagemaker_client.create_training_job(**create_training_params)

You can see that the format is the same as that of the XGBoost algorithm and

image classification algorithm. All the parameters are the same as the algorithms that

we discussed in the previous sections. Only the hyperparameters are specific to this

algorithm. Let’s discuss these parameters:

• The max sequence length of the original text and the target text is the

number of characters to take as a sequence and pass to the neural

network architecture.

• The batch size is the number of rows to be passed to the algorithm in

one go.

• The checkpoint frequency saves the model after every batch of 1,000 rows.

Chapter 6 Building and deploying Models in sageMaker

152

• The number of hidden layers of a neural network is defined as 512

with one encoder architecture unit and one decoder architecture

unit. Remember, these units are used for understanding the context

of the sentences.

• The embedding source and target defines the word vector size of

each sentence in the dataset. It is set to 512.

This code will start the execution of the training and will take a lot of hours to finish.

Remember, this algorithm requires a GPU instance for execution. So, whatever instance

you select will be chargeable. Choose wisely.

Now, let’s look at how we can use the pretrained model that already exists and do

the inference on the test dataset by exposing the endpoint. When we train the previous

model, we will get three files:

• Model.tar.gz

• Vocab.src.json

• Vocab.trg.json

So, once you train the model, you can use these files directly. But, for using the

pretrained model, we will download these files. We can download them from here:

model_name = "DEMO-pretrained-en-de-model"

! curl https://s3-us-west-2.amazonaws.com/seq2seq-data/model.tar.gz >

model.tar.gz

! curl https://s3-us-west-2.amazonaws.com/seq2seq-data/vocab.src.json >

vocab.src.json

! curl https://s3-us-west-2.amazonaws.com/seq2seq-data/vocab.trg.json >

vocab.trg.json

We will have to upload the model files to S3 so that our endpoint can use it.

upload_to_s3(bucket, prefix, 'pretrained_model', 'model.tar.gz')

model_data = "s3://{}/{}/pretrained_model/model.tar.gz".format(bucket, prefix)

model_data stores the address of the model file uploaded. Next, we will have to

update this model in the algorithm so that we can use it for prediction. For this we will

use the create_model() function.

Chapter 6 Building and deploying Models in sageMaker

153

sage = boto3.client('sagemaker')

primary_container = {

 'Image': container,

 'ModelDataUrl': model_data

}

create_model_response = sage.create_model(

 ModelName = model_name,

 ExecutionRoleArn = role,

 PrimaryContainer = primary_container)

The next step will be to define the resources that will be used by the endpoint.

from time import gmtime, strftime

endpoint_config_name = 'DEMO-Seq2SeqEndpointConfig-' + strftime("%Y-%m-%d-

%H-%M-%S", gmtime())

print(endpoint_config_name)

create_endpoint_config_response = sage.create_endpoint_config(

 EndpointConfigName = endpoint_config_name,

 ProductionVariants=[{

 'InstanceType':'ml.m4.xlarge',

 'InitialInstanceCount':1,

 'ModelName':model_name,

 'VariantName':'AllTraffic'}])

Now we can expose the endpoint by using the previous configurations.

endpoint_name = 'DEMO-Seq2SeqEndpoint-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

create_endpoint_response = sage.create_endpoint(

 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name)

After some time, our endpoint will be ready for inference. Let’s see how we can make

predictions, in this case converting text in English to German.

runtime = boto3.client(service_name='runtime.sagemaker')

sentences = ["you are so good !",

Chapter 6 Building and deploying Models in sageMaker

154

 "can you drive a car ?",

 "i want to watch a movie ."

]

payload = {"instances" : []}

for sent in sentences:

 payload["instances"].append({"data" : sent})

response = runtime.invoke_endpoint(EndpointName=endpoint_name,

 ContentType='application/json',

 Body=json.dumps(payload))

response = response["Body"].read().decode("utf-8")

response = json.loads(response)

print(response)

You will get the output as given next:

As you can see, the predictions have been successfully made.

 Conclusion
In this chapter, you learned about the various built-in algorithms of SageMaker. These

are the optimized versions of the algorithms already present in the machine learning

domain. In the next chapter, we will explore different metrics with which we can evaluate

these models using Cloud Metrics, look at the logs when the container is running using

CloudWatch, and explore endpoint configurations in detail with connectivity with

lambda functions. Also, we will do batch transformations on the algorithms that we have

already seen in this chapter.

Chapter 6 Building and deploying Models in sageMaker

155
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_7

CHAPTER 7

Using CloudWatch
with SageMaker
In this chapter, we will explore CloudWatch functionality in AWS in detail. Specifically,

we will look at two components of CloudWatch, CloudWatch Logs and CloudWatch

Metrics, that we will use a lot while using SageMaker.

 Amazon CloudWatch
Amazon CloudWatch is a service provided by Amazon that tracks the resource activities

of AWS and provides metrics related to it. It also stores the logs that are provided by every

resource used. Through these logs and metrics, a user can explore the performance of an

AWS resource being used and what can be done to improve it.

When it comes to machine learning, especially with SageMaker, CloudWatch Logs

gives us the output of containers in which the code is running. As we have already seen

in the previous chapters, machine learning algorithms run inside a Docker container

attached to an EC2 instance. So, the output that originates from these containers is not

directly visible. To look at this output, we must make some adjustments to our code,

and then the status can be seen directly in the Jupyter Notebook in use, or we can use

CloudWatch Logs to get this output in a step-by-step manner. The output can include

your model outputs, the reason why your model failed, insights into the step-by-step

execution, etc. Containers are required for three jobs, and hence we have three log

groups in machine learning.

• Processing Jobs log group

• Training Jobs log group

• Transform Jobs log group

https://doi.org/10.1007/978-1-4842-6222-1_7#DOI

156

We will look at these log groups in detail in the coming sections.

CloudWatch Metrics provides us with information in the form of values to variables.

For example, when it comes to machine learning, CloudWatch Metrics can provide

values such as the accuracy of a model, precision, error, etc. It can also provide metrics

related to resources, such as GPU utilization, memory utilization etc. We will look at

CloudWatch Metrics in detail in the coming sections. Figure 7-1 shows the architecture

of how CloudWatch works.

By looking at this architecture, we can see that in addition to accessing the services

through the Amazon Management Console, we can integrate alarms through Amazon

SNS, which can be connected to your email. We can also set custom rules based on

certain criteria. This includes starting, stopping, and terminating a process or using

features such as autoscaling. Let’s dive deeper into CloudWatch Logs in the next section.

Figure 7-1. Amazon CloudWatch architecture

Chapter 7 Using CloUdWatCh With sageMaker

157

 CloudWatch Logs
In the SageMaker console, on the left side, we have a sidebar that guides us through the

different operations that are possible in it. We can create notebook instances, look at

different algorithms that we ran, and analyze the endpoints. We can look at the logs of

all the services that we have used by viewing the log details. Let’s start with the training

job–related logs.

 Training Jobs
In the previous chapter, we ran an XGBoost model on the Big Mart dataset. Inside the

SageMaker console, if we go to the Training drop-down and select “Training jobs”

(Figure 7-2), we will get a list of all the algorithms that we have run (Figure 7-3).

Figure 7-2. Selecting the training job

Chapter 7 Using CloUdWatCh With sageMaker

158

We can select the algorithm that we want more details for; in our case, it is XGBoost.

When we click the algorithm, a new page opens with a lot of information about the

model we ran. For example, it tells about the algorithm specifications that we provided

while running the model. If we scroll down the page, we will come to a section called

Monitor (Figure 7-4). From there we can jump to CloudWatch Logs.

Figure 7-3. Selecting the job for which the logs need to be analyzed

Figure 7-4. Monitor section

Chapter 7 Using CloUdWatCh With sageMaker

159

Click the “View logs” link, and you will see the CloudWatch page open. See Figure 7- 5.

As you can see in Figure 7-5, a lot of options are available in the CloudWatch console.

We are looking at the log groups. As you know, because we have selected the training job,

this information is present at the top of the console (see Figure 7-6).

Figure 7-5. Selecting the algorithm for the logs

Figure 7-6. Path

When we scroll down, at the bottom we can see the name of the algorithm. We must

click it to get to the logs (see Figure 7-7).

Chapter 7 Using CloUdWatCh With sageMaker

160

You can see that the complete logs related to your algorithm will be present there.
We get the step-by-step results, which in this case includes the train and validation error.
You can keep scrolling down until the end of the page to reach the last output of the
algorithm. This is how you can look at the logs of any training algorithm that you have
executed.

Remember, the logs will start appearing only once the container has successfully
started and the algorithms have started running. If there is a problem with your
Docker script, then you will not find any logs generated. But, if your code related to the
algorithm has an error, then you will find the information in the logs section, as the
container had successfully started, and hence the logs have started generating. So, if
your model is not running, you can come to the logs to check the error in the code. With
custom containers, if the logs don’t start running, in general the error is probably in the
Docker script. We will explore the custom containers in the next chapter. Let’s now look
at the logs for processing jobs.

 Processing Jobs
In Chapter 5, we saw how to process data using the processing script. We used both
Sklearn containers, and I also showed you how to use a custom container for processing.
Let’s look at the logs generated by our processing script. To do this, we will first open
the CloudWatch console from the services list. Once we are there, click the Log Groups
section, the one that we used in the previous section. Here, you will find a list of different

log groups, as you can see in Figure 7-8.

Figure 7-7. Visualizing the logs

Chapter 7 Using CloUdWatCh With sageMaker

161

You can see that in addition to the training job, you will find processing jobs,

notebook instances, and endpoint logs. Let’s click the processing jobs. You will find a list

of all the processing jobs that you ran. If you remember the name of the job, then it will

be easier to find it. That’s why it is always recommended to use unique identifiers for all

kinds of jobs. Click the latest processing job that we ran. Once you click it, you’ll find a

list of all the steps output that the processing container gave, as shown in Figure 7-9.

Figure 7-8. Log groups

Figure 7-9. Output of a container

Chapter 7 Using CloUdWatCh With sageMaker

162

This is how you can use CloudWatch to get insights about the processing jobs. Let’s

see what output we get if we click the endpoints that we created. Let’s explore the linear

learner endpoint (Figure 7-10).

You can see all the test data that we sent for the predictions, and it is giving us JSON

format output for that. This is how we can use CloudWatch Logs for our jobs. One more

section under Logs is Transform Jobs, which we will look at in the next chapter once we

discuss the batch transform job.

 CloudWatch Metrics
Similar to how we can use CloudWatch Logs to view the logs of our jobs, we can get

the metrics related to the algorithms or resources. Let’s start with understanding the

metrics related to the training jobs. We will log in to our SageMaker console and go to

the training jobs page. We will explore the linear learner metrics for the classification

task that we did on the Big Mart dataset. We will follow the same procedure to go to the

algorithm page as we saw in CloudWatch Logs. Once on that page, instead of clicking to

view the logs, we will click to view the metrics, as you can see in Figure 7-11.

Figure 7-10. Exploring the linear learning endpoint

Chapter 7 Using CloUdWatCh With sageMaker

163

Once you click “View Algorithm Metrics,” on the new screen you’ll find different

metrics available for that algorithm and a graph canvas. It will look like Figure 7-12.

In the linear learner algorithm, the metrics that we can see are the loss function, the

training progress, and the throughput. Let’s look at the loss function final value once the

training stopped. We can click the “objective_loss” and then click “Add to graph.” Next we

can move to the “Graphed metrics” option and change the period to the time when you

finished the training. You can change the graph type to Number. You will get the output,

as shown in Figure 7-13.

Figure 7-11. Selecting metrics

Figure 7-12. Selecting the objective metrics

Chapter 7 Using CloUdWatCh With sageMaker

164

Similarly, based upon the dataset, we can access a lot of metrics, as shown in

Figure 7-14.

The same procedure can be adopted to get the metrics for any algorithm that has

been run. Let’s look at some aspects of instance metrics as well. In the instance metrics,

we can look at the CPU utilization, memory utilization, and disk utilization, as shown in

Figure 7-15.

Figure 7-13. Visualizing objective loss

Figure 7-14. Different kinds of metrics available

Chapter 7 Using CloUdWatCh With sageMaker

165

You can see the metrics changing live if you open CloudWatch during the

training session.

 Conclusion
In this chapter, you learned how to use CloudWatch to get the logs and metrics of

different algorithms and resources. In the next chapter, we will look at how we can train a

custom algorithm and also look at some of the other aspects of SageMaker.

Figure 7-15. Visualizing metrics

Chapter 7 Using CloUdWatCh With sageMaker

167
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_8

CHAPTER 8

Running a Custom
Algorithm in SageMaker
In this chapter, you will see how to run an algorithm of your own, instead of using

SageMaker’s built-in algorithms. Although SageMaker provides built-in algorithms for

almost any kind of problem statement, many times we want to run our own custom

model utilizing the power of SageMaker. We can do so effectively if we have working

knowledge of Docker and hands-on knowledge of Python. In this chapter, we will create

a custom random forest model for our Big Mart dataset. We will deploy the container in

ECR and then train the model using SageMaker. Then we will use the model to do real-

time inference as well as understand how batch transformation is done.

 The Problem Statement
The problem statement is that we will try to predict the sales of an e-commerce firm

using the random forest algorithm (one of the supervised learning ensemble tree

algorithms). As it is a regression problem, we will be using the RandomForestRegressor

class of the Scikit-Learn package. We have already explored the dataset in the previous

chapters; it’s the Big Mart dataset. Figure 8-1 shows the first few rows of the dataset.

https://doi.org/10.1007/978-1-4842-6222-1_8#DOI

168

Review Chapter 5 if you want to understand the dataset. We already processed the

data in that chapter and created the training and validate dataset, so we will not be

repeating that process here. We will continue developing the algorithm after the train

and test split is done. Please go through Chapter 5 to revise the entire process.

 Running the Model
Before moving to the application of the model inside the SageMaker environment, let’s

first run the algorithm, locally, on the dataset that we have prepared and check the total

loss that was incurred.

from sklearn.ensemble import RandomForestRegressor

rfc = RandomForestRegressor(n_estimators=500)

In the previous code, we initialized the RandomForestRegressor algorithm and

asked to merge the outputs of 500 individual decision trees. Once we have initialized the

algorithm, we can start training the model.

rfc.fit(X_train, y_train)

The previous code will start the training of the model. Now we can use the trained

model to make predictions on the test set.

predictions = rfc.predict(X_test)

All the predictions are not stored in the variable predictions. Let’s calculate the roto

mean squared error of the model that we have created.

from sklearn.metrics import mean_squared_error

np.sqrt(mean_squared_error(predictions, y_test))

Figure 8-1. Start of the dataset

Chapter 8 running a Custom algorithm in sagemaker

169

This will give a value for the final error. In my case, it’s 1054 approximately. Different

systems may have different outputs due to sampling.

 Transforming Code to Use SageMaker Resources
Now that we have successfully run the code in the local environment, we will next

transform it so that it can be run inside the SageMaker environment. The following are

the steps to run a custom model in SageMaker:

 1. Store the data in S3.

 2. Create a training script and name it train.

 3. Create an inference script that will help in predictions. We will call

it predictor.py.

 4. Set up files so that it will help in endpoint generation.

 5. Create a Dockerfile that will help in building an image inside

which the entire code will run.

 6. Build a script to push the Docker image to Amazon Elastic

Container Registry (ECR).

 7. Use the SageMaker and Boto3 APIs to train and test the model.

We already have our training data inside S3, so we will start by creating a training

script.

 Creating the Training Script
We have already created a training notebook. This training script will be similar to

the notebook, but we have a few extra considerations. The first thing that should be

kept in mind is that the script is going to run inside a container. So, there can be a

synchronization issue as the script is inside while the data is coming from S3 bucket,

which is outside the container. Also, the results of the algorithm should also be saved in

the S3 bucket. We need to keep all this in mind as we create a training script.

The first thing that we should know is that inside the container, no matter what the

data is that is coming in, it gets stored inside the folder /opt/ml. Therefore, data from

Chapter 8 running a Custom algorithm in sagemaker

170

S3 will be downloaded from that folder. So, in this folder we have to create three folders:

one to store the input, one to store the output, and one to store the models. This can be

defined by using the following script:

prefix = '/opt/ml/'

input_path = prefix + 'input/data'

output_path = os.path.join(prefix, 'output')

model_path = os.path.join(prefix, 'model')

Inside the data folder, we can have multiple files such as training, validation, or

testing. We can also have separate files contributing to a single training file. Hence, we

can make this kind of segregation as well. For us, we have only one file: the training file.

So, we will be using only one channel.

channel_name='training'

training_path = os.path.join(input_path, channel_name)

This prepares our training script to handle data. Next is the training script itself. The

data will come from S3. First we have to read it and then apply all the steps that we saw in

Chapter 5. To read the file, we can use the following script:

input_files = [os.path.join(training_path, file) for file in

os.listdir(training_path)]

raw_data = [pd.read_csv(file) for file in input_files]

data = pd.concat(raw_data)

This script also helps if you have multiple CSV sheets to read. But, in that case

remember to keep the parameter header=None. Now that we have read the data, we can

start the training process. The following is the entire script for the training:

def train():

 print('Starting the training.')

 try:

 # Take the set of files and read them all into a single pandas

dataframe

 input_files = [os.path.join(training_path, file) for file in

os.listdir(training_path)]

Chapter 8 running a Custom algorithm in sagemaker

171

 if len(input_files) == 0:

 raise ValueError(('There are no files in {}.\n' +

 'This usually indicates that the channel ({}) was

incorrectly specified,\n' +

 'the data specification in S3 was incorrectly specified or

the role specified\n' +

 'does not have permission to access the data.').

format(training_path, channel_name))

 raw_data = [pd.read_csv(file) for file in input_files]

 data = pd.concat(raw_data)

 data = data.sample(frac=1)

 for i in data.Item_Type.value_counts().index:

 data.loc[(data['Item_Weight'].isna()) & (data['Item_Type'] == i),

['Item_Weight']] = \

 data.loc[data['Item_Type'] == 'Fruits and Vegetables',

['Item_Weight']].mean()[0]

 cat_data = data.select_dtypes(object)

 num_data = data.select_dtypes(np.number)

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Grocery Store'), ['Outlet_Size']] = 'Small'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type1'), ['Outlet_Size']] = 'Small'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type2'), ['Outlet_Size']] = 'Medium'

 cat_data.loc[(cat_data['Outlet_Size'].isna()) & (cat_data['Outlet_

Type'] == 'Supermarket Type3'), ['Outlet_Size']] = 'Medium'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'LF' , ['Item_Fat_

Content']] = 'Low Fat'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'reg' , ['Item_Fat_

Content']] = 'Regular'

 cat_data.loc[cat_data['Item_Fat_Content'] == 'low fat' , ['Item_

Fat_Content']] = 'Low Fat'

Chapter 8 running a Custom algorithm in sagemaker

172

 le = LabelEncoder()

 cat_data = cat_data.apply(le.fit_transform)

 ss = StandardScaler()

 num_data = pd.DataFrame(ss.fit_transform(num_data.drop(['Item_

Outlet_Sales'], axis=1)), columns = num_data.drop(['Item_Outlet_

Sales'],axis=1).columns)

 cat_data = pd.DataFrame(ss.fit_transform(cat_data.drop(['Item_

Identifier'], axis=1)), columns = cat_data.drop(['Item_

Identifier'], axis=1).columns)

 final_data = pd.concat([num_data,cat_data],axis=1)

 X = final_data

 y = data['Item_Outlet_Sales']

 from sklearn.model_selection import train_test_split

 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.1, random_state=5)

 from sklearn.ensemble import RandomForestRegressor

 rfc = RandomForestRegressor(n_estimators=500)

 clf = rfc.fit(X_train, y_train)

 # save the model

 with open(os.path.join(model_path, 'randomForest-tree-model.pkl'),

'w') as out:

 pickle.dump(clf, out)

 print('Training complete.')

 except Exception as e:

 trc = traceback.format_exc()

 with open(os.path.join(output_path, 'failure'), 'w') as s:

 s.write('Exception during training: ' + str(e) + '\n' + trc)

 print('Exception during training: ' + str(e) + '\n' + trc,

file=sys.stderr)

 sys.exit(255)

Chapter 8 running a Custom algorithm in sagemaker

173

We will keep the entire script inside a function called train(). After reading the

CSV sheet, we will follow the same procedure we saw in Chapter 5. Later we will fit the

random forest model on the data, which we ran in the previous section.

After all this, we have to save this model because later we will have to make

predictions using the model. To save the model, we will first serialize it using pickle and

then save it in the model location. Later, this model will be saved in S3.

Finally, we can run the entire script.

if __name__ == '__main__':

 train()

 sys.exit(0)

We have to use sys.exit(0) as it sends the message to SageMaker that the training

has successfully completed. Save the file with the name train and no extension.

 Creating the Inference Script
The training script is used to train the model. But, once the model is trained, we need to

make predictions, whether with real-time inference as we saw in Chapter 6 or with the

batch transformation that we will see in this chapter. We will save the inference script in

a file named predictor.py.

The predictor file consists of the following components:

• ScoringService() class

• ping() method

• transformation() method

• Any other helper function required

The ScoringService() class consists of two functions. The first function, get_model(),

loads and deserializes the model, while the second method, predict(), is responsible

for making the predictions. Remember, the inference script also uses the same folder

as the base that the training script uses, /opt/ml. The following is the script for the

ScoringService() class:

prefix = '/opt/ml/'

model_path = os.path.join(prefix, 'model')

Chapter 8 running a Custom algorithm in sagemaker

174

class ScoringService(object):

 model = None

 @classmethod

 def get_model(cls):

 if cls.model == None:

 with open(os.path.join(model_path, 'randomForest-tree-model.

pkl'), 'r') as inp:

 cls.model = pickle.load(inp)

 return cls.model

 @classmethod

 def predict(cls, input):

 clf = cls.get_model()

 return clf.predict(input)

The ping() method is just used to check whether the Docker container that the code

is running in is healthy. If it’s not healthy, then it gives a 404 error, else 202.

@app.route('/ping', methods=['GET'])

def ping():

 status = 200 if health else 404

 return flask.Response(response='\n', status=status,

mimetype='application/json')

transformation() is the method that is responsible for reading the test file and

calling the required methods and classes. One thing to understand here is that this

entire endpoint generation process is nothing but the creation of an API. Once the

API is created, the data is sent as a POST request, and then we get the predictions as a

response. This entire architecture is built using the Flask framework.

The data is sent using the POST method, so to read it, we need the StringIO()

method to decode the data. Once the data is decoded, we can read it with our normal

Pandas method. The transformation() function sends the data to the predict()

function of class ScoringService(). The method sends the output back to the

transformation() function. This prediction output is sent back to the host from where

the API is called, with help from the StringIO() function. This finishes the entire cycle of

endpoints. The following is the code of transformation():

Chapter 8 running a Custom algorithm in sagemaker

175

@app.route('/invocations', methods=['POST'])

def transformation():

 data = None

 if flask.request.content_type == 'text/csv':

 data = flask.request.data.decode('utf-8')

 s = StringIO.StringIO(data)

 data = pd.read_csv(s, header=None)

 else:

 return flask.Response(response='This predictor only supports CSV

data', status=415, mimetype='text/plain')

 print('Invoked with {} records'.format(data.shape[0]))

 # Do the prediction

 predictions = ScoringService.predict(data)

 # Convert from numpy back to CSV

 out = StringIO.StringIO()

 pd.DataFrame({'results':predictions}).to_csv(out, header=False,

index=False)

 result = out.getvalue()

 return flask.Response(response=result, status=200, mimetype='text/csv')

We will use this Python file for making the predictions, but to run the server

efficiently, we need some configuration files. Let’s explore them in the next section.

 Configuring the Endpoint Generation Files
To run the inference server successfully, we need to configure the following files:

• nginx.conf file

• serve file

• wsgi.py file

Generally we don’t make changes in these files. We create them and then use them

as is for our predictions. We will not go into the line-by-line details of these files, but let’s

understand the purpose of each one.

Chapter 8 running a Custom algorithm in sagemaker

176

The Nginx file is used to spin up the server and make the connection between

the Docker containers deployed on EC2 instances and the client outside or inside the

SageMaker network possible. Nginx uses a Python framework called Gunicorn that helps

to set up the HTTP server.

Serve uses the running Gunicorn server to make the connection between the

different resources feasible. Specifically, it is used for the following purposes:

• Efficiently using the number of CPUs for running the model

• Defining the server timeout

• Generating logs

• Starting the server using Nginx and Gunicorn

• Stopping the server if something doesn’t go as expected

Lastly, the wsgi.py file is used to tell the server about our predictor.py file. We can

explore the code in each file in the GitHub repository of this book. Remember, these files

are really important as without them the server will never run; hence, you won’t be able

to make predictions. Don’t make changes to these files, unless you are pretty sure about

what you’re doing.

 Setting Up the Dockerfile
Now that all our script files are ready, we have to create a Docker image so that it can be

uploaded to ECR and then SageMaker can access the code present in it and run it in an EC2

instance attached. Let’s first see how to give a structure to the files that we created. Figure 8-2

depicts the structure that we should give to the directory, before creating the image.

Figure 8-2. Directory structure

Chapter 8 running a Custom algorithm in sagemaker

177

We have already created all the files that are present in the Data directory. Now, we

have to create a Dockerfile script, which will be run to build the image. Then we will use

the build_and_push.sh file to push the image to ECR.

These are the steps that we will follow in the Dockerfile:

 1. Download an image from DockerHub that will have our operating

system. We will download a minimal version of Ubuntu so that our

code can run inside it. For this, we will use the following script:

FROM ubuntu:16.04

 2. Name the person, or the organization, who is maintaining and

creating this image. I have given my name here. You can use any

name you’d like.

MAINTAINER Himanshu Singh

 3. Run some Ubuntu commands so that we can set up the Python

environment and update the operating system files. We will also

download the server files that will be used to run the inference

endpoints. You must be familiar with Linux commands to

understand the script.

RUN apt-get -y update && apt-get install -y --no-install-

recommends \

 wget \

 python \

 nginx \

 ca-certificates \

 && rm -rf /var/lib/apt/lists/*

 4. Once the setup is done, we can use pip from Python to install the

important Python packages.

RUN wget https://bootstrap.pypa.io/get-pip.py && python

get-pip.py && \

 pip install numpy==1.16.2 scipy==1.2.1 scikit-learn==0.20.2

pandas flask gevent gunicorn && \

 (cd /usr/local/lib/python2.7/dist-packages/scipy/.libs;

rm *; ln ../../numpy/.libs/* .) && \

 rm -rf /root/.cache

Chapter 8 running a Custom algorithm in sagemaker

178

 5. Set the environment variables so that Python knows what the

default folder is that will contain the code. Also, we will set some

features of Python. We first make sure that timely log messages

should be received from the container, and then we make sure

that once any module is imported in Python, its .pyc file is not

created. This is done using the variables pythonunbuffered and

pythondontwritebytecode, respectively.

ENV PYTHONUNBUFFERED=TRUE

ENV PYTHONDONTWRITEBYTECODE=TRUE

ENV PATH="/opt/program:${PATH}"

 6. Finally, the instance will instruct to copy our Data directory files

to the default work directory, and then we will change the default

work directory.

COPY Data /opt/program

WORKDIR /opt/program

This finishes our Dockerfile creation. Here is the entire code:

FROM ubuntu:16.04

MAINTAINER Himanshu Singh

RUN apt-get -y update && apt-get install -y --no-install-recommends \

 wget \

 python \

 nginx \

 ca-certificates \

 && rm -rf /var/lib/apt/lists/*

RUN wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py && \

 pip install numpy==1.16.2 scipy==1.2.1 scikit-learn==0.20.2 pandas

flask gevent gunicorn && \

 (cd /usr/local/lib/python2.7/dist-packages/scipy/.libs; rm *;

ln ../../numpy/.libs/* .) && \

 rm -rf /root/.cache

Chapter 8 running a Custom algorithm in sagemaker

179

ENV PYTHONUNBUFFERED=TRUE

ENV PYTHONDONTWRITEBYTECODE=TRUE

ENV PATH="/opt/program:${PATH}"

COPY Data /opt/program

WORKDIR /opt/program

Now, let’s look at the script that we will use to push this image to ECR.

 Pushing the Docker Image to ECR
We will create a shell script file, which will be used first to build the image from the

Dockerfile that we created in the previous section and then to push the image to

ECR. Let’s look at the step-by-step procedure for this:

 1. Name the image. We will save the name in a variable.

algorithm_name=sagemaker-random-forest

 2. Give full read and write permission to the train and serve files

so that once the container is started, there are no access denied

errors.

chmod +x Data/train

chmod +x Data/serve

 3. Get AWS configurations so that there is no stoppage when the

image is being pushed. We will define the account and the region

of our AWS. Remember, since we will be running this code from

inside SageMaker, the information can be automatically fetched. If

we are running this from your local system or anywhere outside of

AWS, then we will have to give the custom values.

account=$(aws sts get-caller-identity --query Account

--output text)

region=$(aws configure get region)

region=${region:-us-east-2}

Chapter 8 running a Custom algorithm in sagemaker

180

 4. Give the path and name to the container. We will use the same

name that was given in the first step. We will use this path later to

push the image.

 fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_

name}:latest"

 5. Check whether the image already exists. If it doesn’t, then a new

image will be created; otherwise, the same image will be updated.

aws ecr describe-repositories --repository-names "${algorithm_

name}" > /dev/null 2>&1

if [$? -ne 0]

then

 aws ecr create-repository --repository-name "${algorithm_

name}" > /dev/null

fi

 6. Get the login credentials of the AWS account.

$(aws ecr get-login --region ${region} --no-include-email)

 7. Build the image with the name already decided, rename it with

the full name we decided on that contains the ECR address, and

then finally push the code.

docker build -t ${algorithm_name} .

docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

The following is the entire script that should be saved in the file build_and_push.sh.

algorithm_name=sagemaker-random-forest

chmod +x Container/train

chmod +x Container/serve

account=$(aws sts get-caller-identity --query Account --output text)

region=$(aws configure get region)

region=${region:-us-east-2}

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

Chapter 8 running a Custom algorithm in sagemaker

181

aws ecr describe-repositories --repository-names "${algorithm_name}" >

/dev/null 2>&1

if [$? -ne 0]

then

 aws ecr create-repository --repository-name "${algorithm_name}" >

/dev/null

fi

$(aws ecr get-login --region ${region} --no-include-email)

docker build -t ${algorithm_name} .

docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

Once this step is done, we have to go to the terminal, go inside the directory where

your Dockerfile is present, and then type the following:

sh build_and_push.sh

This will start running the script and will successfully upload the image to ECR. You

can then go to ECR and check whether the image exists. Figure 8-3 shows our image in

ECR.

This finishes the process of creating the Docker . Now we will see in the next section

how we can use this image to train the model in a SageMaker notebook.

Figure 8-3. Container image in ECR

Chapter 8 running a Custom algorithm in sagemaker

182

 Training the Model
Now we will use a SageMaker notebook to execute a classification model on the Big Mart

dataset, using the random forest container we just created. Like the models that we saw

in Chapter 6, we have to first define the role, then create a SageMaker session, and finally

define the account and the region in which SageMaker is running.

import boto3

import re

import os

import numpy as np

import pandas as pd

from sagemaker import get_execution_role

import sagemaker as sage

role = get_execution_role()

sess = sage.Session()

account = sess.boto_session.client('sts').get_caller_identity()['Account']

region = sess.boto_session.region_name

The next step will be to get our data location. We have already uploaded our dataset

in S3 in the previous chapters. Let’s define the path.

data_location = 's3://slytherins-test/Train.csv'

Next, we will need to define the path of the custom Docker image that we just created

and pushed to ECR.

image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-random-forest:latest'.

format(account, region)

Now that all the initial steps are done, we can start training our model. We will first

initialize the container with the EC2 instance, image, role, and output S3 path, and then

we will fit the model.

tree = sage.estimator.Estimator(image,

 role, 1, 'ml.m4.xlarge',

 output_path="s3://{}/output".format(“slytherins-test”),

 sagemaker_session=sess)

tree.fit(data_location)

Chapter 8 running a Custom algorithm in sagemaker

183

This will start the training job, and then once the job is finished, this will tell you the

billable time as well. Figure 8-4 shows the output of the training job.

This finishes our training job. We can always look at the detailed logs of the

algorithm using CloudWatch.

 Deploying the Model
Now that we have successfully trained the model, we can deploy it using the following

line of script:

from sagemaker.predictor import csv_serializer

predictor = tree.deploy(1, 'ml.m4.xlarge', serializer=csv_serializer)

It will take some time to spin up an instance, and then it will be time to start our

inference.

 Doing Real-Time Inference
Let’s use the test dataset of the Big Mart dataset and make predictions using the live

endpoint we just deployed the model on.

predictions = predictor.predict(test_data.values).decode('utf-8')

Figure 8-4. Output of the training job

Chapter 8 running a Custom algorithm in sagemaker

184

Remember, to make these predictions, we need to have an endpoint up and running.

This means when the endpoint is running, we will have to pay Amazon. But, if we

want to start the endpoint only to make predictions and then automatically delete the

endpoint, then we can use the Batch Transformation service in SageMaker. Let’s look at

this in the next section.

 Doing Batch Transformation
To do the batch transformation, the first thing we need to do is to create a model that

contains the model files that were generated when we trained the model and the image

of the algorithm. The following is the code using that we can use to achieve this:

import boto3

client = boto3.client('sagemaker')

image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-random-forest:latest'.

format(account, region)

role = get_execution_role()

primary_container = {

 'Image': image,

 'ModelDataUrl': 's3://sagemaker-us-east-2-809912564797/output/

sagemaker-random-forest-2020-06-07-07-27-23-190/output/model.tar.gz'

}

create_model_response = client.create_model(

 ModelName = 'Random-Forest-BigMart',

 ExecutionRoleArn = role,

 PrimaryContainer = primary_container)

This will package everything, and then we can pass it to the batch transform script

so that we can start the predictions. To start a batch transform, first we need to store the

test file in S3. Once we have stored the file, then we need to provide its location

and the location in S3 where the predictions will be saved. We must give a unique name

to the job.

Chapter 8 running a Custom algorithm in sagemaker

185

The following is the script that will be used to run the batch transform job:

import time

from time import gmtime, strftime

batch_job_name = 'RF-Batch-Transform-' + strftime("%Y-%m-%d-%H-%M-%S",

gmtime())

input_location = 's3://slytherins-test/test_data.csv'

output_location = 's3://{}/{}/output/{}'.format('slytherins-test',

'RF- Batch- Transform', batch_job_name)

request = \

{

 "TransformJobName": 'Random-Forest-BigMart-1',

 "ModelName": 'Random-Forest-BigMart',

 "TransformOutput": {

 "S3OutputPath": output_location,

 "Accept": "text/csv",

 "AssembleWith": "Line"

 },

 "TransformInput": {

 "DataSource": {

 "S3DataSource": {

 "S3DataType": "S3Prefix",

 "S3Uri": input_location

 }

 },

 "ContentType": "text/csv",

 "SplitType": "Line",

 "CompressionType": "None"

 },

 "TransformResources": {

 "InstanceType": "ml.m4.xlarge",

 "InstanceCount": 1

 }

}

Chapter 8 running a Custom algorithm in sagemaker

186

client.create_transform_job(**request)

print("Created Transform job with name: ", batch_job_name)

Some of the keys used in the previous code are explained here:

• ContentType tells about the data type of our test dataset. It’s a CSV in

our case.

• SplitType tells how different rows are split in our dataset. It is split by

line in our case.

• CompressionType tells whether our data is raw or it is a compressed

file like a TAR file. For us it is a raw CSV file.

Once we execute the previous code, we can monitor the job progress in the

SageMaker console. But, if we want to monitor the progress directly in the notebook, we

can use the following script:

try: client.get_waiter('transform_job_completed_or_stopped').

wait(TransformJobName='Random-Forest-BigMart-1')

finally:

 response = client.describe_transform_job(TransformJobName='Random-

Forest- BigMart-1')

 status = response['TransformJobStatus']

 print("Transform job ended with status: " + status)

 if status == 'Failed':

 message =response['FailureReason']

 print('Transform failed with the following error: {}'.

format(message))

 raise Exception('Transform job failed')

To look at the job in the SageMaker console, we need to select the batch transform

option. See Figure 8-5.

Chapter 8 running a Custom algorithm in sagemaker

187

You can use CloudWatch for getting the logs and the metrics. We can find out

whether the job is completed successfully by looking at the status. See Figure 8-6.

Once the job is completed, we can go to the S3 output location and look at the

predictions.

Figure 8-5. Batch transform job

Figure 8-6. Status of the job

Chapter 8 running a Custom algorithm in sagemaker

188

 Conclusion
In this chapter, you learned how to create custom containers to run the code and

algorithms that are not present in SageMaker, while using the computational power of

AWS and services of SageMaker. We can run any kind of custom code by following the

same procedure.

In the next chapter, you will learn how we can create an end-to-end pipeline using

Step Functions.

Chapter 8 running a Custom algorithm in sagemaker

189
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_9

CHAPTER 9

Making an End-to-End
Pipeline in SageMaker
In this chapter, we will see how we can make an end-to-end pipeline of an entire

machine learning process. We can use a combination of AWS services to automate the

entire process of machine learning. All the processes that we have seen in the previous

chapters, from the data processing steps to the endpoint generation, can be automated

and then be run directly with a click of a button. The only thing we need to change is the

dataset, but the process remains the same. Let’s see how we can automate what we did

on the Big Mart dataset in the previous chapters.

Let’s start by looking at AWS Step Functions.

 Overview of Step Functions
AWS Step Functions is the service provided by Amazon that you can use to create

workflows and automate them. These workflows consist of AWS resources, algorithms,

and processing. They may also include resources that are outside AWS. We can use Step

Functions to create an end-to-end automation framework that helps us in building an

effective continuous integration and continuous development (CI/CD) DevOps pipeline.

Each component in a step function is called a state machine. In this chapter, we will

be creating multiple state machines, as follows:

• State machine for training a model

• State machine for saving the model

• State machine for configuring endpoints

• State machine for model deployment

https://doi.org/10.1007/978-1-4842-6222-1_9#DOI

190

Then we will combine all the state machines in a sequential format so that the entire

process can be automated. Figure 9-1 is a small workflow that shows how these state

machines will be connected.

Let’s start the process of creating the previous workflow. The first step will be to

upgrade the Step Functions package so that we can make sure we are using the latest

version of the module.

 Upgrading Step Functions
We will simply use pip from Python to upgrade the Step Functions package and all the

dependent packages.

python -m pip install --upgrade stepfunctions

You can run this either from the terminal or from the Jupyter Notebook as well by

adding a prefix of exclamation mark (!).

Figure 9-1. Steps involved in creating a state machine

Chapter 9 Making an end-to-end pipeline in SageMaker

191

 Defining the Required Parameters
Let’s now define the required objects that we will use to run our code. This includes the

roles, region, bucket, etc.

import boto3

import sagemaker

import time

import random

import uuid

import logging

import stepfunctions

import io

import random

from sagemaker.amazon.amazon_estimator import get_image_uri

from stepfunctions import steps

from stepfunctions.steps import TrainingStep, ModelStep, TransformStep

from stepfunctions.inputs import ExecutionInput

from stepfunctions.workflow import Workflow

from stepfunctions.template import TrainingPipeline

from stepfunctions.template.utils import replace_parameters_with_jsonpath

sagemaker_execution_role = sagemaker.get_execution_role()

workflow_execution_role = "arn:aws:iam::809912564797:role/himanshu-step-

functions"

session = sagemaker.Session()

stepfunctions.set_stream_logger(level=logging.INFO)

region = boto3.Session().region_name

prefix = 'sagemaker/big-mart-pipeline'

bucket_path = 'https://s3-{}.amazonaws.com/{}'.format(region, "slytherins-

test")

As you can see in the code, we require two roles. One is the SageMaker execution

role, and the second is the workflow execution role. In the next section, we will see how

to define the role for workflow execution. In addition, we have created a SageMaker

session and defined the region and S3 bucket location. We have also set the Step

Functions logger so that whatever important messages are there, we will not miss them.

Now let’s see how we can create the required IAM role for workflow execution.

Chapter 9 Making an end-to-end pipeline in SageMaker

192

 Setting Up the Required Roles
We need to set up two things to be able to execute the workflow:

 1. We need to add a policy on the already existing SageMaker role.

 2. We need to create a new Step Functions IAM role.

 Adding a Policy to the Existing SageMaker Role
For the current SageMaker role that we are using to run all the models in this entire

book, it’s easy to update the policy so that it can access the features of Step Functions.

In the SageMaker console, we need to click the name of the notebook instance that we

are using. This will lead us to a page showing the properties of the notebook instance.

In that page there will be a section named “Permissions and encryption.” There you will

find your ARN role mentioned for the instance. See Figure 9-2.

Once you click that role, you’ll move to the IAM role for that ARN. On that page,

you’ll need to click Attach Policies and search for AWSStepFunctionsFullAccess. Attach

this policy, and now your SageMaker instance is ready to use Step Functions. See

Figure 9-3.

Figure 9-2. Selecting the ARN role

Figure 9-3. Attaching policies

Chapter 9 Making an end-to-end pipeline in SageMaker

193

 Creating a New IAM Role for Step Functions
Once we are done with enabling the instance to execute a Step Functions job, we need

to create an execution role so that Step Functions is able to execute the jobs that are

created. For this, again we need to go to the IAM console and create this role.

Go to the IAM console, go to the Roles section, and then click “Create role.”

See Figure 9-4.

Select the Step Functions service. You may need to search for the service.

See Figure 9-5.

Figure 9-4. Creating roles

Figure 9-5. Selecting the Step Functions service

Chapter 9 Making an end-to-end pipeline in SageMaker

194

Now, continue the process and keep clicking Next until you arrive at the section

where you need to provide the role name. Give any role name you want and then click

“Create role.” Next, once we have created the role, we need to attach a policy to it. Here

we will list all the services that the Step Functions service is allowed to do. We provide

this list in JSON format.

Click the role that you have just created, and then in the Permissions section click

“Add inline policy.” See Figure 9-6.

Here, you need to add a JSON file on the JSON tab. The file contents are shown here:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "sagemaker:CreateTransformJob",

 "sagemaker:DescribeTransformJob",

 "sagemaker:StopTransformJob",

 "sagemaker:CreateTrainingJob",

 "sagemaker:DescribeTrainingJob",

 "sagemaker:StopTrainingJob",

 "sagemaker:CreateHyperParameterTuningJob",

 "sagemaker:DescribeHyperParameterTuningJob",

 "sagemaker:StopHyperParameterTuningJob",

 "sagemaker:CreateModel",

 "sagemaker:CreateEndpointConfig",

 "sagemaker:CreateEndpoint",

 "sagemaker:DeleteEndpointConfig",

 "sagemaker:DeleteEndpoint",

Figure 9-6. Adding inline policies

Chapter 9 Making an end-to-end pipeline in SageMaker

195

 "sagemaker:UpdateEndpoint",

 "sagemaker:ListTags",

 "lambda:InvokeFunction",

 "sqs:SendMessage",

 "sns:Publish",

 "ecs:RunTask",

 "ecs:StopTask",

 "ecs:DescribeTasks",

 "dynamodb:GetItem",

 "dynamodb:PutItem",

 "dynamodb:UpdateItem",

 "dynamodb:DeleteItem",

 "batch:SubmitJob",

 "batch:DescribeJobs",

 "batch:TerminateJob",

 "glue:StartJobRun",

 "glue:GetJobRun",

 "glue:GetJobRuns",

 "glue:BatchStopJobRun"

],

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iam:PassRole"

],

 "Resource": "*",

 "Condition": {

 "StringEquals": {

 "iam:PassedToService": "sagemaker.amazonaws.com"

 }

 }

 },

Chapter 9 Making an end-to-end pipeline in SageMaker

196

 {

 "Effect": "Allow",

 "Action": [

 "events:PutTargets",

 "events:PutRule",

 "events:DescribeRule"

],

 "Resource": [

 "arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker

TrainingJobsRule",

 "arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker

TransformJobsRule",

 "arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker

TuningJobsRule",

 "arn:aws:events:*:*:rule/StepFunctionsGetEventsForECSTaskRule",

 "arn:aws:events:*:*:rule/StepFunctionsGetEventsForBatchJobsRule"

]

 }

]

}

Once that’s done, you can review the policy, give it a name, and then create the

policy. Don’t forget to copy the ARN number of the policy you just created. This will help

you when creating code in SageMaker.

 Setting Up the Training Step
In the previous section, we completed all the necessary configuration steps to run our

code to create a pipeline. In this section, we will create the first step: TrainingStep. The

first thing that we will do is to create a dictionary that will auto-initialize the training job

name, the model name, and the endpoint name. We can do so using the following code:

names = {

 'JobName': str,

 'ModelName': str,

Chapter 9 Making an end-to-end pipeline in SageMaker

197

 'EndpointName': str

}

execution_input = ExecutionInput(schema=names)

Next, we will create a training step by using the XGBoost container that we already

learned about in the previous chapters. The first step will be to initialize the container.

tree = sage.estimator.Estimator(image,

 sagemaker_execution_role, 1, 'ml.m4.xlarge',

 output_path="s3://{}/output".format("slytherins-test"),

 sagemaker_session=sess)

Next, we need to create the training step. This is done by providing the path to the

input training and validation data.

training_step = steps.TrainingStep(

 'Train Step',

 estimator=tree,

 data={

 'train': sagemaker.s3_input("s3://slytherins-test/Train.csv",

content_type='text/csv'),

 'validation': sagemaker.s3_input("s3://slytherins-test/test_data.

csv", content_type='text/csv')

 },

 job_name=execution_input['JobName']

)

Remember, this will not execute the model. Only a step is created here. First, we will

create all the steps and then combine them and run them sequentially. Let’s now decide

on the step for saving the model. Once in the pipeline, the previous training is finished,

and the model artifacts that are generated should be saved. That is done using the

following code:

model_step = steps.ModelStep(

 'Save model',

 model=training_step.get_expected_model(),

 model_name=execution_input['ModelName']

)

Chapter 9 Making an end-to-end pipeline in SageMaker

198

The next step after the model is created is to define the configuration of the endpoint.

Let’s see that in the next section.

 Setting Up the Endpoint Configuration Step
In this step, we will define what kind of resources are required to deploy the endpoint.

We have already seen how an endpoint is deployed, so the step that we will create here

will be self-explanatory.

endpoint_config_step = steps.EndpointConfigStep(

 "Create Endpoint Config",

 endpoint_config_name=execution_input['ModelName'],

 model_name=execution_input['ModelName'],

 initial_instance_count=1,

 instance_type='ml.m4.xlarge'

)

Once our configuration is done, we will create the step that will actually deploy the

endpoint. Let’s see that in the next section.

 Setting Up the Endpoint Step
The following code creates a step that is used for the endpoint deployment:

endpoint_step = steps.EndpointStep(

 "Create Endpoint",

 endpoint_name=execution_input['EndpointName'],

 endpoint_config_name=execution_input['ModelName']

)

Once the endpoint is deployed, we can start the inference as we saw in the previous

sections. Now that we have successfully created all the steps, let’s join them together and

create a sequence in the next section.

Chapter 9 Making an end-to-end pipeline in SageMaker

199

 Creating a Chain of the Steps
To create a chain, we will start with the training step, then move on to the model

saving step, then configure the endpoint, and finally deploy the model on the endpoint

configured. We can create this chain using the following code:

workflow_definition = steps.Chain([

 training_step,

 model_step,

 endpoint_config_step,

 endpoint_step

])

 Defining the Workflow and Starting Operation
Now that the components are connected in the previous step, we need to provide all the

necessary configurations so that this workflow can be executed. This can be done using

the following code:

workflow = Workflow(

 name='Big-Mart_Workflow-v1',

 definition=workflow_definition,

 role=workflow_execution_role,

 execution_input=execution_input

)

Once this is done, all we need to do is execute the workflow created. This can be

done by using the following code:

workflow.create()

execution = workflow.execute(

 inputs={

 'JobName': 'regression-{}'.format(uuid.uuid1().hex),

 'ModelName': 'regression-{}'.format(uuid.uuid1().hex),

 'EndpointName': 'regression-{}'.format(uuid.uuid1().hex)

 }

)

Chapter 9 Making an end-to-end pipeline in SageMaker

200

Now, as you execute the previous code, the entire pipeline starts running. To see how

the pipeline looks, you can use the render_graph() function.

workflow.render_graph()

You will see the pipeline shown in Figure 9-7.

You can also check the current progress of the process executed, by using the

render_progress() function. See Figure 9-8.

execution.render_progress()

As mentioned in the image, if any step is failed, it will be shown in red, otherwise

green. We will explore more about this process by going to the Step Functions console.

Let’s see that in the next section.

 Exploring the Jobs in Step Functions
Let’s see how the workflow that we have created in this chapter looks in the Step

Functions console. Search for Step Functions in the services list and click it. This will

open your console. You can find the step function that has been created in this chapter,

mentioned there. See Figure 9-9.

Figure 9-7. Rendering the graph

Figure 9-8. Checking the progress

Chapter 9 Making an end-to-end pipeline in SageMaker

201

Click the name of your pipeline and then click the latest job that ran or is running.

See Figure 9-10.

Here, you can see the pipeline that you have created. It will show all the steps

beautifully in the dashboard. You can click the individual components and look at their

progress as well. See Figure 9-11.

Figure 9-9. Selecting the state machine

Figure 9-10. Selecting the latest job

Chapter 9 Making an end-to-end pipeline in SageMaker

202

If you click the train step, you can see its own process. See Figure 9-12.

Figure 9-11. Visualizing the progress

Figure 9-12. Checking the progress state

Chapter 9 Making an end-to-end pipeline in SageMaker

203

 Exploring the JSON File That Can Be Passed
as Input
There is one more option that we can use to create the flow in Step Functions if we want

to avoid the Python code. You can pass a JSON directly and then decide on the sequence.

Let’s see the JSON that was generated by Step Functions for our code. To look at the

JSON code, we have to click the Edit State Machine option. You can look at the entire

JSON format, as shown in Figure 9-13.

 Conclusion
In this chapter, you learned how to create an end-to-end pipeline using Step Functions.

This is useful when creating the entire training and deployment process and when

retraining models with the new data or with some new configuration. This also helps in

creating a CI/CD pipeline where we can push the code to Git and then use tools such

as Jenkins or Bamboo to create these step functions and start the execution. Hence, as

you push to code to Git, immediately the process of training starts. That’s the power of

creating a pipeline.

This finishes our discussion on SageMaker and its services. In the next chapter of this

book, we will look at some of the use cases of machine learning that can be done using

other AWS services.

Figure 9-13. Looking at the JSON structure

Chapter 9 Making an end-to-end pipeline in SageMaker

PART III

Other AWS Services

207
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_10

CHAPTER 10

Machine Learning Use
Cases in AWS
In this chapter, we will explore three use cases in which AWS can be used to solve typical

machine learning problems, without writing too much code. We will use some of the

AWS services besides SageMaker.

 Use Case 1: Natural Language Processing Using
Amazon Comprehend
Amazon Comprehend is a service in AWS that can perform various NLP tasks such as

key entities extraction from text, sentiment analysis, phrases extraction, syntax check,

language detection, topic modeling, and document classification. Amazon Comprehend

provides a UI that we can use to train a model without writing any code. We can also use

the API provided by Comprehend to connect it to the scripting language of your choice

and then train the model directly from the code.

In this section, we will explore how we can use Comprehend to analyze the text, and

then we will create a custom sentiment analysis model using it.

 Analysis of Text
From the Amazon Management Console, we can select the Amazon Comprehend

service and then click Launch Amazon Comprehend. Then we will see a section called

“Real-time analysis.” Let’s use this section to analyze some text in real time. The text

that I have used for analysis is an excerpt from a Game of Thrones review: https://www.

polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo.

https://doi.org/10.1007/978-1-4842-6222-1_10#DOI
https://www.polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo
https://www.polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo

208

The excerpt that we will analyze is as follows:

“The series’ ending unleashed a seemingly bottomless geyser

of fan discontent ranging from mile-long Twitter threads to an

honest-to-God petition for HBO to remake the eighth season

from scratch. The complaints, by and large, feel typical to the

“Peak TV” era: the uproar you’d expect from the sort of people

who’ve interpreted Emilia Clarke’s traumatized, brutal Daenerys

Targaryen as a one-dimensional message about girl power; anger

that such and such a character “deserved” some specific ending

they didn’t receive. Much of it boils down to viewers interpreting

their own discomfort over the show’s failures.”

Figure 10-1 shows an “Input text” box. Just paste the previous excerpt there and click

Analyze.

Now, let’s see what Comprehend has given us after its analysis. The first thing is the

list of entities that it has extracted, along with the confidence level. See Figure 10-2.

Figure 10-1. Inputting text into Comprehend

Chapter 10 MaChine Learning Use Cases in aWs

209

In Figure 10-2, you can see that most of the entities extracted are correct. Now let’s

see what the key phrases are in the text that Comprehend feels are important. Click the

“Key phrases” tab. Figure 10-3 shows the output.

Figure 10-2. Result of analysis

Figure 10-3. Key phrases present in the text

Chapter 10 MaChine Learning Use Cases in aWs

210

Some of the phrases are really important, as by reading them we can tell what the

paragraph is about, as well as its tone. Talking about the tone, let’s look at the sentiment

of the entire paragraph. For this we will click the Sentiment tab. Figure 10-4 shows the

sentiment analysis of the paragraph.

Here you can see that Comprehend is telling us that the author is mostly neutral

about Game of Thrones. If you read the paragraph, you’ll see the author is actually telling

about fans who didn’t like the final season, rather than the author not liking it. Hence, in

this section, Comprehend was able to give us the correct picture.

If you want to empower your scripts with Comprehend, you can use the API that it

provides. It is beyond the scope of this chapter, but it’s worth trying. You can read the

Comprehend API documentation to try it.

Next, let’s see how we can make a custom classification model using Comprehend.

Here, we will be finding the toxicity level of a bunch of text. The dataset is taken from

Kaggle, and you can download it from www.kaggle.com/c/jigsaw-toxic-comment-

classification-challenge/data.

 Custom Classification
The dataset contains a total of eight columns. I have kept only two columns and deleted

the rest of them, as multiclass classification in Comprehend expects only two columns,

one of the text and the other of the classes.

In the Comprehend console, we will click “Custom classification.” Then click “Train

classifier.” Figure 10-5 shows the steps.

Figure 10-4. Sentiment analysis output

Chapter 10 MaChine Learning Use Cases in aWs

http://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
http://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

211

The first step is to give your training job a name. Follow the instruction for the

naming convention that Comprehend expects. See Figure 10-6.

Next, you have to select a classification mode. Multiclass classification is where we

have only one column of categories, while multilabel classification is where each class

can have subcategories as well. We will select the first one, as shown in Figure 10-7.

Figure 10-5. Training a custom classifier

Figure 10-6. Naming the classifier

Chapter 10 MaChine Learning Use Cases in aWs

212

Next, we have to upload the dataset to an S3 bucket and provide the path.

Remember, only two columns must be present. See Figure 10-8.

Figure 10-7. Multiclass Comprehend classification

Figure 10-8. Defining the IAM role

Chapter 10 MaChine Learning Use Cases in aWs

213

Once you have provided the path, select your IAM role and then click “Train

classifier.” This will start the training of the model. Once your model is trained, you will

see information similar to Figure 10-9.

You can next find the metrics of the trained model under “Classifier performance,” as

shown in Figure 10-10.

You can see that it gives a pretty good result, in terms of accuracy, precision, and

recall. Next, to use this model, we can create an endpoint and then start the inference.

Just click the “Create endpoint” button and give it a name to start the process.

See Figure 10-11.

Figure 10-9. Model training output

Figure 10-10. Performance of the Comprehend classifier

Chapter 10 MaChine Learning Use Cases in aWs

214

Once the endpoint is ready, we can go to the real-time analysis section, and this

time instead of clicking the built-in analysis type, click Custom and select your endpoint.

Next, give any text and it will predict its class, as you can see in Figures 10-12 and 10-13.

Figure 10-11. Creation of endpoint

Figure 10-12. Inference using the Custom classifier

Chapter 10 MaChine Learning Use Cases in aWs

215

Don’t forget to delete the endpoint once the analysis is done, because it’s chargeable.

This finishes our discussion about the first use case. Next, let’s look at a sales forecast

model that can be built using another Amazon service called Amazon Forecast.

 Use Case 2: Sales Forecasting Using Amazon
Forecast
In this section, we will be predicting the sales forecast for a company. For this we will

be using a forecast dataset from Kaggle called Store Item Demand Forecast. You can

download the dataset from https://www.kaggle.com/c/demand-forecasting-kernels-

only/data?select=train.csv.

Once we have downloaded the dataset, we have to do some formatting on it. The

first thing is that we will add an ID column to it. This should be the first column of the

dataset. Next, make sure that the date field is in the format of YYYY-MM-DD; otherwise,

Amazon Forecast will not accept it. Once that done, upload the dataset to S3 and then

note its path.

Figure 10-13. Insights from the inference

Chapter 10 MaChine Learning Use Cases in aWs

https://www.kaggle.com/c/demand-forecasting-kernels-only/data?select=train.csv
https://www.kaggle.com/c/demand-forecasting-kernels-only/data?select=train.csv

216

 Creating a Dataset Group
Now, open the Amazon Management Console and then search for Amazon Forecast

Service. Click Create Dataset Group. The first step will be to give the dataset group a

name and then choose the domain of forecasting. For our analysis, we have chosen a

custom domain. See Figure 10-14.

 Defining Column Attributes
The next step is to give your dataset a name. Then, you have to define the column

attributes. See Figure 10-15.

Figure 10-14. Creating a dataset group name

Chapter 10 MaChine Learning Use Cases in aWs

217

Remember, the attributes should be in the same sequence as in the dataset. Also, all

the attributes besides the attributes that were already present in the JSON schema must

be strings. That’s why the store and quantity are mentioned as strings. You can define the

interval as well. For us, it is a daily interval, so that’s how it is set. Click Next.

 Importing Data
The last step will be to start importing the data. Here you will provide the S3 path and the

name to the dataset import. See Figure 10-16.

Figure 10-15. Defining column attributes

Chapter 10 MaChine Learning Use Cases in aWs

218

 Making Predictions
Now, click “Start import.” Once the import is done, we have to click “Start predictor

training.” Here we will inform Amazon Forecast about the type of forecast that we have to

make and the horizon of forecasts. Figure 10-17 shows the inputs that we have to make.

Figure 10-16. Configuring the dataset path

Chapter 10 MaChine Learning Use Cases in aWs

219

The training will start after this. Wait until the training finishes, and if you feel that

AutoML is taking too much time, you can select any of the custom predictors. Go with

the manual algorithms.

Figure 10-17. Inputs for starting the training job

Chapter 10 MaChine Learning Use Cases in aWs

220

Once our training is done, we have to click “Create a forecast.” Here you need to

give your forecast a name and the predictor that you have just created. Click “Create a

forecast.” See Figure 10-18.

Once the forecast is done, you can click “Forecast Lookup” and view it. See

Figure 10- 19.

Figure 10-18. Generating forecasts

Chapter 10 MaChine Learning Use Cases in aWs

221

Just give the horizon for forecasts and you will get a very nice visualization, as shown

in Figure 10-20.

This finishes our discussion of using Amazon Forecast for making sales forecasts.

As mentioned before, we can create different types of forecasts for different datasets.

Let’s now look at the last use case where we will use Amazon Textract to extract textual

information from different file formats.

Figure 10-20. Generated forecasts

Figure 10-19. Forecast lookup

Chapter 10 MaChine Learning Use Cases in aWs

222

 Use Case 3: Image Text Extraction Using Amazon
Textract
Using Amazon Textract, not only can we extract the text from the images, PDFs, Word

files, etc., but we can also extract the tabular and form-based data as well. Again, like

with all the previous services, the process is simple. We just need to upload the image

containing information, and the data will be extracted. Let’s start the process by first

going to the Amazon Management Console and searching for Amazon Textract service.

Next, click “try Amazon Textract.” Finally, click the upload document.

 Extracting Tabular Information
First, let’s apply Textract on some tabular data. For this we will be using Figure 10-21.

Once you upload the image, you will get the results, as shown in Figure 10-22. The

first extraction is of the raw text, while the second extraction is of the table. We can see

that Textract worked perfectly, as shown in Figure 10-23.

Figure 10-21. Table of importance

Chapter 10 MaChine Learning Use Cases in aWs

223

Figure 10-23. Tabular keywords extracted

Figure 10-22. Extracted keywords

Chapter 10 MaChine Learning Use Cases in aWs

224

 Extracting Form Data
Now, let’s see how Textract works on the form data. Figure 10-24 shows the image we

will use.

When we upload this image and analyze the form results, we get the results shown in

Figure 10-25.

Figure 10-24. Form data test image

Chapter 10 MaChine Learning Use Cases in aWs

225

You can see that most of the fields of the form are successfully extracted by Textract.

Similarly, we can give PDF files and other supported formats to Textract, to get the

required fields. We can connect to the Textract API as well so that directly the results can

be absorbed by a scripting language like Python and further analysis can be made.

 Conclusion
In this chapter, you learned about different Amazon services in the domain of machine

learning. They are the ready-made solutions provided by Amazon that minimize the

coding knowledge so that people with deep mathematics/statistical backgrounds can

conduct their analysis. This concludes the last chapter of this book.

Figure 10-25. Form data extracted

Chapter 10 MaChine Learning Use Cases in aWs

227
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

 APPENDIX A

Creating a Root User
Account to Access the
Amazon Management
Console
Follow these steps to create a root account to access the Amazon Management Console:

 1. Go to https://aws.amazon.com/console/.

 2. Click Create Free Account.

 3. Enter an email, password, and name for your AWS account.

 4. Select the type of account: Professional or Personal.

 5. Fill in the details.

 6. Give your credit/debit card details. Once you’ve done that, the

account will be created. (You may have to verify your email

address.)

 7. Log in to the Amazon Management Console with the username

and password you just created.

Now you are ready to use the Amazon Management Console interface.

https://doi.org/10.1007/978-1-4842-6222-1#DOI
https://aws.amazon.com/console/

229
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

 APPENDIX B

Creating an IAM Role
Follow these steps to create an IAM role:

 1. Log in to the Amazon Management Console and search for IAM

service.

 2. Click the Roles section.

 3. Click Create Role.

 4. Search for Go for SageMaker.

 5. Search for Full Access permission and then keep clicking Next.

 6. Click Create Role.

https://doi.org/10.1007/978-1-4842-6222-1#DOI

231
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

APPENDIX C

Creating an IAM User
Follow these steps to create an IAM user:

 1. Log in to the Amazon Management Console and search for IAM

service.

 2. Click the Users section.

 3. Click Add User.

 4. Enter a username and select AWS Management Console Access.

 5. Enter a password.

 6. Click Next and search for a policy that the user can use.

You can go for Admin or any particular policy. Let’s select

AmazonSageMakerFullAccess.

 7. Keep clicking Next and then click Create User.

The user will be successfully created, and the next time you can log in to the Amazon

Management Console using this username and password instead of the root user.

https://doi.org/10.1007/978-1-4842-6222-1#DOI

233
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

 APPENDIX D

Creating an S3 Bucket
Follow these steps to create an S3 bucket:

 1. Log in to the Amazon Management Console and search for S3

service.

 2. Click Create Bucket.

 3. Give your bucket a name. Follow the rules (it should be DNS

compliant).

 4. Select the region of your choice.

 5. Now click Next until you reach the permissions. Give the bucket

public access so that you can use S3 buckets with other services.

(Do not give public access if you have confidential information. In

that case, you should go with policies.)

 6. Create the S3 bucket and note the path.

Now you can access the S3 bucket at the URL you have just written down.

https://doi.org/10.1007/978-1-4842-6222-1#DOI

235
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

 APPENDIX E

Creating a SageMaker
Notebook Instance
Follow these steps to create a SageMaker notebook instance:

 1. Log in to the Amazon Management Console and search for

SageMaker.

 2. Go to the Notebook Instances section.

 3. Click Create Notebook Instance.

 4. Give the instance a name and select the type. If you want to use

the free version, select ml.t2.medium; otherwise, you can select a

paid version.

 5. Select the SageMaker IAM role that you defined.

 6. Click Create Notebook Instance. In a few minutes your instance

will be ready.

 7. Always remember to stop the instance when your code is done.

https://doi.org/10.1007/978-1-4842-6222-1#DOI

237
© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

Index

A
Access control lists (ACLs), 49
Account security, authentication

digital signature, 51
multifactor, 51
password, 51
X.509 certificates, 52

Amazon Comprehend, 85
Amazon Elastic File System (EFS), 14
Amazon Polly, 85
Amazon Rekognition, 86
Amazon SageMaker

batch deployment, 80
batch transform, 73
built-in algorithm, 81, 83
custom algorithm, 84
data preprocessing, 76
features, 72
model deployment, 79
model training, 77, 78
process, 74–76
production environments, 72

Amazon Simple Storage System (S3), 13
Amazon Textract, 88, 221, 222
Amazon Transcribe, 87
Amazon web services (AWS)

account security (see Account
security, authentication)

CLI, 12

computer services
EC2, 19–22
elastic container registry, 22, 23

data servers, 7
firewall manager, 61
networking/content delivery

API gateway, 25, 26
cloudfront, 26–28
VPC, 23–25

OSI model, 61
shield service, 60, 61
SSR (see Shared security responsibility

(SSR) model)
storage devices

Amazon S3, 13, 14
gateway, 15, 17, 18

WAF, 59
Anything as a service (XaaS), 5
Application programming interfaces

(APIs), 25
Artificial intelligence, 65
Attention layer, 87
Attribute-based access control (ABAC), 57
AWS cost optimization

reserved instances, 36
right-sizing, 32–36
spot instances, 37

AWS Management Console (AMC), 8, 11
AWS trusted advisor, 41, 43

https://doi.org/10.1007/978-1-4842-6222-1#DOI

238

B
Batch transform, 80
Big Mart dataset, 189
Blazing text algorithm

CBOW mwthod, 134, 135
SageMaker application, 135–137
skip gram architecture, 133, 134
word embeddings, 133

Boosting, 126, 127
Boto3 package

dockerfile, 110, 111
installation, 109
initialization, 110
processing job, 111–114

C
CI/CD pipeline, 203
Cloud computing

community, 5
hybrid, 5
IaaS, 6
PaaS, 6
private, 5
public, 5
SaaS, 6
systems, 3, 4
XaaS, 6

Cloud Security Alliance (CSA), 47
CloudWatch

Amazon Management Console, 156
architecture, 156
autoscaling, 156
Docker container, 155
error, 116
job information, 116
machine learning, 155
menu, 115

metrics, 162–165
monitor processing jobs, 115
processing jobs, 160, 162
resource activities, AWS, 155
training jobs, 157–160

Context-aware analysis, 86
Continuous bag of words (CBOW)

method, 134
Cost Explorer

amortized cost, 41
costs, 39
dashboard, 38
definition, 38
unblended cost, 40

Criminal Justice Information Services
(CJIS), 47

Custom model, SageMaker
creating inference script, 173, 174
docker image to ECR, 179–181
ECR, 169
endpoint generation files, 175
setting up, dockerfile, 176–179
training script, 169–171, 173
transforming code, 169

D
Data processing

Jupyter notebook (see Jupyter
notebook)

machine learning pipeline, 89
Deep Learning

artificial neural networks, 71
biological neurons, 70

Dependent variable, 67, 96, 97, 121
Digital signature, 51
Distributed denial of

service (DDoS), 60

Index

239

E
Elastic Block Storage (EBS), 34
Elastic Component Cloud (EC2), 19
Elastic Container Registry (ECR), 169
Encoder-decoder architecture, 146
End-to-end pipeline, 189

F
Family Educational Rights and Privacy Act

(FERPA), 47

G
Gated recurrent units (GRU), 146
Gradient boosting algorithm, 126

H
Hardware virtual machine (HVM), 35
Health Insurance Portability and

Accountability Act (HIPAA), 48

I
Identity and Access Management (IAM),

AWS
ABAC, 57, 58
EMR/DynamoDB, 53
policies, 56, 57
principal entity, 55
root user account, 53
top-level management, 53
user federation, 54

Identity-based policies, 57
Image classification algorithm

ResNet, 138, 139

SageMaker application, 140–144
Image text extraction, Amazon Textract

form data, 224, 225
tabular data, 222, 223

Independent variables, 67
Infrastructure as a service (IaaS), 5
Internet Small Computer System Interface

(iSCSI), 16

J
Jupyter notebook

categories/columns, 94
data/columns, 91
data processing steps, 89
duplicates, 95
fillna() method, 95
item type, 92
label encoding output, 96
null value exploration, 91
Pandas framework, 90
removed numerical null values, 93
standard scaling output, 97

K
Kaggle, 90, 210, 215

L
Least squares estimations, 119
Linear learner algorithm

linear regression, 119, 120
logistic regression, 120, 121
SageMaker

application, 121–125
Long short-term memory (LSTM), 87, 146

Index

240

M
Machine learning

AWS, 71, 72
reinforcement, 68, 70
supervised, 66
translation, 87
unsupervised, 67, 68

Model artifacts, 79
Multinomial logistic regression, 119, 121, 126

N
Natural Language Processing (NLP),

Amazon Comprehend
custom classification, 210, 211,

213–215
text analysis, 207–210

Network-attached storage (NAS), 15
Network File System (NFS), 15
Neural/biological neural network, 70
Neural text-to-speech (NTTS), 85

O
Open Source Interconnection (OSI)

model, 61

P, Q
Paravirtual (PV), 35
Platform as a service (PaaS), 5
Pooling or subsampling, 138

R
Random forest algorithm

batch transformation, 184–187
classification model, 182, 183

dataset, 168
deploying model, 183
mean squared error, 168
real-time inference, 183, 184
Scikit-Learn package, 167

RandomForestRegressor class, 167
Recurrent Neural Networks(RNN)

architecture, 145
GRU, 146
LSTM, 146

Reinforcement learning, 68, 70
render_progress() function, 200
Resource-based policies, 57
Role-based access control (RBAC), 58

S
S3 buckets, 62
SageMaker’s Scikit-learn container

computation power, 98
csv sheets, 102
data overview, 99
data path, 100
preprocessing.py script, 103
reading data, Pandas, 104
S3 bucket, 98, 102
SKLearnProcessor, 99
slytherins-test, 99

Sales forecasting
column attributes, 216, 217
dataset group, 216
importing data, 217
predictions, 218–221
store item demand forecast, 215

ScriptProcessor
BERT-based services, 108
building/pushing image, 106, 107
creating object, 107, 108

Index

241

Dockerfile, 105
Sequence-to-sequence algorithm

converting text, 153
create_model() function, 152
encoder and decoder architecture, 146
hyperparameters, 151
machine translation, 147
output, 154
pretrained model, 152
RecordIO-Protobuf version, 149–151
RNN, 145
tokenization, 148
training/validation sets, 148

Shared security responsibility (SSR)
model

AWS, 46
business continuity management, 48
compliance, 47, 48
customer responsibilities, 46
high-level security, 47
IAM, 47
infrastructure, 45
network security, 49, 50
physical/environment safety, 48

Single sign-on (SSO), 54
SKLearnProcessor container, 105
Software as a service (SaaS), 5
Step functions

adding policy, 192
creating chain, 199
deployment, 198

endpoint configuration, 198
IAM role, 193–195
JSON file, 203
parameters, 191
state machine, 189, 190, 200, 202
training, 197, 198
upgrading, 190
workflow, 189, 199, 200
XGBoost container, 197

StringIO() method, 174
Supervised learning, 66, 67

T
Topic modeling, 82, 207

U
Unsupervised learning, 67, 68, 82

V
Virtual Private Cloud (VPC), 23, 24

W
Web Application Firewall (WAF), 59

X, Y, Z
XGBoost algorithm, SageMaker

application, 127–133

Index

	cb93230013bf20bcfee1bc88fb158cefc11946b37f497c090d4810ab7717c4fd.pdf
	8bb6f590611ae68dfcb296ccf0071c4595a450ea4e5bdb95aac927b2d94b6b51.pdf
	Table of Contents

	9467573635ad5085b11fc3d6ed4165bdde837baf87de4cc8831933ee8b2a241f.pdf
	8ae5481f9d3f63ec1154ab803f25e46d9e66aca0d756dae885b97ba6f16de758.pdf
	Part I: Introduction to Amazon Web Services
	Chapter 1: Cloud Computing and AWS
	What Is the Cloud?
	Control of Cloud Systems
	Public Cloud
	Private Cloud
	Community Cloud
	Hybrid Cloud

	Cloud Services
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Anything as a Service

	Introduction to Amazon Web Services
	AWS Management Console
	AWS Command-Line Interface
	AWS Storage Services
	Amazon S3
	Buckets
	Objects
	Keys

	Amazon Elastic File System
	AWS Storage Gateway
	File Gateway
	Volume Gateway
	Tape Gateway

	AWS Compute Services
	Amazon EC2
	General-Purpose Types
	Compute Optimized
	Memory Optimized
	Accelerated Computing
	Storage Optimized

	Other Services

	Amazon Elastic Container Registry
	AWS Networking and Content Delivery Services
	Amazon VPC
	Amazon API Gateway
	Amazon CloudFront

	Conclusion

	Chapter 2: AWS Pricing and Cost Management
	Understanding the Pricing of AWS
	AWS Free Tier
	Factors Affecting Pricing in AWS
	AWS Cost Optimization
	Right-Sizing
	What Is an EBS Volume?
	What Are Virtualization Types?
	Right-Sizing Database Instances

	Using Reserved Instances
	Using Spot Instances
	Using the Cost Explorer
	Cost Explorer Costs
	Cost Explorer Trends
	Daily Unblended Cost
	Monthly Unblended Cost
	Net Unblended Cost
	Recent Cost Explorer Reports
	Amortized Costs

	AWS Trusted Advisor
	Pricing of AWS Services
	Conclusion

	Chapter 3: Security in Amazon Web Services
	The SSR Model of AWS
	Compliance
	Physical and Environmental Security
	Business Continuity Management
	Network Security

	AWS Account Security Features
	Passwords for Authentication
	Multifactor Authentication
	Access Keys for API Authentication
	X.509 Certificates

	AWS Identity and Access Management
	Federation of Users in AWS
	How Access Management Is Done in AWS
	Attribute-Based Access Control

	AWS Web Application Firewall
	AWS Shield
	AWS Firewall Manager
	Conclusion

	Part II: Machine Learning in AWS
	Chapter 4: Introduction to Machine Learning
	Introduction to Machine Learning and Artificial Intelligence
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Learning
	Machine Learning in AWS
	Amazon SageMaker
	Understanding How SageMaker Works
	Preprocessing of Data in SageMaker
	Model Training in SageMaker
	Model Deployment in SageMaker
	Built-in SageMaker Algorithms
	Custom Algorithms in SageMaker

	Other Machine Learning Services by AWS
	Amazon Comprehend
	Amazon Polly
	Amazon Rekognition
	Amazon Translate
	Amazon Transcribe
	Amazon Textract

	Conclusion

	Chapter 5: Data Processing in AWS
	Preprocessing in Jupyter Notebook
	Preprocessing Using SageMaker’s Scikit-Learn Container
	Creating Your Own Preprocessing Code Using ScriptProcessor
	Creating a Docker Container
	Building and Pushing the Image
	Using a ScriptProcessor Class

	Using Boto3 to Run Processing Jobs
	Installing Boto3
	Initializing Boto3
	Making Dockerfile Changes and Pushing the Image
	Creating a Processing Job

	Monitoring Processing Jobs Using CloudWatch
	Conclusion

	Chapter 6: Building and Deploying Models in SageMaker
	Exploring the Linear Learner Algorithm
	Overview of Linear Regression
	Overview of Logistic Regression
	SageMaker Application of Linear Learner

	Exploring the XGBoost Algorithm
	Gradient Boosting Algorithm
	XGBoost Algorithm
	SageMaker Application of XGBoost

	Exploring the Blazing Text Algorithm
	Skip Gram Architecture of Word Vectors Generation
	Continuous Bag of Words Architecture of Word Vectors Generation
	SageMaker Application of Blazing Text

	Exploring the Image Classification Algorithm
	ResNet
	SageMaker Application of Image Classification

	Exploring the SeqToSeq Algorithm
	Recurrent Neural Networks
	Encoder-Decoder Architecture
	SageMaker Application of SeqToSeq

	Conclusion

	Chapter 7: Using CloudWatch with SageMaker
	Amazon CloudWatch
	CloudWatch Logs
	Training Jobs
	Processing Jobs

	CloudWatch Metrics
	Conclusion

	Chapter 8: Running a Custom Algorithm in SageMaker
	The Problem Statement
	Running the Model
	Transforming Code to Use SageMaker Resources
	Creating the Training Script
	Creating the Inference Script
	Configuring the Endpoint Generation Files
	Setting Up the Dockerfile
	Pushing the Docker Image to ECR

	Training the Model
	Deploying the Model
	Doing Real-Time Inference
	Doing Batch Transformation
	Conclusion

	Chapter 9: Making an End-to-End Pipeline in SageMaker
	Overview of Step Functions
	Upgrading Step Functions
	Defining the Required Parameters
	Setting Up the Required Roles
	Adding a Policy to the Existing SageMaker Role
	Creating a New IAM Role for Step Functions

	Setting Up the Training Step
	Setting Up the Endpoint Configuration Step
	Setting Up the Endpoint Step
	Creating a Chain of the Steps
	Defining the Workflow and Starting Operation
	Exploring the Jobs in Step Functions
	Exploring the JSON File That Can Be Passed as Input
	Conclusion

	Part III: Other AWS Services
	Chapter 10: Machine Learning Use Cases in AWS
	Use Case 1: Natural Language Processing Using Amazon Comprehend
	Analysis of Text
	Custom Classification

	Use Case 2: Sales Forecasting Using Amazon Forecast
	Creating a Dataset Group
	Defining Column Attributes
	Importing Data
	Making Predictions

	Use Case 3: Image Text Extraction Using Amazon Textract
	Extracting Tabular Information
	Extracting Form Data

	Conclusion

	Appendix A: Creating a Root User Account to Access the Amazon Management Console
	Appendix B: Creating an IAM Role
	Appendix C: Creating an IAM User
	Appendix D: Creating an S3 Bucket
	Appendix E: Creating a SageMaker Notebook Instance
	Index

