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1

Introduction

Methods, Material, and Moments
to Remember

Statistics, Quantitative Methods, Statistical Analysis—words, phrases, and
course titles that can shake the confidence of nearly any student. Let me put
your mind at ease right away. Your experience with statistics doesn’t have to be
a horror story. In fact, your experience with statistics can be an enjoyable
one—a venture into a new way of thinking and looking at the world. It’s all a
matter of how you approach the material.

Having taught statistics to legions of undergraduate students, I’ve spent a
lot of time trying to understand how students react to the material and why they
react the way they do. In the process, I’ve developed my own approach to the
subject matter, and that’s what I’ve tried to lay out in this book. As we get
started, let me tell you a little more about what to expect as you work your way
through this book.

First, let me explain my method. I’m committed to the idea that the subject
matter of statistics can be made understandable, but I’m also convinced that
it takes a method based on repetition. Important ideas and concepts can be
introduced, but they have to be reintroduced and reemphasized if a student is
to get the connection between one concept and the next. Repetition—that’s
the method I’ve used in this book, so you should be prepared for that. 

At times you may wonder why you’re rereading material that was empha-
sized at an earlier point. Indeed, you’ll likely start muttering “not that again!” If
that happens, enjoy the moment. It signals that you’re beginning to develop a
sense of familiarity with the central concepts. 

I’ve also tried to incorporate simplicity into the method—particularly in
the examples I’ve used. Some examples will probably strike you as extremely
simplistic—particularly the examples that are based on just a few cases and the
ones that involve numbers with small values. I trust that simplistic examples
won’t offend you. The goal here is to cement a learning process, not to master
complicated mathematical operations.



My experience tells me that a reliance on friendly examples, as opposed to
examples that can easily overwhelm, is often the best approach. When num-
bers and formulas take center stage, the logic behind the material can get lost.
That point, as it turns out, brings us to the essence of the material you’re about
to encounter.

In the final analysis, it’s often the logic behind statistics that proves to be
the key to success or failure.  You can be presented with formulas—simple or
complex—and you can, with enough time and commitment, memorize a string
of them. All of that is well and good, but your ability to grasp the logic behind
the formulas is a different matter altogether. I’m convinced that it’s impossible
to truly understand what statistics is all about unless you understand the logic
behind the procedures. Consequently, it’s the logic that I’ve tried to emphasize
in this book.

Indeed, it’s safe to say that numbers and formulas have taken a back seat
in this book. Of course you’ll encounter some formulas and numbers, but that’s
not where the emphasis is. Make no mistake about it—the emphasis in this
book is on the conceptual basis behind the calculations. 

There’s one other thing about the material that deserves comment. Like
it or not, the traditional approach to learning new material may come up short
when you want to learn about statistical analysis. The reason is a simple one:
The field of statistics is very different from other subjects you’ve studied in 
the past.

If, for example, you were taking a course to learn a foreign language,
you’d probably figure out the goal of the course fairly early. You’d quickly
sense that you’d be learning the basics of grammar and vocabulary, trying to
increase your command of both over time. I suspect you’d have a similar ex-
perience if you signed up for a history course. You’d quickly sense that you
were being introduced to names, dates, places, and overall context with the
goal of increasing your understanding of the how and why behind events.

Unfortunately, the field of statistical analysis doesn’t fit that learning model
very well. You may be able to immediately sense where you’re going in a lot of
courses, but that’s not necessarily the case in the field of statistics. In fact,
my guess is that a command of statistical analysis is probably best achieved
when you’re willing to go along for the ride without really knowing at first where
you’re going. A statement like that is close to heresy in the academic world, so
let me explain.

There is an end game to statistical analysis. People use statistical analysis
to describe information and to carry out research in an objective, quantifiable
way. Indeed, the realm of statistical analysis is fundamental to scientific inquiry.
But the eventual application of statistical analysis requires that you first have a
firm grasp of some highly abstract concepts. You can’t even begin to appreci-
ate the very special way in which scientists pose research questions if you don’t
have the conceptual background.

For a lot of students (indeed, most students, I suspect), it’s a bit much to
tackle concepts and applications at the same time. The process has to be bro-
ken down into two parts—first the conceptual understanding, and then the
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applications. And that’s the essence of my notion that you’re better off if you
don’t focus at the outset on where you’re going. Concentrate on the concep-
tual basis first. Allow yourself to become totally immersed in an abstract,
conceptual world, without any thought about direct applications. In my judg-
ment, that’s the best way to conquer the field of statistical analysis.

If you’re the sort of student who demands an immediate application of
concepts—if you don’t have much tolerance for abstract ideas—let me
strongly suggest that you lighten up a bit. If you’re going to master statistics—
even at the introductory level—you’ll have to open your mind to the world of
abstract thinking. 

Toward that end, let me tell you in advance that I’ll occasionally ask you
to take a moment to seriously think about one notion or another. Knowing
students the way I do, I suspect there’s a chance (if only a small chance) that
you’ll ignore my suggestion and just move ahead. Let me warn you. The ap-
proach of trying to get from Point A to Point B as quickly as possible usually
doesn’t work in the field of statistics. When the time comes to really think
about a concept, take whatever time is necessary.

Indeed, many of my students eventually come to appreciate what I mean
when I tell them that a particular concept or idea requires a “dark room mo-
ment.” In short, some statistical concepts or ideas are best understood if con-
templated in a room that is totally dark and void of any distractions.  Those
should become your moments to remember. I’m totally serious about that, so
let me explain why. 

Many statistical concepts are so abstract that a lot of very serious thought
is required if you really want to understand them. Moreover, many of those
abstract concepts turn out to be central to the statistical way of reasoning.
Simply reading about the concepts and telling yourself that you’ll remember
what they’re all about won’t do it. And that’s the purpose behind a dark room
moment.

If I could give you a single key to the understanding of statistics, it would be
this: Take the dark room moments seriously. Don’t be impatient, and don’t
think a few dark room experiences are beneath your intellectual dignity. If I tell
you that this concept or that idea may require a dark room moment, heed the
warning. Head for a solitary environment—a private room, or even a closet.
Turn out the lights, if need be, and undertake your contemplation in a world
void of distractions. You may be amazed how it will help your understanding of
the topic at hand. 

Finally, I strongly urge you to deal with every table, illustration, and work
problem that you encounter in this text. The illustrations and tables often con-
tain information that can get you beyond a learning roadblock. And as to the
work problems, there’s no such thing as too much practice when it comes to
statistical applications.

Now, having said all of that as background, it’s time to get started. Welcome
to the world of statistics—in this case, Statistics Unplugged!
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1

The What and How of Statistics

We start our journey with a look at the question of what statisticians do and
how they go about their work. In the process, we’ll explore some of the funda-
mental elements involved in statistical analysis. We’ll cover a lot of terms, and
most of them will have very specific meanings. That’s just the way it is in the
field of statistics—specific terms with specific meanings. Most of the terms will
come into play repeatedly as you work your way through this book, so a solid
grasp of these first few concepts is essential. 

■ Before We Begin

■ A World of Information

■ Levels of Measurement

■ Samples and Populations

■ The Purposes of Statistical Analysis
Descriptive Statistics
Inferential Statistics

■ Chapter Summary

■ Some Other Things You Should Know

■ Key Terms

■ Chapter Problems



A World of Information 5

One question that seems to be on the mind of a lot of students has to do with
relevance—the students want to know why they have to take a course in
statistics in the first place. As we begin our journey, I’ll try to answer that
question with a few examples. Just to get started on our relevance mission,
consider the following:

Let’s say that you’re applying for a job. Everything about the job is to your
liking. You think that you’re onto something. Then you encounter the last line
of the job description: Applicants must have a basic knowledge of statistics
and data analysis.

Perhaps you’re thinking about applying to graduate school in your chosen
field of study. You begin your research on various graduate programs across
the nation and quickly discover that there’s a common thread in program re-
quirements: Some background in undergraduate statistics or quantitative
methods is required.

Maybe you’re starting an internship with a major news organization and
your first assignment is to prepare a story about political races around the state.
Your supervisor hands you a stack of recent political polls, and you hit the panic
button. You realize that you really don’t know what is meant by the phrase
margin of error, even though you’ve heard that phrase hundreds of times. You
have some idea of what it means, but you don’t have a clue as to its technical
meaning.

Finally, maybe it is something as simple as your employer telling you that
you’re to attend a company year-end review presentation and report back. All’s
well until you have to comprehend all of the data and measures that are dis-
cussed in the year-end review. You quickly realize that your lack of knowledge
about statistics or quantitative analysis has put you in a rather embarrassing
situation.

Those are just a few examples that I ask you to consider as we get started.
I can’t promise that your doubts about the relevance of statistics will immedi-
ately disappear, but I think it’s a good way to start.

People who rely on statistical analysis in their work spend a lot of time deal-
ing with different types of information. One person, for example, might col-
lect information on levels of income or education in a certain community,
while another collects information on how voters plan to vote in an upcoming
election. A prison psychologist might collect information on levels of aggres-
sion in inmates, while a teacher might focus on his/her latest set of student
test scores. There’s really no limit to the type of information subjected to
statistical analysis.

A World of Information

Before We Begin



Though all these examples are different, all of them share something in com-
mon. In each case, someone is collecting information on a particular variable—
level of income, level of education, voter preference, aggression level, test
score. For our purposes, a variable is anything that can take on a different
quality or quantity; it is anything that can vary. Other examples might include
the age of students, attitudes toward a particular social issue, the number of
hours people spend watching television each week, the crime rates, in different
cities, the levels of air pollution in different locations, and so forth and so on.
When it comes to statistical analysis, different people may study different vari-
ables, but all of them generally rely on the same set of statistical procedures
and logic.

The information about different variables is referred to as data, a term
that’s at the center of statistical analysis. As Kachigan (1991) notes, the field of
statistical analysis revolves around the “collection, organization, and interpre-
tation of data according to well-defined procedures.” When the data relative to
some specific variables are assembled (and note that we say data are because
the word data is actually plural), we refer to the collection or bundle of infor-
mation as a data set. The individual pieces of information are referred to as
data points, but taken together, the data points combine to form a data set.
For example, let’s say that you own a bookstore and you’ve collected informa-
tion from 125 customers—information about each customer’s age, income,
occupation, marital status, and reading preferences. The entire bundle of
information would be referred to as a data set. The data set would be based
upon 125 cases or observations (two terms that are often used interchange-
ably), and it would include five variables for each case (i.e., the variables of age,
income, occupation, marital status, and reading preferences). A specific piece
of information—for example, the age of one customer or the educational level
of one customer—would be a data point. 

With that bit of knowledge about data, data sets, and data points behind
you, let’s consider one more context in which you’re apt to see the term, data.
Statisticians routinely refer to data distributions. There are many ways to think
of or define a data distribution, but here’s one that’s keyed to the material that
you’ve just covered. Think of a data distribution as a listing of the values or re-
sponses associated with a particular variable in a data set. With the previous
example of data collected from 125 bookstore customers as a reference, imag-
ine that you listed the age of each customer—125 ages listed in a column. The
listing would constitute a data distribution. In some situations you might want to

❏✔ LEARNING CHECK

Question: What is a variable?
Answer: A variable is anything that can vary; it’s anything that can

take on a different quality or quantity.

6 CHAPTER 1 The What and How of Statistics
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develop what’s referred to as a frequency distribution—a table or graph that
indicates how many times a value or response appears in a data set of values or
responses. Even if you developed age categories (e.g., Under 18, 18 through
29, 30 through 39, 40 through 49, etc.), and you wrote down the number of
cases that fell into each category, you’d still be constructing a frequency
distribution (although you would refer to it as a grouped frequency distribution).
For some examples of the different ways that a data distribution might appear,
take a look at Figure 1-1.

❏✔ LEARNING CHECK

Question: What is a data distribution?
Answer: A data distribution is a listing of values or responses

associated with a particular variable in a data set.

Figure 1-1 Examples of Data Distributions (Based on a Distribution of Ages Recorded for a
Distribution Having 140 Cases)

Simple Listing Frequency Grouped Frequency 
of Data Distribution Distribution

Age Age Frequency (f ) Age Category Frequency (f )

15
21
25
18
23
17
19
22
16
15
19
24
.
.
.

Continued listing
of individual
cases for a total
of 140 cases

15–17 24
18–20 46
21–23 50
24–26 20

Shows different age categories
and number of times (the fre-
quency or f ) an age within a
specific category is represented
in the distribution. For example,
the distribution contains a total
of 46 cases that are within the
age category of 18–20.

15 8
16 4
17 12
18 9
19 21
20 16
21 14
22 18
23 18
24 10
25 10

Shows each value and
number of times (the fre-
quency or f ) that it occurs.
For example, the value
15 occurred 8 times in
the distribution; the value
20 occurred 16 times in
the distribution



Later on, you’ll encounter a lot more information about data distributions—
particularly, what you can learn about a distribution when you plot or graph the
data, and what the shape of a distribution can tell you. For the moment,
though, just remember the term data, along with case or observation. You’ll
see these terms over and over again.

Closely related to variables is the concept of levels of measurement. Every
variable is measured at a certain level, and some levels of measurement are, in
a sense, more sophisticated than others. Here’s an example to introduce you
to the idea.

Let’s say that you took a test along with 24 other students. Suppose the
test scores were posted (a form of a data distribution) showing student rankings
but not the actual test scores. In this case, you could determine how you did rel-
ative to the other students, but that’s about all you could determine. You could
easily see that you had, for example, the third highest score on the test. All
you’d have to do is take a look at the list of rankings and look at your rank in
comparison to the ranks of the other students. Someone would have the top or
number one score, someone would have the second highest score, and so
forth—right down to the person with the lowest rank (the 25th score). You’d
know something about everyone’s test performance—each person’s rank—but
you really wouldn’t know much. 

If, on the other hand, the actual test scores were posted, you’d have a lot
more information. You might discover that you actually scored 74. The top
score, for example might have been 95 and the next highest score might have
been 80, so that your score of 74 was in fact the third highest. In this case,
knowledge of the actual test score would tell you quite a lot. 

In the first example (when all you knew were student ranks on the test), you
were dealing with what’s referred to as the ordinal level of measurement. In
the second instance, you were dealing with a higher level of measurement,
known as the ratio level of measurement. To better understand all of this, let’s
consider each level of measurement, from the simplest to the most complex.

The most fundamental or simplest level, nominal level of measurement,
rests on a system of categories. A person’s religious affiliation is an example of
a nominal level variable, or a variable measured at the nominal level of mea-
surement. If you were collecting data on that variable, you’d probably pose a
fairly direct question to respondents about their religious affiliation, and you’d
put their responses into different categories. You might rely on just five cate-
gories (Protestant, Catholic, Jewish, Muslim, Other), or you might use a more
elaborate system of classification (maybe seven or even nine categories). How
you go about setting up the system of categories is strictly up to you. There are
just two requirements: The categories have to be mutually exclusive, and they
must be collectively exhaustive. Let me translate.

Levels of Measurement

8 CHAPTER 1 The What and How of Statistics



Levels of Measurement 9

First, it must be possible to place every case you’re classifying into one
category, but only one category. That’s what it means to say that the categories
are mutually exclusive. Returning to the question about religious affiliation,
people could categorized as Protestant or Catholic or Jewish or Muslim or
Other, depending on their responses, but they couldn’t be placed into more
than one category each.

Second, you have to have a category for every observation or case that
you’re classifying or recording. That’s what it means to say that the categories
are collectively exhaustive. In the process of classifying people according to
their religious affiliations, for example, what would you do if someone said that
he/she was an atheist? If you didn’t have a category to handle that, then your
system of categories wouldn’t be collectively exhaustive. In many instances, a
classification system includes the category Other for that very reason—to
ensure that there’s a category for every case being classified. 

So much for the nominal level of measurement. Now let’s look at the next
level of measurement.

When you move to the ordinal level of measurement, an important ele-
ment appears: the notion of order. For example, you might ask people to tell
you something about their educational level. Let’s say you give people the fol-
lowing response options: less than high school graduate, high school graduate,
some college, college graduate, post–college graduate. In this instance, you can
say that you’ve collected your data on the variable Level of Education at the or-
dinal level. You’ll then have some notion of order to work with in your analy-
sis. You’ll know, for example, that the people who responded “some college”
have less education than those who answered “college graduate.” You won’t
know exactly how much less, but you will have some notion of order—of more
than and less than.

If, on the other hand, you asked students in your class to tell you what time
they usually awaken each morning, you’d be collecting data at the interval level
of measurement. The key element in this level of measurement is the notion of
equal intervals. For example, the difference between 9:15 AM and 9:30 AM is
the same as the difference between 7:45 AM and 8:00 AM—15 minutes.

The final level of measurement—the ratio level of measurement—has all
the properties of the interval level of measurement, along with one additional
feature: The ratio level has a true or known zero point. It’s a minor point, but
one that you should understand.

To say that a variable is measured at the ratio level of measurement means
that the variable could actually assume a value of 0 and that the value of 0 is,
in a sense, legitimate. For example, if you asked students how much money
they spent each week on entertainment, it is possible for some to say that they
don’t spend any money on entertainment. In other words, a response of 0 is
possible. In this case, the 0 is “legitimate” because it really represents an ab-
sence of entertainment spending. In the process of research, it isn’t necessary
for you to actually have an observation in your distribution that is recorded as
a 0 to say that you are working with data measured at the ratio level. All that’s
necessary is that a 0 response or observation be possible. When you’re dealing



with a scale of measurement that has the possibility of a value of 0, it is possible
to speak in terms of ratios (and hence the phrase ratio level of measurement).
For example, you can speak in terms of one value being twice as large as
another value.

As a practical matter, the difference between the interval and ratio levels of
measurement is of no consequence in the world of statistical analysis. The most
sophisticated statistical techniques will work with interval level data. For that
reason, some statistics textbooks don’t even mention the ratio level of measure-
ment. Others simply refer to the interval/ratio level of measurement—the
practice we’ll follow.

My guess is that you’re still wondering what the real point of this discussion
is. The answer will have more meaning down the road, but here’s the answer
anyway: It’s very common for students to complete a course in statistics, only
to discover that they never quite grasped how to determine which statistical
procedure to use in what situation. Indeed, many students slug their way
through a course, memorizing different formulas, never having the faintest idea
why one statistical procedure is selected over another. The answer, as it turns
out, often relates to the level of measurement of the variables being analyzed.
Some statistical procedures work with nominal or ordinal data, but other proce-
dures may require interval/ratio data. Other factors also come into play when
you’re deciding which statistical procedure to use, but the level of measurement
is a major element. 

All of this will become more apparent later on. For the moment, let’s return
to some more of the fundamental elements in statistical analysis.

Samples and populations—these terms go to the heart of statistical analysis.
We’ll start with the larger of the two and work from there. In the process, we’ll
encounter some of the other terms you’ve already met in the previous section. 

Here’s a straightforward way to think about the term population:
A population (or universe) is all possible cases that meet certain criteria. It’s the
total collection of cases that you’re interested in studying. Let’s say you’re
interested in the attitudes of registered voters in your community. All of the reg-
istered voters (all possible cases) in your community would constitute the

Samples and Populations

❏✔ LEARNING CHECK

Question: What are the different levels of measurement?
Answer: The different levels of measurement are nominal, ordinal,

interval, and ratio. Some statisticians combine the last
two levels and use the term interval/ratio, since there’s no
real practical difference between the two.

10 CHAPTER 1 The What and How of Statistics
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population or universe. If you were interested in the grade point averages of
students enrolled for six hours or more at a particular university, then all the
students who met the criteria (that is, all students enrolled for six hours or more
at the university) would constitute the population.

When you think about it, of course, you’ll realize that the population of reg-
istered voters is constantly changing, just as the population of students enrolled
for six hours is apt to be constantly changing. Every day, more people may reg-
ister to vote, and others may be removed from the voter rolls because they have
died or moved to another community. By the same token, some students may
drop a course or two (thus falling below the six-hour enrollment criterion), and
some students may drop out of school altogether. 

Once you begin to understand the idea that a population can change (or is
potentially in a state of constant flux), you’re on your way to understanding the
fundamentally theoretical nature of statistical analysis. Think of it this way: You
want to know something about a population, but there’s a good chance that
you can never get a totally accurate picture of the population simply because it
is constantly changing. So, you can think of a population as a collection of all
possible cases, recognizing the fact that what constitutes the population may be
changing.

Not only are populations often in a constant state of flux, but practically
speaking, you can’t always have access to an entire population for study.
Matters of time and cost often get in the way—so much so that it becomes
impractical to work with a population. As a result, you’re very apt to turn to a
sample as a substitute for the entire population. 

Unfortunately, a sample is one of those concepts that many people fail to
truly grasp. Indeed, many people are inclined to dismiss any information
gained from a sample as being totally useless. Cuzzort and Vrettos (1996),
however, are quick to point out how the notion of a sample stacks up against
knowledge in general:

There is no need to apologize for the use of samples in statistics.To focus
on the limitations of sampling as a criticism of statistical procedures is ab-
surd.The reason is evident. All human knowledge, in one way or another,
is knowledge derived from a sampling of the world around us.

A sample is simply a portion of a population. Let’s say you know there are
4,329 registered voters in your community (at least there are 4,329 registered
voters at a particular time). For a variety of reasons (such as time or cost), you
may not be able to question all of them. Therefore, you’re likely to question just
a portion of them—for example, 125 registered voters. The 125 registered
voters would then constitute your sample.

Maybe you want to take a snapshot look at student attitudes on a particu-
lar issue, and let’s say you’ve defined your population as all the students en-
rolled for six hours or more. Even if you could freeze the population, so to
speak, and just consider the students enrolled for six or more hours at a partic-
ular time (recognizing that the population could change at any moment), you



might not be able to question all the students. Because time or the cost of a
total canvass might stand in your way, you’d probably find yourself working
with a portion of the population—a sample, let’s say, of 300 students.

As you might suspect, a central notion about samples is the idea of their
being representative. To say that a sample is representative is to say that the
sample mirrors the population in important respects. For example, imagine a
population that has a male/female split, or ratio, of 60%/40% (60% male and
40% female). If a sample of the population is representative, you’d expect it to
have a male/female split very close to 60%/40%. Your sample may not reflect
a perfect 60%/40% split, but it would probably be fairly close. You could, if you
wanted to, take a lot of different samples, and each time you might get slightly
different results, but most would be close to the 60%/40% split. Later on,
you’ll encounter a more in-depth discussion of the topic of sampling, and of
this point in particular. For the moment, though, let’s just focus on the basics
with a few more examples.

Let’s say you’re an analyst for a fairly large corporation. Let’s assume you
have access to all the employee records, and you’ve been given the task of
conducting a study of employee salaries. In that case, you could reasonably
consider the situation as one of having the population on hand. In truth,
there’s always the possibility that workers may retire, quit, get fired, get hired,
and so on. But let’s assume that your task is to get a picture of the salary
distribution on a particular day. In a case such as this, you’d have the popu-
lation available, so you wouldn’t need to work with just a sample.

To take a different example, let’s say your task is to survey customer atti-
tudes. Even if you define your population as all customers who’d made a
purchase from your company in the last calendar year, it’s highly unlikely that
you could reach all the customers. Some customers may have died or moved,
and not every customer is going to cooperate with your survey. There’s also
the matter of time and expense. Add all of those together, and you’d probably
find yourself working with a sample. You’d have to be content with an analysis
of a portion of the population, and you’d have to live with the hope that the
sample was representative. 

Assuming you’ve grasped the difference between a sample and a popula-
tion, now it’s time to look at the question of what statistical analysis is all about.
We’ll start with a look at the different reasons why people rely on statistical
analysis. In the process, you’ll begin to discover why the distinction between a
sample and population is so important in statistical analysis.

❏✔ LEARNING CHECK

Question: What is a population?
Answer: A population is all possible cases that meet certain

criteria; it is sometimes referred to as the universe.

12 CHAPTER 1 The What and How of Statistics
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Statisticians make a distinction between two broad categories of statistical
analysis. Sometimes they operate in the world of descriptive statistics; other
times they work in the world of inferential statistics. Statisticians make other
distinctions between different varieties of statistical analysis, but for our pur-
poses, this is the major one: descriptive statistics versus inferential statistics.

Descriptive Statistics

Whether you realize it or not, the world of descriptive statistics is a world you
already know, at least to some extent. Descriptive statistics are used to sum-
marize or describe data from samples and populations. A good example is one
involving your scores in a class. Let’s say you took a total of 10 different tests
throughout a semester. To get an idea of your overall test performance, you’d
really have a couple of choices. 

You could create a data distribution—a listing of your 10 test scores—and
just look at it with the idea of getting some intuitive picture of how you’re
doing. As an alternative, though, you could calculate the average. You could
add the scores together and divide by 10, producing what statisticians refer to
as the mean (or more technically, the arithmetic mean). The calculation of the
mean would represent the use of descriptive statistics. The mean would allow
you to summarize or describe your data. 

Another example of descriptive statistics is what you encounter when the
daily temperature is reported during the evening weather segment on local tele-
vision. The weathercaster frequently reports the low and high temperature for
the day. In other words, you’re given the range—another descriptive statistic
that summarizes the temperatures throughout the day. The range may not be
a terribly sophisticated measure, but it’s a summary measure, nonetheless. Just
like the mean, the range is used to summarize or describe some data.

❏✔ LEARNING CHECK

Question: How are descriptive statistics used?
Answer: Descriptive statistics are used to describe or summarize

data distributions.

The Purposes of Statistical Analysis

❏✔ LEARNING CHECK

Question: What is a sample?
Answer: A sample is a portion of the population or universe.



Inferential Statistics

We’ll cover more of the fundamentals of descriptive statistics a little later on,
and my guess is that you’ll find them to be far easier to digest than you may
have anticipated. For the moment, though, let’s turn to the world of inferential
statistics. Since that’s the branch of statistical analysis that usually presents the
greatest problem for students, it’s essential that you get a solid understanding.
We’ll ease into all of that with a discussion about the difference between
statistics and parameters.

As it turns out, statisticians throw around the term statistics in a lot of
different ways. Since the meaning of the term depends on how it’s used, the
situation is ripe for confusion. In some cases, the exact use of the term isn’t all
that important, but there’s one case in which it is of major consequence. Let
me explain. 

Statisticians make a distinction between sample statistics and population
parameters. Here’s an example to illustrate the difference between the two
ideas. Imagine for a moment that you’ve collected information from a sample
of 2000 adults (defined as people age 18 or over) throughout the United
States—men and women, people from all over the country. Let’s also assume
that you have every reason to believe it is representative of the total population
of adults, in the sense that it accurately reflects the distribution of age and other
important characteristics in the population. 

Now suppose that, among other things, you have information on how
many hours each person in the sample spent viewing television last week. It
would be a simple matter to calculate an average for the sample (the average
number of hours spent viewing television). Let’s say you determined that the
average for your sample was 15.4 hours per week. Once you did that, you
would have calculated a summary characteristic of the sample—a summary
measure (the average) that tells you something about the sample. And that is
what statisticians mean when they use the expression sample statistic. In other
words, a statistic is a characteristic of a sample. You could also calculate the
range for your sample. Let’s say the viewing habits range from 0 hours per
week to 38.3 hours per week. Once again, the range—the range from 0 to
38.3—would be a summary characteristic of your sample. It would be a sample
statistic.

Now let’s think for a moment about the population from which the sample
was taken. It’s impossible to collect the information from each and every mem-
ber of the population (millions of people age 18 or over), but there is, in fact,
an average or mean television viewing time for that population. The fact that
you can’t get to all the people in the population to question them doesn’t take
away from the reality of the situation. 

The average or mean number of hours spent viewing television for the en-
tire population is a characteristic of the population. By the same token, there is
a range for the population as a whole, and it too is a characteristic of the pop-
ulation. That’s what statisticians mean when they use the expression population
parameter. In other words, a parameter is a characteristic of the population.

14 CHAPTER 1 The What and How of Statistics
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This notion that there are characteristics of a population (such as the average
or the range) that we can’t get at directly is a notion that statisticians live with every
day. In one research situation after another, statisticians are faced with the prospect
of having to rely on sample data to make inferences about the population. And
that’s what the branch of statistics known as inferential statistics is all about—
using sample statistics to make inferences about population parameters. If you
have any doubt about that, simply think about all the research results that you hear
reported on a routine basis. 

It’s hard to imagine, for example, that a political pollster is only interested
in the results of a sample of 650 likely voters. He/she is obviously interested in
generalizing about (making inferences to) a larger population. The same is true
if a researcher studies the dating habits of a sample of 85 college students or
looks at the purchasing habits of a sample of 125 customers. The researcher
isn’t interested in just the 85 students in the sample. Instead, the researcher is
really interested in generalizing to a larger population—the population of college
students in general. By the same token, the researcher is interested in far more
than the responses of 125 customers. The 125 responses may be interesting,
but the real interest has to do with the larger population of customers in gen-
eral. All of this—plainly stated—is what inferential statistics are all about. They’re
the procedures we use to “make the leap” from a sample to a population.

As you’ll soon discover, that’s where the hitch comes in. As it turns out,
you can’t make a direct leap from a sample to a population. There’s something
that gets in the way—something that statisticians refer to as sampling error.
For example, you can’t calculate a mean value for a sample and automatically
assume that the mean you calculated for your sample is equal to the mean of
the population. After all, someone could come along right behind you, take a
different sample, and get a different sample mean—right? It would be great if
every sample taken from the same population yielded the same mean (or other
statistic, for that matter)—but that’s not the way the laws of probability work.
Different samples are apt to yield different means. 

❏✔ LEARNING CHECK

Question: How are inferential statistics used?
Answer: Inferential statistics are used to make statements about a

population, based upon information from a sample;
they’re used to make inferences.

Question: What is the difference between a statistic and a parameter,
and how does this difference relate to the topic of
inferential statistics?

Answer: A statistic is a characteristic of a sample; a parameter is 
a characteristic of a population. Sample statistics are used
to make inferences about population parameters.
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We’ll eventually get to a more in-depth consideration of sampling error and
how it operates to inhibit a direct leap from sample to population. First,
though, let’s turn our attention to some of those summary measures that were
mentioned earlier. For that, we’ll go to the next chapter.

Chapter Summary

Whether you realize it or not, you’ve done far more than just dip your toe into the
waters of statistical analysis. You’ve actually encountered some very important
concepts—ideas such as data distributions, levels of measurement, samples, pop-
ulations, statistics, parameters, description, and inference. That’s quite a bit, so
feel free to take a few minutes to think about the different ideas. Most of the ideas
you just encountered will come into play time and time again on our statistical
journey, so take the time to digest the material.

As a means to that end, let me suggest that you spend some of your free
time thinking about different research ideas—things you might like to study, as-
suming you had the time and resources. Maybe you’re interested in how the
amount of time that students spend studying for a test relates to test perfor-
mance. That’s as good a place to start as any. Think about how you’d define
your population. Mull over how you’d get a sample to study. Think about how
you’d measure a variable such as time spent studying. Think about how you’d
record the information on the variable of test performance. Would you record
the actual test score (an interval/ratio level of measurement), or would you just
record the letter grade—A, B, C, D, or F (an ordinal level of measurement)?

Later on, you might think about another research situation. Maybe there are
questions you’d like to ask about voters or work environments or family structures
or personality traits. Those are fine, too. All’s fair in the world of research. Just
let the ideas bubble to the surface. All you have to do is start looking at the world
in a little different way—thinking in terms of variables and levels of measurement
and samples and all the other notions you’ve just encountered. When you do that,
you may be amazed at just how curious about the world you really are.

Some Other Things
You Should Know

At the outset of your statistical education, you deserve to know something about
the field of statistical analysis in general. Make no mistake about it; the field of
statistical analysis constitutes a discipline unto itself. It would be impossible to
cover the scope of statistics in one introductory text or course, just as it would be
impossible to cover the sweep of western history or chemistry in one effort. Some
people become fascinated with statistics to the point that they pursue graduate
degrees in the field. Many people, with enough training and experience, carve out
professional careers that revolve around the field of statistical analysis. In short, it
is an area of significant opportunity.
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Whether you take the longer statistical road remains to be seen. Right now,
the focus should be on the immediate—your first encounter with the field.
Fortunately, the resources to assist you are present in spades. For example,
Cengage (the publisher of this text) has an excellent website available and easily
accessible for your use. Let me encourage you to visit it at the following URL:

www.cengage.com/psychology/caldwell

Libraries and bookstores also have additional resources—other books you
may want to consult if some topic grabs your attention or seems to be a
stumbling block. My experience tells me that it pays to consider several sources
on the same topic—particularly when the subject matter has to do with statistical
analysis. The simple act of consulting several sources introduces you to the fact
that you’ll likely find different approaches to symbolic notation in the field of
statistics, as well as different approaches to the presentation of formulas. Beyond
that, one author’s approach may not suit you, but another’s may offer the words
that unlock the door. There’s hardly a lack of additional information available.
What’s needed is simply the will to make use of it when necessary. In the world
of statistical analysis, there’s a rule of thumb that never seems to fail: If a good
resource is available, give it a look.

Key Terms

data nominal level of measurement
data distribution ordinal level of measurement
data point parameter
data set population
descriptive statistics ratio level of measurement
frequency distribution sample
inferential statistics statistic
interval level of measurement universe
interval/ratio level of measurement variable

Chapter Problems

Fill in the blanks with the correct answer.

1. A researcher is trying to determine if there’s a difference between the
performance of liberal arts majors and business majors on a current
events test. The variables the researcher is studying are and

. (Provide names for the variables.)
2. A researcher is studying whether or not men and women differ in their

attitudes toward abortion. The variables the researcher is studying are
and . (Provide names for the variables.)

www.cengage.com/psychology/caldwell


3. The level of measurement based upon mere categories—categories that
are mutually exclusive and collectively exhaustive—is referred to as the

level of measurement.
4. The level of measurement that has all the properties of the nominal level of

measurement, plus the notion of order is referred to as the 
level of measurement.

5. The level of measurement at which mathematical operations can be
carried out is referred to as the level of measurement.

6. A researcher collects information on the political party affiliation of peo-
ple at a local community meeting. The information on party affiliation
(Republican, Democrat, Independent, or Other) is said to be measured at
the level of measurement.

7. A researcher collects information on the number of absences each worker
has had over the past year. He/she has the exact number of days absent
from work. That information would be an example of a variable (absences)
measured at the level of measurement.

8. Participants in a research study have been classified as lower, middle, or
upper class in terms of their socioeconomic status. We can say that the
variable of social class has been measured at the level of
measurement.

9. A researcher wants to make some statements about the 23,419 students
at a large university and collects information from 500 students. The
sample has members, and the population has 
members.

10. A statistic is a characteristic of a ; a parameter is a characteris-
tic of a .

18 CHAPTER 1 The What and How of Statistics

11. In the world of inferential statistics, sample are used to make
inferences about population .

12. statistics are used to describe or summarize data; 
statistics are used to make inferences about a population.
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The Range
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The Mean Deviation
The Variance
The Standard Deviation
n Versus n – 1

■ Chapter Summary

■ Some Other Things You Should Know

■ Key Terms

■ Chapter Problems

This chapter has three goals. The first goal is to introduce you to the more
common summary measures used to describe data. As we explore those mea-
sures, we’ll key in on two important concepts: central tendency and variability
or dispersion. The second goal follows from the first—namely, to get you com-
fortable with some of the symbols and formulas used to describe data. The
third goal is a little more far-reaching: getting you to visualize different types of
data distributions. The process of data visualization is something that you’ll
want to call upon throughout your journey. We’ll start with some material that
should be fairly familiar to you.
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Before We Begin

Imagine the following scenario: Let’s say that you’re reading a report about
health care in the United States. As the report unfolds, it reads like a general
narrative—outlining the historical changes in leading causes of death, summa-
rizing the general upward trend in the cost of health care, and so forth and so on.
You tell yourself that you’re doing fine—so far, so good. But before you know
it, you’re awash in a sea of terms and numbers. Some are terms that you’ve
heard before, but you’ve never been really comfortable with them. Others are
totally new to you. You get the idea of what the report is dealing with, but all
the terms and numbers are just too much.

For someone else, it might be a report about crime (e.g., types of crime,
length of sentence, characteristics of offenders, etc.), and packed with terms
that are unfamiliar. And, just to consider another example, the scenario might
involve a report on voter participation, with an emphasis on the last two pres-
idential election cycles.

With any of those topics, it’s easy to imagine the scenario. The report
begins with a well-crafted narrative, but eventually it turns into a far more quan-
titative exposé on the subject at hand. What started out as a high level of read-
ing comprehension on your part gives way to a sea of confusion. All too often,
it’s the reader’s lack of solid grounding in basic statistical analysis that makes
the report unintelligible.

It is against that background that the next chapter unfolds. You’re going to
be introduced to quite a few terms. Some of the terms may be very familiar to
you, but others will likely take you into new territory. Allow me to throw in a
cautionary note at the outset. If some of the terms or concepts are familiar to
you, count yourself lucky. On the other hand, don’t suspend your concentra-
tion on what you’re reading. There’s likely to be some new material to digest.
Accordingly, let me urge you to take whatever time is necessary to develop a
thorough understanding of the various concepts. In many ways, they represent
essential building blocks in the field of statistics.

Measures of Central Tendency

To a statistician, the mean (or more correctly, the arithmetic mean) is only one
of several measures of central tendency. The purpose behind any measure of
central tendency is to get an idea about the center, or typicality, of a distribu-
tion. As it turns out, though, the idea of the center of a distribution and what
that really reflects depends on several factors. That’s why statisticians have
several measures of central tendency. 

The Mean

The one measure of central tendency that you’re probably most familiar with
is the one I mentioned earlier—namely, the mean. The mean is calculated by
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adding all the scores in a distribution and dividing the sum by the number of
scores. If you’ve ever calculated your test average in a class (based on a num-
ber of test scores over the semester), you’ve calculated the mean. I doubt there
is anything new to you about this, so let’s move along without a lot of
commentary.

Now let’s have a look at the symbols that make up the formula for the
mean. Remember: All that’s involved is summing all the scores (or values) and
then dividing the total by the number of scores (or values). In terms of statisti-
cal symbols, the mean is calculated as follows:

In this formula, there are only three symbols to consider. The symbol Σ (the
Greek uppercase sigma) represents summation or addition. Whenever you
encounter the symbol Σ, expect that summation or addition is involved. As for the
symbol X, it simply represents the individual scores or values. If you had five test
scores, there would be five X values in the distribution. Each one is an individual
score (something statisticians often refer to as a raw score). The N in the for-
mula represents the number of test scores (cases or raw scores) that you’re
considering. We use the lowercase n to represent the number of cases in a sam-
ple; the uppercase N represents the number of cases in a population. If, for
example, you were summing five test scores (and treating the five cases as a
population), you would say that N equals five. Consider the examples in Table 2-1.

As you’ve no doubt discovered when you have calculated the mean of your
test scores in a class, the value of the mean doesn’t have to be a value that ac-
tually appears in the distribution. For example, let’s say you’ve taken three tests

Mean 5
aX

N

Table 2-1 Calculation of the Mean

Scores/Values (N = 5) Scores/Values (N = 7) Scores/Values (N = 10)

1 2 5
2 4 1
3 6 3
4 7 4
5 8 1

9 4
ΣX = 15 13 3

15/5 = 3 5

Mean = 3 ΣX = 49 2
49/7 = 7 2

Mean = 7
ΣX = 30

30/10 = 3

Mean = 3
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and your scores were 80, 84, and 86. The mean would be 83.33—clearly a
value that doesn’t appear in the distribution. Similar examples are shown in
Table 2-2.

By the same token, consider three incomes: $32,000; $41,500; and
$27,200. The mean income would be $33,566.67—a value that isn’t found in
the distribution.

Now let’s give some thought to what we’ve been looking at. The formula,
at least the way I presented it to you, tells you how to calculate the mean. Now
the question is, which mean are we really considering? Since the goal of infer-
ential statistics is to use information from a sample to make statements about
a population, it’s essential to make it clear when you’re referring to the mean
of a sample and when you’re referring to the mean of a population. Therefore,
it shouldn’t surprise you to learn that statisticians use different symbols to refer
to the mean—one for a sample mean, and the other for a population mean.
Just as there’s a difference in the way we express the number of cases for a
sample (n), as opposed to a population (N ), we make a distinction between the
mean of a sample and the mean of a population. Here’s the difference:

is the symbol for the mean of a sample (and n = number of cases) 
m is the symbol for the mean of a population (and N = number of cases)
X

❏✔ LEARNING CHECK

Question: What is the mean, and how is it calculated?
Answer: The mean is a measure of central tendency. It is calculated

by adding all the scores in a distribution and dividing the
sum by the number of cases in the distribution.

Table 2-2 Calculation of the Mean

Scores/Values (N = 3) Scores/Values (N = 6)

80 1
84 2
86 3

4
ΣX = 250 5

250/3 = 83.33 6

Mean = 83.33
ΣX = 21

21/6 = 3.50

Mean = 3.50
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So, the symbol for the mean of a sample is , and the symbol for the mean
of the population is represented by m. The symbol m stands for mu (the Greek
letter, pronounced “mew”). Technically, the term mean is used in reference to
a sample, and mu (l) is used in reference to a population. It’s certainly OK to
speak of the population mean, but you should always keep in mind that you are
really speaking about mu. The formula essentially is the same for either the
mean or mu, so you may be inclined to think this is a minor point—the fact that
statisticians have different symbols for the sample mean and the population
mean. Later on, you’ll develop an appreciation for why the symbols are differ-
ent. For the moment, just accept the notion that the distinction is an important
one—something that you should take to heart. As a matter of fact, it’s always
a good idea to be clear in your thinking and speech when it comes to statistics.
Use expressions such as sample mean, population mean, or mu. Unless
you’re making reference to the mean in general, don’t just think or speak in
terms of a mean without making it clear which mean you have in mind.

Let me make one last point about the mean—whether you’re talking about a
population mean (m) or a sample mean ( ). One of the properties of the mean is
that it is sensitive to extreme scores. In other words, the calculated value of the
mean is very much affected by the presence of extreme scores in the distribution.
This is something you already know, particularly if you’ve ever been in a situation
in which just one horribly low test score wrecked your overall average.

Imagine, for example, that you have test scores of 80, 90, 80, and 90. So
far, so good; everything seems to be going your way. But what if you took a
final test, and your score turned out to be 10? You don’t even have to calculate
the mean to know what a score like that would do to your average. It would pull
your average down, and that’s just a straightforward way of saying that the
mean is sensitive to extreme scores. The 10 would be an extreme score, and
the mean would be pulled down accordingly. You shouldn’t have to do the
calculations; you should be able to feel the effect in your gut, so to speak. If
you did take the time to calculate the mean under the two different scenarios,
you’d see that it moved from a value of 85 (when you were basing it on the first
four tests) to a value of 70 (when you added in the fifth test score of 10). The
presence of that one extreme score (the score of 10) reduced the mean by
15 points (see Table 2-3)!

X

❏✔ LEARNING CHECK

Question: What is the symbol for the mean of a sample? What
is the symbol for the mean of a population? What is
another term for the mean of the population?

Answer: The symbol for the mean of a sample is   ; the mean of
the population, which is also referred to as mu, is m.

X

X
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The Median

Now we turn our attention to a second measure of central tendency—one
referred to as the median. Unlike the mean, the median is not sensitive to ex-
treme scores. In the simplest of terms, the median is the point in a distribution
that divides the distribution into halves. It’s sometimes said to be the midpoint
of a distribution. In other words, one half of the scores in a distribution are
going to be equal to or greater than the median, and one half of the scores 
are going to be equal to or less than the median. Like the mean, the median
doesn’t have to be a value that actually appears in the distribution. 

As I introduce you to the formula for the median, let me emphasize one
point. It is a positional formula; that is, it points you to the position of the
median. Again, the formula yields the position of the median—not the value.
Here’s the formula for the position of the median:

Note the use of N, indicating the number of cases in a population. If we were 
determining the median for a sample, we would use n to represent the number of cases.

Before you apply the formula, there’s one thing you should always remember:
You have to arrange all the scores in your distribution in ascending or
descending order. That’s a must—otherwise, the formula won’t work. 

Median 5
N 1 1

2

❏✔ LEARNING CHECK

Question: What does it mean to say that the mean is sensitive to
extreme values?

Answer: The mean is sensitive to extreme values in the sense that
an extremely high or extremely low score or value in a
distribution will pull the value of the mean toward the
extreme value.

Table 2-3 Effect of an Extreme Score

Test Scores (N = 4) Test Scores (N = 5)

80 80
90 90
80 80
90 90

10
ΣX = 340

340/4 = 85 ΣX = 350
Mean = 85 350/5 = 70

Mean = 70
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Assuming you’ve arranged all the scores in ascending or descending order,
(see Table 2-4), all you have to know is how many scores you have in the distri-
bution. That’s what the N in the formula is all about; it’s the number of cases,
scores, or observations. If there are 13 scores, the formula directs you to add
1 to 13 and then divide by 2. The result would be 14 divided by 2, or 7. The
median would be the 7th score—that is, the score in the 7th position. Once
again, the median would not have the value of 7. Rather, it would be the value
of whatever score was in the 7th position (from either the top or the bottom
of the distribution). The value of the median—of the score in the 7th position—
is 12.

The nice thing about the formula for the position of the median is that it
will work whether you have an odd or an even number of cases in the distrib-
ution. When you have an even number of cases, the formula will direct you to
a position that falls halfway between the two middle cases. For example, con-
sider a distribution with the following scores: 1, 2, 3, 12, 20, 24. With 6 scores
in the distribution, the formula gives us (6 + 1)/2. The median, then, would be
the 3.5th score. The halfway point between the third and fourth scores is found
by calculating the mean of the two values: (3 + 12)/2 = 15/2 = 7.5. In other
words, the position of the median would be the 3.5th score; the value would
be 7.5. All of this should become more apparent when you look at the exam-
ples in Table 2-5.

The other nice thing about the formula for the position of the median is that
it works for distributions with a small number or a large number of values. For
example, in a distribution with 315 scores, the position of the median would
be the 158th score (315 + 1)/2 = 158. In a distribution with 86,204 scores,
the position of the median would be the 43,102.5th score (86,204 + 1)/2. 

Table 2-4 Calculating the Median

• 13 scores

• Arrange the scores in ascending or descending order

• Formula for the Position of the Median = 

• SCORES

1, 1, 2, 4, 9, 11, 12, 21, 21, 24, 25, 25, 30

7th Score = Position of the Median

Value of the Median = 12

N 1 1
2

5
13 1 1

2
5

14
2
5 7th Score

N 1 1
2
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Once again, the formula determines the position of the median—not the value
of the median. Also, the formula rests on the assumption that the scores in the
distribution are in ascending or descending order.

The Mode

In addition to the mean and the median, there’s another measure of central ten-
dency to consider—namely, the mode. The mode is generally thought of as the
score, value, or response that appears most frequently in a distribution. For ex-
ample, a distribution containing the values 2, 3, 6, 1, 3, and 7 would produce
a mode of 3. The value of 3 appears more frequently than any other value. 

❏✔ LEARNING CHECK

Question: What is the median, and how is it determined?
Answer: The median is a measure of central tendency; it is the

score that cuts a distribution in half. The formula locates
the position of the median in a distribution, provided the
scores in distribution have been arranged in ascending or
descending order.

Table 2-5 Locating the Median

Scores/Values Scores/Values

1 1
2 2
4 Median = 4 4 Median = 4
8 8

12 120

Scores/Values Scores/Values

3 10
5 15
7

Median = 6
25

Median = 20

9 80

Scores/Values Scores/Values

10 17
10 27
14 34
23 Median = 23 34 Median = 34
23 34
80 59

100 62
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A distribution containing the values 2, 3, 6, 1, 3, 7, and 7 would be
referred to as a bimodal distribution because it has two modes—3 and 7.
Both values (3 and 7) appear an equal number of times, and both appear more
frequently than any of the other values. A distribution with a single mode is
called a unimodal distribution. A distribution in which each value appears the
same number of times has no mode. Table 2-6 provides a few more examples
to illustrate what the mode is all about.

As it turns out, there are some situations in which the mode is the only mea-
sure of central tendency that’s available. Consider the case of a nominal level
variable—for example, political party identification. Imagine that you’ve collected
data from a sample of 100 voters, and they turn out to be distributed as follows:
50 Republicans, 40 Democrats, and 10 Independents. You couldn’t calculate a
mean or median in a situation like this, but you could report the modal response.
In this example, the modal response would be Republican, because that was the

❏✔ LEARNING CHECK

Question: What is the mode?
Answer: The mode is a measure of central tendency. It’s the score

or response that appears most frequently in a distribution.

Table 2-6 Identifying the Mode

Scores/Values Scores/Values

1 1
2 2
2 2
7 7
9 7
9 9 is the mode 7 Bimodal
9 9 modes = 7 and 9

21 9
9

25
29

Scores/Values Scores/Values

200 20
200 200 is the mode 22
200 28 No mode
305 30
309 36
318 38
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most frequent response. If nothing else, this provides a good example of a point
I made earlier about levels of measurement: Which measure of central tendency
you use is often a function of the level of measurement that’s involved.

In the long run, of course, the most widely used measure of central ten-
dency is the mean, at least in inferential statistics. So, let’s return to a brief dis-
cussion of the mean as a jumping-off point for our next discussion.

Assume for the moment that you’re teaching two classes—Class A and
Class B. Further assume that both classes took identical tests and both classes
had mean test scores of 70. At first glance, you might be inclined to think the
test performances were identical. They were, in terms of the mean scores. But
does that indicate the classes really performed the same way? What if the
scores in Class A ranged from 68 to 72, but the scores in Class B ranged from
40 to 100? You could hardly say the overall performances were equal, could
you? And that brings us to our next topic—variability.

Measures of Variability or Dispersion

The last example carries an important message: If you really want to understand
a distribution, you have to look beyond the mean. Indeed, two distributions can
share the same mean, but can be very different in terms of the variability of in-
dividual scores. In one distribution, the scores may be widely dispersed or spread
out (for example, ranging from 40 to 100); in another distribution, the scores
may be narrowly dispersed or compact (for example, ranging from 68 to 72).
Statisticians are routinely interested in this matter of dispersion or variability—
the extent to which scores are spread out in a distribution.

Statisticians have several measures at their disposal when they want to
make statements about the dispersion or variability of scores in a distribution.
Even though a couple of the measures aren’t of great utility in statistical analy-
sis, you should follow along as we explore each one individually. By paying at-
tention to each one, you’re apt to get a better understanding of the big picture.

The Range

One of the least sophisticated measures of variability is the range—a statement
of the lowest score and the highest score in a distribution. For example, a state-
ment that the temperature on a particular day ranged from 65 degrees to 

❏✔ LEARNING CHECK

Question: What is meant by dispersion?
Answer: Dispersion is another term for variability. It is an expres-

sion of the extent to which the scores are spread out in
a distribution.
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78 degrees would be a statement of the range of a distribution. You could also
make a statement that the income distribution of your data ranged from
$12,473 to $52,881. To report the range is to report a summary measure of
a distribution. Consider the following examples of range:

Test Scores 23–98
Incomes $15,236–$76,302
Aggression Levels 1.36–7.67
Temperature 62 –81

The range tells you something about a distribution, but it doesn’t tell you much.
To have more information, you’d need a more sophisticated measure. We’ll even-
tually explore some of the other measures, but first let’s spend a little time on a cen-
tral concept—the general notion of variability, or deviations from the mean.

Deviations From the Mean

Researchers are often interested in questions that have to do with variability.
For example, a researcher might want to know why test scores vary, why in-
comes vary, why attitudes vary, and so forth. In some cases, they want to know
whether or not two or more variables vary together—for example, a researcher
might want to know if test scores and income levels vary together or not. Be-
fore you can even begin to answer a question like that, you first have to
understand the concept of variability. To do that, you have to begin with an un-
derstanding of the notion of deviations from the mean.

The idea of deviation from the mean is fairly basic. It has to do with how
far an individual or raw score in a distribution deviates from the mean of the dis-
tribution. To calculate the deviation of an individual score from the mean, sim-
ply subtract the mean of the distribution from the individual score. When you
do this, you’re determining how far a given score is from the mean. 

For example, imagine a distribution with five values—a distribution with
the following income data: $27,000; $32,000; $82,000; $44,000; and
$52,000. As it turns out, the mean of that distribution would be $47,400. In
terms of deviations from the mean, there will be five of them. An income of
$27,000 deviates a certain amount from the mean of $47,400 and so does
$32,000. The same is true for the values of $82,000, $44,000, and $52,000.

❏✔ LEARNING CHECK

Question: What is the range?
Answer: The range is a measure of dispersion. It is a simple

statement of the highest and lowest scores in a 
distribution.

°°
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Each value deviates from the mean. To better understand all of this, take a look
at the example shown in Table 2-7.

Regardless of how many scores there are in a distribution, there will be a de-
viation of each score from the mean. Consider the illustrations in Table 2-7.
Focus on the relationship between each individual raw score and the mean, and
how that translates into the concept of a deviation of each score from the mean.

Whether the individual scores in a distribution are widely dispersed or
tightly clustered around the mean, the sum of the deviations from the mean will
always equal 0 (subject to minor effects due to rounding). This point is impor-
tant enough that it deserves an illustration. Consider a really simple distribution
like the one shown in Table 2-8. Chances are that you can simply look at the
first distribution and determine that the mean is equal to 3. 

Assuming you’ve convinced yourself that the mean is equal to 3, take a
close look at the distribution. Begin with the score of 1. The score of 1 deviates
from the mean by –2 points (1 – 3 = –2). In other words, the score of 1 is
2 points below the mean (hence the negative sign). The score of 2 is –1 points
from the mean (2 – 3 = –1). The score of 3 has a deviation of 0, because it
equals the mean (3 – 3 = 0). Then the pattern reverses as you move to
the scores that are above the mean. The score of 4 is 1 point above the mean
(4 – 3 = 1), and the score of 5 is 2 points above the mean (5 – 3 = 2). If you
were to sum all the deviations from the mean, they would equal 0. The sum of
the deviations from the mean will always equal 0, because that is how the mean
is mathematically defined. 

As you learned earlier, the mean doesn’t have to be a score that actually
appears in a distribution, and the same notion applies in this instance as well.

Table 2-7 Deviations from the Mean

Scores/Values Deviations

(N = 5)
(X) (X – Mean)

1 1 – 3 –2
2 2 – 3 –1
3 3 – 3 0
4 4 – 3 +1
5 5 – 3 +2

0
Mean = 3

DEVIATIONS FROM THE MEAN

Note: The same results will occur whether you subtract the mean
from each raw score or you subtract each raw score from the
mean.
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Consider the two examples in Table 2-9. In each case, the calculated value of
the mean doesn’t really appear in the distribution, but the sum of the deviations
from the mean still equals 0.

The principle that the sum of the deviations equals 0 holds so steadfastly
that you can assure yourself of one thing: If you ever add the deviations from the
mean and the total doesn’t equal 0, you’ve made a mistake somewhere along
the way. You’ve either calculated the deviations incorrectly, or you’ve calculated
the mean incorrectly. As mentioned before, the only exception would be a case
in which a value other than 0 resulted because of rounding procedures.

❏✔ LEARNING CHECK

Question: What are the deviations from the mean? What does the
sum of the deviations from the mean always equal?

Answer: The deviations from the mean are the values obtained
if the mean is subtracted from each score in a 
distribution.The sum of the deviations from the 
mean will always equal 0.

Table 2-8 Sum of Deviations from the Mean = 0

Scores/Values Deviations

(X) (X – Mean)

1 1 – 3 –2
2 2 – 3 –1
3 3 – 3 0
4 4 – 3 +1
5 5 – 3 +2

0
Mean = 3

Sum of the Deviations
Equals 0

Scores/Values Deviations

(X) (X – Mean)

80 80 – 90 –10
85 85 – 90 –5
90 90 – 90 0
95 95 – 90 +5
100 100 – 90 +10

0
Mean = 90

Sum of the Deviations
Equals 0
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Assuming our goal is to get a summary measure that produces an overall
picture of the deviation from or about the mean, we’re obviously facing a bit of
a problem. If we don’t take some sort of corrective action, so to speak, we’ll al-
ways end up with the same sum of deviations (a value of 0), regardless of the
underlying distribution—and that tells us nothing.

The Mean Deviation

One way out of the problem would be simply to ignore the positive and nega-
tive signs we get when calculating the difference between individual scores and
the mean. Indeed, that’s what the mean deviation is all about. Before intro-
ducing you to the formula, however, let me explain the logic. I suspect it will
strike you as very straightforward and remarkably similar to the calculation of
the mean.

To calculate the mean deviation, here’s what you do:

1. Determine the mean of the distribution.
2. Find the difference between each raw score and the mean; these are the

deviations.

Sum of the Deviations
Equals 0
(even when the mean is
a value that doesn’t
appear in the original
distribution)

Table 2-9 Sum of Deviations from the Mean = 0

Scores/Values Deviations

(X) (X – Mean)

2 2 – 5 –3
4 4 – 5 –1
6 6 – 5 +1
8 8 – 5 +3

0
Mean = 5

Scores/Values Deviations

(X) (X – Mean)

28 28 – 33 –5
30 30 – 33 –3
32 32 – 33 –1
34 34 – 33 +1
36 36 – 33 +3
38 38 – 33 +5

0
Mean = 33

Sum of the Deviations
Equals 0
(even when the mean is
a value that doesn’t
appear in the original
distribution)
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3. Ignore the positive or negative signs of the deviations; treat them all as
though they were positive. This means you are considering only the
absolute values.

4. Calculate the sum of the deviations (that is, the absolute values of the
deviations).

5. Divide the sum by the number of cases or scores in the distribution.

The result is the mean deviation. The result gives you a nice statement of the
average deviation. Indeed, the measure is sometimes referred to as the average
deviation. The mean deviation (or average deviation) will tell you, on average,
how far each score deviates from the mean. Here’s the formula for the mean
deviation for a set of sample scores:

To understand how similar the mean deviation formula is to the formula for
the mean, just give it a close look and think about what the formula instructs
you to do. It tells you to sum something and then divide by the number of cases
(the same thing that the formula for the mean instructs you to do). In the case
of the formula for the mean deviation, what you are summing are absolute
deviations from the mean. Take a look at the illustration in Table 2-10.

The mean deviation would be a wonderfully useful measure, were it not
for one important consideration. It’s based on absolute values, and absolute
values are difficult to manipulate in more complex formulas. For that reason,
statisticians turn elsewhere when they want a summary characteristic of the
variability of a distribution. One of their choices is to look at the variance of
a distribution.

Remember: The bars indicate that
you are to take the absolute values;
ignore positive and negative signs.

Table 2-10 Calculation of the Mean Deviation

Absolute
Scores/Values Deviations Values

(N = 5)

(X) (X – Mean)

1 1 – 3 –2 2
2 2 – 3 –1 1
3 3 – 3 0 0
4 4 – 3 +1 1
5 5 – 3 +2 2

0 Σ = 6
Mean = 3

Step 1 Calculate mean.
Step 2 Calculate

deviations from
the mean.

Step 3 Convert
deviations to
absolute values.

Step 4 Sum the absolute
values.

Step 5 Divide the sum
by the number
of cases. 
6/5 = 1.20;
Mean Deviation
= 1.20

Mean Deviation = a
*X 2X *

n
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The Variance

Variance, as a statistical measure, attacks the problem of deviations’ summing
to 0 in a head-on fashion. As you know from basic math, one way to get rid of
a mix of positive and negative numbers in a distribution is to square all the num-
bers. The result will always be a string of positive numbers. It’s from that point
that the calculation of distribution’s variance begins. As before, we’ll start with
the logic.

Think back to the original goal. The idea is to get some notion of the over-
all variability in the scores in a distribution. We already know what to expect 
if we look at the extent to which individual scores deviate from the mean. 
We could calculate all the deviations, but they would sum to 0. If we squared the
deviations, though, we would eliminate the sum-to-zero problem. Once we
squared all the deviations, we could then divide by the number of cases, and
we’d have a measure of the extent to which the scores vary about the mean.
And that’s what the variance is. It’s the result you’d get if you calculated all the
deviations from a mean, squared the deviations, summed the squared devia-
tions, and divided by the number of cases in the distribution.

That sounds like something that’s rather complicated, but it really isn’t,
provided you take on the problem in a step-by-step fashion. Let’s consider a
fairly simple distribution (see Table 2-11) and have a look at the calculation of
the variance both mathematically and conceptually. Here’s the step-by-step
approach that we’ll use:

1. Calculate each deviation and square it. Remember that you’re squaring the
deviations because the sum of the deviations would equal 0 if you didn’t.

2. Sum all the squared deviations.
3. Divide the sum of the squared deviations by the number of cases.

Applying this approach to the scores shown in Table 2-11, you can move
through the process step by step.

❏✔ LEARNING CHECK

Question: What is the mean or average deviation? How does it get
around the problem that the sum of the deviations from
the mean always equals 0? What is its major drawback?

Answer: The mean or average deviation is a measure of dispersion.
It solves the problem by using absolute values (ignoring
the positive and negative signs) of the deviations from the
mean.The use of the absolute values, however, makes it
difficult to use in more complex mathematical operations.
As a result, it is rarely used.
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I assure you the same approach will work whether your distribution has
small values (for example, from 1 to 10) or much larger values (for example, 
a distribution of incomes in the thousands of dollars). The example in Table 2-12
illustrates that the same approach works just the same when you’re dealing
with larger values. 

To develop a solid understanding of what the variance tells us, consider the
four distributions shown in Table 2-13. In the top two distributions, the variances
are the same, but the means are very different. In the bottom two distributions,
the means are equal, but the variances are very different.

By now you should be developing some appreciation for the concept of vari-
ance, particularly in terms of how it can be used to compare one distribution to
another. But there’s still one problem with the variance as a statistical measure.

Table 2-11 Calculation of the Variance of a Population

Squared
Scores/Values Deviations Deviations

(N = 5)

(X) (X – Mean)

1 1 – 3 –2 4
2 2 – 3 –1 1
3 3 – 3 0 0
4 4 – 3 +1 1
5 5 – 3 +2 4

0 Σ = 10
Mean = 3

Sum of the squared deviations
equals 10

N = 5 (treating the 5 scores as
a population)

10/5 = 2

Variance = 2

Table 2-12 Calculating the Variance of a Population 
(showing how values explode when they are squared)

Scores/Values Deviations Squared Deviations

(N = 6)

(X ) (X – Mean)

$21,800 21,800 – 41,300 –19,500 380,250,000
$35,600 35,600 – 41,300 –5,700 32,490,000
$52,150 52,150 – 41,300 +10,850 117,722,500
$64,250 64,250 – 41,300 +22,950 526,702,500
$32,000 32,000 – 41,300 –9,300 86,490,000
$42,000 42,000 – 41,300 +700 490,000

Σ = 1,144,145,000
Mean = $41,300

1,144,145,000/6

Variance = $190,690,833.33



Table 2-13 Comparison of Distributions: Equal Variances and Different Means, Equal Means and Different Variances

Squared
Scores Deviations Deviations

(X – Mean)

1 1 – 3 –2 4
2 2 – 3 –1 1
3 3 – 3 0 0
4 4 – 3 +1 1
5 5 – 3 +2 4

10 10/5 = 2
Mean = 3 Variance = 2

Squared
Scores Deviations Deviations

(X – Mean)

51 51 – 53 –2 4
52 52 – 53 –1 1
53 53 – 53 0 0
54 54 – 53 +1 1
55 55 – 53 +2 4

10 10/5 = 2
Mean = 53 Variance = 2

Squared
Scores Deviations Deviations

(X – Mean)

30 30 – 50 –20 400
40 40 – 50 –10 100
50 50 – 50 0 0
60 60 – 50 +10 100
70 70 – 50 +20 400

1000 1000/5 = 200
Mean = 50 Variance = 200

Squared
Scores Deviations Deviations

(X – Mean)

46 46 – 50 –4 16
48 48 – 50 –2 4
50 50 – 50 0 0
52 52 – 50 +2 4
54 54 – 50 +4 16

40 40/5 = 8
Mean = 50 Variance = 8

3
6
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The act of squaring the deviations has a way of markedly changing the magni-
tude of the numbers we’re dealing with—something that happens anytime you
square a number. 

The illustration you encountered in Table 2-12 is a good example. That illus-
tration was based on a distribution of income data, and income data necessarily
involve some fairly large numbers. Inspection of that illustration reveals how
quickly the original values explode in magnitude when deviations are squared.

In truth, all values have a way of exploding in magnitude when they’re squared.
Whether you’re dealing with single-digit numbers or values in the thousands, the
same process is at work. The mere act of squaring numbers can radically alter the
values. In the process, you’re apt to lose sight of the original scale of measurement
you were working with.

Fortunately, there is a fairly easy way to bring everything back in line, so to
speak. All you have to do is calculate the variance and then turn right around and
take the square root. Indeed, statisticians make a habit of doing just that. More-
over, they have a specific name for the result. It is referred to as the standard
deviation.

The Standard Deviation

Before we get to the business of calculating the standard deviation, let me point
out an important distinction. When we’re referring to the standard deviation of
a sample, we use the symbol s. When we’re referring to the standard deviation
of a population, however, we use the symbol s (the lowercase symbol for the
Greek letter sigma). Let me underscore that again. Here’s the difference:

s is the standard deviation of a sample.
s is the standard deviation of a population.

❏✔ LEARNING CHECK

Question: What is the variance? How does it deal with the problem
that the sum of the deviations from the mean always
equals 0? What is a major limitation of the variance?

Answer: The variance is a measure of dispersion.To avoid the
problem of the deviations from the mean always
summing to 0, the variance is based on squaring the
deviations before they are summed. A major limitation
of the variance is that squaring the deviations inflates
the magnitude of the values in the distribution,
which can cause you to lose sight of the original 
units of measurement.
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As I mentioned previously, the whole idea behind the standard deviation is
to bring the squared deviations back in line, so to speak, and we do that by tak-
ing the square root of variance. In other words, the standard deviation is the
square root of the variance. Looked at the other way around, the variance is
simply the standard deviation squared.

Variance = Standard Deviation Squared
Square Root of the Variance = Standard Deviation
Variance is what is under the radical (square root symbol) before you take
the square root when calculating the standard deviation.

You may have noticed that I didn’t use any sort of symbol to refer to the vari-
ance when I first introduced you to the concept. As a matter of fact, I didn’t even
give you any sort of formula for the variance. I simply explained it to you—telling
you that variance, as a measure of dispersion, is nothing more than the sum of
the squared deviations from the mean, divided by the number of cases. 

I avoided the use of any formula or symbols for variance for a specific rea-
son. It had to do with how the standard deviation and variance are related to
each other. As you now know, the standard deviation is simply the square root
of the variance. By the same token, the standard deviation squared is equal to
the variance. 

Recall for a moment how we symbolize the standard deviation: s = the
standard deviation of a sample, and s = the standard deviation of a population.
Since the variance is equal to the standard deviation squared, we symbolize the
variance as follows: 

s2 is the variance of a sample.
s 2 is the variance of a population.

No doubt it would have caused great confusion had I used those symbols (s2

and s 2) when I first introduced you to the concept of variance. Had I given you
a formula for the variance, my guess is that you would have expected to see a
symbol such as V—certainly not s2 or s 2. Recall that we had not yet mentioned

❏✔ LEARNING CHECK

Question: What is the relationship between the standard deviation
and the variance?

Answer: The standard deviation is the square root of the
variance. The variance is the standard deviation squared.
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the standard deviation (s and s). Just to make certain that you now understand
the link between the two—standard deviation and variance—let’s summarize:

s = Standard Deviation of a Sample
s = Standard Deviation of a Population

s2 = Variance of a Sample
s 2 = Variance of a Population

Presumably you now know what the symbols s and s refer to—the stan-
dard deviation of a sample and a population, respectively—so we can get back
to our discussion. As I mentioned before, the standard deviation is a particularly
useful measure of dispersion because it has the effect of bringing squared val-
ues back into line, so to speak. You’ll see the standard deviation often in the
field of statistics, so you’ll want to become very familiar with the concept. To
help you along, consider a simple example.

Let’s assume that you want to calculate the standard deviation of some
data for a small class (let’s say five students). Assume that you’re looking at
the number of times each student has been absent throughout the semester.
Since you’re only interested in the results for this class, the class constitutes
a population. In this example, then, you’re calculating the standard deviation
of a population (or s ). You’ll want to start by having a close look at the
formula. Then you’ll want to follow the example through in a step-by-step
fashion.

There’s no reason to let the formula throw you. It’s really just a statement
that tells you to calculate the variance and then take the square root of your

s =Ca(X 2 m )2

N

❏✔ LEARNING CHECK

Question: What are the symbols for the standard deviation and the
variance of a sample? What are the symbols for the stan-
dard deviation and variance of a population?

Answer: For a sample, the symbol for the standard deviation is s,
and the symbol for the variance is s2. For a population,
the symbol for the standard deviation is s , and the
symbol for variance is s 2.



40 CHAPTER 2 Describing Data and Distributions

answer. Even if you forget everything you already know about the variance, you
should be able to go through the formula step by step. Think of it this way:

1. Forget the radical or square root sign for a moment, or simply think of it as a
correction factor. You have to square some numbers (to get rid of the negative
signs), so you’re eventually going to turn around and take the square root.

2. Look at each deviation (the difference between the mean and each raw
score) and square it. Once again, you’re squaring the deviations because
the sum of the deviations would equal 0 if you didn’t.

3. Sum all the squared deviations.
4. Divide the sum of the squared deviations by the number of cases.
5. Take the square root to get back to the original scale of measurement.

Most of those steps should be familiar—after all, most of them are the
same steps you used in calculating the variance. 

Table 2-14 shows you the step-by-step calculations. Remember that we’re
calculating the standard deviation of a population. It may be very small popu-
lations (only five cases), but we’re treating it as a population nonetheless. Later
on, we’ll deal with the standard deviation for samples.

Now let’s give some thought to what the standard deviation tells us. Like
the variance, the standard deviation gives us an idea of the dispersion of a dis-
tribution. It gives us an idea as to how far, in general, individual scores deviate
from the mean. It gives us an overall notion as to the variability in the distribu-
tion. Moreover, it does so in a way that is free of the problems associated with
the variance. Remember: The big problem with the variance is that values are
magnified as a result of the squaring process. 

So, what does the standard deviation really tell you about a distribution?
Suppose you were told that the standard deviation for a distribution has a
value of 15.5. This value of 15.5 may mean 15.5 dollars or 15.5 pounds or
15.5 test points, depending on what variable you’re looking at and the nature

Table 2-14 Calculating the Standard Deviation of a Population

Squared
Scores/Values Deviations Deviations

(N = 5)

(X) (X – Mean)

5 5 – 12 –7 49 Sum of Squared Deviations = 106
10 10 – 12 –2 4
12 12 – 12 0 0 106/5 = 21.2 (5 is Number of Cases)
14 14 – 12 +2 4
19 19 – 12 +7 49 Square Root of 21.2 = 4.60

106
Mean = 12 Standard Deviation = 4.60
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of the data you’ve collected. But still it’s reasonable to ask: So what? So what
does the standard deviation (or variance, for that matter) really tell us? From
my perspective, there are at least three answers to that question.

First, you can think of the standard deviation as a measure that tells you
(sort of) how far scores or values (in general) deviate from the mean. In short,
the standard deviation tracks along with the overall variability in a distribution.
When there is more variability in a distribution, the standard deviation increases.

It’s that last point—the notion that the value of the standard deviation in-
creases when there is more variability in a distribution—that leads to a second
interpretation or interpretative guideline regarding the standard deviation. 
I would also add that I believe that it’s the best way to think of the standard
deviation, at least at this point in your education. Simply put, you should think
of the standard deviation as a relative or comparative sort of measure. In other
words, it’s probably best to think in terms of one standard deviation compared
to another. For example, you might want to compare the standard deviation
of incomes in two cities or you might want to compare the standard deviation
of test scores in two classes. When you think of the standard deviation (or the
variance, for that matter) as a relative or comparative measure, you begin to
view it as a measure that may be very useful in situations involving more than
one distribution. For example, your ultimate concern may boil down to which
of the two or three or four distributions (let’s say which of several sets of test
scores) has the largest amount of variability. In a case like that, the standard
deviation is likely to be a very useful measure.

Finally, as a third answer to the question of what the standard deviation
tells us, I would tell you that it is a critical element in understanding the con-
cept of a normal distribution or normal curve. I don’t expect you to get the
connection right now, particularly since there’s an entire chapter devoted to
the topic of the normal curve, and you’ve yet to encounter that chapter. For
the moment, let me simply encourage you to do whatever is necessary to un-
derstand where the standard deviation fits in relationship to the variance (it is
the square root of the variance—remember?). Let me also urge you to get a
firm foundation in how to calculate the standard deviation. You will eventually
discover that the notion of the standard deviation is a central concept.

Returning to the formula for the standard deviation (and the variance, for
that matter), I should point out that different texts may present the formula in a
different format—something that’s quite common in the world of statistics. Some-
times it’s a matter of personal preference; sometimes it’s an effort to provide a
formula that is more calculator-friendly. For example, consider the following two
formulas for the calculation of the standard deviation for a population:

A Common Alternative Formula
Formula for r in This Text (more suited for use with a calculator)

s = BaX2

N
2 m2s = Ba(X 2 m)2

N



42 CHAPTER 2 Describing Data and Distributions

My preference for the formula presented in this text is tied to what I call its
intuitive appeal: It strikes me as more closely representing what’s apt to be
going on in your mind as you think through what the concept means.

So much for abstract examples and discussions of formulas. I suspect
you’re getting anxious to see some direct application of all of this, so let’s head
in that direction. Imagine for a moment that you were in a class of 200 students
taking four 100 points tests—a Math Test, a Verbal Test, a Science Test, and a
Logic Test. Then assume that you received the following information about the
tests: your score, the class average for each test, and the standard deviation for
each test. Suppose the information came to you in a form like this:

Test Mean Standard Deviation Your Score

Math 82 6 80
Verbal 75 3 75
Science 60 5 70
Logic 70 7 77

Just so you’ll get in the habit of keeping matters straight in your mind, the
example we’re dealing with involves four populations of test scores. In each
case, you have a population mean or mu (m) and a population standard devia-
tion (s ). Now here are the questions:

What was your best performance, relative to your classmates?
What was your worst performance? Why?

Let me suggest that you give the questions a little bit of thought before you
arrive at the answers.

Assuming you’ve thought about it, you now have some answers in mind.
But rather than just giving you the answers, let me walk you through the logic
involved in deriving them. 

A good place to begin is with a comparison of your individual test scores to
the means. In the case of the Math Test, the mean was 82, and your score was
80. In other words, your score was actually below the mean (so that’s not too
good). In the case of the Verbal Test, you had a score of 75, but the mean was
75. You didn’t score above or below the mean—an OK performance, but not
really that great.

Now have a look at your performance on the Science Test. In that case, you
had a score of 70, but the mean was 60. In other words, you scored 10 points
above the mean—not bad! As a matter of fact, the standard deviation on that test
was 5, so your 10 points above the mean really equates to a score that was two
standard deviation units above the mean. Here’s the reasoning: Each standard
deviation equals 5 points; your score was 10 points above the mean; therefore,
your score was two standard deviation units above the mean.

Now let’s take a look at your performance on the Logic Test. The mean on
that test was 70, and you had a score of 77. In other words, you scored
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7 points above the mean. As it happens, the standard deviation on the test was 7
points, so your score was only one standard deviation unit above the mean.

If you want to know just how poorly you did on the Math Test, the same
logic will apply. The mean on that test was 82, and your score of 80 was two
points below that. Since the standard deviation on the Math Test was 6 points,
your score was 2/6 or 1/3 of a standard deviation unit below the mean.

So now you have all the answers. First, your best performance (in a rela-
tive sense) was on the Science Test, even though that was your worst absolute
score. Second, your worst performance turned out to be on the Math Test,
even though that was your highest absolute score. 

Just to demonstrate that point more completely, consider one final example.
Assume for the moment that there was a fifth test thrown into the mix—let’s say
it’s a Foreign Language Ability Test. But let’s also say that unlike the other tests
that were 100 point tests, let’s say that the Foreign Language Ability Test was a
250 point test. In other words, scores on the Foreign Language Ability Test could
range from 0 to 250. Let’s also assume that the mean score on the Foreign
Language Ability Test was 120 with a standard deviation of 15. Now what if your
test score was a score 90—what sort of performance would that be?

If you use the same logic that you used in the other situations, you’d
quickly discover that you have a new “worst performance.” Your perfor-
mance on the Foreign Language Ability Test equated to a score that was two
standard deviations below the mean (i.e., you were 30 points below the
mean; a standard deviation equals 15 points; therefore, you were two stan-
dard deviations below the mean). Before the Foreign Language Ability Test
was thrown into the mix, your worst performance was on the Math Test (you
were 1/3rd of a standard deviation below the mean). On the Foreign Lan-
guage Ability Test, though, you were two standard deviations below the
mean. Thus, your score on the Foreign Language Ability Test becomes your
worst performance.

The point of the Foreign Language Ability Test example is to demonstrate
something very important—it doesn’t make any difference whether you’re com-
paring tests that have the same underlying scale (e.g., test scores that can range
from, let’s say 0 to 100), or you’re comparing all sorts of test scores—scores on
a 100 point test, scores on a 250 point test, or scores on a 1500 point test, for
that matter. The underlying goal is the same: Determine where a given score
(in this case, your score) falls, in relationship to the mean, and express the dif-
ference in standard deviation units. To fully grasp this point, just remember what
was going on in your mind as you worked through the questions—just think back
to the calculations.

If you really think back to the calculations, you’ll eventually arrive at a very
important point—namely that all the mental calculations you went through
amounted to calculating ratios. In each case, you calculated a ratio: the differ-
ence between an individual score and the mean of the distribution, expressed
in terms of standard deviation units. This very important point will come up
again later on, so let me urge you to take the time to really comprehend what
it means to say you were calculating ratios. Once again, you were calculating a
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ratio that reflected the difference between the individual score and the mean of
the distribution, expressed in terms of standard deviation units.

Before we move on to the next chapter, I need to explain one last matter
concerning the standard deviation—a matter I alluded to earlier. Since the stan-
dard deviation is so widely used in inferential statistics, and the business of in-
ferential statistics involves moving from a sample to a population, it’s time I
introduced you to a slight difference between samples and populations when it
comes to the standard deviation.

n Versus n – 1

We’ll start with the notion that we generally deal with a sample in an effort to
make some statement about a population (a point you encountered when we
first discussed the idea of inferential statistics). It would be great if a sample
standard deviation gave us a perfect reflection of the population standard devi-
ation, but it doesn’t. In fact, the accuracy of a sample standard deviation (as a
reflection of the population standard deviation) is somewhat affected by the
number of cases in the sample. 

Here’s the logic behind that last statement. Start by imagining a population
distribution that has substantial variability in it—let’s say the distribution of 23,000
students’ ages at a large university. No doubt there would be some unusually
young students in the population, just as there would be some unusually old stu-
dents in the population. In other words, there would probably be a substantial
amount of variability in the population. But if you selected a sample of students,
there’s a good chance that you wouldn’t pick up all the variability that actually ex-
ists in the population. Most of your sample cases would likely come from the por-
tion of the population that has most of the cases to begin with. In other words, it’s
unlikely that you’d get a lot of cases from the outer edges of the population.

If, for example, most of the students were between 20 and 25 years of age,
most of the students in your sample would likely be within that age range. What
you’re not likely to get in your sample would be a lot of really young or really
old students. You might get some, but probably not many. In other words, your
sample probably wouldn’t reflect all of the variability that really exists in the
population. As a result, the standard deviation of your sample would likely be
slightly less than the true standard deviation of the population.

❏✔ LEARNING CHECK

Question: If you determine the difference between an individual
score and the mean of a distribution, and then you divide
the difference by the standard deviation of the distribu-
tion, what does the result tell you?

Answer: The answer is a statement of the distance the score is
from the mean, expressed in standard deviation units.
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Since the idea is to get a sample standard deviation that’s an accurate re-
flection of the population standard deviation—one that can provide you with an
unbiased estimate of the population’s standard deviation—some adjustment is
necessary. Remember: The idea in inferential statistics is to use sample statis-
tics to estimate population parameters. If you’re going to use a sample stan-
dard deviation to estimate the standard deviation of a population, you’ll want a
sample standard deviation that more closely reflects the true variability or
spread of the population distribution.

Statisticians deal with this situation by using a small correction factor.
When calculating the standard deviation of a sample (or the variance of a sam-
ple, for that matter), they change the n in the denominator to n – 1. This slight
reduction in the denominator results in a larger standard deviation—one that
better reflects the true standard deviation of the population. 

To better understand the reason for making this change in the formula,
think about the effect of sample size: The larger your sample is, the greater the
likelihood that you’ve picked up all the variability that is really present in the
population. Imagine that first you select a sample of, let’s say, 30 students. Then
you select another sample, but this time you include 50 students. Each time you
increase the sample size—as you work up to a larger and larger sample—you
get closer and closer to having a sample standard deviation that equals the pop-
ulation standard deviation. What would happen if you gradually increased your
sample size until you were working with a sample that was actually the entire
population? You’d have the actual population standard deviation in front of you.

When you use n – 1 in the denominator of the formula for the standard
deviation of a sample, you not only slightly increase the final answer (or value
of the standard deviation), you do so in a way that is sensitive to sample size.
The smaller the size of the sample, the more of an impact the adjustment will
make. For example, dividing something by 2 instead of 3 will have a much
greater impact than dividing something by 999 instead of 1000. In other
words, the adjustment factor wouldn’t have a lot of impact if you were working
with a really large sample, but it would have a major impact if you were work-
ing with a really small sample. 

At this point, I should tell you that different statisticians have different ap-
proaches to the use of the correction factor (n – 1, as opposed to just n, in the
denominator). Some statisticians quit correcting when a sample size is 30 or
greater; that is, they use n when the sample size reaches 30. Others require 

❏✔ LEARNING CHECK

Question: What is the effect of using n – 1, as opposed to n, in the
formula for calculating the standard deviation of a sample?

Answer: The effect of using n – 1 (as opposed to n) in the denomi-
nator is to yield a slightly larger result—one that will be a
better reflection of the population standard deviation.
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a larger sample size before they’re willing to rely on n (as opposed to n – 1) in
the denominator. The approach in this text is to always use n – 1 when calcu-
lating a sample standard deviation.

The issue at this point isn’t when different statisticians invoke the correc-
tion factor and when they don’t; the issue is why. Because the answer to that
question is one that usually takes some serious thought, let me suggest that you
take time out for one of those dark room moments I mentioned earlier. 

First, take the time to give some serious thought to the ideas of variability
and the standard deviation in general. Then take some time to think about how
the standard deviation of a population is related to the standard deviation of a
sample. Develop a mental picture of a population and a sample from that pop-
ulation. Mentally focus on why you would expect the standard deviation of the
population to be slightly larger than the standard deviation of the sample. You
should think about the relationship between the two long enough to fully ap-
preciate why the correction factor is used. It all goes back to the point that the
variability of a sample is going to be smaller than the variability of a population,
and that’s why a correction factor has to be used.

Finally, in an effort to make certain that you fully understand how to cal-
culate the standard deviation of a sample, and the point about n – 1 in the
denominator, let me suggest that you take a close look at Table 2-15. It’s an
illustration of the calculation of the standard deviation for a sample. My sug-
gestion is that you repeat each of the calculations shown in the illustration,
working each step on your own, while also paying particular attention to the
next to the last step (i.e., dividing by n – 1 before you take the square root).

Assuming you feel comfortable about the different measures of central ten-
dency and measures of variability (and the standard deviation, in particular), we

Table 2-15 Calculating the Standard Deviation of a Sample

Squared
Scores/Values Deviations Deviations

(N = 9)

(X) (X – Mean)

7 (7 – 4) 3 9 Sum of Squared Deviations = 54
1 (1 – 4) –3 9
3 (3 – 4) –1 1 54/8 = 6.75
5 (5 – 4) 1 1 Note that n – 1 or 8 is used
6 (6 – 4) 2 4
2 (2 – 4) –2 4
8 (8 – 4) 4 16
1 (1 – 4) –3 9
3 (3 – 4) –1 1 Square Root of 6.75 = 2.598

54
Mean = 4 Standard Deviation = 2.598

or round to 2.60
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can move forward. Next we turn our attention to the graphic representation of
data distributions—the world of graphs and curves. That’s where we’ll go in the
next chapter.

Chapter Summary

In learning about measures of central tendency and dispersion, you’ve learned
some of the fundamentals of data description. Moreover, you’ve had a brief intro-
duction to the business of statistical notation—why, for example, different sym-
bols are used when referring to a sample, as opposed to a population. Ideally
the connection to the previous chapter hasn’t been lost in the process, and
you’ve begun to understand that it’s essential to make clear whether you’re
discussing a sample statistic or a population parameter.

As to what you’ve learned about measures of central tendency, you should
have digested several points. First, several measures of central tendency are
available, and each one has its strength and weakness. One measure might
be appropriate in one instance but illsuited for another situation. Second,
you’ve likely picked up on the importance of the mean as measure of central
tendency—a measure that finds its way into a variety of statistical procedures.
For example, the mean is an essential element in calculating both the variance
and the standard deviation.

On the variability or dispersion side of the ledger, you have been intro-
duced to several different measures. Working from the simplest to the more
complex, you’ve learned that some measures have more utility than others.
You’ve also learned how the variance and the standard deviation are related to
each other, and (ideally) you’ve developed a solid understanding of why both
measures are in the statistical toolbox.

Finally, you have learned that there’s some room for judgment and per-
sonal preference in the matter of statistical analysis. For example, you’ve en-
countered different formulas for calculating the standard deviation—one that’s
ideally suited for use with a calculator, and another that better reflects the logic
behind the procedure. You’ve also learned that different statisticians have dif-
ferent preferences when it comes to using n versus n – 1 in the denominator
of the formula for the sample standard deviation. These are small matters, per-
haps, but they help explain why different texts present different formulas for
the same statistical procedure. 

Some Other Things 
You Should Know

At this point, you deserve to know that data and data distributions can be pre-
sented in a variety of ways. Indeed, the art of data presentation is a field in
itself. The data distributions we’ve considered so far have been presented as
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ungrouped data, meaning that scores or values have been presented individ-
ually. If three 22s were present in a distribution, for example, each 22 was
listed separately in the distribution. Frequently, however, statisticians find
themselves working with grouped data—data presented in terms of intervals,
or groups of values. 

For example, a data distribution of income might be presented in terms of in-
come intervals, showing how many people in a study had incomes between
$25,000 and $29,999, how many had incomes between $30,000 and $39,999,
and so on. As you might expect, statisticians have procedures to deal with such sit-
uations. An excellent treatment of the topic can be found in Moore (2000). 

You should also be reminded of a point I made earlier in reference to the
standard deviation (and variance, for that matter). Different formulas abound,
not just for standard deviation or variance, but with respect to many other mea-
sures and procedures. It’s not uncommon for two texts to approach the same
topic in different ways. If a formula jumps out at you, and it’s not quite the same
as the presentation you’ve encountered here or somewhere else, don’t be dis-
heartened, threatened, or confused. Think conceptually. Think about the ele-
ments in the formula. Think about the formula in terms of its component parts,
recognizing that there may be more than one way to approach some of those
component parts. Sometimes the difference in presentation reflects the author’s
personal preference. Sometimes it’s oriented toward a particular tool, such as a
calculator. Whatever the reason, the fact that such differences exist is something
you’ll want to keep in mind, should you find yourself consulting different sources
for one reason or another. The rule of thumb in this text is to focus on the
formula or approach that seems to have the most intuitive appeal.

average deviation mode
bimodal distribution mu (m)
central tendency range
dispersion (variability) standard deviation
mean unimodal distribution
mean deviation variance
median

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

1. Three measures of central tendency are the , , and
.

Chapter Problems

Key Terms



Chapter Problems 49

2. The measure of central tendency that is sensitive to extreme scores is the
.

3. The most frequently represented score or response in a distribution is the
.

4. The is a measure of central tendency that represents the mid-
point of a distribution.

5. The is a measure of that is based on a statement
of the highest and lowest scores in a distribution.

6. A distribution has 14 scores. Each score is represented only once in the dis-
tribution, with two exceptions. The score of 78, appears three times, and
the score of 82 appears four times. What is the mode of the distribution?

7. A distribution has 32 scores. Each score appears once, with the following
exceptions: The score of 18 appears twice, and the score of 21 appears
twice. How would you state the mode of the distribution?

8. The measure of dispersion that is based upon the absolute values of the
deviations from the mean is the .

9. The sum of the deviations from the mean is always equal to .
10. Because the sum of the deviation from the mean always equals

, the variance gets around the problem by the
deviations before they are summed.

11. The standard deviation is the of the variance.
12. In order to obtain a more accurate reflection of the standard deviation of

a population, the standard deviation for a sample can be calculated by
using in the denominator of the formula, as opposed to using 

in the formula.

Application Questions/Problems

1. Consider the following data from a sample of five cases:

7 6 3 1 4

a. What is the mean?
b. What is the position of the median?
c. What is the value of the median?
d. What is the mean or average deviation?
e. What is the variance?
f. What is the standard deviation?

2. Consider the following data from a sample of eight cases:

20 21 18 16 12 15 12 13

a. What is the mean?
b. What is the position of the median?
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c. What is the value of the median?
d. What is the mode?
e. What is the mean or average deviation?
f. What is the variance?
g. What is the standard deviation?

3. Consider the following data from a sample of nine cases:

6 1 4 3 4 1 2 9 5

a. What is the mean?
b. What is the position of the median?
c. What is the value of the median?
d. What is the mode?
e. What is the mean or average deviation?
f. What is the variance?
g. What is the standard deviation?

4. A study based on a sample of 12 students yields the following scores on a
10-point scale of cultural diversity awareness.

1 4 8 7 5 2 7 2 3 7 6 4

a. What is the mean?
b. What is the median?
c. What is the mode?
d. What is the standard deviation?

5. An industrial psychologist investigating absenteeism of workers at a local
plant collects data from a sample of 45 workers. The number of days ab-
sent (during the past year) for each worker is recorded and the variance is
determined to be 9. What is the standard deviation?

6. A social psychologist is investigating leadership in small groups. Using a
sample of 10 research participants and recording the number of sugges-
tions made by each participant in a small group task experiment, the re-
searcher obtains the following distribution: 

1 3 2 4 6 1 1 3 7 4 

a. What is the mean number of suggestions for the sample? 
b. What is the standard deviation of the sample?

7. The mean score for a science exam is 72, with a standard deviation of 4.
Your score on the exam is 80. 
a. How many standard deviations above the mean is your score? 
b. If you had a score of 70, how many standard deviations below the

mean would your score be?
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8. The mean score for a verbal exam is 65, with a standard deviation of 4.
You are told that your score is two standard deviations above the mean.
What is your score?

9. The mean score for a mathematics exam is 125 (on a 200 point exam),
with a standard deviation of 30. You are told that your score is 1.5
standard deviations above the mean. What is your score?
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Up to this point, you’ve been looking at distributions presented as listings of
scores or values. Now it’s time to expand your horizons a bit. It’s time to move
beyond mere listings of scores or values and into the more visual world of
graphs or curves.

As we take this next step, I’ll ask you to do three things. First, I’ll ask you
to start thinking in a more abstract fashion. Sometimes I’ll ask you to think
about a concrete example that relates to a specific variable, but other times
I’ll ask you to think about a graph or curve in a very abstract sense. Second,
I’ll ask you to be very flexible in your thinking. I’ll ask you to move from one
type of graph to another, and sometimes I’ll ask you to move back and forth
between the two. Finally, I’ll ask you to consider distributions with a larger
number of cases than you’ve encountered so far. There’s still no need to
panic, though. Remember: The emphasis remains on the conceptual nature
of the material.
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Figure 3-1 Distribution of Letter Grades
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The last chapter allowed you to string together two very important concepts—
namely, the standard deviation and the mean. Now it’s time you expand your
thinking by visualizing distributions and how they are influenced by the mean
and standard deviation. For example, imagine two groups of test scores. Imag-
ine that they have identical means but very different standard deviations. What
about the reverse situation? What about a situation in which both classes have
the same standard deviation, but they have radically different means?

Simple mental exercises along those lines can be very valuable, in your
conceptual understanding of statistics. When you have reached the point where
you can easily visualize different distributions (if only in a generalized form),
I believe you’ve crossed an important milestone. I’m convinced that the ability
to visualize distributions, particularly one distribution compared to another, is a
talent that can be nurtured and developed. I’m also convinced that it’s a signif-
icant asset when it comes to learning statistics. Therefore, try to visualize the
various distributions that are discussed in this chapter. If that means that you
can’t read through the chapter in record time, so be it. Take your time. The
goals are to learn the material and develop your visualization skills.

We’ll start with an example that should be familiar to you by now—a situation
in which some students have taken a test. This time, let’s say that several thou-
sand students took the test. Moreover, let’s say you were given a chart or graph
depicting the distribution of the test scores—something like Figure 3-1. A quick
look at the chart tells you that it represents the distribution of scores by letter

Before We Begin

The Basic Elements
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grade—the number of A’s, B’s, C’s, and so forth. The illustration is probably
very similar to many you’ve seen before. We refer to it as a bar graph.

A bar graph is particularly useful when the values or scores you want to rep-
resent fall into the category of nominal or ordinal data. Figure 3-1 is a perfect
example. When the information about test scores is presented as letter grades
(rather than actual test scores), you’re dealing with ordinal level data; a letter
grade of B is higher than a letter grade of C, but you don’t really know how
many points higher.

If, instead of letter grades, you had actual test scores expressed as numerical
values, the measurement system would be far more refined, so to speak. That, in
turn, would open the door to a more sophisticated method of illustrating the dis-
tribution of scores. Imagine for a moment that you had the actual scores for the
same tests. Imagine that the measurement was very precise, with scores calcu-
lated to two decimal places (scores such as 73.28, 62.16, and 93.51). In this
situation, the graph might look like the one shown in Figure 3-2.

Like the bar graph in Figure 3-1, the graph shown in Figure 3-2 is typi-
cal of what you might see in the way of data representation. Different values
of the variable under consideration (in this case, test score) are shown along
the baseline, and the frequency of occurrence is shown along the axis on the
left side of the graph. The curve thus represents a frequency distribution—
a table or graph that indicates how many times a value or score appears in a
set of values or scores.

Instead of focusing on the specifics of the test scores presented in 
Figure 3-2, let’s take a moment to reflect on curves or frequency distributions
in general. Regardless of the specific information conveyed by the illustration,
there are generally three important elements in a graph or plot of a frequency
distribution.

First, there’s the X-axis, or the baseline of the distribution. It reveals some-
thing about the range of values for the variable that you’re considering. If
you’re looking at test scores, for example, the baseline or X-axis might show
values ranging from 0 to 100. A frequency distribution of incomes might have
a baseline with values ranging from, let’s say, $15,000 to $84,000. 

Figure 3-2 Distribution of Test Scores
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Second, there’s another axis—the Y-axis—usually running along the left
side of the graph, with a symbol f to the side of it. The f stands for frequency—
the number of times each value appears in the distribution, or the number of
cases with a certain value (see Figure 3-3).

Now we add the third part of the graph—the curved line—as shown in 
Figure 3-4.

At this point, let me mention something that may strike you as obvious, but
is worth mentioning nonetheless. It has to do with what is really represented by
the space between the baseline and the curved line that forms the outline of the
graph.

It’s easy to look at a curve, such as the one shown in Figure 3-4, and forget
that the area under the curve is actually filled with cases. Although the area under
the curve may look empty, it is not. In fact, the area under the curve represents
all the cases that were considered. Again, the area under the curve actually con-
tains 100% of the cases (a point that will be important to consider later on). To
understand this point, take a look at the graph shown in Figure 3-5, and think of
each small dot as an individual case.

Low

Value of variable

(f
) 

N
um

be
r 

of
 c

as
es

High

High

Low

Figure 3-4 Components of a Frequency Distribution (Curve)
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Remember: The area under the curve contains cases or observations! If
necessary, take some time for a dark room moment at this point. Mentally visu-
alize several different distributions. It doesn’t make any difference what you think
they represent. Just concentrate on the notion that cases or observations are
under the curve—cases or observations stacked on top of one another (think of
them as small dots, if need be, with all the dots stacked one upon the other).

Let’s now turn our attention to a question that involves some material from
the previous chapter—namely, the mean and the standard deviation. Instead
of thinking about the distribution of a specific variable, let’s consider two
distributions—Distribution A and Distribution B—in an abstract sense. These
two distributions have the same mean score (50), but beyond that, they are very
different. In Distribution A, the scores are widely dispersed, ranging from 10 to
90. In Distribution B, the scores are tightly clustered about the mean, ranging
from 30 to 70. These two distributions are represented by the two curves
shown in Figure 3-6.

Beyond the Basics:
Comparisons and Conclusions

❏✔ LEARNING CHECK

Question: Although it appears to be empty, what is represented by
the area under a curve?

Answer: The area under the curve represents cases or
observations.
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Figure 3-5 Cases/Observations Under a Curve
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Simple visual inspection of the curves should tell you that the standard
deviation of Distribution B is smaller than the standard deviation of Distribution A.
The edges of the curve in Distribution B don’t extend out as far as they do in
Distribution A.

Now consider the examples shown in Figure 3-7. Here, the two curves
represent two distributions with the same standard deviation but very different
mean values.

Assuming you’re getting the hang of visualizing curves in your mind, let’s
now consider the matter of extreme scores in a distribution. Imagine for a

0 10 20 30 40 50 60 70 80 90

Mean = 25 Mean = 85

1005 15 25 35 45 55 65 75 85 95

Figure 3-7 Comparison of Two Distributions With Same Standard Deviations
but Different Means
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Distribution A

100

30 40 50 60 70
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Figure 3-6 Comparison of Two Distributions
With Same Mean but Different
Standard Deviations
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moment a distribution of income data—individual income information collected
from a large number of people. Assume that most of the people have incomes
that are close to the center of the distribution, but a few people have extremely
high incomes. As you develop a mental picture, you should begin to visualize
something that looks like the curve shown in Figure 3-8.

If, on the other hand, the extreme incomes were low incomes, the curve
might look something like the one shown in Figure 3-9.

In statistics, we have a term for distributions like these. We refer to them
as skewed distributions. When a distribution is skewed, it departs from sym-
metry in the sense that most of the cases are concentrated at one end of the
distribution. We’ll eventually have a closer look at this matter of skewness, but
first let’s consider some curves that lack those extremes. In other words, let’s
start by considering symmetrical distributions.

To understand the idea of symmetry (or a symmetrical distribution), imag-
ine a situation in which you had height measurements from a large number of
people. Height is a variable generally assumed to be distributed in a symmetri-
cal fashion. Accordingly, the measurements would probably reflect roughly
equal proportions of short and tall people in the sample. There might be just 
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a few very tall people, but, by the same token, there would be just a few very
short people in the sample.

When a distribution is truly symmetrical, a line can be placed through the
center of the distribution and the two halves will be mirror images. Fifty percent
of the cases will be found on each side of the center line, and the shapes of the
two sides of the distribution will be identical. When you think about it for just a
moment, you’ll realize that an infinite number of symmetrical shapes are possible.
Figure 3-10 presents just a few for you to consider.

As I mentioned before, a curve that departs from symmetry (one that is not
symmetrical) is referred to as a skewed distribution. Think back to some of the
examples involving data on income. In a distribution with some extremely high
incomes (relative to the other incomes in the distribution), the distribution was
skewed to the right. In the case of the distribution with some extremely low
incomes (relative to the other incomes in the distribution), the distribution was
skewed to the left. 

When a distribution is skewed to the right, we say it has a positive
skew. When a distribution is skewed to the left, we say it has a negative skew.
To understand why we use the terms positive and negative, just think of it this
way: If you have an imaginary line of numbers with a 0 in the middle, all values
to the right of 0 are positive values, and all values to the left of 0 are negative.
The terms relate to the elongated portion of the curve, which statisticians refer
to as the tail of the distribution (see Figure 3-11). If the tail of the distribution

❏✔ LEARNING CHECK

Question: What is a symmetrical distribution?
Answer: A symmetrical distribution is one in which the two

halves of the distribution are mirror images of each
other.

Question: What is a skewed distribution?
Answer: A skewed distribution is a distribution that departs from

symmetry in the sense that most of the cases are
concentrated at one end of the distribution.

Figure 3-10 Symmetrical Curves/Distributions
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extends toward the right, we say that the curve has a positive skew or is skewed
to the right. Conversely, a curve with a tail that extends to the left is said to be
skewed to the left or negatively skewed. 

I’ve asked you to move from skewed to symmetrical distributions and back
to skewed distributions—all in an effort to get you familiar with the basic
difference, and primarily so you’ll develop an appreciation for symmetrical
distributions. Now I’m going to ask you to make the leap again—back to sym-
metrical distributions—but this time, we will consider a very special case.

If you paid close attention when you looked at some of the illustrations of sym-
metrical curves, you probably noticed that symmetrical curves can take on
many different shapes. A symmetrical curve can be unimodal (one mode) or
bimodal (two modes), and it can be quite flat in shape or more peaked in shape.
Besides that, symmetrical curves can be very different in terms of how the
curved line descends toward the baseline. 

A Special Curve

Figure 3-11 Skewed Curves/Distributions

Tail pointing to the right
Curve skewed to the right
Curve skewed in a positive direction

Tail of the distribution or curve

Tail pointing to the left
Curve skewed to the left
Curve skewed in a negative direction

Tail of the distribution or curve
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Consider, for example, Curve A in Figure 3-12. Focus on the highest point
(the midpoint) of the distribution, and take note of how the line descends on
either side of the midpoint. In a sense, the curved line descends out and down
toward the baseline. Now focus on Curve B. Like Curve A, Curve B is a uni-
modal symmetrical curve (it has only one mode), but the manner in which the
curved line descends toward the baseline is very different. Starting at the high
point of the curve, the path of the curved line descends and then begins to turn
outward. The curved line doesn’t just drop to the baseline. Instead, it shows a
pattern of gradual descent that moves in an outward direction.

Obviously, any number of curves could show this general pattern of de-
scending down and then out. To statisticians, though, there’s a particular type
of curve that’s of special interest. They refer to this very special sort of sym-
metrical curve as a normal curve.

A normal curve is symmetrical, and it descends down and then out. More-
over, the mean, median, and mode all coincide on a normal curve. But the spe-
cial characteristics of a normal curve go beyond that. Indeed, a normal curve is
one that conforms to a precise mathematical function. When a curve is, in fact,
a normal curve, the mean and the standard deviation define the total shape of
the curve. The curve may be relatively flat; it may be sharply peaked; or it may
have a more moderate shape. The point is that the shape is predictable

Figure 3-12 Comparison of Unimodal Symmetrical Curves

Curve A
Line descends
down from top

Curve B
Line descends
down then out
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because a normal curve is defined by a precise mathematical function. Once
again, the mean and the standard deviation will define the exact shape of a
normal curve.

Take a close look at Figure 3-13. Starting at the top of the curve (which hap-
pens to be where the mean, median, and mode coincide), you can trace the line
of the curve on one side. The line descends downward at a fairly steady rate, but
the line eventually reaches a point at which it begins to turn in a more outward
direction. From that point—known as the point of inflection—the rate of
descent of the curve toward the baseline is more gradual. To appreciate this
element, take the time to trace the curved line in Figure 3-13, either visually or
with your index finger or a pencil. Concentrate on the point at which the curve
begins to change directions—the point of inflection.

In normal curves with a small standard deviation, the curve will be fairly
peaked in shape, and the degree of initial downward descent of the curve will
be very noticeable. In normal curves with a larger standard deviation, the curve
will be flatter, and the degree of initial downward descent of the curve will be
less pronounced. Either way, the entire shape of the distribution is defined by
the mean and standard deviation. Figure 3-14 shows some examples of normal
curves.

Because a normal curve is one that conforms to a precise mathematical
function, it’s possible to know a great deal of information about the data

❏✔ LEARNING CHECK

Question: What type of symmetrical curve is of particular interest
to statisticians?

Answer: A normal curve.

The point of inflection is the point at which the
curved line begins to change direction.

Point of inflection Point of inflection

Figure 3-13 Locating the Point of Inflection
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distribution that underlies any normal curve. As a matter of fact, the point at
which the curve begins to turn outward—the point of inflection—will be one
standard deviation away from the mean. 

For example, let’s say we have a distribution of test scores, and the test
scores are normally distributed. What this means is that the distribution of
scores, if plotted in a graph, will form a normal curve. Now let’s say that same
distribution of scores has a mean of 60 and a standard deviation of 3. Since we
know that the points of inflection will always be one standard deviation above
and below the mean on a normal curve, we know that the points of inflection
will correspond to scores of 63 and 57, respectively.

❏✔ LEARNING CHECK

Question: What is the point of inflection of a normal curve?
Answer: It is the point at which the curve begins to change

direction. This point is also one standard deviation
away from the mean.

Figure 3-14 More Examples for Locating the Point of Inflection

Point of inflection Point of inflection

Point of inflection Point of inflection

Point of inflection Point of inflection
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As it turns out, we’re in a position to know a lot more than that. For
example, imagine that you’re looking at a normal curve, and you mark the in-
flection points on both sides of the mean—the points on either side of the
mean where the curve begins to change direction (even if ever so slightly). You
now know that you have marked off the points that correspond to one standard
deviation above and below the mean. In addition, however, if you draw lines
down from the inflection points to the baseline, you will be marking off a por-
tion of the normal curve that contains slightly more than 68% of the total
cases, or 68% of the area under the curve. Why? Because that’s the way a nor-
mal curve is mathematically defined. 

This point is central to everything that follows, so take a close look at
Figure 3-15.

Figure 3-15 General Shape of a Normal Curve

Approximately 68% of cases in a normal distribution are between one
standard deviation above and below the mean.

Even if the curve is relatively flat, approximately 68% of the cases 
will be found ±1 standard deviation from the mean.

Even if the curve is relatively peaked, approximately 68% of the
cases will be found ±1 standard deviation from the mean.

Point of inflectionPoint of inflection
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If you marked off two standard deviations from the mean, you would have
marked off a portion of a normal curve that contains slightly more than 95% of
the total cases. And lines drawn at three standard deviations above and below
a normal curve will enclose an area that contains more than 99% of the cases
(see Figure 3-16). If you’re still wondering why, the answer remains the same:
That’s how a normal curve is mathematically defined.

Approximately 68% of cases in a normal distribution are between one
standard deviation above and below the mean.

–1 1

Approximately 95% of cases in a normal distribution are between two
standard deviations above and below the mean.

–2 2

Approximately 99% of cases in a normal distribution are between three
standard deviations above and below the mean.

–3 3

68%

95%

99%

Figure 3-16 Distribution of Cases or Area Under a Normal Curve
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This information—relating standard deviations to the area under the
normal curve—is so fundamental to statistical inference that statisticians often
think of it as the 1-2-3 Rule. Here it is again, just for good measure:

One standard deviation on either side of the mean of a normal curve will
encompass approximately 68% of the area under the curve.

Two standard deviations on either side of the mean of a normal curve will
encompass approximately 95% of the area under the curve. 

Three standard deviations above and below the mean will encompass
slightly more than 99% of the area under the curve.

At this point, let me suggest that you take a moment or two to digest this
material. Start with an understanding that a normal curve is one that follows a
precise mathematical function. Then concentrate on the notion that for any
truly normal curve, there is a known area under the curve between standard de-
viations (for example, 68% of the area under the curve is between one standard
deviation above and below the mean). Fix the critical values in your mind: ±1
standard deviation encloses approximately 68% of cases; ±2 standard devia-
tions encompasses approximately 95%; and ±3 standard deviations encom-
passes slightly more than 99%.

Whether you realize it or not, you’re actually accumulating quite a bit of
knowledge about normal curves. Indeed, if you throw in the fact that 50% 
of the area, or cases, under the curve are going to be found on either side of
the mean, you’re actually in a position to begin answering a few questions. 

For example, let’s say you know that some test results are normally
distributed. In other words, a plot of the scores reveals a distribution that

❏✔ LEARNING CHECK

Question: What does the 1-2-3 Rule tell us?
Answer: It tells us the amount of area under the normal curve

that is located between certain points (expressed in
standard deviation units). Approximately 68% of the area
is found between one standard deviation above and
below the mean. Approximately 95% of the area is found
between two standard deviations above and below
the mean. Slightly more than 99% of the area is found
between three standard deviations above and below
the mean.
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conforms to a normal curve. Let’s also say that you know you scored one
standard deviation above the mean. Now here’s a reasonable question, given
what you already know: Approximately what percentage of the test scores
would be below yours? Approximately what percentage of the scores would be
above yours? There’s no need to hit the panic button. Just think it through.

Start with what you know about the percentage of cases (or scores) that fall
between one standard deviation above and one standard deviation below the
mean. You know (from what you read earlier) that approximately 68% are found
between these two points. Since a normal curve is symmetrical, this means that
approximately 34% of the scores will be found between the mean and one stan-
dard deviation above the mean. In other words, the 68% (approximately) will be
equally divided between the two halves of the curve. Therefore, you will find ap-
proximately 34% of the cases (or area) between the mean and one standard devi-
ation (either one standard deviation above or one standard deviation below). You
also know (because of symmetry) that the lower half of the curve will include 50%
of the cases. So, all that remains to answer the question is some simple addition:

50% the lower half of the curve 
+ 34% the percentage between the mean and one standard

deviation above the mean
84% the percentage of cases below one standard deviation

above the mean (therefore, aproximately 84% of
the cases would be below your score, and approxi-
mately 16% would be above your score)

Figure 3-17 shows the same solution in graphic form.
By now you’re probably getting the idea that normal curves and distribu-

tions have an important place in the world of statistical analysis. Indeed, the
idea of a normal curve is central to many statistical procedures. As a matter of
fact, the notion of a normal curve or distribution is so fundamental to statistical
inference that statisticians long ago developed a special case normal curve as a
point of reference. We refer to it as the standardized normal curve, and that’s
our topic in Chapter 4. 

Figure 3-17 The Logic Behind the Problem Solution

50% of the cases will be found
on this side of the curve.

Approximately 34% of the cases will
be found between the mean and one
standard deviation above the mean.

50% 34%
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In your exploration of data distributions, curves, and such, you’ve taken a very
important step toward statistical reasoning. You took your first step in that
regard as soon as you began to visualize a curve. Your ability to visualize data
distributions in the form of curves is something that will come into play
throughout your statistical education, so there’s no such thing as too much
practice at the outset.

Ideally, you’ve learned more than what a data distribution might look like if
it were plotted or graphed. For example, you’ve learned about symmetrical
curves, and you’ve learned about skewed curves. You’ve been introduced to the
notion of a normal distribution and what normal distributions look like when
they are graphed. 

You’ve learned, for example, that a normal distribution can take on any
number of different shapes (from very flat to very peaked), but the exact shape
is always determined by two values—the mean and standard deviation of the
underlying distribution. You’ve also learned that this mathematical definition of
a normal curve’s shape (based on the mean and standard deviation) makes the
shape of a normal curve predictable. 

You’ve learned that the points of inflection on a normal curve are the
points that correspond to one standard deviation above and below the mean.
And you’ve come to understand that, given a normal curve, a predictable
amount of area (or cases) under the curve corresponds to specific points along
the baseline (the 1-2-3 Rule). 

As we move to the next chapter, the material that you’ve learned about
normal curves in general will come into play in a major way. As you’re about
to discover, the notion of a normal distribution or normal curve is central to sta-
tistical analysis, so much so that it becomes the basis for a good amount of
statistical inference.

The curves and distributions presented in this chapter were, in many instances,
somewhat abstract. Sometimes actual values or scores were represented, but
other times they were not. At this point, let me call your attention to a distinc-
tion that is often made in the world of numbers—namely, the distinction
between discrete and continuous distributions. The difference is perhaps best
illustrated by way of examples.

Consider a variable such as the number of children in a family. Respon-
dents to a survey might answer that they had 0, 1, 2, 3, or some other number
of children. The scale of measurement is clearly interval/ratio, but the only pos-
sible responses are integer values, or whole numbers. Those are considered dis-
crete values, and a distribution based on those values is a discrete distribution.

Some Other Things 
You Should Know

Chapter Summary
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Now consider a variable such as weight. Assuming that you had a very
sophisticated scale, you could conceivably obtain very refined measurements—
maybe so refined that ounces could be expressed to one or more decimal
places. Such a system of measurement would result in what’s known as a con-
tinuous distribution—a distribution based on such refined measurement that
one value could, in effect, blend into the next.

You should take note that curves are often stylized presentations of data. 
A smooth curve may not be an accurate reflection of an underlying distribution
based on discrete values. An accurate representation of a discrete distribution
would actually be a little jagged or bumpy, because only integer values are pos-
sible, and there is no way for one integer value to blend into the next. That
said, you should also know that this is really a minor point, and it doesn’t
reduce the overall utility of statistical analysis.

On the technology side of the ledger, you should know that a wide variety
of statistical analysis software is available, all of which can reduce the task of
statistical analysis to mere button pushing if you’re not careful. There’s no
doubt that the availability of statistical software has simplified certain aspects of
statistical analysis, but an overreliance on such software can work against you
in the long run. There’s still no substitute for fundamental brainpower when it
comes to a thorough look at your data in the form of distributions and graphs
before you really get started. That’s why the process of visualization remains so
important.

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. When a line can be drawn through the middle of a curve and both sides of
the curve are mirror images of each other, the curve is said to be a

curve.
2. When a curve is skewed in a positive direction, it is skewed to the

; when a curve is skewed in a negative direction, it is skewed to
the .

Chapter Problems

frequency distribution
negative skew
normal curve
1-2-3 rule
point of inflection 

positive skew
skewed distribution
symmetrical distribution
tail of the distribution

Key Terms
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3. The points on either side of a normal curve at which the curve begins to
change direction are known as the points of .

4. In a normal distribution, the points of inflection are located 
standard deviation(s) above and below the mean.

5. In a normal distribution, the mean, median, and mode .

Application Questions/Problems

1. In a normal distribution, and using the 1-2-3 Rule, approximately what
percentage of the area under the curve is found between one standard
deviation above and below the mean?

2. In a normal distribution, and using the 1-2-3 Rule, approximately what
percentage of the area under the curve is found between two standard
deviations above and below the mean?

3. In a normal distribution, and using the 1-2-3 Rule, approximately what
percentage of the area under the curve is found between three standard
deviations above and below the mean?

4. In a normal distribution, what percentage of the area under the curve is
found above the mean? What percentage of the area under the curve
is found below the mean?

5. Assume that the mean of a distribution of test scores is 62 and the stan-
dard deviation is 4. Your score on the test is 70. How many standard
deviations above or below the mean is your test score?

6. Assume that the mean of a distribution of test scores is 73 and the stan-
dard deviation is 5. You’ve been told that your test score is one standard
deviation above the mean. What is your test score?

7. Assume that the mean of a distribution of test scores is 70, with a standard
deviation of 5. You’ve been told that your score is two standard deviations
above the mean. What is your test score?

8. Assume that the mean of a distribution of test scores is 200, with a stan-
dard deviation of 30. What would be the value of the score that falls two
standard deviations below the mean?

9. Assume that the mean of a distribution of scores is 1250, with a standard
deviation of 300. What would be the value of a score that falls one
standard deviation below the mean?
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Earlier I said there were times when it’s best to approach the field of statistics
without giving much thought to where you’re going. This is one of those times.
In fact, I’m going to ask you to take a step forward, develop a solid under-
standing of some information, and do all of it without one thought as to where
we’re headed. I know that’s a lot to ask, but as the phrase goes: Trust me;
there’s a method to all of this.

We’ll begin our discussion where we left off in the last chapter by asking a
central question: Why all the fuss about normal curves? As it turns out, scien-
tists long ago noticed that many phenomena are distributed in a normal fash-
ion. In other words, the distributions of many different variables, when plotted
as graphs, produce normal curves. Height and weight, for example, are frequently
cited as variables that were long ago recognized as being normally distributed.

Having observed that many variables produce a normal distribution or curve,
it was only natural that statisticians would focus an increasing amount of attention
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on normal curves. And so it was that a very special case of a normal curve was
eventually formulated. This rather special case eventually came to be known as
the standardized normal curve.

In one sense, the standardized normal curve is just another normal curve. In
another sense, though, it’s a very special case of a normal curve—so much so
that statisticians often refer to it as the normal curve. Statisticians also use
expressions such as standardized normal distribution. Regardless of the
name—standardized normal curve, the normal curve, or standardized normal
distribution—the idea is the same. 

As you’ll soon discover, the standardized normal curve is a theoretical
curve that serves as a basis or model for comparison. It’s a point of reference—
a standard against which information or data can be judged. In the world of in-
ferential statistics, you’ll return to the standardized normal curve time and time
again, so a solid understanding is imperative. To better understand this special
curve, though, let’s start by taking a look at some other normal distributions—
ones you might find in the real world.

Before we get started, let me ask you to think about two concepts. First, I want
you to think about the concept of a percentage. Then I want you to think about
the concept of a dollar. I know, that may sound very strange, but let me urge
you to go along with this. There’s a lesson to be learned.

Let’s start with the idea of a percentage. Think about what a percentage
tells you and how often you rely upon that concept when you communicate.
For example, maybe someone tells you that there was a 15% drop in sales at
the local grocery store last month. Another person tells you that enrollment
at the local college increased by 6%. The use of a percentage to express some
amount allows you to conjure up a mental image of a decrease or increase.
Because a percentage represents a standard, so to speak, it’s often very help-
ful when you want to make comparisons. For example, let’s say your professor
tells you that 14% of your class made a score of B, but 22% of the afternoon
class made a grade of B. It really doesn’t matter how many students are en-
rolled in each class; the percentage figures allow you to conjure up a mental
image about the relative performance of students in the two classes.

In a way, you can think of a dollar in the same terms. To understand this,
let me ask you to think about the concept of a dollar, but don’t think of a dollar
bill that’s in your pocket. Instead, think about the notion of dollar as something
that you rely upon as a basis for comparison. For example, let’s say you’ve
been surfing the net in search of a bargain on a television set. You find two
televisions that interest you, but there’s a problem. The price of one set (man-
ufactured in Japan) is given in Japanese currency (yen), while the price of the
other set (manufactured in Germany) is given in European currency (the euro).
Any initial confusion you might experience is quickly erased as you begin to
work your way through the situation. It’s a simple matter of converting each

Before We Begin
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currency (yen and euro) to dollars. Once you’ve done that, you’re in a position
to make a comparison. And that’s the point. A dollar, at least in that example,
isn’t something tangible. Instead, it is something abstract. But a dollar, in an
abstract sense, becomes essential to your ability to compare one price to the
other.

Although examples about percentages and dollars might strike you as
strange, they’re relevant to the material that you’re about to encounter. They
demonstrate the importance of having a means of comparison—some sort of
standard or basis that we can use as the foundation for our comparison. And
that, in a nutshell, is where we’re going in this chapter.

Real-World Normal Curves

Ordinary normal curves—curves like some of the ones we considered in the last
chapter—are always tied to empirical or observed data. An example might be
a collection of data from a drug rehabilitation program. Let’s say, for example,
someone gives you some summary information about the amount of time par-
ticipants spend in voluntary group counseling sessions. Assume that you only
know summary information, that you don’t have detailed data. Let’s also
assume you’ve been told the data are normally distributed, with a mean of
14.25 hours per week and a standard deviation of 2.10 hours. 

Because you know that the data reflect a normal distribution, you’re in a
position to figure out quite a lot, even if you don’t have the actual data. For ex-
ample, using some of the information you learned in the last chapter, you could
quickly determine that approximately 68% of the program participants spend
between 12.15 and 16.35 hours in voluntary group counseling. To refresh
your memory about how you could do that, just follow the logic:

1. You know that the mean is 14.25 hours.
2. You know that the standard deviation is 2.10 hours.
3. You know that the data are distributed normally (the distribution is normal).
4. You know that 68% of the area or cases under a normal curve falls

between one standard deviation above and below the mean.
5. Add one standard deviation to the mean to find the upper limit: 

14.25 + 2.10 = 16.35 hours.
6. Subtract one standard deviation from the mean to find the lower limit: 

14.25 – 2.10 = 12.15 hours.
7. Remembering the important point that the area under the curve really

represents cases (program participants, for example), express your result
as follows: Approximately 68% of the program participants spend be-
tween 12.15 and 16.35 hours per week in voluntary group counseling.

To further grasp the logic of this process, consider the illustration in
Figure 4-1.
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So much for a distribution of data concerning voluntary group counseling.
You might study voluntary counseling participation, but another researcher
might study the birth weights of a certain type of dog. He/she is apt to discover
that the variable of birth weight (like voluntary counseling participation) is nor-
mally distributed. Of course, the values of the mean and standard deviation
would be different—maybe a mean birth weight of 10.3 ounces with a standard
deviation of 1.4 ounces—but the underlying logic would be the same. If you’re
willing to make a little leap here, you’ll no doubt quickly see where we’re going
with all of this. 

One researcher might have normally distributed data measured in hours
and minutes, but the next researcher might have normally distributed data mea-
sured in pounds and ounces. Someone else might be looking at a variable that
is normally distributed and expressed in dollars and cents, while another looks
at normally distributed data expressed in years or portions of a year. Different
researchers study different variables. It’s as simple as that.

The list could go on and on—an endless array of normal distributions. The
different distributions would have different means, different standard devia-
tions, and different underlying scales of measurement (pounds, dollars, years,
and so forth), but each normal distribution would conform to the same under-
lying relationship between the mean and standard deviation of the distribution
and the shape of the curve. 

Approximately
68%

between ±1
standard deviation from the mean

One standard deviation below
the mean
(–2.10)

14.25 – 2.10
12.15

14.25 + 2.10
16.35

One standard deviation above
the mean
(+2.10)

Mean
(14.25)

68%

Figure 4-1 Logic Behind the Problem Solution
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The 1-2-3 Rule would always apply: Approximately 68% of the cases
would be found ±1 standard deviation from the mean; approximately 95% of
the cases would be found ±2 standard deviations from the mean; and more
than 99% of the cases would be found ±3 standard deviations from the mean.
To review the 1-2-3 Rule, see Figure 4-2.

By the same token, approximately 32% of the cases (or values) under a
normal curve would be found beyond a value of ±1 standard deviation from
the mean. (If approximately 68% of the total area falls within ±1 standard
deviation, then the remaining amount—32%—must fall beyond those points.)
Similarly, only about 5% of the cases (or values) under a normal curve would be

Approximately 68% of the area under a normal curve is between one
standard deviation above and below the mean.

Approximately 95% of the area under a normal curve is between two
standard deviations above and below the mean.

More than 99% of the area under a normal curve is between three
standard deviations above and below the mean.

68%

95%

99%

Figure 4-2 The 1-2-3 Rule in Review
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found beyond a point ±2 standard deviations from the mean (100% – 95% =
5%). As for the real extremes of the curve, only about 1% of the area under the
curve would be found beyond the points ±3 standard deviations from the mean
(100% – 99% = 1%).

Part of what makes the 1-2-3 Rule so useful is the fact that you can use it
regardless of the underlying scale of measurement. You know what percentage
of scores or values will fall between or beyond certain portions of the curve,
regardless of the unit of measurement in question. It doesn’t make any differ-
ence whether you’re dealing with pounds, ounces, dollars, years, or anything
else. You know what percentage of cases will be found where—provided the
curve is a normal curve. It also doesn’t make any difference whether the mean
and standard deviation are large numbers (let’s say, thousands of dollars) or
small numbers (let’s say, values between 4 and 15 ounces). Assuming a normal
distribution, the 1-2-3 Rule applies. The 1-2-3 Rule is useful because it is
expressed in standard deviation units.

So much for normal curves that you’re apt to find in real life. Now we come
to the matter of the standardized normal curve—a theoretical curve. Let
me urge you in advance to be open-minded as we move forward. Indeed, let me
caution you not to expect any direct application right away. The applications
will come in good time.

First and foremost, the standardized normal curve is a theoretical curve. It’s a
theoretical curve because it’s based upon an infinite number of cases. Even if
you’re inclined to move right ahead with the discussion, let me suggest that you
take a moment to reflect on that last point: The standardized normal curve is a
theoretical curve; it is based on an infinite number of cases.

Here’s a way to understand that point. Imagine a normal curve with a line
in the middle that indicates the position of the mean. Now envision each side
of the curve moving farther and farther out—the right side moving farther to
the right and the left side moving farther to the left. Imagine something like the
curve shown in Figure 4-3.

Because the standardized normal curve is based on an infinite number of
cases, there’s never an end to either side of it. As with other normal distribu-
tions, the bulk of the cases are found in the center of the distribution (clustered

❏✔ LEARNING CHECK

Question: Why is the standardized normal curve considered 
a theoretical curve?

Answer: It is based on an infinite number of cases.

Into the Theoretical World
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around the mean), and the cases trail off from there. As the cases trail off on
either side of the distribution, the curve falls ever so gradually toward the base-
line. But (and this is an important but), the standardized normal curve never
touches the baseline. Why? The standardized normal curve never touches the
baseline because there are always more cases to consider. (Remember: the
curve is based on an infinite number of cases.)

As with any normal curve, the mean, median, and mode of the standard-
ized normal curve share the same value; they’re located at the same point.
If you drew a line through the exact middle of the standardized normal curve,
the line would reflect the location of the mean, median, and mode. Since that
line would run through the exact middle of the curve, the two halves of the
curve would be equal to each other. Just as in any normal curves that you may
encounter, 50% of the area under the standardized normal curve is found to the
right of the mean, and 50% is found to the left of the mean. 

Now we come to the part of the discussion that explains why we refer to
the standardized normal curve as the normal curve. To fully grasp this point,
think about the example involving the drug rehabilitation program participants.
In that example, the mean was 14.25 hours spent in voluntary group counsel-
ing, and the standard deviation was 2.10 hours. You might encounter another

❏✔ LEARNING CHECK

Question: What is the effect of an infinite number of cases on the
curve and the baseline?

Answer: The curve never touches the baseline because there are
always more cases to consider.

Mean, median, and mode coincide at 0; standard deviation = 1.

To infinityTo infinity

–3 –2 –1 0 +1 +2 +3

The standardized normal curve is
based on an infinite number of cases.

Figure 4-3 Theoretical Nature of the Standardized Normal Curve
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normal distribution, though, with a mean of 700 and a standard deviation
of 25. At this point, it shouldn’t concern you what the 700 and the 25 repre-
sent; they could be dollars or pounds or test scores or any number of other
variables. The idea is to move your thinking to a more abstract level. Each
distribution has a mean and a standard deviation. These values may be expres-
sions of income amounts, test scores, number of tasks completed, growth
rates, or any other variable. 

In the case of the standardized normal curve, though, the mean is always
equal to 0 and the standard deviation is always equal to 1. It is not the case that
the mean is, let’s say, 16 and the standard deviation is 2. It isn’t the case
that the mean is 2378 and the standard deviation is 315. You might have
means and standard deviations like those in some normal distributions, but
what we’re considering here is the standardized normal curve.

Let me repeat: In the case of the standardized normal curve, the mean is
equal to 0 and the standard deviation is 1. These two properties—a mean of 0
and a standard deviation of 1—are the properties that really give rise to the
term standardized. They’re also the properties that make the standardized
normal curve so useful in statistical analysis.

We start with the notion that the mean is equal to 0 (see Figure 4-4). Because
the mean is equal to 0, any point along the baseline of a normal curve that is
above the mean is viewed as a positive value. Likewise, any value below the
mean would be a negative value. As you already know, the two sides of any
normal curve are equal. Therefore, the area falling between the mean and a
certain distance above the mean (on the right side of the curve) is the same as
the area between the mean and that same distance on the left side of the curve
(below the mean).

Mean

Segment
A

Segment
B

0

Figure 4-4 Equality of Areas on Both Sides of the
Standardized Normal Curve
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In a way, the information you just digested cuts your learning in half. The
only difference between the two sides of the standardized normal curve is
that we refer to points along the baseline as being either positive or negative—
positive for points above the mean, and negative for points below the mean.
Well and good, but what am I supposed to be learning? you may ask. Patience!
We’ll get to that. Remember: The idea is to thoroughly digest the information.

In a sense, it isn’t the standardized normal curve itself that’s so useful in statis-
tical analysis. Rather it’s the Table of Areas Under the Normal Curve that
proves to be the really useful tool. You’ll find a copy of the Table of Areas
Under the Normal Curve in Appendix A, but don’t look at it just yet. Instead,
follow along with a little more of the discussion first.

To understand just how useful the Table of Areas Under the Normal Curve
can be, think back to our previous discussion. Earlier you learned the 1-2-3
Rule, and that gave you some information about areas under a normal curve.
But what about areas under the curve that fall, let’s say, between the mean and
1.25 standard deviations above the mean? Or what about the area beneath the
curve that is found between the mean and 2.17 standard deviations below the
mean? In other words, everything is fine if you’re dealing with 1, 2, or 3 stan-
dard deviations from the mean of a normal distribution, but what about other
situations?

With a little bit of calculus, you could deal with all sorts of situations. You
could calculate the area under the curve between two points, or the portion
under the curve between the mean and any point above or below the mean.
Fortunately, though, you don’t have to turn to calculus. Thanks to the Table of
Areas Under the Normal Curve, the work has already been done for you.

There’s a chance that you’re muttering something like, What work—what
am I supposed to be doing? Relax; lighten up. Remember what the goal is right
now—to learn some fundamental material without worrying about its direct
application. Concentrate on the basic material right now; the applications will
come in due time.

Before I ask you to turn to the Table of Areas Under the Normal Curve
(Appendix A), let me say a word about what you’re going to encounter and what
you’ll have to know to make proper use of the table. First, you should take time
for a dark room moment to once again imagine what the standardized normal
curve looks like. Imagine that you’re facing a standardized normal curve. You
notice the value of 0 in the middle of the baseline, along with an infinite number
of hatch-marks going out to the right and to the left. Also, imagine that the area
under the curve is full of cases (just as you did earlier when you were introduced
to the notion that the area under the curve isn’t just blank space). 

Now, instead of thinking about a bunch of hatch-marks that mark points
along the baseline, start thinking about the hatch-marks as something called

The Table of Areas Under the Normal Curve
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Z values. The term Z, or Z score, is the expression statisticians use to refer to
points or values along the baseline of the standardized normal curve. The point
at the middle of the curve has a Z value of 0; other Z values are found to the
right and to the left of that zero point. The Z values on the right are considered
positive Z values; the Z values on the left are considered negative Z values (see
Figure 4-5).

Since the standard deviation of the standardized normal curve is equal to
1, Z values along the baseline are really expressions of standard deviations
along the baseline. For example, a Z value of +2 really equals 2 standard
deviation units above the mean. A Z value of –1.3 would equate to 1.3 stan-
dard deviation units below the mean. A Z value of 0 would be 0 standard devi-
ations away from the mean because it would be equal to the mean. Consider
the illustration in Figure 4-6.

–3 –2 –1 0 +1 +2 +3

Z values along the entire baseline.

Figure 4-5 Distribution of Z Values Along the
Baseline of the Standardized
Normal Curve

–3 –2 –1 0

Z value of 1.0

Standard deviation of 1.0

+1 +2 +3

Z values are simply points along the baseline
of a standardized normal curve.

Figure 4-6 Z Values as Standardized Deviations Along the
Baseline of the Standardized Normal Curve
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Now take a look at Appendix A: Table of Areas Under the Normal Curve.
It is also known as the distribution of Z. First, focus on the graphs in the
illustration on page 308. The illustration lets you know that the table gives you
information about the amount of area under the normal curve that’s located
between the mean and any point along the baseline of the curve. Second, focus
on different columns. You’ll see the symbol Z at the top of several columns.
You’ll also see columns marked Area Between Mean and Z.

The body of the table is filled with proportions (expressed as decimal
values). These can easily be translated into percentage values by multiplying
by 100. For example, the value of .4922 in the body of the table should be
read as 49.22%. The percentage value of 49.22% is associated with a Z value
of 2.42. How do you know that? Just have a look at the table. The value of
.4922 appears next to the Z value of 2.42. The best way to understand all
of this is to just jump right in and take a look at the table. 

Let’s say you want to find the proportion or percentage value associated with
a Z value of 1.86. First you have to locate the Z value of 1.86 (see Figure 4-7).
Then you look to the right of that Z value for the associated proportion. The cor-
responding proportion value is .4686, which translates into 46.86%. Now you
ask, 46.86% of what? Here’s the answer: 46.86% of the area under the normal
curve is located between the mean and a Z value of 1.86. It doesn’t make any dif-
ference whether it is a Z value of +1.86 or a Z value of –1.86; the associated pro-
portion (or percentage) value is the same. 

Locate the Z value of 1.86. The corresponding value (expressed as a proportion) 
can be converted to a percentage by multiplying by 100. Thus, 46.86% of the area 
under the normal curve is located between the mean and a Z value of 1.86 (either 
+1.86 or –1.86).

Z = 1.86

.4686
or

46.86%

Z

0.00
0.01

0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

Area Between 
Mean and Z

0.0000
0.0040

0.1141
0.1179
0.1217
0.1255
0.1293
0.1331
0.1368
0.1406
0.1443
0.1480
0.1517

Z

0.50
0.51

0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

Area Between 
Mean and Z

0.1915
0.1950

0.2852
0.2881
0.2910
0.2939
0.2967
0.2995
0.3023
0.3051
0.3078
0.3106
0.3133

Z

1.00
1.01

1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

Area Between 
Mean and Z

0.3413
0.3438

0.4015
0.4032
0.4049
0.4066
0.4082
0.4099
0.4115
0.4131
0.4147
0.4162
0.4177

Z

1.50
1.51

1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89

Area Between 
Mean and Z

0.4332
0.4345

0.4633
0.4641
0.4649
0.4656
0.4664
0.4671
0.4678
0.4686
0.4693
0.4699
0.4706

Figure 4-7 A Segment of the Table of Areas Under the Normal Curve



While we’re at it, let me point out a couple of things about the table. 

1. What you’re looking at is simply one format for presenting areas under
the normal curve. Different statistics books use different formats to
present the same material. 

2. Pay attention to the note under the title of the table: Area Between the
Mean (0) and Z. Think about what that tells you—namely, that the table
gives you the amount of area under the curve that will be found between
the mean and different Z values.

3. Get comfortable with how the values are expressed—as proportions in
decimal format. These proportions can easily be converted to percent-
ages. For example, the value of .4686 is the same as 46.86%. 

4. You’re probably better off if you immediately begin to think of the values
in terms of the percentage of cases or observations between the mean and
Z. In other words, each and every Z value has some percentage of cases
or observations associated with it. 

5. Take note of the end of the table—how it never really gets to a value of
.5000 (or 50%). It goes out to a Z value of 3.9 (with an associated per-
centage of 49.99%), but then it ends. That’s because the table is based on
an infinite number of cases. Note that each time there’s a unit change in
the Z value (as you move further along in the table), the corresponding
unit change in the associated area becomes smaller and smaller. That’s
because the tail of the curve is dropping closer and closer to the baseline
as you move further out on the curve.

Now let’s start making use of the table—first doing some things to get you
familiar with the table, and then making some applications. We’ll start with
some problems that involve looking up a Z value and associated percentage.
Always remember that the table only deals with one-half of the area under the
curve. Whatever is true on one side of the curve is true on the other—right?
Now consider the following questions.

Question: What is the percentage value associated with a Z value of
+1.12, and how do you interpret that?
Answer: The proportion value is .3686, or 36.86%. This means that
36.86% of the area under the normal curve is found between the mean
and a Z value of +1.12. 
Question: What is the percentage value associated with a Z value of
–1.50, and how do you interpret that?
Answer: The proportion value is .4332, or 43.32%. This means that
43.32% of the area under the normal curve is found between the mean
and a Z value of –1.50.
Question: What is the percentage value associated with a Z value of
+.75, and how do you interpret that?
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Answer: The proportion value is .2734, or 27.34%. This means that
27.34% of the area under the normal curve is found between the mean
and a Z value of +.75.
Question: What is the percentage value associated with a Z value of
–2.00, and how do you interpret that?
Answer: The percentage value is .4772, or 47.72%. This means that
47.72% of the area under the normal curve is found between the mean
and a Z value of –2.0.
Question: What is the percentage value associated with a Z value of
+2.58, and how do you interpret that?
Answer: The proportion value is .4951, or 49.51%. This means that
49.51% of the area under the normal curve is found between the mean
and a Z value of +2.58.

If you were able to deal with these questions successfully, we can move on
to the next few questions. At this point, let me remind you again of what you al-
ready know from previous discussions: The table you’re working with reflects
only one side of the standardized normal curve. Now let’s look at some more
questions, this time concentrating on the area between two Z values.

Question: How much area under the curve is found between the Z values
of +1.41 and –1.41?
Answer: 84.14% (Double 42.07% to take into account the fact that
you’re dealing with both sides of the curve.)
Question: How much area under the curve is found between Z values of
+.78 and –.78?
Answer: 56.46% (Double 28.23% to take into account the fact that
you’re dealing with both sides of the curve.)
Question: How much area under the curve is found between Z values of
+1.96 and –1.96?
Answer: 95% (Double 47.50% to take into account the fact that you’re
dealing with both sides of the curve.)
Question: How much area under the curve is found between Z values of
+2.58 and –2.58?
Answer: 99.02% (Double 49.51% to take into account the fact that
you’re dealing with both sides of the curve.)

The answers to these questions were fairly straightforward because they
simply required that you double a percentage value to get the right answer. You
may have already gained enough knowledge about the areas under the normal
curve to move forward, but I’d like to make certain that you’ve developed that
second-nature, gut-level understanding that I mentioned earlier. To do that, I’m
asking that you consider yet another round of questions.

With any questions about areas under the normal curve, it’s usually a good
idea to draw a rough diagram to illustrate the question that’s being posed. Your
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How much area under the curve is above a Z value of 
+1.44?

Answer: 7.49%. 
From mean to Z is 42.51%. Entire half = 50%.
50 – 42.51 = 7.49.

How much area under the curve is below a Z value of 
–2.13?

Answer: 1.66%.
From mean to Z is 48.34%. Entire half = 50%. 
50 – 48.34 = 1.66.

How much area under the curve is between Z values of 
±1.96?

Answer: 95%.
From mean to Z is 47.50%. Consider both sides; double 
the value. 47.50% × 2 = 95%.

Approximately how much area under the curve is 
between Z values of ±2.58?

Answer: 99%.
From mean to Z is 49.51%. Consider both sides; double 
the value. 49.51% × 2 = Approximately 99%.

How much area falls outside of (above and below) the Z
values of ±1.96?

Answer: 5%.
The area between Z values of ±1.96 is 95%. The entire 
area is 100%. 100% – 95% = 5% (evenly split on both 
sides of the curve).

How much area falls outside of (above and below) the Z
values of ±2.58?

Answer: 1%.
The area between Z values of ±2.58 is 99%. The entire 
area is 100%. 100% – 99% = 1% (evenly split on both 
sides of the curve).

Figure 4-8 Problems Based on Areas Under the Standardized Normal Curve
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diagram can be very unsophisticated, just as long as it allows you to put something
on paper that expresses the question that’s posed and what’s going on in your
mind when you approach the question. I should warn you to resist any urge to de-
velop your own shortcuts based on the way a question is asked. Always take the
time to think through the question. Use a diagram to convince yourself that you’re
approaching the question the right way.

Now take a look at the questions presented in Figure 4-8, along with the di-
agrams and commentary. These questions are very similar to some of those
you encountered earlier. For these questions, though, focus on how helpful the
diagrams are in explaining the underlying logic of the process.

By now you should have noticed that a couple of values have come up time
and time again—namely, the values of 95% and approximately 99%. That
wasn’t by accident. As it turns out, statisticians very often speak in ways that di-
rectly or indirectly make reference to 95% or 99%. They’re particularly inter-
ested in extreme values, cases, or events—the ones that lie beyond the 95% or
99% range. Another way to think of those values is to think of them as being
so extreme that they’re only apt to occur less than 5 times out of 100 or less
than 1 time out of 100. That’s why the Z values of ±1.96 and ±2.58 take on
a special meaning to statisticians. 

As you learned earlier, the area between Z values of ±1.96 on a normal
curve or distribution will encompass 95% of the cases or values. Therefore,
only 5% of the cases or values fall beyond the Z values of ±1.96 on a stan-
dardized normal curve. Similarly, the area between Z values of ±2.58 will take
in slightly more than 99% of the cases or values. Therefore, less than 1% of the
cases or values are beyond the Z values of ±2.58. 

Those areas, the 5% and the 1%, are the areas of the extreme (unlikely)
values—and those are the areas that ultimately grab the attention of statisti-
cians. I’ll have a lot more to say about that later. Right now, though, my guess
is that your patience is running out and you’re anxious to get to an application.
Wait no longer. We’ll move ahead with an example—one that may strike you
as strangely familiar.

The truth of the matter is that you’ve already dealt with a partial application
of the material you just covered. You did that earlier when you worked through
the example in the last chapter involving your test scores. Think back for a
moment to what that example involved. Here it is again, repeated just as it was
presented earlier:

Test Mean Standard Deviation Your Score

Math 82 6 80
Verbal 75 3 75
Science 60 5 70
Logic 70 7 77
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By way of review, here’s the situation you encountered earlier: You were
part of a fairly large class (200 students); you took four tests; then I asked you
some questions about your relative performance on the different tests. 

An assumption was made that the distribution of scores on each test was nor-
mal. Additionally, the number of cases involved in each test was fairly large (200
cases). In situations like that—situations involving a large number of cases and dis-
tributions that are assumed to be normally distributed—you can convert raw
scores to Z scores and make use of the Table of Areas Under the Normal Curve. 

To understand all of this, think back to how you eventually came to view
your performance on the Science Test. The mean on the Science Test was 60,
with a standard deviation of 5. Your score was 70. You eventually thought it
through and determined that your score was equal to two standard deviation
units above the mean. Your score was 10 points above the mean; the standard
deviation equaled 5 points; you divided the 10 points by 5 points (the stan-
dard deviation). As a result, you determined that your score was equal to two
standard deviation units above the mean.

In essence, what you did was convert your raw score to a Z score. Had I
introduced the formula for a Z score earlier, it might have caused some confu-
sion or panic. Now the formula should make more sense. Take a look at the
formula for a Z score, and think about it in terms of what was going on in your
mind as you evaluated your performance on the Science Test.
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Z 5
X 2 m
s

5 2

5
10
5

5
70 2 60

5

Z 5
X 2 m
s

Don’t panic. Just think about what the symbols represent. First, you’re
dealing with the results of a class of students, and you’re making the assumption
that the class is a population. In other words, you’re dealing with a population,
so the mean on the Science Test is labeled m, or mu. By the same token, the
standard deviation is the standard deviation for the population (remember, we’re
treating the class as a population), so the standard deviation is symbolized by s.
The symbol X represents a raw score—in this case, your test score of 70.

The formula simply directs you to find the difference between a raw score
and the mean, and then divide that difference by the standard deviation. For
example, here’s what was involved in converting your science score (raw score)
to a standardized score:
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When you determined that you scored two standard deviations above the
mean, you were simply doing exactly what the formula directs you to do. You
found the difference between your score (70) and the mean (60), and you divided
that difference by the standard deviation (5). The result is a Z ratio. It’s a ratio of
the difference between a raw score and the mean, expressed in standard
deviation units.

As shown in Figure 4-9, your score of 70 on the Science Test equated to
a Z score, or Z ratio, of +2. By the same token, your other scores also repre-
sented Z scores or Z ratios.

In each case, you converted your test score to a Z score or Z ratio by super-
imposing the distribution of scores for each test onto a single standard—the stan-
dardized normal curve. The result was that you could eventually stand back and
review all of your test performances in terms of what they were as Z scores or
Z ratios. The results are just the same as they were when the scenario was origi-
nally presented in Chapter 2. Your best performance was on the Science Test;
your worst performance was on the Math Test.

And just in case you’re interested—just in case we had thrown in the
Foreign Language Ability Test (like we did in Chapter 2)—it would also have its
place on the illustration shown in Figure 4-9. Just to refresh your memory,
think back to how the original problem was presented in Chapter 2. There
were four 100 point tests to consider. After you had dealt with each of them,
you were in a position to determine which was your best and worst perfor-
mance. But then—at the end and after you thought the matter was settled—I
asked you to consider one last scenario. I asked you to consider a situation in
which you had also taken a 250 point Foreign Language Ability Test. Addi-
tionally, I told you that the mean for the test was 120 with a standard deviation
of 15, and I told you that you had scored 90 on the test. If you recall what hap-
pened when we did that earlier (i.e., when we added a fifth test to the mix, but
it was a 250 point test), then you recall that you had a new worst perfor-
mance. It was the Foreign Language Ability Test score—a score that was two
standard deviations below the mean. In short, if we had thrown the Foreign

–3 –2 –1 0

Verbal test Z score of 0

Math test Z score of –.33

Logic test Z score of +1.0

Science test Z score of +2.0

+1 +2 +3

Figure 4-9 Conversion of Test Scores (Raw Scores) to Z Scores
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Language Ability Test into the present scenario, your score on that test would
find its rightful place along the baseline shown in Figure 4-9. More specifically,
it would be at the point corresponding to a negative Z value—a Z of –2. The
Foreign Language Ability Test score would be positioned right where it should
be—right there along the baseline, just like the Z values of the other four test
scores. Each test would have its own spot along the same baseline—even
though four of the tests were 100 point tests and one of the tests (the Foreign
Language Ability Test) was a 250 point test.

But there’s got to be more to it than just that, you’re likely to be saying
right now. Truth be known, there is. But patience is called for right now.
Remember what the goal is—namely, to develop a solid understanding of the
fundamental concepts. For what it’s worth, just think about all you’ve learned
so far.

You’ve made your way through the fundamentals of descriptive statistics
and the shapes of distributions in general. What’s more, you’ve just had a solid
introduction to the standardized normal curve, Z scores, and the Table of Areas
Under the Normal Curve. In the process, you’ve covered quite a bit. 

In learning about the standardized normal curve and The Table of Areas
Under the Normal Curve, you’ve solidified your thinking about curves, distribu-
tions, and associated percentages of cases or probabilities of occurrence. More
important, you’ve learned to think in the abstract—assuming you’ve taken the
time to mentally visualize the standardized normal curve and Z scores or points
along the baseline. In other words, you’ve learned to interpret Z scores in a fun-
damental way. 

Let’s say, for example, that someone is looking at a raw score value of 62.
Then let’s say that the 62 equates to a Z value of –2.13. By now, you should
automatically know that a Z value of –2.13 is extreme, at least in the sense that it
would be located toward the left end of a normal curve. You could look it up on the
Table of Areas Under the Normal Curve and find out just how extreme it is, but you
should know intuitively that it is extreme. After all, you know that a Z value of
–1.96 is extreme, and a Z value of –2.13 would be even more extreme.

If you’ve committed just a minor amount of information to memory (in this
case, the percentage associated with a Z value of ±1.96), you could say some-
thing rather important about that value of –2.13. Without even looking at the
Table of Areas Under the Normal Curve, you could make the statement that a
value of –2.13 is so extreme that it is likely to occur less than 5 times out of
100 (see Figure 4-10).

Besides automatically knowing the relative position of that Z value, by now
you probably have a solid understanding of how the Z value of –2.13 was
calculated in the first place. In other words, you understand that the process
began by finding the difference between a raw score and the mean of a
distribution (in this case, the difference between the mean and 62). That
difference was then divided by the standard deviation of the distribution. The
result was a Z ratio—a ratio of the difference between a raw score and the
mean, expressed in standard deviation units.
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Now here’s the beauty in all of this: It doesn’t make any difference whether
you’re studying weights, heights, incomes, levels of education, levels of aggression
in prison inmates, test scores, or anything else. It doesn’t make any difference
whether you’re dealing with values that represent dollars or years or pounds or
points or anything else. A Z value (Z ratio) can serve as your standard, just so
long as you’re dealing with a distribution that has a fairly large number of cases
and you can legitimately make the assumption that it is normally distributed.

If your distribution meets those assumptions, you’re in a position to know
a great deal about your distribution. Most important, you’re in a position to
identify the extreme values in the distribution. As I mentioned before, it’s the
extreme values that usually get the attention of statisticians. Indeed, it’s usually
an extreme result that a statistician is looking at when he/she announces that
the results are significant.

We’ll eventually get into all of that—how to determine whether or not re-
sults are statistically significant—but we’ve still got to cover a few remaining
concepts. For that, we go to the next chapter.

–3 –2 –1 0

Z value of –2.13

Only about 5% of the area would be beyond Z values ±1.96.

In other words, only about 5% of the time would you expect to encounter a 
Z value that was more extreme than ±1.96. A Z value of –2.13 would be more 
extreme; therefore, you would expect to encounter it less than 5 times out 
of 100. In fact, the 5% of the area beyond a Z of ±1.96 would be evenly split, 
with 2.5% on each side of the curve. Therefore, a value of –2.13 is a value 
you would expect to occur less than 2.5 times out of 100.

+1 +2 +3

Z of ±1.96 includes about 95% of total area.

Figure 4-10 Locating a Z Value of –2.13



This chapter was a milestone in the sense that you were introduced to one of the
more theoretical but essential concepts in statistical inference—the standardized
normal curve. Presumably you learned about the fundamentally theoretical
nature of the standardized normal curve, and you learned how to navigate your
way around it (with the use of the Table of Areas Under the Normal Curve).
What’s more, you moved forward on a leap of faith, learning many things about
the standardized normal curve with little notion as to where the knowledge
would lead.

If the approach worked, though, you eventually found out enough to make
your way through some basic applications. Ideally, you moved through those
applications with a certain level of intuitive understanding. If that’s the way it
unfolded for you, welcome to the world of statistical reasoning—you’re on the
right road. Yes, there are still many more applications to come. But at least
you’re on the right track.

Beyond that, you were introduced to the fundamental utility of the stan-
dardized normal curve—how it allows us to work with a common statistical
language, so to speak. You learned that statisticians are typically interested in
extreme occurrences. More important, you learned what an extreme occur-
rence is to a statistician. 

I suspect that all of that made for a fairly full plate and a lot to digest at one
sitting. Because all that follows is so dependent on what you’ve just covered, let
me urge you to make an honest assessment of your understanding up to this
point. If you think you need to reread the material a time or two, make the
effort. In many respects, it’s one of the keys that unlocks the door.

You deserve to know that the assumption of a normal distribution of a population
(or populations, for that matter) is central to many statistical applications. You
should also know that it is an assumption that isn’t always met. As you might have
suspected, statisticians have methods for dealing with situations in which this cen-
tral assumption cannot be met, but those approaches are beyond the scope of this
text. Even if you’re eager to learn more about such matters, it pays to remember
the old adage, first things first. Since a substantial part of inferential statistics rests
on the assumption that you are working with data from a population that is nor-
mally distributed, it’s essential that you thoroughly cement your understanding of
the standardized normal curve.

Beyond that, you should know that there are some relatively easy ways to de-
termine if a distribution is normally distributed—rules of thumb, so to speak, that
you can rely upon as a quick alternative to more sophisticated analyses. For ex-
ample, with a normal distribution, you already know that the mean, median, and

Some Other Things 
You Should Know

Chapter Summary
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mode will coincide. Were you to make a quick check of the values of the mean,
median, and mode in a distribution, a substantial difference between or among
the values would be an immediate signal that the distribution isn’t normal.
Similarly, in a normal distribution, you would expect the range divided by 6 to be
very close to the value of the standard deviation. Why? You’d expect that be-
cause three standard deviations on either side of the mean should take in more
than 99% of the area (or cases). Since the mean of a normal distribution would
be in the middle of the distribution, you would expect three standard deviations
above and below the mean to encompass something close to the total area.

So much for Some Other Things You Should Know at this point. We still
have one last bit of information to cover before we really get about the business
of inferential statistics, so that’s where we’ll turn next.

standardized normal curve Z (Z score)
Table of Areas Under the Normal Curve Z ratio

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. The standardized normal curve is based upon a(n) number of
cases.

2. The mean of the normal curve is equal to , and the standard
deviation is equal to .

Application Questions/Problems

1. How much area under the normal curve is between the mean and a 
Z value of 1.63?

2. How much area under the normal curve is between the mean and a 
Z value of 2.35?

3. How much area under the normal curve is between the mean and a 
Z value of –1.22?

4. What percentage of area (cases or observations) is above a Z value of
+1.96?

5. What percentage of area (cases or observations) is below a Z value of
–1.96?

6. What percentage of area (cases or observations) is above a Z value of
+2.58?

Chapter Problems

Key Terms



7. What percentage of area (cases or observations) is below a Z value of
–2.58?

8. What percentage of area under the normal curve is above a Z value of
+1.53?

9. What percentage of area under the normal curve is below a Z value of
–1.12?

10. What Z value corresponds to the lowest 20% of area under the normal
curve?

11. What Z value corresponds to the upper 35% of area under the normal
curve?

12. What Z values correspond to the middle 60% of area under the normal
curve?
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5

Four Fundamental Concepts

This chapter deals with four fundamental concepts, some of which have been
alluded to before. Everything we’ve covered up to this point is of little conse-
quence if you gloss over the material in this chapter, so let me urge you to
spend some serious time with the material you are getting ready to cover. If you
have to read and reread and reread again, do that. The time spent will pay off.

First, we’ll deal with the matter of random sampling. From that point, we’ll
take up the topic of sampling error—an essential notion that underlies the logic
of inferential statistics. Then, we’ll turn our attention to the idea of a sampling
distribution, and more specifically, we’ll look at the notion of a sampling distri-
bution of sample means. Finally, we’ll turn our attention to the Central Limit
Theorem—a fundamental principle that will be important in our first major
application of statistical inference. 

■ Before We Begin

■ Fundamental Concept #1: Random Sampling

■ Fundamental Concept #2: Sampling Error

■ Fundamental Concept #3: The Sampling Distribution 
of Sample Means

■ Fundamental Concept #4: The Central Limit Theorem

■ Chapter Summary

■ Some Other Things You Should Know

■ Key Terms

■ Chapter Problems



As you go through the material, you’ll likely have to take the time for a
dark room moment or two—certainly more than you’ve had to up to this point.
As I said before, don’t assume that a dark room moment is beneath your intel-
lectual dignity. Indeed, it may turn out to be a key to success when it comes to
understanding the material.
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Let me pose two questions. First, how many times have you heard or read the
expression, random sampling? Next, what about the expression, sampling
error, or its cousin, so to speak, the margin of error? How many times have
you encountered that?

My guess is you’ve heard phrases such as random sampling or sampling
error, but you may not have a solid understanding of what each expression
means. That’s fine; it’s not often that people have cause to think about such
notions. On the other hand, those expressions are tied to some of the funda-
mental notions and assumptions that accompany statistical inference. From my
perspective, it’s virtually impossible to grasp the fundamental logic of statistical
inference without some understanding of those concepts. Let me repeat: It’s
virtually impossible to grasp the fundamental logic of statistical inference
without some understanding of those concepts.

Those concepts—random sampling and sampling error—are two of the
concepts covered in this chapter. The other concepts—sampling distribution
and the Central Limit Theorem—are no less important. I’m of the opinion that
the four concepts, taken together, form the basis of a good amount of statisti-
cal inference. Therefore, it’s paramount that you develop a firm understanding
of each.

That said, I also know that you’ll likely wonder why you have to learn each
concept. Regrettably, I don’t think you’re going to like my answer. All I can tell
you is that you’re very close to entering the world of inferential statistics, and
the concepts that you’re about to encounter are central to opening the door.

On a positive note, you’ve more than earned a rest when you get through this
chapter. It involves a hefty amount of material—conceptual and theoretical mate-
rial that requires thinking in an abstract fashion. The chapter also makes reference
to concepts that you’ve previously covered (for example, the standard deviation,
populations, and samples). If you have any difficulty recalling what those previ-
ously introduced concepts are all about, go back to the earlier chapters to refresh
your memory. A solid understanding of those concepts is essential.

Many statistical procedures rest on the assumption that you’re working with a
sample that was selected in a random fashion. The expression random sample
is common, but it’s also commonly misunderstood. Contrary to popular opinion,

Fundamental Concept #1: Random Sampling

Before We Begin
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a random sample isn’t what you get when you simply stand on the sidewalk and
interview people who walk by. And a random sample isn’t what you get when
you use a group of students for research subjects just because they are available
or accessible. To assert that you’re working with a random sample of cases
(or cases selected in a random fashion) means that you’ve met certain selection
criteria.

First, a random sample is a sample selected in such a way that every unit
or case in the population has an equal chance of being selected. There’s a very
important point to that requirement—namely, that you have in mind the pop-
ulation to which you intend to generalize. If, for example, you say that you’re
working with a random sample of registered voters, presumably you have in
mind a population of registered voters that exists somewhere. It may be a pop-
ulation of registered voters throughout a city, or county, or state, or the nation.
But you do have to have fixed in your mind a larger population in which you
have an interest.

The second requirement is that the selection of any single case or unit can
in no way affect the selection of any other unit or case. Let’s say you devised a
sampling plan that was based on your selecting first a Republican and then a
Democrat and then a Republican and then a Democrat. If the idea of deliber-
ately alternating back and forth in your selection of Republicans and Democrats
is part of your sampling plan, you’re not using a random sampling technique.
Remember the criterion: The selection of one unit or case in no way affects the
selection of another unit or case.

The third requirement of random sampling is that the cases or units be se-
lected in such a way that all combinations are possible. This requirement is the
one that really goes to the heart of inferential statistics, and it’s the one you
should key in on. The notion that all combinations are possible really means
that some combinations may be highly improbable, but all combinations are
possible. Indeed, British mathematician and philosopher Bertrand Russell
(1955) illustrated the point with a little bit of humor. Describing a venture into
a mythical hell while in a fever-induced state of delirium, Russell observed: 

There’s a special department in hell for students of probability. In this
department there are many typewriters and many monkeys. Every time that
a monkey walks on a typewriter, it types by chance one of Shakespeare’s
sonnets. (p. 30)

Leaving Russell’s mythical hell and returning to the more practical world of
sampling, here’s an illustration to consider. If you rely on a sampling technique
that’s truly random, and the population of registered voters is fairly evenly split
between Republicans and Democrats, you’ll probably end up with a sample that
is roughly equally split between Republicans and Democrats. Your sample may
not reflect the split between Republicans and Democrats in the population with
exact precision, but it will probably be fairly close. It’s very unlikely that you’ll end
up with a sample that is 100% Republican or 100% Democrat. Both of those
outcomes (all Republicans or all Democrats) are highly improbable, but they are



possible—and that’s the point. If the sampling technique is truly random, all
combinations are possible. For some further examples, see Figure 5-1.

The process of selecting cases or units in a random fashion typically begins
with the identification of a sampling frame, or physical representation of the
population. For example, your ability to make a statement about the population
of registered voters in a certain county begins with your identification of a listing
of all registered voters in that county. The listing, whether it exists on printed
pages or in some electronic format, would constitute your sampling frame. If, on
the other hand, you were interested in making a statement about all the students
enrolled for six hours or more at a certain university, you would have to begin
your sampling by locating some listing of all the students who met the criteria.
Presumably you would get such a list from the registrar’s office. That list, in turn,
would serve as your sampling frame—a representation of your population.

In the case of a simple random sample, every case or unit in the sampling
frame would be numbered, and then a table of random numbers would be
used to select the individual cases for the sample. Most research methods
texts have a table of random numbers included as an appendix to the book,
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The population is 60% male 
and 40% female.

The sample will be approximately 
60% male and 40% female.  It could, 
for example, be 85% male and
15% female, but that isn’t likely.

Most workers have been 
working for the company 
less than five years.

Most workers in the sample will have 
worked for the company less than five
years. It’s possible that everyone in 
the sample could have worked for the
company for more than five years, but 
that isn’t likely.

The population is roughly 
evenly divided into lower, 
middle, and upper class.

The sample will be roughly evenly 
divided into lower, middle, and upper 
class.  It’s possible that the entire 
sample could come from just one 
class, but it isn’t likely.

POPULATION SAMPLE

Figure 5-1 Relationship Between a Population and a Random Sample
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and a quick read of the material on random sampling will provide you with a
step-by-step procedure for selecting a simple random sample. In fact, most re-
search methods texts include information on a variety of sampling designs—
everything from systematic random sampling to stratified random sampling.
For our purposes, though, you should simply have fixed in your mind what the
term random sampling is all about and what is necessary if you’re going to as-
sert that you’re working with a sample selected in a random fashion.

Assuming you’ve now got a grasp of what is meant by the concept of random
sampling, it’s time to turn to the concept of sampling error—something that
was mentioned earlier, but only briefly. Now it’s time to take a closer look. To
illustrate the concept, we’ll start with a simple example.

Let’s say you’re working as a university administrator, and you’ve been asked
to provide an estimate of the average age of the students who are enrolled for six
hours or more. Let’s also say that, for all the reasons we’ve discussed before
(factors such as time and cost), you’ve decided to rely on a sample to make your
estimate—a random sample of 200 students from a population of 25,000
students (all enrolled for at least six hours of coursework).

The entire population of students probably includes a considerable range of
ages. Some students might be extremely young—students who skipped a few
years in high school because they were exceptionally bright. There may not be
many students like that in the population, but there could be a noticeable num-
ber. By the same token, there might be a small but noticeable number of very old
students—retirees who decided to return to school. Like the very young students,
the older students would represent an extreme portion of the distribution. 

The idea of sampling error comes into play with the recognition that an
infinite number of samples are possible. You could take one sample, then an-
other, then another (see Figure 5-2). You could continue the process time and
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Figure 5-2 Representation of Repeated Samples from the Same Population

POPULATION

Repeated (individual) samples



time again. You might not want to do something like that, but you could. And
that’s the point: An infinite number of samples are possible. This point is
extremely important, so let me suggest here that you spend a dark room moment
or two on it. Just think about the notion of taking sample after sample after
sample from the same population. As ridiculous as that may seem, think about
what the process would entail.

Assuming you’ve given some thought to the notion that an infinite number
of samples is possible, let’s now consider the real world. In reality, you’ll have
just one that you are working with. An infinite number of samples are possible,
but you’ll be working with only one of those samples. When it comes time to
collect some information and carry out some calculation, you may think you’re
working with the best sample in the world (whatever that means) and that it is
somehow a very special sample, but it really isn’t special at all. In reality, you’re
working with one sample—just one out of an infinite number of samples that
are possible—and your sample may or may not be an accurate reflection of the
population from which it was taken.

What if, just by chance, you ended up with a sample that was somewhat
overloaded with extremely young students? As you’re probably aware, the
chance of something like that happening may be small, but it’s possible. In fact,
you could end up with, let’s say, 150 of the 200 cases somehow coming from
the portion of the population distribution that contained the really young stu-
dents. As I said, the chances are slim, but the possibility is there. By the same
token, it’s possible that you could end up with a random sample that was over-
loaded with extremely old students. Likely? No. Possible? Yes.

If your sample had an extreme overrepresentation of really young students,
the sample mean age would be pulled down (the effect of extremely low values
in the distribution). As a result, mean age for the sample wouldn’t be a true re-
flection of the mean of the population (m). Had you selected a sample that hap-
pened to have an overrepresentation of much older students, the mean of your
sample would be higher than the true mean of the population. Once again,
there would be a difference between your sample mean and the true mean of
the population—just by chance.

You’re probably starting to get the point of all this, but it’s important that
you understand the concept of sampling error at a level that’s almost intuitive.
For this reason, let me suggest that you take a serious look at the example
shown in Figure 5-3. It illustrates what you might get in the way of several
different sample means from one population. Even if you think you understand
all of this, let me suggest that you pay attention to the specifics of the example.
It takes very little effort, but it can help you understand the point in a way that
will stay with you forever.

If you’re starting to have a little conversation with yourself—if you’re
telling yourself, OK, I get it; this makes sense; of course I’d expect to see some
difference—then you’re on the right track as far as understanding one of
the central concepts involved in statistical inference. What you’ve just dealt with
is the concept of sampling error—the difference between a sample statistic
and a population parameter that’s just due to chance.

98 CHAPTER 5 Four Fundamental Concepts



Fundamental Concept #3: The Sampling Distribution of Sample Means 99

The difference could relate to a mean or a range or any other statistic.
For example, a difference between the mean of the sample and the mean of
the population (mu) that is just due to chance would amount to sampling
error (of the mean). A chance difference between the range of the sample
and the range of the population would also amount to sampling error (of the
range). In both cases, we would categorize the difference as sampling error—
the difference between a sample statistic and a population parameter that is
due to chance.

You could be dealing with a lot of sampling error (particularly if you, by
chance, came up with a rather extreme sample), or you could be dealing with
only a small amount of it (if you came up with a highly representative sample).
How statisticians deal with all of that is a topic for discussion down the road.
For the moment, though, let’s move forward to the next concept.

To begin our discussion of this concept, I’ll ask you to return to our earlier ex-
ample. Imagine for a moment that you’re taking sample after sample after sam-
ple from the population of students. The fact that nobody except a statistician is
apt to do something like that shouldn’t concern you. Just imagine for a moment

Fundamental Concept #3:
The Sampling Distribution of Sample Means

Figure 5-3 Illustration of Sampling Error

POPULATION OF STUDENTS

True mean age (mu or m) = 23.4 years of age.

Seven samples and seven different sample means

One sample mean equals the mean of the population, 
but the other sample means are slightly higher or lower 
than the true population mean (mu or m).
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that you’re going through the exercise—taking sample after sample after sample.
Let’s say that each time you take a sample you select 50 students.

Now imagine that each time you select a sample, you ask students their
age and record the information. You could easily calculate the mean age of
each sample—right? Of course you could. As you learned in the previous sec-
tion, though, the mean age of any one of those samples is likely to be slightly
different from the population mean, just by chance (or due to sampling error).
Let’s say you went through the process 1000 times—each time selecting
50 students, collecting information on the students’ ages, and calculating
the mean age for that sample. If you recorded the mean for each of the 1000
samples, you would then have what is known as a sampling distribution of
sample means.

At this point, let me suggest that you go no further unless you’re ab-
solutely certain you have that last notion firmly fixed in your mind. Here it is
again: You could take sample after sample, selecting 50 students each time.
You could repeat this process until you had selected 1000 samples. If you cal-
culated the mean of each sample, you would then have a distribution of 1000
sample means. This distribution would be known as a sampling distribution
of sample means.

There’s no doubt about it, that phrase is a mouthful. So let’s take it apart,
element by element. 

The result of your exercise would be a distribution, just like any other distrib-
ution (of income, weight, height, or any other variable). Only in this case, it would
be a distribution of means taken from different samples—hence the expression
distribution of sample means. You could just as easily have a distribution of
sample ranges. All you would have to do is take sample after sample after sam-
ple, record the range of each sample, and report those ranges in a distribution.
Typically, though, statisticians deal with the concept of a sampling distribution of
sample means, rather than a sampling distribution of sample ranges.

The expression sampling distribution simply means a distribution that is
the result of repeated sampling. Once again, it is a rather abstract concept, and
very few people would ever bother to construct a sampling distribution of any-
thing. But here’s the point: You could construct a sampling distribution if you
wanted to. As a matter of fact, you could very easily construct a sampling dis-
tribution of sample means. All it would take is a little bit of time. Once you did
that, you could very easily develop a graph or plot of the sampling distribution
of sample means. And that brings us to the last of the fundamental concepts.
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Imagine for a moment that you had actually constructed the sampling distribu-
tion of sample means described in the previous example. In other words, you
went to the trouble of taking 1000 different samples with 50 subjects in each

Fundamental Concept #4:
The Central Limit Theorem
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sample. For each sample, you calculated and recorded a mean age, and you
eventually put all the mean ages into a distribution. 

Now imagine that you developed a graph or plot of all of those means,
producing a curve. Do you have any idea what that curve might look like?
Before you answer, think about the question for just a moment. Think about
how you would produce the graph or curve, and what sort of values you would
be plotting. Just to help you along in your thinking, consider the following:

1. You’re taking sample after sample after sample (until you have 1000
samples).

2. Each time you take a sample, you calculate a mean age for the sample
(a sample mean based on 50 cases).

3. Because of sampling error, your sample mean is likely to differ from the
true mean of the population.

4. Sometimes your sample mean will be less than the true mean of the
population.

5. Sometimes your sample mean will be greater than the true mean of the
population.

By now you should be getting a picture in your mind of all these sample
means (or sample mean values)—some higher than others, some lower than
others, a few really high values, a few really low values, and so forth and so on.
If you’re getting the idea that the distribution of sample means would graph as
a normal curve, you’re on the right track. Now take a look at Figure 5-4. How
do we know that a sampling distribution of sample means would look like a nor-
mal curve? We know it because it’s been demonstrated. The idea has been
tested; the idea holds up. 

As it turns out, statisticians know quite a bit about what would happen if
you set out to construct a sampling distribution of sample means. What’s more,
they know quite a bit about how the sampling distribution of sample means
would be related to the population from which the samples were drawn. As a
matter of fact, this relationship—the relationship between the sampling distrib-
ution of sample means and the population from which the samples were
drawn—has a name. It is known as the Central Limit Theorem. Before we deal
with the Central Limit Theorem and what it says, though, let me make three
more points about a sampling distribution of sample means. 

First, any sampling distribution of sample means will have a mean of its
own—right? To convince yourself of that, just imagine a plot or graph of all the
different means you would get if you took 1000 samples and plotted the means
from those 1000 samples. The plot or graph would represent an underlying
distribution, and that distribution (like any distribution) would have a mean. In
the case we’re discussing, it would be the mean of a sampling distribution of
sample means.

Second, that distribution (the sampling distribution of sample means)
would, like any distribution, have a standard deviation—right? Remember: The



sampling distribution of sample means is, in a sense, just another distribution.
All distributions have a standard deviation. In this case, we’re considering a
sampling distribution of sample means. It is no different. It would have a stan-
dard deviation.

Third, statisticians have a special term for the standard deviation of a
sampling distribution of sample means. They refer to it as the standard error
of the mean. That term or phrase, standard error of the mean, actually makes
a lot of sense if you take a moment or two to think about it. It makes sense, in
part, because a sampling distribution of sample means is actually a distribution
of sampling error. The sampling distribution is based on a lot of means, and
many of those means will actually vary from the true mean of the population.
As you learned before, we refer to that chance difference between a sample
mean and a population mean as sampling error—hence the term error in the
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expression standard error of the mean. Instead of saying standard deviation
of a sampling distribution of sample means, statisticians use the expression
standard error of the mean.

With all of that as background, let’s now have a look at the Central Limit
Theorem and what it tells us. First I’ll present the theorem; then I’ll translate.

Here is the Central Limit Theorem:

If repeated random samples of size n are taken from a population with a
mean or mu (m) and a standard deviation (s ), the sampling distribution of
sample means will have a mean equal to mu (m) and a standard error

equal to . Moreover, as n increases, the sampling distribution will 

approach a normal distribution.

Now comes the translation: Imagine a population, and give some thought
to the fact that this population will have a mean (mu or m) and a standard de-
viation (s ). Now imagine a sampling distribution of sample means constructed
from that population—a distribution of sample means, based on random sam-
ple after random sample after random sample, taken from the same popula-
tion. That sampling distribution will have a mean, and it will equal the mean
of the population (mu or m). The sampling distribution of sample means will
also have a standard deviation—something we refer to as the standard error
of the mean. The standard error of the mean (the standard deviation of the
sampling distribution of sample means) will be equal to the standard deviation
of the population (s ) divided by the square root of n (where n is the number of
cases in each sample).

In other words, a sampling distribution of sample means will eventually
look like a normal curve (see Figure 5-5). Besides that, there’s a very definite
and predictable relationship between a population and a sampling distribution
of sample means based on repeated samples from that population. We know
that the relationship between the two is predictable because mathematicians
have demonstrated that it is predictable. 

It isn’t the case that the mean of a sampling distribution of sample means
will eventually be fairly close to or approximate the mean of the population (mu
or m). Instead, the mean of the sampling distribution of sample means will
equal the mean of the population (mu or m).

By the same token, it isn’t the case that the standard deviation of the sam-
pling distribution of sample means (the standard error) will sort of be related to
the standard deviation of the population. Rather, the standard error will equal
the population standard deviation (s ) divided by the square root of n (or the
number of cases in the sample). 

In the next chapter, we’ll make some direct application of all of this
material—but it won’t do you any good to race ahead to the next chapter.

s2n



Racing ahead without thoroughly understanding what we’ve just covered will
only set you back in the long run. In fact, racing ahead will probably cause you
to hit what I call the “brick wall of misunderstanding”—an experience that
makes it impossible to understand all that lies ahead. 

In my view, there’s only one way to get over, under, around, or through
the brick wall of misunderstanding, and that’s to focus on the fundamental
concepts until you finally understand each one of them. It won’t do to tell
yourself you understand when you don’t. Instead, reread this entire chapter,
if you have to. Read it and reread it until you understand the material at a
near-intuitive level. Once you’ve done that, you’ll be in a position to more
forward.
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At this point, you deserve a break. You’ve just been through some rather
abstract and theoretical territory. If you found the material a little tough to
digest at the outset, that’s normal. The material is new by all reasonable
standards—new concepts, new ideas, and new ways of looking at the world.
New material? You bet. Difficult material? Not really. It’s all a matter of think-
ing about each element until you have a solid understanding. As to what you
just covered, it was significant.

For example, you were introduced to a technical definition of random sam-
pling, in a way that emphasized what a random sample is and is not. You also
learned that the assumption of a random sample is central to many statistical
applications. Equally important, you were introduced in some detail to the con-
cept of sampling error. Ideally, you learned that it is sampling error that pre-
vents a direct leap from sample statistics to population parameters. Beyond all
of that, you were introduced to the concept of a sampling distribution of sam-
ple means and the Central Limit Theorem. In the process, you found your way
into the heart of statistical inference (at least as it relates to certain applica-
tions). A lot of material, indeed.

As we close out this chapter, let me underscore how beneficial a dark room
moment might be for understanding some of the concepts that you just covered.
These concepts deserve your full attention, and that’s what a dark room moment
is all about—a chance to bring your full attention to the question at hand. 

Normally, I use this section of each chapter to point you in the direction of
relevant topics left unexplored in the interest of a succinct presentation. The
chapter you just read justifies a departure from that approach. Instead of point-
ing you to unexplored topics or directing you to additional resources, I’m going
to let you in on a little secret. Here it is.

The material you just covered is, for many students, the source of the brick
wall. It’s the collection of concepts that ultimately separate the women from the
girls and the men from the boys. My experience in teaching statistics tells me
that many students say they “get it” when, in fact, they don’t. The issue, of
course, isn’t what the students tell me; it’s what they tell themselves.

The four fundamental concepts presented in this chapter will eventually 
be linked for you in the form of practical applications. But the logic of those
applications always comes back to the fundamental concepts, and that’s why
they are so essential.

There’s no question that some of the concepts are highly abstract. Indeed,
it is this collection of concepts that always come to my mind when I stress the
importance of taking time out for a dark room moment. Much material remains
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to be covered, so don’t hamper your learning by going forward unprepared.
If you need to take time out for a few dark room moments, now is the time
to do it. Shore up the moments with a second or third read of the material, if
necessary.

Central Limit Theorem sampling error
random sample sampling frame
sampling distribution of sample standard error of the mean

means

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. In a random sample, every unit in the population has a(n) 
chance of being selected.

2. In a random sample, the selection of any one unit affect the
selection of any other unit.

3. In a random sample, combinations are possible. 
4. When selecting a sample, the physical representation of the population is

known as the .
5. A representative sample is one in which important characteristics in the

population are mirrored in the .
6. The difference between a sample statistic and a population parameter that

is due to chance is referred to as .
7. The mean of a population (m) = 54.72, and the mean of a sample

from that population ( ) = 54.92. Assuming the difference between the
two values is due to chance, we can refer to the difference as sampling

.
8. A sampling distribution of sample means is based on taking repeated sam-

ples (of size n) from the same population and plotting the of
the different samples.

9. According to the Central Limit Theorem, the mean of a sampling distrib-
ution of sample means will equal the of the population from
which the samples were drawn.

10. The standard deviation of a sampling distribution of sample means is
referred to as the .

X

Chapter Problems

Key Terms

106 CHAPTER 5 Four Fundamental Concepts



Chapter Problems 107

11. According to the Central Limit Theorem, and given a sampling distribution
of sample means, the standard error of the mean will equal the 
of the population divided by the of the sample size.

12. The shape of a sampling distribution of sample means will approach the
shape of a curve.

Application Questions/Problems

1. A population has a mean (m) of 24.12 and a standard deviation (s ) of 4.
Assume that a sampling distribution of sample means has been con-
structed, based on repeated samples of n = 100 from this population.
a. What would be the value of the mean of the sampling distribution?
b. What would be the value of the standard error of the mean?

2. A population has a mean (m) of 30 and a standard deviation (s ) of 6.
Assume that a sampling distribution of sample means has been con-
structed, based on repeated samples of n = 225 from this population.
a. What would be the value of the mean of the sampling distribution?
b. What would be the value of the standard error of the mean?

3. A population has a mean (m) of 120 and a standard deviation (s ) of 30.
Assume that a sampling distribution of sample means has been con-
structed, based on repeated samples of n = 100 from this population.
a. What would be the value of the mean of the sampling distribution?
b. What would be the value of the standard error of the mean?

4. A population has a mean (m) of 615 and a standard deviation (s ) of 90.
Assume that a sampling distribution of sample means has been con-
structed, based on repeated samples of n = 400 from this population.
a. What would be the value of the mean of the sampling distribution?
b. What would be the value of the standard error of the mean?

5. A population has a mean (m) of 55 and a standard deviation (s ) of 17.
Assume that a sampling distribution of sample means has been con-
structed, based on repeated samples of n = 100 from this population.
a. What would be the value of the mean of the sampling distribution?
b. What would be the value of the standard error of the mean?
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In this chapter, you’ll enter the world of inferential statistics. As you get
started, think back over the material you’ve covered so far. For example,
you’ve already learned about the mean, standard deviation, samples, popula-
tions, statistics, parameters, and sampling error. You’ve also been introduced to
Z scores, the Table of Areas Under the Normal Curve and the Central Limit
Theorem. Now it’s time to bring all those elements together.

As you begin to bring the different elements together, there’s a chance you’ll
begin taking advantage of other resources—Web sites, other texts, or additional
learning aids. As before, let me encourage you to do that. Should you take that
path, however, let me also remind you again about the noticeable differences
that often emerge when it comes to the matter of symbolic notation. Different
statisticians may use different symbols for the same concept—that’s just the way
it is, and there’s no reason to let those little bumps in the road throw you.

Having said that, here’s what lies ahead. The general application we’ll
cover in this chapter is known as the construction of a confidence interval.
More specifically, we’re going to deal with the construction of a confidence
interval for the mean and the construction of a confidence interval for a pro-
portion. We’ll begin with the confidence interval for the mean.

By now you should be adequately armed to jump into the world of statistical in-
ference. You have the important concepts under your belt, but your patience is
probably wearing thin. Therefore, there’s no reason to waste too much time,
except to offer up one of my favorite statistical sayings: We really don’t give a
hoot about a sample, except to the extent that it tells us something about
the population. In fact, that’s what the field of inferential statistics is all
about—samples really aren’t of interest to us, except that they provide us
information that we can use to make inferences about populations. That is an
extremely simple but important notion, so allow me to repeat it: We really
don’t give a hoot about a sample, except to the extent that it tells us some-
thing about the population. Simply put, you’re getting ready to apply that
adage. You’re going to use some information gained from a sample so you can
make some statements about a population.

Let’s suppose we want to estimate the mean of a population (m) on the basis of a
sample mean (X

–
). By now you should know we can’t simply calculate a sample

mean (X
–

) and assume that it equals the mean of the population (m). A sample
mean might equal the mean of the population, but we can’t assume that it will.
We can’t do that because there’s always the possibility of sampling error. Because
our ultimate aim is to estimate the true value of the population mean (m), we’ll
have to use a method that takes into account this possibility of sampling error.

Confidence Interval for the Mean
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We’ll use our sample mean as the starting point for our estimate. Then
we’ll build a band of values, or an interval, around the sample mean. To do
this, we’ll add a certain value to our sample mean, and we’ll subtract a certain
value from our sample mean. When we’re finished, we’ll be able to assert that
we believe the true mean of the population (m) is between this value and that
value. For example, we’ll eventually be in a position to make a statement such
as “I believe the mean age of all students at the university (m) is somewhere
between 23.4 years and 26.1 years.” This statement expresses a confidence
interval for the mean of a population based on a sample mean.

Let’s think about that for a moment. This method allows us to express an in-
terval in terms of two values. The two values are the upper and lower limits of the
interval—an interval within which we believe the mean of the population is
found. We may be right (our interval may contain the true mean of the popula-
tion), or we may be wrong (our interval may not contain the true mean of the
population). Even though there’s some uncertainty in our estimate, we’ll know
the probability, or likelihood, that we’ve made a mistake. That’s where the term
confidence comes into play—we’ll have a certain level of confidence in our
estimate. What’s more, we’ll know, in advance, how much confidence we can
place in our estimate. 

As it turns out, there are two different approaches to the construction of
confidence intervals for the mean. One approach is used when we know the
value of the population standard deviation (s ), and another approach is used
when we don’t know the value of the population standard deviation (s ). The
second approach is used more frequently, but it’s the first approach that really
sets the stage with the fundamental logic. For that reason, we’ll begin with con-
fidence intervals for the mean with s known; after that, we’ll turn to confidence
intervals for the mean with s unknown. Once you’ve mastered the logic of the
first approach, the move to the second application will be easier.

We’ll begin our discussion of confidence intervals with a somewhat unusual
situation—one in which we’re trying to estimate the mean of a population when
we already know the value of s (the standard deviation of the population). Why,
you might ask yourself, would we have to estimate the mean of a population if we
already know the value of the standard deviation of the population? Wouldn’t we

Confidence Interval for the Mean With r Known

❏✔ LEARNING CHECK

Question: What is a confidence interval for the mean?
Answer: It’s an interval or range of values within which the true

mean of the population is believed to be located.



have to know the mean of the population to calculate the standard deviation?
Those are certainly reasonable questions. Although situations in which you’d
know the value of the standard deviation of the population are rare, they do exist.

Some researchers, for example, routinely use standardized tests to mea-
sure attitudes, aptitudes, and abilities. Personality tests, IQ tests, and college
entrance exams are often treated as having a known mean and a known stan-
dard deviation for the general population (s ). The Scholastic Aptitude Test
(SAT), for example, has two parts—math and verbal. Each part has been
constructed or standardized in a way that yields a mean of 500 and a standard
deviation of 100 for the general population of would-be college students. An
example like that—one involving some sort of standardized test—is a typical
one, so that’s a good place to start.

An Application

Let’s assume that we’re working for the XYZ College Testing Prep Company—
a company that provides training throughout the nation for students preparing
to take the SAT college entrance examination. Part of our job is to monitor the
success of the training. Let’s assume we have collected information from a
sample of 225 customers—225 students from throughout the nation who took
our prep course—telling us how well they did on each section of the SAT. Let’s
say that we’re only interested in the math scores right now, so that section will
be our focus.

Now, let’s say that the results indicate a sample mean (X
–

) of 606. In other
words, the mean score on the math section for our 225 respondents was 606.
The question is how to use that sample mean to estimate the mean score for
all of our customers (the population). We know that we can’t simply assume
that the sample mean of 606 applies to our total customer base. After all, it’s
just one sample mean. A different sample of 225 customers might yield a dif-
ferent sample mean.

We can, however, use the sample mean of 606 as a starting point, and we
can build a confidence interval around it. In other words, we’ll start by treating
the value or 606 as our best guess, so to speak. The true mean of the popula-
tion (the population of our entire customer base—let’s say 10,000 customers)
may be above or below that value, but we’ll start with the value of 606 nonethe-
less. After all, with random sampling on our side, our sample mean is likely to
be fairly close to the value of the population mean. At the same time, though,
we know that our value of 606 may not equal the true mean of the population,
so we’re going to build in a little cushion for our estimate. The question is, How
do we establish the upper and lower values—how do we build in the cushion?

We build the cushion by adding a certain value to the sample mean and
subtracting a certain value from the sample mean (don’t worry right now
about how much we add and subtract—we’ll get to that eventually). When we
add a value to the sample mean, we establish the upper limit of our confidence
interval; when we subtract a value from the mean, we establish the lower limit
of the confidence interval. 
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Given what our purpose is, along with the notion that we’re going to use our
sample mean as a starting point, you shouldn’t be terribly confused when you
look at the formula for the construction of a confidence interval. After all, it’s sim-
ply a statement that you add something to your sample mean and you subtract
something from your sample mean. The formula that follows isn’t the complete
formula, but take a look at it with an eye toward grasping the fundamental logic.

Confidence Interval, or CI = Sample Mean ±Z ( ? ) 

The sample mean will be the starting point.
A value will be added to the mean and subtracted from the mean.

It’s clear from the formula that we’re going to be working with a sample
mean (X

–
), and we’ll be using a Z value, but two questions still remain: Why the

Z value, and what does the question mark represent?

Reviewing Z Values

To answer those questions, let’s start by reviewing something you learned ear-
lier about Z values (see Chapter 4 if you’re in any way unclear about Z values).
Think back to what you learned about a Z value in relationship to the normal
curve—namely, that a Z value is a point along the baseline of the normal curve.
Think about the fact that Z values are expressions of standard deviation units. 

To understand why this is important in the present application, let me ask
you to shift gears for just a moment. We’ll eventually get back to our example,
but for the moment, put that aside. Instead of thinking in terms of a sample
of SAT scores, assume that you’re working with a large population of scores
on some other type of test. For example, think in terms of a large number of
students who took a final exam in a chemistry course. Assume the scores are
normally distributed, with a mean of 75 and a standard deviation of 8. 

Since the distribution is normal, 95% of the scores would fall between
1.96 standard deviations above and below the mean. That’s something you
learned when you learned about the normal curve and the Table of Areas
Under the Normal Curve. If 95% of the cases fall between 1.96 standard
deviations above and below the mean, it’s easy to figure out the actual value

❏✔ LEARNING CHECK

Question: In general, how is a confidence interval for the mean
constructed?

Answer: A sample mean is used as the starting point. A value
is added to the mean and subtracted from the mean.
The results are the upper and lower limits of the
interval.



of the scores that would encompass 95% of the cases. All you’d have to do
is multiply the standard deviation of your distribution (8) times 1.96. You’d
add that value (1.96 × 8) to the mean, and then you’d subtract that value from
the mean. That would be the answer to the problem. Here’s how the process
would play out. 

■ Assuming that a large number of scores on a final exam are normally dis-
tributed, you’d expect 95% of the scores in your distribution to fall between
±1.96 standard deviations from the mean (that is, 1.96 standard deviations
above and below the mean).

■ The mean = 75
■ The standard deviation = 8 
■ 1.96 × 8 = 15.68
■ 75 – 15.68 = 59.32
■ 75 + 15.68 = 90.68
■ Therefore, 95% of the scores would be found between the values of 59.32

and 90.68.

To grasp the point more fully, consider these additional examples, assum-
ing a normally distributed population in each case.

With a mean of 40 and a standard deviation of 5:
What values would encompass 95% of the scores? 
Answer: 30.20 to 49.80
What values would encompass 99% of the scores? 
Hint: Use a Z value of 2.58 for a 99% confidence interval.
Answer: 27.10 to 52.90

With a mean of 100 and a standard deviation of 10:
What values would encompass 95% of the scores?
Answer: 80.40 to 119.60
What values would encompass 99% of the scores? 
Answer: 74.20 to 125.80

The key step in each of these examples had to do with the standard devi-
ation of your distribution of scores. In each case, you multiplied the standard
deviation by a particular Z value.

Exercises like these are interesting, and they demonstrate how useful the
normal curve can be, but how does all of that come into play when we’re try-
ing to construct a confidence interval? As it turns out, we’ll rely on the same
sort of method. We’ll calculate the value we add to and subtract from our sam-
ple mean by multiplying a Z value by an expression of standard deviation units.
That brings us to the question of what Z value to use. 
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Z Values and the Width of the Interval 

To determine the right Z value, we first decide how wide we want our interval
to be. Statisticians routinely make a choice between a 95% confidence interval
and a 99% confidence interval (Pyrczak, 1995). It’s possible to construct an
80% confidence interval, or a 60% confidence interval, for that matter, but sta-
tisticians typically aim for either 95% or 99%. Without worrying right now
about why they do that, just focus on the fundamental difference between the
two types of intervals. 

In the situation we’re considering—one in which (s ) is known—a 95%
confidence interval is built by using a Z value of 1.96 in the formula. A 99%
confidence interval, in turn, is built by using a Z value of 2.58. By now, these
should be very familiar values to you. If you’re unclear as to why they should be
familiar, take the time to reread Chapter 4. 

Now we deal with the question of how to put the Z values such as 1.96 or
2.58 to use. In other words, what’s the rest of the formula all about—the ques-
tion mark (?) that follows the Z value? Just so it will be clear in your mind, here’s
the formula again: 

Confidence Interval, or CI = Sample Mean ±Z ( ? ) 

Typically Z = 1.96 or 2.58
1.96 for a 95% confidence interval
2.58 for a 99% confidence interval

Bringing in the Standard Error of the Mean

To understand what the question mark represents, take a moment or two to re-
view what we know so far. Indulge yourself in the repetition, if necessary. The
logic involved in where we’ve been is central to the logic of where we’re going.

Returning to our example, we’re attempting to estimate the mean SAT
score for our total customer base of 10,000 customers, based on a sample of
225 customers. The mean math SAT score (X

–
) for the sample was 606, and

we know that the SAT math section has a standard deviation (s ) of 100. It’s
that last bit of information (s = 100) that allows us to approach the problem

❏✔ LEARNING CHECK

Question: What Z value is associated with a 95% confidence
interval? What Z value is associated with a 99%
confidence interval?

Answer: A Z value of 1.96 is used for a 95% confidence interval.
A Z value of 2.58 is used for a 99% confidence interval.



as the construction of a confidence interval with s (the standard deviation of
the population) known.

Our sample of 225 students may have produced a mean (X
–

= 606) that
equals the population mean (the mean or m of all of our customers), but there’s
also a possibility it didn’t. Maybe our sample mean varied just a little bit from
the true population mean; maybe it varied a lot. We have no way of knowing.

The key to grasping all of this is to think back to the notion of a sampling
distribution of sample means. As you know, a sampling distribution of sample
means is what you would get if you took a large number of samples, calculated
the mean of each sample, and plotted the means. You should also remember
that most of those sample means would be located toward the center of the dis-
tribution, but some of them would be located in the outer regions—the more
extreme means. 

If you put our sample mean in the context of all of that, here’s what you
should be thinking: 

I’ve got a sample mean here, but I don’t know where it falls in relationship
to all possible sample means. A different sample could have yielded a differ-
ent mean. Maybe the sample (just by chance) included mostly customers
with extremely high SAT math scores, or maybe it’s a sample that (just by
chance) included mostly customers with extremely low scores.The proba-
bility of something like that happening is small (if a random sample was
selected), but anything is possible.

In other words, there’s no way to know how far the sample mean deviates
from the mean (m) of the population of 10,000 customers, if at all. In a case
like that, we’re left with no choice except to take into account some overall av-
erage of how far different sample means would deviate from the true popula-
tion mean (m). Of course, that’s exactly what the standard error of the mean
is—it’s an overall expression of how far the various sample means deviate from
the mean of the sampling distribution of sample means.

To understand this point, take some time for a dark room moment, if nec-
essary. Just as before, imagine that you’re taking an infinite number of samples,
and imagine all the different means you get. Imagine a plot of all those different
sample means. Most of those sample means are close to the center, but a lot of
them aren’t. Some deviate from the mean a little; some deviate a lot. Now begin
to think about the fact that there’s an overall measure of that deviation—in
essence, a standard deviation for the sampling distribution. Focus on that
concept—the standard deviation of a sampling distribution of sample means.
Now focus on the fact that we have a special name for the standard deviation of
the sampling distribution—the standard error. If, for some reason, that doesn’t
sound familiar to you, go through the dark room moment exercise again. 

Assuming you’re comfortable with the concept of the standard error of the
mean, you can begin to think of it as analogous to what you encountered earlier
in this chapter—the examples in which you were dealing with a population of
scores. In those earlier situations, you multiplied the standard deviation of the
distribution by 1.96 to determine the values or scores that would encompass

Confidence Interval for the Mean With s Known 115



116 CHAPTER 6 Confidence Intervals

95% of the cases. Similarly, you multiplied the standard deviation of distribution by
2.58 if you wanted to determine the values that encompassed 99% of the cases.

In our present situation, we’ll do essentially the same thing. The only
change is that we’ll be using the standard error instead of the standard deviation.
To better understand this, take a minute or two to really focus on the illustration
shown in Figure 6-1.

If you truly digested that illustration, and you realized you were looking at a
sampling distribution of sample means, you noticed something very important:
95% of the possible means would fall between ±1.96 standard error units from
the mean of the sampling distribution of sample means. By the same token, 99%
of the possible means would fall between ±2.58 standard error units from the
mean of the sampling distribution of sample means. None of this should surprise
you. After all, the Central Limit Theorem tells us that the sampling distribution
of sample means will approach the shape of a normal distribution.

Now we move toward the final stage of our solution to the problem.
Remember what the task is: We want to estimate the mean math score on the
SAT for our entire customer base. All we know is that the mean math SAT
score for a random sample of 225 customers is 606 and that the test in ques-
tion has a standard deviation (s ) of 100. 

As we launch into this, let’s throw in the assumption that we want to be on
fairly solid ground—in other words, we want to have a substantial amount of
confidence in our estimate. For this reason, we decide to construct a 99% con-
fidence interval. For a 99% confidence interval, and taking the mean of our
sample (X

–
= 606) as our starting point, we simply add 2.58 standard error units

to our sample mean and subtract 2.58 standard error units from our sample
mean. That will produce the interval that we’re trying to construct.

Z of ±1.96 is the same thing as ±1.96 standard error units.

Sampling distribution of sample means

Includes about 95% of the total area.

–3 –2 –1 0 +1 +2 +3

Figure 6-1 The Concept of the Standard Error of the Mean



But wait just a minute, you may be thinking. I understand that we’re adding
and subtracting 2.58 standard error units, but how much is a standard error
unit? Indeed, that’s the central question. To find the answer, all we have to do
is return to the Central Limit Theorem. Think for a moment about what the
Central Limit Theorem told us. Here it is once again: 

If repeated random samples of size n are taken from a population with a
mean or mu (m) and a standard deviation (s ), the sampling distribution of
sample means will have a mean equal to mu (m) and a standard error

equal to . Moreover, as n increases, the sampling distribution will 

approach a normal distribution.

The Relevance of the Central Limit Theorem 
and the Standard Error

The Central Limit Theorem tells us that the standard error of the sampling dis-
tribution (the missing value that we’ve been looking for) will equal the standard
deviation of the population divided by the square root of our sample size. In the
case we’re considering here, we know that the standard deviation for the gen-
eral population is 100. Thus, we divide 100 by the square root of our sample
size (the square root of 225, or 15) to get the value of the standard error. 

At this point, let me emphasize that what we’re doing is calculating the
value of the standard error. We can calculate it in a direct fashion because
the Central Limit Theorem tells us how to do that. It tells us that the standard
error is calculated by dividing s by the square root of n:

Note that symbol for the standard error of the mean is . Remember:
We’re working with a situation in which the standard deviation on the test (the

sx

sx =
s2n

❏✔ LEARNING CHECK

Question: According to the Central Limit Theorem, what is the re-
lationship between the standard deviation of the popula-
tion (s ) and the standard error (the standard deviation
of the sampling distribution of sample means)?

Answer: The standard error is equal to s divided by the square
root of the sample size.

s2n
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math portion of the SAT) is 100 points. We obtain the standard error of the
mean ( ) by dividing s (the standard deviation of the population, or 100) by 
the square root of our sample size (square root of 225, or 15): 

In other words, the standard error of the mean ( ) = 6.67.
Now that we have the standard error at hand, along with a grasp of 

the fundamental logic, we can appreciate the complete formula for the
construction of a confidence interval with s (the standard deviation of the pop-
ulation) known:

All that remains to construct a 99% confidence interval is to multiply the
standard error (6.67) the appropriate or associated Z value (2.58), and wrap
that product around our sample mean (add it to our mean and subtract it from
our mean). As it turns out, 6.67 × 2.58 equals 17.21. Therefore, we add 17.21
to our sample mean (X

–
= 606) and subtract 17.21 from our sample mean to get

our interval. Following through with all of that, we obtain the following:

■ 606 – 17.21 = 588.79
■ 606 + 17.21 = 623.21
■ Therefore, our confidence interval is 588.79 to 623.21.
■ We can estimate that the true mean math SAT score for our customer base

is located between 588.79 and 623.21.

As a review of the entire process, here are all the calculations again, laid
out from start to finish, in the context of the formula for the construction of a
confidence interval for the mean (with s known).

❏✔ LEARNING CHECK

Question: How is the standard error calculated when the standard
deviation of the population (s ) is known?

Answer: The standard deviation of the population (s ) is divided
by the square root of the sample size (n).

CI = X ± Z (sx) where (sx) =
s2n

sx

sx = 6.67

sx =
100
15

sx =
1002225

sx =
s2n

sx



Is it possible that we missed the mark? Is it possible that the true mean math
SAT score for our 10,000 customers doesn’t fall between 588.79 and 623.21?
You bet it’s possible. Is it probable? No, it isn’t very probable. The method we used
will produce an interval that contains the true mean of the population 
99 times out of 100 (99% of the time). Let me repeat that: The method we used will
generate an interval that contains the true mean of the population 99 times out of
100. Since I repeated that, it’s obviously important, so you deserve an explanation.

Think of it this way: If the previous exercise were repeated 100 times,
(100 different samples of 225 students), we’d find ourselves working with many
different sample means. These different sample means would result in different
final answers. We would always be wrapping the same amount around our
sample mean (adding the same amount of sampling error and subtracting
the same amount of sampling error), but different means would result in differ-
ent final answers (different intervals). In 99 of the 100 trails, our result (our
confidence interval) would contain the true mean of the population.

The method would produce an interval containing the population mean 99
times out of 100 because of what lies beneath the application—random sam-
pling, the Central Limit Theorem, and the normal curve. Statisticians have tested
the method. The method works. To fully understand this idea, take a look at the
illustration shown in Figure 6-2. You’ll probably find it to be very helpful.

Because the central element in all of this has to do with the method we
used, let me emphasize something about the way I think an interpretation of a
confidence interval should be structured. Obviously, there are different ways to
make a concluding statement about a confidence interval, but here is the one
that I prefer (let’s assume the case involves a 99% confidence interval): 

I estimate that the true mean of the population falls somewhere between
____ and ____ (fill in the blanks with the correct values), and I have used a
method that will generate a correct estimate 99 times out of 100.

In other words, the heart of your final interpretation goes back to the
method that was used. You have confidence in the estimate because of the
method that was used. 

CI = 588.79 to 623.21

CI = 606 ± 17.21

CI = 606 ± 2.58(6.67)

CI = 606 ± 2.58 a 100
15
b

CI = 606 ± 2.58 a 1002225
b

CI = 606 ± 2.58 a s2n
b

CI = X ± Z(sx)
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Confidence and Interval Width

Now let’s tackle a 95% confidence interval for the same problem. Everything
will stay the same in the application, with one exception. In this instance, we’ll
multiply the standard error by 1.96 (instead of 2.58). Once again, here’s the
formula we’ll be using:

If we apply the same procedure we used before, changing only the Z value
(using 1.96 instead of 2.58), we’ll get an interval that is slightly smaller in

CI = X ± Z(sx)

Confidence intervals 
(imagine 100 of them)

The Central Limit Theorem tells us that the mean of the sampling distribution
of sample means will equal the mean of the population.

Notice that most confidence intervals 
actually capture the true mean of the 
population. A 95% confidence interval 
is constructed in such a way that 95 
times out of 100, the confidence 
interval will capture the true mean of 
the population.

Sampling distribution 
of sample means

Figure 6-2 The Method Underlying the Construction of a Confidence Interval 
for the Mean (Why the Method Works)



width—something we would expect since we’re multiplying the standard error
by a slightly smaller value. Here is how the calculation would unfold:

CI = 606 ± 1.96(6.67)
CI = 606 ± 13.07
CI = 592.93 to 619.07

Given those calculations, the appropriate conclusion or interpretation
would be as follows:

I estimate that the true mean of the population falls between 592.93 and
619.07, and I have used a method that will produce a correct estimate 95
times out of 100.

At this point, you should take note of the relationship between the level of
confidence (95% versus 99%) and the width of the interval. The 95% confi-
dence interval will, by definition, be narrower than the 99%. To convince your-
self of this, compare our two sets of results:

For the 99% level of confidence, our interval is 588.79 to 623.21.
For the 95% level of confidence, our interval is 592.93 to 619.07.

In other words, all factors being equal, a 95% interval will produce a more
precise estimate—an estimate that has a narrower range. By the same token,
a 99% confidence interval will be wider than a 95% interval—it will produce a
less precise estimate. 

A word of clarification is probably in order at this point. To say that one es-
timate is more precise than another is to say that one estimate has a narrower
range than the other. For example, an estimate that asserts that the mean of
the population falls between 20 and 30 is a more precise estimate than one
that asserts that the mean is somewhere between 10 and 40. It’s particularly
easy to get thrown off track on this topic, particularly if you’re inclined to con-
fuse precision with accuracy. Although the two terms can be used synony-
mously in some instances, the present context is not one of them.

If you want to understand the difference between the two (when thinking
about confidence intervals), just consider the following statement: I estimate
that the true mean age of the population of students falls somewhere between

CI = 606 ± 1.96 a 100
15
b

CI = 606 ± 1.96 a 1002225
b

CI = 606 ± 1.96 a s2n
b

CI = X ± Z(sx)
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zero and a billion. That statement would obviously have a high degree of
accuracy—it’s very likely to be a correct statement and, therefore, accurate.
We would also have a great deal of confidence in the estimate, just because of
the width of the interval. The estimate reflected in that statement, however, is
anything but precise—the range of the estimate is anything but narrow.

All of this is another way of saying that there is an inverse relationship be-
tween the level of confidence and precision. As our confidence increases, the
precision of our estimate decreases. Alternatively, as our precision increases,
our confidence decreases. For example, we could, if we wanted to, construct a
75% confidence interval. It would be a fairly narrow interval (at least compared
to a 95% or 99% interval). It would be fairly narrow, and therefore rather pre-
cise, but we wouldn’t have a lot of confidence in our estimate.

It’s also possible to affect the precision of an estimate by changing the sam-
ple size—something that should make a certain amount of intuitive sense to
you if you think about it for a minute or two. Given a constant level of confi-
dence (let’s say, a 95% level), you can increase the precision of an estimate by
increasing the size of the sample. The problems presented in the next section
should give you an adequate demonstration of that point.

A Brief Recap

Just to make certain that you are comfortable with all of this, let me suggest
that you work through the problems that follow—typical problems that call for
a 95% and a 99% confidence interval. Follow the same procedure we just
used.

Assume the following: X
–

= 50 s = 8 n = 100
Calculate a 95% confidence interval. Answer: 48.43 to 51.57
Calculate a 99% confidence interval. Answer: 47.94 to 52.06

Assume the following: X
–

= 50 s = 8 n = 400
Calculate a 95% confidence interval. Answer: 49.22 to 50.78
Calculate a 99% confidence interval. Answer: 48.97 to 51.03

❏✔ LEARNING CHECK

Question: What is the relationship between the level of confidence
and the precision of an estimate when constructing a
confidence interval for the mean?

Answer: Level of confidence and precision are inversely related.
As one increases, the other decreases.



Assume the following: X
–

= 85 s = 16 n = 25
Calculate a 95% confidence interval. Answer: 78.73 to 91.27
Calculate a 99% confidence interval. Answer: 76.74 to 93.26

Assume the following: X
–

= 85 s = 16 n = 225
Calculate a 95% confidence interval. Answer: 82.90 to 87.10
Calculate a 99% confidence interval. Answer: 82.24 to 87.76

As before, you may want to take a moment to focus on how the width of
a confidence interval varies with level of confidence and how it varies with sam-
ple size. 

With the previous section as a foundation, we now take up the more typical
applications of confidence interval construction—those involving an estimate
of the mean of a population when the standard deviation of the population
is unknown. For the most part, the logic involved is identical to what you’ve
just encountered. There are just two hitches. I’ve already mentioned the first
one—it has to do with the fact that you don’t know the value of the popula-
tion standard deviation (s ). The second hitch arises because you can’t rely on
the normal curve, so you can’t rely on those familiar values such as 1.96 (for
a 95% confidence interval) or 2.58 (for a 99% confidence interval). Rather
than jumping into an application straightaway, let’s take some time to really
examine how the two approaches differ.

Estimating the Standard Error of the Mean

Let’s start with the first hitch—the fact that you don’t know the standard
deviation of the population (s ). If you think back to the previous section, you
were able to determine the standard error—the standard deviation of the sam-
pling distribution of sample means—because you knew the standard deviation

Confidence Interval for the Mean 
With r Unknown

❏✔ LEARNING CHECK

Question: What effect does increasing the size of a sample have on
the width of the confidence interval and the precision of
the estimate?

Answer: It decreases the width of the interval and, therefore,
increases the precision of the estimate.
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of the population. The Central Limit Theorem told you that all you had to do
was divide the standard deviation of the population (s ) by the square root of
your sample size, and the result would be standard error (the standard devia-
tion of the sampling distribution of sample means). But now we’re consider-
ing situations in which we don’t know the value of the standard deviation (s ),
so we can’t rely on a direct calculation to get the standard error. Instead, we’ll
have to estimate it. That’s the first difference in a nutshell. Remember: When
you know the value of the standard deviation of the population (s )—which
you rarely do—you can make a direct calculation of the standard error of
the mean. When you don’t know the value of the standard deviation of the
population (s )—which is usually the case—you’ll have to estimate the
standard error.

As it turns out, there’s a very reliable estimate of the standard error of the
mean, and it’s easy to calculate. All we have to know is the standard deviation
of our sample (s) and our sample size (n). Assuming we have the standard
deviation of our sample at hand, we simply divide it by the square root of our
sample size. We designate the estimate of the standard error of the mean
as . The formula for the estimate is as follows:

For example, let’s say we’re interested in the average expenditure per cus-
tomer in a bookstore. A sample of 100 sales receipts reveals that the mean (X

–
)

expenditure is $31.50 with a standard deviation (s) of $4.75. To estimate the
standard error of the mean, we would simply divide the standard deviation of
the sample (s = $4.75) by the square root of the sample size (n = 100).

sx =
4.752100

sx =
s2n

sx =
s2n

sx

❏✔ LEARNING CHECK

Question: When constructing a confidence interval for the mean,
how do you approach the standard error? How does the
approach differ, depending on whether you know the
value of the standard deviation of the population (s )?

Answer: If s is known, you make a direct calculation of the value
of the standard error. If s is unknown, you have to 
estimate the value of the standard error.



In other words, the standard error of the mean would be .475 (rounded
to $.48).

Let me mention one minor point here. If the standard deviation of our
sample was derived using the n – 1 correction factor discussed in Chapter 2,
we will do just as I outlined above. We’ll divide the sample standard deviation (s)
by the square root of our sample size (n). If, on the other hand, the standard
deviation of the sample (s) was obtained without using the n – 1 correction
factor, we’ll obtain the estimate of the standard error by dividing the sample
standard deviation (s) by the square root of n – 1. This point is demonstrated in
Table 6-1, which should help you understand why different texts approach the
estimate of the standard error in different ways. 

Since the approach taken throughout this book is to assume that the sam-
ple standard deviation was calculated using the n – 1 correction faction, all we

sx = .48

sx = .475

sx =
4.75
10

Confidence Interval for the Mean With s Unknown 125

Table 6-1 Two Approaches to Estimating the Standard Error 
of the Mean ( ), and an Important Notesx

When the sample standard deviation
(s) has been calculated using n – 1 in
the denominator, the estimate of the
standard error ( ) is computed as
follows:

s2n

sx

When the sample standard deviation
(s) has been calculated using n in the
denominator, the estimate of the
standard error ( ) is computed as
follows:

s2n 2 1

sx

AN IMPORTANT NOTE: Just in Case You’re a Little Bit Confused . . .

Always remember that different statisticians and different resources may
approach the same topic in different fashions. The examples above pro-
vide a case in point. Some statisticians calculate the standard deviation of
a sample using only n in the denominator when they simply want to know
the sample standard deviation, but switch to n – 1 in the denominator
when they’re using the sample standard deviation as an estimate of the
population standard deviation.

There’s no reason to let all of this confuse you. Just remember that some
of the fundamentals of statistical analysis aren’t carved in stone, despite
what you might have thought. If you encounter different symbols, nota-
tions, or approaches, don’t let them throw you. A little bit of time and
effort will, I suspect, unravel any mysteries.
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had to do was divide 4.75 (the sample standard deviation, or s) by the square
root of 100 (the sample size). The result was 4.75 divided by 10, or .48. That
value of .48 becomes our estimate of the standard error—an estimate of the
standard deviation of the sampling distribution of sample means. Just to
make certain you’re on the right track with all of this, consider the following
examples:

Given Estimate of the standard error of the mean ( )

s = 8 n = 100 Answer: 0.80
s = 20 n = 25 Answer: 4.00
s = 6 n = 36 Answer: 1.00
s = 50 n = 225 Answer: 3.33

sx

❏✔ LEARNING CHECK

Question: How do you estimate the value of the standard error of
the mean ( )?

Answer: The standard error of the mean is estimated by dividing
the sample standard deviation (s) by the square root
of the sample size ( ).2n

sx

Now we turn to the second hitch—the fact that we can’t rely on the nor-
mal curve or the sampling distribution of Z, with its familiar values such as 1.96
or 2.58. The why behind this problem, which can be found in a more advanced
statistical text, is something you shouldn’t concern yourself with at this point.
What’s important is what we can use as an alternative to the normal curve dis-
tribution. Instead of relying on the normal distribution and its familiar Z values,
we’ll rely on what’s referred to as the family of t distributions.

The Family of t Distributions

As the expression implies, the family of t distributions is made up of several dis-
tributions. Like the normal curve, each t distribution is symmetrical, and each
curve has a mean of 0, located in the middle. Positive t values, or deviation
units, lie to the right of 0, and negative t values lie to the left—just like Z scores
on the normal curve. But there are many different t distributions, and the exact
shape of each distribution is based on sample size (n). It was William Gosset, an
early-day statistician and employee of the Guinness Brewery, who developed
the notion of the t distribution.

Without going into the mathematics behind Gossett’s contribution, it’s use-
ful to consider what it tells us—namely, that the shape of a sampling distribu-
tion depends on the number of cases in each of the samples that make up the
sampling distribution. When the number of cases is small, the distribution will



be relatively flat. As the number of cases in each sample increases, however,
the middle portion of the curve will begin to grow. As the middle portion of the
curve grows, the curve begins to take on more height.

To understand what happens with an increase in sample size, take a look
at Figure 6-3. Think of each curve as a sampling distribution of sample means.
Notice how the curve begins to grow in the middle as you move from a sam-
pling distribution based on small samples to a sampling distribution based on
samples with a larger number of cases. The curves presented here are exag-
gerated or stylized (they’re not based on the construction of actual sampling
distributions), but they serve to illustrate the point.
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Distribution based on small sample size: 
Distribution is relatively flat and the tails are elongated.

Distribution based on larger sample size: 
Distribution begins to grow in the middle (and tails become shorter).

Distribution on still larger sample size: 
Distribution continues to grow in the middle.
Tails become even shorter, and the distribution
begins to more closely approximate the distribution of Z.

Figure 6-3 Shape of t Distribution in Relationship to Sample Size
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Assuming you’ve grasped the idea that the shape of the sampling distribution
is a function of the size of the samples used in constructing it, we can now move
on toward a more precise understanding of the specific shapes. As a first step in
that direction, let me ask you to start thinking in terms of t values in the same
way that you’ve thought of Z values. A t value (like a Z value) is just a point along
the baseline of a distribution (or, more correctly, a sampling distribution). Now
think back to a couple of points I mentioned earlier. 

First, there are many different sampling distributions of t, and each one has
a slightly different shape. A t distribution built on the basis of small samples will
be flatter than one based on underlying samples that are larger. When a distri-
bution is flat, you’ll have to go out a greater distance above and below the mean
to encompass a given percentage of cases or area under the curve. To better
grasp this point, consider Figure 6-4 (as before, the distributions are somewhat
stylized to make the point).

Remember: We’re dealing with the confidence intervals for the mean when
the standard deviation of the population (s ) is unknown. Since you’re not
going to be able to use the normal curve and its familiar values such as 1.96 or
2.58, it’s time you take a look at Gossett’s family of t distributions.

The Table for the Family of t Distributions

You’ll find the family of t distributions presented twice—once in Appendix B
and again in Appendix C. For the application we’re considering here (the
construction of a confidence interval for the mean), you’ll be working with
Appendix B. Before you turn to Appendix B, though, let me give you an
overview of what you’ll encounter. 

First, you’ll notice a column on the far left of the table. It is labeled Degrees
of Freedom (df ). The concept of degrees of freedom is something that comes
up throughout inferential statistics and in many different applications. The
exact meaning of the concept, in a sense, varies from application to applica-
tion. At this point, you’ll need to know a little about degrees of freedom in the
context of a mean. 

Here’s an easy way to think of it: Given the mean of a distribution of n
scores, n – 1 of the scores are free to vary. Let me give you a translation of
that. Assume you have a sample of five incomes (n = 5) and the mean income
of the sample is $26,354. In this situation, four of the incomes could be any
numbers you might choose, but given a mean of $26,354, the fifth income
would then be predetermined. In other words, only four of the five cases 
(n – 1) are free to vary. 

Here’s another example of how and why that works out. Let’s say we have
a sample of seven scores on a current events test with a maximum possible
score of 10, and we know that the mean score is 5. With seven cases and a
mean of 5, we know that the total of all the scores must equal 35. Six of the val-
ues (n – 1) are free to vary. Let’s just make up some values—for example, 1, 2,
3, 3, 7, and 10. The total of these six values is 26. So what must the missing
score be (the one that isn’t free to vary)? We already know that the sum of all the



scores must equal 35 (35/7 = 5, our mean). If we have to reach a final total of
35, and these six values add up to 26, the missing score must be 35 – 26, or 9.

Here is another example to illustrate the point:

Total of five scores (n = 5), mean = 8. Degrees of freedom (n – 1) = 4.
If the mean is 8 and there are five scores, the total of all scores must be
40 (40/5 = 8).
Pick any four scores (let four vary); let’s say the scores are 8, 8, 10,
and 10.
The total of those four scores is 36.
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Includes about 95% of total area.
Distribution based on small sample size.

Includes about 95% of total area.
Distribution based on larger sample size.

Includes about 95% of total area.
Distribution on still larger sample size.

Figure 6-4 Relationship Between Area Under the Curve 
(t Distribution) and Sample Size
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The total of all the scores must equal 40; therefore, the missing score has
to be 4.
8 + 8 + 10 + 10 + 4 = 40

The missing score—the one that is predetermined. Only four scores are
free to vary; the fifth score is predetermined.

Just for good measure, here’s yet another example:

Total of six scores (n = 6), mean = 8. Degrees of freedom (n – 1) = 5.
If the mean is 8 and there are six scores, the total of all scores must be
48 (48/6 = 8).
Pick any five scores (let five vary); let’s say the scores are 6, 7, 7, 10,
and 10.
The total of those five scores is 40.
The total of all the scores must equal 48; therefore, the missing score
has to be 8.
6 + 7 + 7 + 10 + 10 + 8 = 48

The missing score—the one that is predetermined. Only five scores are
free to vary; the sixth score is predetermined.

All of that is what lies behind the left-hand column of the table in Appen-
dix B. If you’re attempting to construct a confidence interval of the mean, and
you have a sample size of 22, you’d be working at 21 degrees of freedom 
(n – 1, or 22 – 1). If you were working with a sample of 15, you’d be working
with 14 degrees of freedom (n – 1, or 15 – 1). And so it goes. Now let’s turn
our attention to another part of the table.

At the top of the table, you’ll see the phrase Level of Significance. Later on
we’ll take up the exact meaning of that phrase in greater detail. For the
moment, though, I’ll just ask you to make a slight mental conversion in using
the table. If you want to construct a 95% confidence interval, just look at the

❏✔ LEARNING CHECK

Question: When using the t table and constructing a confidence
interval for the mean (with s unknown), how is the
number of degrees of freedom computed?

Answer: The number of degrees of freedom will equal n – 1 
(the size of the sample, minus 1).



section for the .05 (5%) level of significance. You can simply think of it this
way: 1 minus the level of significance will equal the level of confidence. If you
want to construct a 99% confidence interval, you’ll go to the section for the .01
(1%) level of significance. (Remember: 1 minus the level of significance equals
the level of confidence.) 

Use the .05 level of significance for a 95% confidence interval 
(1 – .05 = .95).
Use the .01 level of significance for a 99% confidence interval 
(1 – .01 = .99).
Use the .20 level of significance for an 80% confidence interval 
(1 – .20 = .80).

Before you turn to Appendix B, let me mention one last thing about how
the table has been constructed and how it differs from the Table of Areas
Under the Normal Curve. Recall for a moment that the Table of Areas Under
the Normal Curve was one table for one curve. What you’re going to see in
Appendix B is really one table for many different curves. Therefore, the Table
for the Family of t Distributions is constructed in a different fashion.

Instead of the Z values that you’re accustomed to seeing in the Table of
Areas Under the Normal Curve, you’ll see t values. The t values are directly
analogous to Z values—you can think of the t values as points along the base-
line of the different t distributions. The t values, however, won’t be listed in
columns (as was the case with the Z values in the Table of Areas Under the
Normal Curve); instead, they will appear in the body of the table. Finally, all the
different proportions (or percentages of areas under the curve) that you’re ac-
customed to seeing in the Normal Curve Table won’t appear the same way in
Appendix B. As noted previously, you’ll only see a few of the proportions (or
percentages). What’s more, the percentages that you’ll see appear in an indi-
rection fashion. The percentages values are there—for example, 80%, 90%,
95%, 99%—but they’re found by looking at the column headings labeled Level
of Significance (.20, .10, .05, .01). Remember: 1 minus the level of signifi-
cance equals the level of confidence.

You’ve had enough preparation to take a serious look at Appendix B. Let
me urge you to approach it the way I suggest students approach any table. In-
stead of simply glancing at the table and saying “OK, I’ve looked at it,” take a
few moments to thoroughly digest the material. Consider the following state-
ments and questions as you study the table. They’re designed to make you
more familiar with the content of the table and how it’s structured. Don’t worry
that you’re still not making a direct application of the material. Remember
what the objective is: The idea is to understand how the table is structured. Just
to make sure you do, take a look at the following. 

If you’re going to construct a 95% confidence interval for the mean,
you’ll be working with values found in the .05 Level of Significance
column. Remember: The confidence level is 1 minus the level of
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significance. Locate the appropriate column for a 95% confidence
interval.
If you want a 99% confidence interval, you’ll be working with values in
the .01 Level of Significance column. Locate the appropriate column for
a 99% confidence interval.
What about an 80% confidence interval? What column would you focus
on? (Answer: .20 Level of Significance)
If you’re working with a sample of 35 cases, you’ll be focusing on the
row associated with 34 degrees of freedom. Remember: Degrees of free-
dom equals the number of cases minus 1. Locate the row for 34 degrees
of freedom.
What about a sample of 30 cases? What row would you focus on?
(Answer: The row associated with 29 degrees of freedom)
What about a sample of 25 cases? What row would you focus on?
(Answer: The row associated with 24 degrees of freedom)

An Application

Assuming you feel comfortable enough to move ahead, we can now tackle an
application or two. Let’s say that we have a random sample of 25 retirees,
and we want to estimate the average number of emails retirees send out to
friends or relatives each week. Let’s further assume that our sample yields a
mean of 12 (12 emails per week) with a standard deviation of 3 and that we’ve
decided to construct a 95% confidence interval for our estimate of the mean.
Those are the essential ingredients we need, so now the question is how to
proceed.

First, we take the sample mean of 12 as a starting point. Then, we build
our cushion by adding a certain amount to the mean and subtracting a certain
amount from the mean. Here’s the formula we’ll be working with—one that’s
remarkably similar to the one you encountered earlier:

CI = X ± t(sx)

❏✔ LEARNING CHECK

Question: When using the t table and constructing a confidence in-
terval for the mean (with s unknown), how do you find
the level of confidence in the table? Give an example.

Answer: The level of confidence is expressed indirectly. It is equal
to 1 minus the level of significance. For example, to work
at the 95% level of confidence, use the column dedicated
to the .05 level of significance (1 – .05 = .95).



Since all we have is the sample standard deviation (the population standard
deviation, or s , is unknown), we’ll be working with the t distribution, and we’ll
have to estimate the standard error.

The value of t we’ll use is found by locating the intersection of the appro-
priate degrees of freedom and confidence level. In this case, we have 24 de-
grees of freedom (n – 1, or 25 – 1), so that’s the row in the table that we’ll
focus on. We want to construct a 95% confidence interval, so we’ll focus on the
.05 Level of Significance column (1 – .05 = .95). The point in the body of the
table at which the selected row and column intersect shows the appropriate t
value of 2.064 (rounded to 2.06).

We’ll have to multiply the t value (2.06) by our estimate of the standard
error, so the next step is to calculate the estimate. We estimate the standard
error ( ) by dividing our sample standard deviation (s) of 3 by the square root
of our sample size (the square root of 25, or 5). The result (3/5, or .60) is our
estimate of the standard error. 

We now have everything we need: our sample mean as a starting point, the
appropriate t value, and our estimate of the standard error. When plugged into
the formula (the mean, plus and minus a little bit of cushion), here’s what we get:

CI = 12 ± 2.06(0.60)
CI = 12 ± 1.24
CI = 10.76 to 13.24

We can now say we estimate that the true mean of the population falls
somewhere between 10.76 and 13.24 emails per week, and we have used a
method that will produce a correct estimate 95 times out of 100. 

Assuming all of that made sense, let’s change the problem just a bit. Let’s
say that we’re more concerned about confidence than precision, so we want to
construct a 99% interval. The steps are the same, and so are all the values,
except one—the appropriate t value. In this case, we’re working with a 99%
confidence interval, so our t value will be 2.80. As we have seen previously, our
interval will now be a little wider. Our confidence will increase (from 95% to
99%), but our precision will decrease (the interval will be wider).

CI = X ± t(sx)

sx = 0.60

sx =
3
5

sx =
3225

sx =
s2n

sx
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CI = 12 ± 2.80(0.60)
CI = 12 ± 1.68
CI = 10.32 to 13.68

Our confidence interval now ranges from 10.32 to 13.68—an interval
that’s slightly wider than the one we got when we constructed a 95% confi-
dence interval.

Assuming you’re getting the idea here, let’s try a few more problems that
should solidify your thinking. In each case, give some thought to each element
that comes into play in the problem solution.

1. Given a mean of 100, a standard deviation of 12, and n = 16, construct a
95% confidence interval for the mean. Answer: 93.61 to 106.39

2. Given a mean of 54, a standard deviation of 15, and n = 25, construct a
99% confidence interval for the mean. Answer: 45.60 to 62.40

3. Given a mean of 6500, a standard deviation of 240, and n = 16, construct
a 95% confidence interval for the mean. Answer: 6372.20 to 6627.80

Assuming you took the time to work through those problems, let me ask
you to do one more thing—something similar to what you did in the last sec-
tion. Pick any one of the problems you just worked, and change it by substi-
tuting a larger sample size. For example, focus on problem 2 and change the
sample size from 25 to, let’s say, 100. Before you even work through the re-
formulated problem, give some thought to what you expect will happen to the
width of the interval when you construct it on the basis of n = 100. Consider
that this would be a substantial increase in sample size. Notice what the in-
crease in sample size does to the width of the interval (and, therefore, what it
does to the precision of the estimate).

The principle involved is the same as the one you encountered earlier.
Given a constant level of confidence (let’s say, 95%), you can increase the pre-
cision of an estimate (or decrease the width of the interval) by increasing your
sample size. To understand the logic behind this, think of the largest sample size
you could possibly have. That, of course, would be the entire population. In that
case, there would be no standard error, and your estimate would exactly equal
the mean of the population—the narrowest interval you could possibly have!

A Final Comment About the Interpretation 
of a Confidence Interval for the Mean

At this point, it’s probably a good idea to return the fundamental meaning of
a confidence interval for the mean. Let’s take the example of a sample mean
of 108 and a corresponding confidence interval that ranges from 99.64 to

CI = X ± t(sx)



116.36 (Elifson, Runyon, & Haber, 1990). In interpreting those results (or any
other for that matter), it is wise to remember what a confidence interval does
and does not tell us.

In establishing the interval within which we believe the population mean
falls, we have not established any probability that our obtained mean is cor-
rect. In other words, we cannot claim that the chances are 95 in 100 (or 99
in 100) that the population mean is 108. Our statements are valid only with
respect to the interval and not with respect to any particular value of the
sample mean. (Elifson et al., 1990, pp. 367–368)

Translation? A confidence interval for the mean doesn’t provide you with
an exact estimate of the value of the population mean. Rather, it provides you
with an interval—an interval of two values—that you believe contains the true
mean of the population. If you were working at a 95% level of confidence, and
you went through the exercise of constructing a confidence interval 100
times, 95 times your result would be a confidence interval that contains the true
mean of the population. Do you ever know that you’ve produced an interval that
does, in fact, contain the true mean of the population? No. On the other hand,
you do know the probability that you’ve produced an interval containing the
population mean. It’s all about probability and the method—the probability that
your method has generated a correct interval estimate.

A Final Comment About Z Versus t

In practice, some statisticians use the Z distribution (instead of t), even when 
s is unknown, provided they are working with a large sample. Indeed, in many
texts, you’ll find an application based on the use of the Z distribution in such
cases (s unknown, but a large sample). The easiest way to understand why it’s
possible to use Z with a large sample, even if you don’t know the value of s, is
to take a close look at Appendix B again and concentrate on what happens to
the t values as the degrees of freedom increase. To fully comprehend this point,
take a moment to look at Figure 6-5.

Keeping in mind that the number of degrees of freedom is an indirect state-
ment of sample size, you’ll see something rather interesting in Figure 6-5.
Once you’re beyond 120 degrees of freedom (see the entry for infinity, ),
the values of t and Z are identical. For example, if you were working with a
sample of 150 cases and constructing a 95% confidence interval for the mean,
it really wouldn’t make any difference if you relied on the value of t or Z. Both
values would be 1.96. It may be a minor point, but explanations like this can
go a long way when you’re trying to understand why two texts or resources
approach the same topic in a slightly different fashion.

Having dealt with that minor point, we can now turn our attention to a
slightly different topic. Instead of dealing with means, we’ll move to the topic
of proportions.

q
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The application we take up now may strike you as familiar, because it’s the sort
of thing you’re apt to encounter in everyday life—something that’s very com-
mon in the fields of public opinion and market research, as well as sociology and
political science. 

The purpose behind a confidence interval for a proportion parallels that
of a confidence interval for the mean. We construct a confidence interval for a
proportion on the basis of information about a proportion in a sample—for ex-
ample, the proportion in a sample that favors capital punishment. Our ultimate
purpose, however, is to estimate the proportion (in support of capital punish-
ment) in the population.

When someone reports the results of a political poll or a survey, he/
she frequently speaks in terms of proportions or percentages—for example,

Confidence Intervals for Proportions

The value of t equals Z beyond 120 degrees of freedom. Note that t is equal to 1.96 
for a 95% confidence interval (equivalent to the Z value of 1.96).
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Figure 6-5 What Happens to t Beyond 120 Degrees of Freedom



57% responded this way and 43% responded that way, or 34 of the 60 respon-
dents (an expression of a proportion) said this and 26 said that. To take another
example, an opinion poll might report that 88% of voters in a community have
a favorable attitude toward Councilman Brown. Maybe we’re also told that the
poll has a margin of error of ±3%. That simply means that somewhere between
85% and 91% of the voters hold a favorable attitude toward Brown (once again,
an estimate expressed as an interval). In each instance, the purpose is to get an
estimate of the relevant proportion in the population.

The question, of course, is how did the political pollster come up with that
projection. I dare say that’s a question that you’ve asked yourself at one time or
another. As it turns out, the procedure is really quite simple, and it is based on
the same logic that you encountered earlier in this chapter. The big difference
is that in this instance the goal is to estimate a proportion by constructing a
confidence interval for a proportion (as opposed to a mean).

An Application

Let’s say that Candidate Groves is running for mayor, and he’s asked us to sur-
vey a random sample of 200 likely voters. He wants us to find out what propor-
tion of the vote he can expect to receive. Let’s say that our survey results indicate
that 55% of the likely voters intend to vote for Groves for mayor. Given what we
know about sampling error, we know that we have to take into account the fact
that we’re working with only one sample of 200 voters. A different sample of
200 voters would likely yield slightly different results (it’s just a matter of sampling
error). Given that situation, it’s clear that we’ll have to come up with some mea-
sure of standard error. As before, we’ll eventually use that measure, along with a
Z value, to develop our interval or our projection of the eventual vote. If there’s
a hitch in all this, it has to do with how we estimate the standard error of the pro-
portion. We’ll eventually get to all of that, but for the moment, let’s review the
problem under consideration, in light of our now familiar logic. 

The fundamental logic in this problem will be the same as before. We’ve
determined that 55% of the respondents said that they plan to vote for Groves,
so we use that as our starting point. We’ll place our observed sample proportion
(or percentage) in the middle of a sampling distribution of sample proportions
(not sample means, but sample proportions). Using our observed proportion as
a starting point, we’ll then build in a cushion, just as we did before. To build the
cushion, we’ll add some standard error to our observed proportion, and we’ll

❏✔ LEARNING CHECK

Question: What is the purpose behind the construction of a confi-
dence interval for a proportion?

Answer: A confidence interval for a proportion is constructed 
in an effort to estimate the proportion in a population,
based upon a proportion in a sample.
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subtract some standard error from our observed proportion. The result will be
a confidence interval—just as we had in the cases involving estimates of the
population mean.

For the sake of this example, let’s assume that we want to construct a 95%
confidence interval for the proportion. Given our sample size (n = 200), we can
use the Z score associated with 95% of the area under the normal curve as one
of the elements in our computation. Note how remarkably similar the formula
(stated in somewhat nonmathematical terms) is to what we encountered earlier:

Confidence Interval (CI) for a proportion = observed proportion ± Z ( ? )

We already know that our observed proportion is .55 (the proportion
intending to vote for Groves), and we know that the Z value will be 1.96 (since
we’re constructing a 95% confidence interval). All that remains is to deter-
mine where we get the value to substitute for the question mark. As it turns out,
the value that we’re looking for is the estimate of the standard error of the
proportion. I should tell you in advance that the formula for the estimate of
the standard error of the proportion (sp) is a little ominous at first glance, but
it’s also quite straightforward if you take the time to examine it. Here it is:

As complex as this formula may appear, let me assure you that it is easy to
understand if you take it apart, element by element. First, the P in the formula
represents the value of the observed proportion (.55, or 55% if expressed as a
percentage). The value of 1 – P, therefore, represents the remaining propor-
tion (.45, or 45% if expressed as a percentage). In other words, P + (1 – P) =
100%. As before, we’ll have to consider our sample size along the way. Sub-
stituting the appropriate values for the elements in the formula, we obtain the
standard error of the proportion as follows:

Armed with the value of the estimate of standard error of the proportion
(0.035), and assuming we want to construct a 95% confidence interval for the
proportion, we can now complete the problem as follows:

CI = P ± Z (sp)

sp = 0.035
sp = 20.0012375

sp = B.2475
200

sp = B0.55(0.45)
200

sp = B0.55(1 2 0.55)
200

sp = BP(1 2 P)
n



CI = 0.55 ± 1.96 (0.035)
CI = 0.55 ± 0.0686
CI = 0.4814 to 0.6186
CI = 48.14% to 61.86%

Thus, we’re in a position to estimate that between 48.14% and 61.86%
of the voters are likely to vote for Groves. As before, we could include a state-
ment that we’ve used a method that generates a correct estimate 95 times out
of 100. 

Margin of Error

Public opinion poll results are rarely expressed in the form of an interval.
Rather, the results are typically given with some reference to a margin of
error. For example, a pollster may report that 34% approve of Proposition X,
with a margin of error of ±4%. By now you should understand that the margin
of error is, in effect, simply a statement of the interval width. Thinking back to
the poll for Candidate Groves, we can say that the margin of error was 6.86%.
After all, that was the amount that we were adding and subtracting to develop
the confidence interval.

For Candidate Groves’ purposes, the margin of error (55%, plus or
minus 6.86%) is so large that he can’t take much comfort in the poll. He
might capture as much as 61.86% of the vote, but he might receive only
48.14%. For a more precise estimate (at the same level of confidence),
Groves would have to request a larger sample size. For example, we could
follow through the same calculations again, but with the assumption that
we’re working with a sample of 750 likely voters. As you’ll soon discover, the
width of our confidence interval (and, therefore, the margin of error) would
decrease quite a bit.

❏✔ LEARNING CHECK

Question: In a confidence interval for a proportion, what is the
margin of error? Give an example.

Answer: The margin of error is an indirect statement of the width
of the interval. For example, the statement that the
proportion in a population is estimated at 45%, with a
margin of error of ±3%, is actually a statement that the
interval of the estimate ranges from 42% to 48%.

Confidence Intervals for Proportions 139



140 CHAPTER 6 Confidence Intervals

First, we’ll recalculate the estimate of the standard error of the proportion
with our new sample size:

Then, we’ll use the new estimate of the standard error of the proportion to
calculate our confidence interval:

CI = P ± Z (sp)
CI = 0.55 ± 1.96 (0.018)
CI = 0.55 ± 0.0353
CI = 0.5147 to 0.5853
CI = 51.47% to 58.53%

Based on a sample of 750, then, our estimate would result in a projected
vote between 51.47% to 58.53%. By the same token, we could legitimately re-
port our results as a projected vote of 55% with a margin of error of 3.53%.

As you’re probably aware, pollsters commonly refer to a margin of error, but
they rarely refer to the level of confidence that underlies their estimate. As a stu-
dent of statistics, however, you’re now aware that the two concepts are different.
The two concepts are related, to be sure, but they are different in important ways.
The margin of error is an indirect measure of the width of the interval, but the
level of confidence actually goes to the method used in calculating the interval.

You’ll find more examples of confidence intervals involving proportions at
the conclusion of this chapter. They’re presented in such a way that you’ll be
able to work through them in fairly quick fashion. 

❏✔ LEARNING CHECK

Question: Given a constant level of confidence, what is the effect
on the margin of error of increasing the sample size
when developing a confidence interval for a proportion?

Answer: Given a constant level of confidence, an increase in the
size of a sample will decrease the margin of error.

sp = 0.018
sp = 20.00033

sp = B.2475
750

sp = B0.55(0.45)
750

sp = B0.55(1 2 0.55)
750



As we conclude this chapter, let’s consider what you’ve covered. You’ve
encountered a mountain of material. In the simplest of terms, you’ve entered
the world of inferential statistics. You’ve learned how to construct confidence
intervals. You’ve learned how to use sample characteristics (statistics) to make
inferences about population characteristics (parameters).

You’ve learned, for example, about two basic approaches to constructing
a confidence interval for the mean. You use one approach when you know the
standard deviation of the population (s ) and a slightly different procedure
when you don’t know the standard deviation of the population (s ). You’ve also
learned how to make a direct calculation of the standard error (when you know
the value of s ) and how to estimate the standard error (when you don’t
know the value of s ).

Beyond all of that, you’ve learned how the survey results that you read or
hear reported in the media are often derived—how a confidence interval for a
proportion is constructed. You’ve also learned about margins of error and lev-
els of confidence—how they’re related, but how they are different.

Finally, and maybe most important, you’ve learned something about the
world of inferential statistics in general. You’ve learned that there is no such thing
as a direct leap from a sample to a population. You can’t simply look at a sam-
ple mean (or a proportion, for that matter) and assume that it is equal to the true
population parameter. You can use your sample value as a starting point, but
you invariably have to ask yourself a central question in one form or another: 

■ Where did the sample value come from? 
■ Where did the sample value fall in relationship to all other values that might

be possible?
■ Where did the sample value fall along a sampling distribution of all possible

values?
■ What do I know about the sampling distribution, and how can I use that

information to determine a reasonable estimate of the true population
parameter?

Let me suggest that you take time out now for a dark room moment—one
that might help you put a lot of this material into perspective. In this instance,
I’m asking you to think about the construction of a confidence interval for the
mean, but the same mental steps would be involved if you were constructing a
confidence interval for a proportion.

Imagine that you’ve just surveyed a random sample of students, and you’ve
calculated a mean age for your sample. This time I’m going to ask you to con-
jure up a mental image of a circle with some value in it—let’s say 22.3. Treat
that value as the mean age of your sample, and mentally focus on that circle
with the value of 22.3 in the middle of it. 

Chapter Summary
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Now imagine a sampling distribution of sample means above the circle.
Imagine that it looks something like a normal distribution sitting inside a cloud
(since it’s such a theoretical concept, the cloud image is probably appropriate).
Think about what that sampling distribution represents—a distribution of all
possible means, given repeated random sampling from a population. Now
imagine that you’re asking yourself a simple question. Where would my sample
mean fall along the sampling distribution? Would it be at the upper end? Would
it be at the lower end? Would it be somewhere in the middle?

Now imagine a rectangle above the sampling distribution. Imagine that the
rectangle represents the population. Imagine a question mark in the middle of
the rectangle—a question mark to convey the notion that you don’t know
what the value of the population mean is. That’s as far as you have to go in this
little mental exercise. Don’t clutter your mind with the specifics of how you get
from the circle on the bottom to the rectangle on the top. Simply take a men-
tal step backward, and take in the entire view—circle, sampling distribution,
and rectangle. Your image should look something like the one in Figure 6-6.

Imagine that you’re first looking at the circle, then looking at the sampling
distribution (moving through it, so to speak), and then moving to the rectangle.
That’s the essence of inferential statistics—from a sample, through a sampling
distribution, and on to the population for a final answer or interpretation. As
before, let me urge you to take the time to experience that dark room moment.

Sampling
distribution
of sample
means

Sample mean

Population mean

?

Where does the sample mean fall in relationship to all possible means? 

Where does the sample mean come from in relation to all possible means 
that you might have obtained?

All possible means based on 
an infinite number of samples 
from the same population

The mean of the sampling distribution
of sample means will equal the mean of
the population.22.3

Figure 6-6 An Image of Inferential Statistics



The mental image should serve you well in the long run. What’s more, it will
help you prepare for our next topic—an introduction to hypothesis testing.

If there’s one topic that demonstrates the matter of choice and personal pref-
erence when it comes to statistical applications, it’s the topic of confidence
interval construction. As I mentioned previously, some statisticians use the
Z distribution (instead of t), even when s is unknown, provided they’re work-
ing with a large sample. For one statistician, though, “large” may be 60 cases;
for another, it may be 100. You should always keep that in mind, particularly
when you consult other resources. What may strike you as total confusion may
be nothing more or less than personal preference on the part of the author.

While we’re on the topic of personal preference and variation from re-
source to resource, you should be aware that the symbolic notation used in the
field of statistical analysis is not carved in stone. For example, the notation for
the estimate of the standard error used here ( ) is just one approach. Another
text or resource may rely on a different notation (such as sM).

Finally, you should be aware of a fundamental assumption that’s in-
volved when constructing a confidence interval for the mean with s known. In
truth, you have to make an assumption that your sample comes from a pop-
ulation that is equivalent to the population for which you have a known s. Let
me explain.

In the example we used at the beginning of this chapter, the assumption
was made that the population of customers who had taken the SAT prep
course was equivalent to the population of all students taking the SAT. We im-
plicitly made that assumption when we took the approach that we knew the
standard deviation of the population. In short, we made the assumption that
our population of customers—would-be college students who enrolled in a SAT
prep course—was equivalent to a population of all would-be college students
who take the SAT. In truth, though, a population of those who enroll in a prep
course may differ from the population at large in some important way (for ex-
ample, maybe they are more motivated to do well, so they enroll in a prep
course). For this reason, a researcher may prefer to frame the research ques-
tion as though the population standard deviation (s ) were unknown, relying on
a standard deviation to estimate the standard error. Once again, we’re back to
the matter of personal preferences.

At this point, let me encourage you to spend some time with additional re-
sources. For example, you may want to take a look at other texts or tour the
Cengage Web site www.cengage.com/psychology/caldwell. Learning to navi-
gate your way through various approaches to the same type of question, dif-
ferent systems of symbolic notation, or encounters with personal preferences
can provide an added boost to your overall level of statistical understanding.
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confidence interval for the mean family of t distributions
confidence interval for a proportion level of confidence
estimate of the standard error of margin of error

the mean

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. A confidence interval for the mean is calculated by adding and subtracting
a value to and from the sample .

2. The purpose of constructing a confidence interval for the mean is to
the true value of the population mean, based upon the mean 

of a .
3. A confidence interval for the mean is an interval within which you believe

the of the population is located.
4. As the level of confidence increases, the precision of your estimate

.

5. There is a(n) relationship between level of confidence and pre-
cision of the estimate.

6. When constructing a confidence interval for a proportion, the margin of
error is actually a reflection or statement of the of the interval.

7. Whether constructing a confidence interval for a proportion or a mean,
there are two ways to increase the precision of the estimate. You can

sample size, or you can the level of confidence.
8. When constructing a confidence interval for the mean with s known, how

is the standard error of the mean calculated?
9. When constructing a confidence interval for the mean with s unknown,

how is the standard error of the mean estimated?

Application Questions/Problems: Confidence Interval
for the Mean With r Known

1. Compute the standard error of the mean, given the following values for 
s (population standard deviation) and n (size of sample).
a. s = 25 n = 4
b. s = 99 n = 49
c. s = 62 n = 50
d. s = 75 n = 25
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Key Terms



2. Given the following:
X� = 150 s = 12 n = 25
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
3. Given the following:

X� = 54 s = 9 n = 60
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
4. Given the following:

X� = 75 s = 5 n = 100
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
5. Assume you’ve administered a worker satisfaction test to a random sample

of 25 workers at your company. The test is purported to have a population
standard deviation or s of 4.50. The test results reveal a sample mean (X� )
of 78. Based on that information, develop an estimate of the mean score
for the entire population of workers, using a 95% confidence interval.

6. The mean for the verbal component of the SAT is reported as 500, with
a standard deviation (s ) of 100. A sample of 400 students throughout a
particular school district reveals a mean score of 498. Estimate the mean
score for all the students in the district, using a 95% confidence interval?

7. The mean for the verbal component of the SAT is reported as 500, with a
standard deviation (s ) of 100. A sample of 900 students throughout a par-
ticular school district reveals a mean (X� ) score of 522.  Estimate the mean
score for all the students in the district, using a 95% confidence interval.

8. Repeat Problem 7 using a 99% confidence interval.
9. The mean for the math component of the New Century Achievement Test

is reported as 100, with a standard deviation (s ) of 15. A sample of 400
students throughout a particular school district reveals a mean (X� ) score of
110.  Estimate the mean score for all the students in the district, using a
99% confidence interval.

Application Questions/Problems: Confidence Interval 
for the Mean With r Unknown

1. Estimate the standard error of the mean, given the following values for s
(sample standard deviation) and n (sample size).
a. s = 5 n = 16
b. s = 12.50 n = 25
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c. s = 18.25 n = 50
d. s = 35.50 n = 30

2. Given the following:
X� = 26 s = 5 n = 30
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
3. Given the following:

X� = 402 s = 110 n = 30
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
4. Given the following:

X� = 80 s = 15 n = 25
a. Estimate the mean of the population by constructing a 95% confi-

dence interval.
b. Estimate the mean of the population by constructing a 99% confi-

dence interval.
5. A sample of 25 program participants in an alcohol rehabilitation program

are administered a test to measure their self-reported levels of alcohol in-
take prior to entering the program. Results indicate an average (X� ) of 4.4
drinks per day for the sample of 25, with a sample standard deviation (s)
of 1.75 drinks. Based on that information, develop a 95% confidence
interval to provide an estimate of the mean intake level for the entire
population of program participants (m ).

6. Information collected from a random sample of 29 visitors to a civic art
fair indicates an average amount of money spent per person (X� ) of
$38.75, with a sample standard deviation (s) of $6.33. Based on that in-
formation, develop a 99% confidence interval to provide an estimate of
the mean expenditure per person for the entire population of visitors.

7. A sample of 25 participants in a parenting skills class are administered a
test to measure their skill levels on a 200 point skills test before entering
the class. Results indicate that the mean (X� ) skill level for the sample is 86,
with a standard deviation (s) of 12. Based on that information, develop a
95% confidence interval to provide an estimate of the mean skill level for
the entire population of program participants.

8. A sample of 25 participants in a parenting skills class are administered a
test to measure their skill levels on a 200 point skills test before entering
the class. Results indicate that the mean (X� ) skill level for the sample is
101, with a standard deviation (s) of 16. Based on that information, de-
velop a 95% confidence interval to provide an estimate of the mean skill
level for the entire population of program participants.



9. Data are collected concerning the birth weights for a nation-wide sample
of 30 Wimberley Terriers. Results indicate that the mean (X� ) birth weight
for the sample of pups equals 6.36 ounces, with a standard deviation (s)
of 1.45 ounces. Based on that information, develop a 95% confidence
interval to provide an estimate of the mean birth weight for the national
population of Wimberley Terriers.

Confidence Interval Problems for a Proportion

1. In a sample of 200 freshmen at a state university, 40% report that they
work at least 20 hours a week while in school. Estimate the proportion of
all freshmen at the university working at least 20 hours per week. Develop
your estimate on the basis of a 95% confidence interval.

2. From sample of 100 patients in a statewide drug rehabilitation program,
you’ve determined that 20% of the patients were able to find employment
within three months of entering the program. Estimate the percentage of
patients throughout the program who were able to find employment
within three months. Develop your estimate on the basis of a 99% confi-
dence interval.

3. Of a sample of 200 registered voters, 32% report that they intend to vote
in a school board election. Using a 95% confidence interval, estimate the
percentage of all registered voters planning to vote.

4. Of a sample of 150 customers at a local bank, 15% report that they are
likely to request a bank loan within the next year. Using a 99% confidence
interval, estimate the percentage likely to request a loan within the popu-
lation of all customers. 

5. Results from a sample of 400 high school dropouts throughout the state
reflect that 13% of the dropouts plan to return to school next year. Using
a 99% confidence interval, estimate the percentage throughout the state
planning to return to school next year.

6. An opinion poll based on a sample of 750 community residents indicates
that 61% are in favor of a local civic redevelopment project. Estimate the
level of support throughout the community, based on a 95% confidence
interval.

7. An opinion poll based on responses from a sample of 250 community
residents indicates that 61% are in favor of a local civic redevelopment
project. Estimate the level of support throughout the community, based on
a 95% confidence interval.

8. A poll, based upon a national sample of 1200 potential voters and
focused on attitudes toward Social Security reform, indicates that 73.55%
of the respondents oppose a proposal that would extend the minimum
retirement age. Using a 95% confidence interval, estimate the proportion
of opposition throughout the population of potential voters.

9. Repeat Problem 8 using a sample size of 750.
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In the last chapter, you entered the world of inferential statistics when you
learned how to make an inference about the population on the basis of what
you knew about a sample. In this chapter, you’ll find yourself using some of that
same logic, but you’ll go beyond a mere inference about a population value. In
this chapter, you’ll learn how statisticians formulate research questions, how they
structure those questions, and how they put those questions to a test. In short,
you’ll learn about the world of hypothesis testing.

As we explore the world of hypothesis testing, we’ll follow a path similar to
the one we traveled in the last chapter. First we’ll tackle hypothesis tests about a
sample mean ( ) when we know the value of the standard deviation of the pop-
ulation (s ). Then we’ll turn to tests about a sample mean ( ) when the popula-
tion standard deviation (s ) is unknown. In the process, we’ll make the same shift
as we did before. First, we’ll work with Z values and make a direct calculation of
the standard error of the mean. In the second approach, we’ll rely on t values
and estimate the standard error of the mean. 

In addition to learning about a particular statistical application, you’ll learn
about hypothesis testing in a general sense. In the process, you’ll learn that the
world of hypothesis testing has a language and a logical structure of its own. My
guess is that you’ll find that it’s very different from anything you’ve ever experi-
enced before. That’s why it’s a good idea to ease into the concepts gradually. 

To get right to the point, think about what you just covered. You dealt with confi-
dence intervals. You dealt with concepts such as the mean, the standard deviation,
and the standard error (calculated and estimated). You used those concepts when
constructing confidence intervals. Now, though, we’re getting ready to shift gears.
Yes, we’re going to rely on many of the same concepts, but our purpose will be
very different. We’re about to move into the world of hypothesis testing.

Before we start, let me emphasize three major points. First, hypothesis test-
ing involves an approach to logic that may strike you as a little strange. I just ask
you to remember that as you work your way through the chapter. Secondly, you
need to have an objective, open mind if you really want to understand hypothe-
sis testing. If you’re inclined to hold opinions or make statements in the absence
of facts, you might find the next chapter a bit bothersome. Finally, the material
that you’re about to encounter should probably be taken in bits and pieces. My
advice is that you read about a concept or notion, think about that concept or
notion, and then reread and rethink again. The concepts are important enough
to warrant that sort of approach.

Setting the Stage

Researchers may want to compare a sample mean to a population mean for
any number of reasons. Consider the following examples.

X
X

Before We Begin
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Let’s say a researcher is about to analyze the results of a community survey,
based on the responses of 50 registered voters. Assuming he/she has some
knowledge about the entire population (for example, the mean age of all regis-
tered voters in the community), the researcher might start by comparing the
mean age of the sample and the population, just to determine if the sample is
reasonably representative of the population.

Maybe a criminologist is interested in the average sentence length handed
out to first-time offenders in drug possession cases. A national study, now al-
most two years old, reports that the average sentence length is 23.4 months,
but the criminologist wants to verify that the reported average still applies.

In yet another example, maybe a team of industrial psychologists is interested
in the productivity of assembly line workers. Historical data, based on the perfor-
mance of all workers over the past three years, indicate that workers will (on
average) produce 193.80 units per day. The psychologists, however, believe that
the level of productivity may be different for workers who’ve been given the op-
tion of a flextime schedule. Taking a sample of productivity records for those
working on a flextime schedule, the psychologists can compare the sample mean
with the historical population mean.

Those are just some of the situations appropriate for a hypothesis test in-
volving a single sample mean. There are actually many different hypothesis-
testing procedures—some involving a single sample mean, some based on two
sample means, and still others that deal with three or more sample means. For
the moment, though, we’ll deal with the single sample situation. It’s a fairly
straightforward sort of application and well-suited as an introduction to the
logic of hypothesis testing. 

A Hypothesis as a Statement of Your
Expectations: The Case of the Null Hypothesis

You’ve probably heard of or used the word hypothesis before, and you may have
the notion that a hypothesis is a statement that you set out to prove. That under-
standing may work when it comes to writing a term paper or an essay, but it’s far
removed from the technical meaning of a hypothesis in a statistical sense. In truth,
a statistician isn’t interested so much in a hypothesis as in the null hypothesis.

Statisticians are forever attempting to put matters to a test, and they use a
null hypothesis to set up the test. That’s where we’ll begin—with the notion of
the null hypothesis. To be fair, though, you deserve an advance warning. You
may think the logic behind the null hypothesis is totally backwards and, at
times, convoluted. If that’s the way it strikes you, rest assured your reaction
isn’t unusual. Indeed, my experience tells me that many students find the logic
of hypothesis testing to be a little rough going at the outset. You may have to
go over it again and again and again. What’s more, you may have to take some
time out for a few dark room moments along the way. Let me encourage you—
do whatever you need to do. The logic of hypothesis testing is an essential element
in the world of inferential statistics.
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Assuming you’re ready to move forward, let’s take a closer look at the
concept of a null hypothesis. As it turns out, the null hypothesis is a statement
that can take many forms. In some cases, the null hypothesis is a statement of
no difference or a statement of equality. In other cases, though, it’s a state-
ment of no relationship. How a null hypothesis is stated is a function of the
specific research problem under consideration. In general, though, and to get
on the road to understanding what the null is all about, it’s probably best to
begin by thinking of it as a statement of chance.

Whether you realize it or not, you’re already fairly familiar with the con-
cept of chance or probability. For example, if I asked you to tell me the proba-
bility of pulling the ace of spades out of a deck of 52 cards, you’d tell me it’s 1
out of 52 (since there is only one ace of spades in the deck). If I asked you to
tell me the probability of having a head turn up on the flip of a coin, you’d likely
tell me it’s 50%—there’s a 50/50 chance of it being a head. Of course, all of
this assumes an honest deck of cards, or an honest coin. 

In short, all of us occasionally operate on the basis of a system of probabil-
ities—we know what to expect in the case of chance. In fact, that’s frequently
the only thing we know. For example, we don’t have one set of probabilities for
a slightly dishonest coin and another set of probabilities for an even more dis-
honest coin. All we have is a set or system of probabilities based on chance.

Now, to consider yet another example of a statement of chance, think
about the normal curve. It is, after all, a probabilistic distribution; it gives you
a statement of probabilities associated with various portions of the curve. For
example, there’s a 99% chance, or probability, that a score in a normal distri-
bution will fall somewhere between 2.58 standard deviations above and below
the mean. By the same token, there’s only a 1% chance that a score would fall
beyond ±2.58 standard deviations from the mean.

To convince yourself of this, think about what you already know about a
Z score of, let’s say, –2.01. You already know that it would be an extremely low
Z score (and therefore has a low probability of occurring). You know that for
the following reasons:

■ The Z values of +1.96 and –1.96 enclose 95% of the area under the curve.
■ Therefore, only 5% of the area under the curve falls outside those values.

❏✔ LEARNING CHECK

Question: What is a null hypothesis, and how might it be
expressed?

Answer: A null hypothesis is the hypothesis that is tested. It can
be a statement of no difference, a statement of chance,
or a statement of no relationship.
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■ Only 5 times out of 100 would you expect to get a Z value of more than
+1.96 or less than –1.96.

■ The extreme 5% would actually be split between the two tails of the
distribution—2.5% in one tail and 2.5% in the other tail.

■ Since a Z value of –2.01 is beyond the value of –1.96, you know that the
probability of such a Z score occurring is fairly rare—indeed, it would have
a probability of occurring less than 2.5 times out of 100 (<2.5%).

Assuming all of that made sense, let me urge you to begin thinking of ex-
treme scores or values as nothing more or less than a score or value that has a
very low probability of occurring. When a statistician views a score or value as
extreme, it means that it has a low probability of occurrence. 

The material you just covered is the sort of thing you’ll want to keep in the
back of your mind. For the moment, though, it shouldn’t concern you how it re-
lates to where we’re going. In fact, you might do well to recall what I mentioned
earlier—namely, that statistical analysis is sometimes best learned when you
don’t know where the road is leading. That said, let’s take the next step along
the road—in fact, a giant step. Let’s jump headlong into a statistical application.

Single Sample Test With r Known

Let’s begin with a closer look at an earlier example. Assume for the moment
that we’re part of a team of industrial psychologists interested in how the
introduction of a flextime program may have affected the productivity of assem-
bly line workers. Instead of a set shift for every worker (such as 9:00 to 5:00),
the flextime program allows each worker to select a specific shift (for example,
7:00 to 3:00, 8:00 to 4:00, or 10:00 to 6:00). Our historical information on
worker productivity over the past three years shows that workers, on average,
assemble 193.80 units per day, with a standard deviation of 31.55 units. Since
those values are the result of complete records over the past three years, we can
treat them as population values: m = 193.80 and s = 31.55.

Let’s also say that we’ve selected a random sample of productivity reports on
50 workers who took advantage of the flextime option. Our interest is in whether
or not there’s a significant difference between the productivity of flextime workers

❏✔ LEARNING CHECK

Question: What is an extreme score or value?
Answer: A score or value that has a low probability of 

occurrence.
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and the historical level of productivity. Calculating the mean level of productivity
for our sample ( ), we determine that it’s 202.94. There’s obviously a difference
between the two means (m and ). After all, the mean of the population (the pop-
ulation of all workers over the past three years) is 193.80 units, and the mean of
the sample is 202.94 units.

Population of All Workers Sample of 50 Flextime Workers
(Past Three Years)

Mean or m = 193.80 s = 31.55 Mean or = 202.94

m as opposed to 

A non-statistician might think about the example we’re considering and
say, “OK, I get it. We’ve compared a sample mean to a population mean to
see if there’s a difference. There is a difference, so that’s that.” With our back-
ground in statistics, however, we know there’s far more to the situation than
meets the eye. Once again, we’re back where we’ve been before. We have
only one sample mean in front of us—one mean out of an infinite number of
sample means that are possible. The real question is whether or not our sam-
ple mean is significantly different from the population mean. As you’ll soon
discover, a significant difference is one that’s so great that it has a low prob-
ability of having occurred by chance (or sampling error). 

To understand all of this, let’s start with the notion that we have to
exercise a bit of caution. If the sample mean ( ) is higher or lower than the
population mean (m ), we can’t just jump to the conclusion that the level of
productivity for flextime workers is really higher or lower than the historical
mean. After all, our sample mean is just one mean, and it’s subject to sam-
pling error. So how do we determine whether the difference between the sam-
ple and population mean is noteworthy? How do we determine whether the
difference is significant or just a matter of sampling error? We’ll get the
answers to those questions by testing a hypothesis. 

Refining the Null and Phrasing It the Right Way

As I mentioned before, statisticians test hypotheses by testing the null hypothesis.
Since a null hypothesis is often a statement of equality (no difference), let’s see
how that plays out in the present example. 

❏✔ LEARNING CHECK

Question: What is a significant difference?
Answer: A significant difference is one that is so great that it has a

low probability of having occurred by chance.

X

X

X

X
X
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In the case we’re considering here, the null hypothesis would be a statement
that there’s no difference between the mean of the population of flextime work-
ers and the historical mean of the population of workers in general. At first
glance, there appears to be a difference—after all, the population mean (m ) is
193.80 and the sample mean ( ) is 202.94—but the question really goes
deeper. The real question is:

How likely is it that we would have obtained a sample mean ( ) of 202.94
from a population having a mean (m ) of 193.80 and a standard deviation
(s ) of 31.55? 

In other words, if flextime workers are really part of the general population of
workers (that is, they’re not significantly different), then how likely is it that a
sample of flextime workers would exhibit a sample mean of 202.94?

To answer this question, we’ll eventually compare the sample mean with
our expectation. If the sample mean is reasonably close to what we’d expect
(based on chance or sampling error), we can attribute the difference to sam-
pling error. If, on the other hand, the sample mean isn’t reasonably close to
what we might expect (based on chance or sampling error), we’ll have rea-
son to believe that the productivity of flextime workers is significantly differ-
ent from the historical pattern. The question, therefore, is really whether or
not a particular sample mean (whatever it might be) could reasonably come
from a population with a mean (m ) of 193.80 and a standard deviation (s )
of 31.55. 

Right now we’re focused on the null hypothesis, and the null hypothesis
is a statement of our expectation. Therefore, our null hypothesis is a state-
ment that the mean of the population (m ) is equal to 193.80, or 

H0: m = 193.80

In other words, we’re advancing the null hypothesis that the mean of the pop-
ulation of flextime workers is equal to 193.80 (the same mean as the mean
of the historical population of workers). In doing so, we’re also advancing the
notion that the mean of the sampling distribution of sample means is equal to
193.80. Note that the null hypothesis is designated as H0.

The Logic of the Test

Assuming you’ve digested all of that, let’s return to the fact that we have a
sample mean ( ) of 202.94, and we’re back in familiar territory. We have
to determine where our sample mean is located in terms of a distribution of
many different means. The Central Limit Theorem tells us that the mean of
a sampling distribution of sample means will equal the mean of the popula-
tion (m ). The null hypothesis states that the mean of the population (m ) is
193.80, so (recalling what the Central Limit Theorem tells us) we would
expect the mean of the sampling distribution of sample means to equal
193.80. Take a close look at Figure 7-1 to better grasp the logic underlying
our approach here. 

X

X

X
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If you’re inclined to just move ahead, without taking a serious look at
Figure 7-1, let me caution against that. The illustration is there to demonstrate
a basic element in the underlying logic that’s in play here. Here’s the logic:

■ There is a known historical mean level of productivity for all workers
(193.80 units per day).

■ That known historical mean is treated as the mean of the population.
■ We want to know if there is a difference between the level of productivity

of flextime workers and the historical mean level of productivity.
■ We start with the assumption that the mean for the population of flextime

workers would be the same mean as the historical mean for all workers
(i.e., we assume that the mean for the population of flextime workers
would be 193.80 units).

■ Given that assumption (and based on the Central Limit Theorem), we as-
sume that the mean of the sampling distribution of sample means (based

The central question: Where does our sample mean of 202.94 fall in relation
to all other sample means in a sampling distribution of sample means?

The sampling distribution of sample means will have
a mean. It will equal the mean of the population.

Sampling distribution
of sample means

m = 193.80

Mean of the sampling 
distribution of sample 
means will equal 193.80.

Figure 7-1 What The Central Limit Theorem Tells Us and The Central Question
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on repeated samples of flextime worker records) would equal the historical
mean of the population (193.80).

■ We’ll compare our sample mean (202.94) to the assumed mean of the sam-
pling distribution of sample means (193.80), and we’ll calculate the difference.

■ We’ll evaluate the difference by expressing the difference in standard
error units.

■ To express the difference in standard error units, we’ll simply divide the
difference by the standard error of the mean.

Our task is to determine where our sample mean of 202.94 would fall
along a sampling distribution of different means—the many different means that
we might get if we were to construct a sampling distribution of sample means.
More specifically, we’re going to evaluate our sample mean on the basis of a
sampling distribution of sample means that has an assumed mean of 193.80.
Remember: Our null hypothesis is a statement that we expect the mean of the
population of flextime workers to equal 193.80. The Central Limit Theorem
tells us that the mean of the sampling distribution of sample means will equal the
mean of the population, so we’re really working with an assumption that the
mean of the sampling distribution of sample means is equal to 193.80.

If we discover that our sample mean ( ) of 202.94 isn’t that unusual (com-
pared to all sample means that would be possible), we can attribute the observed
difference to chance (or more correctly, sampling error), and conclude that the
null hypothesis is true. If, on the other hand, it appears that our sample mean
is fairly extreme (in comparison to an assumed mean of 193.80), then we’d be
inclined to believe that flextime workers do exhibit a significantly different level
of productivity. Accordingly, we’d be inclined to reject the null hypothesis.

Now all of that represents a central notion in the matter of hypothesis
testing, so let me emphasize it again. If the observed difference is relatively
small, we’d be inclined to believe that the null hypothesis is true. If, however,
the difference is relatively large, we’d be in a position to reject the null
hypothesis. In doing so, we’d be rejecting the idea that the mean level of
productivity for the flextime workers is equal to the historical level of produc-
tivity. In other words, we’d actually be suggesting that the population of flex-
time workers is somehow different from the population of all workers.

If that’s where we end up (i.e., we reject the null hypothesis), we can say
that our results are statistically significant. In other words, we can say that we
found a significant difference between the two values. We’ll eventually get
around to learning more about how statisticians use the term significant. For
the moment, though, let’s return to the problem at hand.

Applying the Test

The central question obviously turns on the difference between the two
values (X

–
and m) and whether the difference is extreme. Would a difference of

5.89 units per day be enough to call it extreme? What about a difference
of 14.10 units per day? What if the sample mean were 212.29 units per day?

X
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What about a mean of 239.88? Would that be different enough from the
population mean to call it extreme? 

As it turns out, there’s a single answer to all those questions. Whether or
not a sample mean represents an extreme departure from the population
mean is a relative matter. It’s relative in terms of how far the sample mean de-
parts from the population mean (which is also the mean of the sampling dis-
tribution of sample means), in terms of standard deviation units. 

You’ve learned, for example, that ±1.96 standard deviations on a normal
curve (Z values of ±1.96) will take you pretty far out in the distribution or
along the baseline. As a matter of fact, ±1.96 standard deviation units from
the mean will take you far enough along the baseline of the distribution to en-
compass 95% of the area or cases. To refresh your memory on all of this,
think back to what you learned in Chapter 4 about the notion of extreme
scores. You ultimately learned that the real value of a Z score was found in its
universal applicability. You learned that a Z score of, let’s say, 2.91 (either
+ or – 2.91) would be extreme, whether you were referring to dollars, ounces,
pounds, miles per hour, or anything else—including levels of productivity,
expressed as the number of units produced per day. 

It should now be clear that the central task is actually a rather simple one.
All we have to do is calculate the difference between our sample mean and
the population mean (which is also the mean of the sampling distribution of
sample means). Then we translate that difference into a ratio that expresses
the difference in standard deviation units—or more correctly, standard error
of the mean units. As you learned earlier, the standard error of the mean is
simply the standard deviation of the sampling distribution of sample means. 

Calculation. In the example we’re considering now, we know the values
of the standard deviation of the population (s = 31.55) and the sample size
(n = 50). Therefore, the calculation of the standard error of the mean ( ) is
straightforward. As you know from the last chapter, it’s simply a matter of di-
viding s (31.55) by the square root of the sample size (the square root of 50,
or 7.07). Here’s the formula again, just as you encountered it before, along
with its calculation in the present instance: 

sx =
s2n

s x

❏✔ LEARNING CHECK

Question: What is the central question surrounding a hypothesis
test involving a single sample mean and a population
mean?

Answer: The central question is whether the difference between
the two means is extreme—whether the difference is
significant.
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Armed with the value of the standard error of the mean ( = 4.46),
we’re now equipped to properly evaluate the difference between our sample
mean and the assumed mean of the sampling distribution of sample means.
First, we take note of the difference between the assumed mean (m =193.80)
and the sample mean ( = 202.94). Subtracting the assumed mean from the
sample mean, we discover that the difference equals 9.14 (i.e., the mean for
the flextime workers is 9.14 units higher than the assumed mean of the pop-
ulation, which is also the assumed mean of the sampling distribution of sam-
ple means). From our earlier calculation, we determined that the standard
error of the mean equals 4.46. To express our observed difference in terms
of standard error units, we simply divide the observed difference (9.14) by the
standard error of the mean (4.46). The calculation amounts to a conversion
of a sample mean to a Z score, so the symbol Z now appears in the formula.

We see that the difference of 9.14 (units produced per day) translates into a dif-
ference of 2.05 standard error units. The result (the difference divided by the
standard error of the mean) is equivalent to a Z score (or a Z ratio) of +2.05. The
logic behind the process we just went through may be summarized as follows:

1. Determine the difference between the two means—the sample mean
minus the assumed population mean (which is also assumed to be the
mean of the sampling distribution of sample means).

2. Calculate the standard error of the mean (divide the known s by the
square root of the sample size).

3. Convert the difference between the sample and population mean into a
Z ratio by dividing the difference by the standard error of the mean.

Since the sampling distribution of sample means is known to approach a
normal curve, we’re in a position to evaluate whether or not the observed dif-
ference of 2.05 standard error units (or a Z of +2.05) is extreme. By now, you
should already know the answer to that question: By most standards, a Z value
of +2.05 is extreme. That’s something you should already know at an intuitive
level. After all, a Z value of +2.05 is more extreme than a value of +1.96, and
only 5% of the sample means could be expected to fall beyond Z values of
±1.96. Since our calculated value of Z = +2.05 exceeds the value of +1.96
(see Figure 7-2), we know that it falls in a very extreme region of the curve
(more specifically, a more extreme region in the upper portion of the curve).
The difference is extreme enough that we’ll reject our null hypothesis. 

Z = 2.05

Z =
202.94 2 193.80

4.46

Z =
X 2 m
sx

X

s x
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Interpretation. By rejecting the null hypothesis, we’re really rejecting the
notion that the population of flextime workers would have a mean ( ) of 193.80.
Accordingly, we’re in a position to suggest that the productivity level of a
population of flextime workers is different from the productivity level of a pop-
ulation of all workers (at least all workers over the past three years). But before
we jump straight to that conclusion, though, let’s think about how we arrived
at our conclusion in the first place. Remember: It all goes back to whether an
observed difference between the sample mean and a population mean is an
extreme difference.

Levels of Significance, Critical Values,
and the Critical Region

If you think about the approach that we took, we calculated our test statistic
first, and then we turned to the issue of whether or not the difference was ex-
treme. In truth, however, statisticians actually determine what constitutes an
extreme value by setting a level of significance before they perform any cal-
culations. Additionally, statisticians commonly set the level of significance (also
known as the alpha level or a ) at the .05 or .01 level. I’ll eventually give you

❏✔ LEARNING CHECK

Question: In the example involving the flextime workers, what does
it mean to reject the null hypothesis?

Answer: To reject the null hypothesis is to reject the idea that the
sample mean came from a population having a mean (   )
of 193.80.

X

Calculated value of +2.05
(falls beyond +1.96)

Values of ±1.96

Figure 7-2 Location of Calculated Value of +2.05

X
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a definition of level of significance, and I’ll also tell you why it’s set in
advance. For the moment, though, let’s continue with our example.

To say that we’re working at the .05 level of significance, for example,
is to say that we’re looking for a Z value or ratio (our final answer) that is so
extreme it would occur by chance only 5% of the time, or less, if the null hy-
pothesis is true. If we discover that our calculated test statistic, or Z ratio, is
equal to or more extreme than ±1.96, we can say that the value is extreme.
We can say it is extreme because it’s apt to occur by chance less than 5 times
out of 100, assuming the null hypothesis is true. Remember: We’d expect
5% of the sample means (when converted to Z ratios) to fall at or beyond Z
values of ±1.96, assuming the null is true. In fact, we’d expect a Z value equal
to or greater than +1.96 only 2.5 times out of 100, and we’d expect a Z
value equal to or less than –1.96 only 2.5 times out of 100 (because the ex-
treme 5% is evenly split between the two sides of the distribution).

The same sort of reasoning would apply if we were working at the .01
level of significance. In a case like that, we’d be focused on Z values of ±2.58.
Only 1% of sample means would be found at or beyond a Z value of ±2.58,
assuming the null is true. One-half of the extreme 1% (.5%) would be found
on one side of the distribution and one-half of the extreme 1% (.5%) would be
found on the other side.

To a statistician, a critical value like ±1.96 or ±2.58 is referred to as just
that—the critical value. If our calculated test statistic (our result) meets or
exceeds the critical value, then we can legitimately think of our observed dif-
ference as being extreme. If we can do that, we can reject the null hypothesis.

To truly appreciate the underlying logic, think back to the object of the ex-
ercise. It was to test a null hypothesis—for example, the null hypothesis that
a sample mean came from a population with a certain mean value. To test the
hypothesis, the difference between the sample mean and assumed mean of
the sampling distribution of sample means (which is also the assumed mean
of the population) was found, and the difference was evaluated. By determin-
ing a level of significance before the actual test, statisticians set the standard
in advance. If the observed difference between the two means (expressed as a
Z ratio) is large enough (and therefore meets the standard), the null hypothe-
sis will be rejected. In rejecting the null hypothesis, the statistician is in 
a position to say that he/she has significant results.

In our flextime example, assuming we had predetermined our level of sig-
nificance to be .05 (alpha, or a = .05), we could say we have rejected the null

❏✔ LEARNING CHECK

Question: What levels of significance are commonly used by
statisticians?

Answer: The .05 and .01 levels of significance.
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hypothesis at the .05 level of significance. The same fundamental logic
underlies all hypothesis-testing situations, so let’s review the process, step by
step. Take a look at the summary in Table 7-1, and focus carefully on each
step of the process.

What if we had selected the .01 level of significance (a = .01) for our test?
If you think back to those familiar values you first encountered in Chapter 4,
you’ll realize that the critical value at the .01 level of significance would be
±2.58. Those values would enclose 99% of the area or cases under the nor-
mal curve. That information, in turn, tells us that only 1% of the area or cases
would be found at or beyond ±2.58. In other words, at the .01 level of signif-
icance, we’d look for a calculated test statistic (Z ) that is so extreme that it is
apt to occur less than 1% of the time by chance, assuming the null hypothesis
is true. If our calculated test statistic (Z ) was equal to or beyond the critical value
of ±2.58, we could reject our null hypothesis at the .01 level of significance. 

As it turned out, of course, our calculated test statistic (Z ) was +2.05—a
value that would not meet or go beyond a critical value of ±2.58. Our calcu-
lated value (2.05) is close to the value of 2.58, but it doesn’t meet or exceed
2.58. Therefore, we would fail to reject the null hypothesis at the .01 level
of significance. Our results may have been significant at the .05 level of
significance, but our results would lead us to a different conclusion at the
.01 level of significance—we would fail to reject the null hypothesis.

There’s obviously an important lesson in all of that—namely, that whether
or not our results are statistically significant is largely a matter of the level of
significance that we set in advance of our hypothesis test. Significant results
at one level of significance may not be significant at a different level of signif-
icance. Now you can begin to appreciate why statisticians typically set the
level of significance in advance. This procedure allows them to predetermine
what will be necessary for them to consider their results as significant—an
approach that reflects the presumed objectivity of the scientific pursuit.

Table 7-1 Summary of the Hypothesis Testing Process

Formulate the null hypothesis. H0: m = 193.80

Determine a level of a = .05
significance.

Identify the critical value. ±1.96

Calculate the test statistic.

Evaluate the test statistic in light Compare calculated Z to critical 
of the critical value. value ±1.96.

Make a decision about Reject or fail to reject the null 
null hypothesis. hypothesis.

Z =
X 2 m
s x
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Now let me say a final word about critical values. The best way to
understand the critical value is to regard it as a point that marks the beginning
of what’s referred to as the critical region. The critical region, in turn, is the
portion of the sampling distribution (such as the sampling distribution of Z ) that
contains all the values that allow you to reject a null hypothesis. For that rea-
son, we refer to the critical region as the region of rejection. If our calculated
test statistic (Z ) is equal to or falls beyond the critical value, it has fallen into the
critical region—the region that allows us to reject the null hypothesis.

At the .05 level of significance, our critical value is ±1.96. Thus, Z values of
±1.96 are the values that begin the critical regions at the .05 level of significance.
Any Z value (or Z ratio) that we calculate that meets or exceeds ±1.96 is a value
that falls within the critical region or the region of rejection (when working at the
.05 level of significance). Similarly, ±2.58 are the values that begin the critical
regions when working at the .01 level of significance. A calculated test statistic
(in this case, a Z ratio) that is equal to or more extreme than ±2.58 would fall
within the critical region at the .01 level of significance. If our calculated
value—our calculated test statistic—falls within the critical region, we reject
the null hypothesis. If the calculated test statistic doesn’t fall within the crit-
ical region, we fail to reject the null hypothesis.

When we reject the null hypothesis, we’re in a position to say that we have
a significant finding—that’s what the level of significance is all about. Another
way of saying we have significant findings is to say that we have statistically
significant results. In short, a statement that the results are significant is a
statement that the calculated value of the test statistic falls within the critical
region. In our flextime example, working at the .05 level of significance, we cal-
culated a test statistic that fell within the critical region. Therefore, we rejected
the null hypothesis; we had significant findings. We had reason to believe that
the average productivity level of flextime workers really is different from the
historical level of productivity.

But What If . . .

As we get ready to take this next step, let me urge you to first take a moment
or two to think about what we’ve just covered. Take a moment to think about
how we looked at a difference and evaluated that difference—ultimately

❏✔ LEARNING CHECK

Question: How are the critical value and the critical region related?
Answer: The critical value is the beginning of the critical region. If

our calculated test statistic meets or exceeds the critical
value, thereby falling into the critical region, we are in a
position to reject the null hypothesis.
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coming to the conclusion that the difference was statistically significant at the
.05 level of significance. The underlying logic and reasoning that we went
through is fundamental to statistical analysis, so any time spent thinking about
all of that will be well worth it.

Assuming you’ve reached a comfort level with the underlying reasoning,
let me ask you to consider two more scenarios. Each scenario involves the
same problem as before, but with some slight modifications: 

Scenario A: What if, for example, everything about the problem stayed
the same (i.e., the same population mean and standard deviation, and
the same number of cases in the sample), but the sample mean had been
184.51? Assuming we had worked at the .05 level of significance, what
would we have concluded? 
Scenario B: What if the sample mean had been 199.53? Assuming we had
worked at the .05 level of significance, what would we have concluded?

Let me suggest that you work through the problems presented in each sce-
nario and spend some time thinking about the results.

Assuming you worked through the two problems represented by
Scenarios A and B, you likely learned two very valuable lessons. Scenario A,
for example, demonstrates that it’s possible to end up with a negative Z value.
Scenario B demonstrates that it’s possible to end up with a difference between
a sample and population mean that isn’t significant (something we touched
on earlier). Since those two scenarios expand the playing field in a noticeable
way, let’s take a closer look at each of them. As before, the assumption is
made that you took the time to work through each of the scenarios.

As to a negative Z value under Scenario A, think about how you ap-
proached the difference between the two mean values. Assuming you used
the formula presented earlier, you subtracted the mean of the population (the
assumed mean of the sampling distribution of sample means) from the mean
of the sample (see below).

Since the mean of the sample in Scenario A was smaller than the mean of the
population, the result was a negative difference (184.51 – 193.80 = –9.29).
Carrying the negative value through the remainder of the calculations in the for-
mula, you ended up with a negative Z value. As it turns out, the notion of a neg-
ative Z value should make a certain amount of intuitive sense. After all, you’re
considering a negative difference—negative in the sense that the mean of the
sample is lower than the assumed mean. You would still reject the null hypothe-
sis since the Z value of –2.08 is more extreme than the critical value of –1.96.
It’s just that you’d be looking at a significant difference in which the productivity
level of the flextime workers was lower than the historical level of productivity.

Z =
X 2 m
sx
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As to the particulars of Scenario B, you were working with a sample mean
of 199.53. As it turned out, the difference between the sample mean and the
assumed mean, when expressed in terms of standard error units, wasn’t that
noticeable. Indeed, it equated to a Z value of 1.28. Since that Z value (1.28)
didn’t meet or exceed the critical value ±1.96, you would fail to reject the null
hypothesis. In other words, the sample mean was close enough to the as-
sumed mean (at least in terms of standard error units), that it was reasonable
to conclude that you could have obtained such a sample mean, just by chance.
Therefore, you’d fail to reject the null hypothesis. You’d be inclined to say that
there isn’t a significant difference between the productivity levels of flextime
workers and the historical level of productivity.

Now, just to recap the possibilities, we dealt with three different situations.
In the first instance (the original problem), we found a significant difference—
a difference in which the mean of the sample was higher than the historical
mean of the population. In the second instance (Scenario A), we also found a
significant difference—but it was a negative difference in the sense that the
mean of the sample was lower than the historical mean of the population. In
the third instance (Scenario B), the difference between the sample mean and
the assumed mean was not significant.

But What If We’re Wrong?

Now let’s think about outcomes in a more general sense. Let’s put aside the no-
tion of a positive versus a negative difference and, instead, just think about two
possible outcomes. One possible outcome was that we found a significant dif-
ference. In other words, we went through all of the calculations and the result
was a calculated test statistic that met or exceeded the critical value. The other
possibility, of course, was that we failed to find a significant difference. In other
words, we went through all of the calculations and the result was a calculated
test statistic that didn’t meet or exceed the critical value.

As you now know, each of those outcomes would lead to a different con-
clusion, as follows:

If we found a significant difference, we rejected the null hypothesis.
If we didn’t find a significant difference, we failed to reject the null
hypothesis.

All of that is well and good, and the logic of hypothesis testing would be
fairly easy to comprehend if that’s all we had to consider—find a significant
difference and reject the null or don’t find a significant difference and fail to
reject the null. There’s just one problem. Regardless of the conclusion that we
reached (i.e., we either rejected the null hypothesis or we failed to reject the
null), we came to our conclusion on the basis of results obtained from only
one sample. And it’s the fact that we’re relying on just one sample that’s at the
root of the problem, so to speak. To put the matter in the simplest of terms,
it’s quite possible that a different sample would have yielded different results.
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As it turns out, that fact—the fact that different samples would likely yield
different results—takes us another step down the road of statistical reasoning.

Type I Errors. Let’s start with the assumption that the null hypothesis is true.
In other words, the mean of the population of flextime workers is equal to the
historical mean of all workers. Since this is fundamental to the notion of hy-
pothesis testing, let me repeat the assumption: Assume that the null hypothe-
sis is true. Don’t ask how we know that the null hypothesis of no difference is
true. Just assume that the null hypothesis is, in fact, true.

Now even if the null hypothesis is true, it’s possible to obtain a sample
mean that is extreme. For example, in selecting the sample of 50 productiv-
ity reports, we could, just by chance, select reports of the 50 most productive
flextime workers. In a case like that, we’d eventually end up with a very high
mean level of productivity for our sample of flextime workers. By the same
token, we could, just by chance, select productivity reports for the 50 least
productive flextime workers. In a case like that, we’d eventually end up with
a very low mean level of productivity. 

Now the likelihood of selecting a sample along those lines is fairly remote,
but it could happen. And in either case, the point would be the same. We’d
end up with an extreme mean as the result of what I like to call a quirky
sample—a sample that doesn’t really represent the population. What’s more,
that quirky sample would, in turn, lead to a sample mean that was quirky.
Assuming that the sample mean was noticeably different from the assumed
mean, we’d probably reject the null hypothesis. Unfortunately, we would have
made an error. 

All of that can be a confusing, so think it through again. Start with the as-
sumption that the null is true. Then open your mind to the possibility that you
could, just by chance, end up with a quirky sample. Then imagine a situation
in which the quirky sample produced an extreme mean—in fact, a sample
mean that was so extreme that you rejected the null hypothesis. Now think
back to the fact that the null was true. You’ve obviously made a mistake.
You’ve rejected the null when it was true.

To a statistician, this type of error is known as a Type I error (sometimes
referred to as an alpha error). In short, a Type I error is a rejection of the null
hypothesis when the null is, in fact, true. Unfortunately, we never know when
we’ve made a Type I error. It all goes back to the notion of random sampling
and the possibility of sampling error—the possibility that, just by chance, we
were working with a sample that didn’t really represent the population.

❏✔ LEARNING CHECK

Question: What is the definition of a Type I error?
Answer: A Type I error is the rejection of the null when, in fact, it

is true.
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Fine, you say. But what’s the probability of making a Type I error? As it
turns out, that’s what the level of significance is all about. It’s simply an ex-
pression of the probability of making a Type I or alpha error. As a matter of
fact, that’s why the level of significance is often referred to as the alpha level.

If you set your level of significance at .05 (often expressed as a = .05),
it’s simply a statement that you’re willing to tolerate a 5% chance of making
a Type I error (rejecting the null when it’s true). Similarly, the selection of the
.01 level of significance when you set up a hypothesis test is a statement that
you’re willing to tolerate a 1% chance of committing a Type I or alpha error.

Once again, a Type I error really derives from having selected a sample
that, just by chance, doesn’t really reflect reality. It results from bringing an ex-
treme mean into the equation by accident. We know this can happen as a re-
sult of sampling error. Remember: We’re always working with just one out of
an infinite number of samples. When working at the .05 level of significance,
for example, we can expect, just by chance, that 5 samples out of 100 would
ultimately result in a rejection of the null, even though the null is true. In other
words, we could go through the research exercise 100 times, each time
selecting our sample and each time calculating a test statistic and each time
arriving at a conclusion. In 5 of the 100 instances, though, we could end up
with statistically significant results as a result of sampling error. If we’re work-
ing with one of those samples is something we can never know. All we know
is the probability that we’ve been working with one of those samples. All we
know is the probability that we’ve committed a Type I or alpha error.
Remember: That’s what the level of significance is all about. It’s the probabil-
ity that we’ve committed a Type I error.

As we wrap up our discussion of Type I errors, let me give you a way to
express your conclusion whenever you reject a null hypothesis, at least at the
outset of your statistical education. It’s a little more elaborate than the simple
assertion I reject the null hypothesis, but the extra few words are
important—at least in terms of helping you understand the fundamental logic
involved in a hypothesis test. 

Let’s say, for example, that you’re working at the .05 level of significance
and you’ve found significant results. Consider the following as a way of ex-
pressing your conclusion: I reject the null hypothesis, with the knowledge
that 5 times out of 100 I could have committed a Type I error.

I doubt that you’ll see a statement like that in a scientific journal, to be sure,
but rest assured of one thing—it’s a statement that reflects the fundamental

❏✔ LEARNING CHECK

Question: What is the probability of making of a Type I error?
Answer: The probability of making a Type I error is equal to the

level of significance (the alpha level).
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logic of what’s involved in hypothesis testing. Remember: There’s always a
chance that you’re working with an extreme sample (one of those quirky sam-
ples, as I like to call them). There’s always a chance that you’ve rejected the
null when, in fact, it’s true. 

My suggestion is that you get in the habit of phrasing your conclusion in
a complete fashion at the outset of your statistical experience, at least when
you find yourself in the position of rejecting a null hypothesis. Whenever you
reject a null hypothesis, remind yourself that you’re rejecting the null with
the knowledge that there’s a known probability of making a Type I error. It’s
the sort of thing that will constantly remind you of the logical underpinnings
of the decision-making process.

So much for Type I errors. As you might suspect, there’s also something
known as a Type II (or beta) error. That’s what we’ll cover now.

Type II Errors. To understand what a Type II error is all about, start with the
assumption that our null hypothesis is actually a false hypothesis. Returning to
the flextime worker example, let’s assume that the null hypothesis is false—the
mean level of productivity for flextime workers is significantly different from the
historical mean level of productivity, even though the null says that they are
equal. Now even though there may be a difference (in other words, even though
the null may be false) it’s possible to select a sample that doesn’t pick up that dif-
ference. Once again, that’s something that could happen just by chance. 

If we’re dealing with one of those instances—an instance in which there’s
a significant difference, but we’ve failed to detect it—we’ve committed a
Type II error. Simply put, a Type II error occurs when we fail to reject a false
null hypothesis. Here’s the logic again. The null hypothesis is false (i.e., there
is a difference), but we didn’t discover the difference. Because we didn’t dis-
cover the difference, we failed to reject the null. The result is that we let the
null stand. We failed to reject it. In truth, however, the null was false, and we
should have rejected it. If we’ve failed to reject a false null hypothesis, we’ve
committed a Type II error.

At this point in your statistical education, it’s not critical that you worry about
how a Type II error could occur or how to determine the probability of mak-
ing a Type II error. We’ll deal with Type II errors in greater depth when we
reach Chapter 9. At that point, we’ll take a closer look at both Type I and
Type II errors, and we’ll also consider Type II errors in the context of power
and effect size—two concepts that are particularly relevant in experimental
research designs. We’ll also take up the topic of alternative or research

❏✔ LEARNING CHECK

Question: What is the definition of a Type II error?
Answer: It’s the failure to reject the null when it is false.
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hypotheses. All of that, however, can wait. Right now the idea is to solidify
your thinking on what we’ve just covered.

A Final Word About Phrasing Your Conclusions. As we close out this sec-
tion, let me once again urge you to be very specific in how you should phrase
your conclusions when testing hypotheses. After all, it makes little sense to
work through a research problem, getting all of the calculations just right, only
to make a mistake when state your conclusions. 

If you reject a null hypothesis, I urge you to phrase your conclusion with
some reference to the level of significance. For example, (and assuming you’re
working at the .05 level of significance), simply state that you reject the null
hypothesis, with the knowledge that there is a 5% chance of having commit-
ted a Type I error. If, on the other hand, you fail to reject the null hypothesis,
all you have to do is simply state that you fail to reject the null hypothesis. You
don’t have to state anything else. Just end the sentence right there—I fail to
reject the null hypothesis.

On this last point (i.e., use of the phrase, I fail to reject the null
hypothesis), I find that students often ask why they can’t simply accept the null
hypothesis. It may be my conservative nature, but here’s the way I see it. A sim-
ple acceptance of the null hypothesis always strikes me as closing the door on
further research. It is as though you have accepted the null, announced that the
case is closed, and that is that. In saying that you fail to reject the null, how-
ever, it is as though you’ve left the door open for further research, so to speak.
In that regard, I’m often reminded of the words of Popper:

The game of science is, in principle, without end. He who decides one day
that scientific statements do not call for any further test, and that they can
be regarded as finally verified, retires from the game. (Popper, 1961, p. 53)

At this point, I suggest that you take a moment or two to catch your breath.
Rather than plowing ahead, let me suggest that you spend a little time going
over the material that we’ve covered so far. Concentrate on the fundamental
logic first. Get familiar with all the central concepts. Once you’ve done that,
take a step back and consider how far you’ve just traveled. You’ve learned
how to conduct a hypothesis test using a single sample mean when the pop-
ulation standard deviation s is known. You’ve also learned what it means to
reject or fail to reject a null hypothesis. If you’re comfortable with all of that,
we can move forward to hypothesis tests using a single sample mean when
the standard deviation of the population s is unknown.

Single Sample Test With r Unknown

Let’s say that the average number of cases processed last month by social
workers throughout the state is reported as 23.12 per worker. As members of
the agency’s management team in a regional office, we want to know how the
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caseworkers in the regional office compare to those throughout the state. Let’s
assume that we want to save time and effort, so we identify 30 caseworkers 
in our region and examine their work records from the previous month. The 
examination reveals that the workers in our sample processed a mean ( ) of
24.74 cases, with a standard deviation for the sample (s) equal to 4.16.

At this point, you should recognize the problem as one that’s remarkably
similar to those we covered in the previous section, with one minor exception.
In the present example, we don’t know the value of the standard deviation of
the population (s ). Instead, what we have is the standard deviation for our
sample (s). Nonetheless, the structure of the problem is identical to what we
covered earlier. We want to determine if there is a significant difference
between productivity of caseworkers throughout the state and that of the case-
workers in our region. As we move ahead with the problem, let’s assume that
we’ve decided to work at the .05 level of significance.

To deal with the fact that we don’t know the value of s, we’ll make two
minor changes. First, we’ll rely on the family of t distributions to obtain our
critical value (instead of relying on Z values). Second, we’ll have to estimate the
standard error of the mean (instead of calculating it in a direct fashion). By now
you should recognize those as the same changes we made when we moved
from the construction of a confidence interval for the mean with s known to
the construction of a confidence interval for the mean when s is unknown.

In the material about confidence intervals, you learned quite a bit about the
family of t distributions. In the same context, you also learned how to estimate
the standard error of the mean. Just to refresh your memory, here’s the for-
mula we use to estimate the standard error of the mean.

Now we have everything we need to tackle the problem.

Applying the Test

The formula we’ll use in this case is the same as the one we used in our previ-
ous (flextime) example, with the exception of the two minor changes 

sx =
s2n

❏✔ LEARNING CHECK

Question: In a single sample hypothesis test, what is the difference
in the procedures when sigma is unknown as opposed to
when sigma is known?

Answer: When sigma is unknown, the standard error of the mean
is estimated and t is used. When sigma is known, the
standard error of the mean is calculated in a direct
fashion and Z is used.

X
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I mentioned earlier. You’ll note that the formula now reflects a t value (as
opposed to Z ), and we use the estimate (instead of the calculated value) of the
standard error of the mean.

Calculation. For the sake of clarity, let’s start with the formula for estimating
standard error of the mean.

Now we use the formula for calculating the test statistic. Note that now we
are calculating t instead of Z.

As you learned in the last chapter, we’ll have to take note of the relevant
degrees of freedom in using the family of t distributions. As before, our degrees
of freedom will be calculated as n – 1. Once we determine the appropriate
number of degrees of freedom (in this case, 30 – 1 = 29), we take note of
the corresponding row in Appendix B. Since we’re not constructing a confi-
dence interval, we don’t have to go through any mental conversion (1 minus the
level of significance) to locate the appropriate column. Instead, we can focus
directly on the appropriate column—in this case, the one labeled .05 level of
significance. Once we find the intersection of the appropriate degrees of free-
dom row (29) and the appropriate level of significance column (.05), we take
note of the t value of 2.045, which we can round to 2.05. That t value—2.05—
becomes our critical value. As before, it is this value that our calculated t value
(or t ratio) must meet or exceed if we’re to reject the null hypothesis. We now
have all the information we need to come to a conclusion and interpretation.

Interpretation. With a calculated test statistic at hand (a t ratio of 2.13), and
knowledge of the critical value at the .05 level of significance (2.05), we’re in a
position to formulate a conclusion and interpretation. Since our calculated 

t = 2.13

t =
1.62
0.76

t =
24.74 2 23.12

0.76

t =
X 2 m

sx

sx = 0.76

sx =
4.16
5.48

sx =
4.16230

sx =
s2n
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t value exceeds the critical value, we’re in a position to reject the null hypothesis.
We can reject the null hypothesis with the knowledge that there is a 5% chance
or probability of having made a Type I error.

Though we never know whether or not we actually committed a Type I, or
alpha, error, we always know the probability of having done so. In this case, we
know it is .05, or 5%. We know that because that’s what the level of significance
is all about—it is simply a statement of the probability of making a Type I error.

Some Variations on a Theme

Now let’s consider some more examples. We can use the same situation as
before, comparing the performance of the caseworkers in our region to the
population of caseworkers throughout the state, but let’s alter the specifics in
various ways. This is one of the best ways to school yourself on the logic of
hypothesis testing, from the point of setting up the hypothesis all the way
through the point of conclusion and interpretation. 

Let’s assume that much of the problem remains the same: the same mean
( = 24.74), the same standard deviation of the sample (4.16 cases per
month), and the same population mean (23.12 cases per month). As to the
sample size (n), we’ll vary that a bit. If the sample size changes, we’ll have to
change our estimate of the standard error of the mean, but that’s easily dealt
with. Finally, let’s vary the level of significance. As I said before, all these vari-
ations, taken together, should give you a solid grounding in all that’s involved
in deriving a conclusion and interpretation of the hypothesis test. 

Situation: First let’s assume that we’re working with a sample of 16
caseworkers instead of 30, and that everything else about the problem
remains the same. How would the conclusion change, if at all?
Commentary: The change in the number of cases (n) results in two
immediate changes. The number of degrees of freedom changes to 15 
(n – 1 = 15), and the estimate of the standard error of the mean changes
from 0.76 to 1.04. With the change in degrees of freedom, the critical
value of t becomes 2.13. The larger estimate of the standard error of the
mean results in a smaller calculated t—it is now 1.56. The calculated
value of 1.56 does not equal or exceed the critical value of 2.13. There-
fore, we would fail to reject the null hypothesis. 
Situation: Let’s assume that we’re working with a sample of 61 case-
workers instead of 30, and that we’re working at the .01 level of signifi-
cance. Everything else about the problem remains the same. How would
the conclusion change, if at all?
Commentary: As above, the change in the number of cases (61) results
in two immediate changes. The number of degrees of freedom changes
to 60 (n – 1 = 60), and the estimate of the standard error of the 
mean becomes 0.53. With degrees of freedom = 60 and our level of

X
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significance set at .01, the critical value is 2.66. The smaller estimate of
the standard error of the mean results in a larger calculated t—it is now
3.06. The calculated value of 3.06 exceeds the critical value of 2.66.
Therefore, we would reject the null hypothesis at the .01 level of signifi-
cance. We reject the null with the knowledge that there’s a 1% chance or
probability of having made a Type I error.
Situation: Let’s assume that we’re working with a sample of 20 case-
workers instead of 30, and that we’re working at the .01 level of signifi-
cance. Everything else about the problem remains the same. How would
the conclusion change, if at all?
Commentary: As above, the change in the number of cases (20) results in
two immediate changes. The number of degrees of freedom changes to 19
(n – 1 = 19), and the estimate of the standard error of the mean becomes
0.93. With degrees of freedom = 19 and our level of significance set at
.01, the critical value is 2.86. The change in the estimate of the standard
error of the mean results in a change of the final calculated t—it is now
1.74. The calculated value of 1.74 does not meet or exceed the critical
value of 2.66. Therefore, we would fail to reject the null hypothesis.

And so it goes. Different answers and different conclusions—all dependent
on a couple of factors (namely, the number of cases and the level of significance).

Chapter Summary

As we bring this chapter to a close, take a moment or two to reflect again on
what we’ve covered. As I mentioned at the outset, the chapter is as much about
hypothesis testing as it is about a particular application. Indeed, if you were to
get just one thing out of the chapter, I would hope it would be that—the logic
of hypothesis testing.

As to the application—a single sample test—by now you should have a fairly
solid understanding about how it can be used. For example, you should now
know what’s involved when you want to test a hypothesis involving a single sam-
ple. You should know that the underlying logic remains the same, whether s is
known or unknown. Indeed, you should know by now that the variations in the
two approaches trace squarely back to the differences you encountered when
constructing confidence intervals for the mean (with s known and s unknown).

Perhaps most important, you should have digested the fundamentals of
hypothesis testing logic along the way. The new concepts—null hypothesis,
critical value and critical region, level of significance, and Type I and II errors—
are concepts you will encounter over and over again. Specific statistical appli-
cations will change from situation to situation, but the fundamental logic will
remain the same. As I’m fond of telling my students at this point in their statistical
journey, the logic of hypothesis testing is a little bit like Mozart’s music—or rap
music, for that matter: It’s the same darned thing over and over again.
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Some Other Things 
You Should Know

Let me bring two matters to your attention at this point. One has to do with
how the logic you just encountered extends to other types of research situa-
tions. The other has to do with a possible source of confusion that you may
encounter down the road.

As to the first of these matters, let me mention that the logic you encoun-
tered in this chapter extends to hypotheses involving proportions as well as
means. For example, a simple procedure will allow you to determine if a pro-
portion (or percentage value) observed in a sample differs significantly from a
known or assumed proportion in a population. The procedure is directly anal-
ogous to the research situations covered in this chapter, with one exception—
the focus is on proportions, rather than means. For a discussion of this procedure,
consult Utts and Heckard (2002).

As to the possible confusion that may arise down the road, let me ask you to
focus on the fundamental difference between the material you encountered in
this chapter and the material presented in the previous chapter. My experience
tells me that students often confuse the material, probably because all of the
material falls into the category of inferential statistics and all the material is tied
to the use of Z or t. Let me offer a simple way out of this possible confusion.

As you think about the material we covered in Chapter 6, think about the
purpose of the procedures that we explored. There, we constructed confidence
intervals. We didn’t test hypotheses; we didn’t even formulate hypotheses. We
simply constructed confidence intervals. Our goal was to make statements
about population parameters, based on sample statistics. We were developing
estimates.

In the present chapter, however, our goal was different. In this chapter, we
set out to test hypotheses. Yes, we calculated Z and we calculated t. We used
the Table of Areas Under the Normal Curve and we used the table for the dis-
tribution of t (Family of t Distributions). Those are the same elements that came
into play when we were constructing confidence intervals. But there was a
major difference, and it had to do with our ultimate purpose. Remember: We
construct a confidence interval because we want to estimate the value of a
population parameter. Testing a hypothesis represents a very different goal.

Key Terms

calculated test statistic null hypothesis
critical region region of rejection
critical value Type I error
hypothesis Type II error
level of significance
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Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. The level of significance is the probability of making a(n) error.
2. Rejecting a null hypothesis when it is true represents a(n) error.
3. Failing to reject a null hypothesis when it is false represents a(n)

error.
4. The is represented by the symbol H0.
5. The alpha level is also known as the level of .
6. Another name for the region of rejection is the .
7. If your calculated test statistic does not meet or exceed the critical value,

you would the null hypothesis.
8. The levels of significance most commonly used by statisticians are the

and levels.
9. When our calculated test statistic falls within the , we reject the

.

Application Questions/Problems: Hypothesis Test Based 
on a Single Sample X With r Known

1. The police department of a major city reports that the mean number of auto
thefts per neighborhood per year is (m ) 6.88 with a standard deviation (s )
of 1.19. As the mayor of a suburban community just outside the major city,
you’re curious as to how the auto theft rate in your community compares.
You determine that the mean ( ) number of auto thefts per neighborhood
per year for a random sample of 15 neighborhoods in your community is
8.13. Assume that you’re working at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

2. Reports indicate that graduating seniors in a local high school have an
average (m ) reading comprehension score of 72.55 with a standard
deviation (s ) of 12.62. As an instructor in a GED program that provides
alternative educational opportunities for students, you’re curious how se-
niors in your program compare. Selecting a sample of 25 students from
your program and administering the same reading comprehension test,
you discover a sample mean ( ) of 79.53. Assume that you’re working at
the .05 level of significance.

X

X
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a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

3. Students participating in a drug education program are given a drug
awareness test at the beginning of the program. The mean score (m ) for
the population of 526 students is 61, with a standard deviation (s ) of
12. As program director, you’re curious as to how parents of the stu-
dents perform on the drug awareness test and whether or not they
are significantly different from the students. Selecting a random sample
of 50 parents, you administer the test and discover a mean drug
awareness score ( ) of 56. Assume that you’re working at the .05 level
of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

4. The mean (m) educational level for adults in a community is reported
as 10.45 years of school completed with a standard deviation (s ) of 3.8.
Responses to a questionnaire by a sample of 40 adult community resi-
dents indicate a mean educational level ( ) of 11.45. Assume that you’re
working at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

5. The historical mean level of production workers at an industrial plant is
shown to be 155 units produced per day, with a standard deviation of 15.
Following the introduction of a new flextime worker option, a sample of
productivity reports for 100 flextime workers reveals a sample mean ( ) 
of 160. Assume that you’re working at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

6. A standardized test, designed to measure the mathematical skill level of
seventh graders is said to have a mean score (m ) = 75 with a standard
deviation (s ) = 10. As the principal of a private school, you’re curious
how seventh graders, in your school compare. Selecting a sample of
25 students from your school and administering the mathematical skill
test, you discover a sample mean ( ) of 79. Assume that you’re working
at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (Z )?
c. State your conclusion.

X

X

X

X
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Application Questions/Problems: Hypothesis Test Based
on a Single Sample Mean With r Unknown

1. The mean (m ) level of absenteeism rate for the local school district is
reported as 8.45 days per year, per student. The mean rate ( ) for a sam-
ple of 30 students enrolled in a vocational training program is reported as
6.79 days per year with a standard deviation (s) of 2.56 days. Assume that
you’re working at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

2. The national mean (m ) absentee rate for workers working for the Old Mill
Store Company is reported as 8.25 days per year. The mean rate ( ) for
a sample of 14 workers working at your Old Mill Store franchise is re-
ported as 7.53 days per year with a standard deviation (s) of 2.72 days.
Assume that you are working at the .05 level of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

3. Information collected at a local university indicates that students are work-
ing, on average (a value for m ) 15.23 hours per week while in school.
Information collected from a random sample of 25 fraternity members,
however, reveals a mean of 12.34 hours per week with a standard devia-
tion (s) of 2.50 hours. Assume that you’re working at the .05 level of
significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

4. Information collected at a local university indicates that business majors
enroll for an average (m ) of 10.65 credit hours per semester. As the Dean
of the School of Communication, you are interested in how journalism
majors compare. Taking a sample of enrollment records on 31 journalism
majors, you find a mean ( ) credit hour enrollment of 12.22 hours, with
a standard deviation (s) of 3.26. Assume that you’re working at the .05 level
of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

X

X

X
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5. A recent news report indicates that the mean (m ) number of years that
first-time drug offenders are sentenced is 12.16. A sample of 25 court
records from your county indicates a mean number of years = 11.24, with
a standard deviation of 3.11. Assume that you’re working at the .05 level
of significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

6. A recent news report asserts that the weekly mean (m ) number of drinks
(both mixed drinks and beer) consumed by college students is 12.56
drinks. Data from a sample of 30 students enrolled at your university
indicate a weekly consumption level ( ) of 11.21 drinks, with a standard
deviation (s) of 3.88. Assume that you’re working at the .05 level of
significance.
a. State an appropriate null hypothesis.
b. What is the value of the calculated test statistic (t)?
c. Identify the critical value.
d. State your conclusion.

X
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In this chapter, we expand on the logic we covered in the last chapter. Instead
of working with single sample research questions, we’ll now take up the two
sample case. The applications we’re going to cover are typically referred to as
difference of means tests. As before, we’ll be looking at information collected
from samples, but our real interest will extend to the realm of two populations.
You already have the background to deal with difference of means tests on a
conceptual level. From the formulation of a null hypothesis, to the identifica-
tion of a critical value, through the conclusion and interpretation of results,
you’ve traveled the road of hypothesis-testing basics. What’s more, you’ll likely
discover that the research questions involving difference of means tests are very
straightforward.

The research situations that call for a difference of means test typically fall
into two categories: situations involving matched or related samples, and situa-
tions involving independent samples. That’s the order we’ll follow in this chapter.

Before We Begin

I’m going to make a suggestion that you may or may not appreciate. I’m going to
ask you to go back to the previous chapter as soon as you finish this chapter.
That’s right; first complete this chapter and then take another look at the previous
chapter. I know that may sound strange, but there’s a reason why I suggest it. 
I believe that many students of statistics have an easier time understanding
hypothesis testing involving two samples than hypothesis testing involving one
sample. As to why that might be the case, maybe it’s because the idea of com-
paring two groups (or more correctly, two samples) is such a commonplace
activity, whether it is warranted or not. At any rate, my experience tells me that it
is with the two sample applications that students typically start to get comfortable
with hypothesis testing. Therefore, if you struggled with the last chapter or you still
don’t feel on solid ground with it, let me urge you to move ahead with this chap-
ter. Once you’re through, go back to the previous chapter.

Related Samples

To say that two samples are matched or related in some way is to say that the
cases included in the samples were not selected independently of one another.
Let me give you a few examples.

Let’s say we give a group of students a drug awareness test, measuring their
awareness of the dangers of recreational drug use. Then we show the students
a film about the dangers of recreational drug use, and we administer the test
again. In this case, we will be measuring the same people twice—once before
exposure to the film and again after exposure to the film. This is an example of
a classic before/after test situation—a situation in which the participants are



matched against themselves, so to speak. Each person is tested twice, and the
focus is on any change in the test scores that occurs between the first and sec-
ond tests. The two samples are obviously related to each other; they involve the
same people, measured twice.

Another example might involve measuring attitudes of couples who are
engaged to one another. Let’s say that we’re collecting information about their
expectations concerning marriage, placing the males in one sample and the
females in another. In this situation, the cases or people in one sample are clearly
linked to the cases in the other. If the research question looked at differences
between men and women in general with respect to expectations about marriage,
the problem could be approached without a matched or related sample design.
When the focus is on couples, however, and how the male and female members
of couples differ, the question calls for a matched or related sample approach.

For a final example, consider a research situation that involves comparing
the productivity of two groups of workers in different environments (such as a
5-day, 8-hour work schedule versus a 4-day, 10-hour work schedule). If research
participants are selected in such a way that they are matched, for example, on
the basis of age, sex, pay grade, and length of time on the job, it would be ap-
propriate to treat the research situation as a matched sample design.

In all of these examples, the two samples were somehow linked on a case-by-
case basis. In the first instance, a person’s score on the second drug awareness
test was linked back to his/her score on the first test. The focus was on any dif-
ference between the score on the first test and the score on the second. In the
marital expectation scenario, a person’s responses concerning expectations about
marriage were linked to those of another person to whom he/she was socially
tied. The focus was on any difference between the scores of the two individuals
who made up a couple. In the final example, each worker in one sample was
related (by matching on relevant criteria) to another worker in the other sample.
To more fully grasp the structure of such research situations, consider Table 8-1.

With the basic structure of the research situation in mind, we can now turn
to the logic of the matched sample test application.

The Logic of the Test

The logic in this application begins with the notion of what constitutes a differ-
ence. Let’s look at the drug awareness scenario again as a starting point.
Consider the set of scores presented in Table 8-2, reflecting performance on

❏✔ LEARNING CHECK

Question: What are matched or related samples? 
Answer: Matched or related samples are samples involving cases

or subjects that share certain characteristics in common.

180 CHAPTER 8 Hypothesis Testing With Two Samples
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Table 8-1 The Focus of Interest With the t Test for Related 
or Matched Samples

These differences are found by subtracting one score from the other score (score in
Sample 1 from score in Sample 2, or vice versa).

Sample 1 Sample 2 Differences

Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d
Score/Value Score/Value d

D—

This is the mean of the differences (D—).

Table 8-2 Results From Drug Awareness Test

Test 1 Test 2 Difference

Subject T1 T2 d

1 50 55 5
2 77 79 2
3 67 82 15
4 94 90 –4
5 64 64 0
6 77 83 6
7 85 80 –5
8 52 55 3
9 81 79 –2

10 91 91 0
11 52 61 9
12 61 77 16
13 83 83 0
14 66 70 4
15 71 75 4

Sd = 53

= 53/15 = 3.53D
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the test by a sample of 15 participants in a before/after test situation. First,
each of 15 participants was administered a drug awareness test, and their
scores were recorded. The participants were then shown a film concerning the
dangers of recreational drug use. Following exposure to the film, the 15 par-
ticipants were given the drug awareness test again, and these scores were
recorded, as shown in Table 8-2.

The object of our interest is the differences listed in the right-hand column of
the table (column labeled Difference or d). This column includes positive differ-
ences, negative differences, and zero differences. To find the mean of those dif-
ferences, we simply add up all the differences and divide by 15: 53/15 = 3.53.
If we use the symbol D— to indicate the mean of the differences (ds), then 

Thus, we’re in a position to say that the mean of our sample differences
is 3.53.

Just as we can calculate a mean of the differences, we can also calculate a
standard deviation of the differences as follows:

Don’t let those calculations throw you. The goal is to calculate a standard
deviation of the differences (the ds). Just think back to the formula that you
used before. Recall that the formula involved an X— and individual X values. This
application is the same, except it involves a D— and individual d values.

Just in case you’re still feeling a little lost on this matter of how to calculate
the standard deviation of the differences, let me urge you to do two things.
First, review the material on the standard deviation that you encountered in
Chapter 2, paying attention to each element in the process and how the n – 1
correction factor is used. Secondly, take a look at the steps outlined in the sum-
mary, below. The summary doesn’t give you every calculation along the way,
but there should be enough information to clear up any confusion.

1. Find the mean of the differences (the mean of the ds) and designate it as D—.
2. Find the deviation of each d from D—(d – D—). For example: 

5 – 3.53 = 1.47
2 – 3.53 = –1.53

sd = 6.13
sd = 237.55

sd = B525.72
15 2 1

sd =R
a (d 2 D)2

n 2 1

D = 3.53

D =
53
15

D =
ad

n
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15 – 3.53 = 11.47
Continue through all of the ds.

3. Square all of the deviations. For example:
1.47 × 1.47 = 2.16
–1.53 × –1.53 = 2.34
11.47 × 11.47 = 131.56
Continue through all of the squared D— – d values (all the squared deviations).

4. Find the sum of the squared deviations (it will equal 525.72).
5. Divide the sum of the squared deviation by n – 1 (i.e., divide 525.72

by 14) and you have 37.55.
6. Find the square root of 37.55.

The square root of 37.55 = 6.13, so that’s the answer. The standard devi-
ation of the differences (the standard deviation of the ds) is symbolized by sd.
Therefore, sd = 6.13.

Having determined that the standard deviation (sd) of the differences (the d
values) is 6.13, we now have quite a bit of information. We know, for example,
that we have 15 observed differences and that the mean of the differences is
equal to 3.53 (D— = 3.53). We also know that the standard deviation of the dis-
tribution of differences is equal to 6.13. As you might have guessed, we’re right
back where we’ve been before. It’s probably a good idea to take another dark
room moment right now to think about the situation I’m about to describe.

Imagine that you’ve taken a sample of 15 people, noted their scores at
Time 1 and Time 2, and calculated the differences (d values) between the indi-
vidual scores (T1 – T2 or T2 – T1; it doesn’t matter which approach you take).
Now imagine that you’ve calculated the mean of those differences (D—) and
you’ve recorded that mean. Now imagine that you repeat that process a thou-
sand times over, each time calculating a mean and recording it. 

By now you should know what the next step is in your mental picture—
you’re plotting all of those means to create the sampling distribution of mean
differences. The question, of course, boils down to the same question you’ve
asked yourself before: Where does my observed mean difference fall along a
sampling distribution of all possible mean differences? With that thought in
mind, we can now turn to the null hypothesis for this application. 

❏✔ LEARNING CHECK

Question: In this application, how do you calculate the d values?
Answer: Find the difference between the two scores or values

associated with a given research subject or case 
(e.g., difference between score at Time 1 and Time 2).



The Null Hypothesis

The null hypothesis in this application is simply a statement that we expect a
mean difference of 0. You’ll recall from the previous chapter that the null is
frequently a statement of no difference, and that notion applies squarely in the
present instance. Regardless of what may be operating in the back of our
minds—even though we may, in truth, expect a change in scores between the
first and the second test—we will test the null. And the null is a statement that we
expect the mean difference to be 0. In other words, the null is a statement that
we expect there to be no change. Symbolically, we can state the null hypothesis
as follows:

Mean of differences obtained from subtracting score at one time (T1) from score at
another time (T2)

Combining the Logic and the Null

It’s a good idea at this point to think about the big picture, in the sense that
we’re not really interested in what’s going on with the samples (the sample at
T1 and the sample at T2). Rather, we’re interested in what’s really going on
with the populations (the population at T1 and the population at T2). We’re
wondering what we’d discover if we tested the entire population of students
at T1 and retested that entire population at T2. With the null, we’re making
the statement that we expect the mean of any differences in the populations
to be 0. 

Our goal, then, is to compare our observed mean difference to an as-
sumed mean difference of 0. Since we’re assuming that the mean difference
is 0, we can assume that the mean of the sampling distribution of mean dif-
ferences is also equal to 0. It’s the Central Limit Theorem that allows us to
make that assumption. As before, we’ll eventually compare our observed
mean difference (3.53) to the assumed mean difference of 0, and express the
magnitude of any difference between the two values in standard error units.
Remember: The estimated standard error in this case will be the estimated
standard deviation of a sampling distribution of mean differences (the standard
deviation of the distribution you mentally constructed if you took the time for
the last dark room moment I suggested).

❏✔ LEARNING CHECK

Question: What does the statistical symbol H0 represent?
Answer: H0 is the symbol that represents the null hypothesis.

H0: mD = 0
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The Estimate of the Standard Error of the Mean Difference

The estimate of the standard error of the mean difference is symbolized by
and is calculated as follows:

Where sd represents the standard deviation of the distribution of differences

You should take note of how similar the formula is to the formula for the es-
timate of the standard error that you encountered in Chapter 7. Assuming you
know of the standard deviation of the distribution of the d values (it was provided
to you or you calculated it), all you have to do is divide that value by the square
root of the sample size. The result is the estimate of the standard error of the
mean difference. In the example we’re considering here, it would be as follows:

Applying the Test

The application is now fairly straightforward. All we have to do is compare our
observed mean difference to the assumed mean difference of 0, and divide the
result by our estimate of the standard error. This procedure produces a t ratio,

❏✔ LEARNING CHECK

Question: How is the estimate of the standard error calculated in
the case of a t test for related sample means?

Answer: The standard deviation of the distribution of differences
(in other words, the distribution of the d values) is
divided by the square root of n.

sD = 1.58

sD =
6.13
3.87

sD =
6.13215

sD =
sd2n

sD

❏✔ LEARNING CHECK

Question: What is the definition of the estimate of the standard
error in the case of a t test for related sample means?

Answer: It is an estimate of the standard deviation of the sampling
distribution of mean differences.



similar to those you’ve encountered before. A complete formula for the calculation
of the t ratio would be as follows:

Since the second part of the formula ( ) is assumed to be equal to 0, we 
can drop that element from the formula, leaving ourselves with only the fol-
lowing to consider:

Working through the calculations, we arrive at a calculated test statistic 
(t ratio) of 2.23. Now all that remains is to evaluate the calculated test statis-
tic in light of the critical value—the value that our calculated test statistic must
meet or exceed if we are to reject the null hypothesis.

Interpreting the Results

Assuming we had set our level of significance at .05 in advance of our test,
our next step is to identify the critical value and move toward a conclusion
and interpretation. In a t test for related samples, the degrees of freedom will
be our sample size (n) minus 1—in this case, 15 – 1, or 14. Working with
14 degrees of freedom, at the .05 level of significance, we find the critical
value of t in Appendix B to be 2.15. Recall that our calculated test statistic
(the t ratio) is 2.23. 

Since the calculated t value exceeds the critical value, we’re in a position to
reject the null hypothesis. In other words, we reject the notion that there is no
difference between the two populations. We reject the idea that the two popu-
lations do not differ from one another (T1 and T2). That, of course, is another

❏✔ LEARNING CHECK

Question: What does the value of t represent in the t test for
related sample means?

Answer: The t value is the calculated test statistic. It is a ratio that ex-
presses how far the observed mean difference departs from
the assumed mean difference of 0 in standard error units.

t = 2.23

t =
3.53
1.58

t =
D
sD

mD

t =
D 2 mD

sD
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way of saying that it appears that the two populations do differ. Exposure to
the drug awareness film appears to have some effect on test scores.

In rejecting the null hypothesis at the .05 level of significance, we’re ac-
knowledging that there’s always a chance that we’ve made a mistake. Yes, we’ve
rejected the null—the expectation that there is no difference. It’s possible,
though, that there really is no difference and our observed difference was, just by
chance, a very extreme case along the sampling distribution of all possible mean
differences. If that’s what was going on, we’ve made a Type I error—we’ve
rejected the null when, in fact, it’s true. As before, however, we never know
whether or not we’ve committed a Type I error. All we know is the probability of
having committed a Type I error, and that probability is our level of significance.
Once again, that’s why I think it’s advisable at this point in your statistical edu-
cation to offer an interpretation along the following lines: We reject the null with
the knowledge that there’s a 5% chance that we’ve committed a Type I error.

Later on, when you’re totally comfortable with the logic of hypothesis testing,
you can feel free to drop the reference to Type I errors when announcing your con-
clusion. Until you’re comfortable, though, let me suggest you stick with a format
that makes reference to the probability of making a Type I error in your conclusion.
It’s a good way to continually hammer home the logic of hypothesis testing.

Some Additional Examples

Just to make certain that you’re on the right track with the t test for related or
matched samples, give some time and thought to each of the following ques-
tions, paying particular attention to each element that goes into the calculation
of the final test statistic (the t ratio).

1. Assume two matched samples, each involving 10 cases (n = 10)
and the following information:
Mean of the differences ( ) = 11.65
Estimated standard error of the mean difference ( ) = 3.39
Calculate t. Assuming a .05 level of significance (a = .05), do you
reject or fail to reject the null hypothesis?

2. Assume two related samples, each involving 10 cases (n = 10)
and the following information:
Mean of the differences ( ) = 2.70
Estimated standard error of the mean difference ( ) = 0.97
Calculate t. Assuming a .01 level of significance (a = .01), do you
reject or fail to reject the null hypothesis?

3. Assume two matched samples, each involving 14 subjects (n = 14)
and the following information:
Mean of the differences ( ) = 3.42
Standard deviation of the differences (sd) = 3.46

D

sD

D

sD

D



Recall the formula for determining the estimated standard error of the
mean using n and sd. Calculate t. Assuming a .05 level of significance
(a = .05), do you reject or fail to reject the null hypothesis?

4. Assume two matched samples each involving 19 subjects (n = 19)
and the following information:
Mean of the differences ( ) = 7.11
Standard deviation of the differences (sd) = 13.84
Calculate t. Assuming a .05 level of significance (a = .05), do you
reject or fail to reject the null hypothesis?

5. Assume two related samples involving the following information:
n = 22

= 3.52
sd = 5.26
a = .05
Discuss your results in terms of the null hypothesis.

Answers:

1. t = 3.44
Reject the null hypothesis at the .05 level of significance.

2. t = 2.78
Fail to reject the null hypothesis at the .01 level of significance.

3. t = 3.68
Reject the null hypothesis at the .05 level of significance.

4. t = 2.24
Reject the null hypothesis at the .05 level of significance.

5. t = 3.14
Reject the null hypothesis at the .05 level of significance.

So much for the t test for related samples. Now we turn our attention to
another application involving the t ratio with a focus on differences. In the next
application, however, we encounter a very different meaning of difference.

Independent Samples

You’ve just covered the idea of sample differences (and, therefore, population
differences) in one context. Now you’ll encounter a different context—one with
a new notion as to what constitutes a difference. While the last application is
still fresh in your mind, let’s turn to the next application. 

D

D
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Suppose that I asked you how you’d go about determining whether or
not there’s a difference between the drinking habits of fraternity members
and nonfraternity members. My guess is that you’d probably give me a fairly
good explanation. For example, you’d very likely tell me that you’d start
by getting a random sample of fraternity members and a random sample of
nonfraternity members. Then you might tell me that you’d get information
on their drinking habits (maybe by asking them how many drinks they
typically consume in a week). Maybe you’d go so far as to tell me you’d
calculate the mean ( ) number of drinks for each sample, just so you’d have
a starting point to compare the two groups. Assuming you outlined the
problem that way, I’d say “Congratulations! You’re on the right track.”
You’ve just outlined the basic elements in an independent sample research
design.

The key notion in all of that—independent samples—is the idea that the
sample of fraternity members is selected independently of the sample of non-
members. In other words, the selection of cases for one sample in no way af-
fects the selection of cases in the other sample. Even if we selected a single
sample of students at random and then divided that sample into two groups
(fraternity members and nonmembers), we would be dealing with the same
principle of independence. 

With all of that in mind, let’s assume that we undertake the research you
have outlined, and let’s say we obtain the data regarding number of drinks per
week found in Table 8-3.

The Logic of the Test

The present application allows us to compare the means of two samples with
an eye toward whether or not any difference is a reflection of a true difference
between the populations. So much for the central goal of the test. Now let’s
turn to the elements that make up the structure of the test. As a prelude, take
a close look at Table 8-4.

❏✔ LEARNING CHECK

Question: What does the phrase independent samples mean?
Answer: Independent samples are samples selected in such a way

that the selection of cases or subjects included in one
sample has no connection to or influence on the
selection of cases or subjects in the other sample.

X



You’re already familiar with the notion of a sampling distribution of sample
means when dealing with a single sample. You know, for example, that you
could take sample after sample after sample, and each sample is apt to yield a
slightly different sample mean. As it turns out, the same logic applies in a situ-
ation involving the difference between two samples. Returning to our example

❏✔ LEARNING CHECK

Question: In the t test for difference of means for independent
samples, which difference is the object of interest?

Answer: The test focuses on the difference between the mean of
one sample and the mean of another sample, with an eye
toward the extent to which any observed difference
represents a true difference between population means.
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Table 8-3 Data Regarding Drinks per Week

 Fraternity Nonfraternity

 6 0
 3 5
  2 3
  4 4
  5 3
  6 6
  7 3
  5 6
  4 5
  5 4
  4 4
  8 2
  6 
  7 

n = 12
X = 3.75
s = 1.71n = 14

X = 5.14
s = 1.66

Study based on a 
sample of 14 fraternity 
members and a sample 
of 12 nonmembers

Mean of fraternity
members = 5.14.

Standard deviation of fraternity members = 1.66.

Mean of nonmembers = 3.75.

Standard deviation of nonmembers = 1.71.
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involving the drinking habits of fraternity members and nonmembers, consider
the following:

■ You could take a sample of fraternity members and a sample of nonmembers.
You could calculate the mean of each sample, calculate the difference
between the two means, and record that difference.

■ You could then take another two samples, calculate the mean of each
sample, and record the difference between those means.

■ You could repeat the process over and over again—each time calculating
the mean of each sample, noting any difference between the two means,
and recording that difference.

■ You could eventually produce a plot or distribution of all of those differences.
That plot or distribution would be known as a sampling distribution of the
differences of means.

If necessary, run that material through your mind again as a dark room mo-
ment. Take the time to mentally focus on the difference between the means
that you get each time you select two samples. Focus on the fact that you’re in-
terested in the difference between the means of pairs of samples. 

As you might expect, the question will ultimately come down to a matter of
how extreme our observed difference between two means is in comparison to all

Table 8-4 The Focus of Interest With the t Test for Independent Samples

Sample 1 Sample 2

Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value
Score/Value Score/Value

Score/Value

Mean (X)
Mean (X)

Find the difference between the two means.

The null is a statement that we expect the difference to be 0.

Calculate the mean
score/value for
Sample 1.

Calculate the mean
score/value for
Sample 2.



possible differences that we might observe. It’s similar to the question you’ve faced
before—whether or not an observation is an extreme value along a sampling dis-
tribution (in this case, of the difference of means). 

The Null Hypothesis

Assuming you took a careful look at Table 8-4, you noticed a central element in the
logical underpinnings of the t test for independent samples—namely, a reference
to the null hypothesis that there is no difference between the means. More specif-
ically, the null hypothesis is a statement that there is no difference between the
means of the two populations. As before, we may be looking at samples, but our
interest is in what’s going on with the populations from which the samples were
taken. In symbolic terms, we can state the null hypothesis in two different ways:

H0: m1 = m2 or H0: m1 − m2 = 0

Mean of fraternity Mean of Mean of fraternity Mean of
members nonmembers members nonmembers

Combining the Logic and the Null

Now we’re back in familiar territory. If the null hypothesis is true, we’d expect
the mean of the sampling distribution of the difference between means to
equal 0. Moreover, we’d expect any observed difference between two sample
means to be fairly close to 0. It all boils down to whether or not our observed
difference is extreme.

As before, we’ll assume we’re working at the .05 level of significance. The
question now turns on what constitutes an extreme difference and the magni-
tude of any observed difference, expressed in standard error units. Remember:
It doesn’t matter whether we’re considering differences in salaries (expressed
in dollars), weights (expressed in pounds or ounces), test scores (from 0 to 100),
drinks per week, or anything else. It’s always a question of how far our observed
difference departs from the assumed difference of 0 in standard error units.

The Estimate of the Standard Error 
of the Difference of Means

In the previous application (the one involving related samples and the drug
awareness test), the calculation of the estimate of the standard error was
straightforward. We used the standard deviation of the differences as the basis
for our estimate of the standard error of the mean difference. We had a distri-
bution of differences (obtained by calculating the difference in test scores for
each person), and we calculated the standard deviation of that distribution of
differences. It was then a short step to divide the standard deviation by the
square root of our sample size (the number of pairs of scores). The result was
the estimate of the standard error of the mean difference.
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The calculation of the standard error in this application (independent
samples) isn’t quite so straightforward. In the present case, we’re no longer deal-
ing with just one distribution (as we did in the case of the lone distribution of dif-
ferences). Instead, we’re dealing with two distributions. We have a distribution of
scores for fraternity members and a distribution of scores for nonmembers.
Thus, the estimate of the standard error becomes a bit more complex, and at
times, confusing. Here’s why.

Complexity and Some Possible Confusion. First, we have to consider that
we’re dealing with two samples. Besides that, we have to consider that we’re
often dealing with different sample sizes. The present situation, for example,
involves 14 fraternity members but only 12 nonmembers. In other research
situations, you might find yourself working with 25 cases in one sample and 45
in another. 

It shouldn’t take you long to realize that any measure of the variation that’s
present in a sample is, in part, a function of sample size. For example, you’re
not apt to pick up much of the variation that exists in a population if you’re
working with a sample of only 2 cases. A sample of 100 cases, though, will
probably provide a fairly good representation of the variation. Given that, it
stands to reason that our formula for the estimate of the standard error of the
difference of means will be sensitive to the number of cases in each sample.

Another source of complexity (and perhaps confusion) stems from the fact
that the formula begins with a consideration of the variance for each sample. In
the previous application (involving related samples), as well as various applications
in the last chapter, we used the standard deviation to develop our estimate of the
standard error. (We simply took the standard deviation and divided it by the square
root of the sample size.) In the present application, though, we’ll first look at sam-
ple variances as we set out to calculate the estimate of the standard error. 

The reason why we’ll start with the variances traces back to the previous
point—the need to take into account different sample sizes. As you probably
recall, the standard deviation is the square root of the variance. Conversely, the
variance is merely the standard deviation squared (s2). Given that relationship,
you might be inclined to approach the problem of different sample sizes by
weighting the standard deviations of the samples—that is, multiplying the stan-
dard deviations by different values to reflect the different sample sizes. 

The truth of the matter, though, is that the variance is always calculated first.
We first calculate a variance, and then we take the square root of it to obtain the
standard deviation. It’s true that you often see statistical problems or data sum-
maries presented with only the standard deviation given (and not the variance),
but you can rest assured of one thing: The variance was calculated first.

Besides that, you should give some thought to the effect that weighting has
on a variance, as opposed to a standard deviation. Let’s say, for example, that we
want to weight some values by a factor of 10. A variance of 9, for example, is
equal to a standard deviation of 3 (the standard deviation being the square root
of the variance). The variance times 10 equals 90, and the square root of 90 is
9.487. But 9.487 is hardly the same value as the standard deviation (3) times 10.



With those considerations in mind, you’re in a better position to under-
stand why the formula for the estimate of the standard error of the difference
of means begins with weighted sample variances. I can assure you that the for-
mula eventually readjusts, so to speak, into an expression of standard devia-
tions, but it begins with a consideration of weighted variances.

All of those issues aside, the real point is what the estimate of the standard
error of the difference of means allows us to do. As the standard error has done
before in the other applications we’ve tackled, it allows us to eventually express
the magnitude of the observed difference of means in a standardized way. Now
let’s see how it is calculated. 

The Formula. The formula we’ll use to estimate the standard error of the
difference of means is as follows:

Note: As noted previously, the formula presented for the estimate of the standard error is
based on the assumption that the variance and/or standard deviation of each sample was
originally calculated by using n – 1 in the denominator.

There’s no reason to let this formula overwhelm you. Remember: A fair
amount of the complexity traces back to the fact that we’re initially having to
deal with variances (the s2 values), and we have two samples under considera-
tion. Just to recap the information we have so far concerning the sample re-
sults, consider the following summary (see Table 8-3):

Fraternity members = 5.14 n1 = 14 s1 = 1.66

Nonmembers = 3.75 n2 = 12 s2 = 1.71

You’ll note that the value of the standard deviation (s) is given. Recalling
what we recently covered, you know that all you have to do to obtain the vari-
ance is to square the standard deviation. Thus, we determine the variance (s2)
for each of the two samples as follows:

Fraternity members

Nonmembers

Armed with the value of the variance and the number of cases for each
sample, we’re now in a position to develop an estimate of the standard error of
the difference of means. Recalling the formula previously presented, we can
calculate the estimate of the standard error as follows:

B (14 2 1 )2.76 1 (12 2 1 )2.29
14 1 12 2 2

• c 1
14

1
1

12
dsx12x2

=

B (n1 2 1 )s2
1 1 (n2 2 1 )s2

2

n1 1 n2 2 2
 • c 1

n1
1

1
n2
dsx12x2

=

s2
2 = 1.712 = 2.92

s1
2 = 1.662 = 2.76

X2

X1

sx12x2
= B (n1 2 1 )s2

1 1 (n2 2 1 )s2
2

n1 1 n2 2 2
 • c 1

n1
1

1
n2
d
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Applying the Test

Now we’re in a position to put everything together. To do that, we’ll return to
the information we now have:

Fraternity members = 5.14 n1 = 14
Nonmembers = 3.75 n2 = 12

The estimate of the standard error of the difference of means ( ) = .65.
For the sake of this example, we’ll assume we’re working at the .05 level

of significance. 
Our goal is to compare any observed difference between the two means

(fraternity members and nonmembers) to an assumed difference of 0, and
then to convert the magnitude of any observed difference into standard error
units. Accordingly, here’s the way the formula looks. As before, we’re con-
verting the comparison to a t ratio—hence, the symbol t at the outset of the
formula.

Working our way through the formula, we obtain the following test statistic
(our calculated value of t):

t = 2.14

t =
1.39
0.65

t =
15.14 2 3.75 2

0.65

t =
(X1 2 X2)

sx12x2

t =
(X1 2 X2) 2 0

sx12x2

sx12x2

s2
2 = 2.92X2

s1
2 = 2.76X1

0.65sx12x2
=

20.42sx12x2
=

22.8330.154sx12x2
=

B68
24

• 30.154sx12x2
=

B35.88 1 32.12
24

• 30.154sx12x2
=

B (13 )2.76 1 (11 )2.92
24

• 30.07 1 0.084sx12x2
=



Interpreting the Results

Now we have a calculated test statistic, t, with a value of 2.14. The question,
of course, is whether it represents a significant result. In other words, does the
calculated test statistic equal or exceed the critical value? To determine the an-
swer to that question, we return to Appendix B. As before, we focus on the col-
umn for the .05 level of significance.

In the case of the t test for the difference of means, the number of degrees
of freedom has to reflect the number of cases in each sample. Up to this point
we’ve calculated the number of degrees of freedom as n – 1, but now we’re
dealing with two independent samples. Now we calculate the number of
degrees of freedom for each sample, and add the two together. In other
words, the number of degrees of freedom in the difference of means test is
as follows:

(n1 – 1) + (n2 – 1)        or        (n1 + n2) – 2

In the present example, we’re working with one sample of 14 cases and an-
other sample of 12 cases. Therefore, we’re working with (14 – 1) + (12 – 1), or
24 degrees of freedom.

Armed with the knowledge that we’re working with 24 degrees of freedom
at the .05 level of significance, all that remains is to identify the critical value—
found by locating the intersection of the appropriate row (degrees of freedom)
and column (.05 level of significance) in Appendix B. We note that the critical
value is 2.06.

We find that our calculated test statistic (t = 2.14) exceeds the critical value
of 2.06. Therefore, we can reject the null hypothesis, with the knowledge that
there is a 5% chance that we’ve made a Type I error. By rejecting the null
hypothesis, we’re rejecting the notion that the two populations (the population
of fraternity members and nonmembers) are equal in terms of levels of drinking.
In other words, we’ve found support for the assertion that the means of the two
populations are, in fact, different.

Some Additional Examples

Just to increase your familiarity with the process involved in the hypothesis test
for the independent samples difference of means test, consider the following
problems. Additional problems are included at the end of the chapter.

1. Assume two independent samples and the following information:

Mean of Group 1 ( ) = 53.92 Mean of Group 2 ( ) = 50.0
Sample size of Group 1 (n1) = 11 Sample size of Group 2 (n2) = 17 

Estimated standard error of the difference between means ( ) = 2.80

Calculate t. Assuming a .05 level of significance (a = .05), do you reject or
fail to reject the null hypothesis?

sx12x2

X2X1
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2. Assume two unrelated samples and the following information:

Mean of Group 1 ( ) = 7.39 Mean of Group 2 ( ) = 4.50

Sample size of Group 1 (n1) = 18 Sample size of Group 2 (n2) = 8 

Estimated standard error of the difference between means ( ) = 0.90

Calculate t. Assuming a .01 level of significance (a = .01), do you reject or
fail to reject the null hypothesis?

3. Assume two independent samples and the following information:

= 24.53 n1 = 24

= 26.28 n2 = 18

a = .01
Calculate t. Do you reject or fail to reject the null hypothesis?

4. Assume two unrelated samples and the following information:

Mean of Group 1 ( ) = 6.93 Mean of Group 2 ( ) = 4.38

Variance of Group 1 ( ) = 2.86 Variance of Group 2 ( ) = 5.06

Sample size of Group 1 (n1) = 14 Sample size of Group 2 (n2) = 16

Recall the formula for calculating the estimated standard error of the
difference between means using sample sizes and variances. Calculate t.
Assuming a .05 level of significance (a = .05), do you reject or fail to
reject the null hypothesis?

5. Assume two independent samples and the following information:

= 10.81 = 1.85 n1 = 15

= 13.14 = 3.84 n2 = 11

a = .05

Calculate t. Do you reject or fail to reject the null hypothesis?

Answers:

1. t = 1.40
Fail to reject the null hypothesis at the .05 level of significance.

2. t = 3.21
Reject the null hypothesis at the .01 level of significance.

3. t = –2.61
Fail to reject the null hypothesis at the .01 level of significance.

4. t = 3.49
Reject the null hypothesis at the .05 level of significance.

5. t = –3.53
Reject the null hypothesis at the .05 level of significance.

s2
2X2

s1
2X1

s2
2s1

2

X2X1

sx12x2
= 0.67

X2

X1

sx12x2

X2X1



Chapter Summary

This chapter introduced you to one of the most commonly encountered re-
search situations—those based on two samples. As you worked your way
through the material, you discovered several important ideas and considera-
tions that are brought to bear in two sample research situations.

First, you explored the variations in research designs as you considered re-
lated sample designs and then independent sample designs. In the process, you
learned that each looks at the concept of a difference in its own way. Accord-
ingly, you learned that different research designs call for different approaches
to the calculation of the t ratio.

Despite those fundamental differences, you should have been aware of
the central theme that is present in both research situations—namely, the
basic logic of hypothesis-testing situations. By now, the rather uniform ap-
proach should be solidified in your mind. For example, you probably sense
by now that the applications always begin with the formulation of a null hy-
pothesis and selection of a level of significance. From that point, you move
to the calculation of a test statistic and comparison of that test statistic to a
critical value. Based on your evaluation of the test statistic in light of the crit-
ical value, you arrive at a conclusion (you either reject or fail to reject the null
hypothesis).

The importance of this hypothesis-testing process and logic can’t be over-
stated. You’ll encounter the same sort of logic in most statistical test situations.
The research situations will vary. The particular test that is called for will vary. But
the underlying logical structure remains similar across the applications.

Some Other Things
You Should Know

The difference of means test is such a widely used statistical procedure that you
deserve to know a few more things about it. Toward that end, we’ll consider
some of the assumptions that underlie application of the difference of means
test. We’ll also take an abbreviated look at how to approach the test when large
samples are available and what to do to test hypotheses about differences be-
tween proportions. 

The t tests both for independent and for related or matched samples rest
on the assumption that the populations in question are normally distributed.
This particular assumption is of more importance with small samples and can
be relaxed somewhat in situations involving large samples. There’s also an as-
sumption that the populations involved in the independent samples application
have equal variances. For an excellent discussion of both of these assumptions,
as well as how the assumption of equality of variance can be tested, see
Gravetter and Wallnau (2000).
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For the independent samples application with large samples, the appropriate
test statistic is Z. Here’s what that means in practical terms:

■ Instead of calculating t, you would calculate Z if the combined number
of cases (n1 + n2) is greater than 100.

■ The formula remains the same, except that Z replaces t at the beginning
of the formula:

■ If you are calculating Z, you use the Table of Areas Under the Normal
Curve (the sampling distribution of Z ) to obtain the appropriate critical
value. Accordingly, degrees of freedom are of no consideration.

Finally, let me call your attention to yet another two sample test situation—
the difference of proportions test. Situations calling for such a test would include
questions about whether the proportion of people favoring a certain candidate
has changed significantly over time or whether the proportion of students favor-
ing evening courses is significantly different among students in state universities
and private universities. This test shares the same logic as the difference of means
tests you’ve just encountered, but the focus is on proportions as opposed to
means. For a discussion of the difference of proportions test, see Healy (2002). 

Key Terms

independent samples standard error of the difference of means
matched or related samples standard error of the mean difference 

Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. In a matched samples design (the test involving the mean difference) the
number of cases in each sample must be equal. True or false?

2. In the test for the difference of means, independent sample design, the
number of cases in each sample must be equal. True or false?

3. In the matched samples design (the design based on the mean differ-
ence), the sampling distribution at issue is the sampling distribution of

.

Z =
(X1 2 X2 )

sx12x2



4. In the independent samples design (the design based on the difference of
means), the sampling distribution at issue is the sampling distribution of

.

Application Questions/Problems: Matched/Related 
Samples Design 

1. Assume you are working with the results of a research situation based on
a matched sample design involving 15 participants (the same participants
in a before/after test situation). The mean difference ( ) = 14.66, with an
estimate of the standard error of the mean difference ( ) = 5.21. Assume
that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis.
b. Calculate t.
c. Identify the critical value.
d. State your conclusion.

2. Assume you are working with the results of a research situation based on
a matched sample design involving 25 participants (the same participants
in a before/after test situation). The mean difference ( ) = 9.72, with an
estimate of the standard error of the mean difference ( ) = 6.33. Assume
that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis.
b. Calculate t.
c. Identify the critical value.
d. State your conclusion.

3. Thirty program participants have been given a test designed to measure
their reading comprehension skill levels. Following a two-week course, de-
signed to improve reading comprehension skills, the same participants are
re-tested. The mean difference ( ) = 5.43, with an estimate of the stan-
dard error of the mean difference ( ) = 2.11. Assume that you’re work-
ing at the .05 level of significance.
a. Formulate an appropriate null hypothesis.
b. Calculate t.
c. Identify the critical value.
d. State your conclusion.

4. Professor Johnson administers a 50 point test to the students in her class
(n = 29) at the beginning of the semester (T1) to measure their under-
standing of basic sociological concepts. She administers the same test to
the students at the conclusion of the semester (T2), and records each
student’s T1 and T2 scores. She obtains the following:

The mean of the distribution of differences ( ) between the students’ 
T1 and T2 scores is equal to 6.57, with an estimate of the standard error
of the mean difference ( ) = 2.88.

Assume that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis.
b. Calculate t.

sD
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c. Identify the critical value.
d. State your conclusion.

5. A geographer selects 30 counties from the north and 30 counties from
the south, matching the two samples on the basis of urban/rural status
(whether the county is inside or outside of a metropolitan area), dominant
economic activity (manufacturing, retail, service, etc.), voter pattern in the
last presidential election (whether the majority voted for the Republican or
Democratic candidate). Focusing on the percentage of registered voters
who actually voted in the last presidential election, the researcher obtains
the following results:

The mean of the distribution of differences ( ) between northern counties
and southern counties for voter turnout is equal to 4.00%, with an estimate
of the standard error of the mean difference ( ) = 2.35%.

Assume that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis.
b. Calculate t.
c. Identify the critical value.
d. State your conclusion.

Application Questions/Problems: Independent 
Sample Design 

1. Calculate t for the following research situation involving two independent
samples, Sample A and Sample B. (Assume that you are subtracting the
Mean of Sample B from the Mean of Sample A).

Mean of Sample A = 12.65; n = 15
Mean of Sample B = 10.42; n = 18

Estimate of the standard error of the difference of means ( ) = .75.
Assume that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis. 
b. Calculate t statistic.
c. Identify the critical value.
d. State your conclusion.

2. Consider a research situation involving two independent samples, Sam-
ple A and Sample B. (Assume that you are subtracting the Mean of
Sample B from the Mean of Sample A).

Mean of Sample A = 30.45 n = 25
Mean of Sample B = 26.54 n = 27

Estimate of the standard error of the difference of means ( ) = 2.15.
Assume that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis. 
b. Calculate t statistic.
c. Identify the critical value.
d. State your conclusion.

sx12x2
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3. Consider a research situation involving two independent samples, Sample A
and Sample B. (Assume that you are subtracting the Mean of Sample B
from the Mean of Sample A).

Mean of Sample A = 4.12 n = 15
Mean of Sample B = 6.23 n = 13

Estimate of the standard error of the difference of means ( ) = 1.44.
Assume that you’re working at the .05 level of significance.
a. Formulate an appropriate null hypothesis. 
b. Calculate t statistic.
c. Identify the critical value.
d. State your conclusion.

4. A criminologist is interested in possible disparities between sentences
given to males and females convicted in murder-for-hire cases. Selecting
14 cases involving men convicted of trying to solicit someone to kill their
wives and 16 cases involving women convicted of trying to solicit some-
one to kill their husbands, the criminologist finds the following:

Mean length of sentence for males = 7.34 years with a standard devia-
tion of 2.51 years
Mean length of sentence for females = 9.19 years with a standard
deviation of 3.78 years

Assume that you’re working at the .05 level of significance. 
a. Formulate an appropriate null hypothesis. 
b. Calculate t statistic.
c. Identify the critical value.
d. State your conclusion.

5. A political scientist is interested in the question of whether or not there is
a difference between Republicans and Democrats when it comes to their
involvement in voluntary associations. Using a 25 point scale to measure
involvement in voluntary associations, and collecting information from a
random sample of 22 Republicans and 17 Democrats, he/she discovers
the following:

Republicans: Mean of 12.56 with a standard deviation of 3.77
Democrats: Mean of 16.43 with a standard deviation of 4.21

Assume that you’re working at the .05 level of significance. 
a. Formulate an appropriate null hypothesis. 
b. Calculate t statistic.
c. Identify the critical value.
d. State your conclusion.

sx12x2
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Our discussion of the null hypothesis began two chapters ago with the notion
that the null hypothesis is a statement of equality (no difference) or chance.
We traveled the road of hypothesis-testing logic, dealing with calculated test
statistics, levels of significance, critical values, regions of rejection, and Type I
and II errors. As I mentioned before, though, there is still more logic to con-
sider, so that’s where we turn now. 

In doing so, however, we’ll abandon the format we’ve relied on in the last
two chapters. Instead of busying ourselves with calculations, computations,
and such, we’ll enter a more conceptual world. First, we’ll examine the role of
alternative or research hypotheses in the field of statistical analysis. That, in
turn, will lead us to a discussion of the difference between one-tailed and two-
tailed test situations. Finally, we’ll deal with the matters of power and effect.

9

Beyond the Null Hypothesis



This chapter rests on the assumption that you’re familiar with the process of
hypothesis testing; so much so that you have an almost intuitive understanding
of the process—stating the null, selecting a level of significance, identifying the
critical value, calculating the test statistic, and making a decision. There’s also an
assumption made that you fully understand the concept of making a Type I error.

With that as a background, we now go a bit further. For example, we’ll
round out your understanding of null hypotheses by giving you a look at alter-
native hypotheses. Also, you’ll be given a chance to further your understanding
of Type I errors through the discussion of Type II errors. And so it goes with
this chapter. The material is highly conceptual in nature, and it deals with some
of finer points of interpretation of findings.

Research or Alternative Hypotheses

To understand the concept of a research or alternative hypothesis, think about
our earlier example involving exposure to a film on the dangers of recreational
drug use. In that example, we tested the null hypothesis that drug awareness
test scores would not change following exposure to a film on the dangers of
recreational drug use. Even though we tested the null hypothesis (the expecta-
tion of no difference), it’s hard to imagine that we wouldn’t have expected
some change or difference in the scores after exposure to the film. After all,
that’s what often drives our research in the first place—the expectation that
we’ll find a difference. 

If we shift our thinking away from the null hypothesis and toward an ex-
pected difference of some sort, we can consider several alternatives. As it turns
out, those alternatives are referred to as alternative hypotheses or research
hypotheses. Recalling our earlier example, think about the various alternative
or research hypotheses that we might have advanced:

H1: Drug awareness test scores after exposure to the film will be
higher than prior to exposure to the film. 
(In other words, we expect the scores on the drug awareness test
to increase following exposure to the film.)
H2: Drug awareness test scores after exposure to the film will be
lower than prior to exposure to the film.
(In other words, we expect the scores on the drug awareness test
to decrease following exposure to the film.)
H3: Drug awareness test scores before and after exposure to the
film will be different or will change in some way.
(In other words, we expect the scores to change, but we don’t
know if the scores will increase or decrease.)
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Each of these statements (H1, H2, and H3) represents an alternative or
research hypothesis. Each stands in opposition to the null hypothesis (H0).
Each statement asserts something other than the null.

Let’s start with a close look at H1 and H2. Those are directional
hypotheses, in the sense that they specify the nature or direction of the change
or difference that we expect. H1 is a statement that we expect the test scores to
increase; H2 is a statement that we expect the scores to decrease. H3, on the
other hand, is a non-directional hypothesis. It doesn’t specify the direction of
the expected difference; H3 merely states that we expect to find a difference. It’s
still an alternative or research hypothesis, in the sense that it stands in opposi-
tion to the null, but the direction of the expected difference isn’t specified.

Up to this point we’ve been considering drug awareness scores, but the
notion of a research or alternative hypothesis applies in a host of research
situations. In one research situation, for example, we might expect alcohol
consumption to be higher in one population than another. In another research
situation, we might expect one group to be more productive than another. Still
another research effort might find us back in a classic before/after research de-
sign, once again expecting scores to change in a particular direction. Regardless
of the specifics of the research situation, it’s common to approach the task with
some set of expectations in place—some expectation other than the null. And
that brings us back to the notion of an alternative or research hypothesis. 

❏✔ LEARNING CHECK

Question: What is a directional hypothesis, and what is a non-
directional hypothesis?

Answer: A directional hypothesis specifies the nature or direction
of a hypothesized difference. It asserts that there will be a
difference or a change in a particular direction (increase
or decrease). A non-directional hypothesis does not
specify the nature or direction of an expected difference.
It simply asserts that a difference will be present.

❏✔ LEARNING CHECK

Question: What is an alternative or research hypothesis?
Answer: An alternative or research hypothesis is a hypothesis 

that stands in opposition to the null hypothesis.



The research or alternative hypothesis we settle on is often a function of
past research results or a particular theoretical perspective. Maybe previous re-
search or a body of theory suggests that scores will increase or that one popu-
lation will score higher than another. Maybe previous research or theoretical
grounding suggests just the opposite. In some cases, previous research or the-
oretical statements may conflict, leaving us to expect a difference of some sort,
but without any notion as to the direction of that difference.

When researchers have good reason to expect a change or difference in a
particular direction, they are likely to opt for a directional alternative or research
hypothesis. When there are conflicting results from previous research or contra-
dictory suggestions from a body of theory, though, a non-directional alternative
or research hypothesis is typically employed. Yes, it’s still the null hypothesis
that’s tested, but there’s also a research or alternative hypothesis in play, whether
it’s stated or not. In reality, it’s often the research or alternative hypothesis that’s
driving the research in the first place. With that as a background, we can now
explore the link between the alternative or research hypothesis and the topic of
one-tailed and two-tailed tests.

One-Tailed and Two-Tailed Test Scenarios

In Chapters 7 and 8, we considered a variety of hypothesis-testing situations,
but there was something that I neglected to tell you at the time. We approached
those hypotheses as though they were two-tailed test situations; I just didn’t
bother to tell you that’s what we were doing. I deliberately delayed any discus-
sion of that for two reasons. 

First, I firmly believe there’s a limit to how much material anybody can ab-
sorb at once. Chapters 7 and 8 covered a lot of conceptual material, along with
a hefty amount of calculations and computations. In short, you deserved a
break. Second, I think it’s wise to develop a solid grounding in the logic of hy-
pothesis testing before dealing with the difference between a one-tailed and a
two-tailed test. Assuming you now have a solid grasp of concepts such as the
null hypothesis, calculated test statistics, and regions of rejection, we are ready
to move ahead.

To illustrate the difference between the two approaches, let’s take a simple
example. Let’s say we have a questionnaire that measures levels of religious
participation (scores can range from 0 to 100). Assume we’ve collected scores
from a sample of urban residents and a sample of rural residents and have
obtained the results shown in Table 9-1.

As shown in Table 9-1, we have information from two samples (urban and
rural residents), and we have a mean for each group (66.45 for the urban res-
idents and 79.27 for the rural residents). Let’s also assume that we’ve already
calculated an estimate of the standard error (4.42). This test situation is appro-
priate for a difference of means test for independent samples—one in which
we’d eventually calculate a t value for the difference of means. You’ll recall that
part of the t test procedure requires that we find the difference between the two
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means, which we’ll eventually divide by the estimate of the standard error of
the difference of means to obtain our calculated test statistic. In reality, it isn’t
important how we go about finding the difference. We can subtract the mean
of the rural residents from the mean of the urban residents; or we can ap-
proach the problem in the opposite fashion, subtracting the mean of the urban
residents from the mean of the rural residents. 

In this example, the mean of the rural residents is higher than the mean of
the urban residents. In this case, if we subtract the mean of the urban residents
from the mean of the rural residents, we’ll get a difference with a positive sign
(+). If we subtract the mean of the rural residents from the mean of the urban
residents, we’ll get a difference with a negative sign (–). As I mentioned before,
it isn’t important how we go about the subtraction process, just as long as we
mentally keep track of which mean was subtracted from the other and how that
relates to the sign of the difference. Assuming we can do that, let’s look at
some different possibilities.

Testing a Non-directional Research Hypothesis

Let’s start with the assumption that we really don’t know what to expect.
Maybe some previous research suggests rural residents would have higher par-
ticipation levels, but other research suggests that urban residents would have
higher participation levels. In a case like that, it would make sense to approach
the problem with a non-directional alternative or research hypothesis in mind.

In terms of the actual hypothesis test, our alternative or research hypoth-
esis is a statement that we expect to find an extreme difference—a difference
that’s located somewhere in the outer regions of the distribution of possible
differences. Since our alternative or research hypothesis is non-directional,
however, it’s actually a statement that we’re open to that extreme difference
being found at either tail of the distribution (see Figure 9-1). It can be an
extreme difference that has a positive sign (+), or it can be an extreme differ-
ence that has a negative sign (–). We’re open to a difference indicating that

for Urban Residents = 66.45

for Rural Residents = 79.27

Estimate of the standard error of the
difference of means = 4.42

X

X

Urban Rural
Residents Residents

59 83
77 93
74 91
69 79
53 77
68 54
70 65
71 92
72 68
56 88
62 82

Table 9-1 Religious Participation Scores for Urban and Rural Residents



rural residents have higher scores, but we’re also open to a difference indi-
cating that urban residents have higher scores. When we’re working with a
non-directional research hypothesis—when we’re open to finding a significant
difference at either end of the distribution (in the region of rejection of either
tail of the distribution)—we’re in a two-tailed test scenario.

To develop a better understanding of all of this, let’s take the problem all the
way from a statement of the null and a non-directional research hypothesis,
along with the level of significance, through the calculation of the test statistic
and interpretation of results. Consider the following information.

Null hypothesis: There is no difference between the means of rural and
urban residents; the means are equal.

Research hypothesis: There is a difference between the means of rural
and urban residents.

Rural residents: mean ( Rural) = 79.27 Sample size (nRural) = 11
Urban residents: mean ( Urban) = 66.45 Sample size (nUrban) = 11
Difference between the means (79.27 – 66.45) = 12.82

X
X

❏✔ LEARNING CHECK

Question: What is a two-tailed test scenario, and when is it
appropriate?

Answer: A two-tailed test scenario is a research situation in which
the researcher is looking for an extreme difference that
could be located at either end of the distribution.
A two-tailed test is appropriate when the alternative or
research hypothesis is non-directional.
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In a two-tailed test situation, we’re looking for a test statistic that falls 
in either of the critical regions—the positive region (+) at the upper 
end of the distribution or the negative region (–) at the lower end of 
the distribution.

Figure 9-1 Critical Regions in a Two-Tailed Test Situation
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Estimate of the standard error of the difference of means = 4.42
Level of significance (alpha or a ) = .05

Appropriate test is the t test for difference of means.
Degrees of freedom = 20
Critical value = 2.086

Note: The critical value was obtained from Appendix B: Family of t
Distributions (Two-Tailed Test). Since we don’t care about the direction
of any difference (we don’t care if it is positive or negative), we’re in a
two-tailed test situation.

Following the procedures outlined in Chapter 8 (for the difference of
means tests with independent samples), we calculate the test statistic (t):

Given the calculated test statistic of 2.90 and the critical value (from
Appendix B) of 2.086, we conclude that we should reject the null hypothesis.
In rejecting the idea of no difference, we find support for our research or alter-
native hypothesis—that there is a difference. By now, the basics of this process
should be quite familiar to you: State the null, calculate the test statistic, check
the critical value, and make a decision.

What’s new at this point, though, is the role of a two-tailed test in the
process. We found support for the idea that there’s a difference by relying on
a two-tailed test scenario. We set up the research in a way that allowed us to
find a significant difference in either tail of the distribution. We were looking for
an extreme t value—one that was so extreme that it would fall somewhere on
the most extreme 5% of the distribution. Because we were operating on the
basis of a two-tailed test, the 5% was equally divided between the upper and
lower tails of the distribution (2.5% in the upper tail and 2.5% in the lower
tail). And that, in short, is the essence of a two-tailed test scenario. It’s a situa-
tion in which an extreme score can be located at either end of the distribution
(see Figure 9-2).

Testing a Directional Research Hypothesis

Now let’s consider a different situation—one involving a different alternative
or research hypothesis. In this instance, let’s assume that we expect to dis-
cover that rural residents have higher religious participation scores than
urban residents. Since we’re now hypothesizing (in the form of the research
or alternative hypothesis) that the rural residents will have higher religious
participation scores than the urban residents, we are specifying the direction

t = 2.90

t =
12.82
4.42

t =
XRural 2 XUrban

sxRural2xUrban



of the expected difference. Therefore, we’re relying on a directional research
or alternative hypothesis.

As it turns out, the selection of a directional alternative or research hypoth-
esis (as opposed to a non-directional one), results in a few changes in how we
approach the test. These changes can be summarized as follows:

■ The null hypothesis changes slightly. Instead of the null being a
statement that we expect the two means to be equal, the null is now a
statement that either the two means are equal or the mean score of the
rural residents is lower than the mean of the urban residents.
Remember, our alternative hypothesis in this case is that we expect the
mean score for rural residents to be higher than the mean score for
urban residents. Therefore, the null hypothesis (if it truly stands in
opposition to the research or alternative hypothesis) is that we expect
the mean score of the rural residents to be equal to or lower than the
mean score of the urban residents. 

■ We’re no longer looking for an extreme difference at either end of the
distribution. Instead, we’re looking for a t value at only one end of the
curve—a t value that falls in only one tail of the distribution. Remember:
We’re asserting that we expect the mean score of the rural residents to be
higher than the mean score of the urban residents. Assuming that we
calculate the difference by subtracting the mean of the urban residents from
the mean of the rural residents, we’ll be looking for a positive difference
(a difference that carries a + sign). 

■ Since we’re only willing to accept a difference in a certain direction, 
we’re in what is referred to as a one-tailed test scenario. To find our
critical value, therefore, we’ll use Appendix C: Family of t Distributions
(One-Tailed Test).

■ The critical value for a one-tailed test (found in Appendix C) will be different
from the critical value for a two-tailed test (Appendix B).
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5% of the total area

2.5% 2.5%

Half of the total area (2.5%) is found at the upper end of the distribution, 
and half of the total area (2.5%) is found at the lower end of the 
distribution.

Figure 9-2 Allocation of the Extreme 5% of the Distribution in a
Two-Tailed Test Scenario
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To carry out our test, we follow the same formula as before. As a reminder,
here are the same steps, repeated again:

Note that our calculated t test statistic carries a positive sign because we’re subtracting 
the mean of the urban residents from the mean of the rural residents. If we’d subtracted
the mean of the rural residents from the mean of the urban residents, however, we’d have
a negative t test statistic. 

As noted previously, we’re no longer looking for a significant t value at either
extreme of the distribution of all possible t values. Instead, we’re expecting it to
be found in only one extreme region—in the upper end of the distribution, the
area related to the positive t values. Remember: We’re looking for a t value that
falls in only one of the extreme regions; that’s why we say we’re in a one-tailed
test situation. 

Working at the .05 level of significance, with 20 degrees of freedom, the
table for a one-tailed test (Appendix C) shows a critical value of 1.725. In this
instance, the extreme 5% of the area under the curve is not divided between
the two tails of the distribution. Rather, the extreme 5% is to be found either at
the lower end of the distribution or at the upper end of the distribution. In other
words, the extreme area in a one-tailed scenario is found on only one side of
the distribution (see Figure 9-3). 

Since our calculated t value is 2.90 and our critical value is 1.725, it ap-
pears that we’re in good shape; we’re on our way to rejecting the null hypoth-
esis. At this point, though, we want to carefully consider the nature or direction
of the difference that we found between the two means. In this case, the dif-
ference is consistent with our alternative or research hypothesis; the mean
score for the rural residents was higher than the mean score for the urban
residents. We’re in a position to reject the null. 

t = 2.90

t =
12.82
4.42

t =
XRural 2 XUrban

sxRural2xUrban

The entire critical region—5% of the total area under the curve—is found 
either at the lower end of the distribution or at the upper end of the distribution.

5%5%

Figure 9-3 Allocation of the Extreme 5% of the Distribution in a One-Tailed
Test Scenario



In summary, we used a one-tailed test scenario, we found significant
results, and the results were in the hypothesized direction (according to the
alternative or research hypothesis we had advanced). If, however, we’d been
working with a different alternative or research hypothesis—that urban resi-
dents would have higher participation scores than rural residents—we would
have found ourselves facing a researcher’s worst nightmare. We would have
found a difference between the mean score of the urban and rural residents, to
be sure, but the difference would have been opposite to the direction we
hypothesized.

The logic involved in a one-tailed test can clearly get a little tricky, particu-
larly when you get to the matter of whether or not the direction of the differ-
ence is consistent with the direction specified by the alternative or research
hypothesis. Still, that’s no reason to let it throw you. Just accept the fact that
the logic is a little tricky—the sort of thing that eventually takes hold with
repeated application.

Beyond that, you might also take some consolation in the fact that many
researchers steadfastly avoid the use of one-tailed tests, and they do so for what
they consider to be very good reason. To understand why some researchers, as
a matter of course, just avoid using a one-tailed test, think back to the different
critical values we encountered. When working in the two-tailed test scenario,
our critical value was 2.086. In the one-tailed test situation, though, the critical
value was 1.725. And that difference—the difference between the two critical
values—brings us to the heart of the matter, at least in terms of how some re-
searchers see the issue.

When you compare those values, one thing should become clear. Assum-
ing any observed difference is consistent with the direction suggested by the al-
ternative or research hypothesis, it’s easier to achieve significant results in a
one-tailed than in a two-tailed test scenario. As Gravetter and Wallnau (2002)
note:

A one-tailed test allows you to reject the null hypothesis when the differ-
ence . . . is relatively small, provided the difference is in the specified
direction. A two-tailed test, on the other hand, requires a relatively large
difference independent of direction. (p. 189)

❏✔ LEARNING CHECK

Question: What is a one-tailed test scenario, and when is it
appropriate?

Answer: A one-tailed test scenario is a research situation in which
the researcher is looking for an extreme difference that is
located on only one side of the distribution. A one-tailed
test is appropriate when the alternative or research
hypothesis is directional.
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Type I Error: Rejecting the null hypothesis when it is true.
Type II Error: Failing to reject a null hypothesis when it is false.

In simple terms, some researchers prefer to work in a situation in which
the bar of proof, so to speak, is as high as reasonably possible. They shy away
from the easier situations (the ones made easier by the one-tailed test scenario)
and opt instead for more demanding ones—the two-tailed test scenarios.
Indeed, many researchers will resort to a one-tailed test situation only under
very unusual circumstances, if at all. The conclusion to all this? It’s simple.
Don’t be terribly surprised if you never encounter a one-tailed test in 
the remainder of your statistical journey. It’s one of the finer points of
hypothesis-testing logic, but one that you should know about, nonetheless. If
you do encounter a one-tailed test along the way, at least you’ll know what
it’s all about.

That said, we can leave the present discussion. Before we close out the
chapter, though, we’ll consider two final concepts: power and effect. Though
not routinely considered by all statisticians, these concepts are particularly rel-
evant to the field of experimental psychology, as well as other disciplines that
frequently rely on experimental research designs.

Power and Effect

We’ll begin with a brief review of Type I and Type II errors. First, take a mo-
ment to think about the difference between Type I and Type II errors. Here
they are, spelled out for you again:

Now, instead of thinking about the errors in terms of their definitions, think
about them in terms of the possibilities we encounter whenever we approach a
null hypothesis. First and foremost, always remember that there are two possi-
bilities with respect to the null hypothesis: A null hypothesis is either true, or it
is false. In other words, it doesn’t make any difference what our research results
eventually lead us to conclude. The fact remains that the null hypothesis, in
reality, is either true or false. 

Given that, our test of a null hypothesis can lead to four possibilities. We
can either reject or fail to reject a true null hypothesis. By the same token, we
can either reject or fail to reject a false null hypothesis. Table 9-2 illustrates
these four possibilities.

Since the logic involved in all of this can get a little confusing at first, let’s
take apart Table 9-2, cell by cell. At first you may find the explanation I’m about
to give you to be a little silly, but trust me on this: A little bit of silliness at this
point can serve you well. Let’s start with the information on the left-hand side
of the table.



The left-hand side of the table represents a situation in which the null hy-
pothesis is actually true. To fully grasp this point, pretend for a moment that we’re
all-knowing, and we’re watching someone else undertake a research problem.
Because we’re all-knowing, we’re in a position to know that the null hypothesis
is true. Maybe the null in this case is a statement that there’s no difference be-
tween the means of two populations. The point is, we know that the null is in fact
true. The team of researchers who’re about to test the null, however, don’t know
what we know. All they know is that the null says there’s no difference.

Now let’s say the researchers test the null hypothesis, and the test results
cause them to fail to reject the null. Remember: We know that the null is true. In
a case like that—we know the null is true, and the researchers have failed to re-
ject it—we might be inclined to pat the researchers on the back: Good job! The
null was true, and you failed to reject it! You reached your objective! When a null
hypothesis is true, researchers want to be in a position to fail to reject it.

Now, though, let’s consider a different outcome. Let’s say it’s still the case
that the null is true, but let’s say the test results led the researchers to reject the
null. In other words, the researchers found an extreme difference and rejected
the null. Oops! The researchers just committed a Type I error! The researchers
wouldn’t know it, but we would. We know that the null is true, and the
researchers just rejected the null.

In summary, there are two possible outcomes when a null hypothesis is
true. One outcome is desirable; the other one isn’t. If researchers fail to reject
a true null hypothesis, the researchers are on solid ground. If, on the other
hand, the researchers reject a true null hypothesis, they have committed a
Type I error. So much for null hypotheses that are true. Now let’s turn to the
case of a false null hypothesis.

This time, focus on the right-hand side of the table. In this case, we
know (because we’re all-knowing) that the null hypothesis is false. In other

214 CHAPTER 9 Beyond the Null Hypothesis

The Null Hypothesis Is . . .

R
ej

ec
t

th
e 

N
ul

l
Fa

il 
to

 R
ej

ec
t

th
e 

N
ul

l

RESEARCH
OBJECTIVE

TYPE I ERROR

TYPE II ERROR

True False

RESEARCH
OBJECTIVEB

as
ed

 o
n
 t

h
e 

T
es

t,
W

e 
E

it
h
er

 .
 .
 .
 

Table 9-2 Logical Possibilities in the Test of a Null Hypothesis



Power and Effect 215

words, the null hypothesis says that there’s no difference between two pop-
ulations, but we know that there is a difference. As before, there are two
possible outcomes.

Let’s say a group of researchers test the null hypothesis and find a significant
difference. As a result, they reject the null hypothesis. As before, we’d be in-
clined to pat the researchers on the back: Job well done! The null was false and
you rejected it! That was a job well done in the sense that it would be consistent
with another research objective. Just as researchers want to fail to reject true null
hypotheses, they also want to reject false null hypotheses.

Now let’s consider the other possibility. Let’s say that our researchers
failed to find a significant difference. We (because we’re all-knowing) know
there’s a significant difference between the two populations, but the researchers
failed to detect that difference. As a result, they failed to reject the null when,
in fact, it’s false. In other words, the researchers committed a Type II error.

Now all of that amounts to quite a bit of logic to digest, but digest it you
must. Let me suggest that you take some time for a dark room moment to con-
template what we just covered. Imagine a situation in which you’re hovering
above a team of researchers and watching them work. 

First, imagine a situation in which you know that the null hypothesis is true.
Imagine that you know that there’s no difference between two population
means. Visualize the researchers failing to reject the null. Then imagine the 
researchers rejecting the null. Think about your reactions to what they 
have done.

Now imagine a situation in which you know that the null hypothesis is false.
Imagine that you know that there is a difference between two population means.
Visualize the researchers rejecting the null. Then imagine the researchers failing
to reject the null. Think about your reactions to what they have done.

Let me suggest that you go through this visualization exercise over and
over—thinking through all the possibilities time and time again, to the point
that you’re totally comfortable with them. Draw your own diagrams, or think
up your own examples. If necessary, repeat the process to the point that you
have a near-intuitive understanding of the logic. Assuming you feel comfortable
with the full logic of Type I and Type II errors, we can move forward. 

Remember what one of the major objectives is in the research process. If
the null is false, a researcher will want to reject it. And that’s where the con-
cepts of power and effect come into play. First, we’ll consider the matter of
power; then we’ll turn to the concept of effect.

The power of a statistical test is the ability of the test to reject a false null
hypothesis. It’s represented by the cell in the lower right-hand corner of
Table 9-2. Remember: There are two possible outcomes to a statistical test
when the null hypothesis is false. If we fail to reject a false null, we commit a
Type II or beta (b ) error. If we reject a false null hypothesis, however, we’ve
reached our objective. Since b represents the probability of committing a
Type II error, we can define the power of a test as 1 – b (or 1 minus the prob-
ability of a Type II error). To better understand all of this, consider the following
example.



Let’s say that we want to know whether or not sleep deprivation has an
effect on the amount of time required to complete a task. We could approach
the problem as follows: 

■ Assemble two groups of research participants—one sleep deprived and
one not.

■ Ask members of each group to complete a task.
■ Record the amount of time each participant spent completing the task.
■ Perform the necessary calculations—a difference of means test—and arrive

at a conclusion.
■ Either reject the null or fail to reject the null.

As before, this process should be very familiar to you by now. What may
not be apparent to you, however, is how the concepts of power and effect are
involved. In truth, the goal of the research outlined above would be to detect
the effect of sleep deprivation on task completion time. In the context of re-
search, effect is the change in a measurement that is attributable to a treatment
condition or stimulus of some sort.

To demonstrate that sleep deprivation has an effect, we’d have to find a
significant difference between the two sets of recorded times and reject the null.
It stands to reason that the larger the effect, the greater the likelihood that we’d
do just that. A slight difference between the means would probably result in our
failing to reject the null. A large difference, though, would probably result in our
rejecting the null. All factors being equal, the larger the difference between the
scores, the greater the likelihood that the null will be rejected. When the null is
rejected, there’s support for the notion that sleep deprivation has an effect on
task completion time.

Of course there’s always a possibility that sleep deprivation had an effect
on task completion time, but we failed to pick up on that. In other words,
there’s always some probability of a Type II error—the null was false, but we
failed to reject it. That possibility brings us to the heart of the issue.

❏✔ LEARNING CHECK

Question: What is the definition of effect?
Answer: Effect is the change in measurement that is attributable

to a treatment condition or stimulus of some sort.

❏✔ LEARNING CHECK

Question: What is the power of a test?
Answer: Power is the ability of a test to reject a false null

hypothesis.
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If a treatment condition of some sort has an effect on an outcome (that is,
the null hypothesis is false), we want to be in a position to detect it. We want
to detect the effect and subsequently reject the null. What we don’t want is a sit-
uation in which an effect is present, but we’ve failed to detect it. 

So how might we guard against such a situation? There are certain steps
that we, as researchers, can take to increase the likelihood that we’ll detect or
pick up on the effect of a treatment condition. There are certain things we can
do at the outset of a research problem to increase the power of the test—the
likelihood that we will reject the null hypothesis when it’s false.

First, we can increase our sample size. Assuming, for example, that the
design of our research has us looking for a difference of some sort between
two groups of research participants, an increase in the size of the samples
would increase the likelihood that we’d detect any difference between the
groups that actually exists.

Second, we can opt for a one-tailed test scenario. In this case, the entire
region of rejection is found at one end of the distribution, and the necessary
value to reject the null hypothesis (the critical value) is reduced slightly. In turn,
there is an increase in the likelihood that our results will be significant (assum-
ing they are in the hypothesized direction).

Similarly, we can increase our level of significance (regardless of whether we
were working with a one-tailed or two-tailed test scenario), and thereby increase
the likelihood of rejecting the null hypothesis. Unfortunately, this option has an
associated cost—namely, an increase in the probability of a Type I error.

Finally, we can, to the extent possible, strive for highly controlled research
situations—for example, situations in which participants in two groups are
matched on relevant variables. By matching participants on a host of variables,
we reduce the possibility that any difference might be masked by the influence
of extraneous or outside variables. In short, highly controlled research designs
increase the possibility that a treatment effect will, in fact, shine through.

Chapter Summary

We’ve explored quite a bit of conceptual material in this chapter, so it’s probably
appropriate to undertake a quick review of what we’ve just covered and a quick
check of where you should be in your statistical education. For example, by now
you should be totally comfortable with the role of the null hypothesis in scientific
research and how it stacks up against an alternative or research hypothesis.
Similarly, you should now be comfortable with the concept of an alternative or
research hypothesis and how it is incorporated into your research efforts.

With your knowledge of alternative or research hypotheses, the notions of
one-tailed and two-tailed test scenarios should now make sense. Similarly, the
mystery as to why there are two tables for the distribution of t (Appendix B and
Appendix C) should now be solved. Even if you never opt to use a one-tailed
test, at least you’ll be familiar with the logic that’s involved in the application if
you see or hear reference to it.



Finally, the more in-depth exploration into the logic of Type I and Type II
errors should have given you a better understanding of research objectives in
the larger sense—particularly the objective of rejecting false null hypotheses.
With that understanding as a base, the concepts of power and effect should
have taken on some meaning.

As we close this chapter and prepare for the next, we leave the more
conceptual world and return to the world of calculations, computations, critical
values, and such. At the same time, though, the logical underpinnings of
hypothesis testing, including much of the material we just covered, should
remain part of your thinking.

Some Other Things 
You Should Know

Some of the material we covered in this chapter will have more relevance to
some readers than to others. For example, the material on power and effect
has particular relevance for those in the field of experimental psychology.
These issues are typically of minimal consequence in fields such as sociology or
political science, which rely on large-scale surveys (and, consequently, large
sample sizes). When power and effect are of consequence, however, additional
resources should be consulted. For example, excellent discussions are to be
found in Dunn (2001), Hurlburt (1998), Pagano (2001), and Howell (1995). 

As to one- versus two-tailed tests, you should note that there are many sit-
uations in which the choice isn’t even available. For example, the ANOVA pro-
cedure we will cover in the next chapter involves a comparison of three or
more means. In a case like that, only one alternative or research hypothesis is
appropriate—namely, a non-directional research hypothesis stating that the
means vary across the different groups. The alternative or research hypothesis
is not a statement that one mean will be higher or lower than another. 

Finally, you should be aware of how the logic of one-tailed and two-tailed
tests is dealt with when working with Z and the Table of Areas Under the Normal
Curve. Should you find yourself in that situation, you can approach the prob-
lem with the assurance that the same logic applies. For example, the table pre-
sented in this text (Appendix A) really contains one-tailed values, because it
only deals with one half of the normal curve. Note that a Z value of 1.96 actu-
ally has an associated proportion of .4750 (a percentage of 47.50%). We in-
terpret a Z value of 1.96 as encompassing 95% of the area under the normal
curve, but that’s because we’re mentally taking into account the area between
Z values of –1.96 and +1.96. 

If we were calculating Z and working in a one-tailed test scenario at the .05
level of significance, we would want to find the Z value (the critical value) that
corresponded to either the upper or lower 5% of the area. The Z value asso-
ciated with the upper or lower area (but not both) is the Z value that corre-
sponds to .4500, or 45%. That Z value turns out to be approximately 1.64.
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Key Terms

alternative hypothesis one-tailed test scenario
directional hypothesis power
effect research hypothesis
non-directional hypothesis two-tailed test scenario

Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. A(n) hypothesis is a hypothesis that stands in opposition
to the null hypothesis.

2. An alternative or research hypothesis that specifies the nature or direction
of a hypothesized difference is considered a .

3. A tailed test scenario is appropriate when the alternative or re-
search hypothesis is non-directional in nature.

4. A tailed test scenario is appropriate when the alternative or re-
search hypothesis is directional in nature.

5. A Type I error involves a null hypothesis when it is
.

6. A Type II error involves a null hypothesis when it is
.

Alternative or Research Hypotheses Application 
Questions/Problems

1. A researcher is examining the possibility of a difference between the grade
point averages of on-campus students and commuter students. 
a. What would be an appropriate null hypothesis?
b.–d. What alternative or research hypotheses could be advanced? 

2. A criminologist is examining the possibility of a difference between the
length of sentences handed out to white and non-white defendants in first-
offense drug trafficking cases.
a. What would be an appropriate null hypothesis?
b.–d. What alternative or research hypothesis could be advanced? 

3. A political scientist is examining the possibility of a difference in the levels
of voter participation in rural and urban areas.
a. What would be an appropriate null hypothesis?
b.–d. What alternative or research hypotheses could be advanced? 



4. A team of environmental geographers believe that there’s no significant
difference between levels of water pollution in creeks in the northern and
southern parts of the state, but they still want to conduct a test to verify this
belief.
a. What would be an appropriate null hypothesis?
b.–d. What alternative or research hypotheses could be advanced? 

One-Tailed and Two-Tailed Application Questions/Problems

1. Given the information in Appendix A, identify the critical values for Z in
the following situations:
a. .05 level of significance; two-tailed test situation
b. .05 level of significance; one-tailed test situation
c. .01 level of significance; two-tailed test situation
d. .01 level of significance; one-tailed test situation

2. Given the information in Appendix B and C identify the critical values for
t in the following situations:
a. 15 degrees of freedom and the .05 level of significance in a two-tailed

test
b. 21 degrees of freedom at the .05 level of significance in a one-tailed

test
c. 18 degrees of freedom at the .10 level of significance in a two-tailed

test
d. 18 degrees of freedom at the .05 level of significance in a one-tailed

test
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Analysis of Variance

The next procedure we cover is referred to as ANalysis Of VAriance (com-
monly abbreviated as ANOVA). More specifically, we will take up an applica-
tion known as one-way ANOVA. Many statisticians think of ANOVA as an
extension of the difference of means test because it’s based, in part, on a com-
parison of sample means. At the same time, however, the procedure involves
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a comparison of different estimates of population variance—hence the name
analysis of variance. Because ANOVA is appropriate for research involving
three or more samples, it has wide applicability. 

In the field of experimental psychology, for example, researchers rou-
tinely look at results from three or more samples, often referred to as treat-
ment groups. One can easily imagine an educational psychologist wanting
to know if students exposed to three different treatment conditions or learn-
ing environments (positive sanction, negative sanction, and sanction neutral)
exhibit different test scores. Assuming the test scores are based on an interval/
ratio scale of measurement, ANOVA would be an appropriate approach to the
problem.

Similarly, a geographer might be interested in the growth rates of four
types of cities—manufacturing centers, government centers, retail centers, and
financial centers. A study along those lines would be another research problem
ideally suited for ANOVA. 

What makes both of these problems appropriate for ANOVA is the fact
that they involve more than two groups or samples and a single variable that
has been measured at the interval/ratio level of measurement. It’s true that re-
search problems like these can be approached with a series of t tests, and that
might be your inclination if you knew nothing about ANOVA. For example, the
geographer could conduct different t tests—comparing the growth rates of
manufacturing centers with those of government centers, followed by a com-
parison with financial centers, and so forth—but there are inherent problems in
that approach. 

A study based on just four types of cities would turn into a series of six t
tests involving all the possible comparisons. Besides the added work of six in-
dividual tests, there’s the issue of Type I errors (rejection of the null hypothesis
when it is true). Without going into the mathematics of the situation, the fact is
that the probability of a Type I error would be magnified. Even though the
probability of a Type I error on any one of the six tests would be, let’s say, .05
(if that was the designated level of significance), it would increase well beyond
that for the six individual tests taken together. Given that, it’s no wonder that
researchers commonly turn to ANOVA. In short, ANOVA allows the compari-
son of multiple samples in a single application. That should be apparent once
you consider the logic of ANOVA.

❏✔ LEARNING CHECK

Question: ANOVA is appropriate for what types of research
situations?

Answer: ANOVA is appropriate for situations involving three
or more samples and a variable measured at the
interval/ratio level of measurement.
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Up to this point, we’ve covered four specific hypothesis testing procedures.
First there was the hypothesis test involving a single sample mean, one proce-
dure with sigma (s ) known and then another with sigma (s ) unknown. Then we
shifted to situations involving the matched and related samples, followed by sit-
uations involving two independent samples. In sum, we looked at four situa-
tions and four hypothesis testing procedures.

If you’ll take the time to reflect on that—the notion that we looked at four
situations and four hypothesis testing procedures—you’ll likely see the repeti-
tion that occurs in the field of statistics. Just to make certain that you grasp this
repetitive nature of hypothesis testing, let me urge you to think about it this
way: The underlying logic remains the same; what changes is the research sit-
uation. In other words, it’s the research situation or problem that dictates what
procedure to use.

So, you ask, how does that relate to where we’re going? The answer is
pretty straight-forward. We started out with research problems involving one
sample. Then we dealt with situations involving two samples. Naturally, not
every research situation falls into one of those categories; it’s common to
encounter research situations that involve three or more samples. In a nutshell,
that’s where we’re going in this chapter—research situations involving three or
more samples.

The Logic of ANOVA

Imagine for a moment that we want to know if scores on an aptitude test actu-
ally vary for students in different types of schooling environments—home
schooling, public schooling, and private schooling. This research question in-
volves a comparison of more than two groups. Assuming that the aptitude test
scores are measured at the interval/ratio level, the situation is tailor-made for
an application of ANOVA. We could easily think of our study as one that asks
whether or not aptitude test scores vary on the basis of school environment.

Another way to look at the question is whether or not type of school envi-
ronment is a legitimate classification scheme when it comes to the matter of
aptitude test scores. After all, to refer to students in terms of home, public, and
private schooling is to speak in terms of a classification scheme. If aptitude
test scores really do vary on the basis of school environment—if there is a
significant difference between the scores in the three environments—then it’s
probably legitimate to speak in terms of school environments when looking at
test scores. If there isn’t a significant difference between the scores, however, we
have to question the legitimacy of the classification scheme. In a sense, we were
also dealing with the legitimacy of a classification scheme in the last chapter,
particularly in reference to the test for independent sample. To suggest that two
groups are different with respect to some variable is, in fact, a way of suggesting

Before We Begin
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that the members of the group or cases can reasonably be classified on the basis
of the variable in question. That said, let’s return to the topic at hand.

To understand how all of this relates to ANOVA, consider Figure 10-1.
Imagine that the three curves shown in Figure 10-1 represent the distributions
of aptitude test scores for three samples—a sample of home-schooled students,
a sample of public school students, and a sample of private school students.

The three distributions reflect three different means, but the means are
fairly close together, and there’s substantial variation in the scores within each
group. Additionally, there’s noticeable overlap in the distributions. The overlap
exists, in part, because of those factors taken together—the fact that there’s
substantial variation within each of the distributions, coupled with minimal dif-
ference between the means. (Technically, the proper phrase should be among
the means because the comparison typically involves three or more means, but
in the language of ANOVA, the phrase between the means is used nonethe-
less. It’s just a matter of statistical convention.)

Now consider the distributions shown in Figure 10-2. You’ll note that the
means of the distributions in Figure 10-2 are very different, and there’s no
overlap between the three curves.

A grasp of ANOVA begins with an understanding of the different patterns
reflected in Figures 10-1 and 10-2. If there’s more variation between groups
than within groups (as suggested by the illustration in Figure 10-2), then there’s
support for the assertion that students in the different schooling environments
are different with respect to aptitude test scores. Conversely, the illustration in
Figure 10-1 would challenge the legitimacy of the classification scheme. Because
the means are fairly close together in Figure 10-1, and there is a decided or no-
ticeable overlap between the three samples (home-schooled students, public
school students, and private school students), it wouldn’t make much sense to
speak in terms of type of schooling environment when it comes to test scores on
the aptitude test.

A = Home schooling
B = Public schooling
C = Private schooling

A B C

Figure 10-1 Student Performance in Three Learning
Environments (Scenario #1)
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From Curves to Data Distributions

So far we’ve been speaking in rather general terms, with vague references to
variation within groups and equally vague references to the variation between
groups. Now it’s time to take a closer look at ANOVA and how it actually mea-
sures the amount of variation we’re considering. In essence, ANOVA allows
us to calculate a ratio of the variation between groups to the variation within
groups. This ratio is referred to as the F ratio (named after its developer,
Sir Ronald Fisher).

At the risk of jumping ahead, let me point you in the right direction here.
Assuming that we’re in search of significant results in a hypothesis-testing
situation, what we’ll be looking for is more variation between the means of
several groups, relative to the variation within the groups. In short, we’ll be
looking for more variation between than within. Because the F ratio is an
expression of the between-to-within ratio, we’ll be looking for a large F value.
All factors being equal, the larger our F ratio, the greater the probability that
we’ll reject the null hypothesis. 

❏✔ LEARNING CHECK

Question: What are some ways to think about the purpose of
ANOVA? What does it measure?

Answer: It measures whether there’s more variation between
groups than within groups. It examines the legitimacy of a
classification scheme.

A = Home schooling
B = Public schooling
C = Private schooling

A B C

Figure 10-2 Student Performance in Three Learning Environments 
(Scenario #2)
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The details of how we calculate the F ratio is something we’ll cover later.
Right now, the issue is the underlying logic. So let me give you some more ex-
amples, just to get you thinking on the right track.

A market researcher wants to determine if there’s a significant difference
between the response rates to five different marketing campaigns. In other
words, she wants to know if there’s more response rate variation between
than within the different campaigns. If there’s more variation in the
response rates between than within the campaigns, then it’s likely that
response rates really do vary by type of campaign.
A sociologist wants to determine if different types of school personnel
(teachers, counselors, and coaches) vary in their abilities to recognize
risk factors for youth suicide. Assuming he has some sort of interval/ratio
level scale to measure risk factor awareness, the question has to do
with how the scores on the scale vary by personnel classification. The
researcher would have to find more variation between different samples
(teachers, coaches, and counselors) than within the samples to suggest
that risk factor recognition actually varies by personnel classification.

By now you should be getting the message: We’ll be looking for more vari-
ation between the samples than within the samples, at least if we’re going to
achieve significant results. That, of course, brings us to the matter of how we
measure the variation. As you might have guessed, the concept of variation re-
lates to deviations from the mean. And that, in turn, brings us to the various
means we might consider. 

The Different Means

We can begin with a look at Figure 10-3, but let me warn you in advance.
Figure 10-3 is rather abstract. There aren’t any values or scores or data of
any sort. There isn’t any information about a specific research question. It’s
all very abstract, but it’s that way for a reason. One of the best ways to
sharpen your thinking about the logic of ANOVA is to think about it in purely
abstract terms.

Take a few moments to look at Figure 10-3, and even replicate the illus-
tration on a sheet of paper if you want to ( just so you can add some of your

❏✔ LEARNING CHECK

Question: What is the F ratio? What does it reflect?
Answer: The F ratio is the test statistic calculated for ANOVA.

It is the ratio of the variation between the samples to
the variation within the samples.
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own notes or doodles). Figure 10-3 depicts four samples—Sample A, Sample B,
Sample C, and Sample D. It doesn’t make any difference at this point what
those samples relate to. Each sample has its own distribution of scores or values
(represented by individual asterisks). 

Note that there are 8 cases in Sample A, 5 cases in Sample B, 9 cases in
Sample C, and 7 cases in Sample D. Taken together, there are 4 samples and a
total of 29 cases. Remember: Each case could be a person (a total of 29 per-
sons), an organization (a total of 29 organizations), a city (a total of 29 cities), or
anything else. Each asterisk represents one case—an individual score or value. 

Now think about the various means we could calculate. First, there’s a mean
for Sample A (based on 8 cases), a mean for Sample B (based on 5 cases), a
mean for Sample C (based on 9 cases), and a mean for Sample D (based on
7 cases). There are four samples, so there are four sample means. 

So far we have four sample means, but there’s still another mean to con-
sider. We could, if we wanted to, calculate a grand mean—an overall mean
based on the 29 cases. We could add all of the individual scores or values (all 29
of them) and then divide by 29. The result would be an overall or grand mean. 

Note that we wouldn’t calculate the grand mean by adding the 4 sample
means and dividing by 4. We could do that if all the samples had the same number
of cases, but that’s not what we have in this example. Instead, we have 4 samples,
and each sample has a different number of cases. Each sample mean, or group

Four sample means

Grand mean based on the sum of all
29 scores or values divided by 29

Mean
based on
8 cases

Sample A

Mean
based on
5 cases

Sample B

Mean
based on
9 cases

Sample C

Mean
based on
7 cases

Sample D

Figure 10-3 The Various Means Involved in ANOVA
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mean, is a function, in part, of the number of cases in the sample. Therefore, we
can’t treat them equally (which is what we would be doing if we simply added the
4 means and divided by 4).

Take another look at Figure 10-3. Even though it’s very abstract, think
about what the illustration reveals—the notion of a grand mean, as well as a
mean for each sample. 

Let me suggest that you spend some time reviewing Figure 10-3 to grasp
the notion of a grand mean, along with the individual sample means. The dif-
ferent means are highlighted in the illustration. Once you’ve done that, we can
move to the question of variation and how we measure it.

From Different Means to Different Types of Variation

To understand the matter of variation, think back to the idea of the deviation of
a score or value from a mean (a concept introduced in Chapter 3). The concept
of variation typically involves the extent to which various scores in a distribution
deviate from the mean of the distribution. We can easily apply the same idea to
the problem we’re considering here.

Let’s start with the sample or group means. We’ll begin with Sample A. We
already know that Sample A has a mean based on the scores from eight cases,
so it’s easy to think in terms of how far each of the eight scores or values deviates
from the mean of Sample A. For an illustration of that point, take a look at the
first column in Figure 10-4. 

❏✔ LEARNING CHECK

Question: What two types of means come into play in ANOVA?
Answer: The grand mean and the individual sample means.

Scores in
Sample A

Scores in
Sample B

Scores in
Sample C

Scores in
Sample D

Mean of
Sample DMean of

Sample C

Mean of
Sample B

Mean of
Sample A

Figure 10-4 Illustration of Within-Groups Variation (Deviation of Individual Sample Scores
from the Mean of the Sample)
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Figure 10-4 is much the same as Figure 10-3, but with some added infor-
mation. It illustrates the notion that each score or value in Sample A deviates
by some amount from the mean of Sample A. Moving across to Samples B, C,
and D, we encounter the same idea again and again. Each sample has a mean
and individual scores or values within each sample deviate or vary from the
sample mean. In other words, there is a certain amount of variation associated
with each sample. This sort of deviation is what we mean by within-groups
variation.

Now let’s turn our attention to another form of variation. You’ll recall from
our previous discussion that we could obtain a grand mean by adding all the
scores and dividing by 29 (since there are 29 cases or scores in our example).
Assuming we did that, we could then calculate the difference between the mean
of each sample and the grand mean—another form of variation. To get a
picture of this sort of variation, take a look at Figure 10-5. 

As shown in Figure 10-5, the mean of Sample A deviates a certain num-
ber of points from the grand mean, the mean of Sample B deviates a certain
number of points from the grand mean, and so on. This sort of deviation is
what we mean by between-groups variation.

Your success in understanding the ANOVA procedure will largely depend
on your ability to fully comprehend these two forms of variation, so let me urge
you to take a dark room moment at this point. Allow yourself to think in totally
abstract terms—three samples, or seven samples, or whatever number suits you.

Grand mean
based on the sum of all 29 scores divided by 29

Mean of
Sample A

Mean of
Sample B

Mean of
Sample C

Mean of
Sample D

Scores in
Sample A

Scores in
Sample B

Scores in
Sample C

Scores in
Sample D

Figure 10-5 Illustration of Between-Groups Variation (Deviations
of Sample Means from the Grand Mean)
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Also allow yourself to think in terms of however many cases you want to have
in each sample. Imagine that you’ve calculated a mean for each sample or
group, and you’ve calculated a grand or overall mean. The specifics aren’t im-
portant at this point. What’s important is the notion of two forms of variation.
First, there’s the variation of scores or values from the individual sample
means. Then, there’s the variation of each sample mean from the grand mean. 

Whenever you think about the variation of individual scores from a sample
mean, remind yourself that you’re thinking about within-groups variation (sim-
ply the variation within each sample). Whenever you think about the variation
of a sample mean from the grand mean, remind yourself that you’re thinking
in terms of between-groups variation (or the variation of each sample mean
from the grand mean). Repeat the process over and over with different mental
images. Repeat the process until you’re totally comfortable with the concepts
of within-groups and between-groups variation. Assuming you’ve spent suffi-
cient time thinking about those concepts, we can move on to a statement of
the null hypothesis. 

The Null Hypothesis

To understand the null hypothesis that’s appropriate in the case of ANOVA,
let’s take up a less abstract example. Let’s say, for example, that we’re inter-
ested in urban unemployment and whether or not the unemployment levels in
cities vary by region of the country. Let’s also assume that we’ve used a ran-
dom sampling technique to select cites in four different regions, and we’ve
recorded the unemployment levels (measured as the percentage of the labor
force currently unemployed in each city). Further, let’s assume that we’ve cal-
culated a group mean for each region (four means, one for each of the re-
gions), and an overall mean (based on the unemployment levels in all the cities
in our study). The null hypothesis for our study simply states that the means of
the regions are equal. It can be stated symbolically as follows:

H0: m1 = m2 = m3 = m4

❏✔ LEARNING CHECK

Question: What is between-groups variation, and what is within-
groups variation?

Answer: Between-groups variation is an expression of the 
amount of deviation of sample means from the grand
mean.Within-groups variation is an expression of the
amount of deviation of sample scores from sample
means.
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In terms of the F ratio, recall that there has to be more variation between
the regions than within the regions for the F ratio to be significant. It all goes
back to the notion that the F ratio is an expression of the ratio of the variation
between groups to the variation within groups; the larger the F ratio, the more
likely it is to be significant. If all the sample means were equal, there wouldn’t
be any between-groups variation. That, of course, is the situation described by
the null hypothesis.

We’ll eventually calculate the F ratio (our test statistic) as a test of the null
hypothesis, and we’ll arrive at a conclusion. If our calculated test statistic (the
F ratio) meets or exceeds the critical value, we’ll reject the null hypothesis (with
a known probability of having committed a Type I error). All of that will even-
tually unfold as we work through an application of ANOVA, so that’s where
we’ll turn next. 

The Application

We’ll begin our application by looking at the data presented in Table 10-1.
The table presents the unemployment data for cities in four regions, described
in the previous scenario. The same assumptions we encountered in the dif-
ference of means test apply in this case—namely, that the unemployment
levels (expressed as a percentage of the labor force) represent interval/ratio
level data and that the cities were randomly selected. Following the normal
convention, we want to select a level of significance in advance, so we’ll set
that at .05.

Take a few moments to examine the data presented in Table 10-1. First,
take note that the sample sizes are different. ANOVA doesn’t require the different

Table 10-1 Levels of Unemployment by Region

North South East West

3.8 4.2 8.8 4.8
7.1 6.5 5.1 1.2
9.6 4.4 12.7 8.0
8.4 8.1 6.4 9.4
5.1 7.6 9.8 3.6

11.6 5.8 6.3 8.7
6.2 4.0 10.2 6.5
7.9 7.3 8.5
9.0 5.2 11.9

10.3 4.8 8.6

= 7.90 = 5.79 = 8.83 = 6.03
n = 10 n = 10 n = 10 n = 7

Grand (Overall) Mean = 7.23

XXXX
Number of cases
in a given sample

Sample mean
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samples to be based on the same number of cases. Second, give some thought
to what an informal inspection of the data suggests. The levels of unemployment
appear to be relatively high in the northern region, but that’s also the case in the
eastern region. In contrast, the levels of unemployment in the southern and
western regions appear to be somewhat lower. 

Apparent differences here or there might suggest that it’s reasonable to speak
in terms of regional variation (at least when it comes to levels of unemployment),
but the mere appearance of variation isn’t enough in the world of statistical analy-
sis. What’s required is a measure of variation that is precise—and that’s what the
ANOVA procedure is all about. ANOVA allows us to go beyond mere visual in-
spection of the data and to accurately measure the ratio (F ratio) of between-
groups variation to within-groups variation. With ANOVA applied to the problem,
we’ll be in a position to arrive at a conclusion grounded in measurement. 

With all of that as a background, we can begin the calculation of the 
F ratio. Up to this point, I’ve been using the term variation in a very general
sense. As it turns out, what we’re actually going to calculate are two estimates
of variance. More specifically, we’re going to develop an estimate of the
between-groups variance and an estimate of the within-groups variance. In
other words, the F ratio will be an expression as follows:

The process used to develop the estimates isn’t difficult, but it is a little te-
dious (particularly if you calculate them by hand, as opposed to relying on a
computer and some statistical software). Much of the complexity can be re-
duced, however, if the process is broken down into its component parts:

1. Calculate what’s known as the sums of squares. 
2. Convert the sums of squares to estimates of variance. 

The process sounds more complicated than it really is, so don’t be dis-
couraged. First, we’ll approach everything in a step-by-step fashion. Second,
the process is remarkably similar to one we encountered earlier, in Chapter 3,
when we first encountered the concept of variance. Just as we did in Chapter
3, we’ll start with a calculation of the squared deviations—what we refer to in
ANOVA as the sum of squares.

Calculating the Within-Groups Sum of Squares (SSW)

My preference is always to begin with the calculation of the within-groups
sum of squares (SSW), simply because it is a bit more straightforward than the
calculation of the between-groups sum of squares. We begin the process by
focusing on the mean of each sample in our study. The mean unemployment
level for each region is shown at the bottom of each column in Table 10-1,
along with the number of cases. 

F ratio =
Estimate of between-groups variance
Estimate of within-groups variance
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First, we’ll focus on the extent to which the level of unemployment for
each city in a particular region deviates, or varies, from the regional mean. For
example, we’ll look at the extent to which the unemployment level for each city
in the southern region deviates from the mean for that region, the extent to
which the unemployment level for each city in the northern region deviates
from the mean of that region, and so on. We will get a measure of the devia-
tion by subtracting the regional mean from the unemployment level of each city
within that region. In other words, we’ll get a mathematical expression of the
deviation through a simple process of subtraction.

As you learned in Chapter 3, however, the sum of the deviations from the
mean always equals 0, so we’ll have to square the deviations. Then we’ll sum
the squared deviations in each region to obtain the sum of squares for each re-
gion. In other words, each region will eventually have its own sum of squared
deviations. Finally, we’ll add up all the sums of squares for all the regions. This
total will be the within-groups sum of squares (SSW).

This portion of the ANOVA calculation is illustrated in Table 10-2. As you
can see, the result of the within-groups sum of squares calculation is 179.29
(SSW = 179.29).

I suspect you’ll agree that the expression within-groups sum of squares is
an apt phrase. After all, the process consists of calculating deviations, squar-
ing the deviations, and summing the squared deviations across the different
samples. The individual steps in the computation of the SSW are shown below.
Note how these steps correspond to the computations reflected in Table 10-2.

SSW = (3.8 – 7.90)2 + (7.1 – 7.90)2 + (9.6 – 7.90)2 + (8.4 – 7.90)2 + (5.1 – 7.90)2

+ (11.6 – 7.90)2 + (6.2 – 7.90)2 + (7.9 – 7.90)2 + (9.0 – 7.90)2 + (10.3 – 7.90)2

+ (4.2 – 5.79)2 + (6.5 – 5.79)2 + (4.4 – 5.79)2 + (8.1 – 5.79)2 + (7.6 – 5.79)2

+ (5.8 – 5.79)2 + (4.0 – 5.79)2 + (7.3 – 5.79)2 + (5.2 – 5.79)2 + (4.8 – 5.79)2

+ (8.8 – 8.83)2 + (5.1 – 8.83)2 + (12.7 – 8.83)2 + (6.4 – 8.83)2 + (9.8 – 8.83)2

+ (6.3 – 8.83)2 + (10.2 – 8.83)2 + (8.5 – 8.83)2 + (11.9 – 8.83)2 + (8.6 – 8.83)2

+ (4.8 – 6.03)2 + (1.2 – 6.03)2 + (8.0 – 6.03)2 + (9.4 – 6.03)2 + (3.6 – 6.03)2

+ (8.7 – 6.03)2 + (6.5 – 6.03)2

= 51.98 + 20.39 + 53.59 + 53.33

= 179.29

❏✔ LEARNING CHECK

Question: What is the symbol for the within-groups sum of
squares, and how is it calculated?

Answer: The symbol is SSW. It is calculated by finding the devia-
tion of each score in a sample from the sample mean,
squaring the deviations, adding the squared deviations for
each sample, and summing across all the samples.
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3
4 Table 10-2 Calculating the Within-Groups Sum of Squares

North South

X X

3.8 –4.10 16.81 4.2 –1.59 2.53
7.1 –0.80 0.64 6.5 0.71 0.50
9.6 1.70 2.89 4.4 –1.39 1.93
8.4 0.50 0.25 8.1 2.31 5.34
5.1 –2.80 7.84 7.6 1.81 3.28

11.6 3.70 13.69 5.8 0.01 0.00
6.2 –1.70 2.89 4.0 –1.79 3.20
7.9 0.00 0.00 7.3 1.51 2.28
9.0 1.10 1.21 5.2 –0.59 0.35

10.3 2.40 5.76 4.8 –0.99 0.98

ΣX = 79.0 ΣX = 57.9

SSNorth = 51.98 SSSouth = 20.39

East West

X X

8.8 –0.03 0.00 4.8 –1.23 1.51
5.1 –3.73 13.91 1.2 –4.83 23.33

12.7 3.87 14.98 8.0 1.97 3.88
6.4 –2.43 5.90 9.4 3.37 11.36
9.8 0.97 0.94 3.6 –2.43 5.90
6.3 –2.53 6.40 8.7 2.67 7.13

10.2 1.37 1.88 6.5 0.47 0.22
8.5 –0.33 0.11

11.9 3.07 9.42
8.6 –0.23 0.05

ΣX = 88.3 ΣX = 42.2

SSEast = 53.59 SSWest = 53.33

SSW = 51.98 + 20.39 + 53.59 + 53.33 = 179.29

X =
42.2

7
= 6.03X =

88.3
10

= 8.83

Σ(X 2 X)2 = 53.33Σ(X 2 X )2 = 53.59

(X 2 X )2X 2 X(X 2 X )2X 2 X

X =
57.9
10

= 5.79X =
79.0
10

= 7.90

Σ(X 2 X)2 = 20.39Σ(X 2 X )2 = 51.98

(X 2 X )2X 2 X(X 2 X )2X 2 X



The Application 235

Calculating the Between-Groups Sum of Squares (SSB)

Now we turn to the between-groups element. The grand mean (7.23) was re-
ported in Table 10-1, along with the mean for each region. To calculate the
between-groups sum of squares (SSB), we’ll follow a procedure similar to
the previous one, but with a slight hitch in the process. Let me explain.

As noted previously, this part of the ANOVA procedure requires that we
calculate the deviation (or, more correctly, the squared deviation) of each re-
gional mean from the grand mean and sum those squared deviations across the
regions. This will give us our between-groups sum of squares (SSB). Unfortu-
nately, however, it’s not as straightforward as it might appear at first glance. As
it turns out, we have to take into account the number of cases that went into
the production of each regional mean. In other words, a regional mean based
on 10 cases is one thing, but a regional mean based on, let’s say, 7 cases is a
different matter. Here’s why.

We’re going to focus on how far each regional mean departs from the
grand mean, but we have to start by recognizing that the grand mean was, in
part, a function of the total number of cases spread over several regions.
Different regions, however, made different contributions to the grand mean.
Three regions contributed 10 values or cases each, but another region (the
western region) contributed only 7 values or cases. It’s only appropriate, there-
fore, that we take into account the different contribution of each region as we
move forward with our calculations. We’ll do that by weighting our results by
the number of cases in each region.

Yes, we’re going to subtract the grand mean from the mean of each region
to obtain a deviation. Then we’re going to square that deviation. But then
we’re going to weight the result. We do that by multiplying the squared devia-
tion of each region by the number of cases in the region. To better understand
this weighting procedure, take a close look at Table 10-3. 

As shown in Table 10-3, we subtract the grand mean from each regional
mean, square the deviation, and then multiply it by the number of cases in that
region. Finally, we sum across the regions to obtain the between-groups sum
of squares (SSB). Remember: We need to take into account the number of
cases that were involved in the production of each sample or group mean.
Therefore, we weight each group’s squared deviation by the number of cases
in the group. This important step is one you have to take, even if all the groups
or samples have an equal number of cases. 

The computations underlying the SSB are summarized below. My sugges-
tion is that you make a thorough study of those computations, as well as the
details of Table 10-3. Once you do that, you’ll be in a better position to see
how we arrived at a between-groups sum of squares 60.88 (SSB = 60.88). 

SSB = 10(7.90 – 7.23)2 + 10(5.79 – 7.23)2 + 10(8.83 – 7.23)2

+ 7(6.03 – 7.23)2

= 4.50 + 20.70 + 25.60 + 10.08
= 60.88
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Even if you feel totally comfortable with the notion of the between-groups
sum of squares concept, let me suggest that you take a short break at this point.
We’ve covered quite a bit. Spend a little time thinking about the sum of squares
within (SSW) and the sum of squares between (SSB). Concentrate on how you
calculated each, and think of these as the first important steps toward the
computation of the F ratio. Take whatever amount of time is necessary—
there’s still another important step ahead.

❏✔ LEARNING CHECK

Question: What is the symbol for the between-groups sum of
squares, and how is it calculated?

Answer: The symbol is SSB. It is calculated by finding the deviation
of each sample mean from the grand mean, squaring the
deviation, weighting the squared deviation for each sam-
ple, and summing across all the samples.

Table 10-3 Calculating the Between-Groups Sum of Squares

Mean of North = 7.90
n = 10

SSB = 4.50 + 20.70 + 25.60 + 10.08 = 60.88

Mean of South = 5.79
n = 10

North

East

Grand Mean = 7.23

South

West

Mean of East = 8.83
n = 10

Mean of West = 6.03
n = 7

 = 7(1.44)

 = 7(21.20)2

 = 7(6.03 2 7.23)2

SSB = n(X 2 XGrand)2

 = 10(2.56)

 = 10(1.60)2

 = 10(8.83 2 7.23)2

SSB = n(X 2 XGrand)2

 = 10(0.45)

 = 10(0.67)2

 = 10(7.90 2 7.23)2

SSB = n(X 2 XGrand)2

 = 10(2.07)

 = 10(21.44)2

 = 10(5.79 2 7.23)2

SSB = n(X 2 XGrand)2

= 20.70= 4.50

= 25.60 = 10.08
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From Sums of Squares to Estimates of Variance

Assuming you took the suggested break, our next task is to transform the two
sum of squares elements (SSB and SSW) into estimates of variance. It’s actually
a simple process. All we have to do is divide each sum of squares element (SSB
and SSW) by an appropriate number of degrees of freedom. The procedure is
essentially the same as the calculation of the variance for a sample (as pre-
sented in Chapter 3). Let me urge you to review that chapter if you sense
you’re unsure about any of this. The estimates of variance are referred to as the
mean square between (MSB) and the mean square within (MSW). Just to
solidify the two in your thinking, they are summarized as follows:

MSB = mean square between (an estimate of the between-groups variance)
MSW = mean square within (an estimate of the within-groups variance)

Since the fundamental nature of the ANOVA procedure can sometimes get
lost in the midst of different symbols and notations, let’s take a moment to
review where we’ve been and where we’re going:

1. The goal is to calculate an F ratio.
2. The F ratio is the ratio of an estimate of the between-groups

variance to an estimate of the within-groups variance. 
3. These estimates are derived through a two-step process.

a. First, we compute sums of squares (between and within).
b. Then we transform the sums of squares to estimates 

of variance (known as mean squares).
4. The F ratio is derived by dividing the estimate of the between-

groups variance (MSB) by the estimate of the within-groups
variance (MSW).

❏✔ LEARNING CHECK

Question: What do the mean square between and mean square
within represent? 

Answer: The mean square between is the estimate of the
between-groups variance.The mean square within is 
the estimate of the within-groups variance.

Question: What are the symbols for the mean square between 
and mean square within?

Answer: The symbols are MSB and MSW, respectively.
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Note that we haven’t executed Steps 3b and 4 just yet; those will be our final
steps.

Since we already have our within-groups and between-groups sums of
squares, our next task is to convert the sums of squares into the mean squares,
or estimates of variance. As a prelude to that, a little review of the variance is
in order. 

The Concept of Variance. Think back to what you learned in Chapter 3
about the variance of a distribution. Recall that the variance allowed us to get
around the problem that the sum of the deviations from the mean always
equals 0. You’ll probably also recall how the variance was computed, both for
a population and a sample. You learned that the variance for a population was
computed as follows:

Variance of a population

Looking carefully at the formula for the population variance, you’ll note
that the numerator actually amounts to the sum of squared deviations (not un-
like the sum of squares we’ve been discussing so far), and the denominator is
simply the number of cases in the population (N).

When it came to the variance of a sample, however, we introduced a slight
correction factor. Instead of using N in the denominator, we used n – 1 (or the
degrees of freedom). The denominator n – 1 (degrees of freedom) was used in
an effort to arrive at a sample variance that would be a more accurate estimate
of the population variance. If your memory is a little faulty on this point, let me
suggest you take the time to review the material in Chapter 3. My guess is that
it will be important to your understanding of what we encounter next.

Assuming you’ve taken that time, or you feel secure without the review,
let’s focus now on the estimates of variance that we’re going to develop. First
we’ll develop an estimate of the between-groups variance. Then we’ll develop
an estimate of the within-groups variance. Both estimates are developed in
much the same way. 

First, the between-groups estimate of variance (known as the mean
square between or MSB) is derived by dividing the between-groups sum of
squares (SSB) by the appropriate number of degrees of freedom (dfB). Then the
within-groups estimate of variance (known as the mean square within, or
MSW) is derived by dividing the within-groups sum of squares (SSW) by the ap-
propriate number of degrees of freedom (dfW). The process can be summarized
as follows:

Between-Groups Estimate of Variance 

Mean Square Between (MSB ) =
Between-Groups Sum of Squares (SSB )

Between-Groups Degrees of Freedom (dfB)

=
a (X 2 m )2

N
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Within-Groups Estimate of Variance 

Obviously, we have to determine the appropriate number of degrees of
freedom for each element, so that’s where we’ll turn now.

Degrees of Freedom. For this portion of the discussion, let’s start with the
between-groups sum of squares. Think back for a moment to how we com-
puted the between-groups sum of squares (SSB). If necessary, review the
computations outlined in Table 10-3 and the associated discussion. First, we
calculated the deviation of each sample mean from the grand or overall mean.
Then, we squared the deviations. Next, we multiplied the squared deviation for
each sample by the number of cases in each sample. Finally, we summed the
squared deviations (multiplied by the number of cases in the sample) across all
the samples. The result (the between-groups sum of squares) was 60.88.

The problem we’re considering here involves four samples (four regions).
In the language of ANOVA, the four samples represent four categories (sym-
bolized by k = 4). The number of degrees of freedom associated with the
between-groups estimate of variance (dfB) is k – 1. Since we have four cate-
gories, the between-groups degrees of freedom can be calculated as follows: 

dfB = k – 1
dfB = 4 – 1
dfB = 3

To obtain our between-groups estimate of variance (MSB), we’ll simply
divide our between-groups sum of squares (SSB = 60.88) by the between-
groups degrees of freedom (dfB = 3).

MSB = 20.29

MSB =
60.88

3

MSB =
SSB

dfB

❏✔ LEARNING CHECK

Question: How many degrees of freedom are associated with the
between-groups estimate of variance (MSB)?

Answer: The number of degrees of freedom for MSB is k – 1, where
k = the number of categories or samples in the study.

Mean Square Within (MSW ) =
Within-Groups Sum of Squares (SSW )

Within-Groups Degrees of Freedom (dfW )
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At this point, you should note how closely this relates to the notion of using
n – 1 in the computation of the sample variance to obtain an unbiased estimate
of the population variance.

Our next step is to develop our within-groups estimate of variance, and
we’ll use a similar procedure—we’ll divide the within-groups sum of squares by
an appropriate number of degrees of freedom. Now, of course, the question is
how to determine the appropriate number of degrees of freedom for the
within-groups element.

The degrees of freedom in the case of the within-groups sum of squares is
a function of the total number of cases, as well as the number of samples or
categories. In the present instance, we have a total of 37 cases spread over
four categories. The appropriate number of degrees of freedom for the
estimate of within-groups variance is equal to ntotal – k, or the total number of
cases minus the number of categories. With 37 cases and four categories, the
within-groups degrees of freedom (dfW) can be calculated as follows: 

dfW = ntotal – k
dfW = 37 – 4
dfW = 33

If you take a close look at the formula for the within-groups degrees of
freedom (ntotal – k), you’ll see that it’s actually equal to the sum of the number
of cases in each sample minus 1:

(n1 – 1) + (n2 – 1) + (n3 – 1) + (n4 – 1) = 33
(10 – 1) + (10 – 1) + (10 – 1) + (7 – 1) = 9 + 9 + 9 + 6 = 33

❏✔ LEARNING CHECK

Question: How many degrees of freedom are associated with the
within-groups estimate of variance (MSW)?

Answer: The number of degrees of freedom for MSW is ntotal – k
where ntotal = the number of cases in the study and 
k = the number of categories or samples in the study.

❏✔ LEARNING CHECK

Question: How is the between-groups estimate of variance (MSB)
obtained?

Answer: The between-groups estimate of variance (MSB) is ob-
tained by dividing the between-groups sum of squares
(SSB) by the between-groups degrees of freedom (dfB).
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Having determined that the appropriate number of degrees of freedom for
the within-groups sum of squares is equal to 33, we can calculate the within-
groups estimate of variance, or MSW, as follows:

We’ve already been through several steps, so let me suggest that you take
a look at Table 10-4. This summary table outlines the important elements we’ve
encountered along the way and gives you a look ahead toward the final step.

Calculating the F Ratio

Having developed the estimates of the between-groups variance (MSB = 20.29)
and within-groups variance (MSW = 5.43), we’re now in a position to calculate
the F ratio. This ratio is obtained by dividing the between-groups estimate of
variance (MSB) by the within-groups estimate of variance (MSW). The calculation
is as follows:

F = 3.74

F =
20.29
5.43

F =
MSB

MSW

❏✔ LEARNING CHECK

Question: How is the within-groups estimate of variance (MSW)
obtained?

Answer: The within-groups estimate of variance (MSW) is
obtained by dividing the within-groups sum of 
squares (SSW) by the within-groups degrees of 
freedom (dfW).

MSW = 5.43

MSW =
179.29

33

MSW =
SSW

dfW
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So, the calculated F ratio (our test statistic) equals 3.74. We have a final
answer—but what does it really mean? By now, you should find yourself in very
familiar territory. After all, it’s really just another hypothesis-testing situation.

As we’ve already done in what probably seems like countless situations before,
we find ourselves looking at a calculated test statistic—in this case, an F ratio.
But now the question is whether or not the F ratio is significant. As before, the

The Interpretation

❏✔ LEARNING CHECK

Question: How is the F ratio calculated?
Answer: The F ratio is calculated as follows:

MSB

MSW

Table 10-4 Components of ANOVA

Group or Sample Means

Mean of Northern Cities = 7.90 n = 10
Mean of Southern Cities = 5.79 n = 10
Mean of Eastern Cities = 8.83 n = 10 
Mean of Western Cities = 6.03 n = 7

Grand Mean = 7.23

Calculate the Sums of Squares

Between-groups sum of squares (SSB) = 60.88
Within-groups sum of squares (SSW) = 179.29

Degrees of Freedom

Between-groups degrees of freedom (dfB) = 3
Within-groups degrees of freedom (dfW) = 33

Divide Sums of Squares by Appropriate Degrees of Freedom to Obtain the
Estimates of Variance (the Mean Square Component)

Between-groups estimate of variance, or mean square between (MSB) = 20.29
Within-groups estimate of variance, or mean square within (MSW) = 5.43

Calculate the F Ratio
MSB

MSW
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answer turns on the critical value. If our calculated test statistic (the calculated
value of F ) meets or exceeds the critical value, we have significant results, and
we can reject the null hypothesis. If, on the other hand, our calculated test sta-
tistic falls below the critical value, we’ll fail to reject the null hypothesis.

Interpretation of the F Ratio

Our next task, then, is to locate the critical value. For that information, we turn
to Appendix D: Distribution of F at the .05 Level of Significance (the level of sig-
nificance that we selected at the outset). Once again, to use the table we have to
take into account our degrees of freedom. We know that the degrees of freedom
associated with the between-groups estimate of variance is 3, and the degrees of
freedom associated with the within-groups estimate of variance is 33.

If you take a close look at Appendix D, you’ll note that the degrees of free-
dom for the between-groups variance element (the numerator in the F ratio) are
listed across the top row of the table. The degrees of freedom for the within-
groups variance element (the denominator in the F ratio) are listed in the first
column. Once we’ve identified the appropriate degrees of freedom in the top
row and first column, we locate the point at which the two intersect in the table.
Note, however, that there is no listing for 33 degrees of freedom. At this point,
you should recall our earlier rule of thumb (noted in Appendix B)—namely, find
the next lower number of degrees of freedom. Therefore, you should use the
value associated with 30 degrees of freedom. That value—2.92—is our appro-
priate critical value.

All that remains is to compare our calculated F ratio to the critical value. As
it turns out, our calculated F value of 3.74 exceeds the critical value. Therefore,
we reject the null hypothesis. As before, we’re rejecting the null hypothesis with
a known probability of having committed a Type I or alpha error (.05).

In rejecting the null hypothesis, we move a step toward suggesting that lev-
els of unemployment in cities do vary by region. That, of course, is another way
of saying it’s probably legitimate to think in terms of a regional classification
scheme when speaking about levels of unemployment. 

Had we failed to achieve significant results, however, we would have failed
to reject the null hypothesis. Since the null was a statement that the means
would be equal, failing to reject the null would be tantamount to saying that
there is no significant variation across the regions. In that case, it wouldn’t
make much sense to speak in terms of regional variation. 

Whatever the final outcome of an ANOVA application, it’s always im-
portant to keep in mind what the bigger picture is all about. As we’ve done
before, we return to the central notion that what we’re really interested in are
populations—not samples. In this instance, our interest was in the population
of all cities in the northern region, all cities in the southern region, all cities in
the eastern region, and all cities in the western region. That we had sample
data to work with was important in reaching our final goal, but we were ulti-
mately interested in the larger picture. 
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Working at the .05 level of significance, we determined that we could reject
the null hypothesis. Is it possible that the results of the sample data gave us a
false picture? Yes, of course that’s possible. There’s always a chance that the
ratio of our estimates was the result of sampling error and that the calculated
F ratio isn’t a reflection of what’s really going on in the population. If that’s
what happened, then we would have made a Type I error. 

As we know all too well, however, we’ll never know if that was the case.
That’s just the way it is, and there’s no getting around it (short of collecting
data on all cities). We always have to live with the chance of a Type I error. On
the positive side, however, we always know the probability that we’ve made
such an error. In the case of our example, it was only 5 times out of 100.

Had we wanted to, we could have set our level of significance at .01, and
that would have reduced the probability of a Type I error. In fact, that’s what
Appendix E is all about; it shows the Distribution of F at the .01 Level of Sig-
nificance. A quick check of the appropriate critical value in Appendix E would
tell us that our results were not significant at the .01 level. In other words, had
we been working at the .01 level of significance, we would have failed to reject
the null hypothesis. In this case, however, we were working at the .05 level of
significance, and our results were significant. As a result, we were in position to
reject the null hypothesis. 

If you think about the ANOVA procedure for any length of time, you’re apt
to conclude that it only gives us a general picture regarding the null hypothesis.
ANOVA allows us to determine whether or not there’s a significant difference
across groups or samples, but it doesn’t tell us much about the specific nature
of any difference. As Gravetter and Wallnau (1999, p. 338) note:

When you reject the null hypothesis, you conclude that the means are not
all the same. Although this appears to be a simple conclusion, in most cases
it actually creates more questions than it answers.

To better understand that observation, think back to our interpretation of
the F ratio in the problem we just considered. We found a significant F ratio,
but the conclusion left the door open to further questioning. Recall how the
conclusion was phrased: It is probably legitimate to think in terms of a regional
classification scheme when speaking about levels of unemployment. But ques-
tions still remain as to what produced the significant F ratio in the first place.
To get the answers to those questions, a statistician typically turns to post hoc
testing procedures.

Post Hoc Testing

As the expression implies, post hoc testing allows us to go beyond the deter-
mination that we have a significant F ratio. As noted previously, a significant
F ratio does not necessarily mean that there was a significant difference
between all means when examined in terms of all possible combinations.
Maybe the difference between the means of the first and second samples was
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so large that it had a major impact on the calculation of the between-groups
variation. On the other hand, maybe it was an unusually large difference be-
tween the means of the third and fourth samples. Maybe the significant results
derived from noticeable differences between all the means. In short, having
significant results is one thing; understanding the origin of the significance is
another.

Fortunately, procedures are available that allow us to peel back the find-
ings, so to speak, and gain a better understanding of which differences of
means were really responsible for the final F value. Tukey’s Honestly Signifi-
cant Difference (HSD) is such a procedure. It is considered a post hoc test, in
that it’s employed after significant results are found. In short, Tukey’s HSD
allows us to determine where the significant differences between individual
means are to be found. 

The HSD procedure involves the calculation of what’s known as the Q sta-
tistic. It rests on a pair-by-pair comparison of sample means. In the example
used throughout this chapter, we have four samples and, therefore, four sam-
ple means. The HSD procedure applied to our problem would involve the fol-
lowing six comparisons:

Mean of Sample 1 and Mean of Sample 2
Mean of Sample 1 and Mean of Sample 3
Mean of Sample 1 and Mean of Sample 4
Mean of Sample 2 and Mean of Sample 3
Mean of Sample 2 and Mean of Sample 4
Mean of Sample 3 and Mean of Sample 4

The calculation of Q is fairly straightforward. It is calculated once for each
comparison, so in this case, Q will be calculated six times.

For each comparison, we calculate the absolute difference (the difference
without regard to positive or negative sign) between the two sample means.
This absolute difference becomes the numerator in the test statistic (Q). The de-
nominator is partly a function of the MSW that was calculated in the ANOVA
procedure. There are actually two different ways to calculate the denominator
of the Q statistic. One version is for situations in which the sample sizes are
equal; the other version is appropriate for ANOVA applications with unequal
sample sizes. The example we considered in this chapter was based on un-
equal sample sizes, but here are both formulas.

When All Sample Sizes Are Equal

Q =
*X1 2 X2*

BMSW

n

Where and are any two means and n represents
the number of cases in each sample.

X2X1
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When Any Two Samples Sizes Are Unequal 

Since our example involves unequal sample sizes, we will use the second
formula for Q. We’ll start by calculating the harmonic mean. Recall that the for-
mula for the harmonic mean is as follows:

Since we have four samples (groups or categories), the harmonic mean is
calculated as follows:

Armed with the value of the harmonic mean (ñ = 9.09), our next step is to
bring in the mean square within (MSW). Our previous ANOVA computations
tell us that MSW = 5.43. We now divide the MSW (5.43) by the harmonic mean
(9.09) and take the square root of the result. This gives us the denominator for
our calculation of Q.

 = 0.77
 = 20.60

 = B5.43
9.09

Denominator in Q calculation = BMSW
~n

 = 9.09

 =
4

0.44

 =
4

.10 1 .10 1 .10 1 .14

 =
4

1
10

1
1

10
1

1
10

1
1
7

n~ =
k

1
n1
1

1
n2
1

1
n3
1

1
n4

n~ =
k

1
n1
1

1
n2
1

1
n3
1

1
n4

n~ =
k

1
n1
1

1
n2
1

1
n3
1

1
n4

Q =
*X1 2 X2*

BMSW
~n

Where and are any two means and ñ represents
the harmonic mean sample size. The harmonic mean is
calculated as follows:

X2X1
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Having calculated the denominator for our Q statistic, we can move through
the remainder of the computations with relative ease. For each comparison, it is
simply a matter of finding the absolute difference between two means, treating
that value as the numerator, and dividing by the denominator that we just calcu-
lated. The steps in the process are summarized in Table 10-5.

As the summary indicates, we now have six Q values, or six different cal-
culated Q test statistics. Each calculated Q test statistic relates to a particular
comparison of means. Now all that remains is to examine whether or not the
Q test statistic in question is significant for each individual comparison. That
brings us to the matter of the critical value for Q—the value against which we
will evaluate the individual Qs that we’ve calculated.

Appendix F provides the critical values of Q at the .05 level of significance.
(If we were working at the .01 level of significance, we would use Appendix G.)
The numbers across the top of the table refer to the number of groups or
samples in the ANOVA that preceded application of the HSD measure. Since
our problem is based on four samples or groups (northern, southern, eastern,
and western cities), our focus will be on the column labeled 4. The within-
groups degrees of freedom (dfW) is something we dealt with earlier. You will
recall that the appropriate number of degrees of freedom for the within-groups
element was n – k, or the total number of cases (37) minus the number of cat-
egories or groups (4). Therefore, the number of degrees of freedom within is
37 – 4, or 33. As before, the table has no entry for 33 degrees of freedom, but
we are safe in using the row for 30 degrees of freedom. The entry associated
with 30 degrees of freedom and four samples is 3.85—and that becomes our
critical value. 

Now all that remains is to compare the various Q values that we calcu-
lated to the critical value of Q found in Appendix F. The results are shown in
Table 10-6.

Having calculated Q for each comparison and having checked each against
the critical value (3.85), we determine that the only significant difference is
found between the southern region and the eastern region. It is not the case

Table 10-5 Calculation of Q for Tukey’s HSD

Possible Comparisons

North and South |7.90 – 5.79| = 2.11 2.11/0.77 = 2.74

North and East |7.90 – 8.83| = 0.93 0.93/0.77 = 1.21

North and West |7.90 – 6.03| = 1.87 1.87/0.77 = 2.43

South and East |5.79 – 8.83| = 3.04 3.04/0.77 = 3.95

South and West |5.79 – 6.03| = 0.24 0.24/0.77 = 0.31

East and West |8.83 – 6.03| = 2.80 2.80/0.77 = 3.64

Q =
*X1 2 X2*

BMSW
~n

*X1 2 X2*
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that there is a significant difference across all regions. Rather, the significant
difference is found only between two regions. 

A finding like that would, no doubt, send us back to the drawing board,
at least when it comes to the matter of a regional classification scheme. In a
real-life situation, now would be the time to consider other types of regional
classifications—maybe, for example, one that rests on only three designated
regions of the country.

Questions like that are for another time and place. It’s time to bring our dis-
cussion of one-way ANOVA to a close. Before leaving the topic, though, it
might be useful to review several points and to underscore a few things you
may want to think about. 

■ Think about ANOVA as being appropriate in situations involving three or
more samples, provided you have interval/ratio level data to work with.

■ Think about the fact that ANOVA can be appropriate even if the samples
have an unequal number of cases.

■ Think about the F ratio as a ratio of two estimates of variance—the esti-
mate of variance between groups and the estimate of variance within
groups.

■ Think about how the computation of the F ratio is essentially a two-step
process—first the calculation of between and within sums of squares, and
then a transformation of the sums of squares into estimates of variance.

■ Think about how degrees of freedom come into play in the transformation
of the sums of squares into the estimates of variance, with k – 1 degrees of
freedom for the estimate between, and n – k for the estimate within.

At the conclusion of this chapter you’ll find several problems to consider.
Some problems direct you to calculate the F ratio from beginning to end. Many
of the problems, though, just pose questions about the component parts of the
ANOVA procedure. Others give you the component parts of the ANOVA
procedure; your job is to finish the calculations and provide an appropriate
interpretation. My guess is that you’ll find the questions sufficient to shore up
your understanding of the topic.

Table 10-6 Interpreting Tukey’s HSD

Possible Comparisons Q Results

North and South 2.74 Not Significant
North and East 1.21 Not Significant
North and West 2.43 Not Significant
South and East 3.95 Significant
South and West 0.31 Not Significant
East and West 3.64 Not Significant
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Chapter Summary

With your introduction to ANOVA, you have been exposed to a widely used
statistical procedure. Ideally, you have gained an understanding of why many
statisticians think of it as an extension of the two-sample difference of means
tests and why it can be thought of as a procedure that tests the legitimacy of a
classification scheme. By the same token, you should have developed an un-
derstanding of why the procedure carries the name of analysis of variance,
inasmuch as the F ratio is based on two estimates of variance. 

As to the specific components of the ANOVA procedure, you encountered
the concepts of the between- and within-groups sums of squares, as well as the
between- and within-groups estimates of variance. You also developed an appre-
ciation for the F ratio as an expression of the ratio of the two estimates of variance.

Beyond all of that, however, was an unstated lesson I hope you discovered
along the way—namely, that the process of learning statistical applications gets
easier and easier. It’s true that different research situations call for different
procedures. It’s true that different procedures rest on different logical founda-
tions and different calculations. But beyond that, the process of testing a null
hypothesis remains fundamentally the same from application to application.
State the null; set the level of significance; calculate the test statistic; compare
the test statistic to a critical value; state a conclusion. As I mentioned before,
you keep encountering the same process, over and over and over again.

Some Other Things
You Should Know

There are still a few more things you should be aware of in connection with
ANOVA. In a sense, we’ve just scratched the surface of ANOVA, so let me
mention a few related matters.

As noted at the outset, the ANOVA procedure we considered in this chap-
ter is technically known as one-way analysis of variance. It is referred to as one-
way ANOVA because it is used in problems that deal with the relationship
between one variable and another variable. For example, we dealt with an ap-
plication that examined the variation in levels of unemployment (one variable)
by region (the other variable). 

A more complex application of ANOVA is available, however. For exam-
ple, let’s say we wanted to look at how levels of unemployment vary by region
and type of city (manufacturing, retail, service, or other). In that case, we could
opt for a two-way ANOVA application. The procedure is referred to as two-way
ANOVA because it looks at how one variable varies on the basis of two other
variables. To take another example, we might be interested in how student test
scores vary by teaching method (lecture only, lecture plus discussion) and gen-
der composition of the class (all-male classes, all-female classes, and combined
male/female classes). This research question would also be suited for a two-way
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ANOVA application. For an excellent discussion of the two-way ANOVA pro-
cedure, consult Pagano (2001).

Second, the ANOVA application that we just considered was based on the
assumption that the samples were independent random samples. As was
the case with the difference of means tests, a modified ANOVA procedure is
available when the samples under consideration are matched or related. For a
discussion of that application, see Dunn (2001).

Finally, the Tukey’s HSD test that we considered is only one of a variety of
post hoc test procedures that are available for use following an ANOVA appli-
cation. The selection of one post hoc test over another is usually a function of
several considerations. Discussions of various post hoc options are typically
found in more advanced texts.

Key Terms

ANOVA (one-way)
between-groups degrees of freedom
between-groups estimate of variance
between-groups sum of squares (SSB)
F ratio
grand (overall) mean

Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. The calculated test statistic for ANOVA is known as the ratio.
2. The F ratio is the ratio of the amount of variation the groups to

the amount of variation the groups.
3. Explain how to calculate the within-groups sum of squares.
4. Explain how to calculate the between-groups sum of squares.
5. The between-groups sum of squares is transformed into an estimate of the

between-groups variance by dividing the between-groups sum of squares
by an appropriate number of .

6. The within-groups sum of squares is transformed into an estimate of the
within-groups variance by dividing the within-groups sum of squares by an
appropriate number of .

7. The formula for the number of degrees of freedom for the within-groups
estimate of variance is , where n equals the total number of cases
under consideration.

group (sample) mean
mean square between (MSB)
mean square within (MSW)
within-groups degrees of freedom
within-groups estimate of variance
within-groups sum of squares (SSW)
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8. The formula for the number of degrees of freedom for the between-
groups estimate of variance is , where k equals the number of
groups or samples under consideration.

9. Another name for the between-groups estimate of variance is .
10. Another name for the within-groups estimate of variance is .
11. If you had a research problem appropriate for ANOVA and it was based

on the results from three samples, what would be the null hypothesis?

Application Questions/Problems

1. Assume you had a research problem appropriate for ANOVA that was
based on six samples and a total of 36 cases.
a. How many degrees of freedom would be associated with the between-

groups estimate of variance? 
b. How many degrees of freedom would be associated with the within-

groups estimate of variance?
2. Assume the following:

.05 level of significance; five samples; 21 cases; SSB = 26; SSW = 29
a. Calculate the F ratio.
b. What is the critical value?
c. What would you conclude?

3. Assume the following:
.05 level of significance; four samples; 30 cases; SSB = 80; SSW = 258
a. Calculate the F ratio.
b. What is the critical value?
c. What would you conclude?

4. Assume the following: 
.05 level of significance; three samples; 27 cases SSB = 13; SSW = 23
a. Calculate the F ratio.
b. What is the critical value?
c. What would you conclude?

5. Consider the following research data:

Sample 1 Sample 2 Sample 3

10 6 5
10 7 10
9 2 8
11 8 8
6 9 8
11 5 9
9 3 6
7 8 10
4 12
5 14
6
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Northern Southern Eastern Western

2 3 4 2
4 5 2 5
6 7 8 6
3 1 7 7
5 4 7 2
1 5 6 4
7 3 8 5
1 4 6 6
4 6 6
5 6
6 6

a. State an appropriate null hypothesis.
b. What are the values of each category mean?
c. What is the value of the grand mean?
d. What is the value of the SSB?
e. What is the value of the SSW?
f. What is the value of the dfB?
g. What is the value of the dfW?
h. What is the value of the MSW?
i. What is the value of the MSB?
j. What is the value of F?
k. Assuming that you were working at the .05 level of significance, what

would you conclude?
6. An evaluation survey, designed to measure perceived program effectiveness,

was administered to a sample of 39 citizens who attended a community
crime-prevention meeting. Using a scale of 0 to 10, the respondents were
asked to rate the meeting in terms of effectiveness in presenting useful in-
formation. The responses were analyzed, based upon the place of residence
of the respondent—northern sector, southern sector, eastern, or western
sector—and the following results were found.

a. State an appropriate null hypothesis.
b. What are the values of each category mean?
c. What is the value of the grand mean?
d. What is the value of the SSB?
e. What is the value of the SSW?
f. What is the value of the dfB?
g. What is the value of the dfW?
h. What is the value of the MSW?
i. What is the value of the MSB?
j. What is the value of F?
k. Assuming you were working at the .05 level of significance, what

would you conclude?
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7. An industrial psychologist has examined the levels of absenteeism (mea-
sured in terms of days absent per year) of workers in three different work
environments (morning shift, afternoon shift, and night shift). The results
of the study are summarized as follows:

a. State an appropriate null hypothesis.
b. What are the values of each category mean?
c. What is the value of the grand mean?
d. What is the value of the SSB?
e. What is the value of the SSW?
f. What is the value of the dfB?
g. What is the value of the dfW?
h. What is the value of the MSW?
i. What is the value of the MSB?
j. What is the value of F?
k. Assuming you were working at the .05 level of significance, what

would you conclude?
8. A social psychologist has been studying the relationship between group

composition and level of cooperation on the part of preschool children in
a task-completion exercise. Each group is observed, and the number of co-
operative acts exhibited by each member of the group is recorded. Three
types of groups are under study: all male, all female, and mixed (both male
and female members). Results of the investigation are as follows: 

Day Shift Afternoon Shift Night Shift

3 6 5
4 4 6
3 5 4
5 4 3
7 5

n = 5 n = 4 n = 5

All Male All Female Mixed Gender

4 6 3
4 9 5
3 8 6
1 4 4
3 8 7
4 8 6

n = 6 n = 6 n = 6



a. State an appropriate null hypothesis.
b. What are the values of each category mean?
c. What is the value of the grand mean?
d. What is the value of the SSB?
e. What is the value of the SSW?
f. What is the value of the dfB?
g. What is the value of the dfW?
h. What is the value of the MSW?
i. What is the value of the MSB?
j. What is the value of F?
k. Assuming you were working at the .05 level of significance, what

would you conclude?
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11

The Chi-Square Test

Our trek through the world of hypothesis testing so far has involved procedures
based on one or more means. For example, we used the t test to determine
whether or not there was a significant difference between fraternity members
and non-members in mean levels of alcohol consumption. We relied on the
ANOVA procedure when we wanted to look at mean levels of unemployment in
four regions. In each of those cases, one of the variables in the hypothesis was
an interval/ratio level variable. The requirement of interval/ratio data is central
to any hypothesis test involving means. The reason should be obvious: You can’t
calculate a mean unless you have interval/ratio data.

As you might expect, though, not all research situations involve interval-
level data. Social scientists often encounter research situations in which the
variables are measured at the nominal or ordinal level. The term categorical
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data is typically used to describe information of this sort, because the data rep-
resent simple categories. Consider the following examples:

A response to a question might be yes, no, or undecided.
A response to a question might be strongly agree, agree, disagree, or
strongly disagree.
A person might be classified as Republican, Democrat, or Independent.
A university might be classified as public or private.

When faced with a hypothesis-testing situation involving categorical vari-
ables (nominal or ordinal data), statisticians often turn to the chi-square test. In
this chapter, we’ll consider the chi-square test of independence, a procedure
that is very appropriate for situations involving categorical data.

❏✔ LEARNING CHECK

Question: What does the term categorical data mean?
Answer: Data expressed in simple categories—nominal- or 

ordinal-level data.

You were introduced to the notion of null hypotheses in Chapter 7, and you
also learned that there were many ways to express a null hypothesis. As you
moved through Chapters 7, 8, and 9, you were exposed to hypothesis testing
in a variety of situations, but in most of those cases, you dealt with null hy-
potheses that were statements of no difference. In this chapter, though, you’ll
face something different.

First, you’re going to be dealing with a different sort of data, and you won’t
be calculating any means. It follows, therefore, that you’ll have to change your
vocabulary. Instead of hypotheses about such notions as no difference between
means, you’ll be dealing with null hypotheses that speak in terms of no rela-
tionship or chance relationship. All of that will make more sense as we move
forward. For the moment, simply prepare for a slight shift in perspective.

The chi-square test of independence is a test that allows us to determine
whether or not two variables are associated in some way. For example, it allows
us to answer the following sorts of questions:

Is political affiliation associated with attitude toward a certain issue?
Is gender associated with selection of an academic major?
Is place of residence associated with attitude on a certain issue?

The Chi-Square Test of Independence

Before We Begin
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As you explore the chi-square test of independence, you’ll actually go be-
yond the specific test application. Indeed, you’ll also learn quite a bit about how
statisticians look at the association between variables in general. As always,
we’ll start with a look at the logic behind the test.

The Logic of the Test

Let’s start with a simple example. Let’s assume that we’ve set out to determine
whether or not there is any association between a person’s political party affil-
iation (Republican, Democrat, or Independent) and how that person views a
downtown redevelopment proposal (for, against, or undecided). In other words,
we want to know if respondents’ attitudes toward the proposal vary according
to political party affiliation.

Let’s assume we have asked a random sample of 180 residents to tell us
about their political party affiliation (Republican, Democrat, or Independent)
and how they feel about the proposal (for, against, or undecided). We can
record the results in what’s known as a contingency table. A contingency
table is a classification tool that reveals the various possibilities (contingencies)
in the comparison of variables. In a moment, I’ll ask you to take a look at some
results displayed in a contingency table. First, though, let me urge you to study
carefully the various tables I ask you to consider. Don’t just take a brief look and
move on; take the time to carefully consider the illustrations.

Now take a look at Table 11-1. It presents two contingency tables, each
reflecting a rather extreme pattern of responses, based on a sample of 180 re-
spondents. Each table shows the possible response combinations, along with
totals. Different response combinations are presented in individual cells of the
table. Because the totals are presented in the margins of the table, we refer to
them as marginal totals. In the real world, it’s doubtful that we’d get such ex-
treme patterns of responses, but we can afford to take leave of the real world
for a moment or two. The goal is to develop an understanding of the chi-square
test of independence and the logic that underlies it.

First, take a close look at Pattern A in Table 11-1. Think about these
questions:

How many Republicans are represented in the table?
How many Democrats are represented in the table?
How many Independents are represented in the table?

❏✔ LEARNING CHECK

Question: What is the chi-square test of independence?
Answer: A hypothesis-testing procedure appropriate for categorical

variables. It tests whether or not there is an association
between two variables.
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Just looking at the Republicans, how are they distributed in terms of the
attitude variable? Are they fairly evenly distributed, or are they more or less
concentrated in a particular cell of the table? In other words, could you say
it looks as though Republicans are inclined toward a particular attitude?
What about the Democrats? Are they fairly evenly distributed across the
attitude variable, or are they concentrated in a particular cell? Can you
associate Democrats with a particular attitude?
What about the Independents? How are they distributed?
Given what you know so far about Pattern A, does there appear to be any
association between political affiliation and attitude? (The answer is no.)

The answer is no because the overall pattern of the distribution is clearly
even across the cells. Republicans are just as likely to be for the proposal as
they are to be against the proposal or undecided. The same is true for
Democrats and Independents. In a case like that, it would be difficult to say
there is a difference between Republicans, Democrats, and Independents when
it comes to the distribution of attitudes toward the redevelopment proposal.

Now look at Pattern B. Think about these questions:

How many Republicans are represented in the table?
How many Democrats?
How many Independents?

Interesting—you might say to yourself—the same number of people were
represented in the previous response pattern (Pattern A). But now take a look
at how the overall pattern has changed.

What about the Republicans? Are they concentrated in a particular cell?
What about the Democrats? Are they more likely to be associated with a
particular attitude?
When it comes to the Independents, how are they distributed in terms of
the attitude variable?
What does all of that suggest? Does it appear that there’s an association
between the variables? (The answer is yes.)

If you study Pattern B, you’ll likely conclude that there appears to be some
sort of association between political affiliation and attitude. Granted, the infor-
mation at hand is only based on a sample of 180 respondents, but it still ap-
pears that there’s some sort of association between the two variables (political
affiliation and attitude toward the redevelopment proposal).

❏✔ LEARNING CHECK

Question: What is a contingency table?
Answer: A table that presents data in terms of all combinations of

two or more variables.



Before we go any further, let me reemphasize that these examples are
extreme. The tables were constructed a certain way to demonstrate specific
points. You could find results like those in the real world, but, as a rule, you’re
apt to find some pattern in between the two extremes. Let me explain.

First, the examples we’ve looked at reflect equal numbers of Republicans,
Democrats, and Independents in the sample. Something like that is possible in the
real world, to be sure; a community could be evenly divided among Republicans,
Democrats, and Independents. More than likely, though, the actual distribution of
political affiliation in a community won’t be equal. Therefore, we’d expect a real-
world sample to reflect the unequal distribution that actually exists in the commu-
nity. Second, in a real-world instance, we’d likely get a more varied dispersion of
responses over the entire table—neither completely even nor obviously concen-
trated in just a few cells.

That said, let me give you a general guideline to follow when looking at
a contingency table: Always remember what the object of the analysis is. We
want to know if the distribution of one variable seems to vary on the basis of
the distribution of another variable. That, of course, is another way of saying
that we want to know if there’s any association between the two variables.

When there’s a fairly even distribution of cases over all the cells, there’s
probably little, if any, association between the two variables. On the other
hand, when there’s a concentration of responses or cases in just a few cells,
there’s a greater chance that there’s some sort of underlying connection be-
tween the two variables. If necessary, return to Table 11-1 to review the two
patterns again. Think of Pattern A as one that reflects an even distribution of
responses or cases over the table—a pattern that suggests no connection
between the variables. Think of Pattern B as one that reflects a noticeable
concentration of responses in just a few cells—a pattern that suggests the pos-
sibility of an association between the two variables.

The question of whether or not there’s an association between two
variables is something we’ve considered before. When we applied the differ-
ence of means test, we were actually examining the association between two
variables. For example, the t test for the difference in alcohol consumption by
fraternity members and non-members was actually a test to determine whether
or not there was an association between fraternity membership status and level
of alcohol consumption. When we used the ANOVA procedure to consider lev-
els of unemployment by region, we were asking whether or not there was any
association between region and unemployment level.

When it comes to the chi-square test of independence, we’re asking simi-
lar types of questions. In the present example, the question is whether or not
there’s an association between political affiliation and attitude toward a rede-
velopment proposal. In other words, are the variables associated in some way,
or are they independent of one another?

To assert that there’s an association between two variables is to say that
the variables are tied together in some way. In other words, there’s an element
of predictability in the relationship: You tell me someone’s political party affili-
ation, and I’ll tell you what the person’s attitude is on the proposal. None of
that, of course, has anything to do with why one variable seems to be tied to
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another or why you might be able to predict one variable from the other.
Sometimes we’re inclined to think in terms of causation—the idea that one
variable causes the other—but I would caution you about that. As I’m fond of
telling my students, causation is something that largely exists in our minds—it’s
a model or an explanation that we sometimes mistakenly impose on our data
or results. Except in highly controlled experimental research situations, it’s dif-
ficult to make legitimate claims of direct causation.

For example, some variables are associated only in the sense that they are
expressions of a common concept. Consider the fact that many people who
excel in the sport of football also excel in the sport of baseball. Just because
people who are proficient in one sport are often proficient in the other sport
doesn’t mean that proficiency in one area causes proficiency in the other. In
fact, both may be expressions of a common concept—namely, athletic ability.
Being able to play football well probably doesn’t cause someone to play base-
ball well (or vice versa). Instead, it’s likely that people with a pronounced ath-
letic ability tend to do well in almost any sport.

In short, the question is whether two variables are associated in some
way—not why they’re associated. Simply put, association doesn’t necessarily
imply causation. That said, we can consider the chi-square test of indepen-
dence in the context of chance and a departure from chance.

A Focus on the Departure From Chance

Assuming you’ve gained an appreciation as to why it’s a good idea to approach
the notion of causality with caution, we can return to the fundamental logic be-
hind the chi-square test of independence. To understand the logic, start with
the idea that this procedure looks at the overall pattern in a contingency table
and measures the extent to which the pattern reflected in the table departs
from chance. To understand what this means, take another look at Pattern A
in Table 11-1. One way to think about Pattern A is that it’s a pattern you’d be
likely to get if nothing but chance were at play. In other words, you’d be likely
to get a pattern like this if the two variables were not tied together in any way.

Focus now on the marginal totals. When it comes to being a Republican,
Democrat, or Independent (that is, the distribution of the political party affilia-
tion variable), the picture reflected in Pattern A appears to be one of chance.
Given the distribution of these 180 respondents, there appears to be an equal
chance of being a Republican, a Democrat, or an Independent. By the same
token, there appears to be an equal chance of someone’s being for, against, or
undecided regarding the redevelopment proposal. It seems to be mere chance
whether Republicans are for, against, or undecided on the proposal. The same
could be said for the Democrats and the Independents. The pattern may be ex-
treme, but it should give you an idea of what a pattern of chance would look
like in the context of a contingency table.

As you discovered before, though, Pattern B is very different. In fact, it’s
so different that it’s reasonable to say that this response pattern represents
a noticeable departure from chance. In fact, that’s the meaning of the phrase
significant association—an association that departs from chance.



In essence, that’s what the chi-square test of independence is all about. It
allows us to look at a pattern in a contingency table and determine whether or
not the pattern we observe is one that departs from chance.

The Null Hypothesis

In the case of the chi-square test, we move away from the symbolic or mathe-
matical statements of a null hypothesis such as those we used with the t test or
ANOVA. For this test, there are no statements about means being equal. In-
stead, we move to a statement about the association between two variables.

For example, let’s say we wanted to explore the association between two
variables: type of community (urban, suburban, or rural) and intention to vote
(whether someone plans to vote in the next election—yes, no, or undecided).
An appropriate statement of the null hypothesis would be as follows:

H0: There is no association between type of community and intention to vote.

When we use the chi-square test of independence, we test the null hy-
pothesis by examining the results obtained from sample data. But we do so
with the idea that the sample patterns are representative of population pat-
terns. We look at the pattern in the contingency table (the observed data), but
our interest really goes beyond that.

If the pattern shows little, if any, departure from what would be expected
by chance, we fail to reject the null hypothesis. In other words, we fail to reject
the idea of no association between the variables. If, on the other hand, the pat-
tern reflects a significant departure from what we would expect by chance
(given the marginal totals of the variables in question), we reject the null. In
doing so, we are suggesting that there is, in fact, some sort of association be-
tween the two variables in the population.

The Application

As we’ve done before, we’ll put off any discussion of the formula until we’ve
spent a bit of time with the problem at hand. As a start, take a look at the data
in Table 11-2. Once again, we have a contingency table. This time, the contin-
gency table shows responses from 98 people to questions about their type of
community and their intention to vote. Since we’re beginning the application at
this point, we’ll assume we’ve set the level of significance at .05.

❏✔ LEARNING CHECK

Question: What does it mean to say that two variables are
associated?

Answer: The pattern exhibited by the association of the two
variables represents a departure from chance.
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Remember what a contingency table is all about and what it allows us to do. 
It’s a mechanism that allows us to see all possible combinations of variables in a
given research situation. When we look at a contingency table, the numbers we
see in the various cells (with the exception of the marginal totals) are referred to as
the observed frequencies. You’ve seen observed frequencies before. That’s really
what you saw when you looked at Pattern A and Pattern B in Table 11-1. In 
Table 11-2, we’re looking at a different contingency table and a different pattern.
The observed frequencies are simply the results that are presented in Table 11-2.

Table 11-2 is known as a three-by-three contingency table; it has three
rows and three columns. With three rows and three columns, the table has a

❏✔ LEARNING CHECK

Question: In the chi-square test of independence, what are the
observed frequencies?

Answer: The frequencies (results) that appear in each cell of a
contingency table (excluding the marginal totals).
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Table 11-2 Responses to Survey: Voter Intention by Type of Community



total of nine cells (exclusive of the cells associated with the marginal totals).
The numbers in each of these nine cells are the observed frequencies or cases.
Looking at the upper left-hand cell, for example, you see the number eight.
The observed frequency for that cell is eight. This means that eight respon-
dents reported that they are urban residents and that they intend to vote in the
election. The concept of observed frequencies, as you’ve probably gathered by
now, is quite straightforward. They are simply the numbers you see displayed
in the contingency table. The table we’re considering now has nine cells, so
there are nine observed frequencies.

We turn now to the matter of expected frequencies. As with the observed
frequencies, there will be nine expected frequencies—one for each cell. To ob-
tain the value of the expected frequencies, though, we’ll have to go through a
few calculations. Let me explain.

The expected frequency for each cell is a statement of the frequency that
we would expect to find, given the marginal distributions and the total number of
cases in the table. More precisely, the expected frequency for a given cell is a
function of the number of cases in the row in question times the number of cases
in the column in question, divided by the total number of cases for the entire
table. For the sake of simplicity, we can summarize the calculation as follows:

For example, to calculate the expected frequency for the cell in the upper
left-hand corner of the table (the cell that contains an observed frequency of 8),
we would proceed as follows: We would multiply the row total (32) by the column
total (33). Then we’d divide the product by the total number of cases in the
sample (n = 98). The result would be 10.78. Moving to the next cell in that row
(the cell with the observed frequency of 17), we would calculate the expected
frequency by multiplying the row total (32) by the column total (32) and, as
before, we’d divide the product by the total number of cases in the sample 
(n = 98). The result would be an expected frequency of 10.45. Calculating the
expected frequencies for each cell, we’d obtain the information presented in
Table 11-3. Note that there is an observed frequency (fo) and an expected fre-
quency (fe) for each of the nine cells in the table.

The individual steps in the calculation of expected frequencies are shown
below. Note how the individual steps correspond to the calculations presented
in Table 11-3.

Upper-left fe = (32 × 33)/98 = 1056/98 = 10.78
Upper-middle fe = (32 × 32)/98 = 1024/98 = 10.45
Upper-right fe = (32 × 33)/98 = 1056/98 = 10.78
Middle-left fe = (29 × 33)/98 = 957/98 = 9.77
Middle-middle fe = (29 × 32)/98 = 928/98 = 9.47
Middle-right fe = (29 × 33)/98 = 957/98 = 9.77
Lower-left fe = (37 × 33)/98 = 1221/98 = 12.46

Expected Frequency of Each Cell =
Row Total 3 Column Total

n
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Lower-middle fe = (37 × 32)/98 = 1184/98 = 12.08
Lower-right fe = (37 × 33)/98 = 1221/98 = 12.46

Table 11-4 presents the observed and expected frequencies for each cell
in an illustration similar to Table 11-2.

The Formula

Given the observed frequencies, and having calculated the expected frequen-
cies, we now have all the elements required by the formula for the chi-square
test of independence. At first, the formula for chi-square (symbolized as χ2)
looks a little complicated, but keep in mind that there are really only two fun-
damental elements—observed frequencies and expected frequencies. Don’t let

❏✔ LEARNING CHECK

Question: In the chi-square test of independence, what are the
expected frequencies?

Answer: The frequencies that would be expected by chance in
each cell of a contingency table, given the marginal totals.

Table 11-3 Calculation of Expected Frequencies
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Table 11-4 Comparison of Observed and Expected Frequencies
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the summation sign, the exponent, the division, or anything else throw you
when you first look at the formula. The essence of the formula really has to do
with the observed and expected frequencies.

χ2 =

Always remember what the expected frequencies represent—namely, the fre-
quencies we’d expect if the pattern were due to chance alone (taking into account
the marginal distributions of the two variables). If you examine the formula care-
fully, you’ll note that it has to do with the difference between observed and ex-
pected frequencies. The formula reflects an overall summation of this difference.

Because the object of the chi-square test of independence is to determine
if the pattern reflected in a contingency table departs from chance in a signifi-
cant manner, it should make intuitive sense that the formula should involve a
measure of the overall difference between observation and expectation (or
chance). The larger the difference between the observed frequencies and the
expected frequencies, the larger will be the calculated value of chi-square. With
that as a background, we can now move to the specific steps in the calculation.

The Calculation

As we’ve done before, we’ll approach the calculations in a step-by-step fashion.
For the sake of review, here’s the formula again, followed by the individual steps
in the calculation.

χ2 =

χ2 = (8 – 10.78)2/10.78 + (17 – 10.45)2/10.45 + (7 – 10.78)2/10.78
+ (6 – 9.77)2/9.77 + (8 – 9.47)2/9.47 + (15 – 9.77)2/9.77
+ (19 – 12.46)2/12.46 + (7 – 12.08)2/12.08 + (11 – 12.46)2/12.46

χ2 = 7.73/10.78 + 42.90/10.45 + 14.29/10.78 + 14.21/9.77 
+ 2.16/9.47 + 27.35/9.77 + 42.77/12.46 + 25.81/12.08
+ 2.13/12.46

χ2 = 0.72 + 4.11 + 1.33 + 1.45 + 0.23 + 2.80 + 3.43 + 2.14 + 0.17
χ2 = 16.38

The formula instructs us first to find the difference between the observed
and expected frequencies of each cell ( fo – fe). Those differences are then
squared ( fo – fe)

2. The squared difference associated with each cell is then
divided by the expected frequency of the cell ( fo – fe)

2/fe. For example, be-
ginning with the cell in the upper left-hand corner of our contingency table,
we note that the observed frequency is 8 and the expected frequency (for the
same cell) is calculated as 10.78. The formula directs us first to find the dif-
ference between the two values ( fo – fe or 8 – 10.78, or –2.78). Next we
square the difference, which gives us a value of 7.73. We then divide 7.73 by

a
(fo 2 fe )2

fe

a
(fo 2 fe )2

fe



the expected frequency of the cell in question (10.78). The result (7.73 divided
by 10.78) is 0.72.

The same process is followed for each cell in the table—finding the differ-
ence between the observed and expected frequencies, squaring the difference,
and dividing the difference by the expected frequency of the cell in question.
You can follow this sequence for each cell by examining Table 11-5. Once that
process is completed for each cell, the results from all the cells are summed to
obtain the calculated value of the chi-square statistic. This is the statistic we’ll
compare to a critical value as we work our way toward a conclusion.

Conclusion and Interpretation

The calculated value of chi-square (χ2 = 16.38) is shown in the lower right
corner of Table 11-5. Once again, we’re right back where we’ve been many
times before. We have a calculated test statistic (χ2 = 16.38), and now we are
faced with arriving at a conclusion. As before, our conclusion will be based
on a comparison of our calculated test statistic to a critical value, given a cer-
tain level of significance, and taking into account a certain number of degrees
of freedom.
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Table 11-5 Calculation of Chi-Square Test of Independence Statistic
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Appendix H is a table of critical values for the chi-square test of indepen-
dence. Different levels of significance are shown across the top row of the
table, and the first column lists the degrees of freedom. We set the level of sig-
nificance at .05 at the beginning of our application, so we’ll be working with
that column. Now we come to the matter of the degrees of freedom.

The number of degrees of freedom (df) for the chi-square test of inde-
pendence is related to the number of cells in the contingency table. More
specifically, df is determined by multiplying the number of rows in the table,
minus 1, by the number of columns in the table, minus 1. The formula is
stated as follows:

df = (r – 1) × (c – 1)
where r = number of rows and c = number of columns

Since our example involves a contingency table with three rows and three
columns, the calculation is as follows:

df = (r – 1) × (c – 1)
df = (3 – 1) × (3 – 1)
df = 2 × 2
df = 4

Given four degrees of freedom (df = 4) and the .05 level of significance, we
find that the critical value is 9.49. Our calculated test statistic (our chi-square value)
is 16.38. Because our calculated test statistic exceeds the critical value, we’re in a
position to reject the null hypothesis. In doing so, we reject the idea of no associ-
ation between the two variables type of community and intention to vote.

As always, there’s a known probability (in this case, a 5% chance or less)
that we’ve rejected the null hypothesis when, in fact, it is true. In other words,
there’s always a chance that our sample suggested that the two variables are as-
sociated when they really aren’t. The good news, of course, is that we know
what the probability is—it’s simply the level of significance. When all is said and
done, we’re on fairly safe ground in our assertion that type of community
appears to be associated with intention to vote.

Having explored the chi-square test of independence, it’s time for a little
reflection.Think about how the various tests of significance have been presented—
how you’ve been introduced to one test after another, yet the underlying logic
of hypothesis testing remains the same.

Chapter Summary

In this chapter, we made a major transformation. We moved from consideration
of interval data and the calculation of means to the world of categorical data and
the analysis of contingency tables. In doing so, we broadened our understanding
of the types of situations that are suitable for statistical analysis.



Equally important, we examined the matter of chance, particularly as it
relates to the portrayal of research results presented in a contingency table. In
doing so, we began to think in terms of both chance and a departure from
chance. Moreover, we learned to think of a departure from chance as a sug-
gestion that two variables are associated with each other.

Finally, we looked at what it really means to assert that two variables are
associated. With a word of caution, we explored the idea of causation, noting
that causation—the idea that a given measurement or response on one variable
somehow causes a given measurement or response on another variable—can
be a tricky matter. In the process, you should have gained some understanding
of a larger issue—one that goes beyond the specifics of any particular statisti-
cal procedure. In short, you should have gained even more understanding of
the logic of scientific research.

Some Other Things
You Should Know

The chi-square test of independence is widely used, but it is subject to certain
limitations. For example, problems can arise when the number of cases is
small, relative to the number of cells in a table. In short, the idea behind the
chi-square test of independence is to analyze the pattern of a distribution, but
it’s difficult to see a pattern when there are just a few cases spread over a lot
of cells.

There are two ways to deal with this problem. The table can be restruc-
tured so that it has a smaller number of cells—something you could accomplish
by combining categories for either or both variables. That approach, however,
should always be accompanied by sound justification. It’s not something you
should do just for the sake of statistical analysis. A more acceptable approach,
if possible, is to simply increase the size of the sample. By increasing the
sample size, you end up with more cases available to distribute over the same
number of cells. That, in turn, increases the likelihood that a pattern of associ-
ation will emerge (assuming there’s a true pattern of association between the
variables in the population).

In some cases, certain correction factors are suggested when working
with the chi-square test of independence. For example, a 2 × 2 contingency
table typically calls for the use of the Yate’s correction for continuity. This
involves decreasing the difference between the observed and expected fre-
quencies by .5 for each cell. Similar corrections are often used when the
expected frequency in any cell (of any contingency table, not just 2 × 2 tables)
is less than 5.

Finally, you should be aware that the chi-square test of independence only
indicates whether or not there is an association between variables. It doesn’t
say anything about the strength of the association. In other words, the test can
point to an association or link between two variables, but it says nothing about
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how strong that association or link might be. To explore the matter of associa-
tion strength, a separate procedure (a measure of association application) is
required. For a wide-ranging discussion of some of the more commonly used
measures of association, see Healy (2002).

Key Terms

categorical data expected frequency
chi-square test of independence marginal totals
contingency table observed frequency

Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. A table is a classification tool that reveals the various possi-
bilities in the comparison of variables.

2. Information obtained on variables measured at the nominal or ordinal
level is said to be data.

3. frequencies are the frequencies presented in the cells of a
table.

4. The frequency is the frequency that would be expected to occur
in a particular cell, based upon chance and the marginal distributions.

5. The equation for expected frequency for the chi-square test of indepen-
dence is .

6. The equation for degrees of freedom for the chi-square test of indepen-
dence is .

7. There are cells in a 2 × 2 contingency table.
8. There are cells in a 3 × 4 contingency table.
9. A 4 × 6 contingency table has degrees of freedom.

10. A 3 × 5 contingency table has degrees of freedom.

Application Questions/Problems

1. A chi-square test of independence value of χ2 = 9.26 is calculated from
data in a 3 × 3 contingency table. Assuming a .05 level of significance,
identify the critical value and state your conclusion about the null
hypothesis.



2. A chi-square test of independence value of χ2 = 24.05 is calculated from
data in a 4 × 5 contingency table. Assuming a .05 level of significance,
identify the critical value and state your conclusion about the null
hypothesis.

3. A chi-square test of independence value of χ2 = 4.28 is calculated from
data in a 2 × 2 contingency table. Assuming a .05 level of significance,
identify the critical value and state your conclusion about the null
hypothesis.

4. A chi-square test of independence value of χ2 = 12.26 is calculated from
data in a 3 × 3 contingency table. Assuming a .05 level of significance,
identify the critical value and state your conclusion about the null
hypothesis.

5. A chi-square test of independence value of χ2 = 6.15 is calculated from
data in a 4 × 5 contingency table. Assuming a .05 level of significance,
identify the critical value and state your conclusion about the null
hypothesis.

6. You are interested in whether there is any association between gender
and academic major. Questioning 75 students, you obtain the following
results:
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Academic Major

Liberal
Business Science Arts Other Total

10 9 9 7 35

12 11 10 7 40

22 20 19 14 75

a. How many degrees of freedom are involved?
b. What is the calculated value of χ2?
c. Assuming the .05 level of significance, what would you conclude?

7. You are interested in whether there is any association between attitude
(favorable, unfavorable, or undecided) toward Candidate Busk and place
of residence (urban, suburban, or rural). Questioning 95 potential voters,
you obtain the following results: 
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a. How many degrees of freedom are involved?
b. What is the calculated value of χ2?
c. Assuming the .05 level of significance, what would you conclude?

8. You are interested in whether there is any association between gender and
perception of movie plots. You show a movie that contains both action
and love themes to a group of 70 research participants. You ask each par-
ticipant to categorize the plot as either love, action, or both. Consider the
following table of results:

Attitude Toward Candidate

Favorable Unfavorable Undecided Total

19 7 8 34

9 14 6 29

6 8 18 32

34 29 32 95
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Perception of Movie Plot

Love Action Both Total

7 12 15 34

9 11 16 36

16 23 31 70
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a. How many degrees of freedom are involved?
b. What is the calculated value of χ2?
c. Assuming the .05 level of significance, what would you conclude?



274

12

Correlation and Regression

In the last chapter, we looked at the idea of the association between two categorical
variables. In doing so, we explored the idea of two variables being tied to one
another by something other than chance. In this chapter, we extend our under-
standing of the idea of association as we take up two procedures appropriate for sit-
uations involving two interval/ratio level variables. First, we’ll examine Pearson’s r,
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or simple correlation analysis. Following that, we’ll explore a related procedure
known as regression analysis. As a prelude to both, we’ll explore the use of scatter
plots as a means to visually represent the association between two variables.

As you encounter this twelfth and final chapter, I’m going to ask you to explore
some additional dimensions related to relationships. First, you’re going to be
introduced to the notions of the strength and direction of relationships. In
doing so, you’ll deal with the question of how closely tied one variable is to the
other, as well as how the variables vary together, so to speak. You’ll also be
dealing with the matter of prediction—the idea that if you know something
about the way two variables are related, you’re then in a position to make
predictions. For example, if you have some knowledge as to the strength and
direction of the relationship between two variables, X and Y, it is possible to
make a prediction about the likely value of Y, given a certain value of X.

All of that may strike you as a little bit abstract as we begin this chapter, but
I can assure you that you’re already familiar with a lot of concepts that you’re
going to encounter. Means, standard deviations, and Z scores are about to reen-
ter the picture. If you think you’re a little rusty on some of those concepts, par-
ticularly standard deviations or Z scores, take a little time to reread previous
material on the topics. The review will serve you well.

A scatter plot is an extremely useful tool when it comes to looking at the
association between two variables. In short, a scatter plot allows us to simultane-
ously view the values of two variables on a case-by-case basis. A typical example
used to illustrate the utility of a scatter plot is one involving the association
between height and weight. Table 12-1 shows a hypothetical distribution of values
of those variables (height and weight) for 20 cases.

A visual representation of the same data in the form of a scatter plot is
shown in Figure 12-1. Height measurement values are shown along the hori-
zontal or X-axis of the graph; weight measurement values are shown along the
vertical or Y-axis of the graph. Focusing on case number 1, shown in the lower
left corner of the scatter plot, we can interpret the point as reflecting a person
(case) with a height of 59 inches (or 4' 11") and a weight of 92 pounds. Each
of the 20 points can be interpreted in the same fashion—a reflection of the val-
ues of two variables (height and weight) for a given case.

Note that the scales along the X- and Y-axes are different. The variable of
height is expressed in inches, but the variable of weight is expressed in pounds.
As you learned earlier when you encountered Z scores, though, the fact that
the scales are based on different units of measurement is not a deterrent to
statistical analysis. Indeed, correlation analysis is a technique that is perfectly
suited for such situations. All of that in good time, though. For the moment,
let’s take a closer look at scatter plots and what they can tell us.

Scatter Plots

Before We Begin
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Figure 12-1 Height/Weight Data for 20 Cases (Young Adult Females):
Scatter Plot

Table 12-1 Height/Weight Data for 20 Cases 
(Young Adult Females): Raw Scores

Height Weight
Case (Inches) (Pounds)

1 59 92
2 61 105
3 61 100
4 62 107
5 62 114
6 63 112
7 63 120
8 63 130
9 64 132

10 64 137
11 65 132
12 65 138
13 65 120
14 66 136
15 66 132
16 67 140
17 67 143
18 68 139
19 68 134
20 69 153
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Linear Associations: Direction and Strength

When two variables (Variable X and Variable Y) are associated, they can be
associated in several ways. A scatter plot can provide a graphic and concise
statement as to the general relationship or association between two variables.
In short, a scatter plot tells us something about the direction and strength of
association. To better grasp the variety of relationships or associations that are
possible, take a look at Figures 12-2 through 12-5. These illustrations reflect
data on two variables—Variable X and Variable Y. As you consider the illustra-
tions, don’t worry about what the X and Y variables represent or how they
might be measured. Just look at each axis as a scale that has low to high values.
Treat the illustrations as abstract representations; focus on the general trends or
associations that may or may not be reflected in the scatter plots.

One of the first observations we might make about the illustrations in 
Figure 12-2 is that they reflect linear patterns of association. To suggest that an
association between two variables is linear is to suggest that the pattern could be des-
cribed as approximating a straight line. Looking at both illustrations in Figure 12-2,
however, we note that linear associations can take different forms.

❏✔ LEARNING CHECK

Question: What is a linear association between two variables?
Answer: It’s an association that can be described in general terms

as approximating a straight line.

❏✔ LEARNING CHECK

Question: What is a scatter plot?
Answer: It’s a visual representation of the values of two variables

on a case-by-case basis.
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Figure 12-2 Moderate Positive (Direct) and Negative (Inverse) Associations



Direction of Association. Figure 12-2a depicts what we refer to as a positive
or direct association. To say that two variables are related or associated in a
positive or direct fashion is to say that they track together; it means that a high
value on Variable X is generally associated with a high value on Variable Y, and
a low value on Variable X is generally associated with a low value of Variable Y.
If, however, the variables are related in a negative or inverse fashion, an oppo-
site pattern appears (see Figure 12-2b). In a negative or inverse association,
high values on Variable X are associated with low values on Variable Y, and low
values on Variable X are associated with high values on Variable Y. In short, the
variables track in opposite directions.

Strength of Association. Figure 12-3 presents similar patterns, but with one
important difference. There is less dispersion of the points in the plots (when
compared to the patterns shown in Figure 12-2), and the general trend (either
positive or negative) is more easily detected. In that sense, the illustrations in
Figure 12-3 reflect associations that are stronger than those represented in
Figure 12-2.

❏✔ LEARNING CHECK

Question: What is a positive or direct association?
Answer: It’s an association in which the variables track together.

As one variable increases in value, the other variable
increases in value. As one variable decreases in value,
the other variable decreases in value.

Question: What is a negative or inverse association?
Answer: It’s an association in which the variables track in opposite

directions. As one variable increases in value, the other
variable decreases in value. As one variable decreases in
value, the other variable increases in value.
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Now take a look at Figure 12-4. Note that the association between the
variables is shown as being even stronger. Indeed, the points in the scatter plots
appear to be aligned in a straight line. Although such associations are rare in the
real world, we could characterize the relationships shown in Figure 12-4 as
perfect associations. They’re perfect in the sense that the value on one variable
could serve as a perfect or precise predictor of the value on the other variable.

As noted above, we rarely encounter perfect associations in the world of social
science research. Even so, the idea of a perfect relationship is useful, because it
helps us understand what is meant by strength of association. In many respects,
the strength of an association is just an expression of how close we might be to
being able to predict the value on one variable from knowledge of the value on
another variable. Some associations are stronger than others in the sense that they
come closer than others to the notion of perfect predictability.

Other Types of Association

Finally, take a look at Figure 12-5. In Figure 12-5a, the points in the scatter
plot are widely dispersed, and there isn’t any discernable pattern. For all prac-
tical purposes, the relationship or association is non-existent. In the case of
Figure 12-5b, a clear pattern is evident, but it’s a curvilinear association (as
opposed to the more linear relationships depicted in the previous illustrations).
As the values of Variable X increase, the values of Variable Y also increase—
up to a point. Eventually, however, the pattern begins to flatten and then
reverses; as the values on Variable X increase, the values on Variable Y decrease.
In short, a curvilinear association is one that is best described by a curved line.

❏✔ LEARNING CHECK

Question: What is meant by the term strength of association?
Answer: It’s an expression of the extent to which the value of one

variable can be predicted on the basis of the value of 
another variable.
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Figure 12-4 Perfect Positive and Negative Associations



By now, you should be getting the picture. The association between two
variables can take many forms. It can be positive, negative, weak, or strong. It
can also be linear, curvilinear, or non-existent.

It’s clear that a scatter plot can be a helpful tool in statistical analysis. It pro-
vides a visual statement about the general nature of an association and does so
in a concise format. Statisticians, however, generally want something more
exact—some sort of quantitative expression about the nature of associations—
and for that they turn to correlation analysis.

Correlation analysis is a technique developed by Karl Pearson; thus, it’s often
referred to as Pearson’s r. The popularity of Pearson’s r stems from what it tells
us about the direction and strength of association between two variables. When
Pearson’s r is calculated, the result will be a value that ranges from –1.0 to +1.0,
depending on the direction and strength of association. Without going into the
mathematics of the calculation just yet, let’s take a closer look at what it means
to say that the value of r has a known range between –1.0 and +1.0.

Correlation Analysis

❏✔ LEARNING CHECK

Question: In terms of a scatter plot,what is a curvilinear relationship?
Answer: It’s a scatter plot in which the general pattern of the plot

conforms to a curved line.

Question: In terms of a scatter plot, what does it mean to say that
an association is non-existent?

Answer: It’s a scatter plot in which there is no apparent
association or pattern.
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Assuming that the two variables under investigation are related in a linear
fashion (as opposed to a curvilinear fashion), the sign and value of r will tell us
quite a lot about the relationship. A positive sign signals a positive or direct as-
sociation; a negative sign signals a negative or inverse association. The closer
the value is to +1.0 or –1.0, the stronger the association is between the two
variables. An r value of +1.0 would indicate a perfect positive or direct associ-
ation between the variables; an r value of –1.0 would indicate a perfect negative
or inverse association between the variables. As I mentioned before, a perfect
association, whether positive or negative, is one in which there would be perfect
predictability. Knowledge of the value of one variable would allow us to make
an exact prediction of the value of the other variable.

Keep in mind that none of this necessarily indicates causation. Just because
two variables appear to be closely associated with one another, it doesn’t neces-
sarily mean that one variable causes the other variable. Remember some of the
points we covered in the last chapter. Recall that outside of highly controlled ex-
perimental research, it’s virtually impossible to legitimately infer causality. Also
keep in mind that what may look like a case of causality may be nothing more
than the fact that two variables are expressions of a common concept. That said,
we move on to our discussion of Pearson’s r, or simple correlation analysis.

Two Variables: X and Y

Our discussion of scatter plots and Pearson’s r has thus far revolved around 
the notion of two variables, usually referred to as Variable X and Variable Y.

❏✔ LEARNING CHECK

Question: If the value of r has a positive sign, what does that mean?
Answer: It means that the variables are associated in a positive or

direct fashion.

Question: If the value of r has a negative sign, what does that mean?
Answer: It means that the variables are associated in a negative or

inverse fashion.

❏✔ LEARNING CHECK

Question: What is Pearson’s r?
Answer: It’s a measure of the strength and direction of association

between two variables.

Question: What is the range of r?
Answer: The value of r can range from –1.0 to +1.0.



We could have used the symbols Variable 1 and Variable 2, or almost any other
designation, but as a matter of convention, we typically speak in terms of
Variable X and Variable Y. Those notations appear time and time again in our
discussions, so some additional commentary is warranted.

When researchers speak in terms of Variable X and Variable Y, they com-
monly propose some logical connection between the two. For example, the 
X variable is commonly regarded as the independent variable, and the Y vari-
able is commonly regarded as the dependent variable. In the language of
research, an independent variable is a variable that’s presumed to influence
another variable. The dependent variable, in turn, is the variable that’s pre-
sumed to be influenced by another variable.

For example, it’s common to assert that there’s a connection between a
person’s level of education and level of income. Educational level would be
treated as the independent variable, and level of income would be regarded as
the dependent variable. In other words, education (independent) is thought to
exert an influence on income (dependent).

Once again, it’s important to remember that the notion of one variable
exerting an influence on another is not the same thing as pure causality. For
example, it’s easy to understand how one’s level of education would have some
connection to one’s level of income, but it’s difficult to imagine that education
is the only variable that determines income. A person’s level of education
might be one influence on level of income, but that’s hardly the same thing as
saying level of education causes a person’s level of income.

Although researchers rely on simple logic when it comes to identifying the
independent and dependent variables, not all research situations are clear-cut.
Consider the association between the level of unemployment in a community and
the level of in-migration. The level of unemployment in a community may influ-
ence the amount of in-migration, but continued in-migration is likely to affect the
level of unemployment. Job opportunities (expressed in low levels of unemploy-
ment) could attract significant numbers of job seekers, to the point that the level
of unemployment is pushed upward. Much like the relationship between 
the temperature in a room and a thermostat, each variable has a way of affecting
the other. Such relationships are said to be reciprocal—relationships or associations
in which each variable is presumed to exert an influence on the other.

❏✔ LEARNING CHECK

Question: What’s the definition of an independent variable?
Answer: It’s the variable that’s presumed to influence another

variable.

Question: What’s the definition of a dependent variable?
Answer: It’s the variable that’s presumed to be influenced 

by another variable.

282 CHAPTER 12 Correlation and Regression



Correlation Analysis 283

Given that, it’s probably best to expand your thinking about Variable X and
Variable Y as follows: When you can reasonably assign a variable’s place in a
logical sequence of events, it’s reasonable to think in terms of Variable X as the
independent variable and Variable Y as the dependent variable. When you
can’t make a reasonable assignment of place in a logical sequence of events,
just think of Variable X and Variable Y as two variables—plain and simple,
without regard for causality, logical sequencing, or anything else.

Later on, we’ll deal with Variable X as the variable that you’d use to predict
Variable Y, but all of that can wait until our discussion of regression. For the
present, we’ll continue with our discussion of simple correlation analysis as a
measure of the association between Variable X and Variable Y. As before, we’ll
start with the logic.

The Logic of Correlation

In truth, correlation analysis takes many forms (such as multiple correlation or
partial correlation); the one we’re considering here is referred to as simple
correlation. In short, simple correlation analysis allows us to measure the
association between two interval/ratio level variables (assuming that the two
variables, if associated, are associated in a linear fashion). The logic of correla-
tion analysis traces back to the notion of Z scores (something you encountered
in Chapter 2). You’ll want to review the material in Chapter 2 if you think
you’re not quite up to speed on the topic. Assuming you feel comfortable with
the concept, however, we can move to the topic of Z scores and what they
allow us to do in the context of correlation analysis.

Earlier you learned how to transform a raw score into a Z score by finding the
difference between a raw score and the mean of a distribution and dividing that dif-
ference by the standard deviation of the distribution. Just to refresh your memory
on this point, consider the formula for a Z transformation and recall what it allows
you to do. Z transformations allow you to convert the scores on different scales to
a single scale based on Z scores (or points along the baseline of the normal curve).

For example, look back at Figure 12-1. Note that the values along the
horizontal and vertical axes are expressed in different scales or units of measure-
ment: inches along the horizontal axis and pounds along the vertical axis.
When we consider the raw scores of the points represented in the scatter plot,
then, we are dealing with two different scales. The two sets of scores will be on

Z =
Raw Score 2 Mean
Standard Deviation

❏✔ LEARNING CHECK

Question: What is a reciprocal relationship?
Answer: A reciprocal relationship is one in which each variable is

presumed to exert an influence on the other variable.



the same scale, though, if they’re transformed into Z scores. The same is true
for any number of situations.

For example, student aptitude test scores (SAT scores) and grade point
averages (GPAs), when expressed as raw scores, are based on very different
underlying scales, but the raw scores can easily be transformed into Z scores
to create a single scale of comparison. Data on education (expressed as the
number of school years completed) and income (expressed in dollars) can
share a common scale when transformed into Z scores. The list goes on. All
we need is the mean and standard deviation of each distribution. It’s a simple
transformation: Subtract the mean from each raw score in the distribution,
and divide each difference by the standard deviation.

Decades ago, Pearson discovered something very interesting about distrib-
utions of Z scores. In short, he discovered that it’s possible to transform two
distributions of raw scores (expressed as pairs of scores or values) into Z scores,
perform some very minor calculations, and end up with a statistic that will
always range between –1.0 and +1.0. What Pearson discovered became the
basis for the computation of r.

In developing the correlation procedure, Pearson found that two distribu-
tions of closely associated Z scores that tracked together in a positive (direct)
fashion would result in an r value approaching +1.0. He also discovered that
two distributions of Z scores that were closely associated in a negative (inverse)
direction would result in an r value approaching –1.0. All that’s necessary is a
couple of minor calculations, once the raw scores have been converted to
Z scores. This brings us to the formula for r, so that’s where we’ll turn next.

The Formula for Pearson’s r

Because the computational formula for r includes the steps necessary to
convert raw scores to Z scores, it has a way of appearing extremely complex.
Assuming you know the basis of Pearson’s r (namely, the conversion of raw
scores into Z scores), though, you’re in a position to rely on a more conceptual
formula—one I suspect you’ll find very simple to follow. The heart of the more
conceptual approach has to do with what we refer to as the cross products of
the Z scores. That sounds like a mouthful until it’s explained, so let’s start with
a look at the data presented in Table 12-2.

Table 12-2 shows pairs of values or scores associated with 10 cases.
Columns 2 and 4 show the raw score distributions for the two variables, X and
Y. The means and standard deviations of the raw score distributions are given
at the bottom of the table. Columns 3 and 5 show the Z scores or transforma-
tions based on the associated raw scores. (Recall that these are calculated by
subtracting the mean from each raw score and dividing by the standard devia-
tion.) Case number 1, for example, has a raw score X value of 20 (shown in
Column 2) and a Z score (ZX) value of –1.49 (shown in Column 3). The raw
score Y value for case number 1 is 105 (shown in Column 4), and the Z score
(ZY) value of –1.57 (shown in Column 5).

The cross products are obtained by multiplying each ZX value (the entry in
Column 3) by the associated ZY value (the entry in Column 5). The results of the
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cross product multiplication are shown in Column 6 (ZX ? ZY). Earlier I mentioned
that the cross products of the Z scores lie at the heart of correlation analysis.

Now that you know how to derive the cross products, it’s time to encounter
the formula for the calculation of r. My guess is that you’ll find it to be rather
straightforward.

As in Table 12-2, the symbol ZX denotes the Z scores for the X variable,
and ZY denotes the Z scores for the Y variable. All you need to do is sum the
cross products and divide the sum by the number of paired cases minus 1. The
result is our calculated value of r. For the data presented in Table 12-2, the cal-
culation is as follows:

Note that we use n – 1 in the denominator of the formula. You should be
aware, though, that some presentations of the formula rely on n alone. The dif-
ference in the two approaches traces back to the manner in which the standard
deviation for each distribution was calculated (recall that the standard deviation
is a necessary ingredient for the calculation of a Z score). As you may recall
from Chapter 2, the choice of using n – 1 versus n in the denominator when

r =
a(ZX • ZY )

n 2 1

r =
8.68

9
r = 10.96

r =
a(ZX • ZY )

n 2 1

Table 12-2 Cross Product Calculations for X and Y Variables 
(Positive Association)

(1) (2) (3) (4) (5) (6)
Case X ZX Y ZY ZX ? ZY

1 20 –1.49 105 –1.57 2.34
2 25 –1.16 126 –0.84 0.97
3 30 –0.83 122 –0.98 0.81
4 35 –0.50 130 –0.70 0.35
5 40 –0.17 155 0.17 –0.03
6 45 0.17 159 0.31 0.05
7 50 0.50 153 0.10 0.05
8 55 0.83 184 1.18 0.98
9 60 1.16 177 0.94 1.09

10 65 1.49 190 1.39 2.07

Sum of Cross Products = 8.68

Mean of X = 42.50
Standard Deviation of X = 15.14

Mean of Y = 150.10
Standard Deviation of Y = 28.65



calculating the standard deviation of a sample is somewhat discretionary. The
assumption in this text is that n – 1 was used in the calculation of the standard
deviations of Variable X and Variable Y.

Just to make certain that you’re on track with the notion of cross products
and how they’re used to develop a value for r, consider the data presented in
Table 12-3—another example similar to the one you encountered in Table 12-2.
In the case of Table 12-3, however, you’ll note that as the raw scores (and the
corresponding Z scores) for Variable X increase, those for Variable Y decrease,
indicating a negative association. As expected, the resulting r value reflects
the negative or inverse direction of the relationship:

❏✔ LEARNING CHECK

Question: In the context of Pearson’s r, what is a cross product;
that is, how is a cross product computed?

Answer: A cross product is the result of multiplying a ZX score by
a ZY score. To obtain the ZX and ZY scores, individual X
and Y scores must first be converted to Z scores.

r =
a(ZX • ZY )

n 2 1

r =
28.68

9
r = 20.96
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Table 12-3 Cross Product Calculations for X and Y Variables 
(Negative Association)

(1) (2) (3) (4) (5) (6)
Case X ZX Y ZY ZX • ZY

1 20 –1.49 190 1.39 –2.07
2 25 –1.16 177 0.94 –1.09
3 30 –0.83 184 1.18 –0.98
4 35 –0.50 153 0.10 –0.05
5 40 –0.17 159 0.31 –0.05
6 45 0.17 155 0.17 0.03
7 50 0.50 130 –0.70 –0.35
8 55 0.83 122 –0.98 –0.81
9 60 1.16 126 –0.84 –0.97

10 65 1.49 105 –1.57 –2.34

Sum of Cross Products = –8.68

Mean of X = 42.50
Standard Deviation of X = 15.14

Mean of Y = 150.10
Standard Deviation of Y = 28.65
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Earlier I mentioned that the computational formula for r can be rather
threatening if you don’t know what it really represents. Now you know, 
however, that the calculation (based on the cross products of Z scores) is
actually quite straightforward. Still, you deserve to have a look at a typical
computational formula for r—if only to convince yourself that the business of
statistical analysis isn’t always as complex as it might appear. The formula that
follows, for example, is typical of how a computational formula for r might be
presented:

Such a formula can be very handy if you’re using a calculator to compute
the value of r. Given the increasing use of computers and statistical software,
however, the real issue is likely to be whether or not you have a solid under-
standing of what lies behind a procedure and how to interpret the results. In
the case of Pearson’s r, my guess is that the conceptual formula, based on the
cross product calculations, gives you a better understanding of what’s really
involved in the calculation.

Application

We’ve covered the necessary information to move forward with a typical re-
search application, so let’s begin with the example presented in Table 12-4.
Assume that information has been collected from a sample of 20 people on
two different variables: level of education (the number of school years
completed) and number of memberships in voluntary associations (clubs and
organizations). We’ll treat the education variable as the X or independent
variable; the variable related to the number of memberships will be treated as
the Y or dependent variable. The raw scores are shown as Variable X and
Variable Y.

A quick examination of the data suggests that there’s likely to be a positive
association between the two variables. After all, the general pattern is one in
which high levels of education are associated with a high number of association
memberships. By the same token, low levels of education are generally associ-
ated with low numbers of memberships. The question, of course, is just how
strong the association is. Rather than relying on the more complex computa-
tional formula, we’ll move forward on the basis of the conceptual formula out-
lined earlier. Recall that we’ll be working toward developing a value for r as a
function of the cross products.

The first step is the conversion of the raw score distributions into Z score
distributions. The mean and standard deviation (which are necessary ingredi-
ents in the conversion of raw scores to Z scores) are given at the bottom of
the table. The Z score transformations, along with the cross products, are listed

r =
naXY 2 (aX ) (aY )

4 CnaX2 2 (aX)2 D CnaY2 2 (aY )2 D



in the appropriate columns. The sum of the cross products (10.81) is shown at
the bottom of the last column.

Recall that all we have to do now to obtain the value of r is divide the sum
of the cross products by n – 1. Thus, we can calculate the value as follows:

r =
a(ZX • ZY )

n 2 1

r =
10.81

19
r = 10.57
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Table 12-4 Raw Data and Cross Product Calculations for Educational Level 
and Association Memberships

X Y ZX ZY ZX • ZY

Educational Association
Case Level Memberships

1 10 5 –0.16 0.51 –0.08
2 11 3 0.09 –0.56 –0.05
3 16 6 1.32 1.04 1.37
4 7 4 –0.90 –0.03 0.03
5 6 2 –1.15 –1.09 1.25
6 7 0 –0.90 –2.15 1.94
7 11 3 0.09 –0.56 –0.05
8 20 4 2.31 –0.03 –0.07
9 14 5 0.83 0.51 0.42

10 11 5 0.09 0.51 0.05
11 6 4 –1.15 –0.03 0.03
12 7 4 –0.90 –0.03 0.03
13 9 4 –0.41 –0.03 0.01
14 7 2 –0.90 –1.09 0.98
15 10 6 –0.16 1.04 –0.17
16 16 6 1.32 1.04 1.37
17 17 7 1.57 1.57 2.46
18 11 7 0.09 1.57 0.14
19 10 2 –0.16 –1.09 0.17
20 7 2 –0.90 –1.09 0.98

Sum of Cross Products = 10.81

Mean of X = 10.65
Standard Deviation of X = 4.04

Mean of Y = 4.05
Standard Deviation of Y = 1.88
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Interpretation

We now have a calculated r value of +0.57, but there’s still the question of how
we should interpret it. Statisticians actually use the information provided by the
r value in two ways.

The value of r is referred to as the correlation coefficient. The sign 
(+ or –) in front of the r value indicates whether the association is positive
(direct) or negative (inverse). The absolute value of r (the magnitude, without
respect to the sign) is a measure of the strength of the relationship. The closer
the value gets to 1.0 (either +1.0 or –1.0), the stronger the association.

As a rule, correlation coefficients, whether positive or negative, are inter-
preted as follows (Salkind, 2000):

.0 to .2 No relationship to very weak association

.2 to .4 Weak association

.4 to .6 Moderate association

.6 to .8 Strong association

.8 to 1.0 Very strong to perfect association

Although the value of r is important in its own right, the real utility of the
measure is found in its squared value. When r is squared (to become r2), it’s re-
ferred to as the coefficient of determination. It’s the coefficient of determi-
nation that’s so meaningful in statistical analysis. Let me explain.

A quick look at the data tells us that each variable reflects some variation.
People’s level of education varies, and the number of associations to which
they belong also varies. The question is, how much of the variation in one vari-
able can be attributed to variation in the other variable? As it turns out, that’s
what the coefficient of determination is all about.

In other words, the coefficient of determination (r2) is a measure of the ex-
plained variance—the amount of variation in one variable that is attributable to
variation in the other variable. Having obtained a positive r value, we know that

❏✔ LEARNING CHECK

Question: What does the sign of the correlation coefficient tell us?
Answer: The sign of the correlation coefficient tells us the direc-

tion of the association (either positive or negative).

Question: What does the magnitude of the correlation coefficient
tell us?

Answer: The magnitude of the correlation coefficient tells us the
strength of the association.



the association between the variables is in a positive direction. The coefficient
of determination, though, allows us to go well beyond that in our statement
about the relationship.

Remember: The coefficient of determination is simply the value of r squared
(r2). The r2 value is transformed into a percentage value as follows: r2 × 100.
For example, starting with our r value of +0.57, we can derive the coefficient of
determination as follows:

r = +0.57
r2 = 0.325

r2 × 100 = 32.5%

Interpretation: 32.5% of the variation in number of memberships is attributable
to variation in level of education.

The interpretation of r2 is really quite telling. In this example, it tells us that
variation in level of education explains 32.5% of the variation in the number of
memberships in voluntary organizations. In everyday terms, it allows us to make
more quantitatively based statements about why some people have more mem-
berships and some people have fewer memberships. It’s certainly true that some
portion of the variation remains unexplained or is not explained by the inde-
pendent variable (in this case, 67.5%), but the information provided by the
coefficient of determination tells us quite a bit about the relationship at hand.

That said, let me caution you about something. When working with
Pearson’s r, always bear in mind that the real interpretive power is found in the
coefficient of determination. Accordingly, you should remind yourself that what
might appear at first glance to be a strong association (an r value approaching
±1.0) has a way of decreasing in magnitude when the value is squared. For
example, an r value of –0.70 might seem to be quite strong. When the value is
squared, however, we find ourselves looking at an r2 value of 0.49.

Finally, it’s important to remember that r2 is considered to be a symmetri-
cal measure. That means that the interpretation of r2 works both ways. We can
think of r2 as indicating the amount of variation in Y that is attributable to
variation in X, or we can think of it as the amount of variation in X that is
attributable to variation in Y.

❏✔ LEARNING CHECK

Question: What is the coefficient of determination, and how is it
symbolized?

Answer: The coefficient of determination is the amount of
variation in one variable that is attributable to variation
in another variable. It is symbolized as r2.
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Assuming you’ve digested the matter of r and r2, there’s one more ele-
ment to consider—namely, the matter of a hypothesis test. So far in this chap-
ter, our attention has been directed toward the question of the strength and
direction of the association between two variables. We’ve yet to deal with the
matter of a hypothesis test for the significance of r. That’s where we’ll
turn now.

An Additional Step: Testing the Null

It’s one thing to measure the apparent strength of association between two vari-
ables based on a pattern that’s reflected in sample data. It’s quite another matter,
though, to deal with the question of whether or not the sample reflects what’s oc-
curring in the larger population. To deal with this second question—whether or
not the pattern reflects the larger population—we turn to a hypothesis-testing
procedure. In short, we test the significance of r.

As always, we’ll start by stating an appropriate null hypothesis, and we’ll
select a level of significance in advance. Because our interest is in the question
of whether or not the observed association departs from chance (the assump-
tion of no association), we can express the null hypothesis as follows:

H0: r = 0

Following the normal procedure of selecting a level of significance in ad-
vance, we’ll set the level of significance at .05. It’s possible to test the null
hypothesis using t, but we can also simply compare the calculated value of r
(the calculated test statistic) to a table of critical values such as the one in
Appendix I. In short, the table shown in Appendix I takes all the work out of
the process.

As with other tables of critical values you’ve used, Appendix I presents crit-
ical values on the basis of the appropriate number of degrees of freedom and
level of significance. When looking at Appendix I, note that the critical values
of r are presented without regard to the sign that may be associated with the 
r value (+ or –). For example, a critical value of 0.43 actually represents a crit-
ical value of +0.43 or –0.43.

In testing the significance of r, the number of degrees of freedom is defined
as n – 2, where n equals the number of cases or paired observations under
consideration. For example, the r value we just calculated was based on

❏✔ LEARNING CHECK

Question: When testing the significance of r, what is the null
hypothesis?

Answer: The null hypothesis is a statement that r = 0.



observations for 20 people or cases. Thus, the appropriate number of degrees
of freedom is equal to 20 – 2, or 18. The degrees of freedom are listed in the
first column of Appendix I.

Levels of significance are listed across the top of the table; we’re working
at the .05 level. Locating the column for the .05 level of significance and the
row for 18 degrees of freedom, we note that the point of intersection reveals a
critical value of 0.444. Comparing our calculated test statistic of 0.57 to this
critical value, we determine that the calculated test statistic exceeds the critical
value. Therefore, we reject the null hypothesis (with a .05 probability of making
a Type I error).

Let me suggest you take a couple of moments to carefully examine the crit-
ical values in Appendix I, particularly the way they vary according to the num-
ber of degrees of freedom. For example, the critical value (at the .05 level of
significance) for 28 degrees of freedom is shown as 0.361. In other words,
when working with a sample of 30 cases (degrees of freedom = 28), it would
take a calculated value of r (either + or –) equal to or greater than 0.361 to re-
ject the null. When working with a sample of 10 cases, however (degrees of
freedom = 8), it would take a calculated r value (+ or –) equal to or greater than
0.632 to reject the null hypothesis. This point should make intuitive sense to
you by now. In terms of what it might take to convince you that there’s an
association between two variables, you’d probably demand more extreme
evidence (a larger r value), so to speak, if you were working with a very small
sample, as opposed to a larger sample.

Conclusion and Interpretation

A test of the null hypothesis gives us an important foundation for our results
from a correlation analysis. It’s one thing to determine that there appears to be
a strong (positive or negative) association between two variables based on sam-
ple data, but there’s still the issue of whether or not the pattern in the sample
data reflects a similar pattern in the population. And that, of course, is much
the same question that we’ve dealt with in other hypothesis-testing procedures.

The issue always comes back to the notion that the sample data, in one
way or another, could be extreme—sample information that doesn’t really mir-
ror the population in question. Since the critical values of r are so dependent
on sample size, a test for the significance of r (the test of the null hypothesis
that r = 0) is really a second but very important step in correlation analysis.

❏✔ LEARNING CHECK

Question: How do you determine the number of degrees of
freedom when testing the significance of r?

Answer: The number of degrees of freedom is equal to the
number of cases or paired observations minus 2 (n – 2).
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Assuming a noteworthy value of r is obtained, it should always be viewed in the
context of whether or not it’s significant.

In retrospect, it’s easy to see why Pearson’s r is such a popular statistical
measure. The simple multiplication (cross products) of the Z scores, divided by
n – 1, produces an r value, and that r value, in turn, tells us something about
the strength and direction of the association between two variables. We also
know that squaring the value of r will produce the coefficient of determination
(r2)—a measure of the extent to which the variation in one variable is attribut-
able to variation in the other variable. We also know that there is a simple
procedure available to test the significance of r, assuming that the presumed
association between two variables is strong enough to capture our attention.

By most standards, all of that would be quite enough benefit from one sim-
ple measure. As it turns out, though, the fun has just begun, so to speak.
Armed with the value of r, along with the means and standard deviations of the
raw scores in two distributions, we’re actually in a position to make certain pre-
dictions. More specifically, we can make predictions about a Y value on the
basis of a known or assumed X value. How we go about that falls under the
topic of regression analysis, and that’s what we take up next.

A central element in the calculation of r was the conversion of distributions of
raw scores into distributions of Z scores. Indeed, it was the conversion of raw
scores into Z scores that allowed us to look at the association between two vari-
ables originally measured on very different scales (for example, height mea-
sured in inches and weight measured in pounds).

In the case of regression analysis, we find ourselves working with results of
the correlation analysis, but we also return to our distribution of raw scores. We
go back to our raw scores because the aim of regression analysis is the predic-
tion of one value from another. In a sense, you can think of regression analysis
as a technique that allows you to use existing data to predict future values. To
better understand all of that, let’s turn to an example.

An Application

Let’s say a university administrator is concerned about the number of graduate
students who enter the university but fail to complete their degrees. Let’s
assume the administrator’s goal is to get a better handle on the association be-
tween a student’s performance on the GRE (the Graduate Record Examina-
tion, a standardized graduate school admission test) and graduate school GPA
(grade point average in graduate school). Knowing something about the asso-
ciation between these two variables might put the administrator in a better
position to predict the future performance of an applicant.

Let’s assume the administrator has selected a random sample of 10 stu-
dent files for analysis (including students who completed a graduate degree and

Regression Analysis



those who dropped out or were dismissed). The stage is now set for a detailed
analysis of the data presented in Table 12-5.

Following the convention outlined earlier, we designate the student GRE
score as the independent or X variable and the GPA score as the dependent or
Y variable. The X variable (the GRE score) is measured as the combined score
on the quantitative and verbal portions of the test. Because each portion of the
test has a score range from 200 to 800, a combined score could range from
400 to 1600. The Y variable (GPA) is measured on a scale that ranges from
0.00 to 4.00. Note that the mean and standard deviation for each distribution
are given at the bottom of the table. Also shown are the calculated values of
r (+0.92) and r2 (0.85, or 85%).

A scatter plot of the data from Table 12-5 is shown in Figure 12-6. As we
might have expected, the general pattern suggets a positive association be-
tween the two variables. As GRE scores increase, so do GPAs. The pattern,
however, is far from perfect. By no means are the points in the scatter plot
aligned in a straight line.

With a little imagination, we might conceive of a line that could pass through
the distribution represented by the points—a line that reflects the general trend
in the pattern of cases. But an imaginary line that was eyeballed, so to speak,
might not be too useful. After all, different people are apt to come up with
different imaginary lines, and some lines would more accurately represent the
data than others. There’s one line—a very precise line—however, that best fits
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Table 12-5 Data for 10 Cases (GRE scores and GPAs)

X Y ZX ZY ZX • ZY

Case GRE Score GPA

1 1378 3.55 1.01 0.72 0.73
2 956 2.65 –0.86 –0.86 0.74
3 1222 3.54 0.32 0.70 0.22
4 830 2.24 –1.42 –1.58 2.24
5 991 3.00 –0.71 –0.25 0.18
6 1300 3.77 0.67 1.11 0.74
7 1521 4.00 1.65 1.51 2.49
8 899 2.62 –1.11 –0.91 1.01
9 1254 3.07 0.46 –0.12 –0.06

10 1149 2.94 0.00 –0.35 0.00

Sum of Cross Products = 8.29

Mean of X = 1150
Standard Deviation of X = 225.20

Mean of Y = 3.14
Standard Deviation of Y = 0.57

r = +0.92
r2 = 0.85 (85%)



the data. It is known, appropriately enough, as the line of best fit. This line,
also called the regression line, allows us to predict the value of Y on the basis
of the value of X. To understand how all of that is done, let’s take a look first at
the logic behind the line and then at the equation for the line.

The Logic of Prediction and the Line of Best Fit

Returning to our example involving GRE scores and GPAs, recall that we
already have the value of Pearson’s r (the correlation coefficient) as +0.92 (see
Table 12-5). Let’s assume we have tested the null hypothesis at the .05 level of
significance and found that we could reject the idea of no association between
the variables. Armed with this information, we are ready to take the next
step—attempting to predict an applicant’s future success (measured in terms of
GPA) on the basis of the applicant’s GRE score.

Had we discovered that the association between the two variables was per-
fect, we would have obtained an r value of +1.0. Had we discovered a perfect
association, we could have produced a scatter plot and easily drawn a straight
line through the points. It would have been a rather simple task because in a
scatter plot based on a perfect association, all the points would be aligned in a
straight line. In a case like that, it would be easy to make a prediction about
future success. All we’d have to do is locate a person’s GRE score along the
X-axis, draw a line up to the line passing through the cases, and then draw a
line over to the axis representing future GPA values. The predicted GPA value
would simply be the GPA associated with a given GRE score.
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Unfortunately, however, we didn’t find a perfect association between the
GRE scores and future GPAs. Our r and r2 values were high, but they certainly
fell short of indicating a perfect association between the two variables. Thus,
the prediction of students’ future performance based on their GRE scores be-
comes a bit more problematic. As you’re about to discover, however, the pre-
diction may be a bit more problematic, but it’s possible nonetheless. It begins
with the same notion we’ve dealt with before—namely, the idea of a straight
line passing through the distribution of points in a scatter plot.

As it turns out, we can mathematically determine the path of a straight line
that best fits a scatter plot—one that passes through the various points in such
a way that the line best represents the overall pattern of association between
the values. It is the line that passes through the points in such a way that the
squared distances of the points (cases) from the line (taken collectively) are at a
minimum. In a sense, that’s what the term regression analysis is all about. The
term refers to the various elements involved in producing the line of best fit and
making predictions based on that line.

Because the regression line (or line of best fit) is the line that passes
through the distribution in such a manner that the squared distances of the
points to the line is at a minimum, it’s also often referred to as the least
squares line. The regression line (or line of best fit or least squares line) for the
data we’re considering is shown in Figure 12-7. This is the same scatter plot as
the one shown in Figure 12-6, but the regression line has been added. Let me
suggest that you take a few moments to study the scatter plot, along with its
associated line of best fit.
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And that brings us back to the central purpose of regression analysis.
Assuming we knew something about the regression line—assuming we knew
the path of the line—it would be a simple matter to predict the value of one
variable on the basis of the value of the other variable. In other words, given a
value of X, we should be able to predict the value of Y. That, in short, is what
regression analysis allows us to do. Given this ultimate goal, we now turn to the
equation and related formulas.

The Regression Equation

Remember what our task is: We want to predict students’ future performance
(GPA) on the basis of their GRE scores. To do this, we’ll rely on the regression
equation—an equation that describes the least squares line (or line of best fit).
The regression equation is defined as follows:

Y9 = a + bX

The elements of the formula are as follows:

■ Y 9 is a value that we’re attempting to predict (in this case, a particular
GPA); the symbol is read as Y-prime. The term Y9 stands for a predicted
value, as opposed to an actual value.

■ X is a value that we are given (in this case, an applicant’s GRE score).
■ a is the point where the regression line (the line of best fit) crosses the

Y-axis of a scatter plot. This is known as the Y-intercept (the point at
which the line intercepts the Y-axis).

■ b represents the slope of the regression line (the amount of change in Y
that is associated with a unit change in X).

Assuming we can come up with the values of a and b (referred to as
constants), we can predict a future GPA on the basis of a GRE score. Since the
relationship between the two variables is less than perfect, we approach the
analysis with the knowledge that our prediction will likely be less than perfect

❏✔ LEARNING CHECK

Question: What is the line of best fit? What are some other terms
for the same line?

Answer: The line of best fit is the line that passes through the
points in a scatter plot in such a way that it provides the
best representation of the overall association between
the variables.This is also known as the regression line or
the least squares line.



as well. On the other hand, it’s safe to say that the use of the regression equa-
tion puts us in a position to make a very educated guess, even though it is apt
to be less than perfect.

Returning to the elements in the equation, it’s clear that now we need to
know the values for a and b (the constants). Down the road, once we have
a and b, we can substitute values for X to make predictions about Y values (or,
more correctly, the Y9 values). But first we have to have the values of a and b.

Calculation of the b Term (the Slope of the Line). As noted previously, the
b term in the regression equation (Y 9 = a + bX ), is the slope of the line—
that is, the amount of change in Y that accompanies a unit change in X. In our
present example, the slope tells us the increase in a student’s GPA that is ex-
pected to occur with a one-point increase in a student’s GRE score.

Since we’re interested in actual scores on the GRE and actual GPA values,
we return to our raw scores for this portion of our analysis. The transformed Z
scores came into play when we calculated the correlation coefficient, and the
correlation coefficient comes into play in the regression procedure. But we
have to deal with the raw scores to get an accurate picture of the unit changes
that are going on in each distribution (that is, how a change in GRE score is ac-
companied by a change in GPA).

The situation is rendered far more comprehensible if we think in terms of
standard deviation units—a change of a certain number of standard deviation
units in one variable accompanied by a change of a certain number of standard
deviation units in the other variable. As it turns out, this idea lies at the heart of
the computation of the b term in the regression equation. In fact, the b term is
simply an expression of the ratio of the standard deviation of the Y variable (sY)
to the standard deviation of the X variable (sX), taking into account the strength
of association (the value of r) between the two variables.

We already have the standard deviation for each distribution of raw scores.
Those, along with the means of each distribution, were shown in Table 12-5 as
follows:

The next step is to express the relationship between the two standard de-
viations as follows: sY/sX. The final step in the calculation of the b term is to
multiply the ratio by the correlation coefficient (r). Note that we’ll multiply the
ratio by the value of r, not the value of r2. The various steps for the calculation
of the b term can be summarized as follows:

b = r a sY

sX
b

b = 0.92 a 0.57
225.20

b
b = 0.002

X = 1150  sX = 225.20
Y = 3.14 sY = 0.57
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The real meaning of the b term, or slope of the line, doesn’t come to the
forefront until we have calculated the Y-intercept (the a term). Therefore, we’ll
turn to that calculation next.

Calculation of the a Term (the Y-Intercept). The a term in the regression
equation (Y 9 = a + bX ) was previously defined as the point where the regres-
sion line (the line of best fit in a scatter plot) crosses the Y-axis. It is mathemat-
ically defined as follows:

or the mean of Y, minus the slope (b) times the mean of X

It should make intuitive sense to you that the regression line will, in some
way, reflect the means of both distributions. It’s true that there is a certain
amount of variation in the GRE scores, but there is also an average GRE score
(a mean for the distribution of GRE scores). By the same token, there’s a cer-
tain amount of variation in the GPAs, but there’s also an average GPA (a mean
for the distribution of GPAs). In essence, the formula for the calculation of
the Y-intercept (the a term) takes into account both means—the mean of X
(the GRE scores) and the mean of Y (the GPAs). By the same token, it should
make intuitive sense that the formula would also take into account the slope of
the line (the b term), inasmuch as the slope of the line will, in part, influence
where the line crosses the Y-axis.

The means for our raw score distributions (GRE and GPA raw scores) were
given in Table 12-5 as 1150 and 3.14, respectively. Using that information,
along with our calculated b term (for the slope of the line, equal to .002), we
can easily determine the a term (the Y-intercept) as follows:

Making a Prediction. To make a prediction (to calculate a Y9), all that’s nec-
essary is to return to the formula for the regression equation: Y9 = a + bX. For
example, let’s say we are reviewing an application for admission to graduate
school, and the student’s GRE score equals 1000. Since we now know the val-
ues of a and b, it’s a simple matter to make the prediction. Using the regression
equation, the prediction would move forward as follows:

Y¿ = a 1 bX
Y¿ = 0.84 1 b(1000)
Y¿ = 0.84 1 0.002(1000 )
Y¿ = 0.84 1 2.00
Y¿ = 2.84

a = Y 2 bX
a = 3.14 2 b(1150)
a = 3.14 2 0.002(1150)
a = 3.14 2 2.30
a = 0.84

a = Y 2 bX



Given a GRE score of 1000, we predict the student will achieve a GPA
of 2.84. Does this mean that we know, without question, that the student will
ultimately achieve a GPA of 2.84? No, we can’t make a prediction like that
with total certainty. The regression line would only yield a perfect prediction if
we were dealing with an underlying perfect association. On the other hand, the
regression procedure (with its line of best fit and associated equation) does give
us a decided advantage over a pure guess. Yes, it may amount to a guess, but
it’s an educated guess.

Additionally, you should note that the prediction, in this case, would be a
prediction of Y9 on the basis of a value of X. In statistical jargon, we say that
we have regressed Y on X. Unlike the correlation procedure that produces a
symmetrical measure (one that will produce the same result regardless of which
variable is designated as X and which is designated as Y ), the results of a re-
gression analysis are very much a function of how you designate the variables.
Some thoughtful consideration of how the constants are determined should
convince you of why that is the case.

Now, what about our prediction that a GRE score of 1000 will result in a
GPA of 2.84? You may have a few doubts about all this. True, the regression
equation allows us to make an educated guess. But, you may well ask, just how
“educated” is that guess likely to be.

The Standard Error of the Estimate

If you think back to what you learned earlier when you learned how to esti-
mate the mean of a population or a proportion—when you learned how to
construct confidence intervals—you probably sense where this is going.
You’re probably already thinking about the fact that your estimate (your pre-
diction, as it were) is subject to a certain amount of error. If that’s where your
thinking has taken you, let me congratulate you—you’re definitely on the
right track.

Remember: Any prediction you make (short of one based on a perfect as-
sociation or an r value of ±1.0) will be subject to some amount of error. In re-
gression terms, this overall expression of potential error in an estimate of Y9 is
referred to as the standard error of the estimate (se). Conceptually, it’s an
overall measure of the extent to which the predicted Y9 values deviate from the
actual Y values. Since the standard error of the estimate is an overall measure
of deviation (deviation between the predicted and actual values of Y ), you can
think of it as a type of standard deviation.

The formula for the calculation of the standard error of the estimate is as
follows:

se =Da(Y 2 Y¿ )2

n 2 2
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Note that this formula is remarkably similar to the formula for the standard
deviation that you first encountered in Chapter 2. First, it involves the summa-
tion of deviations—in this case, the deviations between the predicted values
(the Y9 values) and the actual values (the Y values). Next, the sum of the devia-
tions is divided by n – 2, to yield the error variance. The final step merely in-
volves taking the square root of the error variance.

If we return to our example involving the GRE scores and the GPAs, we
could calculate the standard error of the estimate (se) according to the steps out-
lined in Table 12-6. Assuming we carried out these calculations, we’d eventually
discover that the standard error of the estimate is equal to 0.22. We’d then be
in a position to make a more grounded statement about a predicted value.

For example, we could think back to the 1-2-3 Rule that we encountered
earlier and easily make use of it in connection with our prediction. As you’ll re-
call, we learned from the 1-2-3 Rule that approximately 95% of the cases under
a normal distribution will be found ±2 standard deviations from the mean.

Table 12-6 Calculation of the Standard Error of the Estimate

Case X Y Y′ (Y – Y′) (Y – Y′)2

1 1378 3.55 3.60 –0.05 0.00
2 956 2.65 2.75 –0.10 0.01
3 1222 3.54 3.28 0.26 0.07
4 830 2.24 2.50 –0.26 0.07
5 991 3.00 2.82 0.18 0.03
6 1300 3.77 3.44 0.33 0.11
7 1521 4.00 3.88 0.12 0.01
8 899 2.62 2.64 –0.02 0.00
9 1254 3.07 3.35 –0.28 0.08

10 1149 2.94 3.14 –0.20 0.04

(Y – Y′)2 = 0.42

Calculation of Standard Error of the Estimate

se = B0.42
8

se = 20.05
se = 0.22

a

se =Da(Y 2 Y¿ )2

n 2 2



Our predicted GPA (based on a GRE score of 1000) is 2.84, and we
know that the standard error of the estimate (which is really a standard
deviation) is equal to 0.22. Suppose we subtract two standard error units
from our predicted value and add two standard error units to our predicted
value:

2.84 – 2(0.22) = 2.40
2.84 + 2(0.22) = 3.28

We’re now back in somewhat familiar territory. Indeed, we’re in a position
to estimate that a GRE score of 1000 will be associated with a GPA that ranges
between 2.40 and 3.28 and that we have used a method that will generate a
correct estimate approximately 95 times out of 100.

Can we be 100% certain about our estimate? No, we can’t be 100% cer-
tain that our estimate is correct. On the other hand, our estimate amounts to a
very educated guess. And, as a friend of mine is fond of saying, an educated
guess always beats a shot in the dark.

At the conclusion of this chapter, you’ll find a variety of questions and
problems, all designed to enhance your understanding of both correlation and
regression. As in previous chapters, you’ll find an emphasis on conceptual as
opposed to computational elements, but you’ll have a chance to sharpen your
skills on both fronts. Let me suggest that you give the required time to the
question/problem section. Correlation and regression are part of the statistical
shelf of staples, so to speak. A solid understanding of the concepts will serve
you well.

Chapter Summary

In this chapter, you were introduced to the topics of correlation and regression
analysis, two of the more popular statistical procedures. Along the way, you ex-
tended your understanding of the notion of a relationship or association between
variables as you added the concepts of strength and direction to your storehouse
of knowledge. You were introduced to the notions of the correlation coefficient
and the coefficient of determination—two concepts that allow us to say quite a
lot about the association between two variables. What’s more, you learned that
it’s an easy matter to test a null hypothesis involving a correlation coefficient.

In your exploration of regression analysis, you learned about the regression
line and the regression equation. You also learned that it’s possible to predict
the value of one variable, given the value of another variable (provided the vari-
ables are associated in a linear pattern). You also learned, however, that such a
prediction will not be perfect (unless, of course, the underlying association be-
tween the variables is perfect).

In short, you learned quite a lot. However, a full exploration of correlation
and regression analysis is impossible in just a few pages. For this reason, I urge
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you to pay close attention to the next section (“Some Other Things You Should
Know”). Think of it as an invitation to further exploration into the world of
statistical analysis.

Some Other Things
You Should Know

In many ways, a complete chapter on the topics of correlation and regres-
sion could approach a near limitless length. We’ve only scratched the sur-
face in this presentation—touching on the very basic principles involved in
the most fundamental applications. The topics of correlation and regression
are so substantial that entire texts (often of considerable length) have been
devoted to them. It’s always difficult to draw the line when it comes to the
matter of an introductory voyage into the world of statistics, and just how
much should be given over to the topics of correlation and regression is a
case in point.

More advanced texts, for example, often deal with the techniques of multi-
ple and partial correlation. Similarly, other texts may present material on more
advanced regression techniques. For example, see Ramsey and Shafer (2002)
for an excellent treatment, should you want to explore the more advanced
procedures.

As to the material presented here, there are still a few things you should
take into consideration before you launch into a simple correlation or regres-
sion analysis. With the widespread availability of computer-based statistical
software, correlation or regression analysis can be tempting, particularly if
you’re faced with a mountain of data that’s crying out for analysis. On the
other hand, certain assumptions should be met before embarking on the pro-
cedures, and you should always approach your interpretation of results with
some caution.

As to the fundamental assumptions that underlie simple correlation analy-
sis, you’re already aware that the procedure rests on the availability of interval/
ratio level data—two variables, each expressed in terms of an interval/ratio
scale of measurement. Moreover, there is an assumption that each variable
under consideration is normally distributed and that the variances of each dis-
tribution are roughly equal.

As to the caution that should be exercised in the interpretation of results,
keep in mind that a prediction made on the basis of regression analysis is always
subject to error. Just as the estimate of a population mean or proportion is
always accompanied by some margin of error, the same applies in the case of
a prediction of Y9 on the basis of the regression equation.

Finally, you should always remember that your analysis, more than likely,
will involve sample data, and with that go certain limitations and assumptions.
Now, however, you’re armed to deal with them. Welcome to the world of
statistical analysis!
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linear association
negative (inverse) association
Pearson’s r
perfect association
positive (direct) association
regression analysis
regression equation
regression line
scatter plot
standard error of the estimate
strength of association
Y prime (Y9)

Key Terms

a term in the regression equation 
(Y9 = a + bX)

b term in the regression equation 
(Y9 = a + bX)

coefficient of determination
correlation
correlation coefficient
curvilinear association
dependent variable
independent variable
least squares line
line of best fit

Chapter Problems

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1. An r value of would be interpreted as a perfect negative
association.

2. An r value of would be interpreted as a perfect positive
association.

3. The value of r has a range from to .
4. An r value of 0 would be interpreted as association.
5. A is a visual representation of the values of two variables on

a case-by-case basis.
6. The coefficient, or r, reveals the strength and direction of an

association between two variables.
7. The coefficient of , or r2, tells the amount of variation in

one variable that is associated with or explained by variation in the other
variable.

8. The regression line is the of best ; it is also referred to as the
squares line.

9. The equation for the regression line is Y9 = .
10. In the regression equation, is the value that we are attempting to

predict.
11. In the regression equation, is the Y-intercept or the point where

the regression line crosses the Y-axis.
12. In the regression equation, represents the slope of the regression line.
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Application Questions/Problems

1. Consider the following set of data:

a. What is the value of the mean of X?
b. What is the value of the standard deviation of X?
c. What is the value of the mean of Y?
d. What is the value of the standard deviation of Y?
e. What is the value of the sum of the cross-products?
f. What is the value of r?

2. Consider the following set of data: 

a. What is the value of the mean of X?
b. What is the value of the standard deviation of X?
c. What is the value of the mean of Y?
d. What is the value of the standard deviation of Y?
e. What is the value of the sum of the cross-products?
f. What is the value of r?

3. Two variables, Variable X and Variable Y, are the focus of a study. The
study involves 14 research participants. The sum of the cross products
(ZX • ZY) for the 14 cases is –11.62.
a. Calculate and interpret r.

Case X Y

1 3 4
2 5 7
3 8 7
4 2 2
5 6 5
6 5 4
7 5 5
8 7 8
9 9 8

10 10 9
11 12 10
12 8 7
13 3 2

Case X Y

1 8 39
2 10 42
3 9 51
4 10 59
5 12 84
6 12 38
7 8 48
8 9 59
9 12 63

10 10 77



b. Calculate and interpret r2.
c. Assuming you were to test the significance of r at the .05 level of signif-

icance, state an appropriate null hypothesis. What would you conclude?
4. Two variables, Variable X and Variable Y, are the focus of a study. The

study involves 50 research participants. The sum of the cross products
(ZX • ZY) for the 50 cases is 15.66.
a. Calculate and interpret r.
b. Calculate and interpret r2.
c. Assuming you were to test the significance of r at the .05 level of

significance, state an appropriate null hypothesis. What would you
conclude?

5. Two variables, Variable X and Variable Y, are the focus of a study. The
study involves 25 research participants. The sum of the cross products
(ZX • ZY) for the 25 cases is 21.58.
a. Calculate and interpret r.
b. Calculate and interpret r2.
c. Assuming you were to test the significance of r at the .05 level of

significance, state an appropriate null hypothesis. What would you
conclude?

6. A researcher discovers the following information about the association
between Variable X and Variable Y:
Mean of X = 50.49 Standard deviation of X = 12.83 
Mean of Y = 18.30 Standard deviation of Y = 4.11
r = –0.71
Calculate a and b in the regression equation (Y9 = a + bX).

7. A researcher discovers the following information about the association
between Variable X and Variable Y:
Mean of X = 20 Standard deviation of X = 6 
Mean of Y = 100 Standard deviation of Y = 30 
r = +0.83
Calculate a and b in the regression equation (Y9 = a + bX).

8. Assume you’ve collected information from 6 students as to how many
hours they work each week and their grade point averages (GPAs). The
information is shown below.
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X Hrs. Y
Student Worked GPA ZX ZY ZX • ZY

1 10 3.80 –0.66 0.76 –0.50
2 20 3.44 0.00 0.14 0.00
3 40 2.50 1.32 –1.48 –1.95
4 35 2.81 0.99 –0.95 –0.94
5 0 4.00 –1.32 1.10 –1.45
6 15 3.62 –0.33 0.45 –0.15
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Mean of X = 20 Standard deviation of X = 15.17 
Mean of Y = 3.36 Standard deviation of Y = 0.58
Note that the two variables, or number of hours worked each week (X) and
GPA (Y ), have already been transformed into Z scores.
a. Calculate and interpret r.
b. Calculate and interpret r2.
c. Calculate a and b in the regression equation (Y9 = a + bX).

9. Assume you’ve collected information from customers at a local bookstore.
More specifically, for 10 customers, you have the following information
on their levels of education and expenditures on book purchases.
Mean of X = 13 Standard deviation of X = 3.46 
Mean of Y = 15.70 Standard deviation of Y = 15.28
Note that the two variables, years of education (X) and dollar amount of
expenditure (Y), have already been transformed into Z scores

a. Calculate and interpret r.
b. Calculate and interpret r2.
c. Calculate a and b in the regression equation (Y9 = a + bX ).
d. Calculate the standard error of the estimate.

10. Using the information that you developed in your responses to Question 9
(related to level of education and expenditures at a book store), predict the
amount of expenditure for someone with 20 years of education.

X Y
Yrs. $

Education Expenditure ZX ZY ZX • ZY

1 13 5 0.00 –0.70 0.00
2 17 45 1.16 1.92 2.23
3 9 0 –1.16 –1.03 1.19
4 11 18 –0.58 0.15 –0.09
5 15 25 0.58 0.61 0.35
6 8 4 –1.45 –0.77 1.12
7 13 10 0.00 –0.37 0.00
8 18 35 1.45 1.26 1.83
9 16 15 0.87 –0.05 –0.04

10 10 0 –0.87 –1.03 0.90



Appendixes

A. Table of Areas Under the Normal Curve (Distribution of Z )

B. Family of t Distributions (Two-Tailed Test)

C. Family of t Distributions (One-Tailed Test)

D. Distribution of F (.05 Level of Significance)

E. Distribution of F (.01 Level of Significance)

F. Distribution of Q (.05 Level of Significance)

G. Distribution of Q (.01 Level of Significance)

H. Critical Values for Chi-Square (χ2)

I. Critical Values of r (Correlation Coefficient) 

J. Data Sets and Computer-Based Data Analysis

K. Some of the More Common Formulas Used in the Text

308



Appendixes 309

Area Between Area Between Area Between Area Between 
Z Mean and Z Z Mean and Z Z Mean and Z Z Mean and Z

0.00 0.0000 0.50 0.1915 1.00 0.3413 1.50 0.4332
0.01 0.0040 0.51 0.1950 1.01 0.3438 1.51 0.4345
0.02 0.0080 0.52 0.1985 1.02 0.3461 1.52 0.4357
0.03 0.0120 0.53 0.2019 1.03 0.3485 1.53 0.4370
0.04 0.0160 0.54 0.2054 1.04 0.3508 1.54 0.4382
0.05 0.0199 0.55 0.2088 1.05 0.3531 1.55 0.4394
0.06 0.0239 0.56 0.2123 1.06 0.3554 1.56 0.4406
0.07 0.0279 0.57 0.2157 1.07 0.3577 1.57 0.4418
0.08 0.0319 0.58 0.2190 1.08 0.3599 1.58 0.4429
0.09 0.0359 0.59 0.2224 1.09 0.3621 1.59 0.4441
0.10 0.0398 0.60 0.2257 1.10 0.3643 1.60 0.4452
0.11 0.0438 0.61 0.2291 1.11 0.3665 1.61 0.4463
0.12 0.0478 0.62 0.2324 1.12 0.3686 1.62 0.4474
0.13 0.0517 0.63 0.2357 1.13 0.3708 1.63 0.4484
0.14 0.0557 0.64 0.2389 1.14 0.3729 1.64 0.4495
0.15 0.0596 0.65 0.2422 1.15 0.3749 1.65 0.4505
0.16 0.0636 0.66 0.2454 1.16 0.3770 1.66 0.4515
0.17 0.0675 0.67 0.2486 1.17 0.3790 1.67 0.4525
0.18 0.0714 0.68 0.2517 1.18 0.3810 1.68 0.4535
0.19 0.0753 0.69 0.2549 1.19 0.3830 1.69 0.4545
0.20 0.0793 0.70 0.2580 1.20 0.3849 1.70 0.4554
0.21 0.0832 0.71 0.2611 1.21 0.3869 1.71 0.4564
0.22 0.0871 0.72 0.2642 1.22 0.3888 1.72 0.4573
0.23 0.0910 0.73 0.2673 1.23 0.3907 1.73 0.4582
0.24 0.0948 0.74 0.2704 1.24 0.3925 1.74 0.4591
0.25 0.0987 0.75 0.2734 1.25 0.3944 1.75 0.4599
0.26 0.1026 0.76 0.2764 1.26 0.3962 1.76 0.4608
0.27 0.1064 0.77 0.2794 1.27 0.3980 1.77 0.4616
0.28 0.1103 0.78 0.2823 1.28 0.3997 1.78 0.4625
0.29 0.1141 0.79 0.2852 1.29 0.4015 1.79 0.4633
0.30 0.1179 0.80 0.2881 1.30 0.4032 1.80 0.4641
0.31 0.1217 0.81 0.2910 1.31 0.4049 1.81 0.4649
0.32 0.1255 0.82 0.2939 1.32 0.4066 1.82 0.4656
0.33 0.1293 0.83 0.2967 1.33 0.4082 1.83 0.4664
0.34 0.1331 0.84 0.2995 1.34 0.4099 1.84 0.4671
0.35 0.1368 0.85 0.3023 1.35 0.4115 1.85 0.4678
0.36 0.1406 0.86 0.3051 1.36 0.4131 1.86 0.4686
0.37 0.1443 0.87 0.3078 1.37 0.4147 1.87 0.4693
0.38 0.1480 0.88 0.3106 1.38 0.4162 1.88 0.4699
0.39 0.1517 0.89 0.3133 1.39 0.4177 1.89 0.4706
0.40 0.1554 0.90 0.3159 1.40 0.4192 1.90 0.4713
0.41 0.1591 0.91 0.3186 1.41 0.4207 1.91 0.4719
0.42 0.1628 0.92 0.3212 1.42 0.4222 1.92 0.4726
0.43 0.1664 0.93 0.3238 1.43 0.4236 1.93 0.4732
0.44 0.1700 0.94 0.3264 1.44 0.4251 1.94 0.4738
0.45 0.1736 0.95 0.3289 1.45 0.4265 1.95 0.4744
0.46 0.1772 0.96 0.3315 1.46 0.4279 1.96 0.4750
0.47 0.1808 0.97 0.3340 1.47 0.4292 1.97 0.4756
0.48 0.1844 0.98 0.3365 1.48 0.4306 1.98 0.4761
0.49 0.1879 0.99 0.3389 1.49 0.4319 1.99 0.4767

Appendix A

Table of Areas Under the Normal Curve (Distribution of Z)

(continued)

0 Z

Z 0

Table shows area
between the mean
and Z.
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Area Between Area Between Area Between Area Between
Z Mean and Z Z Mean and Z Z Mean and Z Z Mean and Z

2.00 0.4772 2.50 0.4938 3.00 0.4987 3.50 0.4998
2.01 0.4778 2.51 0.4940 3.01 0.4987 3.60 0.4998
2.02 0.4783 2.52 0.4941 3.02 0.4987 3.70 0.4999
2.03 0.4788 2.53 0.4943 3.03 0.4988 3.80 0.4999
2.04 0.4793 2.54 0.4945 3.04 0.4988 3.90 0.4999
2.05 0.4798 2.55 0.4946 3.05 0.4989
2.06 0.4803 2.56 0.4948 3.06 0.4989
2.07 0.4808 2.57 0.4949 3.07 0.4989
2.08 0.4812 2.58 0.4951 3.08 0.4990
2.09 0.4817 2.59 0.4952 3.09 0.4990
2.10 0.4821 2.60 0.4953 3.10 0.4990
2.11 0.4826 2.61 0.4955 3.11 0.4991
2.12 0.4830 2.62 0.4956 3.12 0.4991
2.13 0.4834 2.63 0.4957 3.13 0.4991
2.14 0.4838 2.64 0.4959 3.14 0.4992
2.15 0.4842 2.65 0.4960 3.15 0.4992
2.16 0.4846 2.66 0.4961 3.16 0.4992
2.17 0.4850 2.67 0.4962 3.17 0.4992
2.18 0.4854 2.68 0.4963 3.18 0.4993
2.19 0.4857 2.69 0.4964 3.19 0.4993
2.20 0.4861 2.70 0.4965 3.20 0.4993
2.21 0.4864 2.71 0.4966 3.21 0.4993
2.22 0.4868 2.72 0.4967 3.22 0.4994
2.23 0.4871 2.73 0.4968 3.23 0.4994
2.24 0.4875 2.74 0.4969 3.24 0.4994
2.25 0.4878 2.75 0.4970 3.25 0.4994
2.26 0.4881 2.76 0.4971 3.26 0.4994
2.27 0.4884 2.77 0.4972 3.27 0.4995
2.28 0.4887 2.78 0.4973 3.28 0.4995
2.29 0.4890 2.79 0.4974 3.29 0.4995
2.30 0.4893 2.80 0.4974 3.30 0.4995
2.31 0.4896 2.81 0.4975 3.31 0.4995
2.32 0.4898 2.82 0.4976 3.32 0.4995
2.33 0.4901 2.83 0.4977 3.33 0.4996
2.34 0.4904 2.84 0.4977 3.34 0.4996
2.35 0.4906 2.85 0.4978 3.35 0.4996
2.36 0.4909 2.86 0.4979 3.36 0.4996
2.37 0.4911 2.87 0.4979 3.37 0.4996
2.38 0.4913 2.88 0.4980 3.38 0.4996
2.39 0.4916 2.89 0.4981 3.39 0.4997
2.40 0.4918 2.90 0.4981 3.40 0.4997
2.41 0.4920 2.91 0.4982 3.41 0.4997
2.42 0.4922 2.92 0.4982 3.42 0.4997
2.43 0.4925 2.93 0.4983 3.43 0.4997
2.44 0.4927 2.94 0.4984 3.44 0.4997
2.45 0.4929 2.95 0.4984 3.45 0.4997
2.46 0.4931 2.96 0.4985 3.46 0.4997
2.47 0.4932 2.97 0.4985 3.47 0.4997
2.48 0.4934 2.98 0.4986 3.48 0.4997
2.49 0.4936 2.99 0.4986 3.49 0.4998

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Table (continued)

0 Z

Z 0

Table shows area
between the mean
and Z.

http://facultyweb.berry.edu/vbissonette/tables/tables.html
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LEVEL OF SIGNIFICANCE

.20 .10 .05 .02 .01 .001

5 1.476 2.015 2.571 3.365 4.032 6.869
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.408
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.768
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
50 1.299 1.676 2.009 2.403 2.678 3.496
60 1.296 1.671 2.000 2.390 2.660 3.460
80 1.292 1.664 1.990 2.374 2.639 3.416

100 1.290 1.660 1.984 2.364 2.626 3.390
120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.327 2.576 3.291

Degrees of
Freedom

(df )

Note: If looking for a certain number of degrees of freedom (df ) that does not appear in the table
(for example, df = 75), use the next lower entry (for example, use df = 60).

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Family of t Distributions (Two-Tailed Test)

Appendix B

http://facultyweb.berry.edu/vbissonette/tables/tables.html
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LEVEL OF SIGNIFICANCE

.10 .05 .025 .01 .005 .0005

5 1.476 2.015 2.571 3.365 4.032 6.869
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.408
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.768
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
50 1.299 1.676 2.009 2.403 2.678 3.496
60 1.296 1.671 2.000 2.390 2.660 3.460
80 1.292 1.664 1.990 2.374 2.639 3.416

100 1.290 1.660 1.984 2.364 2.626 3.390
120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.327 2.576 3.291

Degrees of
Freedom

(df )

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Family of t Distributions (One-Tailed Test)
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dfB

dfW 1 2 3 4 5 6 7 8 12

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.68
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.00
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.57
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.28
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.07

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.91
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.79
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.69
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.60
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.53
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.48
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.42
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.38
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.34
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.31
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.28
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.25
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.23
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.20
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.18
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.16
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.15
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.13
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.12
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.10
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.09
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.00
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.92
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 1.88

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.85
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.83

∞ 3.84 3.00 2.61 2.37 2.22 2.10 2.01 1.94 1.75

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Distribution of F (.05 Level of Significance)
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dfB

dfW 1 2 3 4 5 6 7 8 12

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 9.89
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.72
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.47
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.67
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.11

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.71
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.40
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.16
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 3.96
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 3.80
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.67
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.55
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.46
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.37
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.30
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.23
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.17
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.12
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.07
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.03
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 2.99
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 2.96
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 2.93
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 2.90
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 2.87
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.84
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.66
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.50
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.42

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.37
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.34

∞ 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.19

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonnette/tables/tables.html. Used with permission.

Distribution of F (.01 Level of Significance)
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k (number of groups)

dfW 3 4 5 6 7 8 9 10

5 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99
6 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49
7 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16
8 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74

10 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60
11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49
12 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39
13 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32
14 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25
15 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20
16 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15
17 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11
18 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
19 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04
20 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01
24 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
30 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82
40 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73
60 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65

120 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56
∞ 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47

Source: Adapted from Table VIII in Jay Devore and Roxy Peck, Statistics: The Exploration
and Analysis of Data (4th ed.), Brooks/Cole, 2001.

Distribution of Q (.05 Level of Significance)
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k (number of groups)

dfW 3 4 5 6 7 8 9 10

5 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99
6 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10
7 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37
8 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86
9 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49

10 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21
11 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99
12 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81
13 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67
14 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54
15 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44
16 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35
17 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27
18 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20
19 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14
20 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09
24 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92
30 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76
40 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60
60 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45

120 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30
∞ 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16

Source: Adapted from Table VIII in Jay Devore and Roxy Peck, Statistics: The Exploration
and Analysis of Data (4th ed.), Brooks/Cole, 2001.

Distribution of Q (.01 Level of Significance)
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LEVEL OF SIGNIFICANCE

.10 .05 .01

1 2.706 3.841 6.635
2 4.605 5.991 9.210
3 6.251 7.815 11.345
4 7.779 9.488 13.277
5 9.236 11.070 15.086
6 10.645 12.592 16.812
7 12.017 14.067 18.475
8 13.362 15.507 20.090
9 14.684 16.919 21.666

10 15.987 18.307 23.209
11 17.275 19.675 24.725
12 18.549 21.026 26.217
13 19.812 22.362 27.688
14 21.064 23.685 29.141
15 22.307 24.996 30.578
16 23.542 26.296 32.000
17 24.769 27.587 33.409
18 25.989 28.869 34.805
19 27.204 30.144 36.191
20 28.412 31.410 37.566
21 29.615 32.671 38.932
22 30.813 33.924 40.289
23 32.007 35.172 41.638
24 33.196 36.415 42.980
25 34.382 37.652 44.314

Degrees of
Freedom

(df )

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved 
from http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Critical Values for Chi-Square (b2)
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LEVEL OF SIGNIFICANCE

0.20 0.10 0.05 0.01 0.001

3 0.687 0.805 0.878 0.959 0.991
4 0.608 0.729 0.811 0.917 0.974
5 0.551 0.669 0.754 0.875 0.951
6 0.507 0.621 0.707 0.834 0.925
7 0.472 0.582 0.666 0.798 0.898
8 0.443 0.549 0.632 0.765 0.872
9 0.419 0.521 0.602 0.735 0.847

10 0.398 0.497 0.576 0.708 0.823
11 0.380 0.476 0.553 0.684 0.801
12 0.365 0.458 0.532 0.661 0.780
13 0.351 0.441 0.514 0.641 0.760
14 0.338 0.426 0.497 0.623 0.742
15 0.327 0.412 0.482 0.606 0.725
16 0.317 0.400 0.468 0.590 0.708
17 0.308 0.389 0.456 0.575 0.693
18 0.299 0.378 0.444 0.561 0.679
19 0.291 0.369 0.433 0.549 0.665
20 0.284 0.360 0.423 0.537 0.652
21 0.277 0.352 0.413 0.526 0.640
22 0.271 0.344 0.404 0.515 0.629
23 0.265 0.337 0.396 0.505 0.618
24 0.260 0.330 0.388 0.496 0.607
25 0.255 0.323 0.381 0.487 0.597
26 0.250 0.317 0.374 0.479 0.588
27 0.245 0.311 0.367 0.471 0.579
28 0.241 0.306 0.361 0.463 0.570
29 0.237 0.301 0.355 0.456 0.562
30 0.233 0.296 0.349 0.449 0.554
35 0.216 0.275 0.325 0.418 0.519
40 0.202 0.257 0.304 0.393 0.490
45 0.190 0.243 0.288 0.372 0.465
50 0.181 0.231 0.273 0.354 0.443
60 0.165 0.211 0.250 0.325 0.408
70 0.153 0.195 0.232 0.302 0.380
80 0.143 0.183 0.217 0.283 0.357
90 0.135 0.173 0.205 0.267 0.338

Source: Adapted from tables constructed by Victor Bissonnette, Berry College, retrieved from 
http://facultyweb.berry.edu/vbissonette/tables/tables.html. Used with permission.

Degrees of
Freedom

(df )

Critical Values of r (Correlation Coefficient)
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Data Sets and Computer-Based Data Analysis

We’ll begin with a definition of a data set, a concept introduced early on in this
text. By way of review, a data set may be defined as a bundle or collection of
information about one or more variables, typically assembled for the purpose
of analysis. It may be that you’ve collected data on 750 customers, 4500 stu-
dents, 312 cities, or any other population of interest. Your data set may be very
limited (consisting of a small number of cases and variables) or it may be ex-
tensive (consisting of hundreds of variables associated with thousands of cases).
Despite the variation in size and content, most data sets share certain com-
monalities in terms of their basic structure. As it turns out, some knowledge
about data set structure—even minimal knowledge—can be of substantial
benefit to your statistical education in at least two ways.

First, most students who spend any amount of time dealing with statistical
applications will eventually find themselves working in a computer-based ana-
lytical environment. For example, many statistics courses include an introduc-
tion to the use of computers in statistical analysis. Indeed, many statistics
courses are structured as two semester courses, with the first semester being
devoted to the basics of statistical analysis and the second being devoted to the
use of computers in statistical analysis. For other students, the introduction to
the use of computers in statistical analysis comes later, maybe in the form of a
graduate course or in the world of work. It suffices to say that modern-day sta-
tistical analysis is typically undertaken with the assistance of a computer and
some rather sophisticated software. In that sense, it’s just a practical matter; if
you’re going to conduct a serious statistical analysis, you’ll probably find your-
self working with a computer.

The second reason why you should know something about the structure of
data sets has to do with the overall learning process. As it turns out, some basic
knowledge about the structure of data sets can serve to jump-start your statisti-
cal education. At a minimum, it can cause you to starting thinking in terms of
cases, variables, and levels of measurement. If you’re armed at the outset with
a solid understanding of those concepts, your probability of success tends to in-
crease substantially.

With those as reasons enough to take a look at this matter of data set struc-
ture, we begin our brief look at the basics of data set structure and the use of
computers in statistical analysis. Along the way, you’ll discover some good
news, along with a few words of caution. 

It Usually Starts with Rows and Columns

In the simplest of terms, computer-based data sets are all about rows and
columns. As a rule, each case or observation takes one row in the overall for-
mat, and different columns are devoted to different variables. There are many
different statistical analysis programs on the market, but most share this row

Appendix J
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and column format approach. For example, SPSS and SAS are two widely
used software programs. While there are differences between them, both rely
upon the same general data structure format. Rows are devoted to individual
cases or observations; columns are devoted to the different variables. When the
underlying software program directs the computer to look at the data, it’s di-
recting the system to look at all of the cases or observations in a structured for-
mat. What’s more, it’s telling the system the name that you’ve assigned to each
variable and where each variable will be found. It’s really the first step. Specific
instructions about what analysis to perform or what type of report to print are
matters that come later. What always comes first is the data entry process—the
process of entering the information into the computer and letting the computer
know the fundamentals about how the data set is structured. To better under-
stand this point, let’s take a look at a hypothetical data set.

Imagine for a moment that you had data on 25 different cities. More
specifically, let’s say that you had the following information on each city:

Name of the city
Total population in 1990
Total population in 2000
Ranking in terms of sales tax revenues collected during 2000 
(ranking from 1 to 25)
Median family income in 2000
% of adult population having a college degree
Region of the nation in which the city is located (i.e., north, south,
east, or west)

While it’s true that a data set with only 25 cases might be small enough to cause
you to think about making use of the old fashioned paper/pencil approach,
you’d probably want to turn to a computer-based system, at least in the real
world. Not only are computer-based systems widely available (and typically at a
rather reasonable cost), the matter of data entry is very straightforward. What’s
more, it’s also likely that in the real world you might find yourself working with
a much larger number of cases and variables—something that’s no problem for
the more popular software systems. The SPSS and SAS systems, for example,
can easily handle thousands of cases and hundreds of variables.

All of that, though, has to do with capabilities. The issue at hand has to do
with how the data set would be structured. Figure J-1 provides an illustration of
the general layout that you’d see on a computer terminal screen if you had
entered the data described above (i.e., the data on the 25 cities). If you’ve never
really worked with a computer-based statistical analysis program, let me urge
you to take a careful look at the illustration. Focus on the overall structure—
each row devoted to a single case or observation and each column devoted to
a specific variable.

Even if you’ve taken a close look at Figure J-1, let me ask you to take another
look with an eye toward some specific points. 
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First, look at the entire illustration with the thought in mind that it could just
as easily involve thousands of cases and hundreds of variables (a point that I
made earlier in a discussion of the near-limitless capacity of many software
packages). Imagine that you could scroll down the terminal screen, with cases
appearing, one after another, in a near-endless stream. Similarly, imagine that
you’re moving across the screen and even more variables begin to appear
(e.g., maybe you had 125 different variables in your study). Imagine that addi-
tional columns start to appear, again in a near-endless stream.

Secondly, take note of the fact that a row of data constitutes information
about a case. For example, the first row of data has information about
Arthurville. The second row of data has information about O’Dell Park. And so
it goes. One row, one case; another row, another case; all the way through
until the last community, Groves City.

Now take a look at the very top of the illustration—the area that is shaded
in the illustration. Those are the names that have been given to the different
variables. What you should understand at this point is that most statistical
analysis packages have great flexibility in this area. For many of the software
packages, for example, you can assign very short names to each variable—
short names that you’ll use when you issue commands to the system (e.g., when
you tell the system to compute the mean and standard deviation for the vari-
able of Pop 90). The real flexibility is found in the fact that many of the 
packages ultimately allow you to assign very detailed, elongated labels to each
variable name. In other words, most programs allow you to expand the short

City
1990

Population
2000

Population

Sales Tax
Revenue

Ranking for
2000

Median
Family
Income

($)

Adults with
College
Degree

(%)

Region

Arthurville 21,500 32,841 15 31,863 16.51 1

O'Dell Park 15,602 17,611 21 21,336 21.34 1

Lunnville 5282 6328 16 53,119 33.11 3

Bandiville 10,853 12,260 17 42,781 26.81 2

Continue with data entry through
entire data set 

Woodville 31,338 42,132 7 39,388 17.26 4

Lake Grinstead 18,665 21,893 61 41,990 11.59 3

Klepferville 7033 8622 5 39,338 21.53 1

Groves City 24,817 31,992 9 52,167 28.85 4

Figure J-1 Example of Data Set Structure for a Data Set Involving Demographic
Data for a Sample of 25 Cities
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name to provide a far more descriptive name or label. As a rule, the expanded
names or labels don’t come into play until you actually conduct some sort of
analysis. When the analysis is complete and the results appear on the screen or
on the printer, you’ll see the elongated names or labels appear. For example,
you may refer to the variable known as Pop 90 when you’re issuing instruc-
tions to the system, but the results that appear (after you’ve completed your
analysis) will use the expression Population in 1990 Census (if that’s the elon-
gated name or label that you’ve assigned).

In a sense, the business of assigning elongated names or labels is some-
thing that occurs in the background, so to speak. Your real focus is on entering
and working with the cases and variables that you see on the screen and doing
so on the basis of the short variable names that you assigned at the outset. But
that’s just one of the background elements. Here are just a few other things
that are likely to occur in the background:

Each variable is identified in terms of its level of measurement
(e.g., nominal, ordinal, interval/ratio).
Each variable is identified as either numeric or alphanumeric—
numeric variables being variables expressed in numbers and 
alphanumeric variables being variables expressed in numbers, 
alphabetic characters, or both).
The system has been told how to recognize missing information or
deal with cases in which some of the information is incomplete.
The system understands the coding system that you’re using (e.g., if
you use the letter N to stand for North, the system will understand
that and will print out results accordingly).

The list of capabilities could go on and on and on. Suffice it to say that contem-
porary statistical analysis software packages are extremely sophisticated—so
much so that a good amount of time can be spent in exploring the capacities
of a single package. What’s important at this point, though, is just the basic
structure of the data set, and that is something that is fairly uniform across the
various packages. Just remember the basic rule of thumb: Cases are in rows;
variables are in columns.

If you’ve never dealt with a data set that was structured for use with a com-
puter program, let me offer the following as a suggested exercise. Simply con-
jure up a study of some sort—a research project that you might like to conduct.
It could be a study of students enrolled at a university, customers at a local store
of some sort, prime-time television programs, newspaper editorials, court
records, or anything else that might cross your mind. Once you’ve settled on a
topic of interest, imagine that you’re going to collect information on, let’s say,
20 cases (i.e., 20 students, 20 customers, 20 television programs, etc.). Also
imagine that you’ll be collecting information on specific variables. For example,
maybe your goal is to collect information on the age, sex, place of residence,
grade point average, and academic major of each student in your sample. Once
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you have the basics of your study design in your mind, imagine the way the
data would look on a computer screen, assuming that you entered the data into
a computer-based data set. If you’ve had experience working with data sets, the
exercise may strike you as rather simplistic. If the world of data sets is some-
thing very new to you, though, I suspect you’re likely to find the exercise to be
a very valuable one.

Assuming that you now have some basic understanding of data-set struc-
ture, let me offer a few comments about the day-to-day reliance upon comput-
ers for statistical analysis. This is where the mixed message comes into the
discussion.

Good News; Words of Caution; It’s Up to You

Regardless of when you might get directly involved in computer-based data
analysis, my guess is that you’ll be a little amazed at the capabilities of most
statistical analysis software packages. I’ve already alluded to the rather extraor-
dinary number of cases and variables that most packages can handle, but that’s
just the start of it. The truly amazing element is the speed at which the data are
manipulated and calculations are performed. Extremely sophisticated analyses
can be carried out in split seconds and with the highest levels of accuracy. Just
to take one example, imagine that you wanted to calculate a simple average
(the mean, as it’s referred to in statistical parlance), but you wanted to calculate
that average for 127 different variables with a sample involving 38,294 cases.
All you have to do is type in a couple of commands, tell the system to go to
work, and your results will appear in the blink of an eye.

All of that should be very good news for anyone who’s venturing into the
world of statistical analysis for the first time. If that’s where you are—if you’re
just beginning your first systematic study of statistical analysis—you might do
well to always remember that the sophisticated software is, for the most part,
readily available. In doing so, you can take comfort in the fact that you could
most likely rely upon some very user-friendly software to do part of the job for
you. Consequently, your mind should be freed up a bit for more important
matters—important matters such as selecting the appropriate statistical proce-
dures and interpreting the results. Just to set your mind at ease, let me repeat:
You can take comfort in the fact that serious statistical analysis is typically done
with the assistance of a computer. The days of pencils, paper, and tedious cal-
culations are over. On the other hand, you’re never free of the responsibility of
knowing how to select and interpret the appropriate statistical procedure.

All of that, of course, returns us to a point raised earlier—namely the 
importance of developing a solid understanding of the underlying conceptual
elements involved in statistical analysis. Statistical calculations represent only
one part of the equation, so to speak. The other part—indeed, the most impor-
tant part—has to do with the logical and conceptual basis of statistical analysis.
Simply put, you can always rely upon statistical software to carry out complex
calculations, but selecting the appropriate procedure and interpreting the
results is something that falls to you. 
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As to what that means when you’re working your way through this or any
other text, let me offer the following approach. You should always be careful in
your calculations. You should strive for precision. But you should never look at
a statistical task with a focus on how long it might take you to work your way
through the problem. If there are highly tedious steps involved in a particular
procedure, just accept the fact that it’s part of the process and there’s little you
can do except work your way through it. Don’t let some temporary frustration
about tedious procedures block your understanding of the underlying logic or
conceptual basis. In the final analysis, it’s your understanding of the underlying
logic and conceptual basis that will pay off.

In short, it’s probably a good idea to remind yourself every now and then
that you could, if push came to shove, rely upon computer-based data analysis
for almost any sort of statistical analysis. In doing so, you’re apt to lower your
stress level, at least to some degree. But when you do that, you’d be well served
to keep your mind focused on the more important issues—logic and concepts. 
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Some of the More Common Formulas Used in the Text

Mean of a population

Mean of a sample

Variance of a population

Variance of a sample

Standard deviation of a population

Standard deviation of a sample

Standard error of the mean

Estimate of the standard error of the mean

Estimate of the standard error of the proportion 

Confidence interval for the mean (s known)

Confidence interval for the mean (s unknown)

Confidence interval for the proportion

Mean difference

Standard deviation of the differences

Estimate of the standard error of the mean differencesD 5
sd2n

sd =Da(d 2 D)2

n 2 1

D =
ad
n

CI 5 P 6 Z(sP )

CI 5 X 6 t(sx)

CI 5 X 6 Z(s X )

Sp 5 BP(1 2 P )
n

s
X 5

s2n

s X 5
s2n

s =Da(X 2 X)2

n 2 1

s =Da(X 2 m )2

N

s2 =
a(X 2 X)2

n 2 1

s 2 =
a(X 2 m )2

N

X =
aX

n

m =
aX
N

Appendix K
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Estimate of the 
standard error of
the difference be-
tween means

Conversion of a raw score in a population to a Z score

Conversion of a raw score in a sample to a Z score

Single sample test involving a mean with s known

Single sample test involving a mean with s unknown

Two sample test involving mean difference (matched or related
samples)

Two sample test involving difference between means
(independent samples)

F ratio for Analysis of Variance

Mean square between

Mean square within

Chi-Square Test

Correlation Coefficientr =
a(ZX • ZY )

n 2 1

χ2 =a c (f0 2 fe )2

fe
d

MSW 5
SSW

dfW

MSB 5
SSB

dfB

F 5
MSB

MSW

t 5
X1 2 X2

S
X12X2

t 5
D
SD

t 5 X 2 m
SX

Z 5 X 2 m
s X

Z 5
X 2 X

s

Z 5
X 2 m
s

s
X12X2 5 B (n1 2 1 )s2

1 1 (n2 2 1 )s2
2

n1 1 n2 2 2
 • c 1

n1
1

1
n2
d
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CHAPTER 1

1. Academic major; test performance
2. Gender; attitude toward abortion
3. Nominal
4. Ordinal
5. Interval or interval/ratio
6. Nominal
7. Ratio
8. Ordinal
9. 500; 23,419

10. Sample; population
11. Statistics; parameters
12. Descriptive; inferential

CHAPTER 2

General Thought Questions

1. Mean, median, and mode
2. Mean
3. Mode
4. Median
5. Range; dispersion
6. 82
7. Bi-modal distribution; the modes are

18 and 21
8. Mean deviation or average deviation
9. 0

10. 0; squaring
11. Square root
12. n – 1; n

Application Questions/Problems

1. a. 4.2; b. 3rd score; c. 4;
d. 1.84; e. 5.70; f. 2.39

2. a. 15.88; b. 4.5th score;
c. 15.5; d. 12; e. 2.88;
f. 12.41; g. 3.52

3. a. 3.89; b. 5th score; c. 4;
d. 1 and 4; e. 1.90; f. 6.61;
g. 2.57

4. a. 4.67; b. 4.50; c. 7;
d. 2.35

5. 3
6. a. 3.20; b. 2.10
7. a. 2; b. .50
8. 73
9. 170

CHAPTER 3

General Thought Questions

1. Symmetrical
2. Right; left
3. Inflection
4. 1
5. Coincide (or are equal)

Application Questions/Problems

1. 68%
2. 95%
3. 99%
4. 50%; 50%
5. 2
6. 78
7. 80
8. 140
9. 950
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CHAPTER 4

General Thought Questions

1. Infinite
2. 0; 1

Application Questions/Problems

1. 44.84%
2. 49.06%
3. 38.88%
4. 2.5%
5. 2.5%
6. .5%
7. .5%
8. 6.30%
9. 13.14%

10. approximately –.84
11. approximately .39
12. approximately ±.84

CHAPTER 5

General Thought Questions

1. Equal
2. Does not
3. All
4. Sampling frame
5. Sample
6. Sampling error
7. Error
8. Means
9. Mean

10. Standard error of the mean
11. Standard deviation; square root
12. Normal

Application Questions/Problems

1. 24.12; .40
2. 30; .40
3. 120; 3
4. 615; 4.50
5. 55; 1.70

CHAPTER 6

General Thought Questions

1. Mean
2. Estimate; sample
3. Mean
4. Decreases
5. Inverse
6. Width
7. Increase; decrease

8. s divided by the square root of n
9. s divided by the square root of n

Application Questions/Problems:
Confidence Interval for the Mean 
With r Known

1. a. 12.50; b. 14.14; c. 8.77; 15.00
2. a. 145.30–154.70;

b. 143.81–156.19
3. a. 51.73–56.27; b. 51.01–56.99
4. a. 74.02–75.98; b. 73.71–76.29
5. 76.24–79.76
6. 488.20–507.80
7. 515.47–528.53
8. 513.41–530.59
9. 108.06–111.94

Application Questions/Problems:
Confidence Interval for the Mean 
With r Unknown

1. a. 1.25; b. 2.50; c. 2.58; d. 6.48
2. a. 24.14–27.86; b. 23.49–28.51
3. a. 360.96–443.04;

b. 346.69–457.31
4. a. 73.81–86.19;

b. 71.61–88.39
5. 3.68–5.12
6. $35.52–$41.98
7. 81.05–90.95
8. 94.40–107.60
9. 5.83 ounces–6.89 ounces

Application Questions/Problems:
Confidence Interval for the 
Proportion

1. 33.22%–46.78%
2. 9.68%–30.32%
3. 25.51%–38.49%
4. 7.47%–22.53%
5. 8.67%–17.33%
6. 57.51%–64.49%
7. 54.96%–67.04%
8. 71.06%–76.04%
9. 70.39%–76.71%

CHAPTER 7

General Thought Questions

1. Type I
2. Type I
3. Type II
4. Null hypothesis



Answers to Chapter Problems 329

5. Level of significance
6. Critical region
7. Fail to reject
8. .05 and .01
9. Region of rejection or critical region;

null hypothesis

Application Questions/Problems:
Hypothesis Involving a Single Sample
Mean With r Known

1. H0: m = 6.88; b; Z = 4.03; 
Reject the null at the .05 level.

2. H0: m = 72.55; b; Z = 2.77; 
Reject the null at the .05 level.

3. H0: m = 61; b; Z = –2.94; 
Reject the null at the .05 level.

4. H0: m = 10.45; b; Z = 1.67; 
Fail to reject the null at the .05 level.

5. H0: m = 155; b; Z = 3.33; 
Reject the null at the .05 level.

6. H0: m = 75; b; Z = 2.00; 
Reject the null at the .05 level.

Application Questions/Problems:
Hypothesis Test Involving a Single
Sample Mean With r Unknown

1. H0: m = 8.45; b; t = –3.53; 
Critical value = 2.045;
Reject the null at the .05 level.

2. H0: m = 8.25; b; t = –.99;
Critical value = 2.160;
Fail to reject the null at the 
.05 level.

3. H0: m = 15.23; b; t = –5.78; Critical
value = 2.064; Reject the null hypothesis
at the .05 level.

4. H0: m = 10.65; b; t = 2.66; Critical
value = 2.042; Reject the null hypothesis
at the .05 level.

5. H0: m = 12.16; b; t = –1.48; Critical
value = 2.064; Fail to reject the null
hypothesis at the .05 level.

6. H0: m = 12.56; b; t = –1.90; Critical
value = 2.045; Fail to reject the null
hypothesis at the .05 level.

CHAPTER 8

General Thought Questions

1. True
2. False

3. Mean differences
4. The difference between means

Application Questions/Problems:
Matched/Related Samples Design

1. a. H0: = 0; b. t = 2.81; c. Critical
value = 2.145; d. Reject the null at
.05 level.

2. a. H0: = 0; b. t = 1.54; c. Critical
value = 2.064; d. Fail to reject the null at
.05 level.

3. a. H0: = 0; b. t = 2.57; c. Critical
value = 2.045; d. Reject the null at
.05 level.

4. a. H0: = 0; b. t = 2.28; c. Critical
value = 2.048; d. Reject the null at
.05 level.

5. a. H0: = 0; b. t = 1.70; c. Critical
value = 2.045; d. Fail to reject the null
at .05 level.

Application Questions/Problems:
Independent Samples Design

1. a. H0: ; b. t = 2.97; 
c. Critical value = 2.042; d. Reject the
null at .05 level.

2. a. H0: ; b. t = 1.82; 
c. Critical value = 2.009; d. Fail to reject
the null at .05 level.

3. a. H0: ; b. t = –1.47; 
c. Critical value = 2.056; d. Fail to reject
the null at .05 level.

4. a. H0: ; b. t = –1.58; 
c. Critical value = 2.048; 
d. Fail to reject the null at .05 level.

5. a. H0: ; b. t = –2.93;
c. Critical value = 2.042 (use critical
value for 30 degrees of freedom); 
d. Reject the null at .05 level.

CHAPTER 9

General Thought Questions

1. Alternative or research
2. Directional hypothesis
3. Two-tailed
4. One-tailed
5. Rejecting; true
6. Failing to reject; false

m1 2 m2 = 0

m1 2 m2 = 0

m1 2 m2 = 0

m1 2 m2 = 0

m1 2 m2 = 0

m D

m D

m D

m D

m D



Application Questions/Problems:
Alternative or Research Hypotheses

1. a. H0: There is no significant difference
between on-campus and commuter
students with respect to grade point
average.

b. H1: There is a significant difference
between on-campus and commuter
students with respect to grade point
average.

c. H2: On-campus students have a sig-
nificantly higher grade point average
than commuter students.

d. H3: Commuter students have a signifi-
cantly higher grade point average
than on-campus students.

2. a. H0: There is no significant difference
in length of sentences handed out to
white and non-white defendants in
first-offense drug trafficking cases.

b. H1: In first-offense drug trafficking
cases, the length of sentence handed
out to non-white defendants is signifi-
cantly different than the length of sen-
tence handed out to white defendants.

c. H2: In first-offense drug trafficking
cases, the length of sentence handed
out to non-white defendants is signifi-
cantly higher than the length of sen-
tence handed out to white defendants.

d. H3: In first-offense drug trafficking
cases, the length of sentence handed
out to white defendants is significantly
higher than the length of sentence
handed out to non-white defendants.

3. a. H0: There is no significant difference
between rural and urban areas in
terms of levels of voter participation.

b. H1: There is a significant difference
between rural and urban areas in
terms of levels of voter participation.

c. H2: The level of voter participation is
significantly higher in rural areas than
it is in urban areas.

d. H3: The level of voter participation is
significantly higher in urban areas
than it is in rural areas.

4. a. H0: There is no significant difference
between the levels of water pollution in
creeks in the southern part of the state

and levels of water pollution in creeks
in the northern part of the state.

b. H1: There is a significant difference
between the levels of water pollution
in creeks in the southern part of the
state and levels of water pollution in
creeks in the northern part of the
state.

c. H2: Levels of water pollution in
creeks in the southern part of the
state are significantly higher than lev-
els of water pollution in creeks in the
northern part of the state.

d. H3: Levels of water pollution in
creeks in the northern part of the
state are significantly higher than lev-
els of water pollution in creeks in the
southern part of the state.

Application Questions/Problems: One-
tailed and Two-tailed Critical Values

1. a. 1.96; b. 1.64; c. 2.58; d. 2.33
2. a. 2.131; b. 1.721; c. 1.74; d. 1.734

CHAPTER 10

General Thought Questions

1. F
2. Between; within
3. Find the difference or deviation between

each score and the mean of each
category; square the deviations; add the
squared deviations; sum the squared
deviations across all categories.

4. Find the difference or deviation between
each category mean and the grand
mean; square the deviations; multiply the
squared deviations in each category by
the number of cases in the category; sum
across all categories.

5. Degrees of freedom
6. Degrees of freedom
7. n – k
8. k – 1
9. Mean square between

10. Mean square within
11. m1 = m2 = m3

Application Questions/Problems

1. a. 5; b. 30
2. a. 3.59; b. 3.01; c. Reject the null at the

.05 level.
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3. a. 2.69; b. 2.98; c. Fail to reject the null
at the .05 level.

4. a. 6.77; b. 3.40; c. Reject the null at the
.05 level.

5. a. m1 = m2 = m3; b. Sample 1 = 8.00,
Sample 2 = 6.00, Sample 3 = 9.00;
c. 7.79; d. 40.64; e. 170.00; f. 2;
g. 26; h. 6.54; i. 20.32; j. 3.11;
k. Fail to reject the null at the .05 level.

6. a. m1 = m2 = m3 = m4; b. Northern = 4.00,
Southern = 4.00, Eastern = 6.00,
Western = 5.00; c. 4.74; d. 25.43;
e. 122.00; f. 3; g. 35; h. 3.49; i. 8.48;
j. 2.43; k. Fail to reject the null at the
.05 level.

7. a. m1 = m2 = m3; b. Day Shift = 4.40,
Afternoon Shift = 4.75, 
Night Shift = 4.60; c. 4.57;
d. .27; e. 19.14; f. 2; g. 11;
h. 1.74; i. .14; j. .08; k. Fail to
reject the null at the .05 level.

8. a. m1 = m2 = m3; b. Male = 3.17, 
Female = 7.17, Mixed Gender = 5.17;
c. 5.17; d. 48; e. 34.52; f. 2; g. 15;
h. 2.30; i. 24; j. 10.43; k. Reject the
null at the .05 level.

CHAPTER 11

General Thought Questions

1. Contingency
2. Categorical
3. Observed
4. Expected
5. (row total × column total)/n
6. (r – 1) × (c – 1)
7. 4
8. 12
9. 15

10. 8

Application Questions/Problems

1. 9.488; Fail to reject the null hypothesis
at the .05 level.

2. 21.026; Reject the null hypothesis at the
.05 level.

3. 3.841; Reject the null hypothesis at the
.05 level.

4. 9.488; Reject the null hypothesis at the
.05 level.

5. 21.026; Fail to reject the null hypothesis
at the .05 level.

6. a. 3 degrees of freedom; b. .10; Fail to
reject the null at the .05 level.

7. a. 4 degrees of freedom;
b. 18.35; Reject the null at the .05 level.

8. a. 2 degrees of freedom;
b. .27; Fail to reject the null at the .05

level.

CHAPTER 12

General Thought Questions

1. –1.00
2. +1.00
3. –1.00 to +1.00
4. No association
5. Scatter plot
6. Correlation
7. Determination
8. Line of best fit; least squares line
9. a + bx

10. Y�
11. a
12. b

Application Questions/Problems

1. a. 6.38; b. 2.96; c. 6; d. 2.55;
e. 11.11; f. .93

2. a. 10.00; b. 1.56; c. 56.00; d. 15.60;
e. 3.53; f. .39

3. a. –.89; This is a strong, negative
relationship; b. .79; 79% of the variation
in Y is attributable to variation in X;
c. r = 0; Reject the null at the .05 level

4. a. .39; This is a weak, positive
relationship; b. .10; 10% of the variation
in Y is attributable to variation in X;
c. r = 0; Reject the null at the .05 level

5. a. .90; This is a strong, positive
relationship; b. .81; 81% of the variation
in Y is attributable to variation in X;
c. r = 0; Reject the null at the .05 level

6. a = 29.91 and b = – .23
7. a = 17 and b = 4.15
8. a. –.998; This is a strong, negative

relationship; b. .996; 99.6% of the
variation in Y is attributable to variation
in X; c. a = 4.12 and b = –.04

9. a. .83; This is a strong, positive
relationship; b. .69; 69% of the variation
in Y is attributable to variation in X;
c. a = –$32.01 and b = 3.67

10. $41.39
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1-2-3 Rule A statement of how much area
under the normal curve is found between
±1, ±2, and ±3 standard deviations from
the mean.

a term in the regression equation (Y� =
a + bX) The Y-intercept; the point at
which the regression line crosses the Y-axis.

alternative hypothesis A hypothesis that
stands in opposition to the null hypothesis.
It may be directional or nondirectional.

ANOVA (analysis of variance, one-way) A
test to determine if there is a significant
difference among three or more groups or
samples.

average deviation See mean deviation.

b term in the regression equation (Y � = a +
bX) The slope of the regression line; the
change in Y that accompanies a unit
change in X.

between-groups degrees of freedom The
number of degrees of freedom associated
with the estimate of between-groups vari-
ance; equivalent to the number of groups
minus 1.

between-groups estimate of variance See
mean square between.

between-groups sum of squares The sum
of the squared deviation of each sample
mean from the grand mean, weighted by
the number of cases in each sample, and
summed across all samples.

bimodal distribution A distribution with two
modes.

calculated test statistic The result of a
hypothesis-testing procedure; the value that
is compared to a critical value when testing
the null hypothesis. 

categorical data Information obtained on
variables measured at the nominal or ordinal
level; responses that can be classified into
categories.

Central Limit Theorem A statement about
the relationship between a population and a
sampling distribution based on that popula-
tion. The Central Limit Theorem is stated
as follows:

If repeated random samples of size n
are taken from a population with a
mean or mu (m) and a standard devia-
tion (s ), the sampling distribution of
sample means will have a mean equal 
to mu (m) and a standard error equal to

. Moreover, as n increases the sam-

pling distribution will approach a normal
distribution.

central tendency The center or typicality of
a distribution. The three most common
measures of central tendency are the mean,
median, and mode.

chi-square test of independence A test to
determine whether there is an association
between two categorical variables.

s2n

Glossary
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coefficient of determination The value of r2;
a measure of the amount of variation in Y
that is attributable to variation in X.

confidence interval for a proportion A state-
ment of two values (or an interval) within
which you believe the true proportion of the
population is found.

confidence interval for the mean A state-
ment of two values (or an interval) within
which you believe the true mean of the pop-
ulation (m or mu) is found.

contingency table A classification tool that
reveals the various possibilities (contingen-
cies) in the comparison of variables; a table
that presents data in terms of all combina-
tions of two or more variables.

correlation A procedure designed to deter-
mine the strength and direction of an asso-
ciation between two interval/ratio level
variables. Also known as Pearson’s r.

correlation coefficient The value of r; a
measure of the strength and direction of an
association between two interval/ratio level
variables. The value of r can range from
–1.0 to +1.0.

critical region The portion of a sampling dis-
tribution that contains all the values that allow
you to reject the null hypothesis. If the cal-
culated test statistic (e.g., Z or t) falls within
the critical region, the null can be rejected.

critical value The point on a sampling distri-
bution that marks the beginning of the criti-
cal region; the value that is used as a point of
comparison when making a decision about a
null hypothesis. If the calculated test statistic
(e.g., Z or t) meets or exceeds the critical
value, the null hypothesis can be rejected.

curvilinear association An association be-
tween two variables that would, if repre-
sented in a scatter plot, conform to a
general pattern of a curved line.

data Information.
data distribution A listing of the values or re-

sponses associated with a particular variable
in a data set.

data point The individual pieces of informa-
tion in a data set.

data set The collection or bundle of informa-
tion relative to specific variables.

dependent variable The variable that’s
presumed to be influenced by another
variable.

descriptive statistics Statistical procedures
used to summarize or describe data.

directional hypothesis An alternative or re-
search hypothesis that specifies the nature
or direction of a hypothesized difference. It
asserts that there will be a difference or a
change in a particular direction (increase or
decrease).

dispersion (variability) The extent to which
the scores in a distribution are spread
around the mean value or throughout the
distribution. The two most commonly used
measures of dispersion are the variance
and the standard deviation.

effect The change in a measurement that is
attributable to a treatment condition or
stimulus of some sort.

estimate of the standard error of the mean
An estimate of the standard deviation of
the sampling distribution of sample means;
a function of the standard deviation of a
sample.

expected frequency The frequency that would
be expected to occur in a particular cell,
given the marginal distributions and the
total number of cases in the table.

F ratio The ratio of the between-groups
estimate of variance to the within-groups
estimate of variance. The F ratio is fre-
quently referred to as the ratio of the
mean square between to the mean square
within.

family of t distributions A series of sampling
distributions (of the t statistic) developed by
Gossett. The shape of any one distribution
is a function of sample size (or degrees of
freedom, equal to n – 1).

frequency distribution A table or graph that
indicates how many times a value or score
appears in a set of values or scores.

grand (overall) mean The mean that would
result if the values of all cases in an ANOVA
application were added and the sum divided
by the total number of cases.
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group (sample) mean The mean of an indi-
vidual sample in an ANOVA application.

hypothesis A statement of expectations.
See also null hypothesis and alternative
hypothesis.

independent samples Samples selected in
such a manner that the selection of any
case in no way affects the selection of any
other case.

independent variable The variable that’s
presumed to influence another variable.

inferential statistics Statistical procedures
used to make statements or inferences about
a population, based on sample statistics.

interval level of measurement A system of
measurement based on an underlying scale
of equal intervals. See also interval/ratio
level of measurement and ratio level of
measurement.

interval/ratio level of measurement Since
there is no practical difference between the
interval and ratio levels of measurement
when it comes to statistical analysis, the
terms are often combined to refer to any
scale of measurement that is either interval
or ratio.

least squares line See line of best fit.
level of confidence The amount of confi-

dence that can be placed in an estimate de-
rived from the construction of a confidence
interval. Level of confidence is mathemati-
cally defined as 1 minus the level of signifi-
cance. The level of confidence is a statement
of the percentage of times (99%, 95%, etc.)
one would obtain a correct confidence in-
terval if one repeatedly constructed confi-
dence intervals for repeated samples from
the same population.

level of significance The probability of mak-
ing a Type I error.

linear association An association between
two variables that would, if represented in a
scatter plot, conform to a general pattern of
a straight line.

line of best fit The line that passes through a
scatter plot in such a way that the square of
the distance from each point in the plot to

the line is at a minimum. Also known as the
regression line or the least squares line.

margin of error A term used to express the
width of a confidence interval for a propor-
tion.

marginal totals The row and column totals
that are presented in the margins of a
table.

matched or related samples Samples se-
lected in such a manner that cases included
in one sample are somehow related or
matched to cases in another sample. In some
instances, the matching is achieved by using
the same subjects tested in two situations
(for example, in a before/after test situa-
tion). In other instances, the matching is
achieved by matching subjects or cases on
the basis of relevant criteria.

mean The most widely used measure of cen-
tral tendency. The mean is calculated by
summing all the scores in a distribution and
dividing the sum by the total number of
cases in the distribution.

mean deviation An infrequently used mea-
sure of dispersion based, in part, on the ab-
solute deviations from the mean of the
distribution. Also known as the average
deviation.

mean square between The between-groups
estimate of variance; calculated by dividing
the between-groups sum of squares by the
between-groups degrees of freedom.

mean square within The within-groups esti-
mate of variance; calculated by dividing the
within-groups sum of squares by the within-
groups degrees of freedom.

median The score that divides a distribution
in half; the midpoint of a distribution, or the
point above and below which one-half of
the scores or values are located. The for-
mula for the median is a positional formula;
it will tell you the position of the median in
the distribution, not its value.

mode The response or value that appears
most frequently in a distribution. The
mode is the only measure of central ten-
dency that is appropriate for nominal level
data.

mu (l) The mean of a population.
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negative (inverse) association A pattern of
association in which the variables track in
opposite directions; as one variable increases
in value, the other variable decreases in
value.

negative skew The shape of a distribution
that includes some extremely low scores or
values. A distribution is said to have a nega-
tive skew if the tail of the distribution points
toward the left.

nominal level of measurement The simplest
level of measurement; a system of measure-
ment based on categories that are mutually
exclusive and collectively exhaustive.

non-directional hypothesis An alternative
or research hypothesis that does not specify
the nature or direction of a hypothesized
difference. It simply asserts that a difference
will be present.

normal curve A unimodal, symmetrial curve
that is mathematically defined on the basis
of the mean and standard deviation of an
underlying distribution.

null hypothesis A statement of equality; a
statement of no difference; a statement of
chance. In the case of a hypothesis test in-
volving a single sample mean (that is com-
pared to a known population mean), the
null is typically a statement of the value of
the population mean.

observed frequency The result or frequency
presented in each cell of a contingency
table.

one-tailed test situation A research situation
in which the researcher is looking for an ex-
treme difference that is located on only one
side of the distribution. 

ordinal level of measurement A level of
measurement that presumes the notion
of order (greater than and lesser than).

parameter A characteristic of a population.
Compare statistic.

Pearson’s r See correlation.
perfect association A pattern of association

between variables in which there is perfect
predictability; knowledge of the value of
one variable allows a precise prediction
of the value of the other variable.

point of inflection The point at which a nor-
mal curve begins to change direction. It is
one standard deviation above or below the
mean of the underlying distribution.

population All possible cases; sometimes re-
ferred to as the universe. It is often thought
of as the total collection of cases that you’re
interested in.

positive (direct) association A pattern of as-
sociation in which the variables track in the
same direction; as one variable increases in
value, the other variable increases in value.

positive skew The shape of a distribution
that includes some extremely high scores or
values. A distribution is said to have a posi-
tive skew if the tail of the distribution points
toward the right.

power The ability of a test to reject a false null
hypothesis.

random sample A sample selected in such a
way that every unit has an equal chance of
being selected, and the selection of any one
unit in no way affects the selection of any
other unit. In a random sample, all combi-
nations are possible.

range A statement of the difference between
the highest and lowest scores or values in
a distribution. As a measure of dispersion
or variability, the range is simple to calcu-
late, but it doesn’t say much about the
distribution.

ratio level of measurement A level of mea-
surement that has all the properties of the
interval level of measurement, plus the
presence (or possibility) of a true or legiti-
mate zero (0) point. See interval/ratio level
of measurement.

region of rejection See critical region.
regression analysis A technique that allows

the use of existing data to predict future
values.

regression equation The equation that de-
scribes the path of the line of best fit. The
regression equation is used to predict a
value of Y (referred to as Y′ or Y-prime) on
the basis of an X value (Y′ = a + bX).

regression line See line of best fit.
research hypothesis See alternative hy-

pothesis.
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sample A portion of a population. 
sampling distribution of sample means

The result you would get if you took re-
peated samples from a given population,
calculated the mean for each sample, and
plotted the sample means.

sampling error The difference between a
sample statistic and a population parameter
that is due to chance.

sampling frame A physical representation of
the population; a listing of all the elements
in a population.

scatter plot A visual representation of the val-
ues of two variables on a case-by-case basis.

skewed distribution A distribution that de-
parts from symmetry, in the sense that most
of the cases are concentrated at one end of
the distribution.

standard deviation A widely used measure
of dispersion or variability. The standard
deviation is the square root of the variance. 

standard error of the difference of means
The standard deviation of a sampling distri-
bution of the difference between two sam-
ple means. The sampling distribution, in
this case, would be the result of repeated
sampling—each time taking two samples,
calculating the mean of each sample, calcu-
lating the difference between the means,
and recording/plotting the differences. The
standard error would be the standard devia-
tion of the sampling distribution.

standard error of the estimate An overall
measure of the difference between actual
and predicted values of Y.

standard error of the mean The standard
deviation of a sampling distribution of sam-
ple means.

standard error of the mean difference The
standard deviation of a sampling distribution
of mean differences between scores re-
flected in two samples. The sampling distri-
bution, in this case, would be the result of
repeated sampling—each time looking at
two related samples, and focusing on the
difference between the individual scores in
each sample. The individual differences
would be treated as forming a distribution,
and that distribution has a mean. The
repeated samplings would result in repeated

mean differences. The recording/plotting
of those mean differences would constitute
the sampling distribution. The standard
error would be the standard deviation of the
sampling distribution.

standardized normal curve A unimodal,
symmetrical, theoretical distribution based
on an infinite number of cases, having
a mean of 0 and a standard deviation of 1.

statistic A characteristic of a sample. Com-
pare parameter.

strength of association The extent to which
the value of one variable can be predicted
on the basis of the value of another variable.

symmetrical distribution A distribution in
which the two halves are mirror images of
each other.

table of areas under the normal curve A
table of values that tell you what proportion
of the area under the normal curve is found
between the mean and any Z value.

tail of the distribution In a skewed distribu-
tion, the elongated portion of the curve.

two-tailed test scenario A research situation
in which the researcher is looking for an
extreme difference that could be located at
either end of the distribution.

Type I error Rejection of the null hypothesis
when the null is true.

Type II error Failure to reject the null
hypothesis when the null is false.

unimodal distribution A distribution with
only one mode.

universe See population.

variable Anything that can take on different
quantities or qualities; anything that can vary.

variance A widely used measure of dispersion
or variability. The variance is equal to the
standard deviation squared.

within-groups degrees of freedom The
number of degrees of freedom associated
with the within-groups estimate of variance;
equivalent to the number of cases minus the
number of groups.

within-groups estimate of variance See
mean square within.
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within-groups sum of squares The sum of
the squared deviations of each score from its
sample mean, summed across all samples.

Y prime (Y�) The Y value that you are at-
tempting to predict, based on a given value
for X and the regression equation.

Z (Z score) A point along the baseline of a
standardized normal curve.

Z ratio The result of finding the difference be-
tween a raw score and a mean, and dividing
the difference by the standard deviation.
This procedure converts a raw score into a
Z score.
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Numbers
1-2-3 Rule, 66, 75

regression analysis and, 301
usefulness of, 76

A
Absolute values, 33
Accuracy, vs. precision, 121
Alpha errors (Type I errors), 165–167, 171,

213
Alpha level, 159, 166. See also Level

of significance
Alternative hypothesis, 204–206
Analysis of variance (ANOVA), 221–254

application, 233–242
benefits over t tests, 222
components, 242
estimates of variance and, 237, 242
F statistic interpretation, 243–244
logic of, 223–230
means, 226–227
null hypothesis and, 230
one-way versus two-way, 250
post hoc testing, 244–248, 250
procedure for reviewed, 237, 248
questions raised by results, 244
uses, 222

ANOVA. See Analysis of Variance 
(ANOVA)

Area under the normal curve, 55, 65
table of, 79–85
t distributions and, 128–131

Arithmetic mean. See Mean

Associations
benefits over t tests, 222
between variables, 257, 259–262, 270,

274–283, 286, 290–298, 302
causation and, 261, 281–283
curvilinear, 279
direct (positive), 278, 281
direction of, 277
inverse (negative), 278, 281
involving two interval/ratio level 

variables, 274–304
linear, 277
measures of, 271
negative. See Associations, inverse
non-existent, 279–280
perfect, 279
positive. See Associations, direct
one-way vs. two-way, 249
reciprocal, 282
significant, 261
strength of, 270, 277–281, 289
types of, 277–280

a term (Y-intercept), 297, 299
Average deviation, 33

B
Bar graphs, 54
Baseline, 54, 88, 157

standardized normal curve, 76–82
Z values, 79–80

Beta errors (Type II errors), 167, 213–218
Between-groups degrees of freedom, 239
Between-groups estimate of variance, 238
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Between-groups sum of squares (SSB),
235–237

Between-groups variation, 229, 232
Between the means, 224
Bimodal distributions, 27, 60
b term (slope -of the line), 297–299

C
Calculated test statistic, 186, 196

F ratio and, 242
standard deviation known, 160–164
standard deviation unknown, 170

Cases, 6–8
Categorical data, 255
Categories, 8
Causation, 261, 281–283
Center, of a distribution, 20
Central Limit Theorem, 100–104, 120

populations and, 155
relevance of, 117

Central tendency, 20–28
Chance

chi-square test of independence 
and, 261

statement of, null hypothesis and, 151
Chi-square test of independence, 

256–269
application, 262–265
calculation of, 267
degrees of freedom, 269
departure from chance, 261–262
formula for, 265–268
interpretation, 268–269
limitations of, 270
logic of, 257–261
null hypothesis, 262
significant association, 261
variables and, 256–263

CI. See Confidence interval
Coefficient of determination (r2), 289
Collectively exhausted categories, 9
Comparisons

different scales of measurements, 
283–284

two distributions, 28, 35–36
Confidence intervals, 108–147

examples of, 111, 114–117, 132–134,
137–139

formulas for, 112, 114, 118–120, 138
for the mean, 109–136
for proportions, 136–144

with standard deviation known, 109–123
with standard deviation unknown, 123–136

Confidence level. See Level of confidence
Constants, 297–298
Contingency tables, 257

pattern of chance and, 261
three-by-three, 262

Continuous distributions, 69
Correlation analysis, 280–293

application, 287–288
degrees of freedom, 291–292
interpretation, 292–293
formula for, 284–287
logic of, 283
null hypothesis, 291–292
used for varied scales of measurement,

283–284
Correlation coefficient (r)

formula for, 285, 287
positive/negative, 280–281, 289

Critical region, 162
Critical value, 160–162, 269
Cross products of Z scores, 284–288
Curves. See Distributions; Normal curves
Curvilinear association, 279

D
Data, 6–8. See also Variables

ascending/descending order and, 24
categorical, 255
types of, 5

Data distributions. See Distributions
Data points, 6
Data presentation, 

graphs and curves, 53–68
scatter plots, 275–280

Data sets, 6
Degrees of freedom (df ), 128

analysis of variance and, 239, 242
between-groups estimate of variance,

239–240
chi-square test of independence and, 269
correlation analysis, 291–292
single sample test with unknown, 170
t distributions, 128–130
t test for difference of means of

independent variables, 186
t test for the mean difference of related

samples, 196
within-groups estimate of variance, 

239–240

s
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Departure from chance, 261
Dependent variable, 282
Descriptive statistics, 13
Deviations from the mean, 29–32,

73–76, 79
Difference of means test, 179, 196
Direct (positive) association, 278, 281
Directional hypothesis, 205, 209–213
Direction of association, 277
Discrete distributions, 68
Dispersion, 28–47
Distributions, 6, 19–51, 60–67

bimodal, 27, 60
continuous, 69
discrete, 68
frequency, 54–56
normal, 90
point of inflection of, 62
shapes of, 52–70
skewed, 58
symmetrical, 58
tail of, 59
unimodal, 27, 60

E
Effect, 216
Equal intervals, 9
Equality, null hypothesis and, 151
Errors. See also entries at Standard error

sampling error and, 94, 97–99
Type I/Type II, 165–167, 213–218

Expected frequencies, 264–268
Extreme values

effect on the mean, 23–24
graphing a distribution, 57–58
occurring with low probability, 161
in one-tailed test scenario, 211
standardized normal distribution, 85
statistician's interest in, 85, 89
in two-tailed test scenario, 210

F
Fail to reject the null hypothesis, 160–161
Family of t distributions, 126–132

table for, 128–132
vs. Z distributions, 135

Formulas
chi-square test of independence, 

265–268
confidence intervals, 112, 114, 

117–120, 138

F ratio, 241
the Mean, 21
the Median, 24
positional, 24
r (correlation coefficient), 285, 287
regression analysis, 297–300
standard deviation, 39, 41, 132
standard deviation of the differences, 182
standard error of the difference 

of means, 194
standard error of the estimate (se), 300
standard error of the mean, 169
standard error of the mean difference, 185
standard error of the mean estimates, 124
standard error of the proportion 

estimates, 138
t ratio, 186
variance, 39, 41
Z scores, 283

F ratio
analysis of variance and, 225
formula for, 241
null hypothesis and, 231

Frequency (f )
expected frequencies and, 264–268
frequency distributions and, 7, 54–56
observed frequencies and, 263–268

G
Grand mean, 227, 242
Graphs, 53–68

scatter plots, 275–280
Group mean, 228, 242

H
Harmonic mean, 246
Honestly Significant Difference (HSD),

245–248
Hypothesis, 150–152
Hypothesis testing

directional hypothesis testing and,
209–213

examples of, 187, 196
non-directional hypothesis testing and,

207–209
with one sample, 148–177
phrasing conclusions about, 168
procedures for summarized, 223
process summarized, 161t
with standard deviation known, 149,

152–168



Hypothesis testing (continued)
with standard deviation unknown, 149,

168–172
with two samples, 178–202

I
Independent samples, 188–197
Independent variable, 282
Inferential statistics, 14, 15, 93, 94, 109

degrees of freedom and, 128
four fundamental concepts of, 93–107

Inflection point, 64
Influence, vs. causation, 282
Information. See Data
Interval/ratio level of measurement, 9, 10
Intervals, 9, 110
Interval width, 120–123
Inverse (negative) association, 278, 281

K
Key terms

analysis of variance, 250
chi-square test of independence, 271
confidence intervals, 144
correlation analysis, 304
data, 48
distributions, 48, 69
hypothesis testing, 173, 199
inferential statistics, 106
normal curves, 91
null hypothesis, 219
regression analysis, 304
statistics, 17

L
Least squares line, 296
Level of confidence, 110, 119, 121,

131–135, 140
Level of significance, 130

chi-square test of independence and, 269
correlation analysis and, 291
standard deviation known, 159–162
standard deviation unknown, 169–172
Type I errors and, 166

Levels of measurement, 8–10
Linear associations, 277
Line of best fit, 295–297

M
Marginal totals, 257, 261
Margin of error, 94, 139

Matched samples, 179–188
the Mean, 20–24

Mean difference, 183–187
Means

deviations from, 29–34, 73–76, 79
formula for, 21
grand mean and, 227
group mean and, 228

Mean square between (MSB), 237
Mean square within (MSW), 237
Measurement. See Levels of measurement;

Scales of measurement
the Median, 24–26
the Mode, 26–28

Mu, (population mean), 23, 42, 99
Mutually exclusive categories, 9

N
N (symbol), 21

median of a population, 24
n (symbol), 22
median of a sample, 24

Negative association. See Inverse (negative)
association

Negative (inverse) association, 278
Negative skew, 59
No difference, null hypothesis and, 151
Nominal level of measurement, 8
Non-directional hypothesis, 205, 207–209
No relationship, null hypothesis and, 151
Normal curves, 71–92

area under. See Area under the normal
curve

examples of, 73–76
mean of, 78
standard deviation of, 61–67
theoretical, 76–79

Normal distributions. See Normal curves
Null hypothesis, 150, 153, 203–220

vs. alternative hypothesis, 204–206
analysis of variance and, 230
chi-square test of independence and, 262
correlation analysis and, 291
independent samples and, 192
level of significance and, 159–162
phrasing conclusions about, 168
rejection of, 165, 222
related samples and, 184
symbol for, 184

n versus n – 1, 44–47

m
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O
Observations, 6
Observed frequencies, 263–268
One-tailed tests, 206–213
One-way ANOVA (analysis of variance),

221, 249
Opinion polls, 136–137, 140
Order, ascending or descending, 24, 25
Ordinal level of measurement, 8, 9

P
Parameters, 14
Pearson’s r. See Correlation analysis
Percentages

confidence intervals for, 136–141
converting proportions to, 82
used for confidence intervals, 114

Perfect association, 279
Point of inflection, 62
Population parameters, 14
Populations, 10–13, 23

calculating standard variation of, 40
calculating variance of, 35
Central Limit Theorem and, 

100–104, 155
confidence intervals and, 109–144
distributions and, 90
inferential statistics and, 109
sampling error and, 97–99

Positional formula, 24
Positive (direct) association, 278
Positive skew, 59
Post hoc testing, 244–248
Power, 213–217
Precision, vs. accuracy, 121
Predictions

line of best fit and, 295–297
regression analysis and, 299

Probabilistic distribution, 151
Probability, 151
Proportions

confidence intervals for, 136–144
converting to percentages, 81

Q
Q statistic, 245–247
Questions to answer

alternative hypothesis, 205
analysis of variance, 222, 225–228
associated variables, 262

association between variables, 277, 
278, 279

basics of statistics, 6–15
between-groups sum of squares (SSB),

236
categorical data, 256
central limit theorem, 117
chi-square test of independence, 257,

263, 265
coefficient of determination, 290
confidence intervals, 110–114, 117,

122–124, 130, 132, 137–140
contingency tables, 259
correlation analysis, 281
critical region, 162
critical value, 162
cross products, 286
degrees of freedom, 240, 292
dependent/independent variables, 282
directional/non-directional hypothesis, 

205
distributions, 56, 59, 62, 63, 66
d values, 183
effect, 216
F ratio, 242
hypothesis testing, 151, 157, 159, 169
independent samples, 189
line of best fit, 297
mean square between (MSB), 237, 239
mean square within (MSW), 237, 241
measures, 22–31, 34, 37–39, 44, 45
normal curves, 76, 77
null hypothesis, 291
one-tailed tests, 212
power, 216
probability, 152
reciprocal associations, 283
related samples, 180
scatter plots, 277, 280
significant difference, 153
standard deviation, 118
standard error, 118
standard error of the mean, 126
standard error of the mean difference, 

185
t ratio, 186
two-tailed tests, 208
Type I errors, 165, 166
Type II errors, 167
within-groups sum of squares (SSW), 233



R
r (correlation coefficient)

formula for, 285, 287
positive/negative, 280–281, 289

r2 (coefficient of determination), 289
Random sampling, 94–97
the Range, 28
Ratio level of measurement, 8, 9
Ratios

calculating, 43
F, 225, 231, 232, 237, 241–244
t test for difference of means of

independent samples, 195
t test for the mean difference of related

samples, 185–186
Raw scores, 86–88
Reciprocal associations, 282
Region of rejection, 162
Regression analysis, 293–302

equation for, 297–300
prediction and, 293, 295–302

Regression line, 295–297
Rejection of null hypothesis, 158–159.

See also Null hypothesis
failing to reject null hypothesis, 

160–161
at .01 level of significance, 161
at .05 level of significance, 160–161
in Type I errors, 165

Related samples, 179–188
Research hypothesis, 204–206
Research questions. See Hypothesis testing
Resources for further reading, 17, 143

S
s (standard deviation of a sample), 37–39 
Sample, 10–13, 178–202

analysis of variance and, 222
calculating standard variation of, 46
independent, 188–197
related, 179–188

Sample means
analysis of variance and, 221, 

227–231, 242
HSD procedure and, 245
symbol for, 23

Sample size
analysis of variance and, 231
precision of estimates and, 122
selecting, 45

Sample statistics, 14
Sampling distribution, 100
Sampling distribution of sample means,

99–100
Sampling error, 94, 97–99
Sampling frames, 96
Scales of measurement, 10, 37, 68
Scatter plots, 275–280
Sigma, lowercase ( ), 37–39

calculation, 39–40
Central Limit Theorem, 103

Sigma, uppercase (S), 21
Significant association, 261
Significant difference, 152–156, 164
Skew, positive/negative, 59
Skewed distributions, 58
Slope of the regression line, 297

calculation, 298–299
Standard deviation, 37–47

area under the normal curve and, 66
formulas for, 39, 41, 132
hypothesis testing and, 149, 152–172
of normal curve, 61–67
of sampling distribution of sample 

means, 102
Standard deviation of the differences,

182–187
Standard error, formula for, 117
Standard error of the difference of means

estimate of, 192–195
formula for, 194

Standard error of the estimate (se), 300–302
Standard error of the mean, 102

confidence intervals and, 111, 114–117,
123–126

estimating, 123–126
formula for, 169
hypothesis testing and, 149, 156–158,

169–172
Standard error of the mean difference, 

185, 192
Standard error of the proportion, 

formula for estimating, 138
Standardized normal curves. See Normal

curves
Standard variation

for populations, 40
for samples, 46

Statement of chance, null hypothesis and,
151

s
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Statistical analysis, 13–16
Statistics, 4–18

definitions of, 14
inferential. See Inferential statistics
vs. parameters, 14
reasons for studying, 5

Strength of association, 278
Sum of squares, 232, 242
Symmetrical distributions, 58
Symmetry, 58

T
Table of Areas Under the Normal Curve,

79–85, 131
Table of random numbers, 96
Tail of the distribution, 59
t distributions, 126–132

table for, 128–132
vs. Z distributions, 135, 143

Test scores, 85–89
t ratio, formula for, 186
treatment groups, analysis of variance 

and, 222
Tukey’s Honestly Significant Difference

(HSD), 245–248
Two-tailed tests, 206, 212
Two-way ANOVA (analysis of variance), 

249
Type I errors (alpha errors), 165–167, 

171, 213
Type II errors (beta errors), 167, 

213–218

U
Unimodal distributions, 27, 60
Universe. See Populations

V
Variability, 28–47
Variables, 6

associations between, 257, 259–262, 270,
274–283, 286, 290–298, 302

chi-square test of independence and,
256–263

dependent/independent, 282
X and Y, 281–283

Variance, 34–37
estimating, 237, 242
formula for, 39, 41
for populations, 35

Variation, types of, 228–230

W
Within-groups degrees of freedom (dfW), 240
Within-groups estimate of variance, 238
Within-groups sum of squares (SSW),

232–234, 237
Within-groups variation, 229, 232

X
X-axis, 54, 275, 295
X variable, 281–283

Y
Y-axis, 55, 275, 297, 299
Y-intercept (a term), 297, 299
Y-prime, 297
Y variable, 281–283

Z
Z distributions, vs. t distributions, 135, 143
Zero point, of ratio level of measurement, 9
Z ratio, 87
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