

Andrew Bird

Dr Lau Cher Han

Mario Corchero Jiménez

Graham Lee

Corey Wade

Learn to code in Python and kickstart your career in
software development or data science

The Python Workshop

Table of Contents

Preface 	  i

Chapter 1: Vital Python – Math, Strings,
Conditionals, and Loops 	  1

Introduction ...  2

Vital Python ...  3

Numbers: Operations, Types, and Variables ...  4

To Open a Jupyter Notebook ... 4

Python as a Calculator ...  4

Standard Math Operations .. 6

Basic Math Operations ... 6

Order of Operations ... 8

Exercise 1: Getting to Know the Order of Operations ...................................... 9

Spacing in Python ... 9

Number Types: Integers and Floats .. 10

Exercise 2: Integer and Float Types .. 10

Complex Number Types ... 12

Errors in Python .. 12

Variables .. 12

Variable Assignment ... 12

Exercise 3: Assigning Variables ... 13

Changing Types ... 14

Reassigning Variables in Terms of Themselves .. 14

Activity 1: Assigning Values to Variables .. 14

Variable Names ... 15

Exercise 4: Variable Names .. 16

Multiple Variables ... 17

Exercise 5: Multiple Variables in Python .. 17

Comments .. 18

Exercise 6: Comments in Python .. 18

Docstrings .. 19

Activity 2: Finding a Solution Using the Pythagorean
Theorem in Python ... 19

Strings: Concatenation, Methods, and input() ..  20

String Syntax .. 21

Exercise 7: String Error Syntax .. 21

Escape Sequences with Quotes ... 23

Multi-Line Strings .. 23

The print() Function  ... 23

Exercise 8: Displaying Strings .. 24

String Operations and Concatenation ... 25

Exercise 9: String Concatenation .. 25

String Interpolation ..  26

Comma Separators ... 26

Format .. 27

The len() Function ... 27

String Methods .. 28

Exercise 10: String Methods .. 28

Casting .. 29

Exercise 11: Types and Casting ... 30

The input() Function ... 31

Exercise 12: The input() Function .. 31

Activity 3: Using the input() Function to Rate Your Day ................................. 32

String Indexing and Slicing ..  33

Indexing ... 33

Slicing ...  35

Strings and Their Methods .. 36

Booleans and Conditionals ..  36

Booleans .. 37

Exercise 13: Boolean Variables .. 37

Logical Operators .. 38

Comparison Operators .. 40

Exercise 14: Comparison Operators ... 40

Comparing Strings .. 42

Exercise 15: Comparing Strings ... 43

Conditionals ... 43

The if Syntax .. 43

Indentation .. 44

Exercise 16: Using the if Syntax ... 44

if else .. 45

Exercise 17: Using the if-else Syntax .. 45

The elif Statement .. 46

Loops ..  47

The while Loops .. 48

An Infinite Loop ... 50

break .. 50

Activity 4: Finding the Least Common Multiple (LCM) ................................... 51

Programs .. 52

Exercise 18: Calculating Perfect Squares ... 52

Exercise 19: Real Estate Offer .. 54

The for Loop .. 55

Exercise 20: Using for Loops .. 55

The continue Keyword ... 58

Activity 5: Building Conversational Bots Using Python .................................. 60

Summary ..  61

Chapter 2: Python Structures 	  63

Introduction ...  64

The Power of Lists ...  65

Exercise 21: Working with Python Lists .. 65

Matrices as Nested Lists .. 66

Exercise 22: Using a Nested List to Store Data from a Matrix ....................... 67

Activity 6: Using a Nested List to Store Employee Data ................................. 69

Matrix Operations ..  70

Exercise 23: Implementing Matrix Operations
(Addition and Subtraction) .. 70

Matrix Multiplication Operations ... 72

Exercise 24: Implementing Matrix Operations (Multiplication) .................... 72

List Methods ..  74

Exercise 25: Basic List Operations .. 74

Accessing an Item from a List ... 75

Exercise 26: Accessing an Item from Shopping List Data .............................. 75

Adding an Item to a List ... 77

Exercise 27: Adding Items to Our Shopping List ... 77

Dictionary Keys and Values ...  78

Exercise 28: Using a Dictionary to Store a Movie Record ............................... 80

Activity 7: Storing Company Employee Table Data Using
a List and a Dictionary .. 82

Zipping and Unzipping Dictionaries Using zip() .. 83

Exercise 29: Using the zip() Method to Manipulate Dictionaries .................. 83

Dictionary Methods ..  84

Exercise 30: Accessing a Dictionary Using Dictionary Methods .................... 84

Tuples ...  85

Exercise 31: Exploring Tuple Properties in Our Shopping List ...................... 86

A Survey of Sets ...  88

Exercise 32: Using Sets in Python ... 88

Set Operations .. 90

Exercise 33: Implementing Set Operations ... 91

Choosing Types ...  94

Summary ..  94

Chapter 3: Executing Python – Programs,
Algorithms, and Functions 	  97

Introduction ...  98

Python Scripts and Modules ..  98

Exercise 34: Writing and Executing Our First Script ....................................... 99

Exercise 35: Writing and Importing Our First Module .................................  100

Shebangs in Ubuntu ..  101

Docstrings ...  101

Exercise 36: Adding a Docstring to my_module.py ......................................  101

Imports ..  102

Exercise 37: Finding the System Date ..  104

The if __name__ == "__main__" Statement ...  104

Activity 8: What's the Time? ..  106

Python Algorithms ..  107

Exercise 38: The Maximum Number ..  107

Time Complexity ..  108

Time Complexity for the Maximum Number Algorithm .............................  110

Sorting Algorithms ...  110

Exercise 39: Using Bubble Sort in Python ...  112

Searching Algorithms ..  112

Exercise 40: Linear Search in Python ...  113

Exercise 41: Binary Search in Python ..  115

Basic Functions ...  116

Exercise 42: Defining and Calling the Function in Shell ..............................  116

Exercise 43: Defining and Calling the Function in Python Script ...............  117

Exercise 44: Importing and Calling the Function from the Shell ................  117

Positional Arguments ..  118

Keyword Arguments ..  118

Exercise 45: Defining the Function with Keyword Arguments ...................  119

Exercise 46: Defining the Function with Positional
and Keyword Arguments ..  119

Exercise 47: Using **kwargs ...  120

Activity 9: Formatting Customer Names ...  121

Iterative Functions ..  122

Exercise 48: A Simple Function with a for Loop ...  123

Exiting Early ..  123

Exercise 49: Exiting the Function During the for Loop ................................  123

Activity 10: The Fibonacci Function with an Iteration .................................  124

Recursive Functions ..  125

A Terminating Case ..  126

Exercise 50: Recursive Countdown ..  126

Exercise 51: Factorials with Iteration and Recursion ..................................  127

Activity 11: The Fibonacci Function with Recursion ....................................  128

Dynamic Programming ..  129

Exercise 52: Summing Integers ..  129

Timing Your Code ...  131

Exercise 53: Timing Your Code ...  131

Activity 12: The Fibonacci Function with Dynamic Programming .............  132

Helper Functions ...  133

Don't Repeat Yourself ...  134

Exercise 54: Helper Currency Conversion ...  135

Variable Scope ...  136

Variables ...  136

Defining inside versus outside a Function ..  137

The Global Keyword ...  139

The Nonlocal Keyword ..  139

Lambda Functions ..  140

Exercise 55: The First Item in a List ..  141

Mapping with Lambda Functions ..  141

Exercise 56: Mapping with a Logistic Transform ..  142

Filtering with Lambda Functions ...  143

Exercise 57: Using the Filter Lambda ..  143

Sorting with Lambda Functions ...  144

Summary ..  144

Chapter 4: Extending Python, Files, Errors, and Graphs 	  147

Introduction ...  148

Reading Files ..  148

Exercise 58: Reading a Text File Using Python ...  148

Exercise 59: Reading Partial Content from a Text File ................................  151

Writing Files ...  152

Exercise 60: Creating and Writing Content to Files
to Record the Date and Time in a Text File ...  153

Preparing for Debugging (Defensive Code) ...  154

Writing Assertions ..  155

Exercise 61: Working with Incorrect Parameters to Find
the Average Using Assert with Functions ...  156

Plotting Techniques ..  157

Exercise 62: Drawing a Scatter Plot to Study the Data between
Ice Cream Sales versus Temperature ..  158

Exercise 63: Drawing a Line Chart to Find the Growth in Stock Prices .....  160

Exercise 64: Plotting Bar Plots to Grade Students .......................................  163

Exercise 65: Creating a Pie Chart to Visualize the Number
of Votes in a School ...  166

Exercise 66: Generating a Heatmap to Visualize the Grades
of Students ..  167

Exercise 67: Generating a Density Plot to Visualize the Score
of Students ..  170

Exercise 68: Creating a Contour Plot ...  172

Extending Graphs ...  173

Exercise 69: Generating 3D plots to Plot a Sine Wave .................................  175

The Don'ts of Plotting Graphs ...  176

Manipulating the Axis ...  177

Cherry Picking Data  ..  177

Wrong Graph, Wrong Context ..  178

Activity 13: Visualizing the Titanic Dataset Using a Pie Chart
and Bar Plots ..  179

Summary ..  181

Chapter 5: Constructing Python – Classes and Methods 	  183

Introduction ...  184

Classes and Objects ..  184

Exercise 70: Exploring Strings ...  186

Defining Classes ..  188

Exercise 71: Creating a Pet Class ..  189

The __init__ method ..  190

Exercise 72: Creating a Circle Class ..  191

Keyword Arguments ..  192

Exercise 73: The Country Class with Keyword Arguments .........................  193

Methods ...  194

Instance Methods ..  194

Exercise 74: Adding an Instance Method to Our Pet Class .........................  195

Adding Arguments to Instance Methods ..  196

Exercise 75: Computing the Size of Our Country ...  197

The __str__ method ..  198

Exercise 76: Adding an __str__ Method to the Country Class ......................  200

Static Methods ...  201

Exercise 77: Refactoring Instance Methods Using a Static Method ...........  202

Class Methods ..  204

Exercise 78: Extending Our Pet Class with Class Methods .........................  205

Properties ..  206

The Property Decorator ..  207

Exercise 79: The Full Name Property ...  208

The Setter Method ...  209

Exercise 80: Writing a Setter Method ..  210

Validation via the Setter Method ...  211

Inheritance ..  212

The DRY Principle Revisited ..  212

Single Inheritance ..  213

Exercise 81: Inheriting from the Person Class ..  214

Sub-Classing Classes from Python Packages ..  215

Exercise 82: Sub-Classing the datetime.date Class ......................................  216

Overriding Methods ...  216

Calling the Parent Method with super() ..  219

Exercise 83: Overriding Methods Using super()  ..  220

Multiple Inheritance ..  222

Exercise 84: Creating a Consultation Appointment System  ......................  222

Method Resolution Order ...  224

Activity 14: Creating Classes and Inheriting from a Parent Class ..............  226

Summary ..  227

Chapter 6: The Standard Library 	  229

Introduction ...  230

The Importance of the Standard Library ...  230

High-Level Modules ...  231

Lower-Level Modules ..  234

Knowing How to Navigate in the Standard Library .....................................  234

Exercise 85: Using the dataclass Module ..  235

Exercise 86: Extending the echo.py Example ...  237

Dates and Times ...  239

Exercise 87: Comparing datetime across Time Zones .................................  241

Exercise 88: Calculating the Time Delta between
Two datetime Objects ...  243

Exercise 89: Calculating the Unix Epoch Time ..  245

Activity 15: Calculating the Time Elapsed to Run a Loop ............................  248

Interacting with the OS ..  249

OS Information ...  249

Exercise 90: Inspecting the Current Process Information ..........................  249

Using pathlib ..  251

Exercise 91: Using the glob Pattern to List Files within a Directory ..........  253

Listing All Hidden Files in Your Home Directory ..  255

Using the subprocess Module ...  255

Exercise 92: Customizing Child Processes with env vars ............................  260

Activity 16: Testing Python Code ..  262

Logging ...  263

Using Logging ...  263

Logger Object ...  265

Exercise 93: Using a logger Object ...  266

Logging in warning, error, and fatal Categories ..  267

Configuring the Logging Stack ..  270

Exercise 94: Configuring the Logging Stack ..  271

Collections ...  275

Counters ..  275

Exercise 95: Counting Words in a Text Document .......................................  275

defaultdict ...  277

Exercise 96: Refactoring Code with defaultdict ...  278

ChainMap ..  281

Functools ..  284

Caching with functools.lru_cache ..  284

Exercise 97: Using lru_cache to Speed Up Our Code ...................................  285

Partial ..  289

Exercise 98: Creating a print Function That Writes to stderr .....................  290

Activity 17: Using partial on class Methods ..  291

Summary ..  293

Chapter 7: Becoming Pythonic 	  295

Introduction ...  296

Using List Comprehensions ...  297

Exercise 99: Introducing List Comprehensions ..  297

Exercise 100: Using Multiple Input Lists ..  300

Activity 18: Building a Chess Tournament ..  301

Set and Dictionary Comprehensions ..  302

Exercise 101: Using Set Comprehensions ...  303

Exercise 102: Using Dictionary Comprehensions ...  304

Activity 19: Building a Scorecard Using Dictionary
Comprehensions and Multiple Lists ..  305

Default Dictionary ...  306

Exercise 103: Adopting a Default Dict ...  306

Iterators ...  309

Exercise 104: The Simplest Iterator ...  309

Exercise 105: A Custom Iterator ...  311

Exercise 106: Controlling the Iteration ..  312

Itertools ..  314

Exercise 107: Using Infinite Sequences and takewhile ...............................  314

Exercise 108: Turning a Finite Sequence into an Infinite One,
and Back Again ...  317

Generators ...  318

Exercise 109: Generating a Sieve ...  318

Activity 20: Using Random Numbers to Find the Value of Pi ......................  319

Regular Expressions ...  321

Exercise 110: Matching Text with Regular Expressions ..............................  323

Exercise 111: Using Regular Expressions to Replace Text ..........................  324

Activity 21: Regular Expressions ..  324

Summary ..  325

Chapter 8: Software Development 	  327

Introduction ...  328

Debugging ..  328

Exercise 112: Debugging a Salary Calculator ..  331

Activity 22: Debugging Sample Python Code for an Application ...............  339

Automated Testing ...  340

Test Categorization ..  341

Test Coverage ...  342

Writing Tests in Python with Unit Testing ..  343

Exercise 113: Checking Sample Code with Unit Testing ..............................  343

Writing a Test with pytest ...  345

Creating a PIP Package ...  346

Exercise 114: Creating a Distribution That Includes
Multiple Files within a Package ..  348

Adding More Information to Your Package ..  350

Creating Documentation the Easy Way ...  351

Docstrings ...  351

Using Sphinx ...  352

Exercise 115: Documenting a Divisible Code File ...  353

More Complex Documentation ..  356

Source Management ..  357

Repository ...  357

Commit ..  358

Staging Area ..  359

Undoing Local Changes ...  359

History ...  359

Ignoring Files ..  359

Exercise 116: Making a Change in CPython Using git ..................................  360

Summary ..  364

Chapter 9: Practical Python – Advanced Topics 	  367

Introduction ...  368

Developing Collaboratively ..  368

Exercise 117: Writing Python on GitHub as a Team .....................................  369

Dependency Management ..  374

Virtual Environments ..  376

Exercise 118: Creating and Setting Up a conda Virtual
Environment to Install numpy and pandas ..  376

Saving and Sharing Virtual Environments ..  379

Exercise 119: Sharing Environments between a conda
Server and Your Local System ..  379

Deploying Code into Production ...  380

Exercise 120: Dockerizing Your Fizzbuzz Tool ..  382

Multiprocessing ...  384

Multiprocessing with execnet ..  386

Exercise 121: Working with execnet to Execute a Simple
Python Squaring Program ..  386

Multiprocessing with the Multiprocessing Package ....................................  388

Exercise 122: Using the Multiprocessing Package to Execute
a Simple Python Program ...  388

Multiprocessing with the Threading Package ..  389

Exercise 123: Using the Threading Package ...  390

Parsing Command-Line Arguments in Scripts ..  391

Exercise 124: Introducing argparse to Accept Input from the User ..........  392

Positional Arguments ..  394

Exercise 125: Using Positional Arguments to Accept
Source and Destination Inputs from a User ...  394

Performance and Profiling ..  395

Changing Your Python ...  396

PyPy ...  396

Exercise 126: Using PyPy to Find the Time to Get a List
of Prime Numbers ...  397

Cython ...  399

Exercise 127: Adopting Cython to Find the Time Taken
to get a List of Prime Numbers ..  399

Profiling ..  401

Profiling with cProfile ..  402

Activity 23: Generating a List of Random Numbers
in a Python Virtual Environment ..  408

Summary ..  410

Chapter 10: Data Analytics with pandas and NumPy 	  413

Introduction ...  414

NumPy and Basic Stats ..  414

Exercise 128: Converting Lists to NumPy Arrays ...  415

Exercise 129: Calculating the Mean of the Test Score .................................  416

Exercise 130: Finding the Median from a Collection of Income Data ........  417

Skewed Data and Outliers ..  418

Standard Deviation ..  418

Exercise 131: Finding the Standard Deviation from Income Data .............  419

Matrices ...  420

Exercise 132: Matrices ...  421

Computation Time for Large Matrices ..  423

Exercise 133: Creating an Array to Implement NumPy Computations .....  424

The pandas Library ...  429

Exercise 134: Using DataFrames to Manipulate Stored
Student testscore Data ...  429

Exercise 135: DataFrame Computations with the Student
testscore Data ..  431

Exercise 136: Computing DataFrames within DataFrames ........................  433

New Rows and NaN ...  436

Exercise 137: Concatenating and Finding the Mean with Null
Values for Our testscore Data ..  437

Cast Column Types ..  439

Data ..  440

Downloading Data ...  440

Downloading the Boston Housing Data from GitHub .................................  440

Reading Data ..  440

Exercise 138: Reading and Viewing the Boston Housing Dataset ..............  441

Exercise 139: Gaining Data Insights on the Boston Housing Dataset .......  443

Null Values ...  445

Exercise 140: Null Value Operations on the Dataset ...................................  445

Replacing Null Values ..  448

Visual Analysis ...  449

The matplotlib Library ...  449

Histograms ...  450

Exercise 141: Creating a Histogram Using the Boston Housing Dataset ..  450

Histogram Functions ...  453

Scatter Plots ..  456

Exercise 142: Creating a Scatter Plot for the Boston Housing Dataset .....  456

Correlation ..  457

Exercise 143: Correlation Values from the Dataset .....................................  458

Regression ..  460

Plotting a Regression Line ..  460

StatsModel Regression Output ..  462

Additional Models ..  463

Exercise 144: Box Plots ..  463

Violin Plots ..  464

Activity 24: Data Analysis to Find the Outliers in Pay versus
the Salary Report in the UK Statistics Dataset ...  465

Summary ..  467

Chapter 11: Machine Learning 	  469

Introduction ...  470

Introduction to Linear Regression ..  471

Simplify the Problem ...  473

From One to N-Dimensions ..  474

The Linear Regression Algorithm ...  475

Exercise 145: Using Linear Regression to Predict the Accuracy
of the Median Values of Our Dataset ..  476

Linear Regression Function ..  480

Cross-Validation ..  481

Exercise 146: Using the cross_val_score Function to Get
Accurate Results on the Dataset ..  481

Regularization: Ridge and Lasso ...  483

K-Nearest Neighbors, Decision Trees, and Random Forests .................  485

K-Nearest Neighbors ...  485

Exercise 147: Using K-Nearest Neighbors to Find the Median
Value of the Dataset ..  486

Exercise 148: K-Nearest Neighbors with GridSearchCV to Find
the Optimal Number of Neighbors ..  488

Decision Trees and Random Forests ...  489

Exercise 149: Decision Trees and Random Forests ......................................  490

Random Forest Hyperparameters ...  491

Exercise 150: Random Forest Tuned to Improve the Prediction
on Our Dataset ...  492

Classification Models ..  494

Exercise 151: Preparing the Pulsar Dataset and Checking
for Null Values ..  496

Logistic Regression ..  498

Exercise 152: Using Logistic Regression to Predict Data Accuracy ............  499

Other Classifiers ...  500

Naive Bayes ..  500

Exercise 153: Using GaussianNB, KneighborsClassifier,
DecisionTreeClassifier, and RandomForestClassifier
to Predict Accuracy in Our Dataset ...  501

Confusion Matrix ...  502

Exercise 154: Finding the Pulsar Percentage from the Dataset .................  502

Exercise 155: Confusion Matrix and Classification Report
for the Pulsar Dataset ...  506

Boosting Methods ...  509

Exercise 156: Using AdaBoost to Predict the Best Optimal Values ............  509

Activity 25: Using Machine Learning to Predict Customer
Return Rate Accuracy ..  511

Summary ..  512

Appendix 	  515

Index 	  569

Random Forest Hyperparameters ...  491

Exercise 150: Random Forest Tuned to Improve the Prediction
on Our Dataset ...  492

Classification Models ..  494

Exercise 151: Preparing the Pulsar Dataset and Checking
for Null Values ..  496

Logistic Regression ..  498

Exercise 152: Using Logistic Regression to Predict Data Accuracy ............  499

Other Classifiers ...  500

Naive Bayes ..  500

Exercise 153: Using GaussianNB, KneighborsClassifier,
DecisionTreeClassifier, and RandomForestClassifier
to Predict Accuracy in Our Dataset ...  501

Confusion Matrix ...  502

Exercise 154: Finding the Pulsar Percentage from the Dataset .................  502

Exercise 155: Confusion Matrix and Classification Report
for the Pulsar Dataset ...  506

Boosting Methods ...  509

Exercise 156: Using AdaBoost to Predict the Best Optimal Values ............  509

Activity 25: Using Machine Learning to Predict Customer
Return Rate Accuracy ..  511

Summary ..  512

Appendix 	  515

Index 	  569

Preface

About

This section briefly introduces this course and software requirements in order to complete all of
the included activities and exercises.

ii | Preface

About the Course
Have you always wanted to learn Python, but never quite known how to start?

More applications than we realize are being developed using Python because it is easy
to learn, read, and write. You can now start learning the language quickly and effectively
with the help of this interactive tutorial.

The Python Workshop starts by showing you how to correctly apply Python syntax
to write simple programs, and how to use appropriate Python structures to store
and retrieve data. You'll see how to handle files, deal with errors, and use classes and
methods to write concise, reusable, and efficient code.

As you advance, you'll understand how to use the standard library, debug code to
troubleshoot problems, and write unit tests to validate application behavior.

You'll gain insights into using the pandas and NumPy libraries for analyzing data, and
the graphical libraries of Matplotlib and Seaborn to create impactful data visualizations.
By focusing on entry-level data science, you'll build your practical Python skills in a way
that mirrors real-world development. Finally, you'll discover the key steps in building
and using simple machine learning algorithms.

By the end of this Python book, you'll have the knowledge, skills and confidence to
creatively tackle your own ambitious projects with Python.

About the Chapters

Chapter 1, Vital Python: Math, Strings, Conditionals, Loops, explains how to write basic
Python programs, and outlines the fundamentals of the Python language.

Chapter 2, Python Structures, covers the essential elements that are used to store and
retrieve data in all programming languages.

Chapter 3, Executing Python: Programs, Algorithms, Functions, explains how to write
more powerful and concise code through an increased appreciation of well-written
algorithms, and an understanding of functions

Chapter 4, Extending Python, Files, Errors, Graphs, covers the basic I/O (input-output)
operations for Python and covers using the matplotlib and seaborn libraries to create
visualizations.

About the Course | iii

Chapter 5, Constructing Python: Classes and Methods, introduces one of the most central
concepts in object-oriented programming classes, and it will help you write code using
classes, which will make your life easier.

Chapter 6, The standard library, covers the importance of the Python standard library.
It explains how to navigate in the standard Python libraries and overviews some of the
most commonly used modules.

Chapter 7, Becoming Pythonic, covers the Python programming language, with which
you will enjoy writing succinct, meaningful code. It also demonstrates some techniques
for expressing yourself in ways that are familiar to other Python programmers.

Chapter 8, Software Development, covers how to debug and troubleshoot our
applications, how to write tests to validate our code, and the documentation for other
developers and users.

Chapter 9, Practical Python: Advanced Topics, explains how to take advantage of parallel
programming, how to parse command-line arguments, how to encode and decode
Unicode, and how to profile Python to discover and fix performance problems.

Chapter 10, Data Analytics with pandas and NumPy, covers data science, which is the
core application of Python. We will be covering NumPy and pandas in this chapter.

Chapter 11, Machine Learning, covers the concept of machine learning and the steps
involved in building a machine learning algorithm

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Python provides the collections.defaultdict type."

A block of code is set as follows:

cubes = [x**3 for x in range(1,6)]
print(cubes)

New important words are shown like this: "Typically, standalone .py files are either
called scripts or modules".

Words that you see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "You can also use Jupyter (New -> Text File)."

iv | Preface

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

Exercise66.ipynb

def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=["black", "white"],
threshold=None, **textkw):
import matplotlib
if not isinstance(data, (list, np.ndarray)):

https://packt.live/2ps1byv

Before You Begin

Each great journey begins with a humble step. Our upcoming adventure in the land of
Python is no exception. Before you can begin, you need to be prepared with the most
productive environment. In this section, you will see how to do that.

Installing Jupyter on your system

We will be using Python 3.7 (from https://python.org):

To install Jupyter on windows, MacOS and Linux follow these steps:

1.	 Head to https://www.anaconda.com/distribution/ to install the Anaconda
Navigator, which is an interface through which you can access your local Jupyter
notebook.

2.	 Now, based on your Operating system (Windows, macOS or Linux) you need to
download the Anaconda Installer.

About the Course | v

Have a look at the following figure where we have downloaded the Anaconda files
for Windows:

Figure 0.1: The Anaconda homescreen

vi | Preface

Launching the Jupyter Notebook

To Launch the Jupyter Notebook frrom the Anaconda Navigator you need to follow the
mentioned steps below:

1.	 Once you install the Anaconda Navigator you will have the following screen at your
end as shown in Figure 0.2.

Figure 0.2: Anaconda installation screen

About the Course | vii

2.	 Now, click on Launch under the Jupyter Notebook option and launch the notebook
on your local system:

Figure 0.3: Jupyter notebook launch option

Congratulations! You have successfully installed Jupyter Notebook onto your system.

To Install the Python Terminal on your system

To install the Python terminal on your system, follow these steps:

1.	 Open the following link, which is the Python community website URL: https://
www.python.org/downloads/.

2.	 Select the Operating System (Windows, macOS or Linux) you would be working on
as highligthed in the following screenshot:

Figure 0.4: The Python homescreen

viii | Preface

3.	 Once you have downloaded the software, you need to install it.

4.	 Have a look at the following screenshot in which we have installed the Python
terminal on a Windows system. We load it through the Start menu and search for
Python and click on the software.

The Python terminal will look like this:

Figure 0.5: Python terminal interface

Congratulations! You have successfully installed the Python terminal onto your system.

A Few Important Packages

Some of the exercises in this chapter require the following packages:

•	 Matplotlib

•	 Seaborn

•	 NumPy

Install them by following this guide. On Windows, open up the command prompt. On
macOS or Linux, open up the terminal. Type the following commands:

pip install matplotlib seaborn numpy

If you prefer to use Anaconda to manage your packages, type in the following:

conda install matplotlib seaborn numpy

About the Course | ix

To install Docker

1.	 Head to https://docs.docker.com/docker-for-windows/install/ to install Docker
for Windows.

2.	 Head to https://docs.docker.com/docker-for-mac/install/ to install Docker for
macOS.

3.	 Head to https://docs.docker.com/v17.12/install/linux/docker-ce/ubuntu/ to
install Docker on Linux.

If you have any issues or questions about installation please email us
at workshops@packt.com.

Installing the Code Bundle

Download the code files from GitHub at https://packt.live/2PfducF and place them
in a new folder called C:\Code on your local system. Refer to these code files for the
complete code bundle.

Vital Python – Math,
Strings, Conditionals,

and Loops
Overview

By the end of this chapter, you will be able to simplify mathematical expressions
with the order of operations using integers and floats; assign variables and change
Python types to display and retrieve user information; apply global functions
including len(), print(), and input(); manipulate strings using indexing, slicing,
string concatenation, and string methods; apply Booleans and nested conditionals
to solve problems with multiple pathways; utilize 'for loops' and 'while loops' to
iterate over strings and repeat mathematical operations and create new programs
by combining math, strings, conditionals, and loops.

This chapter covers the fundamentals of the Python language.

1

2 | Vital Python – Math, Strings, Conditionals, and Loops

Introduction
Welcome to the Python Workshop. This book is for anyone new to the Python
programming language. Our objective is to teach you Python so that you can solve real-
world problems as a Python developer and data scientist.

This book will combine theory, examples, exercises, questions, and activities for all
core concepts; so that you can learn to use Python best practices to solve real-world
problems. The exercises and activities have been chosen specifically to help you review
the concepts covered and extend your learning. The best way to learn Python is to solve
problems on your own.

The material (in this book) is targeted at beginners but will be equally as beneficial to
experienced developers who are not yet familiar with Python. We are not teaching
computer science per se, but rather Python, the most beautiful and powerful coding
language in the world. If you have never studied computer science, you will learn the
most important concepts here, and if you have studied computer science, you will
discover tools and tricks for Python that you have never seen before.

Python has become the most popular programming language in the world due to its
simple syntax, extensive range, and dominance in the field of machine learning. In
this book, you will become fluent in Python syntax, and you will take significant steps
toward producing Pythonic code. You will gain experience in Python development, data
science, and machine learning.

Many introductory Python books provide full introductions to computer science.
Learning computer science with Python is an excellent way to start, but it is not the
method of this book. Units on software development and data science are rarely
covered in such books. They may be touched upon, but here, they represent 40% of our
book.

By contrast, many books on software development and data science are not designed
for beginners. If they are, the Python fundamentals that they teach are usually
summarized in one brief unit. This book devotes considerable space to Python
fundamentals and essentials. Beginners are not only welcome; they are guided every
step of the way.

In addition to the unique focus on Python fundamentals and essentials, the fact that the
content is written by seasoned educators, data scientists, and developers makes this
Python book more than just a text or reference.

Vital Python | 3

Python is not the language of tomorrow; Python is the language of today. By learning
Python, you will become empowered as a developer, and you will gain a significant edge
over the competition. The journey will be fun, compelling, challenging, and ultimately,
rewarding.

Vital Python
In this chapter, we present vital Python concepts, the core elements that everyone
needs to know before starting to code. You cover a breadth of topics with a focus on
math, strings, conditionals, and loops. By the end of this chapter, you will have a strong
foundation in Python, and you will be able to write significant Python programs as you
continue with the rest of this book.

You will start with a very famous developer example; that is, Python as a calculator. In
addition to the standard operations of addition, subtraction, multiplication, division,
and exponentiation, you will learn integer division and the modulus operator. By using
only basic Python, you can outperform most calculators on the market.

Next, you'll learn about variables. Python is dynamically typed, meaning that variable
types are unknown before the code runs. Python variables do not require special
initialization. Our first variables will be integers, floats, and strings. You will identify
and convert between types.

Next, in order to work with strings, you will utilize string methods, in addition to
indexing, slicing, and string concatenation. You'll also use built-in functions such as
print() and input() to communicate with the user.

Moving ahead, you'll encounter Booleans, true or false Python types, that precede
conditionals, statements with if clauses that lead to branching. Booleans and
conditionals allow us to write more complex programs by taking a greater number of
possibilities into account.

Finally, you close the chapter with loops that allows us to repeat operations. In
particular, we apply while loops and for loops, utilizing break and continue.

For true beginners, this introductory chapter will get you up to speed with basic
programming concepts. If you are new to Python, you will see why the Python language
is so clear, powerful, and valuable. By the end of this chapter, you will be comfortable
running Python basics on their own, and you will be prepared to tackle more of the
advanced concepts ahead.

Let's start coding in Python.

4 | Vital Python – Math, Strings, Conditionals, and Loops

Numbers: Operations, Types, and Variables
In the preface, we installed Anaconda, which comes along with Python 3.7 and the
Jupyter Notebook. It's time to open a Jupyter Notebook and begin our Pythonic journey.

To Open a Jupyter Notebook

To begin with this book, you need to make sure that you have a Jupyter Notebook open.
Here are the steps.

1.	 Locate and open your Anaconda Navigator.

2.	 Search for Jupyter Notebook in Anaconda Navigator and click on it.

3.	 A new window should open in the web browser of your choice.

Figure 1.1: The Jupyter Notebook interface

Note

If you are having trouble, it may mean that your Jupyter Notebook is not set up
properly. Go back to the preface or see https://jupyter-notebook.readthedocs.io/
en/stable/troubleshooting.html for a troubleshooting guide.

Python as a Calculator
Now that you are all set up, you can begin with the very first interesting topic. Python
is an incredibly powerful calculator. By leveraging the math library, numpy, and scipy,
Python typically outperforms pre-programmed calculators. In later chapters, you will
learn how to use the numpy and scipy libraries. For now, we'll introduce the calculator
tools that most people use daily.

Python as a Calculator | 5

Addition, subtraction, multiplication, division, and exponentiation are core
operations. In computer science, the modulus operator and integer division are equally
essential as well, so we'll cover them here.

The modulus operator is the remainder in mathematical division. Modular arithmetic
is also called clock arithmetic. For instance, in mod5 which is a modulus of 5, we count
0,1,2,3,4,0,1,2,3,4,0,1... This goes in a circle, like the hands on a clock.

The difference between division and integer division depends on the language. When
dividing the integer 9 by the integer 4, some languages return 2; others return 2.25. In
your case, Python will return 2.25.

There are many advantages to using Python as your calculator of choice. The first is
that you are not limited to using programs that others have written. You can write a
program to determine the greatest common divisor or the Euclidean distance between
two points.

Other advantages include reliability, precision, and speed. Python generally prints out
more decimal places than most calculators, and it always does what you command it to
do.

We'll cover a small sample of what Python can calculate. Complex numbers are
previewed as a Python type. Great math libraries such as Turtle, which creates polygons
and circles with ease, may be explored in your own time and are mentioned in Chapter
6, The Standard Library. The depth of math required for data analysis and machine
learning starts with the foundations laid here.

Note

In this book, copy everything that follows >>> in a cell in your Jupyter Notebook;
that is, you exclude >>>. To run code, make sure the cell is highlighted, then press
Shift + Enter. You may also press the Run button at the top of the Notebook, but this
takes more time. Start thinking like a developer and use keystrokes instead.

6 | Vital Python – Math, Strings, Conditionals, and Loops

Standard Math Operations

You can have a look at the standard math operations and their symbols that we will be
using while coding. The following table covers these:

Figure 1.2: Standard math operations

Note

The ** symbol is not universally for exponentiation, but it should be. By
definition, exponentiation is repeated multiplication. Using the * symbol twice
is representative of repeated multiplication. It's terse, fast, and efficient. Other
programming languages require functions to exponentiate.

Python provides an optional method from the math library, math.pow(), but ** is cleaner
and easier to use.

Basic Math Operations

We can perform addition on two numbers using the + operator. The following example
shows the addition of 5 and 2:

1.	 Here, we are using the addition operator, + in the code:

5 + 2

You should get the following output:

7

We can perform addition on two numbers using the + operator. The following
example shows the subtraction of 5 and 2.

Python as a Calculator | 7

2.	 Using the subtraction operator in the code, we can perform subtraction on two
numbers:

5 - 2

You should get the following output:

3

The following example shows the multiplication of 5 by 2.

3.	 Using the * multiplication operator to multiply the two numbers is done as follows:

5 * 2

You should get the following output:

10

4.	 Now, use the / division operator and observe the output:

5 / 2

You should get the following output:

2.5

When dividing two numbers, Python will always return a decimal.

5.	 Now the same division can be done using the // operator, which is called integer
division. Observe the change in the output:

5 // 2

You should get the following output:

2

The result of the integer division is the integer before the decimal point.

6.	 Now, using the ** exponential operator, we can perform exponentiation:

5 ** 2

You should get the following output:

25

The next example shows how to use the modulus operator.

8 | Vital Python – Math, Strings, Conditionals, and Loops

7.	 Finally, use the modulus operator in the code and observe the output:

5 % 2

You should get the following output:

1

The modulus operator is performed using the % operator, as shown in step 7. It
returns the remainder when the first number is divided by the second.

In the aforementioned examples, you have used the different math operators and
performed operations with them in a Jupyter Notebook. Next, you move on to the order
of operations in Python.

Order of Operations

Parentheses are meaningful in Python. When it comes to computation, Python always
computes what is in parentheses first.

The Python language follows the same order of operations as in the math world. You
may remember the acronym PEMDAS: parentheses first, exponentiation second,
multiplication/division third, and addition/subtraction fourth.

Consider the following expression:5 + 2 * -3

The first thing to note is that the negative sign and subtraction sign are the same in
Python. Let's have a look at the following example:

1.	 Python will first multiply 2 and –3, and then add 5:

5 + 2 * -3

You should get the following output:

–1

2.	 If parentheses are placed around the 5 and 2, we obtain a different result:

(5 + 2) * -3

You should get the following output:

–21

If ever in doubt, use parentheses. Parentheses are very helpful for complex expressions,
and extra parentheses do not affect code.

In the following exercise, we are going to dive into Python code and work with math
operations.

Python as a Calculator | 9

Exercise 1: Getting to Know the Order of Operations

The goal of this exercise is to work with the primary math operations in Python and
understand their order of execution. This exercise can be performed on the Python
terminal:

1.	 Subtract 5 to the 3rd power, which is 53, from 100 and divide the result by 5:

(100 - 5 ** 3) / 5

You should get the following output:

–5.0

2.	 Add 6 to the remainder of 15 divided 4:

6 + 15 % 4

You should get the following output:

9

3.	 Add 2 to the 2nd power, which is 22, to the integer division of 24 and 4:

2 ** 2 + 24 // 4

You should get the following output:

10

In this quick exercise, you have used Python to perform basic math using the order of
operations. As you can see, Python is an excellent calculator. You will use Python often
as a calculator in your career as a developer.

Spacing in Python

You may have wondered about spaces in between numbers and symbols. In Python,
spaces after a number or symbol do not carry any meaning. So, 5**3 and 5 ** 3 both
result in 125.

Spaces are meant to enhance readability. Although there is no correct way to space
code, spaces are generally encouraged between operands and operators. Thus, 5 ** 3 is
preferable.

Trying to follow certain conventions is perfectly acceptable. If you develop good habits
early on, it will make the reading and debugging of code easier later.

10 | Vital Python – Math, Strings, Conditionals, and Loops

Number Types: Integers and Floats

Now you will address the difference between an integer and a float. Consider 8 and 8.0.
You know that 8 and 8.0 are equivalent mathematically. They both represent the same
number, but they are different types. 8 is an integer, and 8.0 is a decimal or float.

An integer in Python is classified as a type of int, short for integer. Integers include all
positive and negative whole numbers, including 0. Examples of integers include 3, -2, 47,
and 10000.

Floats, by contrast, are Python types represented as decimals. All rational numbers
expressed as fractions can be represented as floats. Samples of floats include	3.0, -2.0,
47.45, and 200.001.

Note

We are only covering text and numeric types in this chapter. Other types will be
discussed in subsequent chapters.

Python types can be obtained explicitly using the type() keyword, as you will see in the
following exercise.

Exercise 2: Integer and Float Types

The goal of this exercise is to determine types and then change those types in our
Python code. This can be performed in the Jupyter Notebook:

1.	 Begin by explicitly determining the type of 6 using the following code:

type(6)

You should get the following output:

int

2.	 Now, enter type(6.0) in the next cell of your notebook:

type(6.0)

You should get the following output:

float

Python as a Calculator | 11

3.	 Now, add 5 to 3.14. Infer the type of their sum:

5 + 3.14

You should get the following output:

8.14

It's clear from the output that combining an int and a float gives us a float. This
makes sense. If Python returned 8, you would lose information. When possible,
Python converts types to preserve information.

You can, however, change types by using the type keyword.

4.	 Now, convert 7.999999999 to an int:

int(7.999999999)

You should get the following output:

7

5.	 Convert 6 to a float:

float(6)

You should get the following output:

6.0

In this exercise, you determined types by using the type() keyword, and you changed
types between integers and floats. As a developer, you will need to use your knowledge
of variable types more often than you might expect. It's not uncommon to be unsure of
a type when dealing with hundreds of variables simultaneously, or when editing other
people's code.

Note

Type changing will be revisited again in this chapter, referred to as casting.

12 | Vital Python – Math, Strings, Conditionals, and Loops

Complex Number Types

Python includes complex numbers as an official type. Complex numbers arise when
taking the square roots of negative numbers. There is no real number whose square
root is -9, so we say that it equals 3i. Another example of a complex number is 2i + 3.
Python uses j instead of i.

You can take a look at the following code snippet to learn how to work with complex
number types.

Divide 2 + 3j by 1 - 5j, enclosing both operations within parentheses:

(2 + 3j) / (1 - 5j)

You should get the following output:

–0.5+0.5j

For more information on complex numbers, check out https://docs.python.org/3.7/
library/cmath.html.

Errors in Python

In programming, errors are not to be feared; errors are to be welcomed. Errors are
common not only for beginners but for all developers. You will learn skills to handle
errors in Chapter 4, Extending Python, Files, Errors, and Graphs. For now, if you get an
error, just go back and try again. Python errors in Jupyter Notebooks won't crash your
computer or cause any serious problems but they will just stop running the Python
code.

Variables

In Python, variables are memory slots that can store elements of any type. The name
variable is meant to be suggestive, as the idea behind a variable is that the value can
vary throughout a given program.

Variable Assignment

In Python, variables are introduced the same way as in math, by using the equals sign.
In most programming languages, however, order matters; that is, x = 3.14 means that
the value 3.14 gets assigned to x. However, 3.14 = x will produce an error because it's
impossible to assign a variable to a number. In the following exercise, we will implement
this concept in code to give you a better understanding of it.

Python as a Calculator | 13

Exercise 3: Assigning Variables

The goal of this exercise is to assign values to variables. Variables can be assigned any
value, as you will see in this exercise. This exercise can be performed in the Jupyter
Notebook:

1.	 Set x as equal to the number 2:

x = 2

In the first step, we assigned the value 2 to the x variable.

2.	 Add 1 to the variable x:

x + 1

You should get the following output:

3

Once we add 1 to x, we get the output of 3, because the variable has 1 added to it.

3.	 Change x to 3.0 and add 1 to x:

x = 3.0
x + 1

You should get the following output:

4.0

In this step, we change the value of x to 4.0, and as in the previous 2 steps, we will
be adding 1 to the x variable.

By the end of this quick exercise, you may have noticed that in programming, you
can assign a variable in terms of its previous value. This is a powerful tool, and many
developers use it quite often. Furthermore, the type of x has changed. x started as
an int, but now x = 3.0 which is a float. This is allowed in Python because Python is
dynamically typed.

14 | Vital Python – Math, Strings, Conditionals, and Loops

Changing Types

In some languages, it's not possible for a variable to change types. This means that
if the y variable is an integer, then y must always be an integer. Python, however, is
dynamically typed, as we saw in Exercise 3, Assigning Variables and as illustrated in the
following example:

1.	 y starts as an integer:

y = 10

2.	 y becomes a float:

y = y – 10.0

3.	 Check the type of y:

type(y)

You should get the following output:

float

In the next topic, you will be looking at reassigning variables in terms of themselves.

Reassigning Variables in Terms of Themselves

It's common in programming to add 1 to a variable; for instance, x = x + 1. The
shorthand for this is to use += as in the following example:

x += 1

So, if x was 6, x is now 7. The += operator adds the number on the right to the variable
and sets the variable equal to the new number.

Activity 1: Assigning Values to Variables

In this activity, you will assign a number to the x variable, increment the number, and
perform additional operations.

By completing this activity, you will learn how to perform multiple mathematical
operations using Python. This activity can be performed in the Jupyter Notebook.

The steps are as follows:

1.	 First, set 14 to the x variable.

2.	 Now, add 1 to x.

3.	 Finally, divide x by 5 and square it.

Python as a Calculator | 15

You should get the following output:

9.0

Note

The solution for this activity can be found via this link.

Variable Names

To avoid confusion, it's recommended to use variable names that make sense to readers.
Instead of using x, the variable may be income or age. Although x is shorter, someone
else reading the code might not understand what x is referring to. Try to use variable
names that are indicative of the meaning.

There are some restrictions when naming variables. For instance, variables cannot start
with numbers, most special characters, keywords, nor built-in types. Variables also
can't contain spaces between letters.

According to Python conventions, it's best to use lowercase letters and to avoid special
characters altogether as they will often cause errors.

Python keywords are reserved in the language. They have special meanings. We will go
over most of these keywords later.

Running the following two lines always shows a current list of Python keywords:

import keyword
print(keyword.kwlist)

You should get the following output:

Figure 1.3: Output showing the Python keywords

Note

If you use any of the preceding keywords as variable names, Python will throw an
error.

16 | Vital Python – Math, Strings, Conditionals, and Loops

Exercise 4: Variable Names

The goal of this exercise is to learn standard ways to name variables by considering
good and bad practices. This exercise can be performed in Jupyter:

1.	 Create a variable called 1st_number and assign it a value of 1:

1st_number = 1

You should get the following output:

Figure 1.4: Output throwing a syntax error

You'll get the error mentioned in the preceding screenshot because you cannot
begin a variable with a number.

2.	 Now, let's try using letters to begin a variable:

first_number = 1

3.	 Now, use special characters in a variable name, as in the following code:

my_$ = 1000.00

You should get the following output:

Figure 1.5: Output throwing a syntax error

You get the error mentioned in Figure 1.4 because you cannot include a variable
with a special character.

4.	 Now, use letters again instead of special characters for the variable name:

my_money = 1000.00

In this exercise, you have learned to use underscores to separate words when naming
variables, and not to start variables' names with numbers nor include any symbols. In
Python, you will quickly get used to these conventions.

Python as a Calculator | 17

Multiple Variables

Most programs contain multiple variables. The same rules apply as when working
with single variables. You will practice working with multiple variables in the following
exercise.

Exercise 5: Multiple Variables in Python

In this exercise, you will perform mathematical operations using more than one
variable. This exercise can be performed in the Jupyter Notebook:

1.	 Assign 5 to x and 2 to y:

x = 5
y = 2

2.	 Add x to x and subtract y to the second power:

x + x - y ** 2

You should get the following output:

6

Python has a lot of cool shortcuts, and multiple variable assignment is one of them.
Here's the Pythonic way of declaring two variables.

Note

Pythonic is a term used to describe code written in the optimum readable format.
This will be covered in Chapter 7, Becoming Pythonic.

3.	 Assign 8 to x and 5 to y in one line:

x, y = 8, 5

4.	 Find the integer division of x and y:

x // y

You should get the following output:

1

In this exercise, you practiced working with multiple variables, and you even learned
the Pythonic way to assign values to multiple variables in one line. It's rare to only work
with one variable in practice.

18 | Vital Python – Math, Strings, Conditionals, and Loops

Comments

Comments are extra blocks of code that do not run. They are meant to clarify code
for readers. In Python, any text following the # symbol on a single line is a comment.
Comments followed by the # symbol may be inline or above the text.

Note

Consistent use of comments will make reviewing and debugging code much easier.
It's strongly advisable to practice this from here on out.

Exercise 6: Comments in Python

In this exercise, you will learn two different ways to display comments in Python. This
exercise can be performed in the Jupyter Notebook:

1.	 Write a comment that states This is a comment:

This is a comment

When you execute this cell, nothing should happen.

2.	 Set the pi variable as equal to 3.14. Add a comment above the line stating what you
did:

Set the variable pi equal to 3.14
pi = 3.14

Adding the comment clarifies what follows.

3.	 Now, try setting the pi variable as equal to 3.14 again, but add the comment stating
what you did on the same line:

pi = 3.14 # Set the variable pi equal to 3.14

Although it's less common to provide comments on the same line of code, it's
acceptable and often appropriate.

Python as a Calculator | 19

You should get the following output from the Jupyter notebook:

Figure 1.6: Output from the Jupyter Notebook using comments

In this exercise, you have learned how to write comments in Python. As a developer,
writing comments is essential to make your code legible to others.

Docstrings

Docstrings, short for document strings, state what a given document, such as a
program, a function, or a class, actually does. The primary difference in syntax between
a docstring and a comment is that docstrings are intended to be written over multiple
lines, which can be accomplished with triple quotes """. They also introduce a given
document, so they are placed at the top.

Here is an example of a docstring:

"""
This document will explore why comments are particularly useful
when writing and reading code.
"""

When you execute this cell, nothing really happens. Docstrings, like comments, are
designed as information for developers reading and writing code; they have nothing to
do with the output of code.

Activity 2: Finding a Solution Using the Pythagorean Theorem in Python

In this activity, you will determine the Pythagorean distance between three points. You
will utilize a docstring and comments to clarify the process.

In this activity, you need to assign numbers to the x, y, and z variables, square the
variables, and take the square root to obtain the distance, while providing comments
along the way and a docstring to introduce the sequence of steps. To complete this
activity, you'll utilize multiple variables, comments, and docstrings to determine the
Pythagorean distance between three points.

20 | Vital Python – Math, Strings, Conditionals, and Loops

The steps are as follows:

1.	 Write a docstring that describes what is going to happen.

2.	 Set x, y, and z as equal to 2, 3, and 4.

3.	 Determine the Pythagorean distance between x, y, and z.

4.	 Include comments to clarify each line of code.

You should get the following output:

5.385164807134504

Note

The solution for this activity can be found via this link.

So far, in this chapter, you have used Python as a basic calculator, along with the order
of operations. You examined the difference between int and float values and learned
how to convert between them. You can implement variable assignment and reassign
variables to make programs run more smoothly. You also utilized comments to make
code more readable and learned how to identify syntax errors. In addition, you learned
a couple of cool Python shortcuts, including assigning multiple variables to one line. As
an added bonus, you explored Python's complex number types.

Next, you'll explore Python's other main type, strings.

Strings: Concatenation, Methods, and input()
You have learned how to express numbers, operations, and variables. What about
words? In Python, anything that goes between 'single' or "double" quotes is considered
a string. Strings are commonly used to express words, but they have many other uses,
including displaying information to the user and retrieving information from a user.

Examples include 'hello', "hello", 'HELLoo00', '12345', and 'fun_characters: !@ #$%^&*('.

In this section, you will gain proficiency with strings by examining string methods,
string concatenation, and useful built-in functions including print() and len() with a
wide range of examples.

Strings: Concatenation, Methods, and input() | 21

String Syntax

Although strings may use single or double quotes, a given string must be internally
consistent. That is, if a string starts with a single quote, it must end with a single quote.
The same is true of double quotes.

You can take a look at valid and invalid strings in Exercise 7, String Error Syntax.

Exercise 7: String Error Syntax

The goal of this exercise is to learn appropriate string syntax:

1.	 Open a Jupyter Notebook.

2.	 Enter a valid string:

bookstore = 'City Lights'

3.	 Now enter an invalid string:

bookstore = 'City Lights"

You should get the following output:

Figure 1.7: Output with invalid string format

If you start with a single quote, you must end with a single quote. Since the string
has not been completed, you receive a syntax error.

4.	 Now you need to enter a valid string format again, as in the following code snippet:

bookstore = "Moe's"

This is okay. The string starts and ends with double quotes. Anything can be inside
the quotation marks, except for more quotation marks.

5.	 Now add the invalid string again:

bookstore = 'Moe's'

22 | Vital Python – Math, Strings, Conditionals, and Loops

You should get the following output:

Figure 1.8: Output with the invalid string

This is a problem. You started and ended with single quotes, and then you added an s
and another single quote.

A couple of questions arise. The first is whether single or double quotes should be
used. The answer is that it depends on developer preference. Double quotes are more
traditional, and they can be used to avoid potentially problematic situations such as the
aforementioned Moe's example. Single quotes eliminate the need to press the Shift key.

In this exercise, you have learned the correct and incorrect ways of assigning strings to
variables, including single and double-quotes.

Python uses the backslash character, \, called an escape sequence in strings, to allow
for the insertion of any type of quote inside of strings. The character that follows the
backslash in an escape sequence may be interpreted as mentioned in Python's official
documentation, which follows. Of particular note is \n, which is used to create a new
line:

Figure 1.9: Escape sequences and their meaning

Note

For more information on strings, you can refer to https://docs.python.org/2.0/ref/
strings.html.

Strings: Concatenation, Methods, and input() | 23

Escape Sequences with Quotes

Here is how an escape sequence works with quotes. The backslash overrides the single
quote as an end quote and allows it to be interpreted as a string character:

bookstore = 'Moe\'s'

Multi-Line Strings

Short strings always display nicely but, what about multi-line strings? It can be
cumbersome to define a paragraph variable that includes a string over multiple lines. In
some IDEs, the string may run off the screen, and it may be difficult to read. In addition,
it might be advantageous to have line breaks at specific points for the user.

Note

Line breaks will not work inside single or double quotes.

When strings need to span multiple lines, Python provides triple quotes, using single or
double quotation marks, as a nice option.

Here is an example of triple quotes (''') used to write a multi-line string:

vacation_note = '''
During our vacation to San Francisco, we waited in a long line by
Powell St. Station to take the cable car. Tap dancers performed on
wooden boards. By the time our cable car arrived, we started looking
online for a good place to eat. We're heading to North Beach.
'''

Note

Multi-line strings take on the same syntax as a docstring. The difference is that
a docstring appears at the beginning of a document, and a multi-line string is
defined within the program.

The print() Function

The print() function is used to display information to the user, or to the developer. It's
one of Python's most widely used built-in functions.

24 | Vital Python – Math, Strings, Conditionals, and Loops

Exercise 8: Displaying Strings

In this exercise, you will learn different ways to display strings:

1.	 Open a new Jupyter Notebook.

2.	 Define a greeting variable with the value 'Hello'. Display the greeting using the
print() function:

greeting = 'Hello'
print(greeting)

You should get the following output:

Hello

Hello, as shown in the display, does not include single quotes. This is because the
print() function is generally intended for the user to print the output.

Note

The quotes are for developer syntax, not user syntax. 	

3.	 Display the value of greeting without using the print() function:

greeting

You should get the following output:

'Hello'

When we input greeting without the print() function, we are obtaining the
encoded value, hence the quotes.

4.	 Consider the following sequence of code in a single cell in a Jupyter Notebook:

spanish_greeting = 'Hola.'
spanish_greeting
arabic_greeting = 'Ahlan wa sahlan.'

When the preceding cell is run, the preceding code does not display spanish_
greeting. If the code were run on a terminal as three separate lines, it would display
Hola., the string assigned to spanish_greeting. The same would be true if the
preceding sequence of code were run in three separate cells in a Jupyter Notebook.
For consistency, it's useful to use print() any time information should be displayed.

Strings: Concatenation, Methods, and input() | 25

5.	 Display the Spanish greeting:

spanish_greeting = 'Hola.'
print(spanish_greeting)

You should get the following output:

Hola.

6.	 Now, display the Arabic greeting message, as mentioned in the following code
snippet:

arabic_greeting = 'Ahlan wa sahlan.'
print(arabic_greeting)

You should get the following output:

Ahlan wa sahlan.

The compiler runs through each line in order. Every time it arrives at print(), it
displays information.

In this exercise, you have learned different ways to display strings, including the print()
function. You will use the print() function very frequently as a developer.

String Operations and Concatenation

The multiplication and addition operators work with strings as well. In particular, the
+ operator combines two strings into one and is referred to as string concatenation.
The * operator, for multiplication, repeats a string. In the following exercise, you will be
looking at string concatenation in our string samples.

Exercise 9: String Concatenation

In this exercise, you will learn how to combine strings using string concatenation:

1.	 Open a new Jupyter Notebook.

2.	 Combine the spanish_greeting we used in Exercise 8, Displaying Strings, with
'Senor.' using the + operator and display the results:

spanish_greeting = 'Hola'
print(spanish_greeting + 'Senor.')

You should get the following output:

HolaSenor.

Notice that there are no spaces between greeting and name. If we want spaces
between strings, we need to explicitly add them.

26 | Vital Python – Math, Strings, Conditionals, and Loops

3.	 Now, combine spanish_greeting with 'Senor.' using the + operator, but this time,
include a space:

spanish_greeting = 'Hola '
print(spanish_greeting + 'Senor.')

You should get the following output:

Hola Senor.

4.	 Display the greeting 5 times using the * multiplication operator:

greeting = 'Hello'
print(greeting * 5)

You should get the following output:

HelloHelloHelloHelloHello

By completing this exercise successfully, you have combined strings using string
concatenation using the + and * operators.

String Interpolation
When writing strings, you may want to include variables in the output. String
interpolation includes the variable names as placeholders within the string. There
are two standard methods for achieving string interpolation: comma separators and
format.

Comma Separators

Variables may be interpolated into strings using commas to separate clauses. It's similar
to the + operator, except it adds spacing for you.

You can have a look at an example here, where we add Ciao within a print statement:

italian_greeting = 'Ciao'
print('Should we greet people with', italian_greeting, 'in North Beach?')

You should get the following output:

Should we greet people with Ciao in North Beach?

String Interpolation | 27

Format

With format, as with commas, Python types, ints, floats, and so on, are converted into
strings upon execution. The format is accessed using brackets and dot notation:

owner = 'Lawrence Ferlinghetti'
age = 100
print('The founder of City Lights Bookstore, {}, is now {} years old.'.format(owner,
age))

You should get the following output:

The founder of City Lights Bookstore, Lawrence Ferlinghetti, is now 100 years old.

The format works as follows: First, define your variables. Next, in the given string, use
{} in place of each variable. At the end of the string, add a dot (.) followed by the format
keyword. Then, in parentheses, list each variable in the desired order of appearance.
In the next section, you will look at the built-in string functions available to a Python
developer.

The len() Function

There are many built-in functions that are particularly useful for strings. One such
function is len(), which is short for length. The len() function determines the number
of characters in a given string.

Note that the len() function will also count any blank spaces in a given string.

You'll use the arabic_greeting variable used in Exercise 8, Displaying Strings:

len(arabic_greeting)

You should get the following output:

16

Note

When entering variables in Jupyter notebooks, you can use tab completion. After
you type in a letter or two, you can press the Tab key. Python then displays all valid
continuations that will complete your expression. If done correctly, you should see
your variable listed. Then you can highlight the variable and press Enter. Using tab
completion will limit errors.

28 | Vital Python – Math, Strings, Conditionals, and Loops

String Methods

All Python types, including strings, have their own methods. These methods generally
provide shortcuts for implementing useful tasks. Methods in Python, as in many other
languages, are accessed via dot notation.

You can use a new variable, name, to access a variety of methods. You can see all
methods by pressing the Tab button after the variable name and a dot.

Exercise 10: String Methods

In this exercise, you will learn how to implement string methods.

1.	 Set a new variable, called name, to any name that you like:

name = 'Corey'

Note

Access string methods by pressing the Tab button after the variable name and dot
(.), as demonstrated in the following screenshot:

Figure 1.10: Setting a variable name via the dropdown menu

You can scroll down the list to obtain all available string methods.

2.	 Now, convert the name into lowercase letters using the lower() function:

name.lower()

You should get the following output:

'corey'

String Interpolation | 29

3.	 Now, capitalize the name using the capitalize() function:

name.capitalize()

You should get the following output:

'Corey'

4.	 Convert the name into uppercase letters using upper():

name.upper()

You should get the following output:

'COREY'

5.	 Finally, count the number of o instances in the word 'Corey':

name.count('o')

You should get the following output:

1

In this exercise, you have learned about a variety of string methods, including lower(),
capitalize(), upper(), and count().

Methods may only be applied to their representative types. For instance, the lower()
method only works on strings, not integers or floats. By contrast, built-in functions
such as len() and print() can be applied to a variety of types.

Note

Methods do not change the original variable unless we explicitly reassign the
variable. So, the name has not been changed, despite the methods that we have
applied.

Casting

It's common for numbers to be expressed as strings when dealing with input and
output. Note that '5' and 5 are different types. We can easily convert between numbers
and strings using the appropriate type keywords. In the following exercise, we are going
to be using types and casting to understand the concepts much better.

30 | Vital Python – Math, Strings, Conditionals, and Loops

Exercise 11: Types and Casting

In this exercise, you will learn how types and casting work together:

1.	 Open a new Jupyter Notebook.

2.	 Determine the type of '5':

type('5')

You should get the following output:

str

3.	 Now, add '5' and '7':

'5' + '7'

You should get the following output:

'57'

The answer is not 12 because, here, 5 and 7 are of type string, not of type int.
Recall that the + operator concatenates strings. If we want to add 5 and 7, we must
convert them first.

4.	 Convert the '5' string to an int using the code mentioned in the following code
snippet:

int('5')

You should get the following output:

5

Now 5 is a number, so it can be combined with other numbers via standard
mathematical operations.

5.	 Add '5' and '7' by converting them to int first:

int('5') + int('7')

You should get the following output:

Figure 1.11: Output after adding two integers converted from a string

In this exercise, you have learned several ways in which strings work with casting.

String Interpolation | 31

The input() Function

The input() function is a built-in function that allows user input. It's a little different
than what we have seen so far. Let's see how it works in action.

Exercise 12: The input() Function

In this exercise, you will utilize the input() function to obtain information from the
user:

1.	 Open a new Jupyter Notebook.

2.	 Ask a user for their name. Respond with an appropriate greeting:

Choose a question to ask
print('What is your name?')

You should get the following output:

Figure 1.12: The user is prompted to answer a question

3.	 Now, set a variable that will be equal to the input() function, as mentioned in the
following code snippet:

name = input()

You should get the following output:

Figure 1.13: The user may type anything into the provided space

32 | Vital Python – Math, Strings, Conditionals, and Loops

4.	 Finally, select an appropriate output:

print('Hello, ' + name + '.')

You should get the following output:

Figure 1.14: After pressing Enter, the full sequence is displayed

Note

input() can be finicky in Jupyter Notebooks. If an error arises when entering
the code, try restarting the kernel. Restarting the kernel will erase the current
memory and start each cell afresh. This is advisable if the notebook stalls.

In this exercise, you have learned how the input() function works.

Activity 3: Using the input() Function to Rate Your Day

In this activity, you need to create an input type where you ask the user to rate their
day on a scale of 1 to 10.

Using the input() function, you will prompt a user for input and respond with a
comment that includes the input. In this activity, you will print a message to the user
asking for a number. Then, you will assign the number to a variable and use that variable
in a second message that you display to the user.

The steps are as follows:

1.	 Open a new Jupyter Notebook.

2.	 Display a question prompting the user to rate their day on a number scale of 1 to
10.

3.	 Save the user's input as a variable.

4.	 Display a statement to the user that includes the number.

Note

The solution for this activity can be found via this link.

String Indexing and Slicing | 33

String Indexing and Slicing
Indexing and slicing are crucial parts of programming. In data analysis, indexing and
slicing DataFrames is essential to keep track of rows and columns, something we will
practice in Chapter 10, Data Analytics with pandas and NumPy. The mechanics behind
indexing and slicing dataFrames is the same as indexing and slicing strings, which we
will learn in this chapter.

Indexing

The characters of Python strings exist in specific locations; in other words, their order
counts. The index is a numerical representation of where each character is located. The
first character is at index 0, the second character is at index 1; the third character is at
index 2, and so on.

Note

We always start at 0 when indexing.

Consider the following string:

destination = 'San Francisco'

'S' is in the 0th index, 'a' is in the 1st index, 'n' is in the 2nd index, and so on. The
characters of each index are accessed using bracket notation as follows:

destination[0]

You should get the following output:

'S'

To access the data from the first index, enter the following:

destination[1]

You should get the following output:

'a'

To access the data from the second index, enter the following:

destination[2]

You should get the following output:

'n'

34 | Vital Python – Math, Strings, Conditionals, and Loops

The character value for San Francisco and the corresponding index count is shown in
Figure 1.15:

Figure 1.15: Diagrammatic representation of the character values and the corresponding positive index
values

Now, try adding a -1 as the index value and observe the output:

destination[-1]

You should get the following output:

'o'

Note

Negative numbers start at the end of the string. (It makes sense to start with -1
since -0 is the same as 0.)

To access the data from the rear of San Francisco, we use the negative sign
in this case -2:

destination[-2]

You should get the following output:

'c'

The following figure 1.16 mentions the characters sco from the word Francisco, and the
corresponding index count:

Figure 1.16: Index value for the negative values for San Francisco

Here is one more example:

bridge = 'Golden Gate'
bridge[6]

Slicing | 35

You should get the following output:

' '

You may be wondering whether you did something wrong because no letter is
displayed. On the contrary, it's perfectly fine to have an empty string. In fact, an empty
string is one of the most common strings in programming.

Slicing
A slice is a subset of a string or other element. A slice could be the whole element or
one character, but it's more commonly a group of adjoining characters.

Let's say you want to access the fifth through eleventh letters of a string. So, you start
at index 4 and end at index 10, as was explained in the previous Indexing section. When
slicing, the colon symbol (:) is inserted between indices, like so: [4:10].

There is one caveat. The lower bound of a slice is always included, but the upper bound
is not. So, in the preceding example, if you want to include the 10th index, you must use
[4:11].

You should now have a look at the following example for slicing.

Retrieve the fifth through eleventh letters of San Francisco, which you used in the
previous Indexing section:

destination[4:11]

You should get the following output:

'Francis'

Retrieve the first three letters of destination:

destination[0:3]

You should get the following output:

'San'

There is a shortcut for getting the first n letters of a string. If the first numerical
character is omitted, Python will start at the 0th index.

36 | Vital Python – Math, Strings, Conditionals, and Loops

Now, to retrieve the first eight letters of destination using the shortcut, use the
following code:

destination[:8]

You should get the following output:

'San Fran'

Finally, to retrieve the last three letters of destination, use this code:

destination[-3:]

You should get the following output:

'sco'

The negative sign, -, means that we start at the third-to-last letter, and the colon means
that we go to the end.

Strings and Their Methods

You started with string syntax, before moving on to a variety of ways to concatenate
strings. You looked at useful built-in functions including len() and examined a sample
of string methods. Next, you casted numbers as strings and vice versa.

The input() function is used to access user input. This really extends what you can do.
Responding to user feedback is a core element of programming that you will continue
to develop. Finally, you closed with two powerful tools that developers frequently use:
indexing and slicing.

There is a great deal more to learn about strings. You will encounter additional
problems and methods throughout this book. This introductory chapter is meant to
equip you with the basic skills needed to handle strings going forward.

Next, you will learn how to branch programs using conditionals and Booleans.

Booleans and Conditionals
Booleans, named after George Boole, take the values of True or False. Although the idea
behind Booleans is rather simple, they make programming immensely more powerful.

When writing programs, for instance, it's useful to consider multiple cases. If you
prompt the user for information, you may want to respond differently depending upon
the user's answer.

For instance, if the user gives a rating of 0 or 1, you may give a different response than a
rating of 9 or 10. The keyword here is if.

Booleans and Conditionals | 37

Programming based upon multiple cases is referred to as branching. Each branch is
represented by a different conditional. Conditionals often start with an 'if' clause,
followed by 'else' clauses. The choice of a branch is determined by Booleans, depending
on whether the given conditions are True or False.

Booleans

In Python, a Boolean class object is represented by the bool keyword and has a value of
True or False.

Note

Boolean values must be capitalized in Python.

Exercise 13: Boolean Variables

In this short exercise, you will use, assign, and check the type of Boolean variables:

1.	 Open a new Jupyter Notebook.

2.	 Now, use a Boolean to classify someone as being over 18 using the following code
snippet:

over_18 = True
type(over_18)

You should get the following output:

bool

The output is satisfied, and the type is mentioned as a Boolean, that is, bool.

3.	 Use a Boolean to classify someone as not being over 21:

over_21 = False
type(over_21)

You should get the following output:

bool

In this short, quick exercise, you have learned about the bool type, one of Python's most
important types.

38 | Vital Python – Math, Strings, Conditionals, and Loops

Logical Operators

Booleans may be combined with the and, or, and not logical operators.

For instance, consider the following propositions:

A = True

B = True

Y = False

Z = False

Not simply negates the value, as follows:

not A = False

not Z = True.

And is only true if both propositions are true. Otherwise, it is false:

A and B = True

A and Y = False

Y and Z = False

Or is true if either proposition is true. Otherwise, it is false:

A or B = True

A or Y = True

Y or Z = False

Now let's use them in the following practice example.

Determine whether the following conditions are True or False given that over_18 = True
and over_21 = False:

•	 over_18 and over_21

•	 over_18 or over_21

•	 not over_18

•	 not over_21 or (over_21 or over_18)

Booleans and Conditionals | 39

1.	 You have to put this into code and first assign True and False to over_18 and
over_21:

over_18, over_21 = True, False

2.	 Next you can assume the individual is over_18 and over_21:

over_18 and over_21

You should get the following output:

False

3.	 You now assume the individual is over_18 or over_21:

over_18 or over_21

You should get the following output:

True

4.	 You now assume the individual is not over_18:

not over_18

You should get the following output:

False

5.	 You assume the individual is not over_21 or (over_21 or over_18):

not over_21 or (over_21 or over_18)

You should get the following output:

True

In the next section, we will learn about the comparison operators that go along with
Booleans.

40 | Vital Python – Math, Strings, Conditionals, and Loops

Comparison Operators

Python objects may be compared using a variety of symbols that evaluate to Booleans.

Figure 1.17 shows the comparison table with their corresponding operators:

Figure 1.17: Comparison table with its corresponding symbols

Note

The = and == symbols are often confused. The = symbol is an assignment
symbol. So, x = 3 assigns the integer 3 to the x variable. The == symbol makes a
comparison. Thus x == 3 checks to see whether x is equivalent to 3. The result of x
== 3 will be True or False.

Exercise 14: Comparison Operators

In this exercise, you will practice using comparison operators. You will start with some
basic mathematical examples:

1.	 Open a new Jupyter Notebook.

2.	 Now, set age as equal to 20 and include a comparison operator to check whether
age is less than 13:

age = 20
age < 13

You should get the following output:

False

Booleans and Conditionals | 41

3.	 Using the following code snippet, you can check whether age is greater than or
equal to 20 and less than or equal to 21:

age >= 20 and age <= 21

You should get the following output:

True

4.	 Now check whether age is equivalent to 21:

age != 21

You should get the following output:

True

5.	 Now, check whether age is equivalent to 19:

age == 19

You should get the following output:

False

The double equals sign, or the equivalent operator, ==, is very important in Python.
It allows us to determine whether two objects are equal. You can now address the
question of whether 6 and 6.0 are the same in Python.

6.	 Is 6 equivalent to 6.0 in Python? Let's find out:

6 == 6.0

You should get the following output:

True

This may come as a bit of a surprise. 6 and 6.0 are different types, but they are
equivalent. Why would that be?

Since 6 and 6.0 are equivalent mathematically, it makes sense that they would
be equivalent in Python, even though the types are different. Consider whether
6 should be equivalent to 42/7. The mathematical answer is yes. Python often
conforms to mathematical truths, even with integer division. You can conclude that
it's possible for different types to have equivalent objects.

42 | Vital Python – Math, Strings, Conditionals, and Loops

7.	 Now find out whether 6 is equivalent to the '6' string:

6 == '6'

You should get the following output:

False

Here, you emphasize that different types usually do not have equivalent objects.
In general, it's a good idea to cast objects as the same type before testing for
equivalence.

Next, let's find out whether someone is in their 20's or 30's:

(age >= 20 and age < 30) or (age >= 30 and age < 40)

You should get the following output:

True

Parentheses are not necessary when there is only one possible interpretation.
When using more than two conditions, parentheses are generally a good idea. Note
that parentheses are always permitted. The following is another approach:

(20 <= age < 30) or (30 <= age < 40)

You should get the following output:

True

Although the parentheses in the preceding code line are not strictly required,
they make the code more readable. A good rule of thumb is to use parentheses for
clarity.

By completing this exercise, you have practiced using different comparison operators.

Comparing Strings

Does 'a' < 'c' make sense? What about 'New York' > 'San Francisco'?

Python uses the convention of alphabetical order to make sense of these comparisons.
Think of a dictionary: when comparing two words, the word that comes later in the
dictionary is considered greater than the word that comes before.

Booleans and Conditionals | 43

Exercise 15: Comparing Strings

In this exercise, you will be comparing strings using Python:

1.	 Open a new Jupyter Notebook.

2.	 Let's compare single letters:

'a' < 'c'

You should get the following output:

True

3.	 Now, let's compare 'New York' and 'San Francisco':

'New York' > 'San Francisco'

You should get the following output:

False

This is False because 'New York' < 'San Francisco'. 'New York' does not come later in
the dictionary than 'San Francisco'.

In this exercise, you have learned how to compare strings using comparison operators.

Conditionals

Conditionals are used when we want to express code based upon a set of circumstances
or values. Conditionals evaluate Boolean values or Boolean expressions, and they are
usually preceded by 'if'.

Let's say we are writing a voting program, and we want to print something only if the
user is under 18.

The if Syntax

if age < 18:
 print('You aren\'t old enough to vote.')

There are several key components to a condition. Let's break them down.

The first is the 'if' keyword. Most conditionals start with an if clause. Everything
between 'if' and the colon is the condition that we are checking.

The next important piece is the colon :. The colon indicates that the if clause has
completed. At this point, the compiler decides whether the preceding condition is True
or False.

Syntactically, everything that follows the colon is indented.

44 | Vital Python – Math, Strings, Conditionals, and Loops

Python uses indentation instead of brackets. Indentation can be advantageous when
dealing with nested conditionals because it avoids cumbersome notation. Python
indentation is expected to be four spaces and may usually be achieved by pressing Tab
on your keyboard.

Indented lines will only run if the condition evaluates to True. If the condition evaluates
to False, the indented lines will be skipped over entirely.

Indentation

Indentation is one of Python's singular features. Indentation is used everywhere in
Python. Indentation can be liberating. One advantage is the number of keystrokes. It
takes one keystroke to tab, and two keystrokes to insert brackets. Another advantage is
readability. It's clearer and easier to read code when it all shares the same indentation,
meaning the block of code belongs to the same branch.

One potential drawback is that dozens of tabs may draw text offscreen, but this is rare
in practice, and can usually be avoided with elegant code. Other concerns, such as
indenting or unindenting multiple lines, may be handled via shortcuts. Select all of the
text and press Tab to indent. Select all of the text and press Shift + Tab to unindent.

Note

Indentation is unique to Python. This may result in strong opinions on both sides.
In practice, indentation has been shown to be very effective, and developers used
to other languages will appreciate its advantages in time.

Exercise 16: Using the if Syntax

In this exercise, you will be using conditionals using the if clause:

1.	 Open a new Jupyter Notebook.

2.	 Now, run multiple lines of code where you set the age variable to 20 and add an if
clause, as mentioned in the following code snippet:

age = 20
if age >= 18 and age < 21:
 print('At least you can vote.')
 print('Poker will have to wait.')

Booleans and Conditionals | 45

You should get the following output:

At least you can vote.
Poker will have to wait.

There is no limit to the number of indented statements. Each statement will run in
order, provided that the preceding condition is True.

3.	 Now, use nested conditionals:

if age >= 18:
 print('You can vote.')
 if age >= 21:
 print('You can play poker.')

You should get the following output:

You can vote.

In this case, it's true that age >= 18, so the first statement prints You can vote. The
second condition, age >= 21, however, is false, so the second statement does not
get printed.

In this exercise, you have learned how to use conditionals using the if clause.
Conditionals will always start with if.

if else

if conditionals are commonly joined with else clauses. The idea is as follows. Say
you want to print something to all users unless the user is under 18. You can address
this with an if-else conditional. If the user is less than 18, you print one statement.
Otherwise, you print another. The otherwise clause is preceded with else.

Exercise 17: Using the if-else Syntax

In this exercise, you will learn how to use conditionals that have two options, one
following if, and one following else:

1.	 Open a new Jupyter Notebook.

2.	 Introduce a voting program only to users over 18 by using the following code
snippet:

age = 20
if age < 18:
 print('You aren\'t old enough to vote.')
else:
 print('Welcome to our voting program.')

46 | Vital Python – Math, Strings, Conditionals, and Loops

You should get the following output:

Welcome to our voting program.

Note

Everything after else is indented, just like everything after the if loop.

3.	 Now run the following code snippet, which is an alternative to the code mentioned
in step 2 of this exercise:

if age >= 18:
 print('Welcome to our voting program.')
else:
 print('You aren\'t old enough to vote.')

You should get the following output:

Welcome to our voting program.

In this exercise, you have learned how to use if-else in conjunction with loops.

There are many ways to write a program in Python. One is not necessarily better than
another. It may be advantageous to write faster programs or more readable programs.

A program is a set of instructions run by a computer to complete a certain task.
Programs may be one line of code, or tens of thousands. You will learn important skills
and techniques for writing Python programs in various chapters throughout this book.

The elif Statement

elif is short for else if. elif does not have meaning in isolation. elif appears in between
an if and else clause. An example should make things clearer. Have a look at the
following code snippet and copy it into your Jupyter notebook. The explanation for this
code is mentioned right after the output:

if age <= 10:
 print('Listen, learn, and have fun.')
elif age<= 19:
 print('Go fearlessly forward.')
elif age <= 29:
 print('Seize the day.')
elif age <= 39:
 print('Go for what you want.')
elif age <= 59:

Loops | 47

 print('Stay physically fit and healthy.')
else:
 print('Each day is magical.')

You should get the following output:

Seize the day.

Now, let's break down the code for a better explanation:

1.	 The first line checks if age is less than or equal to 10. Since this condition is false,
the next branch is checked.

2.	 The next branch is elif age <= 19. This line checks if age is less than or equal to 19.
This is also not true, so we move to the next branch.

3.	 The next branch is elif age <= 29. This is true since age = 20. The indented
statement that follows will be printed.

4.	 Once any branch has been executed, the entire sequence is aborted, none of the
subsequent elif or else branches are checked.

5.	 If none of the if or elif branches were true, the final else branch will automatically
be executed.

In the next topic, you will be learning about loops.

Loops
"Write the first 100 numbers."

There are several assumptions implicit in this seemingly simple command. The first is
that the student knows where to start, namely at number 1. The second assumption is
that the student knows where to end, at number 100. And the third is that the student
understands that they should count by 1.

In programming, this set of instructions may be executed with a loop.

There are three key components to most loops:

1.	 The start of the loop

2.	 The end of the loop

3.	 The increment between numbers in the loop

Python distinguishes between two fundamental kinds of loops: while loops, and for
loops.

48 | Vital Python – Math, Strings, Conditionals, and Loops

The while Loops

In a while loop, a designated segment of code repeats provided that a particular
condition is true. When the condition evaluates to false, the while loop stops running.
The while loops print out the first 10 numbers.

You could print the first 10 numbers by implementing the print function 10 times, but
using a while loop is more efficient, and it scales easily. In general, it's not a good idea to
copy and paste while coding. If you find yourself copying and pasting, there's probably a
more efficient way. Let's have a look at the following example code block:

i = 1
while i <= 10:
 print(i)
 i += 1

You should get the following output:

1
2
3
4
5
6
7
8
9
10

You can break down the preceding code block and find out what's happening in
concrete steps:

•	 Initialize the variable: Loops need to be initialized with a variable. The variable is
going to change throughout the loop. The naming of the variable is up to you. i is
often chosen because it stands for incrementor. An example is i = 1.

•	 Set up the while loop: The while loop starts with the while keyword. Following
while is the chosen variable. After the variable comes the condition that must be
met for the loop to run. In general, the condition should have some way of being
broken. When counting, the condition usually includes an upper limit, but it
could also be broken in other ways, such as i != 10. This line of code is the most
critical piece of the loop. It sets up how many times the loop is expected to run. An
example is while i <= 10:.

Loops | 49

•	 Instructions: The instructions include all indented lines after the colon. Anything
could be printed, any function could be called, and any number of lines may
be executed. It all depends on the program. As long as the code is syntactically
correct, generally speaking, anything goes. This part of the loop is going to run over
and over as long as the aforementioned condition is true. An example is print(i).

•	 Increment: The incrementor is a crucial part of this example. Without it, the
preceding code will never stop running. It will print 1's endlessly because 1 is always
less than 10. Here, you increment by 1, but you could also increment by 2, or any
other number. An example is i += 1.

Now that you understand the separate pieces, you should look at how it works together:

1.	 The variable is initialized as 1. The while loop checks the condition. 1 is less than or
equal to 10. 1 is printed. 1 is added to i. We increment to i = 2.

2.	 After all indented code after the colon has run, the loop is executed again by
returning to the while keyword.

3.	 The while loop checks the condition again. 2 is less than or equal to 10. 2 is printed
to the console. 1 is added to i. We now increment to i = 3.

4.	 The while loop checks the condition again. 3 is less than or equal to 10. 3 is printed
to the console. 1 is added to i. We increment to i = 4.

5.	 The while loop continues to increment and print out numbers until reaching the
number 10.

6.	 The while loop checks the condition. 10 is less than or equal to 10. 10 is printed to
the console. 1 is added to i. Now, increment to i = 11.

7.	 The while loop checks the condition. 11 is not less than or equal to 10. We break out
of the loop by moving beyond the indentation.

Note

You will get stuck in infinite loops. It happens to everyone. At some point, you will
forget to add the increment, and you will be stuck in an infinite loop. In Jupyter
Notebooks, just restart the kernel.

50 | Vital Python – Math, Strings, Conditionals, and Loops

An Infinite Loop

Now you should have a look at infinite loops. The following code snippet supports this
topic:

x = 5
while x <= 20:
 print(x)

Python often runs very quickly. If something is taking much longer than expected, an
infinite loop might be the culprit, as in the aforementioned code snippet. A developer
here would be setting all the variables and conditions right to avoid the infinite loop
case. An example of a well-written Python code is as follows:

x = 5
while x<= 20:
 print(x)
 x += 5

break

break is a special keyword in Python that is specifically designed for loops. If placed
inside of a loop, commonly in a conditional, break will immediately terminate the loop. It
doesn't matter what comes before or after the loop. The break is placed on its own line,
and it breaks out of the loop.

To practice, you should print the first number greater than 100 that is divisible by 17.

The idea is that you are going to start at 101 and keep counting until you find a number
divisible by 17. Assume you don't know what number to stop at. This is where break
comes into play. break will terminate the loop. You can set our upper bound at some
number that you know you will never reach and break out of the loop when you get
there:

Find first number greater than 100 and divisible by 17.
x = 100
while x <= 1000:
 x += 1
 if x % 17 == 0:
 print('', x, 'is the first number greater than 100 that is divisible by 17.')
 break

Loops | 51

The x += 1 iterator is placed at the beginning of the loop. This allows us to start with
101. The iterator may be placed anywhere in the loop.

Since 101 is not divisible by 17, the loop repeats, and x = 102. Since 102 is divisible by 17,
the print statement executes and we break out of the loop.

This is the first time you have used double indentation. Since the if conditional is
inside of a while loop, it must be indented as well.

Activity 4: Finding the Least Common Multiple (LCM)

In this activity, you will find the LCM of two divisors. The LCM of two divisors is the first
number that both divisors can divide.

For instance, the LCM of 4 and 6 is 12, because 12 is the first number that both 4 and 6
can divide. You will find the LCM of 2 numbers. You will set the variables, then initialize
a while loop with an iterator and a Boolean that is True by default. You will set up a
conditional that will break if the iterator divides both numbers. You will increase the
iterator and print the results after the loop completes.

In this activity, using the following steps, you need to find the LCM of 24 and 36.

The steps are as follows:

1.	 Set a pair of variables as equal to 24 and 36.

2.	 Initialize the while loop, based on a Boolean that is True by default, with an iterator.

3.	 Set up a conditional to check whether the iterator divides both numbers.

4.	 Break the while loop when the LCM is found.

5.	 Increment the iterator at the end of the loop.

6.	 Print the results.

You should get the following output:

The Least Common Multiple of 24 and 36 is 72.

Note

The solution for this activity can be found via this link.

52 | Vital Python – Math, Strings, Conditionals, and Loops

Programs

You have been writing programs all through this book. Every chunk of executable
code that can be saved and run on demand is a computer program. You have written
programs that greeted users, and you just wrote a program to compute the LCM of a
given number in Activity 4, Finding the Least Common Multiple (LCM).

Now that you have a lot of tools under our belt, you can combine them to write some
pretty interesting programs. You know how to generate input from a user, we know
how to convert the input into desired types, and you know how to use conditionals and
loops to iterate through cases and print various results depending upon the outcome.

Later in the book, you will get into the details of saving and testing programs. For now,
you should work on some interesting examples and exercises. For instance, in the next
exercise, you will build a program step by step to identify perfect squares.

Exercise 18: Calculating Perfect Squares

The goal of this exercise is to prompt the user to enter a given number and find out
whether it is a perfect square.

The following steps in this exercise will help you with this:

1.	 Open a new Jupyter Notebook.

2.	 Prompt the user to enter a number to see if it's a perfect square:

print('Enter a number to see if it\'s a perfect square.')

3.	 Set a variable as equal to input(). In this case let's enter 64:

number = input()

4.	 Ensure the user input is a positive integer:

number = abs(int(number))

5.	 Choose an iterator variable:

i = -1

6.	 Initialize a Boolean to check for a perfect square:

square = False

Loops | 53

7.	 Initialize a while loop from -1 to the square root of the number:

while i <= number**(0.5):

8.	 Increment i by 1:

  i += 1

9.	 Check the square root of the number:

  if i*i == number:

10.	 Indicate that we have a perfect square:

  square = True  

11.	 break out of the loop:

  break

12.	 If the number is square, print out the result:

if square:
  print('The square root of', number, 'is', i, '.')

13.	 If the number is not a square, print out this result:

else:
  print('', number, 'is not a perfect square.')

You should get the following output:

The square root of 64 is 8.

In this exercise, you have written a program to check to see whether the user's number
is a perfect square.

In the next exercise, you are going to build a similar program that will accept inputs
from the user. You need to provide the best possible offer for a real estate and either
accept or decline the offer.

54 | Vital Python – Math, Strings, Conditionals, and Loops

Exercise 19: Real Estate Offer

The goal of this exercise is to prompt the user to bid on a house and let them know if
and when the bid has been accepted.

The following steps in this exercise will help you with this:

1.	 Open a new Jupyter Notebook.

2.	 Begin by stating a market price:

print('A one bedroom in the Bay Area is listed at $599,000')

3.	 Prompt the user to make an offer on the house:

print('Enter your first offer on the house.')

4.	 Set offer as equal to input():

offer = abs(int(input()))

5.	 Prompt the user to enter their best offer for the house:

print('Enter your best offer on the house.')

6.	 Set best as equal to input():

best = abs(int(input()))

7.	 Prompt the user to choose increments:

print('How much more do you want to offer each time?')

8.	 Set increment as equal to input():

increment = abs(int(input()))

9.	 Set offer_accepted as equal to False:

offer_accepted = False

10.	 Initialize the for loop from offer to best:

while offer <= best:

11.	 If the offer is greater than 650000, they get the house:

 if offer >= 650000:
 offer_accepted = True
 print('Your offer of', offer, 'has been accepted!')
 break

Loops | 55

12.	 If the offer does not exceed 650000, they don't get the house:

 print('We\'re sorry, you\'re offer of', offer, 'has not been accepted.')

13.	 Add increment to offer:

 offer += increment

You should get the following output:

Figure 1.18: Output showing the conditions mentioned in the code using loops

In this exercise, you have prompted the user to bid for a house and let them know when
and if the bid was accepted.

The for Loop

The for loops are similar to while loops, but they have additional advantages, such as
being able to iterate over strings and other objects.

Exercise 20: Using for Loops

In this exercise, you will utilize for loops to print the characters in a string in addition
to a range of numbers:

1.	 Open a new Jupyter Notebook.

2.	 Print out the characters of 'Portland':

for i in 'Portland':
 print(i)

56 | Vital Python – Math, Strings, Conditionals, and Loops

You should get the following output:

P
o
r
t
l
a
n
d

The for keyword often goes with the in keyword. The i variable is generic. The
phrase, for i in, means that Python is going to check what comes next and look
at its individual components. Strings are composed of characters, so Python will
do something with each of the individual characters. In this particular case, Python
will print out the individual characters, as per the print(i) command.

What if we want to do something with a range of numbers? Can for loops be used
for that? Absolutely. Python provides another keyword, range, to access a range
of numbers. range is often defined by two numbers, the first number, and the last
number, and it includes all numbers in between. Interestingly, the output of range
includes the first number, but not the last number. You will see why in a minute.

3.	 You use a lower bound of 1 and an upper bound of 10 with range to print 1-9:

for i in range(1,10):
 print(i)

You should get the following output:

1
2
3
4
5
6
7
8
9

The range does not print the number 10.

Loops | 57

4.	 Now use range with one bound only, the number 10, to print the first ten numbers:

for i in range(10):
 print(i)

You should get the following output:

0
1
2
3
4
5
6
7
8
9

So, range(10) will print out the first 10 numbers, starting at 0, and ending with 9.

Now let's say that you want to count by increments of 2. You can add a third bound,
a step increment, to count up or down by any number desired.

Use a step increment to count the even numbers through 10:

for i in range(1, 11, 2):
 print(i)

You should get the following output:

1
3
5
7
9

Similarly, you can count down using negative numbers, which is shown in the next
step.

5.	 Use a step increment to count down from 3 to -1:

for i in range(3, 0, -1):
  print(i)

58 | Vital Python – Math, Strings, Conditionals, and Loops

You should get the following output:

3
2
1

And, of course, you can use nested loops, which is shown in the next step.

6.	 Now, print each letter of your name three times:

name = 'Corey'
for i in range(3):
 for i in name:
 print(i)

You should get the following output:

C
o
r
e
y
C
o
r
e
y
C
o
r
e
y

In this exercise, you have utilized loops to print any given number of integers and
characters in a string.

The continue Keyword

continue is another Python keyword designed for loops. When Python reaches the
continue keyword, it stops the code and goes back to the beginning of the loop.
continue is similar to break because they both interrupt the loop process, but break
terminates the loop, continue continues the loop from the beginning.

Loops | 59

Let's look at an example of continue in practice. The following code prints out every
two-digit prime number:

for num in range(10,100):
 if num % 2 == 0:
 continue
 if num % 3 == 0:
 continue
 if num % 5 == 0:
 continue
 if num % 7 == 0:
 continue
 print(num)

You should get the following output:

11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

60 | Vital Python – Math, Strings, Conditionals, and Loops

Let's go through the beginning of the code. The first number to check is 10. The first
line checks to see if 10 can be divided by 2. Since 2 does divide 10, we go inside the
conditional and reach the continue keyword. Executing continue returns to the start of
the loop.

The next number that is checked is 11. Since 2,3,5, and 7 do not divide 11, you reach the
final line and print the number 11.

Activity 5: Building Conversational Bots Using Python

You are working as a Python developer and you are building two conversational bots
for your clients. You create a list of steps beforehand to help you out, as outlined in the
following section. These steps will help you build two bots that take input from the user
and produce a coded response.

The aim of this activity is to use nested conditionals to build two conversational bots.
In this activity, you will build two conversational bots. The first bot will ask the user
two questions and include the user's answer in each of its follow-up responses. The
second bot will ask a question that requires a numerical answer. Different responses
will be given to a different number of scales. The process will be repeated for a second
question.

The steps are as follows:

For the first bot, the steps are as follows:

1.	 Ask the user at least two questions.

2.	 Respond to each answer. Include the answer in the response.

For the second bot, the steps are as follows:

1.	 Ask a question that can be answered with a number scale, such as "On a scale of
1-10…".

2.	 Respond differently depending on the answer given.

3.	 State a different question following each answer that can be answered with a
number scale.

4.	 Respond differently depending on the answer given.

Note

The second bot should be written with nested conditionals.

Summary | 61

Hint - casting may be important.

The expected output for bot 1 is as follows:

We're kindred spirits, Corey.Talk later.

The expected output for bot 2 is as follows:

Figure 1.19: Expected outcome from one of the possible values entered by the user.

Note

The solution for this activity can be found via this link.

Summary
You have gone over a lot of material in this introductory chapter. You have covered
math operations, string concatenation and methods, general Python types, variables,
conditionals, and loops. Combining these elements allows us to write programs of real
value.

Additionally, we have been learning Python syntax. You now understand some of
the most common errors, and you're becoming accustomed to the importance that
indentation plays. You're learning how to leverage important keywords such as range,
in, if, and True and False.

Going forward, you now have the key fundamental skills required of all Python
programmers. Although there is much to learn, you have a vital foundation in place to
build upon the types and techniques discussed here.

Coming up next, you will learn about some of the most important Python types,
including lists, dictionaries, tuples, and sets.

Python Structures

Overview

By the end of this chapter, you will be able to explain the different types of Python
data structures; create lists, dictionaries, and sets and describe the differences
between them; create matrices and manipulate both a matrix as a whole and its
individual cells; call the zip() function to create different Python structures; find
what methods are available for lists, dictionaries, and sets; write a program using
the most popular methods for lists, dictionaries, and sets and convert between
different Python structures.

2

64 | Python Structures

Introduction
In the previous chapter, you learned the basics of the Python programming language
and essential elements such as string, int, and the use of conditionals and loops
that control the flow of a Python program. You should now be familiar with writing
programs in Python by utilizing these elements.

In this chapter, you are going to look at how to use data structures to store more
complex types of data that help to model the actual data and represent it in the real
world.

In programming languages, data structures refer to objects that can hold
some data together, which means they are used to store a collection of related data.

For instance, you can use a list to store our to-do items for the day. The following is an
example to show you how lists are coded:

todo = ["pick up laundry", "buy Groceries", "pay electric bills"]

We can also use a dictionary object to store more complex information such as
subscribers' details from our mailing list. Here is an example code snippet, but don't
worry, we will cover this later in this chapter:

User = {
 "first_name": "Jack",
 "last_name":"White",
 "age": 41,
 "email": "jack.white@gmail.com"
}

There are four types of data structures in Python: list, tuple, dictionary, and set.

Figure 2.1: The different data structures in Python

These data structures define the relationship between data and the operations that
can be performed on data. They are a way of organizing and storing data that can be
accessed efficiently under different circumstances.

The Power of Lists | 65

The Power of Lists
You will now look at the first type of data structure in Python: lists.

A list is a type of container in Python that is used to store multiple data sets at the same
time. Python lists are often compared to arrays in other programming languages, but
they do a lot more.

Figure 2.2: A Python list with a positive index

A list in Python is written within square brackets, []. Each element in the list has its
own distinct position and index. The elements in a list have a finite sequence. Like
other programming languages, the index of the first item of a list is 0, and the second
item has an index of 1, and so on. This has to do with how lists are implemented at a
lower programming level, so do take note of this when you are writing index-based
operations for lists and other iterable objects.

You will now look at the different ways that lists can be useful by completing Exercise 21,
Working with Python Lists.

Exercise 21: Working with Python Lists

In this exercise, you will learn how to work with a Python list by coding and creating a
list and adding items. For example, this could prove useful if, for instance, you have to
use a list to store the items that are in a shopping cart:

1.	 Open a new Jupyter Notebook.

2.	 Now enter the following code snippet:

shopping = ["bread","milk", "eggs"]
print(shopping)

You should get the following output:

['bread', 'milk', 'eggs']

You created a list called shopping and added items to your list (bread, milk, and
eggs).

Since a list is a type of iterable in Python, you can use a for loop to iterate over all
of the elements inside a list.

66 | Python Structures

3.	 Now, enter and execute the code for a for loop and observe the output:

for item in shopping:
 print(item)

You should get the following output:

bread
milk
eggs

Note

Python lists are different from arrays used in other languages, such as Java and C#.
Python actually allows mixed types in a list, that is, int and string.

4.	 Now use a mixed type of data within the list's content and enter the following code
in a new cell:

mixed = [365, "days", True]
print(mixed)

You should get the following output:

[365, 'days', True]

But you might be wondering, in that case, shouldn't we be allowed to store a list
of lists inside a list? Let's look at that in the next section. This is also known as a
nested list, which can be used to represent a complex data structure.

In Exercise 21, Working with Python Lists, you were introduced to the basics of Python
lists.

Later in this chapter, we will dive in deep and learn about the other types of lists that
Python provides.

Matrices as Nested Lists

Most of the data we store in the real world is in the form of a tabular data table, that
is, rows and columns, instead of a one-dimensional flat list. Such tables are called
matrices or two-dimensional arrays. Python (and most other programming languages)
does not provide a table structure out of the box. Programming languages do not
provide table structures as it is not the role of a language to do so. A table structure is
simply a way to present data.

The Power of Lists | 67

What you can do is to present the table structure shown in Figure 2.3 using a list of lists;
for example, if you want to store the following fruit orders using a list:

Figure 2.3: A representation of lists of lists as a matrix

Mathematically, you can present the information shown in figure 2.3 using a 2 x 3 (2
rows by 3 columns) matrix. This matrix would look like this:

Figure 2.4: A matrix representation of data

Now you will see how you can store this matrix as a nested list in the following exercise.

Exercise 22: Using a Nested List to Store Data from a Matrix

In this exercise, you will look at working with a nested list, storing values in it, and
accessing it using a number of methods:

1.	 Open a new Jupyter notebook.

2.	 Enter the following code in a new cell:

m = [[1, 2, 3], [4, 5, 6]]

We can store the matrix as a series of lists inside a list which is called as a nested
list.

3.	 Now print list m:

print(m[1][1])

We can now access the elements using variable [row][column] notation.

You should get the following output:

5

It prints the value of row 2, column 2, which is 5 (remember, we are using a zero-
based index offset).

68 | Python Structures

4.	 Now, access each of the elements in the nested list matrix by retaining their
reference index with two variables, i and j:

for i in range(len(m)):
 for j in range(len(m[i])):
 print(m[i][j])

The preceding code uses a for loop to iterate twice. In the outer loop (i), we iterate
every single row in matrix m, and in the inner loop (j), we iterate every column in
the row. Finally, we print the element in the corresponding position.

You should get the following output:

1
2
3
4
5
6

5.	 Use two for..in loops to print all the elements within the matrix:

for row in m:
 for col in row:
 print(col)

The for loop in the code used in step 4 iterates both the row and col. This type of
notation does not require us to have prior knowledge of the matrix's dimensions.

You should get the following output:

1
2
3
4
5
6

At the end of this exercise, you know how a nested list stored as a matrix works. You
have also got to know the different ways of accessing values from nested lists. In
Activity 6, Using a Nested List to Store Employee Data, you will implement the concepts
you have learned about lists and nested lists to store employee data.

The Power of Lists | 69

Activity 6: Using a Nested List to Store Employee Data

You are going to store table data using a nested list. Imagine this: you are currently
working in an IT company and are given the following list of employees. You are asked
by your manager to use Python to store this data for further company use.

The aim of this activity is to use nested lists to store data and print them as you need
them.

The data provided to you by your company is shown in Figure 2.5:

Figure 2.5: Table consisting of employee data

Follow these steps to complete this activity:

1.	 Open a new Jupyter Notebook.

2.	 Create a list and assign it to employees.

3.	 Create three nested lists in employees to store the information of each employee,
respectively.

4.	 Print the employees variable.

5.	 Print the details of all employees in a presentable format.

6.	 Print only the details of Lisa Crawford.

By printing the details in a presentable format, you should get the following output:

Figure 2.6: Printed details of an employee using lists

Note

The solution for this activity can be found via this link.

70 | Python Structures

In the next topic, you will be discussing a bit more about matrixes and their operations.

Matrix Operations
You will continue to look at how to use nested lists for some basic matrix operations.
First, you look at how to add two matrices in Python. Matrix addition requires both
matrices to have the same dimensions; the results will also be of the same dimensions.

In Exercise 23, Implementing Matrix Operations (Addition and Subtraction), you will be
using the following matrix data, X and Y, in figures 2.7 and 2.8:

Figure 2.7: Matrix data for matrix X

Figure 2.8: Matrix data for matrix Y

Exercise 23: Implementing Matrix Operations (Addition and Subtraction)

In this exercise you will add and subtract the X and Y matrixes using Python.

The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Create two nested lists, X and Y, to store the values:

X = [[1,2,3],[4,5,6],[7,8,9]]
Y = [[10,11,12],[13,14,15],[16,17,18]]

3.	 Initialize a 3 x 3 zero matrix called result as a placeholder:

Initialize a result placeholder
result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

Matrix Operations | 71

4.	 Now, implement the algorithm by iterating through the cells and columns of the
matrix:

iterate through rows
for i in range(len(X)):
iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] + Y[i][j]

print(result)

You'll use the nested list method. As you learned in the previous section, you first
iterate the rows in matrix X, then iterate the columns. You do not have to iterate
matrix Y again because both matrixes are of the same dimensions. The result of a
particular row (denoted by i) and a particular column (denoted by j) equals the sum
of the respective row and column in matrixes X and Y.

You should get the following output:

[[11, 13, 15], [17, 19, 21], [23, 25, 27]]

5.	 You can also perform subtraction using two matrices using the same algorithm
with a different operator. The idea behind this is exactly the same as in step 3,
except you are doing subtraction. You can implement the following code to try out
matrix subtraction:

X = [[10,11,12],[13,14,15],[16,17,18]]
Y = [[1,2,3],[4,5,6],[7,8,9]]

Initialize a result placeholder
result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

iterate through rows
for i in range(len(X)):
iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] - Y[i][j]

print(result)

72 | Python Structures

You should get the following output:

[[9, 9, 9], [9, 9, 9], [9, 9, 9]]

In this exercise, you were able to perform basic addition and subtraction using two
matrices. In the next topic, you will be using multiplication operators for matrixes.

Matrix Multiplication Operations

You can look at how to use nested lists to perform matrix multiplication for the two
matrices shown in figures 2.9 and 2.10:

Figure 2.9: The data of matrix X

Figure 2.10: The data of matrix Y

For a matrix multiplication operation, the number of columns in the first matrix (X)
must be equal the number of rows in the second matrix (Y). The result will have the
same number of rows as the first matrix and the same number of columns as the second
matrix. In this case, the result matrix will be a 3 x 4 matrix.

Exercise 24: Implementing Matrix Operations (Multiplication)

In this exercise, your end goal will be to multiply two matrixes, X and Y, and get an
output value. The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter notebook.

2.	 Create two nested lists, X and Y, to store the value of matrices X and Y:

X = [[1, 2], [4, 5], [3, 6]]
Y = [[1,2,3,4],[5,6,7,8]]

3.	 Create a zero-matrix placeholder to store the result:

result = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Matrix Operations | 73

4.	 Implement the matrix multiplication algorithm to compute the result:

iterating by row of X
for i in range(len(X)):

 # iterating by column by Y
 for j in range(len(Y[0])):

 # iterating by rows of Y
 for k in range(len(Y)):
 result[i][j] += X[i][k] * Y[k][j]

You may have noticed that this algorithm is slightly different from the one you used
in Exercise 23, Implementing Matrix Operations (Addition and Subtraction), step 3.
This is because you need to iterate the rows of the second matrix, Y, as the matrixes
have different shapes, which is what is mentioned in the preceding code snippet.

5.	 Now, print the final result:

for r in result:
 print(r)

You should get the following output:

Figure 2.11: Output of multiplying matrix X and matrix Y

Note

There are packages that data scientists use to perform matrix calculations, such as
NumPy. You can find out more at https://docs.scipy.org/doc/numpy/.

74 | Python Structures

List Methods
As discussed before, since a list is a type of sequence, it supports all sequence
operations and methods.

Lists are one of the best data structures to use. Python provides a set of list methods
that makes it easy for us to store and retrieve values in order to maintain, update,
and extract data. These common operations are what Python programmers perform,
including slicing, sorting, appending, searching, inserting, and removing data.

The best way to understand this is to see them at work. You will learn about these
handy list methods in the following exercises.

Exercise 25: Basic List Operations

In this exercise, you are going to use the basic functions of lists to check the size of a
list, combining lists and duplicating lists as well. Follow these steps:

1.	 Open a new Jupyter notebook.

2.	 Type the following code

shopping = ["bread","milk", "eggs"]

3.	 The length of a list is found using the len function.

print(len(shopping))

Note

The len() function returns the number of items in an object. When the object is a
string, it returns the number of characters in the string.

You should get the following output:

3

4.	 Now concatenate two lists using the + operator:

list1 = [1,2,3]
list2 = [4,5,6]
final_list = list1 + list2
print(final_list)

List Methods | 75

You should get the following output:

[1, 2, 3, 4, 5, 6]

As you can see in the output, lists also support many string operations as well, one
of which is concatenation, which is joining two or more lists together.

5.	 Now use the * operator, which can be used for repetition in a list to duplicate
elements:

list3 = ['oi']
print(list3*3)

It will repeat 'oi' three times, giving us the following output:

['oi', 'oi', 'oi']

You have now concluded this exercise; the purpose of this exercise was to get you
familiar with some common operations that Python programmers use to interact with
lists.

Accessing an Item from a List

Just like other programming languages, in Python, you can use the indexer method to
access elements in a list. You should complete the following exercise by continuing with
the previous notebook.

Exercise 26: Accessing an Item from Shopping List Data

In this exercise, you will work with lists and gain an understanding of how you can
access items from a list. The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Enter the following code in a new cell:

shopping = ["bread","milk", "eggs"]
print(shopping[1])

You should get the following output:

milk

As you can see, you have printed the value milk from the list shopping that has the
index 1, as the list begins from 0.

76 | Python Structures

3.	 Now, access the milk element and replace it with banana:

shopping[1] = "banana"
print(shopping)

You should get the following output:

['bread', 'banana', 'eggs']

4.	 Type the following code in a new cell and observe the output:

print(shopping[-1])

You should get the following output:

eggs

The output will print eggs – the last item.

Note

In Python, a positive index counts forward, and a negative index counts backward.
You use a negative index to access an element from the back.

What you have learned so far is more of a traditional way of accessing elements.
Python lists also support powerful general indexing, called slicing. It uses the :
notation in the format of list[i:j], where i is the starting element, and j is the last
element (non-inclusive).

5.	 Enter the following code to try out a different type of slicing:

print(shopping[0:2])

This prints the first and second elements, producing the following output:

['bread', 'banana']

Now, to print from the beginning of the list to the third element

print(shopping[:3])

You should get the following output:

['bread', 'banana', 'eggs']

Similarly, to print from the second element of the list until the end

print(shopping[1:])

List Methods | 77

You should get the following output:

['banana', 'eggs']

Having completed this exercise, you are now able to access items from a list in different
ways.

Adding an Item to a List

In the previous section and Exercise 26, Accessing an Item from Shopping List Data, you
learned how to access items from a list. Lists are very powerful and are widely used
in many circumstances. However, you often won't know the data your users want to
store beforehand, but only after the program is running. Here, you are going to look at
various methods for adding items to and inserting items into a list.

Exercise 27: Adding Items to Our Shopping List

The append method is the easiest way to add a new element to the end of a list. You will
use this method in this exercise to add items to our shopping list. The following steps
will enable you to complete the exercise:

1.	 In a new cell, type the following code to add a new element, apple, to the end of the
list using the append method:

shopping = ["bread","milk", "eggs"]
shopping.append("apple")
print(shopping)

You should get the following output:

['bread', 'milk', 'eggs', 'apple']

The append method is commonly used when you are building a list without knowing
what the total number of elements will be. You will start with an empty list and
continue to add items to build the list.

2.	 Now create an empty list, shopping, and keep adding items one by one to this empty
list:

shopping = []
shopping.append('bread')
shopping.append('milk')
shopping.append('eggs')
shopping.append('apple')
print(shopping)

78 | Python Structures

You should get the following output:

['bread', 'milk', 'eggs', 'apple']

This way, you start off by initializing an empty list, and you extend the list
dynamically. The end result is exactly the same as the list from the previous code.
This is different from some programming languages that require array size to be
fixed at the declaration stage.

3.	 Now use the insert method to add elements to the shopping list:

shopping.insert(2, 'ham')
print(shopping)

You should get the following output:

['bread', 'milk', 'ham', 'eggs', 'apple']

As you coded in step 3, you came across another way to add an element to a list,
using the insert method. The insert method requires a positional index to indicate
where the new element should be placed. A positional index is a zero-based
number that indicates the position in a list. You can use the following code to insert
an item, ham, in the third position.

You can see that ham is inserted in the third position and shifts every other item one
position to the right.

Having concluded this exercise, you are now able to add elements to our list, which is
shopping. This proves to be very useful when you get data from a customer or client,
allowing you to use the methods you have mentioned and add items to your list.

In the next topic, you will work with and learn about dictionary keys and values.

Dictionary Keys and Values
A Python dictionary is an unordered collection. Dictionaries are written with curly
brackets, and they have keys and values.

For instance, have a look at the following example, where you store the details of an
employee:

employee = {
 'name': "Jack Nelson",
 'age': 32,
 'department': "sales"
}

Dictionary Keys and Values | 79

You might have noticed a certain resemblance between Python dictionaries and JSON.
Although you can load JSON directly into Python, a Python dictionary is a complete data
structure that implements its own algorithms, and JSON is just a pure string written in a
similar format..

Python dictionaries are something similar to key-value pairs. They simply map keys to
associated values, as shown in Figure 2.12:

Figure 2.12: Mapping keys and values in Python dictionaries

Dictionaries are like lists. They both share the following properties:

•	 Both can be used to store values.

•	 Both can be changed in place and can grow and shrink on demand.

•	 Both can be nested: a dictionary can contain another dictionary, a list can contain
another list, and a list can contain a dictionary and vice versa.

The main difference between lists and dictionaries is how elements are accessed.
List elements are accessed by their position index, which is [0,1,2…] while dictionary
elements are accessed via keys. Therefore, a dictionary is a better choice for
representing collections, and mnemonic keys are more suitable when a collection's
items are labeled, for instance, a database record such as Figure 2.13. The database here
is equivalent to a list, and the database list contains a record which can be represented
using a dictionary. Within each record, there are fields to store respective values, and a
dictionary can be used to store a record with unique keys that are mapped to values:

Figure 2.13: A sample database record

80 | Python Structures

There are, however, a few rules that you need to remember with Python dictionaries:

•	 Keys must be unique — no duplicate keys are allowed.

•	 Keys must be immutable — they can be a string, a number, or a tuple.

You will work with dictionaries and store a record in Exercise 28, Using a Dictionary to
Store a Movie Record.

Exercise 28: Using a Dictionary to Store a Movie Record

In this exercise, you will be working with a dictionary to store movie records, and you
will also try and access the information in the dictionary using a key. The following
steps will enable you to complete the exercise:

1.	 Open a Jupyter Notebook.

2.	 Enter the following code in a blank cell:

movie = {
 "title": "The Godfather",
 "director": "Francis Ford Coppola",
 "year": 1972,
 "rating": 9.2
}

Here, you have created a movie dictionary with a few details, such as title,
director, year, and rating.

3.	 Access the information from the dictionary by using a key. For instance, you can
use 'year' to find out when the movie was first released:

print(movie['year'])

You should get the following output:

1972

4.	 Now update a dictionary value:

movie['rating'] = (movie['rating'] + 9.3)/2
print(movie['rating'])

Dictionary Keys and Values | 81

You should get the following output:

9.25

As you can see, a dictionary's values can also be updated in place.

5.	 Construct a movie dictionary from scratch and extend it using key-value
assignment:

movie = {}
movie['title'] = "The Godfather"
movie['director'] = "Francis Ford Coppola"
movie['year'] = 1972
movie['rating'] = 9.2

As you may have noticed, similar to a list, a dictionary is flexible in terms of size.

6.	 You can also store a list inside a dictionary and store a dictionary within that
dictionary:

movie['actors'] = ['Marlon Brando', 'Al Pacino', 'James Caan']
movie['other_details'] = {
 'runtime': 175,
 'language': 'English'
}
print(movie)

You should get the following output:

Figure 2.14: Output while storing a dictionary within a dictionary

Up to this point, you have seen how easy it is to implement nesting in both lists and
dictionaries. By combining lists and dictionaries creatively, we can store complex real-
world information and model structures directly and easily. This is one of the main
benefits of scripting languages such as Python.

82 | Python Structures

Activity 7: Storing Company Employee Table Data Using a List and a

Dictionary

Remember the employee dataset, which you previously stored using a nested list? Now
that you have learned about lists and dictionaries, you will see how you can store and
access our data more effectively using these two data types — lists and dictionaries:

Figure 2.15: Employee data in a table

Follow these steps to complete this activity:

1.	 Open a Jupyter notebook (you can create a new one or use an existing one).

2.	 Create a list named employees.

3.	 Create three dictionary objects inside employees to store the information of each
employee.

4.	 Print the employees variable.

5.	 Print the details of all employees in a presentable format.

6.	 Print only the details of Sujan Patel.

You should get the following output:

Figure 2.16: Output when we only print the employee details of Sujan Patel

Note

The solution for this activity can be found via this link.

Dictionary Keys and Values | 83

Zipping and Unzipping Dictionaries Using zip()

Sometimes, you obtain information from multiple lists. For instance, you might have a
list to store the names of products and another list just to store the quantity of those
products. What you can do is to aggregate lists using the zip() method.

The zip() method maps a similar index of multiple containers so that they can be used
just as a single object. You will try it out in the following exercise.

Exercise 29: Using the zip() Method to Manipulate Dictionaries

In this exercise, you will be working on the concept of dictionaries, but you will be
focusing on manipulating them by combining different types of data structures. You
will be using the zip() method to manipulate the dictionary with our shopping list. The
following steps will help you to understand the zip() method:

1.	 Open up a new Jupyter Notebook.

2.	 Now create a new cell and type in the following code:

items = ['apple', 'orange', 'banana']
quantity = [5,3,2]

Here, you have created a list of items and a list of quantity. Also, you have assigned
values to these lists.

3.	 Now, use the zip() function to combine the two lists into a list of tuples:

orders = zip(items,quantity)
print(orders)

This gives us a zip() object with the following output:

<zip object at 0x0000000005BF1088>

4.	 Enter the following code to turn that zip object into a list:

orders = zip(items,quantity)
print(list(orders))

You should get the following output:

[('apple', 5), ('orange', 3), ('banana', 2)]

5.	 You can also turn a zip object into a tuple:

orders = zip(items,quantity)
print(tuple(orders))

84 | Python Structures

You should get the following output:

(('apple', 5), ('orange', 3), ('banana', 2))

6.	 You can also turn a zip() object into a dictionary:

orders = zip(items,quantity)
print(dict(orders))

You should get the following output:

{'apple': 5, 'orange': 3, 'banana': 2}

Did you realize that you have to call orders = zip(items,quantity) every time? In this
exercise, you will have noticed that a zip() object is an iterator and, therefore, once it
has been converted to a list, tuple, or dictionary, it is considered a full iteration and it
will not be able to generate anymore values.

Dictionary Methods
Now that you have learned about dictionaries and when you should use a dictionary.
You will now look at a few other dictionary methods. To start with, you should follow
the exercises from here onward to learn how to access the values and other related
operations of a dictionary in Python.

Exercise 30: Accessing a Dictionary Using Dictionary Methods

In this exercise, we will learn how to access a dictionary using dictionary methods. The
goal of the exercise is to print the order values against the item while accessing the
dictionary by using dictionary methods:

1.	 Open a new Jupyter Notebook.

2.	 Enter the following code in a new cell:

orders = {'apple':5, 'orange':3, 'banana':2}
print(orders.values())
print(list(orders.values()))

You should get the following output:

dict_values([5, 3, 2])
[5, 3, 2]

The values() method in this code returns an iterable object. In order to use the
values straight away, you can wrap them in a list directly.

Tuples | 85

3.	 Now, obtain a list of keys in a dictionary by using the keys() method:

print(list(orders.keys()))

You should get the following output:

['apple', 'orange', 'banana']

4.	 As you can't directly iterate a dictionary, you first convert it to a list of tuples using
the items() method, then iterate the resulting list and access it. This is mentioned
in the following code snippet:

for tuple in list(orders.items()):
 print(tuple)

You should get the following output:

('apple', 5)
('orange', 3)
('banana', 2)

In this exercise, you created a dictionary. In addition to this, you were able to list the
keys mentioned in the dictionary, and later, in step 4, you were able to iterate the
dictionary after converting the list to a tuple.

Tuples
A tuple object is similar to a list, but it cannot be changed. Tuples are immutable
sequences, which means their values cannot be changed after initialization. You use a
tuple to represent fixed collections of items:

Figure 2.17: A representation of a Python tuple with a positive index

For instance, you can define the weekdays using a list, as follows:

weekdays_list = ['Monday', 'Tuesday', 'Wednesday','Thursday','Friday','Saturday',
'Sunday']

86 | Python Structures

However, this does not guarantee that the values will remain unchanged throughout its
lifetime because a list is mutable. What we can do is to define it using a tuple, as shown
in the following code:

weekdays_tuple = ('Monday', 'Tuesday', 'Wednesday','Thursday','Friday','Saturday',
'Sunday')

As tuples are immutable you can be certain that the values are consistent throughout
the entire program and will not be modified accidentally or unintentionally. In Exercise
31, Exploring Tuple Properties in Our Shopping List, we will explore the different
properties tuples provide a Python developer.

Exercise 31: Exploring Tuple Properties in Our Shopping List

In this exercise, you will learn about the different properties of a tuple:

1.	 Open a Jupyter notebook.

2.	 Type the following code in a new cell to initialize a new tuple, t:

t = ('bread', 'milk', 'eggs')
print(len(t))

You should get the following output:

3

Note

Remember, a tuple is immutable; therefore, we are unable to use the append
method to add a new item to an existing tuple. You can't change the value of any
existing tuple's elements, either because both of the following statements will raise
an error.

3.	 Now, as mentioned in the note, enter the following lines of code and observe the
error:

t.append('apple')
t[2] = 'apple'

Tuples | 87

You should get the following output:

Figure 2.18: Errors occur when we try to modify the values of a tuple object

The only way to get around this is to create a new tuple by concatenating the
existing tuple with other new items.

4.	 Now use the following code to add two items, apple and orange, to our tuple, t. This
will give us a new tuple. Take note that the existing t tuple remains unchanged:

print(t + ('apple', 'orange'))
print(t)

You should get the following output:

Figure 2.19: A concatenated tuple with new items

5.	 Enter the following statements in a new cell and observe the output:

t_mixed = 'apple', True, 3
print(t_mixed)
t_shopping = ('apple',3), ('orange',2), ('banana',5)
print(t_shopping)

Tuples also support mixed types and nesting, just like lists and dictionaries. You can
also declare a tuple without using parentheses, as shown in the code you entered in
Step 5.

You should get the following output:

Figure 2.20: Nested and mixed items in a tuple

88 | Python Structures

A Survey of Sets
So far, in this chapter, you have covered lists, dictionaries, and tuples. You can now have
a look at sets, which are another type of Python data structure.

Sets are a relatively new addition to the Python collection type. They are unordered
collections of unique and immutable objects that support operations mimicking
mathematical set theory. As sets do not allow multiple occurrences of the same
element, they can be used to effectively prevent duplicate values.

A set is a collection of objects (called members or elements). For instance, you can
define set A as even numbers between 1 to 10, and it will contain {2,4,6,8,10}, and set
B can be odd numbers between 1 to 10, and it will contain {1,3,5,7,9}. In the following
exercise, you will get our hands on sets in Python:

Figure 2.21: Set A and Set B – each set contains a unique, distinct value

Exercise 32: Using Sets in Python

In this exercise, you will gain an understanding of sets in Python. A set is a collection of
objects:

1.	 Open a Jupyter notebook.

2.	 Initialize a set using the following code. You can pass in a list to initialize a set:

s1 = set([1,2,3,4,5,6])
print(s1)
s2 = set([1,2,2,3,4,4,5,6,6])
print(s2)
s3 = set([3,4,5,6,6,6,1,1,2])
print(s3)

A Survey of Sets | 89

You should get the following output:

Figure 2.22: A set initialized using a list

You can see that the set is unique and unordered, so duplicate items and the
original order are not preserved.

3.	 Enter the following code in a new cell:

s4 = {"apple", "orange", "banana"}
print(s4)

You can also initialize a set using curly brackets directly.

You should get the following output:

{'apple', 'orange', 'banana'}

4.	 Sets are mutable. Type the following code and see how we add a new item,
pineapple, to an existing set, s4:

s4.add('pineapple')
print(s4)

You should get the following output:

{'apple', 'orange', 'pineapple', 'banana'}

In this exercise, you were introduced to sets in Python. In the next topic, you will dive
in a bit deeper and understand the different set operations that Python has to offer you.

90 | Python Structures

Set Operations

Sets support common operations such as unions and intersections. A union operation
returns a single set that contains all the unique elements in both set A and B; an
intersect operation returns a single set that contains unique elements that belong to
set A and also belongs to set B at the same time:

Figure 2.23: Set A in union with Set B

The following figure represents the intersect operation:

Figure 2.24: Set A intersects with Set B

Now you should look at how to implement these set operations in Python in the
following exercise:

A Survey of Sets | 91

Exercise 33: Implementing Set Operations

 In this exercise, we will be implementing and working with set operations:

1.	 Open a new Jupyter notebook.

2.	 In a new cell, type the following code to initialize two new sets:

s5 = {1,2,3,4}
s6 = {3,4,5,6}

3.	 Use the | operator or the union method for a union operation:

print(s5 | s6)
print(s5.union(s6))

You should get the following output:

Figure 2.25: Output with the union operator

4.	 Now use the & operator or the intersection method for an intersection operation:

print(s5 & s6)
print(s5.intersection(s6))

You should get the following output:

Figure 2.26: Output with the & operator

5.	 Use the – operator or the difference method to find the difference between two
sets:

print(s5 - s6)
print(s5.difference(s6))

You should get the following output:

Figure 2.27: Output with the difference operator

92 | Python Structures

6.	 Now enter the <= operator or the issubset method to check if one set is a subset of
another:

print(s5 <= s6)
print(s5.issubset(s6))
s7 = {1,2,3}
s8 = {1,2,3,4,5}
print(s7 <= s8)
print(s7.issubset(s8))

You should get the following output:

Figure 2.28: Output with the issubset method

The first two statements will return false because s5 is not a subset of s6. The last
two statements will return True because s5 is a subset of s6. Do take note that <=
operator is a test for the subset. A proper subset is the same as a general subset,
except that the sets cannot be identical. You can try it out in a new cell with the
following code.

7.	 Check whether s7 is a formal subset of s8, and check whether a set can be a proper
subset of itself by entering the following code:

print(s7 < s8)
s9 = {1,2,3}
s10 = {1,2,3}
print(s9 < s10)
print(s9 < s9)

You should get the following output:

Figure 2.29: Output if s7 is a formal subset of s8

A Survey of Sets | 93

We can see that s7 is a proper subset of s8 because there are other elements in
s8 apart from all the elements of s7. But s9 is not a subset of s10 because they are
identical. Therefore, a set is not a subset of itself.

8.	 Now use the >= operator or the issuperset method to check whether one set is the
superset of another. Try it using the following code in another cell:

print(s8 >= s7)
print(s8.issuperset(s7))
print(s8 > s7)
print(s8 > s8)

You should get the following output:

Figure 2.30: Output with the >= operator checking whether the set is a superset of another

The first three statements will return True because s8 is the superset of s7 and is also
a proper superset of s7. The last statement will return false because no set can be a
proper superset of itself.

Having completed this exercise, you now know that Python sets are useful for
efficiently preventing duplicate values and are suitable for common math operations
such as unions and intersections.

Note

After all the topics covered so far, you may think that sets are similar to lists or
dictionaries. However, sets are unordered and do not map keys to values, so they
are neither a sequence or a mapping type; they are a type by themselves.

94 | Python Structures

Choosing Types
By now, you have learned about most of the common data structures in Python. One of
the challenges you might face is knowing when to use the various data types.

When choosing a collection type, it is useful to understand the unique properties
of that type. For example, a list is for you to store multiple objects and to retain a
sequence, a dictionary is for us to store unique key-value pair mappings, tuples are
immutable, and sets only store unique elements. Choosing the right type for a particular
dataset could mean an increase in efficiency or security.

Choosing an incorrect type for your data will lead to data loss, in most cases it leads to
low efficiency while running our code, and in the worst case, we might lose our data.

Summary
To summarize, you need to remember that Python data structures include lists, tuples,
dictionaries, and sets. Python provides these structures to enable you to code better
as a developer. In this chapter, you have covered lists, which are one of the important
data types in Python that store multiple objects, and also other data types, such as
dictionaries, tuples, and sets. Each of these data types helps us to store and retrieve
data effectively.

Data structures are an essential part of all programming languages. Most programming
languages only provide basic data types to store different types of numbers, strings,
and Booleans, as you learned in Chapter 1, Vital Python - Math, Strings, Conditionals,
and Loops. They are an essential part of any program. In this chapter, you learned how
to utilize advanced data structures such as nested lists and mixed data types, and lists
with dictionaries — structures that you can use to store complex data.

Next up, we are going to learn how to use functions to write modular and
understandable code that follows the DRY (Don't Repeat Yourself) principle.

Executing Python –
Programs, Algorithms,

and Functions
Overview

By the end of this chapter, you will be able to write and execute Python scripts
from the command line; write and import Python modules; document your
code with docstrings; implement basic algorithms in Python, including bubble
sort and binary search; write functions utilizing iterative, recursive, and dynamic
programming algorithms; modularize code to make it structured and readable and
use helper functions and lambda functions.

This chapter will leave you empowered to write more powerful and concise
code through an increased appreciation of well-written algorithms and an
understanding of functions.

3

98 | Executing Python – Programs, Algorithms, and Functions

Introduction
Our experience with computers is a machine with a huge volume of carefully organized
logic. No one piece of this logic is necessarily complex or can capture what drives the
result. Rather, the entire system is organized such that it comes together to provide the
output you expect.

In previous chapters, you focused on the basic Python idioms and data types. In this
chapter, you will begin exploring more abstract concepts regarding how knowledge
is formalized through logic in Python. You will explore a few fundamental algorithms
that are used for solving typical problems in computer science, along with some simple
logic.

For example, consider the problem of sorting a list of integers. Supermarkets use
sorting techniques to sort through their customers to get an insight into the sales
an individual customer provides. You may be surprised at the theoretical complexity
behind writing such an algorithm in an efficient manner.

In this chapter, you will also learn about a few of the paradigms in Python for
expressing our code in a concise but readable way. You will discuss the habits of a good
programmer, and how to make sure you write code that is maintainable and does not
repeat itself. In doing so, you can ensure yourself against needing to rework your code
unnecessarily, as requirements change constantly in the IT world.

This chapter begins by moving away from running code in the Python shell and toward
Python scripts and modules. This will allow us more flexibility to write clear, reusable,
and powerful code.

Python Scripts and Modules
In previous chapters, you have been executing Python in an interactive Python console
or a Jupyter Notebook. However, you may be aware that most Python code lives in
text files with a .py extension. These files are simply plain text and can be edited with
any text editor. Programmers typically edit these files using either a text editor such
as Notepad++, or Integrated Development Environments (IDEs) such as Jupyter or
PyCharm.

Typically, standalone .py files are either called scripts or modules. A script is a file
that is designed to be executed, usually from the command line. On the other hand, a
module is usually imported into another part of the code or an interactive shell to be
executed. Note that this is not a hard distinction; modules can be executed, and scripts
can be imported into other scripts/modules.

Python Scripts and Modules | 99

Exercise 34: Writing and Executing Our First Script

In this exercise, you will create a script called my_script.py and execute it on the
command line. You will be then finding the sum of the factorials of three numbers:

1.	 Using your favorite text editor, create a new file called my_script.py. You can also
use Jupyter (New | Text File).

2.	 Import the math library:

import math

3.	 Suppose that you had a list of numbers and you wanted to print the sum of the
factorials of these numbers. Recall that a factorial is the product of all the integers
up to and equal to a given number.

For instance, the factorial of 5 is calculated as 5! = 5 * 4 * 3 * 2 * 1 = 120.

In the following code snippet, you are going to find the sum of factorials of 5,7 and
11.

numbers = [5, 7, 11]

4.	 Using the math.factorial function and list comprehension, compute and print
result:

result = sum([math.factorial(n) for n in numbers])
print(result)

5.	 Save the file.

6.	 Open a Terminal or a Jupyter Notebook and ensure that your current directory
is the same as the one with the my_script.py file. To check this, if you run dir in
the Terminal, you should see my_script.py in the list of files. If not, navigate to the
correct directory using the cd command.

7.	 Run python my_script.py to execute your script.

You should get the following output:

39921960

In this exercise, you successfully created and executed a file by navigating to the
correct directory from the Terminal or Jupyter Notebook.

100 | Executing Python – Programs, Algorithms, and Functions

Exercise 35: Writing and Importing Our First Module

In this exercise, as in Exercise 34, Writing and Executing Our First Script, you will be
finding the factorials of three numbers. However, you will now create a module called
my_module.py, and import it into a Python shell:

1.	 Using your favorite text editor, create a new file called my_module.py. You can also
use Jupyter (New | Text File).

2.	 Add a function that prints the result of the computation in Exercise 34, Writing and
Executing Our First Script. You will learn more about this function notation in the
upcoming section on basic functions:

import math
def compute(numbers):
 return([math.factorial(n) for n in numbers])

3.	 Save the file.

4.	 Open a Python shell or Jupyter Notebook and execute the following:

from my_module import compute
compute([5, 7, 11])

You should get the following output:

[120, 5040, 39916800]

Note

Writing this code as a module is useful if you want to reuse our welcome function
in another script or module. However, if you just want to execute the print
statement once, and you don't want to have to import our function to a shell, the
script is more convenient.

In this exercise, you created a module file called my_module.py and imported this module
file to get the expected output on Jupyter or the Python shell.

Python Scripts and Modules | 101

Shebangs in Ubuntu

The first line of a Python script will often be:

#!/usr/bin/env python

As additional information, if you are using a Windows operating system, you can
ignore this line. However, it is worth understanding its function. This path specifies the
program that the computer should use to execute this file. In the previous example,
you had to tell the Command Prompt to use Python to execute our my_script.py script.
However, on UNIX systems (such as Ubuntu or macOS X), if your script has a shebang,
you can execute it without specifying that the system should use Python. For example,
using Ubuntu, you will simply write:

Figure 3.1: Executing a script with a shebang statement in a UNIX system

Docstrings

A docstring which was mentioned in the Chapter 1, Vital Python: Math, Strings,
Conditionals, and Loops is a string appearing as the first statement in a script, function,
or class. The docstring becomes a special attribute of the object, accessible with __
doc__. Docstrings are used to store descriptive information to explain to the user what
the code is for, and some high-level information on how they should use it.

Exercise 36: Adding a Docstring to my_module.py

In this exercise, you extend our my_module.py module from Exercise 35, Writing and
Importing Our First Module, by adding a docstring:

1.	 Open my_module.py in Jupyter or a text editor.

2.	 Add a docstring to the script (as the first line before beginning with your code as
mentioned in the following code snippet):

""" This script computes the sum of the factorial of a list of numbers"""

3.	 Open a Python console in the same directory as your my_module.py file.

4.	 Import the my_module module:

import my_module

102 | Executing Python – Programs, Algorithms, and Functions

5.	 Call the help function on our my_module script to view the docstring. The help
function can be used to obtain a summary of any available information regarding a
module, function, or class in Python. You can also call it without an argument, that
is, as help(), to start an interactive series of prompts:

help(my_module)

You should get the following output:

Figure 3.2: The output of the help function

6.	 View the __doc__ property of my_module as a second way of viewing the docstring:

my_module.__doc__

You should get the following output:

Figure 3.3: Viewing the docstring

Docstrings can span one line, such as in the preceding example, or multiple lines. The
following is an example of a Docstring:

"""
This script computes the sum of the factorial of a list of numbers.
"""

Imports

After the optional shebang statement and docstring, Python files typically import
classes, modules, and functions from other libraries. For example, if you wanted to
compute the value of exp(2), you could import the math module from the standard
library (you will learn more about the standard library in Chapter 6, The Standard
Library):

import math
math.exp(2)

Python Scripts and Modules | 103

You should get the following output:

7.38905609893065

In the preceding example, you imported the math module and called an exp function that
exists within the module. Alternatively, you could import the function itself from the
math module:

from math import exp
exp(2)

You should get the following output:

7.38905609893065

Note that there is a third way of importing, which should generally be avoided unless
necessary:

from math import *
exp(2)

You should get the following output:

7.38905609893065

The import * syntax simply imports everything in the module. It is considered
undesirable primarily because you end up with references to too many objects, and
there's a risk that the names of these objects will clash. It's also harder to see where
certain objects are imported from if there are multiple import * statements.

You can also rename modules or imported objects in the import statement itself:

from math import exp as exponential
exponential(2)

You should get the following output:

7.38905609893065

This is sometimes useful if you simply find the name of the object to be unwieldy,
making your code less readable. Or, it could be necessary where you want to use two
modules that happen to have the same name.

104 | Executing Python – Programs, Algorithms, and Functions

Exercise 37: Finding the System Date

In this exercise, you write a script that prints the current system date to the console by
importing the datetime module:

1.	 Create a new script called today.py in the Python Terminal.

2.	 Add a docstring to the script:

"""
This script prints the current system date.
"""

3.	 Import the datetime module:

import datetime

4.	 Print out the current date using the now() property of datetime.date:

print(datetime.date.today())

5.	 Run the script from the command line as shown in the Figure 3.4.

Figure 3.4: The command-line output

In this exercise, you were able to write a script that prints the date and time using the
datetime module. Hence, you can see how modules can be helpful.

The if __name__ == "__main__" Statement

You will often see this cryptic statement in Python scripts. You won't cover this concept
in-depth, but it's worth understanding. It is used when you want to be able to execute
the script by itself, but also be able to import objects from the script as though it were a
regular module.

For example, suppose you wanted to get the sum of the numbers from 1 to 10. If you
execute the function from the command line, you want the result printed to the
console. However, you also want to be able to import the value to use it elsewhere in
our code.

Python Scripts and Modules | 105

You may be tempted to write something like this:

result = 0
for n in range(1, 11): # Recall that this loops through 1 to 10, not including 11
 result += n
print(result)

If you execute this program from the command line, it will print the output 55, as
expected. However, if you try importing the result in a Python console, it will print the
result again. When importing the result, you just want the variable; you don't expect it
to print to the console:

from sum_to_10 import result

You should get the following output:

55

To fix this, you only call the print function in the case where __name__ == '__main__':

result = 0
for n in range(1, 11): # Recall that this loops through 1 to 10, not including 11
 result += n
if __name__ == '__main__':
 print(result)

When executing from the command line, the Python interpreter sets the special __
name__ variable equal to the '__main__' string, such that when you get to the end of your
script, the result is printed. However, when importing result, the print statement is
never reached:

from sum_to_10 import result
result * 2
110

106 | Executing Python – Programs, Algorithms, and Functions

Activity 8: What's the Time?

You are asked to build a Python script that tells you the current time.

In this activity, you will use the datetime module to build the current_time.py script that
outputs the current system time, and then you will import the
current_time.py script into a Python console.

The steps to do this are as follows:

1.	 Create a new script called current_time.py in Jupyter or a text editor.

2.	 Add a docstring to the script to explain what it does.

3.	 Import the datetime module.

4.	 Get the current time using datetime.now().

5.	 Print the result, but only if the script is to be executed.

6.	 Execute the script from Command Prompt to check it prints the time.

7.	 Import the time into a Python console and check if the console output does not
print the time.

8.	 The output from the Command Prompt will be as follows:

Figure 3.5: Printing the time to the command line

The output from a Python console should look like this:

from current_time import time
time

You should get the following output:

Figure 3.6: The output in the datetime format

Note

The solution for this activity can be found via this link.

Python Algorithms | 107

Python Algorithms
An algorithm is a series of instructions that can be executed to perform a certain
task or computation. A recipe for a cake is an example of an algorithm. For example,
preheat the oven, beat 125 g of sugar and 100 g of butter, and then add eggs and other
ingredients. Similarly, simple computations in mathematics are algorithms. For example,
when computing the perimeter of a circle, you multiply the radius by 2π. It's a short
algorithm, but an algorithm, nonetheless.

Algorithms are often initially defined in pseudocode, which is a way of writing down
the steps a computer program will make without coding in any specific language. A
reader should not need a technical background in order to read the logic expressed
in pseudocode. For example, if you had a list of positive numbers and wanted to find
the maximum number of positive numbers in that list, an algorithm expressed in
pseudocode could be as follows:

1.	 Set the maximum variable to 0.

2.	 For each number in our list, check whether the number is bigger than the maximum.

Set the maximum variable so that it is equal to that number.

3.	 maximum is now equal to the largest number in the list.

Pseudocode is useful because it allows us to show the logic of our code in a more
universally accessible format than writing in a specific programming language.
Programmers will often map out their thinking in pseudocode to explore the logic of
their planned approach before writing the code itself.

In Exercise 38, The Maximum Number, you will be using this pseudocode to find the
maximum number from a list of numbers.

Exercise 38: The Maximum Number

In this exercise, you will implement the pseudocode to find the maximum from a list of
positive numbers:

1.	 Create a list of numbers:

l = [4, 2, 7, 3]

2.	 Set the maximum variable equal to 0:

maximum = 0

108 | Executing Python – Programs, Algorithms, and Functions

3.	 Look through each number, and compare it to maximum:

for number in l:
 if number > maximum:
 maximum = number

4.	 Check the result:

print(maximum)

You should get the following output:

7

In this exercise, you successfully implemented the pseudocode given and found the
maximum in a list of numbers.

Time Complexity

So far, in this book, we have become accustomed to our programs being executed
at near-instantaneous speed. Computers are very fast, and the difference between
performing 10 iterations in a loop and 1,000 iterations may seem immaterial to us.
However, algorithms can quickly become inefficient as the problem grows. In measuring
complexity, you are interested in knowing the time it takes to execute the algorithm
changes as the size of the problem changes. If the problem is 10 times as large, does
the algorithm take 10 times as long to execute, 100 times as long, or 1010 times as long?
This relationship between the size of the problem and the steps taken is called the time
complexity of an algorithm.

Of course, you could simply time our algorithm on problems of different sizes and
observe the relationship on a graph. This technique is often useful when the algorithm
is complex, and the theoretical relationship between size and time isn't computable.
However, this isn't entirely satisfactory, as the actual time taken is also conditional
on factors such as the memory that is available, the processor, the disk speed, and
other processes consuming resources on the machine. It will only ever be an empirical
approximation and may vary depending on the computer.

Python Algorithms | 109

Instead, you simply count the number of operations required to execute the algorithm.
The result of this counting is expressed with big-O notation. For example, O(n) means
that, for a problem of size n, the number of steps taken is proportional to n. This means
that the actual number of steps required can be expressed as , where alpha
and beta are constants. Another way of thinking about this is that the steps required to
execute the algorithm grow linearly with the problem size:

Figure 3.7: Visual representation of linear time complexity

Any such problem where the complexity can be expressed as a linear function, ,
has a time complexity of O(n).

Other common time complexities include:

•	 O(1): Constant time. Here, the time taken is always the same, regardless of the
problem size; for example, accessing an element of an array at a given index.

•	 O(n^2): Quadratic time. Here, the time taken is proportional to the square of the
problem size; for example, the bubble sort algorithm (this is covered in Exercise 39,
Using Bubble Sort in Python).

•	 O(log n): Logarithmic time. Here, the time taken is proportional to the natural
logarithm of the problem size; for example, the binary search algorithm (this is
covered in Exercise 41, Binary Search in Python).

110 | Executing Python – Programs, Algorithms, and Functions

Time Complexity for the Maximum Number Algorithm

In the previous exercise, you computed the maximum of a list of positive numbers.
Here, you express the complexity of the algorithm using the big-O notation:

1.	 Our program starts by setting the maximum = 0 variable. This is our first step: total_
steps = 1.

2.	 For a list of size n, you are going to loop through each number and perform the
following operations:

(a) Check whether it's greater than the maximum variable.

(b) If so, assign maximum to the number.

3.	 Sometimes, there will be one step executed for a number and, sometimes, there
will be two steps (if that number happens to be the new maximum). You don't really
care what this number is, so, let's take its average, which you'll call . That is, for
each number, there will be an average of steps executed, where is a number
between 1 and 2.

4.	 So, total_steps = . This is a linear function, so the time complexity is O(n).

Sorting Algorithms

The most commonly discussed family of algorithms in computer science courses are
sorting algorithms. Sorting algorithms come to your aid when, say, you have a list of
values, and you want to sort these into an ordered list. This problem is ever-present in
our data-driven world; consider the following scenarios:

•	 You have a database of contacts and want to see them listed alphabetically.

•	 You want to retrieve the five best test results from a classroom of students.

•	 You have a list of insurance policies and want to see which ones have the most
recent claims.

The output of any sorting algorithm must satisfy two conditions:

1.	 It must be in non-decreasing order. That is, each element must be equal to or
greater than the element that came before it.

2.	 It must be a permutation of the input. That is, the input elements must simply be
rearranged and not altered.

Python Algorithms | 111

Here is a simple example of what we want a sorting algorithm to accomplish:

Figure 3.8: A simple problem for a sorting algorithm to solve

One such algorithm for performing this operation is called bubble sort. It is explained
as follows:

1.	 Start with the first two elements of this list. If the first is larger than the second,
then switch the positions of the numbers. In this case, you leave them as is, as 5 < 8:

Figure 3.9: Step 1 for the bubble sort algorithm

2.	 Move onto the next two elements. Here, you switch the positions of 8 and 1:

Figure 3.10: Step 2 for the bubble sort algorithm

3.	 For the next pair, again, switch the positions, as 8 > 3:

Figure 3.11: Step 3 for the bubble sort algorithm

4.	 For the final pair, switch the positions again, as 8 > 2:

Figure 3.12: Step 4 for the bubble sort algorithm

5.	 Go back to the start of the list and repeat the preceding process.

6.	 Continue looping through the list until no further swaps are required.

112 | Executing Python – Programs, Algorithms, and Functions

Exercise 39: Using Bubble Sort in Python

In this exercise, you will implement the bubble sort algorithm in Python with a list of
numbers:

1.	 Start with a list of numbers:

l = [5, 8, 1, 3, 2]

2.	 Create an indicator that will tell us when you can stop looping through the array:

still_swapping = True

3.	 Look through each number, and compare it to maximum:

while still_swapping:
 still_swapping = False
 for i in range(len(l) - 1):
 if l[i] > l[i+1]:
 l[i], l[i+1] = l[i+1], l[i]
 still_swapping = True

4.	 Check the result:

l

You should get the following output:

[1, 2, 3, 5, 8]

Bubble sort is a very simple but inefficient sorting algorithm. Its time complexity is
O(n^2), meaning that the number of steps required is proportional to the square of the
size of the list.

Searching Algorithms

Another important family of algorithms is the searching algorithm. In a world where you
are producing an exponentially increasing amount of data, these algorithms have a huge
impact on our day-to-day lives. Simply considering the size of Google should give you
an appreciation of the importance (and complexity) of these algorithms. Of course, you
encounter the need for these algorithms just about every time you pick up a phone or
open a laptop:

•	 Searching your contacts list to send a message

•	 Searching your computer for a specific application

•	 Searching for an email containing a flight itinerary

Python Algorithms | 113

With any of these examples, you can apply the simplest form of search, that is, a linear
search. This will involve simply looping through all possible results and checking
whether they match the search criteria. For example, if you were searching your
contacts list, you would look through each contact one by one, and check whether that
contact met the search criteria. If so, return the position of the result. This is a simple
but inefficient algorithm, with time complexity of O(n).

Exercise 40: Linear Search in Python

In this exercise, you will implement the linear search algorithm in Python using a list of
numbers:

1.	 Start with a list of numbers:

l = [5, 8, 1, 3, 2]

2.	 Specify a value to search_for:

search_for = 8

3.	 Create a result variable that has a default value of -1. If the search is unsuccessful,
this value will remain -1 after the algorithm is executed:

result = -1

4.	 Loop through the list. If the value equals the search value, set the result, and exit
the loop:

for i in range(len(l)):
 if search_for == l[i]:
 result = i
 break

5.	 Check the result:

print(result)

You should get the following output:

1

Note

This means that the search found the required value at position 1 in the list (which
is the second item in the list, as indices start from 0 in Python).

114 | Executing Python – Programs, Algorithms, and Functions

Another common sorting algorithm is called a binary search. The binary search
algorithm takes a sorted array and finds the position of the target value. Suppose that
you were trying to find the position of the number 11 in the following list:

Figure 3.13: A simple problem for a search algorithm to solve

The binary search algorithm will be explained as follows:

1.	 Take the midpoint of the list. If this value is less than the target value, discard the
left half of the list, and vice versa. In this case, our target value of 11 is greater than
8, so you know that you can restrict our search to the right side of the list (since
you know the array is sorted):

Figure 3.14: Splitting the list at the midpoint, 8

Note

If there is an even number of items on the list, simply take one of the two middle
numbers, it doesn't matter which.

2.	 You repeat this process with the right side of the list, picking the midpoint of the
remaining values. Since the target value, 11 is less than the midpoint 12, and you
discard the right side of our sublist:

Figure 3.15: Splitting the list in the midpoint of the remaining list

3.	 This leaves you with the value that you were searching for:

Figure 3.16: Reaching the final result

Python Algorithms | 115

Exercise 41: Binary Search in Python

In this exercise, you will implement the binary search algorithm in Python:

1.	 Start with a list of numbers:

l = [2, 3, 5, 8, 11, 12, 18]

2.	 Specify the value to search_for:

search_for = 11

3.	 Create two variables that will represent the start and end locations of the sublist
you are interested in. Initially, it will represent the start and end indices for the
entire list:

slice_start = 0
slice_end = len(l) - 1

4.	 Add a variable to indicate whether the search was successful:

found = False

5.	 Find the midpoint of the list, and check whether the value is greater or less than
the search term. Depending on the outcome of the comparison, either finish the
search or update the locations for the start/end of the sublist:

while slice_start <= slice_end and not found:
 location = (slice_start + slice_end) // 2
 if l[location] == search_for:
 found = True
 else:
 if search_for < l[location]:
 slice_end = location - 1
 else:
 slice_start = location + 1

6.	 Check the results:

print(found)
print(location)

You should get the following output:

True
4

In this exercise, you successfully implemented the binary search algorithm on a list of
numbers.

116 | Executing Python – Programs, Algorithms, and Functions

Basic Functions
A function is a reusable piece of code that is only run when it is called. Functions can
have inputs, and they usually return an output. For example, using a Python shell, you
can define the following function that takes two inputs and returns the sum:

def add_up(x, y):
 return x + y
add_up(1, 3)

You should get the following output:

4

Exercise 42: Defining and Calling the Function in Shell

In this exercise, you create a function that will return the second element of a list if it
exists:

1.	 In a Python shell, enter the function definition. Note that the tab spacing needs to
match the following output:

def get_second_element(mylist):
 if len(mylist) > 1:
 return mylist[1]
 else:
 return 'List was too small'

Here you are calling print logs the parsed message to the standard output.

2.	 Try running the function on a small list of integers:

get_second_element([1, 2, 3])

You should get the following output:

2

3.	 Try running the function on a list with only one element:

get_second_element([1])

You should get the following output:

Figure 3.17: We are unable to get the second item with a list length of 1

Basic Functions | 117

Defining functions in a shell can be difficult, as the shell isn't optimized for editing
multiple lines of code blocks. Instead, it's preferable for our functions to live inside a
Python script.

Exercise 43: Defining and Calling the Function in Python Script

In this exercise, you will define and call a function in a multiply.py Python script and
execute it from Command Prompt:

1.	 Create a new file using a text editor called multiply.py:

def list_product(my_list):
 result = 1
 for number in my_list:
 result = result * number
 return result
print(list_product([2, 3]))
print(list_product([2, 10, 15]))

2.	 Using Command Prompt, execute this script, ensuring that your Command Prompt
is in the same folder as the multiply.py file:

Figure 3.18: Running from the command line

In this exercise, you worked on defining and calling a function within a Python script.

Exercise 44: Importing and Calling the Function from the Shell

In this exercise, you will import and call the list_product function you defined in
multiply.py:

1.	 In a Python shell, import our list_product function:

from multiply import list_product

You should get the following output:

6
300

118 | Executing Python – Programs, Algorithms, and Functions

One unintended consequence is that your print statements in multiply.py were
also executed: introduce __name__ == 'main'.

2.	 Call the function with a new list of numbers:

list_product([-1, 2, 3])

You should get the following output:

–6

Now that you've completed this exercise, you have gained an understanding of how
to import and call a function. You created the multiply.py file in Exercise 43, Defining
and Calling the Function in Python Script, and imported and used this function in this
exercise.

Positional Arguments

The preceding examples have all included positional arguments. In the following
example, there are two positional arguments, x and y, respectively. When you call this
function, the first value you pass in will be assigned to x, and the second value will be
assigned to y:

def add_up(x, y):
 return x + y

You can also specify functions without any arguments:

from datetime import datetime
def get_the_time():
 return datetime.now()
print(get_the_time())

You should get the following output:

Figure 3.19: The current date and time

Keyword Arguments

Keyword arguments, also known as named arguments, are optional inputs to functions.
These arguments have a default value that is taken when the function is called without
the keyword argument specified.

Basic Functions | 119

Exercise 45: Defining the Function with Keyword Arguments

In this exercise, you will use the Python shell to define an add_suffix function that takes
an optional keyword argument:

1.	 In a Python shell, define the add_suffix function:

def add_suffix(suffix='.com'):
 return 'google' + suffix

2.	 Call the add_suffix function without specifying the suffix argument:

add_suffix()

You should get the following output:

'google.com'

3.	 Call the function with a specific suffix argument:

add_suffix('.co.uk')

You should get the following output:

'google.co.uk'

Exercise 46: Defining the Function with Positional and Keyword Arguments

In this exercise, you use the Python shell to define a convert_usd_to_aud function that
takes a positional argument and an optional keyword argument:

1.	 In a Python shell, define the convert_usd_to_aud function:

def convert_usd_to_aud(amount, rate=0.75):
 return amount / rate

2.	 Call the convert_usd_to_aud function without specifying the exchange rate
argument:

convert_usd_to_aud(100)

You should get the following output:

133.33333333333334

3.	 Call the convert_usd_to_aud function with a specific exchange rate argument:

convert_usd_to_aud(100, rate=0.78)

You should get the following output:

128.2051282051282

120 | Executing Python – Programs, Algorithms, and Functions

The rule of thumb is to simply use positional arguments for required inputs that must
be provided each time the function is called, and keyword arguments for optional
inputs.

You will sometimes see functions that accept a mysterious-looking argument: **kwargs.
This allows the function to accept any keyword arguments when it's called, and these
can be accessed in a dictionary called "kwargs". Typically, this is used when you want to
pass arguments through to another function.

Exercise 47: Using **kwargs

In this exercise, you will write a Python script to pass named arguments through a
convert_usd_to_aud function:

1.	 Using a text editor, create a file called conversion.py.

2.	 Enter the convert_usd_to_aud function defined in the previous exercise:

def convert_usd_to_aud(amount, rate=0.75):
 return amount / rate

3.	 Create a new convert_and_sum_list function that will take a list of amounts, convert
them to AUD, and return the sum:

def convert_and_sum_list(usd_list, rate=0.75):
 total = 0
 for amount in usd_list:
 total += convert_usd_to_aud(amount, rate=rate)
 return total
print(convert_and_sum_list([1, 3]))

4.	 Execute this script from Command Prompt:

Figure 3.20: Converting a list of USD amounts to AUD

Note that the convert_and_sum_list function didn't need the rate argument. It
simply needed to pass it through to the convert_usd_to_aud function. Imagine that,
instead of one argument, you had 10 that needed to be passed through. There will
be a lot of unnecessary code. Instead, you will use the kwargs dictionary.

Basic Functions | 121

5.	 Add the following function to conversion.py:

def convert_and_sum_list_kwargs(usd_list, **kwargs):
 total = 0
 for amount in usd_list:
 total += convert_usd_to_aud(amount, **kwargs)
 return total
print(convert_and_sum_list_kwargs([1, 3], rate=0.8))

6.	 Execute this script from Command Prompt:

Figure 3.21: Altering the result by specifying the kwarg rate

Activity 9: Formatting Customer Names

Suppose that you are building a Customer Relationship Management (CRM) system,
and you want to display a user record in the following format: John Smith (California).
However, if you don't have a location in your system, you just want to see "John Smith."

Create a format_customer function that takes two required positional arguments, first_
name and last_name, and one optional keyword argument, location. It should return a
string in the required format.

The steps are as follows:

1.	 Create the customer.py file.

2.	 Define the format_customer function.

3.	 Open a Python shell and import your format_customer function.

4.	 Try running a few examples. The outputs should look like this:

from customer import format_customer
format_customer('John', 'Smith', location='California')

122 | Executing Python – Programs, Algorithms, and Functions

You should get the following output:

Figure 3.22: The formatted customer name

format_customer('Mareike', 'Schmidt')

You should get the following output:

Figure 3.23: Omitting the location

Note

The solution for this activity can be found via this link.

Iterative Functions
In the For Loops section in Chapter 1, Vital Python – Math, Strings, Conditionals, and
Loops, you were introduced to the syntax for looping over objects in Python. As a
refresher, here is an example where you perform five iterations and print the i variable
in each loop:

for i in range(5):
 print(i)

You should get the following output:

0
1
2
3
4

For loops can also be placed within functions.

Iterative Functions | 123

Exercise 48: A Simple Function with a for Loop

In this exercise, you create a sum_first_n function that sums up the first n integers. For
example, if you pass the n=3 function, it should return 1 + 2 + 3 = 6:

1.	 In a Python shell, enter the function definition. Note that the tab spacing needs to
match the following output:

def sum_first_n(n):
 result = 0
 for i in range(n):
 result += i + 1
 return result

2.	 Test the sum_first_n function on an example:

sum_first_n(100)

You should get the following output:

5050

In this exercise, you successfully implemented a simple sum_first_n function with a for
loop to find the total sum of n numbers.

Exiting Early

You can exit the function at any point during the iterations. For instance, you might
want the function to return a value once a certain condition is met.

Exercise 49: Exiting the Function During the for Loop

In this exercise, you will create a function that (inefficiently) checks whether a certain
number x is a prime. The function does this by looping through all the numbers from 2
to x and checks whether x is divisible by it. If it finds a number that x is divisible by, the
iteration will stop and return False, as it has ascertained that x is not prime:

1.	 In a Python shell, enter the function definition. Note that the tab spacing needs to
match the following output:

def is_prime(x):
 for i in range(2, x):
 if (x % i) == 0:
 return False
 return True

124 | Executing Python – Programs, Algorithms, and Functions

2.	 Test the function on a couple of examples:

is_prime(7)

You should get the following output:

True

Now, find out if 1000 is a prime number or not.

is_prime(1000)

You should get the following output:

False

In this exercise, you successfully implemented a code that checks whether the x
variable is prime by looping through numbers. In the case that it is divisible, it will exit
the loop and provide the output as False.

Activity 10: The Fibonacci Function with an Iteration

You work in an IT firm, and your colleague has realized that being able to quickly
compute elements of the Fibonacci sequence will reduce the time taken to execute the
testing suite on one of your internal applications. You will use an iterative approach
to create a fibonacci_iterative function that returns the nth value in the Fibonacci
sequence.

The steps are as follows:

1.	 Create a fibonacci.py file.

2.	 Define a fibonacci_iterative function that takes a single positional argument
representing which number term in the sequence you want to return.

3.	 Run the following code:

from fibonacci import fibonacci_iterative
fibonacci_iterative(3)

You should get the following output:

2

Another example to test your code can be as mentioned in the following code
snippet:

fibonacci_iterative(10)

Recursive Functions | 125

You should get the following output:

55

Note

The solution for this activity can be found via this link.

Recursive Functions
When a function calls itself, it is known as a Recursive Function. This is like for loops.
However, sometimes it allows you to write more elegant and terse functions than can
be achieved with a loop.

You can imagine that a function that calls itself might end up in an infinite loop; it is
true that you can write a recursive function that will keep running indefinitely:

def print_the_next_number(start):
 print(start + 1)
 return print_the_next_number(start + 1)
print_the_next_number(5)

You should get the following output:

6
7
8
9
10
11

Note

The output mentioned above is truncated.

If you run this code in a Python shell, it will continue printing integers until you
interrupt the interpreter (Ctrl + C). Take a look at the preceding code and ensure you
understand why it behaves in this manner. The function executes the following steps:

•	 The function is called with start = 5.

•	 It prints 6 to the console, that is (5 + 1 = 6).

126 | Executing Python – Programs, Algorithms, and Functions

•	 It then calls itself, this time passing in the argument start = 6.

•	 The function starts again, this time printing 7, that is (6 + 1 = 7).

A Terminating Case

To avoid being stuck in an infinite loop, a recursive function will typically have a
Terminating Case, such as a point where the chain of recursion is broken. In our
previous example, you could make it stop once the start parameter is greater than or
equal to 7:

def print_the_next_number(start):
 print(start + 1)
 if start >= 7:
 return "I'm bored"
 return print_the_next_number(start + 1)
print_the_next_number(5)

You should get the following output:

Figure 3.24: Terminating the loop

Exercise 50: Recursive Countdown

In this exercise, you will create a countdown function that recursively counts down from
integer n until we hit 0:

1.	 In Jupyter Notebook, enter the function definition. Note that the tab spacing needs
to match the output that follows:

def countdown(n):
 if n == 0:
 print('liftoff!')
 else:
 print(n)
 return countdown(n - 1)

2.	 Test the function:

countdown(3)

Recursive Functions | 127

3.	 You should get the following output:

Figure 3.25: Counting down with recursion

In this exercise, you successfully implemented a termination statement after number 1,
with the term liftoff. This shows us that the recursive countdown has ended.

Exercise 51: Factorials with Iteration and Recursion

In this exercise, you create a factorial_iterative function that takes an integer and
returns the factorial using both an iterative and a recursive approach. Recall that a
factorial is the product of all integers up to and equal to the number.

For instance, the factorial of 5 is calculated as 5! = 5 * 4 * 3 * 2 * 1 = 120.

1.	 In a Jupyter Notebook, enter the following function to compute factorials using
iteration:

def factorial_iterative(n):
 result = 1
 for i in range(n):
 result *= i + 1
 return result

2.	 Test the function:

factorial_iterative(5):

You should get the following output:

120

3.	 Note that you can express n! = n * (n – 1)!; for instance, 5! = 5 * 4!. This means we
can write the function with recursion as follows:

def factorial_recursive(n):
 if n == 1:
 return 1
 else:
 return n * factorial_recursive(n - 1)

4.	 Test the function:

factorial_recursive(5):

128 | Executing Python – Programs, Algorithms, and Functions

You should get the following output:

120

In this exercise, you successfully implemented and used both iteration and recursion to
find the factorial of n numbers.

Activity 11: The Fibonacci Function with Recursion

Suppose that your colleague has told you that the iterative function you designed
in Activity 10, The Fibonacci Function with an Iteration, is not elegant and should be
written with fewer lines of code. Your colleague mentions that a recursive solution will
be able to achieve this.

In this activity, you will use recursion to write a terse (but inefficient) function for
computing the nth term of the Fibonacci sequence.

The steps are as follows:

1.	 Open the fibonacci.py file created in Activity 10, The Fibonacci Function with an
Iteration.

2.	 Define a fibonacci_recursive function, which takes a single positional argument
representing which number term in the sequence we want to return.

3.	 Try running a few examples in a Python shell:

from fibonacci import fibonacci_recursive

To find the fibonacci recursive for the value 3.

fibonacci_recursive(3)

You should get the following output:

2

You can run the following code and find the fibonacci recursive for the value 10.

fibonacci_recursive(10)

You should get the following output:

55

Note

The fibonacci.py file can be found on GitHub at https://packt.live/35yKulH.

The solution for this activity can be found via this link.

Dynamic Programming | 129

Dynamic Programming
Our recursive algorithm for computing Fibonacci numbers may look elegant, but
that doesn't mean it's efficient. For example, when computing the fourth term in the
sequence, it calculates the value for both the second and third terms. Likewise, when
calculating the value of the third term in the sequence, it calculates the value for the
first and second terms. This isn't ideal, as the second term in the sequence was already
being calculated in order to get the fourth term. Dynamic programming will help us
to address this problem by ensuring you break down the problem into the appropriate
subproblems, and never solve the same subproblem twice.

Exercise 52: Summing Integers

In this exercise, you write a sum_to_n function to sum integers up to n. You store the
results in a dictionary, and the function will use the stored results to return the answer
in fewer iterations. For example, if you already know the sum of integers up to 5 is 15,
you should be able to use this answer when computing the sum of integers up to 6:

1.	 Create a new dynamic.py Python file.

2.	 Write a sum_to_n function that starts with result = 0, and an empty dictionary for
saving results:

stored_results = {}
def sum_to_n(n):
 result = 0

3.	 Add in a loop that computes the sum, returns the result, and stores the result in
our dictionary:

stored_results = {}
def sum_to_n(n):
 result = 0
 for i in reversed(range(n)):
 result += i + 1
 stored_results[n] = result
 return result

130 | Executing Python – Programs, Algorithms, and Functions

4.	 Finally, extend the function further by checking in each loop whether you already
have a result for this number; if so, use the stored result and exit the loop:

stored_results = {}
def sum_to_n(n):
 result = 0
 for i in reversed(range(n)):
 if i + 1 in stored_results:
 print('Stopping sum at %s because we have previously computed it' %
str(i + 1))
 result += stored_results[i + 1]
 break
 else:
 result += i + 1
 stored_results[n] = result
 return result

5.	 Test the function in a Python shell to find the sum of integers up to 5:

sum_to_n(5)

You should get the following output:

15

Now, test the function once again to find the sum of integers up to 6.

sum_to_n(6)

You should get the following output:

Figure 3.26: Stopping early with saved results

In this exercise, you were able to reduce the number of steps in our code using
dynamic programming to find the sum of integers up to n. The results were stored in
a dictionary, and the function uses the stored result to output the answer in fewer
iterations.

Dynamic Programming | 131

Timing Your Code

One measure of code efficiency is the actual time taken for your computer to execute it.
In the examples given so far in this chapter, the code will execute too quickly to gauge
any difference in the various algorithms. There are a few methods with which we can
time programs in Python; you will focus on using the time module from the standard
library.

Exercise 53: Timing Your Code

In this exercise, you will calculate the time taken to execute the function in the previous
exercise:

1.	 Open the dynamic.py file created in the previous exercise.

Add the following import at the top of the file:

import time

2.	 Modify the function to calculate the time at the start, and print out the time
elapsed at the end:

stored_results = {}
def sum_to_n(n):
 start_time = time.perf_counter()
 result = 0
 for i in reversed(range(n)):
 if i + 1 in stored_results:
 print('Stopping sum at %s because we have previously computed it' %
str(i + 1))
 result += stored_results[i + 1]
 break
 else:
 result += i + 1
 stored_results[n] = result
 print(time.perf_counter() - start_time, "seconds")

3.	 Open a Python shell, import your new function, and try running an example with a
large number:

sum_to_n(1000000)

132 | Executing Python – Programs, Algorithms, and Functions

You should get the following output:

Figure 3.27: Timing our code

4.	 Rerun the same code in the shell:

sum_to_n(1000000)

You should get the following output:

Figure 3.28: Speeding up the execution with dynamic programming

Note

In the preceding example, the function returned the value faster by simply looking
up the stored value in the dictionary.

Activity 12: The Fibonacci Function with Dynamic Programming

Your colleague has tried to use the code written in Activity 11, The Fibonacci Function
with Recursion, and they notice that it is too slow when computing large Fibonacci
numbers. They ask you to write a new function that can compute large Fibonacci
numbers quickly.

In this activity, you will use dynamic programming to avoid the inefficient recursive
loops that you implemented in Activity 11, The Fibonacci Function with Recursion.

The steps to do this are as follows:

1.	 Open the fibonacci.py file created in Activity 10, The Fibonacci Function with
Iteration.

2.	 Define a fibonacci_dynamic function, which takes a single positional argument
representing the number in the sequence that you want to return. Try starting with
the fibonacci_recursive function from the previous activity and storing the results
in a dictionary as the recursions are performed.

Helper Functions | 133

3.	 Try running a few examples in a Python shell:

from fibonacci import fibonacci_recursive
fibonacci_dynamic(3)

You should get the following output:

2

4.	 Note that if you try to use our recursive or iterative functions to compute the 100th
Fibonacci number, they will be too slow and will never finish executing (unless
you're willing to wait a few years).

Note

The solution for this activity can be found via this link.

Helper Functions
A helper function performs part of the computation of another function. It allows you to
reuse common code without repeating ourselves. For instance, suppose you had a few
lines of code that printed out the elapsed time at various points in a function:

import time
def do_things():
 start_time = time.perf_counter()
 for i in range(10):
 y = i ** 100
 print(time.perf_counter() - start_time, "seconds elapsed")
 x = 10**2
 print(time.perf_counter() - start_time, "seconds elapsed")
 return x

do_things()

134 | Executing Python – Programs, Algorithms, and Functions

You should get the following output:

Figure 3.29: Timing our helper functions

The print statement is repeated twice in the preceding code, and will be better
expressed as a helper function, as follows:

import time
def print_time_elapsed(start_time):
 print(time.perf_counter() - start_time, "seconds elapsed")
def do_things():
 start_time = time.perf_counter()
 for i in range(10):
 y = i ** 100
 print_time_elapsed(start_time)
 x = 10**2
 print_time_elapsed(start_time)
 return x

Don't Repeat Yourself

The preceding example encapsulates the Don't Repeat Yourself (DRY) programming
principle. In other words, "Every piece of knowledge or logic must have a single,
unambiguous representation within a system." If you want to do the same thing multiple
times in your code, it should be expressed as a function, and called wherever it is
needed.

Helper Functions | 135

Exercise 54: Helper Currency Conversion

In this exercise, you will take a function that computes the total USD for a transaction
and use a helper function to apply the DRY principle. You also want to add an optional
margin into the currency conversion that should default to 0:

def compute_usd_total(amount_in_aud=0, amount_in_gbp=0):
 total = 0
 total += amount_in_aud * 0.78
 total += amount_in_gbp * 1.29
 return total
compute_usd_total(amount_in_gbp=10)

You should get the following output:

12.9

1.	 Create a currency conversion function with an optional margin:

def convert_currency(amount, rate, margin=0):
 return amount * rate * (1 + margin)

2.	 Modify the original function to use the helper function:

def compute_usd_total(amount_in_aud=0, amount_in_gbp=0):
 total = 0
 total += convert_currency(amount_in_aud, 0.78)
 total += convert_currency(amount_in_gbp, 1.29)
 return total

3.	 Check the result:

compute_usd_total(amount_in_gbp=10)

You should get the following output:

12.9

4.	 Suppose that the business has decided to add a 1% margin for the conversion of the
GBP component. Modify the function accordingly:

def compute_usd_total(amount_in_aud=0, amount_in_gbp=0):
 total = 0
 total += convert_currency(amount_in_aud, 0.78)
 total += convert_currency(amount_in_gbp, 1.29, 0.01)
 return total

136 | Executing Python – Programs, Algorithms, and Functions

5.	 Check the result:

compute_usd_total(amount_in_gbp=10)

You should get the following output:

13.029

Note that it's possible to get ahead of yourself when applying the DRY principle in
writing reusable code. In the currency example, if our application really did just require
converting currency once, then it probably shouldn't be written as a separate function.
It may be tempting to think that generalizing our code is always good because it
insures us against the possibility of needing to repeat the same code later; however,
this attitude is not always optimal. You can end up spending a lot of time writing more
abstract code than is necessary, and, often, this code can be less readable and may
introduce unnecessary complexity to our codebase. Typically, the time to apply the DRY
principle is when you find yourself writing the code for the second time.

Variable Scope
Variables are only available in the area where they are defined. This area is called the
scope of the variable. Depending on how and where a variable is defined, it may or may
not be accessible in certain parts of your code. Here, you will discuss what variables in
Python represent, the difference in defining them inside or outside a function, and how
the global and nonlocal keywords can be used to override these default behaviors.

Variables

A variable is a mapping between a name and an object at a certain location in the
computer's memory. For example, if you set x = 5, then x is the variable's name, and
the value 5 is stored in memory. Python keeps track of the mapping between the name
x and the location of the value using namespaces. Namespaces can be thought of as
dictionaries, with the names as the keys of the dictionary, and locations in memory as
the values.

Note that when a variable is assigned to the value of another variable, this just means
they are pointing to the same value, not that their equality will be maintained when one
of the variables is updated:

x = 2
y = x
x = 4
print("x = " + str(x))

Variable Scope | 137

You should get the following output:

x = 4
print("y = " + str(y))

You should get the following output:

y = 2

In this example, both x and y are initially set to point to integer 2. Note that the line
y = x here is equivalent to writing y = 2. When x is updated, it is updated to bind to a
different location in memory, and y remains bound to the integer 2.

Defining inside versus outside a Function

When you define a variable at the start of a script, it will be a global variable, accessible
from anywhere in the script. This includes within the functions themselves:

x = 5
def do_things():
 print(x)
do_things()

With this code, you should get the following output:

5

However, if you define a variable within a function, it is only accessible within that
function:

def my_func():
 y = 5
 return 2
my_func()

You should get the following output:

2

Now, enter the value y and observe the output

y

138 | Executing Python – Programs, Algorithms, and Functions

You should get the following output:

Figure 3.30: We are unable to access the local variable y

Note that if you define a variable within a function that has already been defined
globally, the value will change depending on where the variable is accessed. In the
following example, x is defined globally as 3. However, it is defined within the function
as 5, and when accessed within the function, you can see it takes the value of 5.

x = 3
def my_func():
 x = 5
 print(x)

my_func()

You should get the following output:

5

However, when it is accessed outside of the function, it takes the global value, 3.

This means you need to take care when updating global variables. For instance, can you
see why the following fails to work? Take a look:

score = 0
def update_score(new_score):
 score = new_score
update_score(100)
print(score)

Variable Scope | 139

You should get the following output:

0

Within the function, the score variable is indeed updated to be equal to 100. However,
this variable is only local to the function, and outside the function the global score
variable is still equal to 0. However, you can get around this with the global keyword.

The Global Keyword

The global keyword simply tells Python to use the existing globally defined variable,
where the default behavior will be to define it locally. You can do this using the same
example as before:

score = 0
def update_score(new_score):
 global score
score = new_score
print(score)

You should get the following output:

0

Now, you update the score to 100 as shown in the following code snippet:

update_score(100)

Now, to print the scores

print(score)

You should get the following output:

100

The Nonlocal Keyword

The nonlocal keyword behaves in a similar way to the global keyword, in that it does
not define the variable locally, and instead picks up the existing variable definition.
However, it doesn't go straight to the global definition. It first looks at the closest
enclosing scope; that is, it will look "one level up" in the code.

140 | Executing Python – Programs, Algorithms, and Functions

For example, consider the following:

x = 4
def myfunc():
 x = 3
 def inner():
 nonlocal x
 print(x)
 inner()
myfunc()

You should get the following output:

3

In this example, the inner function takes the variable definition's x from myfunc, and not
the global keyword's x. If you instead write global x, then the integer 4 will be printed.

Lambda Functions
Lambda functions are small, anonymous functions that can be defined in a simple
one-line syntax:

lambda arguments : expression

For example, take the following function that returns the sum of two values:

def add_up(x, y):
 return x + y
print(add_up(2, 5))
7

This function can equivalently be written using the lambda function syntax, as follows:

add_up = lambda x, y: x + y
print(add_up(2, 5))

You should get the following output:

7

Note that the main restriction of a lambda function is that it can only contain a single
expression. That is, you need to be able to write the expression to return the value in
a single line of code. This makes lambda functions convenient only in situations where
the function is sufficiently simple such that it can be expressed in a single statement.

Lambda Functions | 141

Exercise 55: The First Item in a List

In this exercise, you will write a lambda function, first_item, to select the first item in a
list containing the items of the cat, dog, and mouse:

1.	 Create the lambda function:

first_item = lambda my_list: my_list[0]

2.	 Test the function:

first_item(['cat', 'dog', 'mouse'])

You should get the following output:

'cat'

Lambda functions can be particularly useful in passing custom functions to a map, as
you can quickly define a function on the fly without assigning it to a variable name. The
next two sections look at contexts where this is particularly useful.

Mapping with Lambda Functions

map is a special function in Python that applies a given function to all items in a list.
For instance, suppose that you had a list of names and you wanted to get the average
number of characters:

names = ['Magda', 'Jose', 'Anne']

For each name in the list, you want to apply the len function, which returns the number
of characters in a string. One option will be to iterate manually over the names, and add
the lengths to a list:

lengths = []
for name in names:
 lengths.append(len(name))

The alternative is to use the map function:

lengths = list(map(len, names))

The first argument is the function to be applied, and the second argument is an iterable
(in this case, a list) of names. Note that the map function returns a generator object, not
a list, so you convert it back to a list.

142 | Executing Python – Programs, Algorithms, and Functions

Finally, you take the average length of the list:

sum(lengths) / len(lengths)
4.33333333333

Exercise 56: Mapping with a Logistic Transform

In this exercise, you use map with a lambda function to apply the logistic function to a
list of values.

The logistic function is often used in predictive modeling when dealing with binary
response variables. It is defined as follows:

Figure 3.31: The logistic function

1.	 Import the math module as needed for the exponential function:

import math

2.	 Create a list of values:

nums = [-3, -5, 1, 4]

3.	 Use a lambda function to map the list of values using a logistic transform:

list(map(lambda x: 1 / (1 + math.exp(-x)), nums))

You should get the following output:

Figure 3.32: Applying the logistic function to a list

In this exercise, you used the lambda function to find the list of values by using map.

Lambda Functions | 143

Filtering with Lambda Functions

The filter is another special function that, like map, takes a function and iterables (for
example, a list) as inputs. It returns the elements for which the function returns True.

For example, suppose that you had a list of names and wanted to find those that were
three letters long:

names = ['Karen', 'Jim', 'Kim']
list(filter(lambda name: len(name) == 3, names))

You should get the following output:

Figure 3.33: The filtered list

Exercise 57: Using the Filter Lambda

Consider a list of all-natural numbers below 10 that are multiples of 3 or 7. The multiples
will be 3, 6, 7, and 9, and the sum of these when multiplied is 25.

In this exercise, you will be calculating the sum of all the multiples of 3 or 7 below 1,000:

1.	 Create a list of numbers from 0 to 999:

nums = list(range(1000))

2.	 Use a lambda function to filter the values that are divisible by 3 or 7:

filtered = filter(lambda x: x % 3 == 0 or x % 7 == 0, nums)

Recall that the % (modulo) operator returns the remainder from the division of the
first argument by the second. So, x % 3 == 0 is checking that the remainder of x
divided by 3 is 0.

3.	 sum the list to get the result:

sum(filtered)

You should get the following output:

214216

In this exercise, you successfully used filter lambdas that took a function as an input, in
this case, filtered, and then returned the output as the sum of filtered.

144 | Executing Python – Programs, Algorithms, and Functions

Sorting with Lambda Functions

Another useful function that lambdas are often used with is sorted. This function takes
an iterable, such as a list, and sorts them according to a function.

For example, suppose that you had a list of names, and wanted them sorted by length:

names = ['Ming', 'Jennifer', 'Andrew', 'Boris']
sorted(names, key=lambda x : len(x))

You should get the following output:

Figure 3.34: Sorting using the lambda function

Recall that the % (modulo) operator returns the remainder from the division of the first
list.

Summary
In this chapter, you were introduced to a few of the fundamental tools in Python for
formalizing your knowledge. You learned how to write scripts and modules instead
of using the interactive shell. You were introduced to functions and several different
popular ways of writing functions. Additionally, common algorithms that are discussed
in basic computer science were presented, including bubble sort and binary search. You
also learned about the importance of the DRY principle. You learned how functions help
us to adhere to this principle, and how helper functions allow us to express the logical
components of our code succinctly.

In the next chapter, you will turn to the practical tools that you will need in your Python
toolkit, such as how to read and write files, and how to plot visual graphs of data.

Extending Python,
Files, Errors, and

Graphs
Overview

By the end of this chapter, you will be able to read and write to files using Python;
use defensive programming techniques, such as assertions, to debug your code;
use exceptions, assertions, and tests with a defensive mindset and plot, draw and
create graphs as outputs using Python.

We will cover the basic input/output (I/O) operations for Python and how to use the
matplotlib and seaborn libraries to create visualizations.

4

148 | Extending Python, Files, Errors, and Graphs

Introduction
In Chapter 3, Executing Python – Programs, Algorithms, and Functions, you covered
the basics of Python programs and learned how to write algorithms, functions, and
programs. Now, you will learn how to make your programs more relevant and usable in
the IT world.

First, in this chapter, you are going to look at file operations. File operations are
essential for scripting for a Python developer, especially when you need to process and
analyze a large number of files, like in data science. In companies that deal with data
science, you often do not have direct access to a database, stored on a local server
or a cloud server. Rather, we receive files in text format. These include CSV files for
column data, and txt files for unstructured data (such as patient logs, news articles, user
comments, etc.).

In this chapter, you will also cover error handling. This prevents your programs from
crashing and also does its best to behave elegantly when encountering unexpected
situations. You will also learn about exceptions, the special objects used in programming
languages to manage runtime errors. Exception handling deals with situations and
problems that can cause your programs to crash, which makes our programs more
robust when they encounter either bad data or unexpected user behavior.

Reading Files
While databases such as MySQL and Postgres are popular and are widely used in many
web applications, there is still a large amount of data that is stored and exchanged
using text file formats. Popular formats like comma-separated values (CSV), JavaScript
Object Notation (JSON), and plain text are used to store information such as weather
data, traffic data, and sensor readings. You should take a look at the following exercise
to read text from a file using Python.

Exercise 58: Reading a Text File Using Python

In this exercise, you will be downloading a sample data file online and reading data as
the output:

1.	 Open a new Jupyter Notebook.

2.	 Now, copy the text file from the URL (https://packt.live/2MIHzhO), save it to a
local folder as pg37431.txt, and remember where it is located.

Reading Files | 149

3.	 Upload the file to your Jupyter Notebook by clicking on the Upload button in
the top-right corner. Select the pg37431.txt file from your local folder, and then
click on the Upload button again to store it in the same folder where your Jupyter
Notebook runs:

Figure 4.1: The Upload button on the Jupyter Notebook

4.	 Now, you should extract the content of the file using Python code. Open a new
Jupyter notebook file and type the following code into a new cell. You will be using
the open() function in this step; don't worry too much about this, as you will be
explained about this in more detail later:

f = open('pg37431.txt')
text = f.read()
print(text)

You should get the following output:

Figure 4.2: Output showing the extracted content from the file

Note that you can scroll within the cell and check the entire content.

150 | Extending Python, Files, Errors, and Graphs

5.	 Now, in a new cell, type text only, without the print command, and you will get the
following output:

text

Figure 4.3: Output with the text-only command

The difference in the output between this cell and the previous cell, shown in Figures
4.2 and 4.3, is the presence of control characters. Using the print command helps us to
render the control characters while calling text shows the actual content and does not
render as the output.

In this exercise, you have learned how to read the content of the entire data sample file.

Moving ahead, you will take a look at the open() function that you used in this exercise.
It opens the file to let us access it. The open() function requires the name of the file you
want to open as the argument. If you provide a filename without the full path, Python
will look for the file in the same directory where it is currently running. In your case,
it looks for the text file under the same folder where our ipynb file is, and where the
Jupyter Notebook started. The open() function returns an object, which you store as f
(which represents "file"), and you use the read() function to extract its content.

You may also be wondering whether you need to close the file. The answer is that it
depends. Usually, when you call a read() function, you can assume that Python will
close the file automatically, either during garbage collection or at the program exit.
However, your program might end prematurely, and the file may never close. Files that
have not been closed properly can cause data to be lost or corrupted. However, calling
close() too early in our program will also lead to more errors. It's not always easy to
know exactly when you should close a file. However, with the structure shown here,
Python will figure that out for you. All you have to do is open the file and work with it as
desired, trusting that Python will close it automatically when the time is right.

Reading Files | 151

Although most of the data in the real world today is in the form of databases, and
content such as videos, audio, and images is stored using respective proprietary
formats, the use of text files is still important. They can be exchanged and opened in all
operating systems without requiring any special parser. In practical use cases, you use a
text file to record ongoing information, such as server logs in the IT world.

But what if you are dealing with a large file or you only need to access parts of the
content or read the file line by line? You should check this out in the next exercise.

Exercise 59: Reading Partial Content from a Text File

In this exercise, you will be using the same sample data file from Exercise 58, Reading
a Text File Using Python. Here, however, you will only be partially reading the content
from the text file:

1.	 Open a new Jupyter Notebook.

2.	 Copy the pg37431.txt text file that you used in Exercise 58 and save it in a separate
folder that will be used to execute this exercise.

3.	 Write the following code in a new cell to read the first 5 characters:

with open("pg37431.txt") as f:
 print(f.read(5))

You should get the following output:

The P

In this way, you include an argument to tell Python to read the first 5 characters
each time.

Notice that you use a with statement here. The with statement is a control flow
structure of Python. It guarantees that the preceding file object, f, will close
automatically after the code block exits, no matter how the nested block exits.

If an exception occurs before the end of the block, it will still close the file before
the exception is caught. Of course, it will close the file even if the nested block runs
successfully.

4.	 Now, access the text file by reading it line by line using the .readline function for
which you need to enter the following code in a new cell on your notebook:

with open("pg37431.txt") as f:
 print(f.readline())

152 | Extending Python, Files, Errors, and Graphs

You should get the following output of the very first line in the text file:

Figure 4.4: Output accessing the text line by line

By completing this exercise, you have learned the use of the control structure that is
used in Python to close a code block automatically. Doing so, you were able to access
the raw data text file and read it one line at a time.

Writing Files
Now that you have learned how to read the content of a file, you are going to learn
how to write content to a file. Writing content to a file is the easiest way for us to store
content in our database storage, save our data by writing it to a particular file, and
save data on our hard disk. This way, the output will still be available for us after you
close the terminal or terminate the notebook that contains our program output. This
will allow us to reuse the content later with the read() method that was covered in the
previous section, Reading Files.

You will still be using the open() method to write to a file, except when it requires an
extra argument to indicate how you want to access and write to the file.

For instance, consider the following:

f = open("log.txt","w+")

The preceding code snippet allows us to open a file in w+, a mode that supports both
reading and writing, that is updating the file. Other modes in Python include the
following:

•	 R: The default mode. This opens a file for reading.

•	 W: The write mode. This opens a file for writing, creates a new file if the file does
not exist, and overwrites the content if the file already exists.

•	 X: This creates a new file. The operation fails if the file exists.

•	 A: This opens a file in append mode, and creates a new file if a file does not exist.

•	 B: This opens a file in binary mode.

Now, you should take a look at the following exercise to write content to a file:

Writing Files | 153

Exercise 60: Creating and Writing Content to Files to Record the Date and

Time in a Text File

In this exercise, you will be writing content to a file. We are going to create a log file,
which records the value of our counter every second:

1.	 Open a new Jupyter Notebook.

2.	 In a new cell, type the following code:

f = open('log.txt', 'w')

From the code mentioned in this step of this exercise, you open the log.txt file in
write mode, which you will be using to write our values.

3.	 Now, in the next cell of your notebook, type the following code:

from datetime import datetime
import time
for i in range(0,10):
 print(datetime.now().strftime('%Y%m%d_%H:%M:%S - '),i)
 f.write(datetime.now().strftime('%Y%m%d_%H:%M:%S - '))
 time.sleep(1)
 f.write(str(i))
 f.write("\n")
f.close()

In this code block, you are importing the datetime and time modules that Python
provides us with. You are also using a for loop to print the year, month, and day,
as well as the hour, minutes, and seconds. You are using the write() function here
to add on to the previous condition; that is, every time the loop exits, the write
command prints a number in place of i.

You should get the following output:

Figure 4.5: Output with the write() function in use

154 | Extending Python, Files, Errors, and Graphs

4.	 Now, go back to the main page of your Jupyter Notebook, or browse to your Jupyter
Notebook folder using Windows Explorer or Finder (if you are using a Mac). You will
see the newly created log.txt file present:

Figure 4.6: The log file is created

5.	 Open the file inside Jupyter Notebook or your favorite text editor (for example,
Visual Studio Code or Notepad), and you should see content that is similar to the
following:

Figure 4.7: Content added to the log.txt file

You have now created your first text file. The example shown in this exercise is very
common in most data science processing tasks; for instance, recording the readings of
sensors and the progress of a long-running process.

The close() method at the very end makes sure that the file is closed properly and that
all content in the buffer is written to the file.

Preparing for Debugging (Defensive Code)
In the programming world, a bug refers to defects or problems that prevent code or
programs from running normally or as expected. Debugging is the process of finding
and resolving those defects. Debugging methods include interactive debugging, unit
testing, integration testing, and other types of monitoring and profiling practices.

Preparing for Debugging (Defensive Code) | 155

Defensive programming is a form of debugging approach that ensures the continuing
function of a piece of a program under unforeseen circumstances. Defensive
programming is particularly useful when you require our programs to have high
reliability. In general, you practice defensive programming to improve the quality of
software and source code, and to write code that is both readable and understandable.

By making our software behave in a predictable manner, you can use exceptions
to handle unexpected inputs or user actions that can potentially reduce the risk of
crashing our programs.

Writing Assertions

The first thing you need to learn about writing defensive code is how to write an
assertion. Python provides a built-in assert statement to use the assertion condition in
the program. The assert statement assumes the condition always to be true. It halts the
program and raises an AssertionError message if it is false.

The simplest code to showcase assert is mentioned in the following code snippet:

x = 2
assert x < 1, "Invalid value"

Here, since 2 is not smaller than 1, and the statement is false, it raises an AssertionError
message as follows:

Figure 4.8: Output showing AssertionError

Note

You can also write the assert function without the optional error message.

156 | Extending Python, Files, Errors, and Graphs

Next, you will take a look at how to use assert in a practical example.

Say that you want to calculate the average marks of a student in a semester. You need to
write a function to calculate the average, and you want to make sure that the user who
calls the function actually passes in the marks. You will explore how you can implement
this in the following exercise.

Exercise 61: Working with Incorrect Parameters to Find the Average Using

Assert with Functions

In this exercise, you will be using the assertion error with functions to check the
error message when you enter incorrect parameters to calculate the average marks of
students:

1.	 Continue in the previous Jupyter notebook.

2.	 Type the following code into a new cell:

def avg(marks):
 assert len(marks) != 0
 return round(sum(marks)/len(marks), 2)

Here, you created an avg function that calculates the average from a given list, and
you have used the assert statement to check for any incorrect data that will throw
the assert error output.

3.	 In a new cell, type the following code:

sem1_marks = [62, 65, 75]
print("Average marks for semester 1:",avg(sem1_marks))

In this code snippet, you provide a list and calculate the average marks using the
avg function.

You should get the following output:

Average marks for semester 1: 67.33

4.	 Next, test whether the assert statement is working by providing an empty list. In a
new cell, type the following code:

ranks = []
print("Average of marks for semester 1:",avg(ranks))

Plotting Techniques | 157

You should get the following output:

Figure 4.9: Assertion fails when we pass in an empty list

In the cell with the code where you provide 3 scores, the len(marks) !=0 statement
returns true, and therefore no AssertionError will be raised. However, in the next
cell, you did not provide any marks, and therefore it raises an AssertionError
message

In this exercise, you have used the AssertionError message to throw the output in case
it is incorrect or if missing data is provided. This has proved to be useful when, in the
real world, data can be of the incorrect format, and you can then use this to debug the
incorrect data.

Note that although assert behaves like a check or data validation tool, it is not. Asserts
in Python can be disabled globally to nullify all of the assert statements. Do not use
assert to check whether a function argument contains an invalid or unexpected value,
as this can quickly lead to bugs and security holes. The baseline is to treat Python's
assert statement like a debugging tool and not to use it for handling runtime errors.
The goal of using assertions is to let us detect a bug more quickly. An AssertionError
message should never happen unless there's a bug in your program. In the next section,
you will look at plotting functions to provide you with a visual output using Python.

Plotting Techniques
Unlike machines, humans are terrible at understanding data without graphics. Various
visualization techniques have been invented to make humans understand different
datasets. There are various types of graphs that you can plot, each with its own
strengths and weakness.

Each type of chart is only suitable for a certain scenario, and they shouldn't be mixed
up. For instance, to present dropped-out customer details for marketing scatter plots
is a good example. A scatter plot is suitable for visualizing a categorical dataset with
numeric values, and you will be exploring this further in the following exercise.

158 | Extending Python, Files, Errors, and Graphs

For the best presentation of your data, you should choose the right graph for the right
data. In the following exercises, you will be introduced to various graph types and
their suitability for different scenarios. You will also demonstrate how to avoid plotting
misleading charts.

You will plot each of these graphs in the following exercises and observe the changes in
these graphs.

Note

These exercises require external libraries such as seaborn and matplotlib. Please
refer to the Preface section of this chapter to find out how to install these libraries.

In some installations of Jupyter, graphs do not show automatically. Use the
%matplotlib inline command at the beginning of your notebook to get around
this.

Exercise 62: Drawing a Scatter Plot to Study the Data between Ice Cream

Sales versus Temperature

In this exercise, you will be aiming to get scatter plots as the output using sample
data from the ice cream company to study the growth in the sale of ice cream against
varying temperature data:

1.	 Begin by opening a new Jupyter Notebook file.

2.	 Enter the following code to import the matplotlib, seaborn, and numpy libraries with
the following alias:

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

You should take a look at the following example. Imagine you are assigned to
analyze the sales of a particular ice cream outlet with a view to studying the effect
of temperature on ice cream sales.

3.	 Prepare the dataset, as specified in the following code snippet:

temperature = [14.2, 16.4, 11.9, 12.5, 18.9, 22.1, 19.4, 23.1, 25.4, 18.1, 22.6,
17.2]
sales = [215.20, 325.00, 185.20, 330.20, 418.60, 520.25, 412.20, 614.60, 544.80,
421.40, 445.50, 408.10]

Plotting Techniques | 159

4.	 Plot the lists using the scatter plot:

plt.scatter(temperature, sales, color='red')
plt.show()

You should get the following output:

Figure 4.10: Output as the scatterplot with the data of the ice cream temperature and sales data

Our plot looks fine, but only to our eyes. Anyone who has just seen the chart
will not have the context and will not understand what the chart is trying to tell
them. Before we go on to introduce other plots, it is useful for you to learn how to
edit your plots and include additional information that will help your readers to
understand it.

5.	 Add a title command to your plot, as well as the x-axis (horizontal) and y-axis
(vertical) labels. Then, add the following lines before the plt.show() command:

plt.title('Ice-cream sales versus Temperature')
plt.xlabel('Sales')
plt.ylabel('Temperature')
plt.scatter(temperature, sales, color='red')
plt.show()

160 | Extending Python, Files, Errors, and Graphs

You should get the following output:

Figure 4.11: Updated scatter plot of ice cream sales versus temperature

Our chart is now easier to understand. In this exercise, you used the sample ice cream
sales versus temperature dataset and used the data to create a scatter plot that will be
easier to understand for another user.

However, what if your dataset is a time-based dataset? In that case, you will usually
use a line plot. Some examples of a line plot include the plotting of heart rate, the
visualization of population growth against time, or even the stock market. By creating a
line plot, you are able to understand the trend and seasonality of data.

In the following exercise, you will be outputting the line chart, which corresponds to
the time (that is, the number of days) and the price. For this, you will be plotting out
stock prices.

Exercise 63: Drawing a Line Chart to Find the Growth in Stock Prices

In this exercise, you will be plotting the stock prices of a well-known company. You will
be plotting this as a line chart that will be plotted as the number of days against the
growth in price.

1.	 Open a new Jupyter Notebook.

2.	 Enter the following code in a new cell to initialize our data as a list:

stock_price = [190.64, 190.09, 192.25, 191.79, 194.45, 196.45, 196.45, 196.42,
200.32, 200.32, 200.85, 199.2, 199.2, 199.2, 199.46, 201.46, 197.54, 201.12, 203.12,
203.12, 203.12, 202.83, 202.83, 203.36, 206.83, 204.9, 204.9, 204.9, 204.4, 204.06]

Plotting Techniques | 161

3.	 Now, use the following code to plot the chart, configure the chart title, and
configure the titles of the axes:

import matplotlib.pyplot as plt
plt.plot(stock_price)
plt.title('Opening Stock Prices')
plt.xlabel('Days')
plt.ylabel('$ USD')
plt.show()

In the preceding code snippet, you are adding a title to the graph, and adding the
number of days to the x axis and the price to the y axis.

Execute the cell twice, and you should see the following chart as the output:

Figure 4.12: Line chart for opening stock prices

If you've noticed that the number of days in our line plot starts at 0, you have sharp
eyes. Usually, you start your axes at 0, but in this case, it represents the day, so you
have to start from 1 instead. You can fix these issues.

4.	 You can fix this by creating a list that starts with 1 to 31, representing the days in
March:

t = list(range(1, 31))

162 | Extending Python, Files, Errors, and Graphs

5.	 Plot this together with the data. You can also define the numbers on the x axis
using xticks:

plt.plot(t, stock_price, marker='.', color='red')
plt.xticks([1, 8, 15, 22, 28])

The complete code with the underlined changes is shown here:

stock_price = [190.64, 190.09, 192.25, 191.79, 194.45, 196.45, 196.45, 196.42,
200.32, 200.32, 200.85, 199.2, 199.2, 199.2, 199.46, 201.46, 197.54, 201.12, 203.12,
203.12, 203.12, 202.83, 202.83, 203.36, 206.83, 204.9, 204.9, 204.9, 204.4, 204.06]
t = list(range(1, 31))

import matplotlib.pyplot as plt
plt.title('Opening Stock Prices')
plt.xlabel('Days')
plt.ylabel('$ USD')

plt.plot(t, stock_price, marker='.', color='red')
plt.xticks([1, 8, 15, 22, 28])
plt.show()

You should get the following output:

Figure 4.13: Updated line chart with customized line color, marker, and date range

Plotting Techniques | 163

In this exercise, you learned how to generate a line graph that displays the output based
on time. In the next exercise, you will learn how to plot bar graphs, which is another
useful visualization for displaying categorical data.

Exercise 64: Plotting Bar Plots to Grade Students

A bar plot is a straightforward chart type. It is great for visualizing the count of items in
different categories. When you get the final output for this exercise, you may think that
histograms and bar plots look the same. But that's not the case. The main difference
between a histogram and a bar plot is that there is no space between the adjacent
columns in a histogram. You will take a look at how to plot a bar graph.

In this exercise, you will draw bar charts to display the data of students and
corresponding bar plots as a visual output.

1.	 Open a new Jupyter Notebook file.

2.	 Type the following code into a new cell, to initialize the dataset:

grades = ['A', 'B', 'C', 'D', 'E', 'F']
students_count = [20, 30, 10, 5, 8, 2]

3.	 Plot the bar chart with our dataset and customize the color command:

import matplotlib.pyplot as plt
plt.bar(grades, students_count, color=['green', 'gray', 'gray', 'gray', 'gray',
'red'])

Execute the cell twice, and you should get the following output:

Figure 4.14: Output showing the number of students without any labels on the plot

164 | Extending Python, Files, Errors, and Graphs

Here, you define two lists: the grades list stores the grades, which you use as the
x-axis, and the students_count list stores the number of students who score a
respective grade. Then, you use the plt plotting engine and the bar command to
draw a bar chart.

4.	 Enter the following code to add the main title and the axis titles to our chart for
better understanding. Again, you use the show() command to display the rendered
chart:

plt.title('Grades Bar Plot for Biology Class')
plt.xlabel('Grade')
plt.ylabel('Num Students')
plt.bar(grades, students_count, color=['green', 'gray', 'gray', 'gray', 'gray',
'red'])
plt.show()

Execute the cell, and you will get the following chart as the output:

Figure 4.15: Bar plot graph outputting the grade and number of students with labels

Sometimes, it is easier to use horizontal bars to represent relationships. What you
have to do is to change the bar function to .barh.

5.	 Enter the following code in a new cell and observe the output:

plt.barh(grades, students_count, color=['green', 'gray', 'gray', 'gray', 'gray',
'red'])

Plotting Techniques | 165

You should get the following output:

Figure 4.16: Horizontal bar plots

In this exercise, you implemented a sample list of data and outputting data as bar
graphs; these bar graphs were shown as vertical bars and horizontal bars as well. This
could vary depending on your usage.

In the next exercise, you will be implementing pie charts that many organizations use
to pictorially classify their data. Pie charts are good for visualizing percentages and
fractional data; for instance, the percentage of people who agree or disagree on some
opinions, the fractional budget allocation for a certain project, or the results of an
election.

However, a pie chart is often regarded as not a very good practice by many analysts and
data scientists for the following reasons:

•	 Pie charts are often overused. Many people use pie charts without understanding
why they should use them.

•	 A pie chart is not effective for comparison purposes when there are many
categories.

•	 It is easier not to use a pie chart when the data can simply be presented using
tables or even written words.

166 | Extending Python, Files, Errors, and Graphs

Exercise 65: Creating a Pie Chart to Visualize the Number of Votes in a School

In this exercise, you will plot a pie chart on the number of votes for each of the three
candidates in an election for club president:

1.	 Open a new Jupyter Notebook.

2.	 Type the following code into a new cell by setting up our data:

Plotting
labels = ['Monica', 'Adrian', 'Jared']
num = [230, 100, 98] # Note that this does not need to be percentages

3.	 Draw a pie chart by using the pie() method, and then set up colors:

import matplotlib.pyplot as plt
plt.pie(num, labels=labels, autopct='%1.1f%%', colors=['lightblue', 'lightgreen',
'yellow'])

4.	 Add title and display the chart:

plt.title('Voting Results: Club President', fontdict={'fontsize': 20})
plt.pie(num, labels=labels, autopct='%1.1f%%', colors=['lightblue', 'lightgreen',
'yellow'])
plt.show()

You should get the following output:

Figure 4.17: Pie chart with three categories

Having completed this exercise, you are now able to generate data as a pie chart. This
type of representation is the best visual aid that many organizations use when sorting
out data.

Plotting Techniques | 167

In the next exercise, you will be implementing a heatmap visualization. Heatmaps are
useful for showing the relationship between two categorical properties; for instance,
the number of students who passed exams in three different classes. Now you will
follow an exercise and learn how to draw a heatmap visualization.

Exercise 66: Generating a Heatmap to Visualize the Grades of Students

In this exercise, you will be generating a heatmap:

1.	 Open a new Jupyter Notebook.

2.	 Now, type in the following code snippet to define a heatmap function. First, you
prepare the plot:

def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="",
**kwargs):
 if not ax:
 ax = plt.gca()
 im = ax.imshow(data, **kwargs)

3.	 Define the color bar as colorbar, as mentioned in the following code snippet:

 cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
 cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")

4.	 Show all ticks and label them with their respective list entries:

 ax.set_xticks(np.arange(data.shape[1]))
 ax.set_yticks(np.arange(data.shape[0]))
 ax.set_xticklabels(col_labels)
 ax.set_yticklabels(row_labels)

5.	 Configure the horizontal axes for the labels to appear on top of the plot:

 ax.tick_params(top=True, bottom=False,
 labeltop=True, labelbottom=False)

6.	 Rotate the tick labels and set their alignments:

 plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
 rotation_mode="anchor")

168 | Extending Python, Files, Errors, and Graphs

7.	 Turn off spine and create a white grid for the plot, as mentioned in the following
code snippet:

 for edge, spine in ax.spines.items():
 spine.set_visible(False)

 ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
 ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
 ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
 ax.tick_params(which="minor", bottom=False, left=False)

8.	 Return the heatmap:

 return im, cbar

This is the code you obtain directly from the matplotlib documentation. The
heatmap functions help to generate a heatmap.

9.	 Execute the cell, and, in the next cell, enter and execute the following code. You
define a numpy array to store our data and plot the heatmap using the functions
defined previously:

import numpy as np
import matplotlib.pyplot as plt
data = np.array([
 [30, 20, 10,],
 [10, 40, 15],
 [12, 10, 20]
])
im, cbar = heatmap(data, ['Class-1', 'Class-2', 'Class-3'], ['A', 'B', 'C'],
cmap='YlGn', cbarlabel='Number of Students')

You can see that the heatmap is quite plain without any textual information to
help our readers understand the plot. You will now continue the exercise and add
another function that will help us to annotate our heatmap visualization.

Plotting Techniques | 169

10.	 Type and execute the following code in a new cell:

Exercise66.ipynb

def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
 textcolors=["black", "white"],
 threshold=None, **textkw):
 import matplotlib
 if not isinstance(data, (list, np.ndarray)):
 data = im.get_array()
 if threshold is not None:
 threshold = im.norm(threshold)
 else:
 threshold = im.norm(data.max())/2.
 kw = dict(horizontalalignment="center",
 verticalalignment="center")
 kw.update(textkw)
 if isinstance(valfmt, str):
 valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)

https://packt.live/2ps1byv

Note

If the above link does not render, use https://nbviewer.jupyter.org/

11.	 In the new cell, type and execute the following code:

im, cbar = heatmap(data, ['Class-1', 'Class-2', 'Class-3'], ['A', 'B', 'C'],
cmap='YlGn', cbarlabel='Number of Students')
texts = annotate_heatmap(im, valfmt="{x}")

This will annotate the heatmap and give us the following output:

Figure 4.18: Heatmap output from the sample data

170 | Extending Python, Files, Errors, and Graphs

Note that you put our data in a numpy array (np.array). This is because the methods you
are going to call expect a numpy array.

Next, you plotted our heatmap using the heatmap method. You passed in our data, the
row labels, ['Class-1', 'Class-2', 'Class-3'], and then our column labels, ['A', 'B',
'C']. You also pass in YlGn as cmap, which means you want to use the color yellow for
small values, and the color green for big values. You pass in cbarlabel as Number of
Students to denote that the values we are plotting represent the number of students.
Lastly, you annotate our heatmap with the data (30, 20, 10…).

So far, you have learned how to visualize discrete categorical variables using heatmaps
and bar plots. But what if you want to visualize a continuous variable? For example,
instead of the grades of students, you want to plot the distribution of scores. For this
type of data, you should use a density distribution plot, which you will look at in the
next exercise.

Exercise 67: Generating a Density Plot to Visualize the Score of Students

In this exercise, you will be generating a density plot from a list of sample data:

1.	 Begin by continuing from the previous Jupyter Notebook file.

2.	 Enter the following code into a new cell, set up the data, and initialize the plot:

import seaborn as sns
data = [90, 80, 50, 42, 89, 78, 34, 70, 67, 73, 74, 80, 60, 90, 90]
sns.distplot(data)

You have imported the seaborn module, which is explained later in this exercise,
and then created a list as data. sns.displot is used to plot the data as a density plot.

3.	 Configure the title and axes labels:

import matplotlib.pyplot as plt
plt.title('Density Plot')
plt.xlabel('Score')
plt.ylabel('Density')
sns.distplot(data)
plt.show()

Plotting Techniques | 171

You should get the following output:

Figure 4.19: Density plot output from the sample data

So far, in this exercise, you have used the seaborn library, which is a data visualization
library based on matplotlib. It provides a high-level interface for drawing appealing
visual graphs and supports chart types that do not come with matplotlib. For example,
you use the seaborn library for density plots simply because it is not available in
matplotlib.

In this exercise, you were able to implement and output the density plot graph, as
shown in Figure 4.19, from the list sample data we inputted.

If you were to do it using matplotlib, you would need to write a separate function that
calculates the density. To make things easier and create density plots using seaborn.
The line in the chart is drawn using kernel density estimation (KDE). KDE estimates
the probability density function of a random variable, which, in this case, is the score of
students.

In the next exercise, you will be implementing contour plots. Contour plots are suitable
for visualizing large and continuous datasets. A contour plot is like a density plot with
two features. In the following exercise, you will examine how to plot a contour plot
using sample weight data.

172 | Extending Python, Files, Errors, and Graphs

Exercise 68: Creating a Contour Plot

In this exercise, you will be using the sample dataset of the different weights of people
to output a contour plot:

1.	 Open a new Jupyter Notebook.

2.	 Initialize the weight recording data using the following code in a new cell:

weight=[85.08,79.25,85.38,82.64,80.51,77.48,79.25,78.75,77.21,73.11,82.03,82.54,74.6
2,79.82,79.78,77.94,83.43,73.71,80.23,78.27,78.25,80.00,76.21,86.65,78.22,78.51,79.6
0,83.88,77.68,78.92,79.06,85.30,82.41,79.70,80.16,81.11,79.58,77.42,75.82,74.09,78.3
1,83.17,75.20,76.14]

3.	 Now, draw the plot using the following code. Execute the cell twice:

import seaborn as sns
sns.kdeplot(list(range(1,45)),weight, kind='kde', cmap="Reds",)

4.	 Add legend, title, and axis labels to the plot:

import matplotlib.pyplot as plt
plt.legend(labels=['a', 'b'])
plt.title('Weight Dataset - Contour Plot')
plt.ylabel('height (cm)')
plt.xlabel('width (cm)')
sns.kdeplot(list(range(1,45)),weight, kind='kde', cmap="Reds",)

5.	 Execute the code and you will see the following output:

Figure 4.20: Contour plot output using the weight dataset

Plotting Techniques | 173

By the end of this exercise, you learned to output a contour graph from a dataset.

Compare this with the scatter plot that we have implemented before in Exercise 62,
Drawing a Scatter Plot. Which chart type do you think is easier for us to visualize the
data?

Extending Graphs

Sometimes, you will need to show multiple charts in the same figure for comparison
purposes, or to extend the depth of the story that you are telling. For instance, in an
election, you want one chart that shows the percentage, and another chart that shows
the actual votes. You will now take a look at how you can use subplots in matplotlib in
the following example.

Note that the following code is shown in multiple plots.

Note

You will use ax1 and ax2 to plot our charts now, instead of plt.

To initialize the figure and two axis objects, execute the following command:

import matplotlib.pyplot as plt
Split the figure into 2 subplots
fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(121) # 121 means split into 1 row , 2 columns, and put in 1st part.
ax2 = fig.add_subplot(122) # 122 means split into 1 row , 2 columns, and put in 2nd part.

The following code plots the first subplot, which is a pie chart:

labels = ['Adrian', 'Monica', 'Jared']
num = [230, 100, 98]
ax1.pie(num, labels=labels, autopct='%1.1f%%', colors=['lightblue', 'lightgreen',
'yellow'])
ax1.set_title('Pie Chart (Subplot 1)')

174 | Extending Python, Files, Errors, and Graphs

Now, plot the second subplot, which is a bar chart:

Plot Bar Chart (Subplot 2)
labels = ['Adrian', 'Monica', 'Jared']
num = [230, 100, 98]
plt.bar(labels, num, color=['lightblue', 'lightgreen', 'yellow'])
ax2.set_title('Bar Chart (Subplot 2)')
ax2.set_xlabel('Candidate')
ax2.set_ylabel('Votes')
fig.suptitle('Voting Results', size=14)

This will produce the following output:

Figure 4.21: Output showing a pie chart and a bar chart with the same data next to each other

Note

If you want to try out the previously mentioned code example, be sure to put
all the code in a single input field in your Jupyter Notebook in order for both the
outputs to be shown next to one another.

In the following exercise, you will be using matplotlib to output 3D plots.

Plotting Techniques | 175

Exercise 69: Generating 3D plots to Plot a Sine Wave

Matplotlib supports 3D plots. In this exercise, you will plot a 3D sine wave using sample
data:

1.	 Open a new Jupyter Notebook file.

2.	 Now, type the following code into a new cell and execute the code:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
X = np.linspace(0, 10, 50)
Y = np.linspace(0, 10, 50)
X, Y = np.meshgrid(X, Y)
Z = (np.sin(X))

Setup axis
fig = plt.figure(figsize=(7,5))
ax = fig.add_subplot(111, projection='3d')

First, you import the mplot3d package. The mplot3d package adds 3D plotting
capabilities by supplying an axis object that can create a 2D projection of a 3D
scene. Next, you will be initializing data and setting up our drawing axis.

3.	 You will use the plot_surface() function to plot the 3D surface chart and configure
the title and axes labels:

ax.plot_surface(X, Y, Z)

Add title and axes labels
ax.set_title("Demo of 3D Plot", size=13)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

Note

Enter the preceding code in a single input field in your Jupyter Notebook, as shown
in Figure 4.22.

176 | Extending Python, Files, Errors, and Graphs

Execute the cell twice, and you should get the following output:

Figure 4.22: 3D plot of demo data using matplotlib

In this exercise, you were successfully able to implement a very interesting feature
provided by matplotlib; that is, the 3D plot, which is an added feature in Python
visualizations.

The Don'ts of Plotting Graphs
In newspapers, blogs, or social media there are a lot of misleading graphs that make
people misunderstand the actual data. You will be going through some of these
examples and learn how to avoid them.

The Don'ts of Plotting Graphs | 177

Manipulating the Axis

Imagine you have three students with three different scores from an exam. Now, you
have to plot their scores on a bar chart. There are two ways to do this: the misleading
way, and the right way:

Figure 4.23: Chart A (starts from 80) and Chart B (starts from 0)

Looking at Chart A, it will be interpreted that the score of student A is about 10 times
higher than student B and student C. However, that is not the case. The scores for
the students are 96, 81, and 80, respectively. Chart A is misleading because the y-axis
ranges from 80 to 100. The correct y-axis should range from 0 to 100, as in Chart B.
This is simply because the minimum score a student can get is 0, and the maximum
score a student can get is 100. The scores of students B and C are actually just slightly
lower compared to student A.

Cherry Picking Data

Now, you will have a look at the opening stock prices:

Figure 4.24: Chart A (shows only 7 days) and Chart B (shows the entire month)

178 | Extending Python, Files, Errors, and Graphs

Chart A, with the title AAPL Opening Stock Prices (April 2019), shows a declining trend
on Apple® stock prices. However, the chart is only showing the last 7 days of April. The
title of the chart is mismatched with the chart. Chart B is the correct chart, as it shows
a whole month of stock prices. As you can see, cherry-picking the data can give people
a different perception of the reality of the data.

Wrong Graph, Wrong Context

You can have a look at two graphs that show a survey to demolish an old teaching
building:

Figure 4.25: A pie chart versus a column chart

Using the wrong graph can give readers the wrong context to understand the data.
Here, Chart A uses a pie chart to make readers think that the students want to demolish
the old teaching building. However, as you can see in Chart B, the majority (95%) of the
students voted to not demolish the old teaching building. The pie chart should only be
used when every piece of the pie adds up to 100%. In this case, a bar chart is better at
visualizing the data.

The Don'ts of Plotting Graphs | 179

Activity 13: Visualizing the Titanic Dataset Using a Pie Chart and Bar Plots

Charts are not only a useful visualization device in presentations and reports; they also
play a crucial role in Exploratory Data Analysis (EDA). In this activity, you will learn how
to explore a dataset using visualizations.

In this activity, you will be using the famous Titanic dataset. Here, you will focus on
plotting the expected data. The steps to load the dataset will be covered in the later
chapters of this book. For this activity, the steps that you need to complete are as
follows.

Note

In this activity, we will be using the Titanic dataset. This titanic_train.csv
dataset CSV file is uploaded to our GitHub repository and can be found at https://
packt.live/31egRmb.

Follow these steps to complete this activity:

1.	 Load the CSV file.

To load the CSV file, add in the code, as mentioned in the following code snippet:

import csv
lines = []
with open('titanic_train.csv') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=',')
 for line in csv_reader:
 lines.append(line)

2.	 Prepare a data object that stores all the passengers details using the following
variables:

data = lines[1:]
passengers = []
headers = lines[0]

3.	 Now, create a simple for loop for the d variable in data, which will store the values
in a list.

180 | Extending Python, Files, Errors, and Graphs

4.	 Extract the following fields into their respective lists: survived, pclass, age, and
gender for the passengers who survived:

survived = [p['Survived'] for p in passengers]
pclass = [p['Pclass'] for p in passengers]
age = [float(p['Age']) for p in passengers if p['Age'] != '']
gender_survived = [p['Sex'] for p in passengers if int(p['Survived']) == 1]

5.	 Based on this, your main goal and output will be to generate plots according to the
requirements mentioned here:

•	 Visualize the proportion of passengers that survived the incident (in a pie chart).

You should get the following output:

Figure 4.26: A pie chart showing the survival rate of the passengers

•	 Compare the gender of passengers who survived the incident (in a bar plot).

Summary | 181

You should get the following output:

Figure 4.27: A bar plot showing the variation in the gender of those who survived the incident

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you looked at how to read and write to a text file using Python, followed
by using assertions in defensive programming, which is a way of debugging your code.
Finally, you explored different types of graphs and charts to plot data. You discussed
the suitability of each plot for different scenarios and datasets, giving suitable examples
along the way. You also discussed how to avoid plotting charts that could be misleading.

In the next chapter, you will learn how to use Python to write Object-Oriented
Programming (OOP) codes. This includes creating classes, instances, and using write
subclasses that inherit the property of the parent class and extending functionalities
using methods and properties.

Constructing Python –
Classes and Methods

Overview

By the end of this chapter, you will be able to Use class and instance attributes
to distinguish between attributes; use instance methods to perform calculations
based on the instance attributes of an object; use static methods to write small
utility functions to refactor code in a class to avoid repetition; use property setters
to handle the assignment of values to computed properties and perform validation
and create classes that inherit methods and attributes from other classes.

5

184 | Constructing Python – Classes and Methods

Introduction
In Chapter 4, Extending Python, Files, Errors, and Graphs, you began to move beyond
the basic and fundamental, into writing defensive code and anticipating potential
issues. In this chapter, you are introduced to one of the cornerstones of object-oriented
programming (OOP): classes. Classes contain the definition of the objects we work
with. All objects you work with in OOP are defined by a class, either in your code,
or in a python library. So far in this course we have been using this, but we have not
discussed how to extend and customize the behavior of objects. In this chapter you
start with objects you are familiar with and build on these by introducing the concept of
classes.

Perhaps you have been working with a string object in Python. What exactly is a string?
What sort of things can you do with strings? Are there things you'd like to be able to do
with strings that Python's string object doesn't allow? Can you customize the behavior
of this object somehow? This chapter will answer these questions by exploring classes.
Writing classes will unlock a world of possibilities, in which you'll be able to elegantly
modify and combine code from external sources to fit your requirements.

For example, say you find a third-party library for managing calendars that you want to
incorporate into your organization's internal application. You will want to inherit classes
from the library and override methods/properties in order to use the code as per your
particular context. So, you can see how methods can come in handy.

Your code will become increasingly more intuitive and readable, and your logic will be
more elegantly encapsulated according to the Do Not Repeat Yourself (DRY) principle,
which will be explained later in the chapter.

Classes and Objects
Classes are fundamental to object-oriented programming languages such as Python.
A class is simply a template for creating objects. Classes define an object's various
properties and specify the things you can do with that object. So far in this book, you
have been relying on classes defined in the Python standard library or built into the
Python programming language itself. For example, in Exercise 37, Finding the System
Date of Chapter 3, Executing Python – Programs, Algorithms, and Functions, you used the
datetime class to retrieve the current date. You will start off by exploring some more
of the classes you've already been using. This can be performed in a Python shell or
Jupyter Notebook.

Classes and Objects | 185

Create a new integer object called x in a Python console:

>>> x = 10
>>> x
10

You can see the class that x was created from by calling the type function:

>>> type(x)
<class 'int'>

The integer class doesn't just let you store a single number – our x object has other
properties, too:

>>> x.bit_length()
4

This method computes the number of binary digits needed to represent x as a binary
number (1010).

As you learned in Chapter 3, Executing Python – Programs, Algorithms, and Functions,
you can also view the docstring to read about this object and its class:

>>> print(x.__doc__)
int([x]) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a
number, return x.__int__(). For floating point numbers, this truncates towards zero.

So, you can see that even the simplest objects in Python, such as strings, have many
interesting properties and methods that can be used to retrieve information about the
object or perform some computation with the object. When you reach a point in your
programming where you want to customize the behavior of these methods, or perhaps
create a new type of object entirely, you will need to start writing your own classes. For
example, perhaps instead of a string object, you want a name object that has a string as
its main property and also contains methods that allow you to translate the name into
other languages.

186 | Constructing Python – Classes and Methods

Exercise 70: Exploring Strings

Many of our examples and exercises so far have involved strings. In this exercise, you
go beyond the text that a string object can store and look at the other properties and
methods available in this class.

The aim of the exercise is to demonstrate that the string objects you are already familiar
with have many other methods and properties that you might not have been aware of.
This exercise can be performed in a Jupyter Notebook:

1.	 Define a new string:

my_str = 'hello World!'

2.	 Check what class our object has:

type(my_str)

You should get the following output:

str

3.	 View the docstring of the str class:

print(my_str.__doc__)

You should get the following output:

Figure 5.1: The docstring of the str class

4.	 View the full list of properties and methods of my_str:

my_str.__dir__()

Classes and Objects | 187

You should get the following output:

Figure 5.2: Complete list of the properties and methods of my_str

Note

The output in the preceding figure is truncated.

5.	 You will see the results of a few of the preceding methods:

my_str.capitalize()

You should get the following output:

'Hello world!'

Now to get the output in the uppercase:

my_str.upper()

188 | Constructing Python – Classes and Methods

You should get the following output:

'HELLO WORLD!'

Now to get the output in the lowercase without any spacing:

my_str.replace(' ', '')

You should get the following output:

'helloworld!'

In this exercise, you explored the various properties of a string object in Python. The
purpose here was to illustrate that you are already working with objects that don't just
represent simple data types but have more complex definitions. You will now turn to
creating templates to build our own custom objects using classes.

Defining Classes
Built-in classes and classes imported from Python packages are sometimes sufficient
for our requirements. However, often you want to invent a new type of object because
there isn't an object in the standard libraries that has the properties/methods that you
require. Recall that a class is like a template for creating a new object.

For example, create a new class called Australian:

>>> class Australian():
 is_human = True
 enjoys_sport = True

You now have a new template for creating Australian objects (or people, if you prefer).
Our code assumes that all new Australians will be human and enjoy sport.

You will firstly create a new Australian:

>>> john = Australian()

Check the class of our Australian:

>>> type(john)
<class '__main__.Australian'>

You will also view some of John's attributes:

>>> john.is_human
True
>>> john.enjoys_sport
True

Defining Classes | 189

The is_human and enjoys_sport attributes are called class attributes. Class attributes
do not change between objects of the same class. For example, let's create another
Australian:

>>> ming = Australian()

Ming is also human and enjoys sport. We will soon learn about instance attributes,
which can vary between objects created by a class.

Exercise 71: Creating a Pet Class

The aim of this exercise is to create our first class. You will create a new class called Pet
with class attributes and a docstring. You will also create instances of this class:

1.	 Define a Pet class with two class attributes and a docstring:

class Pet():
 """
 A class to capture useful information regarding my pets, just incase
 I lose track of them.
 """
 is_human = False
 owner = 'Michael Smith'

2.	 Create an instance of this class:

chubbles = Pet()

3.	 Check the is_human properties of our new pet, chubbles:

chubbles.is_human

You should get the following output:

False

4.	 Check the owner:

chubbles.owner
print(chubbles.__doc__)

190 | Constructing Python – Classes and Methods

You should get the following output:

Figure 5.3: Output showing Chubbles is owned by Michael Smith and the output of a class to capture
useful information

In this exercise, you created our first class and examined the properties of an object
created with our new class.

The __init__ method
In Exercise 71, Creating a Pet Class, you used our Pet class to create a Pet object called
chubbles in the following manner:

chubbles = Pet()

Here, you'll explore more about what happens when you create objects from a class in
this manner.

Python has a special method called __init__, which is called when you initialize an
object from one of our class templates. For example, building on the previous exercise,
suppose you wanted to specify the height of our Pet. We would add an __init__ method
as follows:

class Pet():
 """
 A class to capture useful information regarding my pets, just incase
 I lose track of them.
 """
 def __init__(self, height):
 self.height = height

 is_human = False
 owner = 'Michael Smith'

The init method takes the height value and assigns it as an attribute of our new object.
You can test this as follows:

chubbles = Pet(height=5)
chubbles.height
out: 5

The __init__ method | 191

Exercise 72: Creating a Circle Class

The aim of this exercise is to use the init method. You create a new class called Circle
with an init method that allows us to specify the radius and color of a new Circle
object. You then use this class to create two circles:

1.	 Create a Circle class with a class attribute called is_shape:

class Circle():
 is_shape = True

2.	 Add an init method to our class, allowing us to specify the radius and color of the
specific circle:

class Circle():
 is_shape = True

 def __init__(self, radius, color):
 self.radius = radius
 self.color = color

3.	 Initialize two new Circle objects with different radii and colors:

first_circle = Circle(2, 'blue')
second_circle = Circle(3, 'red')

You should have a look at some of the attributes of the Circle objects:

Figure 5.4: Checking the attributes of our circles

192 | Constructing Python – Classes and Methods

In this exercise, you learned how to use the init method to set instance attributes.

Note

Any Circle objects created from our Circle class will always have is_shape =
True, but may have different radii and colors. This is because is_shape is a class
attribute defined outside of the init method, and radius and color are instance
attributes set in the init method.

Keyword Arguments

As we learned in Chapter 3, Executing Python – Programs, Algorithms, and Functions,
in the Basic Functions section, there are two types of arguments that can go into
functions: positional arguments and keyword arguments (kwarg). Recall that positional
arguments are listed first, and must be specified when calling the function, whereas
keyword arguments are optional:

Figure 5.5: Args and Kwargs

The examples so far in this chapter have just contained positional arguments. However,
you may want to provide a default value for an instance attribute. For example, you can
take your previous example and add a default value for color:

class Circle():
 is_shape = True

 def __init__(self, radius, color='red'):
 self.radius = radius
 self.color = color

Now, if you initialize a circle without specifying a color, it will default to red:

my_circle = Circle(23)
my_circle.color

You should get the following output:

'red'

The __init__ method | 193

Exercise 73: The Country Class with Keyword Arguments

The aim of this exercise is to use keyword arguments to allow optional instance
attribute inputs to be specified in the init function.

You create a class called Country, where there are three optional attributes that can be
passed in the init method:

1.	 Create the Country class with three keyword arguments to capture details about the
Country object:

class Country():
 def __init__(self, name='Unspecified', population=None, size_kmsq=None):
 self.name = name
 self.population = population
 self.size_kmsq = size_kmsq

2.	 Initialize a new Country, noting that the order of parameters does not matter
because you are using named arguments:

usa = Country(name='United States of America', size_kmsq=9.8e6)

Note

Here 'e' is shorthand for '10 to the power of'. For instance, 2e4 == 2 * 10 ^ 4 ==
20000

3.	 Use the __dict__ method to view a list of the attributes of the usa object:

usa.__dict__

You should get the following output:

Figure 5.6: Dictionary output of our usa object

In this exercise, you learned how keyword arguments can be used when initializing an
object with a class.

194 | Constructing Python – Classes and Methods

Methods
You have already come across one special method, the init method. However, the
power of classes will start to become more obvious to you as you begin writing our own
custom methods. There are three types of methods you will explore in the following
sections:

•	 Instance methods

•	 Static methods

•	 Class methods

Instance Methods

Instance methods are the most common type of method you will need to use. They
always take self as the first positional argument. The __init__ method discussed in the
previous section is an example of an instance method.

Here is another example of an instance method, extending our Circle class from
Exercise 72, Creating a Circle Class:

import math
class Circle():
 is_shape = True

 def __init__(self, radius, color='red'):
 self.radius = radius
 self.color = color

 def area(self):
 return math.pi * self.radius ** 2

The area method will use the radius attribute of the circle to compute the area of the
circle using the following formula, which you may recall from math classes:

Figure 5.7: Formula to calculate the area of a circle

You can now test the area method:

circle = Circle(3)
circle.area()

Methods | 195

You should get the following output:

28.274333882308138

As you may have realized by now, self represents the instance (that is, the object)
within the method. This is always the first positional argument of an instance method,
and Python passes it to the function without you needing to do anything. So, in the
preceding example, when you call the area function, behind the scenes, Python passes
the circle object through as the first argument.

This is necessary because it allows you to access other attributes and methods of our
Circle object within the method.

Note the elegance of being able to change the radius of our circle without needing to
worry about updating the area.

For example, taking our previously defined circle object, let's change the radius from 3
to 2:

circle.radius = 2
circle.area()

You should get the following output:

12.566370614359172

If you had set area as an attribute of Circle, you would need to update it each time the
radius changed. However, writing it as a method where it is expressed as a function of
the radius makes your code more maintainable.

Exercise 74: Adding an Instance Method to Our Pet Class

The aim of this exercise is to add our first instance method to a class in order to
determine whether or not our pet should be considered tall.

You will continue and add an instance method to the Pet class created in Exercise 71,
Creating a Pet Class:

1.	 Start with your previous definition of Pet:

class Pet():
 def __init__(self, height):
 self.height = height

 is_human = False
 owner = 'Michael Smith'

196 | Constructing Python – Classes and Methods

2.	 Add a new method that allows you to check whether your pet is tall or not, where
your definition of tall is where Pet has a height of at least 50:

class Pet():
 def __init__(self, height):
 self.height = height

 is_human = False
 owner = 'Michael Smith'

 def is_tall(self):
 return self.height >= 50

3.	 Now, create a Pet and check whether he is tall:

bowser = Pet(40)
bowser.is_tall()

You should get the following output:

False

4.	 Now suppose that Bowser grows. Then you need to update his height and check
again whether he is tall:

bowser.height = 60
bowser.is_tall()

You should get the following output:

True

Adding Arguments to Instance Methods

The preceding example showed an instance method that took only the positional
self parameter. Often, you need to specify other inputs to compute our methods. For
instance, in Exercise 74, Adding an Instance Method to Our Pet Class, you hardcoded
the definition of "tall" as any pet with a height greater than or equal to 50. Instead, you
could allow that definition to be passed in via the method in the following manner:

class Pet():
 def __init__(self, height):
 self.height = height

 is_human = False

Methods | 197

 owner = 'Michael Smith'

 def is_tall(self, tall_if_at_least):
 return self.height >= tall_if_at_least

You can then create a pet and check whether its height exceeds some arbitrary
benchmark that you specify:

bowser = Pet(40)
bowser.is_tall(30)

You should get the following output:

True

Now changing the height to 50 as mention below:

bowser.is_tall(50)

You should get the following output:

False

Exercise 75: Computing the Size of Our Country

The aim of this exercise is to use a keyword argument in the context of an instance
method.

You create a Country class and add a method to calculate the area of the country in
square miles:

1.	 Start with the following definition of Country, which allows the name, population,
and size in square kilometers to be specified:

class Country():
 def __init__(self, name='Unspecified', population=None, size_kmsq=None):
 self.name = name
 self.population = population
 self.size_kmsq = size_kmsq

198 | Constructing Python – Classes and Methods

2.	 There are 0.621371 miles in a kilometer. Use this constant to write a method that
returns the size in square miles. The class should now look like this:

class Country():
 def __init__(self, name='Unspecified', population=None, size_kmsq=None):
 self.name = name
 self.population = population
 self.size_kmsq = size_kmsq

 def size_miles_sq(self, conversion_rate=0.621371):
 return self.size_kmsq * conversion_rate ** 2

3.	 Create a new Country and check the conversion:

algeria = Country(name='Algeria', size_kmsq=2.382e6)
algeria.size_miles_sq()
919694.772584862

4.	 Suppose someone told you the conversion rate was incorrect, and that there are
0.6 miles in a kilometer. Without changing the default parameter, recalculate the
size of Algeria in square miles using the new rate:

algeria.size_miles_sq(conversion_rate=0.6)

You should get the following output:

857520.0

In this exercise, you learned how to allow optional keyword arguments to be passed
into instance methods to alter the calculation performed.

The __str__ method

Like __init__, the __str__ method is another special instance method that you need
to know about. This is the method that is called whenever the object is rendered as a
string.

Methods | 199

For example, it is what is displayed when you print the object to the console. You can
explore this in the context of our Pet class. Suppose you have a Pet class in which you
can assign a height and name to the Pet instance:

class Pet():
 def __init__(self, height, name):
 self.height = height
 self.name = name

 is_human = False
 owner = 'Michael Smith'

Now you create a pet and print it to the console:

my_pet = Pet(30, 'Chubster')
print(my_pet)

You should get the following output:

Figure 5.8: An unhelpful string representation of the Pet object

This is not a very helpful representation of our pet. So, we need to add an __str__
method:

class Pet():
 def __init__(self, height, name):
 self.height = height
 self.name = name

 is_human = False
 owner = 'Michael Smith'

 def __str__(self):
 return '%s (height: %s cm)' % (self.name, self.height)

Like any instance method, our __str__ method takes self as the first argument in order
to access attributes and other methods of the Pet object. You can create another pet:

my_other_pet = Pet(40, 'Rudolf')
print(my_other_pet)

200 | Constructing Python – Classes and Methods

You should get the following output:

Figure 5.9: A much nicer string representation of the object

This is a much nicer representation of our Pet object and makes it easier to quickly
inspect objects without diving into the individual attributes. It also makes it easier
for someone to import your code into their work and be able to understand what the
various objects represent.

Exercise 76: Adding an __str__ Method to the Country Class

The aim of this exercise is to learn how to add string methods in order to give more
helpful string representations of objects when printed to the console.

You extend the Country class from Exercise 75, Computing the Size of Our Country by
adding an __str__ method to customize how the object is rendered as a string:

1.	 Start with our previous definition of Country:

class Country():
 def __init__(self, name='Unspecified', population=None, size_kmsq=None):
 self.name = name
 self.population = population
 self.size_kmsq = size_kmsq

2.	 Add a simple string method that returns the name of the country:

 def __str__(self):
 return self.name

3.	 Create a new country and test the string method:

chad = Country(name='Chad')
print(chad)

You should get the following output:

Chad

Methods | 201

4.	 You now try adding more complex string method that displays the other
information regarding our country, but only if that information is available:

 def __str__(self):
 label = self.name
 if self.population:
 label = '%s, population: %s' % (label, self.population)
 if self.size_kmsq:
 label = '%s, size_kmsq: %s' % (label, self.size_kmsq)
 return label

5.	 Create a new country and test the string method:

chad = Country(name='Chad', population=100)
print(chad)

You should get the following output:

Chad, population: 100

In this exercise, you learned how to add a string method to improve the string
representation of objects when printed to the console.

Static Methods

Static methods are similar to instance methods, except that they do not implicitly pass
the positional self argument. Static methods aren't used as frequently as instance
methods, so they only warrant a brief mention here. Static methods are defined
by using the @staticmethod decorator. Decorators allow us to alter the behavior of
functions and classes.

Here is an example of a static method added to our Pet class:

class Pet():
 def __init__(self, height):
 self.height = height

 is_human = False
 owner = 'Michael Smith'

202 | Constructing Python – Classes and Methods

 @staticmethod
 def owned_by_smith_family():
 return 'Smith' in Pet.owner
nibbles = Pet(100)
nibbles.owned_by_smith_family()

You should get the following output:

True

The @staticmethod notation is how decorators are added to functions in Python.
Technically, this is actually passing the owned_by_smith_family function to a higher-
order function that alters its behavior. However, for now, just think of it as allowing us
to avoid having the positional self argument. This method should not be written as an
instance method, because it does not rely on any instance attributes of the Pet object.
That is, the result will be the same for all pets created from the class. Of course, you
could alternatively write this as a class attribute, that is, owned_by_smith_family = True.

However, generally, you prefer to avoid writing code that needs to be updated in two
places when one piece of underlying information changes. If you changed the pet owner
to Ming Xu, you would also need to remember to update the owned_by_smith_family
attribute to False. The preceding implementation avoids this problem, as the owned_by_
smith_family static method is a function of the current owner.

Exercise 77: Refactoring Instance Methods Using a Static Method

Static methods are used to store utilities related to a class. In this exercise, you create
a Diary class and show how you can use a static method to apply the Do Not Repeat
Yourself (DRY) principle (refer to Chapter 3, Executing Python – Programs, Algorithms,
and Functions which discussed helper functions) to refactor our code:

1.	 Create a simple Diary class that stores two dates:

import datetime
class Diary():
 def __init__(self, birthday, christmas):
 self.birthday = birthday
 self.christmas = christmas

Methods | 203

2.	 Suppose you want to be able to view the dates in a custom date format. Add two
instance methods that print out the dates in dd-mm-yy format:

 def show_birthday(self):
 return self.birthday.strftime('%d-%b-%y')
 def show_christmas(self):
 return self.christmas.strftime('%d-%b-%y')

3.	 Create a new Diary object and test one of the methods:

my_diary = Diary(datetime.date(2020, 5, 14), datetime.date(2020, 12, 25))
my_diary.show_birthday()

You should get the following output:

'14-May-20'

4.	 Imagine you had a more complex Diary class, where you needed to format dates in
this custom manner throughout our code. You would have the line strftime('%d-
%b-%y') appearing many times in our code. If someone came to you and asked you
to update the display format throughout the entire code base, you would need to
change the code in lots of places. Instead, you could create a format_date static
method utility to store this logic once:

class Diary():
 def __init__(self, birthday, christmas):
 self.birthday = birthday
 self.christmas = christmas

 @staticmethod
 def format_date(date):
 return date.strftime('%d-%b-%y')

 def show_birthday(self):
 return self.format_date(self.birthday)
 def show_christmas(self):
 return self.format_date(self.christmas)

Now, if someone asks you to update the date format, there is a single location in the
code that is your source of truth.

204 | Constructing Python – Classes and Methods

Class Methods

The third type of method you will explore is class methods. Class methods are like
instance methods, except that instead of the instance of an object being passed as the
first positional self argument, the class itself is passed as the first argument. As with
static methods, you use a decorator to designate a class method. For example, you can
take our Australian class and add a class method:

class Australian():
 is_human = True
 enjoys_sport = True

 @classmethod
 def is_sporty_human(cls):
 return cls.is_human and cls.enjoys_sport

Note the first positional argument of this method is cls, not self. You can call this
method on the class itself:

Australian.is_sporty_human()

You should get the following output:

True

Alternatively, you can also call it on an instance of the class:

aussie = Australian()
aussie.is_sporty_human()

You should get the following output:

True

Another way class methods are used is to provide nice utilities for creating new
instances.

For example, you should take our Country class, as defined earlier:

class Country():
 def __init__(self, name='Unspecified', population=None, size_kmsq=None):
 self.name = name
 self.population = population
 self.size_kmsq = size_kmsq

Methods | 205

Suppose you want to avoid a situation where you create a country where people can
specify the size in square miles rather than square kilometers. You could use a class
method that takes the square mile input from the user and converts it to square
kilometers, before initializing an instance of the class:

 @classmethod
 def create_with_msq(cls, name, population, size_msq):
 size_kmsq = size_msq / 0.621371 ** 2
 return cls(name, population, size_kmsq)

Now suppose you want to create a mexico object, and you know it has an area of
760,000 square miles:

mexico = Country.create_with_msq('Mexico', 150e6, 760000)
mexico.size_kmsq

You should get the following output:

1968392.1818017708

Exercise 78: Extending Our Pet Class with Class Methods

In this exercise, you show two common uses of class methods in the context of our Pet
class:

1.	 Start with the following definition of the Pet class:

class Pet():
 def __init__(self, height):
 self.height = height

 is_human = False
 owner = 'Michael Smith'

2.	 Add a class method that returns whether the pet is owned by a member of the
Smith family:

 @classmethod
 def owned_by_smith_family(cls):
 return 'Smith' in cls.owner

3.	 Now suppose that you want a way of producing pets with various random heights.
Perhaps you're performing some simulations regarding buying 100 pets, and you
want to see what the average height might be. Firstly, import the random module:

import random

206 | Constructing Python – Classes and Methods

4.	 Next, add a class method that picks a random number from 0 to 100, and assigns it
to the height property of a new pet:

 @classmethod
 def create_random_height_pet(cls):
 height = random.randrange(0, 100)
 return cls(height)

5.	 Lastly, you create 5 new pets and see what their heights are:

for i in range(5):
 pet = Pet.create_random_height_pet()
 print(pet.height)

You should get the following output:

99
61
26
92
53

In this exercise, you learned how class methods can be used to customize the creation
of new objects and how to perform a basic calculation based on a class attribute.

Note

Your output may look different because these are random numbers between 0
and 100.

Properties
Properties are used to manage the attributes of objects. They are an important and
powerful aspect of object-oriented programming but can be challenging to grasp at
first. For example, suppose you have an object that has a height attribute and a width
attribute. You might also want such an object to have an area property, which is simply
the product of the height and width attributes. You would prefer not to save the area as
an attribute of the shape because the area should update whenever the height or width
changes. In this sort of scenario, you will want to use a property.

You will start by exploring the property decorator and then discuss the getter/setter
paradigm.

Properties | 207

The Property Decorator

The property decorator looks similar to the static methods and class methods that you
have already encountered. It simply allows a method to be accessed as an attribute of
an object rather than needing to call it like a function with ().

To understand the need for this decorator, consider the following class, which stores
information about the temperature:

class Temperature():
 def __init__(self, celsius, fahrenheit):
 self.celsius = celsius
 self.fahrenheit = fahrenheit

Let's create a new temperature and check the fahrenheit attribute:

freezing = Temperature(0, 32)
freezing.fahrenheit

You should get the following output:

32

Now, suppose you decide it would be better to just store the temperature in Celsius,
and convert to Fahrenheit when needed:

class Temperature():
 def __init__(self, celsius):
 self.celsius = celsius

 def fahrenheit(self):
 return self.celsius * 9 / 5 + 32

This is nicer because if the value of the temperature in Celsius is updated, you won't
need to worry about updating fahrenheit as well:

my_temp = Temperature(0)
print(my_temp.fahrenheit())
my_temp.celsius = -10
print(my_temp.fahrenheit())

You should get the following output:

32.0
14.0

In the preceding code, you can see you need to call the fahrenheit instance method
with (), whereas when you were accessing the attribute before, no parentheses were
necessary.

208 | Constructing Python – Classes and Methods

This could be a problem if the previous version of this code was being used elsewhere
or by other people. All references to fahrenheit would have to have parentheses
appended. Instead, you could turn fahrenheit into a property, which allows us to access
it like an attribute, despite it being a method of the class. To do this, you simply add the
property decorator:

class Temperature():
 def __init__(self, celsius):
 self.celsius = celsius

 @property
 def fahrenheit(self):
 return self.celsius * 9 / 5 + 32

You can now access the fahrenheit property in the following manner:

freezing = Temperature(100)
freezing.fahrenheit

You should get the following output:

212.0

Exercise 79: The Full Name Property

The aim of this exercise is to use the property decorator to add object properties.

In this exercise, you create a Person class and show how to use a property to display
their full name:

1.	 Create a Person class with two instance attributes, the first and last names:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

2.	 Add a full_name property with the @property decorator:

 @property
 def full_name(self):
 return '%s %s' % (self.first_name, self.last_name)

3.	 Create a customer object and test the full_name property:

customer = Person('Mary', 'Lou')
customer.full_name

Properties | 209

You should get the following output:

'Mary Lou'

4.	 Suppose someone was using your code and decided to update the name of this
customer in the following manner:

customer.full_name = 'Mary Schmidt'

They would see the following error:

Figure 5.10: Trying to set a value of a property that doesn't support attribute setting

The following section introduces the concept of setters, which allows you to customize
how the input is handled when you try to assign attributes in this way.

The Setter Method

The setter method will be called whenever a user assigns a value to a property. This will
allow us to write code where the user doesn't need to think about which attributes of
an object are stored as instance attributes rather than computed by functions. Here is
an example of what Exercise 79, Full Name Property, would look like if we added a full
name setter:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def full_name(self):
 return '%s %s' % (self.first_name, self.last_name)

 @full_name.setter
 def full_name(self, name):
 first, last = name.split(' ')
 self.first_name = first
 self.last_name = last

210 | Constructing Python – Classes and Methods

Note the following conventions:

•	 The decorator should be the method name, followed by .setter.

•	 It should take the value being assigned as a single argument (after self).

•	 The name of the setter method should be the same as the name of the property.

Now you can create the same customer, but this time you can update their first and last
names simultaneously by assigning a new value to the full_name property:

customer = Person('Mary', 'Lou')
customer.full_name = 'Mary Schmidt'
customer.last_name

You should get the following output:

'Schmidt'

Exercise 80: Writing a Setter Method

The aim of this exercise is to use a setter method to customize the way values are
assigned to properties.

You extend our Temperature class by allowing the user to assign a new value for
fahrenheit directly to the property:

1.	 Start with our Temperature class from earlier:

class Temperature():
 def __init__(self, celsius):
 self.celsius = celsius

 @property
 def fahrenheit(self):
 return self.celsius * 9 / 5 + 32

2.	 Add a @fahrenheit.setter function that converts the fahrenheit value to Celsius
and stores it in the celsius instance attribute:

 @fahrenheit.setter
 def fahrenheit(self, value):
 self.celsius = (value - 32) * 5 / 9

Properties | 211

3.	 Create a new temperature and check the fahrenheit property:

temp = Temperature(5)
temp.fahrenheit

You should get the following output:

41.0

4.	 Update the fahrenheit property and check the celsius attribute:

temp.fahrenheit = 32
temp.celsius

You should get the following output:

0.0

In this exercise, you wrote our first setter method, allowing you to customize how
values are set to properties.

Validation via the Setter Method

Another common use of the setter method is to prevent the user from setting values
that shouldn't be allowed. If you consider our previous example with the Temperature
class, the minimum temperature theoretically possible is approximately -460 degrees
Fahrenheit. It seems prudent that you prevent people from creating temperatures that
are lower than this value. You can update the setter method from the previous exercise
as follows:

 @fahrenheit.setter
 def fahrenheit(self, value):
 if value < -460:
 raise ValueError('Temperatures less than -460F are not possible')
 self.celsius = (value - 32) * 5 / 9

Now if the user attempts to update the temperature to an impossible value, the code
will throw an exception:

temp = Temperature(5)
temp.fahrenheit = -500

212 | Constructing Python – Classes and Methods

You should get the following output:

Figure 5.11: Demonstrating validation as part of the setter property

Inheritance
Class inheritance allows attributes and methods to be passed from one class to another.
For example, suppose there is already a class available in a Python package that does
almost everything you want. However, you just wish it had one extra method or
attribute that would make it right for your purpose. Instead of rewriting the entire class,
you could inherit the class and add additional properties, or change existing properties.

The DRY Principle Revisited

Recall the DRY principle: "Every piece of knowledge or logic must have a single,
unambiguous representation within a system." So far in this chapter, we have seen how
classes allow us to more elegantly encapsulate logic about what objects represent.
This has already moved us further along the path to writing clean, modularized code.
Inheritance is the next step in this journey. Suppose we wanted to create two classes,
one representing cats and the other, dogs.

Our Cat class may look like this:

class Cat():
 is_feline = True

 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

Inheritance | 213

Similarly, our Dog class would look the same, except that it would have a different value
for the is_feline class attribute:

class Dog():
 is_feline = False

 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

You can probably already see that this is a violation of the DRY principle. A lot of the
preceding code is identical in the two classes. However, suppose that, in our program,
cats and dogs are sufficiently different to require separate class definitions. You need
a way to capture the common information about cats and dogs, without repeating it in
both class definitions — enter inheritance.

Single Inheritance

Single inheritance, also known as sub-classing, involves creating a child class that
inherits the attributes and methods of a single parent class. Taking the preceding
example of cats and dogs, we can instead create a Pet class that represents all the
common parts of the Cat and Dog classes:

class Pet():
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

The Cat and Dog classes can now be created by sub-classing the parent class, Pet:

class Cat(Pet):
 is_feline = True

class Dog(Pet):
 is_feline = False

You can check whether this is working as expected:

my_cat = Cat('Kibbles', 8)
my_cat.name

You should get the following output:

'Kibbles'

214 | Constructing Python – Classes and Methods

Now the logic in the init method is specified only once, and our Cat and Dog classes
simply inherit it from the parent class, Pet. Now, if you decide to change the logic in
the init method, you don't need to change it in two places, making our code easier to
maintain. Likewise, it will be easier in the future to create different types of Pet classes.
Additionally, you could create further subclasses of the Dog class if you wanted to create
different types of Dog classes depending on breed. You can show the structure of our
classes as a hierarchy, much like a family tree:

Figure 5.12: Class inheritance

Exercise 81: Inheriting from the Person Class

The goal of this exercise is to see how methods and attributes are inherited by child
classes from parent classes.

In this exercise, you will create a Baby class and an Adult class, which will both inherit
from a common Person class:

1.	 Start with the following Person class definition, which takes a first and last name as
inputs in the init function:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

2.	 Create a Baby class that inherits from Person, and add a speak instance method:

class Baby(Person):
 def speak(self):
 print('Blah blah blah')

Inheritance | 215

3.	 Do the same for an Adult class:

class Adult(Person):
 def speak(self):
 print('Hello, my name is %s' % self.first_name)

4.	 Create a Baby and an Adult object, and make them speak:

jess = Baby('Jessie', 'Mcdonald')
tom = Adult('Thomas', 'Smith')
jess.speak()
tom.speak()

You should get the following output:

Figure 5.13: Our baby and adult speaking

In this exercise, you learned how to inherit attributes and methods between classes.

Sub-Classing Classes from Python Packages

In our examples so far, you have written the parent class ourselves. However, often, the
reason for sub-classing is that a class already exists in a third-party package, and you
just want to extend the functionality of that class with a few custom methods.

For example, suppose you wanted to have an integer object where you could check
whether it was divisible by another number. You could create our own integer class and
add a custom instance method as follows:

class MyInt(int):
 def is_divisible_by(self, x):
 return self % x == 0

You could then use this class to create integer objects that have this useful method:

a = MyInt(8)
a.is_divisible_by(2)

You should get the following output:

True

216 | Constructing Python – Classes and Methods

Exercise 82: Sub-Classing the datetime.date Class

The aim of this exercise is to show how you can inherit from classes in external
libraries.

In this exercise, you create our own custom date class by inheriting from the datetime
module. You add our own custom method that allows us to increment the date by a
given number of days:

1.	 Import the datetime module:

import datetime

2.	 Create a MyDate class that inherits from datetime.date. Create an add_days instance
method that uses a timedelta object to increment the date:

class MyDate(datetime.date):
 def add_days(self, n):
 return self + datetime.timedelta(n)

3.	 Create a new object using the MyDate class, and try out your custom add_days
method:

d = MyDate(2019, 12, 1)
print(d.add_days(40))
print(d.add_days(400))

You should get the following output:

Figure 5.14: Adding days to a date

In this exercise, you learned how to inherit from classes in external libraries. This will
often be useful, as external libraries may get you 90% of the way to solving the problem,
but they're rarely built exactly for your own use case.

Overriding Methods

When inheriting classes, you often do so in order to change the behavior of the class,
not just to extend the behavior. The custom methods or attributes you create on a
child class can be used to override the method or attribute that was inherited from the
parent.

Inheritance | 217

For example, suppose the following Person class was provided by a third-party library:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def full_name(self):
 return '%s %s' % (self.first_name, self.last_name)

 @full_name.setter
 def full_name(self, name):
 first, last = name.split(' ')
 self.first_name = first
 self.last_name = last

Perhaps you are using this class, but you have problems when setting the names of
people whose full name consists of three parts:

my_person = Person('Mary', 'Smith')
my_person.full_name = 'Mary Anne Smith'

You should get the following output:

Figure 5.15: Failing to set a property

218 | Constructing Python – Classes and Methods

Suppose that in cases where there are three or more names that make up the full name,
you want to assign the first part of the name to the first_name attribute, and the rest
of the names to the last_name attribute. You could subclass Person and override the
method as follows:

1.	 Start by creating a BetterPerson class that inherits from Person:

class BetterPerson(Person):

2.	 Add a full name property that combines the first and last names:

 @property
 def full_name(self):
 return '%s %s' % (self.first_name, self.last_name)

3.	 Add full_name.setter to firstly split the full name into its components, then set
the first name equal to the first part of the name and set the last name equal to the
second part of the name. The code also deals with cases where there are more than
two components to the name, and it puts everything except the first name into the
last name:

 @full_name.setter
 def full_name(self, name):
 names = name.split(' ')
 self.first_name = names[0]
 if len(names) > 2:
 self.last_name = ' '.join(names[1:])
 elif len(names) == 2:
 self.last_name = names[1]

4.	 Now create a BetterPerson instance and see it in action:

my_person = BetterPerson('Mary', 'Smith')
my_person.full_name = 'Mary Anne Smith'
print(my_person.first_name)
print(my_person.last_name)

You should get the following output:

Mary
Anne Smith

Inheritance | 219

Calling the Parent Method with super()

Suppose the parent class has a method that is almost what you want it to be, but you
need to make a small alteration to the logic. If you override the method as you did
previously, you'll need to specify the entire logic of the method again, which may
become a violation of the DRY principle. When building an application, you often
require code from third-party libraries, and some of this code can be quite complex. If a
certain method has 100 lines of code, you wouldn't want to include all that code in your
repository in order to simply change one of those lines.

For example, suppose you have the following Person class:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 def speak(self):
 print('Hello, my name is %s' % self.first_name)

Now, suppose you want to create a sub-class to make the person say more things in the
speak method. One option would be to do so as follows:

class TalkativePerson(Person):
 def speak(self):
 print('Hello, my name is %s' % self.first_name)
 print('It is a pleasure to meet you!')
john = TalkativePerson('John', 'Tomic')
john.speak()

You should get the following output:

Figure 5.16: Our talkative person speaking

220 | Constructing Python – Classes and Methods

This implementation is okay, though it isn't ideal that you've copied the "Hello, my name
is John" line from the Person class. All you wanted to do was add additional things for
TalkativePerson to say; you didn't need to change the way they say their name. Perhaps
the Person class will be updated in the future to say something slightly different, and
you want our TalkativePerson class to also reflect those changes. This is where the
super() method comes in handy. super() allows you to access the parent class without
explicitly referring to it by name. In the preceding example, you can use super() as
follows:

class TalkativePerson(Person):
 def speak(self):
 super().speak()
 print('It is a pleasure to meet you!')
john = TalkativePerson('John', 'Tomic')
john.speak()

You should get the following output:

Figure 5.17: Using the super() method to write cleaner code

The super() method allows you to access the parent class, Person, and call the
corresponding speak method. Now, if any updates were made to the Person class's speak
method, it would be reflected in what our TalkativePerson says as well.

Exercise 83: Overriding Methods Using super()

The aim of this exercise is to learn how to override methods using the super function.
You subclass our previously created Diary class and show how super can be used to
modify the behavior of a class without unnecessarily repeating code:

1.	 Import the datetime module:

import datetime

2.	 Start with the Diary class, as defined previously:

class Diary():
 def __init__(self, birthday, christmas):
 self.birthday = birthday
 self.christmas = christmas

Inheritance | 221

 @staticmethod
 def format_date(date):
 return date.strftime('%d-%b-%y')

 def show_birthday(self):
 return self.format_date(self.birthday)
 def show_christmas(self):
 return self.format_date(self.christmas)

3.	 Suppose you're unhappy with the fact that the hardcoded datetime format is in the
format_date method, and you would prefer that a custom format can be specified
for each diary object separately. One temptation would be to simply copy the
whole class and start making modifications. However, when dealing with more
complex classes, this is almost never a good option. Instead, let's subclass Diary and
start by allowing it to be initialized with a custom date_format string:

class CustomDiary(Diary):
 def __init__(self, birthday, christmas, date_format):
 self.date_format = date_format
 super().__init__(birthday, christmas)

4.	 You also want to override the format_date method to use your new date_format
attribute:

 def format_date(self, date):
 return date.strftime(self.date_format)

5.	 Now when you create diary objects, each object can have a different string
representation of the dates:

first_diary = CustomDiary(datetime.date(2018,1,1), datetime.date(2018,3,3), '%d-%b-
%Y')
second_diary = CustomDiary(datetime.date(2018,1,1), datetime.date(2018,3,3),
'%d/%m/%Y')
print(first_diary.show_birthday())
print(second_diary.show_christmas())

You should get the following output:

Figure 5.18: Viewing our diary dates

222 | Constructing Python – Classes and Methods

In this exercise, you learned how to override methods using the super function. This
allows you to more carefully override methods in the parent classes you inherit from.

Multiple Inheritance

You often think of inheritance as allowing us to reuse common methods and attributes
between related child classes. For example, a typical class structure could look like this:

Figure 5.19: Single inheritance

Each child class is inheriting from a single parent class, Person.

However, it's also possible to inherit from more than one parent class. Often, there
are elements of multiple classes that you want to combine to create a new class.
For example, you might combine an Adult class with a Calendar class to make an
OrganizedAdult class:

Figure 5.20: Multiple inheritance

Exercise 84: Creating a Consultation Appointment System

Suppose you are running a hospital and building a consultation appointment system.
You want to be able to schedule appointments for various types of patients.

In this exercise, you start with our previously defined Adult and Baby classes and create
OrganizedAdult and OrganizedBaby classes by inheriting from a second parent class,
Calendar:

1.	 Import the datetime module:

import datetime

Inheritance | 223

2.	 Start with the Baby and Adult classes, as defined previously:

class Person():
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name
class Baby(Person):
 def speak(self):
 print('Blah blah blah')
class Adult(Person):
 def speak(self):
 print('Hello, my name is %s' % self.first_name)

3.	 Create a Calendar class that you can use to help our adults and babies become more
organized:

class Calendar():
 def book_appointment(self, date):
 print('Booking appointment for date %s' % date)

4.	 Create OrganizedBaby and OrganizedAdult classes that inherit from multiple parent
classes:

class OrganizedAdult(Adult, Calendar):
 pass
class OrganizedBaby(Baby, Calendar):
 pass

Note

If you want to define a class without adding or customizing its methods/attributes,
you simply write pass.

5.	 Create some objects from your new classes and test their methods:

andres = OrganizedAdult('Andres', 'Gomez')
boris = OrganizedBaby('Boris', 'Bumblebutton')
andres.speak()
boris.speak()
boris.book_appointment(datetime.date(2018,1,1))

224 | Constructing Python – Classes and Methods

You should get the following output:

Figure 5.21: Booking an appointment

6.	 Suppose you wanted to warn the user when they try to book an appointment with
a baby. You could override the book_appointment method, using the super() method
to run the book_appointment method on the Calendar class:

class OrganizedBaby(Baby, Calendar):
 def book_appointment(self, date):
 print('Note that you are booking an appointment with a baby.')
 super().book_appointment(date)

7.	 Now test whether it works:

boris = OrganizedBaby('Boris', 'Bumblebutton')
boris.book_appointment(datetime.date(2018,1,1))

You should get the following output:

Figure 5.22: Booking an appointment with a baby

Note that it's not always necessary to use inheritance when building your classes. If
you only have one child class, having a parent class is often unnecessary. In fact, your
code may be more readable if it's all stored in one class. Sometimes, the job of a good
programmer is to consider the future and answer the question, "Will it become useful at
some point to have built this with multiple inherited classes?" Answering this question
simply becomes easier with experience.

Method Resolution Order

Suppose you were inheriting from two parent classes, both of which have a method
of the same name. Which would be used when calling the method on the child class?
Which would be used when calling it via super()? You should find this out through
an example. Suppose you have Dog and Cat classes, and you combine them to make a
monstrosity, DogCat:

class Dog():
 def make_sound(self):
 print('Woof!')

Inheritance | 225

class Cat():
 def make_sound(self):
 print('Miaw!')
class DogCat(Dog, Cat):
 pass

What sort of sounds would such a creature make?

my_pet = DogCat()
my_pet.make_sound()

You should get the following output:

Woof!

So, you can see that Python first checks for the existence of the make_sound method
on the Dog class, and since it is implemented, you don't end up calling the make_sound
method of the Cat class. Simply, Python reads from left to right in the list of classes. If
you switched the order of Dog and Cat, our DogCat would miow:

class DogCat(Cat, Dog):
 pass

my_pet = DogCat()
my_pet.make_sound()

You should get the following output:

Miaw!

Suppose you wanted to override the method on DogCat and use the super() method.
The same method resolution order would apply:

class DogCat(Dog, Cat):
 def make_sound(self):
 for i in range(3):
 super().make_sound()

my_pet = DogCat()
my_pet.make_sound()

You should get the following output:

Woof!
Woof!
Woof!

226 | Constructing Python – Classes and Methods

Activity 14: Creating Classes and Inheriting from a Parent Class

Suppose you are writing a computer game where the graphics are made up of various
types of shapes. Each shape has certain properties, such as the number of edges, area,
color, and so on. The shapes also behave in different ways. You want to be able to
customize the way each shape behaves independently, while also not duplicating any
code between the definition of each shape.

The aim of this activity is to create classes that can be used to represent a rectangle
and a square. These two classes will inherit from a parent class called Polygon. The
Rectangle and Square classes will have a property for computing the number of sides,
perimeter, and area of the shape:

1.	 Add a num_sides property to the Polygon class that returns the number of sides.

2.	 Add a perimeter property to the Polygon class.

3.	 Add a docstring to the Polygon class.

4.	 Add a __str__ method to the Polygon class that represents the polygon as "Polygon
with X sides", where X is the actual number of sides of the Polygon instance.

5.	 Create a child class called Rectangle, which accepts two arguments from the user in
the init method: height and width.

6.	 Add an area property to Rectangle.

7.	 Create a Rectangle object and check the computation of the area and perimeter.

You should get the following output:

(5, 12)

8.	 Create a child class called Square that inherits from Rectangle. You should only take
one argument from the user when initializing a square.

9.	 Create a Square object and check the computation of the area and perimeter. You
should get the following output:

(25, 20)

Note

The solution for this activity can be found via this link.

Summary | 227

Summary
In this chapter, you have begun our journey into a cornerstone of object-oriented
programming: classes. You have learned how classes allow you to write more elegant,
reusable, and DRY code. You learned about the importance of and distinction between
class and instance attributes, and how to set them in the class definition. You also
explored various types of methods and when to use them. You explored the concept
of a property and the Pythonic implementation of getters and setters. Lastly, you
learned how to share methods and attributes between classes via single and multiple
inheritance.

In the next chapter, you will explore the Python standard library and the various tools
you can avail yourself of before needing to turn to third-party modules.

The Standard Library

Overview

By the end of this chapter, you will be able to utilize Python's standard library
to write efficient code; use multiple standard libraries to write code; create and
manipulate files by interacting with the OS filesystem; evaluate dates and times
efficiently without falling into the most common mistakes and set up applications
with logs to facilitate future troubleshooting.

6

230 | The Standard Library

Introduction
In the previous chapters, you saw how we can create our own classes incorporating
logic and data. Yet, you often don't need to do that — you can rely on the standard
library's functions and classes to do most of the work.

The Python standard library consists of modules that are available on all
implementations of the language. Every installation of Python will have access to these
without the need for any further steps for the modules defined in the standard library

While other famous languages don't have a standard library (such as JavaScript, which,
as of 2019, is looking at implementing one), others have what seems to be an extensive
set of tooling and functionality. Python goes a step further by including a vast number
of basic utilities and protocol implementations as part of the default installation of the
interpreter.

Standard libraries are useful and perform tasks such as unzipping files, speaking with
other processes and the OS on your computer, processing HTML, and even printing
graphics on the screen. A program that sorts a list of music files according to their
artists can be written in a few lines when you use the correct modules of the standard
library.

In this chapter, you will look at the importance of the standard library and how it can be
used in our code to write faster and better Python with fewer keystrokes. You will walk
through a subset of the modules, covering them in detail on a user level.

The Importance of the Standard Library
Python is often described as coming with "batteries included," which is usually a
reference to its standard library. The Python standard library is vast, unlike any other
language in the tech world. The Python standard library includes modules to connect
to a socket; that is, one to send emails, one to connect to SQLite, one to work with the
locale module, or one to encode and decode JSON and XML.

It is also renowned for including such modules as turtle and tkinter, graphical
interfaces that most users probably don't use anymore, but they have proven useful
when Python is taught at schools and universities.

It even includes IDLE, a Python-integrated development environment, it is not widely
used as there are either other packages within the standard library that are used more
often or external tools to substitute them. These libraries are divided into high-level
modules and lower-level modules:

The Importance of the Standard Library | 231

Figure 6.1: Graphical representation of the types of standard libraries

High-Level Modules

The Python standard library is truly vast and diverse, providing a toolbelt for the user
that can be used to write most of their trivial programs. You can open an interpreter
and run the following code snippet to print graphics on the screen. This can be
executed on the Python terminal. The code mentioned here is with the >>> symbol:

>>> from turtle import Turtle, done
>>> turtle = Turtle()
>>> turtle.right(180)
>>> turtle.forward(100)
>>> turtle.right(90)
>>> turtle.forward(50)
>>> done()

This code uses the turtle module which can be used to print the output on the screen,
as shown in Figure 6.2. This output will look like the trail of a turtle that follows when
the cursor is moved. The turtle module allows the user to interact with the cursor and
leave a trail as it keeps moving. It has functions to move around the screen and print as
it advances.

Here is a detailed explanation of the turtle module code snippet:

1.	 It creates a turtle in the middle of the screen.

2.	 It then rotates it 180 degrees to the right.

3.	 It moves forward 100 pixels, painting as it walks.

4.	 It then rotates to the right once again, this time by 90 degrees.

5.	 It then moves forward 50 pixels once again.

6.	 It ends the program using done().

232 | The Standard Library

The code mentioned earlier in this section will result in the following output:

Figure 6.2: Example of output screen when using turtle

You can go ahead and explore and input different values, playing around a bit with the
turtle module and checking the different outputs you get, before you dive further into
this chapter.

The turtle module you worked on is an example of one of the high-level modules that
the standard library offers.

Other examples of high-level modules include:

•	 Difflib: To check the differences line by line across two blocks of text.

•	 Re: For regular expressions, which will be covered in Chapter 7, Being Pythonic.

•	 Sqlite3: To create and interact with SQLite databases.

•	 Multiple data compressing and archiving modules, such as gzip, zipfile, and
tarfile.

•	 XML, JSON, CSV, and config parser: For working with multiple file formats.

•	 Sched: To schedule events in the standard library.

•	 Argparse: For the straightforward creation of command-line interfaces.

The Importance of the Standard Library | 233

Now, you will use another high-level module argparse as an example and see how it
can be used to create a command-line interface that echoes words passed in and,
optionally, capitalizes them in a few lines of code. This can be executed in the Python
terminal:

>>> import argparse
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("message", help="Message to be echoed")
>>> parser.add_argument("-c", "--capitalize", action="store_true")
>>> args = parser.parse_args()
>>> if args.capitalize:
 print(args.message.capitalize())
 else:
 print(args.message)

This code example creates an instance of the ArgumentParser class, which helps you to
create command-line interface applications.

It then defines two arguments in lines 3 and 4: message and capitalize.

Note that capitalize can also be referred to as -c, and we make it a Boolean flag option
by changing the default action to store_true. At that point, you can just call parse_args,
which will take the arguments passed in the command line, validate them, and expose
them as attributes of args.

The code then takes the input message and chooses whether to capitalize it based on
the flag.

You can now interact with this file, named echo.py, as shown in output Figure 6.3:

Figure 6.3: Example help message of an argparse script

Note

We will be using this capitalize tool in Exercise 86, Extending the echo.py Example.

234 | The Standard Library

Lower-Level Modules

The standard library also contains multiple lower-level modules that users rarely
interact with. These lower-level modules are outside that of the standard library. Good
examples are the different internet protocol modules, text formatting and templating,
interacting with C code, testing, serving HTTP sites, and so on. The standard library
comes with low-level modules to satisfy the needs of users in many of those scenarios,
but you will usually see Python developers relying on libraries such as jinja2, requests,
flask, cython, and cffi that are built on top of the low-level standard library module as
they provide a nicer, simpler, more powerful interface. It is not that you cannot create
an extension with the C API or ctypes, but cython allows you to remove a lot of the
boilerplate, whereas the standard library requires you to write and optimize the most
common scenarios.

Finally, there is another type of low-level module, which extends or simplifies the
language. Notable examples of these are the following:

•	 Asyncio: To write asynchronous code

•	 Typing: To type hinting

•	 Contextvar: To save state based on the context

•	 Contextlib: To help with the creation of context managers

•	 Doctest: To verify code examples in documentation and docstrings

•	 Pdb and bdb: To access debugging tools

There are also modules such as dis, ast, and code that allow the developer to inspect,
interact, and manipulate the Python interpreter and the runtime environment, but
those aren't required by most beginner and intermediate developers.

Knowing How to Navigate in the Standard Library

Getting to know the standard library is key for any intermediate/advanced developer,
even if you don't know how to use all the modules. Knowing what the library contains
and when modules can be used provides any developer with a boost in speed and
quality when developing Python applications.

Note

Python beginners are usually encouraged to take the standard library tour in the
Python documentation (link: https://docs.python.org/3/tutorial/stdlib.html) once
they master the basic syntax of the language.

The Importance of the Standard Library | 235

While developers from other languages may try to implement everything on their own
from scratch, experienced Python programmers will always first ask themselves "how
can I do this with the standard library?" since using the code in the standard library
brings multiple benefits, which will be explained later in the chapter.

The standard library makes code simpler and easier to understand. By using modules
such as dataclasses, you can write code that would otherwise take hundreds of lines to
create by ourselves and would most likely include bugs.

The dataclass module allows you to create value semantic types with fewer keystrokes
by providing a decorator that can be used in a class, which will generate all the required
boilerplate to have a class with the most common methods.

Note

Value semantic types represent the classes of the data that they hold. Objects can
be easily copied by attributes and printed, and can then be compared using these
attributes.

Exercise 85: Using the dataclass Module

In this exercise, you will create a class to hold data for a geographical point. This is a
simple structure with two coordinates, x and y.

These coordinate points, x and y, are used by other developers who need to store
geographical information. They will be working daily with these points, so they need to
be able to create them with an easy constructor and be able to print them and see their
values — converting them into a dictionary to save them into their database and share it
with other people.

This exercise can be performed in the Jupyter notebook:

1.	 Import the dataclass module:

import dataclasses

This line brings the dataclasses module to the local namespace, allowing us to use
it.

2.	 Define a dataclass:

@dataclasses.dataclass
class Point:
 x: int
 y: int

236 | The Standard Library

With these four lines, you have defined a dataclass by its most common methods.
You can now see how it behaves differently from a standard class.

3.	 Create an instance, which is the data for a geographical point:

p = Point(x=10, y=20)
print(p)

The output will be as follows:

Point(x=10, y=20)

4.	 Now, compare the data points with another Point object:

p2 = Point(x=10, y=20)
p == p2

The output will be as follows:

True

5.	 Serialize the data:

dataclasses.asdict(p)

The output will be as follows:

{'x': 10, 'y': 20}

You now know how to use data classes to create value semantic types!

Note

Even if developers might be tempted to implement methods by themselves
because they seem trivial, there are many edge cases that modules such as
dataclass already takes account of, such as what happens if __eq__ receives an
object of a different type or a subclass of it.

The dataclasses module is part of the standard library, so most experienced users will
understand how a class decorated with a dataclass decorator will behave compared
to a custom implementation of those methods. This would require either further
documentation to be written, or for users to fully understand all the code in all classes
that are manually crafting those methods.

The Importance of the Standard Library | 237

Moreover, using a battle-tested code that the standard library provides is also key to
writing an efficient and robust application. Functions such as sort in Python use a
custom sorting algorithm known as timsort. This is a hybrid stable sorting algorithm
derived from merge sort and insertion sort, and will usually result in better performance
results and fewer bugs than any algorithm that a user could implement in a limited
amount of time.

Exercise 86: Extending the echo.py Example

Note

In this exercise, you will be using the previously mentioned capitalize tool with
help messages and a variable number of arguments.

After the creation of the capitalize tool that you saw earlier in this topic, you can
implement an enhanced version of the echo tool in Linux, which is used in some
embedded systems that have Python. You will, use the previous code for capitalize and
enhance it to have a nicer description. This will allow the echo comman to repeat the
word passed in and to take more than one word.

When you execute the code, it should generate the following help message:

Figure 6.4: Expected output from the Exercise 86 help command

It should produce the following output when running with these arguments:

Figure 6.5: Expected output of running the Exercise 86 script

238 | The Standard Library

1.	 Add a description to the echo command.

Start by adding a description to the echo.py script command. You can do so by
passing it as an argument to the ArgumentParser class:

parser = argparse.ArgumentParser(description="""
Prints out the words passed in, capitalizes them if required
and repeats them in as many lines as requested.
""")

The description passed in as an argument of the ArgumentParser class will be used
as the help message when the user either runs the tools incorrectly or asks for help
on how to use the tool.

Note

Notice how you can split the description into multiple lines to easily format our
code, but the output appears as if all lines were together.

2.	 Configure an argument to take multiple messages.

The next step is to allow multiple messages rather than a single message. You can
do so by using the nargs keyword argument when adding a positional parameter:

parser.add_argument("message", help="Messages to be echoed", nargs="+")

By passing nargs="+", you tell argparse that we require at least one message to be
passed in. Other options include ? for optional, and * for 0 or more. You can also
use any natural number to require a specific number of parameters.

3.	 Add a repeat flag with a default value.

Finally, you need to add a new option with a default value to control the number of
times the message is repeated:

parser.add_argument("--repeat", type=int, default=1)

This adds a new option, repeat, which allows us to pass an integer that defaults to
one, and that will control the number of times the words are repeated.

Note

Notice how you pass a type, which is just a callable. This will be used to transform
and validate the argument passed in, and you indicate what the default value is
if a user does not specify the option. Alternatively, you could have marked it as
required=True to force the user to always pass a value.

Dates and Times | 239

Altogether, the code and implementation will be as shown in the following code
snippet:

import argparse
parser = argparse.ArgumentParser(description="""
Prints out the words passed in, capitalizes them if required
and repeat them in as many lines as requested.
""")
parser.add_argument("message", help="Messages to be echoed", nargs="+")
parser.add_argument("-c", "--capitalize", action="store_true")
parser.add_argument("--repeat", type=int, default=1)
args = parser.parse_args()
if args.capitalize:
    messages = [m.capitalize() for m in args.message]
else:
    messages = args.message
for _ in range(args.repeat):
    print(" ".join(messages))

You just created a CLI application that allows you to echo messages with an intuitive
interface. You can now use the argparse module to create any other CLI application.

Quite often, the standard library in Python has answers to developers' most common
questions. By having a general knowledge of the different modules in Python and always
questioning what can be used from the standard library, you will write better Python
code that uses easy-to-read, well-tested, and efficient utilities.

Dates and Times
Many programs will need to deal with dates and times, and Python comes with multiple
modules to help you handle those effectively. The most common module is the datetime
module. The datetime module comes with three types that can be used to represent
dates, times, and timestamps. There are also other modules, such as the time module,
or the calendar module, which can be used for some other use cases.

datetime.date can be used to represent any date between the years 1 and 9999. For any
date/time outside of this range, you would need to use more specialized libraries, such
as the astropy library.

You can create a datetime.date by passing the year, month, and day, or get today by just
calling datetime.date.today():

import datetime
datetime.date.today()

240 | The Standard Library

The output is as follows:

Figure 6.6: Representation of a date object

The output format for time is similar; it takes hour, minute, second, and microsecond.
All of them are optional and are initialized at 0 if not provided. This can also be created
with tzinfo, but you will see more about that attribute in the datetime.datetime section.

Within the datetime module, you have what is probably the most frequently used class,
the datetime.datetime class. It can represent a combination of a date and a time, and it
actually inherits from datetime.date. But before you start to explore the datetime class
within the datetime module, you need to better understand the concept of time and
how you represent it.

There are usually two kinds of time that you need to represent. They are commonly
referred to as timestamps and wall time.

The first, timestamps, can be seen as a unique point in time independent from any
human interpretation of it. It is an absolute point in the line of time that is not relative
to any geographical location or country. This is used for astronomical events, log
records, and the synchronization of machines, among other things.

The second, wall time, refers to the time on the wall at a specific location. This is the
time humans use, and you synchronize your time using it. This time is the "legal" time
as it is dictated by the country and is related to a time zone. This is used for meetings,
flight schedules, working hours, and so on. The interval of time can change at any point
due to legislation. As an example, think of countries that observe daylight saving time
(DST) and change their standard clock accordingly.

Note

If you need to work extensively with time, it is important to read about UTC and
the history of how you measure time to avoid more complex issues, but you will
go through a quick overview of good practices when handling time in this topic to
avoid the most common mistakes.

When you are working with wall time, you just need to treat datetime.datetime objects
as a mere combination of a date and a time at a location. But you should usually attach
a time zone to it to be more precise and get proper semantics for time comparison and
basic arithmetic. The two most commonly used libraries to handle time zones are pytz
and dateutil.

Dates and Times | 241

You must use dateutil when using wall times; pytz has a time model that will lead the
inexperienced user to make mistakes more often than not. To create a datetime with a
time zone, you just need to pass it through the tzinfo argument:

import datetime
from dateutil import tz
datetime.datetime(1989, 4, 24, 10, 11,
 tzinfo=tz.gettz("Europe/Madrid"))

This creates a datetime with that time zone information attached.

Exercise 87: Comparing datetime across Time Zones

The goal of this exercise is to create two different datetime and compare them when
they are in different time zones:

1.	 Import the datetime and tz modules from dateutil:

import datetime
from dateutil import tz

Note

Dateutil is not a module from the standard library, though it is the one
recommended by the standard library.

2.	 Create the first datetime for Madrid:

d1 = datetime.datetime(1989, 4, 24, hour=11,
 tzinfo=tz.gettz("Europe/Madrid"))

With this line, you create a datetime for April 24, 1989, at 11 a.m. in Madrid.

3.	 Create the second datetime for Los_Angeles:

d2 = datetime.datetime(1989, 4, 24, hour=8,
 tzinfo=tz.gettz("America/Los_Angeles"))

This creates a datetime object that seems to have a difference of 3 hours less and a
different time zone.

4.	 Now, compare them:

print(d1.hour > d2.hour)
print(d1 > d2)

242 | The Standard Library

The output is as follows:

Figure 6.7: Output when comparing the conditions for the time zones

When you compare the two datetime objects, you can see that even though the first
datetime has a higher hour than the second (that is, the first is at 11 and the second
is at 8), the first is not greater, and is, therefore later than the second, as the time
zone is different, and 8 in Los Angeles happens after 11 in Madrid.

5.	 Now, convert the datetime object to a different time zone.

You can convert a datetime from one time zone to another. You should do that to
see what time the second datetime would show if it was in Madrid:

d2_madrid = d2.astimezone(tz.gettz("Europe/Madrid"))
print(d2_madrid.hour)

The output is as follows:

17

It is 5 p.m. Now, it is obvious that the second datetime is later than the first.

At other times, you might work just with timestamps, with time not related to
any location. The easiest way to do this is to use UTC, with 0 as the offset. UTC
is Coordinated Universal Time and is a system that provides a universal way of
coordinating time across locations — you have most likely already used it. It is the most
common standard for the time. The time zones you saw in the previous exercises define
offsets from UTC that allow the library to identify what time corresponds to time from
one location to another.

To create a datetime with an offset of 0, also known as a datetime in UTC, you can use
datetime.timezone.utc as the tzinfo argument. This will then represent an absolute
point in the line of time. You can safely add, subtract, and compare datetimes without
any issue when using UTC. On the other hand, if you use any specific time zone, you
should be aware that nations might change the time at any point, which could make any
of your calculations invalid.

You now know how to create datetimes, compare them, and convert them across time
zones. This is a common exercise when developing applications that deal with time.

In the next exercise, you'll look at the time delta between two datetime objects. Here,
the delta is the difference.

Dates and Times | 243

Exercise 88: Calculating the Time Delta between Two datetime Objects

In this exercise, you will subtract two datetime objects to calculate the delta between
the two timestamps.

Quite often, when you work with datetime, what really matters is the difference
between them; that is, the delta in time between two specific dates. Here, you will find
out the difference in seconds between two important events that happened in your
company, one on February 25, 2019, at 10:50, and the other on February 26 at 11:20. Both
these times are in UTC. This exercise can be performed in a Jupyter notebook:

1.	 Import the datetime module:

import datetime as dt

Quite often, developers import the datetime module through an alias, dt. This is
done in many codebases to differentiate the datetime module from the datetime
class.

2.	 Create two datetime objects.

You now create two dates:

d1 = dt.datetime(2019, 2, 25, 10, 50,
 tzinfo=dt.timezone.utc)
d2 = dt.datetime(2019, 2, 26, 11, 20,
 tzinfo=dt.timezone.utc)

We created two datetime objects as dt.datetime, and you now have two datetime
objects.

3.	 Subtract d1 from d2.

You can subtract two datetime to get a time delta back or add a time delta to a
datetime.

Adding two datetime makes no sense, and the operation will, therefore, output an
error with an exception. Hence, you subtract the two datetime to get the delta:

d2 – d1

The output is as follows:

Figure 6.8: Output with the delta between 2 days and seconds

244 | The Standard Library

4.	 You can see that the delta between the two datetime is 1 day and 1,800 seconds,
which can be translated to the total number of seconds by calling total_seconds in
the time delta object that the subtraction returns:

td = d2 - d1
td.total_seconds()

The output is as follows:

88200.0

5.	 It happens quite often that you need to send datetime objects in formats such as
JSON or others that do not support native datetimes. A common way to serialize
datetime is by encoding them in a string using the ISO 8601 standard.

This can be done by using isoformat, which will output a string, and parsing them
with the fromisoformat method, which takes a datetime serialized to a string with
isoformat and transforms it back to a datetime:

d1 = dt.datetime.now(dt.timezone.utc)
d1.isoformat()

The output is as follows:

Figure 6.9: Output with the datetime serialized to a string with isoformat and back to datetime

Another module that you use when dealing with time is the time module. In the time
module, you can get the Unix time through time.time. This will return the number of
seconds since the Unix epoch is without leap seconds. This is known as Unix time or
POXIS time.

You are encouraged to read about leap seconds if you need to develop highly time-
sensitive applications, but Python offers no time support for them. The time and
datetime modules just use the system clock, which will not count leap seconds.

But what happens in an instance where a leap second occurs is up to the OS admin.
Some companies slow down time around leap seconds, while others just skip them by
making a second take two seconds in the real world. If you need to figure this out in
your workplace, you will need to check with your OS admin how the NTP servers are
configured to act in leap seconds. Luckily, you know well in advance when the next leap
second will happen, as the International Earth Rotation and Reference Systems Service
(https://packt.live/2oKYtUR) publishes leap seconds at least 8 weeks in advance.

Dates and Times | 245

You now understand the basics of time arithmetic and know how to calculate the time
delta between two timestamps.

Exercise 89: Calculating the Unix Epoch Time

In this exercise, you will use the datetime and time modules to calculate Unix Epoch
time.

If you can just look it up, you can also calculate the Unix epoch. As time.time gives us
the number of seconds since the epoch, you can create a time delta with it and subtract
it from a datetime you've created. You will see how to perform that in this exercise.

This exercise can be performed in a Jupyter notebook:

1.	 Import the time and datetime modules and get them to the current namespace:

import datetime as dt
import time

2.	 Get the current time. You use both datetime and time to do this:

time_now = time.time()
datetime_now = dt.datetime.now(dt.timezone.utc)

Note

You use the UTC time zone when getting time with datetime. This is necessary
because time.time returns Unix time, which uses an epoch that is in UTC.

3.	 You can now calculate the epoch by subtracting datetime and a time delta, which
you get from the current time since you said that these are the number of seconds
since the epoch:

epoch = datetime_now - dt.timedelta(seconds=time_now)
print(epoch)

The output is as follows:

Figure 6.10: Calculating the epoch

246 | The Standard Library

The result is the Unix epoch — January 1, 1970.

Having completed this exercise, you know how to use the time and datetime modules to
get the output as the Unix epoch time, as shown in Figure 6.10, and to use timedelta to
represent intervals.

There is one more module that it is sometimes used in combination with datetime,
which is the calendar module. The calendar module provides additional information
about calendar years; that is, how many days there are in a month. This can also be used
to output calendars such as the Unix function.

Now have a look at an example where you create a calendar and get all of the days in a
month as follows:

import calendar
c = calendar.Calendar()
list(c.itermonthdates(2019, 2))

The output is as follows:

Figure 6.11: Output showing month 1 and its days as a calendar

Note

Though the function returns all date instances for all the weeks in the month, if
you want to get only the days that belong to the specific month, you need to filter
them.

list(d for d in c.itermonthdates(2019, 2)
 if d.month == 2)

Dates and Times | 247

You should get the following output:

Figure 6.12: Output showing month 2 and it's days as a calendar

Note

Bear in mind that when working with datetimes, there are some basic
assumptions that you might make that will cause bugs in your code. For instance,
assuming a year will have 365 days will cause problems for 29 February, or
assuming that a day has 24 hours when any international traveler can tell you
that this isn't the case. A detailed table on the wrong assumptions of time and its
reasoning is mentioned in the appendix of this book.

If you need to work with dates and times, make sure to always use well-tested libraries
such as dateutil from the standard library, and consider using a good testing library
such as freezegun to validate your assumptions. You'd be surprised to discover the
endless number of bugs that computer systems have when exposed to time quirks.

To know more about time, you first need to understand how the system clock works.
For example, your computer clock is not like a clock on the wall; it uses the Network
Time Protocol (NTP) to coordinate with other connected computers. NTP is one of the
oldest internet protocols that is still in use. Time is really hard to measure, and the most
efficient way to do so is by using atomic clocks. The NTP creates a hierarchy of clocks
and synchronizes them periodically. A good exercise is to disable the NTP sync on your
computer for a day and check how your system clock deviates from the internet by
running the NTP manually.

Handling dates and times properly is extremely difficult. For simple applications, you
should be fine with a basic level of understanding, but otherwise, further reading and
more specialized libraries will be needed. In Python, we have the datetime module as
the key to handling date and time, which also contains the timezone.utc time zone.
There are also time and calendar modules, which can be used when we need to measure
with UNIX time and to get calendar information, respectively.

248 | The Standard Library

Activity 15: Calculating the Time Elapsed to Run a Loop

You are part of an IT department, and you are asked to inspect an application that
outputs random numbers but with a delay. In order to investigate this delayed
output, you check the code as there have been updates to the application where the
development team has added a new line of code to get a list of random numbers. You
are asked to confirm this by checking the time it takes to run that line of code using the
time module.

Note

To perform this activity, you can just record the time by using time.time to
compute the difference in time since, before, and after the function. If you want to
be more precise and use the time in nanoseconds, you can use time_ns.

You will see in the topic about profiling in a later chapter how to measure performance
in a more precise way.

This was the line of code that was added in by the development team:

l = [random.randint(1, 999) for _ in range(10 * 3)]

While it is possible to run the code and use time.time to calculate the elapsed time, is
there any better function in the time module to do this?

Steps:

1.	 Record the time before running the code mentioned above in a hint with the time.
time function.

2.	 Record the time after running the code mentioned above in a hint with the time.
time function.

3.	 Find the difference between the two.

4.	 Repeat the steps using time.time_ns.

You should get the following output:

187500

Note

The solution for this activity can be found via this link.

Interacting with the OS | 249

Interacting with the OS
One of the most common uses of Python is to write code that interacts with the OS
and its filesystem. Whether you are working with files or you just need some basic
information about the OS, this topic will cover the essentials of how to do it in a
multiplatform way through the os, sys, platform, and pathlib modules of the standard
library.

OS Information

There are three key modules that are used to inspect the runtime environment and
the OS. The os module enables miscellaneous interfaces with the OS. You can use it to
inspect environment variables or to get other user and process-related information.
This, combined with the platform module, which contains information about the
interpreter and the machine where the process is running, and the sys module, which
provides you with helpful system-specific information, will usually provide you with all
the information that you need about the runtime environment.

Exercise 90: Inspecting the Current Process Information

The goal of this exercise is to use the standard library to report information about the
running process and the platform on your system:

1.	 Import the os, platform, and sys modules:

import platform
import os
import sys

2.	 Get basic process information:

To obtain information such as the Process id, Parent id you can use the os module:

print("Process id:", os.getpid())
print("Parent process id:", os.getppid())

The output is as follows:

Figure 6.13: The expected output showing the process ID and the parent process ID of the system

250 | The Standard Library

This gives us the process ID and the parent process ID. This constitutes a basic step
when you try to perform any interaction with the OS that involves your process
and is the best way to uniquely identify the running process. You can try restarting
the kernel or the interpreter and see how the pid changes, as a new process ID is
always assigned to a running process in the system.

3.	 Now, get the platform and Python interpreter information:

print("Machine network name:", platform.node())
print("Python version:", platform.python_version())
print("System:", platform.system())

The output is as follows:

Figure 6.14: The expected output showing the network name, Python version, and the system type

These functions of the module platform can be used to ascertain the information
of the computer where your Python code is running, which is useful when you are
writing code that might be specific to the machine or system information.

4.	 Get the Python path and the arguments passed to the interpreter:

print("Python module lookup path:", sys.path)
print("Command to run Python:", sys.argv)

This will give us a list of paths where Python will look for modules and the
command line that was used to start the interpreter as a list of arguments.

5.	 Get the username through an environment variable.

print("USERNAME environment variable:", os.environ["USERNAME"])

The output is as follows:

Figure 6.15: The expected output showing the username environment variable

Interacting with the OS | 251

The environ attribute of the os module is a dict that maps the environment variable
name to its values. The keys are the name of the environment variables, and the
value is the one that it was set to initially. It can be used to read and set environment
variables, and it has the methods that you would expect a dict. You can use os.environ.
get(varname, default) to provide a default value if a variable was not set, and pop to
remove items or just assign a new value. There are also two other methods, getenv
and putenv, which can be used to get and set environment variables, but, using the
os.environ as a dict is more readable.

This is just a small peek into these three modules and some of the attributes and
functions that they provide. Further and more specialized information can be found in
the modules, and you are encouraged to explore the module when any specific runtime
information is needed.

Having completed this exercise, you learned how to use multiple modules such as os
and platform to query information about the environment that can be used to create
programs that interact with it.

Using pathlib

Another useful module is pathlib. Even though many of the actions that are performed
with pathlib can be done with os.path, the pathlib library offers a much better
experience, which you'll go into more detail about later.

The pathlib module provides a way to represent and interact with filesystem paths.

A path object of the module, which is the basic util of the module, can just be created
with its default argument to start a relative path to the current working directory:

import pathlib
path = pathlib.Path()
print(repr(path))

You should get the following output:

WindowsPath('.')

Note

You can get and change the current working directory with os.getcwd() and
os.chdir(), respectively.

252 | The Standard Library

You will get either a PosixPath or a WindowsPath function of the platform you are running
on.

You can use the string representation of a path at any time to be used in the functions
that accept a string as a path; this can be done by calling str(path).

path objects can be joined with just a forward slash (/), which feels really natural and
easy to read, as shown in the following code snippet:

import pathlib
path = pathlib.Path(".")
new_path = path / "folder" / "folder" / "example.py"

You can now perform multiple operations on those path objects. One of the most
common ones is to call resolve in the resulting object, which will make the path
absolute and resolve all .. references. As an example, paths such as ./my_path/ will
be resolved to paths such as /current/workspace/my_path, which start with the root
filesystem.

Some of the most common operations to perform on a path are the following:

•	 exists: Checks whether the path exists in the filesystem and whether it is a file or a
directory.

•	 is_dir: Checks whether the path is a directory.

•	 is_file: Checks whether the path is a file.

•	 iterdir: Returns an iterator with path objects to all the files and directories
contained within the path object.

•	 mkdir: Creates a directory in the path indicated by the path object.

•	 open: Opens a file in the current path, similar to running open and passing the string
representation of the path. It returns a file object that can be operated like any
other.

•	 read_text: Returns the content of the file as a Unicode string. If the file is in binary
format, the read_bytes method should be used instead.

Finally, a key function of Path objects is glob. Glob allows you to specify a set of
filenames by using wildcards. The main character used to do so is *, which matches any
character in the path level. ** matches any name but crossing directories. This means
that "/path/*" will match any file in "path" whilst "/path/**" and will match any file
within its path and any of its directories.

You will look at this in the next exercise.

Interacting with the OS | 253

Exercise 91: Using the glob Pattern to List Files within a Directory

In this exercise, you will learn how to list the files of an existing source tree. This is a
key part of developing any application that works with a filesystem.

You are given the following file and folder structure, which you have in the GitHub
repository:

 Figure 6.16: Initial folder structure

1.	 Create a path object for the current path:

import pathlib
p = pathlib.Path("")

Note

You could also use pathlib.Path.cwd() and get an absolute path directly.

2.	 Find all files in the directory with the txt extension.

You can start by listing all files with the txt extension by using the following glob:

txt_files = p.glob("*.txt")
print("*.txt:", list(txt_files))

The output is as follows:

Figure 6.17: Output showing the file with the .txt extension

This lists all the files in the current location that end with txt, which, in this case,
is the only file_a.txt. Folders within other directories are not listed, as the single
star, *, does not cross directories and if there was another file not ending in txt, it
would not be included either.

Note how you need to transform txt_files into a list. This is needed as glob returns
an iterator and you want to print the list. This is useful since, when you are listing
files, there might be an endless number of files.

254 | The Standard Library

If you wanted to list all of the text files in any folder within the path, no matter the
number of subdirectories, you could use the double star syntax, **:

print("**/*.txt:", list(p.glob("**/*.txt")))

The output is as follows:

Figure 6.18: Output showing all the files in all the folders

This lists all files that end with .txt within any folder in the current path described
by the path object, p.

This lists folder_1/file_b.txt and folder_2/folder_3/file_d.txt, but also file_a.
txt, which is not within any folder, as ** matches within any number of nested
folders, including 0.

Note

folder_1/file_c.py won't be listed, however, as it does not match the ending we
provided in the glob.

3.	 List all files one level deep that are within the subdirectory.

If you wanted to list all files one level deep within a subdirectory only, you could
use the following glob pattern:

print("*/*:", list(p.glob("*/*")))

The output is as follows:

Figure 6.19: Output showing the files within a subdirectory

This will list both files within folder_1 and the folder "folder_2/folder_3, which
is also a path. If you wanted to get only files, you could filter each of the paths by
checking the is_file method, as mentioned previously:

print("Files in */*:", [f for f in p.glob("*/*") if f.is_file()])

Using the subprocess Module | 255

The output is as follows:

Figure 6.20: Output showing the files within folder_1, folder_2, and folder_3

This will not include paths that are no longer a file.

Note

There is also another module that is worth mentioning, which contains high-level
functions for file and folder operations, shutil. With shutil, it is possible to
recursively copy, move, or delete files.

You now know how to list files within a tree based on their attributes or extensions.

Listing All Hidden Files in Your Home Directory

In Unix, hidden files are those that start with a dot. Usually, those files are not listed
when you list files with tools such as ls unless you explicitly ask for them. You will now
use the pathlib module to list all hidden files in your home directory. The code snippet
indicated here will show exactly how to list these hidden files:

import pathlib
p = pathlib.Path.home()
print(list(p.glob(".*")))

The pathlib docs find the function that gives us the home directory, and then we use
the glob pattern to match any file starting with a dot. In the next topic, we will be using
the subprocess module.

Using the subprocess Module
Python is really useful in situations where we need to start and communicate with other
programs on the OS.

The subprocess module allows us to start a new process and communicate with it,
bringing to Python all the available tools installed on your OS through an easy-to-use
API. The subprocess module can be seen by calling any other program from your shell.

This module has gone through some work to modernize and simplify its API, and you
might see code using subprocess in ways different from those shown in this topic.

256 | The Standard Library

The subprocess module has two main APIs: the subprocess.run call, which manages
everything from you passing the right arguments; and subprocess.Popen, a lower-level
API that is available for more advanced use cases. You are going to cover only the
high-level API, subprocess.run, but if you need to write an application that requires
something more complex, as we have previously seen with the standard library, go
through the documentation and explore the APIs for more complex use cases.

Note

The following examples have been run on a Linux system, but subprocess can be
used on Windows as well; it will just need to call Windows programs. You can use
dir instead of ls, for example.

Now you will see how you can call the Linux system ls by using subprocess and listing
all the files:

import subprocess
subprocess.run(["ls"])

This will just create a process and run the ls command. If the ls command is not found
(in Windows, for example), running this command will fail and raise an exception.

Note

The return value is an instance of CompletedProcess, but the output of the
command is sent to standard output in the console.

If you want to be able to capture and see the output that our process produced, you
need to pass the capture_output argument. This will capture stdout and stderr and
make it available in the completedProcess instance returned by run:

result = subprocess .run(["ls"], capture_output=True)
print("stdout: ", result.stdout)
print("stderr: ", result.stderr)

Using the subprocess Module | 257

The output is as follows:

Figure 6.21: Output showing the subprocess module

Note

The stdout and stderr result is a byte string. If you know that the result is text,
you can pass the text argument to have it decoded.

Now, Let's omit stderr from the output as you know it is empty as shown in the
Figure 6.21.

result = subprocess .run(
 ["ls"],
 capture_output=True, text=True
)
print("stdout: \n", result.stdout)

The output is as follows:

Figure 6.22: Output showing the subprocesses using stdout

You can also pass more arguments, such as -l, to have the files listed with details:

result = subprocess.run(
 ["ls", "-l"],
 capture_output=True, text=True
)
print("stdout: \n", result.stdout)

The output is as follows:

Figure 6.23: Output showing the files listed in detail using -l

258 | The Standard Library

The first thing that usually surprises users when using suprocess.run is that the
command that needs to be passed in to run is a list of strings. This is for convenience
and security. Many users will jump into using the shell argument, which will make
passing the command arguments as a string work but there are security concerns.
When doing so, you are basically asking Python to run our command in the system
shell, and you are therefore responsible for escaping the characters as needed. Imagine
for a moment that you accept user input, and you are going to pass it to the echo
command. A user would then be able to pass hacked; rm –rf / as the argument for
echo.

Note

Do not run this command: hacked; rm –rf /.

By using the semicolon, the user can mark the end of a shell command and start their
own, which will delete all of your root! Additionally, when your arguments have spaces
or any other shell character, you have to escape them accordingly. The simplest and
safest way to use subprocess.run is to pass all tokens one by one as a list of strings, as
shown in the examples here.

In some situations, you might want to inspect the return code that our return process
has returned. In those situations, you can just check the returncode attribute in the
returning instance of subprocess.run:

result = subprocess.run(["ls", "non_existing_file"])
print("rc: ", result.returncode)

The output is as follows:

rc: 2

If you wanted to make sure that our command succeeded without always having to
check that the return code was 0 after running, you could use the check=True argument.
This will raise errors if the program reported any:

result = subprocess.run(
 ["ls", "non_existing_file"],
 check=True
)
print("rc: ", result.returncode)

Using the subprocess Module | 259

The output is as follows:

Figure 6.24: The result of running subprocess on a failed command

This is a great way to call other programs in which we just want them to be executed
to have a look at the error, such as calling batch processing scripts or programs. The
exceptions raised in those situations contain information such as the command that
was run, the output if it was captured, and the return code.

The subprocess.run function also has some other interesting arguments that are helpful
in some more special situations. As an example, if you are using subprocess.call with
a program that expects any input through stdin, you can pass such input via the stdin
argument. You can also pass a timeout for how many seconds you should wait for the
program to finish. If the program does not return by that time, it will be terminated and,
once finished, a timeout exception will be raised to inform us of the failure.

Processes created with the subprocess.run method will inherit the environment
variables from the current process.

sys.executable is a string giving the absolute path of the executable binary for the
Python interpreter on systems. If Python, is unable to retrieve the real path to its
executable process, sys.executable will be an empty string or None.

Note

The -c option on the Python interpreter is for running code inline. You will be using
this option in Activity 16: Testing Python Code.

You will see how you can customize child processes in the following exercise.

260 | The Standard Library

Exercise 92: Customizing Child Processes with env vars

As part of an auditing tool, you are asked to print our environment variables by using
the subprocess module, without relying on the Python os.environ variable. However,
you have to do so concealing our server name, as our manager does not want to show
this information to our clients.

In this exercise, you will call other apps in the OS while changing the environment
variables of the parent process. You will see how you can change environment variables
when using subprocess:

1.	 Import subprocess.

Bring the subprocess module into the current namespace:

import subprocess

You can also bring just the run command by running subprocess by importing
run, but by importing this module itself, we can see the module name when we
are calling run. Otherwise, you wouldn't know where the run was coming from.
Additionally, subprocess defines some constants that are used for some arguments
on the advanced use of Popen. By importing subprocess, you have all those available.

2.	 Run env to print the environment variables.

You can run the env Unix command, which will list the process environment
variables in stdout:

result = subprocess.run(
 ["env"],
 capture_output=True,
 text=True
)
print(result.stdout)

You pass capture_output and text to be able to read the stdout result in a Unicode
string. You can confirm that the process indeed has a list of environment variables
already set; those match the ones of the parent process:

Figure 6.25: Output showing the environment variables using env

Using the subprocess Module | 261

3.	 Use a different set of environment variables.

If you wanted to customize the environment variables that our subprocess has, you
could use the env keyword of the subprocess.run method:

result = subprocess.run(
 ["env"],
 capture_output=True,
 text=True,
 env={"SERVER": "OTHER_SERVER"}
)
print(result.stdout)

The output is as follows:

Figure 6.26: Output showing a different set of environment variables

4.	 Now, modify the default set of variables.

Most of the time, you just want to modify or add one variable, not just replace them
all. Therefore what we did in the previous step is too radical, as tools might require
environment variables that are always present in the OS.

To do so, you will have to take the current process environment and modify it
to match the expected result. We can access the current process environment
variables via os.environ and copy it via the copy module. Though you can also use
the dict expansion syntax with the keys that you want to change to modify it, as
shown in the following example:

import os
result = subprocess.run(
 ["env"],
 capture_output=True,
 text=True,
 env={**os.environ, "SERVER": "OTHER_SERVER"}
)
print(result.stdout)

262 | The Standard Library

The output is as follows:

Figure 6.27: Modifying the default set of environment variables

You can see that you now have the same environments in the process created with
subprocess as those in the current process, but that you have modified SERVER.

You can use the subprocess module to create and interact with other programs installed
on our OS. The subprocess.run function and its different arguments make it easy to
interact with different kinds of programs, check their output, and validate their results.
There are also more advanced APIs available through the subprocess.Popen call if they
are needed.

Activity 16: Testing Python Code

A company that receives small Python code snippets from its clients with basic
mathematical and string operations has realized that some of the operations crash
their platform. There is some asked for code requested by clients that cause the Python
interpreter to abort as it cannot compute it.

This is an example:

compile("1" + "+1" * 10 ** 6, "string", "exec")

You are therefore asked to create a small program that can run the requested code and
check whether it will crash without breaking the current process. This can be done
by running the same code with subprocess and the same interpreter version that is
currently running the code.

To get this code, you need to:

1.	 Find out the executable of our interpreter by using the sys module.

2.	 Use subprocess to run the code with the interpreter that you used in the previous
step.

3.	 Use the -c option of the interpreter to run code inline.

Logging | 263

4.	 Check whether the result code is -11, which corresponds to an abort in the
program.

Note

The solution for this activity can be found via this link.

In the following topic, you will be using logging, which plays a major part in the life of a
developer.

Logging
Setting up an application or a library to log is not just good practice; it is a key task of
a responsible developer. It is as important as writing documentation or tests. Many
people consider logging the "runtime documentation"; the same way developers
read the documentation when interacting with the DevOps source code, and other
developers will use the log traces when the application is running.

Hardcore logging advocates state that debuggers are extremely overused, and people
should rely more on logging, using both info and trace logs to troubleshoot their code
in development.

The idea is that if you are not able to troubleshoot your code with the highest level of
verbosity in development, then you may have issues in production that you won't be
able to figure out the root issue of.

Using Logging

Logging is the best way to let the users of the running application know which state
the process is in, and how it is processing its work. It can also be used for auditing or
troubleshooting client issues. There is nothing more frustrating than trying to figure
out how your application behaved last week and having no information at all about what
happened when it faced an issue.

You should also be careful about what information we log. Many companies will require
users to never log information such as credit cards or any sensitive user data. Whilst it
is possible to conceal such data after it is logged, it is better to be mindful when we log
it.

264 | The Standard Library

You might wonder what is wrong with just using print statements, but when you start
to write large-scale applications or libraries, you realize that just using print does
nothing to instrument an application. By using the logging module, you also get the
following:

•	 Multithreading support: The logging module is designed to work in multithreaded
environments. This is needed when using multiple threads as, otherwise, the data
that you log will get interleaved, as can happen with print.

•	 Categorization through multiple levels of logging: When using print, there is no
way to transmit the importance of the log trace being emitted. By using logging, we
can choose the category that we want to log under to transmit the importance of it.

•	 Separation of concerns between instrumentation and configuration: There are two
different users of the logging library — users who just emit and those who configure
the logging stack. The logging library separates those nicely, allowing libraries and
applications to just instrument their code with logs at different levels, and the final
user to configure the logging stack at will.

•	 Flexibility and configurability: The logging stack is easily extensible and
configurable. There are many types of handlers, and it is trivial to create new
classes that extend its functionality. There is even a cookbook on how to extend the
logging stack in the standard library documentation.

The main class you interact with when using the logging library is logger. can be used
to emit logs in any category. You usually create loggers by getting them through the
logging.getLogger(<logger name>) factory method.

Once you have a logger object, you can call the different logging methods that match
the different default categories that you are able to log in:

•	 debug: Fine-grained messages that are helpful for debugging and troubleshooting
applications, usually enabled in development. As an example, a web server will log
the input payload when receiving a request at this level.

•	 info: Coarse-grained informational messages that highlight the progress of an
application. As an example, a web server will emit the requests being handled at
this level without details of the data being received.

Logging | 265

•	 warning: Messages that inform the user of a potentially harmful situation in the
application or library. In our example of a web server, this will happen if you fail to
decode an input JSON payload because it is corrupted. Note that while it might feel
like an error and it might be for the whole system, if you own the frontend as well,
the issue is not in the application handling the request; it is in the process sending
it. Therefore, a warning might help notify the user of such an issue, but it is not
an error. The error should be reported to the client as an error response, and the
client should handle it as appropriate.

•	 error: Used for situations where an error has taken place, but the application can
continue to function properly. Logging an error usually means there is an action
that needs to be carried out by a developer in the source code that logged it.
Logging errors commonly happen when you capture an exception, and you have
no way of handling it effectively. It is quite common to set up alerts in connection
with errors to inform the DevOps or developer that an error situation took place. In
our web server application, this might happen if you fail to encode a response or an
exception is raised that was not expected when handling the request.

•	 fatal: Fatal logs indicate that there has been an error situation that compromises
the current stability of the program, and, quite often, the process is restarted after
a fatal message is logged. A fatal log means that the application needs an operator
to take action urgently, compared to an error that a developer is expected to
handle. A common situation is when the connection to a database is lost, or any
other resource that is key for the application is no longer reachable.

Logger Object

Loggers have a hierarchy of names split by a dot. For example, if you ask for a logger
named my.logger, you are creating a logger that is a child of my, which is a child of the
root logger. All top-level loggers "inherit" from the root logger.

You can get the root logger by calling getLogger without arguments or by logging
directly with the logging module. A common practice is to use __name__ as the logger
module. This makes your logging hierarchy follow your source code hierarchy. Unless
you have a strong reason not to do that, use __name__ when developing libraries and
applications.

266 | The Standard Library

Exercise 93: Using a logger Object

The goal of this exercise is to create a logger object and use four different methods that
allow us to log in the categories mentioned in the Logging section:

1.	 Import the logging module:

import logging

2.	 Create a logger.

We can now get a logger through the factory method getLogger:

logger = logging.getLogger("logger_name")

This logger object will be the same everywhere, and you call it with the same name.

3.	 Log with different categories:

logger.debug("Logging at debug")
logger.info("Logging at info")
logger.warning("Logging at warning")
logger.error("Logging at error")
logger.fatal("Logging at fatal")

The output is as follows:

Figure 6.28: The output of running logging

By default, the logging stack will be configured to log warnings and above, which
explains why you only see those levels being printed to the console. You will see
later how to configure the logging stack to include other levels, such as info. Use
files or a different format to include further information.

4.	 Include information when logging:

system = "moon"
for number in range(3):
 logger.warning("%d errors reported in %s", number, system)

Logging | 267

Usually, when you log, you don't pass just a string, but also some variable or
information that helps us with the current state of the application:

Figure 6.29: The output of running warning logs

Note

You use Python standard string interpolation, and you pass the remainder of the
variables as attributes. %d is used to format numbers, while %s is used for strings.
The string interpolation format also has syntax to customize the formatting of
numbers or to use the repr of an object.

After this exercise, you now know how to use the different logger methods to log in
different categories depending on the situation. This will allow you to properly group
and handle your application messages.

Logging in warning, error, and fatal Categories

You should be mindful when you log in warning, error, and fatal. If there is something
worse than an error, it is two errors. Logging an error is a way of informing the system
of a situation that needs to be handled, and if you decide to log an error and raise an
exception, you are basically duplicating the information. As a rule of thumb, following
these two pieces of advice is key to an application or library that logs errors effectively:

•	 Never ignore an exception that transmits an error silently. If you handle an
exception that notifies you of an error, log that error.

•	 Never raise and log an error. If you are raising an exception, the caller has the
ability to decide whether it is truly an error situation, or whether they were
expecting the issue to occur. They can then decide whether to log it following the
previous rule, to handle it, or to re-raise it.

A good example of where the user might be tempted to log an error or warning is in
the library of a database when a constraint is violated. From the library perspective,
this might look like an error situation, but the user might be trying to insert it without
checking whether the key was already in the table. The user can therefore just try
to insert and ignore the exception, but if the library code logs a warning when such
a situation happens, the warning or error will just spew the log files without a valid
reason. Usually, a library will rarely log an error unless it has no way of transmitting the
error through an exception.

268 | The Standard Library

When you are handling exceptions, it is quite common to log them and the information
they come with. If you want to include the exception and trace back the full
information, you can use the exc_info argument in any of the methods that we saw
before:

try:
 int("nope")
except Exception:
 logging.error("Something bad happened", exc_info=True)

The output is as follows:

Figure 6.30: Example output when logging an exception with exc_info.

The error information now includes the message you passed in, but also the exception
that was being handled with the traceback. This is so useful and common that there is
a shortcut for it. You can call the exception method to achieve the same as using error
with exc_info:

try:
 int("nope")
except Exception:
 logging.exception("Something bad happened")

The output is as follows:

Figure 6.31: Example output when logging an exception with the exception method

Now, you will review two common bad practices with the logging module.

Logging | 269

The first one is a greedy string formatting. You might see some linters complain about
formatting a string by the user, rather than relying on the logging module's string
interpolation. This means that logging.info("string template %s", variable) is
preferred over logging.info("string template {}".format(variable)). This is the case
since, if you perform the string interpolation with the format, you will be doing it no
matter how we configure the logging stack. If the user who configures the application
decides that they don't need to print out the logs in the information level, you will have
to perform interpolation, when it wasn't necessary:

prefer
logging.info("string template %s", variable)
to
logging.info("string template {}".format(variable))

Note

Linters are programs that detect code style violations, errors, and suggestions for
the user.

The other, more important, bad practice is capturing and formatting exceptions when
it's not really needed. Often, you see developers capturing broad exceptions and
formatting them manually as part of a log message. This is not only boilerplate but also
less explicit. Compare the following two approaches:

d = dict()

Prefer
try:
 d["missing_key"] += 1
except Exception:
 logging.error("Something bad happened", exc_info=True)

to
try:
 d["missing_key"] += 1
except Exception as e:
 logging.error("Something bad happened: %s", e)

270 | The Standard Library

The output is as follows:

Figure 6.32: Example output difference of exc_info versus logging an exception string

The output in the second approach will only print the text of the exception, without
further information. We don't know if it was a key error, nor where the issue appeared.
If the exception was raised without a message, we would just get an empty message.
Additionally, if logging an error, use an exception, and you won't need to pass exc_info.

Configuring the Logging Stack

Another part of the logging library is the functions to configure it, but before diving
into how to configure the logging stack, you should understand its different parts and
the role they play.

You've already seen logger objects, which are used to define the logging messages
that need to be generated. There are also the following classes, which take care of the
process of processing and emitting a log:

•	 Log Records: This is the object that is generated by the logger and contains all the
information about the log, including the line where it was logged, the level, the
template, and arguments, among others.

•	 Formatters: These take log records and transform them into strings that can be
used by handlers that output to streams.

•	 Handlers: These are the ones that actually emit the records. They frequently use
a formatter to transform records into strings. The standard library comes with
multiple handlers to emit log records into stdout, stderr, files, sockets, and so on.

•	 Filters: Tools to fine-tune log record mechanisms. They can be added to both
handlers and loggers.

Logging | 271

If the functionality that is already provided by the standard library is not enough, you
can always create our own kind of classes that customize how the logging process is
performed.

Note

The logging library is truly flexible. If you are interested in doing so, read through
the logging cookbook in the Python official documentation to see some examples
at https://docs.python.org/3/howto/logging-cookbook.html.

Armed with this knowledge, there are multiple ways to configure all of the elements
of the logging stack. You can do so by plugging together all the classes manually with
code, passing a dict via logging.config.dictConfig, or through an ini file with logging.
config.iniConfig.

Exercise 94: Configuring the Logging Stack

In this exercise, you will learn how to configure the logging stack through multiple
methods to output log messages to stdout.

You want to configure the logging stack to output logs to the console, which should
look like this:

Figure 6.33: Outputting logs to the console

Note

The background is white, which means the output went to stdout and not stderr,
as in the previous examples. Make sure to restart the kernel or interpreter every
time prior to configuring the logging stack.

272 | The Standard Library

You will see how you can configure it with code, with a dictionary, with basicConfig,
and with a config file:

1.	 Open a new Jupyter notebook.

2.	 Start with configuring the code.

The first way to configure the stack is by manually creating all the objects and
plugging them together:

import logging
import sys
root_logger = logging.getLogger()
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(levelname)s: %(message)s")
handler.setFormatter(formatter)
root_logger.addHandler(handler)
root_logger.setLevel("INFO")
logging.info("Hello logging world")

The output will be as follows:

INFO: Hello logging world

In this code, you get a handle of the root logger in the third line by calling getLogger
without any arguments. You then create a stream handler, which will output to sys.
stdout (the console) and a formatter to configure how we want the logs to look.
Finally, you just need to bind them together by setting the formatter in the handler
and the handler in the logger. You set the level in the logger, though you could also
configure it in the handler.

3.	 Restart the kernel on Jupyter and now use dictConfig to achieve the same
configuration:

Logging | 273

Exercise94.ipynb

import logging
from logging.config import dictConfig

dictConfig({
 "version": 1,
 "formatters": {
 "short":{
 "format": "%(levelname)s: %(message)s",
 }
 },
 "handlers": {
 "console": {
 "class": "logging.StreamHandler",
 "formatter": "short",
 "stream": "ext://sys.stdout",

https://packt.live/33U0z3D

Note

If the above link does not render, use https://nbviewer.jupyter.org/

The output will be as follows:

INFO: Hello logging world

The dictionary configuring the logging stack is identical to the code in step 1. Many
of the configuration parameters that are passed in as strings can also be passed as
Python objects. For example, you can use sys.stdout instead of the string passed to
the stream option or logging.INFO rather than INFO.

Note

The code in Step 3 is identical to the code in Step 2; it just configures it in a
declarative way through a dictionary.

4.	 Now, again, restart the kernel on Jupyter and use basicConfig as mentioned in the
following code snippet:

import sys
import logging
logging.basicConfig(

274 | The Standard Library

 level="INFO",
 format="%(levelname)s: %(message)s",
 stream=sys.stdout
)
logging.info("Hello there!")

The output will be as follows:

INFO: Hello there!

The logging stack comes with a utility function, basicConfig, which can be used
to perform some basic configurations, such as the one we're performing here, as
mentioned in the code snippet that follows.

5.	 Using an ini file.

Another way to configure the logging stack is by using an ini file. We require an ini
file, as follows:

logging-config.ini

[loggers]
keys=root

[handlers]
keys=console_handler

[formatters]
keys=short

[logger_root]
level=INFO
handlers=console_handler

[handler_console_handler]
class=StreamHandler

https://packt.live/32727X3

Note

If the above link does not render, use https://nbviewer.jupyter.org/

You can then load it with the following code:

import logging
from logging.config import fileConfig
fileConfig("logging-config.ini")
logging.info("Hello there!")

Collections | 275

The output will be as follows:

INFO: Hello there!

All applications should configure the logging stack only once, ideally at startup.
Some functions, such as basicConfig, will not run if the logging stack has already
been configured.

You now know all of the different ways to configure an application's logging stack. This
is one of the key parts of creating an application.

In the next topic, you will learn about collections.

Collections
You read about built-in collections in Chapter 2, Python Structures. You saw list, dict,
tuple, and set, but sometimes, those collections are not enough. The Python standard
library comes with modules and collections that provide a number of advanced
structures that can greatly simplify our code in common situations. Now, you will
explore how you can use counters, defauldict, and chainmap.

Counters

A counter is a class that allows us to count hashable objects. It has keys and values as
a dictionary (it actually inherits from dict) to store objects as keys and the number of
occurrences in values. A counter object can be created either with the list of objects
that you want to count or with a dictionary that already contains the mapping of objects
to their count. Once you have a counter instance created, you can get information
about the count of objects, such as getting the most common ones or the count of a
specific object.

Exercise 95: Counting Words in a Text Document

In this exercise, you will use a counter to count the occurrences of words in the text
document https://packt.live/2OOaXWs:

1.	 Get the list of words from https://packt.live/2OOaXWs, which is our source data:

import urllib.request
url = 'https://www.w3.org/TR/PNG/iso_8859-1.txt'
response = urllib.request.urlopen(url)
words = response.read().decode().split()
len(words)  # 858

276 | The Standard Library

Here, you are using urllib, another module within the standard library, to get the
contents of the URL of https://packt.live/2OOaXWs. You can then read the content
and split it based on spaces and break lines. You will be using words to play with
the counter.

2.	 Now, create a counter:

import collections
word_counter = collections.Counter(words)

This creates a counter with the list of words passed in through the words list. You
can now perform the operations you want on the counter.

Note

As this is a subclass of the dictionary, you can perform all the operations that you
can also perform on the dictionary.

3.	 Get the five most common words:

for word, count in word_counter.most_common(5):
 print(word, "-", count)

You can use the most_common method on the counter to get a list of tuples with all
the words and the number of occurrences. You can also pass a limit as an argument
that limits the number of results:

Figure 6.34: Getting the five common words as output

4.	 Now, explore occurrences of some words, as shown in the following code snippet:

print("QUESTION", "-", word_counter["QUESTION"])
print("CIRCUMFLEX", "-", word_counter["CIRCUMFLEX"])
print("DIGIT", "-", word_counter["DIGIT"])
print("PYTHON", "-", word_counter["PYTHON"])

Collections | 277

You can use the counter to explore the occurrences of specific words by just
checking them with a key. Now check for QUESTION, CIRCUMFLEX, DIGIT, and PYTHON:

Figure 6.35: Output exploring the occurrences of some words

Note how you can just query the counter with a key to get the number of occurrences.
Something else interesting to note is that when you query for a word that does not
exist, you get 0. Some users might have expected a KeyError.

In this exercise, you just learned how to get a text file from the internet and perform
some basic processing operations, such as counting the number of words.

defaultdict

Another class that is considered to create simpler-to-read code is the defaultdict class.
This class behaves like a dict but allows you to provide a factory method to be used
when a key is missing. This is extremely useful in multiple scenarios where you edit
values, and especially if you know how to generate the first value, such as when you are
building a cache or counting objects.

In Python, whenever you see code like the following code snippet, you can use
defaultdict to improve the code quality:

d = {}
def function(x):
 if x not in d:
 d[x] = 0 # or any other initialization
 else:
 d[x] += 1 # or any other manipulation

Some people will try to make this more Pythonic by using EAFP over LBYL, which
handles the failure rather than checking whether it will succeed:

d = {}
def function(x):
 try:
 d[x] += 1
 except KeyError:
 d[x] = 1

278 | The Standard Library

While this is indeed the preferred way to handle this code according to Python
developers as it better conveys the information that the main part of the logic is the
successful case, the correct solution for this kind of code is defaultdict. Intermediate
to advanced Python developers will immediately think of transforming that code into a
default dict and then comparing how it looks:

import collections
d = collections.defaultdict(int)
def function(x):
 d[x] += 1

The code becomes trivial, and it is identical to what you saw in the two previous
examples. defaultdict is created with a factory method that will just call int() if the
key is missing, which returns 0 and is incremented by one. It is a simply beautiful piece
of code. But note that defaultdict can be used in other ways; the function passed to
its constructor is a callable factory method. You use int not as a type, but as a function
that is called. In the same way, you could pass list, set, or any callable you want to
create.

Exercise 96: Refactoring Code with defaultdict

In this exercise, you will learn how to refactor code and simplify it by using defaultdict:

_audit = {}

def add_audit(area, action):
 if area in _audit:
 _audit[area].append(action)
 else:
 _audit[area] = [action]

def report_audit():
 for area, actions in _audit.items():
 print(f"{area} audit:")
 for action in actions:
 print(f"- {action}")
 print()

Note

The aforementioned code can be found on GitHub: https://packt.live/31ccJ6k.

Collections | 279

The code template mentioned earlier in this exercise keeps an audit of all the actions
that are performed in a company. They are split by area and the dictionary that was
used. You can clearly see in the add_audit function the pattern we spoke about before.
You will see how you can transform that into simpler code by using defaultdict and
how it could be later extended in a simpler way:

1.	 Run the code that keeps an audit of all the actions, as mentioned previously.

First, run the code to see how it behaves. Before doing any refactoring, you should
understand what you are trying to change, and ideally, have tests for it

add_audit("HR", "Hired Sam")
add_audit("Finance", "Used 1000£")
add_audit("HR", "Hired Tom")
report_audit()

You should get the following output:

Figure 6.36: Output showing the code keeping an audit of the changes

You can see that this works as expected, and you can add items to the audit and
report them.

2.	 Introduce a default dict.

You can change dict for defaultdict and just create a list whenever you try to
access a key that does not exist. This will need to be done only in the add_audit
function. As report_audit uses the object as a dictionary and defaultdict is a
dictionary, you don't need to change anything in that function. You will see how it
will look in the following code snippet:

import collections
_audit = collections.defaultdict(list)
def add_audit(area, action):
    _audit[area].append(action)

def report_audit():
 for area, actions in _audit.items():
 print(f"{area} audit:")
 for action in actions:

280 | The Standard Library

 print(f"- {action}")
 print()

Note

The add_audit function has become a single line. It just appends an action to an
area.

When a key is not found in the _audit object, our defaultdict just calls the list
method, which returns an empty list. The code could not be any simpler.

What about if you are asked to log the creation of an area in the audit? Basically,
whenever a new area is created in our audit object, to have an element present.
The developer that initially wrote the code claims that it was easier to change with
the old layout, without using defaultdict.

3.	 Use the add_audit function to create the first element.

The code without defaultdict for add_audit will be as follows:

def add_audit(area, action):
 if area not in _audit:
 _audit[area] = ["Area created"]
 _audit[area].append(action)

The code change performed in add_audit is much more complex than the one you
will have to perform in your function with defaultdict.

With defaultdict, you just need to change the factory method from being a list to
being a list with the initial string:

import collections
_audit = collections.defaultdict(lambda: ["Area created"])
def add_audit(area, action):
 _audit[area].append(action)

def report_audit():
 for area, actions in _audit.items():
 print(f"{area} audit:")
 for action in actions:
 print(f"- {action}")
 print()

Collections | 281

And it is still simpler than without defaultdict:

add_audit("HR", "Hired Sam")
add_audit("Finance", "Used 1000£")
add_audit("HR", "Hired Tom")
report_audit()

You should get the following output:

Figure 6.37: Output with a function to create the first element

At the end of this exercise, you now know how to use defaultdict with multiple
different factory methods. This is useful when writing Pythonic code and simplifying
existing code bases.

ChainMap

Another interesting class in the collection's module is ChainMap. ChainMap is a structure
that allows you to combine lookups for multiple mapping objects, usually dictionaries.
It can be seen as a multi-level object; the user can see the front of it with all the keys
and all the mappings, but the keys that map on the frontend hide the mappings on the
backend.

Say you want to create a function that returns the menu our users will have at a
restaurant; the function just returns a dictionary with the different types of elements
of the lunch and the value of them. You want to allow our users to customize any part
of the lunch, but you also want to provide some defaults. This can easily be done with
ChainMap:

import collections
_defaults = {
 "apetisers": "Hummus",
 "main": "Pizza",
 "desert": "Chocolate cake",

282 | The Standard Library

 "drink": "Water",
}
def prepare_menu(customizations):
 return collections.ChainMap(customizations, _defaults)
def print_menu(menu):
 for key, value in menu.items():
 print(f"As {key}: {value}.")

Note

You have a dictionary that provides you with the defaults, and you are combining
it with the user's customizations by using ChainMap. The order is important, as it
makes the user's dictionary values appear before the defaults and, if desired, you
can also have more than two dictionaries, which might be useful for other use
cases.

You will now see how chainmap behaves when you pass in different values:

menu1 = prepare_menu({})
print_menu(menu1)

The output is as follows:

Figure 6.38: Chainmap outputting different values

If the user passes in no customization, you get the default menu. All keys and values are
taken from the _default dictionary that we provided:

menu3 = prepare_menu({"side": "French fries"})
print_menu(menu3)

Collections | 283

The output is as follows:

Figure 6.39: Output with no customization; that is, the default menu

When a user passes a dictionary that changes one of the keys that is present in the
_default dictionary, the value of the second dictionary is shadowed by the first one. You
can see how the drink is now Red Wine rather than Water:

menu2 = prepare_menu({"drink": "Red Wine"})
print_menu(menu2)

The output is as follows:

Figure 6.40: Value of the dictionary changed, changing the drink to red wine

Users can also pass in new keys, which will be reflected in ChainMap.

You might be tempted to think that this is just an over-complication of using the
dictionary constructor and that the same could be achieved with an implementation
like the following one:

def prepare_menu(customizations):
 return {**customizations, **_defaults}

But the semantics are different. That implementation would create a new dictionary,
which would not allow changes to the user's customizations or the defaults. Say you
wanted to change the defaults after you have created some menus, we can do this
with the ChainMap implementation since the returned object is just a view of multiple
dictionaries:

_defaults["main"] = "Pasta"
print_menu(menu3)

284 | The Standard Library

The output is as follows:

Figure 6.41: Output with changed default values

Note

You were able to change the main dish. Changes in any of the dict that is part of
chainmap are visible when interacting with it.

The different classes in the collection modules allow the developer to write better
code by using more appropriate structures. With the knowledge you have gained in
this topic, try to explore others, such as deque or basic skeletons, to build your own
containers. Using these classes effectively in many situations is what differentiates an
experienced Python programmer from a beginner.

Functools
The final module of the standard library you are going to look at allows constructs with
a minimal amount of code. In this topic, you are going to see how to use lru_cache and
partial.

Caching with functools.lru_cache

Often, you have a function that is heavy to compute, in which you just want to cache
results. Many developers will create their own caching implementation by using a
dictionary, but that is error-prone and adds unnecessary code to our project. The
functools module comes with a decorator — that is, functools.lru_cache, which is
provided exactly for these situations. It is a recently used cache, with a max_size that is
provided when the code is constructed. This means that you can specify a number of
input values that you want to cache as a maximum, to limit the memory this function
can take, or it can grow indefinitely. Once you reach the maximum number of different
inputs that we want to cache, the input that was the least recently used will be thrown
away in favor of a new call.

Functools | 285

Additionally, the decorator provides some new methods in the function that can be
used to interact with the cache. We can use cache_clear to remove all of the previous
hits saved in cache or cache_info to get information about the hits and misses, so as
to allow us to tune it if needed. The original function information is also offered for
inspection, as with any properly decorated function, through the __wrapped__ decorator.

It is important to keep in mind that the LRU cache should be used only in functions.
This is useful if we just want to reuse existing values or the side effect will not happen.
As an example, we should not use the cache on a function that writes something into a
file or sends a package to an endpoint, as those actions will not be performed once the
function is called again with the same input, which is the main purpose of the cache.

Lastly, for the cache to be usable in a function, all objects being passed need to be
hashable. This means that integers, frozensets, tuples, and so on are allowed, but not
modifiable objects, such as dicts, sets, or lists.

Exercise 97: Using lru_cache to Speed Up Our Code

In this exercise, you will see how to configure a function to use cache with functools
and to reuse the results from previous calls to speed up the overall process.

You use the lru cache function of the functools module to reuse values that a function
has already returned without having to execute them again.

We will start with a function that is mentioned in the following code snippet, which
simulates taking a long time to compute, and we will see how we can improve this:

import time
def func(x):
 time.sleep(1)
 print(f"Heavy operation for {x}")
 return x * 10

If we call this function twice with the same arguments, we will be executing the code
twice to get the same result:

print("Func returned:", func(1))
print("Func returned:", func(1))

The output is as follows:

Figure 6.42: Output showing the same arguments by calling the function twice

286 | The Standard Library

We can see this in the output and the print within the function, which happens twice.
This is a clear improvement in performance as, once the function is executed, future
executions are practically free. Now, we will improve the performance in the steps that
follow:

1.	 Add the lru cache decorator to the func function:

The first step is to use the decorator on our function:

import functools
import time
@functools.lru_cache()
def func(x):
 time.sleep(1)
 print(f"Heavy operation for {x}")
 return x * 10

When we execute the function for the same input, we now see that the code is
executed only once, but we still get the same output from the function:

print("Func returned:", func(1))
print("Func returned:", func(1))
print("Func returned:", func(2))

The output is as follows:

Figure 6.43: Output showing the code being executed once but with the same output

Note

The Heavy operation only happens once for 1. We are also calling 2 here to show
that the value is different based on its input, and, since 2 was not cached before, it
has to execute the code for it.

This is extremely useful; with just one line of code, we have at hand a fully working
implementation of an LRU cache.

Functools | 287

2.	 Change the cache size using the maxsize argument.

The cache comes with a default size of 128 elements, but this can be changed if
needed, through the maxsize argument:

import functools
import time
@functools.lru_cache(maxsize=2)
def func(x):
 time.sleep(1)
 print(f"Heavy operation for {x}")
 return x * 10

By setting it to 2, we are sure that only two different inputs will be saved. We can
see this by using three different inputs and calling them in reverse order later:

print("Func returned:", func(1))
print("Func returned:", func(2))
print("Func returned:", func(3))
print("Func returned:", func(3))
print("Func returned:", func(2))
print("Func returned:", func(1))

The output is as follows:

Figure 6.44: Output with a changed cache size

The cache successfully returned the previous values for the second call of 2 and 3,
but the result for 1 was destroyed once 3 arrived, since we limited the size to two
elements only.

288 | The Standard Library

3.	 Now, use it in other functions, such as lru_cache.

Sometimes, the functions you want to cache are not in our control to change. If you
want to keep both versions, that is, a cached and an uncached one, we can achieve
this by using the lru_cache function just as a function and not as a decorator, as
decorators are just functions that take another function as an argument:

import functools
import time
def func(x):
 time.sleep(1)
 print(f"Heavy operation for {x}")
 return x * 10
cached_func = functools.lru_cache()(func)

Now, we can use either func or its cached version, cached_func:

print("Cached func returned:", cached_func(1))
print("Cached func returned:", cached_func(1))
print("Func returned:", func(1))
print("Func returned:", func(1))

The output is as follows:

Figure 6.45: Output with the lru_cache function

We can see how the cached version of the function did not execute the code in the
second call, but the uncached version did.

You just learned how to use functools to cache the values of a function. This is a really
quick way to improve the performance of your application when applicable.

Functools | 289

Partial

Another often used function in functools is partial. partial allows us to adapt existing
functions by providing values for some of their arguments. It is like binding arguments
in other languages, such as C++ or JavaScript, but this is what you would expect from a
Python function. partial can be used to remove the need for specifying positional or
keyword arguments, which makes it useful when we need to pass a function that takes
arguments as a function that does not take them. Have look at some examples:

You will use a function that just takes three arguments and prints them:

def func(x, y, z):
 print("x:", x)
 print("y:", y)
 print("z:", z)
func(1, 2, 3)

The output is as follows:

Figure 6.46: The output, which simply prints the arguments

You can use partial to transform this function to take fewer arguments. This can
be done in two ways, mainly, bypassing the arguments as a keyword, which is more
expressive; or through positional arguments:

import functools
new_func = functools.partial(func, z='Wops')
new_func(1, 2)

The output is as follows:

Figure 6.47: Using partial to transform the output

You can call new_func without passing the z argument, as you have provided a value
through the partial function. The z argument will always be set to the value provided
when the function was created through the partial call.

290 | The Standard Library

If you decide to use positional only, the number of arguments you pass will bind from
left to right, which means that if you only pass one argument, the x argument should no
longer be provided:

import functools
new_func = functools.partial(func, 'Wops')
new_func(1, 2)

The output is as follows:

Figure 6.48: Output with positional arguments

Exercise 98: Creating a print Function That Writes to stderr

By using partial, you can also rebind the optional arguments to a different default,
allowing us to change the default value that the function has. You will see how you
can repurpose the print function to create a print_stderr function that just writes to
stderr.

In this exercise, you will create a function that acts like print, but the output is stderr
rather than stdout:

1.	 Explore the print argument.

To start, you need to explore the arguments that print takes are. You will call help
on print to see what the documentation offers:

help(print)

The output is as follows:

Figure 6.49: Output with print arguments

Functools | 291

The argument that you are interested in is the file, which allows us to specify the
stream you want to write to.

2.	 Print to stderr.

Now, print the default value for the optional argument file, which is sysstdout, but
you can pass sys.stderr to get the behavior you are looking for:

import sys
print("Hello stderr", file=sys.stderr)

The output is as follows:

Figure 6.50: Print to stderr output

As you are printing to stderr, the output appears in red as expected.

3.	 Use partial to change the default.

You can use partial to specify arguments to be passed and create a new function.
You will bind file to stderr and see the output:

import functools
print_stderr = functools.partial(print, file=sys.stderr)
print_stderr("Hello stderr")

The output is as follows:

Figure 6.51: Print to stderr output through partial

Great – this works as expected; we now have a function that has changed the default
value for the optional file argument.

Activity 17: Using partial on class Methods

Even though partial is an extremely useful and versatile function of the functools
module, it seems to fail when we try to apply it to a class method.

To begin with, you are working in a company that models superheroes. You are asked to
fix the following code snippet, as the previous developer attempted to use functools.
partial to create the reset_name function but it does not seem to work well. Explore
functools to make the following code snippet work without errors by creating partial
on a class method.

292 | The Standard Library

In this activity, you will explore the partial module to see how partial can be used in
more advanced use cases. This activity can be performed on the Jupyter notebook:

import functools
if __name__ == "__main__":
 class Hero:
 DEFAULT_NAME = "Superman"
 def __init__(self):
 self.name = Hero.DEFAULT_NAME

 def rename(self, new_name):
 self.name = new_name

 reset_name = functools.partial(rename, DEFAULT_NAME)

 def __repr__(self):
 return f"Hero({self.name!r})"

When we try to use partial in this class, to create the reset_name method, something
seems to not work. Make the following succeed by modifying the way we used partial
previously:

if __name__ == "__main__":
 hero = Hero()
 assert hero.name == "Superman"
 hero.rename("Batman")
 assert hero.name == "Batman"
 hero.reset_name()
 assert hero.name == "Superman"

Note

The aforementioned code can be found on GitHub: https://packt.live/33AxfPs

Summary | 293

Steps:

1.	 Run the code and see what error it outputs.

2.	 Check for alternatives for functools.partial by running help (functools).

3.	 Use functools.partialmethod to implement the new class.

Note

The solution for this activity can be found via this link.

Summary
You have looked at multiple modules in the standard library and how they help you
write well-tested and easier-to-read code. However, there are still many more modules
to explore and understand in order to use them effectively, though. We have learned
that Python comes with batteries included, through its vast standard library, and that,
in many situations, the utilities it provides are extended through an advanced API. By
having the mindset of checking how things can be solved with the standard library
before trying to write our own code, you can become better Python programmers.

Now that you have some knowledge of the standard library, you will start to look more
deeply into how to make our code easier to read for Python programmers, usually
known as Pythonic code. While using the standard library as much as possible is a good
start, there are some other tips and tricks that we will look at in Chapter 7, Becoming
Pythonic.

Becoming Pythonic

Overview

By the end of this chapter, you will be able to, write succinct, readable expressions
for creating lists; use Python comprehensions with lists, dictionaries, and sets;
use collections.defaultdict to avoid exceptions when using dictionaries; write
iterators to enable Pythonic access to your own data types; explain how generator
functions are related to iterators, and write them in order to defer complex
calculations; use the itertools module to succinctly express complex sequences
of data and use the re module to work with regular expressions in Python.

7

296 | Becoming Pythonic

Introduction
Python is not just a programming language — it is made up of a community of
programmers who use, maintain, and enjoy the Python programming language. As with
any community, its members have a shared culture and shared values. The values of the
Python community are well summarized in Tim Peter's document The Zen of Python
(PEP 20), which includes this statement, among others:

"There should be one — and preferably only one — obvious way to do it."

The Python community has a long history of friendly rivalry with another community
of programmers centered around the Perl programming language. Perl was designed
around the idea that There Is More Than One Way To Do It (TIMTOWTDI, which is
pronounced "Tim Toady"). While Tim Peter's line in PEP 20 is a dig at Perl, it also
introduces the idea of pythonicity.

Code is pythonic if it clearly and obviously works the way that a Python programmer
would expect it to work. Sometimes, writing Pythonic code is easy and entails doing
the simplest thing that could possibly work. However, if you are writing a class, data
structure, or module that will be used by other programmers, then sometimes you must
go the extra mile so that they will be able to do the simplest thing that could possibly
work. Hopefully, your module will have more users than writers, and this is the correct
trade-off to make.

In the previous chapter, you were introduced to the different standard libraries, and you
also learned how logging could be useful when it comes to handling data. This chapter
introduces a few of the Python language and library features that are particularly
Pythonic. You already explored how collections worked in the previous chapter. Now
you will add to this knowledge by exploring collection comprehensions that work with
lists, sets, and dictionaries. Iterators and generators allow you to add list-like behavior
to your own code so that it can be used in a more Pythonic way. You will also examine
some of the types and functions in Python's standard library that make advanced use of
collections easier to write, and easier to understand.

Having these tools at your disposal will make it easier for you to read, write, and
understand Python code. In the current world of open-source software, and with data
scientists sharing their code through Jupyter notebooks, Pythonic code is your gateway
to membership of the global Python community.

Using List Comprehensions | 297

Using List Comprehensions
List comprehensions are a flexible, expressive way of writing Python expressions
to create sequences of values. They make iterating over the input and building the
resulting list implicit so that program authors and readers can focus on the important
features of what the list represents. It is this concision that makes list comprehensions
a Pythonic way of working with lists or sequences.

List comprehensions are built out of bits of Python syntax we have already seen. They
are surrounded by square brackets ([]), which signify Python symbols for a literal list.
They contain for elements in a list, which is how Python iterates over members of a
collection. Optionally, they can filter elements out of a list using the familiar syntax of
the if expression.

Exercise 99: Introducing List Comprehensions

In this exercise, you will be writing a program that creates a list of the cubes of whole
numbers from 1 to 5. This example is trivial because we're focusing more on how you
can build a list than on the specific operations that are done to each member of the list.

Nonetheless, you may need to do this sort of thing in the real world. For instance,
if you were to write a program to teach students about functions by graphing those
functions. That application might require a list of x coordinates and generated a list of y
coordinates so that it could plot a graph of the function. First, you will explore what this
program looks like using the Python features you have already seen:

1.	 Open a Jupyter notebook and type in the following code:

cubes = []
for x in [1,2,3,4,5]:
 cubes.append(x**3)
print(cubes)

You should get the following output:

Figure 7.1: The output showing the cubes of whole numbers from 1 to 5

298 | Becoming Pythonic

Understanding this code involves keeping track of the state of the cube's variable,
which starts as an empty list, and of the x variable, which is used as a cursor to
keep track of the program's position in the list. This is all irrelevant to the task at
hand, which is to list the cubes of each of these numbers. It will be better – more
Pythonic, even – to remove all the irrelevant details. Luckily, list comprehensions
allow us to do that.

2.	 Now write the following code, which replaces the previous loop with a list
comprehension:

cubes = [x**3 for x in [1,2,3,4,5]]
print(cubes)

You should get the following output:

Figure 7.2: The output with the replaced loop showing the cubes of whole numbers from 1 to 5

This says, "For each member in the [1,2,3,4,5] list, call it x, calculate the x**3
expression, and put that in the list cubes." The list used can be any list-like object;
for example, a range.

3.	 Now you can make this example even simpler by writing the following:

cubes = [x**3 for x in range(1,6)]
print(cubes)

You should get the following output:

Figure 7.3: The output with the optimized style of writing code

Using List Comprehensions | 299

Now the code is as short and succinct as it can be. Rather than telling you the
recipe that the computer follows to build a list of the cubes of the numbers 1, 2, 3,
4, and 5, it tells you that it calculates the cube of x for every x starting from 1 and
smaller than 6. This, then, is the essence of Pythonic coding: reducing the gap
between what you say and what you mean when you tell the computer what it
should do.

A list comprehension can also filter its inputs when building a list. To do this, you
add an if expression to the end of the comprehension, where the expression can
be any test of an input value that returns True or False. This is useful when you
want to transform some of the values in a list while ignoring others. As an example,
you could build a photo gallery of social media posts by making a list of thumbnail
images from photos found in each post, but only when the posts are pictures, not
text status updates.

4.	 You want to get Python to shout the names of the Monty Python cast, but only
those whose name begins with "T". Enter the following Python code into a
notebook:

names = ["Graham Chapman", "John Cleese", "Terry Gilliam", "Eric Idle", "Terry
Jones"]

5.	 Those are the names you are going to use. Enter this list comprehension to filter
only those that start with "T" and operate on them:

print([name.upper() for name in names if name.startswith("T")

You should get the following output:

Figure 7.4: The output with the optimized style of writing code

By completing this exercise, we have created a filter list using list comprehension.

300 | Becoming Pythonic

Exercise 100: Using Multiple Input Lists

All the examples you have seen so far build one list out of another by performing an
expression on each member of the list. You can define a comprehension over multiple
lists, by defining a different element name for each of the lists.

Note

Monty Python is the name of an Anglo-American comedy group known for their
TV show "Monty Python's Flying Circus" (BBC, 1969), as well as films such as
"Monty Python and the Holy Grail" (1975), stage shows, and albums. The group
has achieved international popularity, especially among the computer science
community. The Python language was named after the group. The term spam, now
used for unsolicited email and other unwanted digital communications, also comes
from a Monty Python sketch in which a café humorously insists on serving tinned
meat (or spam) with everything. Other jokes, scenarios, and names taken from the
group are often found in examples and even official Python documentation. So, if
you ever encounter strange names or odd situations when going through tutorials,
now you know why.

To show how this works, in this exercise, you will be multiplying the elements of two
lists together. The Spam Café in Monty Python's Flying Circus (refer to the preceding
note) famously served a narrow range of foodstuffs mostly centered around a
processed meat product. You will use ingredients from its menu to explore multiple-list
comprehension:

1.	 Enter this code into a Jupyter notebook:

print([x*y for x in ['spam', 'eggs', 'chips'] for y in [1,2,3]])

You should get the following output:

Figure 7.5: The output printing the elements of two lists together

Inspecting the result shows that the collections are iterated in a nested fashion,
with the rightmost collection on the inside of the nest and the leftmost on the
outside. Here, if x is set to spam, then x*y is calculated with y being equal to each of
the values of 1, 2, and then 3 before x is set to eggs, and so on.

Using List Comprehensions | 301

2.	 Reverse the order of the lists:

print([x*y for x in [1,2,3] for y in ['spam', 'eggs', 'chips']])

You should get the following output:

Figure 7.6: The output with the reverse order of the list

Swapping the order of the lists changes the order of the results in the comprehension.
Now, x is initially set to 1, then y to each of spam, eggs, and chips, before x is set to 2,
and so on. While the result of anyone multiplication does not depend on its order (for
instance, the results of 'spam'*2 and 2*'spam' are the same, namely, spamspam), the fact
that the lists are iterated in a different order means that the same results are computed
in a different sequence.

For instance, the same list could be iterated multiple times in a list comprehension —
the lists for x and y do not have to be different:

numbers = [1,2,3]
print([x**y for x in numbers for y in numbers])

You should get the following output:

Figure 7.7: The output iterating lists multiple times

In the following activity, we will be creating fixtures for a chess tournament among four
players. We will be using list comprehension and filters to find the best fixture.

Activity 18: Building a Chess Tournament

In this activity, you will use a list comprehension to create the fixtures for a chess
tournament. Fixtures are strings of the form "player 1 versus player 2." Because there
is a slight advantage to playing as white, you also want to generate the "player 2 versus
player 1" fixture so that the tournament is fair. But you do not want people playing
against themselves, so you should also filter out fixtures such as "player 1 versus player
1."

You need to complete this activity with the following steps:

1.	 Open a Jupyter notebook.

2.	 Define the list of player names: Magnus Carlsen, Fabiano Caruana, Yifan Hou, and
Wenjun Ju.

302 | Becoming Pythonic

3.	 Create a list comprehension that uses this list of names twice to create tournament
fixtures in the correct format.

4.	 Add a filter to the comprehension so that no player is pitted against themselves.

5.	 Print the list of tournament fixtures.

You should get the following output:

Figure 7.8: The expected output showing the tournament fixtures

Note

The solution for this activity can be found via this link.

Set and Dictionary Comprehensions
List comprehensions are handy ways in which to concisely build sequences of values in
Python. Other forms of comprehensions are also available, which you can use to build
other collection types. A set is an unordered collection: you can see what elements are
in a set, but you cannot index into a set nor insert an object at a particular location in
the set because the elements are not ordered. An element can only be present in a set
once, whereas it could appear in a list multiple times.

Sets are frequently useful in situations where you want to quickly test whether
an object is in a collection but do not need to track the order of the objects in the
collection. For example, a web service might keep track of all of the active session
tokens in a set, so that when it receives a request, it can test whether the session token
corresponds to an active session.

Set and Dictionary Comprehensions | 303

A dictionary is a collection of pairs of objects, where one object in the pair is called the
key, and the other is called the value. In this case, you associate a value with a particular
key, and then you can ask the dictionary for the value associated with that key. Each
key may only be present in a dictionary once, but multiple keys may be associated with
the same value. While the name "dictionary" suggests a connection between terms and
their definitions, dictionaries are commonly used as indices (and, therefore, a dictionary
comprehension is often used to build an index). Going back to your web service
example, different users of the service could have different permissions, thus limiting
the actions that they can perform. The web service could construct a dictionary in
which the keys are session tokens, and the values represent user permissions. This is so
that it can quickly tell whether a request associated with a given session is permissible.

The syntax for both set and dictionary comprehensions looks very similar to list
comprehension, with the square brackets ([]) simply replaced by curly braces ({}). The
difference between the two is how the elements are described. For a set, you need to
indicate a single element, for example, { x for x in … }. For a dictionary, you need
to indicate a pair containing the key and the value, for example, { key:value for key
in… }.

Exercise 101: Using Set Comprehensions

The difference between a list and a set is that the elements in a list have an order, and
those in a set do not. This means that a set cannot contain duplicate entries: an object
is either in a set or not.

In this exercise, you will be changing a set comprehension into a set:

1.	 Enter the following comprehension code into a notebook to create a list:

print([a + b for a in [0,1,2,3] for b in [4,3,2,1]])

You should get the following output:

 Figure 7.9: The result of the set

304 | Becoming Pythonic

2.	 Now change the result into a set.

Change the outer square brackets in the comprehension to curly braces:

print({a+b for a in [0,1,2,3] for b in [4,3,2,1]})

You should get the following output:

 Figure 7.10: A set without duplicate entries

Notice that the set created in step 2 is much shorter than the list created in step 1. The
reason for this is that the set does not contain duplicate entries – try counting how
many times the number 4 appears in each collection. It's in the list four times (because
0 + 4 = 4, 1 + 3 = 4, 2 + 2 = 4, and 3 + 1 = 4), but sets don't retain duplicates, so there's only
one instance of the number 4 in the set. If you just removed the duplicates from the list
produced in step 1, you'd have a list of [4, 3, 2, 1, 5, 6, 7]. Sets don't preserve the order
of their elements either, so the numbers appear in a different order in the set created
in step 2. The fact that the numbers in the set appear in numerical order is due to the
implementation of the set type in Python.

Exercise 102: Using Dictionary Comprehensions

Curly-brace comprehension can also be used to create a dictionary. The expression
on the left-hand side of the for keyword in the comprehension should contain a
comprehension. You write the expression that will generate the dictionary keys to the
left of the colon and the expression that will generate the values to the right. Note that
a key can only appear once in a dictionary.

In this exercise, you will create a lookup dictionary of the lengths of the names in a list
and print the length of each name:

1.	 Enter this list of names of Monty Python stars in a notebook:

names = ["Eric", "Graham", "Terry", "John", "Terry"]

2.	 Use a comprehension to create a lookup dictionary of the lengths of the names:

print({k:len(k) for k in ["Eric", "Graham", "Terry", "John", "Terry"]})

Set and Dictionary Comprehensions | 305

You should get the following output:

 Figure 7.11: A lookup dictionary equaling the length of the names in the list

Notice that the entry for Terry only appears once, because dictionaries cannot contain
duplicate keys. You have created an index of the length of each name, keyed by name.
An index like this could be useful in a game, where it could work out how to layout the
score table for each player without repeatedly having to recalculate the length of each
player's name.

Activity 19: Building a Scorecard Using Dictionary Comprehensions and

Multiple Lists

You are the backend developer for a renowned college. The management has asked you
to build a demo scorecard for their students based on the marks they have achieved in
their exams.

Your goal in this activity is to use dictionary comprehension and lists in Python to build
a demo scorecard for four students in the college.

Let's do this with the following steps:

1.	 Create two separate lists: one for the names of the students and the other for their
scores.

2.	 Create a dictionary comprehension that iterates over the numbers in a range of the
same length as the lists of names and scores. The comprehension should create a
dictionary where, for the ith number in the range, the key is the ith name, and the
value is the ith score.

306 | Becoming Pythonic

3.	 Print out the resulting dictionary to make sure it's correct.

You should get the following output:

Figure 7.12: A dictionary indicating names and scores as a key-value pair

Note

The solution for this activity can be found via this link.

Default Dictionary
The built-in dictionary type considers it to be an error when you try to access the
value for a key that doesn't exist. It will raise a KeyError, which you have to handle or
your program crashes. Often, that's a good idea. If the programmer doesn't get the key
correct, it could indicate a typo or a misunderstanding of how the dictionary is used.

It's often a good idea, but not always. Sometimes, it's reasonable that a programmer
doesn't know what the dictionary contains; whether it's created from a file supplied by
the user or the content of a network request, for example. In situations like this, any
of the keys the programmer expects could be missing, but handling KeyError instances
everywhere will be tedious, repetitive, and make the intent of the code harder to see.

For these situations, Python provides the collections.defaultdict type. It works like a
regular dictionary, except that you can give it a function that creates a default value to
use when a key is missing. Rather than raise an error, it calls that function and returns
the result.

Exercise 103: Adopting a Default Dict

In this exercise, you will be using a regular dictionary that raises a KeyError when you
try to access a missing key:

1.	 Create a dictionary for john:

john = { 'first_name': 'John', 'surname': 'Cleese' }

Attempt to use a middle_name key that was not defined in the dictionary:

john['middle_name']

Default Dictionary | 307

You should get the following output:

 Figure 7.13: The output showing KeyError: 'middle_name'

2.	 Now, import the defaultdict from collections and wrap the dictionary in a
defaultdict:

from collections import defaultdict
safe_john = defaultdict(str, john)

The first argument is the type constructor for a string, so missing keys will appear
to have the empty string as their value.

3.	 Attempt to use a key that was not defined via the wrapped dictionary:

print(safe_john['middle_name'])

You should get the following output:

Figure 7.14: Using the wrapped dictionary does not throw an error when undefined keys are used

No exception is triggered at this stage; instead, an empty string is returned. The
first argument to the constructor of defaultdict, called default_factory, can be
any callable (that is, function-like) object. You can use this to compute a value
based on the key or return a default value that is relevant to your domain.

4.	 Create a defaultdict that uses a lambda as its default_factory:

from collections import defaultdict
courses = defaultdict(lambda: 'No!')
courses['Java'] = 'This is Java'

This dictionary will return the value from the lambda on any unknown key.

308 | Becoming Pythonic

5.	 Access the value at an unknown key in this new dictionary:

print(courses['Python'])
'No!'

You should get the following output:

Figure 7.15: The returned value from the lambda on an unknown key

6.	 Access the value at a known key in this new dictionary:

print(courses['Java'])

The output is as follows:

Figure 7.16: The print value for the Java list

The benefit of the default dictionary is that in situations where you know it is likely that
expected keys will be missing from a dictionary, you can work with default values and
not have to sprinkle your code with exception-handling blocks. This is another example
of Pythonicity: if what you mean is "use the value for the "foo" key, but if that doesn't
exist, then use "bar" as the value," then you should write that, rather than "use the value
for the "foo" key, but if you get an exception and the exception is KeyError, then use
"bar" as the value."

Default dicts are great for working with untrusted input, such as a file chosen by the
user or an object received over the network. A network service shouldn't expect any
input it gets from a client to be well formatted. If it treats the data, it receives in a
request as a JSON object. It should be ready for the data to not be in JSON format. If the
data is really JSON, the program should not expect all of the keys defined by the API to
have been supplied by the client. The default dict gives you a really concise way to work
with such under-specified data.

Iterators | 309

Iterators
The Pythonic secret that enables comprehensions to find all of the entries in a list,
range, or other collection is an iterator. Supporting iterators in your own classes opens
them up for use in comprehensions, for…in loops, and anywhere that Python works
with collections. Your collection must implement a method called __iter__(), which
returns the iterator.

The iterator itself is also a Python object with a simple contract. It must provide a single
method, __next__(). Each time __next__() is called, the iterator returns the next value
in the collection. When the iterator reaches the end of the collection, __next__() raises
StopIteration to signal that the iteration should terminate.

If you've used exceptions in other programming languages, you may be surprised by this
use of an exception to signal a fairly commonplace situation. After all, plenty of loops
reach an end, so it's not exactly an exceptional circumstance. Python is not so dogmatic
about exceptions, favoring simplicity and expressiveness over universal rules-lawyering.

Once you've learned the techniques to build iterators, the applications are limitless.
Your own collections or collection-like classes can supply iterators so that
programmers can work with them using Pythonic collection techniques such as
comprehensions. For example, an application that stores its data model in a database
can use an iterator to retrieve each row that matches a query as a separate object in a
loop or comprehension. A programmer can say, "For each row in the database, do this to
the row," and treat it like a list of rows, when your data model object is secretly running
a database query each time the iterator's __next__() method is called.

Exercise 104: The Simplest Iterator

The easiest way to provide an iterator for your class is to use one from another object.
If you are designing a class that controls access to its own collection, then it might be a
good idea to let programmers iterate over your object using the collection's iterator. In
this case, just have __iter__() return the appropriate iterator.

In this exercise, you will be coding an Interrogator who asks awkward questions to
people on a quest. It takes a list of questions in its constructor. You will write this
program that prints these questions as follows:

1.	 Enter the constructor into a notebook:

class Interrogator:
 def __init__(self, questions):
 self.questions = questions

310 | Becoming Pythonic

Using an Interrogator in a loop probably means asking each of its questions in
sequence. The easiest iterator that can achieve this is the iterator for the collection
of questions. Therefore to implement the __iter__() method to return that object.

2.	 Add the __iter__() method:

 def __iter__(self):
 return self.questions.__iter__()

Now you can create a list of questions, give them to an Interrogator, and use that
object in a loop.

3.	 Create a list of questions:

questions = ["What is your name?", "What is your quest?", "What is the average
airspeed velocity of an unladen swallow?"]

4.	 Create an Interrogator:

awkward_person = Interrogator(questions)

5.	 Now use the Interrogator in a for loop:

for question in awkward_person:
 print(question)

You should get the following output:

Figure 7.17: The list of questions asked through the use of Interrogator

On the face of it, you've done nothing more than adding a level of interaction between
the Interrogator class and the collection of questions. From an implementation
perspective, that's exactly right. However, from a design perspective, what you've done
is much more powerful. You've designed an Interrogator class that programmers can
ask to iterate over its questions, without having to tell the programmer anything about
how the Interrogator stores its questions. While it's just forwarding a method call to a
list object today, you could change that tomorrow to use a SQLite3 database or a web
service call, and programmers using the Interrogator class will not need to change
anything.

Iterators | 311

For a more complicated case, you need to write your own iterator. The iterator is
required to implement a __next__() method, which returns the next element in the
collection or raises StopIteration when it gets to the end.

Exercise 105: A Custom Iterator

In this exercise, you'll implement a classical-era algorithm called the Sieve of
Eratosthenes. To find prime numbers between 2 and an upper bound value, n, first,
list all of the numbers in that range. Now, 2 is a prime, so return that. Then, remove 2
from the list, and all multiples of 2, and return the new lowest number (which will be 3).
Continue until there are no more numbers left in the collection. Every number that gets
returned using this method is a successively higher prime. It works because any number
you find in the collection to return did not get removed at an earlier step, so has no
lower prime factors other than itself.

First, build the architecture of the class. Its constructor needs to take the upper bound
value and generate the list of possible primes. The object can be its own iterator, so its
__iter__() method will return itself:

1.	 Define the PrimesBelow class and its initializer:

class PrimesBelow:
 def __init__(self, bound):
 self.candidate_numbers = list(range(2,bound))

2.	 Implement the __iter__() method to return itself:

 def __iter__(self):
 return self

The main body of the algorithm is in the __next__() method. With each iteration,
it finds the next lowest prime. If there isn't one, it raises StopIteration. If there
is one, it sieves that prime number and its multiples from the collection and then
returns the prime number.

3.	 Define the __next__() method and the exit condition. If there are no remaining
numbers in the collection, then the iteration can stop:

 def __next__(self):
 if len(self.candidate_numbers) == 0:
 raise StopIteration

312 | Becoming Pythonic

4.	 Complete the implementation of __next__() by selecting the lowest number in the
collection as the value for next_prime and removing any multiples of that number
before returning the new prime:

 next_prime = self.candidate_numbers[0]
 self.candidate_numbers = [x for x in self.candidate_numbers if x % next_
prime != 0]
 return next_prime
 return next_prime

5.	 Use an instance of this class to find all the prime numbers below 100:

primes_to_a_hundred = [prime for prime in PrimesBelow(100)]
print(primes_to_a_hundred)

You should get the following output:

Figure 7.18: The output indicating all prime numbers below 100

This exercise demonstrates that by implementing an iterative algorithm as a Python
iterator, you can treat it like a collection. In fact, the program does not actually build
the collection of all of the prime numbers: you did that yourself in step 5 by using
the PrimesBelow class, but otherwise, PrimesBelow was generating one number at a
time, whenever you called the __next()__ method. This is a great way to hide the
implementation details of an algorithm from a programmer. Whether you actually give
them a collection of objects to iterate over or an iterator that computes each value as it
is requested, programmers can use the results in exactly the same way.

Exercise 106: Controlling the Iteration

You do not have to use an iterator in a loop or comprehension. You can use the iter()
function to get its argument's iterator object, and then pass that to the next() function
to return successive values from the iterator. These functions call through to the
__iter__() and __next__() methods, respectively. You can use them to add custom
behavior to an iteration or to gain more control over the iteration.

Iterators | 313

In this exercise, you will print the prime numbers below 5. An error should be raised
when the object runs out of prime numbers. To do this, you will use the PrimesBelow
class created in the previous exercise:

1.	 Get the iterator for a PrimesBelow instance. PrimesBelow is the class you created in
Exercise 105, A Custom Iterator, so if you still have the notebook you created for that
exercise, you can enter this code in a cell at the end of that notebook:

primes_under_five = iter(PrimesBelow(5))

2.	 Repeatedly use next() with this object to generate successive prime numbers:

next(primes_under_five)

You should get the following output:

2

Now, run this code once again.

next(primes_under_five)

You should get the following output:

3

3.	 When the object runs out of prime numbers, the subsequent use of next() raises
the StopIteration error:

next(primes_under_five)

You should get the following output:

 Figure 7.19: The StopIteration error is thrown when the object runs out of prime numbers

314 | Becoming Pythonic

Being able to step through an iteration manually is incredibly useful in programs that
are driven by a sequence of inputs, including a command interpreter. You can treat
the input stream as an iteration over a list of strings, where each string represents a
command. Call next() to get the next command, work out what to do, and then execute
it. Then, print the result, and go back to next() to await the subsequent command.
When StopIteration is raised, the user has no more commands for your program, and it
can exit.

Itertools
Iterators are useful for describing sequences, such as Python lists and ranges, and
sequence-like collections, such as your own data types, that provide ordered access
to their contents. Iterators make it easy to work with these types in a Pythonic way.
Python's library includes the itertools module, which has a selection of helpful
functions for combining, manipulating, and otherwise working with iterators. In this
section, you will use a couple of helpful tools from the module. There are plenty more
available, so be sure to check out the official documentation for itertools.

One of the important uses of itertools is in dealing with infinite sequences. There
are plenty of situations in which a sequence does not have an end: everything from
infinite series in mathematics to the event loop in a graphical application. A graphical
user interface is usually built around an event loop in which the program waits for an
event (such as a keypress, a mouse click, a timer expiring, or something else) and then
reacts to it. The stream of events can be treated as a potentially infinite list of event
objects, with the program taking the next event object from the sequence and doing
its reaction work. Iterating over such a sequence with either a Python for..in loop or
a comprehension will never terminate. There are functions in itertools for providing a
window onto an infinite sequence, and the following exercise will look at one of those.

Exercise 107: Using Infinite Sequences and takewhile

An alternative algorithm to the Sieve of Eratosthenes for generating prime numbers is
to test each number in sequence – to see whether it has any divisors other than itself.
This algorithm uses a lot more time than the Sieve in return for a lot less space.

In this exercise, you will be implementing a better algorithm that uses less space than
the Sieve for generating prime numbers:

1.	 Enter this iterator algorithm into a notebook:

Itertools | 315

Exercise107.ipynb

class Primes:
 def __init__(self):
 self.current = 2
 def __iter__(self):
 return self
 def __next__(self):
 while True:
 current = self.current
 square_root = int(current ** 0.5)
 is_prime = True

https://packt.live/32Ebiiw

Note

If the above-mentioned link does not render, please enter the URL here - https://
nbviewer.jupyter.org/

Note

The class you just entered is an iterator, but the __next__() method never raises
a StopIteration error. That means it never exits. Even though you know that each
prime number it returns is bigger than the previous one, a comprehension doesn't
know that so you can't simply filter out large values.

2.	 Enter the following code to get a list of primes that are lower than 100:

[p for p in Primes() if p < 100]

Because the iterator never raises StopIteration, this program will never finish.
You'll have to force it to exit.

316 | Becoming Pythonic

3.	 Click on the Stop button in the Jupyter notebook.

You should get the following output:

Figure 7.20: Iterator forced exit

To work with this iterator, itertools provides the takewhile() function, which
wraps the iterator in another iterator. You also supply takewhile() with a Boolean
function, and its iteration will take values from the supplied iterator until the
function returns False, at which time it raises StopIteration and stops. This makes
it possible to find the prime numbers below 100 from the infinite sequence entered
previously.

4.	 Use takewhile() to turn the infinite sequence into a finite one:

import itertools
print([p for p in itertools.takewhile(lambda x: x<100, Primes())])

You should get the following output:

 Figure 7.21: Using the takewhile function to produce a finite sequence

Surprisingly, it's also useful to be able to turn a finite sequence into an infinite one.

Itertools | 317

Exercise 108: Turning a Finite Sequence into an Infinite One, and Back Again

In this exercise, consider a turn-based game, such as chess. The person playing white
makes the first move. Then, the person playing black takes their turn. Then white. Then
black. Then white, black, white, and so on until the game ends. If you had an infinite list
of white, black, white, black, white, and so on, then you could always look at the next
element to decide whose turn it is:

1.	 Enter the list of players into a notebook:

import itertools
players = ['White', 'Black']

2.	 Use the itertools function cycle to generate an infinite sequence of turns:

turns = itertools.cycle(players)

To demonstrate that this has the expected behavior, you'll want to turn it back into
a finite sequence so that you can view the first few members of the turns iterator.
You can use takewhile() for that, and, here, combine it with the count() function
from itertools, which produces an infinite sequence of numbers.

3.	 List the players who take the first 10 turns in a chess game:

countdown = itertools.count(10, -1)
print([turn for turn in itertools.takewhile(lambda x:next(countdown)>0, turns)])

You should get the following output:

 Figure 7.22: Using the takewhile function to list the players who take
the first 10 turns in the chess game

This is the "round-robin" algorithm for allocating actions (in this case, making a chess
move) to resources (in this case, the players), and has many more applications than
board games. A simple way to do load balancing between multiple servers in a web
service or database application is to build an infinite sequence of the available servers
and choose one in turn for each incoming request.

318 | Becoming Pythonic

Generators
A function that returns a value does all of its computation and gives up control to its
caller, which supplies that value. This is not the only possible behavior for a function.
It can instead yield a value, which passes control (and the value) back to the caller but
leaves the function's state intact. Later, it can yield another value, or finally return to
indicate that it is done. A function that yields is called a generator.

Generators are useful because they allow a program to defer or postpone calculating
a result until it's required. Finding the successive digits of π, for example, is hard work,
and it gets harder as the number of digits increases. If you wrote a program to display
the digits of π, you might calculate the first 1,000 digits. Much of that effort will be
wasted if the user only asks to see the first 10 digits. Using a generator, you can put off
the expensive work until your program actually requires the results.

A real-world example of a situation where generators can help is when dealing with
I/O. A stream of data coming from a network service can be represented by a generator
that yields the available data until the stream is closed when it returns the remaining
data. Using a generator allows the program to pass control back and forth between the
I/O stream when data is available, and the caller where the data can be processed.

Python internally turns generator functions into objects that use the iterator protocol
(such as __iter__, __next__, and the StopIteration error), so the work you put into
understanding iterations in the previous section means you already know what
generators are doing. There is nothing you can write for a generator that could not be
replaced with an equivalent iterator object. However, sometimes, a generator is easier
to write or understand. Writing code that is easier to understand is the definition of
Pythonicity.

Exercise 109: Generating a Sieve

In this exercise, you will be rewriting the Sieve of Eratosthenes as a generator function
and comparing it with the result of the iterator version:

1.	 Rewrite the Sieve of Eratosthenes as a generator function that yields its values:

def primes_below(bound):
 candidates = list(range(2,bound))
 while(len(candidates) > 0):
 yield candidates[0]
 candidates = [c for c in candidates if c % candidates[0] != 0]

2.	 Confirm that the result is the same as the iterator version:

[prime for prime in primes_below(100)]

Generators | 319

You should get the following output:

 Figure 7.23: The output indicating all prime numbers below 100

That's really all there is to generators — they're just a different way of expressing an
iterator. They do, however, communicate a different design intention; namely, that the
flow of control is going to pass back and forth between the generator and its caller.

The answer to Why does Python provide both the iterator and the generator? is found at
the end of Exercise 109, Generating a Sieve. They do the same thing, but they expose
different design intentions. The PEP in which generators were introduced (https://
www.python.org/dev/peps/pep-0255/) contains more, in the "motivations" and "Q&A"
sections, for students who would like to dig deeper.

Activity 20: Using Random Numbers to Find the Value of Pi

The Monte Carlo method is a technique that is used for approximating a numerical
solution using random numbers. Named after the famous casino, chance is at the core
of Monte Carlo methods. They use random sampling to obtain information about a
function that will be difficult to calculate deterministically. Monte Carlo methods are
frequently used in scientific computation to explore probability distributions, and in
other fields including quantum physics and computational biology. They're also used
in economics to explore the behavior of financial instruments under different market
conditions. There are many applications for the Monte Carlo principle.

In this activity, you'll use a Monte Carlo method to find an approximate value for π.
Here's how it works: two random numbers, (x,y), somewhere between (0,0) and (1,1),
represent a random point in a square positioned at (0,0) with sides of length 1:

Figure 7.24: A random point in a square having its side as unit 1

320 | Becoming Pythonic

Using Pythagoras' Theorem, if the value of $$\sqrt{x^2 + y^2}$$ is less than 1, then the
point is also in the top-right corner of a circle centered at (0,0) with a radius of -1:

Figure 7.25: Applying Pythagoras' Theorem to locate the point with respect to the circle segment

Generate lots of points, count how many are within the circle segment, and divide the
number of points within the circle by the total number of points generated. This gives
you an approximation of the area of the circle segment, which should be π/4. Multiply
by 4, and you have an approximate value of π. Data scientists often use this technique to
find the area under more complex curves that represent probability distributions.

Write a generator to yield successive estimates of π. The steps are as follows:

1.	 Define your generator function.

2.	 Set the total number of points, and the number within the circle segment, to 0.

3.	 Do the following substeps 10,000 times:

Generate two numbers between 0 and 1, using Python's random.random() function.

Add 1 to the total number of points.

Use math.sqrt() to find out how far the point represented by the numbers is from
(0,0).

Regular Expressions | 321

If the distance is less than 1; add 1 to the number of points within the circle.

Calculate your estimate for π: 4 * (points within the circle) / (total points
generated).

If you have generated a multiple of 1,000 points, yield the approximate value for π.
If you have generated 10,000 points, return the value.

4.	 Inspect the successive estimates of π and check how close they are to the true
value (math.pi).

Note that because this activity uses random numbers, you may not get the exact
results shown here:

 Figure 7.26: A generator yielding successive estimates of π

Note

The solution for this activity can be found via this link.

Regular Expressions
Regular expressions (or regexes) are a domain-specific programming language, defining
a grammar for expressing efficient and flexible string comparisons. Introduced in 1951
by Stephen Cole Kleene, regular expressions have become a popular tool for searching
and manipulating text. As an example, if you're writing a text editor and you want to
highlight all web links in a document and make them clickable, you might search for
strings that start with HTTP or HTTPS, then those that contain ://, and then those
that contain some collection of printable characters, until you stop finding printable
characters (such as a space, newline, or the end of the text), and highlight everything up
to the end. With standard Python syntax, this will be possible, but you will end up with
a very complex loop that will be difficult to get right. Using regexes, you match against
https?://\S+.

322 | Becoming Pythonic

This section will not teach you the full regular expression syntax — there are better
resources for doing that. For example, check out Mastering Python Regular Expressions
(https://packt.live/2ISz4zs) by Félix López and Victor Romero. This section will teach
you how to use Python's re module to work with the regular expressions in Python.
That said, some small amount of regex syntax will be useful, so let's examine the
features used in regular expressions as seen in the preceding URL:

•	 Most characters match their own identities, so "h" in a regex means "match exactly
the letter h."

•	 Enclosing characters in square brackets can mean choosing between alternates,
so if we thought a web link might be capitalized, we could start with "[Hh]" to
mean "match either H or h." In the body of the URL, we want to match against any
non-whitespace characters, and rather than write them all out. We use the \S
character class. Other character classes include \w (word characters), \W (non-word
characters), and \d (digits).

•	 Two quantifiers are used: ? means "0 or 1 time," so "s?" means "match if the text
does not have s at this point or has it exactly once." The quantifier, +, means "1 or
more times," so "\S+" says "one or more non-whitespace characters." There is also a
quantifier *, meaning "0 or more times."

Additional regex features that you will use in this chapter are listed here:

•	 Parentheses () introduce a numbered sub-expression, sometimes called a "capture
group." They are numbered from 1, in the order that they appear in the expression.

•	 A backslash followed by a number refers to a numbered sub-expression, described
previously. As an example, \1 refers to the first sub-expression. These can be used
when replacing text that matches the regex or to store part of a regex to use later
in the same expression. Because of the way that backslashes are interpreted by
Python strings, this is written as \\1 in a Python regex.

Regular expressions have various uses throughout software development, as so much
software deals with text. Validating user input in a web application, searching for and
replacing entries in text files, and finding interesting events in application log files are
all uses that regular expressions can be put to in a Python program.

Regular Expressions | 323

Exercise 110: Matching Text with Regular Expressions

In this exercise, you'll use the Python re module to find instances of repeated letters in
a string.

The regex you will use is (\w)\\1+"."(\w) searches for a single character from a word
(that is, any letter or the underscore character, _) and stores that in a numbered
sub-expression, \1. Then, \\1+ uses a quantifier to find one or more occurrences of the
same character. The steps for using this regex are as follows:

1.	 Import the re module:

import re

2.	 Define the string that you will search for, and the pattern by which to search:

title = "And now for something completely different"
pattern = "(\w)\\1+"

3.	 Search for the pattern and print the result:

print(re.search(pattern, title))

You should get the following output:

Figure 7.27: Searching for a string using the re module

The re.search() function finds matches anywhere in the string: if it doesn't find any
matches, it will return None. If you were only interested in whether the beginning of
the string matched the pattern, you could use re.match(). Similarly, modifying the
search pattern to start with the beginning-of-line marker (^) achieves the same aim as
re.search("^(\w)\\1+", title).

324 | Becoming Pythonic

Exercise 111: Using Regular Expressions to Replace Text

In this exercise, you'll use a regular expression to replace occurrences of a pattern in a
string with a different pattern. The steps are as follows:

1.	 Define the text to search:

import re
description = "The Norwegian Blue is a wonderful parrot. This parrot is notable for
its exquisite plumage."

2.	 Define the pattern to search for, and its replacement:

pattern = "(parrot)"
replacement = "ex-\\1"

3.	 Substitute the replacement for the search pattern, using the re.sub() function:

print(re.sub(pattern, replacement, description))

You should get the following output:

 Figure 7.28: Replacing occurrences of a repeating pattern in the string

The replacement refers to the capture group, "\1", which is the first expression in the
search pattern to be surrounded by parentheses. In this case, the capture group is the
whole word parrot. This lets you refer to the word parrot in the replacement without
having to type it out again.

Activity 21: Regular Expressions

At your online retail company, your manager has had an idea for a promotion. There is a
whole load of old "The X-Files" DVDs in the warehouse, and she has decided to give one
away for free to any customer whose name contains the letter x.

In this activity, you will be using Python's re module to find winning customers. The x
could be capitalized if it's their initial, or lower case if it's in the middle of their name, so
use the regular expression [Xx] to search for both cases:

1.	 Create a list of customer names. The customers are Xander Harris, Jennifer Smith,
Timothy Jones, Amy Alexandrescu, Peter Price, and Weifung Xu.

2.	 Create a list comprehension using the list of names. Use the comprehension to
filter only names where a search for the [Xx] regex is successful.

Summary | 325

3.	 Print the list of matching names. The result should look like this:

['Xander Harris', 'Amy Alexandrescu', 'Weifung Xu']

You should get the following output:

Figure 7.29: The winner's list, indicating the presence of "Xx" in a customer name

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you've learned how even though there is often more than one way to do
something in Python, there is often a "Pythonic" way. The Pythonic way is succinct and
easy to understand, leaving out boilerplate code and extraneous information to focus
on the task at hand. Comprehensions are a Pythonic tool for manipulating collections,
including lists, sets, and dictionaries. Comprehensions are powered by iterators, which
can be written as classes or as generator functions that yield the iterated values. The
Python library includes useful functions for working with iterators, including infinite
sequences expressed as iterators.

In the next chapter, you'll move past the details of the Python language and into how
to work as a professional Python programmer. You'll see how to debug your Python
code, write unit tests, and document, package, and share your Python code with other
coders.

Software
Development

Overview

By the end of this chapter, you will be able to, troubleshoot issues in Python
applications; explain why testing in software development is important; write
test scenarios in Python to validate code; create a Python package that can be
published to PyPI; write and publish documentation on the web and create a Git
repository and manage your source code versions.

8

328 | Software Development

Introduction
Software development goes beyond writing code. In previous Chapter 7, Becoming
Pythonic you were introduced to the idea of being Pythonic. When you write software
as professionals, we expect the code to be up to a certain standard and to be able
to manage and distribute that code in a way that can be easily consumed by other
developers.

In this chapter, you will go through the various concepts and tools that allow you
to elevate the level of your source code and applications. You will examine Python
tools that every Python developer uses for testing, writing documentation, packaging
their code, and version control, as well as learning about techniques that allow us to
debug issues that occur in existing code. Additionally, you will write tests to validate
our assumptions and implementations of our code. These are all concepts and tools
that are key to any successful developer in any company, as they allow developers to
develop and collaborate effectively. Finally, you will cover some basics about using Git
to manage your source code versions.

Debugging
Sooner or later in your development, you will reach a point where you see our program
behave differently than you initially expected. In situations like these, you usually
look back at the source code and try to understand what is different between your
expectations and the code or inputs that are being used. To facilitate that process, there
are multiple methods (in general, and some that are specific to Python) that you can use
to try to "debug" or "troubleshoot" the issue.

Usually, the first action of an experienced developer, when frustration arises from
unexpected results in their code, is to look at the logs or any other output that the
application produces. A good starting point is trying to increase the logging verbosity,
as discussed in Chapter 6, Standard Library. If you are not able to troubleshoot the
problem with just logs, it usually means that you should look back at how we are
instructing our application to log its state and activity producing what are known as
traces, as there might be a good opportunity to improve it.

The next step of verifying the inputs and outputs of the program is to receive and verify
the log. The usual next step in Python is to use the Python debugger, pdb.

The pdb module and its command line interface which is a cli tool allows you to
navigate through the code as it runs and ask questions about the state of the program,
its variables, and the flow of execution. It is similar to other tools, such as gdb, but it is
at a higher level and is designed for Python.

There are two main ways to start pdb. You can just run the tool and feed it with a file or
use the breakpoint command.

Debugging | 329

As an example, take a look at the following file:

This is a comment
this = "is the first line to execute"
def secret_sauce(number):
 if number <= 10:
 return number + 10
 else:
 return number - 10
def magic_operation(x, y):
 res = x + y
 res *= y
 res /= x
 res = secret_sauce(res)
 return res
print(magic_operation(2, 10))

When you begin executing the script with pdb, it works as follows:

python3.7 –m pdb magic_operation.py
> [...]Lesson08/1.debugging/magic_operation.py(3)<module>()
-> this = "is the first line to execute"
(Pdb)

It will stop on the first line of the Python code to execute and give us a prompt to
interact with pdb.

The first line shows us which current file you are in at the moment, while the final line
shows us the pdb prompt (pdb), which tells us which debugger you are running and that
it is waiting for input from the user.

Another way to start pdb is to change the source code to do this. At any point in the
code, we can write "import pdb;pdb.set_trace()" for earlier versions of Python to tell
the Python interpreter that you want to start a debugging session at that point. If you
are using Python 3.7 or a later version, you can use breakpoint().

If you execute the magic_operation_with_breakpoint.py file attached in the GitHub
repository, which has breakpoint() in one of its lines, you will see that the debugger
starts for you where you requested it.

Note

The previously mentioned magic_operation_with_breakpoint.py file can be
found on GitHub at https://packt.live/2VNsSxP.

330 | Software Development

When you are running things in an IDE or code in a large application you could
achieve the same effect by using the operations that we will demonstrate later, but just
dropping that line in the file is by far the simplest and fastest way:

$ python3.7 magic_operation_with_breakpoint.py
> [...]/Lesson08/1.debugging/magic_operation_with_breakpoint.py(7)secret_sauce()
-> if number <= 10:
(Pdb)

At this point, you can get a list of all the commands by running help, or you can get
more information about a specific command by running the help command. The most
commonly used commands are as follows:

•	 break filename:linenumber: This sets a breakpoint in the specified line. It ensures
that you will stop the code at that point when other commands are running
by continuing the execution. Breakpoints can be set in any file included in the
standard library. If we want to set a breakpoint in a file that is part of a module, you
can do so by just using its full path within the Python path. For example, to stop the
debugger in the parser module, which is part of the HTML package of the standard
library, you would perform b html/parser:50 to stop the code on line 50 of the file.

•	 break function: You can request to stop the code when a specific function is
called. If the function is in the current file, you can pass the function name. If the
function is imported from another module, you will have to pass the full function
specification, for example, html.parser. HTMLParser.reset, to stop at the reset
function of the HTMLParser class of html.parser.

•	 break without arguments: This lists all the current breakpoints that are set in the
current state of the program.

•	 continue: This continues the execution until a breakpoint is found. This is quite
useful when you start a program, set breakpoints in all the lines of code or
functions you want to inspect, and then just let it run until it stops at any of those.

•	 where: This prints a stack trace with the current line of execution where the
debugger stopped. It is useful to know what called this function or to be able to
move around the stack.

Debugging | 331

•	 down and up: These two commands allow us to move around in the stack. If we are
in a function call, we can use up to move to the caller of the function and inspect
the state in that frame, or you can use down to go deeper in the stack after we have
moved up.

•	 list: This displays 11 lines of code from the point where the execution stopped for
the first time to when it is called. Successive calls to list will display the following
lines in batches of 11. To start again from where the execution stopped, use list.

•	 longlist: This shows the source code of the current function in the current frame
that is being executed.

•	 next: This executes the line and moves to the following one.

•	 step: This executes the current line and stops at the first opportunity within the
function being executed. This is useful when you don't want to just execute a
function, but we want to step through it.

•	 p: This prints the value of an expression. It is useful for checking the content of
variables.

•	 pp: This allows you to pretty print an expression. It is useful for when we are trying
to print long structures.

•	 run/restart: This restarts the program keeping all the breakpoints still set. It is
useful if you have passed an event you expected to see.

Many functions have shortcuts; for example, you can use b instead of break, c or cont
instead of continue, l instead of a list, ll for longlist, and so on.

There are other functions not covered here, pdb comes with a broad toolbox. Use help
to learn about all the different functions and how to use them.

Exercise 112: Debugging a Salary Calculator

In this exercise, you will use the skills you learned to use pdb to debug an application
that is not working as expected.

This is a salary calculator. Our company is using this to calculate the salary increase
that will be given to our employees year after year, and a manager has reported that she
is getting a 20% raise when the rulebook seems to suggest that she should be getting a
30% raise.

332 | Software Development

You are just told that the manager's name is Rose, and you will find that the code for the
salary raise calculation is the following:

Exercise112.py

3 def _manager_adjust(salary, rise):
4 if rise < 0.10:
5 # We need to keep managers happy.
6 return 0.10
7
8 if salary >= 1_000_000:
9 # They are making enough already.
10 return rise - 0.10
11
12
13 def calculate_new_salary(salary, promised_pct, is_manager, is_good_year):
14 rise = promised_pct
15 # remove 10% if it was a bad year
16 if not is_good_year:

https://packt.live/2MIFaoF

Note

If you read this code on GitHub, it is quite convoluted and difficult to read, but
it applies different raises depending on factors such as whether the person is a
manager, whether it was a good year and the person's current salary. The aim
here is to provide you with a complex code structure so that you can debug it by
following the steps mentioned in this exercise. This could be very helpful in your
everyday developer life as well when you are provided with a bunch of code, and
you need to find a way to debug it.

The following steps will help you complete this exercise:

1.	 Understand the problem by asking the right questions.

The first step is to fully understand the issue, evaluate whether there is an issue
with the source code, and to get all the possible data. You need to ask the user who
reported the error, and ourselves, common questions such as the following indent
question list:

What version of the software were they using?

When did the error happen for the first time?

Has it worked before?

Is it an intermittent failure, or can the user consistently reproduce it?

What was the input of the program when the issue manifested?

Debugging | 333

What is the output and what would be the expected output?

Do we have any logs or any other information to help us debug the issue?

In this instance, you get to know that this happened with the last version of our
script and the person who reported it could reproduce it. It seems to be happening
only to Rose, but that might be related to the arguments she is providing.

For instance, she reported that her current salary is $1,000,000. She was told she
would get a 30% raise, and even if she is aware that managers earning that much
get a penalty of 10%, as the company had a good year and she was a high earner,
she was expecting a 10% bonus, which should amount to 30%. But she saw that her
new salary was $1,200,000, rather than $1,300,000.

You can translate this into the following arguments:

salary: 1,000,000.

promised_pct: 0.30.

is_manager: True

is_good_year: True

The expected output was 1,300,000, and the output she reported was 1,200,000.

We don't have any logs about the execution, as the code was not instrumented with
this.

2.	 Reproduce the issue by running the calculate_new_salary function and the known
arguments.

The next step in our debugging investigation is to confirm that you can reproduce
the issue. If you are not able to reproduce it, then it means that some of the input
or assumptions that either we or the user made were incorrect, and you should go
back to step 1 for clarification.

In this scenario, trying to reproduce the issue is easy—you need to run the function
with the known arguments:

rose_salary = calculate_new_salary(1_000_000, 0.30, True, True)
print("Rose's salary will be:", rose_salary)

The output will be as follows:

1200000

334 | Software Development

This effectively returns 1200000 rather than 1,300,000, and you know from the HR
guidelines that she should be getting the latter. Indeed, something starts to look
suspicious.

3.	 Run the code with the other current inputs, such as 1,000,000 and 2,000,000, to
see the difference.

In some situations, it is helpful to try with other inputs to see how the program
behaves before even running the debugger. This can give you some extra
information. You know that there are special rules for people that earn a million
dollars or more, so what happens if you raise that number to, say, $2,000,000?

Consider the following:

rose_salary = calculate_new_salary(2_000_000, 0.30, True, True)
print("Rose's salary will be:", rose_salary)

You see that, now, the output is 2,400,000. The raise was 20% rather than 30%.
There is something wrong in the code.

You can also try changing the percentage, so let's try that with a promised initial
raise of 40%:

rose_salary = calculate_new_salary(1_000_000, 0.40, True, True)
print("Rose's salary will be:", rose_salary)

The output will be as follows:

Rose's salary will be: 1400000

Interestingly, she would get a 40% raise because there is no penalty applied.

From just trying out different inputs, you have seen what is special about Rose's
situation, it is her 30% increase. When you start to debug things in the following
step, you will see that you should keep an eye on the code that interacts with the
promised percentage, as the initial salary change did not make a difference.

4.	 Start the debugger by firing up pdb and set up a breakpoint in your calculate_new_
salary function:

$ python3.7 -m pdb salary_calculator.py
> /Lesson08/1.debugging/salary_calculator.py(1)<module>()
-> """Adjusts the salary rise of an employ"""
(Pdb) b calculate_new_salary
Breakpoint 1 at /Lesson08/1.debugging/salary_calculator.py:13
(Pdb)

Debugging | 335

5.	 Now run continue or c to ask the interpreter to run until the function is executed:

(Pdb) c

The output will be as follows:

> /Lesson08/1.debugging/salary_calculator.py(14)calculate_new_salary()
-> rise = promised_pct
(Pdb)

6.	 Run the where command in order to get information about how you got to this
point:

(Pdb) where

The output will be as follows:

 /usr/local/lib/python3.7/bdb.py(585)run()
-> exec(cmd, globals, locals)
 <string>(1)<module>()
 /Lesson08/1.debugging/salary_calculator.py(34)<module>()
-> rose_salary = calculate_new_salary(1_000_000, 0.30, True, True)
> /Lesson08/1.debugging/salary_calculator.py(14)calculate_new_salary()
-> rise = promised_pct
(Pdb)

See how pdb tells you that you are on line 14 of the salary_calculator file and this
function was executed as it was called from line 34 with the arguments that are
displayed on the screen.

Note

You can use up here if you want to go to the stack frame where the function was
executed. This is the line of code with the state that the program was in when the
function was called.

When you can pinpoint the issue to a part of the program, you can go step by step,
running the code and checking whether your expectations match what the result of
running that line gives us.

An important step here is to think about what you expect to happen before you run
the line. This might seem to make it take longer to debug the program, but it will
pay off, because if there is a result that appears to be correct, but it is not, it will
be easier to detect whether you expected the result rather than just confirming
whether it was right a posteriori. Let's do this in your program.

336 | Software Development

7.	 Run the l command to confirm where we are in the program and args to print the
arguments of the function:

Note

The output from the debugger and the input that we provide is mentioned next.

(Pdb) l

You should get the following output:

Figure 8.1: Listing the pdb output

To use args to print the arguments of the function:

(Pdb) args

You should get the following output:

Figure 8.2: The args output (continued)

You are effectively on the first line of the code, and the arguments are what you
expected. We could also run ll to get the whole function printed.

8.	 Advance the lines of code by using n to move one line at a time:

 (Pdb) n

You should get the following output:

> /Lesson08/1.debugging/salary_calculator.py(17)calculate_new_salary()

Debugging | 337

-> if not is_good_year:
(Pdb) n
> /Lesson08/1.debugging/salary_calculator.py(23)calculate_new_salary()
-> if is_manager:
(Pdb) n
> /Lesson08/1.debugging/salary_calculator.py(24)calculate_new_salary()
-> rise = _manager_adjust(salary, rise)

You next check on whether it was a good year. As the variable is True, it does not
get into the branch and jumps to line 23. As Rose is a manager, this does get into
that branch, where it will perform the manager adjustment.

9.	 Print the value of the raise before and after the _manager_adjust function is called
by running p rise.

You can run step to get into the function, but the error is unlikely to be there, so
you can print the current raise before and after executing the function. You know
that, as she is earning a million dollars, her pay should be adjusted, and, therefore,
the rise should be 0.2 after executing it:

(Pdb) p rise
0.3
(Pdb) n
> /Lesson08/1.debugging/salary_calculator.py(27)calculate_new_salary()
-> if rise >= 0.20:
(Pdb) p rise
0.19999999999999998

The adjusted raise is 0.199999999999999998 rather than 0.20, so what is going on
here? There is clearly an issue within the _manager_adjust function. You will have to
restart the debugging and investigate it.

10.	 You can then continue to the second execution and print the lines and arguments
at that point, by running "c", "c", "ll" and "args" as follows:

(Pdb) b _manager_adjust
Breakpoint 2 at /Lesson08/1.debugging/salary_calculator.py:3
(Pdb) restart

The output will be as follows:

Restarting salary_calculator.py with arguments:
 salary_calculator.py
> /Lesson08/1.debugging/salary_calculator.py(1)<module>()
-> """Adjusts the salary rise of an employ"""
(Pdb) c

338 | Software Development

> /Lesson08/1.debugging/salary_calculator.py(14)calculate_new_salary()
-> rise = promised_pct
(Pdb) c
> /Lesson08/1.debugging/salary_calculator.py(4)_manager_adjust()
-> if rise < 0.10:
(Pdb) ll
 3 B def _manager_adjust(salary, rise):
 4 -> if rise < 0.10:
 5 # We need to keep managers happy.
 6 return 0.10
 7
 8 if salary >= 1_000_000:
 9 # They are making enough already.
 10 return rise - 0.10
(Pdb) args
salary = 1000000
rise = 0.3
(Pdb)

You see the input is what you expected (0.3), but you know the output is not.
Rather than 0.2, you are getting 0.19999999999999998. Let's walk through this
function code to understand what is happening. By running "n" three times until
the end of the function, you can then use "rv" to see the returned value as follows:

(Pdb) n
> /Lesson08/1.debugging/salary_calculator.py(8)_manager_adjust()
-> if salary >= 1_000_000:
(Pdb) n
> /Lesson08/1.debugging/salary_calculator.py(10)_manager_adjust()
-> return rise - 0.10
(Pdb) n
--Return--
> /Lesson08/1.debugging/salary_calculator.py(10)_manager_adjust()-
>0.19999999999999998
-> return rise - 0.10
(Pdb) rv
0.19999999999999998

You found the error: when we are subtracting 0.10 from 0.30, the result is not 0.20 as
you might have expected. It is that weird number, 0.19999999999999998, due to the loose
precision of float numbers. This is a well-known issue in computer science. We should
not rely on floats for equality comparison if you need fraction numbers, we should use
the decimal module instead, as we have seen in previous chapters.

Debugging | 339

In this exercise, you have learned how to identify errors when you perform debugging.
You can now start to think about how to fix these errors and propose solutions to our
colleagues.

Now, let's take a look at an activity to debug a Python code application.

Activity 22: Debugging Sample Python Code for an Application

Consider the following scenario: you have a program that creates a picnic basket for
you. The baskets are created in a function that depends on whether the user wants
a healthy meal and whether they are hungry. You provide a set of initial items in the
basket, but users can also customize this via a parameter.

A user reported that they got more strawberries than expected when creating multiple
baskets. When asked for more information, they said that they tried to create a healthy
basket for a non-hungry person first, and a non-healthy basket for a hungry person
with just "tea" in the initial basket. Those two baskets were created correctly, but when
the third basket was created for a healthy person who was also hungry, the basket
appeared with one more strawberry than expected.

In this activity, you need to run the reproducers mentioned on GitHub and check for
the error in the third basket. Once you have found the error with the basket, you need
to debug the code and fix the error.

Note

The code file for this activity, along with the reproducers, is mentioned on GitHub:
https://packt.live/2MhvHnU.

The following table is a summary of the preceding scenario:

Figure 8.3: A summary table of the problem

340 | Software Development

There is a reproducer in the code example, so continue the debugging from there, and
figure out where the issue is in the code.

Take a look at the following steps:

1.	 First, write test cases with the inputs provided in the preceding table.

2.	 Next, confirm whether the error report is genuine.

3.	 Then, run the reproducers in the code file and confirm the error in the code.

4.	 Finally, fix the code with the simple logic of if and else.

You should get the following output:

Figure 8.4: The expected output from the basket

Note

The solution for this activity can be found via this link.

In the next topic, you will be learning about automated testing

Automated Testing
Even though you explored and learned how to debug applications when errors are
reported, you would prefer not having to find errors in our applications. To increase the
chances of having a bug-free code base, most developers rely on automated testing.

At the beginning of their careers, most developers will just manually test their code
as they develop it. By just providing a set of inputs and verifying the output of the
program, you can get a basic level of confidence that our code "works." But this quickly
becomes tedious and does not scale as the code base grows and evolves. Automated
testing allows you to record a series of steps and stimuli that you perform in our code
and have a series of expected output recorded.

Automated Testing | 341

This is extremely efficient to reduce the number of bugs in our code base, because not
only are we verifying the code, but we are also implementing it, and you keep a record
of all those verifications for future modifications of the codebase.

The amount of test lines that you write for each line of code really depends on each
application. There are notorious cases, such as SQLite, where orders of magnitude
more lines of tests are needed than lines of code, which greatly improves confidence
in the software and allows quick release of new versions as features are added without
needing the extensive quality assurance (QA) that other systems might require.

Automated testing is similar to the QA process that we see in other engineering fields.
It is a key step of all software development and should be taken into account when
developing a system.

Additionally, having automated tests also helps you to troubleshoot, as we have a set
of test scenarios that you can adapt to simulate the user's input and environment and
keep what is known as a regression test. This is a test that is added when an issue is
detected, to ensure that the issue never happens again.

Test Categorization

One of the first things to think about when writing an automated test is "What are we
verifying?". And that would depend on the "level" of testing that you are doing. There is
a lot of literature about how to categorize different test scenarios in the functions that
they validate and the corresponding dependencies they have. It is not the same to write
a test that just validates a simple Python function in our source code, as it is to write
something that validates an accounting system that connects to the internet and sends
emails. To validate large systems, it is common to create different types of tests. They
are usually known as the following:

•	 Unit tests: These are tests that just validate a small part of your code. Usually, they
just validate a function with specific inputs within one of your files and only depend
on code that has already been validated with other unit tests.

•	 Integration tests: These are more coarse-grained tests that will either validate
interactions between different components of your codebase (known as integration
tests without environment) or the interactions between your code and other
systems and the environment (known as integration tests with the environment).

•	 Functional or end-to-end tests: These are usually really high-level tests that
depend on the environment and often on external systems that validate the
solution with inputs as the user provides them.

342 | Software Development

Say that you were to test the workings of Twitter, using the tests you are familiar with:

•	 A unit test would verify one of the functions, which will check whether a tweet
body is shorter than a specific length.

•	 An integration test would validate that, when a tweet is injected into the system,
the trigger to other users is called.

•	 An end-to-end test is one that ensures that, when a user writes a tweet and clicks
Send, they can then see it on their home page.

Software developers tend to prefer unit tests as they don't have external dependencies
and are more stable and faster to run. The further we go into more coarse-grained
tests, the more we'll come across what the user will perform, but both integration and
end-to-end tests usually take much longer to run, as the dependencies need to be set
up and they are usually flakier because, for example, the email server might not be
working on that day, meaning we would be unable to run our tests.

Note

This categorization is a simplification of many experts working in the field. If you
are interested in the different levels of testing and getting the right balance of
tests, then a good place to start is the famous Testing Pyramid.

Test Coverage

Something that generates debate across the community is test coverage. When you
write tests for our code, you start to exercise it and begin to hit different code paths.
As you write more tests, we cover more and more of the code that you are testing. The
percentage of code that you test is known as test coverage, and developers will argue
that different percentages are "the right amount." Getting to 100% coverage might seem
an unnecessary task, but it proves to be quite useful in large codebases that need to
perform tasks such as migrating from Python 2 to Python 3. However, this all depends
on how much you are willing to invest in testing your application, and each developer
might target a different number for each of the projects that they run.

Moreover, something important to remember is that 100% coverage does not mean
that your code does not have bugs. You can write tests that exercise your code but
do not properly validate it, so be mindful of falling into the trap of just writing tests to
hit the coverage target. Tests should be written to exercise the code with inputs that
will be provided by users and try to find edge cases that can uncover issues with the
assumptions that you made at the time that you wrote it, and not just to hit a number.

Automated Testing | 343

Writing Tests in Python with Unit Testing

The Python standard library comes with a module, unittest, to write test scenarios and
validate your code. Usually, when you are creating tests, we create a file for the test to
validate the source code of another file. In that file, you can create a class that inherits
from unittest.TestCase and has method names that contain the word test to be run
on execution. You can record expectations through functions such as assertEquals and
assertTrue, which are part of the base class, and you can, therefore, access them.

Exercise 113: Checking Sample Code with Unit Testing

In this exercise, you will write and run tests for a function that checks whether a
number is divisible by another. This will help you to validate the implementation and
potentially find any existing bugs:

1.	 Create a function, is_divisible, which checks whether a number is divisible by
another. Save this function in a file named sample_code.

This function is also provided in the sample_code.py file. The file just has a single
function that checks whether a number is divisible by another:

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

2.	 Create a test file that will include the test cases for our function. Then, add the
skeleton for a test case:

import unittest
from sample_code import is_divisible
class TestIsDivisible(unittest.TestCase):
 def test_divisible_numbers(self):
 pass
if __name__ == '__main__':
 unittest.main()

This code imports the function to test, is_divisible, and the unittest module. It
then creates the common boilerplate to start writing tests: a class that inherits
from unittest.TestCase and two final lines that allow us to run the code and
execute the tests.

344 | Software Development

3.	 Now, write the test code:

  def test_divisible_numbers(self):
 self.assertTrue(is_divisible(10, 2))
 self.assertTrue(is_divisible(10, 10))
 self.assertTrue(is_divisible(1000, 1))

 def test_not_divisible_numbers(self):
 self.assertFalse(is_divisible(5, 3))
 self.assertFalse(is_divisible(5, 6))
 self.assertFalse(is_divisible(10, 3))

You now write the code for Your tests by using the self.assertX methods. There
are different kinds of methods for different kinds of asserts. For example, self.
assertEqual will check whether the two arguments are equal or fail otherwise.
You will use self.assertTrue and self.assertFalse. With this, you can create the
preceding tests.

4.	 Run the test:

python3.7 test_unittest.py -v

Run the test by executing it with a Python interpreter. By using -v, you get extra
information about the test names as the tests are running.

You should get the following output:

Figure 8.5: The unit test run output

5.	 Now, add more complex tests:

 def test_dividing_by_0(self):
 with self.assertRaises(ZeroDivisionError):
 is_divisible(1, 0)

By adding a test when you pass 0, you want to check whether it will raise an
exception.

Automated Testing | 345

The assertRaises context manager will validate that the function raises the
exception passed in within the context.

So, there you go: you have a test suite with the standard library unittest module.

Unit testing is a great tool for writing automated tests, but the community seems to
generally prefer to use a third-party tool named Pytest. Pytest allows the user to write
tests by just having plain functions in their function and by using Python assert.

This means that rather than using self.assertEquals(a, b), you can just do assert a
== b. Additionally, pytest comes with some enhancements, such as capturing output,
modular fixtures, or user-defined plugins. If you plan to develop any test suite that is
bigger than a few tests, consider checking for pytest.

Writing a Test with pytest

Even if a unit test is part of the standard library, it is more common to see developers
use pytest to run and write the test. You can refer to the pytest package for more
information about how to write and run tests with pytest: https://docs.pytest.org/en/
latest/

from sample_code import is_divisible
import pytest
def test_divisible_numbers():
 assert is_divisible(10, 2) is True
 assert is_divisible(10, 10) is True
 assert is_divisible(1000, 1) is True

def test_not_divisible_numbers():
 assert is_divisible(5, 3) is False
 assert is_divisible(5, 6) is False
 assert is_divisible(10, 3) is False
def test_dividing_by_0():
 with pytest.raises(ZeroDivisionError):
 is_divisible(1, 0)

This code creates three test cases by using pytest. The main difference is that having
a class that has assert methods within it, you can create free functions and use the
assert keyword of Python itself. This also gives us more explicit error reports when
they fail.

In the next section, let's take a look at creating PIP packages.

346 | Software Development

Creating a PIP Package
When you are working with Python code, you need to differentiate between the
source code tree, the source distributions (sdist), and a binary distribution (wheels
for example which is explained ahead). The folder where you work on the code is
known as the source code tree, which is essentially how it is presented in the folder.
This also contains Git files, configuration files, and others. The source distribution is
a way to package our code so that it can be executed and installed on any machine—
it just contains all the source code without any development-related files. A binary
distribution is similar to source distribution, but it comes with the files ready to be
installed on the system—there is no execution needed in the client host. Wheels are a
particular standard for binary distributions that replace the old format, Python eggs.
When we consume Python wheels we just get a file that is ready to be installed without
the need of any compilation or build step, just ready to be consumed. This is especially
useful for Python packages with C extensions.

When you want to distribute our code to users, you need to create source or binary
distributions and then upload them to a repository. The most common Python
repository is PyPI, which allows users to install packages by using pip.

The Python Packaging Index (PyPI), is an official package repository maintained by
the Python Software Foundation that contains Python packages. Anyone can publish
packages to it, and many Python tools usually default to consume packages from it.
The most common way to consume from PyPI is through pip, which is the Python
Packaging Authority (PyPA). This is the recommended tool for consuming Python
packages.

The most common tool to package our source code is setuptools. With setuptools,
you can create a setup.py file that contains all the information about how to create and
install the package. Setuptools comes with a method named setup, which should be
called with all the metadata that we want to create a package with.

Here's some example boilerplate code that could be copied and pasted when creating a
package:

import setuptools
setuptools.setup(
 name="packt-sample-package",
 version="1.0.0",
 author="Author Name",
 author_email="author@email.com",
 description="packt example package",
 long_description="This is the longer description and will appear in the
 web.",
 py_modules=["packt"],

Creating a PIP Package | 347

 classifiers=[
 "Programming Language :: Python :: 3",
 "Operating System :: OS Independent",
],
)

Take special note of the following parameters:

•	 Name: The name of the package in PyPA. It is a good practice to have it match your
library or file import name.

•	 Version: A string that identifies the version of the package.

•	 Py_modules: A list of Python files to package. You can also use the package keyword
to target full Python packages— you will explore how to do this in the next exercise.

You can now create the source distribution by running the following:

python3.7 setup.py sdist

This will generate a file in the dist folder, which is ready to be distributed to PyPI.

If you have the wheel package installed, you can also run the following to create a wheel:

python3.7 setup.py bdist_wheel

Once you have this file generated, you can install Twine, which is the tool
recommended by the PyPA for uploading packages to PyPI. With twine installed, you
just need to run the following:

twine upload dist/*

You can test our package by installing any of the artifacts in the dist folder.

Usually, you won't just have a single file to distribute, but a whole set of files within a
folder, which makes a Python package. In those situations, there is no need to write all
the files within the folder one by one—you can just use the following line instead of the
py_module option:

packages=setuptools.find_packages(),

This will find and include all the packages in the directory where the setup.py file is.

348 | Software Development

Exercise 114: Creating a Distribution That Includes Multiple Files within a

Package

In this exercise, you are going to create our own package that can contain multiple files
and upload them to the test version of PyPI:

1.	 Create a virtual environment and install twine and setuptools.

Start by creating a virtual environment with all the dependencies that you need.

Make sure you are in an empty folder to start:

python3.7 –m venv venv
. venv/bin/activate
python3.7 –m pip install twine setuptools

You now have all the dependencies we need to create and distribute our package.

2.	 Create the actual package source code.

You will create a Python package named john_doe_package.

Note, please change this to your first and last name:

mkdir john_doe_package
touch john_doe_package/__init__.py
echo "print('Package imported')" > john_doe_package/code.py

The second line will create a Python file, which you will package within the Python
package.

This is a basic Python package that just contains an init file and another file named
code—we can add as many files as desired. The '__init__' file marks the folder as a
Python package.

3.	 Add the setup.py file.

You need to add a setup.py file at the top of our source tree to indicate how our
code should be packaged. Add a setup.py file like the following:

import setuptools
setuptools.setup(
 name="john_doe_package",
 version="1.0.0",
 author="Author Name",
 author_email="author@email.com",

Creating a PIP Package | 349

 description="packt example package",
 long_description="This is the longer description and will appear in
 the web.",
 packages=setuptools.find_packages(),
 classifiers=[
 "Programming Language :: Python :: 3",
 "Operating System :: OS Independent",
],
)

The previously mentioned code is a function call where you pass all the metadata.

Be sure to change john_doe_package to the name of your own package.

4.	 Create the distribution by calling the setup.py file:

python3.7 setup.py sdist

This will create a source distribution. You can test it out by installing it locally:

cd dist && python3.7 –m pip install *

5.	 Upload to the PyPI test:

twine upload --repository-url=https://test.pypi.org/legacy/ dist/*

The last step is to upload the file to the test version of PyPI.

To run this step, you need an account in Test PyPI. Go to https://test.pypi.org/
account/register/ to create one.

Once created, you can run the following command to upload the package to the
web:

Figure 8.6: Uploading with the twine output

350 | Software Development

This will prompt you for the user and password that you used to create your account.
Once this is uploaded, you can go to https://packt.live/2qj1o7N, click on your project,
and you should be able to see the following on the PyPI web:

Figure 8.7: Sample uploaded package website

You just published your first package. In this exercise, you learned how to create a
Python package, package it, and upload it to PyPI.

Adding More Information to Your Package

So, you have seen how to create a really simple package. When you create a package,
you should also include a README file that can be used to generate a description of the
project and is part of the source distribution. This file gets packaged by default.

Consider exploring the different attributes that can be used with setuptools.setup. By
having a look through documentation, you can find a lot of useful metadata that might
be appropriate for your package.

Additionally, to facilitate testing, many people consider it to be good practice to place
all the source code of your package within an src directory. This is done to prevent the
Python interpreter from automatically finding your package, as it is part of the current
working directory, as Python adds the current working directory to the Python path. If
your package contains any logic about the data files that are packaged with your code,
you should really use the src directory, as it will force you to work against the installed
version of your package, rather than the source directory tree.

PyPA has recently created a guide on how to package projects, which contains further
details than those discussed in this book.

Note

If you need to package multiple applications, consider having a look through
https://packaging.python.org/tutorials/packaging-projects/.

Creating Documentation the Easy Way | 351

Creating Documentation the Easy Way
A critical part of all software that is distributed across the world is documentation.
Documentation allows the users of your code to be able to understand calling the
different functions that we provide without having to read the code. There are multiple
levels of documentation that you are going to explore in this topic. You will see how
to write documentation that can be consumed in the console and on the web. In the
purpose and size of our project, you should consider how broad our documentation
should be and what kind of instructions and information it should contain.

Docstrings

In Python, documentation is part of the language. When you declare a function, you
can use docstrings to document its interface and behavior. Docstrings can be created
by having a triple-quoted string block just after the function signature. This content is
not only available to the reader but also to the user of the API, as it is part of a __doc__
attribute of the function, class, or module. It is the content that will be provided if we
call the help function in the object passed. As an example, take a look at the contents of
the __doc__ attribute of the print function:

print(print.__doc__)

Figure 8.8: Print documentation

It is the same content as calling help(print). You can create your own function with a
__doc__ attribute, as follows:

>>>def example():
 """Prints the example text"""
 print("Example")
>>>example.__doc__
'Prints the example text'

352 | Software Development

You can now use help in your function, by executing the "help(example)" which will
result in the following text:

Figure 8.9: The Help content in the example module

Docstrings usually contain a title with a short description of the function and a
body with further information about what it does in detail. Additionally, you can also
document all the parameters the function takes, including its types, the return type,
and whether it raises any exceptions. This is all really useful information for your users
and even for ourselves when you have to use the code at a later time.

Using Sphinx

Using docstrings to document APIs is useful, but quite often you need something more.
You want to generate a website with guides and other information about your library. In
Python, the most common way to do this is via Sphinx. Sphinx allows you to generate
documentation in multiple formats, such as PDF, epub, or html, easily from RST with some
markup. Sphinx also comes with multiple plugins, and some of them are useful for
Python, such as generating API documentation from docstrings or allowing you to view
code behind the API implementation.

Once installed via pip, it comes with two main CLI scripts, which the user interacts
with: sphinx-build and sphinx-quickstart. The first is used to build the documentation
on an existing project with Sphinx configuration, while the second can be used to
quickly bootstrap a project.

When you bootstrap a project, Sphinx will generate multiple files for you, and the most
important ones are as follows:

•	 Conf.py: This contains all the user configuration for generating the documentation.
This is the most common place to look for configuration parameters when you
want to customize something from the Sphinx output.

•	 Makefile: An easy-to-use makefile that can be used to generate the documentation
with a simple "make html." There are other targets that can be useful, such as the
one to run doctests.

•	 Index.rst: The main entry point for our documentation.

Creating Documentation the Easy Way | 353

Usually, most projects create a folder named docs within their source tree root to
contain everything related to the documentation and Sphinx. This folder can then
refer to the source code by either installing it or by adding it to the path in their
configuration file.

If you are not familiar with RST, it is best to have a quick look through https://www.
sphinx-doc.org/en/master/usage/restructuredtext/basics.html. It has a short
explanation of the different special syntaxes you can find in RST that will be translated
into special HTML tags such as links, anchors, tables, images, and others.

On top of this, Sphinx is easily extendible via plugins. Some of them are part of
the default distribution when you install sphinx. Plugins allow you to extend the
functionality to do things such as automatically create documentation for your
modules, classes, and functions by just writing a single directive.

Finally, there are multiple themes available when you generate documentation with
Sphinx—these are all configurable in conf.py. Quite often, you can find more Sphinx
themes available on PyPI, which can be just installed easily via pip.

Exercise 115: Documenting a Divisible Code File

In this exercise, you are going to document the module that you created in the testing
topic, divisible.py, from Exercise 113, Checking Sample Code with Unit Testing using
sphinx:

1.	 Create a folder structure.

First, create an empty folder with just the divisible.py module and another empty
folder named docs. The divisible.py module should contain the following code:

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

2.	 Run the sphinx quick-start tool:

Make sure you have Sphinx installed (otherwise, run python3.7 –m pip install
sphinx –user) and run sphinx-quickstart within the docs folder. You can leave all
the functions with the default value by pressing return when prompted, except for
the following:

Project name: divisible.

354 | Software Development

Author name: Write your name here.

Project Release: 1.0.0.

Autodoc: y.

Intersphinx: y.

With these options, you are ready to start a project that can be easily documented
and generate HTML output with Sphinx. Additionally, you have enabled two of the
most common plugins: autodoc, which we will use to generate documentation out
of the code; and intersphinx, which allows you to reference other sphinx projects,
such as the Python standard library.

3.	 Build the documentation for the first time.

Building the documentation is easy—just run make html within the docs directory
to generate the HTML output of your documentation. You can now open the index.
html file in your browser within the docs/build/html folder.

You should get the following output:

Figure 8.10: The first documentation output with Sphinx

It's not a lot of content, but it's quite impressive for the amount of code you have
written.

4.	 Configure Sphinx to find our code.

The next step is to generate and include documentation from your Python source
code. The first thing that you will have to do to be able to do that is to edit the
conf.py file within the docs folder and uncomment these three lines:

import os
import sys
sys.path.insert(0, os.path.abspath('.'))

Creating Documentation the Easy Way | 355

Once uncommented, the last line should be changed to this since you have our
divisible source code one level above our code:

sys.path.insert(0, os.path.abspath('..'))

A better alternative to this would be to make sure your package is installed when
running Sphinx—this is a more extended method, but a simpler solution.

Last but not least, you are going to use another plugin, called Napoleon. This allows
you to format your functions by using the Napoleon syntax. To do so, add the
following line in the list of extensions within the conf.py file, within the extensions
variable, after 'sphinx.ext.autodoc':

    'sphinx.ext.napoleon',

You can read https://www.sphinx-doc.org/en/master/usage/extensions/
napoleon.html for more information about the Napoleon syntax for Sphinx.

5.	 Generate documentation from the source code.

Adding the documentation from a module to Sphinx is really simple—you can just
add the following two lines to your index.rst:

 automodule:: divisible
 :members:

Once those two lines are added, run make html again and check whether an error is
generated. If no error appears, then you are all set. You have configured Sphinx to
bring the documentation from docstrings to your rst file.

6.	 Add docstrings.

To give Sphinx something to work with, add a docstring at the module level and
one docstring for the function that you defined.

Our divisible.py file should now look like the following:

"""Functions to work with divisibles"""
def is_divisible(x, y):
 """Checks if a number is divisible by another
 Arguments:
 x (int): Divisor of the operation.
 y (int): Dividend of the operation.
 Returns:
 True if x can be divided by y without reminder,
 False otherwise.

356 | Software Development

 Raises:
 :obj:'ZeroDivisionError' if y is 0.
 """
 if x % y == 0:
 return True
 else:
 return False

You are using the napoleon style syntax to define the different arguments that our
function takes, what it can return, and the exception it raises.

Note that you we use a special syntax to reference the exception that it raises. This
will generate a link to the definition of the object.

If you run make html again, you should get the following output:

Figure 8.11: HTML documentation output with docstring

You can now distribute our documentation to our users. Note that it will always be up
to date as you are generating it from the source code.

More Complex Documentation

In the previous exercise, you examined simple documentation for a really small module.
Most libraries also include tutorials and guides along with their API documentation.
Check Django, flask, or CPython as examples, as they are all generated with Sphinx.

Source Management | 357

Note that if you intend our library to be used extensively and successfully, then
documentation will be a key part of it. When you want to document how an API
behaves, you should use just the plain API documentation that you generated before.
However, there is also room to create small guides for specific features or tutorials to
walk users through the most common steps to start a project.

Additionally, there are tools such as Read the Docs, which greatly simplifies the
generation and hosting of documentation. You can take the project that we just
generated and connect it to readthedocs through their UI to have our documentation
hosted on the web and automatically regenerated every time you update the master
branch of our project.

Note

You can go to https://readthedocs.org/ to create an account and set up your
repositories in GitHub to automatically generate documentation.

Source Management
When you work with code, you need a way in which to keep a picture of how your code
evolves and how changes are being applied to different files. For instance, say that, by
mistake, you make changes to your code that suddenly breaks it, or you start to make
changes and just want to go back to the previous version. Many people start with just
copying their source code into different folders and naming them with a timestamp
based on checkpoints they make on different phases of the project. This is the most
rudimentary approach to version control.

Version control is the system by which you keep control of code as it evolves over
time. Developers have been suffering for long enough to create a piece of software
that can do this job efficiently, and one of the most popular tools to do this is a Git. Git
is a Distributed Version Control System that allows developers to manage their code
locally as it evolves, look at the history, and easily collaborate with other developers. Git
is used to manage some of the biggest projects around the world, such as the Windows
kernel, CPython, Linux, or Git itself; however, at the same time, git is really useful and
versatile for small projects as well.

Repository

A repository is an isolated workspace where you can work with your changes and have
git record them and track the history of them. One repository can contain as many files
and folders as you want, with all of them tracked by git.

358 | Software Development

There are two ways to create a repository: you can either clone an existing repository
by using git clone <url of the repository>, which will bring a local copy of a
repository into your current path, or you can create a repository from an existing folder
with git init, which will just mark the folder as a repository by creating the necessary
files.

Once you have a repository locally created, you can start to work with our version
control system by issuing different commands to indicate whether you want to add
changes, check previous versions, or more.

Commit

A commit object is the history of our repository. Each repository has many commits:
one for every time we use git commit. Each of those commits will contain the commit
title, the person who added the commit to the repository, the author of the changes,
the dates when the commit and the changes were made, an ID that is represented by
a hash, and the hash of the parent commit. With this, you can create a tree of all the
commits within the repository, which allows us to see the history of our source code.
You can see the content of any commit by running git show <commit sha>.

When you run git commit, we create a commit from all the changes that you have in the
staging area. An editor will open, which includes some meta-information such as the
title and the commit body.

Figure 8.12: Git commands showing how they interact with the repository and the Staging area

Note

A good guide on how to write good commit messages can be found here: https://
packt.live/33zARRV. You suggest that you take a look after finishing this book.

Source Management | 359

Staging Area

When you are working locally, making changes to our files and source code, git will
report that those changes happened, and they are not saved. By running git status,
you can see what files were modified. If you decide that we want to save those changes
in the staging area in preparation for a commit, you can add them with the git add
<path> command. It can be used in files or folders to add all the files within that folder.
Once they are added to the staging area, the next git commit command will save the
changes in the repository through a commit object.

Sometimes, you don't want to add all the contents of a file to the staging area, just part
of them. For this use case, both git commit and git add have an option to guide you
through the different changes in the file and allow you to select which ones you want
to add. This is through the -p option, which will ask you for each of the changed chunks
within your code, which ones you do want to add.

Undoing Local Changes

When you are working on a file, you can run git diff to see all the changes that have
been made locally but are not yet part of the staging area or a commit. Sometimes,
you realize we want to undo our changes and come back to the version you have saved
in the staging area or in the last commit. You can do this by checking out the file by
running git checkout <path>. This applies to both files and folders.

If instead, you want to revert our repository back to a previous commit in history, you
can do this by running git reset <commit sha>.

History

As you mentioned before, the repository has a commit history. This includes all the
commits that have been performed before. You can see them by running git log, which
will present you with the title, body, and some other information. The most important
part of each of these entries is the sha of the commit, which uniquely represents each of
the commits.

Ignoring Files

When you work with our source code, we may find that, by running our program or any
other action, you have files in your repository that you don't want git to track. In that
scenario, you can use a special file that has to be placed at the top of the directory and
named .gitignore, which can list all the files in glob patterns that you don't want git to
track. This is especially handy for adding things such as IDE-generated files, compiled
Python files, and more.

360 | Software Development

Exercise 116: Making a Change in CPython Using git

In this exercise, you are going to change a file in the local CPython repository by cloning
the repository and working on our local copy. For the sake of the exercise, you will just
add our name to the list of authors of the project.

Note

The repository will be on your local PC, so no one will see the changes – don't
worry.

You begin by first installing git. That is the first step to installing the tool itself. You can
install it on Windows via https://git-scm.com/download/win, or in Unix by following
the instructions here: https://git-scm.com/book/en/v2/Getting-Started-Installing-
Git.

If you are running on Windows, follow this exercise by using the git-shell for Windows.
On Unix, just use your preferred Terminal:

1.	 Now, begin by cloning the cpython repository.

As you mentioned before, you can create a repository by simply cloning it. You can
clone the cpython source code by running the following:

git clone https://github.com/python/cpython.git

This will create a folder named cpython in the current workspace. Don't worry; it is
normal for it to take a few minutes, as CPython has a lot of code and long history:

Figure 8.13: The git clone output of CPython

Source Management | 361

2.	 Edit the Misc/ACKS file and confirm the changes.

You can now add your name to the Misc/ACKS file. To do this, just open the file in
that path and add your name in alphabetical and your surname.

Check the changes by running git status. This command will show you whether
there are any changed files:

Figure 8.14: The git status output

Note how it gives you instructions on how to proceed if you want to add the
changes to the staging area in preparation for a commit or to reset them. Let's
check the content of the changes by running git diff:

Figure 8.15: The git diff output

This provides you with a nice output that indicates the changes in the lines. Green
with a plus sign means that a line was added, while red with a minus sign means a
line was removed.

362 | Software Development

3.	 Now commit the changes.

Now that you are happy with the changes that you have made let's add those to the
staging area by running git add Misc/ACKS, which will move the file into the staging
area, allowing us to then commit them at any time by running git commit. When
you run git commit, an editor will open to create the commit. Add a title and body
(separated by an empty line):

Figure 8.16: A commit message output example

When you close the editor and save, the commit should be created:

Figure 8.17: The git commit output

Source Management | 363

You have created your first commit. You can check the contents of it by running git
show:

Figure 8.18: Git showing the output

Note

This was an introduction to Git. If you plan to use Git daily, check out the Git
pro book. This is a free book that will guide you on how to use git: https://packt.
live/35EoBS5

364 | Software Development

Summary
In this chapter, you have seen that software development is more than just writing
code in Python. When you want to elevate your code further than a simple script on
our computer, you need to know how to troubleshoot it, distribute it, document it, and
test it. The Python ecosystem provides us with tools to do all of these things. You have
learned how to troubleshoot code using pdb and steps on how to identify and narrow
down a problem by inspecting logs and the input. You have also learned how to write
automated tests and the importance of them.

You saw how you can package our code to be distributed across the internet, how we
can also document those packages to make them easier to use and consume by your
final users, and finally, how to use git to manage changes as your code evolves.

In the next chapter, you we will touch on some more advanced topics; some of them
build on top of what you just learned. You will explore things such as how to take the
code we just wrote and have it processed from package to production, how to use git to
collaborate with other members of the team through GitHub, and how to profile your
code when you suspect that it is not as fast as it could be.

Practical Python –
Advanced Topics

Overview

By the end of this chapter, you will be able to, write Python collaboratively as a
member of a team; use conda to document and set up the dependencies for your
Python programs; use Docker to create reproducible Python environments to
run your code; write programs that take advantage of multiple cores in modern
computers; write scripts that can be configured from the command line and
explain the performance characteristics of your Python programs, and use tools to
make your programs faster.

9

368 | Practical Python – Advanced Topics

Introduction
In this chapter, you'll continue the move which started in Chapter 8, Software
Development, away from your individual focus on learning the syntax of the Python
language toward becoming a contributing member of a Python development team.
Large projects solving complex problems need expertise from multiple contributors,
so it's very common to work on code with one or more colleagues as a developer
community. Having already seen how to use git version control in Chapter 8, Software
Development, you'll apply that knowledge in this chapter to working with teams. You'll
be using GitHub, branches, and pull requests in order to keep your project in sync.

Moving on, in the IT world, when you deliver a certain project, at some point, you'll
want to deliver your code to your customers or stakeholders. An important part of the
deployment process is making sure that the customer's system has the libraries and
modules that your software needs, and also the same versions that you were developing
against. For this, you'll learn how to use conda to create baseline Python environments
with particular libraries present, and how to replicate those environments on another
system.

Next, you will look at Docker, which is a popular way to deploy software to internet
servers and cloud infrastructure. You'll learn how to create a container that includes
your conda environment and your Python software, and how to run the containerized
software within Docker.

Finally, you'll learn some useful techniques for developing real-world Python software.
These include learning how to take advantage of parallel programming, how to
parse command-line arguments, and how to profile your Python to discover and fix
performance problems.

Developing Collaboratively
In Chapter 8, Software Development, you used git to keep track of the changes you
made to your Python project. At its heart, membership of a programming team
involves multiple people sharing their changes through git and ensuring that you are
incorporating everybody else's changes when doing your own work.

There are many ways for people to work together using git. The developers of the Linux
kernel each maintain their own repository and share potential changes over email,
which they each choose whether to incorporate or not. Large companies, including
Facebook and Google, use trunk-based development, in which all changes must be made
on the main branch, usually called the "master."

Developing Collaboratively | 369

A common workflow popularized by support in the GitHub user interface is the pull
request.

In the pull request workflow, you maintain your repository as a fork in GitHub of the
canonical version from which software releases are made, often referred to as upstream
or origin. You make a small collection of related changes, each representing progress
toward a single bug fix or new feature, in a named branch on your own repository,
which you push to your hosted repository with git push. When you are ready, you
submit a pull request to the upstream repository. The team reviews these changes
together in the pull request, and you add any further work needed to the branch. When
the team is happy with the pull request, a supervisor or another developer merges it
upstream, and the changes are "pulled" into the canonical version of the software.

The advantage of the pull request workflow is that it's made easy by the user interface
in applications such as Bitbucket, GitHub, and GitLab. The disadvantage comes from
keeping those branches around while the pull request is being created and is under
review. It's easy to fall behind as other work goes into the upstream repository, leaving
your branch out of date and introducing the possibility that your change will conflict
with some other changes, and those conflicts will need a resolution.

To deal with fresh changes and conflicts as they arise, rather than as a huge headache
when it comes time to merge the pull request, you use git to fetch changes from the
upstream repository, and either merge them into your branch or rebase your branch
on the up-to-date upstream revision. Merging combines the history of commits on two
branches and rebasing reapplies commits such that they start at the tip of the branch
you are rebasing against. Your team should decide which of these approaches they
prefer.

Exercise 117: Writing Python on GitHub as a Team

In this exercise, you will learn how to host code on GitHub, make a pull request, and
then approve changes to the code. To make this exercise more effective, you can
collaborate with a friend.

1.	 If you don't have an account already, create one on github.com.

370 | Practical Python – Advanced Topics

2.	 Log into https://github.com/ and create a new repository by clicking on New:

Figure 9.1: The GitHub home page

3.	 Give the repository an appropriate name, such as python-demo, and click on Create.

4.	 Now click on Clone or download, and you will be able to see the HTTPS URL;
however, note that we will need the SSH URL. Hence, you will see Use SSH on the
same tab, which you need to click on:

Figure 9.2: Using SSH URL on GitHub

Developing Collaboratively | 371

5.	 Now copy the SSH URL on GitHub. Then, using your local Command Prompt, such as
CMD in Windows, clone the repository:

git clone git@github.com:andrewbird2/python-demo.git

Note

Your command will look slightly different from the preceding command because of
the different username. You need to add your SSH URL after git clone. Note that
you may also need to add an SSH key to your GitHub account for authentication. If
so, follow the instructions here to add the SSH key: https://packt.live/2qjhtKH.

6.	 In your new python-demo directory, create a Python file. It doesn't matter what
it contains; for instance, create a simple one-line test.py file, as shown in the
following code snippet:

echo "x = 5" >> test.py

7.	 Let's commit our changes:

git add .
git commit -m "Initial"
git push origin master

You should get the following output:

Figure 9.3: Pushing our initial commit

At this point, if you are working with someone else, clone their repository, and
perform the following steps on their code base to experience what collaboration
feels like. If working alone, just proceed with your own repository.

372 | Practical Python – Advanced Topics

8.	 Create a new branch called dev:

git checkout -b dev

You should get the following output:

Figure 9.4: Creating a dev branch

9.	 Create a new file called hello_world.py. This can be done in a text editor, or with
the following simple command:

echo "print("Hello World!")" >> hello_world.py

10.	 commit the new file to the dev branch and push it to the created python-demo
repository:

git add .
git commit -m "Adding hello_world"
git push --set-upstream origin dev

11.	 Go to the project repository in your web browser and click on Compare & pull
request:

Figure 9.5: The home page of the repository on GitHub

Developing Collaboratively | 373

12.	 Here, you can see a list of changes made on the dev branch that you created. You
can also provide an explanation that someone else might read when reviewing your
code before deciding whether or not it should be committed to the master branch:

Figure 9.6: Adding justifications to the code on GitHub

13.	 Click on Create pull request to add the justifications on GitHub.

374 | Practical Python – Advanced Topics

14.	 Now, if working with a partner, you should switch back to the original repository
that you own and view their pull request. You could comment on it if you have any
concerns regarding the commit request; otherwise, you can simply click on Merge
pull request:

Figure 9.7: Merging a pull request

You now understand how people can work together on the same repository on GitHub,
reviewing and discussing each other's code before merging into the master branch. This
comes in very handy as a developer when you want to have a single repository to store
your code or help a fellow developer located somewhere else in the world. In the next
section, you will look at dependency management.

Dependency Management
In the IT world, most complex programs depend on libraries beyond the Python
standard library. You may use numpy or pandas to deal with multidimensional data
or matplotlib to visualize data in graphs (this will be covered in Chapter 10, Data
Analytics with pandas and NumPy), or any number of other libraries available to Python
developers.

Just like your own software, the libraries developed by other teams frequently change
as bugs are fixed, features are added, and old code is removed or refactored, which is
the process of restructuring existing code. That means it's important that your team
uses the same version of a library so that it works in the same way for all of them.

Dependency Management | 375

Additionally, you want your customers or the servers where you deploy your software
to use the same versions of the same libraries as well, so that everything works the
same way on their computers, too.

There are multiple tools for solving this problem. These include pip, easy_install, brew,
and conda, to name a few. You are already familiar with pip, and in some contexts, it
suffices to use this package manager to keep track of dependencies.

For instance, try running pip freeze in Command Prompt. You should get the following
output:

Figure 9.8: Output of pip freeze (truncated)

This package list could be saved to a text file with the following command: pip freeze >
requirements.txt. This will create a file called requirements.txt, which will be similar to
Figure 9.9:

Figure 9.9: Viewing requirements.txt in Notepad (truncated)

376 | Practical Python – Advanced Topics

Now that you have the information about the packages, you can choose to install these
packages on another machine or environment with the following command: pip install
-r requirements.txt.

In this chapter, you will focus on conda, which provides a complete solution for
dependency management. conda is particularly popular among data scientists and
machine learning programmers. For instance, some dependencies in machine learning
environments can't be managed by pip, as they might not be a simple Python package.
conda takes care of these for us.

Virtual Environments

In this chapter, you will use conda to create "virtual environments." When you code
in Python, you have certain versions of certain packages installed. You're also using a
specific version of Python itself, which is 3.7. However, what if you are working on two
projects, with each requiring different versions of the packages? You would need to
reinstall all of the packages when switching between these projects, which would be a
hassle. Virtual environments address this problem. A virtual environment contains a set
of particular packages at specific versions. By switching between virtual environments,
you can switch between different packages and versions instantly. Typically, you will
have a different virtual environment for each major project you are working on.

Exercise 118: Creating and Setting Up a conda Virtual Environment to Install

numpy and pandas

In this exercise, you'll create a virtual environment with conda and execute some simple
code to import basic libraries. This exercise will be performed in the conda environment.

Note

If you have not already installed Anaconda, refer to the Preface section for
installation instructions.

Now, with conda installed on your system, you can create a new conda environment
and include packages in it; for example, numpy.

1.	 Now you should run the following command using the Anaconda Prompt program,
which is now installed on your computer:

conda create -n example_env numpy

Dependency Management | 377

You should get the following output:

Figure 9.10: Creating a new conda environment (truncated)

Note

If you are asked to enter y/n by the prompt, you need to enter y to proceed
further.

2.	 Activate the conda environment:

conda activate example_env

You can add other packages to the environment with conda install.

378 | Practical Python – Advanced Topics

3.	 Now, add pandas to the example_env environment:

conda install pandas

You should get the following output:

Figure 9.11: The pandas output

Note

The preceding output is truncated.

4.	 Next, open a Python terminal within the virtual environment by typing in python
and then verify that you can import pandas as numpy as expected:

python
import pandas as pd
import numpy as np

5.	 Now, exit the Python terminal in the virtual environment using the exit() method:

exit()

Dependency Management | 379

6.	 Finally, deactivate the virtual environment:

conda deactivate

Note

You may have noticed the $ sign in the prompts. While working on the prompt, you
need to ignore the $ sign. The $ sign is just to mention that the command will be
executed on the terminal.

In this exercise, you created your first virtual environment using conda, installed
packages such as numpy and pandas, and ran simple Python code to import libraries.

Saving and Sharing Virtual Environments

Now, suppose you have built an application that relies on various Python packages.
You now decide that you want to run the application on a server, so you want a way of
setting up the same virtual environment on the server as you have running on your local
machine. As you previously encountered with pip freeze, the metadata defining a conda
environment can be easily exported to a file that can be used to recreate an identical
environment on another computer.

Exercise 119: Sharing Environments between a conda Server and Your Local

System

In this exercise, you will export the metadata of our example_env conda environment,
which you created in Exercise 118, Creating and Setting Up a conda Virtual Environment
to Install numpy and pandas, to a text file and learn how to recreate the same
environment using this file.

This exercise will be performed on the conda environment command line:

1.	 Activate your example environment, for example_env:

conda activate example_env

2.	 Now, export the environment to a text file:

conda env export > example_env.yml

380 | Practical Python – Advanced Topics

The env export command produces the text metadata (which is mainly just a list of
Python package versions), and the > example_env.yml part of the command stores
this text in a file. Note that the .yml extension is a special easy-to-read file format
that is usually used to store configuration information.

3.	 Now deactivate that environment and remove it from conda:

conda deactivate
conda env remove --name example_env

4.	 You no longer have an example_env environment, but you can recreate it by
importing the example_env.yml file you created earlier in the exercise:

conda env create -f example_env.yml

You have now learned how to save your environment and create an environment
using the saved file. This approach could be used when transferring your environment
between your personal computers when collaborating with another developer, or even
when deploying code to a server.

Deploying Code into Production
You have all of the pieces now to get your code onto another computer and get it
running. You can use PIP (covered in Chapter 8, Software Development) to create a
package, and conda to create a portable definition of the environment needed for your
code to run. These tools still give users a few steps to follow to get up and running, and
each step adds effort and complexity that may put them off.

A common tool for one-command setup and installation of software is Docker. Docker
is based on Linux container technologies. However, because the Linux kernel is open
source, developers have been able to make it so that Docker containers can run on
both Windows and macOS. Programmers create Docker images, which are Linux
filesystems containing all of the code, tools, and configuration files necessary to run
their applications. Users download these images and use Docker to execute them or
deploy the images into networks using docker-compose, Docker Swarm, Kubernetes, or
similar tools.

You prepare your program for Docker by creating a Dockerfile file that tells Docker
what goes into your image. In the case of a Python application, that's Python and your
Python code.

Deploying Code into Production | 381

Firstly, you need to install Docker.

Note

The installation steps for Docker are mentioned in the Preface.

Note that after installing, you may need to restart your computer.

To test Docker, run the hello-world application to confirm that Docker is correctly
configured. hello-world is a simple Docker application that comes as part of the
standard library of Docker apps:

docker run hello-world

You should get the following output:

Figure 9.12: Running hello-world with Docker

You have successfully installed and run Docker on your local machine.

382 | Practical Python – Advanced Topics

Exercise 120: Dockerizing Your Fizzbuzz Tool

In this exercise, you'll use Docker to create an executable version of a simple Python
script that creates a sequence of numbers. However, instead of printing 3 or multiples
of 3, it will print Fizz, and multiples of 5 will print Buzz.

This exercise will be performed in the docker environment:

1.	 Create a new directory called my_docker_app and cd into this directory, as shown in
the following code snippet:

mkdir my_docker_app
cd my_docker_app

2.	 Within this directory, create an empty file called Dockerfile. You can create this
with Jupyter Notebook, or your favorite text editor. Ensure this file does not have
any extensions, such as .txt.

3.	 Now, add the first line to your Dockerfile:

FROM python:3

This line tells it to use a system that has Python 3 installed. Specifically, this is going
to use a Python image built on top of a minimal Linux distribution called Alpine.
More details about this image can be found at https://packt.live/32oNn6E.

4.	 Next, create a fizzbuzz.py file in the my_docker_app directory with the following
code:

for num in range(1,101):
 string = ""
 if num % 3 == 0:
 string = string + "Fizz"
 if num % 5 == 0:
 string = string + "Buzz"
 if num % 5 != 0 and num % 3 != 0:
 string = string + str(num)
 print(string)

5.	 Now ADD a second line to your Dockerfile file. This line tells Docker to include the
fizzbuzz.py file in the application:

ADD fizzbuzz.py /

6.	 Finally, add the command that Docker must run:

CMD ["python", "./fizzbuzz.py"]

Deploying Code into Production | 383

7.	 Your Dockerfile file should look like this:

FROM python:3

ADD fizzbuzz.py /

CMD ["python", "./fizzbuzz.py"]

Note

This Docker output file will be saved locally on your system. You shouldn't try to
access such files directly.

8.	 Now build your Docker image. You will give it the name fizzbuzz_app:

$ docker build -t fizzbuzz_app .

This command created an image file on your system that contains all of the
information required to execute your code in a simple Linux environment.

9.	 Now you can run your program inside Docker:

docker run fizzbuzz_app

You should get the following output:

Figure 9.13: Running your program inside Docker (truncated)

You can see the full list of Docker images available on your system by running
docker images. This list should include your new fizzbuzz_app application.

Finally, suppose your fizzbuzz file imported a third-party library as part of the
code. For example, perhaps it used the pandas library (it shouldn't need to). In this
case, our code would break, because the installation of Python within the Docker
image does not contain the pandas package.

384 | Practical Python – Advanced Topics

10.	 To fix this, you can simply add a pip install pandas line to our Dockerfile file. Our
updated Dockerfile file will look like this:

FROM python:3

ADD fizzbuzz.py /

RUN pip install pandas

CMD ["python", "./fizzbuzz.py"]

In this exercise, you installed and deployed your first application with Docker. In the
next section, you will look at multiprocessing.

Multiprocessing
It's common to need to execute more than one thing in parallel in a modern software
system. Machine learning programs and scientific simulations benefit from using
the multiple cores available in a modern processor, dividing their work up between
concurrent threads operating on the parallel hardware. Graphical user interfaces and
network servers do their work "in the background," leaving a thread available to respond
to user events or new requests.

As a simple example, suppose your program had to execute three steps: A, B, and C.
These steps are not dependent on each other, meaning they can be completed in any
order. Usually, you would simply execute them in order, as follows:

Figure 9.14: Processing with a single thread

Multiprocessing | 385

However, what if you could do all of these steps at the same time, rather than waiting
for one to complete before moving onto the next? Our workflow would look like this:

Figure 9.15: Multithreaded processing

This has the potential to be a lot faster if you have the infrastructure to execute these
steps at the same time. That is, each step will need to be executed by a different thread.

Python itself uses multiple threads to do some work internally, which puts some limits
on the ways in which a Python program can do multiprocessing. The three safest ways
to work are as follows:

•	 Find a library that solves your problem and handles multiprocessing for you (which
has been carefully tested).

•	 Launch a new Python interpreter by running another copy of your script as a
completely separate process.

•	 Create a new thread within the existing interpreter to do some work concurrently.

The first of these is the easiest and the most likely to be a success. The second is fairly
simple and imposes the most overhead on your computer as the operating system is
now running two independent Python scripts. The third is very complicated, easy to get
wrong, and still creates a lot of overhead as Python maintains a Global Interpreter Lock
(GIL), which means that only one thread at a time can interpret a Python instruction.
A quick rule of thumb to choose between the three approaches is to always pick the
first one. If a library doesn't exist to address your needs, then pick the second. If
you absolutely need to share memory between the concurrent processes, or if your
concurrent work is related to handling I/O, then you can choose the third carefully.

386 | Practical Python – Advanced Topics

Multiprocessing with execnet

It's possible to launch a new Python interpreter with the standard library's subprocess
module. However, doing so leaves a lot of work up to you about what code to run and
how to share data between the "parent" and "child" Python scripts.

An easier interface is the execnet library. execnet makes it very easy to launch a new
Python interpreter running some given code, including versions such as Jython and
IronPython, which integrate with the Java virtual machine and .NET common language
runtime, respectively. It exposes an asynchronous communication channel between the
parent and child Python scripts, so the parent can send data that the child works on
and get on with its own thing until it's ready to receive the result. If the parent is ready
before the child is finished, then the parent waits.

Exercise 121: Working with execnet to Execute a Simple Python Squaring

Program

In this exercise, you'll create a squaring process that receives x over an execnet channel
and responds with x**2. This is much too small a task to warrant multiprocessing, but it
does demonstrate how to use the library.

This exercise will be performed on a Jupyter notebook:

1.	 First, install execnet using the pip package manager:

$ pip install execnet

2.	 Now write the square function, which receives numbers on a channel and returns
their square:

import execnet
def square(channel):
 while not channel.isclosed():
 number = channel.receive()
 number_squared = number**2
 channel.send(number_squared)

Note

Due to the way execnet works, you must type the following examples into a
Jupyter notebook. You cannot type them into the interactive >>> prompt.

Multiprocessing | 387

The while not channel.isclosed() statement ensures that we only proceed with
the calculation if there is an open channel between the parent and child Python
processes. number = channel.receive() takes the input from the parent process
that you want to square. It is then squared in the number_squared = number**2 code
line. Lastly, you send the squared number back to the parent process with channel.
send(number_squared).

3.	 Now set up a gateway channel to a remote Python interpreter running that
function:

gateway = execnet.makegateway()
channel = gateway.remote_exec(square)

A gateway channel manages the communication between the parent and child
Python processes. The channel is used to actually send and receive data between
the processes.

4.	 Now send some integers from our parent process to the child process, as shown in
the following code snippet:

for i in range(10):
 channel.send(i)
 i_squared = channel.receive()
 print(f"{i} squared is {i_squared}")

You should get the following output:

Figure 9.16: The results passed back from the child Python processes

Here, you loop through 10 integers, send them through the square channel, and
then receive the result using the channel.receive() function.

5.	 When you are done with the remote Python interpreter, close the gateway channel
to cause it to quit:

gateway.exit()

388 | Practical Python – Advanced Topics

In this exercise, you learned how to use execnet to pass instructions between Python
processes. In the next section, you will be looking at multiprocessing with the
multiprocessing package.

Multiprocessing with the Multiprocessing Package

The multiprocessing module is built into Python's standard library. Similar to execnet,
it allows you to launch new Python processes. However, it provides an API that is
lower-level than execnet. This means that it's harder to use than execnet, but affords
more flexibility. An execnet channel can be simulated by using a pair of multiprocessing
queues.

Exercise 122: Using the Multiprocessing Package to Execute a Simple Python

Program

In this exercise, you will use the multiprocessing module to complete the same task as
in Exercise 121, Working with execnet to Execute a Simple Python Squaring Program:

1.	 Create a new text file called multi_processing.py.

2.	 Now, import the multiprocessing package:

import multiprocessing

3.	 Create a square_mp function that will continuously monitor the queue for numbers,
and when it sees a number, it will take it, square it, and place it in the outbound
queue:

def square_mp(in_queue, out_queue):
 while(True):
 n = in_queue.get()
 n_squared = n**2
 out_queue.put(n_squared)

4.	 Finally, add the following block of code to multi_processing.py:

if __name__ == '__main__':
 in_queue = multiprocessing.Queue()
 out_queue = multiprocessing.Queue()
 process = multiprocessing.Process(target=square_mp, args=(in_queue, out_queue))
 process.start()
 for i in range(10):

Multiprocessing | 389

 in_queue.put(i)
 i_squared = out_queue.get()
 print(f"{i} squared is {i_squared}")
 process.terminate()

Recall that the if name == '__main__' line simply avoids executing this section of
code if the module is being imported elsewhere in your project. In comparison,
in_queue and out_queue are both queue objects through which data can be sent
between the parent and child processes. Within the following loop, you can see that
you add integers to in_queue and get the results from out_queue. If you look at the
preceding square_mp function, you can see how the child process will get its values
from the in_queue object, and pass the result back into the out_queue object.

5.	 Execute your program from the command line as follows:

python multi_processing.py

You should get the following output:

Figure 9.17: Running our multiprocessing script

In this exercise, you learned how to pass tasks between our parent and child Python
processes using the multiprocessing package, and you found the square of a set of
numbers.

Multiprocessing with the Threading Package

Whereas multiprocessing and execnet create a new Python process to run your
asynchronous code, threading simply creates a new thread within the current process.
It, therefore, uses fewer operating resources than alternatives. Your new thread shares
all memory, including global variables, with the creating thread. The two threads are not
truly concurrent, because the GIL means only one Python instruction can be running at
once across all threads in a Python process.

390 | Practical Python – Advanced Topics

Finally, you cannot terminate a thread, so unless you plan to exit your whole Python
process, you must provide the thread function with a way to exit. In the following
exercise, you'll use a special signal value sent to a queue to exit the thread.

Exercise 123: Using the Threading Package

In this exercise, you will use the threading module to complete the same task of
squaring numbers as in Exercise 121, Working with execnet to Execute a Simple Python
Squaring Program:

1.	 In a Jupyter notebook, import the threading and queue modules:

import threading
import queue

2.	 Create two new queues to handle the communication between our processes, as
shown in the following code snippet:

in_queue = queue.Queue()
out_queue = queue.Queue()

3.	 Create the function that will watch the queue for new numbers and return squared
numbers. The if n == 'STOP' line allows you to terminate the thread by passing
STOP into the in_queue object:

def square_threading():
 while True:
 n = in_queue.get()
 if n == 'STOP':
 return
 n_squared = n**2
 out_queue.put(n_squared)

4.	 Now, create and start a new thread:

thread = threading.Thread(target=square_threading)
thread.start()

Parsing Command-Line Arguments in Scripts | 391

5.	 Loop through 10 numbers, pass them into the in_queue object, and receive them
from the out_queue object as the expected output:

for i in range(10):
 in_queue.put(i)
 i_squared = out_queue.get()
 print(f"{i} squared is {i_squared}")
in_queue.put('STOP')
thread.join()

You should get the following output:

Figure 9.18: Output from the threading loop

In this exercise, you learned how to pass tasks between our parent and child Python
processes using the threading package. In the next section, you will look at parsing
command-line arguments in scripts.

Parsing Command-Line Arguments in Scripts
Scripts often need input from their user in order to make certain choices about what
the script does or how it runs. For instance, consider a script to train a deep learning
network used for image classification. A user of this script will want to tell it where the
training images are, what the labels are, and may want to choose what model to use, the
learning rate, where to save the trained model configuration, and other features.

It's conventional to use command-line arguments; that is, values that the user supplies
from their shell or from their own script when running your script. Using command-
line arguments makes it easy to automate using the script in different ways and will be
familiar to users who have experience of using the Unix or Windows command shells.

392 | Practical Python – Advanced Topics

Python's standard library module for interpreting command-line arguments, argparse,
supplies a host of features, making it easy to add argument handling to scripts in
a fashion that is consistent with other tools. You can make arguments required or
optional, have the user supply values for certain arguments, or define default values.
argparse creates usage text, which the user can read using the --help argument, and
checks the user-supplied arguments for validity.

Using argparse is a four-step process. First, you create a parser object. Second, you
add arguments your program accepts to the parser object. Third, tell the parser object
to parse your script's argv (short for argument vector, the list of arguments that were
supplied to the script on launch); it checks them for consistency and stores the values.
Finally, use the object returned from the parser object in your script to access the
values supplied in the arguments.

To run all of the exercises in this section, later on, you will need to type the Python
code into the .py files and run them from your operating system's command line, not
from a Jupyter notebook.

Exercise 124: Introducing argparse to Accept Input from the User

In this exercise, you'll create a program that uses argparse to take a single input from
the user called flag. If the flag input is not provided by the user, its value is False. If it is
provided, its value is True. This exercise will be performed in a Python terminal:

1.	 Create a new Python file called argparse_demo.py.

2.	 Import the argparse library:

import argparse

3.	 Create a new parser object, as shown in the following code snippet:

parser = argparse.ArgumentParser(description="Interpret a Boolean flag.")

4.	 Add an argument that will allow the user to pass through the –flag argument when
they execute the program:

parser.add_argument('--flag', dest='flag', action='store_true', help='Set the flag
value to True.')

The store_true action means that the parser will set the value of the argument to
True if the flag input is present. If the flag input is not present, it will set the value
to False. The exact opposite can be achieved using the store_false action.

Parsing Command-Line Arguments in Scripts | 393

5.	 Now call the parse_args() method, which executes the actual processing of the
arguments:

arguments = parser.parse_args()

6.	 Now, print the value of the argument to see whether it worked:

print(f"The flag's value is {arguments.flag}")

7.	 Execute the file with no arguments supplied; the value of arguments.flag should be
False:

python argparse_example.py

You should get the following output:

Figure 9.19: Running argparse_demo with no arguments

8.	 Run the script again, with the --flag argument, to set it to True:

python argparse_demo.py –flag

You should get the following output:

Figure 9.20: Running argparse_demo with the --flag argument

9.	 Now enter the following code and see the help text that argparse extracted from
the description and help text you supplied:

python argparse_demo.py –help

You should get the following output:

Figure 9.21: Viewing the help text of argparse_demo

394 | Practical Python – Advanced Topics

You have successfully created a script that allows an argument to be specified when it is
executed. You can probably imagine how useful this can often be.

Positional Arguments

Some scripts have arguments that are fundamental to their operation. For example,
a script that copies a file always needs to know the source file and destination file. It
would be inefficient to repetitively type out the names of the arguments; for instance,
python copyfile.py --source infile --destination outfile, every time you use the
script.

You can use positional arguments to define arguments that the user does not name
but always provides in a particular order. The difference between a positional and a
named argument is that a named argument starts with a hyphen (-), such as --flag in
Exercise 124, Introducing argparse to Accept Input from the User. A positional argument
does not start with a hyphen.

Exercise 125: Using Positional Arguments to Accept Source and Destination

Inputs from a User

In this exercise, you will create a program that uses argparse to take two inputs from
the user: source and destination.

This exercise will be performed in a Python terminal:

1.	 Create a new Python file called positional_args.py.

2.	 Import the argparse library:

import argparse

3.	 Create a new parser object:

parser = argparse.ArgumentParser(description="Interpret positional arguments.")

4.	 Add two arguments for the source and destination values:

parser.add_argument('source', action='store', help='The source of an operation.')
parser.add_argument('dest', action='store', help='The destination of the
operation.')

5.	 Call the parse_args() method, which executes the actual processing of arguments:

arguments = parser.parse_args()

Performance and Profiling | 395

6.	 Now, print the value of arguments so that you can see whether it worked:

print(f"Picasso will cycle from {arguments.source} to {arguments.dest}")

7.	 Now, execute the file while using this script with no arguments, which causes an
error because it expects two positional arguments:

python positional_args.py

You should get the following output:

Figure 9.22: Running the script with no arguments specified

8.	 Try running the script and specifying two locations as the source and destination
positional arguments.

Note

The arguments are supplied on the command line with no names or leading
hyphens.

$ python positional_args.py Chichester Battersea

You should get the following output:

Figure 9.23: Successfully specifying two positional arguments

In this exercise, you learned how to parameterize your scripts by accepting positional
arguments using the argparse Python package.

Performance and Profiling
Python is not often thought of as a high-performance language, though it really should
be. The simplicity of the language and the power of its standard library mean that
the time from idea to result can be much shorter than in other languages with better
runtime performance.

But we have to be honest. Python is not among the fastest-running programming
languages in the world, and sometimes that's important. For instance, if you're writing a
web server application, you need to be able to handle as many network requests as are
being made, and with timeliness that satisfies the users making the requests.

396 | Practical Python – Advanced Topics

Alternatively, if you're writing a scientific simulation or a deep learning inference
engine, then the simulation or training time can completely dwarf the programmer time
(which is your time) spent writing the code. In any situation, reducing the time spent
running your application can decrease the cost, whether measured in dollars on your
cloud hosting bill or in milliamp-hours on your laptop battery.

Changing Your Python

You'll learn how to use some of Python's timing and profiling tools later on in this
section. Before that, you can consider whether you even need to do that. Taligent, an
object-oriented software company in the 1990s, had a performance saying: "There is no
code faster than no code." You can generalize that idea as follows:

There is no work that can be done faster than doing no work.

The fastest way to speed up your Python program can often be to simply use a different
Python interpreter. You saw earlier in this chapter that multithreaded Python is slowed
down by GIL, which means that only one Python thread can be executing a Python
instruction at any time in a given process. The Jython and IronPython environments,
targeting the Java Virtual Machine and .NET common language runtime, do not have
GIL, so they may be faster for multithreaded programs. But there are also two Python
implementations that are specifically designed to perform better, so you'll look to those
for assistance in later sections.

PyPy

You will now look in more detail at another Python environment. It's called pypy, and
Guido van Rossum (Python's creator) has said: "If you want your code to run faster, you
should probably just use PyPy."

PyPy's secret is Just-in-time (JIT) compilation, which compiles the Python program
to a machine language such as Cython but does it while the program is running rather
than once on the developer's machine (called ahead-of-time, or AOT, compilation). For
a long-running process, a JIT compiler can try different strategies to compile the same
code and find the ones that work best in the program's environment. The program will
quickly get faster until the best version the compiler can find is running. Take a look at
PyPy in the following exercise.

Performance and Profiling | 397

Exercise 126: Using PyPy to Find the Time to Get a List of Prime Numbers

In this exercise, you will be executing a Python program to get a list of prime numbers
using milliamp-hours. But remember that you are more interested in checking the
amount of time needed to execute the program using pypy.

This exercise will be performed in a Python terminal.

Note

You need to install pypy for your operating system. Go to https://pypy.org/
download.html and make sure to get the version that is compatible with Python
3.7.

1.	 First, run the pypy3 command, as shown in the following code snippet:

pypy3
Python 3.6.1 (dab365a465140aa79a5f3ba4db784c4af4d5c195, Feb 18 2019, 10:53:27)
[PyPy 7.0.0-alpha0 with GCC 4.2.1 Compatible Apple LLVM 10.0.0 (clang-1000.11.45.5)]
on darwin
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ''release 1.2 upcoming''
>>>>

Note that you may find it easier to navigate to the folder with the pypy3.exe file and
run the preceding command, instead of following the installation instructions to
create a symlink.

2.	 Press Ctrl + D to exit pypy.

You're going to use the program from Chapter 7, Becoming Pythonic, again, which
finds prime numbers using the Sieve of Eratosthenes method. There are two changes
that you will introduce here: firstly, find prime numbers up to 1,000 to give the
program more work to do; secondly, instrument it with Python's timeit module so
that you can see how long it takes to run. timeit runs a Python statement multiple
times and records how long it takes. Tell timeit to run your Sieve of Eratosthenes
10,000 times (the default is 100,000 times, which takes a very long time).

398 | Practical Python – Advanced Topics

3.	 Create a eratosthenes.py file and enter the following code:

import timeit
class PrimesBelow:
 def __init__(self, bound):
 self.candidate_numbers = list(range(2,bound))
 def __iter__(self):
 return self
 def __next__(self):
 if len(self.candidate_numbers) == 0:
 raise StopIteration
 next_prime = self.candidate_numbers[0]
 self.candidate_numbers = [x for x in self.candidate_numbers if x %
 next_prime != 0]
 return next_prime
print(timeit.timeit('list(PrimesBelow(1000))', setup='from __main__ import
 PrimesBelow', number=10000))

4.	 Run the file with the regular Python interpreter:

python eratosthenes.py

You should get the following output:

Figure 9.24: Executing with the regular Python interpreter

The number will be different on your computer, but that's 17.6 seconds to execute the
list(PrimesBelow(1000)) statement 10,000 times, or 1,760 µs per iteration. Now, run the
same program, using pypy instead of CPython:

$ pypy3 eratosthenes.py

You should get the following output:

4.81645076300083

Here, it is 482 µs per iteration.

In this exercise, you will have noticed that it only takes 30% of the time to run our code
in pypy as it took in Python. You really can get a lot of performance boost with very little
effort, just by switching to pypy.

Performance and Profiling | 399

Cython

A Python module can be compiled to C, with a wrapper that means it is still accessible
from other Python code. Compiling code simply means it is taken from one language
and put into another. In this case, the compiler takes Python code and expresses it
in the C programming language. The tool that does this is called Cython, and it often
generates modules with lower memory use and execution time than if they're left as
Python.

Note

The standard Python interpreter, the one you've almost certainly been using to
complete the exercises and activities in this course, is sometimes called "CPython."
This is confusingly similar to "Cython," but the two really are different projects.

Exercise 127: Adopting Cython to Find the Time Taken to get a List of Prime

Numbers

In this exercise, you will install Cython, and, as mentioned in Exercise 126, you will find
a list of prime numbers, but you are more interested in knowing the amount of time it
takes to execute the code using Cython.

This exercise will be performed on the command line:

1.	 Firstly, install cython, as shown in the following code snippet:

$ pip install cython

2.	 Now, go back to the code you wrote for Exercise 8, and extract the class for
iterating over primes using the Sieve of Eratosthenes into a file, sieve_module.py:

class PrimesBelow:
 def __init__(self, bound):
 self.candidate_numbers = list(range(2,bound))
 def __iter__(self):
 return self
 def __next__(self):
 if len(self.candidate_numbers) == 0:
 raise StopIteration
 next_prime = self.candidate_numbers[0]
 self.candidate_numbers = [x for x in self.candidate_numbers if x %
 next_prime != 0]
 return next_prime

400 | Practical Python – Advanced Topics

3.	 Compile that into a C module using Cython. Create a file called setup.py with the
following contents:

drom distutils.core import setup
from Cython.Build import cythonize  
setup(
    ext_modules = cythonize("sieve_module.py")
)

4.	 Now, on the command line, run setup.py to build the module, as shown in the
following code snippet:

$ python setup.py build_ext --inplace
running build_ext
building 'sieve_module' extension
creating build
creating build/temp.macosx-10.7-x86_64-3.7
gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3
-Wall -Wstrict-prototypes -I/Users/leeg/anaconda3/include -arch x86_64 -I/Users/
leeg/anaconda3/include -arch x86_64 -I/Users/leeg/anaconda3/include/python3.7m -c
sieve_module.c -o build/temp.macosx-10.7-x86_64-3.7/sieve_module.o
gcc -bundle -undefined dynamic_lookup -L/Users/leeg/anaconda3/lib -arch x86_64
-L/Users/leeg/anaconda3/lib -arch x86_64 -arch x86_64 build/temp.macosx-
10.7-x86_64-3.7/sieve_module.o -o /Users/leeg/Nextcloud/Documents/Python Book/
Lesson_9/sieve_module.cpython-37m-darwin.so

The output will look different if you're on Linux or Windows, but you should see no
errors.

5.	 Now import the timeit module and use it in a script called cython_sieve.py:

import timeit
print(timeit.timeit('list(PrimesBelow(1000))', setup='from sieve_module
 import PrimesBelow', number=10000))

6.	 Run this program to see the timing:

$ python cython_sieve.py

You should get the following output:

3.830873068

Profiling | 401

Here, it is 3.83 seconds, so 383 μs per iteration. That's a little over 40% of the time taken
by the CPython version, but the pypy Python was still able to run the code faster. The
advantage of using Cython is that you are able to make a module that is compatible with
CPython, so you can make your module code faster without needing to make everybody
else switch to a different Python interpreter to reap the benefits.

Profiling
Having exhausted the minimum-effort options for improving your code's performance,
it's time to actually put some work in if you need to go faster. There's no recipe to
follow to write fast code: if there were, you could have taught you that in Chapters 1-8
and there wouldn't need to be a section on performance now. And, of course, speed
isn't the only performance goal: you might want to reduce memory use or increase the
number of simultaneous operations that can be in-flight. But programmers often use
"performance" as a synonym for "reducing time to completion," and that's what you'll
investigate here.

Improving performance is a scientific process: you observe how your code behaves,
hypothesize about a potential improvement, make the change, and then observe it
again and check that you really did improve things. Good tool support exists for the
observation steps in this process, and you'll look at one such tool now: cProfile.

cProfile is a module that builds an execution profile of your code. Every time your
Python program enters or exits a function or other callable, cProfile records what it is
and how long it takes. It's then up to you to work out how it could spend less time doing
that. Remember to compare a profile recorded before your change with one recorded
after, to make sure you improved things! As you'll see in the next exercise, not all
"optimizations" actually make your code faster, and careful measurement and thought
are needed to decide whether the optimization is worth pursuing and retaining. In
practice, cProfile is often used when trying to understand why code is taking longer
than expected to execute. For example, you might write an iterative calculation that
suddenly takes 10 minutes to compute after scaling to 1,000 iterations. With cProfile,
you might discover that this is due to some inefficient function in the pandas library,
which you could potentially avoid to speed up your code.

402 | Practical Python – Advanced Topics

Profiling with cProfile

The goal of this example is to learn how to diagnose code performance using cProfile. In
particular, to understand which parts of your code are taking the most time to execute.

This is a pretty long example, and the point is not to make sure that you type in and
understand the code but to understand the process of profiling, to consider changes,
and to observe the effects those changes have on the profile. This example will be
performed on the command line:

1.	 Start with the code you wrote in Chapter 7, Becoming Pythonic, to generate an
infinite series of prime numbers:

class Primes:
 def __init__(self):
 self.current = 2
 def __iter__(self):
 return self
 def __next__(self):
 while True:
 current = self.current
 square_root = int(current ** 0.5)
 is_prime = True
 if square_root >= 2:
 for i in range(2, square_root + 1):
 if current % i == 0:
 is_prime = False
 break
 self.current += 1
 if is_prime:
 return current

2.	 You'll remember that you had to use itertools.takewhile() to turn this into a finite
sequence. Do so to generate a large list of primes and use cProfile to investigate its
performance:

import cProfile
import itertools
cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000, Primes())]')

Profiling | 403

You should get the following output:

Figure 9.25: Investigating performance with cProfile

The __next__() function is called most often, which is not surprising as it is the
iterative part of the iteration. It also takes up most of the execution time in the
profile. So, is there a way to make it faster?

One hypothesis is that the method does a lot of redundant divisions. Imagine
that the number 101 is being tested as a prime number. This implementation tests
whether it is divisible by 2 (no), then 3 (no), and then 4, but 4 is a multiple of 2, and
you know it isn't divisible by 2.

3.	 As a hypothesis, change the __next__() method so that it only searches the list of
known prime numbers. You know that if the number being tested is divisible by any
smaller numbers, at least one of those numbers is itself prime:

class Primes2:
 def __init__(self):
 self.known_primes=[]
 self.current=2
 def __iter__(self):
 return self
 def __next__(self):
 while True:
 current = self.current
 prime_factors = [p for p in self.known_primes if current % p
 == 0]

404 | Practical Python – Advanced Topics

 self.current += 1
 if len(prime_factors) == 0:
 self.known_primes.append(current)
 return current
cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000, Primes2())]')

You should get the following output:

Figure 9.26: It took longer this time!

Now, __next()__ isn't the most frequently called function in the profile, but that's
not a good thing. Instead, you've introduced a list comprehension that gets called
even more times, and the whole process takes 30 times longer than it used to.

4.	 One thing that changed in the switch from testing a range of factors to the list of
known primes is that the upper bound of tested numbers is no longer the square
root of the candidate prime. Going back to thinking about testing whether 101 is
prime, the first implementation tested all numbers between 2 and 10. The new one
tests all primes from 2 to 97 and is therefore doing more work. Reintroduce the
square root upper limit, using takewhile to filter the list of primes:

class Primes3:
 def __init__(self):
 self.known_primes=[]
 self.current=2
 def __iter__(self):
 return self
 def __next__(self):
 while True:
 current = self.current
 sqrt_current = int(current**0.5)

Profiling | 405

 potential_factors = itertools.takewhile(lambda x: x < sqrt_current,
self.known_primes)
 prime_factors = [p for p in potential_factors if current % p
 == 0]
 self.current += 1
 if len(prime_factors) == 0:
 self.known_primes.append(current)
 return current
cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000, Primes3())]')

You should get the following output:

Figure 9.27: Getting faster this time

5.	 Much better. Well, much better than Primes2 anyway. This still takes seven times
longer than the original algorithm. There's still one trick to try. The biggest
contribution to the execution time is the list comprehension on line 12. By turning
that into a for loop, it's possible to break the loop early by exiting as soon as a
prime factor for the candidate prime is found:

class Primes4:
 def __init__(self):
 self.known_primes=[]
 self.current=2
 def __iter__(self):
 return self
 def __next__(self):
 while True:
 current = self.current
 sqrt_current = int(current**0.5)
 potential_factors = itertools.takewhile(lambda x: x < sqrt_
 current, self.known_primes)

406 | Practical Python – Advanced Topics

 is_prime = True
 for p in potential_factors:
 if current % p == 0:
 is_prime = False
 break
 self.current += 1
 if is_prime == True:
 self.known_primes.append(current)
 return current
cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000, Primes4())]')

You should get the following output:

Figure 9.28: An even faster output

Profiling | 407

Once again, the result is better than the previous attempt, but it is still not as
good as the "naive" algorithm. This time, the biggest contribution to the runtime
is the lambda expression on line 11. That tests whether one of the previously found
primes is smaller than the square root of the candidate number. There's no way to
remove that test from this version of the algorithm. In other words, surprisingly,
in this case, doing too much work to find a prime number is faster than finding the
minimum work necessary and doing just that.

6.	 In fact, the good news is that our effort has not been wasted. It's don't recommend
running this yourself unless the instructor says it's time for a coffee break, but if
you increase the number of primes your iterator searches for, there will come the
point where the "optimized" algorithm will outpace the "naive" implementation:

cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000000, Primes())]')

You should get the following output:

Figure 9.29: The result of the naive implementation

cProfile.run('[p for p in itertools.takewhile(lambda x: x<10000000, Primes4())]')

408 | Practical Python – Advanced Topics

You should get the following output:

Figure 9.30: The result of the optimized implementation

By the end of this example, you were able to find the best-optimized method to run
the code. This decision was made possible by observing the amount of time needed to
run the code, allowing us to tweak the code to address inefficiencies. In the following
activity, you will put all of these concepts together.

Activity 23: Generating a List of Random Numbers in a Python Virtual

Environment

You work for a sports betting website and want to simulate random events in a
particular betting market. In order to do so, your goal will be to create a program that is
able to generate long lists of random numbers using multiprocessing.

In this activity, the aim is to create a new Python environment, install the relevant
packages, and write a function using the threading library to generate a list of random
numbers.

Here are the steps:

1.	 Create a new conda environment called my_env.

2.	 Activate the conda environment.

3.	 Install numpy in your new environment.

4.	 Next, install and run a Jupyter notebook from within your virtual environment.

5.	 Next, create a new Jupyter notebook and import libraries such as numpy, cProfile,
itertools, and threading.

Profiling | 409

6.	 Create a function that uses the numpy and threading libraries to generate an array of
random numbers. Recall that when threading, we need to be able to send a signal
for the while statement to terminate. The function should monitor the queue for
an integer that represents the number of random numbers it should return. For
example, if the number 10 was passed into the queue, it should return an array of 10
random numbers.

7.	 Next, add a function that will start a thread and put integers into the in_queue
object. You can optionally print the output by setting the show_output argument to
True. Make this function loop through the integers 0 to n, where n can be specified
when the function is called. For each integer between 0 and n, it will pass the
integer into the queue, and receive the array of random numbers.

8.	 Run the numbers on a small number of iterations to test and see the output.

You should get the following output:

Figure 9.31: The expected sample output

9.	 Rerun the numbers with a large number of iterations and use cProfile to view a
breakdown of what is taking time to execute.

Note

The solution for this activity can be found via this link.

410 | Practical Python – Advanced Topics

Summary
In this chapter, you have seen some of the tools and skills needed to transition
from being a Python programmer to a Python software engineer. You have learned
how to collaborate with other programmers using Git and GitHub, how to manage
dependencies and virtual environments with conda, and how to deploy Python
applications using Docker. You have explored multiprocessing and investigated tools
and techniques used for improving the performance of your Python code. These
new skills leave you better equipped to handle the messy real world of collaborative
teams working on large problems in production environments. These skills are not
just academic but are essential tools for any aspiring Python developer to familiarize
themselves with.

The next chapter begins the part of the book on using Python for data science. You
will learn about popular libraries for working with numerical data, and techniques to
import, explore, clean up, and analyze real-world data.

Data Analytics with
pandas and NumPy

Overview

By the end of this chapter, you will be able, use pandas to view, create, analyze,
and modify DataFrames; use NumPy to perform statistics and speed up matrix
computations; organize and modify data using read, transpose, loc, iloc, and
concatenate; clean data by deleting or manipulating NaN values and coercing
column types; visualize data by constructing, modifying, and interpreting
histograms and scatter plots; generate and interpret statistical models using
pandas and statsmodels and solve real-world problems using data analytics
techniques.

10

414 | Data Analytics with pandas and NumPy

Introduction
In Chapter 9, Practical Python – Advanced Topics, you looked at how to use GitHub
to collaborate with team members. You also used conda to document and set up
the dependencies for Python programs and docker to create reproducible Python
environments to run our code.

We now shift gears to data science. Data science is booming like never before. Data
scientists have become among the most sought-after practitioners in the world today.
Most leading corporations have data scientists to analyze and explain their data.

Data analytics focuses on the analysis of big data. As each day goes by, there is more
data than ever before — far too much for any human to analyze by sight. Leading Python
developers such as Wes McKinney and Travis Oliphant addressed the gap by creating
specialized Python libraries, in particular, pandas and NumPy to handle big data.

Taken together, pandas and NumPy are masterful at handling big data. They are built
for speed, efficiency, readability, and ease of use.

Pandas provide you with a unique framework to view and modify data. Pandas handles
all data-related tasks such as creating DataFrames, importing data, scraping data from
the web, merging data, pivoting, concatenating, and more.

NumPy, short for Numerical Python, is more focused on computation. NumPy
interprets the rows and columns of pandas DataFrames as matrices in the form of
NumPy arrays. When computing descriptive statistics such as the mean, median, mode,
and quartiles, NumPy is blazingly fast.

Another key player in data analysis is Matplotlib, a graphing library that handles scatter
plots, histograms, regression lines, and much more. The importance of data graphs
cannot be overstated since most non-technical professionals use them to interpret
results.

NumPy and Basic Stats
NumPy is designed to handle big data swiftly. It includes the following essential
components according to the NumPy documentation:

•	 A powerful n-dimensional array object

•	 Sophisticated (broadcasting) functions

•	 Tools for integrating C/C++ and Fortran code

•	 Useful linear algebra, Fourier transform, and random number capabilities

NumPy and Basic Stats | 415

You will be using NumPy for the rest of the course. Instead of using lists, you will use
NumPy arrays. NumPy arrays are the basic elements of the NumPy package. NumPy
arrays are designed to handle arrays of any dimension.

Numpy arrays can be indexed easily and can have many types of data, such as float,
int, string, and object, but the types must be consistent to improve speed.

Exercise 128: Converting Lists to NumPy Arrays

In this exercise, you will convert a list to a numpy array. The following steps will enable
you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Firstly, you need to import numpy:

import numpy as np

3.	 Now, you'll create a list for test_scores and confirm the type of data:

test_scores = [70,65,95,88]
type(test_scores)

The output will be as follows:

list

Note

Now that numpy has been imported, you can access all numpy methods, such as
numpy arrays. Type np.+ Tab on your keyboard to see the breadth of options. You
are looking for an array.

4.	 Now, you will convert the list of marks to a numpy array and check the type of the
array. Enter the code in the following code snippet:

scores = np.array(test_scores)
type(scores)

The output will be as follows:

numpy.ndarray

416 | Data Analytics with pandas and NumPy

In this exercise, you were able to convert a list of test score marks to a NumPy array.
You will find the mean using these values within the NumPy array in Exercise 129,
Calculating the Mean of the Test Score.

One of the most common statistical measures is the mean. Traditionally thought of
as the average, the mean of a list is the sum of each entry divided by the number of
entries. In NumPy, the mean may be computed using the .mean method.

Exercise 129: Calculating the Mean of the Test Score

In this exercise, you will use the numpy array you created to store our test scores from
Exercise 128, Converting Lists to NumPy Arrays, and you will calculate the mean of
testscores. The following steps will enable you to complete the exercise:

1.	 Continue in the same Jupyter Notebook from Exercise 128, Converting Lists to
NumPy Arrays.

2.	 Now, to find the "average" of testscore, you can use the mean method, as shown
here:

scores.mean()

The output will be as follows:

79.5

Note

The word "average" is in quotation marks. This is not an accident. The mean is only
one kind of average. Another kind of average is the median.

Given our test scores of 70, 65, 95, and 88, the "average" is 79.5, which is the expected
output. In this exercise, you were able to use the mean function of NumPy and find the
average of test_scores. In the following exercise, you will find the median using NumPy.

The median is the number in the middle. Although not necessarily the best measure of
test averages, it's an excellent measure of income average.

NumPy and Basic Stats | 417

Exercise 130: Finding the Median from a Collection of Income Data

In this exercise, you will be finding the median from a collection of income data for a
neighborhood and help a millionaire decide whether he should build his dream house
in the neighborhood based on the income data. The median function here is a method of
numpy.

The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Firstly, you need to import the numpy package as np, then create a numpy array and
assign various pieces of income data, as shown in the following code snippet:

import numpy as np
income = np.array([75000, 55000, 88000, 125000, 64000, 97000])

3.	 Next, find the mean of the income data:

income.mean()

The output will be as follows:

84000

So far, so good. 84000 is the average income on your block. Now, say the millionaire
decides to build his dream house on the vacant corner lot. He adds a salary of 12
million dollars.

4.	 Append the value of 12 million dollars to the current array and find the new mean:

income = np.append(income, 12000000)
income.mean()

The output will be as follows:

1786285.7142857143

418 | Data Analytics with pandas and NumPy

The new average income is 1.7 million dollars. Okay. Nobody makes close to 1.7
million dollars on the block. It's not a representative average. This is where the
median comes into play.

Note

Median here is not a method of np.array, but it is a method of numpy. (The mean
may be computed in the same way, as a method of numpy.)

5.	 Now to find the median function from the income values you have:

np.median(income)

The output will be as follows:

88000

This result says that half of the neighborhood residents make more than 88,000,
and half of the blocks make less. This would give the millionaire a fair idea of the
neighborhood. In this particular case, the median is a much better estimation of average
income than the mean.

In the next section, you will be covering skewed data and outliers.

Skewed Data and Outliers

Something about the 12 million salary does not sit right. It's nowhere near anyone
else's income. In statistics, there is official terminology for this. You say that the data
is skewed by an outlier of 12,000,000. In particular, the data is right-skewed since
12,000,000 is far to the right of every other data point.

Right-skewed data pulls the mean away from the median. In fact, if the mean greatly
exceeds the median, this is clear evidence of right-skewed data. Similarly, if the mean is
much less than the median, this is clear evidence of left-skewed data.

Unfortunately, there is no universal way to compute individual outliers. There are some
general methods, but you won't get into them here. Just keep in mind that outliers are
far removed from other data points, and they skew the data.

Standard Deviation

The standard deviation is a precise statistical measure of how spread out data points
are. In the following exercise, you will use the standard deviation.

NumPy and Basic Stats | 419

Exercise 131: Finding the Standard Deviation from Income Data

In this exercise, you will be using the income data from Exercise 130, Finding the
Median from a Collection of Income Data, and you will find the amount of deviation
you have between the income of the millionaire to the regular residents living in the
neighborhood.

The following steps will enable you to complete the exercise:

1.	 Continue with the previous Jupyter Notebook.

2.	 Now check the standard deviation using the std() function, as mentioned in the
following code snippet:

income.std()

The output will be as follows:

4169786.007331644

As you can see, the standard deviation here is a huge number, which is 4 million,
and this could be practically meaningless while you plot the data. On average, the
incomes are not 4 million away from each other.

Now, try to find the standard deviation from the test_scores data from Exercise 128,
Converting Lists to NumPy Arrays.

3.	 Assign the test_scores list value once again as this is a new Jupyter notebook:

test_scores = [70,65,95,88]

4.	 Now, convert this list to a numpy array:

scores = np.array(test_scores)

5.	 Now, find the standard deviation of test_scores using the std() function:

scores.std()

The output will be as follows:

12.379418403139947

In this exercise, you observed that the income data is so skewed that the standard
deviation of 4 million is practically meaningless. But the 12.4 standard deviation of the
test scores is very meaningful; the mean test score of 79.5 with a standard deviation of
12.4 means that you can expect the scores to be about 12 points away from the mean on
average.

420 | Data Analytics with pandas and NumPy

What if you need to find the maximum, minimum, or sum of the numpy arrays? For
instance, you can use the values from test_scores to find the maximum, minimum, and
sum of test_scores.

You can find the maximum from the numpy array using the max() method, the minimum
using the min() method, and the sum using the sum() method.

You can easily find the max, the min, and the sum values of numpy arrays.

To find the maximum, enter the following code:

test_scores = [70,65,95,88]
scores = np.array(test_scores)
scores.max()

The output will be as follows:

95

To find the minimum, enter the following code:

scores.min()

The output will be as follows:

65

To find the sum, enter the following code:

scores.sum()

The output will be as follows:

318

Matrices
A DataFrame is generally composed of rows, and each row has the same number
of columns. From one point of view, it's a two-dimensional grid containing lots of
numbers. It can also be interpreted as a list of lists, or an array of arrays.

In mathematics, a matrix is a rectangular array of numbers defined by the number
of rows and columns. It is standard always to list rows first, and columns second.
For instance, a 2 x 3 matrix consists of 2 rows and 3 columns, whereas a 3 x 2 matrix
consists of 3 rows and 2 columns.

Matrices | 421

Here is a 4 x 4 matrix:

Figure 10.1: Matrix representation of a 4 x 4 matrix

Exercise 132: Matrices

NumPy has methods for creating matrices or n-dimensional arrays. One option is to
place random numbers between 0 and 1 into each entry, as follows.

In this exercise, you will implement the various numpy matrix methods and observe the
outputs (recall that random.seed will allow us to reproduce the same numbers, and it's
okay if you want to generate your own).

The following steps will enable you to complete the exercise:

1.	 Begin with a new Jupyter Notebook.

2.	 Now, generate a random 5 x 5 matrix, as shown in the following code snippet:

import numpy as np
np.random.seed(seed=60)
random_square = np.random.rand(5,5)
random_square

You should get the following output:

Figure 10.2 A random matrix being generated

In the preceding code, you have used random.seed. You just invoke random.
seed(seed=60), and whenever you run the script, you will get the same sequence of
values.

This is very similar to the DataFrames that you will be dealing with for the rest of
this book. You can go through some code to obtain particular rows, columns, and
entries.

422 | Data Analytics with pandas and NumPy

3.	 Now, find the rows and columns of the matrix that is generated.

In general, if you omit the columns from the matrix [row, column], numpy will select
them all.

First row
random_square[0]

You should get the following output, consisting of all columns, and the first row:

Figure 10.3: The values of the matrix row

First column

Now, to find the values of all the rows, and the first column of the matrix.

random_square[:,0]

You should get the following output, consisting of all rows, and the first column:

Figure 10.4: The values of the matrix column

4.	 Now find individual entries by specifying the value of the matrix [row, column], as
shown in the following code snippet:

First entry
random_square[0,0]

The output, the entry in the first row and first column, will be as follows:

0.30087333004661876

Here is the first entry using another way:

random_square[0][0]

The output will be as follows:

0.30087333004661876

Entry in 2nd row, 3rd column:

random_square[2,3]

The output will be as follows:

0.9924592256795676

Matrices | 423

Now, to find the mean values of the matrix, you will find the mean of the entire
matrix, individual rows, and columns using the square.mean() method, as shown in
the following code snippet.

Here is the mean entry of the matrix:

random_square.mean()

The output will be as follows:

0.42917627159618377

Here is the mean entry of the first row:

random_square[0].mean()

The output will be as follows:

0.4087444389228477

Here is the mean entry of the last column:

random_square[:,-1].mean()

The output will be as follows:

0.35019700684996913

In this exercise, you created a random 5 x 5 matrix and implemented a few basic
operations on the matrix.

Computation Time for Large Matrices

Now that you have gotten a hang of creating random matrices, you can see how long it
takes to generate a large matrix and compute the mean:

%%time
np.random.seed(seed=60)
big_matrix = np.random.rand(100000, 100)

The output will be as follows:

Figure 10.5: Computation time for a large matrix

Now, to find the computation time for the mean of the matrix.

%%time
big_matrix = np.random.rand(100000, 100)
big_matrix.mean()

424 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.6: Computation time for the mean of the matrix

Your time will be different than ours, but it should be in the order of milliseconds. Not
bad. It takes much less than a second to generate a matrix of 10 million entries and
compute its mean.

In the next exercise, you will create arrays using NumPy and compute various values
through them. One such computation you will be using is ndarray. numpy.ndarray is a
(usually fixed-size) multidimensional array container of items of the same type and size.

Exercise 133: Creating an Array to Implement NumPy Computations

In this exercise, you will generate a new matrix and perform mathematical operations
on it, which will be covered later in this exercise. Unlike with traditional lists, NumPy
arrays allow each member of the list to be manipulated with ease. The following steps
will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Now import numpy and create ndarray between 1 and 100:

import numpy as np
np.arange(1, 101)

You should get the following output:

Figure 10.7: Showing ndarray with values 1 to 100

3.	 Reshape the array to 20 rows and 5 columns:

np.arange(1, 101).reshape(20,5)

Matrices | 425

You should get the following output:

Figure 10.8: Output with the reshaped array of 20 rows and 5 columns

4.	 Now, define mat1 as a 20 x 5 array between 1 and 100 and then subtract 50 from mat1,
as shown in the following code snippet:

mat1 = np.arange(1, 101).reshape(20,5)
mat1 – 50

You should get the following output:

Figure 10.9: Output subtracting values from the array

426 | Data Analytics with pandas and NumPy

5.	 Now, multiply mat1 by 10 and observe the change in the output:

mat1 * 10

You should get the following output:

Figure 10.10: Output when you multiply mat1 by 10

6.	 Now you need to add mat1 to itself, as mentioned in the following code snippet:

mat1 + mat1

You should get the following output:

Figure 10.11: Output of adding mat1 to itself

Matrices | 427

7.	 Now you will multiply each entry in mat1 by itself:

mat1*mat1

You should get the following output:

Figure 10.12: Output of multiplying mat1 by itself

8.	 Now, take the dot product of mat1 and mat1.T:

np.dot(mat1, mat1.T)

428 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.13: Output of the dot product of mat1 and mat1.T

Note

The output shown in Figure 10.13 has been truncated.

In this exercise, you computed and added in values to an array, after which you
implemented different NumPy computations.

When it comes to data analysis, NumPy will make your life tremendously easier. The
ease with which NumPy arrays may be combined, manipulated, and used to compute
standard statistical measures like the mean, median, and standard deviation make them
far superior to Python lists. They also handle big data so exceptionally well, it's hard to
imagine the world of data science without them.

In the next section, you will be covering pandas, which is another library available in
Python to make the life of a Python developer much easier.

The pandas Library | 429

The pandas Library
Pandas is the Python library that handles data on all fronts. Pandas can import data,
read data, and display data in an object called a DataFrame. A DataFrame consists of
rows and columns. One way to get a feel for DataFrames is to create one.

In the IT industry, pandas is widely used for data manipulation. It is also used for stock
prediction, statistics, analytics, big data, and, of course, data science.

In the following exercises, you will be working with DataFrames and learning different
computations that are available with them.

Exercise 134: Using DataFrames to Manipulate Stored Student testscore Data

In this exercise, you will create a dictionary, which is one of many ways to create
a pandas DataFrame. You will then manipulate this data as required. In order to use
pandas, you must import pandas, which is universally imported as pd. Pandas and
NumPy are so omnipresent it's a good idea to import them first before performing any
kind of data analysis. The following steps will enable you to complete the exercise:

1.	 You'll begin by importing pandas as pd:

import pandas as pd

Now that you have imported pandas, you will create a DataFrame.

2.	 First, you will create a dictionary of test scores as test_dict:

Create dictionary of test scores
test_dict = {'Corey':[63,75,88], 'Kevin':[48,98,92], 'Akshay': [87, 86, 85]}

3.	 Next, you place the text_dict into the DataFrame using the DataFrame method:

Create DataFrame
df = pd.DataFrame(test_dict)

4.	 Now, you can display the Dataframe:

Display DataFrame
df

430 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.14: Output with the values added in the DataFrame

You can inspect the DataFrame. First, each dictionary key is listed as a column.
Second, the rows are labeled with indices starting with 0 by default. Third, the
visual layout is clear and legible.

Each column and row of DataFrame is officially represented as a Series. A series is a
one-dimensional ndarray.

Now, you will rotate the DataFrame, which is also known as a transpose, a standard
pandas method. A transpose turns rows into columns and columns into rows.

5.	 Copy the code shown in the following code snippet to perform a transpose on the
DataFrame:

Transpose DataFrame
df = df.T
df

You should get the following output:

Figure 10.15: The output of the transpose on the DataFrame

In this exercise, you created a DataFrame that holds the values of testscores, and to
finish, you transposed this DataFrame to get the output. In the next exercise, you will
look at renaming column names and selecting data from the DataFrame, which is an
important part of working with pandas.

The pandas Library | 431

Exercise 135: DataFrame Computations with the Student testscore Data

In this exercise, you will rename the columns of the DataFrame, and you will then select
the data to display as output from the DataFrame:

1.	 Open a new Jupyter Notebook.

2.	 Import pandas as pd and enter the student value, as shown in Exercise 134, Using
DataFrames to Manipulate Stored Student testscore Data. After this, convert it to a
DataFrame and have it transposed:

import pandas as pd
Create dictionary of test scores
test_dict = {'Corey':[63,75,88], 'Kevin':[48,98,92], 'Akshay': [87, 86, 85]}
Create DataFrame
df = pd.DataFrame(test_dict)
df = df.T

3.	 Now rename the columns to something more precise. You can use .columns on the
DataFrame to rename the column names:

Rename Columns
df.columns = ['Quiz_1', 'Quiz_2', 'Quiz_3']
df

You should get the following output:

Figure 10.16: Output with changed column names

Now, select a range of values from specific rows and columns. You will be using
.iloc with the index number, which is a function present in a pandas DataFrame for
selection. This is shown in the following step:

4.	 Select a range of rows:

Access first row by index number
df.iloc[0]

432 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.17: Output with the selected values

5.	 Now, select a column using its name, as shown in the following code snippet.

You can access columns by putting the column name in quotes inside of brackets:

Access first column by name
df['Quiz_1']

You should get the following output:

Figure 10.18: Output while accessing it with a change in the column name

6.	 Now, select a column using the dot (.) notation:

Access first column using dot notation
df.Quiz_1

You should get the following output:

Figure 10.19: Output of selecting a column using the dot notation

Note

There are limitations to using dot notation, so bracket quotations are often
preferable.

The pandas Library | 433

In this exercise, you implemented and changed the column names of the DataFrame.
Next, you used .iloc to select data as per our requirement from the DataFrame.

In the next exercise, you will implement different computations on the DataFrame.

Exercise 136: Computing DataFrames within DataFrames

In this exercise, you will use the same testscore data and perform more computations
on the DataFrame. The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Import pandas as pd and enter the student value as shown in Exercise 135,
DataFrame Computations with the Student testscore Data. After this, convert it to a
DataFrame:

import pandas as pd
Create dictionary of test scores
test_dict = {'Corey':[63,75,88], 'Kevin':[48,98,92], 'Akshay': [87, 86, 85]}
Create DataFrame
df = pd.DataFrame(test_dict)

3.	 Now, begin by arranging the rows of the DataFrame, as shown in the following code
snippet.

You can use the same bracket notation, [], for rows as for lists and strings:

Limit DataFrame to first 2 rows
df[0:2]

You should get the following output:

Figure 10.20: Output of arranging rows

4.	 Transpose the DataFrame:

df = df.T
df

434 | Data Analytics with pandas and NumPy

5.	 Now, rename the columns to Quiz_1, Quiz_2, and Quiz_3, which was covered in
Exercise 135, DataFrame Computations with the Student testscore Data:

Rename Columns
df.columns = ['Quiz_1', 'Quiz_2', 'Quiz_3']
df

You should get the following output:

Figure 10.21: Output with the renamed column names

6.	 Now, define a new DataFrame from the first two rows and the last two columns.

You can choose the rows and columns by name first, as shown in the following
code snippet:

Defining a new DataFrame from first 2 rows and last 2 columns
rows = ['Corey', 'Kevin']
cols = ['Quiz_2', 'Quiz_3']
df_spring = df.loc[rows, cols]
df_spring

You should get the following output:

Figure 10.22: Output of the newly defined DataFrame

7.	 Now, select the first two rows and the last two columns using index numbers.

You can use .iloc to select rows and columns by index, as shown in the following
code snippet:

Select first 2 rows and last 2 columns using index numbers
df.iloc[[0,1], [1,2]]

The pandas Library | 435

You should get the following output:

Figure 10.23: Output of selecting the first two rows and last two columns using index numbers

Now, add a new column to find the quiz average of our students.

You can generate new columns in a variety of ways. One way is to use available
methods such as the mean. In pandas, it's important to specify the axis. An axis of 0
represents the index, and an axis of 1 represents the rows.

8.	 Now, create a new column as the mean, as shown in the following code snippet:

Define new column as mean of other columns
df['Quiz_Avg'] = df.mean(axis=1)
df

You should get the following output:

Figure 10.24: Adding a new quiz_avg column to the output

A new column can also be added as a list by choosing the rows and columns by
name first.

9.	 Create a new column as a list, as shown in the following code snippet:

df['Quiz_4'] = [92, 95, 88]
df

436 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.25: Output with a newly added column using lists

What if you need to delete the column you created? You can do so by using the del
function. It's easy to delete columns in pandas using del.

10.	 Now, delete the Quiz_Avg column as it is not needed anymore:

del df['Quiz_Avg']
df

You should get the following output:

Figure 10.26: Output with a deleted column

In this exercise, you implemented different ways to add and remove columns as per our
requirements. In the next section, you will be looking at new rows and NaN, which is an
official numpy term.

New Rows and NaN

It's not easy to add new rows to a pandas DataFrame. A common strategy is to generate
a new DataFrame and then to concatenate the values.

Say you have a new student who joins the class for the fourth quiz. What values should
you put for the other three quizzes? The answer is NaN. It stands for Not a Number

NaN is an official NumPy term. It can be accessed using np.NaN. It is case-sensitive. In
later exercises, you will look at how NaN can be used. In the next exercise, you will look
at concatenating and working with null values.

The pandas Library | 437

Exercise 137: Concatenating and Finding the Mean with Null Values for Our

testscore Data

In this exercise, you will be concatenating and finding the mean with null values for
the student testscore data you created in Exercise 136, Computing DataFrames within
DataFrames with four quiz scores. The following steps will enable you to complete the
exercise:

1.	 Open a new Jupyter Notebook.

2.	 Import pandas and numpy and create a dictionary with the testscore data to be
transformed into a DataFrame, as mentioned in Exercise 134, Using DataFrames to
Manipulate Stored Student testscore Data:

import pandas as pd
Create dictionary of test scores
test_dict = {'Corey':[63,75,88], 'Kevin':[48,98,92], 'Akshay': [87, 86, 85]}
Create DataFrame
df = pd.DataFrame(test_dict)

3.	 Transpose the DataFrame and rename the columns:

df = df.T
df
Rename Columns
df.columns = ['Quiz_1', 'Quiz_2', 'Quiz_3']
df

You should get the following output:

Figure 10.27: The transposed and renamed DataFrame

4.	 Now, add a new column, as shown in Exercise 136, Computing DataFrames within
DataFrames:

df['Quiz_4'] = [92, 95, 88]
df

438 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.28: Output of the added Quiz_4 column

5.	 Now, add a new row with the value set as Adrian, as shown in the following code
snippet:

import numpy as np
Create new DataFrame of one row
df_new = pd.DataFrame({'Quiz_1':[np.NaN], 'Quiz_2':[np.NaN], 'Quiz_3': [np.NaN],
'Quiz_4':[71]}, index=['Adrian'])

6.	 Now, concatenate Dataframe with the added new row, Adrian, and display the new
Dataframe value using df:

Concatenate DataFrames
df = pd.concat([df, df_new])
Display new DataFrame
df

You should get the following output:

Figure 10.29: Output with the row added to the DataFrame

You can now compute the new mean, but you must skip the NaN values; otherwise,
there will be no mean score for Adrian. This will be fixed in step 7.

The pandas Library | 439

7.	 Find the mean value ignoring NaN and use these values to create a new column
named Quiz-Avg, as shown in the following code snippet:

df['Quiz_Avg'] = df.mean(axis=1, skipna=True)
df

You should get the following output:

Figure 10.30: Output with quiz_4 values added to Adrian

Notice that all values are floats except for Quiz_4. There will be occasions when you
need to cast all values in a particular column as another type.

Cast Column Types

For the sake of consistency, you will do that here. Cast all the ints in Quiz_4 that you
used in Exercise 137, Concatenating and Finding the Mean with Null Values for Our
testscore Data as floats using the following code snippet:

df.Quiz_4.astype(float)

You should get the following output:

Figure 10.31: Output with the cast column types

You can observe the change in values by examining the DataFrame yourself. Now, move
on to the next topic: which is data.

440 | Data Analytics with pandas and NumPy

Data
Now that you have been introduced to NumPy and pandas, you will use them to analyze
some real data.

Data scientists analyze data that exists in the cloud or online. One strategy is to
download data directly to your computer.

Note

It is recommended to create a new folder to store all of your data. You can open
your Jupyter Notebook in this same folder.

Downloading Data

Data comes in many formats, and pandas is equipped to handle most of them. In
general, when looking for data to analyze, it's worth searching the keyword "dataset." A
dataset is a collection of data. Online, "data" is everywhere, whereas datasets contain
data in its raw format.

You will start by examining the famous Boston Housing dataset from 1980, which is
available on our GitHub repository.

This dataset can be found here https://packt.live/31Cd96j.

You can begin by first downloading the dataset onto our system.

Downloading the Boston Housing Data from GitHub

1.	 Head to the GitHub repository and download the dataset onto your system.

2.	 Move the downloaded dataset file into your data folder.

3.	 Open a Jupyter Notebook in the same folder.

Reading Data

Now that the data is downloaded, and the Jupyter Notebook is open, you are ready to
read the file. The most important part of reading a file is the extension. Our file is a .csv
file. You need a method for reading .csv files.

CSV stands for Comma-Separated Values. CSV files are a popular way of storing and
retrieving data, and pandas handles them very well.

Data | 441

Here is a list of standard data files that pandas will read, along with the code for reading
data:

Figure 10.32: Standard data files that pandas read

If the files are clean, pandas will read them properly. Sometimes, files are not clean, and
changing function parameters may be required. It's advisable to copy any errors and
search for solutions online.

A further point of consideration is that the data should be read into a DataFrame. Pandas
will convert the data into a DataFrame upon reading it, but you need to save DataFrame
as a variable.

Note

df is often used to store DataFrames, but it's not universal since you may be
dealing with many DataFrames.

In Exercise 138, Reading and Viewing the Boston Housing Dataset, you will be using the
Boston Housing dataset and performing basic actions on the data.

Exercise 138: Reading and Viewing the Boston Housing Dataset

In this exercise, your goal is to read and view the Boston Housing dataset in our Jupyter
Notebook. The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook.

2.	 Import pandas as pd:

import pandas as pd

3.	 Now, choose a variable to store DataFrame and place the HousingData.csv file in the
folder for Exercise 138. Then, run the following command:

housing_df = pd.read_csv('HousingData.csv')

442 | Data Analytics with pandas and NumPy

If no errors arise, the file has been properly read. Now you can examine and view
the file.

4.	 Now, you need to view the file by entering the following command:

housing_df.head()

The pandas .head method does just that. By default, it selects the first five rows. You
may enter more if you choose by adding a number in parentheses.

You should get the following output:

Figure 10.33: Output letting us view the first five rows of the dataset

Before you explore operations performed on this dataset, you may wonder what values
such as CRIM and ZN mean in the dataset.

It's always nice to view data to get a general feel for things. In this particular case, you
might want to know what the columns actually mean:

Figure 10.34: Representation of the column values of the dataset

Now that you know what the values in the dataset mean you will start performing some
advanced operations on the dataset. You will cover this in the following exercise.

Data | 443

Exercise 139: Gaining Data Insights on the Boston Housing Dataset

In this exercise, you will be performing some more advanced operations and using
pandas methods to understand the dataset and get desired insights. The following steps
will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook and copy the dataset file into a separate folder
where you will perform this exercise.

2.	 Import pandas and choose a variable to store DataFrame and place the HousingData.
csv file:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')

3.	 Now, use the describe() method to display key statistical measures of each column,
including the mean, median, and quartiles, as shown in the following code snippet:

housing_df.describe()

You should get the following output:

Figure 10.35: Output with the desired () method

In this output, you will review the meaning of each row.

Count: The number of rows with actual values.

Mean: The sum of each entry divided by the number of entries. It is often a good
estimate of the average.

Std: The number of unit entries that are expected to deviate from the mean. It is a
good measure of spread.

Min: The smallest entry in each column.

25%: The first quartile. 25% of the data has a value less than this number.

444 | Data Analytics with pandas and NumPy

50%: The median. The halfway marker of the data. It is another good estimate of the
average.

75%: The third quartile. 75% of the data has a value less than this number.

Max: The largest entry in each column.

4.	 Now use the info() method to deliver a full list of columns.

info() is especially valuable when you have hundreds of columns, and it takes a
long time to horizontally scroll through each one:

housing_df.info()

You should get the following output:

Figure 10.36: Output with the info () method

As you can see, .info() reveals the count of non-null values in each column along
with the column type. Since some columns have less than 506 non-null values, it's
safe to assume that the other values are null values.

In this dataset, there are a of total of 506 rows and 14 columns. You can use the
.shape attribute to obtain this information.

Now confirm the number of rows and columns in the dataset:

housing_df.shape

Null Values | 445

You should get the following output:

(506, 14)

This confirms that you have 506 rows and 14 columns. Notice that shape does
not have any parentheses after it. This is because it's technically an attribute and
pre-computed.

In this exercise, you performed basic operations on the dataset, such as describing the
dataset and finding the number of rows and columns in the dataset.

In the next section, you will cover null values.

Null Values
You need to do something about the null values. There are several popular choices
when dealing with null values:

1.	 Eliminate the rows: A great approach if null values are a very small percentage,
such as 1% of the total dataset.

2.	 Replace with a significant value, such as the median or the mean: A great approach
if the rows are valuable, and the column is reasonably balanced.

3.	 Replace with the most likely value, perhaps a 0 or 1: It's preferable to option 2 when
the median might be useless. The median can often work here.

Note

mode is the official term for the value that occurs the greatest number of times.

As you can see, which option you choose depends on the data.

Exercise 140: Null Value Operations on the Dataset

In this exercise, you will perform a null value operation. You can only select the columns
that have null values in our dataset:

1.	 Open a new Jupyter Notebook and copy the dataset file within a separate folder
where you will perform this exercise.

2.	 Import pandas and choose a variable to store the DataFrame and place the
HousingData.csv file:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')

446 | Data Analytics with pandas and NumPy

3.	 Now, find values and columns in the dataset with null values, as shown in the
following code snippet:

housing_df.isnull().any()

You should get the following output:

Figure 10.37: Output of the columns with null values

The .isnull() method will display an entire DataFrame of True/False values
depending on the Null value. Give it a try.

The .any() method returns the individual columns.

Take it a step further and choose the DataFrame with those columns.

4.	 Now, using the DataFrame, find the null columns.

You can use .loc to find the location of particular rows. You will select the first five
rows and all of the columns that have null values, as shown in the following code
snippet:

housing_df.loc[:5, housing_df.isnull().any()]

Null Values | 447

You should get the following output:

Figure 10.38: Output of the dataset with the null columns

Now for the final step. Use the .describe method on these particular columns but
select all of the rows.

5.	 Use the .describe() method on the null columns of the dataset.

The code mentioned ahead is a long piece of the code snippet. housing_df is
the DataFrame. .loc allows you to specify rows and columns. : selects all rows.
housing_df.isnull().any() selects only columns with null values. .describe() pulls
up the statistics:

housing_df.loc[:, housing_df.isnull().any()].describe()

You should get the following output:

Figure 10.39: Output with the .describe() method on particular columns
but instead selects all of the rows

448 | Data Analytics with pandas and NumPy

Consider the first column, CRIM. The mean is way more than the median (50%). This
indicates that the data is very right-skewed with some outliers. Indeed, you can see that
the maximum of 88.97 is much larger than the 3.56 value of the 75th percentile. This
makes the mean a poor replacement candidate for this column.

It turns out, after examining every column, that the median is a good candidate.
Although the median is clearly not better than the mean in some cases, there are a few
cases where the mean is clearly worse (CRIM, ZN, and CHAS).

The choice depends on what you ultimately want to do with the data. If the goal
is a straightforward data analysis, eliminating the rows with null values is worth
consideration. However, if the goal is to use machine learning to predict data, then
perhaps more is to be gained by changing the null values to a suitable replacement. It's
impossible to know in advance.

A more thorough examination could be warranted depending on the data. For instance,
if analyzing new medical drugs, it would be worth putting more time and energy into
appropriately dealing with null values. You may want to perform more analysis to
determine whether a value is 0 or 1, depending upon other factors.

In this particular case, replacing all the null values with the median is warranted. You
can have a look at this in the following example.

Replacing Null Values

Pandas include a nice method, fillna, which can be used to replace null values. It works
for individual columns and entire DataFrames. You will use three approaches, replacing
the null values of a column with the mean, replacing the null values of a column with
another value, and replacing all the null values in the entire dataset with the median.
You will use the same Boston Housing dataset.

Replace null column values with mean:

housing_df['AGE'] = housing_df['AGE'].fillna(housing_df.mean())

Then, replace null column values with a value:

housing_df['CHAS'] = housing_df['CHAS'].fillna(0)

Replace null DataFrame values with median:

housing_df = housing_df.fillna(housing_df.median())

Finally, check that all null values have been replaced:

housing_df.info()

Visual Analysis | 449

You should get the following output:

Figure 10.40: Output with the null values eliminated

After eliminating all null values, the dataset is much cleaner. There may also be
unrealistic outliers or extreme outliers that will lead to poor prediction. These can often
be detected through visual analysis, which you will be covering in the next section.

Visual Analysis
Most people interpret the data visually. They prefer to view colorful, meaningful graphs
that make sense of the data. As a data science practitioner, it's your job to create these
graphs.

In this section, you will primarily focus on two kinds of graphs: histograms and scatter
plots. You will use Python to create these graphs. Although software packages such
as Tableau are rather popular, they are essentially drag and drop. Since Python is an
all-purpose programming language, the limitations are only what you know and are
capable of doing.

The matplotlib Library

A popular Python library for creating graphs is matplotlib. It's traditionally imported as
plt, as shown in the following code snippet:

import matplotlib.pyplot as plt
%matplotlib inline

450 | Data Analytics with pandas and NumPy

Note the strange second line of code. It basically shows all graphs within Jupyter
Notebooks instead of exporting them to external files. It's used when you want to see
the graphs right there in front of you.

Histograms

Creating a histogram is rather simple. You choose a column and place it inside of plt.
hist(). The general idea behind a histogram is that it groups the x value (in our case,
the median home value) into various bins. The height of the bin is determined by the
number of values that fall into that particular range. By default, Matplotlib selects 10
bins.

In order to make the graph more meaningful, you should add some labels. You can also
use the Seaborn library by importing seaborn as sns , which provides some nice added
visuals.

Exercise 141: Creating a Histogram Using the Boston Housing Dataset

In this exercise, you will use MEDV, the median value of the Boston Homes dataset,
a future target column for machine learning. The following steps will enable you to
complete the exercise:

1.	 Open a new Jupyter Notebook and copy the dataset file into a separate folder
where you will perform this exercise.

2.	 Import pandas as pd and choose a variable, housing_df, to store the DataFrame after
reading the HousingData csv file.:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')

3.	 Next, you need to import matplotlib as plt, as shown here:

import matplotlib.pyplot as plt
%matplotlib inline

Note

The %matplotlib inline ensures that your graphs appear in the Jupyter Notebook
instead of external files.

Visual Analysis | 451

4.	 Now, import seaborn which will make the graph more visually appealing.

import seaborn as sns
Set up seaborn dark grid
sns.set()

5.	 Now plot the histogram for the dataset.

plt.hist(housing_df['MEDV'])
plt.show()

You should get the following output:

Figure 10.41: Output of the histogram

6.	 Now, plot the changes onto the histogram, as shown in the following code snippet:

plt.hist(housing_df['MEDV'])
plt.title('Median Boston Housing Prices')
plt.xlabel('1980 Median Value in Thousands')
plt.ylabel('Count')
plt.show()

452 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.42: Histogram with meaningful values using seaborn

Now, this is a bit clearer. But in the Jupyter Notebook, the entry is a little small. You
can make the graph and the title larger. You can also save the figure using the title
of the graph.

7.	 Make the histogram clearer by increasing the dpi(dots per inch) and the fontsize.
This indicates that the output is really flexible, as per our needs. Copy the following
code snippet and observe the change in the output:

title = 'Median Boston Housing Prices'
plt.figure(figsize=(10,6))
plt.hist(housing_df['MEDV'])
plt.title(title, fontsize=15)
plt.xlabel('1980 Median Value in Thousands')
plt.ylabel('Count')
plt.savefig(title, dpi=300)
plt.show()

Visual Analysis | 453

You should get the following output:

Figure 10.43: Output of an ideal histogram

By the end of this exercise, you were able to achieve a solid histogram, which can help
to communicate your results to a wider audience.

Now, say you want to create another histogram. Should you keep copying the same
code? Copying code repeatedly is never a good idea. It's better to write functions.

Histogram Functions

Define a histogram function, as mentioned in the following code snippet:

def my_hist(column, title, xlab, ylab):
 plt.figure(figsize=(10,6))
 plt.hist(column)
 plt.title(title, fontsize=15)
 plt.xlabel(xlab)
 plt.ylabel(ylab)
 plt.savefig(title, dpi=300)
 plt.show()

454 | Data Analytics with pandas and NumPy

It's not easy to create functions with Matplotlib, so you should go over the parameters
carefully. The figsize allows you to establish the size of the figure. The column is the
essential parameter. It's what you are going to be graphing. Next, you have the title,
followed by the label for the x and y axes. Finally, you save the figure and show the plot.
Inside of the function is basically the same code that you ran before. You can try it on a
new column — the number of rooms.

Do this by calling the histogram function, as mentioned in the following code snippet:

my_hist(housing_df['RM'], 'Average Number of Rooms in Boston Households', 'Average Number
of Rooms', 'Count')

You should get the following output:

Figure 10.44: Output with the histogram function

Okay. It's not bad, but there's one glaring issue. It's the distribution of bins. It seems
most rooms have an average of six, but how many of those are closer to seven? Our
graph could be improved if each histogram was clearly between two numbers on the
plot. A survey of the preceding data (check max and min from .describe()), reveals that
the average number of rooms is between three and nine.

In addition to changing the bins, you can also add options to change the color, and the
alpha, or transparency.

Visual Analysis | 455

You can improve the built histogram function, as mentioned in the following code
snippet:

def my_hist(column, title, xlab, ylab, bins=10, alpha=0.7, color='c'):
 title = title
 plt.figure(figsize=(10,6))
 plt.hist(column, bins=bins, range=(3,9), alpha=alpha, color=color)
 plt.title(title, fontsize=15)
 plt.xlabel(xlab)
 plt.ylabel(ylab)
 plt.savefig(title, dpi=300)
 plt.show()

The number of bins is 10 by default, so you can change it whenever you desire. alpha is a
convenient tool that can be used to make the bars transparent. 1.0 has no transparency,
and 0.0 has full transparency. Play around with this to select the number that you like.

Call the improved histogram function:

my_hist(housing_df['RM'], 'Average Number of Rooms in Boston',
'Average Number of Rooms', 'Count', bins=6)

You should get the following output:

Figure 10.45: Output of the improved histogram function being called

456 | Data Analytics with pandas and NumPy

Now it's clear that the highest average is between six and seven. Also, note that this
dataset is surveying groups of houses, not individual houses. This is why the average
number of rooms is between 6 and 7.

Now that you have understood histograms you can have a look at another type of visual
data analysis, called scatter plots.

Scatter Plots

Scatter plots are hugely important in data analysis. They require an x value, and a y
value, typically taken from two numeric columns of a DataFrame. You can use the
average number of rooms as our x value and the average median income as our y value.

Exercise 142: Creating a Scatter Plot for the Boston Housing Dataset

In this exercise, you will create a scatter plot for our Boston housing dataset.

The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter file and copy the dataset file into a separate folder.

2.	 Import pandas and choose a variable to store the DataFrame and place the
HousingData.csv file:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')

3.	 Next, you need to import matplotlib as plt, as shown here:

import matplotlib.pyplot as plt
%matplotlib inline

4.	 Now you need to plot the scatter plot data, as shown in the following code snippet:

x = housing_df['RM']
y = housing_df['MEDV']
plt.scatter(x, y)
plt.show()

Visual Analysis | 457

You should get the following output:

Figure 10.46: Scatter plot output of the dataset

There is a definite positive association. This means that as the x value goes up, the y
value goes up.

In statistics, there is a particular concept to determine association; it's called
correlation.

Correlation

Correlation is a statistical measure between -1 and +1 that indicates how closely two
variables are related. A correlation of -1 or +1 means that variables are dependent, and
they fall in a perfectly straight line. A correlation of 0 indicates that an increase in
one variable gives no information whatsoever about the other variable. Visually, this
would be points all over the place. Correlations usually fall somewhere in the middle.
For instance, a correlation of 0.75 represents a fairly strong relationship, whereas
a correlation of 0.25 is a reasonably weak relationship. Positive correlations go up
(meaning as x goes up, y goes up), and negative correlations go down.

In the following exercise, you will find the correlation values from the Boston Housing
dataset.

458 | Data Analytics with pandas and NumPy

Exercise 143: Correlation Values from the Dataset

In this exercise, you will find the correlation values from the Boston Housing dataset.
The following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook and copy the dataset file into a separate folder
where you will perform this exercise.

2.	 Import pandas and choose a variable to store DataFrame and place the HousingData.
csv file:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')

3.	 Next, you need to import matplotlib as plt, as shown here:

import matplotlib.pyplot as plt
%matplotlib inline

4.	 Now, find the correlation value of the dataset, as shown in the following code
snippet:

housing_df.corr()

You should get the following output:

Figure 10.47: Correlation value output

Visual Analysis | 459

This tells us the exact correlation values. For instance, to see what variables are the
most correlated with the Median Value Home, you can examine the values under the
MEDV column. There, you will find that RM is the largest at 0.695360. But you also see
a value of -0.735822 for LSTAT, which is the percentage of the lower status of the
population. Seaborn provides a nice way to view correlations, called a heatmap. You
can have a look at a heatmap in the following step.

Now, you need to get the heatmap for the correlation values.

5.	 Begin by importing the seaborn module as sns:

import seaborn as sns
Set up seaborn dark grid
sns.set()

6.	 Now find the heatmap, as shown in the following code snippet:

corr = housing_df.corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr, xticklabels=corr.columns.values,
yticklabels=corr.columns.values, cmap="Blues", linewidths=1.25, alpha=0.8)
plt.show()

You should get the following output:

Figure 10.48: Heatmap for the correlation values

460 | Data Analytics with pandas and NumPy

The darker the squares, the higher the correlation, and the lighter the squares, the
lower the correlation. Now when examining the MEDV column, it's much easier to
find the darkest square RM, and the lightest square LSTAT. You may have noticed
that technically the MEDV square is the darkest. This has to be true because MEDV is
perfectly correlated with itself. The same holds for each column along the diagonal.

In this exercise, you were able to work with correlation values from the dataset and get
a visual aid for the data output.

In the next section, you will have a look at regression.

Regression

Perhaps the most important addition to a scatter plot is the regression line. The idea
of regression came from Sir Francis Galton, who measured the heights of the offspring
of very tall and very short parents. The offspring were not taller or shorter than these
parents on average, but rather closer to the mean height of all people. Sir Francis Galton
used the term "regression to the mean," meaning that the heights of the offspring were
closer to the mean of their very tall or very short parents. The name stuck.

In statistics, a regression line is a line that tries to fit the values of a scatter plot as
closely as possible. Generally speaking, half of the points are above the line, and half
of the points are below. The most popular regression line method is ordinary least
squares, which sums the square of the distance from each point to the line.

There are a variety of methods to compute and display regression lines using Python.

Plotting a Regression Line

To create a regression line of our Boston dataset, the following code steps need to be
followed:

plt.figure(figsize=(10, 7))
sns.regplot(x,y)
plt.show()

Visual Analysis | 461

You should get the following output:

Figure 10.49: Example output of a regression line

You may wonder about the shaded part of the line. It represents a 95% confidence
interval, meaning that Python is 95% confident that the actual regression line falls
within that range. Since the shaded area is fairly small in relation to the plot, this means
that the regression line is reasonably accurate.

The general idea behind regression lines is that they can be used to predict new y
values from new x values. For instance, if there is an eight-room house, you can use
regression to get an estimate of its value. You will use this general philosophy in a more
sophisticated manner in Chapter 11, Machine Learning, using the machine learning
version of linear regression.

Although this is not a course on statistics, you want to provide enough of an
introduction so that you can analyze data on your own. In this respect, there is one
more key piece to the regression that is worth sharing. It's the data about the line itself.

462 | Data Analytics with pandas and NumPy

StatsModel Regression Output

You will import StatsModel and use its methods to print out a summary of the
regression line:

import statsmodels.api as sm
X = sm.add_constant(x)
model = sm.OLS(y, X)
est = model.fit()
print(est.summary())

The strangest part of the code is adding the constant. This is basically the y-intercept.
When the constant is not added, the y-intercept is 0. In our case, it makes sense that
the y-intercept would be 0; if there are 0 rooms, the house should have no value. In
general, however, it's a good idea to keep a y-intercept, and it's the default choice of the
preceding Seaborn graph. It's a good idea to try both methods and compare the results
of the data. A comparative analysis will definitely improve your background in statistics:

Figure 10.50: Summary of the regression line

There's a lot of important information in this table. The first is the value of R^2 at 0.484.
This suggests that 48% of the data can be explained by the regression line. The second
is the coefficient constant of -34.6706. This is the y-intercept. The third is the RM
coefficient of 9.1021. This suggests that for every one-bedroom increase, the value of
the house increased by 9,102. (Keep in mind that this dataset is from 1980.)

Visual Analysis | 463

The standard error suggests how far off the actual values are from the line on average,
and the numbers underneath the [0.025 0.975] column give the 95% Confidence
Interval of the value, meaning statsmodel is 95% confident that the true increase in the
value of the average house for every one-bedroom increase is between 8,279 and 9,925.

Additional Models

There's a great deal of data analysis in Python — far more than you can adequately cover
in an introductory text. Thus far, you have covered histograms and scatter plots in
considerable detail. Two additional types of plots will be highlighted before moving on
to machine learning.

Exercise 144: Box Plots

A box plot provides a nice visual of the mean, median, quartiles, and outliers of a given
column of data.

In this exercise, you will create box plots using the Boston Housing dataset. The
following steps will enable you to complete the exercise:

1.	 Open a new Jupyter Notebook and copy the dataset file within a separate folder
where you will perform this exercise.

2.	 Import pandas and choose a variable to store the DataFrame and place the
HousingData.csv file:

import pandas as pd
housing_df = pd.read_csv('HousingData.csv')
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
Set up seaborn dark grid
sns.set()

3.	 Now, enter the following code in the code snippet to create a box plot:

x = housing_df['RM']
y = housing_df['MEDV']
plt.boxplot(x)
plt.show()

464 | Data Analytics with pandas and NumPy

You should get the following output:

Figure 10.51: Box plot output

Note that the open circles are considered outliers. The orange bar in the middle is the
median, and the bars at the end of the black box are the 25th and 75th percentiles, or
the 1st and 3rd quartiles, respectively. The end bars represent the quartiles plus or
minus 1.5 times the interquartile range. The value of 1.5 times the interquartile range is
a standard limit in statistics used to define outliers. In this exercise, you created a box
plot graph to represent the graph.

Violin Plots

A violin plot is a different type of plot that conveys similar information:

plt.violinplot(x)
plt.show()

Visual Analysis | 465

You should get the following output:

Figure 10.52: Violin plot output

In the violin plot, the upper and lower bars define the minimum and maximum values,
and the width of the plot indicates how many rows contain that particular value. The
difference between the violin plot and the box plot is that the violin plot shows the
overall distribution of the data.

Now, you will have a look at an activity to see whether you are able to implement the
concepts covered in this chapter.

Activity 24: Data Analysis to Find the Outliers in Pay versus the Salary Report

in the UK Statistics Dataset

You are working as a data scientist, and you come across a government dataset that
seems really interesting with regard to pay. But as the dataset values are cluttered,
you need to use visual data analysis to study the data and come to a conclusion to
understand whether there are any outliers in the dataset.

In this activity, you will be performing visual data analysis using histograms and scatter
plots and creating a regression line to come to a certain conclusion.

466 | Data Analytics with pandas and NumPy

Follow these steps to complete this activity:

1.	 First, you need to copy the UKStatistics.csv dataset file into a specific folder.

2.	 Now, import the necessary data visualization packages.

3.	 View the dataset file and find the number of rows and columns in the dataset file.

4.	 Plot the histogram for Actual Pay Floor (£).

5.	 Plot the scatter plot using the values for x as Salary Cost of Reports (£) and y as
Actual Pay Floor (£).

6.	 Now get the box plot for the x and y values, as shown in Step 5.

Note

UKStatistics.csv is available for download on GitHub here: https://packt.
live/2Pf7al4.

More information on the UKStatistics dataset can be found at https://packt.
live/2BzBwqF.

Here is the expected output with the outliers in the box plot:

Figure 10.53: The expected output with the outliers in the x and y data

Note

The solution for this activity can be found via this link.

Summary | 467

Summary
You began our introduction to data analysis with NumPy, Python's incredibly fast library
for handling massive matrix computations. Next, you learned about the fundamentals of
pandas, Python's library for handling DataFrames. Taken together, you used NumPy and
pandas to analyze the Boston Housing dataset, which included descriptive statistical
methods and Matplotlib and Seaborn's graphical libraries. Along the way, you learned
about fundamental statistical concepts, including the mean, standard deviation, median,
quartiles, correlation, skewed data, and outliers. You also learned about advanced
methods for creating clean, clearly labeled, publishable graphs.

In Chapter 11, Machine Learning, you will come across interesting machine learning
concepts such as regression, different types of classifications, decision trees. You will
use Python to build efficient machine learning models and predict new results.

Machine Learning

Overview

By the end of this chapter, you will be able to, apply machine learning algorithms
to solve different problems; compare, contrast, and apply different types of
machine learning algorithms, including linear regression, logistic regression,
decision trees, random forests, Naive Bayes, and AdaBoost; analyze overfitting and
implement regularization; work with GridSearchCV and RandomizedSearchCV to
adjust hyperparameters; evaluate algorithms using a confusion matrix and cross-
validation and solve real-world problems using the machine learning algorithms
outlined here.

11

470 | Machine Learning

Introduction
Computer algorithms enable machines to learn from data. The more data an algorithm
receives, the more capable the algorithm is of detecting underlying patterns within the
data. In Chapter 10, Data Analytics with pandas and NumPy, you learned how to view
and analyze big data with pandas and NumPy. In this chapter, we will now extend these
concepts to building algorithms that learn from data.

Consider how a child learns to identify a cat. Generally speaking, a child learns by
having someone point out "That's a cat," "No, that's a dog," and so on. After enough cats
and non-cats have been pointed out, the child knows how to identify a cat.

Machine learning implements the same general approach. A convolutional neural
network is a machine learning algorithm that distinguishes between images. Upon
receiving images labeled cats and non-cats, the algorithm looks for underlying patterns
within the pixels by adjusting the parameters of an equation until it finds an equation
that minimizes the error.

After the algorithm has selected the best possible equation, given the data it has
received, this equation is used to predict future data. When a new image arrives, the
new image is placed within the algorithm to determine whether the image is a cat or
not.

In this chapter, on machine learning, you will learn how to construct linear regression,
logistic regression, decision tree, random forest, Naive Bayes, and AdaBoost algorithms.
These algorithms can be used to solve a wide range of problems, from predicting rainfall
to detecting credit card fraud and identifying diseases.

Then, you will learn about Ridge and Lasso, two regularized machine learning
algorithms that are variations of Linear Regression. You will learn about using
regularization and cross-validation to obtain accurate results with data that the
algorithm has never seen before.

After learning how to build a machine learning model in scikit-learn through an
extended example with linear regression, you will take a similar approach to build
models based on k-nearest neighbors, decision trees, and random forests. You will learn
how to extend these models with hyperparameter turning, a way of fine-tuning models
to meet the specifications of the data at hand.

Next, you will move onto classification problems, where the machine learning model is
used to determine whether an email is a spam and whether a celestial object is a planet.
All classification problems can be tackled with Logistic Regression, a machine learning
algorithm that you will learn about here. In addition, you will solve classification
problems with Naïve Bayes, Random Forests, and other types of algorithms.
Classification results can be interpreted with a confusion matrix and a classification
report, both of which we will explore in-depth.

Introduction to Linear Regression | 471

Finally, you will learn how to implement boosting methods that transform weak learners
into strong learners. In particular, you will learn how to implement AdaBoost, one of the
most successful machine learning algorithms in history.

To sum it up, after completing this chapter, you will be able to apply multiple machine
learning algorithms to solve classification and regression problems. You will be capable
of using advanced tools such as a confusion matrix and a classification report to
interpret results. You will also be able to refine your models using regularization and
hyperparameter tuning. In short, you will have the tools to use machine learning to
solve real-world problems, including predicting cost and classifying objects.

Introduction to Linear Regression
Machine learning is the ability of computers to learn from data. The power of machine
learning comes from making future predictions based on the data received. Today,
machine learning is used all over the world to predict the weather, stock prices, movie
recommendations, profits, errors, clicks, purchases, words to complete a sentence, and
many more things.

The unparalleled success of machine learning has led to a paradigm shift in the way
businesses make decisions. In the past, businesses made decisions based on who had
the most influence. But now, the new idea is to make decisions based on data. Decisions
are constantly being made about the future, and machine learning is the best tool at our
disposal to convert raw data into actionable decisions.

The first step in building a machine learning algorithm is deciding what you want to
predict. When looking at a DataFrame, the idea is to choose one column as the target
column or predictor column. The target column, by definition, is what the algorithm
will be trained to predict.

Recall the Boston Housing dataset introduced in Chapter 10, Data Analytics with pandas
and NumPy. The median value of a home is a desirable target column since real estate
agents, buyers, and sellers often want to know how much a house is worth. People
usually determine this information based on the size of the house, the location, the
number of bedrooms, and many other factors.

472 | Machine Learning

Here is the Boston Housing DataFrame from Chapter 10, Data Analytics with pandas
and NumPy. Each column includes features about houses in the neighborhood, such as
crime, the average age of the house, and notably, in the last column, the median value:

Figure 11.1: Sample from the Boston Housing dataset

You may be wondering what the values CRIM, NOX, and so on mean in the dataset. Don't
worry – have a look at the following figure:

Figure 11.2: Dataset value representation

We want to come up with an equation that uses every other column to predict the last
column, which will be our target column. What kind of equation should we use? Before
we answer this question, let's have a look at a simplified version.

Introduction to Linear Regression | 473

Simplify the Problem

It's often helpful to simplify a problem. What if we take just one column, such as the
number of bedrooms, and use it to predict the median house value?

It's clear that the more bedrooms a house has, the more valuable it will be. As the
number of bedrooms goes up, so does the house value. A standard way to represent this
positive association is with a straight line.

In Chapter 10, Data Analytics with pandas and NumPy, we modeled the relationship
between the number of bedrooms and the median house value with the linear
regression line, as shown in Figure 11.3:

Figure 11.3: Linear regression line for the median value and the number of bedrooms

It turns out that linear regression is a very popular machine learning algorithm. Linear
regression is worth trying whenever the target column is a continuous value, as in
this dataset. The value of a home is generally considered to be continuous. There is
technically no limit to how high the cost of a home may be. It could take any value
between two numbers, despite often rounding up.

474 | Machine Learning

By contrast, if we predict whether a house will sell after one month on the market, the
possible answers are yes and no. In this case, the target column is not continuous but
binary.

Note

Whenever the target column is binary, linear regression will not produce strong
results.

From One to N-Dimensions

Dimensionality is an important concept in machine learning. In math, it's common to
work with two dimensions, x, and y, in the coordinate plane. In physics, it's common to
work with three dimensions, the x, y, and z axes. When it comes to spatial dimensions,
three is the limit because we live in a three-dimensional universe. In mathematics,
however, there is no restriction on the number of dimensions we can use theoretically.
In superstring theory, 12 or 13 dimensions are often used. In machine learning, however,
the number of dimensions is often the number of predictor columns.

There is no need to limit ourselves to one-dimension with linear regression. Additional
dimensions – in this case, additional columns – will give us more information about the
median house value and make our model more valuable.

In one-dimensional linear regression, the slope-intercept equation is y = mx + b,
where y is the target column, x is the input, m is the slope, and b is the y-intercept.
This equation is now extended to an arbitrary number of dimensions using Y = MX + B,
where Y, M, and X are vectors of arbitrary length. Instead of the slope, M is referred to
as the weight.

Note

It's not essential to comprehend the linear algebra behind vector mathematics
to run machine learning algorithms; however, it is essential to comprehend
the underlying ideas. The underlying idea here is that linear regression can be
extended to an arbitrary number of dimensions.

Introduction to Linear Regression | 475

In the Boston Housing dataset, the linear regression model will select weights for each
of the columns. In order to predict the median house value for each row (our target
column), the weights will be multiplied by the column entries and then summed to get
as close as possible to the value.

We will have a look at how this works in practice.

The Linear Regression Algorithm

Before implementing the algorithm, let's take a brief look at the libraries that we will
import and use in our programs:

•	 pandas – You learned how to use pandas in Chapter 10, Data Analytics with pandas
and NumPy. When it comes to machine learning, all data will be handled through
pandas. Loading data, reading data, viewing data, cleaning data, and manipulating
data all require pandas, so pandas will always be our first import.

•	 NumPy – NumPy was introduced in Chapter 10, Data Analytics with pandas and NumPy,
as well. This will be used for mathematical computations on the dataset. It's always
a good idea to import NumPy when performing machine learning.

•	 LinearRegression – The LinearRegression library should be implemented every time
linear regression is used. The LinearRegression library will allow you to build linear
regression models and test them in very few steps. Machine learning libraries do
the heavy lifting for you. In this case, LinearRegression will place weights on each of
the columns and adjust them until it finds an optimal solution to predict the target
column, which in our case would be the median house value.

•	 Mean_squared_error – In order to find optimal values, the algorithm needs a
measure to test how well it's doing. Measuring how far the model's predicted value
is from the target value is a standard place to start. In order to avoid negatives
canceling out positives, we can use mean_squared_error. To compute the mean_
squared_error, the prediction of each row is subtracted from the target column
or actual value, and the result is squared. Each result is summed, and the mean is
computed. Finally, taking the square root keeps the units the same.

•	 Train_test_split – Python provides train_test_split to split data into a training
set and a test set. Splitting the data into a training set and test set is essential
because it allows users to test the model right away. Testing the model on data the
machine has never seen before is the most important part of building the model
because it shows how well the model will perform in the real world.

476 | Machine Learning

Most of the data is included in the training set because more data leads to a more
robust model. A smaller portion – around 20% – is held back for the test set. The 80-20
split is the default, though you may adjust it as you see fit. The model is optimized on
the training set, and after completion, it is scored against the test set.

These libraries are a part of scikit-learn. scikit-learn has a wealth of excellent online
resources for beginners. See https://scikit-learn.org/stable/ for more information.

Exercise 145: Using Linear Regression to Predict the Accuracy of the Median

Values of Our Dataset

The goal of this exercise is to build a machine learning model using linear regression.
Your model will predict the median value of Boston houses and, based on this, we will
come to a conclusion about whether the value is optimal or not.

This exercise will be performed on a Jupyter Notebook.

Note

To proceed with the exercises in the chapter, you will need the scikit-learn
library that is mentioned in the Preface.

1.	 Open a new notebook file.

2.	 Now, import all the necessary libraries, as shown in the following code snippet:

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

Now that we have imported the libraries, we will load the data.

3.	 Load the dataset and view the DataFrames to look at the first five rows:

load data
housing_df = pd.read_csv('HousingData.csv')
housing_df.head()

Recall that, as mentioned in Chapter 10, Data Analytics with pandas and NumPy,
housing_df = pd.read_cs('HousingData.csv') will read the CSV file in parentheses
and store it in a DataFrame called housing_df. Then, housing_df.head() will display
the first five rows of the housing_df DataFrame by default.

Introduction to Linear Regression | 477

You should get the following output:

Figure 11.4: Output with the dataset displayed

4.	 Next, enter the following code to clean the dataset of null values using .dropna():

drop null values
housing_df = housing_df.dropna()

In Chapter 10, Data Analytics with pandas and NumPy, we cleared the null values
by counting them and comparing them to measures of central tendency. In this
chapter, however, we will use a swifter approach in order to expedite testing for
machine learning. The housing_df.dropna() code will drop all null values from the
housing_df DataFrame.

Now that the data is clean, it's time to prepare our X and y values.

5.	 Now, declare the X and y variables, where you use X for the predictor columns and y
for the target column:

declare X and y
X = housing_df.iloc[:,:-1]
y = housing_df.iloc[:, -1]

The target column is MEDV, which is the median value of the Boston house prices.
The predictor columns include every other column. The standard notation is to use
X for the predictor columns and y for the target column.

Since the last column is the target column, which is y, it should be eliminated from
the predictor column, that is, X. We can achieve this split by indexing.

6.	 Now we build the actual linear regression model.

Although many machine learning models are incredibly sophisticated, they can be
built using very few lines of code. In this case, it takes three steps. We are going
to build a model that will predict the median house value given all of the input
columns.

478 | Machine Learning

The first line uses train_test_split() to split X and y, the predictor and target
columns, into training and test sets. The model will be built using the training set.

Split X and y into training and test sets as follows:

#Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

test_size = 0.2 reflects the percentage of rows held back for the test set. This is
the default setting and does not need to be added explicitly. It is presented so that
you know how to change it.

Note

The output values may differ from the values mentioned in the book. We have
chosen not use a random seed so that you can get accustomed to diverse outputs.

Next, create an empty LinearRegression() model, as shown in the following code
snippet:

#Create the regressor: reg
reg = LinearRegression()

Finally, we fit the model to the data using the .fit() method:

#Fit the regressor to the training data
reg.fit(X_train, y_train)

The parameters are X_train and y_train, which is the training set that we have
defined. reg.fit(X_train, y_train) is where machine learning actually happens.
In this line, the LinearRegression() model adjusts itself to the training data. The
model keeps changing weights, according to the machine learning algorithm, until
the weights minimize the error.

You should get the following output:

Figure 11.5: Output when the model adjusts itself to the training data

At this point, reg is a machine learning model with specified weights. There is one
weight for each X column. These weights are multiplied by the entry in each row to
get as close as possible to the target column, y, which is the median house value.

Introduction to Linear Regression | 479

7.	 Now, find how accurate the model is. Here, we can test it on unseen data:

Predict on the test data: y_pred
y_pred = reg.predict(X_test)

To make a prediction, we implement a method, .predict(). This method takes
specified rows of data as the input and produces the corresponding predicted
values as the output. The input is X_test, the X-values that were held back for our
test set. The output is the predicted y-values.

8.	 We can now test the prediction by comparing the predicted y-values, which is
y_pred, to the actual y-values, which is y_test, as shown in the following code
snippet:

Compute and print RMSE
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error: {}".format(rmse))

The error, the difference between the two np.array, may be computed as mean_
squared_error. We take the square root of the mean squared error to keep the same
units as the target column.

You should get the following output:

Figure 11.6: Output on the accuracy of the dataset model

Note that there are other errors to choose from. The square root of mean_squared_error
is a standard choice with linear regression. rmse, short for "root mean squared error,"
will give us the error of the model on the test set.

A root mean squared error of 5.56 means that, on average, the machine learning model
predicts values approximately 5.56 units away from the target value, which is not
bad in terms of accuracy. Since the median value (from 1980) is in the thousands, the
predictions are about 5.56 thousand off. Lower errors are always better, so we will see if
can improve the error going forward.

In this very first exercise, we were able to load our dataset, clean it, and use linear
regression, and we were able to train the model to make predictions and find out
exactly how accurate it is.

480 | Machine Learning

Linear Regression Function

In the first exercise, you were able to see how accurate your Boston Housing median
value predictions were. What if you enter the entire code in a function and then run it
multiple times? Will you get different results?

You do this as shown in the following example using the same Boston Housing dataset.

Let's put all the machine learning code in a function and run it again.

def regression_model(model):
 # Create training and test sets
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
 # Create the regressor: reg_all
 reg_all = model
 # Fit the regressor to the training data
 reg_all.fit(X_train, y_train)
 # Predict on the test data: y_pred
 y_pred = reg_all.predict(X_test)
 # Compute and print RMSE
 rmse = np.sqrt(mean_squared_error(y_test, y_pred))
 print("Root Mean Squared Error: {}".format(rmse))

Now run the function multiple times to see the results:

regression_model(LinearRegression())

You should get the following output:

Root Mean Squared Error: 4.085279539934423

Now, run the function once again:

regression_model(LinearRegression())

You should get the following output:

Root Mean Squared Error: 4.317496624587608

And finally, run it one more time:

regression_model(LinearRegression())

You should get the following output:

Root Mean Squared Error: 4.7884343211684435

This is troublesome, right? The score is always different. Your scores are also likely to
differ from ours.

Cross-Validation | 481

The scores are different because we are splitting the data into a different training set
and test set each time, and the model is based on different training sets. Furthermore,
it's being scored against a different test set.

In order for machine learning scores to be meaningful, we want to minimize fluctuation
and maximize accuracy. We will see how to do this in the next section.

Cross-Validation
In cross-validation, also known as CV, the training data is split into five folds (any
number will do, but five is standard). The machine learning algorithm is fit on one fold
at a time and tested on the remaining data. The result is five different training and test
sets that are all representative of the same data. The mean of the scores is usually taken
as the accuracy of the model.

Note

Five is only one suggestion. Any natural number may be used.

Cross-validation is a core tool for machine learning. Mean test scores on different
folds will always be more reliable than one mean test score on the entire set, which
we performed in the first exercise. When examining one test score, there is no way of
knowing whether it is low or high. Five test scores give a better picture of the accuracy
of the model.

Cross-validation can be implemented in a variety of ways. A standard approach is to use
cross_val_score, which returns an array of scores for each fold; cross_val_score breaks
X and y into the training set and test set for you.

Let's modify our regression machine learning function to include cross_val_score in the
following exercise.

Exercise 146: Using the cross_val_score Function to Get Accurate Results on

the Dataset

The goal of this exercise is to use cross-validation to obtain more accurate machine
learning results from the dataset compared to the previous exercise.

1.	 Continue using the same Jupyter Notebook from Exercise 145, Using Linear
Regression to Predict the Accuracy of the Median Values of Our Dataset.

2.	 Now, import cross_val_score:

from sklearn.model_selection import cross_val_score

482 | Machine Learning

3.	 Define the regression_model_cv function, which takes a fitted model as one
parameter. The k = 5 hyperparameter gives the number of folds. Enter the code
shown in the following code snippet:

def regression_model_cv(model, k=5):
 scores = cross_val_score(model, X, y, scoring='neg_mean_squared_
 error', cv=k)
 rmse = np.sqrt(-scores)
 print('Reg rmse:', rmse)
 print('Reg mean:', rmse.mean ())

In sklearn, the scoring options are sometimes limited. Since mean_squared_error
is not an option for cross_val_score, we choose the neg_mean_squared_error.
cross_val_score takes the highest value by default, and the highest negative mean
squared error is 0.

4.	 Use the regression_model_cv function on the LinearRegression() model defined in
the previous exercise:

regression_model_cv(LinearRegression())

You may get something similar to the following output:

Reg rmse: [3.26123843 4.42712448 5.66151114 8.09493087 5.24453989]
Reg mean: 5.337868962878373

5.	 Use the regression_model_cv function on the LinearRegression() model with 3 folds
and then 6 folds, as shown in the following code snippet, for 3 folds:

regression_model_cv(LinearRegression(), k=3)

You may get something similar to the following output:

Reg rmse: [3.72504914 6.01655701 23.20863933]
Reg mean: 10.983415161090695

6.	 Now, test the values for 6 folds:

regression_model_cv(LinearRegression(), k=6)

You may get something similar to the following output:

Reg rmse: [3.23879491 3.97041949 5.58329663 3.92861033 9.88399671
 3.91442679]
Reg mean: 5.08659081080109

You have found out that there is a large discrepancy between the number of folds. One
reason is that we have a reasonably small dataset to begin with. In the real world, with
a huge amount of data, this generally does not make a huge difference to the results
when we compare results with different folds.

Regularization: Ridge and Lasso | 483

Regularization: Ridge and Lasso
Regularization is an important concept in machine learning; it's used to counteract
overfitting. In the world of big data, it's easy to overfit data to the training set. When
this happens, the model will often perform badly on the test set as indicated by mean_
squared_error, or some other error.

You may wonder why a test set is kept aside at all. Wouldn't the most accurate machine
learning model come from fitting the algorithm on all the data?

The answer, generally accepted by the machine learning community after years of
research and experimentation, is probably not.

There are two main problems with fitting a machine learning model on all the data:

•	 There is no way to test the model on unseen data. Machine learning models are
powerful when they make good predictions on new data. Models are trained on
known results, but they perform in the real world on data that has never been seen
before. It's not vital to see how well a model fits known results (the training set), but
it's absolutely crucial to see how well it performs on unseen data (the test set).

•	 The model may overfit the data. Models exist that may fit any set of data points
perfectly. Consider the 14 green points in the following diagram. A 14th-degree
polynomial exists that fits these points almost perfectly. But it's a poor predictor
of the new data. The green line is a much better predictor of the new data. Have a
look at the following figure to get a better understanding:

Figure 11.7: Model fitting the data points

484 | Machine Learning

There are many models and approaches to counteract overfitting. Let's go over a couple
of models now.

Ridge is a simple alternative to linear regression, designed to counteract overfitting.
Ridge includes an L2 penalty term (L2 is based on Euclidean Distance) that shrinks the
linear coefficients based on their size. The coefficients are the weights, numbers that
determine how influential each column is on the output. Larger weights carry greater
penalties in Ridge.

Lasso is another regularized alternative to linear regression. Lasso adds a penalty
equal to the absolute value of the magnitude of coefficients. This L1 regularization (L1
is taxicab distance.) can eliminate some columns and result in a model that is sparse by
comparison.

Let's look at an example to check how Ridge and Lasso perform on our Boston Housing
dataset.

In this example, we perform regularization on the dataset using Ridge and Lasso to
counteract overfitting. You can continue on the notebook from Exercise 146, Using
the cross_val_score Function to Get Accurate Results on the Dataset, to work on this
example.

We begin by setting Ridge() as a parameter for regression_model_cv, as shown in the
following code snippet:

from sklearn.linear_model import Ridge
regression_model_cv(Ridge())

You should get the following output:

Reg rmse: [3.52479283 4.72296032 5.54622438 8.00759231 5.26861171]
Reg mean: 5.414036309884279

It's not surprising that Ridge has a slightly better score than linear regression. This
is because both algorithms use Euclidean distance and the linear regression model
is overfitting the data by a slight amount. Your results may be different from ours,
however, and the scores are very close.

Another basis of comparison is the worst score of the five. In Ridge, we obtained
8.00759 as the worst score. In linear regression, we obtained 23.20863933 as the worst
score. This suggests that 23.20863933 is badly overfitting the training data. In Ridge, this
overfitting is compensated.

Now, set Lasso() as the parameter for regression_model_cv:

from sklearn.linear_model import Lasso
regression_model_cv(Lasso())

K-Nearest Neighbors, Decision Trees, and Random Forests | 485

You should get the following output:

Reg rmse: [4.712548 5.83933857 8.02996117 7.89925202 4.38674414]
Reg mean: 6.173568778640692

Whenever you're trying LinearRegression(), it's always worth trying Lasso and Ridge
as well, since overfitting the data is common, and they only actually take a few lines
of code to test. Lasso does not perform as well here because the L1 distance metric,
taxicab distance, was not used in our model.

Regularization is an essential tool when implementing machine learning algorithms.
Whenever you choose a particular model, be sure to research regularization methods to
improve your results, as you observed in the preceding example.

Now, let's get to know a developer's doubt. Although we have focused on overfitting the
data, underfitting the data is also possible, right? It's less common in the world of big
data, though. Underfitting can occur if the model is a straight line, but a higher degree
polynomial will fit the data better. By trying multiple models, you are more likely to find
optimal results.

So far, you have learned how to implement linear regression as a machine learning
model. You have learned how to perform cross-validation to get more accurate results,
and you have learned about using two additional models, Ridge and Lasso, to counteract
overfitting.

Now that you understand how to build machine learning models using scikit-learn,
let's take a look at some different kinds of models that will also work on regression.

K-Nearest Neighbors, Decision Trees, and Random Forests
Are there other machine learning algorithms, besides LinearRegression(), that is
suitable for the Boston Housing dataset? Absolutely. There are many regressors in the
scikit-learn library that may be used. Regressors are generally considered a class of
machine learning algorithms that are suitable for continuous target values. In addition
to Linear Regression, Ridge, and Lasso, we can try K-Nearest Neighbors, Decision Trees,
and Random Forests. These models perform well on a wide range of datasets. Let's try
them out and analyze them individually.

K-Nearest Neighbors

The idea behind K-Nearest Neighbors (KNN) is straightforward. When choosing the
output of a row with an unknown label, the prediction is the same as the output of its
k-nearest neighbors, where k may be any whole number.

For instance, let's say that k=3. Given an unknown label, we take n columns for this
row and place them in n-dimensional space. Then we look for the three closest points.

486 | Machine Learning

These points already have labels. We assume the majority label for our new point.

KNN is commonly used for classification since classification is based on grouping
values, but it can be applied to regression as well. When determining the value of a
home, for instance, in our Boston Housing dataset, it makes sense to compare the
values of homes in a similar location, with a similar number of bedrooms, a similar
amount of square footage, and so on.

You can always choose the number of neighbors for the algorithm and adjust it
accordingly. The number of neighbors denoted here is k, which is also called a
hyperparameter. In machine learning, the model parameters are derived during
training, whereas the hyperparameters are chosen in advance.

Fine-tuning hyperparameters is an essential task to master when building machine
learning models. Learning the ins and outs of hyperparameter tuning takes time,
practice, and experimentation.

Exercise 147: Using K-Nearest Neighbors to Find the Median Value of the

Dataset

The goal of this exercise is to use K-Nearest Neighbors to predict the optimal median
value of homes in Boston. We will use the same function, regression_model_cv, with an
input of KNeighborsRegressor():

1.	 Continue with the same Jupyter Notebook from the previous Exercise 146.

2.	 Set and import KNeighborsRegressor() as the parameter on the regression_model_cv
function:

from sklearn.neighbors import KNeighborsRegressor
regression_model_cv(KNeighborsRegressor())

You should get the following output:

Reg rmse: [8.24568226 8.81322798 10.58043836 8.85643441 5.98100069]
Reg mean: 8.495356738515685

K-Nearest Neighbors did not perform as well as LinearRegression(), but it
performed respectably. Recall that rmse stands for root mean squared error. So, the
mean error is about 8.50 (or 85,000 since the units are ten of thousands of dollars).

K-Nearest Neighbors, Decision Trees, and Random Forests | 487

We can change the number of neighbors to see if we can get better results. The
default number of neighbors is 5. Let's change the number of neighbors to 4, 7, and
10.

3.	 Now, change the n_neighbors hyperparameter to 4, 7, and 10. For 4 neighbors, enter
the following code:

regression_model_cv(KNeighborsRegressor(n_neighbors=4))

You should get an output similar to the following:

Reg rmse: [8.44659788 8.99814547 10.97170231 8.86647969 5.72114135]
Reg mean: 8.600813339223432

Change n_neighbors to 7:

regression_model_cv(KNeighborsRegressor(n_neighbors=7))

You should get the following output:

Reg rmse: [7.99710601 8.68309183 10.66332898 8.90261573 5.51032355]
Reg mean: 8.351293217401393

Change n_neighbors to 10:

regression_model_cv(KNeighborsRegressor(n_neighbors=10))

You should get the following output:

Reg rmse: [7.47549287 8.62914556 10.69543822 8.91330686 6.52982222]
Reg mean: 8.448641147609868

The best results so far come from 7 neighbors. But how do we know if 7 neighbors give
us the best results? How many different scenarios do we have to check?

Scikit-learn provides a nice option to check a wide range of hyperparameters, which
is GridSearchCV. The idea behind GridSearchCV is to use cross-validation to check all
possible values in a grid. The value in the grid that gives the best result is then accepted
as a hyperparameter.

488 | Machine Learning

Exercise 148: K-Nearest Neighbors with GridSearchCV to Find the Optimal

Number of Neighbors

The goal of this exercise is to use GridSearchCV to find the optimal number of neighbors
for K-Nearest Neighbors to predict the median housing value in Boston. In the previous
exercise, if you recall, we used only three neighbor values. Here, we will increase the
number using GridSearchCV:

1.	 Continue with the Jupyter Notebook from the previous exercise.

2.	 Import GridSearchCV, as shown in the following code snippet:

from sklearn.model_selection import GridSearchCV

3.	 Now, choose the grid. The grid is the range of numbers – in this case, neighbors –
that will be checked. Set up a hyperparameter grid for between 1 and 20 neighbors:

neighbors = np.linspace(1, 20, 20)

We achieve this with np.linspace(1, 20, 20), where the 1 is the first number,
the first 20 is the last number, and the second 20 in the brackets is the number of
intervals to count.

4.	 Convert floats to int (required by knn):

k = neighbors.astype(int)

5.	 Now, place the grid in a dictionary, as shown in the following code snippet:

param_grid = {'n_neighbors': k}

6.	 Build the model for each neighbor:

knn = KNeighborsRegressor()

7.	 Instantiate the GridSearchCV object – knn_tuned:

knn_tuned = GridSearchCV(knn, param_grid, cv=5, scoring='neg_mean_squared_error')

8.	 Fit knn_tuned to the data using .fit:

knn_tuned.fit(X, y)

9.	 Finally, you print the best parameter results, as shown in the following code
snippet:

k = knn_tuned.best_params_
print("Best n_neighbors: {}".format(k))
score = knn_tuned.best_score_
rsm = np.sqrt(-score)
print("Best score: {}".format(rsm))

K-Nearest Neighbors, Decision Trees, and Random Forests | 489

You should get the following output:

Figure 11.8: Output showing the best score using n_neighbors

In our case, 7 gave the best results. Your results may differ. Now, moving on, let's look at
the different types of decision trees and random forests.

Decision Trees and Random Forests

The best way to understand a concept is to relate it to something. You may be familiar
with the game Twenty Questions. It's a game in which someone is asked to think of
something or someone, perhaps a person. The questioner asks them binary yes or no
questions, gradually narrowing down the search in order to determine exactly who they
are thinking of.

Twenty Questions is a decision tree. Every time a question is asked, there are two
possible branches that the tree may take depending upon the answer. For every new
question, new branching occurs, until the branches end at a prediction, called a leaf.

Here is a mini-Decision Tree that predicts whether a Titanic passenger survived:

Figure 11.9: Decision tree sample on the Titanic incident

490 | Machine Learning

This decision tree starts by determining whether the passenger was male. If the
passenger was male, the branch is followed that asks the question was their age greater
than 9.5. If the passenger was not male, we reach the end of a branch, and we find out
that the probability of survival is 0.73. The other number, 36%, indicates that 36% of the
passengers end up at this leaf.

Decision Trees are very good machine learning algorithms, but they are prone
to overfitting. A random forest is an ensemble of decision trees. Random forests
consistently outperform decision trees because their predictions generalize to data
much better. A random forest may consist of hundreds of decision trees.

A random forest is a great machine-learning algorithm to try on almost any dataset.
Random forests work well with both regression and classification, and they often
perform well out of the box.

Let's try Decision Trees and Random Forests on our data.

Exercise 149: Decision Trees and Random Forests

The goal of this exercise is to use decision trees and random forests to predict median
house values in Boston:

1.	 Continue with the same Jupyter Notebook from the previous exercise.

2.	 Use DecisionTreeRegressor() as the input for regression_model_cv.

from sklearn import tree
regression_model_cv(tree.DecisionTreeRegressor())

You should get the following output:

Reg rmse: [3.84098484 5.67885262 7.7328741 6.53263473 5.78903694]
Reg mean: 5.914876645128473

Note

The output values may differ from the values mentioned in the book.

3.	 Use RandomForestRegressor() as the input for regression_model_cv:

from sklearn.ensemble import RandomForestRegressor
regression_model_cv(RandomForestRegressor())

K-Nearest Neighbors, Decision Trees, and Random Forests | 491

You should get the following output:

Reg rmse: [3.49719743 3.86463108 4.60294622 6.7640934 3.73856719]
Reg mean: 4.493487064599419

As you can see, the random forest regressor gives the best results yet. Let's see if we
can improve these results by examining random forest hyperparameters.

Random Forest Hyperparameters

Random forests have a lot of hyperparameters. Instead of going over them all, we will
highlight the most important ones:

•	 n_jobs(default=None): The number of jobs has to do with internal processing. None
means 1. It's ideal to set n_jobs = -1 to permit the use of all processors. Although
this does not improve the accuracy of the model, it does improve the speed.

•	 n_estimators(default=10): The number of trees in the forest. The more trees, the
better. The more trees, the more RAM is required. It's worth increasing this number
until the algorithm moves too slowly. Although 1,000,000 trees may give better
results than 1,000, the gain might be small enough to be negligible. A good starting
point is 100, and 500 if time permits.

•	 max_depth(default=None): The max depth of the trees in the forest. The deeper
the trees, the more information is captured about the data, but the more prone
the trees are to overfitting. When set to the default max_depth of None, there are
no limitations, and each tree goes as deep as necessary. The max depth may be
reduced to a smaller number of branches.

•	 min_samples_split(default=2): This is the minimum number of samples required
for a new branch or split to occur. This number can be increased to constrain the
trees as they require more samples to make a decision.

•	 min_samples_leaf(default=1): This is the same as min_samples_split, except it's the
minimum number of samples at the leaves or the base of the tree. By increasing this
number, the branch will stop splitting when it reaches this parameter.

•	 max_features(default="auto"): The number of features to consider when looking
for the best split. The default for regression is to consider the total number of
columns. For classification random forests, sqrt is recommended.

492 | Machine Learning

Exercise 150: Random Forest Tuned to Improve the Prediction on Our Dataset

The goal of this exercise is to tune a random forest to improve the median house value
predictions for Boston:

1.	 Continue with the same Jupyter Notebook from Exercise 149, Decision Trees and
Random Forests:

2.	 Set n_jobs = -1 and n_estimators=100 for RandomForestRegressor as the input of
regression_model_cv. We can always use n_jobs to speed up the algorithm, and we
can increase n_estimators to achieve better results:

regression_model_cv(RandomForestRegressor(n_jobs=-1, n_estimators=100))

You should get the following output:

Reg rmse: [3.29260656 3.61943542 4.83755526 6.49556195 3.76565343]
Reg mean: 4.402162523852732

We could try GridSearchCV on the other hyperparameters to see if we can find a
better combination than the defaults, but checking every possible combination of
hyperparameters could reach the order of thousands and take way too long.

Note

The output values may differ from the values mentioned in the book.

Sklearn provides RandomizedSearchCV to check a wide range of hyperparameters.
Instead of exhaustively going through a list, RandomizedSearchCV will check a set
amount of random combinations and return the best results.

3.	 Use RandomizedSearchCV to look for better Random Forest hyperparameters:

from sklearn.model_selection import RandomizedSearchCV

4.	 Set up the hyperparameter grid using max_depth, as shown in the following code
snippet:

param_grid = {'max_depth': [None, 10, 30, 50, 70, 100, 200, 400],
 'min_samples_split': [2, 3, 4, 5],
 'min_samples_leaf': [1, 2, 3],
 'max_features': ['auto', 'sqrt']}

K-Nearest Neighbors, Decision Trees, and Random Forests | 493

5.	 Instantiate the knn regressor:

reg = RandomForestRegressor(n_jobs = -1)

6.	 Instantiate the RandomizedSearchCV object – reg_tuned:

reg_tuned = RandomizedSearchCV(reg, param_grid, cv=5,
 scoring='neg_mean_squared_error')

7.	 Fit reg_tuned to the data:

reg_tuned.fit(X, y)

8.	 Now, print the tuned parameters and score:

p = reg_tuned.best_params_
print("Best n_neighbors: {}".format(p))
score = reg_tuned.best_score_
rsm = np.sqrt(-score)
print("Best score: {}".format(rsm))

You should get the following output:

Figure 11.10: Output of the tuned parameters and score

Keep in mind that with RandomizedSearchCV, there is no guarantee that the
hyperparameters will produce the best results. Although the randomized search did
well, it did not perform as well as the defaults with n_jobs = -1 and n_estimators =
100.

9.	 Now, run a random forest regressor with n_jobs = -1 and n_estimators = 500:

Setup the hyperparameter grid
regression_model_cv(RandomForestRegressor(n_jobs=-1, n_estimators=500))

You should get the following output:

Reg rmse: [3.17315086 3.77060192 4.77587747 6.45161665 3.9681246]
Reg mean: 4.427874301108916

Note

Increasing n_estimators every time will produce more accurate results, but the
model takes longer to build.

494 | Machine Learning

Hyperparameters are a primary key to building excellent machine learning models.
Anyone with basic machine learning training can build machine learning models using
default hyperparameters. Using GridSearchCV and RandomizedSearchCV to fine-tune
hyperparameters to create more efficient models distinguishes advanced users from
beginners.

Classification Models
The Boston Housing dataset was great for regression because the target column took
on continuous values without limit. There are many cases when the target column takes
on one or two values, such as TRUE or FALSE, or possibly a grouping of three or more
values, such as RED, BLUE, or GREEN. When the target column may be split into distinct
categories, the group of machine learning models that you should try are referred to as
classification.

To make things interesting, let's load a new dataset used to detect pulsar stars in outer
space. Go to https://packt.live/33SD0IM and click on Data Folder. Then, click on
HTRU2.zip.

Figure 11.11: Dataset directory on the UCI website

The dataset consists of 17,898 potential pulsar stars in space. But what are these
pulsars? Pulsar stars rotate very quickly, so they have periodic light patterns. Radio
frequency interference and noise, however, are attributes that make pulsars very hard
to detect. This dataset contains 16,259 non-pulsars and 1,639 real pulsars.

Note

The dataset is from Dr. Robert Lyon, University of Manchester, School of
Physics and Astronomy, Alan Turing Building, Manchester M13 9PL, United
Kingdom, Robert.lyon'@'manchester.ac.uk, 2017.

Classification Models | 495

The columns include information about an integrated pulse profile and a DM-SNR
curve. All pulsars produce a unique pattern of emissions, commonly known as their
"pulse profile." A pulse profile is similar to a fingerprint, but it is not consistent like a
pulsar rotational period. An integrated pulse profile consists of a matrix of an array of
continuous values describing the pulse intensity and phase of the pulsar. DM stands
for Dispersion Measure, a constant that relates the frequency of light to the extra time
required to reach the observer, and SNR stands for Signal to Noise Ratio, which relates
how well an object has been measured compared to its background noise.

Here is the official list of columns in the dataset:

•	 Mean of the integrated profile

•	 Standard deviation of the integrated profile

•	 Excess kurtosis of the integrated profile

•	 Skewness of the integrated profile

•	 Mean of the DM-SNR curve

•	 Standard deviation of the DM-SNR curve

•	 Excess kurtosis of the DM-SNR curve

•	 Skewness of the DM-SNR curve

•	 Class

In this dataset, potential pulsars have already been classified as pulsars and non-pulsars
by the astronomy community. The goal here is to see if machine learning can detect
patterns within the data to correctly classify new potential pulsars that emerge.

The methods that you learn for this topic will be directly applicable to a wide range
of classification problems, including spam classifiers, user churn in markets, quality
control, product identification, and others.

496 | Machine Learning

Exercise 151: Preparing the Pulsar Dataset and Checking for Null Values

The goal of this exercise is to prepare the pulsar dataset for machine learning. The
exercises from here on will be on the same notebook file:

1.	 Open a new Jupyter Notebook.

2.	 Import the libraries, load the data, and display the first five rows, as shown in the
following code snippet:

import pandas as pd
import numpy as np
df = pd.read_csv('HTRU_2.csv')
df.head()

You should get the following output:

Figure 11.12: The first five rows of the pulsar dataset

Looks interesting, and problematic. Notice that the column headers appear to be
another row. It's impossible to analyze data without knowing what the columns are
supposed to be, right?

Note that the last column is all 0's in the DataFrame. This suggests that this is
the Class column, which is our target column. When detecting the presence
of something – in this case, pulsar stars – it's common to use a 1 for positive
identification, and a 0 for a negative identification.

Since Class is last in the list, let's assume that the columns are given in the correct
order presented in the Attribute Information list. We can also assume that losing
the current column headers, a negative identification among 17,898 rows is virtually
meaningless. The easiest way forward is simply to change the column headers to
match the attribute list.

Classification Models | 497

3.	 Now, change column headers to match the official list and print the first five rows,
as shown in the following code snippet:

df.columns = [['Mean of integrated profile', 'Standard deviation of integrated
profile',
 'Excess kurtosis of integrated profile', 'Skewness of integrated
profile',
 'Mean of DM-SNR curve', 'Standard deviation of DM-SNR curve',
 'Excess kurtosis of DM-SNR curve', 'Skewness of DM-SNR curve',
'Class']]
df.head()

You should get the following output:

Figure 11.13: Check for null values using df.info() and len(df)

4.	 Now, let's find the info of the dataset using .info():

df.info()

You should get the following output:

Figure 11.14: Information based on the pulsar dataset

498 | Machine Learning

5.	 Finally, use len(df) and match all columns of df.info() with only the non-null
entries:

len(df)

You should get the following output:

17897

We know that there are no null values. If there were null values, we would need
to eliminate the rows or fill them in by taking the mean, the median, the mode, or
another value from the columns.

When it comes to preparing data for machine learning, it's essential to have clean,
numerical data with no null values. Further data analysis is often warranted, depending
upon the goal at hand. If the goal is simply to try out some models and check them for
accuracy, it's fine to go ahead. If the goal is to uncover deep insights about the data,
further statistical analysis, as introduced in the previous chapter, is always warranted.
Now that we have all this basic information, we can proceed ahead on the same
notebook file.

Logistic Regression

When it comes to datasets that classify points, logistic regression is one of the most
popular and successful machine learning algorithms. Logistic regression utilizes the
sigmoid function to determine whether points should approach one value or the other.
As the following diagram indicates, it's a good idea to classify the target values as 0
and 1 when utilizing logistic regression. In the pulsar dataset, the values are already
classified as 0s and 1s. If the dataset was labeled as Red and Blue, converting them
in advance to 0 and 1 would be essential (you will practice converting categorical to
numerical values in the activity at the end of his chapter):

Figure 11.15: Sigmoid curve on a plot

Classification Models | 499

The sigmoid curve in figure 11.14 approaches 1 from the left and 0 from the right,
without ever reaching 0 or 1. In this respect, 0 and 1 function as horizontal asymptotes.
Basically, every positive x value is given an output of 1, and every negative x value is
given an output of 0. Furthermore, the higher up the graph, the higher the probability
of a 1, and the lower down the graph, the higher the probability of 0.

Let's see how logistic regression works in action by using a similar function as before.

By default, classifiers use percentage accuracy as the score output.

Exercise 152: Using Logistic Regression to Predict Data Accuracy

The goal of this exercise is to use logistic regression to predict the classification of
pulsar stars:

1.	 Import LogisticRegression:

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

2.	 Set up matrices X and y to store the predictors and response variables, respectively:

X = df.iloc[:, 0:8]
y = df.iloc[:, 8]

3.	 Write a classifier function that takes a model as its input:

def clf_model(model):

4.	 Create the clf classifier, as shown in the following code snippet:

 clf = model
 scores = cross_val_score(clf, X, y)
 print('Scores:', scores)
 print('Mean score:', scores.mean())

5.	 Run the clf_model function with LogisticRegression() as the input:

clf_model(LogisticRegression())

You should get the following output:

Figure 11.16: Mean score using logistic regression

500 | Machine Learning

These numbers represent accuracy. A mean score of 0.977706 means that the logistic
regression model is classifying 97.8% of pulsars correctly.

Logistic regression is very different than linear regression. Logistic regression uses
the sigmoid function to classify all instances into one group or the other. Generally
speaking, all cases that are above 0.5 are classified as a 1, and all cases that fall below 0.5
are classified as a 0, with decimals that are close to 1 more likely to be a 1, and decimals
that are close to 0 more likely to be a 0. Linear regression, by contrast, finds a straight
line that minimizes the error between the straight line and the individual points.
Logistic regression classifies all points into two groups; all new points will fall into one
of these groups. By contrast, linear regression finds a line of best fit; all new points may
fall anywhere on the line and take on any value.

Other Classifiers

There are other classifiers that we can try, including K-Nearest Neighbors (KNN),
Decision Trees, Random Forests, and Naive Bayes.

We used KNN, Decision Trees, and Random Forests as regressors before. This time, we
need to implement them as classifiers. For instance, there is RandomForestRegressor, and
there is RandomForestClassifier. Both are random forests, but they are implemented
differently to meet the output of the data. Recall that classifiers have an output of two
or more end values, whereas regression has an output of continuous values. The general
setup is the same, but the output is different. In the next section, we will have a look at
Naive Bayes.

Naive Bayes

Naive Bayes is a model based on Bayes' theorem, a famous probability theorem based
on a conditional probability that assumes independent events. Similarly, Naive Bayes
assumes independent attributes or columns. The mathematical details of Naive Bayes
are beyond the scope of this book, but we can still apply it to our dataset.

There is a small family of machine learning algorithms based on Naive Bayes. The one
that we will use here is GaussianNB. Gaussian Naïve Bayes assumes that the likelihood of
features is Gaussian. Other options that you may consider trying include MultinomialNB,
used for multinomial distributed data (such as text), and ComplementNB, an adaptation of
MultinomialNB that is used for imbalanced datasets.

Let's try Naive Bayes, in addition to the KNN, Decision Tree, and Random Forest
classifiers mentioned previously.

Classification Models | 501

Exercise 153: Using GaussianNB, KneighborsClassifier, DecisionTreeClassifier,

and RandomForestClassifier to Predict Accuracy in Our Dataset

The goal of this exercise is to predict pulsars using a variety of classifiers, including
GaussianNB, KneighborsClassifier, DecisionTreeClassifier, and RandomForestClassifier.

1.	 Begin this exercise on the same notebook file from the previous exercise.

2.	 Run the clf_model function with GaussianNB() as the input:

from sklearn.naive_bayes import GaussianNB
clf_model(GaussianNB())

You should get the following output:

Figure 11.17: Mean score using GaussianNB

3.	 Now, run the clf_model function with KNeighborsClassifier() as the input:

from sklearn.neighbors import KNeighborsClassifier
clf_model(KNeighborsClassifier())

You should get the following output:

Figure 11.18: Mean score using KNeighborsClassifier

4.	 Run the clf_model function with DecisionTreeClassifier() as the input:

from sklearn.tree import DecisionTreeClassifier
clf_model(DecisionTreeClassifier())

You should get the following output:

Figure 11.19: Mean score using DecisionTreeClassifier

Note

The output values may differ from the values mentioned in the book.

502 | Machine Learning

5.	 Run the clf_model function with RandomForestClassifier() as the input:

from sklearn.ensemble import RandomForestClassifier
clf_model(RandomForestClassifier())

You should get the following output:

Figure 11.20: Mean score using RandomForestClassifier

All classifiers have achieved between 94% and 98% accuracy. It's unusual for this many
classifiers to all perform this well. There must be clear patterns within the data, or
something is going on behind the scenes.

You may also wonder how to know when to use these classifiers. The bottom line is that
whenever you have a classification problem, meaning that the data has a target column
with a finite number of options, such as three kinds of wine, most classifiers are worth
trying. Naive Bayes is known to work well with text data, and random forests are known
to work well generally. New machine learning algorithms are often being developed to
handle special cases. Practice and research will help to uncover more nuanced cases.

Confusion Matrix

When discussing classification, it's important to know whether the dataset is
imbalanced, as we had some doubts about the results from Exercise 153, Using
GaussianNB, KneighborsClassifier, DecisionTreeClassifier and RandomForestClassifier to
Predict Accuracy in Our Dataset. An imbalance occurs if the majority of data points have
one label rather than another.

Exercise 154: Finding the Pulsar Percentage from the Dataset

The goal of this exercise is to count the percentage of pulsars in our dataset. We will
use the Class column. Although we have primarily been using df['Class'] as a way to
reference a particular column, df.Class will work as well (except in limited cases, such
as setting values):

1.	 Begin this exercise on the same notebook you used in the previous exercise.

2.	 Use the count.() method on df.Class to obtain the number of potential pulsars:

df.Class.count()

Classification Models | 503

You should get the following output:

Figure 11.21: Output of the potential pulsars in the dataset

3.	 Use the .count() method on df[df.Class == 1] to obtain the number of actual
pulsars:

df[df.Class == 1].Class.count()

You should get the following output:

Figure 11.22: Output of the total actual pulsars in the dataset

4.	 Divide step 2 by step 1 to obtain the percentage of pulsars:

df[df.Class == 1].Class.count()/df.Class.count()

You should get the following output:

Figure 11.23: Output showing the percentage of pulsars

The results show that 0.09158 or 9% of the data are pulsars. The other 91% are not
pulsars. This means that it's very easy to make a machine learning algorithm in this case
with 91% accuracy to predict that every row is not a pulsar.

Imagine that the situation is even more extreme. Imagine that we are trying to detect
exoplanets, and our dataset has only classified 1% of the data as exoplanets. This
means that 99% are not exoplanets. This also means that it's super easy to develop an
algorithm with 99% accuracy! Just claim that everything is not an exoplanet!

504 | Machine Learning

The confusion matrix was designed to reveal the truth behind imbalanced datasets:

Figure 11.24: Overview of the confusion matrix

As you can see from figure 11.24, the confusion matrix is designed to show you what
happened to each of the outputs. Every output will fall into one of four boxes, labeled
"True positive," "False positive," "False negative," and "True negative":

Figure 11.25: Prediction of the confusion matrix based on conditions

Consider the following example. This is the confusion matrix for the decision tree
classifier we used earlier. You will see the code to obtain this shortly. First, we want to
focus on the interpretation:

Figure 11.26: Confusion matrix

In sklearn, the default order is 0, 1. This means that the zeros or negative values are
actually listed first. So, in effect, the confusion matrix is interpreted as follows:

Figure 11.27: Confusion matrix with the default orders

In this particular case, 3,985 non-pulsars have been identified correctly, and 334 pulsars
have been identified correctly. The 91 in the upper-right corner indicates that the
model classified 91 pulsars incorrectly, and the 65 in the bottom-left corner indicates
that 65 non-pulsars were misclassified as pulsars.

Classification Models | 505

It can be challenging to interpret the confusion matrix, especially when positives and
negatives do not always line up in the same columns. Fortunately, a classification report
may be displayed along with it.

The classification report includes the total number of labels, along with various
percentages to help make sense of the numbers and analyze the data.

Here is the classification report with the confusion matrix for the decision tree
classifier:

Figure 11.28: Classification report on the confusion matrix

In the classification report, the columns on the two ends are the easiest to interpret.
On the far right, support is the number of labels in the dataset. It matches the indexed
column on the far left, labeled 0 and 1. Support reveals that there are 4,076 non-pulsars
(0s) and 399 pulsars (1s). This number is less than the total because we are only looking
at the test set.

Precision is the true positives divided by all the positive predictions. In the case of the
zeros, this is 3985 / (3985 + 65), and in the case of the ones, this is 334 / (334 + 91).

Recall is the true positives divided by all the positive labels. For the zeros, this is 3985 /
(3985 + 91) and for the ones this is 334 / (334 + 65).

The f1-score is the harmonic mean of the precision and recall scores. Note that the f1
scores are very different for the zeros than the ones.

The most important number in the classification report depends on what you are trying
to accomplish. Consider the case of the pulsars. Is the goal to identify as many potential
pulsars as possible? If so, a lower precision is okay, provided that the recall is higher. Or
perhaps an investigation would be expensive. In this case, a higher precision than recall
would be desirable.

506 | Machine Learning

Exercise 155: Confusion Matrix and Classification Report for the Pulsar

Dataset

The goal of this exercise is to build a function that displays the confusion matrix along
with the classification report:

1.	 Continue on the same notebook file from the previous exercise.

2.	 Now, import the confusion_matrix and the classification_report libraries:

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.cross_validation import train_test_split

To use the confusion matrix and classification report, we need a designated test
set. We can accomplish this using train_test_split.

3.	 Split the data into a training set and a test set:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)

Now, build a function called confusion that takes a model as the input and prints
the confusion matrix and classification report. The clf classifier should be the
output:

def confusion(model):

4.	 Create a model classifier:

 clf = model

5.	 Fit the classifier to the data:

 clf.fit(X_train, y_train)

6.	 Predict the labels of the y_pred test set:

 y_pred = clf.predict(X_test)

7.	 Compute and print the confusion matrix:

 print('Confusion Matrix:', confusion_matrix(y_test, y_pred))

8.	 Compute and print the classification report:

 print('Classification Report:', classification_report(y_test, y_pred))
 return clf

Now let's try the function on our various classifiers.

Classification Models | 507

9.	 Run the confusion() function with LogisticRegression as the input:

confusion(LogisticRegression())

You should get the following output:

Figure 11.29: Output of the confusion matrix on LogisticRegression

As you can see, the precision of classifying actual pulsars, the 1 in the classification
report, is 94%, whereas the total is 98%. Perhaps more significantly, the f1-score,
which is the average of the precision and recall scores, is 98% overall, but only 87%
for the pulsars, or ones.

10.	 Now, run the confusion() function with KNeighborsClassifier() as the input:

confusion(KNeighborsClassifier())

You should get the following output:

Figure 11.30: Output of the confusion matrix on KNeighborsClassifier

They're all high scores overall, but the 78% recall and 84% f1-score for the pulsars
are a little lacking.

508 | Machine Learning

11.	 Run the confusion() function with GaussianNB() as the input:

confusion(GaussianNB())

You should get the following output:

Figure 11.31: Output of the confusion matrix on GaussianNB

In this particular case, the 68% precision of correctly identifying pulsars is not up
to par.

12.	 Run the confusion() function with RandomForestClassifer() as the input:

confusion(RandomForestClassifier())

You should get the following output:

Figure 11.32: Output of the confusion matrix on RandomForestClassifier

We've now finished this exercise, and you can see that, in this case, the f1-score of 87%
is the highest that we have seen.

Which classifier would give the best results if we want to detect pulsars?
RandomForestClassifier() is great because it has the highest precision and recall for
pulsar identification. If the goal is to detect pulsars, RandomForestClassifier is the best
bet.

Boosting Methods | 509

Boosting Methods
Random Forests are a type of bagging method. A bagging method is a machine learning
method that aggregates a large sum of machine learning models. In the case of Random
Forests, the aggregates are decision trees.

Another machine learning method is boosting. The idea behind boosting is to transform
a weak learner into a strong learner by modifying the weights for the rows that the
learner got wrong. A weak learner may have an error of 49%, hardly better than a coin
flip. A strong learner, by contrast, may have an error rate of 1 or 2 %. With enough
iterations, very weak learners can be transformed into very strong learners.

The success of boosting methods caught the attention of the machine learning
community. In 2003, Yoav Fruend and Robert Shapire won the 2003 Godel Prize for
developing AdaBoost, short for adaptive boosting.

Like many boosting methods, AdaBoost has both a classifier and a regressor. AdaBoost
adjusts weak learners toward instances that were previously misclassified. If one learner
is 45% correct, the sign can be flipped to become 55% correct. By switching the signs
of negatives to positives, the only problematic instances are those that are exactly 50%
correct because changing the sign will not change anything. The larger the percentage
that is correct, the larger the weight given is given out to sensitive outliers.

Let's see how the AdaBoost classifier performs on our datasets.

Exercise 156: Using AdaBoost to Predict the Best Optimal Values

The goal of this exercise is to predict pulsars and median housing prices in Boston using
AdaBoost:

1.	 Begin this exercise on the same notebook you used in the previous exercise.

2.	 Now, import AdaBoostClassifier and use it as the input for clf_model():

from sklearn.ensemble import AdaBoostClassifier
clf_model(AdaBoostClassifier())

You should get the following output:

Figure 11.33: Mean score output using AdaBoostClassifier

As you can see, the AdaBoost classifier gave one of the best results yet. Let's see
how it performs on the confusion matrix.

510 | Machine Learning

3.	 Use AdaBoostClassifer() as the input for the confusion() function:

confusion(AdaBoostClassifier())

You should get the following output:

Figure 11.34: Output of the confusion matrix on AdaBoostClassifier

Totals of 98% for precision, recall, and the f1-score are outstanding. The f1-score
of the positive pulsar classification, the 1's, is 86%, nearly performing as well as
RandomForestClassifier.

Note

Now, head to the notebook file for exercises 146-150 and execute the following
steps.

4.	 Set X and y equal to housing_df.iloc[:, :-1] and housing_df.iloc[:, -1]:

X = housing_df.iloc[:,:-1]
y = housing_df.iloc[:, -1]

5.	 Now, import AdaBoostRegressor and use AdaBoostRegressor() as the input for the
regression_model_cv function:

from sklearn.ensemble import AdaBoostRegressor
regression_model_cv(AdaBoostRegressor())

You should get the following output:

Figure 11.35: Mean score output using AdaBoostRegressor

It's no surprise that AdaBoost also gives one of the best results on the housing
dataset. It has a great reputation for a reason.

Boosting Methods | 511

AdaBoost is one example of many reputable boosters. XGBoost, and its successor,
LightGBM, followed in the footsteps of AdaBoost. They are not part of the sklearn
library, however, so we will not implement them in this book.

Activity 25: Using Machine Learning to Predict Customer Return

Rate Accuracy

In this activity, you will use machine learning to solve a real-world problem. A bank
wants to predict whether customers will return, also known as churn. They want to
know which customers are most likely to leave. They give you their data, and they ask
you to create a machine-learning algorithm to help them target the customers most
likely to leave.

The overview for this activity will be for you to first prepare the data in the dataset,
then run a variety of machine learning algorithms that were covered in this chapter to
check their accuracy. You will then use the confusion matrix and classification report
to help find the best algorithm to identify cases of user churn. You will select one final
machine learning algorithm along with its confusion matrix and classification report for
your output.

Here are the steps to achieve this goal:

1.	 Download the dataset from https://packt.live/35NRn2C.

2.	 Open CHURN.csv in a Jupyter Notebook and observe the first five rows.

3.	 Check for NaN values and remove any that you find in the dataset.

4.	 In order to use machine learning on all the columns, the predictive column should
be in terms of numbers, not 'No' and 'Yes'. You may replace 'No' and 'Yes' with 0 and 1
as follows:

df['Churn'] = df['Churn'].replace(to_replace=['No', 'Yes'], value=[0, 1])

5.	 Set X, the predictor columns, equal to all columns except the first and the last. Set
y, the target column, equal to the last column.

6.	 You want to transform all of the predictive columns into numeric columns. This can
be achieved as follows:

X = pd.get_dummies(X)

7.	 Write a function called clf_model that uses cross_val_score to implement a
classifier. Recall that cross_val_score must be imported.

8.	 Run your function on five different machine learning algorithms. Choose the top
three models.

512 | Machine Learning

9.	 Build a similar function using the confusion matrix and the classification report
that uses train_test_split. Compare your top three models using this function.

10.	 Choose your best model, look at the hyperparameters, and optimize at least one
hyperparameter.

You should get an output similar to the following:

Figure 11.36: Expected confusion matrix output

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you have learned how to build a variety of machine learning models to
solve regression and classification problems. You have implemented Linear Regression,
Ridge, Lasso, Logistic Regression, Decision Trees, Random Forests, Naive Bayes, and
AdaBoost. You have learned about the importance of using cross-validation to split
up your training set and test set. You have learned about the dangers of overfitting
and how to correct it with regularization. You have learned how to fine-tune
hyperparameters using GridSearchCV and RandomizedSearchCV. You have learned how to
interpret imbalanced datasets with a confusion matrix and a classification report. You
have also learned how to distinguish between bagging and boosting, and precision and
recall.

Summary | 513

The truth is that you have only scratched the surface of machine learning. In addition to
classification and regression, there are many other popular classes of machine learning
algorithms, such as recommenders, which are used to recommend what movies or
books a user may like based on their preferences and what they have liked before, and
unsupervised algorithms, which group data in unpredictable ways.

With this chapter, we come to the end of our journey in this book. We've learned the
basics of Python and how to get started from opening a Jupyter Notebook and loading
the necessary libraries, to working with lists, dictionaries, and sets; after which,
we moved on to visually outputting data using Python, which is an essential part of
presenting data. We saw not only how to code in Python, but also how to be Pythonic,
which is the smarter way to code in Python. We then covered using unit testing and
debugging techniques to handle errors. Lastly, we saw how to learn from big data in this
last chapter on machine learning.

Appendix

About

This section is included to assist you in performing the activities present in the book. It includes
detailed steps that are to be performed by the students to complete and achieve the objectives
of the book.

516 | Appendix

Chapter 1: Vital Python – Math, Strings,
Conditionals, and Loops

Activity 1: Assigning Values to Variables

Solution:

1.	 We begin with the first step, where x has been assigned the value of 14:

x = 14

2.	 Now we use the += operator to set x equal to x + 1 in the same step:

x += 1

3.	 In this step, x is divided by 5, and the result is squared:

(x/5) ** 2

You should get the following output:

9.0

With this activity, you have learned how to perform multiple mathematical operations
on a variable. This is very common in Python. For example, in machine learning,
covered in Chapter 11, Machine Learning, the input may be a matrix, X, and multiple
mathematical operations will be performed on the X matrix until predictive results are
obtained. Although the mathematics behind machine learning is more sophisticated, the
core ideas are the same.

Activity 2: Finding a Solution Using Pythagorean Theorem in

Python

Solution:

1.	 Open your Jupyter Notebook.

2.	 In this step, you need to write a docstring that describes the code as follows:

"""
This document determines the Pythagorean Distance
between three given points
"""

3.	 Now, in the following code snippet, you have set x, y, and z equal to 2, 3, and 4:

Initialize variables
x, y, z = 2, 3, 4

Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops | 517

4.	 In the following steps, 4 and 5, you determine the Pythagorean distance between
the three points by squaring each value using the w_squared variable and taking the
square root of the sum. And in the final step, you add comments to clarify each line
of code:

Pythagorean Theorem in 3 dimensions
w_squared = x**2 + y**2 + z**2

5.	 Now, we take the square root of the sum, which will give us the distance in the final
step:

The square root gives the distance
w = w_squared ** 0.5

6.	 To print the distance, we simply enter the w variable to output the final distance:

#Show the distance
w   

You should get the following output:

5.385164807134504

In this activity, you have written a mini program that determines the Pythagorean
distance between three points. Significantly, you have added a docstring and comments
to clarify the code. There is never a correct answer for comments. It's up to the
writer to determine how much information to give. A general goal is to be terse but
informative. Comprehension is the most important thing. Adding comments and
docstrings will always make your code look more professional and easier to read.

Congratulations on making it through the first topic in your Python journey! You are
well on your way to becoming a developer or data scientist.

Activity 3: Using the input() Function to Rate Your Day

Solution:

1.	 We begin this activity by opening up a new Jupyter Notebook.

2.	 In this step, a question is displayed, prompting a user to rate their day on a number
scale:

Choose a question to ask
print('How would you rate your day on a scale of 1 to 10?')

3.	 In this step, the user input is saved as a variable:

Set a variable equal to input()
day_rating = input()

518 | Appendix

You should get the following output:

Figure 1.20: Output asking the user for an input value

4.	 In this step, a statement is displayed that includes the provided number:

Select an appropriate output.
print('You feel like a ' + day_rating + ' today. Thanks for letting me know')

You should get the following output:

Figure 1.21: Output displaying the user's day rating on a scale of 1 to 10

In this activity, you prompted the user for a number and used that number to display
a statement back to the user that includes the number. Communicating directly with
users depending upon their input is a core developer skill.

Activity 4: Finding the Least Common Multiple (LCM)

Solution:

1.	 We begin by opening a new Jupyter Notebook.

2.	 Here, you begin by setting the variables equal to 24 and 36:

Find the Least Common Multiple of Two Divisors
first_divisor = 24
second_divisor = 36

3.	 In this step, you have initialized a while loop based on the counting Boolean, which
is True, with an iterator, i:

counting = True
i = 1
while counting:

Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops | 519

4.	 This step sets up a conditional to check whether the iterator divides both numbers:

 if i % first_divisor == 0 and i % second_divisor == 0:

5.	 This step breaks the while loop:

 break

6.	 This step increments the iterator at the end of the loop:

 i += 1
print('The Least Common Multiple of', first_divisor, 'and', second_divisor, 'is', i,
'.')

The aforementioned code snippet prints the results.

You should get the following output:

The Least Common Multiple of 24 and 36 is 72.

In this activity, you used a while loop to run a program that computes the LCM of two
numbers. Using while loops to complete tasks is an essential ability for all developers.

Activity 5: Building Conversational Bots Using Python

Solution:

For the first bot, the solution is as follows:

1.	 This step shows the first question asked of the user:

print('What is your name?')

2.	 This step shows the response with the answer:

name = input()
print('Fascinating.', name, 'is my name too.')

You should get the following output:

Figure 1.22: Using the input() function to ask the user to enter a value

520 | Appendix

Once you enter the value, in this case, your name, the output will be as follows:

Figure 1.23: Output once the user has entered the values

3.	 This step shows the second question asked of the user:

print('Have you thought about black holes today?')

You should get the following output:

Have you thought about black holes today?

4.	 This step shows the response with the answer:

yes_no = input()
print('I am so glad you said', yes_no, '. I was thinking the same thing.')

You should get the following output:

Figure 1.24: Using the input() function asks the user to enter the value

Once you enter the value, in this case, your name, the output will be as follows:

Figure 1.25: Printing the input() function statements

Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops | 521

5.	 This step shows the response with the answer:

print('We\'re kindred spirits,', name, '. Talk later.')

You should get the following output:

We're kindred spirits, Corey.Talk later.

Now, moving on to the second bot:

6.	 Create an input() function for a smart variable and change the type to int:

print('How intelligent are you? 0 is very dumb. And 10 is a genius')
smarts = input()
smarts = int(smarts)

7.	 Create an if loop so that if the user enters a value equal to or less than 3, we print I
don't believe you. If not, then print the next statement:

if smarts <= 3:
 print('I don\'t believe you.')
 print('How bad of a day are you having? 0 is the worst, and 10 is the best.')

8.	 Create an input() function for the day variable and change the type to int:

 day = input()
 day = int(day)

9.	 Now, create an if else loop where if the user entered a value less than or equal to
5, we print the output statement. If not, then we print the output else statement:

 if day <= 5:
 print('If I was human, I would give you a hug.')
 else:
 print('Maybe I should try your approach.')

10.	 Continue the loop using elif, also called else-if, where if the user enters a value
less than or equal to 6, we print the corresponding statement:

elif smarts <= 6:
 print('I think you\'re actually smarter.')
 print('How much time do you spend online? 0 is none and 10 is 24 hours a day.')

522 | Appendix

11.	 Now, build another input() function for the hours variable and change the type to
int. Use the if-else loop so that if the user enters a value less than or equal to 4,
we print the corresponding statement. If not, print the other statement:

 hours = input()
 hours = int(hours)
 if hours <= 4:
 print('That\'s the problem.')
 else:
 print('And I thought it was only me.')

12.	 Using the elif loop, we check the smart variable and output the corresponding
print statement. We also use if-else to find out whether the user has entered a
value less than or equal to 5:

elif smarts <= 8:
 print('Are you human by chance? Wait. Don\'t answer that.')
 print('How human are you? 0 is not at all and 10 is human all the way.')
 human = input()
 human = int(human)
 if human <= 5:
 print('I knew it.')
 else:
 print('I think this courtship is over.')

13.	 We continue with the else loop from the if-else from step 7 and set the
appropriate conditions and print statements:

else:
 print('I see... How many operating systems do you run?')

14.	 Set the input() functions once again to the os variable and change the type to int,
after which we output the corresponding print statement depending on the user's
input values:

 os = input()
 os = int(os)
 if os <= 2:
 print('Good thing you\'re taking this course.')
 else:
 print('What is this? A competition?')

Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops | 523

You should get the following output:

Figure 1.26: Expected outcome from one of the possible values entered by the user

Congratulations! By completing this activity, you have created two conversational bots
using nested conditionals and if-else loops where we also used changing types, using
the input() function to get values from the user and then respectively displaying the
output.

524 | Appendix

Chapter 2: Python Structures

Activity 6: Using a Nested List to Store Employee Data

Solution:

1.	 Begin by creating a list, adding data, and assigning it to employees:

employees = [['John Mckee', 38, 'Sales'], ['Lisa Crawford', 29, 'Marketing'],
['Sujan Patel', 33, 'HR']]
print(employees)

You should get the following output:

Figure 2.31: Output when we print the content of employees

2.	 Next, we can utilize the for..in loop to print each of the record's data within
employee:

for employee in employees:
 print(employee)

Figure 2.32: Output when printing each of the records inside employees

3.	 To have the data presented in a structured version of the employee record, add the
following lines of code:

for employee in employees:
 print("Name:", employee[0])
 print("Age:", employee[1])
 print("Department:", employee[2])
 print('-' * 20)

Chapter 2: Python Structures | 525

Figure 2.33: Output when printing each of the records inside employees with a structure

4.	 Lastly, if we were to print the details of Lisa Crawford, we would need to use the
indexing method. Lisa's record is in position 1, so we would write:

employee = employees[1]
print(employee)
print("Name:", employee[0])
print("Age:", employee[1])
print("Department:", employee[2])
print('-' * 20)

Figure 2.34: Output when printing the details of Lisa Crawford

Having successfully completed this activity, you will be able to work with lists and
nested lists. As mentioned in the activity, this is just one instance where this concept
could come in handy, that is, to store data in lists and then access them as required.

526 | Appendix

Activity 7: Storing Company Employee Table Data Using a List and a

Dictionary

Solution:

1.	 Open a Jupyter Notebook and enter the following code in it:

employees = [
 {"name": "John Mckee", "age":38, "department":"Sales"},
 {"name": "Lisa Crawford", "age":29, "department":"Marketing"},
 {"name": "Sujan Patel", "age":33, "department":"HR"}
]
print(employees)

You should get the following output:

Figure 2.35: Output when we print the employees list

In step 1, we created a list, employee, and added values to it, such as name, age, and
department.

2.	 Now, we will be adding a for loop to our employee list using the * operator. To
do this, we will use a dictionary to print the employee details in a presentable
structure:

for employee in employees:
 print("Name:", employee['name'])
 print("Age:", employee['age'])
 print("Department:", employee['department'])
 print('-' * 20)

Chapter 2: Python Structures | 527

You should get the following output:

Figure 2.36: Output when we print an individual employee in a structured format

Note

You can compare this method with the previous activity, where we printed from a
nested list. Using a dictionary gives us a more concise syntax, as we access the data
using a key instead of a positional index. This is particularly helpful when we are
dealing with objects with many keys.

3.	 The final step is to print the employee details of Sujan Patel. To do this, we will
access the employees dictionary and will only print the value of one employee from a
list of employee names:

for employee in employees:
 if employee['name'] == 'Sujan Patel':
 print("Name:", employee['name'])
 print("Age:", employee['age'])
 print("Department:", employee['department'])
 print('-' * 20)

528 | Appendix

You should get the following output:

Figure 2.37: Output when we only print the employee details of Sujan Patel

Having completed this activity, you are able to work with lists and dictionaries. As you
have seen, lists are very useful for storing and accessing data, which very often comes
in handy in the real world when handling data in Python. Using dictionaries along with
lists proves to be very useful, as you have seen in this activity.

Chapter 3: Executing Python – Programs, Algorithms, Functions | 529

Chapter 3: Executing Python – Programs, Algorithms, Functions

Activity 8: What's the Time?

Solution:

In the following, you will find the solution code to Activity 8, What's the Time?

To make it easier to understand, the code has been broken down with explanations:

current_time.py:

"""
This script returns the current system time.
"""

1.	 Firstly, we import the datetime library, which contains a range of useful utilities for
working with dates:

import datetime

2.	 Using the datetime library, we can get the current datetime stamp, and then call the
time() function in order to retrieve the time:

time = datetime.datetime.now().time()

3.	 If the script is being executed, this if statement will be true, and, therefore, the
time will be printed:

if __name__ == '__main__':
 print(time)

You should get the following output:

Figure 3.35: The output in the datetime format

At the end of this activity, you are able to import the datetime module and execute the
Python script to tell the time. Additionally, you are able to import the time to use it
elsewhere in your code if necessary.

530 | Appendix

Activity 9: Formatting Customer Names

Solution:

The customer.py file should look like the steps mentioned below. Note that there are
many different valid ways to write this function:

1.	 The format_customer function takes two required positional arguments, first_name
and last_name, and one optional keyword argument, location:

def format_customer(first, last, location=None):

2.	 It then uses the % string formatting notation to create a full_name variable:

 full_name = '%s %s' % (first, last)

3.	 The third line checks whether a location has been specified and, if so, appends the
location details to the full name. If no location was specified, just the full name is
returned:

 if location:
 return '%s (%s)' % (full_name, location)
 else:
 return full_name

By the end of this activity, you are able to create a function that takes in various
arguments for names and returns a string as you require.

Activity 10: The Fibonacci Function with an Iteration

Solution:

1.	 This fibonacci_iterative function starts with the first two values of the Fibonacci
sequence, 0 and 1:

def fibonacci_iterative(n):
 previous = 0
 current = 1

2.	 For each loop in the iteration, it updates these values to represent the previous two
numbers in the sequence. After reaching the final iteration, the loop terminates,
and returns the value of the current variable:

 for i in range(n - 1):
 current_old = current
 current = previous + current
 previous = current_old
 return current

Chapter 3: Executing Python – Programs, Algorithms, Functions | 531

3.	 Now you can try running a few examples in Jupyter Notebook by importing the
fibonacci_iterative function:

from fibonacci import fibonacci_iterative
fibonacci_iterative(3)

You should get the following output:

2

Let's try another example:

fibonacci_iterative(10)

You should get the following output:

55

In this activity, you were able to work with iterations and return the nth value in the
Fibonacci sequence.

Activity 11: The Fibonacci Function with Recursion

Solution:

1.	 Open the fibonacci.py file.

2.	 Define a fibonacci_recursive function that takes a single input named n:

def fibonacci_recursive(n):

3.	 Now check whether the value of n is equal to 0 or 1. If the condition is satisfied, the
value of n is returned. Write the following code to implement this step:

 if n == 0 or n == 1:
 return n

4.	 Otherwise, in case the condition is not satisfied it will return the same function, but
the argument will be decremented by 2 and 1 and the respective differences will be
added:

 else:
 return fibonacci_recursive(n - 2) + fibonacci_recursive(n - 1)

5.	 Once the function is created, try running the examples in the compiler using the
following command:

from fibonacci import fibonacci_recursive
fibonacci_recursive(3)

532 | Appendix

You should get the following output:

2

You can now work with recursive functions. We implemented this on our fibonnacci.py
file to get the expected output. Recursive functions are helpful in many cases in order
to reduce the lines of code that you will be using if it is repetitive.

Activity 12: The Fibonacci Function with Dynamic Programming

Solution:

1.	 We begin by keeping a dictionary of Fibonacci numbers in the stored variable. The
keys of the dictionary represent the index of the value in the sequence (such as the
first, second, and fifth number), and the value itself:

stored = {0: 0, 1: 1}  # We set the first 2 terms of the Fibonacci sequence here.

2.	 When calling the fibonacci_dynamic function, we check to see whether we have
already computed the result; if so, we simply return the value from the dictionary:

def fibonacci_dynamic(n):
 if n in stored:
 return stored[n]

3.	 Otherwise, we revert to the recursive logic by calling the function to compute the
previous two terms:

 else:
 stored[n] = fibonacci_dynamic(n - 2) + fibonacci_dynamic(n - 1)
 return stored[n]

4.	 Now, run the following:

from fibonacci import fibonacci_recursive
fibonacci_dynamic(100)

You should get the following output:

354224848179261915075

In this activity, we used a function with dynamic programming that takes a single
positional argument representing the number term in the sequence that we want to
return.

Chapter 4: Extending Python, Files, Errors, and Graphs | 533

Chapter 4: Extending Python, Files, Errors, and Graphs

Activity 13: Visualizing the Titanic Dataset Using a Pie Chart and Bar Plots

Solution

1.	 Import all the lines from the csv file in the titanic_train.csv dataset file and store
it in a list:

import csv
lines = []
with open('titanic_train.csv') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=',')
 for line in csv_reader:
 lines.append(line)

2.	 Generate a collection of passengers objects. This step is designed to facilitate the
subsequent steps where we need to extract values of different properties into a list
for generating charts:

data = lines[1:]
passengers = []
headers = lines[0]

3.	 Create a simple for loop for the d variable in data, which will store the values in a
list:

for d in data:
 p = {}
 for i in range(0,len(headers)):
 key = headers[i]
 value = d[i]
 p[key] = value
 passengers.append(p)

4.	 Extract the survived, pclass, age, and gender values of survived passengers into
respective lists. We need to utilize list comprehension in order to extract the
values; for the passengers who survived, we will need to convert survived into an
integer and filter survived == 1, that is, passengers who survived:

survived = [p['Survived'] for p in passengers]
pclass = [p['Pclass'] for p in passengers]
age = [float(p['Age']) for p in passengers if p['Age'] != '']
gender_survived = [p['Sex'] for p in passengers if int(p['Survived']) == 1]

534 | Appendix

5.	 Now, import all the necessary libraries, such as matplotlib, seaborn, and numpy, and
draw a pie chart using plt.pie to visualize the passengers who survived:

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from collections import Counter
plt.title("Survived")
plt.pie(Counter(survived).values(), labels=Counter(survived).keys(),
autopct='%1.1f%%',
 colors=['lightblue', 'lightgreen', 'yellow'])
plt.show()

Execute the cell twice, and you should get the following output:

Figure 4.28: Pie chart showing the survival rate of the passengers

6.	 Draw a column bar plot using plt.bar to visualize the passengers who survived
based on their gender:

plt.title("surviving passengers count by gender")
plt.bar(Counter(gender_survived).keys(), Counter(gender_survived).values())
plt.show()

Chapter 4: Extending Python, Files, Errors, and Graphs | 535

You should get the following output:

Figure 4.29: A bar plot showing the variation in gender of those who survived the incident

In this activity, we have used the interesting Titanic dataset to visualize data. We
imported the dataset and stored the data in a list. Then, we used the matplotlib,
seaborn, and numpy libraries to plot the various data and get the outputs as needed using
the two plotting techniques: pie charts and bar plots.

536 | Appendix

Chapter 5: Constructing Python – Classes and Methods

Activity 14: Creating Classes and Inheriting from a Parent Class

Solution:

1.	 Firstly, define the parent class, Polygon. We add an init method that allows the user
to specify the lengths of the sides when creating the polygon:

class Polygon():
 """A class to capture common utilities for dealing with shapes"""
 def __init__(self, side_lengths):
 self.side_lengths = side_lengths

 def __str__(self):
 return 'Polygon with %s sides' % self.num_sides

2.	 Add two properties to the Polygon class – one that computes the number of sides of
the polygon, and another that returns the perimeter:

class Polygon():
 """A class to capture common utilities for dealing with shapes"""
 def __init__(self, side_lengths):
 self.side_lengths = side_lengths

 def __str__(self):
 return 'Polygon with %s sides' % self.num_sides

 @property
 def num_sides(self):
 return len(self.side_lengths)

 @property
 def perimeter(self):
 return sum(self.side_lengths)

Chapter 5: Constructing Python – Classes and Methods | 537

3.	 Create a child class of Polygon called Rectangle. Add an init method that allows
the user to specify the height and the width of the rectangle. Add a property that
computes the area of the rectangle:

class Rectangle(Polygon):
 def __init__(self, height, width):
 super().__init__([height, width, height, width])

 @property
 def area(self):
 return self.side_lengths[0] * self.side_lengths[1]

4.	 Test your Rectangle class by creating a new rectangle and checking the value of its
properties – the area and the perimeter:

r = Rectangle(1, 5)
r.area, r.perimeter

You should get the following output:

(5, 12)

5.	 Create a child class of Rectangle called Square that takes a single height parameter
in its initialization:

class Square(Rectangle):
 def __init__(self, height):
 super().__init__(height, height)

6.	 Test your Square class by creating a new square and checking the value of its
properties – the area and the perimeter:

s = Square(5)
s.area, s.perimeter

You should get the following output:

(25, 20)

538 | Appendix

Chapter 6: The Standard Library

Activity 15: Calculating the Time Elapsed to Run a Loop

Solution:

1.	 We begin by opening a new Jupyter file and importing the random and time modules:

import random
import time

2.	 Then, we use the time.time function to get the start time:

start = time.time()

3.	 Now, by using the aforementioned code, we will find the time in nanoseconds.
Here, the range is set from 1 to 999:

l = [random.randint(1, 999) for _ in range(10 * 3)]

4.	 Now, we record the finish time and subtract this time to get the delta:

end = time.time()
print(end - start)

You should get the following output:

0.0019025802612304688

5.	 But this will give us a float. For measurements higher than 1 second, the precision
might be good enough, but we can also use time.time_ns to get the time as the
number of nanoseconds elapsed. This will give us a more precise result, without the
limitations of floating-point numbers:

start = time.time_ns()
l = [random.randint(1, 999) for _ in range(10 * 3)]
end = time.time_ns()
print(end - start)

You should get the following output:

187500

Note

This is a good solution when using the time module and for common applications.

Chapter 6: The Standard Library | 539

Activity 16: Testing Python Code

Solution:

The line, compile("1" + "+1" * 10 ** 6, "string", "exec"), will crash the interpreter;
we will need to run it with the following code:

1.	 First, import the sys and subprocess modules as we are going to use them in the
following steps:

import sys
import subprocess

2.	 We save the code that we were given in the code variable:

code = 'compile("1" + "+1" * 10 ** 6, "string", "exec")'

3.	 Run the code by calling subprocess.run and sys.executable to get the Python
interpreter we are using:

result = subprocess.run([
    sys.executable,
    "-c", code
])

The preceding code takes a code line, which compiles Python code that will crash
and runs it in a subprocess by executing the same interpreter (retrieved via sys.
executable) with the -c option to run Python code inline.

4.	 Now, we print the final result using result.resultcode. This will return the value
-11, which means the process has crashed:

print(result.returncode)

The output will be as follows:

-11

This line of code just prints the return code of the subprocess call.

In this activity, we have executed a small program that can run the requested code line
and checked whether it would crash without breaking the current process. It did end
up crashing, hence outputting the value -11, which corresponded to an abort in the
program.

540 | Appendix

Activity 17: Using partial on class Methods

Solution:

You need to explore the functools module and realize a specific helper for methods,
which can be used as explained in the following steps:

1.	 When you execute the mentioned code, you will get the following error message:

Figure 6.52: Error output with a missing required positional argument

Now, to fix this, let's check for an alternative by observing the following steps.

2.	 Import the functools module:

import functools

3.	 Create the Hero class, which uses partialmethod to set reset_name:

class Hero:
    DEFAULT_NAME = "Superman"
    def __init__(self):
        self.name = Hero.DEFAULT_NAME
    
    def rename(self, new_name):
        self.name = new_name
        
    reset_name = functools.partial(rename, DEFAULT_NAME)
        
    def __repr__(self):
        return f"Hero({self.name!r})"

Chapter 6: The Standard Library | 541

The code makes use of a different version of partial, partialmethod, which allows the
creation of partial for a method class. By using this utility on the rename method and
setting the name to the default name, we can create partial, which will be used as a
method. The name of the method is the one that is set in the scope of the Hero class
definition, which is reset_name.

Wrong Assumptions with Date and Time

Figure 6.53: Wrong assumptions of date and time along with its reasoning

542 | Appendix

Chapter 7: Becoming Pythonic

Activity 18: Building a Chess Tournament

Solution:

1.	 Open the Jupyter Notebook.

2.	 Define the list of player names in Python:

names = ["Magnus Carlsen", "Fabiano Caruana", "Yifan Hou", "Wenjun Ju"]

3.	 The list comprehension uses the list of names twice because each person can
either be player 1 or player 2 in a match (that is, they can play with the white or the
black pieces). Because we don't want the same person to play both sides in a match,
add an if clause that filters out the situation where the same name appears in both
elements of the comprehension:

fixtures = [f"{p1} vs. {p2}" for p1 in names for p2 in names if p1 != p2]

4.	 Finally, print the resulting list so that the match officials can see who will be playing
whom:

print(fixtures)

You should get the following output:

Figure 7.30: The sorted fixtures' output using a list comprehension

In this activity, we used list comprehension to sort out players and create a fixture that
was in the form of a string.

Chapter 7: Becoming Pythonic | 543

Activity 19: Building a Scorecard Using Dictionary Comprehensions and

Multiple Lists

Solution:

1.	 The solution is to iterate through both collections at the same time, using an index.
First, define the collections of names and their scores:

students = ["Vivian", "Rachel", "Tom", "Adrian"]
points = [70, 82, 80, 79]

Now build the dictionary. The comprehension is actually using the third collection;
that is, the range of integers from 0 to 100.

2.	 Each of these numbers can be used to index into the list of names and scores so
that the correct name is associated with the correct points value:

scores = { students[i]:points[i] for i in range(4) }

3.	 Finally, print out the dictionary you just created:

print(scores)

You should get the following output:

Figure 7.31: A dictionary indicating names and scores as a key-value pair

In this activity, we worked on dictionary comprehension and multiple lists. We executed
the code to print out a scorecard with two separate lists of names and scores and
outputted their values.

544 | Appendix

Activity 20: Using Random Numbers to Find the Value of Pi

Solution:

1.	 You will need the math and random libraries to complete this activity:

import math
import random

2.	 Define the approximate_pi function:

def approximate_pi():

3.	 Set the counters to zero:

 total_points = 0
 within_circle = 0

4.	 Calculate the approximation multiple times:

 for i in range (10001):

Here, x and y are random numbers between 0 and 1, which, together, represent a
point in the unit square (you can refer to Figure 7.25):

 x = random.random()
 y = random.random()
 total_points += 1

5.	 Use Pythagoras' Theorem to work out the distance between the point and the
origin, (0,0):

 distance = math.sqrt(x**2+y**2)
 if distance < 1:

If the distance is less than 1, then this point is both inside the square and inside a
circle of radius 1, centered on the origin. You can refer to Figure 7.25:

 within_circle += 1

6.	 Yield a result every 1,000 points. There's no reason why this couldn't yield a result
after each point, but the early estimates will be very imprecise, so let's assume that
users want to draw a large sample of random values:

 if total_points % 1000 == 0:

Chapter 7: Becoming Pythonic | 545

7.	 The ratio of points within the circle to total points generated should be
approximately π/4 because the points are uniformly distributed across the square.
Only some of the points are both in the square and the circle, and the ratio of areas
between the circle segment and the square is π/4:

 pi_estimate = 4 * within_circle / total_points
 if total_points == 10000:

8.	 After 10000 points are generated, return the estimate to complete the iteration.
Using what you have learned about itertools in this chapter, you could turn this
generator into an infinite sequence if you want to:

 return pi_estimate
 else:

Yield successive approximations to π:

                yield pi_estimate

9.	 Use the generator to find estimates for the value of π. Additionally, use a list
comprehension to find the errors: the difference between the estimated version
and the "actual" value in Python's math module ("actual" is in scare quotes because
it too is only an approximate value). Approximate values are used because Python
cannot be exactly expressed in the computer's number system without using
infinite memory:

estimates = [estimate for estimate in approximate_pi()]
errors = [estimate - math.pi for estimate in estimates]

10.	 Finally, print out our values and the errors to see how the generator performs:

print(estimates)
print(errors)

You should get the following output:

Figure 7.32: The output showing the generator yielding successive estimates of π

By completing this activity, you are now able to explain the working of generators. You
successfully generated a plot of points, using which you were able to calculate the value
of π. In the following section, we will learn about regular expressions.

546 | Appendix

Activity 21: Regular Expressions

Solution:

1.	 First, create the list of names:

names = ["Xander Harris", "Jennifer Smith", "Timothy Jones", "Amy Alexandrescu",
"Peter Price", "Weifung Xu"]

2.	 Using the list comprehension syntax from this chapter makes finding the winners
as easy as a single line of Python:

winners = [name for name in names if re.search("[Xx]", name)]

3.	 Finally, print the list of winners:

print(winners)

You should get the following output:

Figure 7.33: The output showing the winners list indicating the presence of "Xx" in the customer name

In this activity, we used regular expressions and Python's re module to find customers
from a list whose name contains the value of Xx.

Chapter 8: Software Development | 547

Chapter 8: Software Development

Activity 22: Debugging Sample Python Code for an Application

Solution:

1.	 First, you need to copy the source code, as demonstrated in the following code
snippet:

DEFAULT_INITIAL_BASKET = ["orange", "apple"]
def create_picnic_basket(healthy, hungry, initial_basket=DEFAULT_INITIAL_BASKET):
 basket = initial_basket
 if healthy:
 basket.append("strawberry")
 else:
 basket.append("jam")
 if hungry:
 basket.append("sandwich")
 return basket

For the first step, the code creates a list of food that is based on an initial list that
can be passed as an argument. There are then some flags that control what gets
added. When healthy is true, a strawberry will get added. On the other hand, if
it is false, the jam will be added instead. Finally, if the hungry flag is set to true, a
sandwich will be added as well.

2.	 Run the code in your Jupyter Notebook, along with the reproducers, as
demonstrated in the following code snippet:

Reproducer
print("First basket:", create_picnic_basket(True, False))
print("Second basket:", create_picnic_basket(False, True, ["tea"]))
print("Third basket:", create_picnic_basket(True, True))

548 | Appendix

3.	 Observe the output; the issue will show up in the third basket, where there is one
extra strawberry.

You should get the following output:

Figure 8.19: The output with the additional item in the third basket

4.	 You will need to fix this by setting the basket value to None and using the if-else
logic, as demonstrated in the following code snippet:

def create_picnic_basket(healthy, hungry, basket=None):
 if basket is None:
 basket = ["orange", "apple"]
 if healthy:
 basket.append("strawberry")
 else:
 basket.append("jam")
 if hungry:
 basket.append("sandwich")
 return basket

Note that default values in functions should not be mutable, as the modifications
will persist across calls. The default basket should be set to None in the function
declaration, and the constant should be used within the function. This is a great
exercise to debug.

Chapter 8: Software Development | 549

5.	 Now, run the reproducers once again, and it will be fixed.

The debugged output is as follows:

Figure 8.20: Debugging the activity with the correct output

In this activity, you have implemented debugging to understand the source code, after
which you were able to print the test cases (reproducers) and find the issue. You were
then able to debug the code and fix it to achieve the desired output.

550 | Appendix

Chapter 9: Practical Python – Advanced Topics

Activity 23: Generating a List of Random Numbers in a Python Virtual

Environment

Solution

1.	 Create a new conda environment called my_env:

conda create -n my_env

You should get the following output:

Figure 9.32: Creating a new conda environment (truncated)

2.	 Activate the conda environment:

conda activate my_env

3.	 Install numpy in your new environment:

conda install numpy

Chapter 9: Practical Python – Advanced Topics | 551

You should get the following output:

Figure 9.33: Installing numpy (truncated)

4.	 Next, install and run a jupyter Notebook from within your virtual environment:

conda install jupyter
jupyter notebook

5.	 Create a new jupyter Notebook and start with the following imports:

import threading
import queue
import cProfile
import itertools
import numpy as np

6.	 Create a function that uses the numpy library to generate an array of random
numbers. Recall that when threading, we need to be able to send a signal for the
while statement to terminate:

in_queue = queue.Queue()
out_queue = queue.Queue()
def random_number_threading():
 while True:
 n = in_queue.get()
 if n == 'STOP':
 return

552 | Appendix

 random_numbers = np.random.rand(n)
 out_queue.put(random_numbers)

7.	 Next, let's add a function that will start a thread and put integers into the in_queue
object. We can optionally print the output by setting the show_output argument to
True:

def generate_random_numbers(show_output, up_to):
 thread = threading.Thread(target=random_number_threading)
 thread.start()
 for i in range(up_to):
 in_queue.put(i)
 random_nums = out_queue.get()
 if show_output:
 print(random_nums)
 in_queue.put('STOP')
 thread.join()

8.	 Run the numbers on a small number of iterations to test and see the output:

generate_random_numbers(True, 10)

You should get the following output:

Figure 9.34: Generating lists of random numbers with numpy

Chapter 9: Practical Python – Advanced Topics | 553

9.	 Rerun the numbers with a large number of iterations and use cProfile to view a
breakdown of what is taking time to execute:

cProfile.run('generate_random_numbers(False, 20000)')

You should get the following output:

Figure 9.35: cProfile output (truncated)

Having completed this activity, you now know how to execute programs in a conda
virtual environment and get the final output as a set amount of time to execute the
code. You also used CProfiling to analyze the time taken by various parts of your
code, giving you the opportunity to diagnose which parts of your code were the least
efficient.

554 | Appendix

Chapter 10: Data Analytics with pandas and NumPy

Activity 24: Data Analysis to Find the Outliers in Pay versus the Salary Report

in the UK Statistics Dataset

Solution

1.	 You begin with a new Jupyter Notebook.

2.	 Copy the UK Statistics dataset file into a specific folder where you will be
performing this activity.

3.	 Import the necessary data visualization packages, which include pandas as pds,
matplotlib as plt, and seaborn as sns:

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
Set up seaborn dark grid
sns.set()

4.	 Choose a variable to store DataFrame and place the UKStatistics.csv file within the
folder of your Jupyter Notebook. In this case, it would be as follows:

statistics_df = pd.read_csv('UKStatistics.csv')

5.	 Now, to display the dataset, we will be calling the statistics_df variable, and
.head() will show us the output of the entire dataset:

statistics_df.head()

Chapter 10: Data Analytics with pandas and NumPy | 555

The output will be as follows:

Figure 10.54: Dataset output to view

6.	 To find the shape that is the number of rows and columns in the dataset, we use
the .shape method:

statistics_df.shape

The output will be as follows:

(51, 19)

7.	 Now, to plot a histogram of the data for Actual Pay Floor (£), we use the .hist
method, as mentioned in the following code snippet. Here, you will see the
difference in Pay Floor in the histogram:

plt.hist(statistics_df['Actual Pay Floor (£)'])
plt.show()

556 | Appendix

The output will be as follows:

Figure 10.55: Output as a histogram

8.	 To plot the scatter plot, we use the .scatter method, and we will be comparing the
x values as Salary Cost of Reports (£), and y as Actual Pay Floor (£):

x = statistics_df['Salary Cost of Reports (£)']
y = statistics_df['Actual Pay Floor (£)']
plt.scatter(x, y)
plt.show()

Chapter 10: Data Analytics with pandas and NumPy | 557

The output will be as follows:

Figure 10.56: Output of the scatter plot

9.	 Next, you need to find the difference in data, which is the data that is vastly apart
from each other for x as Salary Cost of Reports (£) and y as Actual Pay Floor (£)
using the box plot graph. We first assign the values of x and y, as mentioned in the
following code snippet:

x = statistics_df['Salary Cost of Reports (£)']
y = statistics_df['Actual Pay Floor (£)']

558 | Appendix

10.	 Now, to create the end outcome and check the amount of data that is closely stuck
together within the box and the outliers that are presented away from the box in
the graph, we use the .boxplot method to plot the graph:

plt.boxplot(x)
plt.show()

The output will be as follows:

Figure 10.57: Output of the box plot

In this activity, we compared two specific pieces of data from the dataset, that is, Salary
Cost of Reports (£) and Actual Pay Floor (£). We then used various graphs and
observed the vast difference between Salary cost reports and Actual Pay Floor. The
box plot graph clearly shows us that there are three outliers in the data of x and y that
make it prone to inconsistencies with regard to pay from the government.

Chapter 11: Machine Learning | 559

Chapter 11: Machine Learning

Activity 25: Using Machine Learning to Predict Customer Return Rate

Accuracy

Solution:

1.	 The first step asks you to download the dataset and display the first five rows.

Import the necessary pandas and numpy libraries to begin with:

import pandas as pd
import numpy as np

2.	 Next, load the CHURN.csv file:

df = pd.read_csv('CHURN.csv')

3.	 Now, display the headers using .head():

df.head()

You should get the following output:

Figure 11.37: Dataset displaying the data as output

560 | Appendix

4.	 The next step asks you to check for NaN values. The following code reveals that
there are none:

df.info()

You should get the following output:

Figure 11.38: Information on the dataset

5.	 The next step is done for you. The following code converts 'No' and 'Yes' into 0
and 1:

df['Churn'] = df['Churn'].replace(to_replace=['No', 'Yes'], value=[0, 1])

6.	 The next step asks you to correctly define X and y. The correct solution is as
follows. Note that the first column is eliminated because a customer ID would not
be useful in making predictions:

X = df.iloc[:,1:-1]
y = df.iloc[:, -1]

7.	 In order to transform all of the predictive columns into numeric columns, the
following code will work:

X = pd.get_dummies(X)

Chapter 11: Machine Learning | 561

8.	 This step asks you to write a classifier function with cross_val_score. This is done
as follows:

from sklearn.model_selection import cross_val_score
def clf_model (model, cv=3):
 clf = model

 scores = cross_val_score(clf, X, y, cv=cv)

 print('Scores:', scores)
 print('Mean score', scores.mean())

9.	 The following code and output show the implementation of five classifiers, as
required in this step:

By using logistic regression:

from sklearn.linear_model import LogisticRegression
clf_model(LogisticRegression())

You should get the following output:

Figure 11.39: Mean score output using LogisticRegression

By using KNeighborsClassifier:

from sklearn.neighbors import KNeighborsClassifier
clf_model(KNeighborsClassifier())

You should get the following output:

Figure 11.40: Mean score output using KNeighborsClassifier

By using GaussianNB:

from sklearn.naive_bayes import GaussianNB
clf_model(GaussianNB())

562 | Appendix

You should get the following output:

Figure 11.41: Mean score output using GaussianNB

By using RandomForestClassifier:

from sklearn.ensemble import RandomForestClassifier
clf_model(RandomForestClassifier())

You should get the following output:

Figure 11.42: Mean score output using RandomForestClassifier

By using AdaBoostClassifier:

from sklearn.ensemble import AdaBoostClassifier
clf_model(AdaBoostClassifier())

You should get the following output:

Figure 11.43: Mean score output using AdaBoostClassifier

You may or may not have the same warning as us in your notebook files. Generally
speaking, warnings that do not interfere with code are okay. They are often used
to warn the developer of future changes. The top three performing models, in this
case, are AdaBoostClassifer, RandomForestClassifier, and Logistic Regression.

10.	 In this step, you are asked to build a function using the confusion matrix and the
classification report and run it on your top three models. The following code does
just that:

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

Chapter 11: Machine Learning | 563

X_train, X_test ,y_train, y_test = train_test_split(X, y, test_size = 0.25)
def confusion(model):
 clf = model
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)
 print('Confusion Matrix:', confusion_matrix(y_test, y_pred))
 print('Classfication Report:', classification_report(y_test, y_pred))

 return clf

11.	 Now, build a function for the confusion matrix using AdaBoostClassifier:

confusion(AdaBoostClassifier())

You should get the following output:

Figure 11.44: Output of the confusion matrix on AdaBoostClassifier

Confusion matrix using RandomForestClassifier:

confusion(RandomForestClassifier())

564 | Appendix

You should get the following output:

Figure 11.45: Output of the confusion matrix on RandomForestClassifier

Confusion matrix using LogisticRegression:

confusion(LogisticRegression())

You should get the following output:

Figure 11.46: Output of the confusion matrix on LogisticRegression

Chapter 11: Machine Learning | 565

12.	 In this step, you are asked to optimize one hyperparameter for your best model. We
looked up AdaBoostClassifier() and discovered the n_estimators hyperparameter,
similar to the n_estimators of Random Forests. We tried several out and came up
with the following result for n_estimators=250:

confusion(AdaBoostClassifier(n_estimators=250))

You should get the following output:

Figure 11.47: Output of the confusion matrix using n_estimators=250

13.	 For n_estimators=25 using the AdaBoostClassifier:

confusion(AdaBoostClassifier(n_estimators=25))

You should get the following output:

Figure 11.48: Output of the confusion matrix using n_estimators=25

566 | Appendix

14.	 For n_estimators=15 using the AdaBoostClassifier:

confusion(AdaBoostClassifier(n_estimators=15))

You should get the following output:

Figure 11.49: Output of the confusion matrix using n_estimators=15

As you will see by the end of this activity, when it comes to predicting user churn,
AdaBoostClassifier(n_estimators = 25) gives the best predictions.

Index

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

A
absolute: 240, 242,

252-253, 259, 484
adaboost: 469-471,

509-512
addhandler: 272
aggregate: 83
algorithm: 71, 73, 98,

107-115, 129, 237,
311-312, 314, 317, 405,
407, 469-471, 473, 475,
478, 481, 483, 486,
490-492, 503, 511

-alpha: 397
alpine: 382
anaconda: 4, 376, 400
anchor: 167
annotate: 168-170
argparse: 232-233,

238-239, 392-395
argument: 102, 118-121,

124, 126, 128, 132,
141, 143, 150-152, 157,
194-195, 197, 199,
201-202, 204, 210,
226, 233, 238-239,
241-242, 251, 256-259,
268, 276, 287-291, 307,
312, 392-394, 409

arrays: 65-66, 414-416,
419-421, 424, 428

articles: 148
asdict: 236
asserts: 157, 344
asserttrue: 343-344
assertx: 344
astimezone: 242
autopct: 166, 173

B
bagging: 509, 512
battersea: 395
benchmark: 197
binary: 97, 109, 114-115,

142, 144, 152, 185, 252,
259, 346, 474, 489

boolean: 37, 43, 51-52,
233, 316, 392

booleans: 1, 3, 36-40, 94
boosting: 471, 509, 512
bootstrap: 352
boston: 440-441, 443,

448, 450-452, 454-458,
460, 463, 467, 471-472,
475-477, 480, 484-486,
488, 490, 492, 494, 509

boxplot: 463

C
cached: 286, 288
calendars: 184, 246
canonical: 369
caveat: 35
cbarlabel: 167-170
celestial: 470
charts: 158, 163, 165,

173, 179, 181
colorbar: 167
concat: 438
config: 232, 271-274
cookbook: 264, 271
coppola: 80-81
copyfile: 394
cprofile: 401-409
cpython: 356-357,

360, 398-399, 401
cpython-: 400
cryptic: 104

ctypes: 234
cython: 234, 396, 399-401
cythonize: 400

D
dataclass: 235-236
dataframe: 420, 429-431,

433-434, 436-439,
441, 443, 445-448,
450, 456, 458, 463,
471-472, 476-477, 496

dataframes: 33,
413-414, 421, 429,
431, 433, 437-438,
441, 448, 467, 476

datetime: 104, 106, 118,
153, 184, 202-203, 216,
220-224, 239-247

datetimes: 242, 244, 247
dateutil: 240-241, 247
decorators: 201-202, 288
defauldict: 275
delimiter: 179
dictconfig: 271-273
difflib: 232
directory: 99, 101, 150,

251-253, 255, 347, 350,
354, 359, 371, 382, 494

displot: 170
distutils: 400
django: 356
dm-snr: 495, 497
-dndebug: 400
docker: 367-368,

380-384, 410, 414
dockerfile: 380, 382-384
dogmatic: 309
dropna: 477

E
echoes: 233
estimates: 171, 320-321
estimation: 171, 418
estimators: 491-494
euclidean: 5
execnet: 386-390

F
fibonacci: 124,

128-129, 132-133
figsize: 173, 175,

452-455, 459-460
fileconfig: 274
freezegun: 247
functools: 284-293

G
gaussiannb: 500-502, 508

H
--help: 392
helper: 97, 133-135,

144, 202
histogram: 163,

450-455, 466

I
indent: 44, 332
indented: 43-47, 49, 51
ironpython: 386, 396
isclosed: 386
isinstance: 169
isnull: 446-447
issubset: 92
issuing: 358
issuperset: 93

K
kdeplot: 172
keystroke: 44
keystrokes: 5, 44, 230, 235
key-value: 79, 81, 94, 306
keyword: 10-11, 15, 27,

36-37, 43, 48-50,
56, 58, 60, 118-121,
139-140, 192-193,
197-198, 238, 261, 289,
304, 345, 347, 440

kleene: 321
k-nearest: 470,

485-486, 488, 500
kubernetes: 380
kwargs: 120-121, 167, 192
kwlist: 15

M
matplotlib: 147, 158,

161-163, 166, 168-176,
374, 414, 450, 454,
456, 458, 463, 467

matrices: 63, 66, 70-72,
414, 420-421, 423, 499

matrix: 63, 67-68, 70-73,
413, 420-424, 467,
469-471, 495, 502-512

matrixes: 70-73
metadata: 346,

349-350, 379-380
modules: 97-98, 102-104,

144, 153, 227, 229-232,
234-236, 239, 241,
244-247, 249-251, 275,
284, 293, 347, 353,
368, 390, 399-400

multiplied: 143, 475, 478

multiply: 7-8, 72, 107,
117-118, 320, 426-427

mutable: 86, 89
mydate: 216
myfunc: 140
mylist: 116

N
--name: 380
namespace: 235, 245, 260
non-null: 444, 498
nullify: 157

O
operands: 9
outfile: 394
outliers: 418, 448-449,

463-467, 509

P
params: 167-168, 488, 493
parser: 151, 232-233,

238-239, 330, 392-394
powell: 23
pyplot: 158, 161-163, 166,

168, 170, 172-173, 175,
450, 456, 458, 463

pytest: 345
pythonic: 2, 4, 17, 227,

232, 277, 281, 293,
295-299, 309, 314, 325,
328, 397, 402, 513

Q
quantifier: 322-323
quantum: 319

R
rebind: 290
regplot: 460
reshape: 424-425
reshaped: 425
rossum: 396
rulebook: 331
running: 3, 12, 15, 48-49,

77, 94, 98, 116-117, 121,
124-125, 128, 131, 133,
150, 154, 222, 237,
247-250, 252, 256,
258-260, 262-263,
266-267, 293, 309,
329-330, 333-335,
337-338, 344, 347, 355,
358-363, 375, 379-381,
383, 385-387, 389, 391,
393, 395-396, 400, 407

runtime: 81, 148, 157,
234, 249, 251, 263,
386, 395-396, 407

S
seaborn: 147, 158,

170-172, 175, 450-452,
459, 462-463, 467

sensor: 148
sensors: 154
sentence: 471
shebangs: 101
shutil: 255
sieves: 311
simulation: 396
skewness: 495, 497
skipna: 439
source: 155, 203, 253,

263, 265, 275, 327-329,
331-332, 341, 343,
346-350, 353-360,

380, 394-395
--source: 394
strftime: 153, 203, 221
symlink: 397
synonym: 401
sysstdout: 291

T
tableau: 449
tabular: 66
tarfile: 232
ticker: 169
time-based: 160
timedelta: 216, 245-246
timeit: 397-398, 400
timeliness: 395
timeout: 259
timestamp: 357
timestamps: 239-240,

242-243, 245
timezone: 242-245, 247
titanic: 179, 489
titles: 161, 164
tkinter: 230
toolbelt: 231
tzinfo: 240-243

U
ubuntu: 101
unittest: 343-345
unzipping: 83, 230
urllib: 275-276
urlopen: 275

V
valfmt: 169
vnssxp: 329

X
xander: 324-325
x-axis: 159, 164
x-files: 324
xgboost: 511
xlabel: 159, 161-162,

164, 170, 172, 174-175,
451-453, 455

xticks: 162, 167-168

Y
yields: 318
ylabel: 159, 161-162, 164,

167, 170, 172, 174-175,
451-453, 455

yticks: 167-168
y-values: 479

Z
zipfile: 232
zipping: 83
zlabel: 175

	d4a5906bd38a65c6045c375895ec7d597dca056f20490e08e14c627bf5dc3378.pdf
	The Python Workshop
	The Python Workshop

