ANDREW BIRD | DR LAU CHER HAN
MARIO CORCHERO JIMENEZ
GRAHAM LEE | COREY WADE

{ THE

(PYTHON N

WORKSHOP

LEARN TO CODE IN PYTHON AND KICKSTART YOUR
CAREER IN SOFTWARE DEVELOPMENT OR DATA SCIENCE

‘(1{5“ Ty

B0

PROGRAMMING

The Python Workshop

Learn to code in Python and kickstart your career in
software development or data science

Andrew Bird

Dr Lau Cher Han

Mario Corchero Jiménez
Graham Lee

Corey Wade

Table of Contents

Preface

Chapter 1: Vital Python - Math, Strings,
Conditionals, and Loops

T oY g o [Tl u{o] o RN S PR SRTSTRRRRRTROR
ViItal PYtRON ittt see s nn e s sane s s ne s s ssnn e s s nnes
Numbers: Operations, Types, and Variablescccccoovreeirrvireverncenenennne
To Open a Jupyter NOtebOOKcocvereeereieriereeereeereee e ee e e
Python as @ CalCUlator ... e
Standard Math OpPerationscccecceeererenereieneeeeree e see s see s seesssnesnne
Basic Math OpPerations ...ttt
Order Of OPEratioNScccceeeveereiereieeeeeree e s see s see e see s seesssaesssaesssnessnesssnesnne
Exercise 1: Getting to Know the Order of Operationsccccceeveeeereercvercnennne
SPACING IN PYLNON ...t s e s sne s sne s sne s s nesssnesnne
Number Types: Integers and FIOatsccocceiiiiiiiiiiiiiiieneeeeeceee 10
Exercise 2: Integer and FIOat TYPEScccceeeeireeernrernrerereeeseeecee e sne e 10
Complex NUMDEr TYPES ...ttt 12
Errors in PYTRON ...t ne s e s e s ne s ne s ne s nesnne 12
Variables ... 12
Variable ASSINMENTcooiiiiieieeeeeeeeeeeree e ee s e s s ne s nesnee 12
Exercise 3: Assigning Variables ... 13
CHANGING TYPES .eeeeeeeeeeeeeeeeeeeeseeeseeesere s ee s eesssaesesae s snesssnesessessnnessssesesnases 14
Reassigning Variables in Terms of Themselvescccocvevrvvrivnnrincenccnnen. 14
Activity 1: Assigning Values to Variablescccocoereverrvernrenncennerneeeeeene 14

Variable NAIMES ...ttt ettt eeeeeeeaaaeeeeeesssassesssesssssssesssessssnnsssesens 15

EXErcise 4: Variable NAIMESeevieeiiiiieeeeeeeeeeeeeeeeeneeeeessesesesessssssseeseesesesssesens 16

MUItiple Variables ...t snee 17
Exercise 5: Multiple Variables in Pythonccccevviirviinrinneinceerceeeeeeeee 17
(00 3 010 £ T=1 0 N 18
Exercise 6: Comments in PYthoNcociriiriinnieeeeceeceecceeseeesceessee e 18
DOCSEIINGS .eeeiiiieiieeieeeeee ettt s e s s ae s n e s s n e s n e s s ne s nesnne 19
Activity 2: Finding a Solution Using the Pythagorean
Theorem in PYtRON ...t 19
Strings: Concatenation, Methods, and input()ccccccceveevericreercceerecnnens 20
SEFING SYNTAX ..ttt s s e e s a e s a e s sae e 21
Exercise 7: String Error SYNTaXccccevceeririeeiniieenninnenisneesssneessssessssseesssssseses 21
Escape Sequences With QUOLESccceeciiiiiiiiiiiiiiinee et enee 23
MUIEI-LING SEFINES ..eeeeereeieeceeeeeeereeeeeeceesere s e s sre s seesssnesssnesssnesssnesssnasssnasnns 23
The print() FUNCHION ...ttt 23
Exercise 8: DiSplaying StriNgGSccccecverrreriierrieecreneeeeeeeseseeseeesseesseessnesnes 24
String Operations and Concatenationccccceeveiiveiiiienieennneeeneesceeeneene 25
Exercise 9: String Concatenationcccoccceeriieeeniiiieninneennieeseeesseeesssneens 25
String INterpolationcc.covieieiriieereeeerceeeee e s s e eene 26
L@0eT 0 o1 0T TT =T 0T T = 1 o1 P 26
0 3 T 27
The 1en() FUNCLION ..ottt ssn e 27
SEriNG Methods ... 28
Exercise 10: String Methodsccccoeevieeiereierreeereere e e enee 28
CASEING e s s s s s a e s aa e 29
Exercise 11: Types and Castingccccceeeveereierriererieneeeneeeseseeseseeseeesseessnesenes 30
The iINPUL() FUNCHION ..ottt 31
Exercise 12: The input() FUNCLIONcooiireiiiieeeeeeeeeeeeeeeee e 31

Activity 3: Using the input() Function to Rate Your Daycccecceviuirincnnee. 32

INAE@XING ettt e s e s s sa s n e s n e s nesnne 33
SHCING ettt esree s st e s e sae e s s ssne e s s sneesssnnessssnaesssnnesssnnassssnaas 35
Strings and Their Methods ... 36
Booleans and Conditionalsccocceeiviiiniiiiiiniinneneereeseeeeece s 36
BOOICANS ... 37
Exercise 13: Boolean Variablescciiiiiiiiiiniiinicnicciccecnecceenecceenees 37
LOZICAl OPEIrAtOrsS ...ccoeeiiieiteeeeetee et n e s n e s nesnne 38
CoOMPAriSON OPEraAtOrScccccvueriieriirririeriirreresneeseesresssssessssssssssssaessssssesssssassns 40
Exercise 14: Comparison OPeratorsccccceeveirieirinnneenneesseesseessseessseesnnes 40
COMPArING SEFINES ...eiiiiiiiriieiriiteierreeeeeeeesseesesstessssaeessssssessssseesssnsesssssanssns 42
Exercise 15: COmMParing StriNGScocveiiieiiiiniiinnieneee et eee e 43
CONAILIONAIS ..ottt 43
THE i SYNTAX ottt r s n s 43
T aTe =1 o) =1 [o LTS 44
Exercise 16: Using the if SyNtaX ... 44
I @IS e 45
Exercise 17: Using the if-else Syntaxccccccociiviiiinnniinnninnnenceeeeceeee 45
The elif StatemMENtcouiiiiiiiiecere et 46
[T o T o1 47
The WHil@ LOOPS ...eeeiiiiieeeieeetesceeeceeseeessneessee s ressseesssaesssnesssnesssnessssesssnessnns 48
AN INFINITE LOOP oottt ne e 50
DrEak ..o 50
Activity 4: Finding the Least Common Multiple (LCM)cccoeviriviriieninncnnnee. 51
e 0 == o 1 52
Exercise 18: Calculating Perfect SQUAresccocvevrinerineninennneeneeceeee 52
Exercise 19: Real Estate Offercceviiiviniiiiiiiinicecnececcececceeecceee 54

THE FOr LOOP ittt n e s s s sne s 55

Exercise 20: USING fOr LOOPSeeveeereieriieriierniencreseeesseeseeessnesssessssessnessnns 55

The continue KeYWOIdcooiiiiiiiiiinieeeteeeeeee et e s e snee 58
Activity 5: Building Conversational Bots Using Pythonccccceeccrviruennen. 60
Y U] 0T 0 = T /P 61
Chapter 2: Python Structures 63
(1T oo [U Tt u T o 64
The POWET Of LSS .eeeieiieeiereieeeeereeeecee et seees s e ssnee s e e s e e s sne e sneens 65
Exercise 21: Working with Python LiStscccccceevirevenenennrernreeneeeeeeeeeeee 65
Matrices as Nested LiStSccccvevvirriiniiniiniiniinicnicnicnrcsrcncsecsee e 66
Exercise 22: Using a Nested List to Store Data from a Matrixc..c...... 67
Activity 6: Using a Nested List to Store Employee Datacccecceeruirrnnennnee. 69
MatriX OPEIratiONScoccevciiriiiiieeiriiineersrenreeseessseesssesnnesssssssnsessssssssaasssns 70
Exercise 23: Implementing Matrix Operations
(Yo Lo [TaToYa W=TaTe BTV 014 =Tl { (o] o) SN 70
Matrix Multiplication Operationsccccecveeereecreecneenneesseesreeesseessseessseessnns 72
Exercise 24: Implementing Matrix Operations (Multiplication) 72
LiSt MEthOAS ..ottt 74
Exercise 25: Basic List Operationscccevviinneinniinieinncnnnecnnecnnecnnecnnes 74
Accessing an 1tem from @ LiStccceeeeeeereenneinceerceerceeeceesceeseeesseesseessnesnne 75
Exercise 26: Accessing an Item from Shopping List Datacccecevuvruennnen. 75
Adding an [tem t0 @ LISt ..ccccveieviiicieeceeeceerceecceeeceesseeseeessee s seesseessnessnessnne 77
Exercise 27: Adding Items to Our Shopping Listcccccevveriverinenniernsnennnes 77
Dictionary Keys and Valuescooiiieviiiiinienineeniceeeneneessceeesssneessenneenes 78
Exercise 28: Using a Dictionary to Store a Movie Recordcccccveuvvuennen. 80
Activity 7: Storing Company Employee Table Data Using
a List and @ DICtiONAIYcoocuiiiiiiiirtreeetet ettt 82
Zipping and Unzipping Dictionaries USing Zip()cc.cceeerverrerserieciseeriuennnenne 83

Exercise 29: Using the zip() Method to Manipulate Dictionaries 83

Exercise 30: Accessing a Dictionary Using Dictionary Methods 84
TUPIES ettt se e e s s et e s s sae e s s san e s s snassennessssnassssnsessssnassssnaassnns 85
Exercise 31: Exploring Tuple Properties in Our Shopping List 86
A SUIVEY Of SELS ..ttt e s esneesssneessssneesesaeessssnessssnesssnns 88
Exercise 32: Using Sets in PYthon ... 88
SEL OPEIALIONS ...eeiiiiiiiiieircitrrerte st s e sstee s s sar e s s s sasesssnaessssnaessssnassssssanssns 90
Exercise 33: Implementing Set Operationscccocceeveiiiininennnennseenneenne 91
ChOOSING TYPES ..eeeeiiiciiiieteecetercrntesscteesesaeesssaressssneessssnessssnassssnsessnnessssnns 94
Y U] 0T 0 = T /P 94

Chapter 3: Executing Python - Programs,

Algorithms, and Functions 97
(Ta)d oo [F]l u o] o RSSO 98
Python Scripts and Modulescccuiriiiiiniininiiriceenceeeceeeeceeeeeeeees 98
Exercise 34: Writing and Executing Our First SCriptcccccevveiiveniicniieennee. 99
Exercise 35: Writing and Importing Our First Moduleccccoeevrenenneen. 100
Shebangs in UDUNTU ...t 101
DOCSEIINGS oeieeiiiiiiiriiittritterrre et ssar e s ssee s s neesssanesssssnesssssnasssnsnassssnasssnnns 101
Exercise 36: Adding a Docstring to my_module.pycccecceveviriieenninnnnen. 101
0 0 o T PR 102
Exercise 37: Finding the System Datecccocciiiiiiiiiiniiiiineecteeeeee, 104
Theif _name__=="_main_" Statementcccccecrrirrvrrrrrrnrrrirnsennenne 104
Activity 8: What's the Time? ... 106
Python AIZOFIthMSccuiiiiiiiiiirteeceerterre e e ne e s saee e 107
Exercise 38: The Maximum Number ..., 107
TiMe COMPIEXILY ...oereeereiereeereeereeereee e s e s ee s nessne s nessne s snesesnnses 108

Time Complexity for the Maximum Number Algorithmccccocceveennenne 110

SOrting AlZOTItRMSc.eeiieeeeeeeeee e sae e e sre e s neessneesnne 110

Exercise 39: Using Bubble Sort in Pythoncccccooveiiiinininniireceeeeeen, 112
Searching AlgOritRMSooo i e e e neenne 112
Exercise 40: Linear Search in Python ... 113
Exercise 41: Binary Search in Pythonc.ccoooiiriirniinninnceeeeeeeeeeeenee, 115
BasiC FUNCLIONScoviiiiiiiiiiiiintcntcntcstct e 116
Exercise 42: Defining and Calling the Function in Shellcccccecuc....... 116
Exercise 43: Defining and Calling the Function in Python Script 117
Exercise 44: Importing and Calling the Function from the Shell 117
POSItional AFGUMENTScoveiiiiirieieeeteeeeeee et s e e enees 118
KeYyWOrd ArgUMENTESccccvereeiereeeeieeneeeeeeesseeessseessseessseessseessssessssessssessssassnns 118
Exercise 45: Defining the Function with Keyword Arguments 119
Exercise 46: Defining the Function with Positional
and Keyword ArgUMENTESccciiviiiiiriitineentenee et seeeseeesenesenne e 119
Exercise 47: USING **KWArESccccceerverrierrnirenernieeseeesseeessneessseesssnessssesnnes 120
Activity 9: Formatting Customer Namesccocceieveeriieeiineenineennneeseeeseeenns 121
[terative FUNCLIONScociiiiiiiiiiitenecetcntccece e 122
Exercise 48: A Simple Function with a for Loopccccccoeveriviriiiniiinncinnnen. 123
EXIING EQIY ..oeeeeeeieeieeeeeceeeeeeeeeeeeseeesseeessaesssaeessnnessnnessnnessnnessssassnnassnsasnnes 123
Exercise 49: Exiting the Function During the for LOOpPcccecceveirruennnnen. 123
Activity 10: The Fibonacci Function with an Iterationc.ccccoccveveueenneen. 124
RECUISIVE FUNCLIONS ..cceeiiiiiiiiiiteiteneesniee st cne s e s sne s s ne e s snne e 125
ATerminating CASEcovvvveiiiiieeriiiieriieesinreesssressesnesssssessssssesssssnesssssassssnns 126
Exercise 50: Recursive COUNtAOWNccccoevuiiiiiiineiiiieiniteceeeee e 126
Exercise 51: Factorials with Iteration and Recursionccccceecevievvennenn. 127
Activity 11: The Fibonacci Function with Recursionccccceveiireecnneene. 128
Dynamic Programmingccccccceeiiierneeeniiinneeniinnneessessnneessssesnsesssssssnessses 129

Exercise 52: SUMMING INtEZEIScovuiiiiiiiiiititreeer et 129

TIMING YOUN COUE ...ttt ettt et e s e st e e s sn s 131

Exercise 53: TIiMiNg YOUr COAEcovviriiiririreereeteeeeeeeeeeee e e eenees 131
Activity 12: The Fibonacci Function with Dynamic Programming 132
Helper FUNCLIONSooiiiiiiiiceenteneeecnnee st nre s sne e sne e s sane e 133
Don't Repeat YOUrSEIf ...ttt sne e s sse e sne e sneessnnes 134
Exercise 54: Helper Currency CONVErSIONcccoeccereveerereeresnereseeessneeesnnesnees 135
Variable SCOPE ...ttt s e e e ssee e s sseesssnesssneesssneanas 136
Variables ..ot 136
Defining inside versus outside a FUNCLIONccccceevvieriirrneenneenceeeceeeenens 137
The Global KEYWOrd ...t 139
The Nonlocal KEYWOIdcocereviiriierrieeieenceesseesseesseesseesssnesssesssnessssenes 139
Lambda FUNCLIONScoouiiiiiiiiiiintintctncccncsecsee e 140
Exercise 55: The First Item in @ LiStccccccvviriiiiniiiiniiinieceeceeneeceeceeneene 141
Mapping with Lambda FUNCLIONSccccciviiiiiirirerereeeeeece e 141
Exercise 56: Mapping with a Logistic Transformccccceeveevveerceerceennnen. 142
Filtering with Lambda FUNCLIONScoooiiiiiieiiieercereeeceeeceeeeeeeee 143
Exercise 57: Using the Filter Lambdacccccovviirirrrinnniireeeeeeeeeeeeeneen 143
Sorting with Lambda FUNCLIONScocciiiiiiiiiieieeeeeeeceeeceeeeee e 144
SUMIMAKY ceeeieiiiiiiiiiiiieerreeeeeesssessnnneeeeesssssssssssssssssssssssssssssssnsssassssssssssssnnns 144

Chapter 4: Extending Python, Files, Errors, and Graphs 147

([} aigeTe [U Lot H Lo o RSP RRRTRP 148
REAAING FIl@S ...ttt ssree e e sne e sessnessssneesssnnesssnnanns 148
Exercise 58: Reading a Text File Using Pythoncccccciiiiiiiiniiinnninnnnen. 148
Exercise 59: Reading Partial Content from a Text Fileccccccvvevrecueennnen. 151
WHIEING FIl@S ittt an e 152

Exercise 60: Creating and Writing Content to Files
to Record the Date and Time in @ TeXt Fileccovvveiiiiviinicneeniieeeicieeeecne 153

Preparing for Debugging (Defensive Code)ccoocreerivercverccernnnennne. 154
WIItiNG ASSEITIONSeeiiiiieiiiceeeeeeee et e s s e e s a e s e s a e s ne s 155
Exercise 61: Working with Incorrect Parameters to Find
the Average Using Assert with FUNCLIONSccccoiiiiiiiiiiiiiiiiiiecene 156

Plotting TEChNIQUES ...ceeviriiiieieeieieeccneeccee e ecneesesnre s sneesssnnesssnnenes 157
Exercise 62: Drawing a Scatter Plot to Study the Data between
Ice Cream Sales versus TEMPEratureccocceeeeerererereereseeeseeesneeesneeenees 158
Exercise 63: Drawing a Line Chart to Find the Growth in Stock Prices 160
Exercise 64: Plotting Bar Plots to Grade Studentsccecevvvveiiieninnnneen. 163
Exercise 65: Creating a Pie Chart to Visualize the Number
0f Votes in @ SChool ... 166
Exercise 66: Generating a Heatmap to Visualize the Grades
OF STUARNLES .ttt s sre s s s s nas 167
Exercise 67: Generating a Density Plot to Visualize the Score
OF STUAGNLES .t s 170
Exercise 68: Creating a Contour PIOtcccccveviiiiriciniieeeeeeeeeeeeeeeneee 172
EXtENAING Graphs ...cooeeeeeeeeeeeeceeret et e e e s sae e s se e s neessnnessnnessnnassnnes 173
Exercise 69: Generating 3D plots to Plot a Sine Wavec.cccecevvevruvenen. 175

The Don'ts of Plotting Graphsccceeeviiireveiinineennreeecceeescceeeecneesssneeens 176
Manipulating the AXIScocceeeiirerirrteeeeeerece e 177
Cherry Picking Dataccccceeeveerveerrieeeneeeneessseesseessseeessseessneesssesssnessssessssassnne 177
Wrong Graph, Wrong CONEEXLcocveirverrrerrreereiereeeseeesseeseseesseesenesenneses 178
Activity 13: Visualizing the Titanic Dataset Using a Pie Chart
AN Bar PIOLS ..ottt 179

SUMIMAKY ceeeiiiiiiiiiiiiiiieieeteteesssssssssneseeessssssssssssssessssssssssssssssssssasssssssssssnnns 181

Chapter 5: Constructing Python - Classes and Methods 183

TaYd oo [Tl u o] o HOU USSR RPN 184

Classes and ODJECLESccoccveirieriiriirierneiierireereeneesesrreseesseesessnesssneessssnessnns 184
Exercise 70: EXPIOring Strings ..ottt 186

DefiNiNg ClasSeScuiiieviiiiieierineerirteeecneeseseesesneeesneessssnessssseessssnesssseeens 188

Exercise 71: Creating @ Pet Classcccovveriiriiiiniiieneeeeeeeeee e 189
B o LS [1L S ¢ 4 1= o o Yo [N 190
Exercise 72: Creating a Circle Classcccoviiriiiiniiniiniieeeeeeeeeeeeeeeee 191
KeyWOrd ArgUMENLSccceeveeeeerereieeneeeneeesseeeesseessseessnnessssessssessssasssnessnsessnns 192
Exercise 73: The Country Class with Keyword Argumentsccccc...... 193
METNOMAS ...t 194
INStaNCe MEtROASooiiiiie e 194
Exercise 74: Adding an Instance Method to Our Pet Classccccceuuennuee. 195
Adding Arguments to Instance Methodscccccoeviiiviiiiinincnnncnciecneeen. 196
Exercise 75: Computing the Size of Our Countryccccceeeceeeveerceeeceennens 197
B 2 TS0 o N 1 1= (o Yo IR RN 198
Exercise 76: Adding an __str__ Method to the Country Class 200
SEAtiC MEtROASooeiieee e 201
Exercise 77: Refactoring Instance Methods Using a Static Method 202
Class Methodscoeiiiiiiiiiieeeeeee e ne e 204
Exercise 78: Extending Our Pet Class with Class Methods 205
o o] o =T o =R RR O PRRRRR 206
The Property DECOIAOrcocvereverrieerriereeerseeseeesesnessnesssessssessssesssesssneses 207
Exercise 79: The Full Name Propertycccccrnniinncnnninnnieeeeeeeeeeeneen 208
The Setter Methodcoeiiiiiiiiiiiiictceteeeee et eene 209
Exercise 80: Writing a Setter Methodccoociiiiiiiiiiniiiiececeeeeee, 210
Validation via the Setter Methodccccoevviiiiiiiiininiinincneneeeeee 211
INNEIITANCE ..coiiiiee et ne s s sae e s sane s 212
The DRY Principle ReVISItedccceeveereveerrreerrieriierreerreesceeseeeseeesesnesssnesns 212
SiNgle INNEIITANCE ...t 213
Exercise 81: Inheriting from the Person Classccccccevverrvereseenceenseennens 214

Sub-Classing Classes from Python Packagescccocceveviniieniieniicniienns 215

Exercise 82: Sub-Classing the datetime.date Classccecceeeeerecvreceernnnen. 216

OVverriding Methods ...t eane 216
Calling the Parent Method with SUPEr()ccccceevuerereerrrerrrerreerereeeeeeeeeene 219
Exercise 83: Overriding Methods Using super()ccccccvevvinvirinccenceennnen. 220
Multiple INNEFITANCEcc.eeeieeeeeeeeeeeeeeree e e s sse e an e s nnesnnes 222
Exercise 84: Creating a Consultation Appointment System 222
Method Resolution OFrderiiiiiiiiiiiniienieeeeeneeeeeseeseeseesseeeens 224
Activity 14: Creating Classes and Inheriting from a Parent Class 226
SUMIMAKY ceeeiiiiiiiiiiiiiiiinreteeeessssesssnssteeessnnnns 227
Chapter 6: The Standard Library 229
T oY g [Tl u o] o HOR SRS U RSP URRURRRRR 230
The Importance of the Standard Librarycccccoeeveerveviininvenncneencnnnen. 230
High-Level ModuIes ...ttt 231
Lower-Level ModUIEScoouiiiiiiiiiiiiictctcectceetceeseesee e 234
Knowing How to Navigate in the Standard Libraryccccccoeviiiiinninnen. 234
Exercise 85: Using the dataclass Modulecccccovvirrrirrrrrnennceeeeeeen. 235
Exercise 86: Extending the echo.py Exampleccccoiviiiiiiniiniiinniennnnen. 237
Dates and TIMEScoivviiiiiiiiniiiitee e ne s 239
Exercise 87: Comparing datetime across Time Zonescccccceeveeeurrnnnen. 241
Exercise 88: Calculating the Time Delta between
TWO datetime ODJECEScocveveeiireeceecererer e re s ee s sne e 243
Exercise 89: Calculating the Unix Epoch Timeccccvveireririseneceeeceeennen. 245
Activity 15: Calculating the Time Elapsed to Run a LoOpcccceeeueruenncne 248
Interacting With the OS ... 249
OS INFOrMAtioN ..cceiiiiiiiiiiiircececr ettt 249
Exercise 90: Inspecting the Current Process Informationccuceuene. 249
USING PAthIID oottt ee s s s e e s ae e s nn e s snnes 251

Exercise 91: Using the glob Pattern to List Files within a Directory 253

Listing All Hidden Files in Your Home Directorycccceevvvveeieeieenennneene 255

Using the subprocess Moduleccocviiieviiiiniinnniennieenceeeeceeeseeeenee 255
Exercise 92: Customizing Child Processes with env varscccceeueuee. 260
Activity 16: Testing Python Codecoccceiiiiiiiiiiiicieereerec e 262

LOZEING .eveiiiiiieiiiiireeieiireeesscsneesssssnneesssessneesssssnnnessssssnsasssssssnnessssssnnaesses 263
USING LOZZING ..eveeieiiiiiiieiteeteste ettt et e et e st e ssn s an e s an e snn s 263
LOZEEY ODJECLeeeeeeeeeeeeeeeeceeeeee e ere e see e e e e s sneessneessne e s snessnnesnnassnsasannes 265
Exercise 93: Using a logger ObjJectccccovviiiiiiininiiiiiincecceeceeceenee 266
Logging in warning, error, and fatal Categoriesccccccevvereverecvercneennnens 267
Configuring the Logging Stackccceeciiiiiiiiiiiiiieneeeceeeeecee e 270
Exercise 94: Configuring the Logging Stackcccccoevervvireveenneenneenceennnens 271

@] | =T o] o |- J ST STUPRUPRRRRTPON 275
L0 TU T =T 275
Exercise 95: Counting Words in a Text Documentccocceveverinerercennnen. 275
efaultdiCt ..cceooeiiri s 277
Exercise 96: Refactoring Code with defaultdictccccoeeiriiiriiinnninnnen. 278
CRAINMAP ..eeiiieeieecieeeieeeee e e e e seessseessseessssessssessssesssnesssnessssesssnessssessssansnne 281

FUNCLOOIS ...ttt ne e s ne e s sane s 284
Caching with functools.lru_cacheccccoeoerrvirnnerrreeeereeeeeeee e 284
Exercise 97: Using Iru_cache to Speed Up Our Codecccccevvvuiricirecnennnen. 285
o= o o = PR 289
Exercise 98: Creating a print Function That Writes to stderr 290
Activity 17: Using partial on class Methodscccccceveveervveerciercveerccecrennene 291

Y U] T 0 = | 7P 293

Chapter 7: Becoming Pythonic 295

[T T oo 11 Lot u T o T 296

Using List COMPrehensionsccocceeeveereernneennennrereeeseeeseeeseeeseeesnes 297

Exercise 99: Introducing List Comprehensionsc.ccccceevvvvieivenienseneneen. 297

Exercise 100: Using Multiple INpuUt LiStScceoceriiirininiiiiieeeteceeeeeeen 300
Activity 18: Building a Chess Tournamentccccecereveereveereveereneerennerennees 301
Set and Dictionary Comprehensionscccecceeveviiiiinenncneennnieenecseenenne 302
Exercise 101: Using Set Comprehensionsccccceeveeeeirrreerseenneenseennes 303
Exercise 102: Using Dictionary Comprehensionsc..ccceccveviricereccnnnnen. 304
Activity 19: Building a Scorecard Using Dictionary
Comprehensions and Multiple Listscccveiiiiiiiiiiiinininieieceeseeeene 305
Default DICIONANYcoivviiiiiiiiriteriteeccreereeesesresseneesesnnesesnessssnsessssnanes 306
Exercise 103: Adopting a Default DiCtccccceevevcirrvirinienieienieiieceeceeceeeene 306
L] =1 o PR 309
Exercise 104: The Simplest Iteratorccccveviiiiiiiiinininiirceeeeeeee, 309
Exercise 105: A CUStOM Iteratoroeiviiniineiniineiniecnercecneanees 311
Exercise 106: Controlling the Iterationcccccoeveiiviiiiinniinisinicieeeen, 312
=T T] L 314
Exercise 107: Using Infinite Sequences and takewhileccccceeuunce. 314
Exercise 108: Turning a Finite Sequence into an Infinite One,
AN BACK AZQIN ...ttt ssreessseessseessseesssnesssnesssnesssnesssnessnnenes 317
GENEIALOISuiiiitiiiiiiecir e aes 318
Exercise 109: Generating @ Si@VEecccccvveveirirniieninienncneeeenneesssnneessssnesssnes 318
Activity 20: Using Random Numbers to Find the Value of Pi 319
RegUIAr EXPreSSIONSueiiiceiiiceieiinieeeceeeeeneesssneeeecneesessnessssseessseesssseeens 321
Exercise 110: Matching Text with Regular EXpressionsccccceveeveene. 323
Exercise 111: Using Regular Expressions to Replace Textcccccecueeunene. 324
Activity 21: Regular EXPreSSIiONSccocceeeveerereereneerereeseneeseeeseseeseeesenesesneses 324

SUMIMAKY eeeieiiiiiiiiiiiierreeeeeesssesssnnneseeesesssssssssssssssasssssssssssssnssasasssssssssssnnns 325

Chapter 8: Software Development 327

1Yo [¥ ' o o PR 328
DEDUBEING ...eveieieiiicrieeieeeeceeeccrreeceseeeeceeesssseessssneessseessssnesssssaesssnesssssaens 328
Exercise 112: Debugging a Salary Calculatorccccveeerevirenirecinecenennen. 331
Activity 22: Debugging Sample Python Code for an Application 339
AUtOMAted TESEING ..ccvveiiiiiiiiiiirreteeceeerre et ere s sear e s s sne s s neessssnanes 340
Test CategOriZatioNcocceeiiiveeriiiiiiiceeeereeecre e sesre s saeesessseesssneessssnasssnnns 341
LIS A O 1T = - 342
Writing Tests in Python with Unit TeStingccccevevevvveerivernveerceerceereneenne 343
Exercise 113: Checking Sample Code with Unit Testingccccceevevvuvrnen. 343
Writing @ Test With PYLESTcceeeiiiiieeeercercercre s ne e e 345
Creating @ PIP Packagecoociirioiiiiiineenreecneesccee s ssneesssneeseane 346
Exercise 114: Creating a Distribution That Includes
Multiple Files within @ Package ..ottt 348
Adding More Information to Your Packagec.ccecceveveereveercveernecrceerennenns 350
Creating Documentation the Easy Waycccccveviiiiiiinncneeninieenccnneennnne 351
DOCSEIINGS oovieeiiiiiieriiiiiriitesesreesereesesaressssnaessssnaessssnaesssssassssssassssssesssnasssnns 351
USING SPRINX ettt 352
Exercise 115: Documenting a Divisible Code Fileccccceevverevirecvrncennnen. 353
More Complex Documentationccccceiviieiiinnienieeeeeeeeeee e 356
Source ManNagEMENTccoiiiiiiiiiiierrieeiiiiieiieneeeeeesssssssssssnsssssssssssssssnnnns 357
REPOSIEONY ettt st et 357
L@ 0] 0 V1 TR 358
SEAZINEG AFQ ...ttt s s sae s sae s sn e s sae s ae s sneenne 359

UNdoing LOCal Changeseoviireierciereenrenceesseesseesseeessneesssnessnnessnsessnnes 359

HISTOIY ittt ssae e s s saee s s se e s s ssnaessssnesssssnasssnsnessssnasssnnns 359
[BNOFING FIlES ..ttt ettt 359
Exercise 116: Making a Change in CPython Using gitc.cccecceveevercueenen. 360
Y U] T 0 = 1 PR 364
Chapter 9: Practical Python - Advanced Topics 367
[T T oo 11 Lot o [o 368
Developing Collaborativelyccoceeeveeeirnneereeeeerceereeeseeeeeeeeee e 368
Exercise 117: Writing Python on GitHub as a Teamccccccveverecvrecerenen. 369
Dependency Managementccccocceevveeerernneesrensnneseneesseesseesseessneesnes 374
Virtual ENVIFONMENTEScooiiiiiiiiiiiiiiiectctesectese et sse s ssesssseane 376
Exercise 118: Creating and Setting Up a conda Virtual
Environment to Install numpy and pandasc.cccoeeciiririninencenenceeeceeenen. 376
Saving and Sharing Virtual ENVironmentsccccceeeveerveenveennneesseeesseennnne 379
Exercise 119: Sharing Environments between a conda
Server and Your LOcal SYStemccceecvverevereieririennriesnseeesseesseeseseessseesssnesnnne 379
Deploying Code into Productionc.ccccceeeveiiiiiinicieinineennsecnscneesceeenne 380
Exercise 120: Dockerizing Your Fizzbuzz TOOIcccccvevireceersernceeeneennnen. 382
MUIEIPrOCESSING ..cooeeeiiiiiiieieccterttecee et ee e s sae e s sana e 384
Multiprocessing with @Xecnetooevvirevirnrirnrieceereeereeee e 386
Exercise 121: Working with execnet to Execute a Simple
Python SQUAaring Programcccceeeeevrereneneneeeneeeeeessneessneessseessseessnsessnees 386
Multiprocessing with the Multiprocessing Packagec.ccccecceviuirnuinnnen. 388
Exercise 122: Using the Multiprocessing Package to Execute
a Simple Python Programceerrienneenneenceenceesseesseesssesssessssesssnenes 388
Multiprocessing with the Threading Packageccceecerevirivirecinecennnnen. 389
Exercise 123: Using the Threading Packageccccoccevverrveerseenceencneennnen. 390
Parsing Command-Line Arguments in SCriptsccccceevveerivveericnenreneene 391
Exercise 124: Introducing argparse to Accept Input from the User 392
PoSItional AFGUMENTScoveiiiiiieeeeeteeeeeeeeee e nees 394

Exercise 125: Using Positional Arguments to Accept

Source and Destination Inputs from a USerccccoecevververcennenseernecnnnenne. 394
Performance and Profilingccooceieeviininiiiniiiinceenceenccececceeeseneens 395
Changing Your PYthON ...t 396
Py PY s s e s s aa e e e s s s nnnee 396
Exercise 126: Using PyPy to Find the Time to Get a List
Of Prime NUMDEIS ...ttt 397
CYLNON ettt re e sre e s sre e s sre s s s e e s sseessneessneesseessneessnaessnansnne 399
Exercise 127: Adopting Cython to Find the Time Taken
to get a List of Prime NUMDErSoooviiriiiriereereereereeseee e senees 399
o o) {111 oY - S SRR PR 401
Profiling With CProfile ...t 402
Activity 23: Generating a List of Random Numbers
in @ Python Virtual ENVIronmMentcoccerrieeeiinnienreeeeeeeeeeseessneeesneeenees 408
Y U] 0 = | /PR 410
Chapter 10: Data Analytics with pandas and NumPy 413
1Yo [¥ ' o o TR 414
NUMPY and BasiC STAtScccceeeeviiiiiiiinceteiceeeeceeescneesesseeessrneessneessssneens 414
Exercise 128: Converting Lists to NUMPY Arraysccccccccevvveeriiveenninneensinnns 415
Exercise 129: Calculating the Mean of the Test Scoreccceecerevvercueennnen. 416
Exercise 130: Finding the Median from a Collection of Income Data 417
Skewed Data and OULHErScccceviiviiiiiniiiircneecsceeece e 418
Standard Deviationc.cccocevveriiiiiiiinncncncnce s 418
Exercise 131: Finding the Standard Deviation from Income Data 419
Y= L o <L 420
EXercise 132: MAtriCesScovviiieiiiiiiiiiietiecet ettt 421
Computation Time for Large MatriCescccceeverererevererereneenenenereeseseennne 423
Exercise 133: Creating an Array to Implement NumPy Computations 424

The Pandas LiDraryeeiiieneenneeenceeseseeesssseessssessssseesssseeess 429

Exercise 134: Using DataFrames to Manipulate Stored

Student testSCore Dataccccovevviiieiiiiniincnteneee e 429
Exercise 135: DataFrame Computations with the Student
LIy S oo T D T 1 431
Exercise 136: Computing DataFrames within DataFrames 433
New ROWS and NaNccccovviiiiiiiiiiiinicnicecrcecnteneesreseessessessessesseeas 436
Exercise 137: Concatenating and Finding the Mean with Null
Values for Our testscore Dataccccocceeiviniiiiiieciieenecreceec e 437
Cast COIUMN TYPES ..ooveeeeeeceeeereeceeesreessseeesseessseessssessssessnesssesssnsssssessssessnns 439
DT - 440
DoWNIoading Dataccccceeeveerrreerrreenieeneeeneeesseeeesseessneessseessssessssessnsessnsessnnes 440
Downloading the Boston Housing Data from GitHubc.ccccoeceeunennneen. 440
REAAING DAtaeeveueeeieriieerieeeieeceeeneeeseeeeseeessseessseessnnesssnasssnesssnassssessnsasnnes 440
Exercise 138: Reading and Viewing the Boston Housing Dataset 441
Exercise 139: Gaining Data Insights on the Boston Housing Dataset 443
NUITVAIUES ..ottt st an e s ne s s sne e s sana s 445
Exercise 140: Null Value Operations on the Datasetc.cccceecerevveecueeennen. 445
Replacing NUII ValUes ...ttt 448
ViSUAIL ANAIYSIS .oviiieiiiiiiiiicieerireeecneescseesesseesssseessssesssssnesssssessssnnessssnanss 449
The matplotlib Library ... 449
HISEOZBIAMS ...ceeeiiiiiiicitiriitescrce e sre e s s sne e s s sne s s s ssaessssnnassssnnessssnasssnnns 450

Exercise 141: Creating a Histogram Using the Boston Housing Dataset . 450
HiStogram FUNCLIONScoccuiiiiiiiiiieinictennneessnee e sneesssneesssneessssnesssnnns 453
SCALLEE PIOLS ... 456
Exercise 142: Creating a Scatter Plot for the Boston Housing Dataset 456
L@ =1 =1 f o] o IR RPRTORRRRRRN 457
Exercise 143: Correlation Values from the Datasetccccecervirrernennnn. 458

REEGIESSION ...ttt sttt e 460

Plotting @ ReZression LiNecoovieeiiriernieeeteneeesneeseeessaeessneessnnessnnessnnes 460
StatsModel Regression OULPULccocceeeiiiriieinienienreeeceeeceese e enne 462
Additional MOdEIScoueiiiiiiiiiiiiiieicteeeceeee sttt 463
Exercise 144: BOX PIOtS ...ttt 463
VIOKIN PIOTS oottt e e e s sa st e e s s s 464
Activity 24: Data Analysis to Find the Outliers in Pay versus
the Salary Report in the UK Statistics Datasetcccecceveveereveerevecrccecrennene 465
Y U] T 0 = | /PR 467
Chapter 11: Machine Learning 469
TN [¥ ' o o TR 470
Introduction to Linear REZIreSSioNcccecveereveeercreeeieneeesseeescsneesesneenns 471
SIMplify the Problemo e enee 473
From One to N-DIiMEeNSIONScocviiieiiiiiiiiiiiticrecnnet sttt 474
The Linear Regression AlgOrithmcooceriiiivinnniniereerceeeecreeeeeae 475
Exercise 145: Using Linear Regression to Predict the Accuracy
of the Median Values of Our Datasetcccceeveriieiiieniieniieneenceeeceeeae 476
Linear Regression FUNCLIONcociiiiiiiiiinenniiieenieesscieesesneesssneessssnesssnnes 480
CrosS-Validationcceeiiiiiiiiiiniieiniienecsneecste e sne s saee e 481
Exercise 146: Using the cross_val_score Function to Get
Accurate Results on the Dataset ... 481
Regularization: Ridge and LaSSO0ccccccceeeveiriceerncnneenineenesnneeseneesesnnenes 483
K-Nearest Neighbors, Decision Trees, and Random Forests 485
K-Nearest NeighbOrso e 485
Exercise 147: Using K-Nearest Neighbors to Find the Median
Value of the Datasetcccceeeviieiiiiiiiniicctrreee e 486
Exercise 148: K-Nearest Neighbors with GridSearchCV to Find
the Optimal Number of Neighbors ..., 488
Decision Trees and Random FOrestsSccccevververnninniernninnneenneeneesseeseeeneens 489
Exercise 149: Decision Trees and Random Forestscccccceeverivericcnennen. 490

Random Forest Hyperparameterscccocceeevereneeenneenneeessneessseessseessnnessnnes 491

Exercise 150: Random Forest Tuned to Improve the Prediction

ON OUF DAtasetcocueiiiiiiiiiiiiiitntctc e 492
Classification MOEIScoveereieeriieeeereeeeee e e e e s sneeans 494
Exercise 151: Preparing the Pulsar Dataset and Checking
FOr NUITVAIUES ...ttt ettt e e 496
LOZIStIC REGIESSIONeeiiiiieiiiiieiiiecinte sttt e s sse s sse e s ssnesssnnne 498
Exercise 152: Using Logistic Regression to Predict Data Accuracy 499
Other ClasSifiers ...t 500
NQIVE BAYES ..eeveiiiiiiiciiiriiteeinreesesteesesnessssseessssseessssssssssssessssssassssssesssssassssnns 500

Exercise 153: Using GaussianNB, KneighborsClassifier,
DecisionTreeClassifier, and RandomForestClassifier

to Predict Accuracy in Our Datasetcccccocceiiviiiiiniiiinecncecnecsecseeae 501

CoNfUSION MALFiX ..ooviiviiiiiiiriicncreeece s se s 502

Exercise 154: Finding the Pulsar Percentage from the Dataset 502

Exercise 155: Confusion Matrix and Classification Report

for the Pulsar DAtasetccccoceeveiiieiieenieniieneentecesstecee sttt seesaeeane 506
BOOStiNg Methodscccuiiiiiiiiiiiirtereecree e 509

Exercise 156: Using AdaBoost to Predict the Best Optimal Values 509

Activity 25: Using Machine Learning to Predict Customer

RetUrN RAte ACCUNACYeeiiiiiiieiiiiiiieiciiiniieeessssssseessssssnssesssssssssssasssssssnnes 51
Y U] T 0 = 1 PR 512
Appendix 515

Index 569

Random Forest Hyperparameterscccocceeevereneeenneenneeessneessseessseessnnessnnes 491

Exercise 150: Random Forest Tuned to Improve the Prediction

ON OUF DAtasetcocueiiiiiiiiiiiiiitntctc e 492
Classification MOEIScoveereieeriieeeereeeeee e e e e s sneeans 494
Exercise 151: Preparing the Pulsar Dataset and Checking
FOr NUITVAIUES ...ttt ettt e e 496
LOZIStIC REGIESSIONeeiiiiieiiiiieiiiecinte sttt e s sse s sse e s ssnesssnnne 498
Exercise 152: Using Logistic Regression to Predict Data Accuracy 499
Other ClasSifiers ...t 500
NQIVE BAYES ..eeveiiiiiiiciiiriiteeinreesesteesesnessssseessssseessssssssssssessssssassssssesssssassssnns 500

Exercise 153: Using GaussianNB, KneighborsClassifier,
DecisionTreeClassifier, and RandomForestClassifier

to Predict Accuracy in Our Datasetcccccocceiiviiiiiniiiinecncecnecsecseeae 501

CoNfUSION MALFiX ..ooviiviiiiiiiriicncreeece s se s 502

Exercise 154: Finding the Pulsar Percentage from the Dataset 502

Exercise 155: Confusion Matrix and Classification Report

for the Pulsar DAtasetccccoceeveiiieiieenieniieneentecesstecee sttt seesaeeane 506
BOOStiNg Methodscccuiiiiiiiiiiiirtereecree e 509

Exercise 156: Using AdaBoost to Predict the Best Optimal Values 509

Activity 25: Using Machine Learning to Predict Customer

RetUrN RAte ACCUNACYeeiiiiiiieiiiiiiieiciiiniieeessssssseessssssnssesssssssssssasssssssnnes 51
Y U] T 0 = 1 PR 512
Appendix 515

Index 569

Preface

About

This section briefly introduces this course and software requirements in order to complete all of
the included activities and exercises.

i | Preface

About the Course
Have you always wanted to learn Python, but never quite known how to start?

More applications than we realize are being developed using Python because it is easy
to learn, read, and write. You can now start learning the language quickly and effectively
with the help of this interactive tutorial.

The Python Workshop starts by showing you how to correctly apply Python syntax

to write simple programs, and how to use appropriate Python structures to store
and retrieve data. You'll see how to handle files, deal with errors, and use classes and
methods to write concise, reusable, and efficient code.

As you advance, you'll understand how to use the standard library, debug code to
troubleshoot problems, and write unit tests to validate application behavior.

You'll gain insights into using the pandas and NumPy libraries for analyzing data, and
the graphical libraries of Matplotlib and Seaborn to create impactful data visualizations.
By focusing on entry-level data science, you'll build your practical Python skills in a way
that mirrors real-world development. Finally, you'll discover the key steps in building
and using simple machine learning algorithms.

By the end of this Python book, you'll have the knowledge, skills and confidence to
creatively tackle your own ambitious projects with Python.

About the Chapters

Chapter 1, Vital Python: Math, Strings, Conditionals, Loops, explains how to write basic
Python programs, and outlines the fundamentals of the Python language.

Chapter 2, Python Structures, covers the essential elements that are used to store and
retrieve data in all programming languages.

Chapter 3, Executing Python: Programs, Algorithms, Functions, explains how to write
more powerful and concise code through an increased appreciation of well-written
algorithms, and an understanding of functions

Chapter 4, Extending Python, Files, Errors, Graphs, covers the basic /0 (input-output)
operations for Python and covers using the matplotlib and seaborn libraries to create
visualizations.

About the Course | iii

Chapter 5, Constructing Python: Classes and Methods, introduces one of the most central
concepts in object-oriented programming classes, and it will help you write code using
classes, which will make your life easier.

Chapter 6, The standard library, covers the importance of the Python standard library.
It explains how to navigate in the standard Python libraries and overviews some of the
most commonly used modules.

Chapter 7, Becoming Pythonic, covers the Python programming language, with which
you will enjoy writing succinct, meaningful code. It also demonstrates some techniques
for expressing yourself in ways that are familiar to other Python programmers.

Chapter 8, Software Development, covers how to debug and troubleshoot our
applications, how to write tests to validate our code, and the documentation for other
developers and users.

Chapter 9, Practical Python: Advanced Topics, explains how to take advantage of parallel
programming, how to parse command-line arguments, how to encode and decode
Unicode, and how to profile Python to discover and fix performance problems.

Chapter 10, Data Analytics with pandas and NumPy, covers data science, which is the
core application of Python. We will be covering NumPy and pandas in this chapter.

Chapter 11, Machine Learning, covers the concept of machine learning and the steps
involved in building a machine learning algorithm
Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Python provides the collections.defaultdict type.

A block of code is set as follows:

cubes = [x**3 for x in range(1,6)]
print(cubes)

New important words are shown like this: "Typically, standalone .py files are either
called scripts or modules”.

Words that you see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "You can also use Jupyter (New -> Text File).

iv | Preface

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

Exercise66.ipynb

def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=["black", "white"],

threshold=None, **textkw):

import matplotlib

if not isinstance(data, (list, np.ndarray)):

https://packt.live/2psibyv

Before You Begin

Each great journey begins with a humble step. Our upcoming adventure in the land of
Python is no exception. Before you can begin, you need to be prepared with the most
productive environment. In this section, you will see how to do that.

Installing Jupyter on your system

We will be using Python 3.7 (from https: //python.org):

To install Jupyter on windows, MacOS and Linux follow these steps:

1. Head to https: /www.anaconda.com /distribution/ to install the Anaconda
Navigator, which is an interface through which you can access your local Jupyter
notebook.

2. Now, based on your Operating system (Windows, macOS or Linux) you need to
download the Anaconda Installer.

About the Course | v

Have a look at the following figure where we have downloaded the Anaconda files

for Windows:

The World's Most Popular Python/R Data Sclence Platform

Download |

The open-source Anaconda Distribution is the easiest way to perform Python/R

data science and machine learning on Linux, Windows, and Mac OS X. With [s ‘ N))
. . Jupyter umF Yy SelPy
over 15 million users worldwide, it is the industry standard for developing > | ke || 9 | Numba
testing, and training on a single machine, enabling individual data scientists to: - - < - '
- Quickly download 1,500+ Python/R data science packages pandas @ ’ ? ¥ Datashader
- Manage libraries, dependencies, and envirenments with Conda . DASK Bokeh L fevs
(= - . ~
- Develop and train machine learning and deep learning models with scikit-
tplotlib fensorFlow X
learn, TensorFlow, and Theano @matplotii . H2° T CONDA
- Analyze data with scalability and performance with Dask, NumPy, pandas, h o o
and Numba
« Visualize results with F , Bokeh, Datashader, and |
== Windows ‘ ‘ macOS ‘ 5 Linux

Anaconda 2019.10 for Windows Installer

Python 3.7 version

... B

64-Bit Graphical Installer (462 MB)
32-Bit Graphical Installer (410 MB)

Python 2.7 version

64-Bit Graphical Installer (413 MB)
32-Bit Graphical Installer (356 MB)

Figure 0.1: The Anaconda homescreen

vi | Preface

Launching the Jupyter Notebook

To Launch the Jupyter Notebook frrom the Anaconda Navigator you need to follow the
mentioned steps below:

1. Once you install the Anaconda Navigator you will have the following screen at your
end as shown in Figure 0.2.

D Anaconda Nevigator [E=8 =]

file Help

{D ANACONDA NAVIGATOR SRS oo

@ Environments D AW
@ £ m & @ @

ey u Notebook Qt Console Spyder Orange 3

Figure 0.2: Anaconda installation screen

About the Course | vii

2. Now, click on Launch under the Jupyter Notebook option and launch the notebook
on your local system:

'O Anaconda Navigator

Eile Help

{2 ANACONDA NAVIGATOR
A Hor Applications on | base (root) <] | chamets Refresh
B £ b £ b
@ Environments. -2
Japyter
N
N8 Lezrning JupyterLab Notebook Glueviz

Figure 0.3: Jupyter notebook launch option

Congratulations! You have successfully installed Jupyter Notebook onto your system.

To Install the Python Terminal on your system
To install the Python terminal on your system, follow these steps:

1. Open the following link, which is the Python community website URL: https: //
www.python.org /downloads/.

2. Select the Operating System (Windows, macOS or Linux) you would be working on
as highligthed in the following screenshot:

Python

& puthon’ . I

About Downloads Documentation Community Success Stories News Events

a different 0S? Python for Wi

Download the latest version for Windows m \ w
‘ e

Want to help test development versions of Python? Prereleases,
Docker images

Looking for Python 2.72 See below for specific releases

Figure 0.4: The Python homescreen

viii | Preface

3. Once you have downloaded the software, you need to install it.

4. Have alook at the following screenshot in which we have installed the Python
terminal on a Windows system. We load it through the Start menu and search for

Python and click on the software.

The Python terminal will look like this:

F® Python 3.7 (32-bit) =N =E ==
Python 3.7.3 (u3.?.3:efdecbedl2, Mar 25 2019, 21:26:53)> [MSC v.1916 32 hit CInte

1>1 on win32
Type "help'. “copyright', “credits" or

m| »

"licenze" for more information.
P

Figure 0.5: Python terminal interface

Congratulations! You have successfully installed the Python terminal onto your system.

A Few Important Packages

Some of the exercises in this chapter require the following packages:
* Matplotlib
* Seaborn

* NumPy

Install them by following this guide. On Windows, open up the command prompt. On
macOS or Linux, open up the terminal. Type the following commands:

pip install matplotlib seaborn numpy

If you prefer to use Anaconda to manage your packages, type in the following:

conda install matplotlib seaborn numpy

About the Course | ix

To install Docker

1. Head to https: //docs.docker.com /docker-for-windows /install / to install Docker
for Windows.

2. Head to https: //docs.docker.com /docker-for-mac/install/ to install Docker for
macOS.

3. Head to https://docs.docker.com /v17.12 /install /linux /docker-ce /ubuntu/ to
install Docker on Linux.

If you have any issues or questions about installation please email us
at workshops@packt . com.
Installing the Code Bundle

Download the code files from GitHub at https: //packt.live /2PfducF and place them
in a new folder called C: \Code on your local system. Refer to these code files for the
complete code bundle.

6351567FE31ET

Vital Python - Math,
Strings, Conditionals,
and Loops

Overview

By the end of this chapter, you will be able to simplify mathematical expressions
with the order of operations using integers and floats; assign variables and change
Python types to display and retrieve user information; apply global functions
including 1en(), print(), and input(); manipulate strings using indexing, slicing,
string concatenation, and string methods; apply Booleans and nested conditionals
to solve problems with multiple pathways; utilize 'for loops' and 'while loops' to
iterate over strings and repeat mathematical operations and create new programs
by combining math, strings, conditionals, and loops.

This chapter covers the fundamentals of the Python language.

2 | Vital Python - Math, Strings, Conditionals, and Loops

Introduction

Welcome to the Python Workshop. This book is for anyone new to the Python
programming language. Our objective is to teach you Python so that you can solve real-
world problems as a Python developer and data scientist.

This book will combine theory, examples, exercises, questions, and activities for all

core concepts; so that you can learn to use Python best practices to solve real-world
problems. The exercises and activities have been chosen specifically to help you review
the concepts covered and extend your learning. The best way to learn Python is to solve
problems on your own.

The material (in this book) is targeted at beginners but will be equally as beneficial to
experienced developers who are not yet familiar with Python. We are not teaching
computer science per se, but rather Python, the most beautiful and powerful coding
language in the world. If you have never studied computer science, you will learn the
most important concepts here, and if you have studied computer science, you will
discover tools and tricks for Python that you have never seen before.

Python has become the most popular programming language in the world due to its
simple syntax, extensive range, and dominance in the field of machine learning. In

this book, you will become fluent in Python syntax, and you will take significant steps
toward producing Pythonic code. You will gain experience in Python development, data
science, and machine learning.

Many introductory Python books provide full introductions to computer science.
Learning computer science with Python is an excellent way to start, but it is not the
method of this book. Units on software development and data science are rarely
covered in such books. They may be touched upon, but here, they represent 40% of our
book.

By contrast, many books on software development and data science are not designed
for beginners. If they are, the Python fundamentals that they teach are usually
summarized in one brief unit. This book devotes considerable space to Python
fundamentals and essentials. Beginners are not only welcome; they are guided every
step of the way.

In addition to the unique focus on Python fundamentals and essentials, the fact that the
content is written by seasoned educators, data scientists, and developers makes this
Python book more than just a text or reference.

Vital Python | 3

Python is not the language of tomorrow; Python is the language of today. By learning
Python, you will become empowered as a developer, and you will gain a significant edge
over the competition. The journey will be fun, compelling, challenging, and ultimately,
rewarding.

Vital Python

In this chapter, we present vital Python concepts, the core elements that everyone
needs to know before starting to code. You cover a breadth of topics with a focus on
math, strings, conditionals, and loops. By the end of this chapter, you will have a strong
foundation in Python, and you will be able to write significant Python programs as you
continue with the rest of this book.

You will start with a very famous developer example; that is, Python as a calculator. In
addition to the standard operations of addition, subtraction, multiplication, division,
and exponentiation, you will learn integer division and the modulus operator. By using
only basic Python, you can outperform most calculators on the market.

Next, you'll learn about variables. Python is dynamically typed, meaning that variable
types are unknown before the code runs. Python variables do not require special
initialization. Our first variables will be integers, floats, and strings. You will identify
and convert between types.

Next, in order to work with strings, you will utilize string methods, in addition to
indexing, slicing, and string concatenation. You'll also use built-in functions such as
print() and input() to communicate with the user.

Moving ahead, you'll encounter Booleans, true or false Python types, that precede
conditionals, statements with if clauses that lead to branching. Booleans and
conditionals allow us to write more complex programs by taking a greater number of
possibilities into account.

Finally, you close the chapter with loops that allows us to repeat operations. In
particular, we apply while loops and for loops, utilizing break and continue.

For true beginners, this introductory chapter will get you up to speed with basic
programming concepts. If you are new to Python, you will see why the Python language
is so clear, powerful, and valuable. By the end of this chapter, you will be comfortable
running Python basics on their own, and you will be prepared to tackle more of the
advanced concepts ahead.

Let's start coding in Python.

4 | Vital Python - Math, Strings, Conditionals, and Loops

Numbers: Operations, Types, and Variables

In the preface, we installed Anaconda, which comes along with Python 3.7 and the
Jupyter Notebook. It's time to open a Jupyter Notebook and begin our Pythonic journey.
To Open a Jupyter Notebook

To begin with this book, you need to make sure that you have a Jupyter Notebook open.
Here are the steps.

1. Locate and open your Anaconda Navigator.
2. Search for Jupyter Notebook in Anaconda Navigator and click on it.

3. Anew window should open in the web browser of your choice.

’ Ju pyter Untitled1 Last Checkpoint: a few seconds ago (unsaved changes) P Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | & \ Python3 O

B+ % & B 4 ¥ MRun B C B cCode B

In[]:
Figure 1.1: The Jupyter Notebook interface

Note

If you are having trouble, it may mean that your Jupyter Notebook is not set up
properly. Go back to the preface or see https://jupyter-notebook.readthedocs.io/
en/stable/troubleshooting.html for a troubleshooting guide.

Python as a Calculator

Now that you are all set up, you can begin with the very first interesting topic. Python
is an incredibly powerful calculator. By leveraging the math library, numpy, and scipy,
Python typically outperforms pre-programmed calculators. In later chapters, you will
learn how to use the numpy and scipy libraries. For now, we'll introduce the calculator
tools that most people use daily.

Python as a Calculator | 5

Addition, subtraction, multiplication, division, and exponentiation are core
operations. In computer science, the modulus operator and integer division are equally
essential as well, so we'll cover them here.

The modulus operator is the remainder in mathematical division. Modular arithmetic
is also called clock arithmetic. For instance, in mod5 which is a modulus of 5, we count
0,1,2,3,4,0,1,2,3,4,0,1... This goes in a circle, like the hands on a clock.

The difference between division and integer division depends on the language. When
dividing the integer 9 by the integer 4, some languages return 2; others return 2.25. In
your case, Python will return 2.25.

There are many advantages to using Python as your calculator of choice. The first is
that you are not limited to using programs that others have written. You can write a
program to determine the greatest common divisor or the Euclidean distance between
two points.

Other advantages include reliability, precision, and speed. Python generally prints out
more decimal places than most calculators, and it always does what you command it to
do.

We'll cover a small sample of what Python can calculate. Complex numbers are
previewed as a Python type. Great math libraries such as Turtle, which creates polygons
and circles with ease, may be explored in your own time and are mentioned in Chapter
6, The Standard Library. The depth of math required for data analysis and machine
learning starts with the foundations laid here.

Note

In this book, copy everything that follows >>> in a cell in your Jupyter Notebook;
that is, you exclude >>>. To run code, make sure the cell is highlighted, then press
Shift + Enter. You may also press the Run button at the top of the Notebook, but this
takes more time. Start thinking like a developer and use keystrokes instead.

6 | Vital Python - Math, Strings, Conditionals, and Loops

Standard Math Operations

You can have a look at the standard math operations and their symbols that we will be
using while coding. The following table covers these:

Operation Symbol
Addition +

Subtraction -

Multiplication *
Division /
Integer Division /
Exponentiation *x
Modulo/Remainder %

Figure 1.2: Standard math operations

Note

The ** symbol is not universally for exponentiation, but it should be. By
definition, exponentiation is repeated multiplication. Using the * symbol twice
is representative of repeated multiplication. It's terse, fast, and efficient. Other
programming languages require functions to exponentiate.

Python provides an optional method from the math library, math.pow(), but ** is cleaner
and easier to use.
Basic Math Operations

We can perform addition on two numbers using the + operator. The following example
shows the addition of 5 and 2:

1. Here, we are using the addition operator, + in the code:
5+ 2
You should get the following output:
7

We can perform addition on two numbers using the + operator. The following
example shows the subtraction of 5 and 2.

Python as a Calculator | 7

Using the subtraction operator in the code, we can perform subtraction on two
numbers:

5 -2
You should get the following output:
3
The following example shows the multiplication of 5 by 2.
Using the * multiplication operator to multiply the two numbers is done as follows:
5 % 2
You should get the following output:
10
Now, use the / division operator and observe the output:
57/ 2
You should get the following output:
2.5
When dividing two numbers, Python will always return a decimal.

Now the same division can be done using the // operator, which is called integer
division. Observe the change in the output:

57/ 2
You should get the following output:
2
The result of the integer division is the integer before the decimal point.
Now, using the ** exponential operator, we can perform exponentiation:
5 x% 2
You should get the following output:
25

The next example shows how to use the modulus operator.

8 | Vital Python - Math, Strings, Conditionals, and Loops

7. Finally, use the modulus operator in the code and observe the output:
5% 2
You should get the following output:
1

The modulus operator is performed using the % operator, as shown in step 7. It
returns the remainder when the first number is divided by the second.

In the aforementioned examples, you have used the different math operators and
performed operations with them in a Jupyter Notebook. Next, you move on to the order
of operations in Python.

Order of Operations

Parentheses are meaningful in Python. When it comes to computation, Python always
computes what is in parentheses first.

The Python language follows the same order of operations as in the math world. You
may remember the acronym PEMDAS: parentheses first, exponentiation second,
multiplication /division third, and addition/subtraction fourth.

Consider the following expression:5 + 2 * -3

The first thing to note is that the negative sign and subtraction sign are the same in
Python. Let's have a look at the following example:

1. Python will first multiply 2 and -3, and then add 5:
5+ 2% -3
You should get the following output:
=
2. If parentheses are placed around the 5 and 2, we obtain a different result:
(5 +2) x -3
You should get the following output:
=71

If ever in doubt, use parentheses. Parentheses are very helpful for complex expressions,
and extra parentheses do not affect code.

In the following exercise, we are going to dive into Python code and work with math
operations.

Python as a Calculator | 9

Exercise 1: Getting to Know the Order of Operations

The goal of this exercise is to work with the primary math operations in Python and
understand their order of execution. This exercise can be performed on the Python
terminal:

1. Subtract 5 to the 3rd power, which is 5%, from 100 and divide the result by 5:
(100 - 5 xx 3) / 5
You should get the following output:
-5.0
2. Add 6 to the remainder of 15 divided 4:
6+ 15 % 4
You should get the following output:
9
3. Add 2 to the 2nd power, which is 27 to the integer division of 24 and 4:
2 %% 2 +24 // 4
You should get the following output:
10

In this quick exercise, you have used Python to perform basic math using the order of
operations. As you can see, Python is an excellent calculator. You will use Python often
as a calculator in your career as a developer.

Spacing in Python

You may have wondered about spaces in between numbers and symbols. In Python,
spaces after a number or symbol do not carry any meaning. So, 5**3 and 5 ** 3 both
result in 125.

Spaces are meant to enhance readability. Although there is no correct way to space
code, spaces are generally encouraged between operands and operators. Thus, 5 ** 3 is
preferable.

Trying to follow certain conventions is perfectly acceptable. If you develop good habits
early on, it will make the reading and debugging of code easier later.

10 | Vital Python - Math, Strings, Conditionals, and Loops

Number Types: Integers and Floats

Now you will address the difference between an integer and a float. Consider 8 and 8.0.
You know that 8 and 8.0 are equivalent mathematically. They both represent the same
number, but they are different types. 8 is an integer, and 8.0 is a decimal or float.

An integer in Python is classified as a type of int, short for integer. Integers include all
positive and negative whole numbers, including 0. Examples of integers include 3, -2, 47,
and 10000.

Floats, by contrast, are Python types represented as decimals. All rational numbers
expressed as fractions can be represented as floats. Samples of floats include 3.0, -2.0,
4745, and 200.001.

Note

We are only covering text and numeric types in this chapter. Other types will be
discussed in subsequent chapters.

Python types can be obtained explicitly using the type() keyword, as you will see in the
following exercise.
Exercise 2: Integer and Float Types

The goal of this exercise is to determine types and then change those types in our
Python code. This can be performed in the Jupyter Notebook:

1. Begin by explicitly determining the type of 6 using the following code:
type(6)
You should get the following output:
int
2. Now, enter type(6.0) in the next cell of your notebook:
type(6.0)
You should get the following output:

float

Python as a Calculator | 11

3. Now, add 5 to 3.14. Infer the type of their sum:
5+ 3.14
You should get the following output:
8.14

It's clear from the output that combining an int and a float gives us a float. This
makes sense. If Python returned 8, you would lose information. When possible,
Python converts types to preserve information.

You can, however, change types by using the type keyword.
4. Now, convert 7.999999999 to an int:
int(7.999999999)
You should get the following output:
7
5. Convert 6 to a float:
float(6)
You should get the following output:
6.0

In this exercise, you determined types by using the type() keyword, and you changed
types between integers and floats. As a developer, you will need to use your knowledge
of variable types more often than you might expect. It's not uncommon to be unsure of
a type when dealing with hundreds of variables simultaneously, or when editing other
people's code.

Note

Type changing will be revisited again in this chapter, referred to as casting.

12 | Vital Python - Math, Strings, Conditionals, and Loops

Complex Number Types

Python includes complex numbers as an official type. Complex numbers arise when
taking the square roots of negative numbers. There is no real number whose square
root is -9, so we say that it equals 3i. Another example of a complex number is 2i + 3.
Python uses j instead of i.

You can take a look at the following code snippet to learn how to work with complex
number types.

Divide 2 + 3j by 1 - 5j, enclosing both operations within parentheses:
(2 +33) /7 (-5

You should get the following output:
-0.5+0.5j

For more information on complex numbers, check out https: //docs.python.org /3.7/
library/cmath.html.

Errors in Python

In programming, errors are not to be feared; errors are to be welcomed. Errors are
common not only for beginners but for all developers. You will learn skills to handle
errors in Chapter 4, Extending Python, Files, Errors, and Graphs. For now, if you get an
error, just go back and try again. Python errors in Jupyter Notebooks won't crash your
computer or cause any serious problems but they will just stop running the Python
code.

Variables

In Python, variables are memory slots that can store elements of any type. The name
variable is meant to be suggestive, as the idea behind a variable is that the value can
vary throughout a given program.

Variable Assignment

In Python, variables are introduced the same way as in math, by using the equals sign.
In most programming languages, however, order matters; that is, x = 3.14 means that
the value 3.14 gets assigned to x. However, 3.14 = x will produce an error because it's
impossible to assign a variable to a number. In the following exercise, we will implement
this concept in code to give you a better understanding of it.

Python as a Calculator | 13

Exercise 3: Assigning Variables

The goal of this exercise is to assign values to variables. Variables can be assigned any
value, as you will see in this exercise. This exercise can be performed in the Jupyter
Notebook:

1. Set x as equal to the number 2:
x =2
In the first step, we assigned the value 2 to the x variable.
2. Add 1 to the variable x:
x + 1
You should get the following output:
3
Once we add 1 to x, we get the output of 3, because the variable has 1 added to it.
3. Change x to 3.0 and add 1 to x:

x = 3.0

X + 1
You should get the following output:
4.0

In this step, we change the value of x to 4.0, and as in the previous 2 steps, we will
be adding 1 to the x variable.

By the end of this quick exercise, you may have noticed that in programming, you
can assign a variable in terms of its previous value. This is a powerful tool, and many
developers use it quite often. Furthermore, the type of x has changed. x started as
an int, but now x = 3.0 which is a float. This is allowed in Python because Python is
dynamically typed.

14 | Vital Python - Math, Strings, Conditionals, and Loops

Changing Types

In some languages, it's not possible for a variable to change types. This means that

if the y variable is an integer, then y must always be an integer. Python, however, is
dynamically typed, as we saw in Exercise 3, Assigning Variables and as illustrated in the
following example:

1. 'y starts as an integer:
y =10
2. ybecomes a float:
y=y-10.0
3. Check the type of y:
type(y)
You should get the following output:
float

In the next topic, you will be looking at reassigning variables in terms of themselves.

Reassigning Variables in Terms of Themselves

It's common in programming to add 1 to a variable; for instance, x = x + 1. The
shorthand for this is to use += as in the following example:

x += 1
So, if x was 6, x is now 7. The += operator adds the number on the right to the variable
and sets the variable equal to the new number.
Activity 1: Assigning Values to Variables

In this activity, you will assign a number to the x variable, increment the number, and
perform additional operations.

By completing this activity, you will learn how to perform multiple mathematical
operations using Python. This activity can be performed in the Jupyter Notebook.

The steps are as follows:
1. First, set 14 to the x variable.
2. Now, add 1 to x.
3. Finally, divide x by 5 and square it.

Python as a Calculator | 15

You should get the following output:

9.0

Note

The solution for this activity can be found via this link.

Variable Names

To avoid confusion, it's recommended to use variable names that make sense to readers.
Instead of using x, the variable may be income or age. Although x is shorter, someone
else reading the code might not understand what x is referring to. Try to use variable
names that are indicative of the meaning.

There are some restrictions when naming variables. For instance, variables cannot start
with numbers, most special characters, keywords, nor built-in types. Variables also
can't contain spaces between letters.

According to Python conventions, it's best to use lowercase letters and to avoid special
characters altogether as they will often cause errors.

Python keywords are reserved in the language. They have special meanings. We will go
over most of these keywords later.

Running the following two lines always shows a current list of Python keywords:

import keyword
print(keyword.kwlist)

You should get the following output:

['False"', 'None', 'True', "and', 'as', "assert', 'asynec', 'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 'els
e', 'except', 'finally', 'fer', 'from', 'glckal', 'if', 'impeort', 'in', 'is', 'lamkda', 'nonlecal', 'mot', 'or', 'pass', 'r
aise', "return', 'try', 'while', 'with', 'wyield']

Figure 1.3: Output showing the Python keywords

Note

If you use any of the preceding keywords as variable names, Python will throw an
error.

16 | Vital Python - Math, Strings, Conditionals, and Loops

Exercise 4: Variable Names

The goal of this exercise is to learn standard ways to name variables by considering
good and bad practices. This exercise can be performed in Jupyter:

1. Create a variable called 1st_number and assign it a value of 1:
1st_number = 1

You should get the following output:

File "«ipython-input-6-05d80cc97354=", line 1

l1st number = 1
SyntaxError: invalid syntax

Figure 1.4: Output throwing a syntax error

You'll get the error mentioned in the preceding screenshot because you cannot
begin a variable with a number.

2. Now, let's try using letters to begin a variable:
first_number = 1

3. Now, use special characters in a variable name, as in the following code:
my_$ = 1000.00

You should get the following output:

File "<ipython-input-T-e3c03546edB3>", line 1
my § = 1000.00

SyntazError: invalid syntax
Figure 1.5: Output throwing a syntax error

You get the error mentioned in Figure 1.4 because you cannot include a variable
with a special character.

4. Now, use letters again instead of special characters for the variable name:
my_money = 1000.00

In this exercise, you have learned to use underscores to separate words when naming
variables, and not to start variables' names with numbers nor include any symbols. In
Python, you will quickly get used to these conventions.

Python as a Calculator | 17

Multiple Variables

Most programs contain multiple variables. The same rules apply as when working
with single variables. You will practice working with multiple variables in the following
exercise.

Exercise 5: Multiple Variables in Python

In this exercise, you will perform mathematical operations using more than one
variable. This exercise can be performed in the Jupyter Notebook:

1. Assign5toxand2toy:

X =5
y =2

2. Add x to x and subtract y to the second power:
X + X -y %% 2
You should get the following output:
6

Python has a lot of cool shortcuts, and multiple variable assignment is one of them.
Here's the Pythonic way of declaring two variables.

Note

Pythonic is a term used to describe code written in the optimum readable format.
This will be covered in Chapter 7, Becoming Pythonic.

3. Assign 8 to x and 5 to y in one line:
X, y=8,5
4. Find the integer division of x and y:
x //y
You should get the following output:
1

In this exercise, you practiced working with multiple variables, and you even learned
the Pythonic way to assign values to multiple variables in one line. It's rare to only work
with one variable in practice.

18 | Vital Python - Math, Strings, Conditionals, and Loops

Comments

Comments are extra blocks of code that do not run. They are meant to clarify code
for readers. In Python, any text following the # symbol on a single line is a comment.
Comments followed by the # symbol may be inline or above the text.

Note

Consistent use of comments will make reviewing and debugging code much easier.
It's strongly advisable to practice this from here on out.

Exercise 6: Comments in Python

In this exercise, you will learn two different ways to display comments in Python. This
exercise can be performed in the Jupyter Notebook:

1. Write a comment that states This is a comment:
This is a comment

When you execute this cell, nothing should happen.

2. Set the pi variable as equal to 3.14. Add a comment above the line stating what you

did:

Set the variable pi equal to 3.14
pi = 3.14

Adding the comment clarifies what follows.

3. Now, try setting the pi variable as equal to 3.14 again, but add the comment stating

what you did on the same line:
pi = 3.14 # Set the variable pi equal to 3.14

Although it's less common to provide comments on the same line of code, it's
acceptable and often appropriate.

Python as a Calculator | 19

You should get the following output from the Jupyter notebook:

In [2]: | # This 15

oy
¥

In :

I (o

In [7]: |pi 3.14 # Set the variable pi egual to 3.14

Figure 1.6: Output from the Jupyter Notebook using comments

In this exercise, you have learned how to write comments in Python. As a developer,
writing comments is essential to make your code legible to others.

Docstrings

Docstrings, short for document strings, state what a given document, such as a
program, a function, or a class, actually does. The primary difference in syntax between
a docstring and a comment is that docstrings are intended to be written over multiple
lines, which can be accomplished with triple quotes """. They also introduce a given
document, so they are placed at the top.

Here is an example of a docstring:

This document will explore why comments are particularly useful
when writing and reading code.

When you execute this cell, nothing really happens. Docstrings, like comments, are
designed as information for developers reading and writing code; they have nothing to
do with the output of code.

Activity 2: Finding a Solution Using the Pythagorean Theorem in Python

In this activity, you will determine the Pythagorean distance between three points. You
will utilize a docstring and comments to clarify the process.

In this activity, you need to assign numbers to the x, y, and z variables, square the
variables, and take the square root to obtain the distance, while providing comments
along the way and a docstring to introduce the sequence of steps. To complete this
activity, you'll utilize multiple variables, comments, and docstrings to determine the
Pythagorean distance between three points.

20 | Vital Python - Math, Strings, Conditionals, and Loops

The steps are as follows:
1. Write a docstring that describes what is going to happen.
Set x, y, and z as equal to 2, 3, and 4.

Determine the Pythagorean distance between x, y, and z.

oW N

Include comments to clarify each line of code.
You should get the following output:

5.385164807134504

Note

The solution for this activity can be found via this link.

So far, in this chapter, you have used Python as a basic calculator, along with the order
of operations. You examined the difference between int and float values and learned
how to convert between them. You can implement variable assignment and reassign
variables to make programs run more smoothly. You also utilized comments to make
code more readable and learned how to identify syntax errors. In addition, you learned
a couple of cool Python shortcuts, including assigning multiple variables to one line. As
an added bonus, you explored Python's complex number types.

Next, you'll explore Python's other main type, strings.

Strings: Concatenation, Methods, and input()

You have learned how to express numbers, operations, and variables. What about
words? In Python, anything that goes between 'single' or "double" quotes is considered
a string. Strings are commonly used to express words, but they have many other uses,
including displaying information to the user and retrieving information from a user.

Examples include 'hello’, "hello", 'HELL0000', '12345', and 'fun_characters: !@ #S$% ™ &*(.

In this section, you will gain proficiency with strings by examining string methods,
string concatenation, and useful built-in functions including print() and len() with a
wide range of examples.

Strings: Concatenation, Methods, and input() | 21

String Syntax

Although strings may use single or double quotes, a given string must be internally
consistent. That is, if a string starts with a single quote, it must end with a single quote.
The same is true of double quotes.

You can take a look at valid and invalid strings in Exercise 7, String Error Syntax.

Exercise 7: String Error Syntax

The goal of this exercise is to learn appropriate string syntax:

1.
2.

Open a Jupyter Notebook.

Enter a valid string:
bookstore = 'City Lights'

Now enter an invalid string:
bookstore = 'City Lights"

You should get the following output:

File "<ipython-input-2-9c3a3fab8dfa=", line 1

bookstore = 'City Lights

SyntaxError: ECL while scanning string literal
Figure 1.7: Output with invalid string format

If you start with a single quote, you must end with a single quote. Since the string
has not been completed, you receive a syntax error.

Now you need to enter a valid string format again, as in the following code snippet:
bookstore = "Moe's"

This is okay. The string starts and ends with double quotes. Anything can be inside
the quotation marks, except for more quotation marks.

Now add the invalid string again:

bookstore = 'Moe's'

22 | Vital Python - Math, Strings, Conditionals, and Loops

You should get the following output:

File "<ipython-input-4-0ef68ccch92b>", line 1
boockstore = 'Moe's

SyntaxError: invalid syntax

Figure 1.8: Output with the invalid string

This is a problem. You started and ended with single quotes, and then you added an s
and another single quote.

A couple of questions arise. The first is whether single or double quotes should be
used. The answer is that it depends on developer preference. Double quotes are more
traditional, and they can be used to avoid potentially problematic situations such as the
aforementioned Moe's example. Single quotes eliminate the need to press the Shift key.

In this exercise, you have learned the correct and incorrect ways of assigning strings to
variables, including single and double-quotes.

Python uses the backslash character, \, called an escape sequence in strings, to allow
for the insertion of any type of quote inside of strings. The character that follows the
backslash in an escape sequence may be interpreted as mentioned in Python's official
documentation, which follows. Of particular note is \n, which is used to create a new
line:

Escape Sequence | Meaning

\newline Ignored

\\ Backslash (\)

\' Single quote (')

\" Double guote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo ASCII character with octal value ooo
\xhh... ASCII character with hex value hh...

Figure 1.9: Escape sequences and their meaning

Note

For more information on strings, you can refer to https://docs.python.org/2.0/ref/
strings.html.

Strings: Concatenation, Methods, and input() | 23

Escape Sequences with Quotes

Here is how an escape sequence works with quotes. The backslash overrides the single
quote as an end quote and allows it to be interpreted as a string character:

bookstore = 'Moe\'s'

Multi-Line Strings

Short strings always display nicely but, what about multi-line strings? It can be
cumbersome to define a paragraph variable that includes a string over multiple lines. In
some IDEs, the string may run off the screen, and it may be difficult to read. In addition,
it might be advantageous to have line breaks at specific points for the user.

Note

Line breaks will not work inside single or double quotes.

When strings need to span multiple lines, Python provides triple quotes, using single or
double quotation marks, as a nice option.

Here is an example of triple quotes (' ' ') used to write a multi-line string:

vacation_note =
During our vacation to San Francisco, we waited in a long line by
Powell St. Station to take the cable car. Tap dancers performed on
wooden boards. By the time our cable car arrived, we started looking
online for a good place to eat. We're heading to North Beach.

Note

Multi-line strings take on the same syntax as a docstring. The difference is that
a docstring appears at the beginning of a document, and a multi-line string is
defined within the program.

The print() Function

The print() function is used to display information to the user, or to the developer. It's
one of Python's most widely used built-in functions.

24 | Vital Python - Math, Strings, Conditionals, and Loops

Exercise 8: Displaying Strings

In this exercise, you will learn different ways to display strings:

1.
2.

Open a new Jupyter Notebook.

Define a greeting variable with the value 'Hello'" Display the greeting using the
print() function:

greeting = 'Hello'
print(greeting)

You should get the following output:

Hello

Hello, as shown in the display, does not include single quotes. This is because the
print() function is generally intended for the user to print the output.

Note

The quotes are for developer syntax, not user syntax.

Display the value of greeting without using the print() function:
greeting

You should get the following output:
'Hello'

When we input greeting without the print() function, we are obtaining the
encoded value, hence the quotes.

Consider the following sequence of code in a single cell in a Jupyter Notebook:

spanish_greeting = 'Hola.'
spanish_greeting
arabic_greeting = 'Ahlan wa sahlan.'

When the preceding cell is run, the preceding code does not display spanish_
greeting. If the code were run on a terminal as three separate lines, it would display
Hola., the string assigned to spanish_greeting. The same would be true if the
preceding sequence of code were run in three separate cells in a Jupyter Notebook.
For consistency, it's useful to use print() any time information should be displayed.

Strings: Concatenation, Methods, and input() | 25

5. Display the Spanish greeting:

spanish_greeting = 'Hola.'
print(spanish_greeting)

You should get the following output:
Hola.

6. Now, display the Arabic greeting message, as mentioned in the following code
snippet:

arabic_greeting = 'Ahlan wa sahlan.'
print(arabic_greeting)

You should get the following output:
Ahlan wa sahlan.

The compiler runs through each line in order. Every time it arrives at print(), it
displays information.

In this exercise, you have learned different ways to display strings, including the print()
function. You will use the print() function very frequently as a developer.
String Operations and Concatenation

The multiplication and addition operators work with strings as well. In particular, the

+ operator combines two strings into one and is referred to as string concatenation.
The * operator, for multiplication, repeats a string. In the following exercise, you will be
looking at string concatenation in our string samples.

Exercise 9: String Concatenation

In this exercise, you will learn how to combine strings using string concatenation:

1. Open a new Jupyter Notebook.

2. Combine the spanish_greeting we used in Exercise 8, Displaying Strings, with
'Senor.' using the + operator and display the results:

spanish_greeting = 'Hola'
print(spanish_greeting + 'Senor.")

You should get the following output:
HolaSenor.

Notice that there are no spaces between greeting and name. If we want spaces
between strings, we need to explicitly add them.

26 | Vital Python - Math, Strings, Conditionals, and Loops

3. Now, combine spanish_greeting with 'Senor. using the + operator, but this time,
include a space:

spanish_greeting = 'Hola
print(spanish_greeting + 'Senor.")

You should get the following output:
Hola Senor.
4. Display the greeting 5 times using the * multiplication operator:

greeting = 'Hello'
print(greeting * 5)

You should get the following output:
HelloHelloHelloHelloHello
By completing this exercise successfully, you have combined strings using string
concatenation using the + and * operators.
String Interpolation

When writing strings, you may want to include variables in the output. String
interpolation includes the variable names as placeholders within the string. There
are two standard methods for achieving string interpolation: comma separators and
format.

Comma Separators

Variables may be interpolated into strings using commas to separate clauses. It's similar
to the + operator, except it adds spacing for you.

You can have a look at an example here, where we add Ciao within a print statement:

italian_greeting = 'Ciao'
print('Should we greet people with', italian_greeting, 'in North Beach?')

You should get the following output:

Should we greet people with Ciao in North Beach?

String Interpolation | 27

Format

With format, as with commas, Python types, ints, floats, and so on, are converted into
strings upon execution. The format is accessed using brackets and dot notation:

owner = 'Lawrence Ferlinghetti'

age = 100

print('The founder of City Lights Bookstore, {}, is now {} years old.'.format(owner,
age))

You should get the following output:
The founder of City Lights Bookstore, Lawrence Ferlinghetti, is now 100 years old.

The format works as follows: First, define your variables. Next, in the given string, use
{3 in place of each variable. At the end of the string, add a dot (.) followed by the format
keyword. Then, in parentheses, list each variable in the desired order of appearance.

In the next section, you will look at the built-in string functions available to a Python
developer.

The len() Function

There are many built-in functions that are particularly useful for strings. One such
function is len(), which is short for length. The 1en() function determines the number
of characters in a given string.

Note that the 1len() function will also count any blank spaces in a given string.

You'll use the arabic_greeting variable used in Exercise 8, Displaying Strings:
len(arabic_greeting)

You should get the following output:

16

Note

When entering variables in Jupyter notebooks, you can use tab completion. After

you type in a letter or two, you can press the Tab key. Python then displays all valid
continuations that will complete your expression. If done correctly, you should see
your variable listed. Then you can highlight the variable and press Enter. Using tab

completion will limit errors.

28 | Vital Python - Math, Strings, Conditionals, and Loops

String Methods

All Python types, including strings, have their own methods. These methods generally
provide shortcuts for implementing useful tasks. Methods in Python, as in many other
languages, are accessed via dot notation.

You can use a new variable, name, to access a variety of methods. You can see all
methods by pressing the Tab button after the variable name and a dot.

Exercise 10: String Methods
In this exercise, you will learn how to implement string methods.
1. Set a new variable, called name, to any name that you like:

name = 'Corey'

Note

Access string methods by pressing the Tab button after the variable name and dot
(.), as demonstrated in the following screenshot:

in [TB]:name.capitalize

name.casefold
name.center
name.count
name.encode

In [79]: name.endswith
name.expandtabs
name.find
name.format
name.format_map

MIn []: name.

Figure 1.10: Setting a variable name via the dropdown menu
You can scroll down the list to obtain all available string methods.
2. Now, convert the name into lowercase letters using the lower() function:
name. lower()

You should get the following output:

'corey'

String Interpolation | 29

3. Now, capitalize the name using the capitalize() function:
name.capitalize()
You should get the following output:
"Corey'
4. Convert the name into uppercase letters using upper():
name . upper()
You should get the following output:
'COREY'
5. Finally, count the number of o instances in the word 'Corey'":
name.count('o"')
You should get the following output:
1

In this exercise, you have learned about a variety of string methods, including lower(),
capitalize(), upper(), and count().

Methods may only be applied to their representative types. For instance, the lower()
method only works on strings, not integers or floats. By contrast, built-in functions
such as 1en() and print() can be applied to a variety of types.

Note

Methods do not change the original variable unless we explicitly reassign the
variable. So, the name has not been changed, despite the methods that we have
applied.

Casting

It's common for numbers to be expressed as strings when dealing with input and
output. Note that '5' and 5 are different types. We can easily convert between numbers
and strings using the appropriate type keywords. In the following exercise, we are going
to be using types and casting to understand the concepts much better.

30 | Vital Python - Math, Strings, Conditionals, and Loops

Exercise 11: Types and Casting
In this exercise, you will learn how types and casting work together:
1. Open a new Jupyter Notebook.
2. Determine the type of '5":
type('5")
You should get the following output:
str
3. Now, add '5' and 7"
'5' + '7"
You should get the following output:
1571

The answer is not 12 because, here, 5 and 7 are of type string, not of type int.

Recall that the + operator concatenates strings. If we want to add 5 and 7, we must

convert them first.

4. Convert the '5' string to an int using the code mentioned in the following code
snippet:

int('5")
You should get the following output:
5

Now 5 is a number, so it can be combined with other numbers via standard
mathematical operations.

5. Add'5'and '7' by converting them to int first:
int('5') + int('7")
You should get the following output:
In [4]: int('5") 4+ int('7")
Ooutf[4]: 12

Figure 1.11: Output after adding two integers converted from a string

In this exercise, you have learned several ways in which strings work with casting.

String Interpolation | 31

The input() Function

The input() function is a built-in function that allows user input. It's a little different
than what we have seen so far. Let's see how it works in action.

Exercise 12: The input() Function

In this exercise, you will utilize the input() function to obtain information from the
user:

1. Open a new Jupyter Notebook.
2. Ask a user for their name. Respond with an appropriate greeting:

Choose a question to ask
print('What is your name?')

You should get the following output:
In [1]: | # Choose a question to ask
print ('What is your name?')
What is your name?

Figure 1.12: The user is prompted to answer a question

3. Now, set a variable that will be equal to the input() function, as mentioned in the
following code snippet:

name = input()

You should get the following output:

In [*]: name = input/()

Corey

Figure 1.13: The user may type anything into the provided space

32 | Vital Python - Math, Strings, Conditionals, and Loops

4. Finally, select an appropriate output:

print('Hello, ' + name + '.")
You should get the following output:
In [3]: print('Hello, ' + name + '.')
Hello, Corey.

Figure 1.14: After pressing Enter, the full sequence is displayed

Note

input() can be finicky in Jupyter Notebooks. If an error arises when entering
the code, try restarting the kernel. Restarting the kernel will erase the current
memory and start each cell afresh. This is advisable if the notebook stalls.

In this exercise, you have learned how the input() function works.

Activity 3: Using the input() Function to Rate Your Day

In this activity, you need to create an input type where you ask the user to rate their
day on a scale of 1 to 10.

Using the input() function, you will prompt a user for input and respond with a
comment that includes the input. In this activity, you will print a message to the user
asking for a number. Then, you will assign the number to a variable and use that variable
in a second message that you display to the user.

The steps are as follows:

1.

2.

Open a new Jupyter Notebook.

Display a question prompting the user to rate their day on a number scale of 1 to
10.

Save the user's input as a variable.

Display a statement to the user that includes the number.

Note

The solution for this activity can be found via this link.

String Indexing and Slicing | 33

String Indexing and Slicing

Indexing and slicing are crucial parts of programming. In data analysis, indexing and

slicing DataFrames is essential to keep track of rows and columns, something we will

practice in Chapter 10, Data Analytics with pandas and NumPy. The mechanics behind
indexing and slicing dataFrames is the same as indexing and slicing strings, which we
will learn in this chapter.

Indexing

The characters of Python strings exist in specific locations; in other words, their order
counts. The index is a numerical representation of where each character is located. The
first character is at index O, the second character is at index 1; the third character is at
index 2, and so on.

Note
We always start at 0 when indexing.

Consider the following string:
destination = 'San Francisco'

'S' isin the Oth index, 'a' is in the Ist index, 'n' is in the 2nd index, and so on. The
characters of each index are accessed using bracket notation as follows:

destination[0]

You should get the following output:
‘g

To access the data from the first index, enter the following:
destination[1]

You should get the following output:
Ly

To access the data from the second index, enter the following:
destination[2]

You should get the following output:

n

34 | Vital Python - Math, Strings, Conditionals, and Loops

The character value for San Francisco and the corresponding index count is shown in
Figure 1.15:

Character value S Q n
Index Count 0 1 2

Figure 1.15: Diagrammatic representation of the character values and the corresponding positive index
values

Now, try adding a -1 as the index value and observe the output:
destination[-1]
You should get the following output:

(o]

Note

Negative numbers start at the end of the string. (It makes sense to start with -1
since -0 is the same as 0.)

To access the data from the rear of San Francisco, we use the negative sign
in this case -2:

destination[-2]

You should get the following output:

C

The following figure 1.16 mentions the characters sco from the word Francisco, and the
corresponding index count:

Character value s c
Index Count -3 -2 -1

Figure 1.16: Index value for the negative values for San Francisco
Here is one more example:

bridge = 'Golden Gate'
bridge[6]

Slicing | 35

You should get the following output:

You may be wondering whether you did something wrong because no letter is
displayed. On the contrary, it's perfectly fine to have an empty string. In fact, an empty
string is one of the most common strings in programming.

Slicing

A slice is a subset of a string or other element. A slice could be the whole element or

one character, but it's more commonly a group of adjoining characters.

Let's say you want to access the fifth through eleventh letters of a string. So, you start
at index 4 and end at index 10, as was explained in the previous Indexing section. When
slicing, the colon symbol (:) is inserted between indices, like so: [4:10].

There is one caveat. The lower bound of a slice is always included, but the upper bound
is not. So, in the preceding example, if you want to include the 10th index, you must use
[4:11].

You should now have a look at the following example for slicing.

Retrieve the fifth through eleventh letters of San Francisco, which you used in the
previous Indexing section:

destination[4:11]
You should get the following output:
'Francis'
Retrieve the first three letters of destination:
destination[0:3]
You should get the following output:
'San'

There is a shortcut for getting the first n letters of a string. If the first numerical
character is omitted, Python will start at the Oth index.

36 | Vital Python - Math, Strings, Conditionals, and Loops

Now, to retrieve the first eight letters of destination using the shortcut, use the
following code:

destination[:8]

You should get the following output:
'San Fran'

Finally, to retrieve the last three letters of destination, use this code:
destination[-3:]

You should get the following output:

SCo

The negative sign, -, means that we start at the third-to-last letter, and the colon means
that we go to the end.

Strings and Their Methods

You started with string syntax, before moving on to a variety of ways to concatenate
strings. You looked at useful built-in functions including len() and examined a sample
of string methods. Next, you casted numbers as strings and vice versa.

The input() function is used to access user input. This really extends what you can do.
Responding to user feedback is a core element of programming that you will continue
to develop. Finally, you closed with two powerful tools that developers frequently use:
indexing and slicing.

There is a great deal more to learn about strings. You will encounter additional
problems and methods throughout this book. This introductory chapter is meant to
equip you with the basic skills needed to handle strings going forward.

Next, you will learn how to branch programs using conditionals and Booleans.

Booleans and Conditionals

Booleans, named after George Boole, take the values of True or False. Although the idea
behind Booleans is rather simple, they make programming immensely more powerful.

When writing programs, for instance, it's useful to consider multiple cases. If you
prompt the user for information, you may want to respond differently depending upon
the user's answer.

For instance, if the user gives a rating of O or 1, you may give a different response than a
rating of 9 or 10. The keyword here is if.

Booleans and Conditionals | 37

Programming based upon multiple cases is referred to as branching. Each branch is
represented by a different conditional. Conditionals often start with an 'if' clause,
followed by 'else’ clauses. The choice of a branch is determined by Booleans, depending
on whether the given conditions are True or False.

Booleans

In Python, a Boolean class object is represented by the bool keyword and has a value of
True or False.

Note

Boolean values must be capitalized in Python.

Exercise 13: Boolean Variables
In this short exercise, you will use, assign, and check the type of Boolean variables:
1. Open a new Jupyter Notebook.

2. Now, use a Boolean to classify someone as being over 18 using the following code
snippet:

over_18 = True
type(over_18)

You should get the following output:
bool
The output is satisfied, and the type is mentioned as a Boolean, that is, bool.
3. Use a Boolean to classify someone as not being over 21:

over_21 = False
type(over_21)

You should get the following output:
bool

In this short, quick exercise, you have learned about the bool type, one of Python's most
important types.

38 | Vital Python - Math, Strings, Conditionals, and Loops

Logical Operators
Booleans may be combined with the and, or, and not logical operators.

For instance, consider the following propositions:

A =True
B = True
Y = False
Z = False

Not simply negates the value, as follows:

not A = False

not Z = True.

And is only true if both propositions are true. Otherwise, it is false:
A and B = True

AandY = False

Y and Z = False

Or is true if either proposition is true. Otherwise, it is false:

A or B =True
AorY =True
Y or Z = False

Now let's use them in the following practice example.

Determine whether the following conditions are True or False given that over_18 = True
and over_21 = False:

¢ over_18 and over_21
e over_18 or over_21
* notover_18

* notover_21 or (over_21 or over_18)

Booleans and Conditionals | 39

1. You have to put this into code and first assign True and False to over_18 and
over_21:

over_18, over_21 = True, False
2. Next you can assume the individual is over_18 and over_21:
over_18 and over_21
You should get the following output:
False
3. You now assume the individual is over_18 or over_21:
over_18 or over_21
You should get the following output:
True
4. You now assume the individual is not over_18:
not over_18
You should get the following output:
False
5. You assume the individual is not over_21 or (over_21 or over_18):
not over_21 or (over_21 or over_18)
You should get the following output:
True

In the next section, we will learn about the comparison operators that go along with
Booleans.

40 | Vital Python - Math, Strings, Conditionals, and Loops

Comparison Operators
Python objects may be compared using a variety of symbols that evaluate to Booleans.
Figure 1.17 shows the comparison table with their corresponding operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

equivalent to

I= not equivalent to

Figure 1.17: Comparison table with its corresponding symbols

Note

The = and == symbols are often confused. The = symbol is an assignment

symbol. So, x = 3 assigns the integer 3 to the x variable. The == symbol makes a
comparison. Thus x == 3 checks to see whether x is equivalent to 3. The result of x
== 3 will be True or False.

Exercise 14: Comparison Operators

In this exercise, you will practice using comparison operators. You will start with some
basic mathematical examples:

1. Open a new Jupyter Notebook.

2. Now, set age as equal to 20 and include a comparison operator to check whether
age is less than 13:

age = 20
age < 13

You should get the following output:

False

Booleans and Conditionals | 41

3. Using the following code snippet, you can check whether age is greater than or
equal to 20 and less than or equal to 21:

age >= 20 and age <= 21
You should get the following output:
True
4. Now check whether age is equivalent to 21:
age != 21
You should get the following output:
True
5. Now, check whether age is equivalent to 19:
age == 19
You should get the following output:
False

The double equals sign, or the equivalent operator, ==, is very important in Python.
It allows us to determine whether two objects are equal. You can now address the
question of whether 6 and 6.0 are the same in Python.

6. Is 6 equivalent to 6.0 in Python? Let's find out:
6 ==6.0
You should get the following output:
True

This may come as a bit of a surprise. 6 and 6.0 are different types, but they are
equivalent. Why would that be?

Since 6 and 6.0 are equivalent mathematically, it makes sense that they would

be equivalent in Python, even though the types are different. Consider whether

6 should be equivalent to 42 /7. The mathematical answer is yes. Python often
conforms to mathematical truths, even with integer division. You can conclude that
it's possible for different types to have equivalent objects.

42 | Vital Python - Math, Strings, Conditionals, and Loops

7. Now find out whether 6 is equivalent to the '6' string:
—= ig1
You should get the following output:
False

Here, you emphasize that different types usually do not have equivalent objects.
In general, it's a good idea to cast objects as the same type before testing for
equivalence.

Next, let's find out whether someone is in their 20's or 30's:
(age >= 20 and age < 30) or (age >= 30 and age < 40)

You should get the following output:
True

Parentheses are not necessary when there is only one possible interpretation.
When using more than two conditions, parentheses are generally a good idea. Note
that parentheses are always permitted. The following is another approach:

(20 <= age < 30) or (30 <= age < 40)
You should get the following output:
True

Although the parentheses in the preceding code line are not strictly required,
they make the code more readable. A good rule of thumb is to use parentheses for
clarity.

By completing this exercise, you have practiced using different comparison operators.

Comparing Strings
Does 'a' < 'c' make sense? What about 'New York' > 'San Francisco'?

Python uses the convention of alphabetical order to make sense of these comparisons.
Think of a dictionary: when comparing two words, the word that comes later in the
dictionary is considered greater than the word that comes before.

Booleans and Conditionals | 43

Exercise 15: Comparing Strings
In this exercise, you will be comparing strings using Python:
1. Open a new Jupyter Notebook.
2. Let's compare single letters:
3t < e
You should get the following output:
True
3. Now, let's compare 'New York' and 'San Francisco'":
'New York' > 'San Francisco'
You should get the following output:
False

This is False because 'New York' < 'San Francisco'.'New York' does not come later in
the dictionary than 'San Francisco'

In this exercise, you have learned how to compare strings using comparison operators.

Conditionals

Conditionals are used when we want to express code based upon a set of circumstances
or values. Conditionals evaluate Boolean values or Boolean expressions, and they are
usually preceded by 'if"'.

Let's say we are writing a voting program, and we want to print something only if the
user is under 18.
The if Syntax

if age < 18:
print('You aren\'t old enough to vote.')

There are several key components to a condition. Let's break them down.

The first is the 'if' keyword. Most conditionals start with an if clause. Everything
between 'if' and the colon is the condition that we are checking.

The next important piece is the colon :. The colon indicates that the if clause has
completed. At this point, the compiler decides whether the preceding condition is True
or False.

Syntactically, everything that follows the colon is indented.

44 | Vital Python - Math, Strings, Conditionals, and Loops

Python uses indentation instead of brackets. Indentation can be advantageous when
dealing with nested conditionals because it avoids cumbersome notation. Python
indentation is expected to be four spaces and may usually be achieved by pressing Tab
on your keyboard.

Indented lines will only run if the condition evaluates to True. If the condition evaluates
to False, the indented lines will be skipped over entirely.

Indentation

Indentation is one of Python's singular features. Indentation is used everywhere in
Python. Indentation can be liberating. One advantage is the number of keystrokes. It
takes one keystroke to tab, and two keystrokes to insert brackets. Another advantage is
readability. It's clearer and easier to read code when it all shares the same indentation,
meaning the block of code belongs to the same branch.

One potential drawback is that dozens of tabs may draw text offscreen, but this is rare
in practice, and can usually be avoided with elegant code. Other concerns, such as
indenting or unindenting multiple lines, may be handled via shortcuts. Select all of the
text and press Tab to indent. Select all of the text and press Shift + Tab to unindent.

Note

Indentation is unique to Python. This may result in strong opinions on both sides.
In practice, indentation has been shown to be very effective, and developers used
to other languages will appreciate its advantages in time.

Exercise 16: Using the if Syntax
In this exercise, you will be using conditionals using the if clause:
1. Open a new Jupyter Notebook.

2. Now, run multiple lines of code where you set the age variable to 20 and add an if
clause, as mentioned in the following code snippet:

age = 20

if age >= 18 and age < 21:
print('At least you can vote.')
print('Poker will have to wait.')

Booleans and Conditionals | 45

You should get the following output:

At least you can vote.
Poker will have to wait.

There is no limit to the number of indented statements. Each statement will run in
order, provided that the preceding condition is True.

3. Now, use nested conditionals:

if age >= 18:
print('You can vote.')
if age >= 21:
print('You can play poker."')

You should get the following output:
You can vote.

In this case, it's true that age >= 18, so the first statement prints You can vote. The
second condition, age >= 21, however, is false, so the second statement does not
get printed.

In this exercise, you have learned how to use conditionals using the if clause.
Conditionals will always start with if.

if else

if conditionals are commonly joined with else clauses. The idea is as follows. Say
you want to print something to all users unless the user is under 18. You can address
this with an if-else conditional. If the user is less than 18, you print one statement.
Otherwise, you print another. The otherwise clause is preceded with else.

Exercise 17: Using the if-else Syntax

In this exercise, you will learn how to use conditionals that have two options, one
following if, and one following else:

1. Open a new Jupyter Notebook.

2. Introduce a voting program only to users over 18 by using the following code
snippet:

age = 20
if age < 18:

print('You aren\'t old enough to vote.')
else:

print('Welcome to our voting program.')

46 | Vital Python - Math, Strings, Conditionals, and Loops

You should get the following output:

Welcome to our voting program.

Note
Everything after else is indented, just like everything after the if loop.

3. Now run the following code snippet, which is an alternative to the code mentioned
in step 2 of this exercise:

if age >= 18:

print('Welcome to our voting program.')
else:

print('You aren\'t old enough to vote.')

You should get the following output:
Welcome to our voting program.
In this exercise, you have learned how to use if-else in conjunction with loops.

There are many ways to write a program in Python. One is not necessarily better than
another. It may be advantageous to write faster programs or more readable programs.

A program is a set of instructions run by a computer to complete a certain task.
Programs may be one line of code, or tens of thousands. You will learn important skills
and techniques for writing Python programs in various chapters throughout this book.

The elif Statement

elif is short for else if. elif does not have meaning in isolation. elif appears in between
an if and else clause. An example should make things clearer. Have a look at the
following code snippet and copy it into your Jupyter notebook. The explanation for this
code is mentioned right after the output:

if age <= 10:
print('Listen, learn, and have fun.')
elif age<= 19:
print('Go fearlessly forward.')
elif age <= 29:
print('Seize the day.')
elif age <= 39:
print('Go for what you want.')
elif age <= 59:

Loops | 47

print('Stay physically fit and healthy."')
else:
print('Each day is magical.')

You should get the following output:
Seize the day.
Now, let's break down the code for a better explanation:

1. The first line checks if age is less than or equal to 10. Since this condition is false,
the next branch is checked.

2. The next branch is elif age <= 19. This line checks if age is less than or equal to 19.
This is also not true, so we move to the next branch.

3. The next branch is elif age <= 29. This is true since age = 20. The indented
statement that follows will be printed.

4. Once any branch has been executed, the entire sequence is aborted, none of the
subsequent elif or else branches are checked.

5. Ifnone of the if or elif branches were true, the final else branch will automatically
be executed.

In the next topic, you will be learning about loops.

Loops
"Write the first 100 numbers."

There are several assumptions implicit in this seemingly simple command. The first is
that the student knows where to start, namely at number 1. The second assumption is
that the student knows where to end, at number 100. And the third is that the student
understands that they should count by 1.

In programming, this set of instructions may be executed with a loop.
There are three key components to most loops:

1. The start of the loop

2. The end of the loop

3. The increment between numbers in the loop

Python distinguishes between two fundamental kinds of loops: while loops, and for
loops.

48 | Vital Python - Math, Strings, Conditionals, and Loops

The while Loops

In a while loop, a designated segment of code repeats provided that a particular
condition is true. When the condition evaluates to false, the while loop stops running.
The while loops print out the first 10 numbers.

You could print the first 10 numbers by implementing the print function 10 times, but
using a while loop is more efficient, and it scales easily. In general, it's not a good idea to
copy and paste while coding. If you find yourself copying and pasting, there's probably a
more efficient way. Let's have a look at the following example code block:

i=1
while i <= 10:
print(i)

i+=1

You should get the following output:

— W 00 N O Ul »h W N =

0

You can break down the preceding code block and find out what's happening in
concrete steps:

 Initialize the variable: Loops need to be initialized with a variable. The variable is
going to change throughout the loop. The naming of the variable is up to you. i is
often chosen because it stands for incrementor. An example is i = 1.

* Set up the while loop: The while loop starts with the while keyword. Following
while is the chosen variable. After the variable comes the condition that must be
met for the loop to run. In general, the condition should have some way of being
broken. When counting, the condition usually includes an upper limit, but it
could also be broken in other ways, such as i != 10. This line of code is the most
critical piece of the loop. It sets up how many times the loop is expected to run. An
example is while i <= 10:.

Loops | 49

* Instructions: The instructions include all indented lines after the colon. Anything

could be printed, any function could be called, and any number of lines may

be executed. It all depends on the program. As long as the code is syntactically
correct, generally speaking, anything goes. This part of the loop is going to run over
and over as long as the aforementioned condition is true. An example is print(i).

Increment: The incrementor is a crucial part of this example. Without it, the
preceding code will never stop running. It will print 1's endlessly because 1 is always
less than 10. Here, you increment by 1, but you could also increment by 2, or any
other number. An example isi += 1.

Now that you understand the separate pieces, you should look at how it works together:

1.

The variable is initialized as 1. The while loop checks the condition. 1 is less than or
equal to 10. 1 is printed. 1 is added to i. We increment to i = 2.

After all indented code after the colon has run, the loop is executed again by
returning to the while keyword.

The while loop checks the condition again. 2 is less than or equal to 10. 2 is printed
to the console. 1 is added to i. We now increment to i = 3.

The while loop checks the condition again. 3 is less than or equal to 10. 3 is printed
to the console. 1 is added to i. We increment to i = 4.

The while loop continues to increment and print out numbers until reaching the
number 10.

The while loop checks the condition. 10 is less than or equal to 1. 10 is printed to
the console. 1 is added to i. Now, increment toi = 11.

The while loop checks the condition. 11 is not less than or equal to 10. We break out
of the loop by moving beyond the indentation.

Note

You will get stuck in infinite loops. It happens to everyone. At some point, you will
forget to add the increment, and you will be stuck in an infinite loop. In Jupyter
Notebooks, just restart the kernel.

50 | Vital Python - Math, Strings, Conditionals, and Loops

An Infinite Loop

Now you should have a look at infinite loops. The following code snippet supports this
topic:

X =5
while x <= 20:
print(x)

Python often runs very quickly. If something is taking much longer than expected, an
infinite loop might be the culprit, as in the aforementioned code snippet. A developer
here would be setting all the variables and conditions right to avoid the infinite loop
case. An example of a well-written Python code is as follows:

x =5

while x<= 20:
print(x)
X +=5

break

break is a special keyword in Python that is specifically designed for loops. If placed
inside of a loop, commonly in a conditional, break will immediately terminate the loop. It
doesn't matter what comes before or after the loop. The break is placed on its own line,
and it breaks out of the loop.

To practice, you should print the first number greater than 10 that is divisible by 17.

The idea is that you are going to start at 101 and keep counting until you find a number
divisible by 17. Assume you don't know what number to stop at. This is where break
comes into play. break will terminate the loop. You can set our upper bound at some
number that you know you will never reach and break out of the loop when you get
there:

Find first number greater than 100 and divisible by 17.
x = 100
while x <= 1000:
x +=1
if x % 17 == 0:
print('', x, 'is the first number greater than 100 that is divisible by 17.")
break

Loops | 51

The x += 1 iterator is placed at the beginning of the loop. This allows us to start with
101. The iterator may be placed anywhere in the loop.

Since 101 is not divisible by 17, the loop repeats, and x = 102. Since 102 is divisible by 17,
the print statement executes and we break out of the loop.

This is the first time you have used double indentation. Since the if conditional is
inside of a while loop, it must be indented as well.
Activity 4: Finding the Least Common Multiple (LCM)

In this activity, you will find the LCM of two divisors. The LCM of two divisors is the first
number that both divisors can divide.

For instance, the LCM of 4 and 6 is 12, because 12 is the first number that both 4 and 6
can divide. You will find the LCM of 2 numbers. You will set the variables, then initialize
a while loop with an iterator and a Boolean that is True by default. You will set up a
conditional that will break if the iterator divides both numbers. You will increase the
iterator and print the results after the loop completes.

In this activity, using the following steps, you need to find the LCM of 24 and 36.
The steps are as follows:
1. Set a pair of variables as equal to 24 and 36.
Initialize the while loop, based on a Boolean that is True by default, with an iterator.
Set up a conditional to check whether the iterator divides both numbers.
Break the while loop when the LCM is found.

Increment the iterator at the end of the loop.

SRS TR U

Print the results.
You should get the following output:

The Least Common Multiple of 24 and 36 is 72.

Note

The solution for this activity can be found via this link.

52 | Vital Python - Math, Strings, Conditionals, and Loops

Programs

You have been writing programs all through this book. Every chunk of executable
code that can be saved and run on demand is a computer program. You have written
programs that greeted users, and you just wrote a program to compute the LCM of a
given number in Activity 4, Finding the Least Common Multiple (LCM).

Now that you have a lot of tools under our belt, you can combine them to write some
pretty interesting programs. You know how to generate input from a user, we know
how to convert the input into desired types, and you know how to use conditionals and
loops to iterate through cases and print various results depending upon the outcome.

Later in the book, you will get into the details of saving and testing programs. For now,
you should work on some interesting examples and exercises. For instance, in the next
exercise, you will build a program step by step to identify perfect squares.

Exercise 18: Calculating Perfect Squares

The goal of this exercise is to prompt the user to enter a given number and find out
whether it is a perfect square.

The following steps in this exercise will help you with this:

1. Open a new Jupyter Notebook.

2. Prompt the user to enter a number to see if it's a perfect square:
print('Enter a number to see if it\'s a perfect square.')

3. Set avariable as equal to input(). In this case let's enter 64:
number = input()

4. Ensure the user input is a positive integer:
number = abs(int(number))

5. Choose an iterator variable:
i=-1

6. Initialize a Boolean to check for a perfect square:

square = False

Loops | 53

7. Initialize a while loop from -1 to the square root of the number:
while i <= number=**(0.5):
8. Increment i by 1:
i+=1
9. Check the square root of the number:
if i*i == number:
10. Indicate that we have a perfect square:
square = True
11. break out of the loop:
break
12. If the number is square, print out the result:

if square:
print('The square root of', number, 'is', i, '.")

13. If the number is not a square, print out this result:

else:
print('', number, 'is not a perfect square.')

You should get the following output:
The square root of 64 is 8.

In this exercise, you have written a program to check to see whether the user's number
is a perfect square.

In the next exercise, you are going to build a similar program that will accept inputs
from the user. You need to provide the best possible offer for a real estate and either
accept or decline the offer.

54 | Vital Python - Math, Strings, Conditionals, and Loops

Exercise 19: Real Estate Offer

The goal of this exercise is to prompt the user to bid on a house and let them know if
and when the bid has been accepted.

The following steps in this exercise will help you with this:
1. Open a new Jupyter Notebook.
2. Begin by stating a market price:
print('A one bedroom in the Bay Area is listed at $599,000')
3. Prompt the user to make an offer on the house:
print('Enter your first offer on the house.')
4. Set offer as equal to input():
offer = abs(int(input()))
5. Prompt the user to enter their best offer for the house:
print('Enter your best offer on the house.')
6. Set best as equal to input():
best = abs(int(input()))
7. Prompt the user to choose increments:
print('How much more do you want to offer each time?')
8. Set increment as equal to input():
increment = abs(int(input()))
9. Set offer_accepted as equal to False:
offer_accepted = False
10. Initialize the for loop from offer to best:
while offer <= best:
11. If the of fer is greater than 650000, they get the house:

if offer >= 650000:
of fer_accepted = True
print('Your offer of', offer, 'has been accepted!')
break

Loops | 55

12. If the of fer does not exceed 650000, they don't get the house:

print('We\'re sorry, youl're offer of', offer,

13. Add increment to offer:

offer += increment

You should get the following output:

L one bedroom in the Bay Zrea is listed

Enter your first offer on the house.

500000

Enter your best cffer on the
620000

How much mcre deo you want to
20000

We're sorry, you're cffer of
We're sorry, you're cffer of
We're sorry, you're ocffer of

house.

offer each

200000 has

250000 has
600000 has

Your ocffer of 650000 has been accepted!

'has not been accepted.')

at £595,000

time?

not been accepted.
not bkeen accepted.
not been accepted.

Figure 1.18: Output showing the conditions mentioned in the code using loops

In this exercise, you have prompted the user to bid for a house and let them know when

and if the bid was accepted.

The for Loop

The for loops are similar to while loops, but they have additional advantages, such as
being able to iterate over strings and other objects.

Exercise 20: Using for Loops

In this exercise, you will utilize for loops to print the characters in a string in addition

to a range of numbers:

1. Open a new Jupyter Notebook.

2. Print out the characters of 'Portland":

for i in 'Portland':
print(i)

56 | Vital Python - Math, Strings, Conditionals, and Loops

You should get the following output:

O o O H + 35 O T

The for keyword often goes with the in keyword. The i variable is generic. The
phrase, for i in, means that Python is going to check what comes next and look
at its individual components. Strings are composed of characters, so Python will
do something with each of the individual characters. In this particular case, Python
will print out the individual characters, as per the print(i) command.

What if we want to do something with a range of numbers? Can for loops be used
for that? Absolutely. Python provides another keyword, range, to access a range
of numbers. range is often defined by two numbers, the first number, and the last
number, and it includes all numbers in between. Interestingly, the output of range
includes the first number, but not the last number. You will see why in a minute.

3. You use a lower bound of 1 and an upper bound of 10 with range to print 1-9:

for i in range(1,10):
print(i)

You should get the following output:

W 0 N O U1 b W N =

The range does not print the number 10.

Loops | 57

4. Now use range with one bound only, the number 10, to print the first ten numbers:

for i in range(10):
print(i)

You should get the following output:

O o N O O b W N —= O

So, range(10) will print out the first 10 numbers, starting at 0, and ending with 9.

Now let's say that you want to count by increments of 2. You can add a third bound,
a step increment, to count up or down by any number desired.

Use a step increment to count the even numbers through 10:

for i in range(1, 11, 2):
print(i)

You should get the following output:
1
3
5
7
9

Similarly, you can count down using negative numbers, which is shown in the next
step.

5. Use a step increment to count down from 3 to -1:

for i in range(3, 0, -1):
print(i)

58 | Vital Python - Math, Strings, Conditionals, and Loops

You should get the following output:

1
And, of course, you can use nested loops, which is shown in the next step.
6. Now, print each letter of your name three times:

name = 'Corey'
for i in range(3):
for i in name:
print(i)

You should get the following output:

< ® 5 0 O M 35 0 O M 3 O O

In this exercise, you have utilized loops to print any given number of integers and
characters in a string,.

The continue Keyword

continue is another Python keyword designed for loops. When Python reaches the
continue keyword, it stops the code and goes back to the beginning of the loop.
continue is similar to break because they both interrupt the loop process, but break
terminates the loop, continue continues the loop from the beginning.

Loops | 59

Let's look at an example of continue in practice. The following code prints out every
two-digit prime number:

for num in range(10,100):
if num % 2 ==
continue
if num % 3 ==
continue
if num % 5 ==
continue
if num % 7 ==
continue
print(num)

You should get the following output:

11
13
17
19
23
29
3
37
41
43
47
53
59
61
67
71
73
79
83
89
97

60 | Vital Python - Math, Strings, Conditionals, and Loops

Let's go through the beginning of the code. The first number to check is 10. The first
line checks to see if 10 can be divided by 2. Since 2 does divide 10, we go inside the
conditional and reach the continue keyword. Executing continue returns to the start of
the loop.

The next number that is checked is 11. Since 2,3,5, and 7 do not divide 11, you reach the
final line and print the number 11.
Activity 5: Building Conversational Bots Using Python

You are working as a Python developer and you are building two conversational bots
for your clients. You create a list of steps beforehand to help you out, as outlined in the
following section. These steps will help you build two bots that take input from the user
and produce a coded response.

The aim of this activity is to use nested conditionals to build two conversational bots.
In this activity, you will build two conversational bots. The first bot will ask the user
two questions and include the user's answer in each of its follow-up responses. The
second bot will ask a question that requires a numerical answer. Different responses
will be given to a different number of scales. The process will be repeated for a second
question.

The steps are as follows:
For the first bot, the steps are as follows:

1. Ask the user at least two questions.

2. Respond to each answer. Include the answer in the response.
For the second bot, the steps are as follows:

1. Ask a question that can be answered with a number scale, such as "On a scale of
1-10.."

2. Respond differently depending on the answer given.

3. State a different question following each answer that can be answered with a
number scale.

4. Respond differently depending on the answer given.

Note

The second bot should be written with nested conditionals.

Summary | 61

Hint - casting may be important.
The expected output for bot 1is as follows:
We're kindred spirits, Corey.Talk later.

The expected output for bot 2 is as follows:

How intelligent are you? 0 iz very dumb. End 10 is a genius

8

Lre you human by chance? Wait. Don't answer that.

How human are you? 0 i= not at 211 and 10 is human all the way.
8

I think this courtship is over.

Figure 1.19: Expected outcome from one of the possible values entered by the user.

Note

The solution for this activity can be found via this link.

Summary

You have gone over a lot of material in this introductory chapter. You have covered
math operations, string concatenation and methods, general Python types, variables,
conditionals, and loops. Combining these elements allows us to write programs of real
value.

Additionally, we have been learning Python syntax. You now understand some of

the most common errors, and you're becoming accustomed to the importance that
indentation plays. You're learning how to leverage important keywords such as range,
in, if, and True and False.

Going forward, you now have the key fundamental skills required of all Python
programmers. Although there is much to learn, you have a vit