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+Chapter 1+

WHAT IS STATISTICS?

WE MUDPPLE THROUGH LIFE MAKING CHOICES
BASED ON INCOMFLETE INFORMATION...

SHOULD T HAVE THE $0OUP?
27 OUT OF THE 76 TIMES
I'VE HAD IT, IT WAS PRETTY
GO0P... BUT 15 MONDAY THE
REGULAR CHEF'S NIGHT
OFF7 ANP WHAT IF ALL THE
AIR MOLECULES IN THE
ROOM SUPDENLY FLY UP TO
THE CEILING?

SHOULP 1 HAVE THE %0UP?
EVERYTHING ELSE 15 50
h_ EXPENSIVE, AND T PON'T
¥ KNOW WHO'S PAYING.. ARE
STATISTICIANS STINGY? T'VE
NEVER GONE OUT WITH
ONE BEFORE.. THOUGH 1
ONCE KNEW A VERY
GENEROUS ACLOUNTANT..




(?IM 1% NOT JUST A MATTER OR H? L‘"

ORPERING SOUP! STATISTICS ALSO :
INVOLVES MATTERS OF LIFE AND
DEATH...

REY—HAVE You EVER
HAD TUE S0UP HERE ON [}
AN OFF NIGHT?

FOR EXAMPLE, IN 1986, THE SPACE SHUTTLE £HALLENGER EXPLODED, KILLING
SEVEN ASTRONAUTS. THE PECISION TO LAUNCH IN 29-PEGREE WEATHER HAD
BEEN MADE WITHOUT DOING A SIMPLE ANALYSIS OF PERFORMANCZE DATA AT

LOW TEMPERATURE.

A MORE POSITIVE EXAMPLE 15 THE $ALK POLIO VAZEINE. IN 1954, VACLINE
TRIALS WERE PERFORMED ON $OME 400,000 CHILDREN, WITH STRICT (ONTROLS
TO ELIMINATE BIASED RESULTS. GOOD STATISTICAL ANALYSIS OF THE RESULTS
FIRMLY ESTABLISHED THE VACLINE'S EFFECTIVENESS, AND TODAY POLIO 1%
ALMOST UNKNOWN.




TO ALCOMPLISH THEIR FEATS OF MATHEMATIZAL
LEGERDEMAIN, STATISTICIANS RELY ON THREE
RELATED PISCIPLINES:

-

KNOWLEDPGE OF PROBABILITY. _J
.

Data
analysis

THE GATHERING, DISPLAY, ANP
SUMMARY OF DATA:

Probability

THE LAWS OF CHANCE, IN
ANDP OUT OF THE (ASINC;

THE SCIENCE OF PRAWING
STATISTICAL CONELUSIONS
FROM SPECLIFIC DATA USING A

IN THIS BOOK, WE'LL LOOK AT ALL THREE, A% APPLIED TO A WIDE VARIETY OF
SITUATIONS WHERE STATISTICS PLAYS A CRUCIAL ROLE IN THE MODERN WORLD.

OF GETTING
A TaXt W
THIS NEATHER"'-‘ g




IN CHAPTER 2. WE'LL LOOK AT A
SIMPLE PATA SET, THE REPORTED
WEIGHTS OF A BUNCH OF COLLEGE
STUPENTS.

IN CHAPTER 3, WE $TUDY THE LAWS OH
PROBABILITY IN THEIR BIRTHPLAZE, THE
GAMBLING PEM.
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CHAPTERS 4 AND § SHOW HOW TO
PESLRIBE THE WORLD WITH
FROBABILITY MOPELS, USING THE
CONCEPT OF THE RANDPOM VARIABLE.

CHAPTER & INTRODULES ONE OF THE
STATISTICIAN'S ESSENTIAL PRO-
CEPURES, TAKING $SAMPLES OF A
LARGE POPULATION.

IN CHAPTER 7 AND
BEYOND, WE DESCRIBE
HOW TO MAKE
STATISTICAL INFERENCES
IN SUCH COMMON REAL-
WORLD ARENAS AS
ELECTION POLLING,
MANUFACTURING QUALITY
CONTROL, MEDICAL
TESTING,
ENVIRONMENTAL
MONITORING, RACIAL
BIAS, AND THE LAW.




I’_FIN.OJ.LY. IN D15CUS5ING 2 OUT oF 4 DoCToRS
STATISTICS, IT'S HARD TO RECOMMEND NOT BELIEVING
AVOID MENTIONING ONE ANY STRTEMENT BEGINMING
OTHER THING: THE WITR “3 00T OF 4 DOCTORS. ..
WIDESPREAD MISTRUST OF
STATISTICS IN THE WORLD
TOPAY. EVERYONE KNOWS
ABOUT "LYING WITH
STATISTICS," WHILE GOOD
STATISTICAL ANALYSIS 15
NEARLY IMPOS5SIBLE TO FIND
IN DAILY LIFE. WHAT'S ONE

Uo po?

OUR HUMBLE OPINION 15 THAT LEARNING A LITTLE MORE ABOUT THE
SUBJECT MIGHT NOT BE SUCH A BAD IDEA. AND THAT'S WHY WE WROTE THI%
BOOKI!

(IN WHAT FOLLOWS, WE TRY TO PRESENT THE ELEMENTS OF STATISTICS AS

GRAPHIZALLY AND INTUITIVELY A% POSSIBLE. ALL YOU NEEP TO 6ET THROUGH
IT 15 A LITTLE PATIENCE, SOME THOUSHT, AND A CERTAIN TOLERANCE FOR
ALGEBRA—OR, IF NOT THAT, THEN MAYBE A COURSE REQUIREMENT!!




+CHAPTER 2+
DATA DESCRIPTION

UM...
WELL . \T's..
. TUEY'GE -
5 AREM:




DATA ARE THE STATISTICIAN'S
RAW MATERIAL, THE NUMBERS WE
USE TO INTERPRET REALITY. ALL
STATISTICAL PROBLEMS INVOLVE
EITHER THE LOLLECTION,
PESCRIPTION, AND ANALYSIS OF
DATA, OR THINKING ABOUT THE
COLLECTION, PESCRIPTION, AND
ANALYSIS OF DATA.

CHANCES ARE 61%
THAT | CAN MAKE
SENSE OF TH#...

~
(?Hlé CHAPTER CONCENTRATES ON DATA PESCRIPTION. HOW AN WE REPRESENT
DATA IN USEFUL WAYS? HOW AN WE SEE UNDERLYING PATTERNS IN A HEAP OF
NAKED NUMBERS? HOW CAN WE SUMMARIZE THE DATA'S BASIC SHAPE?

1
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WELL, TO DESCRIBE DATA, THE FIRST THING YOU NEED 15 SOME ACTUAL DATA
TO PESCRIBE.. 50 LET'S COLLECT SOME DATA!




sl':&RbE"l'J“l'H'.’: SCALE,
ITH - JUST TAKE M
WORD foR (T.. ‘/

rHERE 15 50OME REAL DATA:
AS PART OF A LLASSROOM
EXPERIMENT, 92 PENN STATE
STUPENTS REPORTED THEIR
WEIGHT, WITH THESE
RESULTS:

MALES

140 145 160 190 155 165 150 190 195 138 160 155 153 145 170 175 175 170 160 135
170 157 130 185 190 155 170 155 215 150 145 155 155 150 155 150 180 160 135 160
130 155 150 148 155 150 140 180 190 145 150 164 140 142 136 123 155

FEMALES
140 120 130 138 121 125 116 145 150 NZ 125 130 120 130 131 120 118 125 135 125
118 122 115 102 115 150 110 Hé 108 95 125 133 110 150 108

L b

GETTING RIGHT POWN TO BUSINESS, WE DRAW A POT PLOT: ONE DPOT PER
STUPENT GOES OVER EALH STUDENT'S REPORTED WEIGHT.

Weight in Pounds

YOU MAY SEE A PROBLEM WERE:
THE CLUMPS AT 150 AND 155
POUNP%. THE $TUPENTS TENPED
TO REPORT THEIR WEIGHT IN
FIVE-POUND INCREMENTS. TN
REAL-LIFE SITUATIONS LIKE THIS
ONE, 5UCH ROUNPING OFF £AN
OBSCURE GENERAL PATTERNS IN
PATA.. BUT FOR NOW, WE'LL JUST
WORK AROUND IT.




WE CAN SUMMARIZE THE DATA WITH A FREQUENCY TABLE. DIVIDE THE NUMBER\

LINE INTO INTERVALS AND LOUNT THE NUMBER OF STUDPENT WEIGHTS WITHIN
EACH INTERVAL. THE FREQUENCY 15 THE COUNT IN ANY GIVEN INTERVAL. THE
RELATIVE FREQUENCY 15 THE PROPORTION OF WEIGHTS IN EACH INTERVAL,
LE, IT'S THE FREQUENCY DIVIDED BY THE TOTAL NUMBER OF STUDENTS.

CLASS INTERVAL MIDPOINT FREQUENCY RELATIVE FREQUENCLY
875-102.4 95 2 022
102.5-1175 1o 9 098
117.5-132.4 125 19 206
122.5-1474 140 14 185
1475-162.4 155 27 293
162.5-177.4 170 g 087
1775-192.4 185 ] 087
192.5-2075 200 1 .on
2075-222.4 215 1 .ot
TOTAL 92 1000

NOTE: WE KEPT THE INTERVAL BOUNDARIES AWAY FROM THOSE TROUBLESOME
ks—PDUND MULTIPLES. THIS 6ETS AROUND THE STUPENTS' REPORTING BIAS.

GUIPELINES FOR FORMING THE CLASS INTERVALS:

‘ ’ USE INTERVALS OF
EQUAL LENGTH WITH
MIPPOINTS AT
LONVENIENT ROUND
NUMBERS.

2’ FOR A SMALL DATA
SET, USE A SMALL
NUMBER OF
INTERVALS.

3, FOR A LARGE DATA
SET, USE MORE
INTERVALS!




IN THE FREQUENCY TABLE, WE ARE SHOWING HOW MANY DATA POINTS ARE
"AROUND"™ EACH VALUE. WE CAN GRAPH THIS INFORMATION, TOO. THE RESULTING
BAR GRAPH 15 CALLED A HISTOSRAM. EACH BAR COVERS AN INTERVAL AND 15
CENTERED AT THE MIDPOINT. THE BAR'S HEIGHT 15 THE NUMBER OF DATA
POINTS IN THE INTERVAL.

T ] L] LI T T L L] 1 T L

150 200
Weight in Pounds

WE £AN ALSO DRAW A RELATIVE FREQUENCY HISTOSRAM, PLOTTING THE
RELATIVE FREQUENCY AGAINST THE WEIGHT. IT LOOKS EXALTLY THE SAME,
EXLEPT FOR THE VERTICAL SCALE.

&
02{ <[
S
0.1+ 7
0.0~ - T T T Fm—ey —r—T—r
100 150 200

Weight in Pounds

1"



THE STATISTICIAN JOHN TUKEY
INVENTED A QUICK WAY TO
SUMMARIZE DATA AND 5TILL KEEP
THE INDIVIDUAL DATA POINTS. IT%
CALLED THE STEM-AND-LEAF
DIAGRAM.

FOR THE WEIGHT DATA, THE $TEM 15 A
COLUMN OF NUMBERS, CONSISTING OF
THE WEIGHT DATA COUNTEDR BY TENS
(LE. WE LEAVE OFF THE LAST PI&IT).

10
" 1E, 90 POUNDS,
:: 100 POUNDS, ETC.
14
15
1&
ir
16
19
0

NOW ADPP THE FINAL PI&IT OF EACH
WEIGHT IN THE APPROPRIATE ROW:

4 THERE ARE
" it WEIGHTS OF
12 : 0155005 16, 12, 118,
13 : 00015

14 : 05

15 :0

16 :

ir =

. :

9

20:

FILLED IN, IT LOOKS LIKE THI%:

9:5

: 268

11 . 628655060

+ D155300%525

+ 9500050600153
+ 05505580502

: 5053T05505505050500500
i 050004

: 095000

. 0500

= 00500

21:8

1 : oo2556408

: DOPI2355555
: ODDOOVI5556608

: DDOO2555558 "
: gﬂ:uun:u *
: DODOAS
: DDDD55
: D005

: DODOS

kb b e

2:5

ALL THOSE ZEROES AND FIVES CLEARLY
SHOW THE STUPENTS' REPORTING BIAS!

1z




-
GOOD GRAPRIC DISPLAY 15 PART
ART AND PART SCIENCE

AND SOMETIMES, PART
POLITICS!

CRUSADING NURSE FLORENCE NIGHTINGALE
COMPILED MORTALITY $TATISTICS FROM
BRITISH MILITARY HOSPITALS, PRODUCING
SHOCKING HISTOGRAMS LIKE THIS ONE:
THE RADIAL AXIS
INDICATES PEATHS—IN
HOSPITALS AS WELL AS
ON THE BATTLEFIELD—
CF BRITISH $CLPIERS
IN THE CRIMEAN WAR.

HER STATISTICAL EFFORTS LED Rl
DIRECTLY TO IMPROVED HOSPITAL

CONDITIONS AND A REPUCTION (N THE

PEATH RATE.

SAVED B
STAT! s':TaIG.'




SUMMARY STATISTICS

NOW WE MOVE FROM PICTURES TO FORMULAS. OUR OBJELT 15 TO GET SOME
SIMPLE MEASUREMENTS OF THE (RUDEST (MARALTERISTILS OF A SET OF DATA..

Symbolic
Movers

“freem pnie sade of The

egquation to the other

A

ANY SET OF MEASUREMENTS WIDE +-CENTER NEAR HERE
HAS TWO IMPORTANT SPREAD :

PROPERTIES: THE ¢ENTRAL
OR TYPICAL VALUE, AND Ed ] —T.(__D_‘
THE SPREAD ABOUT THAT

[

VALUE. YOU £AN SEE THE
IDEA IN THESE NARROW
HYPOTHETICAL HISTOGRAMS. SPREMD

(WE (AN GO A LONG WAY WITH A LITTLE NOTATION. SUPPOSE WE'RE MAKING ﬂ
SERIES OF OBSERVATIONS.. 11 OF THEM, TO BE EXALT.. THEN WE WRITE

X gy Xy = %oy REMD AS
“X-ONE, X-TWo,"
ETC.

A% THE VALUES WE OBSERVE. THUS, n 1%
THE TOTAL NUMBER OF DATA POINTS, AND
Z 4 (SAY) 15 THE VALVE OF THE FOURTH
PATA POINT.

AN ARRAY 15 A TABLE OF DATA:

OBSERVATION 1 2 3 4 ..n

DATAVALUE 2 Z, Z3; Z, — Zn




A SMALL SET OF n =5 DATA POINTS MAKES THE BOOKKEEPING EASY.
SUPPOSE, FOR EXAMPLE, WE ASK FIVE PEOPLE HOW MANY HOURS OF
TELEVISION THEY WATCH IN A WEEK.. ANDP GET THE FOLLOWING ARRAY:

OBSERVATION 1 2 3 4_ 5 _
DATA VALUE 5 7 3 38 7

T“EM 1,=§'. 231=7. zg:‘gi Z‘=”, lexg=7-

N =

WHAT'S THE "(ENTER" OF
THESE DATA? THERE ARE
ACTUALLY SEVERAL
PIFFERENT WAYS TO
MEASURE IT. WE'LL LOOK AT
JUST TWO OF THEM.

. MEAN )
THE (OR "AVERAGE")

THE MEAN OR AVERAGE VALUE 15 REPRESENTED
BY Z.. IT'S OBTAINED BY ADDING ALL THE DATA AND
PIVIPING BY THE NUMBER OF OBSERVATIONS:

SUM OF DATA

z = r~

Zy4Zy + -+ Zp

- L

n
FOR OUR EXAMPLE, Ely
z _ FrTY3HBAT 60 Q'
- 5 T 5 Z
=12 nours




WE HAVE A SHORTHAND FOR THAT
Zy + Zy + . + Zy USING THE GREEK

N\

o
o

ALL RIGHTI NOwW
WE LOOKIN' LIKE
A STATISTICS
BOOK!

CAPITAL LETTER $I6MA, FOR SUMMATION:

FOR THE SUM Z, + Z, + - + Z,, WE
WRITE

AND REAP IT A%
“THE UM OF z;

A5 i§ GOES FROM
1170 N°

P
i ;{ll ‘

L

50.. TO REPEAT, THE AVERAGE, OR MEAN, OF A SET OF DATA Z; 15

n
2%

;& w =

bl
Z;
n
i=1

IN THE CASE OF OUR 92 PENN STATE $TUPENTS, THE MEAN WEIGHT 15

n
92
2& ~ 13,354
92" 91

e
——

145.15 pPoUNDS




M E D I AN 15 ANOTHER KIND OF CENTER: THE
THE “MIPPOINT” OF THE DATA, LIKE THE

‘MEPIAN 5TRIP” IN A ROAPD.

TO FIND THE MEDIAN

VALUE OF A DATA 5ET,

WE ARRANGE THE DATA 3 5 7 7 39
IN ORPER FROM

SMALLEST TO LARGEST. f

THE MEDIAN 15 THE
VALUE IN THE MIDPLE. THE MEDIAN

IF THE NUMBER OF POINTS 15 EVEN—IN WHICH CASE THERE 1% NO MIPDLE, WE
AVERAGE THE TWO VALUES ARCUND THE MIDDLE.. 50 IF THE DATA ARE

3 5’ 7 7 WE AVERAGE 5 9’+7=6

AND 7 TO GET 2

MIOVLE
SPALE

THI% &IVES U5 A GENERAL RULE: ORPER THE DATA FROM SMALLEST TO LARGEST.
IF THE NUMBCR OF DATA

JUST AS THE MEDIAN
POINTS 15 OPD, THE MEDIAN STRP'S POSITION |5
15 THE MIDPLE DATA POINT. THERE, BUT NOT

IF THE NUMBER OF POINTS 15
EVEN, THE MEDIAN 15 THE
AVERAGE OF THE TWO DATA
POINTS NEAREST THE MIDDLE.




FOR THE n=92 STUDENT WEIGHTS, 9:5

WE CAN FIND THE MEDIAN FROM THE 10 : 288

ORDERED STEM-AND-LEAF DIAGRAM: 1 : 002556688
JUST COUNT TO THE 4™ 12 : 00012355555
OBSERVATION. THE MEDIAN 1% 13 : OOO0O13555468

14 : 0000255555 8
15 : DDOOOOODOO355555555557

2 = 2 17 : 000055
18 : 0005
19 : 00005
= 145 POUNDS 20:
21:5

WHY MORE THAN ONE MEASURE OF THE CENTER? EACH HAS ADVANTAGES. FOR )

EXAMPLE, THE MEDIAN 15 NOT SENSITIVE TO OUTLIERS, OR EXTREME VALUES
NOT TYPILAL OF THE REST OF THE DATA. SUPPOSE IN OUR SMALL TV-
WATCHING GROUP, ONE PERSON WATCHES 200 WOURS PER WEEK. THEN OUR
DATA ARE 3, 5, 7, 7, 200. THE MEDIAN, 7, 15 UNZHANGED, BUT THE MEAN 15
NOW Z = 45.8!

PISTOR TN
THe MEBN
HEI\GHT,
Too!

THAT IT$ DEPARTMENT OF RHETORIC AND COM-
MUNICATIONS GRADUATES' MEAN STARTING SALARY

WAS $55,000. THE OUTLIER, THE SALARY OF NBA
CENTER RALPH SAMPSON, DID NOT REPRESENT THE |7
EARNING POWER OF A BA. IN SPEECH FROM U. OF V. 5 |
| (THE MEDIAN SALARY WASN'T PUBLISHED.) !

IN 1984 THE UNIVERSITY OF VIRGINIA ANNOUNCED g




MEASURES OF
S P READ .

BESIDES KNOWING THE @

CENTRAL POINT OF A DATA
SET, WE'D ALSO LIKE TO IDENTICAL!
DESCRIBE THE DATA'S

$PREAD, OR HOW FAR
FROM THE CENTER THE
DATA TEND TO RANGE.

FOR INSTANCE, IF THE

STUDENTS ALL WEIGHED

EXACTLY 145 POUNDS,

THERE WOULD BE NO

SPREAD AT ALL. s

NUMERICALLY, THE $PREAD ’

WOULP BE ZERO, AND THE

HISTOGRAM WOULD BE
ksxmuv. 145

BUT IF MANY OF THE STUPENTS WERE VERY LIGHT ANP/OR VERY HEAVY,
OBVIOUSLY WE'P SEE SOME SPREAP—SAY, IF THE FOOTBALL TEAM WpS PART

OF THE SAMPLE..
=

‘\\\
i\\i
THE HISTOGRAM WOULD BE WIDER, SOMETHING LIKE THIS:




(AGAIN. THERE'S MORE THAN ONE WAY TO MEASURE A SPREAD. ONE WAY 15

INTERQUARTILE RANGE

THE IDEA 15 TO DIVIDE

THE DATA INTO FOUR E [: f \ [ |
. \.:
oy '

EQUAL GROUP% AND SEE
HOW FAR APART THE
EXTREME G6ROUPS ARE. !

/<

\ J

HERE'S THE RECIPE:

1 ’ PUT THE DATA IN NUMERICAL Tess

ORDER.

DIVIDE THE DATA INTO TWO e Q;"ﬁga‘g e
2’ EQUAL HIGH AND LOW &ROUPS =

AT THE MEDIAN. (IF THE -

MEDIAN 15 A DATA POINT, e

INCLUDE IT IN BOTH THE HIGH Z

AND LOW 6ROUPS.) 8 s
3’ FIND THE MEDIAN OF THE = sase

LOW GROUP. THIS |5 CALLED

THE FIRST QUARTILE, OR @;. i = MEDIAM OF

“ : : -e 1 Lows

THE MEDIAN OF THE HIGH %

&ROUP 15 THE THIRD <+ 1

QUARTILE, OR Q5. =

NOW THE INTERQUARTILE RANGE (IQR) 15 THE DISTANCE (OR DIFFERENCE)
BETWEEN THEM:

IQR = Q3 — &



HERE'S THE WEIGHT DATA
WITH THE MIPPOINTS OF
THE HIGH AND LOW GROUPS
EMPHASIZED:

9: 4

10: 288

1 : oo2556688
12: 00012355555
13 : DOOOD13555669
14 : pOOO2555558
15 : COOOOOOOD0355555555557
16 : OODOAS

17 : 000D55

18 : 0005

19 : DODOS

20:

21: 5

AND WE SEE THAT

IQR = 156 — 125
= 3] POUNDS
AGAIN, THIS 15 THE DIFFERENCE

BETWEEN THE MEDIAN HEAVY
STUDENT AND MEDIAN LIGHT ONE

' ONLY \F YouRt
h LINEBACKER..

JOHN TUKEY INVENTED AMOTHER KIND OF
PISPLAY TO SHOW OFF THE IQR, CALLED A
BOX AND WHISKERS PLOT. THE BOX'S
ENDS ARE THE QUARTILES @ AND @;. WE
DRAW THE MEDIAN INSIDE THE BOX.

) Q,

|

T T T T T T T
e e 136 40 M6 (50 55
IF A POINT 15 MORE THAN 1.5 IQR FROM

AN END OF THE BOX, IT'S AN OUTLIER.
DRAW THE OUTLIERS INDIVIDUALLY.

136 We 158

MEDIAN

—

1
200

FINALLY, EXTEND "WHISKERS" OUT TO THE
FARTHEST POINTS THAT ARE NOT OUTLIERS
(LE, WITHIN 1.5 IQR OF THE QUARTILES).

—T— -

i S o M e S S B R e s O SR BT

BOX-AND-
WHISKERS
PLOTS ARE
ESPECIALLY
GOOP FOR
SHOWING OFF
DIFFERENCES
BETWEEN

- GROUPS.

-
YO W T N SO T ey N i, |

21



|

THE STANDARD MEASURE OF $PREAD 15 THE

STANDARD DEVIATION

UNLIKE THE TQR, WHICH 15 "
BASED ON MEDIANS, THE ((5\9
STANDARD DEVIATION MEASURES \T(_,;

THE SPREAD FROM THE MEAN. <2 /%
YOU CAN THINK OF T, [ “4\ -
ROUGHLY SPEAKING, AS THE

AVERAGE DISTANCE OF THE
DATA FROM THE MEAN Z..

EXCEPT THAT WE USE THE $QUARES OF THE DISTANCES INSTEAD. THAT 15,
IF THE SQUARED DISTANCE OF POINT #; TO Z 15 (%; — Z)7% THEN

n
? —
AVERAGE SQUARED PISTANCE = - E (%=7)*
i=1

FOR TECHNICAL REASONS, WE USE n-1 IN
THE PENOMINATOR RATHER THAN 77, AND
DEFINE THE SAMPLE VARIANCE 5* AS

2 =75 Y (-

i=1

FOR THE DATA SET {3 § 7 7 38}, WITH Z = 12 AND 12 = 5 WE CALCULATE
THE VARIANCE:

THE LARGE
VARIANCE HERE
REFLECTS THE
WIDE $PREAP IN
THE PATA.

52 (3127 + (5127 + (1-12)* + (1-127% + (36-02)*
(5-1)

_91+49+2'5+25+676
4

- 214 m :

=




BUT A SPREAD MEASURE SHOULD
HAVE THE SAME UNITS AS THE
ORIGINAL DATA. IN THE
EXAMPLE OF WEIGHTS, THE
VARIANCE %% 15 MEASURED IN
POUNDS SQUARED.. OOOPS!

THE OBVIOU% THING TO PO 15 TO
TAKE THE $QUARE ROOT, AND %0 WE
PO.. TO PEFINE:

rsTAN VARD 5 =y @ ﬁil‘yg(z,:i):
DEV' AT'ON V;”':“’;j_;f% i“: ;l:;w DATA SET, 15

EVEN FOR SMALL DATA $ETS,
THE ARITHMETIC CAN BE
TEDIOUS! SO NOWADAYS, WE
JUsT HIT THE $ BUTTON ON
THE HAND CALCULATOR, OR
CONSULT THE DATA REPORT
GENERATED BY A LOMPUTER
SOFTWARE PALKAGE.

2%



(Properties of

_X_and s

THE MEAN AND STANDARD
PEVIATION ARE VERY 600D
FOR SUMMARIZING THE
PROPERTIES OF FAIRLY
SYMMETRICAL HISTOSRAMS
WITHOUT OUTLIERS—IE,
HISTOGRAMS SHAPED LIKE
MOUNDS.

IT’% OFTEN USEFUL TO KNOW HOW MANY STANDARD DEVIATIONS A DATA POINT
15 FROM THE MEAN. WE DEFINE Z-5C€0RES, OR STANDARDIZED SLORES, AS
DISTANCE FROM Z PER STANDARD DEVIATION.

Z;= "3 ‘

A Z-5CORE OF +2 MEANS THAT AN OBSERVATION 15 TWO STANPARD
PEVIATIONS ABOVE THE MEAN. FOR THE WEIGHT DATA (Z=145.2 AND
$=237), WE (AN PLOT THE DATA ON THE ORIGINAL Z-AXiS IN POUNDS AND
THE Z-5CORE AXIS SIMULTANEOUSLY.

175
- ..!:iii'gi‘!'=
r T T i i 1 1 T i T T T 1

100 150 200

r T 1 1

-2 -1 0 1 2

Z score
126
A STUPENT WEIGHING 175 POUNDS WAS A Z-5CORE OF ~12_1421_1 9,

237

2¢




(an EMPIRICAL RULE:

FOR NEARLY SYMMETRIC MOUND-SHAPED DATA SETS, APPRONIMATELY 66%
OF THE DATA 15 WITHIN ONE $TANPARD DEVIATION OF THE MEAN AND $5% OF
THE DATA 15 WITHIN TWO STANDARD DEVIATIONS OF THE MEAN.

7

L

Vo

FOR THE WEIGHTS, OUR EMPIRICAL RULE HOLDS UP PRETTY WELL: 84%
(=59/92) OF THE WEIGHTS ARE WITHIN ONE STANPARD PEVIATION OF THE
MEAN, AND 97% (= 89/92) OF THE WEIGHTS ARE WITHIN TWO STANDARD
DEVIATIONS OF THE MEAM.

Weight in pounds

59 points % b . i i,
r - $ 3 5.1 1 Pz - 3
B89 points g F Z i PO
r ; iyl 1
_ il ;
92 points ARSI
- ...:‘E E#ad :[ : i1 'I: g EI_ n AND NOW
) FOR A REST
: -1 0 ! 2 FROM NUMBER
S oors CRUNCHING!
\___ S

25




WE'VE COME A LONG WAY IN THIS CHAPTER! STARTING WITH A UNORGANIZED
PILE OF NUMBERS, WE HAVE:

( 1 ’ FOUND SEVERAL DIFFERENT
WAYS TO DISPLAY THEM

LOOKED AT TWO DIFFERENT

2) coneeets oF The cenTER OF
DATA, THE MEDIAN AND THE
MEAN

3 MEASURED THE SPREAD OF THE
PATA AROUND THE £LENTER IN
TWO DIFFERENT WAYS

ENCOUNTERED MOUND-SHAPED
4) HISTOGRAMS AND Z, A VARIABLE
THAT INDICATES HOW MANY
STANDARD DEVIATIONS YOU ARE

FROM THE MEAN.

NOW, IN ORDER TO PROBE THE BEWAVIOR OF DATA MORE PEEPLY, WE'RE GOING
TO MAKE A LITTLE DETOUR INTO THE REALM OF RANPOMNESS.. A LAND WHERE
THINGS ALWAYS WORK OUT IN THE LONG RUN, AND WHERE THE ONLY LAW 1%
THE LAW OF THE SAMBLING CASINO...




+Chapter 3+

PROBABILITY

OTHING IN LIFE 15 CERTAIN. IN EVERYTHING WE PO, WE
GAUGE THE CHANCES OF SULLESSFUL OUTLOMES, FROM
BUSINESS TO MEPDIZINE TO THE WEATHER. BUT FOR MOST
OF HUMAN HISTORY, PROBABILITY, THE FORMAL $TUDY OF THE
(_,LAWS OF CHANCE, WAS USED FOR ONLY ONE THING: GAMBLING.

QQDJ q;) @%5, 1‘33,}




( NOBOPY KNOWS WHEN

GAMBLING BCGAN. TT auny Me
GOES BACK AT LEAST AS WITH My

FAR AS ANCIENT E6YPT, PSTRAGAL .. =
WHERE SPORTING MEN t C“.f:;‘; To

AND WOMEN USED FOUR- DEATH'

SIDEV “ASTRAGALI” é}- B
MADE FROM ANIMAL \--’ T Y
HEELBONES. -_, éﬁ_

THE ROMAN EMPEROR CLAUPIUS (10 BLE-54 CE) WROTE THE FIRST KNOWN
TREATISE ON GAMBLING. UNFORTUNATELY, THIS BOOK, "HOW TO WIN AT DICE”
WAS LOST.

RULE T
LET CAESAR
WinIZ ovT
o% X!

S

MODERN PICE 6REW POPULAR IN THE MIDDLE AGES, IN TIME FOR A RENAIS-
SANCE RAKE, THE CHEVALIER PE MERE, TO POSE A MATHEMATICAL PUZZLER:

 masiias \
WHAT'S LIKELIER:
ROLLING AT LEAST ONE
51X IN FOUR THROWS OF
l A SINGLE PIE, OR
ROLLING AT LEAST ONE
POUBLE 51X IN 24

THROWS OF A FAIR OF
PICE?

Pz e




THE CHEVALIER REASONED
THAT THE AVERAGE NUMBER
OF SULLESSFUL ROLLS WAS
THE SAME FOR BOTH GAMBLES:

CHANCE OF ONE 4IX = &

3
AVERALE NUMBER !
CHANCE OF PousLE
51X IN DNE ROLL =

MVERALE NUMBER 19 2
MR- 24 (5) = &

ﬂ,

WHY, THEN, PID HE LOSE
MORE OFTEN WITH THE
SECOND GAMBLE???

rI?E MERE PUT THE QUESTION TO HI% FRIEND, THE GENIVS BLAISE PASCAL
(1623-1666).

AT LAST, b PROBLEM ALTHOUGH PASCAL HAD EARLIER
THAT TURNS ME On! GIVEN UP MATHEMATIZS AS A FORM

OF SEXUAL INPULGENCE ('), HE
AGREED TO TALKLE PE MERE'S
PROBLEM.

PASCAL WROTE HIS

' DEAR PIERRE,
FELLOW GENIVS PIGRRE WHAT A BEAUTIFUL
PE FERMAT, AND WITHIN THEORY WE couLd
A FEW LETTERS, THE HAVE, 1 ONLY
TWO HAD WORKED OUT ONE OF U%

THE THEORY OF CouLD DRAW.~
PROBABILITY IN ITS
MODERN FORM—EXCEPT,
OF COURSE, FOR THE

CARTOONS.
S
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BASIC DEFINITIONS

A% OUR GAMBLER PLAYS A GAME, WE PLAY
SLIENTIST, OBSERVING THE OUTCOME:

L ]
»random experiment
15 THE PROCESS OF OBSERVING THE
OUTLOME OF A CHANCE EVENT.

e elementary
ouvltcomes irc AL pos-
51BLE RESULTS OF THE RANDOM EX-
PERIMENT.

e sample space
THE %ET OR COLLECTION OF ALL THE
ELEMENTARY OUTLOMES.

IF THE EVENT WAS A LOIN TO%%, FOR THE ELEMENTARY OUTCOMES ARE
EXAMPLE, TUE RANDPOM EXPERIMENT HEADS AND TAILS..

CON%I5TS OF RECORDING ITS

OUTCOME...

@@ L

AND THE SAMPLE 5SPACE 15 THE %ET
WRITTEN

{HT




THE SAMPLE SPACE OF THE THROW OF A SINSLE PIE 15 A LITTLE BIGGER.
' o ® ° ® o (@ o
@ ol (0 o @ @

AND FOR A PAIR OF DILE, THE SAMPLE SPACE LOOKS LIKE THIS (WE MAKE ONE
PIE WHITE AND ONE BLACK TO TELL THEM APART):

£EH [231RH (3¢ (3¢ (321 (22
) : & I AR . SRR JRN. RRN] -
CHLRECE NN
< EH .- 1BH (-7 [.-"KH A
BRI LR
- B (- BN (- - K- (-

THIS SAMPLE SPACE
HAS 26 (6X6)
ELEMENTARY OUT-
COME%. FOR THREE
PDICE, THE SPACE
WOULD HAVE 216
ENTRIES, AS IN THIS
EXEXs STALK. AND
FOUR DIcE?

fés ;)fﬁ
%(Ewubu! ) AT SOME POINT, WE HAVE TO 5TOP

LISTING, AND START THINKING...
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(NOW LET'S IMAGINE A
RANDOM EXPERIMENT WITH
7 ELEMENTARY OUTCOMES
Oy, s, .. O,,. WE WANT TO
ASSIGN A NUMERICAL
WEIEHT, OR PROBABILITY,
TO EACH OUTCOME, WHICH
MEASURES THE LIKELINOOD
OF IT$ OLCURRING. WE
WRITE THE PROBABILITY OF
0; a5 P(O;).

FOR EXAMPLE, IN A FAIR (OIN
TO%5, HEADS AND TAILS ARE
EQUALLY LIKELY, AND WE
AS5I6N THEM BOTH THE
PROBABILITY 5.

P(H) =P(T) = .5

EACH OUTCOME COMES
UP HALF THE TIME.
ASK ANY FOOTBALL
PLAYER!

[ THE ROLL OF TWO DICE, THERE ARE 36 CLEMENTARY OUTCOMES, ALL
EQUALLY LIKELY, 50 THE PROBABILITY OF EACH 15 -;; ;

.
QNE BILLION, 2 HUHDRED
MILLION . HpCle.  WHEEZE.

AUD Gni‘.}_u

& M0

FOR INSTANCE,
P(BLACK 5, WHITE 2) = 5';

WHICH MEANS: IF YOU ROLLED THE

DICE A VERY LARGE NUMBER OF TIMES,
IN THE LONG RUN THIS QUTCOME
WOULD OCLUR ;T OF THE TIME.




WHAT IF OUR GAMBLER
CHEATS AND THROWS A
LOADED PIE? FOR THE SAKE

OF ARGUMENT, SUPPOSE THAT

NOW A ONE COMES UP 25%

OF THE TIME (IN THE LONG

-
THE SAMPLE SPACE 15 THE

SAME AS FOR A FAIR DIC B D [E B

{1, 2,3,4,5, 6} P NS

BUT THE PROBABILITIES ARE
DIFFERENT. Now P(1) =.25
AND THE REMAINING
PROBABILTIES ADD UP TO 75.
IF 2, 3, 4, 5, AND é WERE
ALL EQUALLY LIKELY, THEN
EACH ONE WOULD HAVE

PROBABILITY 15 = +(75)

L )

IN GENERAL, ELEMENTARY OUTCOMES NEED NOT HAVE EQUAL PROBABILITY.

THE PROBABIH(\’
OF PRECRITATION
\© 20%,...

TWE PRoBMRILITY




("NOW WHAT CAN WE SAY
ABOUT THE PROBABILITIES
P(O;) IN AN ARBITRARY RAN-
POM EXPERIMENT? FIRST OF
ALL,

P(0:):> 0

PROBABILITIES ARE NEVER
NEGATIVE. A PROBABILITY OF
ZERO MEANS AN EVENT £AN'T
HAPPEN. LES% THAN ZERO
WOULD BE MEANINGLESS.

SECOND, IF AN EVENT 5 ZERTAIN TO HAPPEN, WE AS5IGN IT PROBABILITY 1.
(IN THE LONG RUN, THAT'S THE PROPORTION OF TIMES IT WILL OCCUR!)

IN PARTICULAR,
THE TOTAL
PROBABILITY OF 0p...
THE SAMPLE METAPHYSICAL!
SPACE MUST BE 1. IF WE PO
THE EXPERIMENT, SOMETHING Py
[ ]

15 BOUND TO HAPPEN!

-~
PUT THESE TWO TOGETHER, AND YOU HAVE THE CHARACTERISTIC
PROFPERTIES OF FROBABILITY:

P(0,)> 0 PROBABILITY 1§ NON-NEGATIVE

PUO)+P D) +. 4P )=t OIS

W BUT F
METAPHYSICS
WILL GET BACK
My ShRT...
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LIKE A CLEVER POLITICIAN, WE
HAVE AVOIDED CERTAIN
UNPLEASANT QUESTIONS,
SUCH A5 A) WHAT DOES
PROBABILITY MEAN? AND

) HOW DO WE AS5I6N
PROBABILITIES TO OUTCOMES?

———

B-DUH, B-PUH..
LET'S pI5cU%%
SOMETHING EASIER,
LIKE 6AYS IN THE
MILITARY..

HERE ARE SOME APPROACUES TUAT MAVE BEEN TAKEN:

C|USSi¢ﬂl PROBABILITY:
BASED ON GAMBLING IDEAS, THE
FUNDAMENTAL ASSUMPTION |5 THAT
THE GAME 15 FAIR AND ALL
ELEMENTARY OUTCOMES HAVE THE
SAME PROBABILITY.

c‘N\ou!\

DADDY NEEDS
A New

\THE ory!

Relative Frequency:

WHEN AN EXPERIMENT ZAN BE REPEATED,
THEN AN EVENT'S PROBABILITY 15 THE
PROPORTION OF TIMES THE BVENT
OCLURS IN THE LONG RUN.

L ( N \PH

Personal rrossiimy: wost
OF LIFE'S EVENTS ARE NOT
REPEATABLE. PERSONAL PROBABILITY
15 AN INDIVIDUAL'S PERSONAL
ASSESSMENT OF AN OUTCOME'S
LIKELIHOOD. IF A GAMBLER BELIEVES
THAT A HORSE HAS MORE THAN A 50%
CHANCE OF WINNING, HE'LL TAKE AN
EVEN BET ON THAT HORSE.

g
vow Do You Klow?

VA WiZDOM OF
Ph TRACK -

HOW PO YOU KNOW TH

AN OBJECTIVIST USES EITHER THE
CLASSICAL OR FREQUENCY DEFINITION
OF PROBABILITY. A sUBJELTIVIST OR
BAYESIAN APPLIES FORMAL LAWS OF
CHANCE TO HI% OWN, OR YOUR,
PERSONAL PROBABILITIES.

ELEMENTARY QUTCOMES M
ARE EQUALLY LIKELY
WITHOUT ROLLING THE
PICE A BILLION TIMES?

CBIECTIVIST
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BASIC OPERATIONS

SO FAR, WE HAVE DISCUSSED ONLY THE
PROBABILITY OF ELEMENTARY OUTCOMES.
IN THEORY, THAT WOULP BE ENOUGH TO
DESCRIBE ANY RANDOM EXPERIMENT, BUT
IN PRACTICE IT'S PRETTY UNWIELDY. FOR
EXAMPLE, EVEN SUCH AN ORDINARY
OCCURRENCE A% ROLLING A SEVEN 15 NOT
AN ELEMENTARY OUTCOME... 50 WE
INTRODUCE A NEW IDEA:

(AN EVENT 15 A SET OF ELEMENTARY OUTCOMES. THE PROBABILITY OF AN )
EVENT 5 THE 5UM OF THE PROBABILITIES OF THE ELEMENTARY OUTCOMES IN
THE SET. FOR INSTANCE, SOME EVENTS IN THE LIFE OF A TWO-DICED ROLLER
ARE:

EVENT PESCRIPTION EVENT'S ELEMENTARY PROBABILITY
OUTCOMES
i ]
A: pICE ADD TO 3 [(1,2), (2,1} P(A)= 3
B: DICE ADD TO 6 {(15). (24), (33). (42), (5.)} P(B)= %
€: WHITE DIE SHOWS 1 {am, (1,2), (13), (14), ¢
.5, (1,6)} P(C) = 3%
D: BLACK DIE SHOWS 1 {an, (2., 31), (40, <
(5.), (61)) P(D) = 3
\ *,

ARD WHEN
VO1 Ggr
MY SHIRT
BACK?




fmc BEAUTY OF USING
EVENTS, RATHER THAN
ELEMENTARY OUTCOMES, 15
THAT WE CAN COMBINE
EVENTS TO MAKE OTHER
EVENTS, USING LOGIZAL
OPERATIONS. THE
RELEVANT WORDS ARE
AND, OR, snp NOT.

THAT 15, 6IVEN EVENTS E AND F, WE ¢AN MAKE NEW EVENTS:
E ﬂnd F : THE EVENT E AND THE EVENT F BOTH OCCUR.
E©OF F:  TUE EVENT E OR THE EVENT F OLLURS (OR BOTH DO).

not £ 1 ovent E voes NoT owr.

Snre e ——
COMBINING OUR PRIMITIVE e
DEFINITIONS OF PROBABILITY WITH /A | GAMBLE COMPULSNELY

THESE LOGICAL OPERATIONS WILL ND | LOST MY 4HIRT

%Mu& wMng POWERFUL AND . PASAL 16 4TiLL
Pnos:;t?r o MANIPULATING WORKING ON MY PROBLEM.
' WHAT ARE MY CHANCES
AVEC TU, CHERIE?
SAEAL L

37



("LET'S RETURN TO THE DICE-THROWING EXAMPLE. IF C 15 THE EVENT, WHITE )

PIE = 1, AND D 15 THE EVENT, BLACK DIE = 1, THEN:

5 (1288 (1B (5 M (I G s
<7 8 (< O I G e o on e
CHOCRCECECECE e
= .-"RY R - 5%4;&'1;"2 I

R 2 - . - | SHAVED RS
FHECEEECECE N o

THIS ILLUSTRATES THE ADDITION RULE: FOR ANY EVENTS E, F.
P(E OR F) = P(E) + P(F) - P(E AND F)

ADDING P(E) + P(F) DOUBLE £OUNTS THE ELEMENTARY OUTZOMES SHARED BY
E AND F, 50 WE HAVE TO SUBTRALT THE EXTRA AMOUNT, WHICH 15 P(E AND F).

<
(IN THE ABOVE EXAMPLE,

1
P(c OR D) = ~ry

AS YOU CAN SEE BY
COUNTING ELEMENTARY
OUTCOMES. LIKEWISE,

1
P(c AND D) = F7y

AND WE CONFIRM THE FORMULA:
P(L) + P(D) - P(L AND D)

6. 6 3 1
T3 3% 3 36
= P(C OR D)




("SOMETIMES, THE OVERLAP E AND F 15 EMPTY, AND THE TWO EVENTS KAVE h
NO ELEMENTARY OUTCOMES IN COMMON. IN THAT CASE, WE $AY E AND F ARE

MUTUALLY EXCLUSIVE, MAKING P(E AND F) = 0. HERE WE SEE THE MUTUALLY

EXCLUSIVE EVENTS A, THE DICE APD TO 3, AND B, THE DICE ADD TO 6.

31)EH (22BN 32/ 230 36 3D

R £ £ - J]. SRR BB, ° B
R : £ - U -

"B B8 R T
HLERE LT LR L A
(RS (- - -

FOR MUTUALLY EXCLUSIVE EVENTS, WE GET A SPECIAL ADDITION RULE: IF E
AND F ARE MUTUALLY EXCZLUSIVE, THEN

P(E OR F) = P(E) + P(F)

ol o &
AND WE CHECK THAT P(A OR B) = 57 = 53 + 5 = p(A)+ P(B)
N R

AND FINALLY, A SUBTRACTION RULE: FOR ANY EVENT E,
P(E) = 1 - P(NOT E)

THIS 19 USEFUL WHEN P(NOT E) 15 EASIER TO (OMPUTE THAN P(E). FOR
INSTANCE, LET E BE THE EVENT, A POUBLE-1 15 NOT THROWN. THE EVENT

NOT-E, A POUBLE-1 /4 THROWN, HAS PROBABILITY P(NOT E) = '333 .

s0 ] R
PO - roTe) L ML I A R L
14 B ML L B R L
_35 BN M I S R
3¢ O - I R R

- EHE. IEHL. [N CTERE- TR [
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THE FORMULAS WE JUST DERIVED
ARE, IN FALT, APEQUATE FOR
ANSWERING DE MERE'S QUESTION—
BUT NOT EASILY! (YOU MIGUT TRY
USING THEM ON A SIMPLER
QUESTION: WHAT'S THE PROBABILITY
OF ROLLING AT LEAST ONE SIX IN
TWO ROLLS OF A SINGLE DIE?) WE
NEED MORE MACHINERY!

50 WE INTROPRUCE

conditional
probability

(AN ESSENTIAL LONCEPT IN
STATISTICS!)

\

SUPPOSE WE ALTER OUR EXPERIMENT SLIGHTLY, ANP THROW THE WHITE PIE
BEFORE THE BLACK DIE. WHAT'S THE PROBABILITY THAT THE FACES SUM TO 37

BEFORE THE DILE NOW SUPPOSE THE

7
22N ARE THROWN, THE WHITE PIE COMES
o PROBABILITY 15 UP 1 (EVENT ().
: P(A)- & WHAT'S THE
A\ 26 PROBABILITY
\‘_>i OF A NOW?
S e . R - ﬁ:‘la



("WE CALL IT THE
LONDITIONAL
PROBABILITY THAT EVENT
A WILL OCCUR, GIVEN
THE CONDITION THAT
EVENT € HAS ALREADY
OLLURRED. WE WRITE

P(AIC)

AND SAY “THE
PROBABILITY OF A,
\ &IVEN ("

BEFORE ANY DICE WERE THROWN, THE SAMPLE SPALE HAD 36 OUTLOMES, BUT
NOW THAT THE EVENT ¢ HAS OCLURRED, THE OUTCOME MUST BELONG TO THE
REDUCED SAMPLE SPACE €.

@ ® 12 Lo @ @
IN THE REDUCED SAMPLE SPALE OF SIX ELEMENTARY OUTLOMES, ONLY ONE
OUTCOME (1,2) SUMS TO 3. 50 THE (ONPDITIONAL PROBABILITY 15 1/6.

r B
IN GENERAL, TO FIND
THE CONPITIONAL
PROBABILITY P(EIF),

WE LOOK AT THE

EVENT E AND F AS

PART OF THE REPUCED
SAMPLE SPALE F.

SEE How
PROBABILITIES
CHANGE BS
THE WORLD

BVoLVES?

#



W WE TRANSLATE THIS ——
INTO A FORMAL

ITH T e
DEFINITION: THE CONDITIONAL WITH THE DICE, \T5

PROBABILITY OF &, 6IVEN F. I5 P ap O) 5
P) '%_
p(EIF) = PUE and F)
P(F)

FROM WHICLH YOU (AN PIRECTLY
VERIFY 5OME INTUITIVE FACTS:

PEIE) = 1 (onet E occrs,

IT'S CERTAIN.)
WHEN E AND F ARE MUTUALLY
EXCLUSIVE,

(ONCE F HAS
PEIF) = 0 ormeen, € 15

IMPOS5IBLE.)

g
REARRANGING THE PEFINITION &GIVES U5 THE MULTIFLICATION RULE:
P(E AND F) = P(E | F)P{F)

WHICH WE WOULD LIKE TO REDULE TO A “4PECIAL" MULTIPLICATION RULE,
UNDER THE FAVORABLE CIRCUMSTANCES THAT P(EIF) = P(E). THAT WOULD BE
EXLELLENT!

/__.-——-—--——-....___‘

T
AND WHILE YOU'RE \

WAITING FOR THE
< MEXT PAGE, NOTE THAT

SWAPPING E AND F
PROVES TUAT

e P(F)P(elF) = Pe)P(FIE)




INDEPENDENCE and the

special multiplication rule.

TWO EVENTS € AND F ARE INDEPENDENT OF EACH OTHER IF THE
OCLURRENCE OF ONE HAS NO INFLUENCE ON THE PROBABILITY OF THE
OTHER. FOR INSTANCE, THE ROLL OF ONE DIE HAS NO EFFECT ON THE ROLL
OF ANOTHER (UNLE%5 THEY'RE GLUED TOGETHER, MAGNETIC, ETC.1).

e
ot

IN TERMS OF CONDITIONAL PROBABILITY, THIS AMOUNTS TO SAYING
P(E) = P(EIF) or, cQuvALENTLY, P(F) = P(FIE). WHEN E AND F ARE
INDEPENDENT, WE GET A SPECIAL MULTIPLICATION RULE:

P(E AND F) = P{E)P(F)

LET'$ VERIFY THE INDEPENDENCE OF DICE, USING THE FORMULAS. £ 15 THE
EVENT WHITE PIE COMES UP 15 P15 TUE EVENT BLACK DIE cOMES UP 1, AND

WE HAVE:

p(clp) = P(CroP)  2€ -1 -P(c)

P(P) 4

BUT THE WHITE DIE SHOWING 1 OBVIOUSLY POES AFFECT THE CHANCES THAT
THE $UM OF THE TWO DICE 15 3!

ck
6 |
M_?_o‘mz)‘_"_t_ 3 +mo=_‘-

P(Ak) = i
(2] P(C) e 18

50 THESE TWO EVENTS ARE NOT INDEPENDENT.
4



BEFORE GOING ON, LET'S SUMMARIZE ALL THE RULES WE'VE ALLUMULATED:

ADPDITION RULE:
P(E OR F) = P(E) + P(F) - P(E AND F)

SPECIAL APDITION RULE: WHEN E AND F ARE . T
MUTUALLY EXZLUSIVE, Toﬁﬂvv?e”“;-mm
SBVE U
P(E OR F) = P(E) + P(F) WASTEFUL
THINKING !

SUBTRAZTION RULE:
P(E) = 1 - P{NOT E)

MULTIPLICATION RULE:
P(E AND F) = P(EI F)P{F)

SPECIAL MULTIPLICATION RULE: WHEN E
AND F ARE INDEPENDENT,

P(E AND F) = P(E)P{F)

~
AND NOW, PE MERE'S PROBLEM AT LAST.. LET E BE THE EVENT OF GETTING
AT LEAST ONE SIX IN FOUR ROLLS OF A 5INGLE DIE. WHAT'S P(E)? THIS 15
ONE OF THOSE EVENTS WHOSE NEGATIVE 15 EASIER TO DESCRIBE: NOT £ 15
THE EVENT OF GETTING NO 5IXE5 IN FOUR THROWS.
IF A; 15 THE EVENT, GETTING NO
41X ON THE :"; THROW, WE KNOW
THAT P(A;) = 4 . WE ALSO KNOW
THAT ROLLS ARE INDEPENDENT, 50
P(NOT E) =
P(A, AND A, AND A, AND A,)
Muﬂtﬂ\(ﬂl(}ﬂu G 4
RQULE — -:.(-E) = .462,
50
P(E) = 1 — P(NOT E) = .518
y,




EVENT OF GETTING NO DOUBLE SIXES.

BRAVO' 1
ChN DIE
alks

YL
v

vE
MERE

.

A AR fe
[ :«\ i{-} ~
o C}}’; -

(NOW THE SECOND HALF: LET F BE THE EVENT, 6ETTING AT LEAST ONE
DOUBLE $IX IN 24 THROWS. AGAIN, NOT F |5 EASIER TO DESCRIBE. IT' THE

IF B; 15 THE EVENT, NO POUBLE
514 15 THROWN ON THE ™
ROLL. THEN NOT F = B, AND B,
AND.. B,,. THE PROBABILITY OF

EACH B 15

v(u;;:%,so

24
poxor ) - (3) = 509

(8Y THE MULTIPLICATION RULE)
AND WE CONCLUDE THAT

P(F) = 1 — P(NOT F) = 1 — 509
= . 491

DE MERE TOLD PASCAL HE HAD ACTUALLY OBSERVED THAT EVENT F OLLURRED
LES% OFTEN THAN EVENT E, BUT HE WAS AT A LO%5 TO EXPLAIN WHY.. FROM
WHICH WE CONCLUDE THAT DE MERE GAMBLED OFTEN AND KEPT CAREFUL

RECORDS!!

WHAT ARE
MW QUP4 of
GETTING IN?

NOW LET'S LEAVE THE
CASINO AND REJOIN THE
REAL WORLPD...




BAYES THEOREM and the

case of the false positives...

FOR A MORE SERIOU% APPLICATION OF
CONDITIONAL PROBABILITY, LET'S ENTER
AN ARENA OF LIFE AND DEATH..

SUPPOSE A RARE DISEASE INFECTS ONE OUT OF EVERY 1000 PEOPLE IN A
POPULATION...

AND SUPPOSE THAT THERE 15 A GOOD, BUT NOT PERFELT, TEST FOR THIS
DISEASE: IF A PERSON HAS THE DISEASE, THE TEST COMES BACK POSITIVE 99%
OF THE TIME. ON THE OTHER HAND, THE TEST ALSO PRODUCES SOME FALSE
POSITIVES. ABOUT 2% OF UNINFECTED PATIENTS ALSO TEST POSITIVE. AND YOU
JUST TESTED POSITIVE. WHAT ARE YOUR CHANCES OF HAVING THE DISEASE?

LET'S PUT
T TS WAY:
ZHoULD 1

PAY I BONVANCE?




WE HAVE TWO EVENTS TO WORK WITH: }’\
WELLO?

A : PATIENT HAS THE DISEASE
B : PATIENT TESTS POSITIVE.

s 15 DR
BLUPPESUCQUE
GET ME My

THE INFORMATION ABOUT THE TEST'S LAWYER- Q
EFFECTIVENESS CAN BE WRITTEN 7 2

P(A) = .001 (ONE PATIENT IN 1000 HAS THE DISEASE)

P@BIA) = .99 (PROBABILITY OF A POSITIVE TEST,
GIVEN INFECTION, 15 99)

P(BINOT A) = .02 (PROBABILITY OF A FALSE POSITIVE, GIVEN
NO INFELTION, 15 .02)
AND WE ASK

(PROBABILITY OF HAVING THE DISEASE,
P(A I B) = WHAT? GIVEN A POSITIVE TEST)

rsma; THE TREATMENT FOR THIS DISEASE HAS SERIOUS SIDE EFFECTS, THE )
POLTOR, HER LAWYER, AND HER LAWYER'S LAWYER CALL ON JOE BAYES, (P
(CONSULTING PROBABILIST), FOR AN ANSWER. JOE DERIVES A THEOREM FIRST
PROVED BY HI5 ANCESTOR, THE REV. THOMAS BAYES (1744-1809).

’._-—-‘..
| WARN You...
THiS 16 GOING TO
U4E —ealkie—
CONPATION AL
PROBDBILATY-.

41



rJOE BEGINS WITH A 2X2 TABLE, WHICH DIVIDES THE SAMPLE SPAZE INTO FOI.J'I-‘\’N

MUTUALLY EXCLUSIVE EVENTS. IT DISPLAYS EVERY PO5SIBLE COMBINATION OF
DISEASE STATE AND TEST RESULT.

A NOT A
B A AND B NOT A AND B
NOT B| A AND NOT B NOT A AND NOT B

LET'S FIND THE PROBABILITIES OF EACH EVENT IN THE TABLE:

A NOT A SUM
B P(A AND B) P(NOT A AND B) P(B)
NOT B | P(A AND NOT B) P(NOT A AND NOT B) | P(NOT B8)
P(A) P(NOT A) 1

THE PROBABILITIES IN THE MARGINS ARE FOUND BY SUMMING ALROSS ROWS

AND POWN COLUMNS.
, 8 P

Ry DEFAtTiow",

NOW COMPUTE:

P(A AND B) = P(BIA)P(A) = (99)(.001) = .00099
P(NOT A AND B) = P(BINOT A)P(NOT A) = (.02)(.999) = .01998
ALLOWING U$ TO FILL IN SOME ENTRIES:

A NOT A SUM
B 00099 01998 02097
NOT B | P(A AND NOT B) P(NOT A AND NOT B) | P(NOT B8)
001 999 1

WE FIND THE REMAINING PROBABILITIES BY SUBTRALTING IN THE COLUMNS, THEN
ADPING ALROSS THE ROWS.

48



THE FINAL TABLE 1%

A NOT A
B 00099 01998 02097 P(B)
NOT B 00001 97902 97903 P(NCT B)
001 999 1
P(A) P(NOT A)

FROM WHICH WE DIRECTLY PERIVE

P(A AND B) _ 00099 _

P(AlB) = P(B) P .0472

rDE‘.’»PlTE THE HIGH ACCURALY OF THE TEST, LESS THAN 5% OF THOSE WHO
TEST POSITIVE ACTUALLY HAVE THE DISEASE! THIS 15 CALLED THE FALSE
POSITIVE FARAPOX.

PARADOX
PR K
LAWYERS...

THIS TABLE SHOWS

WHAT HAPPENS IN A

6ROUP OF A THOUSAND DISEASE  NO DISEASE
PATIENTS. ON AVERAGE,
ONLY 21 PEOPLE WILL 1 20 21
TEST POSITIVE—AND POYINVE
ONLY ONE OF THEM TESTS o 979
HAS THE DISCASE! 20 NEGATIVE i
FALSE POSITIVES COME 1 999 1000
FROM THE MUCH
LARSER UNINFECTED
6ROUP.

- 2




WHAT'S THE PHYSICIAN TO pO? JOE BAYES APVISES HER NOT TO $TART
TREATMENT ON THE BASIS OF THIS TEST ALONE. THE TEST POES PROVIDE
INFORMATION, HOWEVER: WITH A POSITIVE TEST THE PATIENT'S CHANCE OF
HAVING THE DISEASE INCREASEP FROM 1 IN 1000 TO 1 IN 23. THE DOCTOR
FOLLOWS UP WITH MORE TESTS.

JOE BAYES COLLECTS Hi5 CONSULTING CHECK BEFORE ADMITTING THAT ALL
THOSE STEPS HE WENT THROUGH CAN BE COMPRESSED INTO THE SINGLE
FORMULA CALLED BAYES THEOREM:

P(A)P(BIA)
P(A)P(BIA)+P(NOT A)P(BINOT A)

P(AIB) =

WONPER WHAT
THE ANCESTOR
wWouLp HAVE
THOULHT
ABOUT THIS
FEE...

IT COMPUTES P(AIB) FROM P(A) AND THE TWO (ONDITIONAL PROBABILITIES
P(BIA) AND P(BINOT A). YOU (AN PERIVE IT BY NOTING THAT THE Bl FRALTION
CAN BE EXPRESSED AS

P(A and B) = PlAandB) _ i, p
P(A and B)+P[{NOT A and B) P(B)

50



("IN THIS CHAPTER, WE COVERED THE
BASICS OF PROBABILITY: IT% PEFINITION,
SAMPLE SPACES AND ELEMENTARY
OUTCOMES, LONDITIONAL PROBABILITY,
AND SOME BASIC FORMULAS FOR
COMPUTING PROBABILITIES. WE
ILLUSTRATED THESE IDEAS USING A
2-DICE SAMPLE SPAZE. FOR THE MODERN

[« |
2
.,
GAMBLER, PROBABILITY 15 THE POWER @
B
@
BR
see
=

TOOL OF CHOILE.

K8 R LK L
CRE- N a

<R R

~JH
-

“H
]
-H

AND FINALLY, IN THE MEDICAL EXAMPLE, WE SHOWED HOW THESE ABSTRALT
IDEAS COULD HELP TO MAKE &OOD DECISIONS IN THE FACE OF IMPERFECT
INFORMATION AND REAL RISKS—THE ULTIMATE &OAL OF STATISTILS.

BUT THI% 15 JUST THE BEGINNING. FOR U5, PROBABILITY |5 ONLY A TOOL—AN
ESSENTIAL TOOL, TO BE SURE—IN THE $TUPY OF $TATISTICS. IN THE CHAPTERS

THAT FOLLOW, WE'LL EXPLORE THE SUBTLE RELATIONSHIP BETWEEN
PROBABILITY, VARIATIONS IN STATISTICAL DATA, AND OUR CONFIDENCE IN
INTERPRETING THE MEANING OF OUR OBSERVATIONS.

S

5






¢+Chapter 4¢

RANDOM VARIABLES

IN CHAPTER 2, WE AW THAT OBSERVATIONS OF NUMERICAL
DATA, LIKE STUPENTS’ WEIGHTS, (AN BE GRAPHED AND
SUMMARIZED IN TERMS OF MIDPOINTS, $PREADS, OUTLIERS, ETC.
IN CHAPTER 3, WE %AW HOW PROBABILITIES CAN BE ASSIGNED
TO THE OUTCOMES OF A RANDOM EXPERIMENT.

NOW LETS
PUT THE TWO

IF WE IMAGINE A RANDOM EXPERIMENT REPEATED MANY TIMES,
WE EXPECT THAT THE ACTUAL OUTCOMES OVER TIME WILL BE
GOVERNED BY THEIR PROBABILITIES. THE PROBABILITIES FORM A
MODEL FOR REAL-LIFE EXPERIMENTS.. 50 WHY NOT PO FOR THE
MOPEL WHAT WE'VE ALREADY DONE FOR THE PATA IT PESCRIBES?
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,
THE KEY IPEA 15 THE RANPOM VARIABLE, WHICH WE
WRITE A% A LARGE

% X

A RANDOM VARIABLE 5 DEFINED A% THE NUMERICAL OUTCOME OF A
RANPOM GXPERIMENT.

\

FOR EAAMPLE, IMAGINE DRAWING ONE STUDENT AT RANPOM FROM THE
STUPENT BODY. THAT'S THE RANPOM EXPERIMENT. THE STUPENT'S HEIGHT,
WEIGHT, FAMILY INCOME, SA.T. SCORE, ANDP 6RAPE POINT AVERAGE ARE
ALL NUMERICAL VARIABLE% DESCRIBING PROPERTIES OF THE RANDOMLY
SELECTED STUPENT. THEY'RE ALL RANDOM VARIABLES.

THE
AOMINISTRATION'S
JORB & To TugN
STUDENTS

INTO
STATISTICS !

3
=l

ANOTHER EXAMPLE: TO%% TWO (OINS (THE RANDPOM EXPERIMENT) AND RECORD
THE NUMEBER OF HEADS: 0, 1, OR 2.

OUTLOME T HT

o 2
TH HH \
| N |
z o 1 2

NOTE THE NOTATION! THE VARIABLE 15 WRITTEN WITH A CAPITAL X. THE
LOWERCASE Z REPRESENTS A SINGLE VALUE OF X, FOR EXAMPLE Z=2, IF
HEADS COMES UP TWICE.
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ANOTHER EXAMPLE 15
BASED ON THE FAMILIAR
TO%% OF TWO PICE. LET
Y REPRESENT THE 5UM
OF THE DOTS ON THE
TWO DICE. FOR THIS
RANDOM VARIABLE, Y

CAN BE ANY NUMBER & Y —_— 7

BETWEEN 2 AND 12.

NOW WE WANT TO LOOK AT THE PROBABILITIES OF THE OUTCOMES. FOR
THE PROBABILITY THAT THE RANDOM VARIABLE X HAS THE VALUE z, WE
WRITE Pr(X = z), OR JUST p(). FOR THE COIN-FLIPPING RANDOM
VARIABLE X, WE CAN MAKE THE TABLE:

| : THIS TABLE 15
‘ CALLED THE
* | o |1 | 2 PROBABILITY
DISTRIBUTION OF
THE RANDOM
VARIABLE X.

Pr(X=z)

FOR THE RANDOM VARIABLE Y (THE 5UM OF TWO DICE), THE PROBABILITY
PISTRIBUTION LOOKS LIKE THIS:

¥ |
Pr(Y '

YUP! THET'S
WHY | GAVE
UP DICIN"?




S,
( NOW LET'S DRAW GRAPHS, OR HISTOGRAMS, SHOWING THESE

PROBABILITY DISTRIBUTIONS. FOR EACH VALUE OF X, WE DRAW A BAR
EQUAL IN HEIGHT TO p(Z).

50 —i

25 —

IT'% EASY TO SEE THAT THE TOTAL AREA OF THESE BOXES 15 1: EACH BOK WAS
BASE 1 AND HEIGHT p(%), S0 THE TOTAL AREA I THE SUM OF THE
PROBABILITIES OF ALL OUTZOMES, IE. 1. J
L

HERE'S THE PROBABILITY HISTOGRAM OF THE RANDOM VARIABLE Y, SHOWING
THE PROBABILITY PISTRIBUTION OF THE 5UM OF TWO DICE:

6
s
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] WHY PO WE CALL THESE GRAPHS HISTOGRAMS? YOU'LL RECALL THAT IN
CHAPTER 2, A HISTOGRAM WAS A GRAPH THAT DISPLAYED HOW MANY DATA
POINTS LAY IN EAZH OF A SERIES OF INTERVALS:

25
20
15
10

0 [ —_— ]

T T T T L] T T L] T T T T T

100 150 200
Weight in Pounds

FROM THIS FREQUENCY WISTOGRAM, WE DERIVED THE RELATIVE FREQUENLY
HISTOGRAM, SHOWING THE PROPORTION OF DATA IN EAZH INTERVAL:

0.0 [ T

100 150 200
Weight in Pounds

BUT YOU'LL RECALL THAT, BY
ONE PEFINITION, PROBABILITY
15 THE RELATIVE FREQUENCY
OF AN EVENT “IN THE
LON& RUN."” TF WE REPEAT
THE RANPOM EXPERIMENT
MANY TIMES, THE RELATIVE
FREQUENZY HISTOGRAM OF
THE OUTLOMES SHOULP COME
TO LOOK VERY MUCH LIKE
THE RANDOM VARIABLE'S
FROBABILITY HISTOGRAM!

5T



WE ILLUSTRATE U%ING THE RANDOM Tl-lé_ '_F-D'%ER BEGINS FLIPPING TWO
VARIABLE X AND A MAD COIN TO%SSER.| | COINS REPEATEDLY, KEEPING TRAZK
=% OF THE RESULTS.

e &

vz
4’4, -~ -
o =

WE KNOW X'$ PROBABILITY DISTRIBUTION, AND WE ALSO KNOW THAT THE

ALTUAL COIN FLIPS WILL MATZH THE PROBABILITIES APPROXIMATELY. AFTER
1000 TO55E%, THE MAD TOS5ER TALLIES HER DATA:

i OBSERVED DATA
7,-NUMBER OF 5 = RELATIVE
Pz % OLLURRENCES FREQUENCY
25 0 260 260
5 1 517 517
25 2 223 223

AND WE SEE THAT THE PROBABILITY HISTOGRAM OF X LOOK% LIKE THE “PURE
FORM™ OR MOPEL OF THE RELATIVE FREQUENCY HISTOGRAM OF THE PATA

PROBABILITY
>

MORE
REAL THAN
"REALITY!”
WEE HEE




TO EXTEND THE ANALOGY BETWEEN RELATIVE FREQUENCY AND DATA, WE
SHOULD NOW BE WILLING TO TALK ABOUT THE MEAN AND VARIANCE (OR
STANPARD DEVIATION) OF A PROBABILITY DISTRIBUTION...

AND JUST TO REMIND
OURSELVES THAT WE'RE IN
THE REALM OF THE
ABSTRACT, WE BREAK OUT
SOME GREEK LETTERS..

MEAN AND VARIANCE OF
RANDOM VARIABLES

WE USE SPECIAL TERMINOLOGY
AND SYMBOLS TO PISTINGUISH
BETWEEN THE PROPERTIES OF
DATA SETS AND PROBABILITY
DISTRIBUTIONS:

PROPERTIES OF DATA ARE CALLED SAMPLE PROPERTIES, WHILE PROPERTIES
OF THE PROBABILITY PISTRIBUTION ARE CALLED MODEL OR POPULATION
PROPERTIES. WE USE THE GREEK LETTER i (MU) FOR THE POPULATION
MEAN, AND o (LOWERCASE S16MA) FOR THE POPULATION STANDARD
DEVIATION. (FOR DATA, WE USE THE ROMAN $YMBOLS Z AND 5.)




—
THE SAMPLE MEAN WAS DEFINED 2
BY THE EQUATION

Goovr! Now LETS
TWIST IT AROUND.

NOW SOME OF THESE PATA POINTS Z; MAY WELL HAVE EQUAL VALUES. THINK
OF THE MAD COIN TO%5ER: THE ONLY AVAILABLE VALUES WERE 0, 1, AND 2, AND|
SHE MADE 1000 TO%5ES. THE VALUE 0 WAS TAKEN ON 260 TIMES, 1 HEAD CAME
UP 517 TIMES, AND 2 HEADS, 223 TIMES.

A5 WE LET z RANGE OVER —
ALL VALUES OF X, CALL 1 BECAUSE EACH
THE NUMBER OF DATA % 14 COUNTED

POINTS WITH THE VALUE z. Nx TIMES..
THEN WE CAN REWRITE
THAT FORMULA AS

all £
OR
= n
Z= Zz;ﬁ
allz

AH! BUT NOW %’E 15 THE RELATIVE FREQUENCY.. THE "APPROKIMATE
PROBABILITY..” THE NUMBER THAT APPROACHES pP(Z).50, BY ANALOGY, WE
FORM THE EXPRESSION

Zzp(z)
allz

AND DEFINE THAT AS THE
MEAN OF THE PROBABILITY
L PISTRIBUTION.




- N
PEFINITION: THE
mean or tue
RANDOM VARIABLE X 15
PEFINED A5

M= Ezp(z)

allz

THIS 15 ALSO CALLED THE GXPECTED VALUE OF X, OR E[X]. THINK OF IT AS
THE SUM OF THE POS5IBLE VALUES, EACH WEIGHTED BY IT$ PROBABILITY. J

MEANING:
THE CENTER
OF |15

HISTOGRAM!

L

THE MAD COIN TOS5ER'S EXPERIMENT ALLOWS US TO COMPARE HER SAMPLE
MEAN Z WITH OUR MODEL MEAN Lc

SAMPLE MODEL
n n
Z | 5 S z | p(x)  zZp(x)
0 26 0 0 25 0
1 517 517 1 5 5
2 223 Adb 2 25 5
963 = Z 1= u

-
NOW LET'S PO THE SAME THING TO

THE VARIANCE. MAYBE YOU

REMEMBER THE FORMULA

n
s = H:I:TZ(Z,--E)Z

i=1

IT (ALMOST) MEASURES THE AVERAGE
SQUARED DISTANCE OF DATA FROM THE
MEAN. A5 ABOVE THIS CAN BE REWRITTEN:
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(( EXCEPT FOR THAT ANNOYING DENOMINATOR n-1 INSTEAD OF 7, THIS ALSO )
LOOKS LIKE A WEIGHTED SUM OF SQUARED DISTANCES.. 50 WE MAKE ANOTHER
DEFINITION:

[ ]
THe VAriance

OF A RANDOM VARIABLE X
15 THE EXPELCTED SQUARED
DISTANCE FROM THE
POPULATION MEAN:

o= Z(:&-,u)’p(z)
allz

e standard

- -
deviation o
1% THE SQUARE ROOT

OF THE VARIANCE.
i > |

DO YOU SEE
THAT o2 15 THE
SAME AS
E[(X-)1]7

WE USE THE TABLE

FROM THE LAST z | p(x) (Z0'p(2)
:ﬁi;& ﬂ?“}JEE 0 2 (V2525
TWO-COIN TO%% 1 5 (1-1)150 =0
(FOR WHICH st = 1), 2 25 (2125 = 25
TOTAL 50 = o*
==
A

TO UM UP: 1 AND o, THE POPULATION MEAN AND STANDARD DEVIATION,ARE
PROPERTIES WE CAN COMPUTE FROM PROBABILITY DISTRIBUTIONS. THEY ARE
COMPLETELY ANALOGOUS TO THE SAMPLE MEAN Z AND STANDARD DEVIATION 5
COMPUTED FROM SAMPLE DATA.

&2



OUR EXAMPLES 50 FAR HAVE BEEN DISCRETE RANDOM VARIABLES. THEIR
OUTCLOMES ARE A SET OF I5OLATED (“PISCRETE™) VALUES, LIKE THOSE WE $AW
IN CHAPTER 3, BUT THERE ARE AL5C

Confinuous o
Random
Variables

LET'S IMAGINE A RANDOM EXPERIMENT
IN WHICH ALL OUTCOMES HAVE
PROBABILITY ZERO. THAT'S RIGHT,
p(x) = 0 FOR EVERY x.

d )
A SIMPLE EXAMPLE 15 A BALANCED, SPINNING POINTER. IT CAN $TOP ANYWHERE
IN THE GIRCLE. IF X REPRESENTS THE PROPORTION OF THE TOTAL
CIRCUMFERENCE IT LANDS ON, THE RANDOM VARIABLE X CAN TAKE ON ANY
VALUE BETWEEN 0 AND 1-AN INFINITE RANGE OF VALUES.

SOME PROBABILITIES ARE EASY TO (8]

FIND, LIKE THE PROBABILITY THAT X x
FALLS WITHIN A RANGE: FOR

EXAMPLE, Pr(a2s < X < 75 ) = 5,

BECAUSE IT'S MALF THE ZIRCLE. BUT

WHAT ABOUT Pr(X = 5)7 SINCE X 7; 2;
CAN TAKE ON AN INFINITE NUMBER = .
OF VALUES, AND ALL OF THESE

VALUES ARE EQUALLY LIKELY, THE

PROBABILITY THAT X 15 EXACTLY 5

(OR EXALTLY ANYTHING) 1%

PRELISELY 0. 5

6%



HOW (AN WE DRAW A PICTURE OF THIS?
BY ANALOGY WITH THE CASE OF
DISCRETE PROBABILITIES, WE TRY TO
SEE CONTINUOUS PROBABILITIES AS
AREAS UNDER SOMETHINGS. FOR THE
SPINNING POINTER, THE “SOMETHING"
LOOKS LIKE THI%:

WOt -«
Wiy WRSA'T
1 BoRe b
SETTER?

Ax) =0WHEN z <0
AZ)=1WHEN 0 € x < 1
AZ) = 0 WHEN % > 1

o 1

1 > THE PROBABILITY THAT THE
POINTER POINTS ANYWHERE
BETWEEN @ AND b IS PRECISELY
77 THE AREA OF THE $HAPED REGION
7 UNDER THE CURVE BETWEEN & AND
0 b
1

b (IN THIS ¢aSE, b—a).

4

—

OVER A POINT, WHICH 15 ZERO.
(AND NOTE THAT THE TOTAL AREA
UNDER THE LURVE 15 EXACTLY 1)

—

! a
THE PROBABILITY OF AN EXALT
OUTLOME, HOWEVER, 15 THE "AREA"
o a



/

THE SAME PICTURE DESCRIBES THE RANDOM NUMBER GENERATOR FOUND ON

MOST COMPUTERS AND S0ME CALCULATORS. PRESS THE BUTTON; OUT POPS A

NUMBER BETWEEN 0 AND 1; AND ALL THE NUMBERS ARE EQUALLY LIKELY, JUST
AS WITH THE SPINNING POINTER.

BUT SADLY, THEY AREN'T
TRULY RANDOM. THEY'RE
PROPUCED BY 5OME
ALGORITHM, 50, TO BE
ALLURATE, WE CALL THEM
PSEUPO-RANPOM NUMBERS.

THE CURVE Y = A(Z) IN THIS
EXAMPLE 15 CALLED THE
PROBABILITY PENSITY OF THE
CONTINUOUS RANDOM VARIABLE X.
EVERY CONTINUOUS RANDOM
VARIABLE HAS TS OWN DENSITY
FUNCTION. THE PROBABILITY
Prta < X < b) 15 THE AREA
UNDER THE CURVE BETWEEN THE
Z-VALUES a AND b.




PDENSITY WON'T BE 50 $IMPLE,
AND COMPUTING THE AREAS (AN
BE FAR FROM TRIVIAL

IN GENERAL, THE PROBABILITY b

a b

WE HAVE TO USE CALLULUS
NOTATION TO PESCRIBE THE
AREA UNDER THE CURVE £(%).
THIS SYMBOL 15 READ “THE
INTEGRAL OF £ FROM a TO b’

LIKE DISCRETE PROBABILITIES,
LONTINUOUS DENSITIES HAVE
TWO FAMILIAR PROPERTIES:

(%) 20

Jf(z)dx =1

(TRY NOT TO BE ALARMED BY THOSE !-.:_; Y \
INFINITIES... THEY JUST MEAN WE'RE G
LOOKING AT THE TOTAL AREA UNDER
THE CURVE FROM END TO END,

il




(" ALTHOUGH THE
NOTATION MAY BE
UNFAMILIAR, ALL [T
MEANS 15 AN AREA.
THE INTEGRAL 516N
ITSELF 16 A STRETCHED
*5” FOR SUM, WHICH
THE INTEGRAL, IN
SOME SENSE, 15.

AS A SUMLIKE SOMETHING, THE INTEGRAL SERVES TO DEFINE THE

MEAN AND VARIANCE of a continvous
random variable.

M= Jl Zf(:&)dz 8Y ANALOGY M =ZZP(Z)
. WITH THE allz
PISCRETE

t FORMULAS:
o= J (Z-1) ) dx o= Z(z-#)zp(z)
A allz

oo

ALTHOUGH IT MAY NOT BE OBVIOUS FROM THE FORMULAS, THESE DEFINITIONS
OF MEAN AND VARIANCE ARE ENTIRELY CONSISTENT WITH THEIR ROLE AS
CENTER AND AVERAGE SPREAP OF THE PROBABILITIES GIVEN BY THE DENSITY
#(2). THE PICTURE TO KEEP IN MIND (5 THI%:




ADDING

random variables

OH -+
THAT S0UMDS

ONCE YOU KHNOW THE MEAN AND
VARIANCE OF A RANPOM VARIABLE,
WHAT £AN YOU PO WITH THEM?
WELL, FOR ONE THING, YOU £AN
FIND THE MEAN AND VARIANCE OF
SOME OTHER RANDOM VARIABLES...

"
(FOR CAMPLE, LOOK AT A FAR COIN TOS5. LET X = 1 IF THE COIN COMES UP
HEADS AND 0 IF IT LOMES UP TAILS.
z |o 1
p) | 5 5
BY NOW, YOU $HOULD BE ABLE
TO FIND THE MEAN
ElX] = o-plo) = 1-p(1)
=0+ 5
= .5
AND THE VARIANCE
o* = (0-5Vplo) + (1-5)p(1)
= .25
. )

NOW LET'S PLAY A SIMPLE GAMBLING GAME: YOU ANTE UP $6.00 TO PLAY; T
FLIP A COIN; YOU WIN $10 IF THE COIN COMES UP HEADS, ZERO IF TAILS. THEN
YOUR WINNINGS W ARE

W=10X -6

A NEW RANDOM VARIABLE!
WHAT ARE TS MEAN AND
VARIANZE?




(A LITTLE THOUGHT SHOULD
CONVINCE YOU THAT E[w]

1E., YouR

15 GIVEN BY 5 .
z
= = EXPELTED
E[w] = E[10X -] Y ‘ e WIRINGE"
= 10E[X] - 6 ARE A

Loges!

WHICH WORKS OUT TO
10(05) -6 = —1
YOU (AN CHECK IT USING

THIS TABLE:
\_ J
Va, guEN
IN GENERAL, IT 15 NOT HARD i
TO SHOW THAT :
E[ax+b] = aE[x] +4 :
L
WHEN @ AND b ARE ANY £x]

NUMBERS AND X 15 ANY RANDOM
VARIABLE. FOR THE VARIANCE,
THERE'S AL50 A GENERAL PRPY, S

RESULT: /\

acaX+b) = ara*(X) ' !
ag[X1+b

'S 3
IN THE GAMBLING GAME ABOVE, THE PO4%5IBLE OUTCOMES ARE -6 AND 4, 50
IT'S CLEAR THAT THE VARIANCZE OF W MUST BE GREATER THAN THE VARIANCE
OF X. IN FALT,

(W) = o*(10X+6)
= 100a%(X)
= 25
AND
oAw) = §
\_




YOU CAN AL50 ADD TWO RANDOM VARIABLES TOGETHER. FOR INSTANCE, SUP-
POSE WE TO%% A COIN TWICE. THE NUMBER OF HEADS ON BOTH TO55ES 15
X;+X,, WHERE X; AND X, ARE THE RANDOM VARIABLES 6IVING THE RESULTS
OF THE FIRST AND $ECOND TO%5E5.

le) o
¥z, ’ o 1 2
p(:q-l—zz)[ 25 5 25
AGAIN, IT'S EASY TO SEE THAT |
[

E[X+X,] = E[X,] +E[X,]

rr‘."DON"!' ASk ABOUT THE PROBABILITY DISTRIBUTION OF X+X,, BECAUSE IT
PEPENDS IN A LOMPLICATED WAY ON THE TWO ORIGINAL DISTRIBUTIONS. FOR
EXAMPLE, IF X, AND X, ARE BOTH THE SPINNING POINTER PDISTRIBUTION, THE
HISTOGRAMS ALT LIKE THIS:)




THE VARIANCE OF THE UM OF RANDOM VARIABLES HAS A SIMPLE FORM IN
THE SPECIAL LASE WHEN THE VARIABLES X AND Y ARE INDEPENDENT. THE
TECHNICAL PEFINITION OF INDEPENDENCE 15 BASED ON THE PROBABILITY
PROPERTY P(A AND B) = P(AJP(B).. BUT FOR U5, INPEPENDENCE JUST MEANS
THAT X AND Y ARE GENERATED BY INPEPENDENT MECHANISMS, SUCH AS

FLIP%S OF A COIN, ROLLS OF A PIE, ETL.

OUTSIDE THE
CASINO, IT'S HARD
TO FIND COMPLETE
INPEPENDENCE...

i WHEN X AND Y ARE INDEPENDENT,
THEIR VARIANCES ADD:

g (X+Y) = (X )Ha(Y)

IN THE (ASE OF TWO (OIN TOS%ES,
X ¥X,) = o (X') +a'(X,)

25+ .25

= .5

.

..BUT, 1M
THE 'DEAL
WORLD oOF
STpTsTICS,

ALL OF THI% CAN BE GENERALIZED TO THE $UM OF MANY RANDOM VARIABLES:

e[>x] = Yelx]

i=7 i=1

AND, WHEN THE X; ARE ALL INDEPENDENT,

(3 X) = Yotx)

i=1 i=1




(" THESE CALLULATIONS LIE AT THE
HEART OF MOST SAMPLING THEORY
AND STATISTICS. MANY SUMMARIES
OF DATA, SUCH AS THE SAMPLE
MEAN, ARE LINEAR COMBINATIONS
OF DATA (LE, 5UMS OF THE TYPE
aX +bY + cZ + .. )

THE WORLY
% THE SUM OF
1= PARTS!

- _— i . -
—_— o . L
\{4 /.f’;/._?ffr"’ - T T

IN THE NEXT CHAPTER, WE WILL SEE TWO IMPORTANT EXAMPLES OF RANDOM
VARIABLES: ONE, THE BINOMIAL, 15 THE 5UM OF MANY REPEATED INPEPENDENT
RANDPOM VARIABLES. THE OTHER, THE NORMAL, 15 A CONTINUOUS RANPOM
VARIABLE THAT HAS A SURPRISING RELATIONSHIP TO THE BINOMIAL, AND ANY
OTHER 5UM OF INPEPENDENT RANDOM VARIABLES AS WELL.

JUST REMEMBER:
RANDOM EXPERWMENT,

NUMERICAL
OUuTcoMe!

MM. S0UMDS
Like &Y LpsT
PAYLUECK. ..



+Chapter 5+

A TALE OF TWO
DISTRIBUTIONS

NOW WE LOOK AT TWO IMPORTANT EXAMPLES OF
RANDOM VARIABLES, ONE PISCRETE AND ONE CONTINUCUS.

13



("WE BEGIN WITH THE DISCRETE ONE, CALLED THE BINOMIAL RANDOM VARIABLE. )
SUPPOSE WE HAVE A RANDOM PROCESS WITH JUST TWO POSSIBLE OUTLOMES:
A HEADS-OR-TAILS COIN TOS5, A WIN-OR-LOSE FOOTBALL GAME, A PASS-OR-
FAIL AUTOMOTIVE $MOG INSPECTION. WE ARBITRARILY CALL ONE OF THESE
OUTCOMES A SUCCESS AND THE OTHER A FAILURE.

———

CONGRATULATIONS ON

YOUR SOCCESS! YOUR
JUST FAILED THE

sMDG TEST!
L

WHAT WE PO 15 TO REPEAT THIS EXPERIMENT.. WELL, REPEATEDLY. SUCH A
REPEATABLE EXPERIMENT 15 CALLED A

Bgrnoulli
trial,

PROVIDED IT HAS THESE CRITICAL
PROPERTIES:

1) THE RESULT OF EACH TRIAL
MAY BE EITHER A SUCLESS OR
A FAILURE

NO
PICTURE
35235014_\..
SORRY ¥
2) THE PROBABILITY p oF

SUCLESS 15 THE SAME IN

EVERY TRIAL.

3) THE TRIALS ARE INDEPENDENT:
THE OUTCOME OF ONE TRIAL HAS
NO INFLUENCE ON LATER OUTCOMES.
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STARTING WITH A BERNOULLI TRIAL, WITH PROBABILITY OF SULLESS p, LET%
BUILD A NEW RANDOM VARIABLE BY REPEATING THE BERNOULLI TRIAL.

e

binomial /g v
random 1 Lria O
variable

X 15 THE NUMBER OF
SUCLES5ES IN i REPEATED
BERNOULLI TRIALS WITH
PROBABILITY p OF SUCLESS.

AN EXAMPLE OF A BINOMIAL RANDOM VARIABLE 15 THE NUMBER OF HEADS
(SUCCESSES) IN TWO FLIPS OF A COIN. HERE 1=2 AND p =.5

A= NUMBER
OF SUCLESSES | e -1 =
PriX=4) I 2% 5 25

ANOTHER EXAMPLE 15 DE MERE'S FIRST GAMBLE: TO%5ING A SINGLE DIE
FOUR TIMES IN A ROW. SUCLESS MEANS ROLLING A 6. THE PISTRIBUTION 15:

B '-—-_-'-I-.‘__
UM THE PISTRIBUTON
on. 160

6 WHAT 15 TME
PROBABILITY OF
ROLLING & b'S
N 4 RoLLe ?
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IN GENERAL, WHAT'S THE PROB-
ABILITY DISTRIBUTION OF THE
BINOMIAL FOR ANY PROBABILITY
P AND NUMBER OF TRIALS n7 A
PROBABILITY CALLULATION &IVES
THE ANSWER: THE PROBABILITY
OF OBTAINING £ SUCLESSES IN
nTRIALS, Pr(X=£), 15

PriX=h) = (Dpto-p* B

TIME FOR YouR
MATH THERAPY!

B n y
HERE (). READ *n1 CHOOSE 4" 15 THE BINOMIAL COEFFIZIENT. TT COUNTS

ALL PO55IBLE WAYS OF GETTING £ SUCCESSES IN nn TRIALS. EACH INDIVIDUAL
SEQUENCE OF 4 SUCLESSES AND n—4 FAILURES HAS PROBABILITY P‘ (l-p)""‘.

BY THE MULTIPLICATION RULE. THERE ARE ( ‘é) OF THESE SEQUENCES.

- P P (G-p) 9

FSSES., G

THE FORMULA FOR (%) 15

@) = 5o {ABCDY
{7

WHERE

nl = nx(n-)x(n-2)x% .. x

; _
AND 0! 15 TAKEN TO BE 1. FOR INSTANCE, AB Ac AD

(2). Tve numBER OF POSSIBLE WAYS TO

CHOOSE TWO LETTERS FROM A SET OF ( D
FOUR LETTERS, i5

(D=2=2=¢

2/2! T
716



(" ANOTHER VIEW OF THE BINOMIAL COEFFICIENTS 15 IN PASCAL'S TRIANGLE. )
EAZH ENTRY 15 THE UM OF THE TWO NUMBERS JUST ABOVE IT.

(3)

3% 3 21 7

1 6 28 5 70 56 128 (to
la;&ummu;&?t/lo
1 10 45 120 210 252 210 120545 1o 1
1N 55 15 330 A2 b2 30 W5 55 M 1
| 12 6 220 495 792 924 192 495 220 b6 12 1
et
T0 FIND (), JUST COUNT DOWN TO ROW 11 AND OVER TO ENTRY £
(REMEMBERING ALWAYS TO START COUNTING FROM ZERO). )
.

WHEN p = 5, THE BINOMIAL'S
PROBABILITY DISTRIBUTION 15
PERFECTLY SYMMETRICAL. FOR
6 COIN FLIPS, FOR INSTANCE, IT'S

£ = #HEADS 0o 1 2 3 4 5 6‘
b

-k (BF % @ G @5 (O ¢

WITH THIS

HISTOGRAM:

g



FOR DE MERE'S ROLL OF FOUR PICE, THE DiSTRIBUTION |15 MORE LOPSIDED:

1%/, 5

Bb g
[ =

150/'.19!, 2%% ;

N e S
oF sixee O 1 2 3 4

rT‘!'II-Z MEAN AND VARIANCE OF THE

WE WON'T BORE

BINOMIAL PISTRIBUTION ARE
You WI\TH THE

DERWATION.

M = np
o* = np(-p)

NOTE THAT THE MEAN MAKES
INTUITIVE $ENSE: IN 71 BERNOULLI
TRIALS, THE EXPECTED NUMBER OF
SUCLESSES SHOULD BE np. THE
VARIANCE FOLLOWS FROM THE
FAZT THAT THE BINOMIAL 15 THE
SUM OF 77 INPEPENPENT BERNOULLI

| TRIALS OF VARIANCE p(1-p).

THE PARAMETERS OF THE BINOMIAL DISTRIBUTION ARE 71 AND p. THE
PISTRIBUTION, MEAN, AND VARIANCE DEPEND ONLY ON THESE TWO NUMBERS.
TABLES OF THE BINOMIAL PISTRIBUTION APPEAR IN MOST TEXTBOOKS AND
COMPUTER PROGRAMS. HERE 15 A TABLE FOR n=10.

VALUES OF PriX=4)
k
0 1 2 3 4 5 6 7 8 g 10
! 0349 0.387 0.194 0.057 0.011 0.001 0.000 0.000 0.000 0.000 0.000
25 0056 0.188 0.282 0.250 0.146 0.058 0.016 0.003 0.000 0.000 0.000
P 50 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001
75 0.000 D.000 0.000 0.003 £.016 0.058 0.146 0.250 0.282 0.188 0.056
g  0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.057 0.194 0.387 0.349

K]



~
BUT CALLULATING
THESE THINGS FOR
LARGE VALUES OF n
CAN BE A PAIN.. OR AT
LEAST, IT WA%S BAZK IN
THE 18™ CENTURY,
WHEN JAMES
BERNOULLI AND
ABRAHAM Dg MOIVRE
WERE TRYING TO DO
IT WITHOUT A

L COMPUTER.

~

DEPLOYING A NEWLY
INVENTED WEAPON, THE
CALLULUS, DE MONRE

SHOWED THAN WHEN p =5,
THE BINOMIAL DISTRIBUTION
WAS CLOSELY
APPROXIMATED BY A
CONTINUOUS DENSITY
FUNETION WHICH COULD BE
DESCRIBED VERY SIMPLY.

TO SEE HOW THIS WORKS, IMAGINE THE BINOMIAL DISTRIBUTION WITH p = 5
AND 711 VERY LARGE—A MILLION, SAY..

001 1

M.
WHAT A
WIDE, LOW
THING..

, m-ﬁﬁ mmanDTTrmm

19



NOW, SAIP PEMOIVRE, $LIDE THIS SQUASH THE CURVE ALONG THE z AXIS
GRAPH OVER, 50 [T% MEAN 15 ZERO. UNTIL THE STANDARD DEVIATION

BECOMES 1, WHILE STRETZHIMNG 1T
ALONG THE y AXIS TO KEEP THE AREA
f OR 6L|
THE N.té—

UNPER IT EQUAL TO 1.

THE RESULT 15 VERY (LOSE TO A SMOOTH, SYMMETRICAL, BELL-SHAFED
CURVE, WHICH DEMOIVRE SHOWED WAS GIVEN BY THE SIMPLE FORMULA:

THIS FUNCTION 15 CALLED THE

frepme®  Suii

(e 15 h U%EFUL MATHEMATICAL

CONSTANT APPROK
A BEAUTIFUL EQUAL D g STeLy
T WINGF
/
i

\

(" (CONVINCE YOURSELF THAT THIS FUNCTION REALLY HAS A BELL-SHAPED
GRAPH. FOR z FAR FROM ZERO, £(2) 15 VERY NEARLY ZERO—IT HAS A Bl6
DENOMINATOR; IT'S SYMMETRICAL, SINCE #(2Z) = F(—2), AND IT HAS A
MAXIMUM AT Z = 0)

THE DISTRIBUTION 15 CALLED THE

STANDARD NORMAL BECAUSE ALL Mm = 0

THAT 5QUASHING AND STRETCHING

WAS SPECIALLY ARRANGED TO GIVE

IT THESE SIMPLE PROPERTICS, g = 1

WHICH WE PRESENT WITHOUT

| PROOF: )




-\

TO SUMMARIZE DE MOIVRE, —— -
IF YOU “NORMALIZE” THE ®-BUT... TWAT WpS ToR
BINOMIAL DISTRIBUTION Wt ppour | DEMOIVRE,

WITH p = 1/2—1E., CENTER HOT ok US-..

IT ON ZERO ANDP MAKE TS
STANDARD DEVIATION = 1,
THEN IT CLOSELY FITS
THE STANDARD NORMAL
PISTRIBUTION

- 1 -%
f(Z) = me

A

OTHER NORMALS, WITH DIFFERENT MEANS AND VARIANCES, ARE OBTAINED BY
STRETCHING AND SLIDING THE $TANDARD NORMAL. IN GENERAL, WE WRITE THE
FORMULA

THIS 6IVES A SYMMETRIC,
(2 5) BELL-SHAPED DISTRIBUTION
CENTERED ON THE MEAN u
2 WITH THE STANDARD
PEVIATION .

Az | o)

HERE ARE TWO PIFFERENT NORMAL%S WITH THE REGIONS WITHIN THEIR
STANDARD DEVIATIONS SHADED.




M = np AND

DE MOIVRE PROVED THAT THE STANDARD NORMAL FITS TUE (NORMALIZED)
BINOMIAL WITH p = 5, BUT, IN FACT, IT WORKS FOR ANY VALUE OF p.

GENERALLY: FOR ANY
VALUE OF p, THE
BINOMIAL DISTRIBUTION
OF n TRIALS WITH
PROBABILITY p 15
APPROXIMATED BY THE
NORMAL CURVE WITH

o = np(l-

f\@ m ALL muomm
-_')1'7 : TURN INTO

k NORMALS,
EVERTUALLY.

-

A BELL
THIS?

:—-—!“—r—

F\WROK'MATgs

THIS 15 ACTUALLY A
LITTLE STRANGE. ALL
NORMALS ARE
SYMMETRICAL AND
BELL SHAPED.. BUT, A%
WE SAW, BINOMIAL
PDISTRIBUTIONS ARE
NOT SYMMETRICAL
WHEN p #.5.

BUT IT TURNS OUT THAT AS n G6ETS LARGE, THE BINOMIAL'S ASYMMETRY 15
OVERWHELMED, AS YOU SEE IN THIS EXAMPLE:

N

\

-2 0 2

Binomial. n= 2 andp=03

82
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IN FACT, DEMOIVRE'S DISCOVERY ABOUT THE BINOMIAL 15 A SPECIAL CASE OF AN
EVEN MORE GENERAL RESULT, WHICH HELPS EXPLAIN WHY THE MORMAL 15 0
IMPORTANT AND WIDESPREAD IN NATURE. IT 15 THI%:

. Flll ° MOM DiEy!
Central Limit e S IR
Theorem™: C‘L EVERYTHING !
DATA THAT ARE

INFLUENCED BY MANY
SMALL AND UNRELATED
RANDOM EFFECTS ARE
APPROXIMATELY NORMALLY
DISTRIBUTED.

-

THIS EXPLAINS WHY THE NORMAL 15 EVERYWHERE: 5TOCK MARKET
FLUCTUATIONS, STUPENT WEIGHTS, YEARLY TEMPERATURE AVERAGES, 5.AT
SCORES: ALL ARE THE RESULT OF MANY DIFFERENT EFFECTS. FOR EXAMPLE,
A STUDENT'S WEIGHT 15 THE RESULT OF GENETICS, NUTRITION, ILLNESS, AND
LAST MIGHT'S BEER PARTY. WHEN YOU PUT THEM ALL TOGETHER, YOU GET
THE NORMAL! (REMEMBER, THE BINOMIAL 15 THE RESULT OF n INDEPENDENT
BERNOULLI TRIALS.)

% Pl 1 1l CORE ... NEXT TIME
\ = ‘ 1:;0 Mfﬁml‘_; | :,.1 REMIND ME TO 4ToP
1N NOR: 1 ' AFTER n-1 BEERS...

T '!Nf '"I.l\\ » ..
Mm\ hi] m u\ i

a"




("THE z TRANSFORMATION

Z-p
Z =

CHANGES A NORMAL
RANPOM VARIABLE WITH
MEAN 1 AND STANDARD
PEVIATION o INTO A
STANDARD NORMAL
RANDOM VARIABLE WITH
MEAN 0 AND STANDARD
DEVIATION 1.

'S ANOTHER

SQUISKING,
SLIDING

OPERATION...

% e M ;ﬂrl'
e
/\ L
WLl /3

THEN ALL WE NEED TO FIND PROBABILITIES FOR ANY NORMAL DISTRIBUTION 15
THE SINGLE TABLE FOR THE STANDARD NORMAL A(z).

z -25 -24

-2.3

-22 21 -20

-1.9

-1.8

-1.7 -1.8

F(z)
z

Fiz}

z
1)

z
F(z}
z
F(z)
z
F(z)

0.006 0.008 0.011 0.014 0.018 0.023 0.029 0.036 0.045 0.055
15 14 13 12 11 10 08 08 -07 -06

0.067 0.081 0.097 0.115 0.136 0.159 0.184 0.212 0.242 0.274

-05 -04 -03 -02 -01 00 O01 02 03 04
0.309 0.345 0.382 0.421 0.460 0.500 0.540 0.579 0.618 0.655 @voq: )
05 06 07 08 09 10 11 12 13 14

0691 0.726 0.758 0.788 0.816 0.841 0.864 0.885 0.903 0.919

15 16 17 18 18 20 21 22 23 24 0
0.933 0.945 0,955 0.964 0.971 0.977 0.962 0.986 0.989 0.992 6‘{

25
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HERE F(a) = Pr(z < @), THE AREA UNPER THE PENSITY CURVE TO THE LEFT

OF z=a.

(WE CAN ALSO ,
GRAPH THE = -
CURVE F()

%: F(z), i

CUMULATIVE "
PROBABILITY.
IT LOOKS
LIKE THIS)

=
)

O +—
T3 ST,

B4



THE TABLE ALLOWS VS TO FIND THE 50, FOR EXAMPLE,
PROBABILITY OF 2 BEING IN ANY INTERVAL TR S) % F<F
ezl IT 15 SWIT THE DIFFCRENCE fre ;;,J, e
BETWEEN THE AREAS F(b) av F(a). Pl

X

ALK ICH
SARBD 0‘0{/
AT 7

Prez22)= 1-F@)

E a o o b
7/ Pria<z<h) = F(b) - F(a)
USING THE SUBSTITUTION FOR EXAMPLE, SUPPOSE STUPENT WEIGHTS ARE
- ETA NORMALLY PISTRIBUTED WITH A MEAN L= 150
z= —5 ., WE CAN UsE

POUNDS AND STANDARD DEVIATION o= 20:
THE $AME TABLE TO FIND

PROBABILITIES FOR OTHER
NORMAL DISTRIBUTIONS.

A '
€0 T -»!
1

"

]
1
T \20 150 \To

x
(s}
THEN WHAT'$ THE PROBABILITY OF WEIGHING
MORE THAN 170 POUNDS?
NOW [T'S “JUST" ALGEBRA. THAT'S 1-F (1), WHICH WE (AN REAP FROM THE
TABLE AS 1 - 8413 = .1587
Pe(X>170) =
AREA= 967

Pe(X=b 5 \To-150Y .
(%2 > To-e).
P(z>32) =

/

150 170

Pr(z > 1 ) A LITTLE LESS THAN ONE STUDENT IN SIX TIPS

THE SCALES ABOVE 170 POUNDS.

THE GENERAL RULE FOR COMPUTING NORMAL PROBABILITIES 1% THEREFORE:
Pr(a<X<b) = F(é—;ﬁ) -F(Z4)
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(Now BACK TO DE MOIVRE
AND HI$ BINOMIAL
APPROXIMATION... LET'S
LOOK AT A BINOMIAL
DISTRIBUTION WITH 7 =25
TRIALS AND p=5 (25
COIN FLIPS, 5AY). WE (AN
COMPUTE (OR LOOK UP IN
A TABLE) ANY PROBABILITY,
FOR EXAMPLE, Pr(x<14).
LrT 15 .T878 CXACTLY.

SUADED
AREA =

18786

LA W

6 8

T e e
10 12 14

NOW CALCULATE A NORMAL RANDOM VARIABLE X* WITH THE SAME MEAN
Mm=np = (25)5) =12.5 AND STANDARD DEVIATION o = np(l-p) = 2.5.

ISER/

Pr(X*<14)

14-125
Pr(Zs< 55

Pr(Z<.6)
7257

)

\

|l

7878 VERSUS

72577 WHAT KIND UM.. AN
OF APPROXIMATION APFROXIMATE
15 THAT? OME?

AH, BUT WE (AN DO BETTER!
IF YOU LOOK CLOSELY AT THE
FIRST HISTOGRAM, YOU SEE
THE BARS ARE CENTERED ON
THE NUMBERS. THIS MEANS
Pr(X¥<14) 15 ACTUALLY THE
AREA UNDER THE BARS LESS
THAN z = 14.5. WE NEED TO
ACCOUNT FOR THAT EXTRA 5,
AND IN FALT,

Pr(X*<145) = Pr(z< @

A VERY 6OOUD APPROXIMATION
TO 7678 INDEED!




~
THAT LITTLE EXTRA 5 WE —
ADPED 15 CALLED THE WE HAVE TO

continuity GO To THE

correction. EvLES!
WE HAVE TO INCLUDE IT
TO GET A 6OOP

CONTINVOUS
APPROXIMATION TO OUR

DISCRETE BINOMIAL /

RANDOM VARIABLE X. IT'S / A

SUMMARIZED BY THIS ONE 0 1 2
HIDEOUS FORMULA:

<X<b o* 75 np Z< +--np
Pe(acxsb)= P( " Yirtop:

WHEN 15 THIS APPROXIMATION 600D ENOUGH?" FOR STATISTICIANS, THE
RULE OF THUMB 15: WHENEVER 7 15 BI& ENOUGH TO MAKE THE NUMBER OF
EXPECTED SUCLESSES AND FAILURES BOTH GREATER THAN FIVE:

np 25 and n(-p) 2

YOU (AN SEE FROM THESE HISTOGRAMS THAT THE FIT WHEN p = 0.1 15
MEDIOCRE OR WORSE UNTIL 77 REACHES 50, MAKING np = 5.

i f

|
y Jﬁmi

n=2, pP= o1 n=10, p= ol n=>50, p= ol
87



WHAT'S 50 GREAT ABOUT THIS NORMAL APPROXIMATION? THE BINOMIAL
DISTRIBUTION OCLURS COMMOMNLY IN NATURE, AND IT ISN'T HARD TO UNDER-
STAND, BUT IT AN BE TIRESOME TO CALCULATE.

e ———
THERE'S A NEW ONE
FOR EVERY VALLE
OF n AND p..

IS

( i
THE NORMAL WHICH APPRORIMATES IT MAY BE LESS INTUITIVE, BUT IT'S VERY
EASY TO USE. THE z-TRANSFORM CONVERTS ANY NORMAL TO THE STANDARP

NORMAL, ALLOWING US TO REAP PROBABILITIES STRAIGHT OUT OF A SINGLE
NUMERICAL TABLE.

W A BOOK
én oM A\=

COMPUTER
ScReen!

AND BESIVES, THE NORMAL REALLY |5 THE
MOTHER OF ALL DISTRIBUTIONS!

THAT'S THE
FUZZY CENTRAL
LIMIT THEOREM!
l [
MOMMY Mommy!




+Chapter 6¢

SAMPLING

BY NOW, AFTER A STEADY DIET OF COINS, DICE, AND ABSTRALT
IDEAS, YOU MAY BE WONDERING WHAT ALL THIS STATISTICAL
EQUIPMENT WE'VE BEEN BUILDING HAS TO PO WITH THE REAL
WORLD. WELL, NOW WE'RE FINALLY GOING TO FINP OUT..

IN THIS CHAPTER, WE BEGIN LOOKING AT THE REAL BUSINESS OF STATISTICS,
WHICH 15, AFTER ALL, TO SAVE PEOPLE TIME AND MONEY. PEOPLE HATE TO
WASTE TIME POING UNNECESSARY WORK, AND ONE THING $TATISTILS CAN PO
1% TELL U5 EXACTLY HOW LAZY WE CAN AFFORD TO BE.
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THE PROBLEM WITH THE WORLPD 15 THAT THE COLLECTIONS OF STUFF IN IT
ARE 50 LARGE, IT'S HARD TO GET THE INFORMATION WE WANT:

PICKLES: WHAT'S THEIR
AVERAGE LENGTH?

>3

VOTING POPULATIONS: MANUFACTURED 6000%:
WHAT PERCENTAGE WHAT PROPORTION WILL
FAVORS EALH CANDIDATE?

Sl

¥
9??@ Q¢ ) T O has

NEED TO KNOWI

(THE INDUSTRIOUS,
HARD-WORKING,
SIMPLE-MINDED
BEAVERLIKE WAY TO
ANSWER THESE
QUESTIONS WOULD
BE TO MEASURE
EVERY SINGLE
PICKLE IN THE
WORLD (5AY) AND
DO S0ME
ARITHMETIC.

, 8

BUT WE AREN'T BEAVERS—WE'RE
STATISTICIANS! WE'RE LOOKING
FOR THE EASY WAY OUT..

OH, WELL.,

| ATE THE
PENCIL,



OUR METHOD 1% TO TAKE

A SAMPLE... A
RELATIVELY SMALL
SUBSET OF THE TOTAL
POPULATION, THE WAY
POLLSTERS DO AT
ELECTION TIME.

AN OBVIOUS QUESTION 15: HOW BI& A SAMPLE DO WE HAVE TO TAKE TO GET

MEANINGFUL RESULTS?

QUESTION OME: oW
Po You FEEL ABoOUT
PoLLING?

( AND THE ANSWER,
WHICH YOU SHOULD
INSCRIBE IN YOUR
BRAIN FOREVERMORE,
WILL TURN OUT TO
BE: IF 77 15 THE
NUMBER OF ITEMS IN
THE SAMPLE, THEN
EVERYTHING 15
GOVERNED BY

!

Vi

-

6‘C:VER‘NEP BY
b 7 DIDN'T
EVEN KNOW IT
WAS ON THE
BALLOT!
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SAMPLING
DESIGN

NoT
SAMPLER
DESIEN?"

-
BEFORE POING THE NUMBERS, WE
SHOULD POINT OUT THAT THE
QUALITY OF THE SAMPLE 15 AS
IMPORTANT A% IT% %IZE. HOW PO
WE A55URE OURSELVES THAT
WE'RE CHOOSING A
REPRESENTATIVE SAMPLE?

é‘”)

(q @

THE SELECTION PROLESS
ITSELF 15 CRITICAL. FOR
EXAMPLE, A VOTER SURVEY THAT
SYSTEMATICALLY EXCLUDED BLACK
PEOPLE WOULD BE WORTHLESS,
AND THERE ARE A HOST OF
OTHER WAY% TO RUIN, OR BIAS, A
SAMPLE.

B,

NOT TO PROLONG THE MYSTERY, THE WAY TO GET STATISTICALLY DEPENDABLE
RESULTS 15 TO cHoosE THe sampie ar random.

B
YOu v
You

ol

—

L ¢an'T HEAR
You! 15 (T STiLL




4 T
« SIMPLE RANDOM SAMPLE

SUPPOSE WE HAVE A LARGE
POPULATION OF OBJECTS ANP A
PROCEDURE FOR SELECTING n OF
THEM. IF THE PROCEDURE
ENSURES THAT ALL PO%5IBLE
SAMPLES OF n OBJECTS ARE
EQUALLY LIKELY, THEN WE CALL

k?ﬁ:ﬁ?ﬁﬁ focen. 4 Q%%%? %éé

THE SIMPLE RANDOM SAMPLE HAS TWO PROPERTIES THAT MAKE IT THE
STANDARD AGAINST WHICH WE MEASURE ALL OTHER METHODS:

1 UNBIASED: EACH UNIT HAS THE SAME
CHANCE OF BEING CHOSEN.

2 INDEPENPENCE: SELECTION OF ONE
UNIT HAS NO INFLUENCE ON THE
SELECTION OF OTHER UNIT%.

UNFORTUNATELY, IN THE REAL WORLD, COMPLETELY UNBIASED, INDEPENDENT
SAMPLE%S ARE HARD TO FIND. FOR INSTANCE, SURVEYING VOTERS BY RANDOMLY
PIALING TELEPUONE NUMBERS 15 BIASED: T IGNORES VOTERS WITHOUT A
TELEPHONE AND OVERSAMPLES PEOPLE WITH MORE THAN ONE NUMBER.

Q MG- HELLe? PERGT FDQ

PRESIDENT HEJ«DQMRTERS"

ﬁ RidG s Lk

- !
g
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IT'5 THEORETICALLY POSSIBLE |

TO GET A RANDOM SAMPLE BY
BUILDING A SAMPLING
FRAME: A LIST OF EVERY
UNIT IN THE POPULATION. BY
USING A RANDOM NUMBER
GENERATOR, WE (AN PICK n
OBJECTS AT RANDOM.

l””“a
),

1

NN g

1

i iy

A ey,

]

UL

EQUIVALENTLY, WE CAN PUT ALL THE
NAMES ON CARDS AND PULL n OF
THEM OUT OF A DRUM,

BUT THIS 15 NOT ALWAYS EASY. MAKING THE FRAME MAY BE PROMIBITIVELY
COSTLY, CONTROVERSIAL, OR EVEN IMPOS%IBLE. FOR EXAMPLE, AN EPA WATER
QUALITY 5TURY NEEPED A S5AMPLING FRAME OF LAKES IN THE U5, 50 THEN

SOMEBODY HAS TO DECIDE:
WHAT WET 4POT
1% A LAKE?

ARE THERE OTHER WAYS TO SAMPLE THAT ARE MORE EFFICIENT AND £OST-
EFFECTIVE THAN A 5IMPLE RANDOM SAMPLE? YES—IF YOU ALREADY KNOW
SOMETHING ABOUT THE POPULATION. FOR INSTANCE..
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e T e e Y ]

( oPe [ _— ’—ﬁ—.gd—h a1y
=Y
Stratified i care s

SAMPLING: DIVIDE THE (a* é - ‘é'ﬁfsii;{?ﬂf:j
POPULATION UNITS INTO hﬂ# ,;—;
HOMOGENEOUS GROUPS { N
(5TRATA) AND DRAW A (=] ‘*“?5"&
5IMPLE RANDOM SAMPLE S e 24

FROM EAZH GROUP.

HAMBURGER

FOR EXAMPLE, THE POPULATION OF ALL PICKLES CAN BE STRATIFIED BY
TYPE OF PIcKLE. WITHIN EACH TYPE OR STRATUM, THE $IZE SHOULD BE
ku:” VARIABLE. J

CIUS"er SAMPLING GROUPS THE POPULATION INTO SMALL
CLUSTERS, DRAWS A SIMPLE RANDOM SAMPLE OF

CLUSTERS, AND OBSERVES EVERYTHING IN THE SAMPLED CLUSTERS. THIS CAN BE

COST-EFFECTIVE IF TRAVEL £O5TS BETWEEN RANDOMLY SAMPLED UNITS 15 HIGH.

AN EXAMPLE 15 A CITY
HOUSING SURVEY WHICH
PIVIDES A (ITY INTO
BLOCKS, RANDOMLY
SAMPLES THE BLOCKS,
AND LOOKS AT EVERY

- HOUSING UNIT IN EAZH
A = CLUSTER SAMPLED BLOCK.
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[ ]
SAMPLING STARTS WITH A RANDOMLY
SYS'emﬂ'“ CHOSEN UNIT AND THEN SELECTS EVERY 4™
UNIT THEREAFTER. FOR INSTANCE, A HIGHWAY TRAFFIC $TUDY MIGHT CHECK

EVERY HUNDREUTH (AR AT A TOLL BOOTH. THIS PLAN 15 EASY TO IMPLEMENT
AND (AN BE MORE EFFICIENT IF TRAFFIC PATTERNS VARY SMOOTHLY OVER TIME.

EXCUsE ME..WOULD You
MIND ANSWERING FIFTY
=N OR s TY GUBESTIONS?

=)

UL

Word of warning #1:

MOST STATISTICAL METHODS PEPEND ON
THE INPEPENDENCE AND LACK OF BIAS OF
THE SIMPLE RANDOM SAMPLE. THE RESULTS
AWEAD APPLY TO THE SIMPLE RANDOM
SAMPLE ONLY. FOR OTHER SAMPLING
PROCEDURES. THE RESULTS MUST BE
MOPIFIED. THE DETAILS APPEAR IN
SPECIALIZED SAMPLING TEXTBOOKS AND
COMPUTER ALGORITHMS.




-
Word of warning #2:  Wrour rawomzey
DESIGN, THERE CAN BE NO

PEPENDABLE STATISTICAL
ANALYSIS, NO MATTER
HOW IT 15 MOPIFIED. THE
BEAUTY OF RANDOM
SAMPLING 15 THAT T
“STATISTICALLY
GUARANTEES™ THE
ALCURALY OF THE SURVEY.

o =

S

A COMMONLY USED METHOD 15 ESPECIALLY PRONE TO BIAS: IT'% CALLED AN
opportunity smric avooine AL

THE BOTHER OF PESIGNING A
Dot WoRRY!
WE VOLUMTEERED'

PROCEPURE, THE OPPORTUNITY
SAMPLER JUST GRABS THE

FIRST n POPULATION UNITS
TO COME ALONG.

A CLASSIC EXAMPLE 15 SHERE HITE'S BOOK, WOMEN AND LOVE. 100,000
QUESTIONNAIRES WENT TO WOMEN'S ORGANIZATIONS (AN OPPORTUNITY
SAMPLE), ONLY 4.5% WERE FILLED OUT AND RETURNED (RESPONSE BIAS).
50 HER "RESULTS" WERE BASED ON A SAMPLE OF WOMEN WHO WERE HIGHLY
MOTIVATED TO ANSWER THE SURVEY'S QUESTIONS, FOR WHATEVER REASON.

AT LAST, A
SCIENTIFIC WAY
TO HUMILIATE
ARNOLD!




& standard error

(SAMPLE SIZE c.—.% |
= o A

BRASS TACKS... REAL BRASS
TALKS, THAT 15. SUPPOSE THE

BERNOULLI TACK FACTORY 15 @
CHURNING OUT BRASS TACKS, - [

SOME OF WHICH, INEVITABLY,

}D‘@ /_
J’-ﬁ@

. \

THE ASTUTE READER WILL RELOGNIZE THIS AS A BERNOULL! SYSTEM: EACH
NEW TAZK 1% THE OUTCOME OF A BERNOULLI TRIAL WITH SOME PROBABILITY P
OF 5U¢CES5 (LE, BEING DEFELT-FREE) AND PROBABILITY 1—p OF FAILURE
(1E, BEING DEFECTIVE).

WE THINK OF THIS SITUATION A% IF THERE WERE A HIPDEN BUT REAL
“BERNOULLI MACHINE™ WHOSE PROBABILITY P GOVERNS THE OUTCOMES WE
OBSERVE IN THE $O-CALLED “REAL WORLD"
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~

$INCE THE BERNOULLI
MACHINE 15 INVISIBLE, WE
DON'T KNOW WHAT p 15,
BUT WE'D LIKE TO FIND
OUT. 50 WE TAKE A
RANDOM SAMPLE OF n
TACKS, AND FIND THAT

Z OF THEM ARE OK.

WMM... FEELS
LIKE n=qo0
WP X =352...

NOW THE PROPORTION OF SUCCESSES IN THE SAMPLE SHOULD BE SOMEWHERE
AROUND p.. 50 WE CALL IT P, PRONOUNCED "P-HAT.”

P 15 THE NUMBER OF SULLES5ES % IN THE SAMPLE, DIVIDED BY THE
SAMPLE $IZE n. FOR ENAMPLE, IF p WAS 85, AND WE SAMPLED 71 =1000
TALKS, MAYBE WE FOUND % = 832 6000 ONES, MAKING £ = .832.

9

WE ASK: HOW 600D
15 THIS ESTIMATE?

OOF!
WHAT 15
"6000"?

AND WE ANSWER WITH
ANOTHER QUESTION: WHAT
POES THE FIRST
QUESTION MEAN?




WE CAN'T KNOW THE PRECISE PIFFERENCE BETWEEN D AND p, BECAUSE WE
PONT KNOW THE VALUE OF p. TUE REAL QUESTION 15 THIS: IF WE TOOK MANY
SAMPLES OF 1000 TACKS AND OBSERVED P FOR EACH SAMPLE, HOW WOULD
THOSE VALUES OF P BE PISTRIBUTED AROUND p?

IN FALT, THESE ﬁ VALUES ARE LOOKING MORE AND MORE LIKE A RANDOM
VARIABLE: THE SELECTION OF THE 71-UNIT SAMPLE 15 A RANDOM EXPERIMENT,
AND THE OBSERVATION B 15 A NUMERICAL OUTCOME!

| AW BECCMING
ENLIGUTENED NOW...
U kdew 1 wou

NOT BE PPINLESS...

(To BE PRECISE, IF X 15
THE NUMBER OF
SUCLESSES IN THE SAMPLE,
THUEN X 15 NOTHING BUT
CUR OLD FRIEND THE
BINOMIAL RANDOM
VARIABLE (21 TRIALS,
PROBABILITY p).. AND WE
DEFINE THE OBSERVED
PROPORTION TO BE THE
RANDOM VARIABLE

s X
P==

RANDOM VARILBLE,
LITTLE P, \T%

NALUE FOR A PARTICOLAR




(KNOWING ALL ABOUT X, WE QUICKLY CONCLUDE A FEW FACTS ABOUT P: )

1) THE MEAN OF P 15 E[P] = p
2) THE STANDARD DEVIATION OF P 15

- ree
aP) = ._P_(._P_)
VA
3) FOR LARGE 7, P 15
APPROXIMATELY MORMAL.

- J

AND THERE YOU HAVE IT ALL! THE OBSERVED VALUES OF P WILL BE CENTERED
ON p (NOT SURPRISINGLY), AND THEIR STANDARD DEVIATION, OR SPREAD, 19
PROPORTIONAL TO THAT MAGIC NUMBER WE MENTIONED AT THE BEGINNING OF
THE CHAPTER:

AND, SINCE P 15 NEARLY NORMAL, WE CAN USE OUR RULE OF THUMB TO
CONCLUPE THAT APPROXIMATELY 68% OF ALL ESTIMATES WILL FALL WITHIN ONE
STANDARD DEVIATION OF THE TRUE VALUE p.




-

.

EOING BAZK TO THE TALKS,
WITH 71 = 1000 AND p = .85,
WE 6ET A STANDARD

LOOKS A

DEVIATION OF BIT LIKE
ONE OF THOSE
o (P)= (85)(.19) TACKS...
. 1000
= .03

50 WE EXPELT ABOUT 48%
OF OUR ESTIMATES TO FALL
IN THE NARROW INTERVAL

8367 < p < 8613

8187 \

Li

B3

THE STANDARD DEVIATION OF P 15 A MEASURE
or 7ie sampling error.

A5 WE'VE SEEN, FOR THE BINOMIAL P, THIS
SAMPLING ERROR 15 INVERSELY PROPORTIONAL
TO V7. INCREASING THE SAMPLE SIZE BY A
FACTOR OF 4 REDUCES THE SPREAD o(P) BY A
FACTOR OF 2.

SAMPLE 51ZES FOR TAKKS, p = 0.85
n |1 4 1w 25 100 10000

Yy 1 2 4 5 10 100

o(P) lm 785 .089 DTV 0357 003

ALREADPY
AT n=t100,
You 4EE :r(ﬁ)

1% DOWN
T 35%*

LINGUISTIC NOTE: AN ESTIMATE 15 A SINGLE MEASURE OR OBSERVATION. AN
ESTIMATOR 15 A RULE FOR GETTING ESTIMATES. TN THIS CASE, THE ESTIMATOR

15 THE RANDOM VARIABLE P= =
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MOST OF STATISTICS INVOLVES THE 4-STEP PROCESS WE'VE JUST WALKED

THROUGH:

DEFINE POPULATION WITH DNKNOWN

PARAMETER

i ‘--FF
SSReQuouLLy TARKS S

FIND AN ESTIMATOR, IT% THEORETICAL
SAMPLING DISTRIBUTION AND
STANDARD DEVIATION.

L) [}
' ]
1 '
L}

' 1
I t
‘ i

E[?) p

ACTUALLY DRAW A RANDOM SAMPLE
AND FIND THE ESTIMATE.

AH.. B 16
EXhCTLY

REPORT THE RESULT ANPD (T%

STATISTICAL OR SAMPLING ERROR.
e

We wve P=.84 § Wi T

\"1111. [N M?UN(, Qq sw):

ERROR OF (1%
i L
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Sampling Distribution

of the MEAN

NOW WE MOVE FROM BRASS TALKS TO DILL PICKLES.. SLIGHTLY

ABOVE THE
THAT 1% ONE
' , f
1) W
L]

MEAN,

—~

JAR MANUFALTURERS WOULD LIKE TO KNOW THE AVERAGE LENETH OF A
PICKLE WITHOUT EXAMINING EVERY CUCUMBER IN CALIFORNIA. THEY RANDOMLY
SELECT n PICKLES AND MEASURE THEIR LENGTHS Z, Z4, - Zp

BY NOW YOU MAY 8E
USED TO THE IDEA
THAT EACH X, 15 A
RANDOM VARIABLE:
THE NUMERICAL
OUTCOME OF A
RANDOM EXPERIMENT.

IF i 15 THE (UNKNOWN)
MEAN PICKLE LENGTH, AND
o 15 THE STANDARD
DEVIATION OF THE PIKLE
LENSTH DISTRIBUTION,

STRANGE, HOW
MUCH WE KNOW JBOUT
RENDOM VARIABLES

WE DIDA'T EVEN KNOW

THEN
WERE RANDOM VARIABLES
E[Xi] = p A MINUTE AGO...
D"(x,') =

FOR EVERY i (BECAUSE z;
LOULD WAVE BEEN THE
LENGTH OF ANY PICKLE).



( NOW WE LOOK AT THE SAMPLE
MEAN: THE AVERAGE LENGTH OF
THE SELECTED PICKLES. TS A
NEW RANDOM VARIABLE GIVEN

14 THERE ANNTHING
THAT ISN'T A
RANDOM VARIABLE 7

BY:
X = X1+X¢+..,+X,, Cﬁ
= = ‘ﬂ;f 2
i L y

AS BEFORE, WE'D LIKE TO KNOW "HOW CLOSE"™ THIS 15 TO 4, MEANING, IF
THIS SAMPLING WERE DONE MANY TIMES, WHAT'S THE DISTRIBUTION OF X7
BECAUSE WE KNOW ABOUT X, X,, ., AND X, WE ALSO KNOW THAT

E[X] = «

THE VARIANCES

oX) = Yz of X pop
TO GIVE THE_
ONCE AGAIN, WE SEE THE VARIANCE 0F X

MAGIC PENOMINATORI THE
SPREAD OF OBSERVED
SAMPLE MEANS GOES AS

1

ﬁ_‘

rBUT WE DON'T KNOW THE SHAPE OF X'$ DISTRIBUTION. THE $AMPLE
PROBABILITY DISTRIBUTION P WAS ALMOST NORMAL, BECAUSE IT WAS BASED
ON A BINOMIAL RANDOM VARIABLE. BUT WHAT ABOUT X, THE SAMPLE MEAN
ESTIMATOR???
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IT TURNS OUT THAT X 15 ALSO APPROXIMATELY NORMAL! THIS FAMOU4
RESULT 15 CALLED THE

CENTRAL LIMIT
THEOREM

IT 5AY%: IF ONE TAKES RANPOM $AMPLES
OF 5IZE n FROM A POPULATION OF MEAN
A AND STANDARD DEVIATION o, THEN, AS
7 GETS LARGE, X APPROACHES THE
NORMAL DISTRIBUTION WITH MEAN 1

AND STANDARD DEVIATION = . THEN M
Pria< X<b) - P\'(a*ﬂ < Z < _b_:ﬁ':_
U/Jﬁ A

WHAT 15 REMARKABLE ABOUT THIS? IT $AYS THAT RESARDLESS OF THE SHAPE
OF THE ORIGINAL DISTRIBUTION (IN THIS CASE, OF PICKLE LENGTHS), THE
TAKING OF AVERASES RESULTS IN A NORMAL. TO FIND THE DISTRIBUTION OF
X, WE NEED KNOW ONLY THE POPULATION MEAN AND STANDARD DEVIATION.

YANVAGIIN

| R

THE THREE PROBABILITY DENSITIES ABOVE ALL HAVE THE SAME MEAN AND
STANDARD DEVIATION. DESPITE THEIR PIFFERENT SHAPES, WHEN 77=10, THE
SAMPLING DISTRIBUTIONS OF THE MEAN, X, ARE NEARLY IDENTICAL.
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(The t-distribution

AMAZING AS THE CENTRAL LIMIT THEOREM 15, IT HAS AT LEAST TWO PROBLEMS.

ONE: IT PEPENDPS ON A LARGE
SAMPLE SIZE.

TWO: TO VSE IT, WE NEER TO
KNOW &, THE $TANDARD
DEVIATION.

BUT SAMPLE $IZES ARE OFTEN
SMALL, AND o 15 USDALLY
UNKNOWN. CERTAINLY, IN THE CASE
OF THE PICKLES, WE HAVE NO IDEA
HOW WIDELY THEIR LEN&THS VARY
L&ROUNI? THE AVERAGE.

WHAT WE CAN PO IN THIS CASE 15 TO ESTIMATE o BY TAKING THE $TANDARD
PEVIATION OF THE SAMPLE, WHICH, YOU'LL RECALL, 15 GIVEN BY THE FORMULA

mn
5 = }f.?__f (?5,'“'2)2
=1

DoN'T GET
AHEAD OF Your-
SELF... THINK
THEN, IN PLACE OF THE RANDOM GOOD THOUGHTS. .

VARIABLE

z = fr"lu
A
WE SUBSTITUTE % FOR o,

AND DEFINE A NEW RANDOM
VARIABLE t By

_X-n

T %
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PSEUDOMYM, FOR SOME REASON.)

YOU CAN THINK OF THE RANDOM VARIABLE T AS THE BEST WE CAN Do UNDER
THE CIRCUMSTANCES. 1T% DISTRIBUTION 15 LALLED STUPENT'S 1, BECAUSE ITS
INVENTOR, WILLIAM £OS%SET, PUBLISHED UNPER THE PSEUDONYM "STUDENT"

B 6O%5ET, You IMPLY R
¥ THET OUR PRODUCT
VARIES (M EXCELLENCE!

(GOSSET WAS EMPLOYED BY THE SUINNESS
BREWERY, WHICH REQUIRED HIM TO USE A

MAKING THE ASSUMPTION THAT THE
ORIGINAL POPULATION PISTRIBUTION
WAS NORMAL, OR NEARLY NORMAL,
"STUPENT" WAS ABLE TO CONCLUDE:

THE $TUFF GETS
You DRUNK,
NO MATTER
HOW Lousy!

t 15 MORE SPREAD OUT THAN Z IT'S
"FLATTER" THAN NORMAL. THIS 15
BECAUSE THE USE OF % INTRODUCES
MORE UNCERTAINTY, MAKING €
*$LOPPIER" THAN Z.

z DSt
b7
+ -pisT
|
)

THE AMOUNT OF $PREAD PEPENDS ON
TUE SAMPLE $1ZE. TWE GREATER THE
SAMPLE SIZE, THE MORE CONFIPENT WE
(AN BE THAT % 15 NEAR o, AND THE
CLOSER T GETS TO z, THE NORMAL.

GOSSET WAS ABLE TO LOMPUTE
TABLES OF t FOR VARIOUS SAMPLE
SI1ZES, WHICH WE WILL %EE HOW TO
USE IN THE FOLLOWING CHAPTER.

N THE
MEANTIME,
JUST THINK
OF WHAT Youle
ALREADY

LEARNED!

(2]



IN THIS CHAPTER, WE CONSIDERED A CENTRAL PROBLEM OF REAL-WORLD
STATISTICS: HOW TO SELECT A SAMPLE FROM A LARGE POPULATION SO THAT
STATISTICAL ANALYSIS CAN BE VALID. BESIDES THE "GOLD STANDARD" OF THE
SIMPLE RANDOM SAMPLE, WE AL50 DESCRIBED SOME OTHER SAMPLING SCHEMES
THAT ARE USEP IN THE INTERESTS OF EFFICIENCY, CO5T, AND PRALTICALITY.

ON b SCALE OF
1 To 5, Pow Do
~ou FEEL hBour
KEEPING PEOPLE
WAITING 7

rr’l']-lEN. AS5UMING A SIMPLE RANDOM SAMPLE, WE CONSIDERED HOW VARIOUS

SAMPLE STATISTICS WERE PISTRIBUTED. THAT 15, WE REGARDED THE ALT OF
TAKING THE SAMPLE AS A RANDOM EXPERIMENT, SO THAT ITS STATISTICS
BECAME RANDOM VARIABLES.

$%%G

- 4
- T e it u

- )

WE FOUND THAT $AMPLE
PROPORTIONS B WERE
APPROXIMATELY NORMALLY
DISTRIBUTED, WHILE THE
PISTRIBUTION OF THE
SAMPLE MEAN X DEPENDED
ON THE SAMPLE $I1ZE. FOR
LARGE SAMPLES, THE
DISTRIBUTION WAS
APPROXIMATELY NORMAL,
WHILE FOR SMALL SAMPLES,
WE USE THE STUDENT'S ¢ <08 % TEA oF Couitse!
PISTRIBUTION. '
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IN THE NEXT TWO CHAPTERS, WE LOOK
AT HOW TO USE THESE DISTRIBUTIONS TO
MAKE STATISTICAL INFERENCES: GIVEN A

SINGLE OBSERVATION, LIKE A POLITICAL
POLL, HOW DO WE USE OUR KNOWLEDSE

OF P AND X TO EVALUATE IT?

v ST Go
8y TUE Sert
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sChapter 7

CONFIDENCE
INTERVALS

m



IN THE LAST CHAPTER WE
LOOKED AT SAMPLING.
STARTING WITH A LARGE
POPULATION, WE IMAGINED
TAKING MANY SAMPLES, AND
WE DEDUCED HOW SOME
SAMPLE ESTIMATORS WERE
PISTRIBUTED.

rIN THIS CHAPTER, WE PO THE REVERSE. GIVEN ONE SAMPLE, WE ASK THE i

QUESTION, WHAT WAS THE RANDOM SYSTEM THAT GENERATED ITS STATISTICS?

THAT 15,
GWEN A 4INGLE
BOX OF TACKS, AND
THE RESULTS oF

THE LAST CGHAPTER,
WHAT AN uWlE
CONCLUDER

1



( THIS SHIFT REPRESENTS A CHANGE
IN OUR MODE OF THINKINGFROM
DEDUCTIVE REASONING TO

INDUCTION.

\T% LIKE A CRIMINAL
INVESTIGATION, WATSON !

\
IN PEPUCTIVE REASONING, WE REASON INPUCTIVE REASONING, BY
FROM A HYPOTHESIS TO A CONCLUSION: LONTRAST, ARGUES BACKWARD
“IF LORD FASTBALK COMMITTED MURDER, FROM A SET OF OBSERVATIONS
THEN HE WOULD WIPE THE FINGER- TO A REASONABLE HYPOTHESIS:

PRINTS OFF THE GUN"

BRILLIANT
INPUCTION,
HOLMES!

HM. LORD FASTBALK'S
MONOERAM ON THIS
HANDKERCHIEF AND THIS
&UN. FASTBACK 15 THE
MURDERER, WATSON, IT'M
5% CERTAIN!

IN MANY WAYS, SCIENCE, INCLUPING STATISTICS, 15 LIKE DETECTIVE WORK.
BEGINNING WITH A SET OF OBSERVATIONS, WE ASK WHAT CAN BE SAID ABOUT
THE $YSTEMS THAT GENERATED THEM.

1%



ESTIMATING

HOLD MY

CONFIDENCE INTERVALS Wb, whTson!
"M GOING INTD
Rl Lo THE POLLING
BUSINESS I/

STATISTICAL INFERENCE,

AND ONE YOU $EE EVERY C:‘é N
DAY BEFORE GLECTION
TING...
Ky £

(IN A REZENT ELECTION SOMEWHERE, INCUMBENT SENATOR ASTUTE (ACLENT
ON THE LAST SYLLABLE, PLEASE!) COMMISSIONED A POLL BY BETTER HOLMES
RESEARCH, POLLSTER HOLMES DRAWS A SIMPLE RANDOM SAMPLE OF 1000
VOTERS AND ASKS THEM WHAT THEY THINK OF ASTUTE.

A) HE'S GOU'S GIFT
TO HUMANITY
B) HE'S THE PEITY'S
SPECIAL BLESSING
ON MOST OF
HUMANITY

AFTER CENSORING THE REMARKS OF A FEW GRUMPY OUTLIERS, HOLMES FINDS
THAT %50 VOTERS FAVOR WIS CLIENT, SENATOR ASTUTE.

THIS 15 THE SINGLE
OBSERVATION.



YOU ONLY ASKED A
THOUSAND PEOPLE?! BUT
THERE ARE A MILLION
VOTERS IN THIS STATE!I A

I MADE A SIMPLE RANDOM
SAMPLE! THIS MEANS T LAM
OFFER YOU AN IRONCLAP

I PON'T CARE IF
THERE ARE A
MILLION OR A

BILLION...

YES, T CAN SAY WITH 95%
CONFIPENCE THAT THE TRUE
POPULATION PROPORTION, 2, 15
BETWEEN .519 AND 581!

THI%5 GUARANTEE... IT'S
AN ABSOLUTE, MONEY-
BAZK, TYPE 6UARANTEE,

IT'S STATISTICAL,
ACTUALLY..

5% CERTAINT?!/
THUNPER!! WHAT DO YOU
SUPPOSE WOULD HAPPEN
IF I RAN ON A PLATFORM
OF #5% HONESTYT?

AFTER ASTUTE CALMS
DOWN, HOLMES EXPLAINS
WHAT HE MEANS BY 95%
CONFIDENCE: HE KNOWS
THAT HIS ESTIMATION
PROCEDURE HAS A 95%
PROBABILITY OF
PRODUCING AN INTERVAL
CONTAINING p, 1E, IN HIS
MANY YEARS OF POLLING,
p WAS FALLEN WITHIN THE
CONFIDENCE INTERVAL
ARQUND THE OBSERVED
VALUE, P, 95% OF THE
TIME.

1 PON'T KNOW.
IT'S NEVER BEEMN
TRIEP...




CONSIDER AN ARCHER-POLLSTER SHOOTING AT
A TARGET. SUPPOSE THAT SHE HITS THE 10 (M
RADIVS BULL'S-EYE 95% OF THE TIME. THAT 15,
ONLY ONE ARROW OUT OF 20 MIS5ES.

SENATOR ASTUTE 15 STILL
CONFUSED! 50 HOLMES GIVES
um an archery lesson.

7 SHooT!
ANYTHING TO
TAKE MY MIND
OFF THEM PANG
STATISTICS!

A * -
PR \

5|ITTING BEHIND THE TARGET 15 A BRAVE KNOWING THE ARCHER'S SKILL LEVEL,

PETELTIVE, WHO CAN'T SEE THE BULL'S- THE DETELTIVE PRAWS A CIRCLE WITH
EYE. THE ARCHER SHOOTS A SINGLE 10 EM RADIVS AROUND THE ARROW.
ARROW. HE NOW HAS 95% CONFIDENCE THAT

HIS CIRCLE INCLUDES THE CENTER OF
THE BULL'S-EYE!

HE REASONED THAT IF HE DREW 10 (M RADIUS ORELES | (proBaBILISTS
AROUND MANY ARROWS, Wi5 CIRCLES WOULD INAWDE | o TuE TERM
THE CENTER 95% OF THE TIME. STOCKASTIC
TO DESCRIBE
RANDOM
MODELS. IT'S
DERIVED FROM
THE GREEK
STOCHAZE'S-
THAI, MEANING
TO AM AT A
TARGET, OR
GUESS, FROM

STOCHOS, A q
TARGET.) N




HOLMES NOW TRANSLATES
THE ARCHERY LES%0ON INTO
THE LANGUAGE WE

PEVELOPED LAST CHAPTER.

.
Step One: oo » Lot oF arrows.

A PROBABILITY CALLULATION FINDS
THE WIDTH OF THE “BULL'S-EYE"
THE ESTIMATES 5 ARE OUR ARROWS.
WE %AW THAT THE SAMPLING
DISTRIBUTION OF P 1 NEARLY
NORMAL WITH MEAN p AND
STANPARD DEVIATION

)
@) = Pﬁp

SINCE THE CURVE 15 NORMAL, WE USE THE Z-TRANSFORM AND A STANDARD
TABLE TO FIND THE WIDTH OF THE INTERVAL WITHIN WHICH 95% OF THE
“ARROWS” WIT. (WE'LL SEE EXALTLY HOW TO DO THIS IN A FEW PAGES.) WE
FIND THIS WIDTH TO BE 1.96 STANDARD DEVIATIONS:

95 = Pr(-196<2<194)

—
THE RADIUS . 95% of
OF TUE BULLS-EYE Ty ARROWS
1% 1.9b6 4 ?:&Nrrmd

PENIATIONS




(Now WE DO 50ME ALGEBRA. BY o
DEFINITION OF THE Z-TRANSFORM, X @_& ’

=Pr(-19b¢< P~ }
95 P(I%‘-._O__(ﬁgl%)

WHICH BECOMES
95 = Pr(p-19bap) < P < P+1969(p)

s

WHICH 16 JUST ANOTHER WAY OF SAYING THAT 95% OF THE P “ARROWS" LAND
&BETWEEN P~ 1960(p) AND p + 1960 (p).

J

NOW WE'RE IN A POSITION TO VIEW THE TARGET FROM BEHIND! ONE MORE
TURN OF THE ALGEBRA (RANK MAKES IT

95 = Pr(p-19ba(p) < P < P +19b(p))

HERE WE ARE DRAWING
CIRCLES AROUND A LOT
OF ARROWS (IE,
MAKING INTERVALS
AROUND B) AND
SAYING THAT 95% OF
THEM COVER p.

~

rBiﬂ' THERE 15 ONE TINY PROBLEM.. Wk PON'T ACTUALLY KNOW THE SIZE
OF THE BULL'S-EYE, BECAUSE WE PON'T KNOW P AND THE WIDTH 15 A
MULTIPLE OF o (p).

50 WE FUDGE A LITTLE AND USE
THE STANDARD ERROR OF P:

.. Vpa-p)

IN ITS PLACE.. IT'S CLOSE
ENOUGM... IT'5 THE BEST WE
(AN PO.. AND IT CAN EVEN BE
THEORETICALLY JUSTIFIED!

THE CRCLES
ARE ALL DIFFERENT
42e45 NOW, BuT
\T's OKAY,

REALLY...
‘_,—//

1@



NOW THE FORMULA 15
95 = Pe($-196%5) < p < P +19b5E(P))

AGAIN, THIS EQUATION PESCRIBES THE
PROBABILITY THAT THE TRUE, FIXED
POPULATION PROPORTION FALLS
WITHIN THE RANPOM INTERVAL

(P - 1965E(P), P + 1965E(P)).

LET'S 4TARE

IF WE SAMPLED REPEATEDLY, THESE

INTERVALS WOULD LOVER p 95% OF
THE TIME.

NOW OUR PROBABILITY CALCULATION 15 PONE, ANP IT'S TIME FOR..

Slep NO ° HE MAKES USE OF STEP ONE TO
LOMPUTE
THE DETECTIVE WORK. TH A REAL POLL,
HOLMES TAKES JUST ONE SIMPLE SE(P) .'1’(-99)(-45)_ z
RANPOM SAMPLE OF 1000 VOTES, FINDS P’=\Toce - o197

P = 550, AND WANTS TO INFER p.

HE COMCLUPES THAT WE CAN HAVE
95% CONFIPENCE THAT o 15 WITHIN
THE RANGE

P+ 19b5EP)
=.550% (196)(.057)

=550 £ .031

THIS 15 WHAT POLLS MEAN
THE MARGIN CF
WHEN THEY REFER TO THEIR 1 ) ERROR wiks 3%,
"MARGIN OF ERROR." IN THI$ 7. WHATEVER TiaT
€ASE, HOLMES FOUND THAT v MEANS...
| !

519< p < 581,
IN OTHER WORDS THAT
P = 55% WITH A 3% MARGIN OF

ERROR. (POLLS TYPICALLY USE A
95% COMFIDENCE LEVEL)




THIS PAGE SHOWS THE RESULTS OF A COMPUTER SIMULATION OF TWENTY
SAMPLES OF $IZE 1 = 1000. WE ASSUMED THAT THE TRUE VALUE OF p = 5. AT
THE TOP YOU SEE THE SAMPLING DISTRIBUTION OF £ (NORMAL, WITH MEAN p
AND orq/@ ). BELOW ARE THE 95% CONFIDENCE INTERVALS FROM EACH
SAMPLE. ON AVERAGE, ONE OUT OF TWENTY (OR 5%) OF THESE INTERVALS WILL
NOT COVER THE POINT p = 5.

} : ALMOST
L MISSED!

Sample

0.44 0.46 048 0.50 052 054 056
95% Confidence Intervals for p
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ALTHOUGH 95%
CONFIDENCE 195
6000 ENOUGH FOR
NEWSPAPER POLLS,
(T ISN'T 6000
ENOUGH FOR
SENATOR ASTUTE.
HE WANTS 99%!

ANYTHING LES%, AND
MY BiG MONEY PEOPLE
WON'T INVEST—T MEAN
CONTRIBUTE TO MY
FiGHT FOR LIBERTY
AND JUSTICE!

HOW TO INEREASE LONFIDENCE? USING AND ANOTHER WOULP BE TO IMPROVE
THE ARCHERY TARGET, WE CAN SEE TWO | | THE AIM OF THE ARCHER IN THE FIRST
WAYS: ONE 15 TO INCREASE THE $1Z& PLAZE, 50 HER ARROWS LAND (LOSER
OF THE cIRCLE YOU DRAW.. TO THE BULL'S-EYE.

THE FIRST METHOPD 15 EQUIVALENT TO WIDENING THE CONFIPDENCE INTERVAL.
THE GREATER THE MARGIN OF ERROR, THE MORE CERTAIN YOU ARE THE TRUE
VALUE OF p LIES IN THE INTERVAL.

‘M 100% ConvFiDENT
THET P 15 BETWEEN
O pP | ¥

MAYBE IT'S TIME TO SEE EXACTLY
HOW WE FIND THE ENDS OF
THESE CONFIPENCE INTERVALS...
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FINDING THE (1-a)-100% CONFIDENLE

€ RELEVANT NUMBER INTERVAL MEANS: LOOK AT A $TANDARD
:”;RERE‘.E USUALLY aiL 5 NORMAL CURVE, AND FIND THE POINTS +Z
' BETWEEN WHICH THE AREA 15 1-a.

IT MEASURES THE
DIFFERENCE BETWEEN THE
DESIRED CONFIDENCE AREA = 95
LEVEL AND CERTAINTY. FOR /
EXAMPLE, WHEN THE
CONFIDENCE LEVEL 15 95%,
OR 095, a 15 .05. 50 WE
SPEAK OF THE (1-a)100%

NFIPEN
LONFIPENCE LEVEL 7 0 2

5 THAT'S BECAUSE WE'RE CHOPPING OFF
THI5 POINT, CALLED Z,, 19 THE Z-VALUE “TAILS" AT BOTH ENDS OF THE CURVE,

1
BEYOND WHICH THE AREA 14 025 = %—. Vc«frﬂlw l-&AVE A TOTAL AREA OF
il e
2 2

WE LAN FIND Zg, STRAIGHT

FROM THE $TANDARD NORMAL
TABLE (PAGE 84). IT'S THE
POINT WITH THE PROPERTY z 20 19 -18

z 25 -24 23 -22 21
F(z) 0.006 0.008 0.011 0.014 0.018
1.7 1.8

Flz) 0.023 §AQ29 0036 0045 0.055
& z -1.5 4
2 = = :
Pr(z z%) Z F(z) 0067 0.

IN PARTICULAR,

Pr(z 2z,,) = .025
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fOR THIS LEVEL OF
CONFIDENCE, Go OuT
THiS MANY STANDARD
PEVIATIONG /

r’l'liI]i‘E"B A LITTLE TABLE OF THE CRITICAL
VALUES FOR VARIOUS LEVELS OF
CONFIDENCE...

1-a | 80 90 95 99

a/z| 10 05 025 005
128 164 196 258

TO MAKE A 99% CONFIDENCE INTERVAL, WE USE THAT TABLE TO WRITE
99 = Pr(p — 25056(P) < p < P + 25056(P))

WHIZH WE SLOPPILY ABBREVIATE A%
p=ptise ’\/ﬁ%:@
(:55)(45)
MRS 258\1 S »
55+ 041

WITH 997, CoNFIPENCE.

GRENT!
'M &TILL
OVER 50%

12%



WIDENING THE INTERVAL 15 ONE WAY TO INCREASE OUR CONFIDENCE IN THE

RESULT. A5 WE MENTIONED, ANOTHER WAY WOULD BE TO SHOOT OUR ARROWS
MORE ACCURATELY. TF WE KNEW THAT THE ARCHER 6OT 95% OF HER ARROWS
WITHIN 1 &M OF THE BULL'S-EYE, OUR E5STIMATES LOULD BE A LOT SHARPER!

rHOW PO WE DO THIS? BY INCREASING THE SAMPLE $1IZEI THE WIDTH OF THE

CONFIDENCE INTERVAL DEPENDS ON THE SAMPLE $IZE: THE INTERVAL HAS THE
FORM P + E. WHERE E, THE ERROR, (5 GIVEN BY

plsTRIBUTIONS
A~

1—
£ =z 4/20=2) o P

%0 THE BIGGER WE
MAKE n, THE SMALLER
THE ERROR. (E6.
QUAURUPLING 11 HALVES
THE INTERVAL WIDTH.)

\ J

+4

GET OUT YOUR
WALLET, BO%%,
I'VE GOT AN ANSWER!

ASTUTE A%KS HOLMES TO GIVE HIM A
5MALL ERROR WITH HIGH CONFIDENCE—5SAY
99% LONFIVENLE WITH E = +.01. HOLMES
S0LVES FOR n.

z,2 pr-p*)

]

EZ
(WHERE p* 15 A GUESS AT THE TRUE

PROPORTION p—REMEMBER, WE
HAVEN'T TAKEN THE SAMPLE YETI)
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-
TAKING A LONSERVATIVE GUESS
OF p* = .5, HOLMES FINDS

_ (298)*(5)*
(.on*

_ (665)(129)
-0001

- 16,641

1000 VOTERS GAVE A 3%
ERROR WITH 95% LONFIDENCE.
TO GET A 1% ERROR WITH 99%
CONFIDENCE, HOLMES HAS TO

SAMPLE 16,641 VOTERS!
o

AT $10 AN
INTERVIEW—
PAYABLE IN
ADVANCE—

n

50 THEY PO THE POLL,
AND &0 INTO THE
ELECTION WITH 99%
LONFIPENCE.

ON THE OTHER
HAND, WHO AN 1—
PLACE A VALUE ON
PEAZE OF MIND?

-

BUT.. ALL THIS PROBABILITY STUFF 15 ONLY 600D BEFORE AN ELECTION.
AFTER THE ELECTION, THE SENATOR 15 EITHER 100% IN OR 100% OUT! AND
PESPITE EVERYTHING, SENATOR ASTUTE LOSES THE ELELTION..

@“AT
WAPPENED?

—




WHAT HAPPENED 5 THAT POLITIZIANS ARE NOT ELECTED BY POLLS!

—— e,
OUTRpLEOUS!
VD PSS A LAW
ABAINST THIS

I WERE 4TILL
IN THE SEMATE!

SOME PROBLEMS WITH POLLS, AS OPPOSED TO ELECTIONS:

RESPONSE BIAS:

VOTERS MAY LIE TO

THE INTERVIEWER
OR CHANGE THEIR MINDS
BEFORE ELECTION DAY.

P\ Love BOTH MAJOR
PARTIES AND ONLY Wiy
| €OULD VOTE FoR BOTH

THERE 15 NO WAY FOR A
POLLSTER TO GET INSIDE
A POTENTIAL VOTER'S
HEAD AND KNOW IF SHE'S
GOING TO VOTE, IF SHE'S
LYING, OR IF $HE'S GOING
TO CHANGE HER MIND
BEFORE ELECTION DAY.
LARGE SAMPLE 5IZES
CANNOT REDUCE THESE
KIND% OF ERRORS.

ALTHOUGH THE

POLL 15 AN

UNBIASED SAMPLE
OF POTENTIAL VOTERS,
THE VOTING BOOTH
COUNTS OMLY ALTUAL
VOTERS.

NOMN-RESPONSE

BIA%: THE VOTER

MRY MOT BE HOME
OR REFUSE TO TAKE
PART IN THE POLL.

HEXT TIME,
YWRE A Poyeui ¢!
H‘\-_./




%
|NSTEAD) WE

SINCE THESE ERRORS CAN BE
U‘B:F This

LARGE, IT SELDOM PAYS TO TAKE
A VERY LARGE RANDOM SAMPLE

IN THE LAST FIVE PRESIDENTIAL ELECTIONS, THE GALLUP POLL HA% INTER-
VIEWEDP FEWER THAN 4,000 VOTER% FOR EACH ELELTION. YET IN ALL FIVE
ELECTIONS, THE GALLUP ORGANIZATION'S ERRORS IN PREDICTING THE
PRESIDENTIAL ELECTION OUTZOME HAVE BEEN LESS THAN 2%.

INDUSTRIAL

TUEIR SUCCESS 15 DUE TO THEIR USE OF ESTIMATORS THAT ACLOUNT FOR
NON-RESPONSE, AND THEY S(REEN OUT ELIGIBLE VOTERS WHO ARE NOT
LIKELY TO VOTE.

WHAT ABOUT
THESE?

TeEX,s AND
CRICAGO, | THINK | 0 SUMMARIZE, ESTIMATED

WE'RE SAFE... /' pROPORTION = TRUE PROPORTION +
BIAS + RANDOM SAMPLING ERROR.
EVEN POLLSTERS WAVE LIMITED
FUNDS. THEY WISELY CHOOSE TO
SPEND THEIR MONEY REDUCING
BIAS, RATHER THAN INCREASING THE
SAMPLES BEYOND 4,000 VOTERS
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‘Confidence Intervals
for u

UP TO NOW, WE'VE BEEN
LOOKING AT (ONFIDENCE
INTERVALS FOR A PROPOR-
TION p OF A POPULATION.
EXACTLY THE SAME
REASONING WORKS FOR

L THE POPULATION MEAN .

MV?

;\ﬁ

IN THE LAST LHAPTER (P 105), WE $AW THAT THE DISTRIBUTION OF SAMPLE
MEANS X 15 APPROXIMATELY NORMAL, CENTERED ON THE AZTUAL POPULATION
MEAN i, WITH STANDARP DEVIATION %ﬁ. WHERE @ 15 THE POPULATION
STANDARD DEVIATION. 0, FOR LARGE n,

Pr(-1.96 < Z < 1.94)

ToRdING TUE

95

I

< 196)

i

Xops
Pr(-196 <
i %

AGAIN, NOT KNOWING o, WE REPLACE o
WITH 5, THE SAMPLE STANDARD DEVIATION:

X-
95 = Pr(-196 < —% < 194)

S

THE TERM %5 15 CALLED THE SAMPLE $TANDARD ERROR, AND WRITTEN 7
SE(X). WE CONCLUDE THAT

~ Pr(X-196%E(X) < < X+1.965E(X))
WHERE

r7y 5

SE(X) = 7




JUST AS BEFORE, WE HAVE
FOUND THAT THE RANDOM
INTERVAL

X + 1.965E(X)

COVERS THE TRUE MEAN, L, WITH
PROBABILITY 95.. 50 MOW WE (AN
CALL IN SHERLOCK HOLMES TO
MAKE A STATISTICAL INFERENCE
BASED ON A SINGLE SAMPLE OF
SIZE n WITH MEAN Z.

>
HE (AND WE) ARE 95% CONFIDENT THAT THE MEAN 4 15 WITHIN THE m-rsmﬂ
Z +1965E(X) .

BY GAD, VM
GETTING MORE
CONRpENT WITH
EVERY Pps5ING
MOMEMT !

A BEFORE, FOR AN ARBITRARY
LEVEL OF CONFIDENCE 1-a,
WE REPLAZE 1.96 BY Z,,.

T

Lopi
FAMILIAR




LET'S REVISIT THE STUDENT WEIGHT DATA | | THE SAMPLE MEAN T WAS 145.2

FROM CHAPTER 2, A%5UMING THAT THE LBS. AND SAMPLE STANDARD
N = 92 STUPENTS WERE A SIMPLE DEVIATION % WAS 23.7. O THE
RANDOM SAMPLE OF ALL PENN STATE STANDARD ERROR 15
STUDENTS.

500 = 22 = 247

AND WE NOW HAVE 95% CONFIDENCE
= THAT THE MEAN WEIGHT OF ALL

PENN STATE STUPENTS FALLS IN THE
0 INTERVAL

; 7 +1965E(X)
145.2 + (1.96)(2.47)
145.2 + 4.6 POUND4

S0MEONE
DIVIDE BY | &
nt

.11

TO SUMMARIZE: FOR A SIMPLE RANDPOM SAMPLE (5RS) OF LARGE SIZE, THE
(1-a) - 100% CONFIPENCE INTERVAL 15

FPOPULATION MEAN, Lt FOPULATION FROPORTION, p
,uz;'c'tznsl;(i) P:ﬁizgégfﬁ)
‘f 2
2 = p(1-
WHERE $E(Z) = 75 WHERE SE(P) = Eiﬁ@
—
THE %IZE OF BOTH o SERATER
’NTERW‘?_EH HOW WOULPD YOU
CONTROLLED BY LIKE A JOB WITH
THE LEVEL OF MY POLLING FIRM?
CONFIDENCE
(1-&x) - 100% AND
THE SAMPLE %IZE, n.
L
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(Student’s t (again!)

AS WE SAW IN CHAPTER 6, THE STATISTIL
X_'Aa
SECX)

HAS AN APPROXIMATELY NORMAL
DISTRIBUTION ONLY WHEN IT 15
COMPUTED USING A LARGE SAMPLE.
FOR SMALL SAMPLES (71=5, 10, 25..),
THIS 15 NO LONGER THE CASE, AND
WE HAVE TO USE THE STUDENT'S L

.

“ LET'S LOOK AT € A LITTLE MORE (LOSELY. WE MENTIONED THAT THE €
PISTRIBUTION 15 MORE $PREAD OUT THAN THE NORMAL, AND THAT THE
AMOUNT OF $PREAD PEPENDS ON THE SAMPLE SIZE.

STANDARD NORMAL
by LARGER amPLE

t, SMALLER
/ SAMPLE

THE GENERAL IDEA: GIVEN 1
PIGCES OF DATA %, %, - %,
YOU UsSE UP ONE "PEGREE
OF FREEDOM™ WHEN YOU
COMPUTE Z , LEAVING n—1
INPEPENPENT PIECES OF
INFORMATION.

WHAT TS DISCOVERER
GOS5ET DID WAS TO
QUANTIFY THIS
RELATIONSHIP. IF n 15
THE SAMPLE 5IZE, HE
SAID, THEN CALL 7-1
THE NUMBER OF
degrees of

freedom
OF THE $AMPLE.

¥



GOS5ET COMPUTED TABLES OF ——

THE t PISTRIBUTION FOR A NICE,
s
1 1O
.__'—/'/

DIFFERENT SAMPLE %SIZES—I.E,
DEGREES OF FREEDOM. WE
REPEAT, THE MORE PESREES OF
FREEPOM, THE (LOSER t
BECOMES TO THE STANPARD
NORMAL.

i KNOWING THE SAMPLE 51ZE 71, WE CHOOSE THE t PISTRIBUTION WITH n71-1
PEGREES OF FREEDOM.

A5 WITH THE Z -
DISTRIBUTION (LE., pREA = 95
THE STANDARD
NORMAL), WE GET A
95% CONFIPENCE
LEVEL BY FINPING
THE CRITICAL VALUE

| B -

b

s SO tos o} tois
WHICH THE AREA S\NCE THE CURVE 16 ¢

UNDER THE CURVE [ FLATTER THAN NORMAL N

s Tons 15 FARTHER FRJA )

\_ O THAR Z qp

FOR A (1-a)-100% coupwsuce INTERVAL, WE FIND THE (RITICAL VALUE ta
SUCH THAT Pr(t2 t%) . HERE 15 A SHORT TABLE OF £RITICAL vm.uss
FOR THE t DISTRIBUTION:

1-o 80 90 95 99
a 20 A0 05 01
a/2 Jo 0% 025 005
DEGREES OF 1 3.09 [ X1} 1271 63.66
FREEPOM 10 137 181 223 4.14
30 1.31 170 2.04 2.7
100 129 1.66 198 243
o 128 165 196 2.58
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-

~
EACH COLUMN REPRESENTS A FIXED LEVEL OF CONFIDENCE, WITH INCREASING
NUMBERS OF PEGREES OF FREEPOM. THE HWIGHER THE DEGREES OF FREEPOM,

THE CLOSER THE CRITICAL VALUE 6ETS TO Zap THE CRITICAL VALUE OF THE

NORMAL PISTRIBUTION.

WE PERIVE THE WIPTH OF OUR
CONFIPENCE INTERVAL PIRECTLY
FROM THE PEFINITION OF t:

NOTE: \T'S
EXACTLY Like

- THE CPGE OF
_ A= A LARGE SAMPLE,
- v BUT WiTR €
85653 INSTEAD OF Z !

THEN, FOR LONFIDENCLE LEVEL
(1-a)-100% ,

(1-a) = Pr( Z-t, SECK)y< p < Z+t,5E(X)

FROM WHICH WE INFER: GIVEN A

SINGLE SAMPLE OF $IZE 7 AND -
MEAN Z, WE CAN BE (1-a)-100%
CONFIDENT THAT THE POPULATION

MEAN ¢ FALLS IN THE RANGE

pu = Tt 5E6(Z)
2

WHERE SE(Z) = 2 AND ta 15 THE

(RITICAL VALUE OF TUE t DISTRIBUTION
WITH 7—-1 PEGREES OF FREEPOM.

NOTE. STRICTLY SPEAKING,
® THE UERIVATION OF
THE t PISTRIBUTION PEPENDED ON
THE A%5UMPTION THAT THE SAMPLE
WAS FROM A NORMAL POPULATION. IN
PRALTICE, CONFIDENCE INTERVALS
BASED ON THE t WORK REASOMABLY
WELL, EVEN WHEN THE POPULATION
DISTRIBUTION 15 OMLY APPROXIMATELY
MOUNP-SHAPED.

_
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example: SUPPOSE CHAMELEON MOTORS WA TO (RASH TEST

ITS CARS TO PETERMINE THE AVERAGE REPAIR CO5T OF A 10 M.PH. HEAP-ON
COLLISION. THIS 15 EXPENSIVE! TUEY DEC!?E TO TRY IT ON JUST FIVE

CHAMELEONS.

wWHY AREN'T MORE
ChRS NAMED AFTER
REPTILES? )

THE SAMPLE MEAN:
Z = $540

THE STANDARD DEVIATION:
% = $299

YOU CAN CHECK & WITH A
HAND CALCULATOR. IT'S

N (1505407 + (400540} + (120 5467+ (500 -540F+(0-540T")
. J

50 WHERE (AN WE PLAZE THE MEAN WITH 95% CONFIDENCE? WE FIND OUR
CRITICAL VALUE 25 WITH 4 DEGREES OF FREEDOM:

WA. IMPROVES
THE STYLWG.

1-ar 80 [0 95 59

a 20 A0 05 o1

/2 Ao 05 025 o5
pEGREES OF 1 3.09 &3 12N 63.66
FREEDOM 2 1.69 292 430 5.92

3 1.64 235 3.18 564

4 153 213 278 460

17 148 201 257 4.03
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[ anw pLUG IT IN:
M= Xt 278 5/\,;
40+ 27g( 399/@)

B40 +372

50 THE BEST WE CAN SAY WITH 95% CONFIDENCE 15 THAT THE AVERAGE
PAMAGE WILL LIE BETWEEN $168 AND $912.

L]

BuT 'M O
CoNFIDENT THAT
e st

EXACTLY ¥300...

THE COMPANY (AN EITHER
BE SATISFIED WITH THAT,
OR PO FURTHER TESTS..

TO COMPUTE THIS CONFIDENCE INTERVAL USING STUPENT'S t, WE HAVE MADE
AN UNSTATED ASSUMPTION: WE ASSUMED THAT CRASH REPAIR (O5TS ARE
APPROXIMATELY NORMALLY DISTRIBUTED, 1€, IF WE CRASHED 1000
CHAMELEONS, THE HISTOGRAM OF REPAIR (05T WOULD BE SYMMETRICAL AND
MOUND-SUAPED. WE AN NOT KNOW THIS FROM 5 DATA POINTS ALONE.. BUT
MAYBE YEARS OF EXPERIENCE WITH EARLIER MODELS PROVIDE NORMALLY
DISTRIBUTED (05T HISTOGRAMS FOR FRONT END REPAIRS: INFORMATION WHICH
WOULP TEND TO SUPPORT OUR USE OF STUPENT'S L.

THE TAIL GROWs
BACK BY (Tsais
1T A FEATURE
ON CHAMELEONS..



]

TO 5UM UP (1), WE
NOW HAVE THREE PN SATTING BT A
SIMPLE RECIPES FOR N, 1 TRBLE, READING
FINDING CONFIVENCE - WP ON Z-TABLES .,
INTERVALS. FOR
PROPORTIONS, OR
MEANS WITH LARGE
SAMPLE %IZES, WE
LOOK UP zg IN A
NORMAL TABLE. FOR
MEBNS OF SMALL
SAMPLE $IZES (5hY
n<30), WE FIND ta
IN THE t TABLE. *

IN ALL CASES, THE WIDTH OF THE INTERVAL 15 THAT (RITICAL VALUE TIMES
THE STANDPARD ERROR:

25EQ) %R t,5ED)

AND EAZH OF THOSE STANDARD ERRORS 15 PROPORTIONAL TO THAT MAGIC
NUMBER:

126




+Chapter 8¢
HYPOTHESIS TESTING

NOW WE ENTER A NEW AREA.. 6OVERNMENT,
BUSINESS, AND THE HARP AND SOFT SCIENCES ALL
USE AND OFTEN ABUSE THESE TESTS OF
SIGNIFICANCE. IT'S ALL ABOUT ANSWERING THE
QUESTION, “COULD THESE OBSERVATIONS
REALLY HAVE OCCURRED BY CHANCE?”

UHLU LY cm}:\\
WAT50N... APPARENTLY
HE MET WITH AN
ACUDENT...
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rWE BEGIN WITH AN EXAMPLE
FROM THE LAW: A LOMPOSITE
OF SEVERAL CASES ARGUED IN
THE SOUTH BETWEEN 1960
AND 1980, IN WHICH EXPERT
WITNESSES PRESENTED THE
CASE FOR RACIAL BIAS IN
JURY SELECTION.

PURE

CONCIDENCE !

- = J

PANELS OF JURORS ARE THEORETICALLY DRAWN AT RANDOM FROM A LIST OF
ELIGIBLE CITIZENS. HOWEVER, IN SOUTHERN STATES IN THE 's0% AND '605, FEW
AFRICAN AMERIZANS WERE FOUNP ON JURY PANELS, 50 5OME PEFENDANTS
CHALLENGED THE VERDICTS. ON APPEAL, AN EXPERT STATISTICAL WITNESS GAVE
THIS EVIPENCE:

1) Bgnimcomes A ABORELANR

ON AN 80-PERSON PANEL
OF POTENTIAL JURORS, LS

M@é&g %ﬁﬁ -
& GigBa ™ ;,%%Q %%

COULD THIS BE THE RESULT OF
PURE CHANCE?
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FOR THE AKE OF ARGUMENT,
SUPPOSE THAT THE SELECTION OF
POTENTIAL JURORS WAS RANDOM.
THEN THE NUMBER OF AFRICAN
AMERICANS ON THE @0-PERSON
PANEL WOULP BE THE BINOMIAL
RANDPOM VARIABLE X WITH

n =60 TRIALS AND p =.5.

TRIALS, EACH

THUS, THE CHANCES OF GETTING A JURY
WITH ONLY 4 AFRICAN AMERICANS 15
Prix<4), WHICH WORKS OUT TO ABOUT
o000000DDOODODO0ONA (1).

THIS 15 A
PEPUCTIVE
PROBABILITY
ARGUMENT.

SINCE THE PROBABILITY |5 %0 SMALL,
THE PARTICULAR PANEL WITH ONLY FOUR
BLACK MEMBERS 15 $TRON& EVIPENCE
AGAINST THE HYPOTHESIS OF RANDOM
SELECTION.

TC PRIVE THE POINT HOME, THE
STATISTICIAN NOTES THAT THIS
PROBABILITY 15 LESS THAN THE £HANCES
OF GETTING THREE CONSECUTIVE
ROYAL FLUSHES IN POKER.

S0 THE JUDGE REJECTS THE
HYPOTHESIS OF RANDOM SELELTION.

W IF I WAS IN THAT

POKER GAME, I'D A
STARTED SHOOTIN'
AFTER THE SECOND
ROYAL FLUSH.. 4

(AND ORDERS HI5 OWN
REMARKS STRICKEN
FROM THE RECORP!)




LET'S FOLLOW THE PROCESS AGAIN TO
SORT QUT THE FOUR FORMAL STEFPS OF
STATISTICAL HYPOTHESIS TESTING.

Step 1. FormuLATE ALL
HYPOTHESES.

Blo g THE NULL HYPOTHESIS, 15
USUALLY THAT THE
OBSERVATIONS ARE THE RESULT
PURELY OF £HANCE.

H e, THE ALTERNATE HYPOTHESIS,
15 THAT THERE 15 A REAL
EFFECT, THAT THE
OBSERVATIONS ARE THE
RESULT OF THIS REAL EFFECT,
PLUS CHANCE VARIATION.

Step 2. n 757 sTansTic.
IDENTIFY A STATISTIC THAT WILL AS5E9%
THE EVIPENCE AGAINST THE NULL
HYPOTHES!S.

IN THE COURT ¢ASE, Ho 5AYS THE
JURY WAS RANDOMLY cHOSEN
FROM THE WHOLE POPULATION.
AFRICAN AMERICANS HAVE
PROBABILITY p= .50 OF BEING
CHOSEN..

H. 5AYS THAT AFRICAN AMERIZANS
ARE LESS LIKELY THAN THEIR
PROPORTION IN THE POPULATION
TO BE SELECTEP FOR A JURY
PANEL: p < .50.

NOT You...
You...
G

IN THE COURT CASE, THE TEST
STATISTIC 15 THE BINOMIAL RANDOM

VARIABLE X WITH pP=-50 AND
n= go.




Step 3. r-vaLve

A PROBABILITY STATEMENT WHICH
ANSWERS THE QUESTION: IF THE
NULL HYPOTHESIS WERE TRUE, THEN
WHAT 15 THE PROBABILITY OF
OBSERVING A TEST STATISTIC AT
LEAST A% EXTREME AS THE ONE WE
OBSERVED?

ey
THE SMALLER
THE P-VALUE,
THE $TRONGER
THE EVIDENCE
AGAINST Hp.

Step 4. comesre THE
P-VALUE TO A FIXED SIGNIFICANCE
LEVEL, ax.

a ALTS AS A CUT-OFF POINT
BELOW WHIZH WE AGREE THAT AN
EFFECT 15 STATISTICALLY SIGNIFI-
CANT. THAT 15, IF

P-VALUE € &

THEN WE RULE OUT THE NULL
HYPOTHESIS Hp AND AGREE THAT
SOMETHING ELSE 15 GOING ON.

IN THE EXAMPLE, THE P-VALUE WAS
Pr(x<4 | p =50 AND n=g0)

=14 x 10718

WE COMPUTED THI$ P-VALUE THE
MODERN WAY, USING A STATISTICAL
SOFTWARE PACKAGE.

IN THE JURY CASE, THE STATISTICIAN
TOOK a TO BE 3.6 x 10718, THE
CHANCES OF BEING DEALT THREE
ROYAL FLUSHES IN A ROW.

A PVALLE
EVEN A JUDGE i
CAH UNDERSTAND! 4B




( IN SCIENTIFIC WORK, A FIXEP a-LEVEL OF .05 OR .01 15 OFTEN USED. THESE b

FIXED LEVELS ARE A HOLDOVER ARTIFACT FROM THE PRE-COMPUTER ERA,
WHEN WE HAP TO REFER TO TABLES, WHICH WERE PRINTED ONLY FOR
SELECTED CRITICAL VALUES. STILL, MANY SZIENTIFIC JOURNALS CONTINVE TO
PUBLISH RESULTS ONLY WHEN THE P-VALUE < .0%.

EVEN THOUGH

1 TIME OUT OF

A SIGNIFICANCE

" LEVEL OF P<.09
\_PRE FALSE V/

IN LEGAL PROLEEPINGS, THE
STANDARD 15 MORE FLEXIBLE..
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LARGE SAMPLE

SIGNIFICANCE TEST FOR
PROPORTIONS

THE JURY EXAMPLE WAS A SPECIAL CASE
OF A GENERAL PROBLEM. THE NULL
HYPOTHESIS HAD THE FORM p = po,
WHERE p, WAS SOME PROBABILITY (IN
THIS CASE, .5 ), NOW LET’S LOOK AT
SUCH PROBLEMS GENERALLY: LET'S
TEST THE MYPOTHESIS p = po.

~

-
AS USUDAL, WE IMAGINE WE HAVE A BIG POPULATION.. WE OBSERVE A LARGE
SAMPLE.. AND WE FIND THAT SOME CHARACTERISTIC OCLURS WITH

PROBABILITY p.

BASED ON THIS
OBSERVATION, WE WANT

TO KNOW IF THE TRUE
POPULATION PROBABILITY 15
(FOR INSTANCE) LARGER THAN SOME OTHER VALUE po. FOR EXAMPLE.
SENATOR ASTUTE, HAVING FOUND A £ OF 55, WOULD LIKE TO KNOW THAT
P > .5, A WINNING MAJORITY.

\ J
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THE NULL WYPOTHESIS 15
Hot p = po

THE ALTERNATE WYPOTHESIS DEPENDS
ON THE PIRECTION OF THE EFFECT
WE ARE LOOKING FOR. IN SENATOR
ASTUTE'S CASE,

H, : P> peo

BUT IN OTHER CASES, THE ALTERNATE
HYPOTHESIS MIGHT WELL BE

“a‘ P‘Pa
OR

H, : P # po

FOR EXAMPLE, IN THE JURY SELEC-
TION EXAMPLE, THE ALTERNATIVE
HYPOTHESIS WAS

H,: p < 0%

AND AT OTHER TIMES, WE ARE
INTERESTED [N KNOWING THAT p 15
DIFFERENT FROM SOME VALUE £3.
FOR INSTANCE, IN TESTING FOR A
FAIR COIN, WE HAVE AN ALTERNATE
HYPOTHESIS OF

H,: p#o%
BUT HAVE NO A PRIOR! OPINION

ABOUT WHETHER HEADS OR TAILS
WILL COME UP MORE OFTEN.

Step 2. 1uc test stanismic 15
P-m

N -V

WHICH MEASURES HOW FAR p DEVIATES
FROM g UNDER THE NULL
HYPOTHESIS, Z o, HAS THE STANDARD
NORMAL DISTRIBUTION.

Zops =

Step 3.rue p-varue oreenps
ON WHICH ALTERNATE HYPOTHESIS 15
RELEVANT:

€1 ) RIGHT-HANDED" U, : p> p,
USES P-VALUE Pr(z > z,,)

LS

0 Zops

b)) eFr-manoer” Uy : p< po
UsES P-VALUE Pr(z < z.)

-

LS LE
Zogs o
€) wo-siwev* W, : prpo
UsES P-VALUE Priizl > |z gD




IN THE CASE OF SENATOR ASTUTE:

1) ruc worueses are
Ho : p ‘-5
Ha 5 p> 5

2) s Test sTamSTIC 15

= 55-50
Logs= ——"—"— =314

X 5560
3) s p-vare 15
Prcz> zy,) = Pr(z 2 3.16) =.0008

(FROM THE NORMAL TABLE).

@) 1sTUTE. BEING FAIRLY CONSERVATIVE,

TAKES A SIGNIFICANCE LEVEL e OF o1
AND OBSERYES THAT

Pr(Z> z,,) = 0008 < a

THE SENATOR THU% REJECTS
THE NULL HYPOTHES!S, AND
HE (AND HI5 BACKERS) NOW
FEEL CERTAIN HE'S IN THE
LEAD.

you MAY CONTRIBUTE
Mowl .




LARGE SAMPLE
popuLaTiION MEAN e

rHERE 15 HOW A SIGNIFICANCE TEST o N
MIGHT BE USED IN INSPECTION @i

SAMPLING, AN IMPORTANT INDUSTRIAL o /£ ¢

APPLICATION.

NEW ASE G6RANOLA TNC. CLAIMS THAT
THE AVERAGE WEIGHT OF ITS CEREAL
BOXES 15 AT LEAST 16 OZ. THE GENUINE
GROCERY CORPORATION WILL SEND BACK
A SHIPMENT (F THE AVERAGE WEIGHT 15
ANY LESS. J

BUT OF COURSE GENUINE GROCERY HAS
NO INTENTION OF WEIGHING EVERY BOX
IN A SHIPMENT. THEY'RE GOING TO USE
STATISTICS!

STETISTICS (5
THE EASY WAY,




FIRST, THEY (HOOSE THEIR
HYPOTHESES.

Ha" M= 16 OZ.
H,: u<16 O

REJECTING THE NULL
HYPOTHESIC MEANS
REFUSING THE GRANOLA .

TASS THE
WON PPGTELR 128D
GOKTS LK, MAN...

rNEXT. THEY CHOOSE A TEST STATISTIC. BY NOW, IT $HOULD BE PRETTY MUCH .‘kN

KNEE-JERK REALTION TO KNOW THAT THE SAMPLE SPREAD FROM THE MEAN 15

X w7 B X=u,
SEX) %

WHERE % 15 THE SAMPLE
STANDARD DEVIATION. UNDER
THE NULL HYPOTHESIS, THIS
APPROXIMATES THE
STANDARD NORMAL WHEN
THE SAMPLE 15 LARGE, BY
THE CENTRAL LIMIT
k'l'HEOl'(‘EJ\#I. a

".w MY KNEES
&' ARE TOO

SKIPPING OVER STEP 3 FOR A MOMENT, THEY SET A SIGNIFICANCE LEVEL. BEING A
BUNCH OF PROPPER-OUT SCIENCE MAJORS, THE GROCERS THINK a =05 SOUNDS
ABOUT RIGHT.

1 MAJORED M \ REMEMBER THE
ASTROLOGY, ()
1 THINK...-

JUST THEN, A BORCAR
LOAPED WITH 10,000
BOXES OF GRANOLA
ARRIVES AT THE POOR.
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THEY PULL OUT A
SIMPLE RANDOM
SAMPLE OF 49 BOXES,
WEIGH EACH ONE, AND
PETERMINE THE
SAMPLE'S SUMMARY
STATISTICS:

Z = 15.90 oz
5 = .25 oL

A LITTLE LIGHT—BUT
SIGNIFICANTLY 507

f ~
THEY PLUE THE VALUES INTO THE TEST STATISTIC TO FIND
15.9-16
Logs= ——= -2
35/[45

NOW THEY LOMPUTE THE P-VALUE:

Prciz<-2 | Hp) = .0227

-2 Loy o

THIS BEING LES%S THAN THE .05
SIGNIFICANCE LEVEL, GENUINE GROCERY
REJECTS THE NULL HYPOTHESIS, AND
kTHE SHIPMENT.

S e

'THE’ MUNZHIES,
,w.u | PIpN'T
THINK ANYONE WOULD
NOTICE IF | ATE A
LITTLE FROM EVERY

Box...




(SMALL SAMPLE

TEST FOR THE POPULATION
MEAN

WE RETURN TO LHAMELEON MOTORS, AND ITS 10 MPH. (RASH TEST. THE
RIGHTEOUS INSURANCE COMPANY WILL INSURE AN AUTO ONLY IF THE MEAN
REPAIR LOST AFTER A 10 MP.H. LOLLISION 15 LESS THAN $1000. THE COMPANY
USES A STANPARD a = 05 AS ITS SIGNIFICANCE LEVEL. 50..

Ho: 2 $1000  MEAN €O5T 15 TOO HIGH
R,: n<$1000  Mmean cosT 15 OK.

THE TEST $TATISTIC 15 THE € PISTRIBUTION

¥os WHERE 4, 15 THE
t= b HYPOTHETICAL MEAN
5E(X) OF $1000

t, 4 DEGREES

OF FREEDOM
AND WE WANT OUR OBSERVED

t VALUE TO LIE TO THE LEFT
OF —tos (BECAUSE LOW Z 15
DESIRABLE, Z—uo $HOULD BE
NEGATIVE, TO SUPPORT Hg).




o FROM THE TABLE OF CRITICAL

P t VALUES, WE SEE THAT
tos = 2.13, 50 WE DECIDE TO
g 631 1271 6346 REJECT H, IF
s 2 292 430 992
h‘;‘g 3 235 318 584 togs € —Los = ~2.13
SE 4 (213 278 460
8 5 2.01 257 403 I_’_ROM CHAPTER 8, WE HAVE
Z = $540 AND % = $299
FOR A SMALL, FIVE-CAR
onl. SAMPLE, 0 WE FIND
GRETULATIgNS!
NOW LETS b, . 540-1000
299/\%
s
= -344 < -1,

AW t,

THE (AR PASSES THE TEST.. Ho 15 REJECTED.. AND THE INSURANCE POLICY 15
155UED.

Vo THESE
FLIES HAVE
LIFE

INSURANZE?

THIS 15 AN EXAMPLE OF ACCEFTANCE SAMPLING. THE NULL MYPOTHESIS 16
THAT REPAIR £O5TS ARE UNALLEPTABLE, AND THE MOTOR LOMPANY 15
ASSUMED GUILTY UNTIL IT PRESENTS SUFFIZIENT EVIDENCE OF ITS
INNOCENCE—LE., THAT ITS PROPULT |4 WITHIN $PECIFICATIONS.
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'DECISION THEORY

WE CAN THINK OF HYPOTHESIS TESTING AND
SIGNIFICANCE TESTS IN TERMS OF A HOUSEHOLP
SMOKE-DETELTOR. 1F YOU HAVE ONE OF THESE
WHERE YOU LIVE, YOU'VE PROBABLY NOTICED HOW IT
TENDS TO &0 OFF EVERY TIME YOU MAKE THE TOAST

THIS 15 WHAT 15 CALLED A TYPE | ERROR: AN ALARM WITHOUT A FIRE.
CONVERSELY, A TYPE Il ERROR 15 A FIRE WITHOUT AN ALARM. EVERY LOOK
KNOWS HOW TO AVOID A TYPE 1 ERROR: JUST REMOVE THE BATTERIES.
UNFORTUNATELY, THIS INCREASES THE INCIDENCE OF TYPE TI ERRORS!

SIMILARLY, REPULING THE CHANCES OF TYPE TI ERROR, FOR EXAMPLE BY MAKING
THE ALARM HYPERSENSITIVE, (AN INCREASE THE NUMBER OF FALSE ALARMS.
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WE CAN SUMMARIZE THIS IN A TWO-BY-TWO PELISION TABLE.

NO FIRE FIRE
NO ALARM i NO ERROR | TYPETI ]
ALARM L TYPE T NO ERROR |
I -

NOW THINK OF THE NULL HYPOTHES!IS AS THE CONDITION OF NO FIRE, WHILE
THE ALTERNATE HYPOTHESIS 15 THAT A FIRE 15 BURNING. THE ALARM
CORRESPONDS TO REJELTION OF THE NULL HYPOTHESIS:

TRUE STATE
Hy Ha
ALEPTH, | NO ERROR | meen ]
REJECT M, | TYPET l NO ERROR ‘

-
ALL THE SIGNIFICANZE TESTS WE DID EARLIER IN THIS CHAPTER EMPHASIZED
THE PROBABILITY OF COMMITTING A TYPE T ERROR—I.E, THE PROBABILITY OF

OUR OBSERVATIONS OCLURRING IF Hp WAS TRUE. WE PEMANDED THAT

Preresecrive Ky | Hp) = Pr(TYPE 1 ERRORI Hy) =

1-a MEASURES OUR CONFIDENCE THAT ANY ALARM BELLS WE HEAR ARE
GENUVINE. HIGH (ONFIPENCE MEANS RARELY SETTING OFF FALSE ALARMS.




BUT SOMETIMES WHAT WE REALLY WANT TO KNOW 15 THE CHANCE OF MAKING
A TYPE Il ERROR! IN OTHER WORDS, HOW SENSITIVE 15 OUR “ALARM SYSTEM”
WHEN THE ALTERMNATE HYPOTHESIS 15 TRUE?

EXAMPLE:
.

i LT :§> ;

IN THE PAST, FACTORIES PISCHARGING CHEMICALS INTO WATERWAYS WERE
REQUIRED TO SHOW THAT THE PISCHARGE HAP NO EFFECT ON THE DOWN-
STREAM WILPLIFE. THAT'S Hy. THE POLLUTER COULP CONTINUE AS LONG A%
THE NULL HYPOTHESIS WAS NOT REJECTED AT THE .05 SIGNIFICANCE LEVEL.

@ -Boeeaz

o ©  BuRtLE

%0 A POLLUTER, SUSPECTING THAT HE WAS IN VIOLATION OF EPA STANDARDS,
WOULD DEVISE AN INEFFECTIVE POLLUTION MONITORING PROGRAM.

WELL wenwaw

A Fewjeicfy




THE POLLUTER 1% PELIGHTED. SINCE, LIKE OUR SMOKE ALARM WITHOUT A
BATTERY, HI5 TEST HAS LITTLE OR NO CHANCE OF SETTING OFF AN ALARM.
WRITE THIS DOWN:

“THe DuCk RESFONDED
ENTHUSIASTICALLY.

—

LET'S FORMALIZE THIS
IDEA. TO DESCRIBE THE
PROBABILITY OF A TYPE
Il ERROR, WE BREAK OUT
ANOTHER GREEK LETTER:
BETA, OR B.

B = Preacceeting Hop |Hp
= Pr(TYPE TI ERROR |H,)

THE POWER OF A TEST
15 DEFINED AS 1-B. IT'S

Pr (resecing Hp [Hg ).

YOU'LL BE WAPPY TO KNOW THE
ENVIRONMENTAL REGULATORS WAVE
MOVED IN THE DIRECTION OF REQUIRING
POLLUTION MONITORING PROGRAMS TO
SHOW THAT THEY HAVE A HIGH
PROBABILITY OF PETELTING SERIOVS
POLLUTION EVENTS. THE REQUIRED
POWER ANALY51% OFTEN REVEALS
HIPDEN FLAWS IN THE MONITORING
PROGRAM.
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ONE WAY TO VISUALIZE THE EFFELT OF A TEST'S POWER 15 BY GRAPHING THE
PROBABILITY OF REJECTING My AGAINST THE ACTUAL STATE OF THE SYSTEM. IN
THE CASE OF A SMOKE ALARM, THE PROBABILITY (LIMBS TOWARD 1 AS THE

SMOKE GET% THICKER.

PROBABILITY
OF ALARM

RAW

PONE

REALLY (RISP

BURNING MOLOTCV COCKTAIL

KITZHEN SMOKE PENSITY

PROBABILITY
OF ALARM

FOR THE E.PA. WATER QUALITY EXAMPLE, THE HORIZONTAL AXIS 15 THE TRUE
CONCENTRATION OF POLLUTANT IN THE WATER.

T

-
o'.-.
0

ams= SAVE EVERY GUPFY
° — GOLUEN MEAN

L
]
.
.
N
.
5
N
.
.
I
'
"
r
'
I
.
H
Vi

s aw PONT ROCK BOAT

HERE ARE THE POWER CURVES FOR THREE MONITORING PROGRAMS. THE %AVE
EVERY LAST &UPPY (CO5TS $5 MILLION), THE SOLPEN MEAN (CO45TS

$500,000), AND DON'T ROCK THE BOAT (AL50 (O5TS $500,000, BUT THEY PUT
ON A 600D SHOW!). THE HIGHER THE TEST'S POWER, THE STEEPER THE CURVE.

I ABOVE STANUDARD L PURE INDUSTRIAL $OLVENT
POLLUTANT LONLENTRATION
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( e

/e;m:;wunousf WITH THESE
SECTIONS COVERING THE BASICS OF
CONFIDENCE INTERVALS AND
HYPOTHESIS TESTING, YOU HAVE JUST
COMPLETED YOUR FIRST COURSE IN
CLASSICAL STATISTICS!

WHY THEN PO YOU HAVE SUCH AN EMPTY FEELING IN YOUR STOMALH?
BECAUSE, TO USE THESE IDEAS IN ANY PRAZTICAL WAY, WE HAVE TO BE ABLE
TO APPLY THEM TO A VARIETY OF SITUATIONS WE HAVEN'T EVEN TOUCHED ON
YET. THAT 14 WHERE WE ARE GOING NEXT, WITH THE £OMPARISON OF TwWo
POPULATIONS.

ox.! BRING
ON THE
POPULATIONS !

REFERE
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+Chapter 9+

COMPARING
TWO POPULATIONS

IN WHICH WE LEARN SOME NEW RECIPES USING
OLD INGREDIENTS...




(THE LAST TWO CHAPTERS EXPLAINED 3
CONFIVENCE INTERVALS AND
HYPOTHESIS TESTING WITH THE
STEAK AND POTATOES OF RANDOM
MOVELS: THE NORMAL AND THE
BINOMIAL DISTRIBUTIONS.

WITW THE NORMAL
PLAYING THE RoLE
0F THE PoTATOES!

BUT WHAT MAKES STATISTICS ALMOST A% CHALLENGING AS COOKING 15 THE
VARIETY. LIKE AN EXPERT LOOK, THE STATISTICIAN (AN “TASTE" THE
INGREDIENTS IN A PROBLEM AND THEN FIND THE MOST EFFECTIVE WAY TO
COMBINE THEM INTO A STATISTICAL RECIPE.

You SUBTRACT

(THE REASON COOKBOOKS AND STATISTICAL METHODS TEXTS ARE 50 HEAVY 15
THAT THEY BOTH PROVIDE SOLUTIONS IN A GREAT VARIETY OF 5ITUATIONS!)

vow WHERE 15
THAT BINOMIAL
oplce?



IN THIS CHAPTER, WE'LL USE OUR MEAT
AND POTATOES METHODS IN SOME NEW
RECIPES THAT WILL HELP U5 ANSWER
THE FOLLOWING QUESTIONS:

DOES TAKING ASPIRIN REGULARLY
REPUCE THE RISK OF HEART ATTALK?

DOES A PARTICULAR PESTILIDE
IMCREASE THE YIELD OF CORMN PER

e

i

DO MEN AND WOMEN IN THE SAME
OCCUPATION HAVE DIFFERENT SALARIES?

THE COMMON INGREPIENT IN THESE
QUESTIONS 15 THIS: THEY £AN BE
ANSWERED BY COMPARING TWO
INPEPENPENT RANDOM $AMPLES,
ONE FROM EALH OF TWO

POPULATIONS.
oo Oo
® o
R
v Y
. AR, P S
PESTICIE no PESTICIDE

AND, AT THE END OF THE CHAPTER,
WE'LL LOOK AT A DIFFERENT WAY TO
COMPARE TWO MEAMS TUAT DOESNT
INVOLVE TAKING TWO SIMPLE
RANDCM SAMPLEX..




(;ompuring SUCCESS RATES

{or failure rates) for two populations.

WE BEGIN WITH AN EXPERIMENT, PART OF A HARVARD STUDY, THAT 50UGHT TO
PECIDE THE EFFECTIVENESS OF ASPIRIN IN REPUCING HEART ATTACKS. AS IN
MOST CLINICAL TRIALS, THE CHANCES THAT ANY ONE INDIVIDUAL 6ETS THE
PISEASE—IN THIS CASE, A HEART ATTAZK—I5 VERY SMALL IN ANY GIVEN YEAR.
BUT WE WANT ANSWERS QUICKLY! WHAT PO WE pO?

TAKE
20,000
BSPIRINT

THE $IMPLE, BUT EXPENSIVE, SOLUTION 15 TO TEST A LARGE NUMBER OF
INDIVIDUALS IN A SHORT TIME. IN THIS $TUDY, 22,071 SUBJECTS (ALL
VOLUNTEER DOLTORS) WERE RANDOMLY ASSIGNED TO TWO &ROUPS.

pSCIR W
GROUP ONE TOOK A PLACEBO—A BROUP TWO RECEIVED ONE
PILL IPENTICAL TO ASPIRIN, BUT ASPIRIN A DAY.

CONTAINING NO ASPIRIN.
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OVER A PERIOP AVERAGING
NEARLY FIVE YEARS*, THE
INVESTIGATORS RECORPED
THE RESPONSES: HEART
ATTALK OR NO HEART ATTAZK.
THE RESULT: (IN THE
NUMBERS THAT FOLLOW, WE
HAVE COMBINED FATAL AND
NOMNFATAL HEART ATTALKS.)

ATTACK  NO ATTACK n ATTACK RATE
PLACCBO 239 10795 nosM  p = 7 - 0217
ASPIRIN 129 10,696 nosr P, = ‘-?3’;— - .0126

THE OBSERVED PIFFERENCE
IN SULLESS RATE 15
P,-P,= 0091. IT SOUNDS
SMALL UNTIL YOU LOOK AT
THE RELATIVE RISK,

f—‘ e 02——'7 = .72

P, 0126
MEMBERS OF THE PLACEBO
GROUP WERE 1.72 TIMES
LIKELIER TO SUFFER A HEART
ATTAZK THAN THOSE IN THE
ASPIRIN GROUP.

*THE 5TUDY WAS STOPPED EARLY BECAUSE OF iTS POSITIVE OUTCOME. IT WOULD
HAVE BEEN UNWISE AND IMPRACLTICAL TO PENY THE RESULTS TO THE &ROUP
TAKING THE PLAZEBO.
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—
The Model: 1 PLACBO AND ASPIRIN GROUP OBSERVATIONS

ARE INDEPENDENT SAMPLES FROM TWO BINOMIAL POPULATIONS. FOR
CONSISTENCY, WE REFER TO A HEART ATTALK AS A SULLESS (1).

20, Q Wb@

PLACEBO ASPIRIN
POPULATION OME POPULATION TWO
CHANCE OF SUCCESS = P, CHANCE OF SULLESS = P,

THE OBIECTIVE 15 TO ESTIMATE THE TRUE DIFFERENCE, p - Py

\ J

FOR EACH POPULATION (ACTUALLY LARGE SAMPLES OF THE GENERAL POPU-
LATION), WE HAVE THE FAMILIAR RANDPOM VARIABLES:

X NUMBER OF SULLESSES X NUMBER OF SUCCESSES
1 IN POPULATION ONE 2 IN POPULATION TWO
= X PROPORTION OF 2 X PROPORTION OF
= - sbccesses N P = —2%2  suucsses N
1 71,  POPULATION ONE 2 n POPULATION TWO

2
AND AN ESTIMATOR OF DIFFERENCE IN RATE: P,-- P

(" AND NOW, LIKE A BROKEN w
RECORD, WE ASK OURSELVES, How?
HOW 15 P, - P, DISTRIBUTED?
How1
kow
i J
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Sampling distribution for ii,- 3,

FOR LARGE SAMPLES, P - P,
15 APPROXIMATELY
NORMALLY DISTRIBUTED,
MUCH A% IN THE CASE OF
ONLY ONE $AMPLE. WE CAN
MAKE THE USUAL 2-
TRANSFORM TO GET A
STANDARD NORMAL RANDOM

VARIABLE (APPROXIMATELY)
ﬁ' ﬁz"(Pa"Pz)
(.:"(?r - fsz)

BUT HOW PO WE FIND
THAT STANDARD DEVIATION
IN THE PENOMINATOR?

4 A
SINCE THE TWO SAMPLES ARE INDEPENDENT, 50 ARE THE RANDOM VARIABLES
P, AND P,, AND THE TWO VARIANCES ADD.

U'l(ﬁ -‘Iﬁn) = Ul(ﬁ‘h* G:(?a)
%0
c(B-8)= Vo ®)rax(P)

AND NOW, KNOWING
THE DISTRIBUTION
OF THE TEST
STATISTICS, WE AN
PROCEED TO
ESTIMATE
CONFIDENCE
INTERVALS AND
TEST THE
HYPOTHESIS THUAT
ASPIRIN REDUCES
HEART ATTALKS.

1 RECOMMEND
AN ASPIRIN TO
GET THROUGH
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Confidence
Iintervals for
Pi=P2

A% USUAL, THE CONFIPENCE INTERVALS
FOR OUR ESTIMATE LOOK LIKE THI%:

pr—p= PPt Za (- p,)

(I \

B o OBSERVED STANDARD
OF POPULATION  PIFFERENCE ERROR
PROPORTIONS CRITICAL

VALUVE

TUE VARIANCES OF P, anp P, pD, 50
THE STANDARD ERROR BECOMES

BO-D), BOA)
n, n,

‘6E($l ’,P\:. w

IN THE ASPIRIN $TUDY, THE STANDARD
ERROR 1%

(oa)(9r8%), ( 012.6)(9974)
i1.o34 1037

-.0017%

(10 GET THE 95% CONFIDENCE
INTERVAL FOR THE ASPIRIN
STUDY, WE JUST PLUG IN THE
OBSERVED VALUES:

PP, " 0091 (196)(.00175)
=.00911.00%34

%

WE ARE AT LEAST 95%
CONFIPENT THAT THE
DIFFERENCE IN HEART ATTALK
RATES 15 BETWEEN .0057 AND
0125, DEFINITELY A POSITIVE
NUMBER! WE ARE NOW AT
LEAST 95% CONFIDENT THAT
ASPIRIN REALLY POES LOWER
HEART ATTALK RATES.

uM...WOLD You
hOD SOME

ASPIRIN To MY
K\BBLE ?




hypothesis
testing

THE FORMAL HYPOTHESIS-TESTING
QUESTION 1%

IF ASPIRIN HAD
NO EFFECLT, WHAT

15 THE PROBABILITY
THAT THI$ RESULT
OCLURRED BY
CUANCE?

1

Mg, THE NULL HYPOTHESIS, 15 THAT
ASPIRIN HAD NO EFFECT: p, = p,.

H“, THE ALTERNATIVE, 15 THAT
ASPIRIN DOES REDUCE THE MEART
ATTACK RATE: p, > ;.

NOW WE NEED A TEST STATISTIC WITH
A NORMAL DISTRIBUTION WHEN Hp 15
TRUE...

@

NOTE THAT UNDER H,, THE TWO
PROPORTIONS ARE THE SAME,

P =Py = P 50 LET'S POOL ALL THE
DATA TO 6ET THE PROPORTION OF
HEART ATTACKS IN BOTH SAMPLES
TOSETHER:

~_ At 2,
T omtn,
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WHEN THE NULL HYPOTHESIS 15
TRUE, THE STANDARD ERROR
PEPENDS ONLY ON THIS POOLED
ESTIMATE:

seutp-py A POPIEEE)

AND WE £AN WRITE A TEST

STATISTIC:
P,—Pz
22 - &8 &.
S€o(P,—-P,)

(THE NUMERATOR WOULD
ORDINARILY BE P—P,—(p—p,).
BUT Hp ASSUMES p—p, = 0.

WAVE T/
LETS PLUG
INTO THE
FORMOLLA!

FOR THE ASPIRIN 5TUDRY, WE FIND

i 378
22,01
Eo(P,~P,) = oo175

50

Z pgs=



rzo,, 1 MORE THAN FIVE STANDARD DEVIATIONS FROM ZERO, A $TRONG
POSITIVE EFFECT. USING A TABLE OR A COMPUTER, WE FIND THE P-VALUE:

P-VALUE = PR(Z> Zog5) = PR(Z > 52) - 0000001

By USlG A TABLE,
A COMPUTER, OR A
COMPUTER ON
A TABLE...

o £
IF THE NULL HYPOTHESIS WERE TRUE, THE PROBABILITY OF OBSERVING AN
EFFECT THIS LARGE 15 ONE IN TEN MILLION—VERY STRONG EVIDENCE
| AGAINST Ho "

The THE RELEVANT P-VALUE DEPENDS ON
gen?rul THE ALTERNATE HYPOTHESIS:
recipe: A TWO-5IED Hy < p 2P,
TO TEST THE NULL HYPOTHESIS ‘«/—\m
Ho: p = P > d
COMPUTE THE TEST STATISTIC PVALUE = Pr(IZI > |Zows!)
5, -5, B RIGHT Hp < p, > p,

Lope = ———
O8>~ oE,(P) /\’”
(WHERE SE, 15 COMPUTED USING &

THE POOLED PROBABILITY
OBTAINED BY COMBINING BOTH P-VALUE = Pr(Z > Zp59)

O LEFT H, PP,

o e

P-VALUE = Pr( Z < Zpg9)
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THE ANALYSIS OF THE ASPIRIN $TUDY PEPENDED ON CERTAIN FEATURES OF THE
EXPERIMENT DESIGNED TO ENSURE RANDOMNESS AND TO ELIMINATE BIAS:

SUBJECTS WERE RANDOMLY
ASSIGNED TO TREATMENT

&ROUPS.

q

s

N

THE EXPERIMENT WAS BLIND:
SUBJELTS PIDN'T KNOW IF
THEY WERE TAKING ASPIRIN
OR PLACEBO.

&

THE SAMPLE $IZE WAS LARGE
ENOUGH FOR THE NORMAL
APFROKIMATION TO WORK.

i". .T.'\

/ \

UM...WE pLSO
ASSUMED THAT DoCTORS
ARE REPRESENTATIVE
OF THE GENERAL
POPULATION.. .

POINT% 1 AND 2 ARE ESSENTIAL
PARTS OF MOST HUMAN CLINICAL
TRIAL DESIGNS, BUT POINT 2 15
NOT ESSENTIAL. 600D SMALL-
SAMPLE TESTS DO EXIST AND
ARE AVAILABLE IN COMPUTER
SOFTWARE PACKAGES. THESE
NONFARAMETRIC PROCEPURES
DEPEND ON $IMPLE, BUT
LENGTHY, PROBABILITY
CALCULATIONS SIMILAR TO THE
GAMBLING COMPUTATIONS WE
ENCOUNTERED IN CHAPTER 4...




Comparing the

MEANS of rwo populations

SUPPOSE WE WANTED TO COMPARE THE ey
AVERAGE SALARY OF MALE AND FEMALE RE J e Uoby
EMPLOYEES IN THE SAME JOB AT SOME )
COMPANY.

THIS REQUI

(POPULATION ONE 15 THE WOMEN, AND POPULATION TWO 15 THE MEN.

2L 323 p

POPULATION ONE HAS MEAN POPULATION TWO HAS MEAN

SALARY i, AND STANDARD SALARY L, AND STANDARD
DEVIATION o DEVIATION o

A RANDOM SAMPLE OF $IZE n, FROM GROUP 1 AND 71, FROM GROUP 2 6IVES
SAMPLE MEANS OF Z, AND Z, AND STANDARD DEVIATIONS %, AND 5,

RESPECTIVELY. THE ESTIMATOR OF t,~u, 15

X_' —'Xz
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(How 600D AN ESTIMATOR 15 XX,
FOR LARGE SAMPLE 512E5, IT'6

APPROXIMATELY NORMAL (BY THE HEY,60YS! _ I
CENTRAL LIMIT THEOREM), AND IT5 S Look! SE(X)
$TANDARD ERROR 15 RIGUT W THE

CORMULA !

S 2 e
SE(X -X,) = 57;.4.?3-

1 n'!-

(THE VARIANCES ADD, SINCE
SAMPLES ARE INDEPENDENT.) NOW
WE CAN PROCEED DIRECTLY TO:

]
gonfldence
intervals: .

LARGE SAMPLE $1ZES, THE (1-ar)100% A d
CONFIDENCE INTERVAL FOR THE

DIFFERENCE BETWEEN MEANS 15

#1"#2 = 55-1"‘:22 i z% 5E(X|":fg)

L J

[ ] ®
hypothesis testing: .. ...

THE NULL HYPOTHES!S THAT THE TWO POPULATION MEANS ARE EQUAL.

HO M E M, ?-W\LUEL D Yoo ;
THE TEST STATISTIC 15 HEAR THir? P VhLoE-
XX,
Zogs ™ — o o
SE(X -X,)

AND THE P-VALUES WORK IN
THE USUAL WAY.




[ and how about comparing

SMALL SAMPLE
MEANS?

REMEMBER ZHAMELEON MOTORS? THEIR COMPETITOR, I6UANA AUTO, (LAIMS
THAT T4 STYROFOAM HOOD ORNAMENT GIVES BETTER FRONT END LRASH
PROTELTION, AND THEY'VE CRASHED $EVEN I6UANAS TO PROVE IT!

CMON) EHAMELEON!
You ‘N ME! HATURE
RED 1 ToOTH AND
{Lpw!

Pl Vot
s6GH:- | FEEL

LikE A REFUGEE
om b SPDERMAN

CHAMELEON T16UANA mﬁ’.ﬁmg
1 | $150 1| $50 | 52
2 $400 2 J $200 |
3 | $720 3 ‘ $150
4 $500 4 $400
5 | 3930 5 \ $750
n |8 6 | 3400
- 7 | $150
Z, | $540 oy
_i _uf_ Z,| $300
e
5, | $238
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THE STANDARD ERROR [5 THE SAME AS
FOR LARGE SAMPLES, EXCEPT THAT
Spoo, REPLACES 5, AND %,

e S
5E(X.-X,)—\‘§'ﬁw_+_g%"

|
= 5l’auJ Fl.+ -}rﬂ-

THE (1-a)100% CONFIDENCE
INTERVAL 15

My = Tyt te se(X,-X,)

THE t DISTRIBUTION ¢AN BE USED
IF BOTH POPULATIONS ARE MOUND
SHAPED AND HAVE THE SAME
STANDARD DEVIATION =0 =0,
THE ONLY WRINKLE 15 THAT WE
HAVE TO POOL THE 5UM OF
SQUARES ABOUT THE MEANS TO
FORM A SINGLE ESTIMATE OF o~

(e ()5,

2
45 =
Pool” .+ n,-2

WHERE t% 15 A CRITICAL VALUE OF T
WITH Nr?‘.'f-i DE&RE;& OF FREEDOM

THE REPTILIAN CARMAKERS AGREE THAT THEIR STANDARD DEVIATIONS ARE
CLOSE AND THEIR REPAIR HISTOGRAMS ARE MOUND-SHAPED. THEY COMPUTE:

4:299% + & 3282
5m Lol _w""—" =

(X -X,) = 164’\} -'g-r% = 154

THE 95% CONFIDENCE INTERVAL 15

i K. FORGET SAFETY -

BUT you CMW'T ARGUE
WiTH BEATIRIL STYING...

Mi—ity =540-300 £ T,y (154)
= 240 * (2.23)X154)

= 240 + 340

SINCE THIS INELUPES THE VALUE O,
IGUANA AUTOS HAS NOT SHOWN A
SIGNIFICANT IMPROVEMENT IN
REPAIR £O5T%.

1




ﬁ-iERE'ﬁ AN EXAMPLE THAT SHOWS THE
PITFALLS OF MINDPLESSLY FOLLOWING

'M A

MILEAGE USING A5 A AND &AS P.

THE COOKBOOK: A LARGE TAXI FLEET LA&(FEHOIJNER
T :
OWNER WANTS TO COMPARE THE 6AS % LAk eeT)

% J
STARTING WITH 100 CABS, HE RANPOMLY ASSIGNS 50 TO EACH GASOLINE, AND,
MFTER A DAY'S DRIVING, PETERMINES

SAMPLE  MEAN  STANDARD
s1zE MILEAGE  DEVIATION
A 50 25 5.00
B 50 6 4.00
s )
| I
THE SAMPLE PIFFERENCE 15 oX..LETS GO
Zy - Zyr25-26 = -1 BY THE BCOK.. -
15 &A% B REALLY BETTER
THAN GAS A7
\. l




(" OWING TO THE LARGE STANDARD

PEVIATIONS, THE $TANDARD ERROR 1%
PRETTY SUBSTANTIAL:

58(1;1-;:) = J -:-'3-.+ i——"’:
1

1

AT THE 95% CONFIPENCE LEVEL, WE HAVE
Mty = Zy= Tyt Z,,(905)

= —1 + (1.96)(905)

- =1+ 1774

TWIS INCLUDES THE VALUE O,
CORRESPONDING TO juy= a4,

AND HYPOTHESIS
TESTING ¢

A

THE P-VALUE FOR THE ALTERNATE
WYPOTHESIS, Wyt # pap 15

Pr1z1> Izo5]) = Pr(lzl = o5
= Pr(lzl211) = 2(1357)

-.2714

TOTAL SHADED
/_’ 2 AREA = L2714

=1 1

113

THIS EXCEEPS THE o = .05
SIGNIFICANCE LEVEL, 50 WE
CONCLUDE THAT THE EVIDENCE
IN FAVOR OF EITHER 6A% 15
VERY WEAK.



(PAIRED COMPARISONS |

a better way to compare gasolines

THE TAXI OWNER FOLLOWED THE
COOKBOOK EXALTLY. Hi$ SAMPLES
WERE RANDOM, AND HI% SAMPLE
SIZE WAS LARGE ENOUGH. HE
JUST FAILEP TO THINK WHEN
NELESSARY!

ALTHOUGH &AS B APPEARS TO BE SLIGHTLY BETTER THAN GAS A, THE
CONFIDENCE INTERVAL WAS WIDE BECAUSE OF THE LARGE STANDARD
PEVIATIONS—L.E, THE MILEAGES VARIED WIDELY FROM ONE CAB TO THE
NEXT. WHY SUCH HIGH VARIABILITY? BECAUSE (ABS—AND CABBIES—HAVE
PIFFERENT PERSONALITIES!




A FAR BETTER WAY TO DO THIS STUDY 15 TO ASSIGN GAS A AND GAS B TO THE
SAME CAB ON PIFFERENT DAYS.

0

j— \
WE 5TILL RANDOMIZE THE TREATMENT BY FLIPPING A COIN TO DECIDE

WHETHER TO USE 6AS A ON TUESDAY OR WEDNESDAY. WE AN ALSO CUT THE

EXPERIMENT POWN TO 10 (ABS, SAVING THE OWNER A LOT OF TIME AND

MONEY!

CAB 6AS A 6AS B DIFFERENCE
eoed oo
Tosc_.l 1 27.01 2695 0.0
2 2 20.00 20,44 ~0.44
3 2341 25.05 - 164
4 2522 2632 - 110
5 on 29.56 0.55%
‘i i & 2555 26,60 - 1.0%
7 2223 22.9% -0.70
g 19.78 2023 - 045
9 3345 3395 - 050
10 25.22 26.01 -0.79
MEAN 25.20 25.80 — 0.60
STANDARD DEVIATION | 427 410 061

NOTE THAT THE MEANS AND STANDARD DEVIATIONS OF 6A% A AND 5AS B ARE
ABOUT THE SAME. THAT'S TO BE EXPECTED, SINCE THEY HAVE THE SAME SOURCE
OF VARIABILITY A5 {N THE UNPAIRED EXPERIMENT. BUT NOW THE PIFFERENCZE
COLUMN HAS A VERY SMALL STANDARD DEVIATION. THE DIFFERENCE COLUMN,
BY COMPARING GAS PERFORMANCE WITHIN A SINGLE CAR, ELIMINATES
~L\(Jkl?lABILITY BETWEEN TAXiS.
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(THE DIFFERENCES d; PROVIDE A
SINGLE MEASURE OF
DIFFERENCE FOR BACH TAXI,
AND WE ¢AN USE T TO MAKE A
SMALL-SAMPLE t TEST STATISTIC

d

b %t/

L

THE 95% CONFIDENCE INTERVAL AROUND o 15

My = ditfm (5d/\?n)
5MP:: . N
CRITICAL
MEAN  VALUE  CrwoR.
=)

e -6l 3
- -6+ 228 )
=-.60+ 44 -1.04 -0 - 0

S50 WE HAVE -1.04 < u, < -.16 WITH 95% CONFIDENCE, 600D EVIPENCE THAT
GA% B REALLY 1% BETTER.

( THE HYPOTHESIS-TESTING P-VALUE AN BE FOUNP USING A SOFTWARE
PACKAGE:

Ha: ey # o @
P-vaLe = Prltl = ltyl)

Priitl > )
= Pr(ltl> 318)
=.012 < .05

"

u

AGAIN, GAS B PASSES THE TEST.
o
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rHERE ARE PLOTS OF THE &A% MILEAGE DATA: THE FIRST ONE SHOWS THE
MILEAGES UNPAIRED:

&A% B . e . e  eeee . .
GAS A e e e o e . . .
20 22 24 6 8 30 32 34

WLES PER GALLON

AND HERE'S THE SAME DATA PAIRED BY TAXICAB.

AR

MILES PER GALLON

.

~

THE PREDPOMINANCE OF RIGHT-
LEANING LINES 15 A STRONG
HINT THAT 6AS B GIVES
BETTER MILEAGE.




(" A PAIRED COMPARISON EXPERIMENT 15 ONE OF THE MOST EFFECTIVE WAYS TO )
REDUCE NATURAL VARIABILITY WHILE COMPARING TREATMENTS. FOR EXAMPLE, IN
COMPARING HAND CREAMS, THE TWO BRANDS ARE RANDOMLY ASSIGNED TO

EACH SUBJECT'S RIGHT OR LEFT WANDS. THIS ELIMINATES VARIABILITY OUE TO
SKIN PIFFERENCES.

OR, IN COMPARING TWO BREAKFAST (EREALS, EACH TASTER RATES BOTH
CEREALS (IN RANDOM ORDER). THE PAIRED LOMPARISON REMOVES THE
NATURAL BiAS OF THE TASTER FOR OR AGAINST CEREAL IN GENERAL.

oupnl! WUAT BEVER WAPPELED
To BACON AND BL6%7
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IN THIS CHAPTER, WE APPLIED THE
BASIC IDEAS ABOUT CONFIDENCE
INTERVALS AND HYPOTHESIS
TESTING TO THE COMPARISON OF
TWO POPULATIONS. THERE ARE
INNUMERABLE FURTHER PO55I-
BILITIES. WE COULP HAVE GONE ON
TO PESCRIBE COMPARISONS OF:

TWe 16
WHY STATISGTICS
BPO0KS bRE

. THE STANDARD
PEVIATIONS OF TWO
POPULATIONS WHEN
SAMPLE SIZE 15
SMALL,

@ THE MEANS OF
MORE THAN TWO
POPULATIONS WHEN
SAMPLE $IZE 1
LARGE,

@ THE MEANS OF
MORE THAN TWO
POPULATIONS WHEN
SAMPLE SIZE 1%
SMALL ,

ETC!

IN PRACTICE, STATISTICIANS DETERMINE THE GENERAL NATURE OF THE

L PROBLEM, AND THEN CONSULT THE RIGHT REFERENCE BOOK. )

THE ONLY THING REALLY NEW
IN THE CHAPTER WAS THE IDEA
OF THE FAIREP COMFARISON
TEST. IN THE NEXT CHAPTER,
WE'LL LOOK AT SOME OTHER
KINDS OF EXPERIMENTAL
DESIGNS.
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BUy A USED
LUAMELEON?
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+Chapter 10+

EXPERIMENTAL
DESIGN

THE PESIGN OF AN EXPERIMENT OFTEN SPELLS SULCESS OR FAILURE.
IN THE PAIRED COMPARISONS EXAMPLE, OUR STATISTICIAN CHANGED
ROLES FROM PASSIVE NUMBER GATHERING AND ANALYSIS TO ALTIVE

PARTICIPATION IN THE PESIGN OF THE EXPERIMENT.
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IN THIS CHAPTER, WE
INTRODUCE THE BASIC
IPEAS OF EXPERI-
MENTAL DESIGN,
WHILE LEAVING THE
PETAILED NUMERICAL
ANALYSIS TO YOUR
HANDY STATISTICAL
SOFTWARE PACK.

NO FORMUL
™S CHAP%’.{J
SORRY!

~

THE ELEMENTS OF A DESIGN ARE THE EXPERIMENTAL UNITS AND THE
TREATMENTS THAT ARE TO BE ASSIGNED TO THE UNITS. THE OBJECTIVE OF
ANY DESIGN 15 TO COMPARE THE TREATMENTS.

FOR MEDICAL TRIALS, THE PATIENTS
ARE THE UNITS, AND THE PRU&S ARE
THE TREATMENTS. TN THE MILEAGE
EXAMPLE, THE EXPERIMENTAL UNITS

ARE TAXICABS, AND TUE TREATMENTS
TO BE COMPARED ARE GAS A
BND 6AS B.

IN AGRICULTURAL EAPERIMENTS, THE EAPERIMENTAL UNITS ARE OFTEN PLOTS

IN A FIELD, AND THE TREATMENTS MIGHT BE APPLICATION OF DIFFERENT
WHEAT VARIETIES, PESTILIDES, FERTILIZERS, ETC.

e

wi




TODAY, EXPERIMENTAL DESIGN IDEAS
ARE USED EXTENSIVELY IN INDUSTRIAL
PROCESS OPTIMIZATION, MEDICINE
AND SOcIAL 5CIENCE. ANY EXPERI-
MENTAL DESIGN USES THREE BASIC
PRINCIPLES, WHICH ARE CLEARLY
ILLUSTRATER IN OUR CAB EXAMPLE:

N1 ALK
KNEW THAT
PRIVING A CAB

Replication: nc s

TREATMENTS ARE A$%IGNED TO
DIFFERENT EXPERIMENTAL UNITS.
WITHOUT REPLICATION, IT'%
IMPOS5IBLE TO A%5E%5 NATURAL
VARIABILITY AND MEASUREMENT
ERROR.

Local control rcxrs

TO ANY METHOD THAT ALLOUNTS FOR
AND REDUCLES NATURAL VARIABILITY.
ONE WAY 15 TO GROUP SIMILAR
EXPERIMENTAL UNITS INTO BLOCZKS.
IN THE CAB EXAMPLE, BOTH GASO-
LINES WERE USED IN EACH (AR, AND
WE SAY THAT THE CAB 15 A BLOCK.

e e T Tioy, Yodke
Tue grock! 4 IN THE

BLOCK .

Randomization:

THE ESSENTIAL STEP [N ALL
STATISTICS] TREATMENTS MUST BE
ASSIGNED RANDOMLY TO EXPERI-
MENTAL UNITS. FOR EACH TAXI, WE
ASSIGNED GAS A TO TUESDAY OR
WEDNESDAY BY FLIPPING A COIN. TF
WE HAPN'T, THE RESULTS LOULD HAVE
BEEN RUINED BY DIFFERENCES
BETWEEN TUESDAY AND WEDNESDAY!

.'/
SR

 m
-



NOW SUPPOSE WE WANT TO INVESTIGATE THE EFFECT OF TWO BRANDS OF
TIRES A5 WELL A% TWO GASOLINES. WE HAVE FOUR PO%5IBLE TREATMENTS,
WHICH WE CAN LAY OUT IN A TWO-BY-TWO FACTORIAL DESIGN. THE TWO
FACTORS ARE GAS AND TIRE MAKE.

| 645 & 6hs B
TREA | a
TRES® | C m
.t

WE CAN ASSI6N THE FOUR TREATMENTS AT RANDOM TO FOUR DIFFERENT DAYS
FOR EACH CAB. ALL FOUR TREATMENTS (@, b, ¢, ANU d) ARE REPEATED
WITHIN EACH BLOCK (CAB). THIS 15 CALLED A COMPLETE RANDOMIZED BLOCK
LDEéIGN. )

50 FAR, WE HAVE
ASSUMED THAT EVERY ‘
DAY OF THE WEEK 15 -
THE SAME, BUT WE CAN CAB
CONTROL FOR THIS,
TOO, IN THE
FOLLOWING WAY: USE
ONLY FOUR CABS, AND
ASSI6GN THE
TREATMENT ALLORVING
TO THE TABLE AT
RIGHT:

-

a0 o8

1

2
3
4

NOTE: EACH
TREATMENT
APPEARS ONCE IN
EACH ROW AND
COLUMN!




A FOUR-BY-FOUR TABLE
WITH FOUR PIFFERENT
ELEMENTS, EACH APPEARING
ONCE IN EVERY LOLUMN
ANP ROW, 15 CALLED A
Latin square.
IN THIS EXPERIMENT, THE
FOUR DAYS AND FOUR CABS
GET ALL FOUR TREATMENTS
EXALTLY ONCE.

IMDGINE
DOG STRTISTIES
Wit RoMAN

THE RANPOMIZATION STEP
PICKS A SINGLE LATIN SQUARE
DESIGN AT RANDOM FROM A
LIST OF ALL PO5%IBLE FOUR-
WAY LATIN SQUARES.

IF FOUR UNITS I5N'T ENOUGH, WE CAN INCREASE THE NUMBER OF
EXPERIMENTAL UNITS BY REPEATING TUE EXPERIMENTAL DESIGN. STARTING
WITH EIGHT CABS, WE COULD DIVIDE THEM INTO TWO GROUPS OF FOUR AND
THEN REPEAT THE PESIGN WITHIN EACH GROUP.

ok.ar b ﬁt:‘ﬁs
WK 6hS B AMD
TRe A op o 2.
Weew




(WE PROMISED NOT TO 60 INTO THE DATA ANALYSI5 IN ANY DETAIL, BUT HERE )
15 ROUGHLY HOW A COMPLEX DESIGN LIKE THIS 15 HANDLED.

By A
300 YOUND
STRTISTIC/ AN

EXPERIMENTAL DESIGNS ARE ANALYZED BY ALLOCATING TOTAL VARIABILITY
AMONG DIFFERENT SOURCES. IN THE CAB EXAMPLE, THE SOURCES OF
VARIABILITY ARE THE CAB, THE TIRE MAKE, 6A5 TYPE, DAY—AND RANDOM
ERROR. ANALY5I5 OF VARIANCE, ANOVA FOR SUORT, PARTITIONS THE TOTAL
L\/;I\.RM&TIOINI, ALLOCATING PORTIONS TO EACH SOURCE.

IN THE NEXT CHAPTER, WE EXPLAIN IN
DETAIL ONE MOVEL FOR ANALYZING S ULRS
COMPLEX DESIGNS: THE LINGAR ' %
REGRESSION MODEL. IN LINEAR :
REGRESSION, YOU'LL BE ABLE TO SEE - ¢
ANOVA UP (LOSE AND NUMERIZAL...
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+Chapter 11+

REGRESSION

50 FAR, WE'VE DONE STATISTICS ON ONE VARIABLE AT A TIME WHETHER IT
CAME FROM A POPULATION OF PILL TAKERS, PICKLES, OR (RASHED CARS. IN
THIS CHAPTER, WE'LL SEE HOW TO RELATE TWO VARIABLES GIVEN THE
WEIGHTS OF THE 92 STUDENTS IN CHAPTER 2, WE ASK HOW THEY ARE RELATED
TO THE STUPENTS' HEIGHTS.

ALL THE BIG
QUESTIONS ARE
.. ; ABOUT

RELATIONSHIPS!

THIS 15 AN EXAMPLE OF A BROAD (LA%S5 OF IMPORTANT QUESTIONS: DOES

BLOOD PRESSURE LEVEL PREDICT LIFE EXPECTANCY? DO 5A.T. SCORES

PREVICT COLLESE FERFORMANCE? DOES READING STATISTICS BOOKS MAKE
YOU A BETTER PERSON?



(IN MATH CLASS, YOU PROBABLY
LEARNED TO 5EE RELATIONSHIPS
DISPLAYED AS SRAPHS. GIVEN Z,
YOU CAN PREDICT 3.

BUT IN STATISTICS, THINGS

ARE NEVER 50 CLEAN! WE
KNOW (OR 5UPPOSE WE

KNOW) THAT HEIGHT WAS

AN INFLUENCE ON WEIGHT—
BUT IT'$ NOT THE 50LE
INFLUENCE. THERE ARE

OTHER FACTORS, TOO, LIKE

SEX, AGE, BODY TYPE, AND
RANDOM VARIATION.

FOR THIS CHAPTER, LET'S LABEL THE WEIGHT DATA AS ¥ AND THE HEIGHT DATA
AS z. THUS (=4, y,v) 15 THE HEIGHT AND WEIGHT OF STUDENT i. WE DISPLAY
THE POINT% (=, 5(,-) IN A 2-PIMENSIONAL DOT PLOT CALLED A SCATTERFLOT.

%
250 . i
[¢]
200 - o, 98
0
8 0085
= o]
S 150 . gﬂ&gﬁgdag __________
= o 0 E 0 2]
g © gof 8 8
@ °8
100 . (4] o
50 =T T : T 1
60 65 70 75
height

(50ME OF THE POTS ARE BIGGER, BECAUSE THEY REPRESENT TWO OR THREE
STUPENTS WITH THE SAME HEIGHT AND WEIGHT.)
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CAN WE PREDICT A STUPENT'S WEIGHT y FROM Hi5 OR HER HEIGHT z?

Regression unulysls

FITS A STRAIGHT LINE TO
THIS MESSY SCATTERPLOT.
Z 15 CALLED THE
INPDEFENDPENT OR
PREPICTOR VARIABLE, AND
15 THE DEPENDENT OR

ESPONSE VARIABLE. THE
RESRESSION OR PREPICTION
LINE HAS THE FORM

y = a+bz

: \
(TO ILLUSTRATE THE FITTING PROCESS, LET'S USE A SMALLER, RIGGED DATA SET
WITH ONLY NINE STUDENT HEIGHT-WEIGHT PAIRS:

HEIGHT  WEIGHT x
0 o4 250-| :
62 95
&4 140 :
b6 155 200 A o
8 ne i ”
n ow B 5 |
74 197 ‘g 150 4 . O eeereeeeeens _______________ I ij’
76 150 i
¢
100 o ;
o
50 = IF T : T 1
60 65 70 75
height

% NOW HOW PO WE GET THE BEST-FITTING LINE?
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rTHE IDEA 15 TO MINIMIZE
THE TOTAL SPREAD OF THE
y VALUES FROM THE LINE.
JUST AS WHEN WE DEFINED
THE VARIANCE, WE LOOK AT
ALL THE $QUARED
DISTANCES FROM THE LINE,
AND APD THEM UP TO GET
THUE SUM OF SQUARED
ERRORS:

BEE e Z@F?i)z S5E = SUM OF THESE SQUARES

i=/

IT'S AN AGGREGATE MEASURE OF HOW MUCH THE LINE'S "PREDICTED i
LOR ?,. PIFFER FROM THE ALTUAL DATA VALUES Y

- | The regression or
a0 T least squares line

15 THE LINC WITH THE $MALLEST SSE.

T3i6 456 'SMALL S5E

SupLL WE JusTt
MEDSURE 1T FOR
EVERY LINE?

(" WISTORICAL NOTE: WHY DO WE CALL THIS PROCEDURE REGRESSION w“

ANALYSI5? AROUND THE TURN OF THE CENTURY, GENETILIST FRANCIS \_BOY!
GALTON DISCOVERED A PHENOMENON CALLED RESRESSION TOWARD
THE MGAN. SEEKING LAWS OF INHERITANCE, HE FOUND THAT SONS'
HEIGHTS TENDED TO REGRESS TOWARD THE MEAN HEIGHT OF THE
POPULATION, LOMPARED TO THEIR FATHERS' HEIGHTS. TALL FATHERS
TENDED TO HAVE SOMEWHAT SHORTER SONS, AND VICE VERSA. GALTON
DEVELOPED REGRESSION ANALYSIS TO STUDY THIS EFFECT, WHICH HE

| OPTIMISTICALLY REFERRED TO AS "RESRESSION TOWARD MEDIOLRITY:

w0




NOT TO BEAT AROUND THE BUSH, WE

6IVE WITHOUT PROOF THE REGRESSION NOU ¢At ACTURLLY
LINE'S FORMULA: IT'S MESSY BUT MAKE THIS MATH
COMPUTABLE. INTUITIVE ... BUT You
HAVE To 60 INTO
y = athz - DIMENSIONAL
4PACE TO DO \T..
WHERE
DDy~ P
b - S —
Z(z, -Z)*
AND
)
a= y-bz

(HERE Z ANpD ¥ ARE THE MEANS OF
{z;} AND {y,} RESPECTIVELY.)

4 )
BECAUSE SOME OF THESE EXPRESSIONS WILL SHOW UP AGAIN, WE ABBREVIATE
THEM:

5652

|

>y2
Zf"f"” 5UM OF SQUARES AROUND
£ THE MEAN, THESE MEASURE
THE $PREAD OF z, AND ;.

\|

oy Z@f'?)z

THE (RO5S PRODUCT DETERMINES
(WITH $5,,,) THE COEFFICIENT b.

R
q}:'»
1
h?
|
Ny
e
w
\
a2y
S

SEE..-YoU

TAKE TWE  _
n.vectorR Y-Y
AND PROJECT \T

ONTo THE N-VECToR
Y-, Ao




FOR THE RIGGED PATA, HERE'S THE WHOLE COMPUTATION:

z Yy &R R ZER @R GEDYEP
60 84 -8 -5 64 3136 449
62 95 -4 -45 3 2025 270
4 140 4 0 1 0 0
46 155 -2 15 4 225 -30
48 19 0 -21 0 441 o
70 175 2 35 4 1225 70
72 145 4 5 16 25 20
74 197 3 57 36 3249 342
7% 150 ] 10 b4 100 80
SUM-612 1240 55, =240 65”- 10424 %zyqzop
Z=68 =140

(" WHICH GIVES VALUES OF a AND b:
200

50 y= -200+5x

250

200 A

weight

100 -

50 -

1 - -
b= 5 % a= y-—bz = 14D -5(t8) = —200
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([ANOVA \

(A5 PROMISED, OR THREATENED!)
NOW WE ASK: IF THIS 15 THE
BEST FIT, HOW 600D 15 IT?

@y,

A5 YOU CAN IMAGINE, THE ANSWER TO THIS QUESTION DEPENDS ON HOW
SLOPPILY THE DATA POINTS ARE SPREAD OUT, LE, HOW BIG $%E& 15, RELATIVE
TO THE TOTAL SPREAD OF THE DATA SOME EXAMPLES:

&GO0P FIT: SMALL 55E, >
EVEN COMPARED WITH
SMALL TOTAL SPREAD

BAD FIT: BI& 95E
RELATIVE TO SMALL
TOTAL SPREAD

BAD FIT: LARGE S5E,

&00P FIT: MODERATE
T-» 55E, BUT LARGE
TOTAL SPREAD

EVEN COMPARED TO
1 LARGE TOTAL
SPREAD




LET'S QUANTIFY THIS BY
APPORTIONING THE VARIABILITY
IN 7. REFER TO THE PILTURE AT
RIGHT FOR GUIPANCE. WE LET

Y= avbz,

THUS, #; ARE THE PREDICTED
WEIGHTS DETERMINED BY THE
REGRESSION LINE.

ANOVA table

SOURCE OF VARIABILITY  SUM OF SQUARES VALUE FOR RIGGED DATA

REGRES5ION SR =Y (§,-* oo
i=!

ERROR S5E = i-y,)? 4426
L

TOTAL %y ;(y, D 10,426

(BY THE WAY, IT I5 NOT OBVIOUS THAT %%, = %5R + $%E—BUT IT'S TRUE!)
ANYWAY, HERE |15 HOW THE REGRESSION AND ERROR SUMS OF SQUARES ARE
CALCULATED FOR THE RIGGED DATA SET, WITH y= —-200+5%.

REGRESSION ERROR
4w B @GP Gt ey G
b0 o4 100 -0 1600 -1 256
62 95 e -30 900 -15 225
&4 140 120 -20 400 0 400
66 155 130 -10 100 25 625
&8 "9 140 (7] 7] -2 441
70 175 150 10 100 15 £25
72 145 160 20 400 -15 225
74 197 170 30 00 27 729
76 150 160 40 1600 -30 900
Z=68 =140 S5R = 000 S5E = 4426

bl




$5R MEASURES THE TOTAL
VARIABILITY PUE TO THE
REGRESSION, |LE, THE
PREVICTED VALUES OF Y-
$5E WEVE ALRCADY MET.
NOTE THAT

S%E

oy

1% THE PROPORTION OF
ERROR, RELATIVE TO
THE TOTAL SPREAD.

EXPRESSION
FOR Tile "elop'/

ALLOUNTED FOR BY THE REGRESSION:

¥y %yy

(BECAUSE $5R = 55, ~55E). R* 15
ALWAYS LESS THAN 1. THE CLOSER IT
14 TO 1, THE TIGHTER THE FIT OF
THE CURVE. RZ = 1 CORRESPONDS
TO PERFECT FIT.

"-1

‘The squared correlation

i THE PROPORTICN OF THE TOTAL S5y

~

CALLULATING RZ FOR THE
RIGGED DATA SET, WE GET

" 000 _ 5
10,426

58% OF THE VARIATION IN
WEIGHT 15 EXPLAINED BY
HEIGHT. THE OTHER 42%
1% "ERROR."




7
ALTERMATELY, THE

correlation
coefficient

15 THE 5QUARE ROOT OF RZ wiTH
THE %16M OF b.

Y - (516N OF b) ‘VR”-

THUS, ¥ 15 + IF THE LINE GOES
UP TO THE RIGHT AND - IF IT
% GOES POWN TO THE RIGHT.

NEGATINE ¥
MEPNS THAT % 16
NEGATIVELY
RELATED TO ‘3."

J

" MEASURES THE TIGHTNESS OF FIT, A5 WELL A% 5AYING WHETHER INCREASING

;o"MhKEﬁS(&OUPORDOWLL

ret [-. . r=-09
[
o .
’ L ]
®
.l' [ Y
.‘.
- _J L]
<0 e | [r-07 .
®_ e .
- . ™Y
- o *
.
¢ . * .
® L]
. . .
L |
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NOW LET'S BE

IN FACT, THIS ENTIRE

ﬁﬂm : NO!;?_W- BOOK CAN BE COM-
, ALMO PRESSED INTL THE
NOBODY—-DOES HEAD oOF B

THESE CALCULATIONS STRTISTICI M.

BY HAND ANYMORE.
WITH A LOMPUTER,
ALL THI% WORK (AN
BE PONE IN ONE
LINE OF coDk...

USING THE MINITAB STATISTICAL SOFTWARE SYSTEM, PEVELOPED AT PENN
STATE, THE 5INGLE COMMAND LOOKS LIKE THIS:

NTB > regress 'weight' on | independent variaoble 'height’

T WHKT A LORD
AND THE RESULTS ARE

The regresslon equaotion |s

HEIGHT = - 200 + 5.00 height

Predictor Coef Stdev t-ratie p
Constant -200.0 110.7 -1.81 0.114
height 5.000 1.623 3.08 0.018

s = 25.15 R-sq = 57.5% R-sq(adj) = 51.5%

Analysis of Variance

SOURCE OF 55 ns F p
Regression 1 6000.0 6000.0 9.49 0.018
Error 7 4426.0 632.3

Total B 10426.0

ry




NOW LET'S DO IT TO THE REAL
DATA OF 92 STUDENTS:

NTB > regress 'weight' on 1 independent varioble 'height’
AND THE RESULTS

The regression equation is
WHEIGHT = - 205 + 5.09 HEIGHT

Predictor Coef Stdev t-ratio p
Constant -20%4.74 29,16 -7.02 0.000
height 5.0918 0.4237 12.02 0.000

s = 14.79 R-sq = 61.68 A-sq(adj) = 61.2%

Anolysis of Uariance

SOURCE OF 58 ns F p
Aegression | 31592 31582 144,368 0.000
Error 90 19692 219

Total 91 51284

HERE 15 THE
SCATTERPLOT WITH
THE FITTED o
REGRESSION LINE. 200 o
THE CORRELATION
COGFFILIENT FOR THIS
DATA SET 15

r = +y 616 =78

weight

100 - - 1]

height
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STATISTICAL
INFERENCE

UP TO NOW, WE HAVE BEEN
DOING PATA ANALYSIS,
DESCRIBING THE NEAREST LINEAR
RELATIONSHIP BETWEEN THE
OBSERVED DATA z AND y. Now
LET'S SHIFT OUR POINT OF VIEW,
AND REGARD THE 92 $TUDENTS
AS A SAMPLE OF THE
POPULATION OF STUDENTS AT
LARGE. WHAT AN WE INFER?

rA REGRESSION MODEL FOR THE WHOLE POPULATION 1% A LINEAR )

RELATIONSHIP

NOTE GI?TEEK
= LETTERS To INDICATE
Y at ﬂz+6 MODEL-DPom !

Y 15 THE PEPENDENT RANDOM VARIABLE; % 15 THE INPEPENPENT VARIABLE

(WHICH MAY OR MAY NOT BE RANDOM); & AND S ARE THE UNKNOWN

PARAMETERS WE SEEK TO ESTIMATE; AND € REPRESENTS RANDOM ERROR
LFLUCTUATION& )

FOR THE HEIGHT
V5. WEIGHT MODEL,
Y 15 WEIGHT, Z 15
HEIGHT, a AND B
ARE UNKNOWN, AND
YOU CAN THINK OF
€ AS THE RANDOM
COMPONENT OF
THE WEIGHTS ¥
FOR EACH VALUE
OF HEIGHT %.
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THE DISTRIBUTION OF € 15 IN FACT PIFFERENT FOR DIFFERENT VALUES OF z:
5-FOOTERS VARY LESS IN THEIR WEIGHT THAN &-FOOTERS. NEVERTHELESS, WE
NOW MAKE A SIMPLIFYING ASSUMPTION: LET'S SUPPOSE THAT FOR ALL VALUES
OF x, THE €'5 ARE INDEFENDENT, NORMAL, AND HAVE THE SAME STANDARD
PEVIATION o = o(g) AND MEAN 1 = O.

REALITY
SIMPLIHED

Ml SOME OF THOSE
LI'L TODDLERS MUST
WEILH LES%S THAN

\.

~

S0.. MAYBE THE WEIGHT
MOPEL MIGHT BE

Y = -125+4z+ ¢

€15 NORMAL WITH u = O
AND o = 15 POUNDS (5AY).
THEN, AZCORPING TO THIS
MOPDEL, STUPENTS WHO ARE
&'4" (76 INCHES) HAVE THE
DISTRIBUTION OF

Y = -1264+4(76) + €

= 75+¢€ / 7o
50, FOR Z = 76, ¥ 15 NORMAL

WITH MEAN 175 AND STANDARD
DEVIATION 15 POUNDS.




( )

NOW, GIVEN THE MODEL Y = a+ B2 + €, WE WANT TO DO A5 WE'VE PONE
REPEATEDLY IN THE LAST FEW CHAPTERS: TAKE A SAMPLE AND USE IT TO
ESTIMTE o AND BB.

ONE (AN SHOW THAT THE
a AND b WE 6OT BY THE
LEAST-5QUARES METHOD
ARE BLUE: THE Best

I &t ———MODEL LIME
Eum Ungiasep y T REGRESSION LINE
STIMATORS OF o AND S8 « DKTK PoNT

(WHATEVER THAT MEANS)). -

UNCONPITIONALLY
GUARANTEED,

A% USUAL, DIFFERENT SAMPLES YIELD DIFFERENT COLLECTIONS OF DATA,
WHICH GENERATE PIFFERENT REGRESSION LINES. THESE LINES ARE
DISTRIBUTED AROUND THE LINE Y = a+ Bx + €. OUR QUESTION BELOMES:
HOW ARE @ AND b DISTRIBUTED AROUND a AND B, RESPECTIVELY, AND HOW
PO WE LONSTRUCT CONFIDENCE INTERVALS AND TEST HYPOTHESES?

THEY RE

BLUE...
VM GREEN...

LuckiLy, T
ENJOY BEMG
GREEN -




(FOR EACH DATA POINT (%, ),
WE HAVE

y,=atbayre,

WHERE e; = ¥~ U; 19
THE 1 -DISTANCE OF
FROM THE REGRESSION
LINE. THE e; ARE SAMPLE
VALUES OF €, AND THEY
GIVE US AN ESTIMATOR %
FOR o (€):

(WHY 712 IN THE DENOMINATOR? BECAUSE WE HAVE USED UP TWO DEGREES
OF FREEDOM TO COMPUTE @ AND b, LEAVING n—2 INDEPENDENT PIECES OF
INFORMATION TO GSTIMATE <)

L

ALTHOUGH IT ISN'T OBVIOUS,
WE £AN ALSO WRITE % A%

6 ," 9‘5:2: - ‘:99#’
h-2

A FORMULA WHICH ALLOWS ﬁl;y

Vs TO LOMPUTE % -
DIRECTLY FROM THE
SAMPLE STATISTICS.

LEARM 11 DIMENSIONAL
GEOMETRY, | TELL You,
AU (T'9 gpsy!

i

Ly TO REPEAT, 5 15 AN ESTIMATOR OF HOW WIDELY
w THE DATA POINTS WILL BE SCATTERED

AROUND THE LINE.
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confidence intervals

THE 95% CONFIPENCE INTERVALS
FOR a AND B HAVE THAT OLD,
FAMILIAR FORM:

B = b tos SE(D)
a=ait ty%(a)
WHERE WE USE THE € ©ISTRIBUTION

WITH n—2 PEGREES OF FREEPOM
(FOR THE $AME REASON AS ABOVE).

IlrTI-IE STANDARD ERRORS, HOWEVER, LOOK RATHER UNFAMILIAR. THEY ARE
(WITHOUT PERIVATION):

Yes.. LO0KS LIKE
THE CYAIDE-LACED
Al MOND TORTE
FroM THE MysTERy
OF TWE DEVIL'S
PeENOMINATOR...

se(b) -

i

i
W
Aol
-+ "
w
>

SE(a)

WHAT HAPPENED TO OUR PRECIOUS -7 IT WAS REPLACED BY 55,,. LIKE 7,
55, INCREASES AS WE ADD MORE PATA POINTS, BUT IT ALSO REFLECTS THE
TOTAL $PREAD OF THE Z DATA. FOR EXAMPLE, IF ALL STUDENTS SAMPLED
HAD THE SAME HEIGHT, WE WOULD BE UNJUSTIFIED IN DRAWING ANY
CONCLUSION ABOUT THE DEPENDENCE OF WEIGHT ON HEIGHT. IN THAT CASE,
%5,.= 0, 6IVING b= co AND INFINITELY WIDE (ONFIDENCE INTERVALS.

ALL X
’ THE SAME

Kersk r
)
a -
% ]
3




MORE QUESTIONS:

-
HOW WELL CAN WE PREDICT
THE MEAN RESPONSE Y AT 250 1
A FIXED VALUE Z,7 FOR

INSTANCE, WHAT 15 THE w55 |
MEAN WEIGHT OF STUDENTS
OF HEIGHT 76 INCHES? THE
95% CONFIDENCE INTERVAL 150 1 0 2
FORY = a + 7, 15
ﬂ""ﬁ%p:"- a'rb:&g:l:tgzg%(?) 100 1 ° o

weight

WHERE 50 1 — ; ; ?
2 (z,-%)? €0 85 70 75
SE@)= 5\ 37 + ——
xZ height
N

SUPPOSE A NEW STUPENT ENROLLS, WHO HAS HEIGHT Zyp, . HOW WELL (AN
WE PREDICT Yypw WITHOUT MEASURING IT?

THE 95% PREDICTION INTERVAL
FOR A NEW INPIVIPUAL Yyou
WITH OBSERVED Zygy 15

Ypw =& + bygy £ 1,1 5EOyew)

WHERE

-7)2
SE(Vygw)= 941 + J%‘-‘;—-—i)
zx

(" BOTH THESE STANDARD ERRORS CONTAIN A TERM
THAT GROWS LARGER AS THE Z-VALUE, Z, OR
Zyow GETS FARTHER FROM THE MEAN VALLE Z.
WHY POES THE ERROR INCREASE FARTHER FROM
Z7 BECAUSE, IF YOU WIGGLE THE REGRESSION
LINE, IT MAKES MORE OF A PIFFERENCE FARTHER
FROM THE MEAN! (REMEMBER, THE LINE ALWAYS

PASSES THROUGH (Z,%).)




LET'S WORK IT OUT FOR THE
RIGGED DATA: FOR THE MEAN
WEISHT WHEN % = 76 INCHES,
WE HAVE b = —200 ANP g = 5.
THEN

Y = —200+5(76) + (2365)(2515)
= 180 + (2.365)(25.15) | 3777
= 180 + 36.34 POUNDS

THE ESTIMATED MEAN OF
6'4" STUVENTS 15 180
POUNDPS, ANP WE'RE 95%
CONFIPENT THAT WE'RE
WITHIN 36 POUNDS OF
THE TRUE MEAN.

FOR A NEW STUDENT WHO'S 6'4%, WE USE OUR RIGGED SAMPLE OF NINE
POINTS TO PRERICT THAT

2
Yaew = —200 + 5(76) £ (2.365X(25.15)\| 1+ ';7* (Téz;is)

180 + (2.365X2951)
180 £ 70 POUNDS

|

WE TELL THE
FOOTBALL
COACH THAT
WE'RE PRETTY
SURE THE
NEW 6LY
WEIGHS
SOMEWHERE
BETWEEN 12
AND 250!!!




THE INTERVALS ARE PRETTY TERRIBLE! WHAT'S THE PROBLEM? THERE ARE

TWO PROBLEMS, ACTUALLY:

HEIGHT ALONE 15 NOT A VERY 600D
PREDILTOR OF WEIGHT.

NINE PATA POINTS WEREN'T ENOUGH.
IN PARTICULAR, THERE WAS ONLY ONE
STUPENT WITH HEIGHT 76 INCHES.

THE PENN STATE STUDENTS GIVE BETTER ESTIMATES.

250 A
0
or P
200 A PREDILTION G
Mfwll-\ 0 0 g
/.a 8 0 0
S 150 o
1}
=
: CONFIDENCE [NTERVAL
100 =t & ;.--""‘./- ﬁﬂTHE Mem
50 - r T T 1
60 65 70 75
height




THE COMPLETE SKEPTIC MIGHT
SUGGEST THAT THERE 15 NO
RELATIONSHIP BETWEEN HEIGHT
AND WEIGHT. THIS AMOUNTS TO
SAYING THAT B-0.

T T rrryrrT ool

Lg: HAS NO EFFECT Ond Y

‘hypothesis testing

[}

n

_/

WE TAKE THIS AS THE NULL
HYPOTHESIS.

Ho:ﬁso

IN THAT CASE, THE TEST STATISTIC

o B
Kby

HAS THE T DISTRIBUTION WITH
71-2 DEGREES OF FREEDOM.

A5 USUAL, THE SIGNIFICANCE TEST
DEPENDS ON THE ALTERNATE
HYPOTHESIS.

t>t, ForR Hy :8>0
t<t, ForRH, : B<o

It1> gl FOR Ma: g0

FOR THE RIGGEP WEIGHT DATA, WE
STRONGLY SUSPECT THE ALTERNATE
HYPOTHESIS SHOULD BE

Hu ‘ﬁ)o
WE TEST

. =2
Coss 5eh) = 142
= 3.08

FOR 7 DEGREES OF FREEDOM,

tos = 1895. SINCE g5 > to5, WE

REJECT THE NULL HYPOTHESIS AT THE
= .05 SIGNIFICANCE LEVEL AND

CONCLUDE THAT THERE 15 A

SIGNIFICANT, POSITIVE RELATIONSHIP

BETWEEN HEIGHT AND WEIGHT.

WHAT t:‘%
A SRPRISE! %

-



Multiple linear

regressnon

WE (AN USE THE SAME BASIC
IPEAS TO ANALYZE
RELATIONSHIPS BETWEEN A
PEPENDENT VARIABLE AND
$EVERAL INDEPENDENT
VARIABLES:

Y=a+tBx B4+ B,%,tE

FOR EXAMPLE, WEIGHT 15
PETERMINED BY A NUMBER
OF FACTORS OTHER THAN
HEIGHT: AGE, SEX, DIET, BODY
TYPE, ETC.

-1 DIMENSIONAL HYPER-

DONT You 4EE?
1T JUST AN BFFINE

PLANE IN 1-SPACE ¢
NOTHING TO 1T

P e ilag

MATRIX ALGEBRA AND A COMPUTER COMBINE TO MAKE SUCH PROBLEMS EASY

TO ANALYZE.
’ . ™
SOMETIMES DATA OBVIOUSLY
Non-l In.eﬂl' FIT A NON-LINGAR CURVE.
regress.on STATISTICIANS HAVE A BAG OF
TRICKS FOR USING LINEAR
REGRESSION TECHNIQUES FOR
= NON-LINEAR PROBLEMS. THE
1.0+ o SIMPLEST OF THESE 15 TO
o WRITE Y A% A POLYNOMIAL
> 0.5 =a+px+ P2 +e
AND TREAT z AND z% AS
e INDEPENDENT VARIABLES IN A
' LINEAR MOVEL.
| N 1
0.0 05 1.0
x
. J




LURKING NASTY SURPRISES.

HAVE You EVER
DIAGNO4ED A
GRAYH BEFORE,
VR BLUDDESUCGUE?

o

‘Regression diagnostics

FITTING A COMPLEX MOPEL TO DATA CAN SOMETIMES OBSCURE MANY
DIFFICULTIES. WE USE REGRESSION DIAGNOSTIC PROCEDPURES TO UNCOVER ANY

THE SIMPLEST PROCEDURE 15 TO PLOT THE RESIPUALS e; AGAINST THE
PREDICTOR Y- REMEMBER, THE ERROR € 15 ASSUMEP TO BE INDEPENDENT

OF z.

A RANDOM SCATTERPLOT INDICATES
THAT THE MOPEL ASSUMPTIONS
ARE PROBABLY CK.

A TYPICAL LURKING
NASTY SURPRISE (WHICH
EXISTS IN THE
HEIGHT/WEIGHT DATA)

15 THAT ERRORS ARE £y @92

ANY PATTERN INDICATES A
PEFINITE PROBLEM WITH THE
MOPDEL ASSUMPTIONS.

TAKE Two
ASPIRIN pup

HETEROSCEPASTIC: |E, L]
THE SPREAD OF e
INCREASES AS y
INCREASES.




IN THIS CHAPTER, WE
HAVE SUMMARIZED
THE BASIC IDEAS AND
TECHNIQUES OF
REGRESSION
ANALYSIS, THE STUDY
OF STATISTICAL
RELATIONSHIPS
BETWEEN VARIABLES.
THI$ CONCLUDES OUR
DETAILED DISCUSSI0ON
OF BASIC STATISTICAL
METHOP%. IN OUR
FINAL CHAPTER, WE'LL
BRIEFLY REVIEW A
FEW REMAINING
TOPICS AND 155UE5.

‘-.__H-—_""—h;
YES,

IN My PROFESSIONAL
OPINION, YOU'VE
REGRESSED
ENOUGH. -

AlZ



¢Chapter 12+

CONCLUSION

THE BASIZ PRINCIPLES, TOOLS, AND
CALCULATIONS COVERED IN THIS BOOK AN
BE EXTENDED TO SOLVE MORE COMPLEX
PROBLEMS. HERE'S A BIASED SAMPLE OF
MORE ADVANCED STATISTICAL METHODRS!

m



(DATA DISPLAY

WE SAW HOW TO DISPLAY ONE VARIABLE WITH A POT PLOT AND TWO
VARIABLES USING A SCATTERPLOT—BUT HOW DO WE GRAPHICALLY DISPLAY
MORE THAN TWO VARIABLES ON A FLAT PAGE? AMONG THE MANY
PO%SIBILITIES, A LARTOON GUIDE HAS TO MENTION HERMAN CHERNOFF'S
SIMPLE IDEA: USING THE HUMAN FACZE, ASSIGN EACH FEATURE TO A VARIABLE
AND PRAW THE RESULTING cHERNOFF FACES:

A =EYEBROW SLANT

S S /Q é\ Y =EVE 5IZE

| z=NOSE LENGTH
T =MOUTH LENGTH

\/ N B =FACE HEIGHT

ETC..

Statistical analysis of

MULTIVARIATE DATA

AN ASSORTMENT OF MULTIVARIATE MODELS WELP TO ANALYZE AND DISPLAY
n-DIMENSIONAL DATA. SOME MULTIVARIATE TECHNIQUES:

Cluster analysis

SEEKS TO DIVIPE THE
POPULATION INTO
HOMOGENEOUS SUBGROLPS.
FOR EXAMPLE, BY ANALYZING
CONGRESSIONAL YOTING
PATTERNS, WE FIND THAT
REPRESENTATIVES FROM THE
SOUTH AND WEST FORM TWO
RISTINET CLUSTERS.
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Discriminant analysis

15 THE REVERSE PROLESS. FOR EXAMPLE, A COLLEGE ADMISSIONS OFFILE MIGHT
LIKE TO FIND DATA GIVING APVANCE WARNING WHETHER AN APPLICANT WILL 60
ON TO BE A SUCCESSFUL 6RADUATE (PONATES HEAVILY TO THE ALUMNI FUND)
OR AN UNSUCLCESSFUL ONE (60E5 OUT TO PO 600D IN THE WORLD AND 15
NEVER HEARD FROM AGAIN).

COULPN'T WE FIND

SOME IDEALISTIC
MONEY - GRURELRS ?

Factor analysis

SEEKS TO EXPLAIN HIGH-
PIMENSIONAL PATA WITH A
SMALLER NUMBER OF
VARIABLES. A PSYLHOLOGIST
MAY GIVE A TEST WITH 100
QUESTIONS, WHILE SECRETLY
AS5UMING THAT THE
ANSWERS DEPEND ON ONLY
A FEW FACTORS:
EXTROVERSION,
AUTHORITARIANISM, ALTRUISM,
ETC. THE TEST RESULTS
WOULP THEN BE SUMMARIZED
USING ONLY A FEW
LOMPOSITE SCORES IN
L‘l'l-tl.')‘% DIMENSIONS.

ON A $CALE FROM ONE TO TN,
YOU'RE T4 EXRONERTD, 4%
ALTRUSTIC, AND 2.7 AUTHORITARAN.
THATS you, Il A NUTSHELL !

3




THERE 15 AL%O MORE TO

PROBABILITY:

Random walks s wirw

A COIN FLIP. SUPPOSE YOU MOVE AHEAD
ONE STEP FOR A HEAD AND BACK ONE STEP
FOR A TAIL. (USING TWO COINS, YOU ¢AN
PO THIS IN TWO DIMENSIONS.) REPEATED
FLIPS PROPUCLE A STOCHASTIL PROCESS
CALLED A RANPOM WALK. RANDOM WALK
MOPDELS ARE USED IN 5TOCK OPTION
TRAPING AND PORTFOLIO MANAGEMENT.

0%

O

Time series analysis ocus

[

C

WITH DATA SETS, WHICH,

LIKE THE RANDOM WALK, ACCUMULATE OVER TIME: LOLAL AND GLOBAL

TEMPERATURES, THE PRICE OF OIL, ETC. IN TIME
MOPDELS ARE USED TO FORECAST FUTURE VALUES.

SERIES ANALYSIS, RANDOM

UK. 6UESS
VM NOT LIKELY
To LT OFF THIS
PAGE ANYTIME
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WE'VE ALREADY SEEN HOW THE COMPUTER HELPS WITH ANALYSI5 AND
ARITHMETIC. THERE ARE ALS0O SOME STATISTICAL IPEAS THAT OWE THEIR VERY
EXISTENCE TO THE COMPUTER:

image analysis

A COMPUTER IMAGE MIGHT LONSIST OF 1000 BY 1000 PIXELS, WITH EACH DATA
POINT REPRESENTED FROM A RANGE OF 167 MILLION LOLORS AT ANY PIXEL.
STATISTICAL IMAGE ANALYS!S SEEKS TO EXTRALT MEANING FROM “INFORMATION®
LIKE THI%.

M » WE Use RICTURES TO
'\ HELP UNDERSTAND DATA,

BUT Nowl We HANE To
@Nv PlcTuRES !
(32

SOMETIMES, STANDARD ERRORS AND CONFIDENCE LIMITS ARE IMPO5%IBLE TO
FIND. ENTER RESAMPLING, A TECHNIQUE THAT TREATS THE SAMPLE AS THOUGH
IT WERE THE POPULATION. THESE TECHNIQUES 6O BY SUCH NAMES AS
RANPOMIZATION, JACKKNIFE, AND BOOTSTRAFFING.

—-—-—*’"“"ﬁ-\
NG SEEMS
IMPOSSBLE,
BUT T WoRKS!
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-
resampling (cont'd)

TO PO RESAMPLING, THE COMPUTER
*RESAMPLES THE SAMPLE

¥COMPUTES THE ESTIMATE
FOR THE RESAMPLE

¥REPEATS THE FIRST TWO
STEPS MANY TIMES, FINDING 7
THE SPREAD OF THE 4 s
RESAMPLED ESTIMATES. / Ll
4‘; 41,.;5
A ,

REMEMBER THE CORRELATION COEFFICIENT r OF THE 92 HEIGHT-WEIGHT PAIRS
OF CHAPTER 117 WHAT'S THE STANPARP ERROR OF r 7 THE COMPUTER TAKES
200 BOOTSTRAP SAMPLES FROM THE 92 DATA POINTS, COMPUTES r EACH TIME,
AND PLOTS A HISTOGRAM OF THE r VALUES.

0.5 06 07 08 0.9 10 —rzeers—
Bootstrapped Correlations

NOTE THAT THE SPREAD OF THE BOOTSTRAP ESTIMATES 15 RELATIVELY SMALL.

a8 ™

AND, FINALLY,

HERE ARE SOME
OTHER 155UES TO
KEEP IN MIND:

6



DATA QUALITY

SEEMINGLY SMALL ERRORS IN
SAMPLING, MEASUREMENT, AND DATA
RECORPING CAN PLAY HAVOL WITH ANY
ANALYSIS. R. A. FISHER, GENETICIST
ANP FOUNDER OF MODERN STATISTICS,
NOT ONLY DESIGNED AND ANALYZED
ANIMAL BREEDING EXPERIMENTS, HE
AL50 CZLEANED THE cA6ES AND
TENDED THE ANIMALS, BECAUSE HE
KNEW THAT THE LO%5 OF AN ANIMAL
WOULP INFLUENZE HI% RESULTS.

— ~
MODERN STATISTICIANS, WITH THEIR COMPUTERS, PATABASES, AND GOVERNMENT
GRANTS, HAVE LOST SOME OF THIS HANDS-ON ATTITUPE.

e s

IF YOU G6RAPHEP THE MEAN
MAS5 OF RAT PROPPINGS
UNPER STATISTICIANS'
FINGERNAILS OVER TIME, IT
WOULD FROBABLY LOOK
SOMETHING LIKE THIS:

WEIGHT (Mj )

—T
= 1900 9% 1990

ur



Innovation

THE BEST SOLUTIONS ARE NOT ALWAYS IN THE BOOK! FOR EXAMPLE, A
COMPANY HIRED TO ESTIMATE THE COMPOSITION OF A 6ARBAGE PUMP WAS
FACED WITH $OME INTERESTING PROBLEMS NOT FOUND IN YOUR $TANDARD
TEXT..

How Do You GET
A SINPLE RpnOON
SAMPLE OF THI®?

Communication

BRILLIANT ANALY%!% 15 WORTHLESS UNLESS THE RESULTS ARE CLEARLY
COMMUNICATED IN PLAIN LANGUAGE, INCLUPING THE PEGREE OF STATISTICAL
UNCERTAINTY IN THE CONCLUSIONS. FOR INSTANCE, THE MEDIA NOW MORE
REGULARLY REPORT THE MARGIN OF ERRORS IN THEIR POLLING RESULTS.

% —,

A\

Teamwork

IN OUR COMPLEX SOCIETY, THE SOLUTION TO MANY PROBLEMS REQUIRES A
TEAM EFFORT. ENGINEERS, STATISTICIANS, AND ASSEMBLY LINE WORKERS ARE
LOOPERATING TO IMPROVE THE QUALITY OF THEIR PROPULTS. BIOSTATISTICIANS,
DPOLTORS, AND AIDS ALTIVISTS ARE NOW WORKING TOGETHER TO DESIGN
CLINICAL TRIALS TO MORE RAPIDLY EVALUATE THERAPIES.




WELL, THAT'S ITI BY NOW, YOU SHOULD BE ABLE TO PO
ANYTHING WITH STATISTILS, EXLEPT LIE, CHEAT, STEAL,
AND SAMBLE.

WE LEFT THESE
SUBJELTS TO THE
BIBLIOGRAPHY!




Vo You WPNE ADEQUATE
STRTISTICAL MALPRRLTICE
INSURANCE ?
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‘BIBLIOGRAPHY

FOR THE STUDENT:

MOORE, DAVID 5., STATISTICS: CONCEPTS AND
CONTROVERSIES, 1991, NEW YORK, W. H. FREEMAM.
EMPHASIZES IDEAS, RATHER THAN MECHANICS,

FREECMAN, DAVID, PISANI, ROBERT, AND PURVES,
ROGER, STATISTICS, 1991, NEW YORK, WW.
NORTOM.

MOORE, DAVID . AND MCCABE, GEORGE P,
INTROPULTION TO THE PRACTICE OF
STATISTICS, 1989, NEW YORK, WH. FREEMAN.

SMITH, GARY, STATISTICAL REASONING, 1990,
BOSTON, ALLYN AND BACON, INZ. MORE TECHMICAL,
EMPHASIZING ECONOMICS AND BUSINESS, BUT HAS
EXAMPLES FROM ALL OVER.

THESE TEXTS ARE CURRENT, LORRECT, LITERATE, AND WITTY. BESIPES THE ONES WE OITE,
THERE ARE HUNDREDS OF TEXTBOOKS OUT THERE, AND WE WOULD RATE MOST A% AT
LEAST ALLEPTABLE.

FOR THE 5TRUGGLING STUDENT:

PYRCZAK, FRED, STATISTICS WITH A $ENSE OF
HUMOR, 1989, LOS BMNGELES, FRED PYRCZAK
PUBLISHER. AN ELEMENTARY WORKBOOK AND
GUIDE TO STATISTICAL PROPLEM $OLVING

HOW TO LIk, cHEAT, AND SAMBLE. YOUR SAINTLY AUTHORS HAVE LITTLE EXPERIENCE IN
THESE FIELP%. HERE 15 SOME APVICE FROM THE PRO%:

HUFF, DARRELL, HOW TO Llk WITH
STATISTICS, WITH PICTURES BY IRVING GEIS,
HEW YORK, 1954, WW. NORTON, CHEAP AND
STILL IN PRINTI

JAFFE, AT. AND SPIRER, HERBERT F, MISUSEP
STATISTILS: STRAIGHT TALK FOR TWISTEP
NUMBERS, 1997, NEW YORK, MARZEL DECKER.
PART OF A 600V POPULAR SERIES ON
STATISTICS.

ORKIN, MIKE, CAN YOU WIN?, 1991, NEW YORK,
WH. FREEMAN. ADVICE FROM AN EXPERT ON
PROBABILITY AND 6AMBLING.

MGERVEY, JOUN D, FROPABILITIES IN EVERY
DAY LIFE, 1989, NY., IVY BOOKS. 6AMBLING
FROM BLALKIAZK TO SMOKING.

SRR
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(LAW AND SOCIETY =

GASTWIRTH, JOSEPH L., STATISTICAL REASONING IN
LAW ANP PoLIcY, VOL. 1| & 2, 1988, SAN DIEGO,
ACLADEMIC PRESS. THE LEGAL NITTY GRITTY, INCLUDING
JURY SELECTION CASES LIKE THE ONE THAT BEGAN
CHAPTER 9.

STEERING COMMITTEE OF THE PHYSIZIANS' HEALTHY
STUDY RESEARCH GROUP, “FINAL REFORT ON THE
ASPIRIN COMPONENT OF THE ONGOING PHYSICIANS' e
HEALTHY STUDY," THE NEW ENSLANP JOURNAL OF
MEPICINE, VOL. 321, PP. 129-135.

£

-

IN CHAPTER 9, THE NONJUDIZIAL COMMENT OM POKER FROM THE BEMCH WAS FROM AN
ACTUAL CASE, WE ARE ASSURED IN A PERSONAL COMMUNICATION FROM DR. JOUN DE CANI,
UNIVERSITY OF PEMNSYLVAMIA.

GRAFHICAL DISPLAY OF DATA:

TUFTE, EOWARD R. THE VISUAL DISPLAY OF
QUANTITATIVE INFORMATION, 1993, CHESHIRE,
CONNECTICUT, GRAPHICS PRESS.

TUFTE, EDWARD R, ENVISIONING INFORMATION, 1990,
CHESHIRE, CONNELTILUT, GRAPHILS PRESS, THE
HISTORY, ART AND SCIENCE OF GRAPHICS. BOTH
BOOKS ARE (LASSICS.

CLEVELAND, WILLIAM S, THE ELEMENTS OF SRAPHING
PATA, 1995, PALIFIC GROVE CA, WAPSWORTH APVANCED
BOOKS AND SOFTWARE. DESIGM PRINCIPLES FOR
COMPUTER GRAPHILS.

HISTORY:

DAVID, F. N, GAMES, 6005 AND GAMBLING, 1962, NEW
YORK. HAFNER, NEW YORK.

STIELER, STEPHEMN M., THE HISTORY OF STATISTICS: THE
MEASUREMENT OF UNCERTAINTY BEFORE 1900, 1985,
CAMBRIDGE, MA, BELKNAP PRESS OF HARYARD UNIVERSITY
PRESS.

BOX, JOAN FISULR, R. A. FISHER, THE LIFE OF A
SCIENTIST, 1978, NEW YORK, WILEY. BIOGRAPHY, BY WIS
PAUGHTER, OF THE MOST INFLUENTIAL AND CONTROVERSIAL
FIGURE OF 20TH £ENTURY STATISTICS.

KRUSKAL, WILLIAM, “THE SIGNIFICANCE OF FISHER: A
REVIEW OF RA. FISHER: THE LIFE OF A SCIENTIST™
1980. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,
VOL 75, 1030. 5ET% THE FISHER BIOGRAPHY IN PERSPECTIVE
AND HAS EXLELLENT BIBLIOGRAPHY.
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STATISTICAL SOFTWARE: )
IN THIS BOOK WE USER THE MINITAR STATISTICAL SOFTWARE SYSTEM (MINITAB INC,
STATE COLLEGE, PA). THE PENN STATE $TUDENT HEIGHT AND WEIGHT DATA 14 FROM THE
PULSE DATA $ET ON THI% SYSTEM. COMPUTER 6RAPUICS WERE GENERATED BY $-FLUS
(STATISTICAL SEIENCES INC, SEATTLE WA), ON A 486 PL LLONE 5 1% SOPHISTICZATED SOFTWARE,
PEVELOPED BY ATAT BELL LABS FOR APVANCED AMALYSIS AND GRAPHICAL DISPLAYS.

RYAM, BARBARA, JOIMNER, BRIAN, AND RYAM, THOMAS,
MINITAF HANPBOOK, (FWS-KENT, BOSTON, 1985) AND
THE STUPENT EPITION OF MINITAB (ADDISON
WESLEY) ARE FAST, INEXPENSIVE INTRODUETIONS TO
STATISTICAL COMPUTING. MINITAB RUNS ON MAIN-
FRAMES, PC COMPATIBLES, ANP MALINTOSH (OMPUTERS.

TUERE ARE MANY HiGH QUALITY SOFTWARE PALKAGES
AVAILABLE FOR THE PERSONAL (OMPUTER, INCLUPING:

PATADESK (DATA DESCRIPTION, TTHAZA, NY), FOR THE
MALINTOSH

$AS (5\S INSTITUTE INC, LARY, NC), $P55 (5P55 INC,
CHICASO, IL), AND BMDP (BMDP STATISTICAL SOFTWARE,
INZ., LOS ANGELES, (A) WERE ORIGINALLY DESIGNED FOR
MAINFRAME SYSTEMS AND NOW HAVE MIGRATED TO THE PC,
COMPLETE WITH WINDOWS.

STATERAPHICS (STATISTICAL GRAPHICS CORP, PRINCETON,
NI), FOR THE PL.

STATVIEW (ABACUS CONCEPTS, OAKLAND (A) FOR THE
MALINTOSH.

SYSTAT (SYSTAT, INC., EVANSTON IL) HAS SYSTEMS THAT
RUN IN ALL ENVIRONMENTS.

THESE PALKASES DIFFER IN IMPORTANT DETAILS; YOU NEEP TO BE A SMART SHOPPER.
WE RECOMMENP ZHOOSING A SYSTEM THAT YOUR COLLEASUES HAVE ALREADY TESTED.
FEW OF V% ARE CUT OUT TO BE STATISTICAL SOFTWARE PIONEERS. WHEN LEARNING A
NEW SYSTEM, EXPERIMENT WITH SMALL, FAMILIAR DATA $ETS. REMEMBER, THE MOST
EXPENSIVE PART OF ANY SOFTWARE 15 YOUR TIME. THE CARTOON RULE FOR
LEARNING STATISTICAL COMPUTING 15: FAMILIARITY BREEPS RESULTS.

TRYING TO LEARN $TATISTICAL THEORY AND
STATISTICAL COMPUTING AT THE SAME TIME 15
A LITTLE LIKE TRYING TO WALK AND CHEW
SUM AT THE $AME TIME DIFFERENT 5KILLS AND
THOUGHT PROCESSES ARE INVOLVED IN EACH.
SET ASIDE SEPARATE TIMES TO LEARN THESE
SUBJELTS, THEM BRING THEM TOSETHER. IN
THIS WAY, YOU £AN BECOME A CHEWING,
WALKING, COMPUTING, RENAISSANCE
STATISTICIAN!
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Acceptance sampling, 150
Addition rule for events, 38-39, 42, 44
Alternate hypothesis (H, ), 140-141, 147-149,
152-153, 165-166. See alse Hypothesis
testing
lefi-handed, 144-145
relevant, 144145
right-handed, 144-145
two-handed, 144-145
Analysis of variance, See ANOVA
ANOVA (analysis of vanance), 186, 193-195,
tuble, 194
Approximate probability, 60
Approximation
binomial, 79-81, 86-88
continuous, 87-88
normal, §7-88
Archery lessons, confidence intervals and, 116-124
Arca under the curve, 64-66
Arrays, 14-15
Aspirin clinical tnials, 160-167. See also Two
populations compared
Astralagi, 28
Average salary companson, 168-169.
See also Two populations compared
Average squared distance, 22
Average value, 15-17
standard deviations from, 22, 24-25, 168, 171

Bar graphs, 11
Bayes, Joe, 46-50
Bayes, Rev. Thomas, 46-50
Bayesian, 35
Bayes Theorem, 46.-50
Bernoull, James, 79
Bernoulli rial, 74-75, 78
sumpling size and, 98-100
Best linear unbiased estimators (BLUE), in
regression analysis, 201-202
Beta (probability of type W error), 151-155
Bias
in polls, 126-127
reducing natural, with paired comparison, 178
in sumple random sampling, sieps (o ehnunate,
167

Binomial approximation, 79-81, 86-88
Binomial coefficient, 76
multiplication rule and, 76
Pascal's triangle and, 77
Binomial disinbution, 77, 81, 83, 86, ¥8
asymmetrical, 82
calculating, for large values, 79-80
continuous density function and, 79-80
mean of, 78
standard normals and, 82
variance of, 78
Binomial distribution table, 78
Binomial probability distribution, 77-78
Binomial random vanables, 74-76. 139-140
Blocks
complete randomized, 184-185
in experimental design, 183184
BLUE (best linear unbiased estimaltors), in
regression analysis, 201-202
Bootstrapping, 215-216
Box and whiskers plot, 21
Brass tacks, 98-103

Categorical statements, 2
Central limit theorem, 106, 128, 169
fuzzy, 83-88
problems with, 107
Central value, 14. See also Spread
mean, |15-16
median, 17-18
Challenger (space shuitle), 3
Chameleon Motors
comparing small sample means, 170-171
confidence intervals, 134135
hypothesis testing for, 149150
Cheroff, Herman, 212
Classical probability, 35
Claudius I, 28
Cluster analysis, 212
Cluster sampling design, 95
Coin loss, 32, 54-55, 58, 60-62, 68-70
Communication, 218
Comparing failure rates, 160-163
Comparing small sample means, 170171
Comparing success wates, 160-163

22¢




Comparing two populations. See Two
populations compared
Comparison of average saluries, 168-169
Companisons, paired, 174-178
Complete randomized black, 184-185
Computer image analysis, 215
Computer resampling, 215-216
Conditional probability, 401
false positive paradoxs and, 46-50
multiplication rule and, 42-44
Confidence interval levels
decision theory and, 152-153
measunng, 122-123
Confidence intervals, 112-136
computer simulation of, for samples, 120
error levels and, 124-127
estimating, 114-127
increasing levels of, 121-125
margin of error and, 119, 121
in paired comparisons, 176
population means and, 128-130, 169
population proportion and, 128-130
probuhility calcutation and, 117-119
random sampling used for, 114115, 119
in regression analysis, 203-206
sample means and, 130, 171
standard deviation in, 117, 128-130
standard ervor in, 118, 128130
Student's r based, 131-136
for success rates, |64
table for levels, 122-123
Continuity correction, B7-88
Continuous densities, properties of, 66-67
Continuous density function, binomial distribu-
tion and, 79-80
Continuous probabilities, 64
Continuous random vanables, 63
mean of, 67
probability densiy of, 65
variance of, 67
Correlation, squared, in regression analysis, 195
Correlation coefficient. in regression analysis,
196
Cumulative probability, 84
Curve, area under the, 64-66

Data
multivariate, statistical analysis of, 212-213
arder of, 17
pinred and unpaired compared, 177-178
propenties of, 59
rigged, in regeession analysis, 189, 192,
194-195, 205-207
spread of, in regression analysis, 190-195
Duta analysis, 4
Data description, 8-26
[ata display, 212

Data points, 11-12, 14-15
average, 17
middle, 17
Dara quality, 217
Data summary, 12
Death rate, 13
Decision table, iwe-by-two, 152
Decision theory, hypothesis testing, 151155
Deductive reasoning, 113
Degrees of freedom, 131-135
in comparing small sample means, 171
hypothesis testing and, 149150
de Mere, Chevalier, 28-29, 75, 78
de Moivre, Abraham, 79-83, 86-88, 101
Dependent random variable, in regression
analysis, 199-209
Dependent variable, in regression analysis, 189
Dice, 2845
loaded, 33
Discrete probabilitics, 64, 66
Discrete random variables, 63
Discriminate analysis, 213
Dot plits, 9
two-dimensional, 188

Election polls, 114-127
hyputhesis westing in, 143-145
Elementary outcomes, 30, 32-38
Error levels, confidence intervals and, 124-127
Errors
heteroscedastic, 209
margin of, confidence intervals and, 119, 121
measurement, experimental design and, 183
random error Auctuations, 199-209
standurd. See Standard error (SE)
sumn of squared (SSE), in regression anilysis,
190-195
type 1. 151-154
ype I, 151-154
Estimates, 102-103, 107
Estimating confidence intervals, 114-127
Estimators, 102-103
best linear unbiased (BLUE), in regression
amalysis, 201-202
in comparing the means of two populations,
168-169
Events
addinon rule for, 38-39., 42, 44
mutually exclusive, 39, 42, 44
probability of, 35-37
repeatable, 35
rules for vulcomes of, 38-39
subtraction rule for, 39, 44
Expected value, 61
Experiment
random, 30, 32, 34, 36
sampling and, 98- 100, 104-105



Expenment (contnued)
weight, 9-12, 16, 18-26
regression, | 88-209. See alvo Regression
Experimental design
basic principles, 183
blocks in, 183-184
elements of, 182-183
four-by-four table in. 184-185
Latin square in, 184-185
local control in, 183
measurement error and, 183
natural variability and, 183185
randomization in, 183, 185
replication in, 183, 185
total variability and, 186
Experimental treatments, 182-183
Experimental units, 182-183

Factor analysis, 213

Failure rates, comparing, for two populations,
160163

Halse positive paradox, 46-50

Eermiut, Pierre de, 2815

Fisher, R. A., 217

Fitting process, in regression analysis, |89-196

Fixed significance level, in hypothesis testing,
141-142, 145

Four-by-four table, in experimental design,
184-185

Frequency, relative, 10-11, 35, 57-58, 60

Frequency histograms, 11. 57-58

Frequency tables, intervals in, 10-11

Gallup Poll, 127
Gambling, 27-45
Gasoline comparisons, 172-173
experiment design and, 182-186
paired comparisous of, 174-178
Giosset, William, 108109, 131-132
Graphic display, 13
Graphs
bar, 11
histograms. See Histograms
probubility distribution, 56-58

{H,). See Alternate hypothesis
Heteroscedastic errors, 208
Histograms, 13
frequency, 57
probability, 56-58
relutive lrequency, 11, 57-58
spread measured in, 19
symmetrical, 24-25, 77
Hite, Shere, 97
Hilmes, Shedock, 113-130
H,, (null hypotheses), 140-141, 144-145,
147150, 152-153, 165-166. See also

Hypothesis testing
lypuotheses. See also Hypothesis testing
alternate (Hy), 140-141, 147-149, 152-153,
165-166
lefi-handed, 144-145
relevant, [44-145
right-handed, 144-145
two-handed, 144145
null (), 140141, 144-145, 147-150,
152153, 165-166
Hyputhesis testing, 138-139
decision theory, 151-155
degrees of freedom and, 149-150
fixed significance level in, 141-142, 145
large sample
for population mean, 146-148
significance test for proportions, 143-145
in paired comparisons, 176
population mean and, 146-148, 169
probability statement in, 141142
in regression analysis, 207
statistical, 140-142

lguana autos, 170-171
Increments, 9
Independence, 71,74
simple random sampling and, 92-94, 96
special inultiplication rule and, 4344
Independent inechanisms, 71
Independent varizble, in regression analysis,
189, 199200
Inductive reasoning, |13
Innovation, 218
Inspection sampling, significance test used in,
146-148
Integral, 66-67
Imerquartile range (IQR), spread measured in,
20-21
Inrervals
confidence. See Confidence intervals ina
frequency table, 10-11
IQR (interguartile range), spread measured in,
20-21

Jackknife, 215-216
Jury selection, racial bids in, | 38141

Large sample hypothesis testing
for population imean, 146-148
significance test for proportions, 143-145
Large values, calculating binomial distnbution
for, 79-80
Latin square, in experimental design, 184185
Least squares line, 189-190, 208
Lefi-handed alternate hypothesis, 144-145
Lineur regression, in regression analysis,
189-160), 208



Local control, in experimental design, 183
Logical operaions, 37

Margin of error, confidence intervals and, 119, 121
Mean, 15-16, |18
of binomial distribution, 78
central, 15-16
companing small sample, 170-171
confidence intervals and, 128-130, 169, 171
large sample test for, 146-148
in paired comparisons, 175-176
population, 59, 62, 80
confidence intervals and, 128-130, 169
hypuothesis testung and, 146148
of probibility distribution, 60-61
of mndom variables, 61, 67-69
sample
comparing small, 170-171
confidence intervals and, 130, 171
distibution of, 104-106, 171
hypathesis testing for, 146-148
standard deviation from, 22, 24-25, 62, 168,
171
Mean response, prediciing, in regression
analysis, 204-206
Measurerment error, expenimental design and, 183
Measures of spread, 19-25
Median, 17-18, 20-21
Midpaints, 10-11
Model properties. 59
Models
regression, 199-202
stochastic random, 116-1 18
for two populations. 162
Monitoring programs
power analysis in, 154-155
probability of type 1lerrors in, 151-155
Mortality staristics, 13
Multiple linear yegression, in regression
anulysis, 208
Multiplication rule, 45
binomiul coefticient and, 76
conditional probebility and, 4244
Multivariate data, statistical analysis of
cluster, 212
discriminate, 213
fuctor, 213
mu. See Population mean
Mutually exclusive events, 39, 42, 44

Matural bias, reducing, with paired comparison,
178
Matural variubility
experimental design and, 183-185
reducing, with paired comparison, 178
Nightingale, Florence, 13
Non-linear regression, in regression analysis, 208

Narmal approximation, 87-88
Normal distribution, standard, 79-85

rule for computing, 85

table 1o find, 8485
Null hypothesis (H,,), [40-141, 144145,
147-150, 152-153, 165-166. See also
Hypothesis testing
feal outcom,
104105
Numerical weight. 32

ling amd. 98100,

Objectivist. 35
Observed value of 1, 149150
Otwerved value of z, hypothesis testing and,
144-145, 165-166, 169
Opportunity sampling, 97
Opponunity sampling design, 97
Order of data, 17
Outcomes
elementary, 30, 32-38, 41
of events, rules for, 38-39
numerical, sumpling and, Y8-100, 104105
Ountliers, 18, 21-23

Puired comparisons
of gasolines, 174-178
means in, 175-176
paired and unpaired data compared, 177-178
smuall-sample ¢ test statistic for, 176
standard deviation in, 175-176
Pascal, Blaise, 29
Pascal's wangle. 77
Personal probability, 35
Polls
bias in, 126-127
clection, 114-127
error levels in, 124-127
Challup, 127
hypothesis testing in, 143-145
as opposed to actual elections, 126-127
Pollution monitoring, probubility of type I
enon in, 151-155
Pool the sum of squares
in comparing small sample means, 171
Population. See also Two populations compared
properties, 59
proportion, 128-130
standard deviation, 59, 62, 80
Population mean. 59, 62, B0. See also Two
populations compared
confidence imervals and, 128-130, 169
hyputhesis testing and, 146148
Power analysis in monitoring programs, 154155
Prediction hine, 189
Predictor variable, in regression analysis, 189
Probabilities, 4, 27-51
approximate, 60



Probabilities {continued)
characteristic propenies of, 34
classical, 35
conditional
fulse positive paradox and, 46-50
multiplication rule and, 42-44
continuous, 64
cumulative, 84
diserete, 64, 66
formulas for manpulating, 37-39
non-negative, 34
nonmal, 83-85
personal, 35
repeatable events and, 35
sample, 100
spread of, 67
Prohability calculmion, confidence intervals
amd, 117119
Probability density, 66
of continuous random variable, 65
Probubility distribution
binomial, 77-78
graphs, 5658
mean of, 60-61
properties of, 59
random variable, 55-58
table tw find normal, B4-85
Probability graphs, 56-58
Probability of type Il errors, 151-155
Probability statement. in hypothesis testing,
141-142
Prubability zero, 63-64
Proportion of successes. See Succuss rates
Pseudo-random numbers, 65
P-value, in hypothesis testing, 141142, 148

Random error Mluctustions, in regression
analysis, 199-209

Random experiment, 30, 32, 34, 36

sampling and, 98100, 104-105
Randomueation, 215-216

in experimental design, 183, 185
Random models. stochastic, 116-118
Random number generator, 65, 94
Random sampling

independence and, 92-94, 96

simple, Y2-96. 167

steps (o climinate bias in, 167

used for confidence inervals, [ 1d-115, 119
Random sampling design, 92-94
Random selection of jurors, 138-141
Random variables, 53-72

adding, 68-71

binomial, 74-76. 139-140

discrele, 63

mean of, 61, 67-69

probability distribution, 55-58

sumpling and, 98-100, 104-105
1, 107-109
variance of, 62, 67-71
Random variable ¢, 107-109
Random walk, 214
Regression, 187-209
Regression analysis
best linear unbiased estimators (BLUE) in,
201-202
confidence inwrvals in, 203-206
correlation coefficient in, 196
dependent random variable in, 199-209
dependent variable in, 189
fiting process in, 189-196
hypuothesis testing in. 207
independent vaciable in, 189, 199-209
linear regression in, 189-190, 208
predicting mean response in, 204-206
predicior variable in, 189
random error fluctuations in, 199-209
regression diagnostics in, 209
respunse variable in, 189
rigged data in, 189, 192, 194-195, 205-207
spread of data in, 190195
squared correlation in, 195
standard error (SE) without derivation in, 203
statistical inference in, 199-209
student weight experiment and, 188-209
sum of squared errors (SSE) in, 190-195
sum of squared regression (SSR) in, 194-196
Regression coeflicient sample, 191-192
Regression line, 189-190, 208
Regression model, 199-202
Relative frequency, 10, 35, 60
Relative frequency histogiams, 11, 57-58
Repeatable events, probability and, 35
Replication in experimental design, 183, 185
Resampling, 215-216
Response vanable in regression analysis, 189
Right-handed aliernate hypothesis, 144-145
Rounding off, 9
Round numbers, 10

Salk polio waccine, 3

Sample means
comparing small, 170-171
confidence intervals and, 130, 171
distribution of, 104-106
hypothesis testing for the pupulation mean,

146-148

Sample probabilivy, 100

Sample properties, 59

Sample regression coefficicnr, 191192

Sample size, 91
compaering small, 170-171
contidence levels and, 124-125
increasing, 124-125



aumnpie size (continued)
standand ervor and, 98-103
lesting large, 143148
Sample space, 30-31, 33,41
Sample variance, 22
Sampling, 89-109
accepltance, 150
random, 95
independence and, Y2-94, 96
steps to eliminate bias in, 167
useil for confidence intervals, 114-115, 119
random experiment and, 98-100, 104-105
random variables and, 98-100, 104-105
standard deviation and, 101-103
Sumipling design
cluster, 95
opportunity, 97
random, 92-94
simple random, 92-94
stratified, 95
systemalic, 96-97
Sampling distribution
of the mean, 104106
for proportion of successes, 163
Scauerplots, 188-189
random, 209
SD. See Smndard deviation
SE. See Standard error
Senator Astute. See Election polls
Sigma, 16. See also Summary statistics
Significance level
fixed, 141-142, 145
in hypothesis testing, 141-142, 145, 147148
in scientific work, 141-142
Significance test
fur proportions, 143-145
used in inspection sampling, 146-148
Simple random sampling, 92-96, 167. See also
Random sampling
Smoke-detectors, as a decision theory example,
151-154
Special addition rule, for mutually exclusive
events, 39, 42, 44
Special mulfiphiceion rule
cunditional probability and, 42-44
independence and, 43-44
Spinning pointer, 63-64
Spread, 14
of data in regression analysis, 190-192
sum of squared errors relative to, 193-195
measures of, 19-25
of probabilities, 67
variance in, 22-23
Speead distance, squares of, 22
Squared correlation, in regression analysis, 195
Squared distance, 22, 61-62
Squared errors, 3um of (SSE) in regression

analysis, 190-195
Squared regression, sum of (SSR), in regression
analysis, 194-196
Squere root, standard deviation defined by, 23
Squares, pool the sum of, 171
SSE (sum of squared errors)
in regression anatysis, 190-195
relative to spread of data, 193-195
SSR (sum of squared regression), in regression
analysis, |94-196
Standard deviation (SD)
in comparing small sample means, 171
in comparing the means of two populations,
168
in confidence intervals, 117, 128-130
defined by square root, 23
from mean values, 22, 24-25, |68, 171
in paired comparisons, 175-176
population, 59, 62, 80
sampling and, 101-103, 107
spread measures and, 22
z-scores and, 24-25
Standard error (SE)
in comparing small sample means, 171
in comparing the means of two populuions,
168
Standard error (SE)
in confidence inervals, 118, 128-130
sample size and, 98-103
without derivation, in regression analysis, 203
Standard normal distribution, 79-82
table for, 8485
Statistical apalysis of multivariae data,
212-213
Statistical hypothesis testing, 140-142, [44-145,
147148, 165-166, 169
Statistical inference, 4
in regression analysis, 199-209
Statistical situations, 158159
Statistics
morality, 13
summary, 14-26, 148
Stem-and-leaf diagram, 12, 18
Stochastic random models, 116-118
Stratified sampling design, 95
Student’s 1, See t-distnbution
Subjectivist, 35
Subtraction rule for events, 39, 44
Successes, number of, 75
Success rates, 99
comparing, for two populations, 160-163
confidence intervals for, 164
in hypothesis testing, 143-145
sampling distribution for, 163
Summary statistics, 19-26
in hypothesis testng, 148
Summation, 16. See also Summary statistics



i U Sl s iy
in regression analysis, 190-195
relutive 10 spread of dara, 193-195

ion

Sum of sq gression (SSR), in reg
analysis, 194-196

Sum of squares, pool the, 171

Systematic sampling design, 96-97

f-distribution, 107-109
in comparing small sample means, 171
confidence intervals based on, 131-136
critical values for, 132-136, 150
hypothesis testing and. 149-150
Teamwork, 218
Test statistic
in hypothesis testing, 140-141, 144-145,
147148, 165-166, 169
small-sample ¢, for paired comparisons, 176
Time series analysis, 214-215
r-observed value, 149150
Total variability
due to the regression, 194-195
experimental design and, |86
Tukey, John, 12,21
r-values, See r-distribution
Two-by-two decision table, 152
Two-handed altermate hypothesis, 144-145
Two populations compared, 158-179. See also
Population
confidence intervals for, 164, 169
hypothesis testing, 160-163, 169
mean of, 168-169
model for, 162
sampling disirbution for proportion of
successes, 163
success rates, 160-164
Type | errors, 151-154
Type Il errors, 151155
Typical value, 14-18. See also Spread

23%0

s asanan gy

Variability
natural
experimental design and, 183185
reducing, with paired comparison, 178
totzl
due lo the regression, 194-195
experimental design and, 186
Variables
binomial random, 74-76, 139-140
continuous random, 63, 65, 67
dependent, 189
dependent random, 199-209
diserete random, 63
random. See Random varizbles
in regression analysis, 189, 199-209
Varance
anulysis of. See ANOVA
of binomial distribution, 78
of continuous random variables, 67
of random variables, 62, 67-71
sample, 22
in spread, 22-23
Vertical scale, 11

Weight experiment, Penn State student, 9-12,
16, 18-26, 188-209. See also Repres-
sion; Regression analysis

x-axis, 80

y-uxis, 80

z-observed value, hypothesis testing and,
144145, 165-166, 169

z-scores, standard deviation and, 24-25
2 transformation, 84-88, 117-118
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