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Preface

This book is about the foundations, methods, techniques and applications of trans-
fer learning. Transfer learning deals with how learning systems can quickly adapt
themselves to new situations, new tasks and new environments. Transfer learning
is a particularly important area of machine learning, which we can understand
from several angles. First, the ability to learn from small data seems to be a partic-
ularly strong aspect of human intelligence. For example, we observe that babies
learn from only a few examples and can quickly and effectively generalize from
the few examples to concepts. This ability to learn from small data can be partly
explained by the ability of humans to leverage and adapt the previous experience
and pretrained models to help solve future target problems. Adaptation is an in-
nate ability of intelligent beings and artificially intelligent agents should certainly
be endowed with transfer learning ability.

Second, in machine learning practice, we observe that we are often surrounded
with lots of small-sized data sets, which are often isolated and fragmented. Many
organizations do not have the ability to collect a huge amount of big data due to a
number of constraints that range from resource limitations to organizations inter-
ests, and to regulations and concerns for user privacy. This small-data challenge
is a serious problem faced by many organizations applying AI technology to their
problems. Transfer learning is a suitable solution for addressing this challenge be-
cause it can leverage many auxiliary data and external models, and adapt them to
solve the target problems.

Third, transfer learning can make AI and machine learning systems more reli-
able and robust. It is often the case that, when building a machine learning model,
one cannot foresee all future situations. In machine learning, this problem is of-
ten addressed using a technique known as regularization, which leaves room for
future changes by limiting the complexity of the models. Transfer learning takes
this approach further, by allowing the model to be complex while being prepared
for changes when they actually come.

In addition, when facing unforeseeable changes and taking a learned model
across domain boundaries, transfer learning still makes sure that the model per-
formance does not deviate from the expected performance too much. In this way,
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transfer learning allows knowledge to be reused so experience gained once can be
repeatedly applied to the real world. From a software system’s perspective, if a sys-
tem is capable of adapting itself via transfer learning in new domains, it is said to
be more robust and more reliable when the external environment changes. Such
systems are often preferred in engineering practice.

If we continuously apply transfer learning in our machine learning practice, we
can obtain a lifelong machine learning system that can draw knowledge from a
succession of problem-solving experience, both in a long period of time and from
a large variety of tasks. Transfer learning endows an intelligent system with the
lifelong learning ability.

Last, but not least, a transfer learning system can be the backbone of a sound
business model in which user privacy is taken into serious consideration, such
that a pretrained model can be downloaded and adapted at the edge of a com-
puter network without leaking user data accumulated at the edge or from the
cloud. By moving the model one way from a server to a client, the privacy at the
client side is effectively protected. In addition, by carefully structuring the trans-
fer learning algorithms, private user information on the cloud side can also be
protected.

Like AI in general and machine learning in particular, the concept of transfer
learning has gone through decades of evolution. From AI’s early years, researchers
have considered the ability to transfer one’s knowledge as one of the fundamen-
tal cornerstones of intelligence. Transfer learning is also given different names
and explored under different guises, including learning by analogy, case-based
reasoning, knowledge reuse and reengineering, lifelong machine learning, never-
ending learning and domain adaption, to name a few. Outside of AI and Com-
puter Science, the concept of transfer learning has also been invented under dif-
ferent terms. In the fields of educational theory and learning psychology, for ex-
ample, the concept of transfer of learning has been an important subject in mod-
eling what constitutes effective learning and teaching for educators; it is believed
that the best teaching enables the student to learn “how to learn” and adapt the
learned knowledge in future situations. Despite different names, their spirits are
all similar: to be able to leverage one’s past experience to help make more effective
decisions in the future.

The study of transfer learning involves many areas of study in science and en-
gineering, including AI, algorithmic theories, probability and statistics, to name a
few. The field is also undergoing rapid changes as interests in AI grow, and many
new areas contribute to the field. As the first book of its kind in the area, we hope
to use it as a tool to help educate the newcomers of machine learning research
and application field, as well as a reference book for seasoned machine learning
researchers and application developers to use.

The book is partitioned into two parts. Part I presents the foundations of trans-
fer learning. Chapter 1 gives an overview and introduction to transfer learning.
Chapters 2–14 introduce various theoretical and algorithmic aspects of transfer
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learning. Part II, which includes Chapters 15–22, covers many application fields
of transfer learning. We give concluding remarks in Chapter 23.

The book is an accumulation of hard research work by a group of researchers
that spans over a decade, mainly consisting of Professor Qiang Yang’s current and
former graduate students, postdoctoral researchers and research associates. We
have assigned each chapter to one or more students, and then the four main ed-
itors either wrote other chapters or went in depth in each chapter to help refine
the content, or did both.

The following is a list of these authors.

• Chapter 1: Sinno Jialin Pan and Qiang Yang
• Chapter 2: Xiang Zhang
• Chapter 3: Xu Geng
• Chapter 4: Xueyang Wu
• Chapter 5: Han Tian
• Chapter 6: Ying Wei
• Chapter 7: Yinghua Zhang
• Chapter 8: Bo Liu
• Chapter 9: Yu Zhang
• Chapter 10: Yu Zhang
• Chapter 11: Ben Tan
• Chapter 12: Yu Zhang and Ying Wei
• Chapter 13: Jinliang Deng
• Chapter 14: Lianghao Li and Qiang Yang
• Chapter 15: Xiawei Guo, Yuqiang Chen, Weiwei Tu, and Wenyuan Dai
• Chapter 16: Yinghua Zhang and Weiyan Wang
• Chapter 17: Wenyi Xiao and Zheng Li
• Chapter 18: Kaixiang Mo
• Chapter 19: Weike Pan and Guangneng Hu
• Chapter 20: Qian Xu, Bo Liu and Qiang Yang
• Chapter 21: Vincent W. Zheng and Hao Hu
• Chapter 22: Leye Wang and Yexin Li

Finally, we wish to thank the managerial work of Yutao Deng, who helped keep
the schedules and manage team works. To all, our sincere thanks! Without their
tremendous effort, the book would have been impossible to complete.

We the editors wish to also thank our colleagues, organizations and collabo-
rators over the years. We thank the support of Hong Kong University of Science
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ogy Fund, the 4Paradigm Corp., Nanyang Technological University Singapore, We-
bank and many others for their generous support.
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FOUNDATIONS OF TRANSFER LEARNING





1

Introduction

1.1 AI, Machine Learning and Transfer Learning

AI was a vision initiated by Alan Turing when he asked the famous question:
“Can machines think?” This question has motivated generations of researchers to
explore ways to make machines behave intelligently. Throughout recent history,
AI has experienced several ups and downs, much of which evolve around the cen-
tral question of how machines can acquire knowledge from the outside world.

Attempts to make machines think like humans have gone a long way, from
force-feeding rule-like knowledge bases to machine learning from data. Machine
learning has thus grown from an obscure discipline to a major industrial and so-
cietal force in automating decisions that range from online commerce and ad-
vertising to education and health care. Machine learning is becoming a general
enabling technology for the world due to its strong ability to endow machines
with knowledge by letting them learn and adapt through labeled and unlabeled
data. Machine learning produces prediction models from data, thus often requir-
ing well-defined data as “teachers” to help tune statistical models. This ability in
making accurate predictions of future events are based on observations and un-
derstanding of the task domains. The data samples in the training examples are
often “labeled,” which means that observations and outcomes of predictions in
the training data are coupled and correlated. These examples are then used as
“teachers” by a machine learning algorithm to “train” a model that can be applied
to new data.

One can find many illustrative examples of machine learning in the real world.
One example is in the area of face recognition in computer-based image analysis.
Suppose that we have obtained a large pool of photos taken indoors. A machine
learning system can then use these data to train a model that reports whether a
new photo corresponds to a person appearing in the pool. An application of this
model would be a gate security system for a building, where a task would be to
ascertain whether a visitor is an employee in the organization.
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Even though a machine learning model can be made to be of high quality, it can
also make mistakes, especially when the model is applied to different scenarios
from its training environments. For example, if a new photo is taken from an out-
door environment with different light intensities and levels of noise such as shad-
ows, sunlight from different angels and occlusion by passersby, the recognition
capability of the system may dramatically drop. This is because the model trained
by the machine learning system is applied to a “different” scenario. This drop in
performance shows that models can be outdated and needs updating when new
situations occur. It is this need to update or transfer models from one scenario to
another that lends importance to the topic of the book.

The need for transfer learning is not limited to image understanding. Another
example is understanding Twitter text messages by natural language processing
(NLP) techniques. Suppose we wish to classify Twitter messages into different
user moods such as happy or sad by its content. When one model is built using
a collection of Twitter messages and then applied to new data, the performance
drops quite dramatically as a different community of people will very likely ex-
press their opinions differently. This happens when we have teenagers in one
group and grown-ups in another.

As the previous examples demonstrate, a major challenge in practicing ma-
chine learning in many applications is that models do not work well in new task
domains. The reason why they do not work well may be due to one of several
reasons: lack of new training data due to the small data challenge, changes of cir-
cumstances and changes of tasks. For example, in a new situation, high-quality
training data may be in short supply if not often impossible to obtain for model
retraining, as in the case of medical diagnosis and medical imaging data.
Machine learning models cannot do well without sufficient training data. Obtain-
ing and labeling new data often takes much effort and resources in a new appli-
cation domain, which is a major obstacle in realizing AI in the real world. Having
well-designed AI systems without the needed training data is like having a sports
car without an energy.

This discussion highlights a major roadblock in populating machine learning
to the practical world: it would be impossible to collect large quantities of data in
every domain before applying machine learning. Here we summarize some of the
reasons to develop such a transfer learning methodology:

1) Many applications only have small data: the current success of machine learn-
ing relies on the availability of a large amount of labeled data. However, high-
quality labeled data are often in short supply. Traditional machine learning
methods often cannot generalize well to new scenarios, a phenomenon known
as overfitting, and fail in many such cases.

2) Machine learning models need to be robust: traditional machine learning of-
ten makes an assumption that both the training and test data are drawn from
the same distribution. However, this assumption is too strong to hold in many
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practical scenarios. In many cases, the distribution varies according to time
and space, and varies among situations, so we may never have access to new
training data to go with the same test distribution. In situations that differ from
the training data, the trained models need adaptation before they can be used.

3) Personalization and specialization are important issues: it is critical and prof-
itable to offer personalized service for every user according to individual tastes
and demands. In many real world applications, we can only collect very little
personal data from an individual user. As a result, traditional machine learn-
ing methods suffer from the cold start problems when we try to adapt a general
model to a specific situation.

4) User privacy and data security are important issues: often in our applications
we must work with other organizations by leveraging multiple data sets. Often
these data sets have different owners and cannot be revealed to each other
for privacy or security concerns. When building a model together, it would be
desirable for us to extract the “essence” of each data set and adapt them in
building a new model. For example, if we can adapt a general model at the
“edge” of a network of devices, then the data stored on the device need not to
be uploaded to enhance the general model; thus, privacy of the edge device
can be ensured.

These objectives for intelligent systems motivated the development of transfer
learning. In a nutshell, transfer learning refers to the machine learning paradigm
in which an algorithm extracts knowledge from one or more application scenar-
ios to help boost the learning performance in a target scenario. Compared to tra-
ditional machine learning, which requires large amounts of well-defined training
data as the input, transfer learning can be understood as a new learning paradigm,
which the rest of the book will cover in detail. Transfer learning is also a motivation
to solve the so-called data sparsity and cold start problems in many large-scale
and online applications (e.g., labeled user rating data in online recommendation
systems may be too few to allow these online systems to build a high-quality rec-
ommendation system).

Transfer learning can help promote AI in less-developed application areas, as
well as less technically developed geographical areas, even when not much la-
beled data is available in such areas. For example, suppose we wish to build a book
recommendation system in a new online shopping application. Suppose that the
book domain is so new that we do not have many transactions recorded in this do-
main. If we follow the supervised learning methodology in building a prediction
model in which we use the insufficient training data in the new domain, we cannot
have a credible prediction model on users’ next purchase. However, with transfer
learning, one can look to a related, well-developed but different domain for help,
such as an existing movie recommendation domain. Exploiting transfer learning
techniques, one can find the similarity and differences between the book and the
movie domains. For example, some authors also turn their books into movies, and
movies and books can attract similar user groups. Noticing these similarities can
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allow one to focus on adapting the new parts for the book-recommendation task,
which allows one to further exploit the underlying similarities between the data
sets. Then, book domain classification and user preference learning models can
be adapted from those of the movie domain.

Based on the transfer learning methodologies, once we obtain a well-developed
model in one domain, we can bring this model to benefit other similar domains.
Hence, having an accurate “distance” measure between any task domains is nec-
essary in developing a sound transfer learning methodology. If the distance be-
tween two domains is large, then we may not wish to apply transfer learning as
the learning might turn out to produce a negative effect. On the other hand, if two
domains are “close by,” transfer learning can be fruitfully applied.

In machine learning, the distance between domains can often be measured in
terms of the features that are used to describe the data. In image analysis, fea-
tures can be pixels or patches in an image pattern, such as the color or shape.
In NLP, features can be words or phrases. Once we know that two domains are
close to each other, we can ensure that AI models can be propagated from the
well-developed domains to less-developed domains, making the application of AI
less data dependent. And this can be a good sign for successful transfer learning
applications.

Being able to transfer knowledge from one domain to another allows machine
learning systems to extend their range of applicability beyond their original cre-
ation. This generalization ability helps make AI more accessible and more robust
in many areas where AI talents or resources such as computing power, data and
hardware might be scarce. In a way, transfer learning allows the promotion of AI
as a more inclusive technology that serves everyone.

To give an intuitive example, we can use an analogy to highlight the key insights
behind transfer learning. Consider driving in different countries in the world. In
the USA and China, for example, the driver’s seat is on the left of the car and drives
on the right side of the road. In Britain, the driver sits on the right side of the car,
and drives on the left side of the road. For a traveler who is used to driving in the
USA to travel to drive in Britain, it is particularly hard to switch. Transfer learning,
however, tells us to find the invariant in the two driving domains that is a common
feature. On a closer observation, one can find that no matter where one drives, the
driver’s distance to the center of the road is the closest. Or, conversely, the driver
sits farthest from the side of the road. This fact allows human drivers to smoothly
“transfer” from one country to another. Thus, the insight behind transfer learning
is to find the “invariant” between domains and tasks.

Transfer learning has been studied under different terminologies in AI, such as
knowledge reuse and CBR, learning by analogy, domain adaptation, pre-training,
fine-tuning, and so on. In the fields of education and learning psychology, trans-
fer of learning has a similar notion as transfer learning in machine learning. In
particular, transfer of learning refers to the process in which past experience ac-
quired from previous source tasks can be used to influence future learning and
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performance in a target situation (Thorndike and S. Woodworth, 1901). Trans-
fer of learning in the field of education shares a common goal as transfer learn-
ing in machine learning in that they both address the process of learning in one
context and applying the learning in another. In both areas, the learned knowl-
edge or model is taken to a future target task for use after some adaptation. When
one delves into the literature of education theory and learning psychology (Ellis,
1965; Pugh and Bergin, 2006; Schunk, 1965; Cree and Macaulay, 2000), one can
find that, despite the fact that transfer learning in machine learning aims to en-
dow machines with the ability to adapt and transfer of learning in education tries
to study how humans adapt in education, the processes or algorithms of transfer
are similar.

A final note on the benefit of transfer learning is in simulation technology. Often
in complex tasks, such as robotics and drug design, for example, it is too expensive
to engage real world experiments. In robotics, a mobile robot or an autonomous
vehicle needs to collect sufficient training data. For example, there may be many
ways in which a car is involved in a car crash but to create car crashes is far too ex-
pensive in real life. Instead, researchers often build sophisticated simulators such
that a trained model taught in the simulator environment is applied to the real
world after adaptation via transfer learning. The transfer learning step is needed
to account for many future situations that are not seen in the simulated envir-
onment and adapt the simulated prediction models, such as obstacle avoidance
models in autonomous cars, to unforeseeable future situations.

1.2 Transfer Learning: A Definition

To start with, we define what “domain,” “task” and “transfer learning” mean by
following the notations introduced by Pan and Yang (2010). A domainD consists of
two components: a feature space X and a marginal probability distribution PX ,
where each input instance x ∈ X . In general, if two domains are different, then
they may have different feature spaces or different marginal probability distribu-
tions. Given a specific domain, D= {X ,PX }, a task T consists of two components:
a label space Y and a function f (·) (denoted by T = {Y , f (·)}). The function f (·)
is a predictive function that can be used to make predictions on unseen instances
{x∗}s. From a probabilistic viewpoint, f (x) can be written as P (y |x). In classifica-
tion, labels can be binary, that is, Y = {−1,+1}, or discrete values, that is, multiple
classes. In regression, labels are of continuous values.

For simplicity, we now focus on the case where there are one source domain Ds

and one target domain Dt . The two-domain scenario is by far the most popular of
the research works in the literature. In particular, we denote by Ds = {(xsi , ysi )}ns

i=1
the source domain labeled data, where xsi ∈Xs is the data instance and ysi ∈Ys is
the corresponding class label. Similarly, we denote by Dt = {(xti , yti )}nt

i=1 the target
domain labeled data, where the input xti is in Xt and yti ∈Yt is the corresponding
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Figure 1.1 An illustration of a transfer learning process

output. In most cases, 0≤nt � ns . Based on these notations, transfer learning can
be defined as follows (Pan and Yang, 2010).

Definition 1.1 (transfer learning) Given a source domain Ds and learning task
Ts , a target domainDt and learning taskTt , transfer learning aims to help improve
the learning of the target predictive function ft (·) for the target domain using the
knowledge in Ds and Ts , where Ds �=Dt or Ts �=Tt .

A transfer learning process is illustrated in Figure 1.1. The process on the left
corresponds to a traditional machine learning process. The process on the right
corresponds to a transfer learning process. As we can see, transfer learning makes
use of not only the data in the target task domain as input to the learning algo-
rithm, but also any of the learning process in the source domain, including the
training data, models and task description. This figure shows a key concept of
transfer learning: it counters the lack of training data problem in the target do-
main with more knowledge gained from the source domain.

As a domain contains two components, D= {X ,PX }, the condition Ds �=Dt im-
plies that either Xs �= Xt or PXs �= PXT . Similarly, as a task is defined as a pair of
components T = {Y ,PY |X }, the condition Ts �= Tt implies that either Ys �= Yt or
PYs |Xs �=PYt |Xt . When the target domain and the source domain are the same, that
is, Ds = Dt , and their learning tasks are the same, that is, Ts = Tt , the learning
problem becomes a traditional machine learning problem.

Based on this definition, we can formulate different ways to categorize exist-
ing transfer learning studies into different settings. For instance, based on the ho-
mogeneity of the feature spaces and/or label spaces, we can categorize transfer
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learning into two settings: (1) homogeneous transfer learning and (2) heteroge-
neous transfer learning, whose definitions are described as follows (Pan, 2014).1

Definition 1.2 (homogeneous transfer learning) Given a source domain Ds and a
learning task Ts , a target domain Dt and a learning task Tt , homogeneous transfer
learning aims to help improve the learning of the target predictive function ft (·)
for Dt using the knowledge in Ds and Ts , where Xs

⋂
Xt �= � and Ys = Yt , but

PXs �=PXt or PYs |Xs �=PYt |Xt .

Definition 1.3 (heterogeneous transfer learning) Given a source domain Ds and
a learning task Ts , a target domain Dt and a learning task Tt , heterogeneous trans-
fer learning aims to help improve the learning of the target predictive function
ft (·) for Dt using the knowledge in Ds and Ts , where Xs

⋂
Xt =� or Ys �=Yt .

Besides using the homogeneity of the feature spaces and label spaces, we can
also categorize existing transfer learning studies into the following three settings
by considering whether labeled data and unlabeled data are available in the tar-
get domain: supervised transfer learning, semi-supervised transfer learning and
unsupervised transfer learning. In supervised transfer learning, only a few labeled
data are available in the target domain for training, and we do not use the unla-
beled data for training. For unsupervised transfer learning, there are only unla-
beled data available in the target domain. In semi-supervised transfer learning,
sufficient unlabeled data and a few labeled data are assumed to be available in
the target domain.

To design a transfer learning algorithm, we need to consider the following three
main research issues: (1) when to transfer, (2) what to transfer and (3) how to
transfer.

When to transfer asks in which situations transferring skills should be done.
Likewise, we are interested in knowing in which situations knowledge should not
be transferred. In some situations, when the source domain and the target do-
main are not related to each other, brute-force transfer may be unsuccessful. In
the worst case, it may even hurt the performance of learning in the target domain,
a situation which is often referred to as negative transfer. Most of current studies
on transfer learning focus on “what to transfer” and “how to transfer,” by implic-
itly assuming that the source domain and the target domain are related to each
other. However, how to avoid negative transfer is an important open issue that is
attracting more and more attentions.

What to transfer determines which part of knowledge can be transferred across
domains or tasks. Some knowledge is specific for individual domains or tasks,
and some knowledge may be common between different domains such that they
may help improve performance for the target domain or task. Note that the term

1 In the rest of book, without explicit specification, the term “transfer learning” denotes
homogeneous transfer learning.
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“knowledge” is very general. Thus, in practice, it needs to be specified based on
different context.

How to transfer specifies the form that a transfer learning method takes. Differ-
ent answers to the question of “how to transfer” give a categorization for transfer
learning algorithms:

(1) instance-based algorithms, where the knowledge transferred corresponds to
the weights attached to source instances;

(2) feature-based algorithms, where the knowledge transferred corresponds to
the subspace spanned by the features in the source and target domains;

(3) model-based algorithms, where the knowledge to be transferred is embedded
in part of the source domain models and

(4) relation-based algorithms, where the knowledge to be transferred corresponds
to rules specifying the relations between the entities in the source domain.

Each of these types of transfer learning corresponds to an emphasis on which
part of the knowledge is being considered as a vehicle to facilitate the knowl-
edge transfer. Specifically, a common motivation behind instance-based trans-
fer learning approaches is that, although the source domain labeled data can-
not be reused directly due to the domain difference, part of them can be reused
for the target domain after reweighting or resampling. In this way, the source-
domain labeled instances with large weights can be considered as “knowledge” to
be transferred across domains. An implicit assumption behind the instance-based
approaches is that the source domain and the target domain have a lot of overlap-
ping features, which means that the domains share the same or similar support.

However, in many real world applications, only a portion of the feature spaces
from the source and target domains overlap, which means that many features
cannot be directly used as bridges for the knowledge transfer. As a result, some
instance-based methods may fail to work effectively for knowledge transfer.
Feature-based transfer learning approaches are more promising in this case. A
common idea behind feature-based approaches is to learn a “good” feature rep-
resentation for both the source domain and the target domain such that, by pro-
jecting data onto the new representation, the source domain labeled data can be
reused to train a precise classifier for the target domain. In this way, the knowl-
edge to be transferred across domains can be considered as the learned feature
representation.

Model-based transfer learning approaches assume the source domain and the
target domain share some parameters or hyperparameters of the learning mod-
els. A motivation of model-based approaches is that a well-trained source model
has captured a lot of useful structure, which is general and can be transferred to
learn a more precise target model. In this way, the knowledge to be transferred is
the domain-invariant structure of the model parameters. A recently widely used
pretraining technique for transfer learning based on deep learning is indeed a
model-based approach. Specifically, the idea of pretraining is to first train a deep
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learning model using sufficient source data, which could be quite different from
the target data. After the deep model is trained, a few target labeled data are used
to fine-tune part of the parameters of the pretrained deep model, for example, to
fine-tune parameters of several layers while fixing parameters of other layers.

Different from the three aforementioned categories of approaches, relation-
based transfer learning approaches assume that some relationships between ob-
jects (i.e., instances) are similar across domains or tasks. Once these common re-
lationships are extracted, then they can be used as knowledge for transfer learn-
ing. Note that, in this category, data in the source domain and the target domain
are not required to be independent and identically distributed as the other three
categories.

1.3 Relationship to Existing Machine Learning Paradigms

Transfer learning and machine learning are closely related. On one hand, the
aim of transfer learning encompasses that of machine learning in that its key in-
gredient is “generalization.” In other words, it explores how to develop general
and robust machine learning models that can apply to not only the training data,
but also unanticipated future data. Therefore, all machine learning models should
have the ability to conduct transfer learning. On the other hand, transfer learn-
ing differs from other branches of machine learning in that transfer learning aims
to generalize commonalities across different tasks or domains, which are “sets”
of instances, while machine learning focuses on generalize commonalities across
“instances.” This difference makes the design of the learning algorithms quite dif-
ferent.

Specifically, machine learning algorithms such as semi-supervised learning, ac-
tive learning and transfer learning can be used to partially address the labeled
data sparsity issue for a target domain, but they have different assumptions. Semi-
supervised learning aims to address the labeled data sparsity problem in the same
domain by making use of a large amount of unlabeled data to discover an intrinsic
data structure to effectively propagate label information. Common assumptions
behind semi-supervised learning techniques are (1) the underlying intrinsic data
structure is very useful to learn a precise model even without sufficient labeled
data and (2) the training data, including labeled and unlabeled, and the unseen
test data are still represented in the same feature space and drawn from the same
data distribution.

Instead of exploring unlabeled data to train a precise model, active learning,
which is another branch in machine learning for reducing the annotation effort
of supervised learning, tries to design an active learner to pose queries, usually
in the form of unlabeled data instances to be labeled by an oracle (e.g., a human
annotator). The key motivation behind active learning is that a machine learning
algorithm can achieve greater accuracy with fewer training labels if it is allowed
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Figure 1.2 Relationship of transfer learning to other learning paradigms

to choose the data from which it learns. However, active learning assumes that
there is a budget for the active learner to pose queries in the domain of interest. In
some real world applications, the budget may be quite limited, which means that
the labeled data queried by active learning may not be sufficient enough to learn
an accurate classifier in the domain of interest.

Transfer learning, in contrast, allows the domains, tasks and distributions used
in the training phase and the testing phase to be different. The main idea behind
transfer learning is to borrow labeled data or extract knowledge from some related
domains to help a machine learning algorithm to achieve greater performance in
the domain of interest. Thus, transfer learning can be referred to as a different
strategy for learning models with minimal human supervision, compared to semi-
supervised and active learning.

One of the most related learning paradigms to transfer learning is multi-task
learning. Although both transfer learning and multitask learning aim to general-
ize commonality across tasks, transfer learning is focused on learning on a target
task, where some source task(s) is(are) used as auxiliary information, while mul-
titask learning aims to learn a set of target tasks jointly to improve the general-
ization performance of each learning task without any source or auxiliary tasks.
As most existing multitask learning methods consider all tasks to have the same
importance, while transfer learning only takes the performance of the target task
into consideration, some detailed designs of the learning algorithms are differ-
ent. However, most existing multitask learning algorithms can be adapted to the
transfer learning setting.

We summarize the relationships between transfer learning and other machine
learning paradigms in Figure 1.2, and the difference between transfer learning and
multitask learning in Figure 1.3.
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1.4 Fundamental Research Issues in Transfer Learning

As we mentioned earlier, there are three research issues in transfer learning,
namely, “what to transfer,” “how to transfer” and “when to transfer.” As the objec-
tive of transfer learning is to transfer knowledge across different domains, the first
question is to ask what knowledge across domains can be transferred to boost the
generalization performance of the target domain, which is referred to as the “what
to transfer” issue. After identifying what knowledge to be transferred, a follow-up
question is how to encode the knowledge into a learning algorithm to transfer,
which corresponds to the “how to transfer” issue. The “when to transfer” issue is
to ask in which situations transfer learning should be performed or can be per-
formed safely. A fundamental research question behind these three issues is how
to measure the “distance” between any pair of domains or tasks. With the distance
measure between domains or tasks, one can identify what common knowledge
between tasks can be used to reduce distance between domains or tasks, that is,
what to transfer, and figure out how to reduce the distance between domains or
tasks based on the identified common knowledge, that is, how to transfer. More-
over, with the distance measure between domains or tasks, one can logically de-
cide “when to transfer”: if the distance is very large, it is advised not to conduct
transfer learning. Otherwise, it is “safe” to do so.

A subsequent question is thus: what form should such a notion of distance
measure be in? Traditionally, there are various types of statistical measures for
the distance between any two probability distributions. Typical measures among
them include Kulback–Leibler divergence, A-distance (which measures the do-
main separation) and Maximum Mean Discrepancy (MMD), to name a few. Recall
that a domain contains two components: a feature space and a marginal prob-
ability distribution, and a task also contains two components: a label space and
a conditional probability distribution. Therefore, existing statistical measures for
the distance between probability distributions could be used to measure the dis-
tance between domains or tasks by assuming the source domain (task) and the
target domain (task) share the same feature (label) space. However, there are some
limitations on using statistical distance measures for transfer learning. First, re-
searchers have found that these general distribution-based distance measures are
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often too coarse to serve the purpose well in measuring the distance in the trans-
ferrability between two domains or tasks. Second, if the domains have different
feature spaces and/or label spaces, one has to first project the data onto the same
feature and/or label space, and then apply the statistical distance measures as a
follow-up step. Therefore, more research needs to be done on a general notion of
distances between two domains or tasks.

1.5 Applications of Transfer Learning

1.5.1 Image Understanding

Many image understanding tasks from object recognition to activity recognition
have been considered. Typically, these computer vision tasks require a lot of la-
beled data to train a model, such as using the well-known ImageNet data set.
However, when computer vision situations slightly change, such as changing from
indoors to outdoors and from still cameras to moving cameras, the model needs
to be adapted to account for new situations. Transfer learning is an often used
technique to solve these adaptation problems.

In image analysis, many recent works combined deep learning architecture with
transfer learning. For example, Long et al. (2015) explore a deep learning archi-
tecture in which domain distances are minimized between the source and target
domains. In a paper published by Facebook (Mahajan et al., 2018), Mahajan et al.
apply transfer learning to image classification. The approach involves first train-
ing a deep learning model based on a very large image data set. This pretrained
model is then fine-tuned on specific tasks in a target domain, which involves rel-
atively small amounts of labeled data. The model is a deep convolutional network
trained for the task of classification based on hashtags assigned to billions of social
media images, and the target tasks are object recognition or image classification.
Their analysis shows that it is important to both increase the size of the pretraining
data set as well as to select a closely related label space between source and tar-
get tasks. This observation suggests that transfer learning requires the design of
“label-space engineering” approaches to match source and target learning tasks.
Their work also suggests that improvements on target tasks may be obtained by
increasing source model complexity and data set sizes.

Transfer learning also allows image analysis to play an important role in appli-
cations with a large societal impact. In the work by Xie et al. (2016), authors from
Stanford University Earth Sciences apply transfer learning to predict poverty lev-
els on earth based on satellite images. First, they used daytime images to predict
the nighttime light images. The resulting model is then transferred to predicting
poverty. This results in a very accurate prediction model that required much less
human labeling effort to build compared to traditional survey-based methods.
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1.5.2 Bioinformatics and Bio-imaging

In biology, many experiments are costly and data are very few. Examples include
bio-imaging when doctors try to use computers to discover potential diseases,
and when software models are used to scan complex DNA and protein sequences
for patterns to point to a particular illness or cure. Transfer learning has been in-
creasingly used to help leverage the knowledge from one domain to another to
address the difficulty that labeled data in biology is costly to obtain. For example,
Xu and Yang (2011) give an early survey of transfer learning and multitask learn-
ing in bioinformatics applications, and Xu et al. (2011) present a transfer learn-
ing process to identify protein cellular structures in a target domain where the
labeled data is in short supply. In biomedical image analysis, a difficult problem is
to collect enough training data to train a model for identifying image patterns that
designate illnesses such as cancer. Such identification requires large amounts of
training data. However, these data are often very expensive to obtain as they re-
quire costly human experts to label. Furthermore, the data for pretrained models
and future models are often from different distributions. These problems inspire
many research works to apply transfer learning to adapt the pretrained model in
new tasks. For example, in the work by Shin et al. (2016), a pretrained model based
on ImageNet data is used as the source domain model, which is then transferred
for use in a medical image domain for thoraco-abdominal lymph node detection
and interstitial lung disease classification, with great success.

1.5.3 Recommender Systems and Collaborative Filtering

It is often the case that an online product recommendation system is difficult to
set up due to the cold start problem. This problem can be alleviated if we discover
similarities between domains and adapt a recommendation model from a ma-
ture domain to the new domain. This often saves time and resources that make
an otherwise impossible task successful. For example, Li et al. (2009b) and Pan
et al. (2010b) give early accounts of applying transfer learning for online recom-
mendation. In their applications, cross-domain recommendation systems trans-
fer user preference models from an existing domain (say, a book recommendation
domain) to a new domain (say, a movie recommendation domain). The scenario
corresponds to the business case where an online commerce site opens a new line
of business and wishes to quickly deploy a recommendation model for the opera-
tion in the new business line. In doing so, it must overcome the problem of a lack
of transaction data in the new business line. Another line of work is in integrat-
ing reinforcement learning and recommendation systems to allow the items that
are recommended to be both accurate according to past history of a user and po-
tentially diverse to enrich users’ interests. As an example, Liu et al. (2018) present
a bandit algorithm that balances between recommendation accuracy and topic
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diversity, to allow a system to explore new topics as well as cater to users’ recent
choices. Relating to transfer learning, the work shows that the recommendation
strategy in balancing exploration and exploitation can indeed be transferred be-
tween domains.

1.5.4 Robotics and Autonomous Cars

In designing robotics and autonomous cars, learning from simulations is a par-
ticularly useful approach. These are examples of hardware interactions, where
it is costly to gather labeled data for training reinforcement learning and super-
vised learning models. Taylor and Stone (2007) described how transfer learning
helps by allowing researchers to build a simulated model in a more or less ideal
domain, the source domain, and then learn a policy to deal with the anticipated
events in a target domain. The target domain model can handle more cases in the
real world to further handle more unanticipated and noisy data. When the mod-
els adapt well, much labor and many resources can be saved from retraining the
target domain model. In the work by Tai et al. (2017), a mapless motion planner
was designed based on a ten-dimensional sparse range findings and trained in an
end-to-end deep reinforcement learning algorithm. Then the learned planner is
transferred to the real world by generalizing via real world samples.

1.5.5 NLP and Text Mining

Text mining is a good application for transfer learning algorithms. Text mining
aims to discover useful structural knowledge from text and applies to other do-
mains. Among all the problems in text mining, text classification aims to label
new text documents with different class tags. A typical text classification prob-
lem is sentiment classification. On the Web, there are enormous user-generated
contents at online sites such as online forums, blogs, social networks and so on.
It is very important to be able to summarize opinions of consumers on products
and services. Sentiment classification addresses this problem by classifying the re-
views into positive and negative categories. However, on different domains, such
as different types of products, different types of online sites and different sectors
of business, users may express their opinions using different words. As a result,
a sentiment classifier trained on one domain may perform poorly on other do-
mains. In this case, transfer learning can help adapt a well-trained sentiment clas-
sifier across different domains.

Recently, work on pretraining gained new insights into the nature of transfer
learning. Devlin et al. (2018) highlight one successful condition for transfer learn-
ing applications: having a sufficient amount of source domain training data. For
example, Google’s NLP system BERT (Bidirectional Encoder Representations from
Transformers) applies transfer learning to a number of NLP tasks, showing that
transfer learning with a powerful pretained model can solve a variety of tradition-
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ally difficult problems such as question answering problems (Devlin et al., 2018).
It has accomplished surprising results by leading in many tasks in the open com-
petition SQuAD 2.0 (Rajpurkar et al., 2016). The source domain consists of an ex-
tremely large collection of natural language text corpus, with which BERT trained
a model that is based on the bidirectional transformers based on the attention
mechanism. The pertained model is capable of making a variety of predictions in
a language model more accurate than before, and the predictive power increases
with increasing amounts of training data in the source domain. Then, the BERT
model is applied to a specific task in a target domain by adding additional small
layers to the source model in such tasks as Next Sentence classification, Ques-
tion Answering and Named Entity Recognition (NER). The transfer learning ap-
proach corresponds to model-based transfer, where most hyperparameters stay
the same but a selected few hyperparameters can be adapted with the new data in
the target domain.

1.6 Historical Notes

Many human learning activities follow the style of transfer learning. We observe
that people often apply the knowledge gained from previous learning tasks to help
learn a new task. For example, a baby can be observed to first learn how to recog-
nize its parents before using this knowledge to help it learn how to recognize other
people.

Transfer learning has deep roots in AI, psychology, educational theory and cog-
nitive science. In AI, there have been many forms of transfer learning. Learning
by analogy is one of the fundamental insights of AI. Humans can draw on the
past experience to solve current problems very well. In AI, there have been sev-
eral early works on analogical reasoning such as dynamic memory (Schank, 1983).
Using analogy in problem solving, Carbonell (1981) and Winston (1980) pointed
out that analogical reasoning implies that the relationship between entities must
be compared, not just the entity themselves, to allow effective recall of previous
experiences. Forbus et al. (1998) have argued for high-level structural similarity
as a basis of analogical reasoning. Holyoak and Thagard (1989) have developed a
computational theory of analogical reasoning using this strategy, when abstrac-
tion rules that allow the two instances to be mapped to a unified representation
are given as input.

Analogical problem solving is the cornerstone for case-based reasoning (CBR),
where many systems have been developed. For example, HYPO (Ashley, 1991) re-
trieves similar past cases in a legal case base to argue in support of a claim or make
counterarguments. PRODIGY (Carbonell et al., 1991) uses a collection of previ-
ous problem-solving cases as a case base, and retrieves the most similar cases for
adaptation. Most operational systems of analogical reasoning such as CBR sys-
tems (Kolodner, 1993) have relied on an assumption that the past instances and
the new target problem are in the same representational space.
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Table 1.1 Notations

D A data set
X A feature space
H A hypothesis space
P A probability distribution

EP[·] Expectation with respect to distribution P

tr(A) Trace of matrix A
min Minimization
max Maximization

In An n×n identity matrix
I An identity matrix with the size depending on the context
0 A zero vector or matrix with the size depending on the context
1 A vector or matrix of all ones with the size depending on the context

‖ ·‖p The �p norm of a vector where 0≤ p ≤∞
‖·‖1 The �1 norm of a vector or matrix
‖ ·‖F The Frobenius norm of a matrix
‖ ·‖S(p) The Schatten p-norm norm of a matrix
μi (·) The i -th largest eigenvalue or singular value of a matrix

N (μ,σ) A univariate or multivariate normal distribution with mean μ and variance σ

‖A‖p,q The �p,q norm of a matrix, that is, ‖A‖p,q =
∥∥(‖a1‖p , . . . ,‖an‖p

)∥∥
q where ai is the i th row of A.

A−1 The inverse of a nonsingular matrix A
A+ The inverse of a nonsingular matrix A or the pseduo-inverse of a singular matrix

There have been some surveys on transfer learning in machine learning lit-
erature. Pan and Yang (2010) and Taylor and Stone (2009) give early surveys of
the work on transfer learning, where the former focused on machine learning in
classification and regression areas and the latter on reinforcement learning ap-
proaches. This book aims to give a comprehensive survey that cover both these
areas, as well as the more recent advances of transfer learning with deep learning.

1.7 About This Book

This book mainly consists of two parts. The first part is to introduce the founda-
tion of transfer learning in terms of representative methodologies and theoretical
studies. The second part is to discuss some advanced topics in transfer learning
and show some successful applications of transfer learning. The notations used in
this book are summarized in Table 1.1.

The book is the effort of years of original research and survey of the research
field by many former and current students of Professor Qiang Yang at Hong Kong
University of Science and Technology and several other organizations. In chrono-
logical order of chapters, the composition of the book is outlined as follows:

Chapter 2 covers instance-based transfer learning. One of the most straightfor-
ward transfer learning methods is to identify instances or samples from
the source domains and assign them weights. Then, these instances with
sufficiently high weights are transferred to the target domain to help train
a better machine learning model. In doing so, it is important to transfer
only those instances that can contribute to the learning in the target do-
main and at the same time avoid “negative transfer.” The instance-based
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transfer learning methods can also be useful when multiple source do-
mains exist.

Chapter 3 covers feature-based transfer learning. Features constitute a major el-
ement of machine learning. They can be straightforward attributes in the
input data, such as pixels in images or words and phrases in a text docu-
ment, or they can be composite features composed by certain nonlin-
ear transformations of input features. Together these features comprise
a high-dimensional feature space. Feature-based transfer is to identify
common subspaces of features between source and target domains, and
allow transfer to happen in these subspaces. This style of transfer learn-
ing is particularly useful when no clear instances can be directly trans-
ferred, but some common “style” of learning can be transferred.

Chapter 4 discusses model-based transfer learning. Model-based transfer is when
parts of a learning model can be transferred to a target domain from a
source domain, where the learning in the target domain can be “fine-
tuned” based on the transferred model. Model-based transfer learning
is particularly useful when one has a fairly complete collection of data
in a source domain, and the model in the source domain can be made
very powerful in terms of coverage. Then learning in a target domain cor-
responds to adapting the general model from the source domain to a spe-
cific model in a target domain on the “edge” of a network of
domains.

Chapter 5 explores relation-based transfer learning. This chapter is particularly
useful when knowledge is coded in terms of a knowledge graph or in rela-
tional logic form. When some dictionary of translation can be instituted,
and when knowledge exists in the form of some encoded rules, this type
of transfer learning can be particularly useful.

Chapter 6 presents heterogeneous transfer learning. Sometimes, when we deal
with transfer learning, the target domain may have a completely differ-
ent feature representation from that of the source domain. For example,
we may have collected labeled data about images, but the target task is to
classify text documents. If there is some relationship between the images
and the text documents, transfer learning can still happen at the seman-
tic level, where the semantics of the common knowledge between the
source and the target domains can be extracted as a “bridge” to enable
the knowledge transfer.

Chapter 7 discusses adversarial transfer learning. Machine learning, especially
deep learning, can be designed to generate data and at the same time
classify data. This dual relationship in machine learning can be exploited
to mimic the power of imitation and creation in humans. This learn-
ing process can be modeled as a game between multiple models, and is
called adversarial learning. Adversarial learning can be very useful in em-
powering a transfer learning process, which is the subject of this chapter.
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Chapter 8 discusses the use of transfer learning in reinforcement learning. Re-
inforcement learning allows rewards to be delayed, and introduces the
concept of actions and states in a learning system. Learning a policy in a
reinforcement learning problem requires a huge amount of training data,
which is time consuming to prepare. Transfer learning alleviates this pain
and is promising when the source and target domains and tasks can be
closely aligned.

Chapter 9 discusses multitask learning. So far, transfer learning has been dis-
cussed along a time line: a source domain and a model have been well
prepared before transfer learning can happen to a target domain in a later
time point. Multitask learning aims to learn at the same time point, by al-
lowing several tasks to benefit with common knowledge for each other.
This is the style of learning when a student takes several courses in the
same semester, when the student finds that some common contents or
learning methodology can be commonly shared between the courses.

Chapter 10 discusses transfer learning theory. Learning theory tells the general
capability of a learning system, by relating the number of samples with
the generalization error bounds of a particular algorithm. This line of
work generally follows the methodology of probably approximately cor-
rect learning, or PAC learning. When the bound is tight, the error bound
can also be used to design new algorithms. The transfer learning theory,
when properly done, can help give assurances for a learning system’s ca-
pability.

Chapter 11 surveys transitive transfer learning. Transfer learning so far has been
discussed in a source to target domain transfer model. When the source
and target domains are “far” from each other, there is no directly relation
between the two, transfer cannot directly happen between the two do-
mains. Even though this poses difficulty for transfer learning, there are
still opportunities for transfer learning when we can find some interme-
diate domains as “stepping-stones” for knowledge to “hop over” to target
domains. For example, this might happen when we consider a student
entering a university taking a calculus class; through several semesters’
of knowledge transfer, they eventually they take some advanced physics
or computing classes.

Chapter 12 presents learning to transfer as a way to achieve automated trans-
fer learning. Just like a typical machine learning system, the engineering
process can be very tedious, as there may be many parameters to tune. As
a result, researchers introduced the concept of automatic machine learn-
ing (AutoML) to automate the parameter tuning process through auto-
matic optimization. Likewise, transfer learning requires many engineer-
ing efforts, and, when sufficient transfer learning experience is gained,
this experience can in turn become the training data for building a
parameter-tuning model for automatic transfer learning (AutoTL).
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Chapter 13 presents few-shot learning. Few-shot learning is when models have
been built well enough in a source domain, there may be cases where
only few training data, or even no training data, are required in the target
domain before a target domain model is well trained.

Chapter 14 discusses lifelong machine learning. When transfer learning is en-
gaged continuously along a time line, the system can draw knowledge
from all previous experience in a lifelong manner. A challenge is to de-
cide how to store the previous knowledge and how to select the previous
experience to reuse when solving the next task in life.

Chapter 15 discusses privacy-preserving transfer learning. When transfer learn-
ing happens between two organizations, we wish to protect the sensi-
tive and private information about users and the confidential data in the
source domain. We wish to do this while transferring the knowledge itself.
Thus, care should be taken not to allow the target domain to reverse engi-
neer the sensitive data when transfer learning is applied. In this chapter,
we discuss how differential privacy is integrated with transfer learning to
protect the user privacy and ensure data confidentiality.

Chapter 16 discusses applications of transfer learning in computer vision, which
is one of the most extensive application fields of transfer learning. We
survey the work in this area, paying special attention to medical imaging
and transfer learning.

Chapter 17 discusses applications of transfer learning in NLP. NLP is one of the
main application areas of transfer learning, which requires special atten-
tion due to the language specific nature of NLP.

Chapter 18 discusses applications of transfer learning in dialogue systems. We
particularly separated dialogue systems out of the general survey on NLP
in the previous chapter because this is an increasingly important appli-
cation area not only in its own right, but also as a human–computer in-
teraction medium that will grow in the years to come.

Chapter 19 presents applications of transfer learning in recommendation sys-
tems. Recommendation systems is a machine learning technique and,
at the same time, an important application area of machine learning.
Transfer learning is particularly important in recommendation systems
because this domain constantly suffers from the so-called “cold start”
problem and data sparsity problem where not enough data and knowl-
edge have been gained in a newly started area. Transfer learning has
proven to be very useful in alleviating these problems.

Chapter 20 discusses applications of transfer learning in bioinformatics and bio-
imaging. Biological data are increasingly accumulated with advancement
of genetic and biomedical technology. This gives application opportu-
nities to machine learning. However, this is a domain where collecting
high-quality samples is extremely difficult, expensive and time consum-
ing. Thus, transfer learning can be very useful, especially when the ge-
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netics domain is full of data of very high dimensionality and low sample
sizes. We give an overview of works in this area.

Chapter 21 presents applications of transfer learning in activity recognition based
on sensors. Activity recognition refers to finding people’s activities from
sensor readings, which can be very useful for assisted living, security and
a wide range of other applications. A challenge in this domain is the lack
of labeled data, and this challenge is particularly fit for transfer learning
to address.

Chapter 22 discusses applications of transfer learning in urban computing. There
are many machine learning problems to address in urban computing,
ranging from traffic prediction to pollution forecast. When data has been
collected in one city, the model can be transferred to a newly considered
city via transfer learning, especially when there is not sufficient high-
quality data in these new cities.

Chapter 23 gives a summary of the whole book with an outlook for future works.



2

Instance-Based Transfer Learning

2.1 Introduction

Intuitively, instance-based transfer learning approaches aim to reuse labeled data
from the source domain help to train a more precise model for a target learning
task. If the source domain and the target domain are quite similar, we can directly
merge the source domain data into the target domain. Then it becomes a standard
machine learning problem in a single domain. However, in many cases, this “di-
rect adoption” strategy of source domain instances cannot help to solve the target
task.

A common motivation behind instance-based transfer learning approaches is
that some source domain labeled data are still useful for learning a precise model
for the target domain while some are useless or even may hurt the performance
of the target model if used. We can use the bias-variance analysis to understand
this motivation. When the target domain data set is small, the model may have a
high variance level and thus the model’s generalization error is large. By adding
a part of the source domain data as an auxiliary data set, the model’s variance
can potentially be reduced. However, if the data distributions of the two domains
are very different, the new learning model may have a high bias. Therefore, if we
can single out those source domain instances that follow a similar distribution as
those in the target domain, we can reuse them and have both the variance and
bias of the target learning model reduced.

Briefly, there are two key issues to resolve in using instance-based transfer learn-
ing. The first issue is how to single out the source domain-labeled instances that
are similar to the target domain ones, because these instances are useful to train
the target domain model. The second issue is how to utilize the identified “sim-
ilar” source domain-labeled instances in an algorithm to learn a more accurate
target domain learning model.

Recall that a domain D= {X ,PX } has two components: a feature space X and a
marginal probability distribution PX . Given D, a task T= {Y ,PY |X } has two com-
ponents: the label space Y and the conditional probability distribution PY |X . A
common assumption behind most instance-based transfer learning approaches
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is that the input instances of the source domain and the target domain have the
same or very similar support, which means that the features for most instances
have a similar range of values. Furthermore, the output labels of the source and
target tasks are the same. This assumption ensures that knowledge can be trans-
ferred across domains via instances. According the definitions of a domain and
a task, this assumption implies that, in instance-based transfer learning, the dif-
ference between domains/tasks is only caused by the differences of the marginal
distribution of the features (i.e., PX

s �=PX
t ) or conditional probabilities (i.e., PY |X

s �=
P

Y |X
t ).

When PX
s �= PX

t but PY |X
s = P

Y |X
t , we refer to the problem setting as noninduc-

tive transfer learning.1 For example, suppose a hospital, either private or public,
aims to learn a prediction model for a specific disease from its own patients’ elec-
tronic medical records. Here we consider each hospital as a different domain. As
the populations of patients of different hospitals are different, the marginal prob-
abilities PX s are different across different domains. However, as the reasons that
cause the specific disease are the same, the conditional probabilities PY |X across
different domains remain the same. When P

Y |X
s �= P

Y |X
t , we refer to the problem

setting as inductive transfer learning. For instance, consider avian influenza virus
as the specific disease in the previous example. As avian influenza virus has been
evolving, the reasons causing avian influenza virus may change across different
subtypes of avian influenza virus, for example, H1N1 versus H5N8. Here we con-
sider learning a prediction model for each subtype of avian influenza virus for a
specific hospital as a different task. As the reasons that cause different subtypes of
avian influenza virus are different, the conditional probabilities PY |X are different
across different tasks. In noninductive transfer learning, as the conditional prob-
abilities across domains are the same, that is, PY |X

s = P
Y |X
t , it can be theoretically

proven that, even without any labeled data in the target domain, an optimal pre-
dictive model can be learned from the source domain-labeled data and the target
domain-unlabeled data. While in the inductive transfer learning case, as the con-
ditional probabilities are different across tasks, a few labeled data in the target
domain would then be required to exist to help transfer the conditional proba-
bility or the discriminative function from the source task to the target task. Since
the assumptions of noninductive transfer learning and inductive transfer learn-
ing are different, the designs of instance-based transfer learning approaches for
these two settings are different. In the following, we will review the motivations,
basic ideas and representative methods for noninductive and inductive transfer
learning in detail.

1 Note that here we do not adopt the term “transductive transfer learning” used by Pan and Yang
(2010) because the term “transductive” has been widely used to distinguish whether a model has
an out-of-sample generalization ability, which may cause some confusion if used to define
transfer learning problem settings.
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2.2 Instance-Based Noninductive Transfer Learning

As mentioned earlier, in noninductive transfer learning, the source task and the
target task are assumed to be the same, and the supports of the input instances
across domains are assumed to be the same or very similar, that is, Xs =Xt . The
only difference between domains is caused by the marginal distribution of input
instances, that is,PX

s �=PX
t . Under this setting, we are given a set of source domain-

labeled data Ds = {(xsi , ysi )}ns
i=1, and a set of target domain-unlabeled data Dt =

{(xti )}nt
i=1. The goal is to learn a precise predictive model for the target domain

unseen data.
In the following, we show that, under the assumptions in noninductive transfer

learning, one is still able to learn an optimal predictive model for the target do-
main even without any target domain-labeled data. Suppose our goal is to learn
a predictive model in terms of parameters θt for the target domain, based on the
learning framework of empirical risk minimization (Vapnik, 1998), the optimal so-
lution of θt can be learned by solving the following optimization problem.

θ∗t = arg min
θt∈Θ

E(x,y)∈PX ,Y
t

[�(x, y,θ)], (2.1)

where �(x, y,θ) is a loss function in terms of the parameters θt . Since there are no
target domain-labeled data, one cannot optimize (2.1) directly. It has been proven
by Pan (2014) that, by using the Bayes’ rule and the definition of expectation, the
optimization (2.1) can be rewritten as follows,

θ∗t = arg min
θt∈Θ

E(x,y)∼P
X ,Y
s

[
Pt (x, y)

Ps (x, y)
�(x, y,θt )

]
, (2.2)

which aims to learn the optimal parameter θ∗t by minimizing the weighted ex-
pected risk over source domain-labeled data. In noninductive transfer learning,
as P

Y |X
s = P

Y |X
t , by decomposing the joint distribution PX ,Y = PY |X PX , we obtain

Pt (x,y)
Ps (x,y) = Pt (x)

Ps (x) . Hence, (2.2) can be further rewritten as

θ∗t = arg min
θt∈Θ

E(x,y)∼P
X ,Y
s

[
Pt (x)

Ps (x)
�(x, y,θt )

]
, (2.3)

where a weight of a source domain instance x is defined as the ratio of marginal
distributions of input instances between the target domain and the source do-
main at the data point x. Given a set of source domain-labeled data {(xsi , ysi )}ns

i=1,

by defining β(x)= Pt (x)
Ps (x) , an empirical approximation of (2.3) can be written as2

θ∗t = arg min
θt∈Θ

ns∑
i=1

β(xsi )�(xsi , ysi ,θt ), (2.4)

Therefore, to properly reuse the source domain-labeled data to learn a target model,
one needs to estimate the weight’s {β(xsi )}. As shown in (2.4), to estimate {β(xsi )},

2 In practice, a regularization term is added to avoid model overfitting.
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that is, density ratios, only input instances without labels from the source domain
and the target domain are required. A simple solution to estimate {β(xsi )} for each
source domain instance is to first estimatePX

t andPX
s , respectively, and then com-

pute the ratio
Pt (xsi )
Ps (xsi ) for each specific source domain instance xsi . However, it is

well known that density estimation itself is a difficult task (Tsuboi et al., 2009), es-
pecially when data are of high dimensions. In this way, the error caused by density
estimation will be propagated to the density ratio estimation .

In the literature (Quionero-Candela et al., 2009), more promising solutions have

been proposed to estimate
PX

t

PX
s

, directly bypassing the density estimation step. In

the following sections, we introduce how to directly estimate the density ratio by
reviewing several representative methods.

2.2.1 Discriminatively Distinguish Source and Target Data

One simple and effective approach to learn the weights is to transform the prob-
lem of estimating the marginal probability density ratio to the problem of distin-
guishing whether an instance is from the source domain or the target domain.
This can be formulated as a binary classification problem with data instances
from the source domain being labeled as 1 and those from the target domain be-
ing labeled as 0.

For example, Zadrozny (2004) proposes a rejection sampling-based method for
correcting sample selection bias. The rejection sampling process is defined as fol-
lows. A binary random variable δ ∈ {1,0}, which is called selection variable, is in-
troduced. An instance x is sampled from the target marginal distribution PX

t with
probability Pt (x), that is, Pt (x) = P (x|δ = 0). Similarly, Ps (x) can be rewritten as
Ps (x) = P (x|δ= 1). x is accepted by the source domain with probability P (δ= 1|x)
or rejected with probability P (δ = 0|x). In mathematics, with the new variable δ,
the density ratio for each data instance x can be formulated as

Pt (x)

Ps (x)
= P (δ= 1)

P (δ= 0)

P (δ= 0)

P (δ= 1)

Pt (x)

Ps (x)
, (2.5)

where P (δ) is the prior probability of δ in the union data set of the source domain
and the target domain. By using the Bayes, rule and the equivalent forms of Ps (x)
and Pt (x) in terms of δ, (2.5) can be further reformulated as

Pt (x)

Ps (x)
= P (δ= 1)

P (δ= 0)

(
1

P (δ= 1|x)
−1

)
.

Therefore, the density ratio for each source domain data instance can be esti-
mated as Pt (x)

Ps (x) ∝ 1
Ps,t (δ=1|x) . To compute the probability P (δ = 1|x), we regard it

as a binary classification problem and train a classifier to solve it. After calculating
the ratio for each source data instance, a model can be trained by either reweight-
ing each source data instance or performing importance sampling on the source
data set.

Following the idea of Zadrozny (2004), Bickel et al. (2007) propose a framework
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to integrate the density ratio estimation step and the model training step with
reweighted source data instances. Let PX denote the probability density of x in
the union data set of the source domain and the target domain. We can use any
classifier to estimate the probability P (δ = 1|x). Suppose the classifier is param-
eterized by v and the parameters for the final learning model that is trained on
the reweighted source domain data are denoted by w. All the parameters can be
optimized using the maximum a posterior (MAP) approach:

[w,v]M AP = argmax
w,v

P (w,v|Ds ,Dt ),

where Ds and Dt denote the source data set and the target data set, respectively.
Note that P (w,v|Ds ,Dt ) is proportional to P (Ds |w,v)P (Ds ,Dt |v)P (w)P (v). There-
fore, the MAP solution can be found by maximizing P (Ds |w,v)P (Ds ,Dt |v)P (w)P (v).

2.2.2 Kernel Mean Matching

Another effective approach to estimate the density ratio is using the techniques
of kernel embedding of distributions (Smola et al., 2007a). For instance, Huang
et al. (2006) propose the Kernel Mean Matching (KMM) method to directly learn
the density ratio by aligning the mean of source domain data instances to that of
target domain data instances in a reproducing kernel Hilbert space (RKHS).

Specifically, we use βi to denote
Pt (xs

i )

Ps (xs
i ) for each source domain data instance

xs
i and define βββ as βββ = (β1,β2, . . . ,βns ), where ns is the size of the source domain

data set. KMM makes use of the theory of Maximum Mean Discrepancy (MMD)
(Gretton et al., 2007) between distributions. Given two samples, based on MMD,
the distance between two sample distributions is simply the distance between the
two mean elements in an RKHS. Therefore, KMM aims to learn the weights of
source domain instances by matching the mean of the reweighted source domain
instances to that of the target domain instances in an RKHS:

min
βββ

∥∥∥μ(PX
t )−EPX

s
[β(x)Φ(x)]

∥∥∥ s.t. β(x)≥ 0, EPX
s

[β(x)Φ(x)]= 1, (2.6)

where Φ transforms each source domain data instance into the RKHS F , and
μ(PX

t ) is the expectation of the target domain instances in the RKHS, that is,
μ(PX

t )= EPX
t

[Φ(x)].

In practice, one can optimize the following empirical objective:

min
βββ

∥∥∥∥∥ 1

ns

ns∑
i=1

βiΦ(xs
i )− 1

nt

nt∑
i=1

Φ(xt
i )

∥∥∥∥∥
2

s.t. βi ≥ 0,

∣∣∣∣∣ 1

ns

ns∑
i=1

βi −1

∣∣∣∣∣≤ ε, (2.7)

where ε is a positive real number. After solving the optimalβββ, that is, the weights,βββ
can be incorporated into (2.4) with any specified loss function to learn a predictive
model θ∗t for the target domain.
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2.2.3 Function Approximation

A third representative approach to estimate density ratio is to consider the density
ratio as an unknown function, and learn a combination of a series of base func-
tions to approximate it. This is also known as covariate shift methods (Sugiyama
et al., 2008). To be specific, by defining Pt (x)

Ps (x) as a function ω(x), one could assume
ω(x) is a linear combination of several base functions as

ω̃(x)=
b∑

l=1
αlφl (x),

where ααα= (α1, . . . ,αb)T are coefficients to be learned and φl (·) is the l th base func-
tion that can be linear or nonlinear. In this way, Pt (x) can be approximated by
P̃t (x)= ω̃(x)Ps (x). The coefficients ααα can be learned by minimizing a loss function
between Pt (x) and P̃t (x). Different loss functions lead to different specific meth-
ods.

For instance, Sugiyama et al. (2008) propose to use Kullback–Leibler (KL) di-
vergence as the loss function. The resultant method is known as KL Importance
Estimation Procedure (KLIEP), whose objective is written as follows,

DKL(PX
t , P̃X

t ) =
∫
Xt

Pt (x) log
Pt (x)

ω̃(x)Ps (x)
dx (2.8)

=
∫
Xt

Pt (x) log
Pt (x)

Ps (x)
dx−

∫
Xt

Pt (x) logω̃(x)dx. (2.9)

Note that, in (2.9), the ground-truth marginal probability of the target domain
data, PX

t , is used. However, it can shown that, empirically, minimizing the afore-
mentioned KL divergence can be approximated by solving the following optimiza-
tion problem, where the ground truth marginal probability of the target domain
data is canceled out:

max
ααα

1

nt

nt∑
j=1

log

(
b∑

l=1
αlφl (xt

j )

)
s.t.

1

ns

ns∑
i=1

b∑
l=1

αlφl (xs
i )= 1, αl ≥ 0 ∀l ∈ {1, . . . ,b}.

Another example of the loss function in discrepancy between ω(x) and ω̃(x) is
the squared loss (Kanamori et al., 2009). The resultant optimization problem can
be written as follows,

min
α

∫
Xs∪Xt

(ω̃(x)−ω(x))2Ps (x)dx.

Besides, using KL divergence and squared loss as the loss function, many other
forms of loss functions can be used.

2.3 Instance-Based Inductive Transfer Learning

Different from noninductive transfer learning, in inductive transfer learning, the
source task and the target task can be different in terms of conditional probabil-
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ities, that is, PY |X
s �= P

Y |X
t . As the conditional probability is changed across differ-

ent tasks, if there are no labeled data in the target domain, then it is very difficult
if not impossible to adapt P

Y |X
s to construct a precise P

Y |X
t . Therefore, in most

instance-based inductive transfer learning approaches, besides a set of source
domain-labeled data Ds = {(xsi , ysi )}ns

i=1, a small set of target domain-labeled data
Dt = {(xti , yti )}nt

i=1 is also required as inputs.3 The goal is still to learn a precise
predictive model for the target domain unseen data.

2.3.1 Integration of Source and Target Loss

An intuitive solution to make use of both source domain-labeled data and target
domain-labeled data to train a model for the target domain is to decompose the
loss function into two parts: one is for the source domain-labeled data, and the
other is for the target domain-labeled data. A trade-off parameter is usually intro-
duced to balance the impact of the two losses.

As an early representative work, Wu and Dietterich (2004) propose an instance-
based K -nearest-neighbor (K NN) classifier to optimize the classification accuracy
on both the source domain and the target domain. Specifically, in a traditional
K NN classifier, the hypothesis h(x) is defined by k training data instances that
are closest to each test instance x. In the proposed K NN-based inductive transfer
learning method, Ks nearest source domain instances and Kt nearest target do-
main instances are first identified for a target domain test data instance xt

i . Then,
for each class label y , the overall vote on the instance xt

i , denoted by V (y), is com-

puted as V (y)= θ( Vt (y)
Kt

)+ (1−θ)( Vs (y)
Ks

), where Vt (y) and Vs (y) are the numbers of
votes on class y from the Kt and the Ks nearest instances from the target domain
and the source domain, respectively, and θ is a trade-off parameter to control the
relative importance of the source domain nearest neighbors and the target do-
main nearest neighbors.

Such an idea can be applied to other base classifier beyond K NN. Wu and Di-
etterich (2004) also propose a support vector machine (SVM) based approach
(Smola and Schölkopf, 2004) for instance-based inductive transfer learning meth-
ods. Recall that the objective function of SVMs is

min
∑

j
α j +C

∑
j
ε j s.t. yi

(∑
j

y jα j K (x j ,xi )+b

)
≥ 1−εi ∀i , α j ≥ 0 ∀ j ,

where α j s are the model parameters of a SVM, ε j s are slack variables to absorb
errors and C is a parameter to control how much penalty is conducted the mis-
classified examples. In the inductive transfer learning setting, Wu and Dietterich
(2004) proposed to modify the objective function and constraints by considering
the source domain-labeled data and the target domain-labeled data differently.
Supposeαs

j and εs
j denote the model parameters and slack variables for the source

3 In some approaches, a set of target-unlabeled data is assumed to be given as well.
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domain instance xs
j for j ∈ {1, . . . ,ns }, respectively. Similarly, αt

j and εt
j denote the

parameter and slack variable for the target domain instance xt
j , respectively, for

j ∈ {1, . . . ,nt }. The parameters Cs and Ct are trade-off parameters. Then the re-
vised objective function of SVMs is formulated as

min
ns∑

j=1
αs

j +
nt∑

j=1
αt

j +Cs

ns∑
j=1

εs
j +Ct

nt∑
j=1

εt
j ,

s.t. y t
i

(
ns∑

j=1
y t

jα
t
j K
(
xt

j ,xt
i

)
+

ns∑
j=1

y s
jα

s
j K
(
xs

j ,xt
i

)
+b

)
≥ 1−εt

i i ∈ {1, . . . ,nt },

y s
i

(
nt∑

j=1
y t

jα
t
j K
(
xt

j ,xs
i

)
+

ns∑
j=1

y s
jα

s
j K
(
xs

j ,xs
i

)
+b

)
≥ 1−εs

i i ∈ {1, . . . ,ns },

αt
j ≥ 0 j ∈ {1, . . . ,nt }, αs

j ≥ 0 j ∈ {1, . . . ,ns }.

Generally speaking, the revised SVM jointly optimizes the losses on the labeled
data of both the source domain and the target domain.

Liao et al. (2005) further extend this idea to logistic regression, and propose the
“Migratory-Logit” algorithm. Migratory-Logit models the difference between two
domains by introducing a new “auxiliary variable”μi for each source data instance
(xs

i , y s
i ). The parameter μi could be geometrically understood as a “intercept term”

that makes xs
i migrate toward class y s

i in the target domain. It measures how mis-
match the source data instance xs

i is with respect to the target domain distribu-
tion PX

t and thus controls the importance of source data instances. For a target
domain data instance (xt

i , y t
i ), the posterior probability of its label y t

i is the same
as the traditional logistic regression, that is, P (y t

i |xt
i ;w) = δ(y t

i wT xt
i ), where w is

the parameter vector and δ(a) = 1
1+exp(−a) is the Sigmoid function. For a source

domain instance (xs
i , y s

i ), the posterior probability of y s
i is defined as:

P (y s
i |xs

i ;w,μi )= δ(y s
i wT xs

i + y s
i μi ).

By defining μμμ= (μ1, . . . ,μm)T , the log-likelihood is computed as

L (w,μμμ;Ds ∪Dt )=
nt∑

i=1
lnδ(y t

i wT xt
i )+

ns∑
i=1

lnδ(y s
i wT xs

i + y s
i μi ).

Then, all the parameters can be learned by maximizing the log-likelihood with the
optimization problem formulated as

max
w,μμμ

L(w,μμμ;Ds ∪Dt ) s.t.
1

ns

ns∑
i=1

y s
i μi ≤C , y s

i μi ≥ 0, ∀i ∈ {1,2, . . . ,ns },

where C is a hyper parameter to control the overall importance of the source do-
main data set.

The aforementioned approaches assume that, in the target domain, only la-
beled data are available as inputs for transfer learning algorithms. In many sce-
narios, plenty of unlabeled data may be available in the target domain as well.



2.3 Instance-Based Inductive Transfer Learning 31

Jiang and Zhai (2007) propose a general semi-supervised framework for instance-
based inductive transfer learning, where both labeled and unlabeled data in the
target domain are utilized with the source domain labeled data to train a target
predictive model.

In the work by Jiang and Zhai (2007), a parameter αi is introduced for each
source domain instance (xs

i , y s
i ) ∈ Ds to measure how Ps (y s

i |xs
i ) is different from

Pt (y s
i |xs

i ). Another parameter βi is introduced for each source domain instance

(xs
i , y s

i ) ∈Ds to approximate the density ratio
Pt (xs

i )

Ps (xs
i ) . Then, for each target domain

unlabeled instance xt ,u
i ∈Dt and each possible label y , a parameterγi (y) is used to

measure how likely the true label of xt ,u
i is y . Let Dt = Dl ∪ Du where

Dl = {(xt ,l
j , y t ,l

j )}
nt ,l

j=1 represents the subset of target domain-labeled instances and

Du = {(xt ,u
k )}

nt ,u

k=1 represents the subset of target domain-unlabeled instances. To
find an optimal classifier in terms of parameters θ, Jiang and Zhai (2007) propose
to solve the following optimization problem:

θθθ = argmax
θθθ

λs

Cs

ns∑
i=1

αiβi logP (y s
i |xs

i ;θθθ)+ λt ,l

Ct ,l

nt ,l∑
j=1

logP (y t ,l
j |xt ,l

j ;θθθ)

+ λt ,u

Ct ,u

nt ,u∑
k=1

∑
y∈Y

γk (y) log(P (y |xt ,u
k ;θθθ))+ logP (θθθ),

where Cs =
ns∑

i=1
αiβi , Ct ,l =nt ,l , and Ct ,u =∑nt ,u

k=1

∑
y∈Y γk (y) are normalization fac-

tors, the regularization parameters λs , λt ,l and λt ,u control the relative impor-
tance of each part with the sum equal to 1, and the prior P (θθθ) encodes the normal
prior for θθθ. In this way, the source domain-labeled data, the target domain-labeled
data and the target domain-unlabeled data are fully utilized to learn the optimal
solution of θθθ.

2.3.2 Boosting-Style Methods

Another group of methods of instance-based inductive transfer learning is based
on the boosting algorithm, which aims to identify misleading source domain in-
stances by iteratively updating their weights. For instance, the TrAdaBoost algo-
rithm proposed by Dai et al. (2007b) is the first boosting-style algorithm for an
instance-based inductive transfer learning setting.

TraAdaBoost adopts a similar instance reweighting strategy used in AdaBoost to
find useful data instances from the source domain. Specifically, TrAdaBoost first
trains a model h on the union of Ds and Dt . Then it uses h to make predictions
on the target domain data and calculates the mean loss on the target domain as

ε=
∑nt

i=1 w t
i

˙l (h(xt
i ),y t

i )∑nt
i=1 w t

i

, where w t
i is the weight for xt

i and l (·, ·) is the loss function. For

each target domain instance, its weight is updated as w t
i = w t

i β
−l (h(xt

i ),y t
i ), where

β = ε/(1− ε). This reweighting strategy is similar to AdaBoost in that, if a target
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domain data instance has a higher loss, its weight should be increased in the next
iteration.

For each source domain instance, if it has a higher loss, it may not be helpful
to the target task and so its loss will be decreased in the next iteration. The rule
to update the weight for each source domain instance is w s

i = w s
i θ

l (h(xs
i ),y s

i ), where

θ = 1/(1+
√

2lnns /(ns +nt )).
With these update rules, TraAdaBoost iteratively reweights both the source

domain-labeled data and the target domain-labeled data to reduce the impact of
misleading data instances in the source domain, and learn a series of classifiers to
construct an ensemble classifier for the target domain.

2.3.3 Instance Generation Methods

Instead of reusing source domain-labeled data for the target domain, an alterna-
tive approach is to develop generative models to generate new instances for the
target domain to be used to learn a precise target domain predictive model. Such
generative models usually require sufficient source domain data and a few target
domain data as inputs.

Instance-based transfer learning can also be used to adapt the style of instances
in the target domain based on the source domain instances. For instance, Gatys
et al. (2016) transfer image styles with a deep generative model to create new tar-
get images by preserving the semantic content of target images while synthesiz-
ing its texture from a source image. Basically, the overall loss function to generate
a new image consists of two losses: the content loss Lcontent and the style loss
Lst yl e :

L =αLcontent (G ,T )+βLst yl e (G ,S), (2.10)

where G is the output image, S is the source image providing style and T is the
target image offering content. Here Lcontent is defined as

Lcontent (G ,T, l )= 1

2

∑
i , j

(Gl
i , j −T l

i , j )2, (2.11)

where l stands for the l th layer of deep learning model, i stands for the feature
mapping of the i th filter in the layer and j stands for the j th element of the vec-
torized feature mapping. In addition, the style loss is formulated as

Lst yl e (G ,S)=
L∑
l

wl El =
L∑
l

wl

∑
i , j

(
Gamm(G)l

i , j −Gamm(S)l
i , j

)2
, (2.12)

where Gamm(·)l
i , j , the style representation, is defined as the inner product be-

tween the vectorized feature maps i and j in layer l , that is, Gamm(G)l
i , j =

∑
k F l

i k

F l
j k . Specifically, in the work by Gatys et al. (2016), a nineteen-layer Visual Geom-

etry Group Network network is used as the base model and all of its max-pooling
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layers are replaced by the mean pooling layers. First, the style and content features
are extracted from source images and target images. Then, a random white noise
image G0 is passed through the network and its style features Gl and content fea-
tures F l are computed. Gradients with respect to the pixel values can be computed
using error back-propagation and is used to iteratively update the generated
image G .

Although the task studied in Gatys et al.’s (2016) work is about style transfer for
images, the idea of generating new instances in the target domain by capturing
some important properties of the source domain can be applied to many other
transfer learning applications. We will review more generative models for transfer
learning later in Chapter 7.



3

Feature-Based Transfer Learning

3.1 Introduction

As discussed in the previous chapter, a common assumption behind instance-
based approaches is that the source domain data and the target domain data have
similar or the same support. However, the assumption may be too strong to be
satisfied in many real world scenarios, where the source domain data and the tar-
get domain data have some nonoverlapping features. For example, consider sen-
timent classification on customers’ reviews of different types of products. Here,
each type of products can be referred to as a domain, where customers may use
common as well as domain-specific words to express their opinions. For instance,
the word “boring” may be used to express negative sentiment on the DVD do-
main, while it is never used to express opinions on the furniture domain. There-
fore, some words or features are observed on some domain(s) but not observed
on other domain(s). This means that some features are source (or target) domain
specific, which do not have the support in the opposite domain. In this case, re-
weighting or resampling instances cannot help much to reduce the discrepancy
between domains. To address this issue, in this chapter, we introduce another ap-
proach to transfer learning known as feature-based transfer learning, which al-
lows transfer learning to operate in an abstracted “feature space” instead of the
raw input space. In this chapter, we focus on introducing homogeneous feature-
based transfer learning methods. Recall that, in homogeneous transfer learning,
we assume that Xs ∩Xt �= � and Ys = Yt . Note that, in an extreme case, there may
be no overlapping features across the source domain and the target domain, but
there may exist some translators between the two spaces to enable successful
transfer learning. This is referred to as heterogeneous transfer learning, which will
be reviewed in Chapter 6.

A common idea behind feature-based transfer learning approaches is to learn
a pair of mapping functions {ϕs (·),ϕt (·)} to map data respectively from the source
domain and the target domain to a common feature space, where the difference
between domains can be reduced. After that, a target classifier is trained on the
new feature space with the mapped source domain and target domain data.
For testing on target domain unseen data, one first maps the data onto the
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new feature space, and then performs the trained target classifier to make
predictions.

Detailed motivations and assumptions on learning the pair of feature map-
pings behind different feature-based approaches are different. In this chapter, we
summarize some main existing feature-based transfer learning approaches and
classify them into three categories. The first category of the approaches aims to
learn transferable features across given target and source domains by minimizing
the domain differences (known as domain discrepancy) explicitly. Another cate-
gory of the approaches aims to learn universal features that are expected to be
high-quality features across all domains. The third category of the approaches is
based on “feature augmentation” across domains, which seek to extend the fea-
ture space by considering extra correlations learned from data.

3.2 Minimizing the Domain Discrepancy

In many real world applications, observed high-dimensional data instances are
often controlled by a set of latent factors or components in the domain. These la-
tent factors can be referred to as features. The difference between domains might
be caused by a subset of the features. If one can identify the latent features that do
not cause the difference between domains, and use them to represent the data in-
stances across domains, then one is able to train an accurate classifier in the target
domain from the source domain training data with the new feature representa-
tion. Therefore, how to learn such domain invariant features, or equivalently, how
to learn feature mappings between domains, {ϕs (·),ϕt (·)}, to map different do-
main instances onto a common space spanned by the domain invariant features,
is critical to feature-based transfer learning. A key research issue in learning such
domain invariant features is how to measure “domain invariance.” So far, several
metric criteria have been proposed to measure domain invariance for learning
features, which are reviewed in the following sections.

3.2.1 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is a nonparametric criteria to measure
distance between distributions based on kernel embedding in reproducing kernel
Hilbert space (RKHS) (Gretton et al., 2005). Given two domain samples Xs (source)
and Xt (target), drawn from two distributions, respectively, the MMD distance is
estimated empirically as follows,

MMD(Xs ,Xt )=
∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xs
i )− 1

nt

nt∑
i=1

φ(xt
i )

∥∥∥∥∥
H

, (3.1)

where φ(x) maps each instance to the Hilbert space H associated with the kernel
k(xi , x j ) = φ(xi )T φ(x j ), and ns and nt are the sample sizes of the source and the
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target domains, respectively. By using the kernel trick, the MMD distance in (3.1)
can be simplified as

MMD(Xs ,Xt )= tr(KL), (3.2)

where K =
[

Ks,s Ks,t

KT
s,t Kt ,t

]
∈ R(nS+nT )×(nS+nT ) is a composite kernel matrix, with Ks,s ,

Kt ,t and Ks,t being the kernel matrices in the source domain, the target domain
and across domains, respectively, and L is a matrix with the (i , j )-th entry li j de-

fined as li j =

⎧⎪⎪⎨⎪⎪⎩
1

n2
s

xi , x j ∈ Xs

1
n2

t
xi , x j ∈ Xt

− 1
ns nt

otherwise.

.

MMD Embedding
With the MMD distance, Pan et al. (2008b) propose a dimensionality reduc-

tion algorithm, known as MMD embedding (MMDE), for transfer learning, whose
high-level idea is formulated as follows,

min
ϕ

MMD(ϕ(XS ),ϕ(XT ))+λΩ(ϕ) (3.3)

s.t. constraints on ϕ(XS ) and ϕ(XT ),

where ϕ is the mapping to be learned, which maps the original data to a low-
dimensional space across domains. The first term in (3.3) aims to minimize the
MMD distance in distributions between the source and the target domain data,
Ω(ϕ) is a regularization term on the mapping ϕ, and the constraints are to ensure
original data properties to be preserved.

Based on the definition of the MMD distance, (3.3) can be written as

min
ϕ

tr(KL)+λΩ(ϕ) (3.4)

s.t. constraints on ϕ(XS ) and ϕ(XT ),

where K is the kernel matrix induced by the kernel function k(xi ,x j )=ψ(xi )T ψ(x j ),
and ψ(·) is defined as ψ(x)=φ(ϕ(x)) or ψ=φ◦ϕ.

In general, the optimization (3.4) is computationally intractable as the kernel
function k(x j ,x j ) can be highly nonlinear of the mapping ϕ(·), which is unknown
and to be learned. To make it computationally solvable, Pan et al. (2008b) pro-
posed to first transform the optimization (3.4) to a kernel matrix learning problem
as follows,

min
K�0

tr(KL)−λtr(K)

s.t. Ki i +K j j −2Ki j = d 2
i j , K1= 0, (3.5)

where λ is a regularization parameter. The first term in the objective function of
(3.5) is to minimize the MMD distance between the projected source and target
domain data, while the second term that maximizes the trace of K aims to preserve
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the variance in the new feature space as the colored maximum variance unfold-
ing (MVU) (Weinberger et al., 2004) does. The first constraint preserves the pair-
wise distance and the second constraint guarantees that the embedded data are
centered. After solving (3.5), principal component analysis (PCA) is applied on K
to get the leading eigenvectors to reconstruct the desired future mapping for the
source and the target domain data.

One disadvantage of MMDE that it is an transductive learning method, which
cannot generalize to out-of-sample data. Moreover, the optimization problem in
(3.5) is a semi-definite programming (SDP) problem, which is computationally
expensive to be solved.

Transfer Component Analysis
To overcome the limitations of MMDE, transfer component analysis (TCA) is

proposed by Pan et al. (2010) by using an empirical kernel rather than by learn-
ing a kernel matrix from scratch. Specifically, in TCA, the kernel matrix in MMDE
is decomposed as K = K̃WWT K̃, where K is an empirical kernel, which is given,
and W ∈ R(nS+nT )×m with m � nS +nT , which is to be learned. The optimization
problem is formulated as

min
W

tr(K̃WWT K̃L)+λtr(WT W)

s.t. WT K̃HK̃W= I (3.6)

where H = In1+n2 − 1
n1+n2

11T is the centering matrix. Similar to MMDE, the first
term in the objective is to minimize the MMD distance between the mapped
source domain and the target domain data. The second term is a regularization
term on W. The constraint is to maximize the data variance after projection. It
is easy to show that the optimization (3.6) has a closed-form solution, that is, W
contains the m leading eigenvectors of (K̃LK̃+λI)−1K̃HK̃.

Compared with MMDE, TCA avoids solving an SDP problem and thus it is more
efficient. Moreover, TCA can easily handle out-of-sample data1 directly. Besides,
instead of the two-step nature of MMDE, which first learns the kernel matrix and
then conducts PCA to obtain the transformed data, TCA can obtain the trans-
formed data with the use of W in one stage.

Deep Architectures with MMD
In the context of deep learning, researchers have proposed to use a deep neu-

ral network to approximate the feature mapping φ(·) induced by a kernel func-
tion. For instance, Tzeng et al. (2014) propose encoding MMD to measure the dis-
tance between hidden features learned in a convolutional neural network (CNN).
In this way, the network automatically learns a cross-domain representation by
jointly maximizing label dependence if available and minimizing domain invari-
ance. The base deep architecture is illustrated in Figure 3.1, where the input data

1 The out-of-sample data is referred to as the data that are not observed in training.
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xS ∈XS from the source domain and xT ∈ XT from the target domain are trans-
formed by the first several layers of the CNN. The transformation with the first
layers can be considered as an approximate of ψ(·) in MMDE.

Labeled 
data

Unlabeled 
data

Classification
loss

Domain 
loss

fc_adapt

fc_adapt

conv1 conv5 fc6 fc7 fc8

Figure 3.1 Deep CNN for both classification loss as well as domain invariance,
where the dashed line means the weight sharing (adapted from Tzeng et al.
[2014]).

As a follow-up work, Long et al. (2015) propose a multi-kernel MMD (MK-MMD)
as an alternative to compute the MMD distance to measure the domain diver-
gence for deep learning models. The basic idea is to use multiple positive semi-
definite kernels to compute the MMD distance, which is supposed to be able to
provide a more flexible and robust distance measure for neutral networks to learn
cross-domain feature representation.

To take label information into account when measuring domain discrepancy,
Long et al. (2017) propose joint distribution discrepancy (JDD) on joint distribu-
tions P (Xs ,Ys ) from the source domain and P (Xt ,Yt ) from the target domain. The
architecture of the resulting joint adaptation networks (JANs) is shown in the Fig-
ure 3.2. As can be seen from the figure, not only the last hidden layer, but also all
the fully connected layers and the output layer are involved in the computation of
the JDD criteria in the JAN.

3.2.2 Bregman Divergence-Based Regularization

Besides using the MMD distance to measure domain invariance, Si et al. (2010)
propose a transfer subspace learning method based on Bregman divergence reg-
ularization. The proposed high-level objective function is formulated as

min
φ

F (φ)+λDw (φ(Xs )||φ(Xt )), (3.7)

where F (φ) defines a task-specific goal, for example, minimizing a classification
error, and Dw (φ(Xs )||φ(Xt )) is the Bregman divergence between φ(Xs ) and φ(Xt ).
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Ds

Dt
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xt1

Ys

Yt

JDD

AlexNet fc6 fc7 fc8

Figure 3.2 The architecture of the JAN (adapted from Long et al. [2017]) based on
the AlexNet

Given a mapping function U , its first derivative U ′, and its inverse ξ= (U ′)−1, the
Bregman divergence is defined as

DW (φ(Xs )||φ(Xt ))=
∫

d(ξ(Pφ(x)
s ),ξ(Pφ(x)

t ))dμ,

where

d(ξ(Pφ(x)
s ),ξ(Pφ(x)

t ))= (U (ξ(Pφ(x)
t ))−U (ξ(Pφ(x)

s )))−Pφ(XS )
s (ξ(Pφ(x)

t )−ξ(Pφ(x)
s )),

with dμ being the Lebesgue measure for φ(x), and the probability densities for
the source and the target domains in the projected space are denoted by Pφ(x)

s

and Pφ(x)
t , respectively.

3.2.3 Measurement with Assumptions on Specific Distributions

By assuming that data follows a Gaussian distribution, Castrejon et al. (2016)
investigate using statistics information of the feature activations to learn cross-
modal scene representations in the transfer learning fashion. The proposed
method regularizes cross-modal CNNs for images with different styles and multi-
layer perceptron (MLP) for the language model so that they have a shared rep-
resentation that is agnostic of the modality. Figure 3.3 shows how the high-level
representation is shared across different domains of the image and the language
model.

Moreover, the proposed method further introduces a regularization term over
the activations to encourage them to have similar statistics across modalities in
the intermediate hidden layers. Let Pi (h) be a distribution over the hidden acti-
vations in the i -th layer. Then, the regularization term can be computed as Ri =
− lnPi (h;θi ) by taking the negative logarithm, where θi denotes the hyperparam-
eters. By instantiating Pi with a normal distribution as Pi (h;μ,

∑
) ∼ N (μ,

∑
), the

regularization term Ri (h) can be computed as

Pi (h;μi ,Σi )= 1

2
(h−μi )T Σ−1

i (h−μi )
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（MLP）

religious, church, plants,
impressive, monks 

plants, fruits, basil,
land, mint 

Natural Images Sketches Clip art Spatial text Description
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specific CNN

Shared cross-modal
representation
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unit13: 
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Plants

Figure 3.3 Low-level representations are specific for each modality (bottom el-
ements) and a high-level representation is shared across all modalities (high-
lighted on the top) (adapted from Castrejon et al. [2016]).

Moreover, a mixture of Gaussian distributions can be used to define Pi , which is
more flexible than a single Gaussian distribution.

3.2.4 Data-Dependant Domain Discrepancy Measurements

There is a variety of criteria to measure domain discrepancy. However, it is very
difficult to design a universal measure that is proper for all application problems.
To address this issue, researchers have studied to formulate the problem of evalu-
ating domain invariance as a learning problem.

Tzeng et al. (2015) introduce the domain confusion loss to learn a domain-
invariant representation, which could better utilize a classifier trained on the la-
beled source data. First, the proposed method simply performs binary classifi-
cation using the domain labels. With a particular feature representation θr epr ,
it futher evaluates the domain invariance by learning the best domain classifier.
This learning procedure can be done by optimizing the following objective func-
tion

LD (xS , xT ,θr epr ;θD )=−∑
d

1[yD = d ] ln(qd ), (3.8)

where q = softmax(θT
D f (x;θr epr )) and yD denotes the domain from which the ex-

ample is drawn. For a particular domain classifier θD , the loss that seeks to “max-
imally confuse” the two domains by computing the cross entropy between the
output predicted domain labels and a uniform distribution over domain labels is
defined as

LD (xS , xT ,θr epr ;θD )=−∑
d

ln(qd ). (3.9)
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(3.8) and (3.9) are updated alternatingly during training.

Note that, besides the work already mentioned, there exist many works to learn
a classification model to distinguish the source and the target domain examples
using the domain labels. Once learned, a domain classifier can play the role of a
discriminator together with another neural network that generates domain-
confusion examples as a generator to play a max-min game. These related works
will be discussed in Chapter 7.

3.3 Learning Universal Features

Most of the works reviewed in the previous section aim to learn domain invari-
ant features across a source domain and a target domain, which are given in ad-
vance. There exist another branch of feature learning approaches, which aims to
learn a universal feature representation from several domains. Since the features
apply to any domain in consideration, it is called “universal.” This idea is partly in-
spired by the work of self-taught learning (Raina et al., 2007), which aims to learn
a universal feature representation from plenty of unlabeled data whose ground-
truth labels can be different from those of the target task. Self-taught learning was
applied to image-classification problems. Most existing methods in this vain con-
sist of three steps: (1) learn higher-level features from unlabeled data of source
or auxiliary domains; (2) represent the target domain labeled data based on the
learned higher-level features; and (3) train a classifier from the target domain la-
beled data with the new representation.

Note that, given multiple source or auxiliary domains, a universal feature repre-
sentation can also be learned by adapting multitask feature learning methods (Ar-
gyriou et al., 2006; Zhang and Yang, 2017b). In multitask feature learning, common
features are learned across different tasks. Such common features can be consid-
ered as universal features for other tasks. Various multitask learning methods will
be reviewed in Chapter 9.

3.3.1 Learning Universal Codes

Raina et al. (2007) propose to apply sparse coding (Lee et al., 2007), which is an
unsupervised feature construction method, to learn high-level universal features
for any target task. The basic idea of this approach consists of two steps. At the
first step, higher-level basis vectors, that is, a dictionary of codes, {b1, . . . ,bns }, are
learned from plenty of unlabeled data, which can be from a number of source
domains in the context of transfer learning, as follows:

min
A,B

∑
i
‖xs

i −
∑

j
a j

i b j ‖2
2+β‖ai‖1,

s.t. ‖b j ‖2 ≤ 1 ∀ j ∈ 1, . . . ,ns , (3.10)
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where ai = (a1
i , . . . , ans

i )T is a new representation on the basis matrix B= (b1, . . . ,bns )
for xs

i and β is the regularization parameter. The objective function of (3.10) bal-
ances two goals: (i) the first goal is to reconstruct xs

i as a weighted combination of

bases {b1, . . . ,bns } with the corresponding weights as a j
i ; and (ii) the second goal

encourages ai to be sparse. After learning B, the second step aims to learn high-
level features for target data, which is from the target domain in the context of
transfer learning, by solving the following problem

âi = argmin
ai

‖xt
i −

∑
j

ai
j b j ‖2

2+β‖ai‖1. (3.11)

Finally, we can learn a model based on the new representation {âi } for the target
domain with the associated labels.

3.3.2 Deep Universal Features

Motivated by the use of sparse coding for learning universal features, Glorot
et al. (2011) propose applying deep autoencoders to learn high-level features as
universal features. Specifically, Given an input x, a deep encoder f (·) maps it to
a hidden code as h = f (x), and a deep decoder g (·) aims to reconstruct the input
with the hidden code via x̂ = g (h). As the encoder and decoder are trained with
various auxiliary domains, the output of the encoder, h, is considered a universal
feature representation for each input instance. Chen et al. (2012b) further propose
a variant of autoencoders, namely marginalized stacked denoising autoencoders,
to improve the efficiency and effectiveness for learning universal features across
domains.

Besides using the reconstruction loss as used in sparse coding and antoen-
coders to learn universal features, some researchers proposed using clustering
on auxiliary tasks to learn universal features. Compared with the reconstruction
loss, clustering is lightweight unsupervised learning in terms of the complexity. It
can also increase the interpretability of the learned representations. As shown in
Figure 3.4, Liao et al. (2016) investigate several k-means styled loss functions as
regularizations such as sample clustering, spatial clustering and co-clustering.

Assume that the representation of one layer in a neural network is to be a 4-
D tensor Y ∈ RN×C×H×W , where N , C , H , and W are the size of a mini-batch,
the number of hidden units, the height of the representation and the correspond-
ing width, respectively. Specifically, by unfolding each data instance into a matrix
T {N }×{H ,W,C }, the loss for the sample clustering is defined as:

Rsampl e (Y ,μ)= 1

2NC HW

N∑
n=1

||T {N }×{H ,W,C }(Y )n −μzn ||2. (3.12)

The representation of an example can be regarded as a C -channel “image.” Pixels
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Figure 3.4 (a) Sample clustering; (b) spatial clustering (adapted from Liao et al.
[2016]).

consisting of C channels can be clustered by spatial clustering as

Rspati al (Y ,μ)= 1

2NC HW

N HW∑
i=1

||T {N ,H ,W }×{C }(Y )i −μzi ||2. (3.13)

Moreover, clustering can be performed on the channel by using the following loss

Rspati al (Y ,μ)= 1

2NC HW

NC∑
i=1

||T {N ,C }×{H ,W }(Y )i −μzi ||2. (3.14)

In Liao et al. (2016), the authors focused on investigating whether the representa-
tion for clustering is applicable to unseen categories, which is a zero-shot learning
problem. Given these features trained by the loss in (3.12), one can learn the out-
put embedding E via a structured SVM without regularization as

min
E

1

N

N∑
n=1

max
y∈Y

{0,Δ(yn , y)+xT
n E [φ(y)−φ(yn)]}, (3.15)

where xn and yn are the feature and the class label of the n-th example, Δ is the 0-
1 loss function, and φ is the class-attribute matrix provided by the Caltech–UCSD
(University of California, San Diego) Birds data set with each entry indicating how
likely one attribute is present in a given class.

3.4 Feature Augmentation

Daumé III (2007) proposes a simple approach for domain adaptation, which
augments the feature vector for both the source and the target domains data us-
ing domain-specific information and treats them as new inputs to a learning al-
gorithm.

Define X and Y as the input and output spaces, respectively. Suppose the orig-
inal input space is denoted by X ∈RF . The proposed method augments the origi-
nal input space to X̃ ∈R3F . The mapping functions Φs ,Φt : X → X̃ for the source
and the target domains are defined as

Φs (x)= 〈x,x,0〉, Φt (x)= 〈x,0,x〉, (3.16)
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where 0 denotes a zero vector in the F -dimensional space. The first part of the
augmented feature represents the general feature, while the second and third parts
represent the source and target domain specific features, respectively.

It’s easy to generalize this method to a kernelized version. Assume that each
data point x is projected to a RKHS with the corresponding kernel k : X ×X →R.
k can be written as the dot product of two vectors k(x,x′)= 〈Φ(x),Φ(x′)〉X . We can
define Φs and Φt in terms of Φ as

Φs (x)= 〈Φ(x),Φ(x),0〉, Φt (x)= 〈Φ(x),0,Φ(x)〉. (3.17)

Denote the expanded kernel by k̃(x,x′). When x and x′ are from the same domain,
k̃(x,x′)= 〈Φ(x),Φ(x′)〉X +〈Φ(x),Φ(x′)〉X = 2k(x,x′). When x and x′ are from differ-
ent domains, k̃(x,x′)= 〈Φ(x),Φ(x′)〉X = k(x,x′).

Considering the kernel as a measurement for similarity, the kernelized formu-
lation is intuitively pleasing in that data points from the same domain are inher-
ently twice as large as cross-domain points. Consider testing on the target data,
the training data in the target domain have twice as much influence as source
points.

Note that this feature augmentation method decomposes a hypothesis into three
sub-hypothesis as h = 〈hc ,hs ,ht 〉, which is equivalent to learning two domain-
specific hypotheses ws = hc + hs and wt = hc + ht . This method can be natu-
rally extended to the semi-supervised learning setting by assuming that ws and
wt make agreement on each unlabeled target domain example xi as

ws ·xi ≈ wt ·xi ⇐⇒ 〈hc ,hs ,ht 〉 · 〈0, xi ,−xi 〉 ≈ 0 (3.18)

In this way, one can construct a feature map for unlabeled data as

Φu(x)= 〈0,x,−x〉.
After that, any standard semi-supervised learning classifiers can be applied with
the feature maps defined for source domain labeled data and labeled and unla-
beled target domain data.
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Model-Based Transfer Learning

4.1 Introduction

Model-based transfer learning, also known as parameter-based transfer learn-
ing, assumes that the source task and the target task share some common knowl-
edge in the model level. That means the transferred knowledge is encoded into
model parameters, priors or model architectures. Therefore, the goal of model-
based transfer learning is to discover what part of the model learned in the source
domain can help the learning of the model for target domain.

Similar to instance-based transfer learning and feature-based transfer learn-
ing, model-based transfer learning leverages the knowledge in the source domain.
However, the most important difference is that model-based transfer learning
leverages the model-level knowledge rather than the instance or feature level. In-
tuitively, reusing the model learned from the source domain is more efficient and
able to integrally grasp the high-level knowledge of the source domain data, be-
cause one does not need to resample the training data or conduct relational infer-
ence on complicate data representations.

With the assumption that a well-trained source model θs has learned a lot of
the structure from data, then, for another related target task, this structure can be
transferred to learn a more precise target model θt with a few labeled data in the
target domain. As shown in Figure 4.1(a), with only a few training samples from
the target domain, we can only learn a simple model to prevent the risk of over-
fitting. However, with the help of a well-trained source model, a more powerful
model can be obtained using only limited training examples in the target domain,
as shown in Figure 4.1.

Most model-based transfer learning algorithms are proposed under the induc-
tive transfer learning setting, where some labeled instances are assumed to be
available in the target domain. Note that some existing model-based transfer learn-
ing methods are adapted from model-based multitask learning approaches. Recall
that the difference between multitask learning and transfer learning is that multi-
task learning tries to optimize the performance on a lot of target tasks simultane-
ously, while transfer learning only focuses on improving the performance of one
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(a) (b) (c)

Figure 4.1 (a) Source model (the dash line). (b) Target model (the solid line) only
with limited target data (the crosses). (c) The target model (the solid line) trans-
ferred with the source model (the dash line) as a prior.

target domain by exploiting knowledge from auxiliary task(s). For example, Evge-
niou and Pontil (2004) propose a regularized multitask learning method based on
support vector machines (SVMs), where the optimization objective is to equally
minimize the loss over all tasks. Hence, the final learned model has a best over-
all performance balancing all the tasks. However, this result may not guarantee
the optimal performance on the desired target task. In transfer learning setting,
one only focuses on the performance of the target task. This difference can be
eliminated by simply changing the weight assignment for difference tasks in the
objective function in multitask learning. In the chapter, related multitask learning
algorithms will be only briefly mentioned as they will be introduced more specif-
ically in Chapter 9.

Based on specific assumptions in different model-based transfer learning
methods, we classify these algorithms into two categories: transferring knowl-
edge through shared model components (Section 4.2) and transferring knowledge
through regularization (Section 4.3). The first category, transferring knowledge
through shared model components, covers the transfer learning algorithms that
establish the target model by reusing some components in the source model or
reusing some hyperparameters of the source model (Li et al., 2006; Tommasi et al.,
2010; Jie et al., 2011). Moreover, there are methods that learn both the source
and target models simultaneously (Lawrence and Platt, 2004; Bonilla et al., 2007;
Schwaighofer et al., 2005).

The second category aims to transfer knowledge through regularization. Regu-
larization is a technique used to solve ill-posed machine learning problems and to
prevent model overfitting by restricting model flexibility. In model-based transfer
learning algorithms, the regularization is used to constrain parameters based on
some prior hypotheses. The SVM has been a commonly used base model in this
category because of its nice computational properties and good performance in
many applications. With the introduction of deep models, some approaches have
transferred model parameters in a pretrained deep learning model from auxiliary
tasks, where the parameters are used to initialize target domain models.



4.2 Transfer through Shared Model Components 47

4.2 Transfer through Shared Model Components

The prior, short for the prior probability distribution, is the probability distribu-
tion that entails beliefs about some uncertain events before seeing any evidence.
For example, consider you are playing a coin toss game with your friend. If the
toss result is heads, you win, and otherwise, you lose. Before the toss, you are sup-
posed to bet on one side of the coin, that is, heads or tails. It is likely that you will
arbitrarily choose one side, because you know that either side has equal probabil-
ity to appear. However, if you have known that heads is more likely to happen, you
will more likely bet on heads. In this example, the prior is the probability that the
coin will turn land on heads.

The prior gives you better and more effective estimation before you make deci-
sion, so you do not have to toss the coin for many times to see which side is more
likely to appear. Similarly, in real world applications, if we can apply such a prior to
a new task, we may obtain a model of satisfactory performance even with limited
training data in the target task. With this motivation, many model-based transfer-
learning algorithms have been proposed (Lawrence and Platt, 2004; Schwaighofer
et al., 2005; Li et al., 2006; Bonilla et al., 2007; Tommasi et al., 2010; Jie et al., 2011;
Ma et al., 2014; Shu et al., 2015; Bousmalis et al., 2016; Chen et al., 2016a; Ghifary
et al., 2016).

4.2.1 Transfer Learning via Gaussian Processes

First we give a brief introduction to Gaussian process (GP) and then introduce
how the methods proposed in the work by Lawrence and Platt (2004), Schwaighofer
et al. (2005), and Bonilla et al. (2007) utilize GP to share knowledge between tasks.

GP is a commonly used tool to model the data distribution with a Gaussian
prior. A GP is a stochastic process such that every finite collection of random vari-
ables has a multivariate normal distribution. In supervised learning, it can be used
to predict the label of unseen data based on the measure of the similarities be-
tween training data. Given labels as well as the data X= [x1,x2, . . . ,xN ]T , by defin-
ing latent variables z = [z1, z2, ..., zN ]T , the prior distribution over the latent vari-
ables is given by a Gaussian prior as

p(z|X,θ)= N (0,K), (4.1)

where θ denotes the parameters and K is the covariance function, as known as
the kernel, to depict a multivariate normal distribution. K can take different forms
such as the linear kernel K(x,x′)= xT x′ and the squared exponential kernel K(x,x′)
=σ2 exp

(
−‖x−x′‖2

2�2

)
, where � and σ are included in θ to be estimated.

In a GP, variables y are independent of X given z. The joint likelihood of overall
data can be formulated as

p(y,z|X,θ)= p(z|X,θ)
N∏

i=1
p(yi |zi ), (4.2)
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where the conditional probability p(yi |zi ) gives the relationship between obser-
vations and the latent variables. (4.2) consists of two parts, the prior and the like-
lihood p(yi |zi ).

Suppose that we have M related but different tasks, each of which is modeled as
a GP on the corresponding training data {(Xm ,ym)}. The probability distribution
for y= (yT

1 , . . . ,yT
M )T is

p(y|X,θ)=
M∏

m=1
p(ym |Xm ,θ). (4.3)

Note that θ is shared by different tasks.
Lawrence and Platt (2004) utilize (4.3) to define a multitask GP by constraining

the covariance matrix K to be a block diagonal matrix as

K=

⎡⎢⎢⎢⎢⎣
K1 0 0 0
0 K2 0 0

0 0
. . . 0

0 0 0 Km

⎤⎥⎥⎥⎥⎦ ,

and uses the informative vector machine (IVM) to find a sparse representation to
reduce the computation and speedup the training.

Schwaighofer et al. (2005) combine the hierarchical Bayesian learning and GP
together for multitask learning. In this algorithm, the hierarchical Bayesian mod-
eling essentially learns the mean and covariance functions of the GP. The algo-
rithm takes two steps:

(1) learn a common collaborative kernel matrix from the data via a simple and
efficient expectation-maximization (EM) algorithm;

(2) generalize the covariance matrix by using a generalized Nyström method.

Bonilla et al. (2007) relaxed the constraints on covariance matrix in Lawrence
and Platt (2004). It uses a shared covariance function on data and a free-form co-
variance matrix over different tasks to model the inter-task dependencies, so it
allows a better flexibility.

4.2.2 Knowledge Transfer via Bayesian Models

The aforementioned methods learn the common prior based on GP, while the
prior can be transferred from the source domains. Other Bayesian models can also
be used for model-based transfer learning, which we review here in this section.

Li et al. (2006) propose an algorithm that transfers the priors from some source
domains (more specifically, visual categories) to estimate the parameter distribu-
tion of some target domain objects in images based on a Bayesian method. By
transferring the prior, the algorithm allows the learning of a new category using
a single or a few examples. General information coming from previously learned
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unrelated categories is represented with a suitable prior probability distribution
on the parameters of the probabilistic models.

Bayesian models have also been applied to applications in natural language
processing (NLP). Dai et al. (2007a) propose a transfer learning algorithm based
on the naive Bayes classifier for text classification. Prior knowledge is transferred
as a probability distribution in two steps. First, one builds a traditional naive Bayes
model based on data in the source domain. Second, an EM algorithm is used
to find the model for the target domain based on the source model, where the
Kulback–Leibler divergence is used to measure the difference between two do-
mains. The EM algorithm gradually minimizes the differences between the newly
learned model and the target domain distribution.

4.2.3 Model Transfer via Deep Models

With the development of deep learning, researchers have attempted to leverage
the powerful expressive ability of deep learning to extract and transfer knowledge
such as the relationships among categories. The knowledge distillation technique,
which involves a teacher network and a student network, is a good example. Orig-
inally, knowledge distillation, also known as soft labeling, is proposed to do the
model compression, in which we may regard the source domain as being identi-
cal to the target one.

In model-based transfer learning, one can distill a soft label l for the class cat-
egory k by averaging over the softmax of all activations of source examples in the
category k. We can denote this average as l (k). In case that the simple softmax pro-
duces a very peaked distribution, we can use a softmax with a high temperature τ

so that the related classes can preserve enough information about the relationship
among the classes.

Formally, the loss for the relational knowledge among the classes based on soft
labels can be defined as

Lso f t l abel (xt , yt ;θr epr ,θc )=−∑
i

l (k)softmax(θT
c f (xT ;θr epr )/τ). (4.4)

Consider Figure 4.2 as an example. The soft label l (bot t l e) is a K -dimensional vec-
tor, where each dimension indicates the similarity of bottles to each of the K cat-
egories. In this example, the soft label of a bottle will have a higher weight on the
mug than the keyboard, since bottles and mugs are more visually similar. Thus,
training with these soft labels enforces the relationship that bottles and mugs
should be closer in the feature space than those between bottles and keyboards.

4.2.4 Other Strategies

Different from the Bayesian methods, Jie et al. (2011) propose a method that
uses off-the-shelf models as priors to learn a new model. They defined a score
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Figure 4.2 An illustration of the soft labeling method (adapted from Tzeng et al.
[2014])

function s(xi , y) to measure the probability that a sample xi belongs to class y as

s(xi , y)= w̄ · φ̄(xi , y)=w(0) ·φ(0)(x, y)+
F∑

z=1
w(y,z) ·φ(y,z) (sp (x, z), y

)
,

where φ(·) is a feature-mapping function and w(·) is the parameter that separates
the corresponding two classes by a hyperplane. The score of the new class y is cal-
culated using the model trained on the target data as well as the prior knowledge
from the source data.

4.3 Transfer through Regularization

Shared knowledge can also be transferred through the regularization. Many re-
searches have explored ways to use the regularization to leverage the transferred
knowledge between a source domain and a target domain.

The standard form of regularization in a model is as follows:

J̃ (θ;X,y)= J(θ;X,y)+αΩ(θ), (4.5)

where J is the original objective function and J̃ is the regularized objective func-
tion with the regularization term Ω(·) on parameter θ with a regularization
weight α.

Evgeniou and Pontil (2004) propose that the model parameter can be decom-
posed into two parts, a task-specific part and a task-invariant part. The target and
source model parameters can be modeled as

θθθs = θθθ0+vs (4.6)

θθθt = θθθ0+vt . (4.7)

θθθ0, the task-invariant parameter, represents the invariant characteristics over tasks
and is supposed to be transferred in model-based transfer learning. vT and vS , the
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Figure 4.3 Adapt the parameter θ to detect a new class “lions” θ̃ using a regular-
izer Ω(·)

task-specific parameters, depict the specific characteristics of a certain task and
can be learned from the data from the specific domain.

What we can leverage from source models is the task-invariant parameters,
which are trained from sufficient data, so the generalization performance of the
target model could be improved.

4.3.1 Support Vector Machine-Based Regularization

As mentioned earlier, SVMs are commonly used for regularized model-based
transfer learning because they have some nice properties

(1) SVMs elegantly separate the data using a hyperplane and only a few data de-
termine the boundary, which makes the model transfer intuitively easy and
the computing cost relatively low.

(2) The objective function of SVMs is simple in that it is convenient to add con-
straints and regularizers.

We can show that (4.5) can be generalized to SVMs. A standard SVM has the
following objective function as

min
w

1

2
‖w‖2 s.t. yi [w ·xi +b]>= 1 ∀i . (4.8)

Yang et al. (2007c) propose an adaptive SVM (A-SVM), which learns a new
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decision boundary that is close to the original decision boundary. In A-SVM, the
target model is defined as ft (x) = fs (x)+Δ f (x), where Δ f (x) is the permutation
function that shifts the source decision boundary to fit the target data.

Similar to Yang et al. (2007c), Jiang et al. (2008) propose a cross-domain SVM
(CD-SVM) algorithm to transfer knowledge from an SVM trained from a source
task to a new task. The motivation behind CD-SVM is that, if a support vector
learned by a source SVM falls in the neighborhood of some target domain training
data, then it tends to have a distribution similar to the source domain, and thus
can be used to help train a new SVM for the target domain. Therefore, in CD, the
target domain SVM can be optimized by adding neighborhood constraints of the
support vectors learned in the source domain.

Aytar and Zisserman (2011) improve (Yang et al., 2007c) in the application of
object category detection and propose a deformable adaptive SVM (DA-SVM). It
utilizes the trained image detector of other categories as the regularization term
to train on a new category using a minimum number of possible training sam-
ples in the current category. Duan et al. (2009) propose a domain transfer SVM
(DT-SVM) for video concept detection. DT-SVM tries to decrease the mismatch
across domain distributions, which are measured by MMD and, at the same time,
learn a decision function for the target domain. In video-concept detection appli-
cations, the change of a key frame is very frequent, which makes the feature rep-
resentations difficult to capture without a large amount of data. To address this
problem, DT-SVM proposes a unified framework to simultaneously learn an opti-
mal kernel function as well as a robust SVM classifier. Bruzzone and Marconcini
(2010) propose a domain adaptation SVM that exploits a semi-supervised method
to adapt the traditional SVM to a new domain while validating adapted classifier
with noisy labels. Xu et al. (2014a) propose an adaptive structural SVM (A-SSVM)
to adapt the classifier parameters between domains. This method introduces a
data-dependent regularization term for source domain selection and integrates
different feature extraction methods. By doing this, A-SSVM is able to capture the
structural knowledge through feature space and trained parameters.

Tommasi et al. (2010) propose an SVM-based adaptation algorithm that ex-
ploits some prior knowledge to imitate the human ability on recognizing objects
even from only one single view. This algorithm selects and adapts the weights of
the prior knowledge from different categories by assuming that the new categories
are similar to some of the existing categories. This method modifies the objective
function in conventional least squares SVMs (LS-SVMs) by changing the regular-
ization term where the modified objective function is formulated as

min
wt ,b

1

2
‖wt −βws‖2+ C

2

l∑
i=1

[yi −wt ·φ(xi )−b]2,

where ws and wt are the parameter of the source and target models, respectively.



4.3 Transfer through Regularization 53

The regularization term constrains the target model parameter to be close to the
source parameter with β, a scaling factor between 0 and 1, controlling the close-
ness measurement.

4.3.2 MKL-Based Transfer Learning

Formula (4.5) can be further generalized to the multi-kernel learning (MKL) set-
ting when J (θ;X,y) is a combination of multiple kernels. MKL is used to directly
constrain the form of kernels rather than using a prior for the kernel function. For
instance, Duan et al. (2012a) propose a domain transfer MKL (DT-MKL) method,
which enforces the decision boundary for the target task so that it is similar to the
source decision boundary.

Schweikert et al. (2008) propose learning a linear combination of the source
SVM classifiers. The decision function is defined as

f (x)=
n∑

i=1
αi k(xi ,x)+b,∀xi ∈D, (4.9)

where k(·, ·) is a kernel function and αi is a coefficient. Hence the overall objective
function is defined as

[k, f ]= argmin
k, f

Ω
(
DIST2

k (Ds ,Dl
t )
)+θR(k, f ,Dl

t ). (4.10)

This objective function consists of two terms. The first term minimizes a distribu-
tional distance DIST(·, ·) between two domains. Dl

t is the set of labeled instances
in the target domain. In the second term, function R(·) represents the structural
risk of the classifier f (·) and kernel k(·), given the target data Dl

t . Here the kernel
function k(·) is assumed to be a linear combination of the base kernels {k j }’s, that
is,

k =
M∑

j=1
d j k j , (4.11)

where M is the total number of source models. It is noteworthy that both this
method and A-SVM (Yang et al., 2007c) do not utilize the abundant unlabeled data
in the target domain.

Duan et al. (2012c) propose an adaptive MKL (A-MKL) method. This algorithm
learns a kernel function and a classifier by optimizing both structural risk and
distribution discrepancy between the source and target domain.

Besides exploring the input kernel, Guo and Wang (2013) propose a domain
adaptive input-output kernel learning (DA-IOKL) algorithm that simultaneously
learns both the input and the output kernels with a discriminative vector-valued
decision function by reducing the data mismatch based on the MMD distance and
minimizing the structural risk.
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4.3.3 Fine-tuning Approaches for Deep Models

As deep learning becomes a popular machine learning technique to use in
many applications, researchers have begun to endow deep models with transfer
learning capabilities. Parameter fine-tuning is a simple and effective technique for
knowledge transfer in terms of model parameters.

Greedy Layer-wise Pretraining and Fine-tuning
The idea of greedy layer-wise pretraining has been widely used in training deep

belief networks and autoencoders. In this approach, the parameters trained using
unsupervised learning are used to initialize specific classification tasks (Bengio,
2012). This approach assumes that unsupervised learning tasks such as instance
reconstruction can reveal good representations. The parameters initialized with
them should be in a good region for the downstream tasks. Such initialization
strategy can be considered as a kind of regularization on the learned model pa-
rameters.

In the greedy layer-wise algorithms, the first stage is to use unsupervised learn-
ing to train each layer; this is known as the pretraining stage. Specifically, for the l-
th layer, we train an unsupervised learning model by taking the training examples
hl−1(x), which are the output of the (l −1)-th layer, to reproduce representations
hl (x)=Rl (hl−1(x)) at the next level.

The second stage is fine-tuning with the supervised signals for the downstream
tasks like classification. Several variants have been designed for the fine-tuning
step. The most common one is to initialize a linear or nonlinear supervised pre-
dictor by taking hL(x) in the first stage as the input and then fine-tune the model
parameters with respect to a supervised training loss.

Fine-tuning from Parameters Learned with Supervision
Greedy layer-wise pretraining was a popular method in the early history of deep

learning, but later it was replaced by the dropout and batch normalization to train
all layers in an end-to-end manner. With a more stable optimization method and a
large amount of labeled data, one is able to directly train a supervised deep model
from scratch. A critical issue is how to transfer the parameters learned with super-
vision across different supervised tasks.

Experiments have been conducted to evaluate transferrability of different layers
of a pretrained convolutional neural network CNN model (Yosinski et al., 2014).
Figure 4.4 illustrates the setup of the experiments. The ImageNet data set is split
into two halves, namely A and B. The models in the first two rows are trained on
A and B, respectively. They are used as base models. In the last two rows, the first
several layers of the models are initialized by the learned values while other layers
are randomly initialized. X nY stands for the first n layers that are copied from
base model X and frozen to do transfer learning in Y. Meanwhile, X nY + stands for
the transferred first n layers, which can be fine-tuned by Y.
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Figure 4.4 Overview of the experimental settings in CNN (adapted from Yosinski
et al. [2014])

Figure 4.5 Experiment results of the transferability of the representations in CNN
(adapted from Yosinski et al. [2014])

Figure 4.5 shows the results of different transfer-learning settings. Apparently,
the setting of transfer and fine-tuning helps AnB+ outperform the base model B.
The AnB and BnB with the frozen transferred layers encounter a huge drop when
n is large. It shows that the lower layers are more transferrable and the represen-
tations in the higher layers are more related to specific tasks.
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Similarly, experiments have also been conducted to evaluate the transferrabil-
ity of the parameters of recurrent neural networks (RNNs) for natural language
classification tasks (Mou et al., 2016). As shown in Figure 4.6, the RNN model for
natural language classification consists of three kinds of layers: (1) E : the embed-
ding layer, (2) H : the hidden layer of RNNs that captures sequential patterns and
(3) O: the output layer.

LSTMHidden

Embedding
a boy

softmax
Output

LSTM LSTM

Figure 4.6 An LSTM model for natural language classification (adapted from Mou
et al. [2016]). LSTM, long short-term memory network

To analyze the transferrability of each layer, several experiments were cond-
ucted in the work by Mou et al. (2016), including a large movie review data set,
IMDb, a small movie review data set MR, and a small six-way question data set
QC. The results under different transfer learning settings are tested, including
frozen, fine-tuning and transferring between tasks. The results of RNNs are sim-
ilar to those of CNN. The higher layers like the hidden and output layers are not
so transferable. Even in the same semantic setting that transfers from IMDb to
MR, the performance will decrease if we freeze all the layers. In the case of dis-
similar tasks such as from IMDb to QC, freezing the hidden layer has resulted in
a dramatic drop. If the model is initialized with the parameters learned from the
source domain and then continue to fine-tune, the performance is usually higher
than or at least competitive with the base model.

Fine-tuning from Different Modalities
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Figure 4.7 The DeViSE model (adapted from Frome et al. [2013])

Frome et al. (2013) learn semantic knowledge in the a text domain and trans-
ferred the knowledge to a visual object recognition domain. First, a skip-gram
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neural language model is pretrained for the distributed representations of words.
In parallel, a state-of-the-art deep neural network for visual object recognition is
trained by the LSVRC 2012 1K data set. Finally, a deep visual semantic model is
built by combining the representation layers of the pretrained visual object recog-
nition network and neural language model. The model will continue to fine-tune
parameters. The model and the training process are shown in Figure 4.7.
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Relation-Based Transfer Learning

5.1 Introduction

In previous chapters, we have reviewed instance-based, feature-based and
model-based transfer learning methods, all of which implicitly assumed that data
instances are independent and identically distributed. However, many real-world
domains often contain some structures among the data instances, leading to rela-
tional structures in these domains. For example, a social network can be viewed as
a relational graph where nodes represent persons and links are the relationships
between people. In a relational domain, instances are related with multiple rela-
tions, which violates the independent assumption among data required by classi-
cal machine learning methods. Many models have been proposed that learn from
data in relational domains.

However, similar to supervised learning, the problem of insufficient data also
haunts the performance of learning models on relational domains. When the re-
lational domain changes, the learned model usually performs poorly and has to be
rebuilt from scratch. Beside the low quantities of high-quality data instances, the
available relations may also be too scarce to learn an accurate model, especially
when there are many kinds of relations. So transfer learning is suitable for rela-
tional learning to overcome the reliance on large quantities of high-quality data
by leveraging useful information from other related domains, leading to relation-
based transfer learning. In addition, relation-based transfer learning can speed up
the learning process in the target domain and hence improve the efficiency.

In general, relation-based transfer learning aims to build the mapping of the re-
lational knowledge between the source relational domain and the target relational
domain. The transfer is based on the assumption that the relations among the
data in the source domain and the target domain have common regularities. Thus,
to some extent, the domain-independent relational knowledge can be transferred
based on relational features. An illustrative example that shows how to transfer
the relational knowledge from the academic domain to the movie domain is given
in Figure 5.1.

To answer the query “how to transfer” for transfer learning, statistical relational
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Figure 5.1 An example of relational transfer mechanisms (adapted from Davis
and Domingos [2009])

learning gives a typical example of how to conduct relation-based transfer, with
leading works such as Getoor and Taskar (2007) and Nickel et al. (2016). In this
area, Markov logic networks (MLNs) (Richardson and Domingos, 2006) provide an
ideal tool for representing structural relations. MLNs are a logic-probability mixed
model, where relations are encoded as predicates and the regularities of relations
are represented as formulas. Relation-based transfer learning methods based on
MLNs exact weighted logic formulas from the source domain representing rela-
tions regularities. Then, based on the regularities, logic formulas with predicates
from the target domain are created as candidates. These candidates are sifted, re-
vised and reweighted in order to properly model the target domain.

There are two mechanisms of relation-based transfer learning, including first-
order relation-based and second-order relation-based transfer learning. First-order
relation-based transfer learning methods assume that, if two relational domains
are related, they may share some similar relations among data instances that can
be transferred across domains. For example, if a student who is unfamiliar with a
certain “movie” problem domain is told that the relation W or kedFor between an
actor and a director is analogous to the relation Ad vi sedB y between a student
and a professor, and that the relation Movi eMember is similar to the relation
Publi cati on, then the student can predict some rules in the “movie” domain
based on what he/she knows in the academic domain. Hence, given the knowl-
edge of the student in the academic domain that a professor is a coauthor of pa-
pers written by his/her students, which is formulated as a first-order logic for-
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mula in Figure 5.1, the student may infer that a director is a member of movies
his/her employed actors participate in by substituting similar relations into the
target movie domain.

Instead of transferring relations in first-order relation-based transfer learning
approaches, second-order relation-based transfer learning approaches can also
be used. Second-order relations assume that two related relational domains share
some similar relation-independent structural regularities that can be extracted
from the source domain. These regularities can then be transferred to the target
domain. In fact, many abstract rules about relations stay valid across several dif-
ferent real world domains. For example, the distributional hypothesis initially dis-
covered in linguistics (Harris, 1954) finds that words with similar distributional
characteristics tend to be semantically related. Recently, it was found that this
distributional characteristics was valid for social networks (Mitzlaff et al., 2014).
Likewise, papers’ citation structures also tend to be semantically similar in ci-
tation networks (Ganguly and Pudi, 2017). In Figure 5.1, a relation-independent
structural pattern is represented as a second-order logic formula with predicate
variables, which is learned from a source domain. This second-order relation can
be instantiated with relations in the target domain to obtain new rules, which is a
form of transfer learning.

There also exist works that consider transferring across different networks (Ye
et al., 2013; Fang et al., 2013, 2015), where the structural knowledge of the net-
works are assumed to be transferable. Ye et al. (2013) propose the construction of
generalizable latent features through matrix factorization by considering both the
source and the target networks, and then adoption of an AdaBoost-style algorithm
with instance weighting to train a target classifier. Fang et al. (2013) constructed a
label propagation matrix to capture the influence of the structural information to
the labels of nodes in a network. The goal was to discover common signature sub-
graphs between two networks to construct new structural features for the target
network. The relational knowledge contained in edges is then transferred across
relational domains by discovering common latent structural features shared by
the source and the target networks. For the co-extraction of sentiment and topic
lexicons across domains with no labeled data in the target domain, Li et al. (2012)
proposed a two-stage relation-based transfer learning framework by leveraging
transferable syntactic relations between topical and sentimental words. In the first
stage, a simple strategy is proposed to generate a few high-quality sentiment and
topic seeds for the target domain and in the second stage, a novel relational adap-
tive bootstrapping method is applied to expand the seeds by exploiting the rela-
tions between topic and opinion words.

There has not been much research about “when to transfer” for relational do-
mains. The weighted pseudo-log-likelihood (WPLL) could be used as a metric to
measure the “degree” of a set of formulas being satisfied. Zhuo and Yang (2014) de-
veloped a score function based on WPLL to measure the similarity between source
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and target domains in order to capture the transferability between the source and
target domains.

5.2 Markov Logic Networks

Markov networks (Koller and Friedman, 2009), also known as Markov random
fields, are a graphical model to use a undirected graph to describe the joint prob-
ability of variables. MLNs (Richardson and Domingos, 2006) are a template lan-
guage to define a Markov network that predicts the probability of relations be-
tween entities and it combines techniques in the statistics and logic to offer a
simple way to represent uncertain knowledge logic.

For a first-order logic knowledge base, the hard constraints of formulas make it
difficult for logic to represent uncertainty. Graphical models such as the Markov
network provide a unifying structure for various probabilistic models but they can
only represent distributions over the propositional logic, which is insufficient in
expressing higher-order knowledge. By assigning each logic formula a real-valued
weight to represent its credibility, an MLN softens the hard constraints and builds
an interface between the first-order logic and graphical models.

An MLN consists of two parts, a first-order logic part and a numerical part for
weights associated with each logic formula. A first-order logic formula defines the
correlation between predicates and the associated weight embodies the credibil-
ity of the corresponding formula, making the set of formulas soft constraints. In
this way, formulas in an MLN can tolerate uncertainty and allows even contradic-
tory knowledge.

An MLN is constructed based on an intuition that the fewer formulas a world
violated, the more probable it is. Similarly, the larger the weight of a formula, the
more likely it is true. More precisely, the weight for every formula denotes the dif-
ference in the logarithm of the probability between a world that satisfies it and a
world that does not satisfy it while fixing other entities. The interpretation of this
intuition comes from the logic, while the implementation is based on the Markov
networks.

With the aforementioned MLN, we can now use it as a representation language
to express transferrable knowledge between two domains.

5.3 Relation-Based Transfer Learning Based on MLNs

Relation-based transfer learning using MLNs aims to extract common relations
from the source domain and transfer the relational knowledge to the target do-
main. This fits the transfer learning motivation as we wish the framework to work
with limited relational data. Research in this area is divided into two categories:
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shallow transfer, where the source and the target domains share the same types of
objects and relations, and deep transfer, where the types of objects and relations
are different across domains (Davis and Domingos, 2009; Van Haaren et al., 2015).
These two categories respectively use the first-order and second-order relation-
based transfer learning techniques based on MLN.

In the first-order relation-based transfer learning approach, we aim to find an
explicit mapping of predicates across domains to generate new formulas for the
target domain. In the second-order approach, we extract the structural regulari-
ties from the source domain in the form of second-order logic and then transfer
them to the target domain.

5.3.1 Shallow Transfer via First-Order Logic

Mihalkova et al. (2007) propose a transfer via automatic mapping and revision
(TAMAR) algorithm that finds and adapts the mappings of predicates across do-
mains. For example, with the mapping between entities in an academic scholar
domain (e.g., professors, students and publications) and a movie domain (e.g., di-
rectors, actors and movies), rules that are applicable to one domain may be trans-
ferred to another after replacing some loic predicates according to the mapping.
In the TAMAR algorithm, the source MLN is first mapped to the target domain and
the clauses from the source domain can then be revised based on the mapping.
The revised MLN can be used as a relational model for the inference or reasoning
in the target domain. In the end, this mapping is evaluated by the WPLL score,
which measures the performance of the mapped MLN on the target data.

The definition of WPLL is given below (Mihalkova et al., 2007):

log P̃w (X = x)= ∑
r∈R

cr

gr∑
k=1

lnPw (Xr,k = xr,k |MBx (Xr,k )), (5.1)

where R is the set of first-order predicates, gr is the number of groundings of first-
order predicate r and xr,k is the truth value of the k-th groundings of r . The WPLL
score is different from the likelihood for a data set in that the likelihood is the mul-
tiplication of conditional probability of every ground fact given its Markov blanket
but the pseudo probability in WPLL for each predicate is weighted by cr . WPLL
does not require inference over the model, and it can be learned by stochastic
gradient descent algorithms.

TAMAR is built on WPLL: instead of evaluating all possible mappings to find the
best one, TAMAR utilizes a greedy method. By finding the best mapping of each
source clause individually, TAMAR constructs a local mapping for the predicates
appearing in the source clause. To find the best local mapping for each source
clause, TAMAR will exhaustively search through the space of all legal mappings,
each of which maps a source predicate to a target predicate (or empty predicate)
with consistent type-mapping constraints. These constraints ensure that, if the
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Table 5.1 An example of the predicate and clause mapping algorithm
Source domain Target domain
Publi cati on(t i t le, per son) Movi eMenber (movi e, per son)
Pr o f essor (per son) Di r ector (per son)
Student (per son) Actor (per son)
Ad vi sedB y(per son, per son) W or kedFor (per son, per son)
Publi cati on(P, A)∧Publi cati on(P,B)∧ Movi eMenber (P, A)∧Movi eMenber (P,B)∧
Pr o f essor (A)∧Student (B) Di r ector (A)∧ Actor (B)
=⇒ Ad vi sedB y(B , A) =⇒ W or kedFor (B , A)

actor is mapped to the student, it cannot be mapped to other types. Two predi-
cates are compatible if they have the same number of arguments and the types of
arguments are compatible according to the current type constraints. With a new
compatible mapping that has no conflicts with other mappings, the mapping and
corresponding type-mapping constraints are updated.

After this construction, legal mappings are evaluated based on the WPLL score
of the MLN model that consists of only the translated clauses. The best local pred-
icate mapping is the one with the highest WPLL score. The process is iterated to
find local mappings for all source clauses. Table 5.1 illustrates the output of the
mapping algorithm. The mapped structure is then revised to fit the data in the
target domain based on various criteria:

• Self-diagnosis: Each clause c in the transferred MLN is checked to test whether
it should be shortened, lengthened or kept unchanged by considering every
possible way to treat c as an implication, with only one literal as the conclu-
sion and the remaining the antecedents. Thus, if a clause made the wrong con-
clusion, it is possible to lengthen it by adding more antecedents as constraints.
For clauses that fail to draw the correct conclusion because of the failure of an-
tecedents, it is possible to shorten the clause to reduce the conditions required.

• Structure update: Literals are removed from clauses marked as the “shortening”
and added for clauses marked as the “lengthening” based on the WPLL score.

• New clause discovery: Techniques such as relational pathfinding (Richards and
Mooney, 1992) are used to find new clauses in the target domain. Clauses that
can improve the WPLL will be added into the set.

Mihalkova et al. (2007) conduct experiments on TAMAR under several transfer
scenarios on several benchmark data sets. Empirical results demonstrate that
TAMAR is able to reduce the amount of the training time and the size of the train-
ing data for learning an accurate MLN model in the target domain, when com-
pared with learning a model from scratch in the target domain.

As an extension of the TAMAR algorithm, a short-range to long-range (SR2LR)
algorithm is proposed by Mihalkova and Mooney (2008) to study the single-entity
centered setting in transfer learning, where only one entity in the target domain
is available. Two types of clauses are assumed to exist in SR2LR, including the
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short-range clauses concerning properties of one single entity and long-range
clauses concerning properties of multiple entities. With only one entity available,
the short-range clauses can still be used to construct the mapping between pred-
icates in the source and target domains. These clauses can further be generalized
to translate to long-range clauses. Similar to TAMAR, the mapping construction
in SR2LR relies on an exhaustive search through the space consisting of all locally
legal mappings. However, instead of using the WPLL score for evaluation, SR2LR
simply checks whether the verifiable groundings of short-range clauses are satis-
fied on the target data because of the restricted nature of the available target data.

Kumaraswamy et al. (2015) propose a language-bias transfer learning (LTL) al-
gorithm for cross-domain transfer learning. Different from TAMAR, the LTL al-
gorithm performs the matching of type declarations in the source and target do-
mains in a sequential way, where LTL incrementally constructs a search tree and
stops the search in a path when there is a mismatch of the type constraints. This
approach allows the LTL algorithm to learn more efficiently because the search
tree needs not to be fully constructed and traversed in the target domain.

5.3.2 Deep Transfer via Second-Order Logic

In addition to the relation matching, some abstract rules about relationships
keep valid across domains such as the transitivity property, distributional hypoth-
esis and homophily. Homophily is the basic heuristic for latent methods that sim-
ilar entities are likely to be related, and relations involving similar entities are
likely to be related. Learning these high-level concepts and transferring them into
new domains will lead to faster and more accurate relational learning. In MLN-
based transfer learning, the structural regularities of relations in the source do-
main are represented in the form of a second-order logic. For the second-order
logic, variables can range over relations (predicates) as well as objects (constants),
making the representation of common rules among various relations possible.
For example, the transitivity property can be represented as r (z, y)∧ r (x, z) =⇒
r (x, y), where r can be a variable representing predicates and x, y , z represent
objects. In a social network, the formula can be instantiated as F r i end s(z, y)∧
F r i end s(x, z) =⇒ F r i end s(x, y), while, in the relational algebra, it can be in-
stantiated as E qual (z, y)∧E qual (x, z) =⇒ E qual (x, y).

Davis and Domingos (2009) propose a deep transfer via Markov logic (DTM)
algorithm to transfer relational knowledge based on a form of the second-order
Markov logic. The basic idea of the DTM algorithm is to discover structural regu-
larities in the source domain in the form of Markov logic formulas with predicate
variables and to instantiate these formulas with predicates from the target do-
main. The first-order Markov logic can be extended to the second-order Markov
logic by considering grounding atoms with predicates as well as constant symbols.
Because different formulas over the same predicates can capture the same regu-
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larity, DTM uses second-order cliques to cluster similar second-order structures
and then transfers them based on the cliques.

We now consider DTM in more detail. A second-order clique defined in DTM
is a set of literals with predicate variables with restrictions. Given a set of first-
order formulas in the source domain, which can be obtained with any learner that
can induce the first-order logic formulas from data, DTM converts each formula
based on the second-order logic by replacing all predicate names with predicate
variables. Then, the converted second-order formulas are grouped as cliques if
they are over the same set of literals. Note that DTM requires that no cliques are
the same modulo variable renaming, which means that, if two formulas can be
renamed to share the same set of literals, they should be in the same clique. For
example, two first-order formulas Complex(z, y)∧Inter act s(x, z) =⇒ Complex
(x, y) and Locati on(z, y)∧ Inter act s(x, z) =⇒ Locati on(x, y) in the source do-
main can be converted as r (z, y)∧s(x, z) =⇒ r (x, y) and s(z, y)∧r (x, z) =⇒ s(x, y).
The two formulas are grouped as one clique {r (z, y), s(x, z),r (x, y)} because they
share the same set of literals after renaming variable r to s and s to r .

After grouping the clauses into second-order cliques, each clique that appears
more than twice will be evaluated and transferred to the target domain. From
the perspective of SRL, the literals in the same clique are dependent. The more
correlated literals in a clique are, the more probable that some of the second-
order formulas derived from that clique can express the regularities of relations
in the source domain. In this way, DTM scores a clique by evaluating the correla-
tion between literals in the clique. For each first-order instantiation of a second-
order clique, DTM computes its Kulback–Leibler (KL) divergences for all possible
sub-clique decompositions. For example, for {r (z, y), s(x, z),r (x, y)} and its instan-
tiation {Complex(z, y), Inter act s(x, z),Complex(x, y)}, there are three pairs of
sub-cliques:

{Complex(z, y), Inter act s(x, z)}− {Complex(x, y)}

{Complex(z, y),Complex(x, y)}− {Inter act s(x, z)}

{Complex(z, y), Inter act s(x, z)}− {Complex(x, y)}.

The probability of each sub-clique is computed by the Dirichlet distribution. Each
instantiation receives the minimum KL divergence over the set of its decomposi-
tions, and each second-order clique receives an average score of its top m first-
order instantiations. Then, cliques with high scores will be transferred to the tar-
get domain.

The transfer-learning mechanism of DTM can be regarded as biasing the learner
in the target domain to favor models containing previously discovered regularities
in the source domain via the second-order cliques. A second-order clique gives
rise to several second-order formulas with all possible ways to negate the liter-
als, which are then transformed to the clause form according to MLN, in a clique.
Every second-order clause represents a probabilistic way on how literals in the
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clique are correlated. For the cliques having at least one true grounding in the tar-
get domain, the legal instantiations can be directly picked, refined or as the seeds
for the search of formulas in the target domain.

Different from DTM, which applies an auxiliary tool, that is, the second-order
clique, to collect candidates of reliable second-order formulas, the two-order-deep
transfer learning algorithm proposed by Van Haaren et al. (2015) directly com-
putes the posterior distributions of all second-order formulas given the data in
the source domain and then uses those posterior distributions as prior distribu-
tions over second-order formulas in the target domain to train the MLN in the
target domain.

5.3.3 Transfer Learning by Structural Analogy

Wang and Yang (2011) present another approach to relation-based transfer learn-
ing across domains. By examining knowledge transfer in humans, we could find
that human beings do not rely on such low-level relatedness to transfer knowledge
across domains. In fact, humans are able to make analogy across different do-
mains by resolving the high level (structural) similarities even when the learning
tasks (domains) are seemingly irrelevant. For example, we can easily understand
the analogy between debugging for computer viruses and diagnosing human dis-
eases. Even though the computer viruses (harmful codes) themselves have noth-
ing in common with bacteria or germs, and the computer systems are totally dif-
ferent from our bodies, we can still make the analogy based on the following struc-
tural similarities:

(1) Computer viruses cause malfunction of computers. Diseases cause disfunc-
tion of the human body.

(2) Computer viruses spread among computers through the networks. Infectious
diseases spread among people through various interactions.

(3) System updates help computers avoid certain viruses. Vaccines help human
beings avoid certain diseases.

Understanding these structural similarities helps us abstract away the details
specific to the domains, and build a mapping between the abstractions (see Fig-
ure 5.2). The mapping builds on the high-level structural relatedness of the two
domains, instead of their low-level “literal similarities.” In other words, the at-
tributes of the “computer” and the “human” themselves do not matter to the map-
ping, whereas their relationships to other entities in their own domains matter.
Such a “structural similarity” can be determined if we can correctly identify analogs
across completely different representation spaces.

To capture this intuition, Wang and Yang (2011) introduce an algorithm for
transfer learning by structural analogy. This algorithm builds on functional space
embedding of distributions (Smola et al., 2007b), and addresses transfer learn-
ing in a setting that the source domain and target domain are using completely
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Figure 5.2 The analogy between debugging for computer viruses and diagnosing
human diseases based on structural similarities. The dash lines bridge analogs
across domains

different representation spaces. As we cannot directly compare features across do-
mains, we extract the structural information of the features within each domain
by mapping the features into the reproducing kernel Hilbert space, such that the
“structural dependencies” of features across domains can be estimated by ker-
nel matrices of the features within each domain (Smola et al., 2007b). Hence, the
learning process is formulated as simultaneously selecting and associating fea-
tures from both domains to maximize the dependencies between the selected fea-
tures and response variables (labels), as well as between the selected features from
both domains. With the learned cross-domain mapping, a structural similarity be-
tween the two domains can be readily computed, which can be used in place of
simple similarity measures in computational analogy systems such as case-based
reasoning. By treating the analogs from both domains as equivalent, we can trans-
fer knowledge to achieve a better understanding of the domains, such as higher
accuracy for classification tasks.
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Heterogeneous Transfer Learning

6.1 Introduction

As reviewed in previous chapters, the majority of work done in the area of trans-
fer learning focuses on cases where examples in a source domain and those in a
target domain share the same representation structure but follow different proba-
bility distributions. In this chapter, we introduce heterogeneous transfer learning,
which pushes the boundary further by allowing a source domain and a target do-
main to lie in incommensurable feature spaces or different label spaces.

Even though transfer learning is a powerful framework to apply in many sit-
uations, homogeneous transfer learning only focuses on generalization perfor-
mance across the same domain representations. As such, homogeneous transfer
learning is limited. As an example, consider the situation in Figure 6.1. In this ex-
ample, increasing the annotated high-resolution photographs in a source domain
offers little help in classifying the categories of sketch images, given that the cate-
gories of televisions and computer monitors are “visually” similar. This is partly
due to the limitation of homogeneous transfer learning. In this case, however,
heterogeneous transfer learning, which considers knowledge across domains with
different feature and label spaces, can bring out similar knowledge in the two do-
mains. Heterogeneous transfer learning enables different perspectives or aspects
of knowledge to be transferred from a source to a target domain. In the example in
Figure 6.1, text documents, lying in a completely different feature space from im-
ages, characterize televisions and computer monitors with more descriptive and
discriminative abilities. Therefore, they can provide additional knowledge to fur-
ther improve the classification of sketch images in the target domain. By borrow-
ing the knowledge learned from classifying high-resolution photographs in those
categories associated with televisions and computer monitors, say TV boxes and
keyboards, heterogeneous transfer learning can search for more hints about the
visual differences between televisions and monitors.

Besides, it may often be the case that a source domain in the same feature
and label representation as a target domain is not easily accessible to users. Con-
sider the task of human activity recognition using sensor data collected from cell-
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I just bought a 58-inch LED TV from 
Panasonic, and I cannot wait to
install the Apple TV box.

A good monitor, such as the Dell 
UltraSharp U2312HM, can be especially 
advantageous to those who enjoy 
viewing visual media on their computers. 

homogeneous

heterogeneous heterogeneous

Figure 6.1 An illustration of homogeneous and heterogeneous transfer learning

phones. This task requires many sensor records to be annotated with activity
names as labels. However, the annotation of such sensor data is especially labo-
rious and expensive (Wei et al., 2016a). In this case, finding a source domain with
sufficient labeled sensor records is as difficult, if not more, as building a model in
the target domain. In contrast, heterogeneous transfer learning offers greater flex-
ibility for source domain selection by allowing a source domain to be chosen from
a different feature space or a different label space. For the activity recognition ex-
ample, heterogeneous transfer learning algorithms can transfer knowledge from
social media messages to sensor records, which may greatly help improve activity
recognition performance.

Last, but not the least, heterogeneous transfer learning gets closer to human
intelligence where knowledge can be transferred between different types of signals
easily. This is evidenced by the multimodal sensory system of the brain. The mul-
timodal sensory neural system of humans can integrate signals from different sen-
sory modalities, such as visual stimuli, auditory stimuli, tactile stimuli and olfac-
tory stiumli. When signals in some of the modalities are absent or insufficient,
the system can leverage knowledge from other modalities to guarantee the ef-
fectiveness of perception (Recanzone, 2009). For example, we usually understand
others’ speech based on the auditory stimuli from sound bites. However, if some
other people are whispering in a low voice that we cannot hear them clearly, the
multimodal sensory system is capable of transferring knowledge from the visual
stimuli, such as the shape of mouth, to improve speech understanding and so on.

The rest of this chapter is organized as follows. In Section 6.2, we first give a
formal definition regarding heterogeneous transfer learning. Section 6.3 details
existing solutions toward heterogeneous transfer learning, and discusses their



70 Heterogeneous Transfer Learning

advantages as well as disadvantages. In Section 6.4, we present some successful
applications of heterogeneous transfer learning and an empirical comparison of
different algorithms on several data sets. Finally, we conclude the chapter with
some potentially influential proposals of future research.

6.2 The Heterogeneous Transfer Learning Problem

While homogeneous transfer learning algorithms assume that Xs =Xt , Ys =Yt ,
PX

s �= PX
t or P

Y |X
s �= P

Y |X
t , heterogeneous transfer learning pushes the boundary

further by relaxing the assumption in homogeneous transfer learning to allow the
feature spaces of the two domains to be different, that is, Xs �= Xt , or the label
spaces to be different, that is, Ys �=Yt . Given such a source domain Ds and a tar-
get domain Dt , heterogeneous transfer learning have two goals: (1) to learn trans-
ferable knowledge from the source domain Ds to improve the learning of P Y |X

t in
the target domain by reducing its generalization error on unseen data and (2) to
reduce the number of labeled data used in training in the target domain; that is,
nl

t , to achieve the same level of generalizability with P Y |X
t .

Provided with incommensurable representation or label structures, heteroge-
neous transfer learning algorithms have to rely on the correspondence annotated
by human beings to bridge domains. For example, if knowledge is expected to be
transferred from text documents, shown to the left of Figure 6.2, to improve im-
age classification, shown to the right of Figure 6.2, annotators have to explicitly
specify whether a document is semantically related with a picture, for example,
the document describing a horse and the horse picture are related. We formally
define the correspondence as follows.

Definition 6.1 (correspondence) The correspondence is defined as C =⋃
i

⋃
j

ci j ,

The horse has a high head, a long
neck and a strong body. It has long
hair on its neck, called a mane. It has
a bushy tail. It eats grass and corn.

The domestic dog is a member of
the genus Canis that form spart of the
wolf-like canids, and is the most
widely abundant carnivore.

Figure 6.2 An illustration of the correspondence annotated by human beings be-
tween a pair of heterogeneous domains, that is, text documents and images
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where ci j indicates the degree of semantic relatedness between the j -th example

in a source domain x j
s and the i -th example in a target domain xi

t .

Besides the annotated correspondence shown in the Figure 6.2, the correspon-
dence set C can also be built by labels. If the label of a source instance, say “horse,”
and the label of a target instance, say “pony,” are semantically close, we are also
able to infer that the source instance and the target instance have correspon-
dence. The correspondence is a prerequisite for heterogeneous transfer learning
algorithms to build either instance or feature mappings, as homogeneous transfer
learning algorithms do, to enable knowledge transfer.

6.3 Methodologies

Heterogeneous transfer learning can be categorized into two groups according
to the type of “heterogeneity” that we refer to. The first branch addresses the prob-
lem caused by knowledge transfer under the feature-space mismatches, that is,
Xs �=Xt . The second branch enables knowledge transfer even if the label spaces
from the two domains are different, that is, Ys �=Yt .

6.3.1 Heterogeneous Feature Spaces

To the best of our knowledge, almost all current heterogeneous transfer learn-
ing works transfer knowledge across domains in different feature spaces. First
of all, we summarize and categorize these methodologies as a hierarchical tree
shown in Figure 6.3. The approaches are classified into two main streams. The
first stream of approach, which we call single-level alignment, aligns heteroge-
neous domains by building a single level of mappings (either instance or feature
mappings as we mentioned earlier). The second line, called multi-level alignment,
however, performs multiple levels of mappings to make different domains align.

Single-level alignment Multi-level alignmentApproach 

Latent space based Translation basedMethod 

Latent 
semantic 
analysis 

Techniques DL  Manifold 
alignment 

Deep 
learning  

Figure 6.3 The hierarchical categorization of methodologies for heterogeneous
transfer learning across domains in different feature spaces DL, dictionary
learning
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There have been two categories of alignment strategies according to the way
mappings are built: (1) latent space-based methods that learn a latent space ex-
panded by multiple latent factors shared across domains and (2) translation-based
methods that directly translate from a source feature space to a target feature
space. Figure 6.4 presents the general ideas of these two kinds of methods and
differences between them. To be more specific, the latent space-based alignment

translator 

Source domain data Target domain data

Latent space 

Common latent factors across domains 

Figure 6.4 Overview of the two strategies for the alignment of domains in differ-
ent feature spaces

strategy can be implemented by techniques including (1) latent semantic anal-
ysis, (2) DL, (3) manifold alignment and (4) deep learning. Before proceeding to
introduce details of the techniques and their representative works, the explored
research works so far are shown in Table 6.1.

Table 6.1 The explored research works so far in heterogeneous transfer learning
across domains in different feature spaces.

������������Approach
Techniques Latent space based

Translation based
Latent factor analysis DL Manifold alignment Deep learning

Single-level alignment � � � �
Multi-level alignment � � �

Latent Space-Based Single-Level Alignment
Latent Factor Analysis

Latent factor analysis is a statistical method that describes observed variables
and their relationship in terms of a potentially fewer number of unobserved vari-
ables called latent factors. The general idea behind latent factor analysis for het-
erogeneous transfer learning is to extract latent factors shared by a source and a
target domain, given observed feature representations of both domains. By pro-
jecting a target domain onto the latent space where the shared latent factors lie,
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the feature representation of the target domain is enriched with these shared la-
tent factors that encode knowledge from one or multiple source domains, and
improve the performance in kinds of tasks.

Figure 6.5 Overview of the annotation-based probabilistic latent semantic anal-
ysis model (adapted from Yang et al. [2009])

Yang et al. (2009) first propose and investigate heterogeneous transfer learning.
This work leverages a large corpus of unlabeled text documents, the source do-
main, to help images as the target domain better cluster. The authors put forward
a probabilistic approach named annotation-based probabilistic latent semantic
analysis (aPLSA). The core of aPLSA lies in employing the image–text multiview
data, which are tagged images on Flickr in the empirical studies of this work. Both
images and their auxiliary tags are projected into a common semantic latent space
where latent factors dictating the distribution of low-level features of images are
finally output as clusters. Specifically, Z = {zi }dc

i=1, Xs , Xt , F denote the the la-
tent variable set, tags, image instances, and low-level image features, respectively.
{zi }dc

i=1, meanwhile, are regarded as the clusters that are finally desired. Mathe-
matically, the goal of this model is to cluster target images, that is, to assign a
zi ∈ Z with the highest probability for each specific target image xt

i in a proba-
bilistic fashion:

g (xt
i )= argmax

z∈Z
P (z|xt

i ). (6.1)

To extract Z , aPLSA follows two chains, as Figure 6.5 shows. The first chain de-
cides the low-level features F from images Xt passing though Z :

P ( f |xt
i )= ∑

z∈Z

P ( f |z)P (z|xt
i ). (6.2)

The other chain is inferred from auxiliary tags, and characterizes the correlation
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between tags Xs and low-level features F though Z :

P ( f |xs
j )= ∑

z∈Z

P ( f |z)P (z|xs
j ). (6.3)

Jointly considering both chains, aPLSA designs a log-likelihood objective function
as shown in (6.4) and estimates the probabilities P ( f |z), P (z|xs

j ) and P (z|xt
i ) via

the expectation-maximization (EM) algorithm:

L =∑
d

[λ
∑
d

Ai d∑
d ′ Ai d ′

log P ( fd |xt
i )+ (1−λ)

∑
l

B j d∑
d ′ B j d ′

log P ( fd |xs
j )], (6.4)

where A ∈Rnt×dt is the correlation matrix between image instances and low-level
image features, and B ∈ Rns×dt captures the correlation between tags and low-
level image features. When finally the EM algorithm converges, the estimated
P (z|xt

i ) is output to derive the final result, argmaxz∈Z P (z|xt
i ).

Matrix factorization is widely known and adopted for its superiority toward ex-
tracting latent factors. Shi et al. (2010b) propose a model called heterogeneous
spectral mapping (HeMap), which follows the idea of matrix factorization to learn
a shared latent space. HeMap aims to learn the optimal projection of target exam-
ples Xt in the latent space, that is, Zt , and that of source examples Xs , that is, Zs .
The authors proposed the following optimization objective for HeMap:

min
Zs ,Zt

�(Zs ,Xs )+�(Zt ,Xt )+�(Zs ,Zt ), (6.5)

where the first loss term ensures that projections of source examples in the la-
tent space preserve the original structure as much as possible. The same applies
to the second loss, while the third term measures and lessens the difference be-
tween two projections. Specifically, �(Zs ,Xs ) = ‖Xs −Zs Ps‖2

F with Ps representing
the projection matrix that maps Xs to Zs . Similarly, �(Zt ,Xt )= ‖Xt −Zt Pt‖2

F . As for
�(Zs ,Zt ), a strong hidden assumption is made that the source and target domain
are semantically similar so that their projections should be semantically close. As
a consequence, �(Zs ,Zt )= 1

2 (‖Xs −Zt Ps‖2
F +‖Xt −Zs Pt‖2

F ).
Clearly, HeMap does not require any correspondence data between a source

and a target domain while aPLSA, as we mentioned earlier, does. The performance
of HeMap highly relies on the data themselves. Only when a source and a target
domain are semantically sufficiently close to each other is HeMap expected to
learn an effective latent space that encodes the shared semantic knowledge from
both domains.

Singh and Gordon (2008) first propose a collective matrix factorization (CMF) to
extract shared factors (common interests of users) among multiple relations (mul-
tiple user-item relations) in the field of recommendation. Specifically, CMF simul-
taneously factorizes multiple matrices with correspondence in rows or columns
while enforcing the factorized latent factors to be the same.

Subsequently, CMF and its variants have been extensively investigated for trans-
fer learning (Gupta et al., 2010; Zhu et al., 2011; Wang et al., 2011; Long et al.,
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2014). Zhu et al. (2011) is an example approach for tackling heterogeneous trans-
fer learning problems. In this work, the proposed approach, known as hetero-
geneous transfer learning for image classification (HTLIC), conducts knowledge
transfer from sufficient unlabeled text documents to images in a target domain.
To bridge the gap between domains, the images Xt are treated as the target do-
main and the text corpora Xs as the source domain. It is assumed that the cor-
respondence mapping between the two domains is not given. Thus, HTLIC must
make full use of certain auxiliary tagged images from an online source (Flickr)
A = {xat

i ,xas
i }l

i=1. In this equation, xat
i ∈ Rdt has the same representational struc-

ture as xt
i , xas

i ∈ Rds is the corresponding ds -dimensional tag vectors of images.
Their approach then constructs two matrices with the columns aligned, which
are further jointly factorized by following the operations of CMF. Based on this,
on one hand, the authors built a matrix by characterizing the correlation between
low-level image features and tags from A. This correlation matrix is defined as:

G= (Xat )T Xas ∈Rds×dt . (6.6)

The other matrix captures the relationship between unlabeled documents and
tags in A. The matrix, denoted as F ∈ Rns×dt , can be inferred from Xs and Xas .
Clearly, the constructed matrices G and F are aligned in terms of the columns,
both lying in the feature space of the source domain. Subsequently, HTLIC applies
CMF to jointly factorize G and F and formulates the following objective function:

min
U,V,W

λ‖G−UVT ‖2
F + (1−λ)‖F−WVT ‖2

F +R(U,V,W), (6.7)

where G is decomposed into U – the correlation matrix between low-level image
features and latent factors – and V – the correlation matrix between ds tags and
latent semantic factors. Similarly, F is factorized into W – the latent semantic rep-
resentation of documents – and V too. The formulation enforces that the correla-
tion matrices between tags and latent factors that are factorized from both sides
are the same. When dealing with an out-of-sample target example xt∗, its semantic
representation in the latent space is inferred by applying the learnt U, that is, xt∗U.

Although quite a few works similar to Yang et al. (2009), Shi et al. (2010b) and
Zhu et al. (2011) have taken a significant step, they face the danger of negative
transfer. If heterogeneous domains to be projected are wildly irrelevant, it is likely
that projections in the shared latent subspace will perform badly in either clas-
sification or clustering. Duan et al. (2012b) alleviate the problem to some extent
by (1) augmenting projections with original features instead of purely depend-
ing on projections and (2) learning the latent subspace with supervision taken
into consideration. Figure 6.6 illustrates the overall idea of heterogeneous fea-
ture augmentation (HFA) proposed in the work by Duan et al. (2012b). HFA in-
troduces a common latent subspace, and projects both heterogeneous domains
onto this subspace, which is augmented by original features. On one hand, HFA
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Source domain Augmented feature space Target domain

Figure 6.6 The overview of HFA (adapted from Duan et al. [2012b]). Examples
from heterogeneous feature spaces are all transformed into the augmented fea-
ture space in the middle

incorporates original features in the common latent subspace so as to avoid neg-
ative transfer as much as possible. In fact, the idea of feature augmentation or
feature replication on the basis of original features has been proved to be effective
in homogeneous transfer learning (Daumé III, 2007). As Figure 6.6 shows, HFA
defines two augmented feature maps, φs (·) and φt (·), to map a source and a tar-
get domain into the common latent space, respectively. First, the source and the
target domain are projected onto a latent subspace in dimension dc using two
projection matrices P ∈ Rdc×ds and Q ∈ Rdc×dt , respectively. Second, original fea-
tures from the source domain are incorporated in φs (·) while φt (·) is padded with
a zero vector 0ds . Third, original features from the target domain are incorporated
in φt (·) while φs (·) is padded with a zero vector 0dt .

On the other hand, HFA learns the optimal Ps and Pt in a supervised fashion to
maximize the classification performance. HFA achieves this goal by minimizing
the structural risk functional of support vector machines (SVMs) to learn Ps , Pt

and parameter w simultaneously. The formulation is as follows:

min
Ps ,Pt

min
w,b,ξs

j ,ξt
i ,

1

2
‖w‖2+C (

ns∑
j=1

ξs
j +

nt∑
i=1

ξt
i ),

s.t. y s
j (wT φs (xs

j )+b)≥ 1−ξs
j , ξs

j ≥ 0

y t
i (wT φt (xt

i )+b)≥ 1−ξt
i , ξt

i ≥ 0

‖Ps‖2
F ≤λp , ‖Pt‖2

F ≤λq , (6.8)

where C > 0 is a trade-off parameter, and λp ,λq > 0 are predetermined parame-
ters to control the complexity of Ps and Pt , respectively.

Clearly, a major limitation of HFA is that it can only learn with labeled examples.
If only a few annotated examples are provided, it is very hard to apply HFA to
achieve satisfactory performance. The ability to take full advantage of unlabeled
examples is also in a desperate need. Li et al. (2014) enable the ability by pushing
HFA further and propose a semi-supervised HFA (SHFA) method. SHFA is similar
to HFA but trains in a semi-supervised manner. The semi-supervised formulation
follows transductive SVM (Joachims, 1999) as follows:
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min
Ps ,Pt

min
yu ,w,b,ξs

j ,ξt
i ,ξu

i

1

2
(‖w‖2+b2)−ρ+ C

2
(

ns∑
i=1

(ξs
j )2+

nt∑
i=1

(ξt
i )2)+ Cu

2

nu∑
i=1

(ξu
i )2,

s.t. y s
j (wT φs (xs

j )+b)≥ ρ−ξs
j ,

y t
i (wT φt (xt

i )+b)≥ ρ−ξt
i ,

yu
i (wT φt (xu

i )+b)≥ ρ−ξu
i ,

1′yu = δ, ‖Ps‖2
F ≤λp , ‖Pt‖2

F ≤λq . (6.9)

In summary, SHFA is a preferred method among the algorithms introduced in
this line of research work because: (1) it is capable of taking advantage of both
labeled and unlabeled data; (2) it does not require auxiliary correspondence data
and (3) it effectively augments latent representations with original features.

Dictionary Learning

Olshausen and Field (1997) first introduce the idea of learning an over-complete
dictionary from data, rather than using the off-the-shelf bases, to sparsely code
any signals in the data set. Learning robust dictionaries plays a key role in wide
applications of DL and sparse coding. In heterogeneous transfer learning, some
research works (Wang et al., 2012; Shekhar et al., 2013; Zhuang et al., 2013) learn
a dictionary for each domain and enable the semantic meanings of the dictionar-
ies to be coupled across domains. To couple the semantic meanings, this line of
methods requires correspondence across domains.

Before proceeding to detail these works, we would first elaborate the definition
of coupled dictionaries. Suppose that ds

j is the j -th dictionary atom in a source

domain’s representational structure, and dt
i is the i -th dictionary atom in a target

domain’s representation. If ds
j represents a group of instances semantically relat-

ing to “sports” in the source domain and so does dt
i , we could say that ds

j and

dt
i share a latent factor. Two dictionaries Ds and Dt are coupled, if and only if all

dictionary atoms correspondingly share latent factors.
Early works couple dictionaries by enforcing the sparse codes of a pair of in-

stances known to have correspondence across domains to be the same (Yang et al.,
2010; Zhu et al., 2014). Wang et al. (2012) point out that such a strong assumption

Ds tD
Zs tZ

Figure 6.7 The overview of the semi-coupled DL method (adapted from Wang
et al. [2012])
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would impair the flexibility of representation. Instead, they relaxed this assump-
tion by first learning two sets of sparse codes for two domains, respectively, and
then bridging them with a stable transformation. Figure 6.7 provides a very intu-
itive overview of the proposed method called semi-coupled DL (SCDL). The for-
mulation of the objective is:

min
Zs ,Ds ,Zs ,Dt ,W

‖Xs −Ds Zs‖2
F +‖Xt −Dt Zt‖2

F +γ‖Zs −WZt‖2
F

+λs‖Zs‖1+λt‖Zt‖1+λW ‖W‖2
F ,

s.t. ‖ds
i ‖2 ≤ 1, ‖dt

i ‖2 ≤ 1, ∀i , (6.10)

where λs , λt and λW are trade-off parameters. The third term of (6.10) models the
linear transformation between sparse codes across domains. The �1 norm of Zs

and Zt ensure the sparsity of sparse codes. The constraints imposed are to guar-
antee that each dictionary atom is well normalized. To facilitate classification,
Zhuang et al. (2013) impose a structured sparsity constraint on the sparse codes
based on (6.10). The structured sparsity constraint, achieved by �1/�2 norm, can
produce more discriminative dictionaries, with each atom capturing the shared
structures within the same class of each domain.

Furthermore, Jia et al. (2010) propose a model called factorized latent spaces
with structured sparsity, which not only constrains sparse codes with structured
sparsity, but also dictionaries. As a result, original examples in either domain can
be represented by only a subset of dictionary atoms. A limitation may be that sim-
ply enforcing the sparse codes to be inter-translated or identical does not support
that dictionary atoms from different domains lie in a common latent space. To
address this limitation, Yu et al. (2014) propose formulating the coupled DL as a
co-clustering problem with cluster centers as dictionaries. Each cluster, consist-
ing of examples from heterogeneous domains, is regarded as a latent factor shared
by all heterogeneous domains.

Another approach is proposed by Shekhar et al. (2013), who put forward a model
called shared domain-adapted DL (SDDL), which projects both domains into a
common low-dimensional space and then learns a shared discriminative dictio-
nary in this latent space, which is illustrated in Figure 6.8. Different from previ-
ous models, SDDL does not require the existence of correspondence that is used
to couple different domains. Instead, SDDL aims to learn a single shared dictio-
nary that can optimally reconstruct both domains. In detail, the projection ma-
trices and the shared discriminative dictionary are learned jointly in the model,
which facilitates learning common internal structures from both domains accord-
ing to Shekhar et al. (2013). The reasons for the pre-projections are given as fol-
lows: (1) heterogeneous feature spaces across different domains should be com-
parable; (2) irrelevant and noisy information is disregarded after projection
and (3) the low-dimensional space is much more computationally efficient.
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D

sP tP

Figure 6.8 The overview of the proposed SDDL method (adapted from Shekhar
et al. [2013])

Mathematically, the optimization problem in SDDL is shown as

{D∗, P̃∗, Z̃∗}= arg min
D,P̃,Z̃

C1(D, P̃, Z̃)+λC2(P̃),

s.t. Pi PT
i = I, i = s, t and ‖z̃ j ‖0 ≤ T0, ∀ j . (6.11)

Clearly, the objective is composed of two parts: (1) C1 that minimizes the rep-
resentation error in the low-dimensional projected space and (2) C2 that is the
regularizer to preserve the variance in the original data as principal component
analysis does. The definitions of C1 and C2 are given in (6.12) and (6.13), respec-
tively,

C1(D,Ps ,Pt ,Zs ,Zt )= ‖Ps Xs −DZs‖2
F +‖Pt Xt −DZt‖2

F , (6.12)

C2(Ps ,Pt )= ‖Xs −PT
s Ps Xs‖2

F +‖Xt −PT
t Pt Xt‖2

F . (6.13)

After mapping the original data with two projection matrices Ps ∈ Rdc×ds and
Pt ∈Rdc×dt into the dc -dimensional latent space, SDDL learns a shared dictionary
with K atoms, that is, D ∈ Rdc×K . Simultaneously, we infer the sparse representa-
tions Zs and Zt over the shared dictionary for the source and target domains, re-
spectively. During the testing phase, a testing target example is first projected into
the latent space with Pt , as Figure 6.8 shows. In the following, its sparse represen-
tation over the shared dictionary D is inferred and passed further for classification
or other tasks.

SDDL is effective only when two domains do not differ a lot. Otherwise a shared
dictionary in the low-dimensional space may be incapable of reconstructing both
domains. If the correspondence data across domains is accessible, coupled DL
methods such as SCDL are more promising. Overall, this line of methods espe-
cially stands out in visual applications, given the fact that sparse coding has been
proved to be the most effective in representing images.
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Manifold Alignment

Manifold alignment, first introduced by Ham et al. (2003), is a class of ma-
chine learning algorithms that align underlying structures of different data sets.
The assumption behind manifold alignment is that several data sets lie on a com-
mon manifold. As reviewed in the work by Pan and Yang (2010), manifold align-
ment algorithms have been successfully applied into transfer learning. There have
also been several efforts toward addressing heterogeneous transfer learning using
manifold alignment (Wang and Mahadevan, 2009, 2011; Mao et al., 2013). The key
idea is to project different domains into a low-dimensional space where the orig-
inal topology of the common manifold is preserved.

The topology of the common manifold consists of two parts: (1) geometric struc-
tures between examples within the same domain and (2) geometric structures be-
tween examples across domains. The first kind of topology is easily obtained by
directly comparing feature vectors of examples. The second type of topology to be
preserved, however, relies on the annotated correspondence (Wang and Mahade-
van, 2009) or the correspondence built from labels (Wang and Mahadevan, 2011),
as we mentioned earlier.

In the work by Wang and Mahadevan (2011), m domains are provided, with
Xi ∈Rdi×ni defined as the data in the i -th domain. di is the dimension of the i -th
domain and ni is the number of examples in it. The goal is to learn m projec-
tion functions f1, · · · , fm to map the m domains into a new dc -dimensional latent
space. The first kind of topology preservation is defined as:

C = 1

2
μ

m∑
i=1

ni∑
j=1

ni∑
j ′=1

‖ f T
i xi

j − f T
i xi

j ′ ‖2Wi ( j , j ′), (6.14)

where Wi ( j , j ′) is the similarity between the j -th example xi
j and the j ′-th instance

xi
j ′ in the i -th domain. The second type of topology is preserved via labels of ex-

amples in the work by Wang and Mahadevan (2011), that is, the examples across
domains with the same label should be similar (minimizing (6.15)) and those with
different labels should be separated (maximizing (6.16)),

A = 1

2

m∑
a=1

m∑
b=1

na∑
j=1

nb∑
j ′=1

‖ f T
a xa

j − f T
b xb

j ′ ‖2W a,b
s ( j , j ′), (6.15)

B = 1

2

m∑
a=1

m∑
b=1

na∑
j=1

nb∑
j ′=1

‖ f T
a xa

j − f T
b xb

j ′ ‖2W a,b
d ( j , j ′), (6.16)

where W a,b
s ( j , j ′) = 1 if xa

j and xb
j ′ carry the same label, otherwise W a,b

s ( j , j ′) = 0.

W a,b
d ( j , j ′) acts the opposite. Combining (6.14), (6.15) and (6.16), the final objec-

tive to minimize is O = (A+C )/B .

When there exist few or no labeled data in the target domain, the alignment
in Wang and Mahadevan’s (2011) work tends to be ineffective. In this case, if
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annotated correspondence is provided, simply redefine W a,b
s ( j , j ′) as the provided

correlation between instances xa
j and xb

j ′ and finally minimize A +C instead. In
fact, the method proposed by Wang and Mahadevan (2009) can even handle the
case where neither labels nor annotated correspondence is available. The pro-
posed method considers local geometric structures around each example to be
the bridge between examples across domains.

At the end of this section, we would like to compare different latent space-based
methods, as shown in the Table 6.2. Latent factor analysis with flexible factor ex-
traction techniques can cover a wide range of applications, while the latent space
is learned by only maximizing the likelihood. If the applications to be addressed
are within the visual domain, DL could outperform on top of sparse representa-
tions. However, the performance could be compromised by the high dimension.
Manifold alignment specializes in preserving geometric structures of original data
in a common latent space. It may fail if the manifold underlying the original data
is not approximated accurately.

Translation-Based Single-Level Alignment
Dai et al. (2008) first propose a translation-based approach named translated

learning via risk minimization (TLRisk) to transfer knowledge from text to images
for image classification. The proposed model establishes a “feature level transla-
tor” via correspondence between images and text to translate text features into
image features. Consequently, the feature-level translator can bridge a source do-
main (text documents) and a target domain (images). The key of TLRisk lies in two
Markov chain assumptions presented here:

θy → c → f s → f t → xt
i → θxt

i
, (6.17)

θy → c → f t → xt
i → θxt

i
, (6.18)

where c, θy , f s , f t , xt
i and θxt

i
denote the c-th class label, the classifier associ-

ated with the c-th class, feature representations of an example belonging to the
c-th class in a source domain, feature representations of an example belonging to
the c-th class in a target domain, the example which is represented by ft in the
target domain, and the classifier associated with the example. The TLRisk clas-
sifies a target example xt

i by directly evaluating the empirical risk R(xt
i ,c) and

pinpointing the class c that minimizes this loss. According to Dai et al. (2008),

Table 6.2 Comparison of latent space based methods.

Latent factor analysis DL Manifold alignment

Advantages
• A variety of applications • Sparse representations

make DL stand out in
visual applications

• Latent space preser-
ves geometric structures• The way of extracting

latent factors is flexible,
linear or nonlinear

Disadvantages
• Latent space is learn-
ed by only maximizing the
likelihood

• Not scalable to large-
scale applications with
high dimension

• Assumption of the exist-
ence of a manifold
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R(xt
i ,c)∝Δ(θxt

i
,θy )∝KL(p( f t |θy )||p( f t |θxt

i
)). A source domain is translated and

contributes to calculating p( f t |θy ),

p( f t |θy )=
∫
Xs

∑
c∈Y

p( f t | f s )p( f s |c)p(c|θy )d f s + ∑
c∈Y

p( f t |c)p(c|θy ). (6.19)

p( ft | fs ) in (6.19) is the translator built from correspondence. Later on, Chen et al.
(2010b) follow this work and first applied heterogeneous transfer learning on vi-
sual contextual advertising, which recommends advertisements for images with-
out surrounding text.

By pointing out that the robustness of TLRisk highly relies on high-quality cor-
respondence data, Kulis et al. (2011) propose a method, called asymmetric regu-
larized cross-domain transformation (ARC-t), to leverage labels of both domains
to learn a translator. The method imposes similarity and dissimilarity constraints
– a pair of examples across domains carrying the same label should be as simi-
lar as possible after the translation, while a pair of examples with different labels
is expected to be dissimilar after the translation. The objective function can be
expressed as:

min
T

Ω(T)+λ
∑
i , j

c((xs
j )T Txt

i ), (6.20)

where Ω regularizes the complexity of the translator T. The function c(·) is defined
as c((xs

j )T Txt
i )= (max(0, l−(xs

j )T Txt
i ))2 if xs

j and xt
i are from the same category, and

is formulated as c((xs
j )T Txt

i )= (max(0,(xs
j )T Txt

i −u))2 if they carry different labels.
Translated source examples can, as a consequence, be trained together with target
examples for kinds of tasks such as classification.

Hoffman et al. (2013) designed an end-to-end model called max-margin do-
main transforms (MMDT), which simultaneously learns a classifier and a transla-
tor using labeled examples from both domains. MMDT adopts a linear translation
matrix bridging domains, and incorporates it into an SVM-style max-margin clas-
sifier. The overall objective is formulated as

min
T,w,b

1

2
‖T‖2

F +
1

2
‖w‖2

2

s.t. y s
j

([xs
j

1

]T [w
b

])
≥ 1 ∀i ∈Ds

y t
i

([xt
i

1

]T
TT
[w

b

])
≥ 1 ∀i ∈Dt , (6.21)

where T ∈Rdt×ds is the translation matrix that translates every target example xt ∈
Rdt×1 into the source domain with ds -dimension, and w and b are parameters of
the max-margin classifier.

Obviously, both ARC-t and MMDT do not require the correspondence between
domains. However, there is no free lunch. They work only when sufficient labeled
examples in the target domain are available. To be more flexible, Qi et al. (2011a)
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propose a model called text-to-image (TTI), which is capable of learning a transla-
tor from not only correspondence, but also labels, if provided. Different from Dai
et al. (2008) and Chen et al. (2010b), TTI classifies a target example by directly
propagating labels of source examples. As Figure 6.9 shows, the final label of a tar-
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Figure 6.9 An illustration of the label propagation process from text to images
(adapted from Qi et al. [2011a])

get example xt
i is determined by a linear combination of labels of source examples.

The coefficients are decided by the values of the translator function. The intuition
behind this idea resembles the nearest neighbor classifier. Mathematically,

ft (xt
i )=

ns∑
i=1

y s
j T (xs

j ,xt
i ), (6.22)

where T (·, ·) is the translator function. The authors define the translator function
as the inner product of a source example and a target example in a hypothetical
topic space, that is,

T (xs
j ,xt

i )= 〈Ps xs
j ,Pt xt

i 〉 = (Ps xs
j )T Pt xt

i = (xs
j )T Sxt

i . (6.23)

Therefore, TTI actually combines the ideas of both latent space and translation. To
learn the translator function, TTI takes the collective power of labeled target ex-
amples and the correspondence between domains. Specifically, the optimization
problem is formulated as

min
S

γ
nt∑

i=1
�(y t

i

ns∑
j=1

y s
j (xs

j )T Sxt
i )+λ

∑
i , j

χ(ci , j · (xs
j )T Sxt

i )+Ω(S), (6.24)

where the first term minimizes the losses of predicted labels of target examples,
and the second term maximizes the consistency between the known correspon-
dence ci , j and the translator function value. Note that the function χ(a) is small if
a is large. The last term in (6.24) controls the complexity of S.

Unlike the aforementioned works that learn a translator using data themselves,
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Zhou et al. (2014b) borrow an idea from multitask learning and learn a translator
based on source and target predictive models, that is, ws and wt . Specifically, the
problem is formulated as a non-negative least absolute shrinkage and selection
operator problem:

min
T

1

nc

nc∑
c=1

‖wc
t −Twc

s‖2
2+

dt∑
i=1

λi‖ti‖1

s.t. ti ≥ 0, (6.25)

where λi is a regularization parameter. For a multi-class problem in either do-
main, the authors considered nc binary classifiers {w1∗, · · · ,wnc∗ } with ∗ denoting
s or t . The first loss term, therefore, enforces the learned translator T to be class-
invariant. The authors believed that the translator matrix T should be highly sparse
– each source domain feature can be characterized with only a small subset of tar-
get domain features. That is the reason why the second term, the �1 regularization
on rows in T, is proposed to guarantee the sparsity on each row of the translator.
The constraint imposed ensures the correlation between source and target pre-
dictive models to be non-negative.

The label for a testing target example xt∗ can be predicted by y t∗
= F ({(Twc

s )T xt∗}nc
c=1), where the function F combines the results from all nc bi-

nary source classifiers to make a decision. The primary advantage of this method,
called sparse heterogeneous feature representation (SHFR), is its efficiency. First,
it avoids learning a dense translator that depends quadratically on the feature di-
mensions. Second, it is capable of learning a translator T without using source
domain data. Once a set of binary classifiers, that is, {wc

s }, has been trained on a
source domain, they can be directly applied in the SHFR model.

Compared to latent space-based methods, translation-based methods pursue
more agreement between the final objective of a task, say classification accuracy,
and the optimization objective with regard to a translator. Unfortunately, they are
also in the risk of poor generalization ability. When the relationship between ex-
amples across domains is unseen during testing, the translation-based methods
probably fail.

Multi-level Alignment
Over the years, researchers have realized that the single-level alignment ap-

proach has a strong assumption that only one level of operation is sufficient to
align heterogeneous domains. In fact, the complex interrelationship between dif-
ferent domains could be characterized by a hierarchy, which calls for “deep align-
ment.” Ideally, all the techniques we mentioned earlier including latent space and
translation-based techniques can achieve multi-level alignment by sequentially
repeating for multiple times. However, not all of them have been investigated
so far for multi-level alignment. Here, we introduce DL and deep learning-based
methods that have been explored.
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Dictionary Learning
As a deep alignment version of the SDDL model (Shekhar et al., 2013), Nguyen

et al. (2015) present so-called domain adaptation using a sparse and hierarchi-
cal network (DASH-N). DASH-N adopts a similar idea of projecting both domains
into a common latent space in which a shared discriminative dictionary is learned
as SDDL, while it makes a difference by projecting multiple times and learning
multiple shared dictionaries in a hierarchical network. Figure 6.10 shows the
carefully designed architecture of the hierarchical network. The authors tailor
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Figure 6.10 Overview of the DASH-N model (adapted from Nguyen et al. [2015])

DASH-N for visual applications. First of all, DASH-N performs dimension reduc-
tion and contrast normalization for input images from heterogeneous domains
using corresponding projection matrices, that is, P1

s and P1
t . Second, DASH-N ob-

tains the sparse codes by applying a shared dictionary D1 in the low-dimensional
space. Third, DASH-N performs the max pooling. These three steps correspond-
ing to procedures (a)–(c) in Figure 6.10 are repeated in the next layers. The times of
repeating equals to the number of alignment levels. All the projections and shared
dictionaries are learned jointly with the final classification performance as the su-
pervision. Multiple levels of alignment as well as this end-to-end learning scheme
ensure that the source domain can greatly benefit the target domain of interest.

Deep Learning
Deep neural networks have made tremendous success and achieved the state-

of-the-art performance on computer vision as well as other machine learning
tasks (Bengio, 2009). The success partly attributes to the capability of deep neural
networks in learning extremely powerful hierarchical nonlinear representations
of inputs. Motivated by recent advances on deep learning, several heterogeneous
deep learning approaches (Zhou et al., 2014a; Shu et al., 2015; Wang et al., 2018a)
have been proposed.

Zhou et al. (2014a) propose a hybrid heterogeneous transfer learning (HHTL)
algorithm, which alternates between learning robust representations and learn-
ing translators in a layer-wise fashion. Inspired by the effectiveness of marginal-
ized stacked denoized autoencoder (mSDA) (Chen et al., 2012b) in homogeneous
transfer learning, the authors adopt mSDA to learn high-level feature representa-
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canyon, dogs,
free, sky

Figure 6.11 Overview of the weakly shared deep transfer network (adapted from
Shu et al. [2015])

tions, which is formulated as

min
W∗

M∑
m=1

‖X∗ −W∗X̃m
∗ ‖2

F , (6.26)

where ∗ denotes s or t . Here X̃m∗ is the m-th corrupted version of X∗. With the op-
timal learned W∗, a high-level representation H1∗ = tanh(W∗X∗) can be obtained.
Considering that the high-level representations H1

s and H1
t still lie in different fea-

ture spaces, the authors proposed learning a translator T1 by minimizing the fol-
lowing objective,

‖H1
s(c)−TH1

t (c)‖2
F +λ‖T1‖2

F , (6.27)

where λ balances between the alignment and the complexity of the translator T1.
Note that H1

s(c) and H1
t (c) represent a subset of H1

s and H1
t that have the correspon-

dence that is indispensable to align features across domains.

This process can be recursively carried out by replacing X∗ in (6.26) with H1∗
and in the next layer replacing H1

∗(c) in (6.27) with H2
∗(c). As a consequence, a se-

ries of weight matrices {Wl∗}L
l=1, high-level representations {Hl∗}L

l=1 and translators
{Tl }L

l=1 can be obtained. A classifier f is then trained on the augmented source
domain data Hs = [H1

s , · · · ,HL
s ]. A testing target example xt is first augmented as

ht = [Tht ,1, · · · ,Tht ,L], and its label is predicted by applying f , that is, f (ht ).

Unfortunately, the layer-wise training method with the alternative manner in
Zhou et al.’s (2014a) work is highly inefficient. Shu et al. (2015) address this prob-
lem by designing a deep neural network architecture named as weakly shared
deep transfer networks (WSDTNs), as shown in Figure 6.11. WSDTN learns
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Figure 6.12 Overview of the deep asymmetric transfer network (adapted
from Wang et al. [2018a])

hierarchical representations for each domain, while constrains parameters of top
layers are weakly shared by both domains. It has been widely accepted that repre-
sentations in deep neural networks range from low-level descriptors to high-level
semantic factors as the layer increases. The discrepancy between heterogeneous
domains is usually large in low-level descriptors, which is the reason why only pa-
rameters of top layers are constrained to be shared. This work can be regarded as
an extension of the framework in TTI (Qi et al., 2011a) mentioned earlier, by re-
placing the translator function ((6.23)) in a bilinear form with a sufficiently effec-
tive and robust translator (hL

s (xs
j ))T hL

t (xt
i ), where hL

s (xs
j ) is the hidden representa-

tion of the L-th layer for the j -th source example xs
j , and hL

t (xt
i ) has a similar def-

inition. The overall objective, therefore, follows (6.24), except that the constraints
on parameters of top layers across domains are also incorporated, that is,

Ω=
L∑

l=lmin

‖ws
l −wt

l ‖2
F +‖bs

l −bt
l ‖2

2,

where lmin denotes the index of the lowest layer from which the weakly shared
constraints are imposed.

Both HHTL and WSDTN, however, are not end-to-end because they separate
learning invariant representations across domains because they consist of two
stages, that is, learning invariant representations across domains and training a
classifier. Wang et al. (2018a) propose an end-to-end deep asymmetric transfer
network (DATN) for unbalanced domain adaptation, as shown in Figure 6.12.
DATN adopts a classical Siamese structure similar to WSDTN, but differs in the
alignment of domains in top layers. The alignment are two-fold: (1) a translator
is learned to bridge hidden representations of both domains and (2) the distri-
butions of hidden representations across domains should be as close as possible.
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The loss function to achieve the first alignment is shown as

Lpai r = ‖HL
s(c)−THL

s(c)‖2
F +λ‖T‖2

F , (6.28)

where the L-th layer is the topmost layer. The distribution discrepancy, which is
minimized to guarantee the second type of alignment, is measured using MMD
(Gretton et al., 2012) as

Ldi st =
∥∥∥∥∥ 1

ns

ns∑
j=1

hs,L
j − 1

nt

nt∑
i=1

ht ,L
i

∥∥∥∥∥
2

2

. (6.29)

With the translator T, the high-level representation of both domains is aligned.
In this case, the approach adapts the source domain classifier to classify target
examples by using the following objective function

Ltr ans =− 1

nl
t

nl
t∑

i=1

nc∑
c=1

1{y t
i = c} log

eht ,l ,L
i Tws,c∑nc

c ′=1 eht ,l ,L
i Tws,c′

, (6.30)

where 1{·} is a indicator function, ht ,l ,L
i denotes the hidden representation of the

i th labeled target example at the L-th layer, and ws,c represents the softmax pa-
rameters trained on source examples for the c-th class. The overall objective is a
linear combination of (6.28), (6.29) and (6.30).

Multi-level alignment is more powerful and flexible than the single-level align-
ment. However, if the groundtruth alignment between domains could be as sim-
ple as in the single level, single-level alignment is more preferred because of low
computational cost and wide applications.

6.3.2 Heterogeneous Label Spaces

Compared to research in heterogeneous feature spaces, only a limited amount
of work has been done to transfer knowledge between domains in heterogeneous
label spaces. Existing work in this area can be categorized into two major areas,
aligning labels and aligning features across domains.

Shen et al. (2006b) address the label mismatch problem by resorting to a la-
bel taxonomy to relate labels in different domains. Specifically, the proposed ap-
proach pre-generates a collection of classifiers, each of which is for one class in an
auxiliary label taxonomy and adapts one of these classifiers to the target domain
in real time. The label of the selected classifier is expected to have the smallest
distance to the label of the target domain in the taxonomy. Rohrbach et al. (2010)
propose a similar method, which, however, differs in automatically extracting the
semantic relationship among labels from some linguistic data sets, such as Word-
Net, Wikipedia, Yahoo images and Flickr. With the help of the extracted seman-
tic relationship of labels, the pre-trained classifiers in source domains could be
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reused by the target domain. Shi et al. (2013a) first propose a probabilistic trans-
lation method to align the label spaces without requiring explicit semantic rela-
tionship between labels. The key is a decision rule:

p(y t |xt )=∑
y s

p(y s |xt )p(y t |y s ), (6.31)

where the posterior probability p(y s |xt ) can be obtained by applying the pre-
trained classifier on the source domain to target examples. The estimation of
p(y t |y s ) follows

p(y t |y s )= 1

p(y s )
p(y t , y s )= 1∑

xs p(xs )

∑
xs

p(y t |xs )p(xs ), (6.32)

where xs denotes a source example with y s as the label. p(xs ) can be estimated to
be the proportion of xs in all source examples. p(y t |xs ), similar to p(y s |xt ), can be
obtained by applying the classifier trained on the target domain to source exam-
ples.

(a) Grouping and initializing target out-
puts

(b) Modification of outputs toward group
centers

Figure 6.13 The alignment of label spaces for regression problems (adapted from
Shi et al. [2010a])

The aforementioned works are for classification problems where the label space
is categorical and discrete. Shi et al. (2010a) first propose an heterogenous regres-
sion model to unify two label spaces for regression problems. The basic idea, as
shown in Figure 6.13, is to assign source examples regression values in the label
space of a target domain by preserving the similarity between them.

Qi et al. (2011b) claim that the aforementioned label alignment is disadvanta-
geous, considering that the relationship between labels may vary across examples.
Despite that, the label “mountain” seems irrelevant to the label “castle,” a source
image labeled as “mountain” and a target image that is labeled as “castle” but con-
tains a castle built on a mountain are obviously correlated. Therefore, the authors
propose aligning labels by building a feature-level translator similar to Qi et al.



90 Heterogeneous Transfer Learning

(2011a). Besides, the feature-based transfer learning algorithms for homogeneous
transfer learning, for example, transfer component analysis (Pan et al., 2011), can
be adapted to achieve knowledge transfer between domains in the same feature
space but different label spaces by training in an unsupervised manner.

6.4 Applications

Heterogeneous transfer learning techniques have been applied successfully in
many real world applications. In applications to images, most works focus on im-
proving the clustering or classification performance of images with the help of
text documents (Yang et al., 2009; Qi et al., 2011a; Zhu et al., 2011). In addition,
heterogeneous transfer learning is referred to as “heterogeneous domain adap-
tation” in the computer vision community (Duan et al., 2012b; Hoffman et al.,
2013; Wu et al., 2013; Li et al., 2014). In this area, the goal is to enable knowledge
transfer between images or videos in different feature representational structures.
For example, Wu et al. (2013) address the video activity recognition in the target
domain by transferring knowledge from a very related source domain. However,
the valuable source domain should be best represented by optical flows that dif-
fer from the silhouettes features in the target domain. Yet another widely studied
application is cross-language transfer learning (Dai et al., 2008; Ling et al., 2008;
Zhang et al., 2010a; Huang et al., 2013; Gouws et al., 2015). For example, Ling et al.
(2008) leverage labeled English web pages to help the classification of Chinese web
pages. Li et al. (2014) propose a HFA method to solve the cross-lingual sentiment
classification problem.

Human activity recognition enables a wide spectrum of machine learning ap-
plications. The success of human activity recognition relies on sufficient anno-
tated sensor records, while annotating raw sensor readings either in real time
or post hoc is particularly challenging. Fortunately, people nowadays proactively
share happenings about and around them, as well as their whereabouts on social
media platforms such as Twitter. Such platforms thus provide a huge and rich se-
mantic repository of activities that people are performing at different times and
locations. Wei et al. (2016a) first proposed the transfer of knowledge from so-
cial media messages oftentimes represented as bag-of-words to physical sensor
records characterized as numerical values.

Several researchers have applied heterogeneous transfer learning to the recom-
mendation problem. In the work by Li et al. (2009a), a method is put forward to
transfer the rating knowledge from a source domain (movie recommendation) to
a target domain (book recommendation domain), where a common shared sub-
space known as the codebook-based method links the source and target domains.
This method works even when the two domains do not have overlap over items or
products.

In Shi et al.’s (2012) work, the target task is to predict movie ratings in the Inter-
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net movie database (IMDB). Five different data sets are available in this approach
to form the source domains: a genre database, a database of a sound technique,
information about running times, an actor graph with two movies connected if
they share common actors or actresses, and a director graph defined similarly. Shi
et al. (2012) build a gradient boosting consensus model, which integrates all the
five data sets in different feature spaces, to accurately predict ratings in the “out-
of-sample” condition.

Several public data sets exist on which heterogeneous transfer learning tech-
niques can be fairly compared.
Office1: The data set is a standard domain adaptation data set in computer vi-
sion. This data set contains 4,106 images in thirty-one categories collected from
three sources: amazon (object images in Amazon), dslr (high-resolution images
taken from a digital SLR camera) and webcam (low-resolution images taken from a
web camera). amazon and webcam, as the source domains, are represented as 800
dimensional speeded up robust features (SURF) features (Bay et al., 2008), while
dslr is represented as 600-dimensional SURF features.
IXMAS2: This data set consists of five views of actions, each of which is taken from
a camera. The actions covers eleven classes, and each action is executed three
times by twelve subjects. Each view is represented in both optimal flows and sil-
houettes. At each time, one of the views acts as the target domain, and the other
views together act as the source domain. The target domain adopts the silhouettes
representation while the source takes optimal flows.
Cross-lingual sentiment (CLS)3: This data set contains 800,000 product reviews
in the four languages, English, German, French and Japanese. The reviews cover
three categories: books, DVDs and music. For each category and each language,
the data set is officially split into a training set, a test set and an unlabeled set. The
training and test sets include 2,000 reviews, and the sizes of the unlabeled set vary
from 9,000 to 170,000. The English is regarded as the source domain and each of
the other three languages acts as the target domain, respectively.

Data sets providing the correspondence usually come from Flickr. Therefore,
here we introduce a few heterogeneous data sets with the correspondence that
could facilitate training heterogeneous transfer learning algorithms.
FLICKR30K4: Flickr30K contains 31,783 images, each of which is annotated with
five descriptive sentences by workers on Amazon Mechanical Turk. Overall, there
are 158,915 crowd-sourced captions.
MIRFLICKR5: The data set has two versions, MIRFLICKR-25000 and MIRFLICKR-
1M. They consist of 25,000 and one million tagged images, respectively. Besides,
the MIRFLICKR-25000 data set is fully labeled with thirty-nine tags.

1 https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
2 http://4drepository.inrialpes.fr/public/viewgroup/6
3 www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-webis-cls-10/
4 https://illinois.edu/fb/sec/229675
5 http://press.liacs.nl/mirflickr/

https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
http://4drepository.inrialpes.fr/public/viewgroup/6
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-webis-cls-10/
https://illinois.edu/fb/sec/229675
http://press.liacs.nl/mirflickr/
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NUS-WIDE6: The data set includes 269,648 images associated with tags from
Flickr. Six types of low-level features are extracted, including 64-dimensional color
histogram, 144-dimensional color correlogram, 73-dimensional edge direction
histogram, 128-dimensional wavelet texture, 225-dimensional block-wise color
moments and 500-dimensional bag of words based on scale-invariant feature
transform descriptions. Moreover, all the images are labeled by eighty-one con-
cepts for the sake of evaluation.

In Table 6.3, we show results from a few published papers on heterogeneous
transfer learning. The table presents the performance comparison of different
heterogeneous transfer learning algorithms and non-transfer methods. Qi et al.
(2011a) crawl tagged images from Flickr and text documents from Wikipedia with
the names of ten categories as keywords. For each category, the authors built a
category/non-category binary classification task. We present the comparison re-
sult in the bird/non-bird task as an example in the first line of the table. According
to Qi et al. (2011a), the translation-based method TTI outperforms HTLIC (Zhu
et al., 2011), a latent space-based method, and TLRisk (Dai et al., 2008), another
translation-based method. Note that SVM-t (SVM trained only on the target do-
main) does not transfer any knowledge and only trains on the target domain.

In addition, we also show comparison results on domain adaptation data sets
in computer vision reported by Hoffman et al. (2013). Note that T-SVM denotes
the transductive SVMs (Joachims, 1999), which does not transfer knowledge from
the source domain, but takes full advantage of unlabeled examples in the target
domain. Finally, we present results on the cross-view activity recognition data set
and cross-lingual sentiment classification data set. Generally speaking, compared
to the non-transfer methods SVM-t and T-SVM, heterogeneous transfer learning
does contribute to target domains by borrowing knowledge from source domains.

Table 6.3 Comparison of different heterogeneous transfer learning methods
and non-transfer learning methods. DAMA, domain adaptation

with manifold alignment
Data set (reference) Source → target Baselines(%) HTL methods(%)

Flickr and Wikipedia (Qi et al., 2011a)
SVM-t HTL TLRisk TTI

documents → images 67.07 62.07 71.83 72.62

Office (Hoffman et al., 2013)

SVM-t T-SVM HeMap SDDL DAMA HFA SHFA MMDT

amazon → dslr 52.90 53.50 42.80 50.40 53.30 55.40 56.10 62.30

webcam → dslr 52.90 53.50 42.20 49.40 53.20 54.30 55.10 63.30

IXMAS (Wu et al., 2013)

HeMap DAMA HFA

other → view 1 33.70 33.20 26.60

other → view 2 39.90 34.40 33.00

other → view 3 29.20 28.10 30.70

other → view 4 34.70 31.60 31.80

other → view 5 22.90 13.40 13.40

CLS (Li et al., 2014)

SVM-t T-SVM HeMap DAMA HFA SHFA

English → German 65.60 50.40 58.30 64.60 66.50 70.20

English → French 60.40 67.80 49.80 65.70 66.90 70.50

English → Japanese 57.40 63.90 51.30 64.40 64.20 67.80

6 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Adversarial Transfer Learning

7.1 Introduction

One way to apply transfer learning is to use generative modeling in machine
learning. This leads to adversarial models. One approach is to use unsupervised
generative modeling to reduce the dependency on labeled data. In a target do-
main, the labeled data are limited, but there may be abundant unlabeled data
available in a source domain. In the natural language understanding area, for ex-
ample, at the time when this book is written, there are around 6,000 tweets posted
on Twitter every second, around 300 hours of video are uploaded to Youtube every
minute and around one million images are shared on Flickr every day. Unsuper-
vised feature learning can then be used to build representations from the unla-
beled data, and generative models can be used to enable knowledge transfer to a
target domain (Zhu, 2005; Bengio et al., 2013).

There are two types of generative models, explicit and implicit models. An ex-
plicit generative model has a specified density function with its parameters being
estimated via the principle of maximum likelihood method. An implicit gener-
ative model does not require an explicit density function; instead, it acts like a
simulator by generating samples to follow the underlying data distribution. Gen-
erative models, as the late physicist Richard Feynman said, “If I cannot create, I
do not understand,” can generate samples similar to a given training data when
the resultant model captures the intrinsic structure of the data. However, gener-
ative modeling is challenging as well, due to the high dimensionality and multi-
modality of real world data.

Among generative models, generative adversarial networks (GANs) (Goodfel-
low et al., 2014) have emerged as implicit generative models that achieved great
success in many applications. These applications include image super-resolution,
image inpainting, video frame prediction and so on. Empirical results demon-
strate that GANs can learn visual semantic representations and can generate vi-
sually realistic images in a specific type of transfer learning known as “style trans-
fer.” There is growing interest in GANs. Extensive theoretical analyses and various
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variants have also been developed for the GAN framework. In the next section, we
give details on the operations of GANs.

Adversarial learning works naturally with transfer learning. As a generative
model, GANs can generate and augment the target domain data, in a new type of
transfer learning known as “data augmentation.” This can be achieved by “trans-
lating” source domain samples to a target domain while retaining their label infor-
mation at the same time. The learning-based data augmentation approach differs
from traditional instance-based transfer learning models as it “creates” additional
target domain data. In contrast, the traditional models such as TrAdaBoost and
kernel mean matching learn the weights for the labeled source domain samples
only. Adversarial learning can also be used to learn a shared latent feature space
across domains by minimizing the task loss in the source domain and maximiz-
ing the domain confusion loss. Instead of learning domain invariant features as
reviewed in Chapter 3, adversarial features for transfer learning are learned by
solving a min-max game.

In this chapter, we first introduce GANs and then present adversarial transfer
learning models.

7.2 Generative Adversarial Networks

GANs are originally proposed by Goodfellow et al. (2014). For clarity, we call
it vanilla GAN. Given large amounts of unlabeled samples, GANs are trained to
generate samples that follow the same underlying data distribution. When GANs
are trained with digit or face images, they are able to generate realistic-looking
samples. Since then, the GAN as a framework has been extensively studied. Var-
ious network architectures and training objectives are proposed to improve the
training stability and generate realistic samples (Radford et al., 2015; Chen et al.,
2016b; Nowozin et al., 2016). In addition to theoretical studies, adversarial learn-
ing has also been adopted in various applications to achieve state-of-the-art per-
formance, including image super-resolution (Ledig et al., 2017), video frame pre-
diction (Vondrick et al., 2016), sequence modeling (Yu et al., 2017) and so on.

The structure of a vanilla GAN is shown in Figure 7.1. It is composed of two
sub-networks, a generator (G) and a discriminator (D). The generator learns the
mapping from a prior distribution (usually the uniform or Gaussian distribution),
denoted by pz, to the true data distribution, denoted by pd at a . The mapping char-
acterized by the generator is denoted by pG . The noise sampled from the prior dis-
tribution, the true data sample and the generated data sample are denoted by z,
x and x̂, respectively. The GAN introduces a discriminator to guide the generator.
The discriminator is trained to perform a binary classification task where the true
data samples and the generated samples are positive and negative samples, re-
spectively. When a sample is fed into the discriminator, it outputs the probability
that the input sample comes from the true data distribution.
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Figure 7.1 The GAN framework. Two sub-networks, a generator and a discrim-
inator compete against each other. The generator maps a vector sampled from
a prior distribution to the data space. The discriminator tries to distinguish true
data samples from the generated samples while the generator aims to fool the
discriminator

In a GAN, the relationship between the discriminator and the generator is like a
police and a thief: the police try to discern the thief from ordinary people and the
thief aims to fool the police, which forms an adversarial objective. The interaction
between the generator and discriminator can be formulated as a two-player min-
max game:

min
G

max
D

V (G ,D),

where

V (G ,D)= Ex∼pd at a [logD(x)]+Ez∼pz [log(1−D(G(z)))]. (7.1)

Both the generator and discriminator are multi-layer perceptrons. The model can
be trained with gradient descent algorithms in an alternating manner, as outlined
in Algorithm 7.1. In each iteration of the optimization process, the discriminator is
updated first with the generator fixed and then the generator is optimized by fixing
the discriminator. This process repeats until the model reaches the convergence.

Theoretical analysis shows that, if there is infinite model capacity and training
time, there is a global optimum such that pG = pd at a . If the generator is fixed and



96 Adversarial Transfer Learning

Algorithm 7.1 Training the GAN

Input: Unlabeled data samples {x1, . . . ,xn}
Output: The generator G and the discriminator D

while not converge do
for k steps do

Sample a mini-batch of data samples from pd at a

Sample a mini-batch of noises from pz

Optimize the discriminator D by maximizing (7.1)
end for
Sample a mini-batch of noises from pz

Optimize the generator G by minimizing (7.1)
end while

the discriminator is trained to its optimality, there is

D∗
G (x)= pd at a(x)

pd at a(x)+pG (x)
,

where D∗
G (x) denotes the optimal discriminator with a fixed generator. Given a

fixed optimal discriminator D∗
G , the objective in (7.1) becomes

C (G)=min
G

V (G ,D∗
G )

=min
G

− log(4)+2 · JSD(pd at a (x)||pG (x)),
(7.2)

where JSD(·) denotes the Jenson-Shannon divergence. (7.2) shows that the objec-
tive for the generator is to minimize the Jensen–Shannon divergence between the
generated distribution pG and the true data distribution pd at a and that the global
optimum can be achieved when pG = pd at a . If both the generator and discrimi-
nator have enough capacity, pG will converge to pd at a as expected.

In practice, optimizing the objective as defined in (7.1) might cause gradient
vanishing; that is, the gradient value used to update the network parameters dur-
ing a learning process approaches zero when iterating through too many layers,
which makes the learning stop. This is because, in the early stage of training,
the generated samples are poor and the discriminator can easily distinguish the
generated samples from the true data samples, and, as a result, the gradient of
log(1−D(G(z))) vanishes. To provide sufficient gradient values, the generator is
trained to maximize log(D(G(z))) instead, which is referred to as non-saturating
GAN (NS-GAN).

In spite of the strong learning capacity, GANs are notoriously difficult to train.
Common problems include the following.

(1) Mode collapsing where the model fails to generate samples in certain regions.

(2) The min-max game fails to reach an equilibrium.

(3) Unrealistic samples.



7.3 Transfer Learning with Adversarial Models 97

A large body of research work addresses the aforementioned issues from various
perspectives. Radford et al. (2015) propose a deep convolutional GANs (DCGANs),
which adopts a CNN as the generator. CNNs have been successful in discrimina-
tive tasks and combining with the objective of GAN makes CNNs applicable for
unsupervised representation learning. Salimans et al. (2016) propose two tech-
niques to stabilize the training procedure of the GAN, namely feature matching
and minibatch discrimination. Feature matching requires that the activations of
the generated samples and the true data samples in intermediate layers of the
discriminator are similar. Minibatch discrimination encourages the discrimina-
tor to consider multiple samples in combination instead of an individual sample.
There are also attempts to extending GANs to other information theoretic mea-
sures such as total variance divergence (Zhao et al., 2016), f -divergence (Nowozin
et al., 2016) and Wasserstein distance (Arjovsky and Bottou, 2017; Arjovsky et al.,
2017). To improve the quality of generated samples, Denton et al. (2015) devel-
oped a LapGAN to integrate multiple conditional GANs within a Laplacian pyra-
mid. At each level of the pyramid, a generative model that is trained with the ob-
jective of GAN upscales low-resolutional images to fine-grained ones.

7.3 Transfer Learning with Adversarial Models

As GANs as well as adversarial learning have emerged as a novel and power-
ful framework, researchers have attempted to develop transfer learning models
based on the adversarial learning framework. Table 7.1 summarizes traditional
and adversarial transfer learning models that are categorized by problem settings
that they address and transfer approaches that they adopt.

We review two approaches in adversarial transfer learning. The first approach is
instance-based transfer learning. As a generative model, GANs can generate tar-
get domain data. Adversarial learning can be used to “translate” a labeled source
domain sample to a target domain sample while retaining its label. Adversarial
learning can build correspondences between the source and target domain sam-
ples in a completely unsupervised manner.

Another type of adversarial transfer learning model takes a feature-based trans-
fer learning approach, which finds a common feature space with an adversarial
objective. The feature-based transfer learning with adversarial learning can be
further decomposed into two categories based on problem settings. Adversarial
domain adaptation learns a discriminative classifier with labeled source domain
data and unlabeled target domain, while adversarial feature learning focuses on
the self-taught learning setting where high-level representations are constructed
with massive unlabeled source domain data and then a classifier is learned with
limited labeled target data.
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Table 7.1 Traditional and adversarial transfer learning methods

Approach/problem
Unlabeled T Labeled T

Unlabeled S Labeled S Unlabeled S Labeled S

Traditional
transfer learning

Instance-
based

Covariate shift TrAdaBoost

Feature-
based

Unsupervised
transfer learn-
ing

Domain adap-
tation

Self-taught
learning

Multitask
learning, fine-
tuning

Adversarial
transfer learning

Instance-
based

Unsupervised
cross-domain
instance align-
ment (Kim
et al., 2017;
Zhu et al.,
2017; Yi et al.,
2017)

Generate tar-
get domain
data (Shri-
vastava et al.,
2017)

Feature-
based

Adversarial
domain adap-
tation (Ganin
et al., 2016;
Bousmalis
et al., 2016;
Tzeng et al.,
2017)

Adversarial
feature learn-
ing (Donahue
et al., 2016)

7.3.1 Generating Target Domain Data

In a target domain, labeled data are often difficult to obtain and costly to label.
Generative models can create samples for the target domain. For example, labeled
data can be collected in a simulated road-driving environment in autonomous
driving. Using the simulated labeled data as a source domain and adapting the
the source-domain model to the target domain allow us to train an autonomous
driving system in a real world domain. As unlabeled data are easy to collect, it is
possible to generate target domain data with adversarial learning.

There are two types of models that generate target domain data. The first type
learns mapping from the source samples to the target samples and thus creates la-
beled target domain samples, while the other type learns bi-directional mapping
between the samples of the two domains.

A typical model that translates source domain samples to the target domain
is SimGAN (Shrivastava et al., 2017). In SimGAN, adversarial learning bridges the
discrepancy between the source and target domains while retaining the label in-
formation simultaneously. SimGAN learns with unlabeled target domain data and
uses the labeled simulated data as a source domain. The network architecture of
SimGAN is shown in Figure 7.2. Synthetic images are first generated by a simulator
and then they are modified by a generator. The outputs of the generator are de-
noted by refined images. A discriminator is introduced to discern unlabeled target
domain images and refined images. The generator is trained with an adversarial
objective to fool the discriminator. To retain the label of a synthetic image after the
refinement, a self-regularization loss is adopted to train the generator and defined
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Figure 7.2 Overview of SimGAN. The generator refines synthetic images from a
simulator to improve realism, as guided by the discriminator. In addition to the
adversarial loss, a self-regularization loss is introduced to the annotations from
the simulator after the refinement

as

�r eg = ‖ψ(xs )−ψ(x̂t )‖1, (7.3)

where �r eg denotes the self-regularization loss, ψ denotes mapping from the im-
age space to a new space, and xs and x̂t denote the real and refined images, re-
spectively. In practice, mapping ψ is usually identical mapping such that ψ(x)= x,
and the self-regularization loss �r eg is the per-pixel difference between the syn-
thetic and refined images. Minimizing the the self-regularization loss encourages
the refined image to reserve the simulated annotations.

In SimGAN, two additional modifications are made to the vanilla GAN in order
to improve realism of refined images and stabilize training. The first modifica-
tion is the local adversarial loss where the discriminator classifies local patches
sampled from a refined image. This modification can avoid artifacts. The second
modification is updating the discriminator with a history of refined images, which
stabilizes the training procedure. The SimGAN is evaluated on the MPIIGaze data
set for gaze estimation (Zhang et al., 2015b; Wood et al., 2016) and the hand pose
estimation data set, the New York University (NYU) hand pose data set (Tomp-
son et al., 2014). In quantitative evaluation, SimGAN outperforms state-of-the-art
models on the MPIIGaze data set with a relative improvement of 21 percent. On
the NYU hand pose data set, SimGAN, which does not require any label in the
target domain, outperforms a model that is trained with real labeled images by
8.8 percent.

Another type of model builds bi-directional mapping between the source and
target domains. It can be helpful for applications such as image editing. If the re-
lationship between faces with black hair and those with blonde hair is known,
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one can imagine how he/she looks when he/she wants to change the hair color.
Paired data are necessary to build such correspondences (Isola et al., 2017). How-
ever, with adversarial learning, models can discover cross-domain relations with-
out paired data.

Xs Xt

Ds Dt

G

F

(a)

xs x̂t x̂s

cycle-consistency loss

G

F

(b)

Figure 7.3 The network architecture of CycleGAN. (a) The bi-directional map-
pings G and F are learned simultaneously. (b) The cycle-consistency loss encour-
ages the two mappings to inverses of each other

A typical model to address this setting is CycleGAN (Zhu et al., 2017), whose
framework is shown in Figure 7.3. Let G denote the mapping from the source
domain samples to the target domain samples. There are infinite possibilities to
map the source domain samples to the target domain with the generated target
samples following the target domain distribution. Learning the mapping G is an
under-constrained problem.

To address the issue, an inverse mapping F is introduced to learn mapping from
the target domain to the source domain. The two mappings G and F are learned
simultaneously and they are bijections. To learn the mapping G , two losses are
considered. The first loss is an adversarial loss that ensures that the translated
sample G(xs ) is indistinguishable from target domain samples and defined as

�G AN (G ,Dt )= Ext∼p(Xt )[logDt (xt )]+Exs∼p(Xs )[log(1−Dt (G(xs )))], (7.4)

where Dt denotes the target domain discriminator that is introduced to distin-
guish true target domain samples and the translated samples from the source do-
main.

The network that characterizes the mapping G is trained to minimize�G AN (G ,Dt ).
The target domain discriminator is trained to maximize �G AN (G ,Dt ), which for-
mulates a two-player min-max game. A similar adversarial loss �G AN (F,Ds ) can be
defined for the mapping F and the source domain discriminator Ds . Another loss
is a cycle-consistent loss that encourages G and F to be the inverse of each other,
that is, F (G(xs ))= xs and G(F (xt ))= xt , and defined as

�c yc (G ,F )= Exs∼p(Xs )[‖F (G(xs ))−xs‖1]+Ext∼p(Xt )[‖G(F (xt ))−xt‖1]. (7.5)

Putting (7.4) and (7.5) together, the full objective of the CycleGAN is formulated as
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�(G ,F,Ds ,Dt )= �G AN (G ,Dt )+�G AN (F,Ds )+λ�c yc (G ,F ),

where λ balances the importance of the adversarial loss and the cycle-consistency
loss. Qualitative analyses show that meaningful correspondences across domains
can be established. “Real versus fake” perceptual studies on Amazon Mechanical
Turk show that CycleGAN can fool human annotators on around 25 percent of
trials. Yet their performance is still weaker than the model with strong paired su-
pervision data. Also, failure cases are observed when there are geometric changes.

Researchers have proposed several models with similar characteristics (Kim
et al., 2017; Yi et al., 2017; Zhu et al., 2017). These models differ from CycleGAN in
implementation details. DiscoGAN (Kim et al., 2017) adopts a similar network ar-
chitecture to DCGAN. CycleGAN adapts the architecture in Johnson et al. (2016a)’s
work, which uses residual blocks and instance normalization in the generator
and PatchGAN as the discriminator. Different from DCGAN, the discriminator in
PatchGAN decides whether the input image is real or fake at the patch level. There
are few parameters in the patch-level discriminator of PatchGAN and it can be
applied to images with arbitrary sizes. DualGAN (Yi et al., 2017) uses PatchGAN as
the discriminator as well and it adopts a U-shaped network proposed in the work
by Isola et al. (2017) as the generator.

7.3.2 Learning Domain-Invariant Features via Adversarial Learning

The ability to learn common feature spaces is crucial to transfer learning. After
projecting data from both the source and the target domains into a shared feature
space, transfer-learning tasks can be performed with data from both domains.

Adversarial learning can learn a shared latent feature space across domains.
When there are labeled data in the source domain and unlabeled data in the target
domain, a common feature space satisfies the following two conditions:

(1) discriminative for source domain classification tasks,

(2) indistinguishable between the source and target domains.

Motivated by the two criteria, Ganin et al. (2016) propose a domain-adversarial
neural network (DANN). The network architecture is shown in Figure 7.4. The net-
work is composed of three sub-networks, a feature extractor shared across do-
mains, a label predictor for classification in the source domain and a domain
classifier. The three sub-networks are denoted by G , C and D , respectively. The
feature extractor and the label predictor minimize the classification error �y in
the source domain, which ensures the learned representations are discriminative.
Meanwhile, the feature extractor maximizes the domain classification error �d ,
making the feature distributions domain-invariant. The feature extractor and the
label predictor compete with the domain classifier.
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Figure 7.4 The DANN framework

Conceptually, the optimization process of a DANN formulates a min-max game
with the objective as

min
G ,C

max
D

V (G ,C ,D),

where

V (G ,C ,D)= 1

ns

ns∑
i=1

�i
y (G ,C )−λ

(
1

ns

ns∑
i=1

�i
d (G ,D)+ 1

nt

nt∑
i=1

�i
d (G ,D)

)
, (7.6)

where the hyperparameter λ balances the two terms. As G is minimized with re-
spect to �y while it is maximized with respect to �d , a gradient reversal layer (GRL)
is proposed. The gradient from the domain classifier D to the feature extractor G
is multiplied by a negative constant during the back-propagation optimization.

Several models are developed on the basis of DANN. Bousmalis et al. (2016)
assume that modeling domain-specific features helps extract domain-invariant
features. They propose a domain separation network that decomposes feature
representations into private and shared parts. Tzeng et al. (2017) unify existing
domain adaptation models with adversarial learning in a framework. This unified
framework considers various design choices and facilitates exploration of novel
architectures.

Another model, known as joint adaptation networks, is proposed and it out-
performs DANN on several image classification data sets (Long et al., 2017). This
model considers how to match the joint distributions of the activations from both
source and target domains in multiple layers by minimizing the joint maximum
mean discrepancy (JMMD). The JMMD is parameterized by a multi-layer neural
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network and adversarial learning is applied to learn distinguishable features. In
the work by Pei et al. (2018), a multi-adversarial domain adaptation approach is
proposed to capture the multimodal structure of the data. For a K -category clas-
sification problem, K domain discriminators are introduced where each domain
discriminator matches the source domain samples and target domain samples
associated with the same category. A data sample is softly assigned to a category
with the probability produced by the label predictor. When the label space of the
target domain is a subspace of the source domain, which is referred to partial do-
main adaptation, it is necessary to select a subset of source domain samples from
a shared label space. Instance weighting is used in conjunction with adversarial
feature learning in the works by Cao et al. (2017) and Zhang et al. (2018).

z G x̂

(z, x̂)

feature space data space

ẑ E x

(ẑ,x)

D

Figure 7.5 The network architecture of BiGAN, where a bi-directional mapping
between the data space and the feature space is learned

Adversarial learning can learn common features in an unsupervised manner
where both the source and target domains are unlabeled. Vanilla GANs learn to
generate data from a hidden representation, but it has no feature learning ability.
Two similar models (Donahue et al., 2016; Dumoulin et al., 2016) are developed in-
dependently to address the issue. Donahue et al. (2016) propose a bi-directional
GAN (BiGAN), which learns the inverse mapping from data to latent feature space
at the same time. The network architecture of BiGAN is shown in Figure 7.5. An
encoder is introduced to learn the inverse mapping. The discriminator accepts
(x,z) pairs as inputs, and a pair is labeled as 1 if x comes from the true data distri-
bution and labeled as 0 otherwise. As a direct extension of the vanilla GAN, BiGAN
defines an objective function as

min
G ,E

max
D

V (D,E ,G),

where

V (D,E ,G)= Ex∼pd at a [Ez∼pE (·|x)[logD(x,z)]]+Ez∼pz [Ex∼pG (·|z)[log(1−D(x,z))]].
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The learned representations of the encoder are then applied to other super-
vised learning tasks and achieve competitive results with unsupervised and self-
supervised feature learning models as shown by Donahue et al. (2016).

7.4 Discussion

Adversarial transfer learning models have great potential as they combine two
prominent approaches for learning with limited data. It allows “translation” be-
tween two domains, which is helpful to artistic creation applications such as im-
age/video editing. It also provides a learning-based data augmentation approach.
For example, we can train a self-driving car with the images from computer games,
which are refined by a GAN. In terms of discriminative feature learning, adver-
sarial transfer learning measures the domain discrepancy with a parameterized
network, which avoids hand-crafted statistical distances such as MMD and KL di-
vergence.

Adversarial transfer learning is a fast-advancing approach and there are plen-
tiful open challenges for future research, for example, how to incorporate target
domain label information, and how to address heterogeneous transfer learning
settings where either the feature spaces or the label spaces of the two domains are
different. It is expected that the two lines of research works, generative adversar-
ial learning and transfer learning, can be connected in a principled approach and
novel ideas are exchanged between them.
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Transfer Learning in Reinforcement Learning

8.1 Introduction

Reinforcement learning is a paradigm of machine learning when the learner
interacts with an unknown environment. In reinforcement learning (Sutton and
Barto, 1998), an agent can be modeled via a Markov decision process (MDP), where
the agent sequentially takes actions and receives corresponding rewards. The re-
wards can be time delayed. Guided by this limited reward signal, reinforcement
learning aims to acquire a policy that decides on how to take actions in differ-
ent future situations. An optimal policy is defined to maximize the cumulative
rewards.

We take the game playing in Figure 8.1 as an example, which is often adopted
in reinforcement learning research works (Silver et al., 2016). In each step, an in-
telligent agent must decide on how to make a move, for example, fire or go left,
according to the current state of the game. An intelligent agent should learn this
policy from the delayed reward, that is, pass or fail at the end, to optimize the
success rate.

Reinforcement learning significantly differs from supervised learning in sev-
eral aspects. Supervised learning learns from labeled training samples provided
by an oracle teacher and optimizes the generalization performance measured on
unseen testing data. Unlike the limited reward signal in reinforcement learning
settings, in supervised learning, the labels describe the correct action in various
situations, for example, the correct move in each round of a game. Clearly, such
high-quality and informative labeled samples are not available in many real world
applications, which is the target application area of reinforcement learning.

A major challenge for reinforcement learning is the exploitation-exploration
trade-off , which refers to the critical decision of agents when interacting with an
environment. To maximize the cumulative rewards, an agent is suggested to ex-
ploit actions that are the best in the past observations. Since only the rewards cor-
responding to the selected actions are observed, the agent should also explore the
unattempted actions as well. The short-term rewards may be sacrificed in pur-
suit of the long-term cumulative rewards. Theoretically, an optimal policy should
never stop the exploration (Lai and Robbins, 1985). For example, to maximize the
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Figure 8.1 An example of game playing to illustrate reinforcement learning

happiness, one has to sequentially decide to go to the favorite restaurant (ex-
ploitation) or try a new restaurant (exploration). Different from reinforcement
learning, most supervised learning algorithms ignore the exploration phase.

Reinforcement learning achieves great success in wide-range applications, in-
cluding game playing (Mnih et al., 2013, 2015), the game Go (Silver et al., 2016),
dialogue systems (Genevay and Laroche, 2016; Mo et al., 2018), natural language
processing (Ranzato et al., 2015; Nguyen et al., 2017), recommender systems (Li
et al., 2010; Zhao et al., 2018) and so on. Nevertheless, when a reinforcement learn-
ing agent faces a complex problem with large state and action spaces or it has
to learn from scratch, the learning process requires a large amount of the in-
teractions with the environment. Such interactions, unfortunately, are Resource-
comsuming in most applications. For instance, each interaction with a user in a
recommender system costs a certain amount of money.

A versatile, intelligent agent is supposed to solve a reinforcement learning prob-
lem more efficiently even when it faces a new domain where not much experience
has been gained to train the agent from scratch. In this case, it is natural to apply
transfer learning by leveraging the knowledge from related reinforcement learning
domains. As discussed in previous chapters, transfer learning is broadly studied in
the supervised learning and unsupervised learning settings. As attention on rein-
forcement learning gains speed, transfer learning for reinforcement learning also
gains increasing interest from game playing to robotics. Knowledge transfer be-
tween reinforcement learning problems is proved to be effective both empirically
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and theoretically. In this chapter, we introduce several families of transfer learning
algorithms tailored for reinforcement learning.

This chapter is organized as follows. First, we discuss the background knowl-
edge of reinforcement learning, the key concepts of the transfer learning and the
objective of transfer learning in reinforcement learning. Then, we categorize all re-
lated algorithms according to the problem setting and the type of the transferred
knowledge.

8.2 Background

In this section, we introduce fundamental concepts of reinforcement learning.
Then, we discuss essential components of transfer learning, including “what to
transfer,” “how to transfer” and “when to transfer” in the context of reinforcement
learning. Finally, we introduce different objectives of transfer learning for rein-
forcement learning.

8.2.1 Reinforcement Learning

In this section, we formally define reinforcement learning problems.

First, an MDP M is defined as a tuple< SM , AM ,PM ,RM ,γ>. SM and AM denote
the state and action spaces, which could infinite. For continuous states, SM ∈ Rd

stands for the state variables. The state and action combined serve as the
representation for an MDP. The transition function PM : SM × AM → SM decides
the next visited state given the current state and the action taken. The transition
function PM can be either deterministic or stochastic. Reinforcement learning
algorithms that explicitly estimate the transition function PM are called model-
based learning. RM : SM → RM stands for the reward function that generates an
instantaneous reward when arriving at a new state. γ denotes a discount factor.
For the majority of reinforcement learning problems, the transition function PM

and the reward function R are unknown and require the exploration by interacting
with the environment.

The solution to the MDP M is a policy πM : SM → AM , which adaptively and
sequentially decides the actions in various states. In step n, the agent is aware of
the current state sn ∈ SM and selects an action an = πM (sn) ∈ AM according to
the policy πM . Then, the agent observes the corresponding reward rn and transits
to the next state sn+1 ∈ SM . An optimal policy π∗M aims to maximize the cumu-
lative rewards, that is,

∑
n=0 rn , in an episodic MDP with discounted cumulative

rewards, that is,
∑

n=0γ
t rn , in a non-episodic MDP. Furthermore, searching for

the optimal policy is equivalent to maximizing the value function, for example,
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the Q-function. As a result, we can get

Q∗ (sn , an)=Qπ∗ (sn , an)= argmaxπE
π
sn ,an

[ ∑
n′≥0

γn′
rn′+n

]
. (8.1)

The optimal Q-function is also known to satisfy the Bellman equation, which is
defined as

Q∗(sn , an)= E

[
RM (sn+1)+γmax

an+1
Q∗ (sn+1, an+1)

]
. (8.2)

When the state or action space is very large or even continuous, we usually rep-
resent the value function with a functional approximation, where the feature func-
tions are used as the representation of an MDP. Among traditional reinforcement
learning methods, the linear function approximation plays a dominated role. In
contast, deep reinforcement learning methods exploit powerful deep neural net-
works, including multi-layer perceptrons, deep convolution neural networks
(Mnih et al., 2013), deep recurrent networks (Hausknecht and Stone, 2015) and
so on. Deep reinforcement learning learns useful representations for the value
function by leveraging the representation learning ability of deep neural networks.
Furthermore, deep reinforcement learning is capable of learning the value func-
tion and the policy in an end-to-end manner. As one of the representative deep
reinforcement learning methods, deep Q-network (DQN) with experience replay
improves the performance game playing significantly (Mnih et al., 2013) and it
adopts the convolutional neural network to extract the representation directly
from the raw frames of the game.

8.2.2 Transfer Learning for Reinforcement Learning Tasks

Transfer learning in reinforcement learning aims to improve the performance
of a target-domain MDP Mt by leveraging the knowledge from one or multiple
related but different source MDPs {Ms }. Without loss of generality, we mainly dis-
cuss the case with a single source domain in this section for clarity.

Here we take the mountain car learning task often used in illustrating reinforce-
ment learning problems (Moore, 1991; Taylor et al., 2008a). We take this task as
an example to illustrate different concepts in transfer learning for reinforcement
learning. According to Figure 8.2, an agent drives an car toward the goal. In a two-
dimensional mountain car version of the task, we treat the horizontal position and
the velocity combined, that is, (x, ẋ), as the state. The agent should decide the ac-
tion among {Left, Neutral, Right} in each time step. In a three-dimensional moun-
tain car task version, the state concerns the two-dimensional space denoted by
(x, ẋ, y, ẏ) and the action space contains five choices, that is, {Neutral, West, East,
South, North}. To drive the car to the goal as fast as possible, the instantaneous
reward for each time step is −1.

To introduce the transfer-learning setting, we first define concepts for “domain”
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Figure 8.2 Illustration of the mountain car example. In both two-dimensional
and three-dimensional example, the car agent must travel along the mountain
toward the goal (adapted from Lazaric et al. [2008])

and “task” for an MDP M , respectively. The domain of an MDP M , that is, DM , in-
cludes the state space S and the action space A. In a continuous MDP, the domain
mainly indicates the continuous state variables and action space. If two MDPs be-
long to different domains, either the state space or the action space is different.
Transfer learning for MDPs with different domains depends on the handcrafted
or learned inter-domain mapping between the source and target domains.

Given a domain M , the task describes the remaining components of an MDP,
including the transition function PM and the reward function RM . The MDPs with
different tasks have distinctive dynamics or reward functions. As we discussed
earlier, PM and RM can be unknown to the agent and require the exploitation and
exploration.

In the following, we illustrate different domains and different tasks based on the
mountain car problem.

Different domains SMs �= SMt : The source MDP solves the three-dimensional
mountain car problem, while the target one is for the two-dimensional
case.

Different domains AMs �= AMt : The source and target MDPs are both in the two-
dimensional space. In the target MDP, however, the “Neutral” action is
forbidden.

Different tasks PMs �= PMt : In the source MDP, the car owns a powerful engine,
but the car of the target MDP has a under-powered engine. Therefore,
the same action has different influences on the states in the source and
target MDPs.

Different tasks RMs �=RMt : In the source MDP, the car is only required to achieve
the goal. However, in the target MDP, we require the car to arrive at the
goal as soon as possible.
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According to Pan and Yang (2010), essential issues to design a successful trans-
fer learning algorithm for reinforcement learning include deciding “what to trans-
fer,” “how to transfer,” and “when to transfer.”

“What to transfer” categorizes the transfer learning algorithms for reinforce-
ment learning into instance-based transfer learning, feature-based transfer learn-
ing and model-based transfer learning. The instance-based transfer learning iden-
tifies and reuses a subset of source experiences when learning the target MDP. The
feature-based transfer learning algorithms extract high-level and abstract con-
cepts from the source MDPs and accordingly change the state or action space
of the target MDP that focuses more on promising regions in the state or action
space or utilizes more powerful function approximator. The model-based trans-
fer learning reuses the value function or the transition function learned from the
source experiences in the target MDP.

“How to transfer” decides on which algorithm to discover and reuse the related
knowledge. The method used by a knowledge-transfer algorithm heavily relies
upon “what to transfer.” In the context of instance-based transfer learning, how to
transfer mainly indicates the criteria with which to identify related source experi-
ences. In the context of feature-based transfer learning, “how to transfer” relates
to how the representation of the source knowledge can be reused by the target do-
main. In the context of model-based transfer learning, how to transfer considers
how to reuse the source experiences in the target domain.

“When to transfer” mainly indicates the timing of using transfer learning. Source
MDPs are not guaranteed to be helpful in improving the performance of the target
MDP. When facing dramatically different source and target MDPs, the brute-force
knowledge transfer may jeopardize the target performance via the so-called nega-
tive transfer. When facing multiple source MDPs, when to transfer emphasizes the
necessity of selective transfer by identifying the similarity between the source and
target MDPs. When to transfer calls for a deeper and theoretical understanding of
transfer learning including the similarity measurement of different MDPs, how to
guarantee to avoid the negative transfer and so on.

8.2.3 The Objectives of Transfer Learning in Reinforcement Learning

In the supervised learning setting, the merits of transfer learning is verified
by comparing the performance of transfer learning algorithms with that of algo-
rithms without using knowledge transfer. Researchers anticipate the jump-start
performance of transfer learning algorithms when the target training samples are
insufficient, that is, the target domain suffers the so-called “cold-start” problem.
The learning behavior as a function of the number of training samples is investi-
gated to prove that transfer learning provides improved performance in cold-start
situations.

Reinforcement learning aims to maximize the cumulative rewards within a time
horizon by interacting with the environment. In the context of reinforcement learn-
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Figure 8.3 Three objectives of transfer learning algorithms in reinforcement
learning

ing, transfer learning aims to improve the cumulative rewards in three circum-
stances including the jump-start improvement, asymptotic improvement and
learning speed improvement (Lazaric, 2012). These three objectives can be used
to measure the effectiveness of transfer learning algorithms. We separately dis-
cuss these objectives in the following. When a transfer learning algorithm returns
a learned policy πt for the target MDPs, to better understand the improvement,
the gap between the action-value function of πt and the optimal policy π∗ can be
decomposed as

‖Qπt −Q∗‖ ≤ εapprox
(
Qπt ,Q∗)+εest(Nt )+εopt. (8.3)

In (8.3), the approximation error, that is, εapprox (Qπt ,Q∗), denotes the asymp-
totic error caused by the bias of the function approximation. In an MDP with small
state and action spaces, the agent can perfectly learn the optimal value function
and suffer from no approximation error. The estimation error εest(Nt ) is due to
the estimation of the value function using finite experiences. As a result, the esti-
mation error decreases and converges to stable values with the increasing target-
domain experience. Finally, the optimization error, that is, εopt, is caused by the
non-global optimum of optimizing the function approximation. The optimization
error often occurs in deep reinforcement learning.

Jump-start improvement: The advantage of knowledge transfer Can be empir-
ically measure by the performance improvement at the beginning of the learn-
ing process compared to algorithms without transfer learning. The intuitive idea
to achieve knowledge transfer is To directly use the policies or value functions
learned in the source MDPs to initialize the target one. If source and target MDPs
are similar enough, the transferred policy or value function can achieve better
performance compared to the random initialization, thereby leading to the jump-
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start improvement as shown in Figure 8.3. Jump-start improvement does not guar-
antee the asymptotic improvement and the learning speed improvement.

Asymptotic improvement: Asymptotic improvement measures the improvement
of the final performance and discusses whether transfer learning can reduce the
approximation error of the target MDP, that is, εapprox (Qπt ,Q∗) in (8.3). Clearly,
for a target MDP with only small state and action spaces, the approximation error
can be zero and hence it cannot be further reduced. When the function approxi-
mation is used, the approximation error depends on the hypothesis space of the
function approximation. As a result, transferring the complementary state vari-
ables to the target function approximation can improve the final performance. In
the mountain car learning problem, if the function approximation in the target
MDP only considers the position, augmenting the hypothesis space by transfer-
ring the velocity could definitively reduce the approximation error.

Learning speed improvement: The critical motivation for applying transfer learn-
ing in reinforcement learning is to improve the efficiency of learning by reducing
the required target-domain interactions with the environment. That is, transfer
learning can learn more efficiently than the non-transfer cases. Thus, the learn-
ing speed improvement can be used to measure whether knowledge transfer can
reduce the estimation error much faster as a function of the interactive expe-
rience, as shown in (8.3). Transfer learning achieves this improvement by guid-
ing the exploitation and exploration more efficiently in the target MDP. Learning
speed improvement can be achieved via any of the instance-based, model-based
and feature-based transfer learning methods. In instance-based transfer learning,
reusing the experiences in source MDPs is equivalent to interacting with related
environments without cost. In the model-based transfer, the policy or the value
function learned in the source MDP is used. In the feature-based transfer, the ex-
tracted high-level representation changes that of the target MDP. All the trans-
ferred source knowledge guides the agent to focus on the regions of the state and
action that Are more likely to be optimal in source MDPs and speeds up the ex-
ploitation and exploration. The learning speed improvement can be measured
empirically by time to threshold and area ratio and analyzed theoretically by finite-
sample analysis (Taylor and Stone, 2009). Given a performance threshold, time to
threshold compares the number of interactions with environment required by re-
inforcement learning algorithms with and without transfer learning in the target
domain. Time to threshold, however, ignores the learning curve of the algorithms
and selecting the performance threshold could be tricky as well. Area ratio quanti-
fies the improvement of the area under the performance curve compared to algo-
rithms without transfer learning. Besides the empirical measurement, theoretical
analysis of the estimation error in (8.3) and “sample complexity” (Brunskill and
Li, 2013) provide more solid verification.
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Table 8.1 The Taxonomy of transfer learning algorithms for reinforcement
learning

Problems/solutions Inter-task transfer Inter-domain transfer

Instance-based
transfer

Lazaric et al. (2008);
Genevay and Laroche (2016);

Laroche and Barlier (2017)

Taylor et al. (2008a);
Bou-Ammar et al. (2015);

Liu et al. (2017);

Feature-based
transfer

Action-
based

Hengst (2002);
da Silva et al. (2012);

Azar et al. (2013)

Konidaris and Barto (2007);
Topin et al. (2015)

Feature
function-

based

Drummond (2002);
Mahadevan and Maggioni (2007);

Barreto et al. (2017);
Ferguson and Mahadevan (2006)

Model-based
transfer

Wilson et al. (2007);
Rusu et al. (2015);

Yin and Pan (2017)

Taylor et al. (2005);
Taylor and Stone (2007);

Rusu et al. (2015)

8.2.4 Taxonomy of Transfer Reinforcement Learning

In this section, we discuss the taxonomy of transfer learning algorithms for re-
inforcement learning concerning three dimensions.

First, we categorize all methods according to the problem setting by empha-
sizing the difference between the source and target MDPs. The inter-task trans-
fer learning requires the source and target MDPs to lie in the same state and ac-
tion spaces. The transition and reward functions are allowed to be different. In
comparison, inter-domain transfer learning is a more complicated problem than
same-domain learning because the state or action spaces are different across do-
mains.

Second, we consider what is transferred by different algorithms. The poten-
tial solutions to solve each problem include instance-based, feature-based and
model-based transfer. As we discussed earlier, the representation for an MDP prob-
lem concerns the states, actions and the feature functions for the value function
approximation. Accordingly, we discuss action-based transfer and feature function-
based transfer separately.

Finally, transfer learning algorithms within a category differ in how to transfer.
We summarize the taxonomy and the representative works in Table 8.1. The rest
of this chapter is organized in the same manner as the taxonomy.

8.3 Inter-task Transfer Learning

In this section, we introduce transfer learning algorithms for MDPs within the
same domain but different tasks. The source and target MDPs are denoted by
{Msi |i = 1. . .m} and Mt , respectively. The source and target MDPs share the same
state and action spaces, that is, Ssi = St = S and Asi = At = A. The transition func-
tion or reward function, however, is different in source and target MDPs, that is,
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Psi �= Pt or Rsi �= Rt . For instance, a dialogue system (Genevay and Laroche, 2016)
utilizes reinforcement learning to learn a policy to interact with users. To mag-
nify the personalization, the dialogue system formulates the interaction with each
user as an independent MDP. To reduce the number of interactions with users,
Genevay and Laroche (2016) adapt the experiences of existing users to an incom-
ing user. As all users are using the same language, the state space S and the action
space A are invariant across users. Users, however, differ in habits and interests,
leading to the personalized transition function Pt and reward function Rt .

According to “what to transfer,” we discuss three families of solutions for inter-
task transfer learning, including the instance-based transfer, feature-based trans-
fer and model-based transfer. Then we discuss “when to transfer” for inter-task
transfer learning.

8.3.1 Instance-Based Transfer

Transfer learning in reinforcement learning aims to reduce the necessity of the
interactions with the environment. If an agent is capable of learning a reasonable
policy from existing interactions of similar tasks, much fewer interactions with the
target MDP are required. For instance, in a personalized dialogue system, an agent
should contact an individual user many times to accumulate sufficient observa-
tions. If dialogues from other users are available, learning the general dialogue
policy from existing observations of other users will accelerate the personalized
policy learning.

The instance-based transfer is an intuitive idea to achieve knowledge transfer
between MDPs within the same domain. The instance-based transfer directly or
indirectly adopts accumulated experiences in source MDPs to improve the per-
formance of a target MDP.

As far as we know, Lazaric et al. (2008) propose the first instance-based transfer
method for reinforcement learning. In Lazaric et al. (2008), a source MDP is se-
lected according to the probability of being compliant with the target MDP and
then the experience is reused according to the distribution of being relevant to
the target MDP. More specifically, the task compliance is defined as the probabil-
ity that the target experiences are drawn from the specific source MDP. Suppose
that M̂si denotes the estimation of i -th source MDP according to finite interac-
tions and that Nt interactions < sn , an ,rn , s′n > are available in the target MDP.
The task compliance is defined as

Λsi =
1

Nt

Nt∑
n=1

P
(〈

sn , an ,rn , s′n
〉 |M̂si

)
. (8.4)

Given the task compliance, all the source experiences are weighted and the weighted
source experiences are used to help the learning of the target MDP.

Genevay and Laroche (2016) apply an instance-based transfer method to the
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spoken dialogue system. Different from Lazaric et al. (2008) where the compliance
of a source MDP is manually defined, Genevay and Laroche (2016) formulate the
source selection problem as a multi-armed stochastic bandit problem that treats
each learned policy πsi from the i -th source MDP as an arm. Pulling the i -th arm
is equivalent to applying πsi to the target user and observing the corresponding
discounted reward in the dialogue system. The multi-armed bandit guarantees
that the most useful source MDP can be identified with high probability. Further-
more, the usefulness of certain source experience is defined by whether it contains
complementary information to the target MDP. As a result, Genevay and Laroche
(2016) select source experiences that are far from the target training data via a
density-based criterion. Finally, the proposed method learns from the transferred
experiences by using any batch reinforcement learning algorithm as the initializa-
tion. Empirically, this method successfully achieves both the jumpstart improve-
ment and asymptotic improvement.

Laroche and Barlier (2017) propose an instance-based transfer learning method
named transfer reinforcement learning with shared dynamics (TRLSD) that aims
at improving the learning speed when facing MDPs with the shared dynamics.
TRLSD is inspired by robotics applications where an agent takes advantage of
the shared transition function P to understand the complex environment. TRLSD
learns the shared transition function by using experiences from all MDPs and es-
timates the task-specific reward function using the target experiences only. More
concretely, TRLSD first translates the source experience < sm , am ,rm , s′m > to the
target MDP via the reward proxy r̂m and then learns the target policy from all the
translated source experiences added to target experiences using the fitted-Q iter-
ation. In the process, it is found that the reward proxy learned from limited target
experiences suffers from a high uncertainty. To explore the shared dynamics and
reward function more efficiently, TRLSD adopts the optimism in the face of uncer-
tainty heuristic and explicitly models the uncertainty of the reward function with
the upper confidence reinforcement learning.

8.3.2 Feature-Based Transfer

The feature-based transfer-learning algorithms leverages the high-level knowl-
edge from the source MDPs by adapting the feature representation of a target
MDP. As we introduced earlier, the state spaces, the action spaces and the fea-
ture functions for the value function approximation are the representation of an
MDP. The feature-based transfer learning methods can be classified into two cat-
egories, the action-based transfer and the feature function-based transfer. We dis-
cuss them separately in the following.

Action-Based Transfer
The action-based transfer learning methods assume that our aim is to adapt the

target action space by leveraging high-level knowledge from the source MDPs.
Among all action-based transfer learning algorithms, the option-based transfer
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is a dominating method. The option-based transfer assumes that abstract actions
named options (Sutton et al., 1999) can be generalized to the target MDP. An op-
tion o ∈ O is defined by three components {so ,πo ,βo}, including the state where
the option can be executed so , the option-specific policy πo and the terminat-
ing condition βo . When an agent arrives at so , it must decide whether to take the
abstract action via πo until the termination or not. Intuitively, the options sum-
marize the internal structure of the source MDPs and are regarded as subgoals to
achieve the final objective. The option-based transfer method discovers the op-
tions Os in the source MDPs and augments the target action space with the op-
tions, that is, A′

t = {At ,Os }. In the “maze example” of Hengst (2002), as shown in
Figure 8.4, a robot attempts to move from an initial position to a goal through
three rooms, which are interconnected via doorways. Intuitively, the discovered
options can be the subgoals such as to enter a nearby room via the doorway. When
facing a target MDP that has a different goal position, entering a nearby room
guided by the source options is still valuable.

The transferred options guide the agent to achieve the subgoals more efficiently,
thereby improving the learning speed in the target MDP. The existing option-based
transfer algorithms differ in how to discover options in the source MDPs. For MDPs
with discrete state and action spaces, McGovern and Barto (2001) define the states
that are frequently visited by the optimal source policy as the bottleneck. The
bottleneck and the learned source policy combined are utilized to augment the
target action space. For continuous MDPs, Kober et al. (2011) and da Silva et al.
(2012) transfer the estimated parameterized options to similar MDPs. In particu-
lar, da Silva et al. (2012) discover low-dimensional manifolds where the invariant
parameterized options lie.

Goal

Figure 8.4 In this maze example (adapted from Hengst [2002]), the robot at-
tempts to move from the initial position to the goal through three rooms

Unlike the option-based transfer, another line of the action-based transfer learn-
ing shrinks the action space and focuses more on potential optimal actions. Sher-
stov and Stone (2005) generate a set of synthetic MDPs by randomly perturbing a
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single source MDP. The actions that are not optimal in any generated MDPs are
discarded. The agent solves the target MDP concerning only the remaining ac-
tions. Intuitively, by discarding non-optimal actions, the resulting smaller action
space alleviates the need to explore all the actions, thereby improving the learn-
ing speed. Sherstov and Stone (2005) select actions by heuristics. Azar et al. (2013)
propose a uncertain model upper confidence bound (umUCB) method that pro-
vides a theoretical mechanism to eliminate the actions. umUCB is tailored for the
multi-armed bandit problem with multiple source tasks and guaranteed to avoid
the negative transfer.

Feature Function Based Transfer
In reinforcement learning, searching for the optimal policy is equivalent to learn-

ing the optimal value function. Without loss of generality, we assume that the hy-
pothesis space H of the value function can be represented approximately as the
linear combination of d feature functions, that is,

H =
{

h : h(s, a)=
d∑

j=1
φ j (s, a;θφ)w j

}
. (8.5)

The feature function-based transfer extracts feature functions {φ(s, a;θφ)}d
i=1 in

the source MDP and refines the target hypothesis space accordingly. For a discrete
MDP, most reinforcement learning algorithms are guaranteed to converge to the
optimal value function. Thus, the feature function-based transfer mainly provides
informative feature functions to speed up the learning process. For a continuous
MDP, the feature function-based transfer may enlarge the hypothesis space and
achieve the asymptotic improvement. The feature function-based transfer algo-
rithms differ in what and how feature functions are learned from the source MDP
and encoded in the target MDP.

Proto-value functions (Ferguson and Mahadevan, 2006; Mahadevan and Mag-
gioni, 2007) are a popular class of transferable feature functions. For an MDP
M , the value function is usually smooth and it incorporates both information of
the dynamics PM and the reward function RM . The key motivation of the proto-
value functions method is twofold. First, proto-value functions serve as the fea-
ture function to parameterize the value function well. Second, the proto-value
functions should summarize the dynamics of an MDP. To satisfy these two goals,
Mahadevan and Maggioni (2007) first construct a graph or an adjacency matrix
based on the state transition. More concretely, by using the n-th vertex to denote
the state sn , the vertexes sn and sn′ are connected via an edge if we can reach sn′

from sn in one step. An example is illustrated in Figure 8.5. Then, Mahadevan and
Maggioni (2007) utilize the eigenvectors of the graph Laplacian as the proto-value
functions. By assuming that the source and target MDPs share the same domain
and dynamics, the adjacency matrix can also be invariant across domains. Thus,
the proto-value functions can be directly used in the target MDP.

Successor feature functions (Barreto et al., 2017; Zhang et al., 2017a) are another
successful high-level feature function tailored for the knowledge transfer. Assume
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Figure 8.5 The dynamics of an MDP in (a) can be represented by the state transi-
tion graph in (b). The proto-value function method proposed in Mahadevan and
Maggioni (2007) transfers the eigenvectors of the graph Laplacian

that the one-step expected reward is the linear combination of d feature functions
φi (s, a;θφ), that is,

r (s, a)= Es′∼P
[
r
(
s, a, s′

)]= d∑
i=1

φi (s, a;θφ)wi . (8.6)

According to the Bellman equation, the action-value function under the policy π

can be written as

Qπ(s, a)= Eπ
[ ∞∑

t=τ
γt−τφt+1|st = s, at = a

]T

w, (8.7)

where ψπ(s, a)≡ Eπ
[∑∞

t=τ γ
t−τφi+1|st = s, at = a

]
is regarded as the successor fea-

ture functions. Clearly, when using the tabular representation of the state and ac-
tion spaces, the successor feature functions represent the prediction on future oc-
currence of all other states under the policy π. For instance, in Figure 8.4, if the
feature function φ(·) represents the position of the robot, the successor feature
functions can indicate the trajectory under the policy π. The successor feature
functions can learn via the Bellman equation. Intuitively, in the MDP, the tran-
sition function is summarized by the successor feature functions and the reward
function is modeled by w. The successor feature functions decouple the dynamics
and the reward function. When facing the source and target MDPs with the shared
transition function but different reward functions, the agent could directly exploit
the learned successor feature functions and estimate w in the target MDP.

Other definitions of the transferable feature functions also exist. For example,
Drummond (2002) decomposes the state spaces of the source MDPs into sub-
tasks and treats the independent value function of each subtask as the transfer-
able feature functions. Snel and Whiteson (2014) adopt the feature functions se-
lection to identify transferable feature functions. Walsh et al. (2006) and Lazaric
(2008) share a similar idea to multi-task learning (Zhang and Yang, 2017b). When
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facing multiple source MDPs, Walsh et al. (2006) and Lazaric (2008) assume that
the state aggregation or the subset of feature functions that perform well on all
source MDPs is transferable. Bou-Ammar et al. (2014) solve a sequential trans-
fer learning problem by assuming that feature functions for the source and target
MDPs can be factorized into an invariant part and a task-specific part, and esti-
mate both parts via sparse coding.

Deep reinforcement learning (Mnih et al., 2013), particularly the DQN algo-
rithm, proposes the extraction of transferable feature functions in an end-to-end
manner by taking advantage of powerful deep neural networks as the function
approximator. For example, DQN successfully learns to play very complex Atari
games based on the input images. To learn the complex deep neural networks,
however, DQN calls for massive experience that emphasizes the necessity of the
knowledge transfer. In the target MDP, DQN leverages the feature functions ex-
tracted by the deep neural network trained on the source MDPs. Therefore, the
reasonable feature functions can speed up learning the policy in the target MDP.

8.3.3 Model-Based Transfer

The model-based transfer learning algorithms assume that the source and tar-
get MDPs share a part of the parameters that parameterize the MDPs. The model-
based transfer mainly learns the shared parameters from the source MDPs. Then,
it initializes the target MDP with the shared parameters. Model-based transfer can
achieve both the jump start and learning speed improvements. According to dif-
ferent assumptions of shared parameters, various model-based transfer learning
algorithms are proposed. In this section, we discuss two main categories of model-
based transfer learning algorithms, including hierarchical Bayesian models and
deep reinforcement learning.

Hierarchical Bayesian Models
Transfer learning algorithms based on hierarchical Bayesian models hypothe-

size that source and target MDPs are drawn from a global distribution that can be
formulated as a hierarchical Bayesian model. More concretely, each MDP M is pa-
rameterized with the parameters θM , which is assumed to be independently and
identically drawn from a fixed but unknown distribution Ωψ that is parameterized
by ψ. The corresponding hierarchical Bayesian model is illustrated in Figure 8.6.
Given Nsi experiences for the i -th source MDP, that is, Ksi = {< sm , am ,rm , s′m >
}

Nsi
m=1, the algorithm attempts to infer ψ according to

P
(
ψ|{Ksi

}
i=1

)∝∏
i=1

P
(
KSi |ψ

)
P(ψ), (8.8)

and then initializes the target MDP accordingly. Intuitively, in the hierarchical
Bayesian model, the global distribution Ωψ is estimated by using all the source
MDPs and serves as an informative prior for the target MDP.
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Figure 8.6 An illustration of a hierarchical Bayesian model (adapted from
Lazaric [2012])

For instance, Wilson et al. (2007) parameterize the transition and reward func-
tions and apply model-based Bayesian reinforcement learning to the target MDP.
The model by Wilson et al. (2007) is not limited to the specific form of the prior of
ψ. In comparison, Lazaric and Ghavamzadeh (2010) parameterize the value func-
tion based on a normal-inverse-Wishart hyper-prior.

Deep Reinforcement Learning
Deep reinforcement learning is regarded as a model-based transfer method.

Policy distillation (Rusu et al., 2015) is proposed to train a single network for mul-
tiple MDPs. The policy distillation learns an independent teacher policy in each
source MDP and accumulates that source experiences for the reply. The policy
distillation method adopts the supervised loss function to train a student network
that matches the action distribution predicted by the teacher policies. The frame-
work of the policy distillation is illustrated in Figure 8.7. Moreover, DQN adopts
convolutional neural networks that can automatically extract high-level feature
functions from the pixels in the image data. Thus, for inter-task transfer learn-
ing problems, policy distillation shares both the convolutional filters and the fully
connected layers. Yin and Pan (2017) argue that the task-specific convolutional
feature functions are crucial for the performance. Thus, Yin and Pan (2017) only
transfer the parameters of fully connected layers across MDPs.
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Figure 8.7 Illustration of the policy distillation framework

8.3.4 When to Transfer

Transferring irrelevant knowledge may jeopardize the performance of the target
MDP. “When to transfer” mainly explores sound mechanisms of selective transfer
to avoid negative transfer.

When transferring from a single source MDP, when to transfer mainly indicates
whether to transfer or not. This decision heavily relies upon how to measure the
similarity between the source and the target MDPs theoretically and empirically.
We transfer knowledge when the source and target are close and pause knowledge
transfer when the source and target are dramatically different. Ferns et al. (2004)
first define the similarity between the states within one MDP. Given the similarity
between all states, Phillips (2006) and Song et al. (2016) further extend (Ferns et al.,
2004) to calculate the distance between two different MDPs via the Kantorovich
and Hausdorff metrics.

When transferring from multiple source MDPs, when to transfer requires iden-
tifying relevant source MDPs. As discussed in Section 8.3.1, in the work by Lazaric
et al. (2008), the source MDPs are selected according to the probability that they
are compliant with the target MDP with the task compliance defined as the proba-
bility that the target experiences are drawn from the specific source MDP. Genevay
and Laroche (2016) further formulate the source selection problem as a multi-
armed stochastic bandit problem and guarantee that the relevant source MDPs
are selected with a high probability.

In some studies, researchers theoretically analyze the performance improve-
ment brought by the knowledge transfer and study the impact of when to transfer.
Brunskill and Li (2013) propose a multi-task algorithm that theoretically reduces
the per-task sample complexity of the exploration significantly. Brunskill and Li
(2013) prove that the proposed algorithm can achieve a comparable per-task sam-
ple complexity in the worst case, which avoids negative transfer. Azar et al. (2013)
focus on the knowledge transfer among the multi-armed bandit problems and
provide theoretical regret analyses for the proposed umUCB method, and guar-
antee to avoid negative transfer.
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8.4 Inter-domain Transfer Learning

Transferring across the MDPs within the same domain is limited in their range
of applications. For instance, in the mountain car learning example in Figure 8.2,
we anticipate the robot could learn to climb the two-dimensional mountain more
efficiently if the three-dimensional mountain has already been conquered. The
incompatible state and action spaces, however, pose challenges for knowledge
transfer.

Inter-domain transfer learning is highly related to heterogeneous transfer learn-
ing, as introduced in Chapter 6, under the supervised learning setting. The key
to solve this problem is how to align different spaces across domains. After the
alignment, inter-domain transfer learning can be addressed by inter-task transfer
learning algorithms introduced in the last section. The dominating ways to align
the state or action space include the handcrafted mapping the learned mapping,
and the invariant common representations. In this section, according to “what to
transfer,” we discuss the instance-based, feature-based and model-based transfer
separately.

8.4.1 Instance-Based Transfer

The critical challenges for instance-based transfer methods include how to iden-
tify the similar experiences and how to reuse them efficiently. For the inter-task
transfer learning problem, we focus on solving these two problems directly. In
contrast, in this section, we survey the algorithms that address these two chal-
lenges within different state or action spaces.

Due to difference in state or action spaces, the experiences from the source
MDPs cannot be directly incorporated into the learning process of the target MDP.
Taylor et al. (2008a) propose a transferring instances for model-based reinforce-
ment learning (TIMBREL) method that translates the source experiences into the
target space. TIMBREL transforms source states into the target MDP via a given
mapping χS : Ss → St . It also transforms source actions into the target MDP via a
handcrafted mapping χA : As → At . In the mountain car example, the goal is to
transfer from a three-dimensional problem to a two-dimensional case. The hand-
crafted mappings χS and χA are shown in Table 8.2. Given the mappings χS and
χA , each source experience< sm , am ,rm , s′m > is translated to<χS (sm),χA(am),rm ,
χS (s′m) >. Finally, TIMBREL adopts model-based reinforcement learning to learn
from all the translated experiences and the target experiences. TIMBREL is tai-
lored for a single source MDP and model-based reinforcement learning. Empir-
ically, TIMBREL claims to improve both the learning speed and the asymptotic
performance.

Liu et al. (2018) propose a new policy named transfer contextual bandit (TCB)
to transfer the knowledge between contextual bandit domains with different con-
texts. To align different context spaces, TCB leverages the auxiliary information
that indicates the similarity between m-th source experience and n-th target
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Table 8.2 The handcrafted inter-task mapping for the mountain car problem
(Taylor et al., 2008a). The goal is to transfer from the three-dimensional problem to

the two-dimensional case
Inter-task mapping for the mountain car example

Action mapping

χA(Neutral)=Neutral
χA(North)=Right
χA(East)=Right
χA(South)=Left
χA(South)=Left

State mapping

χS (x)= x
χS (ẋ)= ẋ
χS (y)= x
χS (ẏ)= ẋ

experience. TCB learns a mapping to preserve such geometry structure and, af-
ter learning the mapping, TCB adopts the translated source experiences to warm-
start the target domain. To maximize the cumulative rewards, TCB not only ex-
plores the reward function, but also the learning process of the mappings. TCB
achieves both the jump start and learning speed improvements in the application
of recommender systems.

For other applications like the robotics, the auxiliary guidance may be unavail-
able. Bou-Ammar et al. (2012) present a tranfer fitted-Q-iteration (TrFQI) algo-
rithm that automatically constructs the correspondence between source and tar-
get experiences and learns the inter-task mapping. More concretely, TrFQI and
transfer least squares policy iteration (TrLSPI) calculate the similarity between
each source and target experience pair via sparse coding. Based on the estimated
correspondences, TrFQI and TrLSPI approximate the inter-task mapping with a
Gaussian process.

When there is no auxiliary guidance, Bou-Ammar et al. (2015) propose the ex-
ploitation of the unsupervised loss to avoid this requirement. More concretely, all
the source and target state variables are mapped to a common representation.
The proposed method learns this mapping with an unsupervised loss by preserv-
ing the local manifold geometry. Then, similar to other instance-based transfer
learning methods, Bou-Ammar et al. (2015) reuse the translated experiences as
the initialization, which is far better than the random initialization.

8.4.2 Feature-Based Transfer

For the inter-domain transfer learning problems, the high-level feature repre-
sentations, including state spaces, actions spaces and feature functions, may be
heterogeneous in nature across MDPs. Such heterogeneity greatly undermines
the use of existing feature-based transfer methods. In this section, we survey the
action-based and feature function-based transfer methods that are generalized to
the inter-domain problem.
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Action-Based Transfer
In the option-based transfer, the agent discovers the options from the source

MDPs and augments the target action space. The source options, however, are
defined on the source state and action spaces. Therefore, the discovered options
cannot be directly transferred to the target domain. Hence, the concept of options
is generalized to abstract concepts to facilitate the reuse in the target domain.

Konidaris and Barto (2007) propose portable options that are transferable across
MDPs with different state spaces but the same action space. Konidaris and Barto
(2007) decompose the state space into the problem space and agent space. The
problem space describes problem-specific properties and the agent space mod-
els the agent-specific characteristics that are invariant across learning problems.
By taking the robot in Figure 8.4 as an example, the problem state records its loca-
tion within the environment and the agent state includes the internal sensor and
actuator of the robot. Clearly, when facing different environments, the agent state
remains the same. Konidaris and Barto (2007) first discover the portable options
within the fixed agent space and then augment the shared action space with the
portable options.

Konidaris and Barto (2007), however, heavily rely on the manual decomposi-
tion of the state space. Topin et al. (2015) propose the portable option discovery
(POD), which is tailored for the object-oriented MDP and automatically decides
the mapping between source and target MDPs. First, POD creates an abstract do-
main with the abstract state space S′s and decides the mapping χs : Ss → S′. The
policy of an option can be mapped to the abstract states accordingly. Then, in the
target MDP, POD searches for another mapping from the abstract domain to the
target MDP, that is, χt : S′ → St . In a word, POD translates the source options to
the target MDP via an abstract domain. Furthermore, POD automatically decides
the mappings χs and χt with the highest proportion of the state-action pairs that
are preserved between the abstract policy and the source/target policy.

Feature Function-Based Transfer
The feature function-based transfer via the proto-value functions is discussed

in the last section. The proto-value functions are generalized to the MDPs with
different-sized state spaces. Intuitively, the constructed state graph expands while
the patterns remain. Ferguson and Mahadevan (2006) discuss the usage of the
Nyström method to reuse eigenvectors of the source graph Laplacian for the target
MDP.

8.4.3 Model-Based Transfer

To reuse part of the parameters in the inter-domain transfer learning problem,
the source and target parameter spaces are required to be aligned. Therefore, in
this section, we discuss two kinds of algorithms according to whether the align-
ment mapping is given or learned.
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Given a manually designed mapping, a general approach is to initialize the tar-
get MDP with the shared parameters and to continue fine-tuning the policy in the
target MDP. Taylor and Stone (2005) and Taylor et al. (2005) prove the feasibility
of the handcrafted mapping and the effectiveness of the value function transfer in
different applications. Taylor et al. (2007) also transform and transfer the source
policy to the target MDP via the given mapping.

Taylor and Stone (2007) propose the extraction of an abstract decision list that
summarizes the source policy. The source decision list can guide the learning pro-
cess in the target MDP. Based on the knowledge about qualitative characteristics
of the source domain, Taylor and Stone (2007) also learn a translator for the deci-
sion list. Taylor et al. (2008b) propose the modeling approximate state transitions
by exploiting regression (MASTER) algorithm, which is among the first such algo-
rithms to automatically learn the inter-task mapping. MASTER relies on the esti-
mation of the target-domain transition function from few experiences. For each
possible mapping, MASTER transforms the source experiences accordingly and
measures its compliance with the estimated target transition function and then it
automatically decides the inter-task mapping with the highest compliance.

Deep reinforcement learning proves to be effective in solving the inter-domain
transfer learning problems such as game playing (Devin et al., 2017). For instance,
the policy distillation (Rusu et al., 2015) successfully plays ten Atari games with
different action spaces. The policy distillation method relies on the shared con-
volutional filters to extract the abstract representation from raw images and the
algorithm further learns domain-specific fully connected layers to adapt to differ-
ent action spaces.
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Multi-task Learning

9.1 Introduction

As discussed in Chapter 1, similar to transfer learning, multi-task learning (Caru-
ana, 1997) also aims to generalize knowledge across different tasks. Different from
transfer learning, which assumes some source domain(s) are available as inputs
for solving a learning problem in a target domain, in multi-task learning, there are
no source domains, but multiple target domains, each of which has insufficient la-
beled data to train a classifier independently. The goal of multi-task learning is to
jointly learn the multiple target tasks by exploiting useful information from related
learning tasks to help alleviate the data sparsity problem. In this sense, multi-task
learning exhibits similar characteristics to transfer learning. However, multi-task
learning is different from transfer learning in terms of the objective. That is, multi-
task learning aims to improve the performance of all the tasks at hand, while
transfer learning cares for the performance of the target task but not source tasks.
Hence, the roles of different tasks in multi-task learning are equally important but,
in transfer learning, the target task is more important than source tasks. From the
perspective of the flow of knowledge transfer, in transfer learning there are flows
targeting at the target task from source task(s) while multi-task learning has flows
between any pair of tasks, which is illustrated in Figure 9.1. So multi-task learning
and transfer learning are two different settings in terms of knowledge transfer. In
terms of learning algorithms, many multi-task learning algorithms can be revised
for transfer learning problems. Moreover, in the works by Xue et al. (2007) and
Zhang and Yeung (2010a, 2014), a new multi-task learning setting called asymmet-
ric multi-task learning is investigated and this setting considers a different sce-
nario where a new task is arrived when multiple tasks have been learned jointly via
some MTL method. This setting can be viewed as a hybrid of multi-task learning
and transfer learning where multi-task learning happens for old tasks and transfer
learning leverages knowledge from the old tasks to the new task.

Based on an assumption that all the tasks or some of them are related, learn-
ing multiple tasks together is empirically and theoretically found to have better
performance than learning them individually. According to different natures of
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Figure 9.1 An illustration for the difference between transfer learning and multi-
task learning from the perspective of the flow of knowledge transfer

learning tasks, multi-task learning can be categorized into multi-task supervised
learning, multi-task unsupervised learning, multi-task semi-supervised learning,
multi-task active learning, multi-task reinforcement learning, multi-task online
learning and multi-task multi-view learning. Each task in the multi-task super-
vised learning setting is to make prediction on labels of unseen data based on a
training data set that consists of training data instances as well as their labels. Each
task in multi-task unsupervised learning is to discover useful patterns in a train-
ing data set that consists of data instances only. Similar to multi-task supervised
learning, each task in multi-task semi-supervised learning is to make predictions
on unseen data but based on a training set consisting of not only labeled data, but
also unlabeled data. In multi-task active learning, each task exploits useful infor-
mation in unlabeled data similar to multi-task semi-supervised learning but by
choosing unlabeled data instances to query an oracle about their labels. Each task
in multi-task reinforcement learning aims to maximize the cumulative reward by
choosing actions. In multi-task online learning, each task is to process sequential
data. Each task in multi-task, multi-view learning exploits multi-view data.

In this chapter, we overview different aspects of multi-task learning. First we
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present the definition of multi-task learning and then introduce different settings
in multi-task learning, that is, multi-task supervised learning, multi-task unsu-
pervised learning, multi-task semi-supervised learning, multi-task active learn-
ing, multi-task reinforcement learning, multi-task online learning and multi-task
multi-view learning. For each setting, we introduce representative models. More-
over, we also present parallel and distributed multi-task models where there are a
large number of tasks or data in different tasks located in different machines. For
a more detailed survey on multi-task learning, please refer to the work by Zhang
and Yang (2017b).

9.2 The Definition

At first, we give a definition for multi-task learning.

Definition 9.1 (multi-task learning) Given m learning tasks {Ti }m
i=1 where all the

tasks or a subset of them are related but not identical, multi-task learning aims to
help improve the learning of a model for Ti by using the knowledge contained in
the m tasks.

According to the definition of multi-task learning, there are two basic elements.
The first element is the task relatedness. The task relatedness is defined according
to our understanding about how all the tasks are related and it can be used to
design multi-task models. The second element is the nature of the learning task. In
machine learning, learning tasks can have multiple choices, including supervised
learning tasks such as classification and regression tasks, unsupervised learning
tasks such as data clustering tasks, semi-supervised learning tasks, active learning
tasks, reinforcement learning tasks, online learning tasks and multi-view learning
tasks. Hence different learning tasks correspond to different settings in multi-task
learning. In the following sections, we will introduce different settings in multi-
task learning as well as representative models.

9.3 Multi-task Supervised Learning

In multi-task supervised learning, each task is a supervised learning task to
learn the functional mapping from data instances to labels. Mathematically, given
m supervised learning tasks {Ti }m

i=1, each task has a training data set
Di = {(xi

j , yi
j )}ni

j=1 consisting of ni pairs of data instances and labels, where xi
j ∈Rd

and yi
j is the label of xi

j . The goal of multi-task supervised learning is to learn m

functions { fi (x)}m
i=1 based on the training data sets of the m tasks such that fi (xi

j )

can approximate yi
j well. After the learning process, fi (·) will be used to make pre-

diction on the labels of new data instances in the i -th task.
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As discussed before, the design of multi-task supervised learning models de-
pends on the understanding on task relatedness. Specifically, to reflect the task re-
latedness, there are three forms, that is, feature, model and instance, which corre-
spond to three categories in multi-task supervised learning, that is, feature-based
multi-task supervised learning, model-based multi-task supervised learning and
instance-based multi-task supervised learning. The three classes exhibit different
characteristics. For example, feature-based multi-task supervised learning aims
to learn feature representations shared by all the tasks, while model-based multi-
task supervised learning utilizes learning models in all the tasks as a bridge to
learn the task relatedness. Different from them, instance-based multi-task super-
vised learning aggregates data instances in all the tasks to learn a model for each
task via some ways such as instance weighting. In the following, representative
models in the three categories are introduced.

9.3.1 Feature-Based Multi-task Supervised Learning

Feature-based multi-task supervised learning models assume that a feature rep-
resentation, which is constructed based on the original feature representation, is
shared by all the tasks. Based on different ways of the construction of the shared
feature representation, feature-based multi-task supervised learning models can
be categorized into three approaches, that is, feature transformation approach,
feature selection approach and deep learning approach. Specifically, the feature
transformation approach linearly or nonlinearly transforms the original feature
representation to construct the shared feature representation, while the feature
selection approach learns to select a subset of the original features to be the shared
feature representation. As an extension of the feature transformation approach,
the deep learning approach learns the shared feature representation via deep neu-
ral networks.

Feature Transformation Approach
In the feature transformation approach, the original feature representation is

linearly or nonlinearly transformed to construct the shared feature representa-
tion. The multi-layer feedforward neural network (Caruana, 1997), with an exam-
ple shown in Figure 9.2, is a representative model. In this example, the multi-layer
feedforward neural network shown in Figure 9.2 has an input layer, a hidden layer
and an output layer. By using the input layer to receive data instances from the m
tasks, the multi-layer feedforward neural network treats the output of the hidden
layer as the feature representation shared by all the tasks and the output of the
output layer as the prediction on the corresponding data instance.

Formulated under the regularization framework, the multi-task feature learn-
ing (MTFL) method (Argyriou et al., 2006, 2008) and the multi-task sparse coding
(MTSC) method (Maurer et al., 2013) linearly transform data instances as
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Figure 9.2 A multi-task feedforward neural network with one input layer, hidden
layer and output layer

x̂i
j = UT xi

j to construct the share feature representation and then learn a linear

function, which is defined as fi (xi
j )= (ai )T x̂i

j +bi , on the shared feature represen-
tation. The MTFL method formulates its objective function as

min
A,U,b

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , (ai )T UT xi

j +bi )+λ‖A‖2
2,1 s.t. UUT = I, (9.1)

where l (·, ·) is a loss function, b = (b1, . . . ,bm)T and A = (a1, . . . ,am). It is easy to
see that in (9.1) U ∈ Rd×d is orthogonal. Different from the MTFL method, the
objective function of the MTSC method is formulated as

min
A,U,b

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , (ai )T UT xi

j +bi )

s.t. ‖ai‖1 ≤λ ∀i ∈ [m], ‖u j ‖2 ≤ 1 ∀ j ∈ [D], (9.2)

where U has a larger number of columns than that of rows and A is assumed to be
sparse based on the �1 constraint.

Feature Selection Approach
The feature selection approach learns to select a subset of original features as

the shared feature representation for all the tasks. Overall, there are mainly two
ways to perform the multi-task feature selection. The first way is to regularize the
parameter matrix W = (w1, . . . ,wm) to make it row-sparse, while another one is to
place probabilistic priors on W to make it row-sparse.

Among all the regularized techniques for multi-task feature selection, the most
widely used technique is the �p,q regularization with the objective function for-
mulated as

min
W,b

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , (wi )T xi

j +bi )+λ‖W‖p,q .

The �p,q regularization makes W row-sparse and hence only useful features for
all the tasks will be preserved. The �p,q regularization has some instantiations,
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for example, the �2,1 regularization (Obozinski et al., 2006, 2010) and the �∞,1

regularization (Liu et al., 2009b). To obtain a more compact subset of useful fea-
tures for all the tasks, Gong et al. (2013) propose a capped-�p,1 penalty, that is,∑d

i=1 min(‖wi‖p ,θ), which will reduce to the �p,1 regularization when θ is large
enough. Besides the �p,q regularization, Lozano and Swirszcz (2012) propose a
multi-level Lasso to decompose w j i , the ( j , i )-th entry in W, as w j i = θ j ŵ j i , where
w j i will be 0 when either θ j or ŵ j i becomes 0. So, based on the �1 regularization
on θ j and ŵ j i , the objective function of multi-level Lasso is formulated as

min
θθθ,Ŵ,b

m∑
i=1

1

ni

ni∑
k=1

l (yi
k , (wi )T xi

k +bi )+λ1‖θθθ‖1+λ2‖Ŵ‖1

s.t. w j i = θ j ŵ j i ,θ j ≥ 0. (9.3)

It is easy to see that a zero θ j will filter out the j -th feature for all the tasks but
a zero ŵ j i can do that for the i -th task only, making their impact different. Then
the multi-level Lasso is extended in the works by Wang et al. (2014) and Han et al.
(2014) to more general settings.

In the second way, Zhang et al. (2010c) give a probabilistic interpretation for
�p,1-regularized multi-task feature selection methods that the �p,1 regularizer is
corresponding to a generalized normal distribution prior:

w j i ∼GN (0,ρ j , p).

Then Zhang et al. (2010c) extend this prior to the matrix-variate generalized
normal prior to learn pairwise relations among tasks. Different from that by Zhang
et al. (2010c), the horseshoe prior is adopted by the works by Hernández-Lobato
and Hernández-Lobato (2013) and Hernández-Lobato et al. (2015) to conduct
multi-task feature selection. The difference between the works of Hernández-
Lobato’s (2013) and that of Hernández-Lobato et al. (2015) is that the former gen-
eralizes the horseshoe prior to learn feature covariance, while the latter directly
uses the horseshoe prior.

Deep Learning Approach
Similar to the multi-layer feedforward neural network in the feature transfor-

mation approach, the deep learning approach relies on advanced neural networks
such as convolutional neural networks and recurrent neural networks. However,
neural networks used in the deep learning approach have a large number of hid-
den layers, which are different from those in the feature transformation approach
with two or three layers. The output of one hidden layer in most deep learning
models (Zhang et al., 2014; Li et al., 2015; Liu et al., 2015a; Mrkšic et al., 2015;
Zhang et al., 2015a) is treated as the shared feature representation, which is sim-
ilar to the multi-layer feedforward neural network in the feature transformation
approach. One exception is the cross-stitch network (Misra et al., 2016). Specifi-
cally, by denoting by x A

i , j and xB
i , j hidden features in the j -th unit of the i -th hidden

layer of two deep neural networks A and B for two tasks, the cross-stitch operation
is defined as
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x̃ A

i , j

x̃B
i , j

)
=
(

α11 α12

α21 α22

)(
x A

i , j

xB
i , j

)
,

where x̃ A
i , j and x̃B

i , j denotes new hidden features by jointly learning the two tasks.

Matrix ααα =
(

α11 α12

α21 α22

)
can be viewed as a quantitative measure for the task

relatedness of the two tasks based on hidden features, making this method more
flexible than only sharing hidden layers for multiple tasks.

9.3.2 Model-Based Multi-task Supervised Learning

Model-based multi-task supervised learning relates the learning of different
tasks via model parameters. Based on different ways to relate model parameters of
different tasks, model-based multi-task supervised learning models can be clas-
sified into four approaches, that is, low-rank approach, task clustering approach,
task relation learning approach and multi-level approach. The low-rank approach
assumes the parameter matrix W to be low rank since similar tasks have simi-
lar model parameters. The task clustering approach is to group tasks into several
clusters each of which will have similar tasks with similar model parameters. The
task relation learning approach aims to learn the pairwise task relations from data.
The multi-level approach decomposes the parameter matrix into two or more
component matrices to model complex relations among tasks. In the following
sections, we will introduce each approach in details.

Low-Rank Approach
It is intuitive that similar tasks usually have similar model parameters and this

intuition will lead to a low-rank W. With an assumption that model parameters of
the m tasks share a low-rank subspace, Ando and Zhang (2005) propose a
parametrization of wi as wi = ui +ΘT vi , where Θ ∈Rh×d (h < d) denotes the low-
rank subspace shared by all the tasks and ui is a task-specific parameter vector.
Then, by placing an orthonormal constraint on Θ to remove the redundancy, the
corresponding objective function is formulated as

min
U,V,Θ,b

m∑
i=1

1

ni

ni∑
j=1

l

(
yi

j ,
(
ui +ΘT vi

)T
xi

j +bi

)
+λ‖U‖2

F

s.t. ΘΘT = I. (9.4)

Chen et al. (2009) generalize this model by adding a squared Frobenius regular-
ization on W, leading to an extended model with a convex objective function after
some relaxation.

According to optimization theory, using the trace norm of a matrix, denoted by
‖W‖S(1), as a regularizer can lead to a low-rank matrix and hence the trace norm
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regularization (Pong et al., 2010) is widely used in multi-task learning, with the
objective function typically formulated as

min
W,b

m∑
i=1

1

ni

ni∑
j=1

l
(

yi
j , (wi )T xi

j +bi

)
+λ‖W‖S(1). (9.5)

Han and Zhang (2016) propose a capped trace regularizer, which is defined as∑min(m,d)
i=1 min(μi (W),θ) with θ as a predefined hyperparameter. Minimizing the

capped trace regularizer will only penalize small singular values of W, leading to a
matrix with a lower rank than the trace norm regularization.

Task Clustering Approach
Inspired by data clustering methods, the task clustering approach aims to group

tasks into several clusters where all the tasks in a cluster are similar to each other
in terms of model parameters.

Thrun and O’Sullivan (1996) propose the first task clustering algorithm, which
has two stages. In the first stage, the proposed method clusters tasks in terms of
model parameters learned separately under the single-task setting and after iden-
tifying the task clusters, the second stage is to aggregate the training data of all the
tasks in a task cluster to learn a model for those tasks. Since this two-stage method
to decouple the task clustering and the learning of model parameters may be sub-
optimal to the performance, follow-up works are willing to learn task clusters and
model parameters simultaneously.

Bakker and Heskes (2003) propose a multi-task Bayesian neural network with a
similar structure to the multi-layer neural network shown in Figure 9.2 to group
tasks based on the Gaussian mixture model in terms of weights connecting the last
hidden layer and the output layer. Xue et al. (2007) apply the Dirichlet process, a
Bayesian model that is widely used in data clustering, to group tasks in terms of
model parameters {wi }m

i=1.
Different from the models (Bakker and Heskes, 2003) and (Xue et al., 2007),

which rely on Bayesian models, several regularized methods (Jacob et al., 2008;
Kang et al., 2011; Kumar and Daumé III, 2012; Barzilai and Crammer, 2015; Han
and Zhang, 2015a) are proposed to group tasks. For example, built on the k-means
clustering method, a regularizer is proposed by Jacob et al. (2008) to take between-
cluster and within-cluster variances into consideration to help learn task clusters
and the corresponding objective function is formulated as

min
W,b,Σ

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , (wi )T xi

j +bi )+λ1tr(WUWT )+ tr(WΠΣ−1ΠWT )

s.t. αI�Σ�βI, tr(Σ)= γ, (9.6)

where Π denotes an m ×m centering matrix, A � B means that B−A is positive
semidefinite and α,β and γ are three hyperparameters. In (9.6), Σ encodes the
information about task clusters and hence after solving (9.6), the task clusters can
be identified based on the optimal Σ.
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Kang et al. (2011) extend the MTFL method to the multiple-cluster case, in
which the learning model of tasks in each cluster is the MTFL method, with the
objective function formulated as

min
W,b,{Qi }

m∑
i=1

1

ni

ni∑
j=1

l
(

yi
j , (wi )T xi

j +bi

)
+λ

r∑
i=1

‖WQi‖2
S(1)

s.t. Qi ∈ {0,1}m×m ∀i ∈ [r ],
r∑

i=1
Qi = I,

where the 0/1 diagonal matrix Qi is responsible of identifying the i -th cluster.
To automatically determine the number of clusters, Han and Zhang (2015a)

propose a regularized objective function as

min
W,b

m∑
i=1

1

ni

ni∑
j=1

l

(
yi

j ,
(
wi
)T

xi
j +bi

)
+λ

∑
j>i

‖wi −w j ‖2, (9.7)

where the fused-Lasso-style regularizer in (9.7) enforces model parameters of each
pair of tasks to be fused. After solving (9.7), columns in W are compared to identify
the structure of task clusters and determine the number of task clusters.

Kumar and Daumé III (2012) and Barzilai and Crammer (2015) propose a de-
composition of W as W = LS, where L contains basis parameter vectors of task
clusters in its columns and S consists of combination coefficients. The objective
functions in both methods can be unified as

min
L,S,b

m∑
i=1

1

ni

ni∑
j=1

l
(

yi
j , (si )T LT xi

j +bi

)
+λ1h(S)+λ2‖L‖2

F , (9.8)

where L is regularized by the squared Frobenius norm regularization but S is pe-
nalized by different h(·)s in those two methods. Specifically, to identify overlap-
ping task clusters where each task can belong to multiple clusters, Kumar and
Daumé III (2012) define h(S) as h(S) = ‖S‖1, while Barzilai and Crammer (2015)

define h(S) as h(S) =
{

0 if S ∈ {0,1}r×m , ‖si‖2 = 1
+∞ otherwise

to assign one task to a

task cluster, where r denotes the number of clusters and si denotes the i -th col-
umn in S.

Task Relation Learning Approach
The task relation learning approach uses task relations to quantitatively mea-

sure the task relatedness with examples as task similarities and task covariances.
Earlier studies in this approach define task relations via model assumptions

(Evgeniou and Pontil, 2004; Parameswaran and Weinberger, 2010) or assume that
they are given by a priori information (Evgeniou et al., 2005; Kato et al., 2007,
2010a; Görnitz et al., 2011). However, model assumptions are not so easy to be
verified for real world problems and the a priori information is unavailable for
most problems, hence, those two ways are not so practical. The state-of-the-art
way is to learn task relations from data and this is the focus of this section.
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Bonilla et al. (2007) propose a multi-task Gaussian process to define a prior on
f= ( f 1

1 , . . . , f m
nm

)T , where f i
j denotes the functional value for xi

j , as

f∼ N (0,Σ).

The entry in Σ corresponding to the covariance between between f i
j and f p

q is
defined as

σ( f i
j , f p

q )=ωi p k(xi
j ,xp

q ),

where k(·, ·) defines a kernel function and ωi p denotes the covariance between
tasks Ti and Tp . So Ω, whose (i , p)-th entry is ωi p , defines task relations in the
form of task covariance. If the Gaussian likelihood is defined on labels based on
f, the marginal likelihood, which has a closed form, can be used to learn Ω. To
improve the point estimation to reduce the risk of overfitting, Zhang and Yeung
(2010b) propose a multi-task generalized t process by assigning an inverse-
Wishart prior on Ω and adopting a generalized t likelihood.

Zhang and Yeung (2010a, 2014) propose a multi-task relationship learning
(MTRL) model by assinging a matrix-variate normal distribution on W as

W∼ M N (0,I,Ω),

where M N (M,A,B) denotes a matrix-variate normal distribution with M, A and B
as the mean, row covariance and column covariance. As a modified maximum a
posterior solution, the objective function of the MTRL model is formulated as

min
W,b,Ω

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , (wi )T xi

j +bi )+λ1‖W‖2
F +λ2tr(WΩ−1WT )

s.t. Ω� 0, tr(Ω)≤ 1, (9.9)

where Ω, the task covariance matrix, encodes the task relations among tasks. The
MTRL method has been extended to multi-task boosting (Zhang and Yeung, 2012)
and multi-label learning (Zhang and Yeung, 2013b), and generalized to learn sparse
task relations in the work by Zhang and Yang (2017a). Zhang and Schneider (2010)
propose a similar model to the MTRL method by placing a prior on W as W ∼
M N (0,Ω1,Ω2), and the proposed method assumes that the inverse matrices of
Ω1 and Ω2 are sparse. As the prior used in the MTRL method implies that WT W
follows a Wishart distribution W (0,Ω), Zhang and Yeung (2013a) generalize the
MTRL method to propose a new prior to learn high-order task relations as
(WT W)t ∼ W (0,Ω), where t is a positive integer. Lee et al. (2016) propose a reg-
ularizer similar to that of the MTRL method by defining a parametric form of Ω as
Ω−1 = (Im −A)(Im −A)T , where A denotes asymmetric task relations proposed in
(Lee et al., 2016).

Different from these methods that focus on global learning models, Zhang (2013)
extends local learning methods such as the k-nearest-neighbor (kNN) classifier to
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the multi-task setting and formulates the objective function as

min
Σ

m∑
i=1

1

ni

ni∑
j=1

l (yi
j , f (xi

j ))+ λ1

4
‖Σ−ΣT ‖2

F +
λ2

2
‖Σ‖2

F

s.t. σi i ≥ 0 ∀i ∈ [m],−σi i ≤σi j ≤σi i ∀i �= j , (9.10)

where Nk (i , j ) denotes the set of task and instance indices for kNNs of xi
j , s(·, ·) de-

notes the similarity between instances, σi p defines the similarity of task Tp to Ti ,
and the learning function for the proposed multi-task kNN classifer is defined as

f (xi
j )= ∑

(p,q)∈Nk (i , j )
σi p s(xi

j ,xp
q )y p

q .

The regularizer in (9.10) is to enforce Σ, which is the task similarity matrix to en-
code task relations, to be a symmetric matrix.

Multi-level Approach
The multi-level approach assumes that the parameter matrix W can be decom-

posed as h component matrices {Wi }h
i=1, that is, W =∑h

i=1 Wi , where h, the num-
ber of levels, is equal to or larger than 2. The objective functions of different mod-
els in this approach can be unified as

min
W∈CW ,b

m∑
i=1

1

ni

ni∑
j=1

l
(

yi
j , (wi )T xi

j +bi

)
+

h∑
i=1

gi (Wi ) s.t. W=
h∑

i=1
Wi , (9.11)

where gi (Wi ) defines the regularizer for the i -th component matrices, and CW

defines a set of constraints on {Wi }h
i=1. According to (9.11), the regularizers of dif-

ferent component matrices are decomposable and regularizers for different com-
ponent matrices can be different.

Seven methods in this approach are introduced, that is, those by Jalali et al.
(2010), Chen et al. (2010a, 2011), Gong et al. (2012b), Zweig and Weinshall (2013)
and Han and Zhang (2015a, 2015b), and the corresponding choices of h, {gi (·)}
and CW are shown in Table 9.1. According to Table 9.1, the first four methods
have two component matrices while the last three ones can have two or more
component matrices. The choice of {gi (·)} varies among different methods. For
example, based on the �∞,1 and �2,1 norms, the g1(·)s in the works by Jalali et al.
(2010) and Gong et al. (2012b) enforce W1 to be row-sparse. Different from them,
the g1(·)’s proposed by Chen et al. (2010a, 2011) make W1 low rank by treating the
trace norm as the the regularizer and constraint, respectively. For W2, the g2(·)’s
proposed in the works by Jalali et al. (2010) and Chen et al. (2010a) enforce it to be
sparse, while in Chen et al. (2011) and Gong et al. (2012b) they are enforced to be
column-sparse to capture outlier tasks. Zweig and Weinshall (2013) assume that
each component matrix is jointly sparse and row-sparse in different proportions
related to the number of level. In the work by Han and Zhang (2015a), a multi-level
task clustering method is to cluster all the tasks at each level via a fused-Lasso-
style regularizer, which is operated on vectors instead of scalars, as in the fused
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Lasso. By adopting the same regularizer as that in the works by Han and Zhang
(2015a), Han and Zhang (2015b) aim to learn the hierarchical structure among
tasks based on a sequential constraint SW defined in Table 9.1.

Table 9.1 Choices of gi (·) for different methods in the multi-level approach, where
{λ1,λ2,λ,η} are regularization parameters, w j

i denotes the j-th column in Wi , �
denotes an empty set and SW = {W

∣∣|w j
i−1−wk

i−1| ≥ |w j
i −wk

i | ∀i ≥ 2, ∀k > j }

Reference h {gi ()} CW

Jalali et al. (2010) 2
g1(W1)=λ1‖W1‖∞,1 �
g2(W2)=λ2‖W2‖1

Chen et al. (2010a) 2
g1(W1)=

{
0, if ‖W1‖S(1) ≤λ1
+∞, otherwise. �

g2(W2)=λ2‖W2‖1

Chen et al. (2011) 2
g1(W1)=λ1‖W1‖S(1) �
g2(W2)=λ2‖WT

2 ‖2,1

Gong et al. (2012b) 2
g1(W1)=λ1‖W1‖2,1 �
g2(W2)=λ2‖WT

2 ‖2,1

Zweig and Weinshall (2013) ≥2 gi (Wi )= λ(h−i )
h−1 ‖Wi ‖2,1+ λ(i−1)

h−1 ‖Wi ‖1 �
Han and Zhang (2015a) ≥2 gi (Wi )= λ

ηi−1

∑
k> j ‖w

j
i −wk

i ‖2 �
Han and Zhang (2015b) ≥2 gi (Wi )= λ

ηi−1

∑
k> j ‖w

j
i −wk

i ‖2 SW

9.3.3 Instance-Based Multi-task Supervised Learning

To the best of our knowledge, there are few works in this category. A represen-
tative work is the multi-task distribution matching method proposed by Bickel
et al. (2008). This work first estimates the ratio between the probability that each
data instance comes from its own task and the probability that the same data in-
stance is from a mixture of all the tasks. After learning such ratios, this work define
instance weights based on these ratios and then learns a model for each task by
aggregating weighted instances from all the tasks.

9.4 Multi-task Unsupervised Learning

The training set Di of the i -th task in multi-task unsupervised learning, whose
objective is to exploit the useful information contained in Di , consists of ni data
instances {xi

j }. This setting is different from multi-task supervised learning in
which each data instance is assigned with a label. Tough unsupervised learning
tasks contain diverse tasks, multi-task unsupervised learning mainly focuses on
multi-task clustering, which is to do clustering on multiple data sets in all the tasks
by leveraging useful information among them.
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There are some models for multi-task unsupervised learning. For example,
Zhang (2015a) proposes two multi-task clustering methods, which extend the
MTFL model (Argyriou et al., 2006) and the MTRL method (Zhang and Yeung,
2010a) to clustering problems by treating labels as unknown cluster indicators to
be learned from data.

9.5 Multi-task Semi-supervised Learning

Usually labeling data requires laborious efforts and, hence, in many applica-
tions, labeled data are very limited. However, in many situations, there are abun-
dant unlabeled data. So semi-supervised learning aims to improve the general-
ization performance with the help of unlabeled data. The objective of multi-task
semi-supervised learning is the same as semi-supervised learning by leveraging
knowledge among multiple semi-supervised learning tasks.

Similar to the supervised learning setting where each task is for either classifica-
tion or regression, multi-task semi-supervised learning has two settings, including
multi-task semi-supervised classification and multi-task semi-supervised regres-
sion. There are some models for both settings. For example, Liu et al. (2007, 2009c)
propose a multi-task semi-supervised classification model that uses the random
walk method to make use of unlabeled data in each task and groups tasks into
several clusters based on a relaxed Dirichlet process. For semi-supervised multi-
task regression, Zhang and Yeung (2009) propose a method based on Gaussian
processes to utilize unlabeled data to define the kernel function in the Gaussian
process for each task, while different tasks share a prior on kernel parameters in
different tasks.

9.6 Multi-task Active Learning

Similar to multi-task semi-supervised learning, each task in multi-task active
learning has a training data set consisting of a small number of labeled data and a
large number of unlabeled data. Different from multi-task semi-supervised learn-
ing, each task in multi-task active learning aims to choose informative unlabeled
data to acquire their labels by querying an oracle. Therefore, in multi-task active
learning, the research focus is to design the criterion to choose informative unla-
beled data.

There are some models for multi-task active learning. For example, Reichart
et al. (2008) propose two criteria to make selected unlabeled instances informative
to all the tasks. Acharya et al. (2014) adopt the expected error reduction as the se-
lection criterion. Fang and Tao (2015) design a selection strategy to make a trade-
off between a confidence bound based on multi-armed bandits and the learning
risk of a low-rank multi-task model based on the trace norm regularization.
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9.7 Multi-task Reinforcement Learning

Reinforcement learning aims to learn how to take actions to maximize the cu-
mulative reward in an environment. It has proved to be effective in many applica-
tions such as game playing and robotics. Given similar environments in different
reinforcement learning tasks, it has been found that learning multiple reinforce-
ment learning tasks together can have better performance than learning them in-
dividually, which leads to multi-task reinforcement learning.

There are some models for multi-task reinforcement learning. For example,
Wilson et al. (2007) model each reinforcement learning task by a Markov deci-
sion process (MDP), while MDPs in all the tasks are clustered via a hierarchical
Bayesian infinite mixture model. Li et al. (2009c) use a Dirichlet process to cluster
tasks, each of which is learned via a regionalized policy. Lazaric and Ghavamzadeh
(2010) use a Gaussian process temporal-difference value function model for each
task and adopt a hierarchical Bayesian model to relate value functions in differ-
ent tasks. By assuming that value functions in all the tasks share sparse param-
eters, Calandriello et al. (2014) learn all the value functions together by adapting
the multi-task feature selection method with the �2,1 regularization (Obozinski
et al., 2006) and the MTFL method (Argyriou et al., 2006), respectively. Parisotto
et al. (2016) propose an actor-mimic method to learn policy networks for mul-
tiple tasks by combining deep reinforcement learning and model compression
techniques.

9.8 Multi-task Online Learning

When training data in multiple tasks arrive sequentially, multi-task online learn-
ing can handle them, while conventional multi-task models cannot.

There are some models for multi-task online learning. For example, by assum-
ing that different tasks share a common goal, Dekel et al. (2006, 2007) propose the
use of absolute norms as a global loss function, which combines the loss of each
task together, to measure the relations among tasks. Lugosi et al. (2009) enforce
constraints on actions for all the tasks to model task relations. Cavallanti et al.
(2010) propose a perceptron-based multi-task online learning model by measur-
ing task relations based on the geometric structure shared among tasks. Pillonetto
et al. (2010) propose a multi-task Gaussian process with a Bayesian online algo-
rithm to share kernel parameters among tasks. Saha et al. (2011) propose an online
algorithm, which updates model parameters and task covariance together, for the
MTRL method (Zhang and Yeung, 2010a).
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9.9 Multi-task Multi-view Learning

In some applications, each data point can be represented by different feature
representations, each of which is called view, and multi-view learning is able to
handle such data with multiple views. As an extension of multi-view learning,
multi-task, multi-view learning aims to leverage the knowledge among multiple
multi-view learning tasks to improve the performance of each task.

There are some models for multi-task multi-view learning. For example, He and
Lawrence (2011) first propose a multi-task multi-view classifier, which considers
the consistency among views in each task and identifies the task relatedness based
on common views shared by tasks. Zhang and Huan (2012) expect to achieve con-
sensus on unlabeled data among views in each task , while the task relations can
be either given as a priori information (Evgeniou et al., 2005) or learned as did in
the MTRL method (Zhang and Yeung, 2010a).

9.10 Parallel and Distributed Multi-task Learning

When the number of tasks is large, the computational complexity of multi-task
models may be high. With the use of powerful multi-CPU or multi-GPU facili-
ties, it is possible and necessary to devise parallel multi-task algorithms to accel-
erate the learning process. For instance, Zhang (2015c) proposes the first parallel
multi-task method to solve a widely used formulation, which is a subproblem of
the MTRL model (Zhang and Yeung, 2010a) and many other models in the task
relation learning approach in multi-task learning. The core idea of this parallel
method is to utilize the fast iterative shrinkage thresholding algorithm to design a
surrogate function, which is decomposable with respect to all the tasks and also
parallelized. Zhang (2015c) studies the use of three loss functions, including the
hinge, ε-insensitive and square losses, for both multi-task classification and re-
gression models.

In some situation, training data of different tasks may locate in different ma-
chines, making the design of distributed multi-task algorithms necessary. Wang
et al. (2016a) propose a distributed multi-task algorithm based on a debiased Lasso
model to achieve efficient communications among machines, each of which pos-
sesses the training data of one task.
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Transfer Learning Theory

10.1 Introduction

Besides investigating how to build models to transfer specific knowledge to
solve target learning tasks, there have been theoretical studies on transfer learn-
ing. In transfer learning, we aim to improve the generalization performance, which
measures the performance of a transfer learning model on unseen data generated
from the underlying data distribution, of one or more tasks. However, since the
underlying data distribution is unknown and hard to estimate accurately, the gen-
eralization performance is difficult to analyze and, in learning theory, generaliza-
tion bounds are derived instead to upper-bound the generalization performance.
The main focus of theoretical analyses in transfer learning is also to derive gener-
alization bounds, which are upper-bounds of the generalization performance of
transfer learning models on one or more tasks. Generalization bounds can bring
much insight for transfer learning models, for example, sample complexity that
can tell us how many samples are required to guarantee that the generalization
performance is close to the training loss. So it is important to analyze the general-
ization bound in transfer learning.

In learning theory, there are mainly six mathematical tools to help derive gener-
alization bounds, including Vapnik-Chervonenkis (VC) dimension (Vapnik, 1995),
covering number (Zhang, 2002), algorithmic stability (Bousquet and Elisseeff,
2002), Rademacher/Gaussian complexity (Bartlett and Mendelson, 2002),
probably approximately correct (PAC)-Bayesian theorem (McAllester, 1999) and
Kolmogorov complexity. These tools are used to upper-bound the capacities of
learning models. The VC dimension is defined as the cardinality of the largest set
of points that a learning algorithm can shatter. The covering number is defined as
the number of spherical balls with a given size that are needed to completely cover
a given space. The algorithmic stability measures how a machine learning algo-
rithm is perturbed by small changes to its training set. The Rademacher/Gaussian
complexity measures the richness of a class of real-valued learning functions with
respect to a probability distribution. The PAC-Bayesian theorem establishes in-
equalities to bound the Kullback–Leibler divergence between the prior and
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posterior distributions in Bayesian learning. The Kolmogorov complexity of a type
of data such as texts is the shortest length of computer programs, which can pro-
duce the data as an output, in a predetermined programming language and it can
be viewed as a measure of resources needed to specify the data. Among these
tools, VC dimension is usually combined with a covering number to derive the
generalization bound, while others can independently do the derivation.

Similarly, these tools are also used to analyze transfer learning models. In the
following sections, we will show generalization bounds for three settings in trans-
fer learning, including multi-task learning, supervised transfer learning, and un-
supervised transfer learning.

10.2 Generalization Bounds for Multi-task Learning

The first formal generalization bound for multi-task learning is proposed in the
work by Baxter (2000). In order to model the relations among different tasks, a con-
cept called environment is presented. The environment can be viewed as a distri-
bution to generate different tasks and, from the perspective of Bayesian learning,
it acts as a hyperprior on tasks. With the assumption that such an environment
exists for multiple tasks in multi-task learning, based on the tools including VC
dimension and covering number, a generalization bound has been derived. Simi-
lar to the aforementioned analyses in transfer learning, the generalization bound
consists of three terms. The first term is the empirical loss on the training data
sets of multiple tasks, the second one is based on the capacity of the correspond-
ing multi-task learner and the last term is the confidence term. Given such gener-
alization bound, the sample complexity can be easily derived, that is, how many
tasks and how many data points in a task can guarantee that the generalization
performance is close to the training loss.

By following the work of Baxter (2000), the analysis in Ben-David et al.’s (2002)
work considers jointly learning from multiple data sets/tasks, which is related to
the data integration problem. Under this setting, different learners for all the tasks
are assumed to be in an equivalence relation where any two learners can be trans-
formed to each other via some function in a functional family. Built on such an
assumption, the VC dimension of all the learners was studied and then a general-
ization bound was derived to help analyze the sample complexity. Then this work
is extended in those by Ben-David and Schuller (2003) and Ben-David and Bor-
bely (2008) by considering a similar setting where the distributions of two tasks
are related via some function in a functional family. One benefit of this analysis
is that it can give a bound the generalization performance of each task instead of
the average generalization performance of all the tasks in previous studies.

In the work by Ando and Zhang (2005), the generalization bound of (9.4) is ana-
lyzed via the covering number. Maurer (2006a) analyzes the generalization bound
of a linear multi-task learner that first learns a linear feature transformation for
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all the data points in all the tasks and then learns a linear classifier based on the
transformed features. The learner considered here is similar to that in the work by
Ando and Zhang (2005) but without the task-specific part ui in (9.4). With the use
of the Rademacher complexity, a generalization bound is derived as

E ≤ Ê +O

(
1�

mn0

)
, (10.1)

where E denotes the average of the generalization errors of all the tasks, Ê denotes
the average of training errors of all the tasks, m denotes the number of tasks and n0

denotes the average number of training samples in all the tasks. The second term
on the right-hand side of bound (10.1) can show that the capacity of the linear
multi-task learner is upper-bounded by the Frobenius norm of the task-averaged
covariance matrix by assuming that the Frobenius norm of the feature transfor-
mation matrix is no smaller than 1. Different from previous bounds, the derived
generalization bound here is data-dependent, implying that this bound can be es-
timated from training data due to the data-dependent nature of the Rademacher
complexity.

In the work by Juba (2006), the Kolmogorov complexity in information theory is
extended to multi-task learning to give uniform bounds to measure the difference
between the empirical loss and generalization bound of different hypotheses pro-
vided by deterministic learning algorithms on independent samples drawn from
a set of unknown computable distributions over tasks.

In the work by Maurer (2006b), two classes of multi-task algorithms are ana-
lyzed in terms of the generalization bound based on the Rademacher complex-
ity. The first class to be analyzed include graph-regularized multi-task algorithms
with those in the works by Evgeniou and Pontil (2004) and Evgeniou et al. (2005)
as representative ones. In these algorithms, a graph G is used as a priori knowl-
edge to describe similarities between any pair of tasks and, based on this graph, a
regularizer is devised to encode such similarities to enforce similar tasks to have
similar model parameters. Based on the generalization bound for this class of al-
gorithms, their capacities are upper-bounded by

√
tr(G−1). The second class of

multi-task algorithms to be analyzed include the Schatten norm regularization
‖W‖S(p) (1≤ p ≤ 4

3 ) with the trace norm regularization (Pong et al., 2010) as a spe-
cial case. According to the analysis by Maurer (2006b), the capacity of the cor-
responding multi-task learner is upper-bounded by the Schatten q

2 norm of the
average data covariance over tasks, where q satisfies 1

p + 1
q = 1.

In the work by Kakade et al. (2012), some matrix regularizers, including the
squared Schatten norm regularization and squared group sparse regularization,
are proved to be strongly convex with respect to the trace norm and �2,1 norm, re-
spectively. Then, based on a widely used inequality in online learning (see Corol-
lary 4 in the work by Kakade et al. (2012)) and such strongly convexity of matrix
regularizers, a generalization bound is derived via the Rademacher complexity.

In the work by Crammer and Mansour (2012), a task clustering method is pro-
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posed to iteratively learn the model parameters for tasks in a task cluster and iden-
tify the cluster structure based on the training loss in a k-means style. Moreover,
the lower- and upper-bound of its VC dimension is analyzed in order to derive
the generalization bound and it shows that, when the logarithm of the number of
clusters is lower than the number of samples per task and the number of clusters
is much smaller than the total number of tasks, multi-task learning is significantly
better than single-task learning in terms of the order of the complexity in the gen-
eralization bound.

In the work by Maurer et al. (2013), a generalization bound is presented for (9.3)
where a dictionary is shared by all the tasks and coefficients in linear functions are
task-specific. With the use of the Rademacher complexity, a generalization bound
is derived to show that the capacity of multi-task sparse coding presented in (9.3)
is upper-bounded with respect to the sum of both the average trace norm and
spectral norm of data covariances over tasks. This model is extended to the trans-
fer learning setting where the dictionary learned in source tasks will be used to the
target task without learning it again and a similar generalization bound is also de-
rived, showing again that both the average trace norm and spectral norm of data
covariances in the target task affect the capacity of the target learner.

In the work by Pontil and Maurer (2013), the trace norm regularization in multi-
task learning is analyzed. With recent advances on tail bounds for sums of ran-
dom matrices and the Rademacher complexity, a dimension-independent bound
is presented to analyze the generalization bound where the capacity is upper-
bounded by the spectral norm of the average data covariance over tasks. Com-
pared with Maurer (2006b) and Kakade et al.’s (2012) works, which can also an-
alyze the trace norm regularization, the bound presented by Pontil and Maurer
(2013) is tighter in terms of the orders on both the number of tasks and the num-
ber of data points per task.

In the work by Zhang (2015b), a multi-task extension of algorithmic stability is
proposed and it is an extension of the conventional algorithmic stability in that
the sensitivity of a multi-task learner is tested when a data point is removed from
training data sets of all the tasks, respectively. In order to accommodate the newly
defined multi-task algorithmic stability, a generalized McDiarmid’s inequality is
proved to allow more than one input argument of a function under investigation
to be changed instead of only one in conventional McDiarmid’s inequality. Then,
with these new tools, a generalization bound is derived for general multi-task
learning. Then, such general bound is applied to analyze the task relation learning
approach (e.g., (9.9) with a fixed Ω), trace norm regularization and dirty approach
(e.g., (Chen et al., 2010a) with a trace norm regularizer instead of a constraint).

In the work by Pentina and Ben-David (2015), the problem of learning the ker-
nel function for support vector machines is studied under the multi-task and life-
long scenarios and some generalization bounds are presented to bound its gen-
eralization performance. The analyses show that, under mild conditions on the
family of kernels used for learning, learning-related tasks simultaneously in multi-
task learning are beneficial over single-task learning. Specifically, when the num-
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ber of tasks increases, with an assumption that there exists a kernel function,
which can achieve low approximation error on all the tasks, in the considered fam-
ily of kernel functions, then the overhead for learning such a kernel vanishes and
the corresponding complexity converges to that of the learner, which uses this
good kernel function.

In the work by Maurer et al. (2016), multi-task representation learning, which
learns a common representation for all the tasks, is analyzed and it accommo-
dates the multi-task feature learning (i.e., (9.1)) and (deep) neural networks. With
the use of the Gaussian complexity, which acts a similar role to the Rademacher
complexity, a generalization bound is presented to reveal that the capacity of such
learner depends on the complexity of the shared feature representation in terms
of the �2 norm. Moreover, a similar bound is presented for the transfer learning
setting. One benefit to use the Gaussian complexity is that it can analyze compos-
ite functions, which has the potential to analyze deep neural networks.

Besides analyzing generalization bounds, there are some other issues that have
been analyzed. For example, in the works by Lounici et al. (2009), Obozinski et al.
(2011) and Kolar et al. (2011), the oracle properties of the group sparsity in multi-
task learning are studied to reveal under which conditions the group Lasso can
identify features that can actually help the prediction of labels. In the works by
Argyriou et al. (2009, 2010), sufficient and necessary conditions are investigated
for the validness of the representer theorem in regularized multi-task methods. In
the work by Solnon et al. (2012), the covariance matrix of the noise among mul-
tiple kernel ridge regressors adopted in multi-task learning is estimated based on
the concept of minimal penalty and in a non-asymptotic setting, this estimator
converges toward the true covariance matrix.

10.3 Generalization Bounds for Supervised Transfer Learning

In the work by Maurer (2005), a general transfer learning model is analyzed with
a similar assumption to that by Baxter (2000) that both the source and target tasks
are sampled from an environment. Under this setting, the source tasks can learn
useful information about the environment and then provide it to the learning of
the target task, hence, from this perspective transfer learning can be viewed as
meta learning. For such meta algorithms, a general method is proposed for prov-
ing generalization bounds based on the algorithmic stability. This method can be
applied to the bias learning model in the work by Baxter (2000) and to derive gen-
eralization bounds for meta algorithms that aim to learn uniformly stable algo-
rithms. The proposed analysis method is also applied to analyze the regularized
least squares regression.

In the work by Mahmud and Ray (2007), authors consider the definition of re-
latedness between tasks, which is an important problem, as understanding it can
help design solutions about how much information to transfer and when and
how to transfer it. This work uses the conditional Kolmogorov complexity be-
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tween tasks to measure the amount of information one task contains about an-
other. The analysis can neatly measure task relatedness and determine the trans-
fer of the “right” amount of information in a Bayesian setting. In a very formal
and precise sense, the analyses suggest that no other reasonable transfer method
can do much better than the proposed Kolmogorov complexity theoretic transfer
method. A practical approximation to the proposed method is devised to transfer
information between tasks.

In Maurer (2009) work, by assuming that all the tasks are sampled from an en-
vironment as Baxter (2000) did, the Rademacher complexity is used to analyze
transfer learning and the analysis shows that the spectral norm of the average
data covariance upper-bounds the model capacity, which is similar to the con-
clusion made for multi-task learning by Maurer et al. (2013). Moreover, the analy-
sis presented in this work explains the situations under which transfer learning is
preferable to single-task learning. That is, the source tasks should be related to the
target task, the input distribution needs to be high-dimensional and the number
of source tasks should be larger than the data dimension and the number of data
per task.

In the work by Yang et al. (2013), authors explore a transfer learning setting,
in which tasks are sampled independently with an unknown distribution from a
known family. The analysis studies how many labeled examples are required to
achieve an arbitrary specified expected accuracy by focusing on the asymptotics
in the number of tasks. The analysis can help understand the fundamental bene-
fits of transfer learning by comparing single-task learning. The proposed analysis
method is so general that it can be applied to other learning protocals, such as
the combination of transfer learning and self-verifying active learning. Under this
setting, authors find that the number of labeled examples required is significantly
smaller than that required for single-task learning.

In the work by Kuzborskij and Orabona (2013), a hypothesis transfer learning
scenario is studied, where the target learner can only access source learners but
not source data directly. Specifically, a theoretical analysis based on the algorith-
mic stability is conducted to analyze a class of hypothesis transfer learning al-
gorithms, that is, regularized least square regression with a biased regularization
to the source learner. Based on the analysis, the relatedness of source and target
tasks is found to accelerate the convergence of the leave-one-out error to the gen-
eralization error, which can inspire the use of the leave-one-out error to find the
optimal target learner, even when the target domain is associated with a small
training set. When the source domain is unrelated to the target domain, the anal-
ysis gives a theoretically principled way to prevent negative transfer such that the
transfer learning method can reduce to the single-task model, an ideal solution in
such a situation.

In the work by Pentina and Lampert (2014), built on the concept of the envir-
onment in the work by Baxter (2000), lifelong learning is analyzed from the PAC-
Bayesian perspective by presenting a PAC-Bayesian generalization bound to of-
fer a unified view on existing transfer learning paradigms such as the transfer of
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model parameters in a biased regularization or low-dimensional representations.
Based on the generalization bound, two principled lifelong learning algorithms
are derived. Then this work is generalized in the work by Pentina and Lampert
(2015) to consider two scenarios in lifelong learning where observed tasks are not
sampled independent and identically distributed (i.i.d.) from the task environ-
ment, while, in previous works, all the tasks are assumed to be i.i.d. The first sce-
nario is that different tasks are sampled from the same environment but possibly
with dependencies, and the second one allows the task environment to change
over time in a consistent way. In the first case, a PAC-Bayesian bound is proved as
a direct generalization of the analogous analysis for the i.i.d. case in the work by
Pentina and Lampert (2014). For the second case, an inductive bias is learned in
form of a transfer procedure.

In previous analyses for unsupervised transfer learning, the conditional proba-
bility of the label on the data is assumed to be identical in both source and target
domains and it aims to match the marginal data distributions in both domains.
To break this assumption, recent works propose a model shift setting, which al-
lows conditional distributions to change across domains by providing a few tar-
get labels and assumes that the changes are smooth. In order to analyze such
work under the model shift assumption, Wang and Schneider (2015) provide some
analyses in their work based on the algorithmic stability. The analysis shows that,
when the conditional distribution changes, a generalization error bound can be
derived with respect to the number of labeled target samples and the smoothness
of the change across domains. This analysis also derives conditions where trans-
fer learning works better than no-transfer learning. Furthermore, transfer learning
algorithms are proposed to handle both the single-source domain and multiple-
source domain settings.

In the work by Perrot and Habrard (2015), the problem of transferring some a
priori knowledge for metric learning is studied. Based on the notion of algorithmic
stability, an on-average-replace-two-stability model is proposed for regularized
metric learning where the metric in the target domain is enforced to approach
the source metric. The newly proposed on-average-replace-two-stability proves
generalization bounds with fast generalization rates for such biased regularized
metric learning model. Furthermore, a consistency result is proposed to show the
benefit of a biased weighted regularized formulation and a solution is proposed
to learn the weights.

In the work by Balcan et al. (2015), the problem of learning from multiple tasks
over time in the lifelong setting is studied and all the tasks are assumed to share
certain commonalities in internal representations that are initially unknown. The
goal is to learn such internal representation based on tasks at hand such that the
learned representation can facilitate the efficient learning of subsequent tasks in
such aspects, for example, reducing the need of labeled data. Efficient algorithms
are developed to learn two different kinds of internal features shared by tasks,
with the first type as low-dimensional subspaces and the second one as nonlinear
Boolean combinations of features. For those two settings, the sample complexities
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are analyzed. Moreover, as a by-product, the proposed algorithm to learn nonlin-
ear Boolean combinations of features has a dual interpretation, which can be used
to construct near-optimal sparse Boolean autoencoders under an “anchor-set” as-
sumption.

In deep learning, popular transfer learning approaches include the freeze meth-
od that directly uses the source network to make predictions for the target task
and the fine-tune method that uses the parameters in a source network as ini-
tial values in the target network and then use labeled data in the target task to
update the model parameters. These two simple approaches work well in many
applications but they lacks a theoretical analysis to explain its success. In the
work by McNamara and Balcan (2017), these two approaches are analyzed. For the
freeze method, conditions are identified on how the tasks relate to obtain an up-
per bound on the generalization performance of the target task via the VC dimen-
sion. For the fine-tuned method, a PAC-Bayesian bound is presented to analyze
the generalization performance of the target task under some suitable conditions.
Moreover, the proposed bounds are used to analyze feedforward neural networks
and a new approach is motivated by the analyses to transfer the source weights to
the target task.

10.4 Generalization Bounds for Unsupervised Transfer Learning

In the works by Ben-David et al. (2006, 2010) and Blitzer et al. (2007a), two ques-
tions are studied for unsupervised transfer learning. First, under what conditions
can a classifier trained for a source task be expected to have the good performance
on the target task? Second, how should a small amount of labeled data in the tar-
get task be combined with the large amount of labeled data in the source task to
achieve the lowest generalization error for the target task? To answer the first ques-
tion, a generalization bound is presented to bound the target generalization error
of a classifier by its source error and the divergence between the two domains. For
the divergence, a classifier-induced divergence measure is introduced and it can
be estimated from available unlabeled data from both domains. By assuming that
there exists some hypothesis that has good performance on both domains, it has
been proved that this divergence measure and the training error on the source task
can be used together to characterize the generalization error of a source-trained
classifier on the target task. For the second question, a learning model that aims to
minimize a convex combination of the empirical losses for both source and target
tasks is studied and its generalization bound is derived. Different from previous
theoretical studies that aim to minimize just the error in the source task, just the
error in the target task or equally weighting data from both domains, in this work
the optimal combination coefficients of source and target errors can be learned as
a function of the divergence measure, the sample sizes in both domains and the
complexity of the hypothesis class. Hence, the resulting bound is a generalization
of previous bounds and it is at least as tight as some previous bounds that mini-
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mize only the target error and consider the same weighting for source and target
errors.

Different from most existing algorithms that first determine the data distribu-
tions in two domains and then make appropriate corrections based on the esti-
mated distributions, in the work by Huang et al. (2006) a nonparametric method
is proposed to estimate the ratio of two data distributions without distribution
estimation. Built on kernel methods, the proposed method matches the two dis-
tributions in two domains via the mean value, which is referred to as the kernel
mean matching method.

In the work by Mansour et al. (2008), a theoretical analysis is presented for the
problem of unsupervised transfer learning with multiple sources tasks. For each
source task, the distribution over the data as well as a hypothesis with error at
most ε are given. In order to learn a good learner with small error for the target
task, combining these hypotheses is a good strategy. First, standard convex com-
binations of the source learners have been proved to possibly perform very poorly.
However, the analysis shows that there are theoretical guarantees for combina-
tions weighted by the source distributions. The main result shows that, for any
fixed target learner, there exists a distribution weighted combination that has an
error of, at most, ε with respect to any mixture of source distributions. This setting
is then generalized from a single target learner to multiple consistent target learn-
ers and the analysis shows that there exists a distribution weighted combination
with an error of, at most, 3ε.

As a generalization of a previous work (Ben-David et al., 2006), in the work by
Mansour et al. (2009), a novel distance between distributions, discrepancy dis-
tance, is introduced and it is suitable for unsupervised transfer learning problems
with any loss function. Bounds based on the Rademacher complexity are pro-
posed to estimate the discrepancy distance from finite data samples for different
loss functions. Based on this distance, new generalization bounds for unsuper-
vised transfer learning are derived for a wide family of loss functions. Based on
these bounds and the empirical estimation of the discrepancy distance, a series
of novel bounds are presented for large classes of regularized algorithms, includ-
ing support vector machines and kernel ridge regression. These bounds motivate
the proposal of several unsupervised transfer learning algorithms to minimize the
empirical estimation of the discrepancy distance for various loss functions.

In the work by Cortes et al. (2010), an analysis of importance weighting is pre-
sented to learn from finite samples and a series of theoretical and algorithmic re-
sults are given. First, this work shows some simple cases in which importance
weighting can perform badly and this suggests the importance to analyze this
technique. Then both upper and lower bounds for the generalization performance
for bounded importance weights are presented. More importantly, learning guar-
antees for the more common case where importance weights are unbounded but
their second moment is bounded are given. The assumption that the second mo-
ment is bounded is related to the Rényi divergence between the data distributions
in both domains. These bounds are then used to design an alternative reweight-
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ing algorithm. Moreover, the properties of a widely used normalized importance
weighting are analyzed.

In Zhang et al.’s (2012) work, a new framework is proposed to study the gen-
eralization bound for unsupervised transfer learning. Two kinds of representa-
tive unsupervised transfer learning settings are considered: one is unsupervised
transfer learning with multiple source tasks and the other is unsupervised transfer
learning by combining source and target data. Specifically, the integral probability
metric is used to measure the difference between two domains. Then, a specific
Hoeffding-type deviation inequality and symmetrization inequality are developed
for either setting to obtain the corresponding generalization bound based on the
uniform entropy number. Based on the newly derived generalization bound, the
asymptotic convergence and the rate of convergence are analyzed. Moreover, fac-
tors to affect the asymptotic behavior of the learning process in unsupervised
transfer learning are discussed.

In the work by Germain et al. (2013), the first PAC-Bayesian analysis for un-
supervised transfer learning is proposed. In order to derive the generalization
bound, a novel distribution pseudodistance is defined based on a disagreement
averaging. Using this measure, a PAC-Bayesian bound for stochastic Gibbs clas-
sifier is derived under the unsupervised transfer learning setting. This bound has
the advantage, that is, it can be directly optimized for any hypothesis space. Hence,
it is applied to linear classifiers, leading to the design of a learning algorithm for
linear classifers.

In the work by Cortes et al. (2015), based on the discrepancy minimization al-
gorithm that outperforms a number of popular unsupervised transfer learning al-
gorithms, a new algorithm is proposed. Different from most previous approaches
that rely on a fixed reweighting of the losses over training samples in different
tasks, the newly proposed algorithm uses a reweighting method that depends on
the hypothesis considered and it aims to minimize a new measure of generalized
discrepancy. In the detailed description of the proposed algorithm, the analysis
shows that it can be formulated as a convex optimization problem that brings
benefits for the optimization. Moreover, a detailed theoretical analysis of its learn-
ing guarantees is presented and it can help select its parameters.
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Transitive Transfer Learning

11.1 Introduction

In this chapter, we study a new type of transfer learning problem where there
is a very large gap between the source and target domains, making most tradi-
tional transfer learning solutions invalid. For example, as shown in Figure 11.1,
the source domain is to classify objects among images collected from the Web,
but the target domain is to predict the poverty level of an area from its satellite
images. This is a problem faced by researchers at Stanford University studying
how to predict the poverty levels of African regions based on satellite images in
order to provide assistance to UN aid (Jean et al., 2016). These tasks are concep-
tually distant and hence the knowledge learned in the source domain cannot di-
rectly be used in the target domain. This problem is difficult for transfer learning
algorithms because there may not be direct linkage between source and target
domains. However, we human beings are naturally capable of making indirect in-
ference and learning via transitivity (Bryant and Trabasso, 1971). This ability helps
humans connect many concepts and transfer the knowledge between two seem-
ingly unrelated concepts. A typical methodology adopted by human learning is
to introduce a few intermediate concepts as a bridge to connect these concepts.
For example, a student who has solid mathematical knowledge may find it hard
to understand theoretical computer science. However, if the student has taken
some elementary computer science courses, then the elementary computer sci-
ence concepts can act as a bridge between the mathematical knowledge and the-
oretical computer science courses. The elementary computer science concepts
hereby serve as mappings between mathematical theories and deep computer
science concepts, and can be considered as an intermediate domain.

The ability for humans to conduct transitive inference and learning inspires a
novel learning paradigm known as transitive transfer learning (TTL). As illustrated
in Figure 11.2, in TTL, the source and target domains have few common factors,
but they can be connected by one or more intermediate domains through some
shared factors. For example, in the poverty prediction problem described in Fig-
ure 11.1, the knowledge such as the high-level representations of images learned
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Figure 11.1 An illustration of a TTL problem. The source and target domains have
distant concepts, where the source domain is to do object recognition but the
target domain is to predict the poverty level from satellite images, which are from
Google Maps

R

R

N

Figure 11.2 An illustration of the main idea of TTL

from the object recognition task cannot be transferred to the target task directly,
as satellite images in the target domain are captured from an aerial view. Jean et al.
(2016) introduce an intermediate domain that is the nighttime light intensity in-
formation of cities, and use this information as a bridge to connect the knowledge
on object detection and poverty-level prediction. They transfer the knowledge
from object recognition tasks to help learn a model that predicts nighttime light
intensities from daytime images and then predict the poverty levels based on the
light intensities. The knowledge of object recognition tasks can help identify hills,
rivers, roads and buildings, which are highly relevant to the light intensities of a
city. The light intensities are key factors in estimating the poverty level. In text sen-
timent classification problems, knowledge in a corpus of book reviews can hardly
be transferred to music reviews because the words used in the two domains are
quite different and they follow very different word distributions. Using TTL, Tan
et al. (2015) introduce a set of movie reviews as a bridge. Reviews on movies share
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some words with book reviews, and, at same time, share some words with reviews
on the background music of the movies. The movie reviews can be crawled from
online movie websites. Thus, the movie reviews help build connections between
the book and music domains. This forms a transitive knowledge-transfer structure
to obtain a more versatile sentiment classification system.

In general, the TTL paradigm is important to extend the ability of transfer learn-
ing as it is able to transfer knowledge between domains with a huge distribution
gap. This helps in reusing as much previous knowledge as possible. Overall, tradi-
tional machine learning uses knowledge learned with data from the same domain
and transfer learning borrows knowledge from similar domains, while TTL pushes
the transfer learning boundary even further to allow connection with distant do-
mains.

There are two major research issues in designing the TTL paradigm. The first
one is how to select appropriate intermediate domain data that serve as the con-
necting bridges between distant domains. The second issue is how to transfer
knowledge effectively among transitively connected domains. In this chapter, we
will introduce three different learning algorithms under the TTL paradigm. In par-
ticular, in Section 11.2, we manually select an intermediate domain and trans-
fer the knowledge by using random walk with restarts. In Section 11.3, we select
the intermediate domain data by distribution measurement, such as the Kulback–
Leibler divergence and A -distance in the work by Blitzer et al. (2007a), and trans-
fer the knowledge via matrix factorization. In Section 11.4, we use deep learning to
make intermediate domain data selection and knowledge transfer, by simultane-
ously conducting domain data selection and knowledge transfer via deep neural
networks.

11.2 TTL over Mixed Graphs

We first consider a version of the TTL problem when the source and target do-
mains have heterogeneous feature spaces such as text and images; for example,
our source domain consists of texts describing springtime scenery and the target
domain are images that describe the same scenery. To solve this problem, we can
bridge the two domains by co-occurrence data stored in an intermediate domain.
For example, on the Flickr website, there are a large number of images with text
annotations or tags. These co-occurrence data can be used as the intermediate
domain data for transferring knowledge from text data to image data. This setting
is related to heterogeneous transfer learning introduced in Chapter 6.

However, the situation is more complicated than heterogeneous transfer learn-
ing. For example, in our experiments, the co-occurrence data are crawled from
the Internet and contain much noise. For instance, lots of image annotations in
Flickr are imprecise and meaningless or plainly wrong, and only around 50 per-
cent of them are actually related to the image content (Liu et al., 2009a). This is
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:

Figure 11.3 An example of text-to-image TTL with annotated images as the inter-
mediate domain data. Images are from Wikipedia and Flickr.

illustrated in Figure 11.3, where the words “eos,” “400d” and “business” are irrel-
evant to the images about architecture . These irrelevant data might degrade the
accuracy of the cross-domain connection if we use them to build the knowledge
transfer bridge directly. Besides irrelevant noises, thousands of tags are used when
people annotate pictures from one peculiar category, and vocabularies in the tags
are very different from those in formal documents. For example, articles from
Wikipedia have different writing styles under different contexts. Hence, only a few
image tags are useful for knowledge transfer, but they may be well hidden. To find
a unbiased and clean channel for knowledge transfer, Tan et al. (2014) propose a
mixed-transfer algorithm, which is able to transfer knowledge across domains ef-
fectively even with noisy co-occurrence data. Their algorithm determines which
source instances and which features are actually helping the knowledge transfer.
The mixed-transfer algorithm models the relationship between the source and
target domains as a joint transition probability graph of mixed instances and fea-
tures, which is illustrated in Figure 11.4. In the graph, we have two types of node,
the square nodes indicate the instances (e.g., documents and images) and the cir-
cles represent the features (e.g., words in the documents and texture in the im-
ages). The transition probabilities between two cross-domain features are con-
structed from the co-occurrence data and measured by a cross-domain harmonic
function, which is robust to irrelevant data.

In this graph-based algorithm, the label propagation process is simulated as a
random walk with restarts. The advantage is that we can transfer knowledge with
the help of all the instances and features globally and simultaneously. From the
structure of the graph, we can see that the feature nodes play the role of hubs for
information transmission within a domain and across domains. The label prop-
agation process continues until it converges. During this process, some features
have high probabilities of being visited. These are the features that carry the most
label knowledge and can be automatically detected by the random-walk process.
When the label propagation converges to a fixed point, the weights on instance
nodes indicate the label preference and can be used to build a model for making
predictions.
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Figure 11.4 An illustration of the joint transition probability graph of mixed in-
stances and features. In the graph, there are two types of nodes with the square
nodes indicating the instances (e.g., documents and images) and the circles rep-
resenting the features (e.g., words in the documents and texture in the images).
The transition probabilities between two cross-domain features are constructed
from the co-occurrence data

11.2.1 Problem Definition

Let Ds and Dt be the source and target domains respectively. DS = {Xs ,ys } is
composed of ns labeled instances. Dt = {Xt ,yt }∪{Xu

t } contains nl
t labeled instances

and nu
t unlabeled instance.

In order to build connections between the source and target domains, there
are co-occurrence data. Let O = {x̃s

k , x̃t
k }no

k=1 denote the co-occurrence data, each
instance of which contains two sub-instances x̃s

k and x̃t
k . x̃s

k is represented by a
feature vector in the source domain feature space. x̃t

k is represented by a feature
vector in the target domain feature space.

The objective of the mixed-transfer learning algorithm is to learn a classifier f (·)
that has the lowest possible prediction error on unlabeled instances U =Xu

t in the
target domain by using all the data from the source, target and intermediate data.
Formally, we have

argmin
f

L( f ,X ,y)+R( f ,U |O ), (11.1)

where X contains all the labeled data, and y are the labels, L(·) is the loss function
and R(·) indicates the relationship between the classifier and the unlabeled data
given the co-occurrence data O .
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11.2.2 The Mixed-Transfer Algorithm

Cross-Domain Feature Similarity
We first describe the strategy in measuring the cross-domain feature similarity.

In this chapter, without loss of generality, we assume that the feature values of
all the instances are non-negative. For some features that have negative values,
we can normalize them to appear non-negative. Given a feature X s

k in the source
domain, the relevance value between this feature and the target domain feature
space is defined as

γ(s,t )
k = 1

|X̃ t
k |× (1−|X̃ t

k |)
∑

x̃t
i ∈X̃ t

∑
x̃t

j∈X̃ t ,x̃t
j �=x̃t

i

Φ(x̃t
i , x̃t

j ), (11.2)

where X̃ t
k denotes the set of target instances, each of which has a positive value

for the k-th feature, Φ(x̃t
t , x̃t

t ′ ) = exp(−||x̃t
t−x̃t

t ′ ||
2

2σ2 ), and |X̃ t
k | is the cardinality of X̃ t

k .

A larger r (s,t )
k indicates that the k-th feature has higher relevance to the target do-

main. For instance, a set of annotated images that share a tag should be similar to
each other. Otherwise, the tag is irrelevant to these images.

On the set {X̃ 1
k ,X̃ 2

k }, we calculate the similarity between the k-th feature in the
source domain and the l-th feature in the target domain with correlation coeffi-
cient (Mitra et al., 2002):

s(s,t )
k,l = 1− |cov( f s

k , f t
l )|√

var( f 1
k )×var( f t

l )
(11.3)

where f s
k and f t

l are the feature vectors from X̃ s
k and X̃ t

k respectively, var(·) is the
variance of a variable, cov(·, ·) is the covariance between two variables.

Combining these two criteria, we obtain the final similarity a(s,t )
k,l :

a(s,t )
k,l = γ(s,t )

k × s(s,t )
k,l (11.4)

Finally, we can construct the feature similarity matrix A(s,t ) between two do-
mains, where the (k, l )-th element of A(s,t ) is equal to a(s,t )

k,l , and then we have

a(s,t )
k,l = a(t ,s)

l ,k , that is, A(s,t ) is the transpose of A(t ,s).

Graph Construction
For the i -th domain, where i ∈ {s, t }, we have an ni -by-mi matrix A(i ,i ), with its

(k, l )-th entry given by the value of the l-th feature of the k-th instance. It is clear
that A(i ,i ) is a matrix with all the entries being non-negative. We also have cross-
domain feature similarity matrix A(s,t ).

In order to perform label propagation on this mixed graph, we have to con-
struct a joint transition probability graph. In other words, we have to normalize
the weights of the edges so that they are probability values.
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By using A(i ,i ), we can further construct an ni -by-mi Markov probability transi-
tion matrix P(i ,i ) by normalizing the entries of A(i ,i ) with respect to each column,
that is, the sum of each column in P(i ,i ) equals 1.

Similarly, we can make use of the transpose of A(i ,i ) to construct an mi -by-ni

Markov probability transition matrix Q(i ,i ) by normalizing the entries of the trans-
pose of A(i ,i ) with respect to each column, that is, the sum of each column in Q(i ,i )

is equal to one.
For such P(i ,i ) and Q(i ,i ), we can model the probabilities of visiting the instances

from current features in a random walk process.
By using A(s,t ), we can construct an ms -by-mt matrix F(s,t ) by normalizing the

entries of A(st ,t ) with respect to each column, that is, the sum of each column in
F(st ,t ) is equal to 1. We note that there may be some columns of F(s,t ) to be zero as
we may not find the co-occurrences for some features. In this case, all the entries
of this column is set to be 1

ms
, which indicates an equal chance of visiting an in-

stance in a random walk. For such F(s,t ), the probabilities of visiting features in the
source domain from current feature in the target domain can be modeled. Since
A(s,t ) is a symmetric matrix, we have F(s,t ) = F(t ,s).

Although the characteristics of the entries in A(i ,i ) are different from those in
A(s,t ), we make use of a coupled Markov chain model to combine their corre-
sponding probability matrices P(i ,i ), Q(i ,i ), F(s,t ) and F(t ,s) together to build a joint
transition probability graph of mixed instances and features for a random walk.

Mixed-Transfer Algorithm
In the mixed-transfer algorithm over the mixed graphs, we perform a random

walk that starts from nodes corresponding to labeled instances. The ‘walker’ moves
by traversing an edge to their neighboring nodes with the joint transition proba-
bility graph, or has a probability α to stay at the same node. The corresponding
model is formulated as

R(i )(t +1)= (1−α)P(i ,i )V(i )(t )+αD(i ), i = s, t , (11.5)

and

V(i )(t +1)=λi ,i Q(i ,i )R(i )(t +1)+
2∑

j=1, j �=i
λi , j F(i , j )V( j )(t ), i = 1,2, (11.6)

where l (i )
d is the number of labeled instances belonging to the d-th class and D(i )

is an ni -by-c matrix with the (k,d)-th element d (i )
k,d equal to 1/l (i )

d if and only if the
k-th instance is labeled and belongs to the d-th class and is otherwise equal to 0.

Theorem 11.1 Assume that α and λi , j (1 ≤ i , j ≤ 2) are non-negative. Then there
are unique non-negative matrices {R̄(i )}2

i=1, and {V̄(1)}2
i=1 satisfying (11.5) and (11.6).

The steady probability distribution matrices on R(i )(t ) and V(i )(t ) (1≤ i ≤ 2) can
be solved by the iterative method described in Algorithm 11.1. The convergence
of the algorithm is proved in the work by Tan et al. (2014).
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Algorithm 11.1 Mixed-transfer

1: Input: P (i ,i ), Q(i ,i ), F (i , j ), d (i ), threshold σ, α, λi ,i , λi , j , i , j = 1,2, i �= j ,
2: Output: r (i )(t )
3: set t = 1, r (i )(0)= d (i )

4: compute r (i )(t ) and v (i )(t ) according to (11.5) and (11.6), respectively.
5: let Diff1 =∑2

i=1 ‖R(i )(t )−R(i )(t −1)‖2
F and Diff2 =∑2

i=1 ‖V(i )(t )−V(i )(t −1)‖2
F

6: if Diff1 <σ and Diff2 <σ, then stop; otherwise, set t = t +1 and go to step 4

11.3 TTL with Hidden Feature Representations

In the previous section, we introduced a TTL solution by using one interme-
diate domain and transferring knowledge by cross-domain feature similarities.
However, in many real world applications, there may be many intermediate do-
mains and we are not sure which one is helpful for TTL. Moreover, the source,
target and intermediate domains may be from different data providers, where
each pair of domains has a distributional shift. In this section, we introduce a new
learning algorithm for the TTL problem to address these issues. The algorithm is
composed of two steps. The first step is to find an appropriate domain to bridge
the given source and target domains. The second step is to do effective knowledge
transfer among all domains. In the first step, a probability model is introduced to
select appropriate domains that are able to draw the source and target domains
closer. The selection is based on domain characteristics such as domain difficulty
and pairwise closeness. In the second step, we consider both domain relationship
and distributional shift, and learn a common feature subspace among these do-
mains to propagate the label information through them.

11.3.1 Problem Definition

In this problem setting, we have labeled source domain data S={(xs
i , yi )}ns

i=1,
unlabeled target domain data T={xt

i }nt
i=1 and k unlabeled intermediate domains

D j = {x
d j

i }
n j

i=1, j = 1, . . . ,k, where x∗ ∈Rm∗
is represented as a m∗-dimensional fea-

ture vector. The data from different domains can have different dimensions. S
and T have a large distribution gap, thus directly transferring knowledge between
them may cause a substantial performance loss in the target domain. The algo-
rithm introduced aims at finding intermediate domains to bridge S and T and
minimize the training loss in T.

Formally, given a measure g (·, ·) for the domain distribution gap, the first step
is to find an intermediate domain that satisfies g (S,T|Di ) < g (S,T). The second
step performs transfer learning from the source domain S to the target domain
T via the intermediate domain Di . This is implemented via learning two feature
clustering functions psd (S,Di ) and pd t (Di ,T), the outputs of which are the largest
common subspaces between S and Di and between Di and T, respectively. The
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label information in the source domain is propagated to the intermediate and tar-
get data on the selected common subspaces.

11.3.2 Coupled Matrix Tri-factorization Algorithm

Intermediate Domain Selection
The selection of intermediate domains is task-specific and hence different prob-

lems may require different strategies. In this section, we introduce a specific in-
termediate domain selection algorithm for the problem of sentiment classifica-
tion. As studied in previous research, the task difficulty (Ponomareva and Thel-
wall, 2012) and domain distance (Ben-David et al., 2006) are two major issues that
affect transfer learning performance for any given pairs of domains. Intuitively, if
a task in a source domain is not difficult to solve than tasks in the intermediate
and target domains, the model learned from the source data may perform well
and can be very helpful in achieving good performance in the intermediate and
target domains as well. If the intermediate domain is able to draw the source and
target domains closer than directly transferring between them, then the knowl-
edge transfer process between the source and target domains will have lower in-
formation loss, and result in good performance in the target domain. Hence, we
introduce the domain difficulty and domain distance, respectively as follows.

• Domain difficulty: The domain difficulty measure is problem-specific as differ-
ent problems may have different types of features. In this problem, the domain
complexity (Ponomareva and Thelwall, 2012) is used to measure the difficulty.
The domain complexity is calculated as the percentage of long tail features that
have low frequencies and defined as

cplx(DDD)= |{x|c(x)< t ×n}|
m

, (11.7)

where for non-negative features, c(x) is the number of instances whose feature
x is larger than zero, and |{x|c(x) < t ×n}| denotes the number of features that
appear in less than t ×n instances.

• A distance: The A distance estimates the distribution difference of two sets of
data samples that are drawn from two probability distributions. In Ben-David
et al. (2006), it is proved that the prediction error of the target domain is bounded
by the error of the source domain and the A distance as well as constant fac-
tors. Practically, given data DDDi and DDD j from two domains, the A -distance can
be computed as

di sA (DDDi ,DDD j )= 2(1−2 min
h∈H

error(h|DDDi ,DDD j )), (11.8)

where H is a hypothesis space, h is a proxy classifier that discriminates data
points from two domains and error(·) denotes the classification error. To learn
h, which uses the logistic regression as the proxy classifier, the source data is
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Table 11.1 Domain characteristic features

feature description
cplx_src (c1) source domain complexity

cplx_inter (c2) intermediate domain complexity
cplx_tar (c3) target domain complexity

di ssi
A

(c4) a_distance between source and intermediate

di sst
A

(c5) a_distance between source and target

di si t
A

(c6) a_distance between intermediate and target

treated as positive and the target data is assigned to be negative. After learning
h, we can estimate the error(h|DDDi ,DDD j )) in the A distance.

Given a triple ttt = {S,D,T}, we can extract six features, as described in Table 11.1.
The first three features summarize individual in-domain characteristics and the
other three features capture the pairwise cross-domain distances. These features
together affect the success probability of a transfer learning algorithm. However, it
is impossible to design a universal domain selection criteria, as different problems
may have different preferences (weights) on these features. To model the success
probability of the introduced intermediate domain, the following logistic function
is used:

f (ttt )= δ(β0+
6∑

i=1
βi ci ), (11.9)

where δ(x) = 1
1+exp{−x} . We estimate the parameters βββ = {β0, · · · , β6} to maximize

the log likelihood defined as:

L (βββ)=
t∑

i=1
l (i ) log f (ttt i )+ (1− l (i )) log(1− f (ttt i )), (11.10)

where l (i ) is a binary label, indicating whether the intermediate domain in the
i -th triple is able to bridge the source and target domains. Such labels are ob-
tained via the following strategy. A semi-supervised label propagation algorithm
is performed on S and T and a prediction accuracy accst can be obtained on the
target domain. The same algorithm is also performed on S, D and T and another
accuracy accsi t is obtained on the target domain. If accsi t > accst , we set l (i ) = 1,
otherwise, l (i ) = 0.

Hence, we transform the intermediate domain selection problem to a probabil-
ity estimation problem. A candidate intermediate domain with a high f (ttt ) is more
likely to be selected.

In the second step, a transfer learning algorithm, which considers both of the
transitive relationship and distribution shift among all the domains, is used. This
algorithm is based on non-negative matrix tri-factorization (NMTF) that can per-
form feature clustering and label propagation simultaneously. In the following, we
first present some background knowledge.
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Non-negative Matrix Tri-factorization
In NMTF, the feature-instance matrix is decomposed into three sub-matrices.

In general, given a feature-instance matrix X ∈ Rm×n where m is the data dimen-
sion and n is the number of instances, we can obtain factorized sub-matrices by
solving an optimization problem as follows

arg min
F,A,G

L = ||X−FAGT ||F .

F ∈ Rm×p indicates the information of feature clusters, with p as the number
of feature clusters. The element Fi , j indicates the possibility that the i -th feature
belongs to the j -th feature cluster.

G ∈ Rn×c is the instance cluster assignment matrix, with c as the number of
instance clusters. If the largest element of the i -th row in G is located in the j -th
column, it means that the i -th instance belongs to the j -th instance cluster.

A ∈Rp×c is the association matrix. The element Ai , j denotes the possibility that
the i -th feature cluster is associated with the j -th instance cluster.

NMTF for Transfer Learning
NMTF can used as a basic model for transfer learning. Given the source and tar-

get domains S and T with Xs and Xt as their respective feature-instance matrices,
one can decompose these two matrices simultaneously and allow decomposed
matrices to share some cross-domain information (sub-matrices). Formally, given
two related domains S and T, their feature-instance matrices can be decomposed
simultaneously as

LST = ||Xs −Fs As GT
s ||F +||Xt −Ft At GT

t ||F

=
∥∥∥∥∥Xs − [F1,F2

s ]

[
A1

A2
s

]
GT

s

∥∥∥∥∥
F

+
∥∥∥∥∥Xt − [F1,F2

t ]

[
A1

A2
t

]
GT

t

∥∥∥∥∥
F

,
(11.11)

where F1 ∈R
m×p1
+ and A1 ∈R

p1×c
+ contain the common factors shared by the source

and target domains, F2
s ,F2

t ∈ R
m×p2
+ ,A2

s ,A2
t ∈ R

p2×n
+ contain domain-specific infor-

mation, p1, p2 are two parameters that indicate the number of hidden feature
clusters, Gs ∈ Rn×c is the 0/1 label indicator matrix in the source domain and Gt

is the unknown label indicator matrix of the target domain and will be learned
during the training process.

According to (11.11), we can see that the label information of the source domain
is propagated to the target domain through the shared factors F1 and A1.

The Coupled Matrix Tri-factorization Algorithm
The source, intermediate and target domains have a transitive relationship,

which means that the intermediate domain bridges the source and target do-
mains, but has different common factors from them respectively. Hence, to
capture these properties, a coupled NMTF (CMTF) algorithm is proposed in
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Figure 11.5 An illustration of the CMTF algorithm in the TTL framework. The
algorithm learns two coupled feature representations by feature clustering, and
then propagates the label information from the source domain to the target do-
main through the intermediate domain based on the coupled feature represen-
tation

Tan et al.’s (2015) work. The CMTF algorithm is illustrated in Figure 11.5 and its
objective function is formulated as

L =||Xs −Fs As GT
s ||F +||XI −FI AI GT

I ||F +||XI −F
′
I A

′
I GT

I ||F +||Xt −Ft At GT
t ||F

=
∥∥∥∥∥Xs − [F̂1, F̂2

s ]

[
Â1

Â2
s

]
GT

s

∥∥∥∥∥
F

+
∥∥∥∥∥XI − [F̂1, F̂2

I ]

[
Â1

Â2
I

]
GT

I

∥∥∥∥∥
F

+
∥∥∥∥∥XI − [F̃1, F̃2

I ]

[
Ã1

Ã2
I

]
GT

I

∥∥∥∥∥
F

+
∥∥∥∥∥Xt − [F̃1, F̃2

t ]

[
Ã1

Ã2
t

]
GT

t

∥∥∥∥∥
F

. (11.12)

According to (11.12), we can see that the first two terms correspond to the first
feature clustering and label propagation between the source and intermediate do-
mains in Figure 11.5 and the last two terms refer to the second feature clustering
and label propagation between the intermediate and target domains. In (11.12),
it is worth noting that XI is decomposed twice with different decomposition ma-
trices, since XI shares different knowledge with Xs and Xt . At the same time, we
couple these two decomposition processes via the label matrix GI . It is reasonable
as instances in the intermediate domain should have the same labels in different
decomposition processes.

Overall, the CMTF algorithm defines a transitive property among domains. The
label information in the source domain is transferred through F̂1 and Â1 to the
intermediate domain and affects the learning of GI . The knowledge on class labels
encoded in GI is further transferred from the intermediate domain to the target
domain through F̃1 and Ã1.

11.4 TTL with Deep Neural Networks

In previous problems, we transitively transfer knowledge with one intermedi-
ate domain, which can be selected by domain knowledge or by some predefined
selection criteria. However, in some applications, the source and target domains
cannot be connected by one intermediate domain. Multiple intermediate domains
are needed to construct the bridge to connect the source and target domains. In
this section, we present a method proposed in the work by Tan et al. (2017) to
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transfer knowledge between distant domains by gradually selecting multiple sub-
sets of instances from a mixture of intermediate domains as a bridge. Tan et al.
(2017) use the reconstruction error as a distance measure between two domains.
That is, if the reconstruction error on some data points in the source and inter-
mediate domains is small based on a model trained on the target domain, then
we consider that these data points from the source and intermediate domains
are helpful for the target domain. Based on this measure, a selective learning al-
gorithm (SLA) is proposed in Tan et al.’s (2017) work for the TTL problem. It si-
multaneously selects useful instances from the source and intermediate domains,
learns high-level representations for selected data and trains a classifier for the
target domain based on the high-level representations. The learning process of
SLA is an iterative procedure that selectively adds new data points from inter-
mediate domains and removes unhelpful data in the source domain to revise the
source-specific model toward a target-specific model step by step until some stop-
ping criterion is satisfied.

11.4.1 Problem Definition

We denote by DS = {(x1
S , y1

S ), · · · , (xnS
S , ynS

S )} the source domain labeled data of
size nS , which are assumed to be sufficient enough to train an accurate classifier
for the source domain, and by DT = {(x1

T , y1
T ), · · · , (xnT

T , ynT
T )} the target domain la-

beled data of size nT , which are assumed to be too insufficient to learn an accurate
classifier for the target domain. Moreover, we denote by DI ={x1

I , · · · ,xnI
I } the mix-

ture of unlabeled data of multiple intermediate domains, where nI is assumed to
be large enough. Here a domain corresponds to a concept or class for a specific
classification problem, such as face or airplane recognition from images. Without
loss of generality, we suppose the classification problems in the source domain
and the target domain are both binary. All data points are supposed to lie in the
same feature space. Let pS (x), pS (y |x) and pS (x, y) be the marginal, conditional
and joint distributions of the source domain data, respectively, pT (x), pT (y |x) and
pT (x, y) be the parallel definitions for the target domain, and pI (x) be the marginal
distribution for the intermediate domains. In a TTL problem, we have

pT (x) �= pS (x), pT (x) �= pI (x), and pT (y |x) �= pS (y |x).

The goal of TTL is to exploit the unlabeled data in the intermediate domains to
build a bridge between the source and target domains, which are originally distant
to each other, and train an accurate classifier for the target domain by transferring
supervised knowledge from the source domain with the help of the bridge. Note
that not all the data in the intermediate domains are supposed to be similar to the
source domain data, and some of them may be quite different. Therefore, simply
using all the intermediate data to build the bridge may fail to work.
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11.4.2 The Selective Learning Algorithm

In this section, we present the SLA proposed in the work by Tan et al. (2017).

Auto-encoders and Its Variant

As a basis component in SLA is the autoencoder (Bengio, 2009) and its vari-
ant; we review them here. An autoencoder is an unsupervised feedforward neural
network with an input layer, one or more hidden layers, and an output layer. It
usually includes two processes: encoding and decoding. Given an input x ∈ Rq ,
an autoencoder first encodes it through an encoding function fe (·) to map it to a
hidden representation, and then decodes it through a decoding function fd (·) to
reconstruct x. The process of the autoencoder can be summarized as

encoding : h= fe (x), and decoding : x̂= fd (h),

where x̂ is the reconstructed input to approximate x. The learning of the pair of
encoding and decoding functions, fe (·) and fd (·), is done by minimizing the re-
construction error over all training data, that is, min

fe , fd

∑n
i=1 ‖x̂i −xi‖2

2.

After the pair of encoding and decoding functions are learned, the output of
encoding function of an input x, that is, h = fe (x), is considered as a higher-level
and robust representation for x. Note that an autoencoder takes a vector as the
input. When an input instance represented by a matrix or tensor, such as images,
is presented to an autoencoder, the spatial information of the instance may be
discarded. In this case, a convolutional autoencoder is more desired, and it is a
variant of the autoencoder by adding one or more convolutional layers to charac-
terize inputs, and one or more correspondingly deconvolutional layers to generate
outputs.

Instance Selection via Reconstruction Error

A motivation behind SLA is that, in an ideal case, if the data from the source
domain are useful for the target domain, then one should be able to find a pair
of encoding and decoding functions such that the reconstruction errors on the
source domain data and the target domain data are both small. In practice, as the
source domain and the target domain are distant, there may be only a subset of
the source domain data that is useful for the target domain. The situation is sim-
ilar in the intermediate domains. Therefore, to select useful instances from the
intermediate domains, and remove irrelevant instances from the source domain
for the target domain, SLA learns a pair of encoding and decoding functions by
minimizing reconstruction errors on the selected instances in the source and in-
termediate domains and all the instances in the target domain simultaneously.
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The objective function to be minimized is formulated as follows:

J1( fe , fd ,vS ,vT )= 1

nS

nS∑
i=1

vi
S‖x̂i

S−xi
S‖2

2+
1

nI

nI∑
i=1

vi
I ‖x̂i

I−xi
I‖2

2

+ 1

nT

nT∑
i=1

‖x̂i
T −xi

T ‖2
2+R(vS ,vT ), (11.13)

where x̂i
S , x̂i

I and x̂i
T are reconstructions of xi

S , xi
I and xi

T based on the autoencoder,

vS = (v1
S , · · · , vnS

S )�, vI = (v1
I , · · · , vnI

I )� and vi
S , v j

I ∈ {0,1} are selection indicators for
the i -th instance in the source domain and the j -th instance in the intermediate
domains, respectively. When the value is equal to 1, the corresponding instance
is selected and otherwise unselected. R(vS ,vT ) is a regularization function on vS

and vT to avoid a trivial solution by setting all values of vS and vT to be zero. In

SLA, R(vS ,vT ) is defined as R(vS ,vT )=−λS
nS

nS∑
i=1

vi
S − λI

nI

nI∑
i=1

vi
I . Minimizing this term

is equivalent to encouraging the selection of as many instances as possible from
the source and intermediate domains. Two regularization parameters, λS and λI ,
control the importance of this regularization term.

Incorporation of Side Information

By solving the minimization problem, (11.13), one can select useful instances
from the source and intermediate domains for the target domain through vS , vT

and learn high-level hidden representations for data in different domains through
the encoding function fe (x) simultaneously. However, the learning process is in
an unsupervised manner. As a result, the learned hidden representations may not
be relevant to the classification problem in the target domain. This motivates to
incorporate side information into the learning of the hidden representations for
different domains. For the source and target domains, labeled data can be used
as the side information, while, for the intermediate domains, there is no label in-
formation. SLA considers the predictions on the intermediate domains as the side
information and use the confidence on the predictions to guide the learning of
the hidden representations. To be specific, we propose to incorporate the side in-
formation into learning by minimizing the following function

J2( fc , fe , fd )= 1

nS

nS∑
i=1

vi
S�(yi

S , fc (hhhi
S ))+ 1

nT

nT∑
i=1

�(yi
T , fc (hi

T ))+ 1

nI

nI∑
i=1

vi
I g ( fc (hi

I )),

(11.14)

where fc (·) is a classification function to output classification probabilities, and
g (·) is the entropy function defined as g (z)=−z ln z− (1− z) ln(1− z) for 0≤ z ≤ 1,
which is used to select instances with high prediction confidences in the interme-
diate domains.
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Overall Objective Function

By combining the two objectives in (11.13) and (11.14), we obtain the final ob-
jective function for TTL as follows:

min
Θ,v

J =J1+J2, s.t. vi
S , vi

I ∈ {0,1}, (11.15)

where v = {vS ,vT } and Θ denotes all parameters of the functions fc (·), fe (·), and
fd (·).

To solve (11.15), SLA uses the block coordinate decedent method, where, in
each iteration, variables in each block are optimized while keeping other variables
fixed. In (11.15), there are two blocks of variables: Θ and v. When the variables in
v are fixed, we can update Θ using the back propagation algorithm where the gra-
dients can be computed easily. Alternatively, when the variables in Θ are fixed, we
can obtain an analytical solution for v as follows,

vi
S =

⎧⎪⎨⎪⎩
1 if �(yi

s , fc ( fe (xxxi
S )))+‖x̂i

S −xi
S‖2

2 <λS

0 otherwise
(11.16)

vi
I =

⎧⎪⎨⎪⎩
1 if ‖x̂i

I −xi
I‖2

2+ g ( fc ( fe (xi
I )))<λI

0 otherwise
(11.17)

Based on (11.16), we can see that for data in the source domain, only those with
low reconstruction errors and low training losses will be selected during the op-
timization procedure. Similarly, based on (11.17), it can be found that, for data
in the intermediate domains, only those with low reconstruction errors and high
prediction confidences will be selected.

Figure 11.6 The network architecture used in SLA (adapted from Tan et al. [2017])

An intuitive explanation of this learning strategy is twofold: (1) When updating
v with a fixed Θ, “useless” data in the source domain will be removed and inter-
mediate data that can bridge the source and target domains will be selected for
training; and (2) when updating Θ with fixed v, the model is trained only on the
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selected “useful” data samples. The overall algorithm for solving (11.15) is sum-
marized in Algorithm 11.2.

The network architecture corresponding to (11.15) is illustrated in Figure 11.6.
From Figure 11.6, we note that, except for the instance selection component v, the
rest of the architecture in Figure 11.6 can be viewed as a generalization of an au-
toencoder or a convolutional autoencoder by incorporating the side information.

Algorithm 11.2 The SLA

1: Input: Data in S , T and I , and parameters λS , λI and T ;
2: Initialize Θ, vS = 1, vvv I = 0; // All source data are used
3: while t < T do
4: Update Θ via the back propagation algorithm; // Update the network
5: Update v by (11.16) and (11.17); // Select “useful” instances
6: t = t +1
7: end while
8: Output: Θ and v
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AutoTL: Learning to Transfer Automatically

12.1 Introduction

Three key research issues in transfer learning, discussed in Chapter 1, are when
to transfer, how to transfer and what to transfer. Once a source domain is con-
sidered to be helpful for a target domain (when to transfer), a transfer learning
algorithm (how to transfer) can help learn the transferable knowledge across
domains (what to transfer). Usually different transfer learning algorithms are likely
to learn different knowledge, leading to uneven transfer learning effectiveness,
which can be measured by the improvement of the performance over non-transfer
algorithms in the target domain. To obtain good performance in the target
domain, many transfer learning algorithms can be treated as candidate algorithms
to try, including instance-based transfer learning algorithms (Dai et al., 2007b),
model-based transfer learning algorithms (Tommasi et al., 2014) and feature-
based transfer learning algorithms (Pan et al., 2011). It is computationally
expensive and practically impossible to try all the transfer learning algorithms in a
brute-force way. As a trade-off, researchers usually heuristically choose a transfer
learning algorithm, which may lead to a suboptimal performance.

It is not the only way to optimize what to transfer by exploring the whole space
of transfer learning algorithms. Actually transfer learning experiences are help-
ful. It has been widely accepted in educational psychology (Luria, 1976; Belmont
et al., 1982) that learning from experience is a good methodology. To improve
transfer learning skills of deciding what to transfer, humans can conduct meta-
cognitive reflection on diverse experiences. Unfortunately, by ignoring previous
transfer learning experiences, all existing transfer learning algorithms learn from
scratch.

With machine learning models getting increasingly complex, the need for
automated machine learning, or AutoML (Yao et al., 2018), has emerged as a strong
trend in machine learning. As machine learning involves many tedious steps that
require much experience from human experts, ranging from sample selection,
feature engineering, algorithm selection, architectural design, model tuning and
evaluation, and so on, machine learning practice desires an end-to-end solution
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where many of these steps can be automated. Recognizing the need to design
sophisticated architectures and engage in complex parameter tuning by AI
experts, AutoML aims to liberate humans from the manual-labor-driven tasks to
optimize a machine learning model, by introducing automation through machine
learning itself. Several research prototypes and solutions have been applied in
real world applications, for example see the works by Kotthoff et al. (2017), Wong
et al. (2018), Liu et al. (2018c), Bello et al. (2017) and Feurer et al. (2015). AutoML
has several advantages compared to traditional manual-based model construc-
tion, including fast deployment in practice, optimized selection of model and a
lower cost. There have been several applications of AutoML, including image and
speech recognition, recommendation systems and predictive analytics.

Similar to AutoML, transfer learning can also be packaged in an end-to-end
process. We can call the automated transfer learning framework collectively as
AutoTL, which stands for automated transfer learning. In this chapter we present a
novel AutoTL framework called Learning to Transfer (L2T), which selects transfer
learning algorithms automatically through experience. This framework was first
proposed by Wei et al. (2018). L2T is a special case of AutoTL, with an aim of iden-
tifying the suitable algorithm and model parameters based on previous transfer
learning experience.

By exploiting previous transfer learning experiences, the L2T framework is to
improve the transferring performance from a source to a target domain to
determine what and how to transfer between them. To achieve this goal, L2T
consists of two phases. In the first phase, given transfer learning experiences, each
of which consists of three elements, including a pair of source and target domains,
the knowledge transferred between them and the performance improvement, a
reflection function, which functionally maps a pair of domains and the trans-
ferred knowledge to the performance improvement, is learned from all the experi-
ences. During the second phase, for a new pair of domains, the learned reflection
function as an approximation of the performance improvement is maximized to
determine what to transfer between the two domains.

12.2 The L2T Framework

An L2T agent keeps a record of Ne transfer learning experiences by conduct-
ing transfer learning several times. Each transfer learning experience is defined as
Ee = (〈Se ,Te〉, ae , le ) where Se = {Xs

e ,ys
e } and Te = {Xt

e ,yt
e } denote a source

domain and a target domain, respectively. X∗
e ∈ Rn∗

e ×m denotes the data matrix
and each domain has n∗

e examples in an m-dimensional feature space X ∗
e , where

the superscript ∗ denotes s or t as a source or target domain. y∗e ∈Y ∗
e denotes an

n∗
l e × 1 vector consisting of labels for X∗

e . Usually the number of labeled
examples in the source domain is much larger than that of the target domain, that
is, nt

l e � ns
l e . We consider the setting of homogeneous feature space and
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Figure 12.1 An illustration of the L2T framework. The training stage learns a
reflection function f , which encrypts transfer learning skills, based on Ne transfer
learning experiences {E1, · · · ,ENe }. In the testing stage, for the (Ne +1)-th source-
target pair, the learned reflection function f is maximized to learn the transferred
knowledge between them, that is, W∗

Ne+1

heterogeneous label spaces for each pair of domains, that is, X s
e = X t

e and
Y s

e �= Y t
e . ae ∈ A = {a1, · · · , aNa } denotes a transfer learning algorithm that has

been conducted between Se and Te . Here the transferred knowledge by the
algorithm ae is parameterized as We . Finally, le = pst

e /pt
e denotes the performance

improvement ratio that is the label of the corresponding transfer learning experi-
ence, where pst

e is the performance (e.g., classification accuracy) of a test data set
in Te after transferring We from Se and pt

e is that of the same test data set without
transfer.

In the training stage as illustrated in Figure 12.1, the L2T aims to learn a reflec-
tion function f based on Ne transfer learning experiences {E1, · · · ,ENe } by approx-
imating le by f (Se ,Te ,We ). When a new pair of domains 〈SNe+1,TNe+1〉 comes,
the L2T model can maximize f to learn the knowledge to be transferred, that is,
W∗

Ne+1, as shown in the testing stage in Figure 12.1.

12.3 Parameterizing What to Transfer

Transfer learning algorithms used in different experiences are usually different.
A prerequisite for learning the reflection function is to uniformly parameterize
“what to transfer” for each algorithm in the candidate set A . Here A is assumed
to contain algorithms transferring single-level latent features, because existing
model-based and instance-based algorithms cannot be applied to the transfer
learning setting we study (i.e., X e

s =X e
t and Y e

s �=Y e
t ). As a result, what to trans-

fer is parameterized with a latent feature matrix W, as elaborated in the following.
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Latent feature-based algorithms are to learn domain-invariant features across
domains. In those algorithms, what to transfer denotes the shared features across
domains. The way to define domain-invariant features includes two classes of
algorithms, that is, common latent space-based and manifold ensemble-based
algorithms.

12.3.1 Common Latent Space-Based Algorithms

By assuming that domain-invariant features lie in a single shared latent space,
this class of algorithms includes but is not limited to TCA (Pan et al., 2011), LSDT
(Zhang et al., 2016) and DIP (Baktashmotlagh et al., 2013). With ϕ denoting a func-
tion mapping the original feature representation into the latent space, when ϕ is
a linear function, it can be represented as an embedding matrix W ∈Rm×u , where
u is the dimensionality of the latent space. Therefore, what to transfer can be
parameterized with W. Otherwise, although the feature mapping of a nonlinear ϕ
may not be explicitly defined in most cases, what to transfer can still be parame-
terized with W based on the similarity metric matrix (Cao et al., 2013) in the latent
space, that is, G = (Xt

e )†Zt
e (Zt

e )T [(Xt
e )T ]† ∈ Rm×m according to Xt

e G(Xt
e )T = Zt

e (Zt
e )T,

where (Xt
e )† is the pseudo-inverse of Xt

e . Then, the LDL decomposition applied to
G= LDLT can lead to the latent feature matrix W= LD1/2.

12.3.2 Manifold Ensemble-Based Algorithms

Initiated by Gopalan et al. (2011), manifold ensemble algorithms assume that
multiple subspaces, which are treated as points on the Grassmann manifold, with
the same dimension shared by a source domain and a target domain. Then the
latent representation of target examples becomes Zt (nu )

e = [ϕ1(Xt
e ), · · · ,ϕnu (Xt

e )]
when nu subspaces are sampled from the Grassmann manifold. When nu appro-
aches the infinity, which implies that all the subspaces are sampled, Gong et al.
(2012a) has proved that Zt (∞)

e (Zt (∞)
e )T = Xt

e G(Xt
e )T , where G denotes the similarity

metric matrix. Then the latent feature representation can be defined by W= LD1/2.

12.4 Learning from Experiences

Given all experiences {E1, · · · ,ENe }, the training stage is to learn the reflection
function f as an approximation of the improvement ratio. The improvement
ratio le is closely related to two factors. The first factor is the divergence between
a source domain and a target domain in the latent space, while the second one
denotes the discriminative ability of the target domain in the latent space. There-
fore, the reflection function f is built by taking both factors into consideration. In
the following section, we discuss how to define these two factors.
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12.4.1 Divergence between Source and Target Domains

Similar to the work by Pan et al. (2011), the maximum mean discrepancy (MMD)
is used to measure the divergence between domains. MMD empirically calculates
the distance between the mean of source examples and that of target examples as
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where xt
e j denotes the j -th example in Xt

e , φ maps from the u-dimensional latent
space to the RKHS H and K (·, ·)= 〈φ(·),φ(·)〉 denotes the kernel function. Differ-
ent kernels K leads to different MMDs, leading to different forms of f and hence
learning f is to identifying the optimal K . By following multi-kernel MMD (Gret-
ton et al., 2012), K is parameterized as a linear combination of Nk kernels with
non-negative combination coefficients, that is, K =∑Nk

k=1βkKk (βk ≥ 0,∀k), and

the coefficients βββ= [β1, · · · ,βNk

]T will be learned instead. Then the MMD can be
simplified as
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with d̂ 2

e(k) calculated based on the k-th kernel Kk .

However, it is insufficient to the MMD alone to measure the divergence between
domains. A pair of domains with a small MMD have little distributional overlap-
ping if the variance of the distance between them is high. The distance variance
among all pairs of instances across domains is also required to fully characterize
the difference. According to Gretton et al. (2012), (12.1) is the empirical estimation
of d 2
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Consequently, the distance variance, σ2
e , can be computed as
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As the MMD is characterized with Nk positive semi-definite kernels, we can
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obtain σ2
e = βββT Qeβββ, where Qe = cov(h) =

⎡⎢⎣ σe(1,1) · · · σe(1,Nk )

· · · · · · · · ·
σe(Nk ,1) · · · σe(Nk ,Nk )

⎤⎥⎦ with each

entry σe(k1,k2) calculated as σe(k1,k2) = cov(hk1 ,hk2 ) = E
[
(hk1 −Ehk1 )(hk2 −Ehk2 )

]
,

where Ehk1 stands for Exs
e xs′
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e xt ′

e
hk1(xs

e ,xs′
e ,xt

e ,xt ′
e ) with hk1 calculated via the k1-th

kernel.

12.4.2 Discriminative Ability of Target Domain

Since there are a limited number of labeled examples in the target domain,
unlabeled examples are used to help evaluate the discriminative ability based on
the unlabeled discriminant criterion proposed by Yang et al. (2007a) as
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It is noted that the calculation of τe depends on kernels. With τe(k) obtained from
the k-th kernel Kk , τe can be reformulated as τe = ∑Nk

k=1βkτe(k) = βββT τττe , where
τττe = [τe(1), · · · ,τe(Nk )]T .

12.4.3 Optimization Problem

By combining the two aforementioned factors to build the reflection function
f , the optimization problem to learn f can be formulated as

βββ∗,λ∗,μ∗,b∗= arg min
βββ,λ,μ,b

Ne∑
e=1

Lh

(
βββT d̂e +λβββT Q̂eβββ+ μ

βββT τττe
+b,

1

le

)
+γ1R(βββ,λ,μ,b),

s.t. βk ≥ 0, ∀k ∈ {1, · · · , Nk }, λ≥ 0, μ≥ 0, (12.2)

where f is defined as f = 1/
(
βββT d̂e +λβββT Q̂eβββ+ μ

βββT τττe
+b

)
, λ and μ are two vari-

ables to balance the importance of the three terms in f , b is a bias, Lh(·) is the
Huber regression loss (Huber, 1964), the regularizer R defines the �2 norm reg-
ularization and γ1 is a regularization parameter. (12.2) combines the difference
between domains, including the MMD distance βββT d̂e and the distance variance
βββT Q̂eβββ, and the discriminant criterion βββT τττe in the target domain to approximate
the performance improvement ratio le .
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12.5 Inferring What to Transfer

Once the reflection function f (S ,T ,W;βββ∗,λ∗,μ∗,b∗) is learned in the training
stage, the L2T agent will utilize the learned reflection function to optimize what
to transfer, that is, the latent feature matrix W, for a new pair of a source domain
SNe+1 and a target domain TNe+1. As the optimal latent feature matrix W∗

Ne+1 is
to maximize the value of f , the corresponding objective function is formulated as

W∗
Ne+1 =argmin

W
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where γ2 is a regularization parameter. The first and second terms in (12.3) are
computed as
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where shorthands, including vi=xs
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Ne+1, are used. The third term in (12.3)

can be calculated as (βββ∗)T τττW =∑Nk
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∗
k

tr(WT SN
k W)

tr(WT SL
k W)

. The non-convex (12.3) can be

optimized via the conjugate gradient method.

12.6 Connections to Other Learning Paradigms

12.6.1 Transfer Learning

Three key research issues, that is, when, what and how to transfer, are identi-
fied in Chapter 1 for transfer learning. Models (Yang et al., 2007b; Tommasi et al.,
2014), instances (Dai et al., 2007b) or features (Pan et al., 2011) can be transferred
between domains. Some works (Yang et al., 2007b; Tommasi et al., 2014) use the
source models to regularize the target model that is based on SVM. In (Dai et al.,
2007b), the target learner is boosted by utilizing useful source instances. Vari-
ous techniques that are able to learn transferable features between domains have
been studied extensively. These techniques are based on pivot features selected
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manually (Blitzer et al., 2006), dimensionality reduction (Pan et al., 2011; Bak-
tashmotlagh et al., 2013, 2014), collective matrix factorization (Long et al., 2014),
dictionary learning/sparse coding (Raina et al., 2007; Zhang et al., 2016), mani-
fold learning (Gopalan et al., 2011; Gong et al., 2012a) and deep learning (Yosinski
et al., 2014; Long et al., 2015; Tzeng et al., 2015). Different from L2T, all existing
studies focus on transferring from scratch.

12.6.2 Multi-task Learning

Multi-task learning (Caruana, 1997; Zhang and Yang, 2017b) learns multiple
related tasks together by sharing knowledge among tasks to improve the gener-
alization performance of all the tasks, which is different from transfer learning
and L2T, as shown in Figure 12.2.

Training Testing
Transfer learning Task 1 Task 2
Multi task learning Task 1 ⋯ Task N Task 1 ⋯ Task N
Lifelong learning Task 1 ⋯ Task N Task N+1

Learning to transfer
Task 1                  Task 2N-1⋯
Task 2                  Task 2N

Task 2N+1

Task 2N+2

Figure 12.2 Illustration of the differences between L2T and other related learning
paradigms

12.6.3 Lifelong Machine Learning

Lifelong machine learning, to be introduced in Chapter 14, transfers knowl-
edge contained in existing learning tasks to a new task, which is assumed to lie
in the same environment as existing tasks. Ruvolo and Eaton (2013) study lifelong
machine learning from the perspective of online meta-learning. The commonal-
ity between L2T and lifelong machine learning is that they both aim to exploit
historical experiences to improve the performance of a learning system, while the
difference between them is that each historical experience in lifelong machine
learning is a traditional learning task but that in L2T is a transfer learning task,
which is illustrated in Figure 12.2.

12.6.4 Automated Machine Learning

As mentioned earlier in this chapter, the L2T framework aims to automatically
tune a suitable transfer learning model for a transfer learning task. Hence, it is
strongly related to AutoML, which aims to construct machine learning programs
without human assistance and within limited computational budgets.
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Several successful attempts have been made in AutoML. For instance, Kotthoff
et al. (2017) present a system designed to automate the search in the machine
learning system Waikato environment for knowledge analysis’ learning algorithm
space and their respective hyperparameter settings to maximize performance.
Wong et al. (2018) apply transfer learning to help improve the AutoML process,
making it more cost-effective to apply the technique. Feurer et al. (2015) present
an AutoML system based on scikit-learn that automatically considers the past per-
formance of a system on similar data sets in the past. The technique is based
on an ensemble of learning systems that are to be optimized. Bello et al. (2017)
present an approach to automate the process of discovering optimization meth-
ods for deep learning architectures and their method uses a reinforcement learn-
ing algorithm to maximize the performance of a model based on a few functional
primitives to update a model. Liu et al. (2018c) present a method for learning the
structure of convolutional neural networks with a sequential-model-based
optimization strategy. This method is shown to be more efficient than the contem-
porary reinforcement-learning-based solutions.

The L2T framework introduced in this chapter is a special case of the AutoTL
framework, which applies AutoML to transfer learning tasks. In particular, L2T
belongs to the model selection module in AutoML. Different AutoML techniques
can be applied here to transfer learning. However, AutoML and AutoTL also have
differences. Specifically, the former focuses on automating the supervised learn-
ing algorithms, whereas the latter (i.e., the L2T framework) focuses on transfer
learning only. Hence, the L2T framework can be viewed as an AutoML case for
transfer learning.
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Few-Shot Learning

13.1 Introduction

The concept of “few-shot learning” is inspired by the observation that human
beings are capable of learning a novel concept with only a few examples, or even
without any examples! Babies are especially capable of capturing typical char-
acteristics of a concept by few observations. For instance, when presented with
an image and told that the object in the image is an apple, humans can rapidly
capture the key features about its shape, color and texture, and naturally asso-
ciate such features with the concept “fruit apple.” Next time, when we encounter
a particular kind of apple, say a wax apple, we immediately recognize it no matter
whether the scale or the viewing angle is different from the previous observations.
Sometimes, even if we are not informed of the characteristics of the image, it is
still possible for us to guess that the object may belong to a species akin to apple,
because they share some physical properties such as red skin, smooth texture and
shape. We do not need to be taught the concept through massive examples with a
variety of deformations such as positive and negative examples.

However, such an easy task is difficult for a majority of contemporary machine
learning algorithms, especially for deep learning models that perform competi-
tively in many perception tasks. In contrast with the ability for humans to learn
from a small set of examples, the learning part of machine learning algorithms is
often based on the existence of a large number of examples. Typically, the more
complicated a model is, the more labeled data the model needs to be fed dur-
ing training. As a result, when a machine learning model encounters an entirely
new concept, the chance that a previous experience can help in making a right
judgment is random at best. In most cases, machine learning algorithms require
a large amount of new examples to be updated for new tasks.

To endow machine learning algorithms with the ability to capture useful inform-
ation from only a small number of examples, researchers have tried to simulate
the delicate process in which humans learn from small samples, instead of bru-
tally training an end-to-end model with “big data.” The core of this group of mod-
els is built on a characteristic of human cognitive ability with which humans learn
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a new concept based on all previous experiences “pretraining.” There are many
phases of cognition ranging from physical observation to mental comprehension
and memory. Take the recognition of fruits as an example. Although
different kinds of fruits, such as wax apple and fruit apple, have distinctive
appearances, flavors and textures, they share something in common. Both their
skins are smooth and their shapes are similar. Those similar features support that
the knowledge can be “transferred” from one type of apple to the other. If an
algorithm possesses such a generalization ability based on universal features, a
model can also easily be adaptable to a novel concept with a few correcting
examples.

Following this insight, researchers have proposed few-shot learning to mimic
the learning ability of humans. There are many variants of few-shot learning, in-
cluding zero-shot learning, one-shot learning, Bayesian program learning (BPL),
poor resource learning and domain generalization. They all can be understood as
some variants of transfer learning. Thus, in the context of transfer learning, we
will review them one by one.

Compared with the previously introduced transfer learning settings, in few-
shot learning, the target domain are generally assumed to have very limited data,
including both labeled and unlabeled data. In some extreme cases, no data
instances in the target domain are assumed to be available in advance; for exam-
ple, this might be the case in domain generalization problems. In the following, we
introduce some representative state-of-the-art models under the settings of zero-
shot learning (Section 13.2), one-shot learning (Section 13.3), BPL (Section 13.4),
poor resource learning (Section 13.5) and, finally, domain generalization learning
(Section 13.6).

13.2 Zero-Shot Learning

13.2.1 Overview

In the zero-shot learning setting, a learning system handles testing samples
from novel classes that do not appear in the training data set. Compared with
conventional machine learning settings, the critical difference is that new con-
cepts or labels appear in the test samples, and this difference requires a “bridge”
from knowledge of existing classes to that of the novel classes. The main bridge
employed in most zero-shot learning methods is the so-called semantic features.
These features make the transfer learning possible.

In particular, semantic features of a certain class are the attributes characteriz-
ing this class. Thus, instead of learning a mapping from X to Y , where X is an
m-dimensional feature space and Y is a label space, we try to learn a function:
X →F where F is a semantic feature space. Apart from that, we need a knowl-
edge base K , which lists all the class labels and their associated semantic features,
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which act as a bridge. The knowledge base K has the information about both the
existing classes and novel classes. Thus, after we obtain semantic features of an
example, we match the features in the knowledge base to obtain the most similar
classe as the one to which the data sample belongs. In the following, we introduce
some useful terminologies used in the work by Palatucci et al. (2009).

A semantic feature space, denoted by F , is a d-dimensional space. Each dimen-
sion in the space represents an implicit or explicit attribute that can be either
continuous or categorical. In the explicit case, the dimension denotes an explicit
semantic attribute such as whether the object has a pair of wings or how many
legs the object has. In the implicit case, it is hard to give the feature an explicit de-
scription, but we know that the feature helps us to distinguish between different
classes. The most well-known example of such kind of features is the word em-
bedding, where words with similar semantic meanings are close to each other in
the embedding space.

A semantic knowledge base is denoted by K = {(f1, y1), · · · , (fk , yk )
}
, where yi ∈

Y represents a label and fi ∈ F represents the corresponding representation in
the semantic feature space. It is assumed that there is a one-to-one mapping be-
tween F and Y . Therefore, as long as we get a semantic feature representation f,
we can find the class it belongs to, and vice versa.

The knowledge base K can be constructed either by the manual annotation
or via machine learning. With manual annotation, each assigned label is given
by human annotators, which is often explainable. In images, an annotator labels
the objects appearing in an image with tags indicating the presence or absence of
a certain attributes. Machine learning-based annotation is based on a corpus of
text, which consists of the terms of all the class labels. A model is trained to im-
itate the ability of human of learning new concepts via reading. For example, we
may not know the meaning of “liger,” but after going through a description such as
“The liger is a hybrid cross between a male lion and a female tiger,” we can extrap-
olate that the appearance of a liger is akin to both a tiger and a lion, to some ex-
tent. The word embedding is critical in capturing the semantic similarity of words.
If two words occur in a similar context, then their semantic similarity may be high.
Technically, the core of this category of methods is to encode words into a distri-
butional representation by maximizing the probability of the term occurrence in
a context given pivot terms or maximizing the probability of the occurrence of the
pivot term given terms in the context.

Shen et al. (2006b) present one of the first works in zero-shot learning via a
“bridging classifier”. This work won the Championship of 2005 ACM KDD CUP
data-mining competition (Shen et al., 2005), and has been subsequently applied
to several commercial search engine and advertisement systems. We will give a
detailed description of this solution below.
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13.2.2 Algorithms for Zero-Shot Learning

Many zero-shot learning algorithms have been proposed and they can be clas-
sified into two categories. The first class is from the perspective of the classifi-
cation or regression. The other is from the perspective of the energy function
ranking.

Classification and Regression
As mentioned earlier, in zero-shot learning a mapping process is needed, which

is divided into two phases, X →F and F →Y . F is the semantic feature space to
bridge different classes. Each dimension in the semantic feature space can either
be continuous or be categorical.

To enable zero-shot learning, in the first step, we first need to translate the la-
bels in training examples to semantic features f based on the knowledge base. In
the second step, we can fit a collection of functions to training examples, where
the function can be either a classifier for categorical feature or a regression model
for continuous feature. We have

{
(xs

1, fs
1), · · · , (xs

ns
, fs

ns
)
}
, because f is multi-

dimensional and each dimension among them requests for a prediction model.
During the testing phase, we apply the classifier to the target task. Our first step

is to map xt
i to ft

i for each i ∈ {1,2, · · · ,nt } by the collection of prediction models
that we have just learned. The second step is to go through the knowledge base
to identify the class with the highest similarity between the predicted semantic
features and the prototype semantic features of the class, and output the highest
ranked one.

Shen et al. (2006b) present one of the first works in zero-shot learning via a
“bridging classifier.” This work won the Championship of 2005 ACM KDD CUP
data-mining competition, and has been subsequently applied to several commer-
cial search engine and advertisement systems (Shen et al., 2005). In this algorithm,
the goal is to classify a given query into new category labels, when there is few or
no training data given for the labels.

To solve this problem, two phases were used to build a zero-shot classifier
model. Phase I corresponds to the training phase of a typical machine learning
algorithm, in which data from the Web are collected for training a collection of
intermediate classifiers that map text documents to the intermediate categories
that can potentially cover a huge label space (300,000 in all). Phase II maps the
labels in the base classifiers to the new labels in the target domain to fully connect
the base documents to the target labels, which is less than 100. The intermediate
class label space corresponds to the semantic labels mentioned earlier, and the
Web provides the data that connects an incoming query to the semantic features
and then to the target labels.

A full description of the algorithm with experiments on query classification can
be found in the work by Shen et al. (2006a). Let p(C T

i |q) be the probability of con-
ditional probability of the query q belonging to class C T

i . p(C T
i |C I

j ) and p(q j |C I
j )

are similarly defined. Here p(C I
j ) is the prior probability of the intermediate class
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label C I
j , which can be estimated from the Web pages in C I . Their relationship is

computed by applying the Bayes rule:

p(C T
i |q)=ΣC I

j
p(C T

i ,C I
j |q)

=σC I
j
p(C T

i |C I
j , q)p(C I

j |q)

∝σC I
j
p(C T

i |C I
j )p(q|C I

j )p(C I
j ).

The terms in the last equation can be estimated by term frequency of words or
phrases in a category. For example,

p(C T
i |C I

j )=Πn
k=1(p(wk |C I

j ))
nk . (13.1)

Finally, the class to be output is determined by the maximum likelihood formula:

c∗ = argmax
C T

i

p(C T
i |q). (13.2)

A schematic figure showing how the mappings from queries to the target classes
through the intermediate classes is shown in Figure 13.1. In this figure, a query
qk is mapped to the target class label C T with a certain probability that is calcu-
lated through the intermediate classifiers from Q to C I , and then from C I to the
target C T .

Q

Figure 13.1 The schematic graph shows the bridging classifier for query classifi-
cation through intermediate domains (adapted from Shen et al. [2006b])

The semantic feature can be represented in an explicit form such as annotated
attributes or an implicit form such as semantic label encodings. Socher et al.
(2013a) propose a regression model to project a raw feature representation into
a label encoding space. Under such setting, fi can be represented as f (yi ) for
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i ∈ {1, · · · ,n}, where f (yi ) is a distributional representation of label yi learned from
a large corpus. The regression model is a two-layer neural network and its objec-
tive function is defined as

l (x, y)= ‖ f (y)−θθθ(2) tanh(θθθ(1) x)‖2,

where θθθ(1) ∈ Rh×d , θθθ(2) ∈ Rm×h and tanh(·) denotes the hyperbolic tangent func-
tion. They also consider that, if existing and novel classes are mixed together in
the test set, this model may mistakenly classify an image from a novel class to an
existing one. This is a typical issue dealt in transfer learning literature. Since the
target and source domains have separate distributions, the model trained by the
source data cannot be applied to the prediction task of the target data directly. If
the model is given access to some examples from the target domain, it can employ
some domain adaptation techniques to alleviate the distribution difference.

To address the data-shortage issue, Socher et al. (2013a) add a step before the
classification step to detect novel samples that are the samples belonging to un-
seen classes. Then they employ two kinds of strategies to perform the classifica-
tion task for the two groups, respectively, with one strategy handling novelties or
outliers and the other one dealing with normal samples.

Another interesting model in this category is the convex combination of seman-
tic embeddings (ConSE) (Norouzi et al., 2013). The distinction between ConSE
and Socher et al.’s (2013a) model is on the choice of the objective function. In fact,
it hides the regression process in a standard classification process, so the mean
squared error is substituted by the classification error. The classifier is trained in
the source domain to estimate the probability of a data point belonging to each of
the classes. In the test phase, the trained classifier is applied to the target data to
output the probability that this data point is drawn from each source class. Next,
the representation of the sample in the semantic feature space is computed by a
convex combination of label encodings corresponding to each source class with
the estimated probabilities as the weights and mathematically it can be defined as

f (x)= 1

Z

T∑
t=1

P(ŷ(x, t )|x) f (ŷ(x, t )),

where top T most likely classes are involved, ŷ(x, t ) denotes the label with the t-th
highest probability, and Z is the normalization factor. The intuition behind the
method is to derive the representation with the similarity between the current
sample and different classes. Suppose the appearance of a liger is half akin to a
lion and half akin to a tiger, we have f (liger) is approximately 1

2 f (lion)+ 1
2 f (tiger).

With the predicted embedding in the semantic space, we can easily find its nearest
neighbors in the semantic knowledge base.

Energy Function Ranking
Another category of methods estimates the matching score between a raw fea-

ture and the encoding of a class label directly. Naturally, the class with the highest



13.2 Zero-Shot Learning 183

score will be the one that the sample belongs to. The formulation in this setting is
to map from X×F to S where S is the score space. After predicting the matching
scores for all the classes, we can rank the scores in descending order and select the
most likely one or several to produce the predicted label. The form of the mapping
function can either be simply bilinear (i.e., xT Wf), where W is a dx ×d f parameter
matrix to be learned, or nonlinear such as deep neural networks. Another differ-
ence lies in the choice of the loss function.
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Figure 13.2 The architecture of deep visual-semantic embedding model
(adapted from Frome et al. [2013]). The left part is an image recognition model,
the right part is a skip-gram language model and the central part is the joint
model based on the two components

Take deep visual-semantic embedding model (DeViSE) (Frome et al., 2013) as
a concrete example. The architecture is depicted in Figure 13.2. The goal here is
to predict labels for novel instances. The label encoding component in this model
is transferred from a pretrained language model, and the visual feature learning
component is transferred from a conventional classification model. They replace
the softmax layer of visual model with a projection layer to map the visual repre-
sentation to the label encoding. The objective of the model is to make the similar-
ity of the visual representation with the label encoding of the correct class higher
than other classes. As a result, the loss function is defined as

l
(
x, yl abel

)= ∑
j �=l abel

max
[
0,m− f (yl abel )�Wg (x)+ f (y j )�Wg (x)

]
,

where g (x) ∈ Rdh is the compressed representation of an image, m is the margin,
f (·) ∈Rd f represents the label encoding and W is a dh ×d f matrix utilized to com-
pute a matching score between the image representation and the label encoding.

In the training phase, parameters in the visual model, language model (i.e., la-
bel embedding) and W can be tuned to minimize the training loss on training
samples. In the test phase, given a test image, there is no need to compute the
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matching score between the test image and each label. We can only identify the
nearest neighbor of Wg (x) in the label encoding space.

13.3 One-Shot Learning

13.3.1 Overview

In the one-shot learning setting, we are only given one sample from each class.
One labeled data is clearly insufficient for most machine learning algorithms to
function well, especially for deep learning. Models can overfit to the single ex-
ample that a small variation on testing data can negatively influence the pre-
diction result. There are two strategies to prevent overfitting. One is to incorpo-
rate a prior knowledge to leverage previous experience. Using generative model
is a natural way to assimilate external knowledge to prevent the training process
from concentrating on the only sample (Li et al., 2006). The prior distribution
of a generative model encodes previous experience. BPL (Lake et al., 2011, 2013,
2015) is a representative framework in this area that will be detailed in the next
section.

The other line of methods transforms a one-shot classification task into a veri-
fication task (Koch, 2015). To be specific, when given a testing sample, the model
matches the example to prototypes stored in a support set of labeled samples. The
predicted label of the testing sample is the class that the prototype with the high-
est matching score belongs to.

In this section, we will focus on a deep learning model for the one-shot learning
task.

13.3.2 One-Shot Learning Algorithms

One advantage of the verification-based method is that it is simple. Despite its
simplicity, the verification-based method can be easily substituted by more so-
phisticated methods such as the deep learning algorithms. Here we present the
Siamese neural network to demonstrate the basic idea of this type of methods.

Siamese Neural Networks
The Siamese neural network was first proposed by Bromley et al. (1993) to solve

a signature verification task. It can be viewed as a pair of identical neural networks
connected by an objective function on top of the outputs from two neural net-
works. The twin neural networks have the same architecture and share the same
set of parameters. Going through either of the neural networks can be seen as em-
bedding the exemplar to a new representation to simplify diverse variations in the
raw feature representation and to erase noises. The symmetric structure ensures
that the embedding process is the same and, as a result, the prototype sample
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and the testing sample are projected into the same latent feature space. The mo-
tivation is to enable the model to have some discriminative ability. For instance,
given two objects, although humans may not be able to name them respectively,
humans can easily distinguish whether they are from the same category by com-
paring their key features, As long as the model possesses the discrimination abil-
ity, it can make its judgment by comparison. A typical architecture of the Siamese
neural network is shown in Figure 13.3.

Figure 13.3 The architecture of the Siamese neural network (adapted from
Koch [2015])

The inputs to the Siamese neural network are denoted by x(1) and x(2) respec-
tively and the output is denoted by P(x(1),x(2)). Within the twin neural networks,
L layers, which can be any of linear layer, convolutional layer, pooling layer or
other nonlinear layer, are connected in sequence. We use h(i ,l ), where i ∈ {1,2}
and l ∈ {1, · · · ,L}, to denote the output of the l-th layer in the i -th neural network.
The outputs of the two neural networks, h(i ,L) for i ∈ {1,2}, are separately trans-
formed into two vectors z(i ). Finally, we use a metric to measure the distance be-
tween them as the output P(x(1),x(2)). In Koch’s (2015) work, the distance metric is
defined as

d(z(1),z(2))=σ

(∑
j
α j |z(1)

j −z(2)
j |
)

,

where z(i )
j is the j -th entry in vector z(i ). The metric can naturally be used to ap-

proximate the probability of the pair of inputs to twin network owning the same
label.
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In the training phase, for each pair of inputs (x(1),x(2)) from the support set, the
output y is set to 1 if x(1) and x(2) belong to the same class, or to 0 otherwise. The
loss function is defined as

l (x(1),x(2))= y log(P(x(1),x(2)))+ (1− y) log(1−P(x(1),x(2))).

We can adopt various optimization techniques, such as stochastic gradient de-
scent (SGD) and Adam, to learn the parameters.

In the testing phase, we simply match the test sample to each sample in the
support set to identify the one with largest confidence. Finally, we regard the as-
sociated label as the prediction.

Other Variations
The Siamese neural network can be viewed as a hard classification method, as

it assigns the label of the most similar exemplar in the support set to the test-
ing sample without considering less similar ones. As a hard decision may be mis-
led by outliers, its deficiency is inevitable. Since if we only get one exemplar from
each class, which is independent of the rest, we do not have more evidence to
support the judgment. In other words, there is no way to borrow knowledge via
comparison with other exemplars to make the current comparison result more
compelling.

This issue can be addressed if we take two or more shots from the same class or
from other related classes, then we can exploit more information from more rel-
evant shots. In this situation, a soft classification is preferred. Vinyals et al. (2016)
propose an algorithm to use the exemplars in the whole library to make a soft de-
cision. Technically, the algorithm estimates the probability of the new observation
belonging to each category.

Given a support set of ns labeled examples S = {(xs
i , y s

i )}ns
i=1, the goal is to map

from this support set to a classifier cs(x), which can predict the probability dis-
tribution over all the candidate class labels y . A general form of the probability
distribution is defined as

P(y |x,S )=
ns∑

i=1
a(x,xs

i ) (y s
i ) subject to

ns∑
i=1

a(x,xs
i )= 1,

where x is a data point, y represents a label and a(x,xs
i ) = exp(c( f (x),g (xs

i )))∑k
j=1 exp(c( f (x),g (xs

i )))
de-

notes the probability of x belonging to the same class as xs
i based on two transfor-

mation functions f (·) and g (·).

In this way, the one-shot learning problem is transformed to a classification
problem. In the testing phase, we need to scan the whole support set to classify a
testing data point.
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13.4 Bayesian Program Learning

13.4.1 Overview

The BPL algorithm is proposed in the works by Lake et al. (2011, 2013, 2015).
It is an instance of unsupervised transfer learning, in which the label information
is not observed in the training data. The core of this framework is to model the
concept in a generative way.

Despite the complexity of the method, BPLs are composed of common primi-
tives at a more abstract level. The process of generating concepts from
primitives follows the intuition of human learning. For example, a character is
constructed by strokes and connections between strokes. Strokes are basic com-
ponents and some strokes constitute a more complex part of character that is
also shared across characters. Finally, a character comes out based on the struc-
tural composition of different parts. Lake et al. (2015) indicate that there are three
key ideas in BPL, which are compositionality, causality and learning to learn. The
compositionality property refers to the characteristic that a concept is composed
by primitives, as illustrated in the character-stroke example. The causality prop-
erty means that a probabilistic model captures the causal generative process from
primitives to concepts. This allows the method to practice the philosophy of learn-
ing to learn, which means that it applies experience from a different but related
task to current task. Thus, the BPL framework is also a variant of transfer learning.
In the following, we will formalize the BPL framework by introducing its details.

C

C

s

G

Figure 13.4 An illustration for the generative process of a character token, where
a character type acts like a template that can be used to generate a group of tokens
(adapted from Lake et al. [2011])
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13.4.2 BPL for Identifying Character Strokes

We follow the definitions in the works by Lake et al. (2011, 2013, 2015). Sup-
pose that we have a library of n black and white images with a character drawn
in each. In one-shot learning setting, there is only one example in the data set for
each character, for example, (A,B ,C , · · · ). The i -th image is represented by a w×h
binary matrix X(i ), where w denotes the width and h denotes the height. X(i )

(x,y) =
1(0 ≤ x ≤ w,0 ≤ y ≤ h) indicates that the pixel in location (x, y) is black and oth-
erwise X(i )

(x,y) = 0. From the image of the character, we need to infer the generative
process that gives rise to the character outlook. Specifically, the basic elements
include the number of strokes m, the specification of each stroke S j (1 ≤ j ≤ m),
the starting position of each stroke {Wj }m

j=1 and the mixing weights πππ. Figure 13.4
describes the generative process. We will detail the process as follows.

Generative Models for Character Types
A character type is composed of the basic elements mentioned earlier. First,

we sample m from a uniform distribution ranging from 1 to 10. Then, we sample
m strokes one by one. The first stroke S1 is sampled from uniform distribution
P(S1)= 1

K , where K is the size of the stroke set. The starting position of a stroke is
also sampled uniformly across the image, which has wh pixel points. The prob-
ability of each position to be chosen is 1

wh . The style and position of subsequent
strokes are sampled from two transition probability distributions P(Si+1|Si ) and
P(Wi+1|Wi ), which means that the drawing of the current stroke depends on the
previous stroke. In the last step, we sample mixing weights πππ from a Dirichlet dis-
tribution.

Generative Models for Character Tokens
A character token is the observed image of a character. You can regard it as the

writing criterion, while the actual token or image heavily relies on personal habit
that varies from writer to writer. Here, we allow systematic and random displace-
ments. The systematic displacement means that layout of a character skews from
its standard position in the image and the random displacement means that start-
ing point of each stroke may not be exactly in the standard position of the charac-
ter. Z = {Z1, Z2, · · · , Zm} denotes the distorted starting point and τττ represents the
systematic displacement. So, the prior distributions of Z and τττ are defined as

P(τττ)∝exp

(
− 1

2σ2
t

||τττ||22
)

,

P(Z|W,τττ)∝
m∏

i=1
exp

(
− 1

2σ2
z
||(Zi −Wi −τττ||22

)
.

After acquiring the actual starting position of each stroke, we are now able to
generate a character token, or a ink track on an image, according to an adjusted
ink model proposed by Revow et al. (1996). As we know, when writing down a
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character, the ink would flow to surrounding positions when a pen is pressed on
a point. It would be necessary to model the diffusion process, otherwise the ink
would be mistakenly considered as other strokes. The probability that color of a
position (x, y) is white is

P(X(i )
(x,y) = 0|S(i ),Z(i ),πππ(i ))=

(
1−Q

(
X(i )

(x,y)|S(i ),Z(i ),πππ(i )
))G

,

and the probability of it being black is

P(X(i )
(x,y) = 1|S(i ),Z(i ),πππ(i ))= 1−P(X(i )

(x,y) = 0|S(i ),Z(i ),πππ(i )).

The form of Q will be defined later and it can be intuitively viewed as a mixture of
random noises and the influence from all the m strokes.

Heuristically, if the track of a stroke is distant from position (x, y), it is unlikely
that X(x,y) is black due to such stroke. A Gaussian distribution can be used to
express this heuristic, in which, as the distance becomes larger, the probability
drops rapidly. As a single stroke traverses across many pixels of an image, which
results in a high complexity, the ink model discretizes continuous strokes to mul-
tiple beads. Take a vertical line as an example, we can use multiple points or beads
along it to approximate the stroke, instead of a complete line. In this way, we can
control the number of beads to be sampled along the line. We can define Q as

Q(X(i )
(x,y)|S(i ),Z(i ),πππ(i ))= β

R2 + (1−β)
m∑

j=1
π(i )

j V (X(i )
(x,y)|S(i )

j , Z (i )
j ),

V (X(i )
(x,y)|S(i )

j , Z (i )
j )= 1

B

B∑
b=1

N (X(i )
(x,y)|Cb +Z (i )

j ,σ2
bI),

where B is the number of beads to induce the stroke shape and Cb ∈ R2 is a bead
coordinate for stroke Si .

Inference for BPL

As the BPL approach is classified under the one-shot learning paradigm, the
setting is the same as the general case of one-shot learning. In our model, we have
one observation Xl of each character type from the target domain and several ob-
servations of character types from a source domain. Based on the labeled data,
the model makes an inference for unlabeled character tokens Xu . Then a Markov
chain Monte Carlo process along with the Metropolis-Hastings algorithm can be
used to make an inference in BPL for a newly arriving sample, in order to draw a
final conclusion on which character is seen by the system.
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13.5 Poor Resource Learning

13.5.1 Overview

In machine learning, “few-shot learning” and “zero-shot learning” are normally
used to describe learning methods suffering the insufficiency of training data in
computer vision applications. However, similar scenarios occur frequently in nat-
ural language processing (NLP) tasks as well. In the NLP community, researchers
resort to other terminologies such as “poor resource learning,” “zero resource
learning” and “low resource learning,” where the “resource” refers to the training
data.

There are more than 7,000 languages in the world, most of which do not have
any annotated data or corpus for building a NLP system. Treebank, a well-known
parsed text corpus that is annotated with syntactic or semantic sentence struc-
ture, covers forty languages, which are still a small portion of the entire language
set. Even within the scope of English language, there are many kinds of tasks in
plenty of domains. Part of speech tagging and dependency parsing require dis-
tinctive formats of data, and sentiment analysis for political news or sports news
also requires domain-specific texts. Thus, the poor-resource problem exists across
not only different languages, but also tasks of the same language.

The poor-resource problem in NLP is not as easy to be addressed as the few-
shot problem in computer vision. Even for humans, it is a long and tough trip
to grasp a new language. We need to remember a large number of vocabulary
and grammars. Fortunately, different languages more or less share some common
characteristics in different levels. First, each lexicon in a language, often has a cor-
respondence in another language. Second, at a higher level, every lexicons in each
language can be categorized into universal types such as verbs, nouns and adjec-
tives. Third, at the sentence level, the dependency relationship is shared across
some languages. Therefore, it may be less painstaking if we have some specific
background knowledge, where transfer learning can help learn a new task or lan-
guage. Although poor-resource learning has been broadly applied to diverse NLP
tasks, we only use machine translation as a typical example in this section.

13.5.2 Machine Translation

Research in machine translation community frequently encounters a major chal-
lenge that most languages in the world only have limited resources for training a
machine learning model. Although there are ample English–Chinese and French–
English parallel sentences to be used as samples, there are only scarce Chinese–
Portuguese parallel sentences. Here, “parallel sentences” denotes a pair of
sentences in two different languages that can be translated to each other. Di-
rect mapping from a source language to a target language means that each pair
of languages forms a unique learning task, which is independent of other pairs.
As a consequence, it is not trivial to transfer knowledge from an already powerful
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machine-translation model to other poor-resource language translation tasks.
Therefore, we should come up with a mechanism allowing for some form of mu-
tual enhancement.

We first introduce a basic tool for translation tasks. The encoder-decoder frame-
work (see Figure 13.5) has an inherent advantage to make it possible for various
tasks to share the same components. Specifically, we can assign the same encoder
to the same language whenever it acts as a source domain in a translation task,
Such a design is plausible as no matter which language is taken as a target, the
first step is to understand the semantic of the source sentence. Then, based on
the semantic meaning that is independent of the language, we can transform the
semantic to the target language.

Figure 13.5 An illustration of the encoder-decoder architecture (adapted from
Zoph and Knight [2016]). Light units denote the encoder and dark units are for
the decoder

Low-Resource Learning
When some data resources are available for a target learning task in the form of

parallel language pairs, it is possible to train a target-domain model. Zoph et al.
(2016) train a parent model from a high-resource domain (i.e., source domain) in
which a large number of French–English language pairs are available, as shown
in Figure 13.6. A portion of parameters in the parent model is used to initial-
ize the parameters in a child model that aims at the translation task in the low-
resource Uzbek–English language pair. The parent model and the child model are
constrained to share the identical architecture that is a two-layer encoder-decoder
model with long short-term memory units. The model uses an attention compo-
nent to look back at the source domain.

Zero Resource Learning
In an extreme case when there is no parallel corpus available in the target do-

main, we have a zero resource translation problem. In this case, some researchers
find an intermediate or pivot language to bridge the gap. For instance, although it



192 Few-Shot Learning

Target input
embedding

Source
embedding

Source
embedding

Target output
embedding

Target output
embedding

Target
RNN

Target
word

Target
word

Target input
embedding

Target
prediction

Target
prediction

Source
word

Source
word

Figure 13.6 The architecture for machine translation by showing six blocks of pa-
rameters (adapted from Zoph et al. [2016])

is hard to find a Chinese–Portuguese parallel corpus, a few Chinese-English par-
allel copora and English-Portuguese parallel copora are available. Based on these
corpora, we can employ English as a pivot to guide the translation. This process is
similar to transitive transfer learning (TTL).

Specifically, given a Chinese sentence, we translate it to English first and then to
Portuguese based on the English translation. However, connecting two translators
trained on two corpora separately without any tailoring would still have some de-
ficiencies. The most critical issue is that the quality of intermediate translations
cannot be guaranteed Technically, the distribution of generated sentences may
not match the distribution of raw sentences in a training corpus, even if they are
drawn from the same domain.

Firat et al. (2016) introduce a pseudo-parallel corpus method to fine-tune the
model parameters in order to alleviate the distribution difference to some ex-
tent. In their work, the researchers decompose the translating procedure from
Spanish to French into a pipeline from Spanish to English and then from En-
glish to French. The pseudo-parallel corpus is generated as follows. First, they
randomly select N sentence pairs from English to French. Second, they make use
of a trained English–Spanish translator to restore corresponding sentences from
the pivot language (English) to the source language (Spanish). Third, they exploit
ground truth sentences in the target language (French) and the corresponding
pseudo-expressions in the source language (Spanish) to train a translator with
an encoder and a decoder initialized from Spanish–English and English–French
translators respectively. Since a source sentence is created by the model instead
of human experts, which may not be entirely accurate, it may mislead the subse-
quent learning process. In order to avoid impairing the robustness of the encoder
and decoder trained from the ground truth data, they fix the parameters in the
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two components and only fine-tune the attention units. With such constraints,
the attention units are expected to capture more general knowledge despite the
fact that the source features may have some noises.

There are some concerns about the chosen language pairs as intermediate do-
mains to conduct the TTL. For example, French people often acquires English
more rapidly than Chinese people because English and French share some com-
mon characteristics in many aspects. When facing the translation task, despite the
fact that there is no solid theory supporting the choice, we can expect that differ-
ent pairs result in different effects in the transitive learning process.

13.6 Domain Generalization

13.6.1 Overview

Domain generalization handles a learning problem where data from the target
task is inaccessible to the model during the training phase. Unlike domain adapta-
tion, domain generalization makes no assumption on the availability of samples
from the target domain. Our requirement is that the model can handle testing
samples in target domain even no training samples are provided.

While it sounds difficult, with transfer learning, domain generalization can work
based upon three strategies. The first strategy is based on domain similarity, which
independently learns a model for each domain (Xu et al., 2014b). When a new do-
main comes, it identifies the most similar existing domain and applies the cor-
responding model to the new domain. The second strategy is a special case of
parameter-based transfer learning in that all available domains engage in learn-
ing cooperatively by learning a set of domain-agnostic parameters that are shared
among the multiple domains (Khosla et al., 2012; Li et al., 2017a). For each individ-
ual domain, there is still a set of domain-specific parameters. This strategy follows
multitask learning paradigm. The third strategy is a variant of feature-based trans-
fer learning, which assumes that, although the distribution over the original space
varies from one domain to another, there exists an invariant distribution shared
by all the domains (Ghifary et al., 2015). According to such an intuition, all do-
mains are first projected into a common subspace. In the following sections, we
will introduce two representative algorithms to illustrate these strategies.

13.6.2 Biased SVM

Khosla et al. (2012) employ a common visual world model for all domains to
learn some general knowledge as well as a collection of specific models for each
individual domain to capture the specialty of each domain. The visual world model
may not be the most accurate on an individual task, but it performs well on all the
tasks on average. Each task is solved by the visual world model and the corre-
sponding domain-specific model jointly.
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There are m source domains {Si }m
i=1, and the i -th domain has a training data

set Dsi . Each data set Dsi = {(xsi
j , y si

j )}
nsi
j=1, consists of nsi training examples, where

xsi
j ∈ Rd is the j -th data point in Dsi and y si

j ∈ {−1,1} is its label. In the proposed

algorithm, they learn one set of parameters, Δsi ∈ Rd , which corresponds to the
bias for data set Dsi . It also learns a set of specific parameters, wv w , corresponding
to the visual world. The parameters of the biased model is a combination of them,
that is, wsi =wv w +Δsi . The objective function is formulated as

min
wv w ,Δsi ,ξ,ρ

1

2
‖wv w‖2+ λ

2

m∑
i=1

‖Δsi ‖2+C1

m∑
i=1

nsi∑
j=1

ξ
si
j +C2

m∑
i=1

nsi∑
j=1

ρ
si
j ,

subject to wsi =wv w +Δsi , (13.3)

y si
j wv w xsi

j ≥ 1−ξ
si
j (i ∈ {1, · · · ,m}, j ∈ {1, · · · ,nsi }), (13.4)

y si
j wsi xsi

j ≥ 1−ρ
si
j (i ,∈ {1 · · · ,m}, j ∈ {1, · · · ,nsi }), (13.5)

ξ
si
j ≥ 0,ρsi

j ≥ 0 (i ∈ {1, · · · ,m}, j ∈ {1, · · · ,nsi }),

where C1, C2 and λ are hyperparameters, and ξ
si
j and ρ

si
j are slack variables. (13.3)

defines a linear relationship between wv w , wsi and Δsi . (13.4) corresponds to the
loss incurred across all data sets when using the visual world weights wv w , since
the visual world model is expected to generalize across all data sets. (13.5) corre-
sponds to the loss incurred by the private model.

13.6.3 Multi task Autoencoder

A multitask autoencoder (Ghifary et al., 2015) follows the essence of feature-
based transfer learning. Basically, it assumes that variations across domains are
generated from a common subspace. Although the mapping from the feature space
to the label space varies from domain to domain, the mapping from the com-
mon subspace can be shared. To explore the subspace automatically, the mul-
titask autoencoder employs an architecture derived from an autoencoder. The
difference between the multitask autoencoder and the conventional autoencoder
lies in the decoding part where the multitask autoencoder has different decoders
for different domains. Recovering the subspace from a domain forms a task, so
that there are multiple tasks to learn. The encoder is shared to ensure the con-
sistency of the learned subspace. An example of the architecture is shown in
Figure 13.7.

Ghifary et al. (2015) present a specific case. Here we introduce a generalized
version to reflect its core idea. There are m source domains {S}m

i=1. Each of them
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Figure 13.7 The architecture of the multitask autoencoder (adapted from Ghifary
et al. [2015]), where all the domains share the same encoder and have separate
decoders

has a training set Dsi =
{

xsi
j

}nsi

j=1
. The encoder and decoders are defined as

hsi
j =σenc (W� xsi

j ),

fΘsi (xsi
i )=σdec (Vsi� hsi

j ),

whereΘsi = {W,Vsi
}

contains the shared and individual parameters. The loss func-
tion is defined as

J(Θsi )=
nsi∑
j=1

l ( fΘsi (xsi
j ),xsi

j ).

The entire objective function is formulated as

Θ̂si = argmin
Θsi

m∑
i=1

J(Θsi )+ηR(Θsi ),

where R(Θsi ) is a regularization term. Ghifary et al. (2015) use the squared l2 norm
regularization, that is, R(Θsi )= ‖W‖2

F+
∑m

i=1 ‖Vsi ‖2
F . The SGD is applied to solve the

objective function.
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Lifelong Machine Learning

14.1 Introduction

In the past decades, there have been significant advances in machine learn-
ing. However, there is a missing part in most proposed learning algorithms if we
compare them with how humans learn to solve problems. We can observe that
humans solve problems by continuously learning and improving their capabili-
ties for various tasks in their lifetime. In contrast, most contemporary machine
learning theory and algorithms still only focus on a one-time solution to learning
problems. We can see many examples in text classification, image classification,
image segmentation and so on.

But humans typically learn to solve various problems in a sequential way, one
after another, and in a continuous way as well. For example, a musician might
learn how to play many different instruments and study how to compose and per-
form different music year after year. Because of their ability to continuously learn,
musicians can learn how to play guitar quickly if he or she already knows how
to play the piano, and read and compose music. We call the paradigm in which
learning happens continuously such that later learning can benefit from previous
learning “lifelong machine learning.”

An important reason for why lifelong machine learning is important for ma-
chine learning is that a large amount of labeled data from diverse learning tasks
become available in time. That is largely driven by the prevalence of data collec-
tion devices such as cameras and mobile phones, and the Internet of Things tech-
nology. Deep learning requires a lot of labeled data to learn complex models, and
these data can increasingly enable the learning to be increasingly effective. In ad-
dition, over time, the prevalence of highly popular machine learning platforms
such as Tensorflow (Abadi et al., 2016a) along with more powerful and cheaper
computing hardware makes developing machine learning much easier and more
efficient. These are the context to make lifelong machine learning feasible. In this
chapter, we will explain in detail the lifelong machine learning paradigm.
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Lifelong machine learning has a long history in machine learning, mainly in the
transfer learning community (Thrun, 1995; Ruvolo and Eaton, 2013; Silver et al.,
2013; Chen and Liu, 2016). We will review some of these main approaches.

14.2 Lifelong Machine Learning: A Definition

In this section, we start by giving the formal definitions of lifelong machine
learning first, following the formalism in the work by Silver et al. (2013).

Lifelong machine learning does not assume the same training and test data dis-
tribution as assumed in traditional machine learning. Instead, lifelong machine
learning studies the complicated scenario where a large number of tasks come
over time and therefore a new knowledge retention strategy as well as more so-
phisticated knowledge transfer approaches need be designed. We first give a for-
mal definition of lifelong machine learning.

Definition 14.1 (lifelong machine learning) Lifelong machine learning is a ma-
chine learning system that completes multiple learning tasks T = {T1,T2,T3, · · · }
from different domains D = {D1,D2,D3, · · · } over time, and solves the later tasks
more effectively with the help of previously solved tasks.

A typical lifelong machine learning system (see Figure 14.1) uses a knowledge
base K B that stores previously learned knowledge learned over time. At time t ,
the system receives a task Tt coming from a corresponding domain Dt . A typical
lifelong machine learning system first builds a new model for Tt based on the
training data from Dt and the knowledge in K B. Then, lifelong machine learning
extracts the transferable knowledge from (Dt ,Tt ) and updates the knowledge base
K B. The updated knowledge base K B is used to refine the models trained for
the previous t −1 tasks.

There are two essential elements for a successful lifelong machine learning sys-
tem. First, there needs be a retention system for learned knowledge on previous
tasks to store the previous examples and models in the universal knowledge base.
Second, there needs be a selective transfer mechanism on how to select the previ-
ous domains and tasks to transfer to the current task, which is the domain knowl-
edge part at the center.

Knowledge retention enables lifelong machine learning from the perspective
of the knowledge representation for the universal knowledge. Learned knowledge
can be stored in various forms. The simplest method of retaining task knowledge
is in a functional form such as the training examples (Silver and Mercer, 1996). An
advantage of functional knowledge is the accuracy and purity of the knowledge to
allow for effective retention.

A disadvantage of functional knowledge is that there may be need for a large
amount of storage space that is searched frequently, which is time consuming.
Alternatively, we can retain the models learned previously in some form under-
standable by the current task; for example, the previous knowledge can be a
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Figure 14.1 The overall architecture of a lifelong machine learning system
(adapted from Silver et al. [2013])

compressed form that has the same representation as the current task. The ad-
vantage of the latter approach is that the compact size of the retained model re-
quires relative small space for storing the previous training examples. In addition,
having a model allows for a more efficient way for the generalization of models.
In the past, many knowledge representation forms have been used for knowledge
retention, including neural networks and probability distributions.

Transfer learning enables lifelong machine learning from the perspective
knowledge reuse. The knowledge transfer component in lifelong machine learn-
ing pushes the limit of transfer learning in two directions. Instead of leveraging the
limited knowledge obtained from selected previous source tasks, lifelong machine
learning targets the large-scale knowledge transfer from all related source tasks
learned over time. An important issue includes how to identify related tasks to
transfer knowledge from and scale the knowledge transfer to hundreds of source
tasks.

14.3 Lifelong Machine Learning through Invariant Knowledge

A good example of lifelong machine learning is in Thrun (1995), which describes
one of the earliest lifelong machine learning systems. In this work on lifelong ma-
chine learning, a collection of related learning problems is encountered over the
lifetime of the learner. When learning the next task, the lifelong learner may em-
ploy the invariant knowledge gathered in previous learning sessions to enhance
the learning of the next task. This process iterates as the overall lifelong machine
learning system evolves.
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Thrun (1995) defines a support set of previously learned tasks along with their
training examples. For any pair of training example, they are considered candi-
dates of a training data set for the invariant function if their outcomes agree on
that task. These are the positive examples. When examples’ outcome disagree,
they constitute the negative examples.

Given a set of previously encountered tasks, their training examples can be used
to define an invariant function to be learned via a neural network algorithm. When
learning the new function for the next task, the invariance network can be used
to improve the effectiveness of training by providing additional information on
gradient descent.

In the case of object recognition, for example, there may be many images of
objects such as shoes, hats, and so on to be learned. Having learned to recognize
images of shoes, for example, certain image features can be identified as invariant,
which can in turn be used to recognize hats.

14.4 Lifelong Machine Learning in Sentiment Classification

Perhaps the simplest and most commonly used strategy to represent and store
knowledge is to treat the supervised information, such as labeled data, as the
knowledge directly. In this framework, the supervised information obtained from
previous tasks are stored in a database. When a new task comes, the supervised
information will be used as auxiliary information to help build a model for the
new task.

As an example, Chen et al. (2015) propose a lifelong sentiment classification
method for the classification of user comments based on the naive Bayes method.
Sentiment classification is the task for classifying user product reviews or opin-
ions into positive or negative orientations. Many products have some product-
specific terms to express different opinions, such as “blurred” that can be used
to express a negative opinion about a camera and “inspiring” that gives a very
high praise to a book. Sentiment classification is a very important task in natural
language process where transfer learning techniques are widely used for cross-
domain classification; the task is to classify the user opinions in a new domain us-
ing the knowledge gained from a related domain. Chen et al. (2015) store two types
of supervised information in the knowledge base: document-level knowledge and
domain-level knowledge. The document-level supervised information is the fre-
quency of a word w appearing among the positive examples (denoted as nK B+,w )
and negative examples nK B−,w , respectively, in all previous tasks. The document-
level word frequency serves as a priori knowledge about the sentiment of a word.

However, as we discussed earlier, sentiment classification is very product-
specific in which the same word might express totally different sentiments for dif-
ferent products. For example, “fast” is usually used to appraise the performance
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of a computer while also being used to express a negative opinion about a bad
battery, such as “battery drains fast.”

In order to overcome this bias, domain-level knowledge can be added to en-
sure that only unambiguous words are stored in the knowledge base. The domain-
level knowledge can be viewed as how likely a word expresses the same sentiment
in different domains. More specifically, mK B+,w and mK B−,w denote the numbers of
domains in which word w appears more in positive and negative examples, re-
spectively. In the knowledge transfer step, nK B+,w and nK B−,w are used to compute
the positive and negative word counts combined with the empirical word counts.
The computed word counts are then used to estimate the conditional probabil-
ity P (+|w) and P (−|w). The domain-level knowledge mK B+,w and mK B−,w is used to
select the words that at least appear in more than a certain number of different
domains.

Besides the classification problem, shared supervised knowledge has also been
used to build topic models in transfer learning (Chen and Liu, 2014a, 2014b; Wang
et al., 2016b). Topic models, such as probabilistic latent semantic analysis (PLSA)
(Hofmann, 1999) and latent Dirichlet allocation (LDA), are statistical models used
to discover topics from a collection of text documents. A topic is defined as a list
of words with the probabilities representing how likely the words belong to that
topic. PLSA assumes the following generative process for word and document co-
occurrences:

• select a document di with probability P(D = di ),
• draw a topic zk with probability P(Z = zk |D = di ),
• select a word w j with probability P(W = w j |Z = zk ).

The probabilities of P(D = di ), P(Z = zk |D = di ) and P(W = w j |Z = zk ) over
{di , zk , w j }i , j ,k are estimated by maximizing the likelihood of all observed word
and document co-occurrences.

In the lifelong topic modeling (LTM) (Chen and Liu, 2016), a must-link, which
implies that the corresponding two words should belong to the same topic, is ex-
tracted from previous topic models and used to help train better topic models for
future tasks. More specifically, the LTM algorithm has two steps: prior topic gen-
eration and topic modeling in test domain. Those two steps correspond to knowl-
edge retention and knowledge transfer, respectively, as discussed before.

In the LTM algorithm, prior topic generation or knowledge retention is done
via a standard topic model such as LDA. This model is used to learn a set of topics
zt = (zt

1, zt
2, · · · , zt

kt ) for each domain dt = (d t
1,d t

2, · · · ,d t
nt ). The learned topics from

different domains are put together to form a unified topic set Z = ⋃T
t=1 zt . This

unified topic set Z can be viewed as the knowledge base used in many lifelong
machine learning algorithms.

In the topic modeling approach to knowledge transfer, a transfer learning algo-
rithm is used to transfer knowledge from the knowledge base Z to a current do-
main dT+1. First, a standard topic modeling algorithm is used to learn initial topics



14.4 Lifelong Machine Learning in Sentiment Classification 201

zT+1 = (zT+1
1 , zT+1

2 , · · · , zT+1
kT+1 ) for the current domain dT+1 = (d T+1

1 ,d T+1
2 , · · · ,d T+1

nT+1 ).

Then, for each topic zT+1
k ∈ zT+1, its similar topics from the knowledge base Z

will be identified based on the Kulback–Leibler divergence between zT+1
k and any

topic in Z . The similar topics are put together to form a topic set M T+1
k . A fre-

quent item set-mining algorithm (Han and Kamber, 2000) is then used to find the
words that co-occur in many different topics from M T+1

k . The intuition is that,
if two words appear together many times in different topics, we should be confi-
dent to say that they are related. By limiting the topics to the similar topics M T+1

k ,
we can increase the chance of successful transfer by eliminating unrelated topics.
All the word pairs learned from the previous process for all the topics are used
to generate a “must-link” set, which is used as the prior knowledge to guide the
topic mining for current domain dT+1. In LTM, a specific type of topic model,
the generalized Pólya Urn model, is adopted to incorporate this knowledge in its
Gibbs sampling process to encourage such a pair of words to be in the same topic.
Figure 14.2 shows the architecture of LTM.

   Task pipeline       New task

D1,      D2,      …,       DT,      DT+1,   ... 
 Previous learned tasks                    Future learning tasks

Topic model: 
Gibbs sampler

Topic knowledge 
miner

Topics
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Knowledge-based topic model
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Knowledge 
base (Z)

Topics
Similar topics

Figure 14.2 The architecture of the LTM model (adapted from Chen and
Liu [2016])

Besides the “must-link” constraint, the “cannot-link” constraint is also used as
knowledge for topic modeling in lifelong machine learning. Chen and Liu (2014a)
propose a new LTM called AMC that stands for topic modeling with automatically
generated must-links and cannot-links. In addition to adopting cannot-links as
the knowledge, AMC learns must-links by using information from past tasks in-
stead of the current task only. Because the LTM model needs a certain amount of
data from a current task to learn the initial topics and also the must-links, learn-
ing must-links without the data from a current task can increase the coverage of



202 Lifelong Machine Learning

the algorithm to the problems where very limited data are available in the cur-
rent task. However, without those data, the learned must-links might be unrelated
to the current task and therefore might hurt the performance of the knowledge
transfer. Although the must-links are learned from past tasks only in AMC, these
cannot-links are learned together with the topic modeling.

The overall architecture of AMC is presented in Figure 14.3. The design of AMC
is similar to that of LTM. But, as AMC does not use any data from the target task to
learn must-links, the MustLinkMiner component in Figure 14.3 is different from
that in LTM. In AMC, MustLinkMiner uses a multiple minimum supports frequent
item set mining (MS-FIM) algorithm (Liu et al., 1999) to extract must-links be-
tween two words. The reason that the traditional single minimum-support fre-
quent item set-mining algorithm does not work for this problem is that generic
topics, such as price, quality, customer service and so on, are shared among many
topics. That means the frequency of generic topics are much higher than specific
ones that pose a challenge to learn must-links for both generic and specific topics.
The MS-FIM algorithm is applied to mine a frequent item set that contains a set
of terms that have appeared many times in the knowledge base.

   Task pipeline       New task

D1,      D2,      …,       DT,      DT+1,   ... 
 Previous learned tasks                    Future learning tasks

Topic model: 
Gibbs sampler

Must-link miner

Topics

Must-links

Knowledge-based topic model

Topics

Knowledge 
base (Z)

Topics

Similar topics

Cannot-link 
miner Cannot-links

Figure 14.3 The architecture of the AMC model (adapted from Chen and
Liu [2016])

Different from LTM, AMC mines both must-links and cannot-links. As the po-
tential cannot-links for a term w can be any words in the vocabulary list except



14.5 Shared Model Components as Multi-task Learning 203

the ones that co-occur with w in a document before, the candidate set is too large
to consider directly without any a priori knowledge. In AMC, the topics from the
current task are served as the candidate pool for mining the cannot-links. For-
mally, given a knowledge base Z that contains all the topics from previous tasks
and zT+1

i ∈ zT+1 from the current task, AMC only considers two top terms wi and
w j from zT+1

i ∈ zT+1 as the candidates, and then uses the topics in the knowl-
edge base zT+1

i ∈ zT+1 to decide whether a cannot-link should be added to the
two terms or not. To determine the cannot-link relation, AMC examines all topics
from Z and labels the term pairs that seldom appear together in the topics of Z

as cannot-linked terms. Once AMC gets both the must-links and cannot-links, the
same knowledge-based topic modeling algorithm used in the LTM can be used to
learn a better topic model by incorporating the knowledge as a priori knowledge
to guide the topic modeling.

14.5 Shared Model Components as Multi-task Learning

The shared model component approach is inspired by the hierarchical models
in Bayesian statistics. These works assume that the models of all tasks are gener-
ated by a high-level hidden model. This assumption can be represented as

∀i θθθi ∼M, (14.1)

where θθθi is the model for the i -th task and M is the high-level hidden model. A
similar idea is used in many multi-task learning methods (Zhang and Yang, 2017b)
to share knowledge among tasks.

In the ELLA framework (Ruvolo and Eaton, 2013), a model dictionary M ∈Rd×k

shared by different tasks is used to represent latent model components. The model
parameter θθθt for a task t is represented as a linear combination of latent model
components in M. If st ∈ Rk denotes the linear combination weight, θθθt can be
represented as

θθθt =Mst . (14.2)

Because M is shared among all tasks, which are learned continuously, after seeing
more training data from different tasks, M should be able to improve over time.

More specifically, define {xt
i , y t

i }nt

i=1 as the training set for task t . The objective
function of ELLA is formulated as follows

1

T

T∑
t=1

min
st

{
1

nt

nt∑
i=1

L( f (xt
i ;Mst ), y t

i )+μ‖st‖1

}
,

where T is the total number of tasks seen so far and L is the loss function.

However, because this objective function depends on all of the previous train-
ing data and every model st also depends on the shared model components M,
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the optimization for this objective function is very expensive to compute as more
tasks arrive. Ruvolo and Eaton (2013) use approximation techniques to ensure the
computational efficiency in the lifelong-learning setting.

Wang and Pineau (2016) extend ELLA to cover nonlinear cases where the
model components are not limited to linear hypotheses. More specifically, instead
of learning a dictionary of basis vectors as in the work by Kumar and Daumé III
(2012), Wang and Pineau (2016) propose the learning of a more generalized dictio-
nary F= [ f 1, f 2, · · · , f T ] that contains a set of basis functions in a functional space
where { f t }T

t=1 can be any hypothesis instead of the linear hypothesis assumed in
the ELLA. The objective function of the proposed method is formulated as

min
F,{γt }

T∑
t=1

nt∑
i=1

L(
〈

F(xt
i ),γt〉 , y t

i )+μ
T∑

t=1
‖γt‖1. (14.3)

By relaxing the linear assumption for the model, Wang and Pineau (2016) can han-
dle more complicated learning tasks that expand the scope of the “shared model
components” approach.

This line of research on lifelong machine learning follows the perspective of
multi-task learning. By modeling the different tasks hierarchically, the knowledge
retention step can be easily expressed as the shared high-level hidden model.
However, similar to many hidden models, in this approach, it is hard to under-
stand the learned knowledge stored in the knowledge base K B. In addition, it
might be an oversimplification to assume that a large number of tasks share a set
of base model components for complex lifelong machine learning problems. For
example, learning how to classify documents should be quite different from learn-
ing how to classify images.

14.6 Never-Ending Language Learning

Lifelong machine learning must scale to deal with a large number of tasks. The
outputs of these tasks are predictions of various forms, which may also arrive in
large volume. These model outputs can be used as the auxiliary in lifelong ma-
chine learning. They can be used as auxiliary features or constraints to help im-
prove the performance of the current task.

The never-ending language learning system (NELL) has been running around
the clock at Carnegie Mellon University since 2010 (Carlson et al., 2010; Mitchell
et al., 2015) to learn concepts from web pages on the World Wide Web. NELL
gives a prime example of lifelong machine learning by making use of the auxiliary
information continuously to increase the knowledge base. NELL is designed to
learn important concepts from the web pages of the World Wide Web by trawling
millions of the pages and learning important concepts and their relations in a
continuous manner (thus never-ending). Once it learns a new concept, it relates
the concept with the concepts already learned in its knowledge base, and thus
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its knowledge base keeps growing. For example, when seeing the term “Peking
University,” it realizes that the word refers to a university in China because of the
upper case for university used in the phrase, and Peking is a name used to refer to
the city of Beijing in the past.

In the work by Mitchell et al. (2015), the never-ending learning problem L is
defined as a set of learning tasks and a set of coupling constraints among solutions
to these learning tasks. More specifically, a NELL learning task is defined as a tuple
Li = {Ti ,Pi ,Ei }, where Ti is the performance task, Pi is a pre-defined metric for
task Ti and Ei is the training experience. Ti = (Xi ,Yi ) defines the problem domain
and model space fi : Xi → Yi . The performance metric Pi is used to measure the
performance of each model fi . Ei is the training data used to train the model. The
goal of the learning task Ti is to learn an optimal model f ∗i for the i -th learning
task given the training data Ei and the predefined metrics Pi as

f ∗i = arg max
f ∈Fi

Pi ( f ), (14.4)

where Fi is the set of all possible models.
In NELL, many different learning tasks are trained together twenty-four hours

a day since early 2010. All the learning tasks are linked together through the rela-
tional constraints derived from the model outputs. These different learning tasks
are learned in five main learning functional categories listed as follows:

• Phrase classification: NELL is given an initial ontology defining 280 categories
such as “sport” and “athlete.” NELL learns different predictive functions to clas-
sify noun phrases to one or more categories in the ontology. That means each
noun phrase (e.g., apple) can be assigned one or multiple classes (e.g., food and
company). In order to leverage the power of co-training, NELL builds five dif-
ferent predictive functions for each category based on five different views of the
data, and lets them reinforce each other in a co-training (Blum and Mitchell,
1998) manner to improve the learning.

• Relation classification: NELL is also given 327 distinct relations defined between
two noun phrases. The goal of relation classification is to learn functions that
can predict whether two noun phrases can be correlated with given relations.
For example, <“Shanghai”, “China”> satisfies the relation “CityLocated-
InCountry(x,y).”

• Entity resolution: NELL can predict whether two noun phrases are synonyms.
Thus, these phrases should be identified to represent the same meaning.

• Inference rules among belief (i.e., rule) triples: Functions that predict new be-
liefs. NELL represents a function that maps the current knowledge base of NELL
to new beliefs by a collection of restricted Horn clause rules learned by the
path ranking algorithm (PRA) system, which can derive new beliefs based on
old ones (Ni et al. 2011).

All of these functions can be represented as a main learning task f : X → Y. The
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performance metric of each task, that is, Pi , is simply the accuracy of the corre-
sponding model.

In addition to a wide range of learning tasks, another unique component of
NELL is how it connects different concepts. These relations are formulated as con-
straints, listed as follows in the form of “coupling”:

• Multiview co-training coupling: NELL builds models through different views
of noun phrases. This provides a natural co-training setting where the predic-
tions of different models are enforced to be the same as long as the input noun
phrases or noun phrases pairs are the same.

• Subset/superset coupling: NELL enforces that the model prediction for a cate-
gory should be consistent with that of a parent category.

• Multi-label mutual exclusion coupling: Similar to subset/superset coupling,
NELL enforces the mutual exclusion between model predictions from two
mutually exclusive categories.

• Coupling relations to their argument types: A relation is defined on top of two
noun phrase categories. For example, “CityLocated-InCountry(x,y)” can only
be defined for “City” and “Country.” This adds another set of constraints for the
inputs of relation learning tasks.

• Horn clause coupling: A Horn clause is a set of logic literals in which at least
one literal is positive. All the Horn clauses that are used to infer new knowledge-
based beliefs from the existing ones are used as coupling constraints for NELL.

From these descriptions, those constraints are derived directly or indirectly from
the outputs of distinct learning tasks. The overall architecture of NELL is shown in
Figure 14.4.

A distinguishing feature of the NELL system is its knowledge base, which is the
core of NELL. In NELL, the knowledge base includes all the beliefs predicted by
different models with high confidence. Over time, millions of coupling constraints
have been constructed to link all the tasks. The knowledge retention and knowl-
edge transfer processes are engineered to work in sync. NELL uses an expectation-
maximization-style learning paradigm (Dempster et al., 1977) to iteratively per-
form the knowledge retention (E-step) and knowledge transfer (M-step). In the
E-step, the parameters of all models are fixed and the models are used to output
the current best prediction for various tasks.

For example, after determining whether “Shanghai” is a “City” and “China” is
a country, it infers that <“Shanghai”, “China”> satisfies the relation “CityLocated-
InCountry(x,y).” The predictions are called beliefs in NELL. Each prediction comes
with a confidence score that represents how confident the model is about the pre-
diction. If the confidence score of a belief is higher than a certain predetermined
threshold, NELL adds it to the knowledge base as the new knowledge.

In addition to adding highly confident model predictions as knowledge com-
ponents, NELL also includes an active learning component to acquire supervised
knowledge from humans. In the M-step, all the beliefs in the knowledge base are
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Figure 14.4 The architecture of NELL

used to construct the coupling constraints. For example, if<“Shanghai”, “China”>
satisfies the relation “CityLocated-InCountry(x,y),” “Shanghai” must be a “City”
and “China” must be a country. The coupling constraints serve as an inductive
bias that is the key for machine learning models. The M-step updates the param-
eters of all models based on training data and the coupling constraints.
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Privacy-Preserving Transfer Learning

15.1 Introduction

Machine learning techniques are increasingly being applied to a wide range of
applications such as social networking, banking, supply chain management and
health care. With these applications, there is increasingly more sensitive
information inside various data such as personal medical records and financial
transaction information. This raises a critical issue: How to protect the private in-
formation of users?

Today, modern society increasingly demands solutions that address the privacy
issue. One of the most famous laws is Europe’s General Data Protection Regulation
(GDPR),1 which regulates the protection of private user data and restricts the data
transmission between organizations.

The question of how to guarantee user privacy and data confidentiality has thus
become a serious concern in machine learning. So far, researchers have attempted
to address this concern from several angles (Dwork et al., 2006a, 2006b; Chaudhuri
et al., 2011; Dwork and Roth, 2014; Abadi et al., 2016b; Lee and Kifer, 2018).

Among the different methods, data anonymization is a basic way to protect the
sensitive information in user data. However, data anonymization alone is insuf-
ficient for protecting the user privacy. In fact, by using additional external infor-
mation, an attacker can identify anonymized records. In a well-known case, the
personal health information of Massachusetts governor William Weld was discov-
ered in a supposedly anonymized public database (Sweeney, 2002; Ji et al., 2014).
By merging overlapping records between the health database and a voter registry,
researchers were able to identify the personal health records of the governor.

In the past decades, differential privacy (Dwork et al., 2006b; Dwork, 2008) has
been developed as a standard for the privacy preservation. To design a differen-
tially private algorithm, carefully designed noises are often added to the original
data to disambiguate analytic algorithms. By injecting random noise, an individ-
ual sample cannot affect the output of a differentially private algorithm signifi-
cantly, which limits the information gained by an adversary.

1 https://eugdpr.org/.

https://eugdpr.org/
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Recently, many machine learning algorithms have been modified to achieve
the differential privacy, including logistic regression (Chaudhuri et al., 2011), tree
models (Emekçi et al., 2007; Fong and Weber-Jahnke, 2012; Jagannathan et al.,
2012), deep neural networks (Shokri and Shmatikov, 2015; Abadi et al., 2016b),
and so on.

When applying transfer learning, however, the issue becomes more critical as
transfer learning models typically map across different domains and data sets
and bridges different organizations. Therefore, transfer learning faces user pri-
vacy challenge as well, especially when it is applied across different organizations.
Designing differentially privacy-preserving mechanisms to extract and transfer
knowledge becomes a challenge. In this chapter, we first introduce the definition
of differential privacy as well as related differentially private algorithms, and then
introduce some state-of-the-art methods for privacy-preserving transfer learning.

15.2 Differential Privacy

15.2.1 Definition

Differential privacy (Dwork et al., 2006b; Dwork and Roth, 2014) has been
established as a rigorous standard to guarantee the privacy for algorithms that
access private data. Intuitively, given a privacy budget ε, an algorithm preserves
ε-differential privacy if changing one entry in the data set does not change the
log-likelihood of any output of the algorithm by more than ε (see Figure 15.1).
Formally, it is defined as follows.

Definition 15.1 (differential privacy) A randomized mechanism M is ε-differen-
tially private if for any output t of M and for any two input data sets D1,D2 differ-
ing by one element, P(M (D1)= t )≤ eεP(M (D2)= t ).

To meet the ε-differential privacy guarantee, careful perturbations or noises
usually need to be added to the learning algorithm. A smaller εprovides the stricter
privacy guarantee but at the expense of heavier noise, leading to larger perfor-
mance deterioration (Chaudhuri et al., 2011; Bassily et al., 2014). To solve this is-
sue, a relaxed version of ε-differentially private, called (ε,δ)-differentially privacy
where δ measures the loss in the privacy, was proposed in the work by Dwork and
Roth (2014) and defined as follows.

Definition 15.2 ((ε,δ)-differentially private) A randomized mechanism M is (ε,δ)-
differentially private if for any output t of M and for any two input data sets D1,D2

differing by one element, P(M (D1)= t )≤ eεP(M (D2)= t )+δ.

In the following, we introduce some differentially private learning algorithms.
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Figure 15.1 When using a differentially private algorithm, the distributions of
outputs of two data sets that only differs in one single entry are close to each
other

15.2.2 Privacy-Preserving Regularized Empirical Risk Minimization

For a training data set D, the regularized empirical risk minimization (ERM)
chooses a predictor f over a hypothesis space H to minimize the regularized em-
pirical loss as

min
f ∈H

J( f ,D)= 1

n

n∑
j=1

l ( f (x j ), y j )+λr ( f ), (15.1)

where the regularization term r ( f ) prevents the overfitting and λ is a regulariza-
tion parameter. Regularized ERM methods are widely used in practice, for
example, the logistic regression and support vector machines. For simplicity, in
the following we only focus on linear functions, that is, f (x)=wT x.

In the following sections, we introduce several techniques for creating privacy-
preserving ERM algorithms, including output perturbation, objective perturba-
tion and gradient perturbation.

Output Perturbation
The output perturbation method (Chaudhuri et al., 2011) is derived from the

sensitivity method proposed by Dwork et al. (2006b), which is a general method
for generating a privacy-preserving approximation to any function. For the mini-
mizer w∗ = argminw J(w,D), it outputs a predictor

wpr i v =w∗ +b,
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where b is random noise with density

P(b)= 1

α
e−β‖b‖2 , (15.2)

where α is a normalizing constant and β = nελ
2 . Chaudhuri et al. (2011) prove

that, if the regularizer r (·) is differentiable and 1-strongly convex, and the loss l
is convex and differentiable with |l ′(z)| ≤ 1 for all z, then the output perturbation
method provides ε-differential privacy.

Objective Perturbation
Differently from the output perturbation method, the objective perturbation

method (Chaudhuri et al., 2011) adds a noise term to the objective function. In-
stead of minimizing J , it learns the predictor by solving the following objective
function as

wpr i v = argmin
w

J(w,D)+ 1

n
bT w+ 1

2
Δ‖w‖2

2,

where b is sampled according to (15.2) with β= ε′/2 and ε′, Δ are computed as:

(1) ε′ = ε− log(1+ 2c
nλ + c2

n2λ2 ).

(2) If ε′ > 0, then Δ= 0, else Δ= c
n(eε/4−1)

−λ and ε′ = ε/2.

Here, c is a constant. Similarly, if r (·) is 1-strongly convex and doubly differen-
tiable, and l (·) is convex and doubly differentiable with |l ′(z)| ≤ 1 and |l ′′(z)| ≤ c
for all z, the objective perturbation method is ε-differentially private. Specifically,
if the regularized logistic regression is used as the ERM model, that is r (w)= 1

2‖w‖2
2

and l (z)= log(1+e−z ), then c = 1
4 .

15.2.3 Gradient Perturbation

As discussed earlier, the output perturbation and objective perturbation meth-
ods require the objective function to be convex with a strongly convex regular-
izer. This precondition is not satisfied in some algorithms such as deep models. To
solve this problem, Abadi et al. (2016b) propose a gradient perturbation method
to guarantee differential privacy in deep learning algorithms.

Specifically, in the t-th iteration, a group of samples Lt are randomly selected
and their gradients gt (xi ) are clipped to an upper bound C as

ḡ t (xi )= gt (xi )/max(1,‖gt (xi )‖2/C ),

where xi ∈ Lt . Then random Gaussian noises are added to this group as

g̃ t = 1

L
(
∑

i
ḡ t (xi )+N (0,σ2C 2I)),

where L is the size of Lt and σ is a constant. The gradient g̃ t is used to update the
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model. Abadi et al. (2016b) prove that, with carefully selected instance sampling
rate, σ, and the iteration number, the gradient perturbation method guarantees
the (ε,δ)-differential privacy.

15.3 Privacy-Preserving Transfer Learning

15.3.1 Problem Setting

In many transfer learning applications, the source domains and the target do-
main can be located at different organizations such that information cannot be
transported directly to each other due to the privacy concern. In this chapter, we
will discuss several settings where the user privacy issues are critical.

Target improvement In most transfer learning applications, one or several source
data sets are used to help improve the performance of the model trained
in the target domain. Thus, there is a need to design a privacy-preserving
mechanism for extracting and transferring the knowledge from source
domains to preserve the leak of sensitive information.

Multiparty learning In this scenario, several organizations wish to build a model
together, while keeping their sensitive data private.

Multitask learning In multitask learning, each task borrows the information from
each other to improve its learning model. So, the privacy mechanism
needs to guarantee that each side does not leak its privacy.

15.3.2 Target Improvement

Differentially Private Hypothesis Transfer Learning
Wang et al. (2018d) propose to train local differentially private logistic models

and transfer them to the target domain, as illustrated in Figure 15.2. To do this, a
public data set (not necessarily labeled) that is accessible to both source domains
and the target domain is needed, and it serves as an information intermediary.
Specifically, this model takes the following steps:

(1) Each source domain uses its labeled samples to train a differentially private
logistic regression model wsi

priv under parameters ε. All the hypotheses {wsi
priv}mi=1

are then sent to the target domain.
(2) Each source domain fetches the public data set, and computes the differen-

tially private “importance weight” vector vsi with its unlabeled samples and
the public data set. Then {vsi }m

i=1 are sent to the target.
(3) The target domain fetches the public data set and computes the non-private

“importance weight” vector v.
(4) The target domain computes the “hypothesis weight” vector vH ∈ Rm such

that the Kulback–Leibler divergence between v and the linear combination of
vsi weighted by vH is minimized.
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(5) The target model constructs an informative Gaussian prior using vH and
{wsi

priv}m
i=1 from the source domains.

(6) The target domain trains a Bayesian logistic regression model with limited la-
beled target data and the informative Gaussian prior by following Marx et al.
(2008), and returns the parameters wpr i v .
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Figure 15.2 The diagram of the multiple-source transfer learning system
(adapted from Wang et al. [2018d])

Differentially Private Transfer Learning with Feature Split and Stacking
To preserve the privacy, adding noises may bring negative influence on the

learning procedure. As a result, transferring such models can be helpless or even
harmful to the learning in the target domain.

Guo et al. (2018b) propose an approach to alleviate this problem. For simplicity,
there is only one source domain. In the work by Guo et al. (2018b), the source data
set is first split into K subsets in terms of features, and a differentially private logis-
tic regression model is trained for each subset by using a variant of the objective
perturbation method (Chaudhuri et al., 2011). Then those models are transferred
to the target domain and combined by stacking in a differentially private manner.
Moreover, the feature importance can be incorporated into the training process so
that subsets with larger importance can be trained and transferred with less per-
turbation, while the privacy for the whole data set is still guaranteed. The whole
framework is shown in Figure 15.3. The proposed algorithm works as follows:

(1) Partition the source data set to K disjoint sets based on features.
(2) Scale samples in each subset with its importance and train K differentially

private logistic regression models on these subsets with a total privacy budget
εs to obtain {ws

k }K
k=1 based on a variant of the objective perturbation method.
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(3) Split the target data set by samples into two parts with equal size, that is, Dl

and Dh , and partition both of them into K disjoint sets in the same way as the
source data set.

(4) In the K subsets of Dl , obtain {wl
k }K

k=1 by differentially private hypotheses
transfer. Here Guo et al. (2018b) use a different method from Wang et al.
(2018d). The same method in step 2 is applied with the regularization term
as rk (w)= 1

2‖w−ws
k‖2

2. The whole privacy budget is set to be ε.
(5) Construct a meta-data set D f = {σ(xT

(1)wl
1), . . . ,σ(xT

(K )wl
K )} by using all {x, y} ∈

Dh , where x(k) denotes the part of x in the k-th subset.
(6) Train an ε-differentially private logistic regression with privacy budget ε on D f

and obtain the model parameter wh .

F

Figure 15.3 The framework of differentially private transfer learning with feature
split and stacking with K = 3

In the work by Guo et al. (2018b), the privacy of both the source domain (by εs )
and the target domain (by ε) is guaranteed. In addition, a variant of the objective
perturbation method is used so that the feature importance can be leveraged to
define the noise, while keeping the overall privacy fixed. As shown in Guo et al.’s
(2018b) work, the proposed method obtains better generalization performance,
especially when the feature importance is known.

15.3.3 Multiparty Learning

In multiparty learning, there is no distinction among different data sets. The
goal is to learn a common model over all the data sets. Its private variant needs
to preserve the privacy of each data set. Suppose for the i -th data set, a local clas-
sifier hi (·) is trained on it. In the work by Hamm et al. (2016), local classifiers are
collected by a trusted central server, and a common differentially private model
is built based on an auxiliary unlabeled data set Du with n samples and the lo-
cal classifiers. The workflow is shown in Figure 15.4. There are two approaches
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to train the common model, that is, majority-voted ERM and weighted ERM. In
the following sections, we introduce those two approaches based on following as-
sumptions:

• the loss-hypothesis has a form l (h(x;w), v)= l (vwT x);

• the loss l (·) is convex and continuously differentiable;

• |l ′(z)| < 1,∀z ∈R;

• for all x, ‖x‖2 ≤ 1.

Device 2

Private 
data 1

Device 1

Private 
data 2

Private 
data 3

Private 
data M

Device MDevice 3
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(2) Label public data by ensemble
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classifiers from devices

Local 
model

Common 
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...
...

Figure 15.4 The workflow of multiparty learning (adapted from Hamm
et al. [2016]). Each party holds a small amount of private data and uses the data
to train a local classifier. The ensemble of local classifiers then generates labels
for the auxiliary data, which in turn are used for training a global classifier. The
final classifier is released after the sanitization for the privacy.

Majority-Voted ERM
The majority-voted ERM method works as follows.

(1) Generate majority voted labels v(x) for x ∈Du by

v(x)=
{

1, if
∑m

i=1 I [hi (x)= 1]≥ m
2

0, otherwise
;

(2) find minimizer w∗ by

w∗ = argmin
w

1

n

∑
x∈Du

l (h(x;w), v(x))+ λ

2
‖w‖2

2;

(3) sample a random vector b from P(b)∝ e−0.5ε‖b‖2 ;

(4) output wpr i v =w∗ +b.
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Theoretical analyses show that the perturbed output wpr i v is ε-differentially pri-
vate.

Weighted ERM
The main problem with the majority-voted ERM approach is its sensitivity to

the decision of a single party. The weighted ERM method is thus proposed to solve
this problem. Specifically, α(x) is defined to be the fraction of positive votes from
m classifiers for a sample x as

α(x)= 1

m

m∑
i=1

I [hi (x)= 1].

Then, the weighted ERM algorithm works as follows:

(1) Compute α(xi ) for all i ;
(2) find the minimizer w∗ by

w∗ = argmin
w

1

n

∑
x∈Du

lα(h(x;w),α(x))+ λ

2
‖w‖2

2,

where
lα(·)=α(x)l (wT x)+ (1−α(x))l (−wT x);

(3) sample a random vector b from P(b)∝ e−0.5ε‖b‖2 ;
(4) output wpr i v =w∗ +b.

Theoretical analyses show that wpr i v is ε-differentially private.

15.3.4 Multitask Learning

For multitask learning, which is introduced in Chapter 9, the privacy should be
taken into consideration when all the tasks help each other in the learning pro-
cess and hence the privacy problem also exists. In the work by Xie et al. (2017),
a differentially privacy-preserving multi-task learning method is proposed. The
model parameter wi is assumed to be decomposed into two components, that is,
wi = pi +qi , where pi ∈ Rd is the component to learn the task relatedness and
qi ∈ Rd is the task-specific component, leading to W = P+Q. Thus, the proposed
objective function is formulated as

min
P,Q

m∑
i=1

(
1

ni

ni∑
j=1

l i
j (pi +qi )

)
+λ1rP (P)+λ2rQ (Q),

where l i
j (wi ) denotes the loss on the j -th data point in the i -th task with the model

parameter wi , rP (P) performs the knowledge transfer and rQ (Q) penalizes the
model complexity. Here rQ (Q) is assumed to be decomposable in terms of tasks,
that is, rQ (Q) = ∑m

i=1 r i
Q (qi ). Thus, each column qi in Q can be distributed to a

computing node and it can be updated locally. For P, the gradient information
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about pi is computed locally and then collected by a central server to update P.
Since only pi is passed to the central server, noises can be added to it to guarantee
the differential privacy.
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Transfer Learning in Computer Vision

16.1 Introduction

Understanding the visual world around us has been a research focus in AI for
decades and significant contributions have been made. AI has already achieved
human-level performance in various visual tasks and contexts, such as face recog-
nition, handwritten character recognition, lip reading and so on. In AI’s early days,
most visual models had been developed on the basis of handcrafted features for
general visual tasks such as image classification and video classification. Recently,
deep neural network models become a new trend due to their powerful ability to
learn hierarchical feature representations.

However, the advances of visual models heavily rely on large-scale labeled data.
As labeled data are difficult to obtain, transfer learning is desired. To transfer the
knowledge from a source domain to a target domain, feature-based methods are
widely adopted. Some models augment target domain features with source do-
main features. Some models learn a mapping from the source domain to the target
domain. Some other models learn a shared dictionary across the two domains. In
deep neural networks, some learned features are highly “transferable” and hence
the features learned from one data set can naturally be generalized and trans-
ferred to another domain and context.

This chapter is organized as follows. Section 16.2 focuses on image applications,
where image classification, as the most widely studied visual application, is first
discussed. Then, transfer learning models for other visual applications such as
video classification and object detection are addressed. Transfer learning models
for medical image applications are specifically discussed in Section 16.3, where
classification, detection and segmentation tasks are investigated. We pick med-
ical imaging as an application domain for transfer learning particularly because
the high-quality labeled data are difficult to obtain to enable this very important
application.
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16.2 Overview

Image data are ubiquitous. For example, users share photos on social networks,
traffic cameras monitor road environments, advertisements are displayed with
images on online-shopping sites and so on. Understanding images plays a key
role in various applications, including self-driving cars, video surveillance, rec-
ommender systems and so on. Thanks to large-scale labeled databases and the
advancement of vision models, remarkable progress has been made in under-
standing the visual world. Yet labeled data are scarce in real world applications.
For example, when a traffic camera is set up in a new city, the distribution of the
traffic flow is likely to differ from that in other cities. As manually labeling video
frames is time-consuming and it costs moderate human effort, it is necessary to
transfer the knowledge from labeled data in other cities or public data sets, where
transfer learning models can be applied.

In this section, we review transfer learning models for vision tasks. We first focus
on the image classification task and then discuss other vision tasks such as video
classification, captioning, object detection and so on. For survey papers that ad-
dress visual domain adaptation, readers may refer to the works by Csurka (2017)
and Patel et al. (2015).

Most transfer learning models are general-purpose, and they can be directly
used in visual applications without particular adjustments. For transfer learning
models pertaining to image classification, there are a plethora of approaches, as
shown in Figure 16.1. They are first categorized into shallow models and deep
models. Deep models are usually artificial neural networks and learn hierarchi-
cal representations, while shallow models do not. For shallow models, there are
mainly four transfer approaches, namely feature augmentation-based, feature
transformation-based, parameter adaptation and dictionary-based approaches.
For deep models, they can be divided into feature-based and model-based ap-
proaches, and these two approaches are usually used together. In the following,
we introduce those two categories of transfer learning models.

16.2.1 Shallow Transfer Learning Models

In this section, we introduce shallow transfer learning models for image clas-
sification, which can be categorized into the following four approaches: feature
augmentation-based, feature transformation-based, parameter adaptation and
dictionary-based approaches.

Feature Augmentation-Based Approach
Daumé III (2007) proposes a transfer learning method by augmenting the target

feature space. The augmented feature space is composed of three parts, namely
general features that are shared across domains, private features of the source
domain and private features of the target domain. The feature augmentation is
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Figure 16.1 Categorization of transfer learning models for image classification

attained by concatenating the three parts as

φs (x)= [x,x,0]T φt (x)= [x,0,x]T , (16.1)

where 0 denotes a zero vector of dimension d and φs and φt denote the feature
augmentation mapping in the source and target domains, respectively. Knowl-
edge transfer across domains is achieved by considering domain-shared and
domain-specific features simultaneously. This method can be extended to the
multiple domain setting.

The feature augmentation-based method has been extended by considering in-
termediate subspaces that connect the source and target domains (Gopalan et al.,
2011, 2014; Gong et al., 2012a). The geodesic flow sampling method (Gopalan
et al., 2011) views the generative subspaces of the source and target domains as
points on a Grassmann manifold, and then samples point along the geodesic to
obtain intermediate subspace representations. Original feature representations
from the two domains are projected into these subspaces and they are concate-
nated into high-dimensional feature representations. A discriminative classifier
is constructed on the resulting feature representation. Instead of sampling finite
subspaces, the geodesic flow kernel method (Gong et al., 2012a) defines a kernel
function that integrates an infinite number of subspaces that lie on the geodesic
flow from the source domain to the target one. A more general framework is pro-
posed by Gopalan et al. (2014), which considers feature representations in a
reproducing kernel Hibert space using kernel methods and a low-dimensional
manifold representation using Laplacian eigenmaps.
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Feature Transformation-Based Approach
For feature transformation-based methods, a linear or nonlinear transforma-

tion from the source samples to the target samples is learned such that the trans-
formed source samples are similar to the target ones. This idea is first proposed by
Saenko et al. (2010). The transformation is parameterized by W and the similarity
between the transformed source domain sample and the target domain sample is
defined as

sim(xs ,xt )= (xs )T Wxt .

To avoid overfitting, a regularization term is introduced to the transformation W,
denoted by r (W). The optimization problem of feature transformation transfer is
formulated as

min
W

r (W) s.t. ci (XT
s WXt )≥ 0 1≤ i ≤ c, (16.2)

where ci denotes the i -th supervision constraint. In the work by Saenko et al.
(2010), the regularizer is defined as r (W)= tr(W)−logdet(W) and two types of con-
straints, namely class-based constraints and correspondence-based constraints,
are considered. For the class-based constraints, a random labeled sample is se-
lected from the source domain and the target domain, respectively. This distance
between the two samples should be smaller than a threshold if they have the same
label; otherwise, the distance should exceed a threshold. Alternatively,
correspondence-based constraints can be constructed if the relationship other
than the label information of two samples is known. The similarity and dissimilar-
ity constraints help learning a domain-invariant transformation. The constrained
optimization problem defined in (16.2) is first converted to an unconstrained prob-
lem and then it is solved by an information-theoretic metric learning method.

Later, Kulis et al. (2011) propose a more general formulation where the model
proposed by Saenko et al. (2010) becomes a special case. It learns an asymmetric
nonlinear transformation, which makes the model capable of handling changes
in the feature type and dimension.

The feature transformation method works well even when the source and target
domains have different representations, which belongs to heterogeneous transfer
learning. Dai et al. (2008) present one of the first such works known as translated
learning, where the training data and test data can be from totally different fea-
ture spaces. For example, the source can be text while the target can be text or au-
dio. Translated learning is an example of heterogeneous transfer learning. A main
method for this approach is to obtain a “dictionary” that can be a translator to link
the different feature spaces.

An intuitive idea for translated learning is to translate some or all of the training
data from the source domain as well as the target domain into a common target
feature space, such that learning can be done in this single space. This approach
can be used for applications such as cross-lingual text classification and cross-
domain image understanding. It can also be used to link the knowledge between
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text and images, in applications where one can use text to explain the semantics of
images. Compared with the machine translation methods typically used in natural
language understanding, the key difference lies in how different feature spaces are
connected; instead of focusing on the sequential nature of texts to be translated,
in translated learning the target data may be of any order.

Dai et al. (2008) present a solution to the translated learning problem, which
is to make the best use of available data to construct a dictionary or translator.
While the target data alone may not be sufficient in building a good classifier for
the target domain, by leveraging the available labeled data in the source domain,
we can indeed build effective translators, which in turn can enhance the training
data in the target domain. An example is to translate between the text and image
feature spaces using the social tagging data available on the World Wide Web.

The translated learning model assumes that the learning tasks are represented
by a common label space c, which is the same in both the source and the target do-
mains. The learning process can be represented using a Markov chain c → f → x,
where f represents the features of the data instances x. The source domain data
xs are represented by the features fs in the source feature space, while the test
data in the target domain xt are represented by the features ft in the target fea-
ture space. Translated learning models the learning in the source space through
a Markov chain c → fs → xs , which can be connected to another Markov chain
c → ft → xt in the target space. An important feature of translated learning is to
show how to connect these two paths, so that a new chain c → fs → ft → x, can
be formed to translate the knowledge from the source space to the target space. In
this process, the mapping fs → ft acts as a feature-level translator. The algorithm,
known as TLRisk, exploits the risk minimization framework in the work by Lafferty
and Zhai (2001) to model translated learning.

We first express the overall objective of translated learning. We can use the risk
function R(c, xt ) to measure the the risk for classifying xt to the category c. To
predict the label for an instance xt , we need only to find the class-label c that
minimizes the risk function R(c, xt ), so that the hypothesis ht can be estimated
with

ht (xt )= argmin
c∈C

R(c, xt ) (16.3)

The risk function R(c, xt ) can be formulated as the expected loss when c and xt

are relevant. Since C only depends on c and Xt only depends on xt , we can use
p(C |c) to replace p(C |c, xt ), and use p(Xt |xt ) to replace p(Xt |c, xt ).

Dai et al. (2008) represent the risk function as follows:

R(c, xt )=
∫
ΘC

∫
ΘXt

L(θC ,θXt ,r = 1)p(θC |c)p(θXt |xt )dθXt dθC (16.4)

where ΘC and ΘXt are the model spaces corresponding to the label space C and
the target data space Xt , respectively. L(θC ,θXt ,r = 1) represent the loss function
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as a result of a wrong prediction of instance-class label association. θ are variables
representing the particular models. In this objective function, the loss function
L(θC ,θXt ,r = 1) can be estimated by the Kullback–Leibler divergence (Kullback
and Leibler, 1951) of the two distribution spaces behind models θC and θXt . This
divergence estimation in turn requires a translator from the feature space fs to
feature space ft , which can be estimated using the occurrence data acquired from
the Web. Of course, one has to be careful in constructing the dictionary, as there
may be much bias and noise inherent in the web data (Dai et al., 2008).

Parameter Adaptation Approach
Several algorithms were proposed to adapt a model trained with the source do-

main data for model learning in the target domain. Yang et al. (2007c) propose
an adaptive support vector machine (A-SVM), which learns a “delta function” be-
tween the source domain model and the target domain model. The adaptation is
formulated as

ft (x)= fs (x)+δ f (x),

where fs , ft and δ f denote the source domain model, the target domain model
and the delta function, respectively. Further, the delta function is defined as
δ f (x) = wT φ(x), where w denotes the parameter of the delta function and the
mapping φ projects the data sample into a high-dimensional space. To estimate
the parameter w, the objective of A-SVM is extended from standard SVMs as

min
w

1

2
‖w‖2+C

nt∑
i
εi

s.t.εi ≥ 0, yi fs (xi )+ yi wT φ(xi )≥ 1−εi ∀(xi , yi ) ∈Dt , (16.5)

where εi measures the classification error and C controls the trade-off between
the two terms. (16.5) learns a target domain model that correctly classifies labeled
samples in the target domain and is close to the source domain model at the same
time.

Domain transfer SVM, proposed by Duan et al. (2009), improves over the A-SVM
by reducing the domain discrepancy measured by maximum mean discrepancy
(MMD) and learns a target decision function simultaneously. Adaptive multiple
kernel learning (Duan et al., 2012c) learns a kernel function based on multiple
base kernels. There are also methods that learn the feature transformation and
classifier parameters jointly (Shi and Sha, 2012; Donahue et al., 2013; Hoffman
et al., 2013).

Dictionary-Based Approach
Dictionary learning represents high-dimensional data as a linear combination

of basic elements. The basic elements are referred to as “atoms” and the atoms
compose a dictionary. Dictionary learning has been successfully applied in vari-
ous vision tasks, such as face recognition, image reconstruction, image de-blurring
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and so on. However, dictionary learning is challenging in the cross-domain setting
because the dictionary learned in the source domain might be unsuitable for the
target domain due to the domain shift. Several models are proposed to address
this issue (Qiu et al., 2012; Ni et al., 2013; Shekhar et al., 2013).

Shekhar et al. (2013) propose a shared domain-adapted dictionary learning
framework that learns a shared dictionary for both the source and target domains
in a low-dimensional space. Two costs are considered, namely a reconstruction
cost and a regularization cost denoted by C1 and C2, respectively. The data are
first projected into a low-dimensional space where the parameters for the map-
pings are denoted by Ws and Wt , respectively. The shared dictionary denoted by
K is learned by minimizing the reconstruction cost in the low-dimensional space.
The reconstruction cost C1 is defined as

C1(K,Ws ,Wt )= ‖Ws Xs −KVs‖2
F +‖Wt Xt −KVt‖2

F , (16.6)

where Vs and Vt denote the sparse representation of Xs and Xt over the dictionary
K, respectively.

Meanwhile, the regularization cost C2 is introduced to ensure that the projec-
tion does not lose too much information and it is defined as

C2(Ws ,Wt )= ‖Xs −WT
s Ws Xs‖2

F +‖Xt −WT
t Wt Xt‖2

F . (16.7)

Combining (16.6) and (16.7) and applying algebraic calculations, the overall op-
timization problem is formulated as

min
K,W̃,Ṽ

‖W̃X̃−KṼ‖2
F −λtr((W̃X̃)(W̃X̃)T )

s.t. Ws WT
s = I, Wt WT

t = I, ‖ṽ j ‖0 ≤ T0,∀ j ,

where λ is a positive constant, T0 denotes the sparsity level, ‖·‖0, the �0 norm,
is defined as the number of non-zero elements in a vector, and W̃, X̃ and Ṽ are
defined as

W̃= [Ws ,Wt ], X̃=
[

Xs 0
0 Xt

]
, Ṽ= [Vs ,Vt ].

This framework can be extended to a kernelized version and it can handle multi-
ple source domains as well.

16.2.2 Deep Transfer Learning Models

In the context of deep learning, there are mainly two approaches for transfer
learning, namely model-based and feature-based transfer learning, and these two
approaches are usually used simultaneously in a deep transfer learning model.
As deep transfer learning models are already discussed in previous chapters, we
provide an overview of deep transfer learning models for image classification and
do not delve into details.
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xs conv1 − 3 conv4 − 5 fc6 fc7 fc8 ys

xt conv1 − 3 conv4 − 5 fc6 fc7 fc8

Frozen Fine-tune

MMD MMD MMD

Figure 16.2 An illustration of the domain adaptation network (adapted from
Long et al. [2015]), which applies both model-based and feature-based transfer
learning approaches. It adopts the AlexNet architecture with eight layers.

Model-based transfer learning via the parameter sharing and fine-tuning is the
most widely adopted method. This is because parameters in a deep neural net-
work are transferable in that they are suitable for multiple domains (Donahue
et al., 2014; Oquab et al., 2014; Yosinski et al., 2014). The generalization ability
of parameters is referred as “transferability.” Two popular model-based transfer
learning methods are parameter-sharing and fine-tuning. Parameter-sharing as-
sumes that parameters are highly transferable, and it directly copies parameters
in the source network to the target network. The fine-tuning method assumes that
parameters in the source network are useful but they need to be trained with the
target data to better adapt to the target domain.

Feature-based transfer learning models learn a common feature space that is
shared by both the source and target domains (Long et al., 2015; Ganin et al.,
2016). For deep neural networks, feature-based transfer learning is usually used
in conjunction with model-based transfer learning. A typical example is shown
in Figure 16.2. The first three layers are copied from a source network and this
corresponds to parameter sharing in model-based transfer learning and also fea-
ture sharing in the feature-based transfer learning. The next two layers are initial-
ized with parameters from the source network and they are fine-tuned during the
training process. The last three layers are domain-specific and learned based on
the target data.

He et al. (2018b) show that, by learning from scratch, some vision tasks achieve
comparable performance with the fine-tuning approach based on the ImageNet
data set. We think this phenomena occurs based on a prerequisite that the tar-
get domain has enough training data. So, when the target domain has few train-
ing data, the fine-tuning approach can perform better than the pure supervised
learning approach.
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16.2.3 Transfer Learning for Other Vision Tasks

So far, we have focused on transfer learning models for image classification.
Transfer learning models have also been developed for other vision tasks such as
video classification, image/video captioning, object detection and so on. The gen-
eralization ability of features learned with a convolutional neural network (CNN)
on a video classification data set is empirically investigated by Karpathy et al.
(2014). While it achieves an accuracy of 41.3 percent when the network is trained
on the target domain alone, a signification improvement can be obtained by tak-
ing a parameter-based transfer learning approach. The accuracy reaches 65.4 per-
cent when retaining the low-level layers from the source network and retraining
the top layers of the network. A similar result is reported by Abu-El-Haija et al.
(2016). The mean average precision of ActivityNet is improved from 53.8 to 77.6
percent by pretraining on a large-scale YouTube-8M data set. In image/video cap-
tioning tasks, initializing the convolutional network with the parameters
pretrained on the ImageNet data set is a widely adopted technique (Venugopalan
et al., 2015a, 2015b; Vinyals et al., 2015; Xu et al., 2015). Parameter-based transfer
learning has also been used in object detection where the model decides whether
a region of interest in an image contains a certain object (Sermanet et al., 2013;
Girshick et al., 2014; Hoffman et al., 2014). In addition to parameter-based transfer
learning, a region with CNN features detector can be adapted by aligning feature
subspaces of localized bounding boxes between the source domain and the target
domain (Raj et al., 2015).

16.3 Transfer Learning for Medical Image Analysis

In the past decades, medical imaging technologies, for example, computed to-
mography (CT), magnetic resonance (MR), positron emission tomography, mam-
mography, ultrasound, X-ray and so on, have played important roles in the early
detection, the diagnosis and the treatment of diseases. In the clinic, interpret-
ing medical images relies on human experts such as radiologists and physicians.
Therefore, medical image analysis (MIA), a subfield of computer vision, emerged
in the 1990s to automatically complete tasks such as classification, detection and
segmentation for clinical care and biomedical research.

Although MIA is a subfield of computer vision, compared to images in general,
medical images have some specific characteristics.

• Small data and expensive labeling: Medical image data are collected through
special equipment under very private contexts, hence, medical image data of-
ten only have small sample, measured in the order of hundreds of samples only.
This is much smaller than general image data sets such as ImageNet and CIFAR.
The labeling of medical images often relies on experienced and well-trained hu-
man experts such as doctors and radiologists, making the labeling for medical
images much more expensive.
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• Complex data: Computer vision tasks usually focus on two-dimensional (2D)
images or videos. However, medical images have a much more complex data
formation. X-ray images often consist of several views for a body area of a pa-
tient. Some examination equipment such as CT offers three-dimensional (3D)
images or videos instead of 2D ones. MR images (MRI) even have several modal-
ities in 3D images. Ultrasound devices often generate sequential image data.

• Imbalanced labels: In practice, medical image data are imbalanced. Positive re-
sults such as true confirmations of cancer cases have a much lower chance of
appearing than negative results, since most patients are healthy. This makes the
data have an imbalanced distribution, which in turn makes it difficult to learn.
Additionally, the abnormality of the data usually occurs in a small patch of the
images and these local patches will determine the label of the whole image. For
example, a small tumor in a CT scan of a lung will lead to a positive label no
matter what other patches are classified. This is a typical case of multi-instance
learning (Dietterich et al., 1997).

In the following , we discuss how transfer learning helps MIA tasks under differ-
ent settings.

16.3.1 Medical Image Classification

Since the size of medical image data sets is typically small, the popularity of
transfer learning for this applications is not surprising. Using a pretrained network
as a feature extractor and fine-tuning a pretrained network are both widely used
in medical image classification based on transfer learning. In the work by Antony
et al. (2016), the fine-tuning clearly outperforms the feature extraction, achiev-
ing 57.6 percent accuracy in multi-class grade assessment of knee osteoarthritis
compared with 53.4 percent. However, Kim et al. (2016) show that using a CNN
as a feature extractor outperforms the fine-tuning in the cytopathology image
classification.

Similar to the general computer vision, the medical imaging community ini-
tially focuses on unsupervised pretraining. Those early attempted works (Brosch
and Tam, 2013; Plis et al., 2013; Suk and Shen, 2013; Suk et al., 2014) focus on neu-
roimaging from brain MRI, as shown in the Figure 16.3. They apply deep belief
networks to unsupervisedly learn the MRI data distribution P (x|h) and the hidden
representation P (h|x). Specifically, generative models like restricted Boltzmann
machines or stacked autoencoder learn to reconstruct the inputs x by minimizing∏

x∈X P (x) or
∑

x∈X |x − fw (x)|2 and inferring the hidden representation h. Then,
the hidden representation h can be directly reused or further fine-tuned with the
label information to do the classification for the diagnosis of Alzheimer’s disease.

In later studies, researchers make attempts to transfer the representations in
supervised learning from large image data sets such as ImageNet to improve the
learning on small medical image data sets. Despite the fact that there are many
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Figure 16.3 MRI images from the public BRATS data set (Menze et al., 2015; Bakas
et al., 2017) in 3D and multimodality. The upper row shows three different views
of the 3D MRI image in T1, and the lower row shows the images of the T1, T2 and
flair modalities.

differences between general images and medical images, the transferred repre-
sentations help the learned model to achieve comparable or even better perfor-
mance than human experts in many diagnosis tasks including retinal diseases
(Kermany et al., 2018), pneumonia (Rajpurkar et al., 2017) and skin cancer (Es-
teva et al., 2017).

Taking the diagnosis of retinal diseases as an example (Kermany et al., 2018),
fine-tuning from the ImageNet data set has the following four steps: (1) the in-
ception network is chosen as the backbone model and randomly initialized at the
beginning. (2) The inception network is first trained on the ImageNet data set with
a final classifier layer outputting one of 1,000 classes. (3) After pretraining on the
ImageNet data set, the last classifier layer with 1,000 output nodes is replaced by
another randomly initialized classifier layer to predict four retinal status, while
other previous layers remain unchanged. (4) The whole network continues to fine-
tune the last several fully connected layers with all previous CNN layers frozen.
The whole process is illustrated in Figure 16.4. It turns out that this strategy can
achieve a high accuracy like 93.4 percent with limited labeled data.

16.3.2 Abnormality Detection in Medical Images

In some works on the abnormality detection problem, transferring from large-
scale general image data sets (e.g., the ImageNet data set) has been found to be
consistently beneficial. Shin et al. (2016) exploit and extensively evaluate trans-
fer learning with different deep CNN architectures, including CifarNet, AlexNet
and GoogLeNet. What’s more, this work also investigates and compares different
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Figure 16.4 An example of the fine-tuning method from the ImageNet data set
about how to achieve comparable or better performance than human experts on
the retinal disease diagnosis (adapted from Kermany et al. [2018])

training protocols of transfer learning: (1) fine-tuning: the model is initialized from
a pretrained network and then it is trained with labeled data from the target do-
main. (2) Off-the-shelf: the network pretrained from the source domain is frozen
except the last classifier layer, which is randomly initialized and trained on the tar-
get data. In the two studied problems, that is, the thoracoabdominal lymph node
detection and interstitial lung disease classification, transfer learning making use
of the ImageNet data can achieve the state-of-the-art performance.

Samala et al. (2016) study transfer learning between two similar medical image
domains for mass detection of the breast cancer. The proposed method develops a
computer-aided detection system for masses in digital breast tomosynthesis vol-
umes using a CNN to transfer knowledge from mammograms. Empirical studies
show that using transfer learning improves the area under curve score.

16.3.3 Medical Image Segmentation

Segmentation is a common task in both general CV and MIA. It is defined as the
process of partitioning a digital image into multiple segments (sets of pixels, also
known as super-pixels). A segmentation model is to classify pixels in an image to
perform the segmentation that carries some semantic meaning. Dou et al. (2018)
use adversarial learning to conduct unsupervised domain adaptation from source
MRI domain to the target CT domain. This work employs a residual network to
conduct pixelwise predictions for the segmentation and the whole network is first
trained on the MRI images in the source domain. It assumes that the distribu-
tional differences between the MRI domain and CT domain are in the primarily
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low-level features (e.g., gray-scale values) rather than high-level features (e.g., ge-
ometric structures). Therefore, the domain adaptation module (DAM) is intro-
duced to replace the low-level layer for the target domain and the domain critic
module (DCM) will concatenate the multiple high-level features as its input to
learn to tell the source domain from the target domain. The DCM and DAM are
trained together by optimizing the adversarial loss as

min
M

LM (X t ,D)=−E(M(xt ),FH (xt ))∼Pg
(D(M(xt ),FH (xt ))

min
D

LD (X s , X t , M)=E(M(xt ),FH (xt ))∼Pg
(D(M(xt ),FH (xt )))

−E(M(xs ),FH (xs ))∼Ps (D(M(xs ),FH (xs ))),

where M denotes the DAM and D denotes the DCM. As shown in Figure 16.5, the
DCM and DAM work together to learn how to align high-level features between
the source and target domains, and then the high-level layers of the segmentation
model can be reused by the target domain.

Figure 16.5 The framework of the unsupervised domain adaptation from MRI
segmentation to CT segmentation (adapted from Dou et al. [2018])
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Transfer Learning in Natural Language Processing

17.1 Introduction

Transfer learning is often referred to as domain adaptation in natural language
processing (NLP) tasks. Transfer learning plays a significant role in various NLP
tasks, especially when there are limited data for training a model. In this case,
transfer learning can help these tasks by leveraging the knowledge gained from
other related learning tasks.

This chapter will give an overview of transfer learning in NLP. We give an
overview in two sections. In the first section, we give a general introduction about
how transfer learning can be used in NLP tasks. In the second section, we focus on
how transfer learning helps sentiment analysis. In the next chapter, we will devote
an entire chapter to transfer learning in dialog systems, which is a task in NLP.

17.2 Transfer Learning in NLP

A basic model for transfer learning in NLP is neural networks. As neural net-
works are usually trained with gradient descent methods, it is straightforward to
use gradient information in both source and target domains for optimization to
accomplish the knowledge transfer. Depending on how samples in source and
target domains are used, there are two main approaches to neural network-based
transfer learning, including parameter initialization (INIT) and multitask learning
(MTL). In some cases, we can use a hybrid of the two methods, which pre-trains
on the source domain in the spirit of the INIT approach and then trains on the
source and target domains simultaneously based on the MTL approach.

17.2.1 Problem Settings

Under the transfer learning setting, we suppose there are m source tasks {Si }m
i=1

and one target task T where m ≥ 1. The i -th source task Si has a training data set
Dsi , which contains nsi pairs of data points and labels {(xsi

j , y si
j )}

nsi
j=1 where the j -th
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data point xsi
j ∈Rdsi lies in a dsi -dimensional space and y si

j belongs to {−1,1} for a
classification task and otherwise is a scalar. Dt , the training data set of the target
taskT, has nt data points {xt

i }nt
i=1 where xt

i ∈Rdt . The data matrix for the i -th source
task is denoted by Xsi = (xsi

1 , . . . ,xsi
nsi

) and the label vector by ysi = (y si
1 , . . . , y si

nsi
)T .

The data matrix and label vector for the target task are denoted by Xt and yt . The
distribution of the data points in the i -th source task Si is denoted by PX

si
, the

condition distribution of the label given the data point by P
Y |X
si

, and the joint dis-
tribution by PX×Y

si
. The corresponding distributions in the target task are denoted

by PX
t , PX |Y

t and PX×Y
t , respectively.

17.2.2 Parameter Initialization in NLP Applications

The INIT approach first trains neural networks on m source tasks {Si }m
i=1 and

then uses the learned parameters to initialize a neural network for a target task
T. After that, if labeled data are available in T, they are used to update the pa-
rameters of the target neural network. There are two methods to apply parameter
initialization.

(1) Freezing: It applies the neural network trained on a source domain to the tar-
get domain without any modification.

(2) Fine-tuning: In this method, a neural network is trained on a source domain.
Then this neural network is applied to the target domain with parameters of
some layers fixed while parameters of other layers will be learned on the target
domain data. An illustration of the fine-tuning method is shown in Figure 17.1.

Source data

Randomized 
ini�aliza�on

Target data

Source label Target label

Fixed 
layers

Copy
parameters

Pre trained model Fine-tuned model

Output
layers

Figure 17.1 An illustration of the fine-tuning method by training the top layer on
the target domain with other layers fixed

With the popularity of distributed representations, pretrained word embedding
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models such as word2vec (Mikolov et al., 2013a) and glove (Pennington et al.,
2014) are widely used and word representations pretrained from a large source
data set are used to initialize the word embedding layer in a target model for
many NLP tasks. When the size of the target data set is much smaller than that
of the source data set used for word embeddings, it is observed that freezing rep-
resentations outperforms fine-tuning them (Seo et al., 2016) and otherwise the
fine-tuning method is better than the freezing method (Kim, 2014).

Min et al. (2017) train a BiDAF model (Seo et al., 2016) on a source data set,
Stanford question answering (SQuAD) (Rajpurkar et al., 2016), which is a span-
supervised question and answering (QA) data set and then adapt it to two other
QA data sets, WikiQA and SemEval 2016. Moreover, specific layers trained on a
sentence scoring task are applied to a different task – the entailment task.

Devlin et al. (2018) pretrain a proposed bidirectional encoder representations
from transformers (BERT) model on two tasks, that is, masked language model-
ing and next sentence prediction, and then fine-tune the pretrained BERT model
on eleven NLP tasks/data sets, including multi-genre natural language inference,
Quora question pairs, question natural language inference, Stanford sentiment
treebank, the corpus of linguistic acceptability, semantic textual similarity bench-
mark, Microsoft research paraphrase corpus, recognizing textual entailment, Wino-
grad natural language inference, SQuAD data set, the CoNLL 2003 named entity
recognition (NER) data set and the situations with adversarial generations data
set, to achieve the state-of-the-art performance.

17.2.3 MTL in NLP Applications

The MTL approach simultaneously learns from both the source and target do-
mains. The overall loss function is defined as

J =λJt + (1−λ) Js , (17.1)

where Jt and Js are the individual loss function of each domain, and λ ∈ (0,1) is a
regularization parameter to balance the loss functions of two domains.

In the rest of this section, we will introduce the use of the MTL approach on
NLP tasks by highlighting different strategies and rationales.

Machine Translation
Different models to use MTL for machine translation can be classified into two

categories.
The first category is by training a unified translation model under the MTL

framework, thus simultaneously translating from one source language into sev-
eral different target languages. The general model could be regarded as a varia-
tion of an encoder-decoder framework. Dong et al. (2015) build a recurrent neural
network (RNN)-based encoder-decoder model with multiple target tasks, each of
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which is for a target language. Different tasks share the same encoder, as shown
in Figure 17.2. Different from Dong et al. (2015), Zoph and Knight (2016) define a
specific encoder for each target language and jointly train them. Malaviya et al.
(2017) build a massive many-to-one neural machine translation system from 1,017
languages to English. Moreover, Johnson et al. (2016b) jointly train encoders and
decoders.

En–Fr decoder

Shared encoder

En–ES decoder En–NI decoder

English

French (Fr)

En–Pt decoder

Portuguese (Pt) Spanish (Es) Dutch (Nl)

Figure 17.2 MTL for multiple language translation

The second category of machine translation works is to utilize other related
tasks as auxiliary tasks to help the machine translation task. Luong et al. (2016)
use the parsing and image captioning as auxiliary tasks. Wu et al. (2017) jointly
model the target word sequence and its dependency tree structure to help the
machine translation task. As shown in Figure 17.3, Niehues and Cho (2017) build
a model that can learn three NLP tasks, including part-of-speech (POS) tagging,
NER as well as machine translation by using an attention-based encoder-decoder
model. Here POS tagging and NER can also be modeled as translation problems.
For example, instead of translating the source words into the target language, they
translate words into labels such as POS tags or NER labels.

Multilingual Tasks
Similar to machine translation, it is often beneficial to use the MTL approach

to jointly train models for various NLP tasks such as POS tagging (Fang and Cohn,
2017), dependency parsing (Duong et al., 2015; Guo et al., 2016b), discourse
segmentation (Braud et al., 2017), sequence tagging (Yang et al., 2016), NER
(Gillick et al., 2016) and document classification (Pappas and Popescu-Belis, 2017).

Relation Extraction
For relation extraction, the information related to different relations or roles can

often be shared. Specifically, the knowledge learned from other types of relations
or even other tasks, could be transferred to the target relation and help to improve
the performance of the relation extractor.
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Figure 17.3 Learning three NLP tasks in a neural network based on the MTL ap-
proach

Jiang (2009) analyzes on relation extraction in a weakly supervised learning set-
ting, which only has a few seed instances of the target relation and a large number
of labeled instances of other types of relations. Jiang (2009) proposes a general
MTL framework where classifiers for a number of related tasks share a common
component and are trained together.

Liu et al. (2015b) propose a multitask deep neural network (DNN) to combine
the multiple-domain classification for query classification and information re-
trieval for ranking in a Web search. Experimental results demonstrate that the pro-
posed MTL model outperforms baseline methods without MTL.

Yang and Mitchell (2017) propose a bidirectional long short-term memory
(LSTM) network that predicts semantic role labels and a relational network that
predicts semantic roles for individual text expressions. The integrated model is a
relational neural model that is learned by using the knowledge distilled from the
sequential LSTM network.

Katiyar and Cardie (2017) use a method that jointly extracts entity mentions and
relations. They show that the attention-based LSTM network can extract semantic
relations between entities without using dependency trees. Experiments on the
ACE05 data set show that the proposed model can significantly outperform the
joint structured perceptron model (Li and Ji, 2014).

Question Answering

For the NLP task of QA and the task of reading comprehension, many effective
approaches are based on RNNs that learn a mapping from a text document and
a given question to an answer. Conventional approaches regard a document as
a long sentence and encode it word by word. However, model quality and train-
ing efficiency would decrease once given a relatively long document. Inspired by
studies on how people do reading comprehension by first skimming the docu-
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ment, identifying relevant parts and carefully reading these parts, it is beneficial
to jointly learn different parts for the QA and reading comprehension tasks.

Choi et al. (2017) present a framework that has two parts, including a simple
and fast model for sentence selection and a more complex model for answer gen-
eration based on the question and those selected sentences for the QA task. These
two parts are learned jointly.

Wang et al. (2018c) jointly train a ranker, which learns to rank retrieved pas-
sages, and an answer-extraction reader for the open-domain QA, where the model
is given a question and can access to a large corpus (e.g., Wikipedia) instead of a
preselected passage.

Semantic Parsing
A long-standing problem in NLP research is the task of semantic parsing, which

aims to parse natural language texts to meanings. A challenge is the limitation
on data resources because the parsers are often manually designed and the text
are labeled by humans. Thus, for the task of semantic parsing, an MTL approach
is often adopted when given multiple labeled text data to help leverage as much
shared information as possible.

Guo et al. (2016a) describe a universal framework that can exploit multi-typed
source treebanks to improve the parsing of a target treebank. Specifically, the pro-
posed framework considers two kinds of source treebanks, including multilingual
universal treebanks and monolingual heterogeneous treebanks.

Peng et al. (2017) learn three semantic dependency graph formalisms, including
the DELPH-IN bi-lexical dependencies representation, Enju predicate-argument
structures representation and Prague semantic dependencies representation, in
parallel.

Fan et al. (2017) jointly learn different Alexa-based semantic parsing formalisms
with different levels of parameter sharing. They explore three multitask archi-
tectures for sequence-to-sequence modeling, including one-to-many, one-to-one
and one-to-shared-many.

Zhao and Huang (2017) propose the first end-to-end discourse parser that
jointly trains a syntactic and a discourse parser as well as the first syntacto-
discourse treebank by integrating the Penn Treebank with the RST Treebank.

Representation Learning
For learning the vectorized representations of text, for example, words and sen-

tences, the challenge is to define the objective function. Most existing representa-
tion learning models have been based on a single task with a loss function, such
as predicting the next word (Mikolov et al., 2013b) or sentence (Kiros et al., 2015)
or training on a certain task such as entailment (Conneau et al., 2017) or machine
translation (McCann et al., 2017). Thus, the performance on these tasks are often
limited by the small amount of training data. Rather than learning representa-
tions from only one task, intuitively learning from multiple tasks for representa-
tion learning could leverage more supervised data from many tasks. Moreover,
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the use of MTL also benefits from a regularization effect such as reducing the
risk of the overfitting, thus making the learned representations universal across
tasks.

Jernite et al. (2017) adopt three auxiliary tasks for sentence representation learn-
ing. The first task is to learn to arrange the order of sentences in a passage. The sec-
ond task is to select the next sentence out of five candidates given the first three
sentences of a paragraph. The third task is trained to recover the conjunction cat-
egory in sentences.

Hashimoto et al. (2017) introduce a joint many-task (JMT) model to utilize lin-
guistic hierarchies by successively growing the depth of the model to solve in-
creasingly complex tasks, as shown in Figure 17.4. The JMT model can be trained
in an end-to-end manner for the POS tagging, chunking, dependency parsing, se-
mantic relatedness and textual entailment. In the JMT model, higher layers have
shortcut connections to lower layers.

Figure 17.4 The JMT model (adapted from Hashimoto et al. [2017])

Chunking
Chunking (Chomsky, 1956), an effective NLP technique in which linguistic stru-

ctures are grouped by hierarchical components, has been shown to benefit from
being jointly trained with low-level tasks such as POS tagging.

Collobert and Weston (2008) first propose a general DNN architecture, which
enables the model to learn multiple NLP tasks such as semantic role labeling
(SRL), NER, POS, chunking and language modeling simultaneously.

Søgaard and Goldberg (2016) show that low-level tasks such as POS tagging and
NER can be learned to generate feature representations at bottom layers in neural
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networks when used as auxiliary tasks for chunking. Moreover, the authors show
how this hierarchical architecture can be used for domain adaptation.

Ruder et al. (2017) define chunking, NER and a simplified version of SRL as main
tasks, and pair them with POS tagging as an auxiliary task. The collection of tasks
are then used in an MTL setting.

Automatic Speech Recognition
MTL approaches for automatic speech recognition (ASR) typically use addi-

tional supervised information that is available in speech recognition as auxiliary
tasks to train an ASR model in an end-to-end manner. For example, phonetic
recognition and frame-level state classification can be used as auxiliary tasks to
learn helpful intermediate representations.

Toshniwal et al. (2017) find that placing an auxiliary loss at an intermediate
layer improves performance due to the combined advantages of the end-to-end
training and traditional pipeline approaches. Similarly, Arık et al. (2017) present
Deep Voice, a production-quality text-to-speech system based on DNNs. This sys-
tem comprises five major building blocks, including a segmentation model to
locate phoneme boundaries, a grapheme-to-phoneme conversion model, a
phoneme duration prediction model, a fundamental frequency prediction model
and an audio synthesis model.

Other NLP Tasks
Besides the aforementioned tasks, there are some other NLP tasks that have

benefited from the MTL setting.

Balikas et al. (2017) study the problem of fine-grained sentiment classification
where tweets are classified according to five-point ratings, and show how to jointly
learn a ternary problem with three categories and a fine-grained sentiment clas-
sification problem.

Augenstein and Søgaard (2017) use several auxiliary tasks, including semantic
super-sense tagging and identification of multi-word expressions for keyphrase
boundary classification, that is to detect keyphrases in scientific articles and label
them in terms of predefined types.

Luo et al. (2017) propose an attention-based neural network to jointly model
the charge prediction task and the relevant article extraction task in a unified
framework.

17.3 Transfer Learning in Sentiment Analysis

One of the successful NLP applications of transfer learning is sentiment anal-
ysis of user reviews. Often, users leave many textual comments on products in
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e-commerce sites, or opinions about social events as social media messages. Sen-
timent analysis aims to take these comments as input and produce their polarity
such as positive or negative as output. In this section, we will introduce how trans-
fer learning techniques are applied to sentiment analysis.

As mentioned earlier, users tend to use natural language texts to express
opinions and attitudes about products or services on social media or review sites.
Thus, it is helpful to build models that take these user comments and correctly
interpret their emotional tendency. Sentiment analysis, which aims to automat-
ically determine the overall sentiment polarity of the text, achieves this objec-
tive by producing positive or negative polarity as output. As the needs for under-
standing user feedback in modern society grow, sentiment analysis has attracted
increasing attention over the past decades (Pang et al., 2002; Hu and Liu, 2004;
Pang and Lee, 2008; Liu, 2012). The characterization of sentiment polarity can be
deployed in practical systems that gauge market reaction and summarize opinion
in various scenarios such as Web pages, discussion boards and blogs. Successful
sentiment analysis can greatly facilitate service-oriented societies.

Supervised learning has been widely used in sentiment analysis using
techniques such as DNNs. These supervised models often require massive labeled
data as the training data to build sentiment classification models for a specific
domain (Wang and Manning, 2012; Socher et al., 2013b; Tang et al., 2015). A
major bottleneck in building a sentiment model is the cost spent on annotating
new corpora for new application domains, as data labeling in these new
domains may be time-consuming and expensive. This is a typical cold-start
problem.

To address the afore mentioned cold-start problem, cross-domain sentiment
classification is desirable. Cross-domain sentiment analysis aims to leverage the
knowledge from a related source domain that has abundant labeled data to im-
prove the performance of a target domain that has no or few labeled data. Because
cross-domain sentiment analysis can speed up the launching of a new service, in
many fast growing industry sectors, it has become a chosen tool to use.

For cross-domain sentiment classification, a main challenge lies in that fea-
tures in the source and target domains may be mismatched or have discrepancy
in their meanings. This is caused by variations of sentiment expression in differ-
ent domains. For example, “light” means positively in one domain while negative
in another. An examples is illustrated in Figure 17.5.

Therefore, in cross-domain sentiment analysis, we envision a scenario in which,
once we have obtained a good sentiment classifier in a source domain, we wish to
transfer the knowledge to a target domain with minimal human labeling of data.
For example, we may have a good sentiment model for the movie domain already,
and we wish to transfer the knowledge to a new domain, the electronics domain.
We need to overcome several challenges in cross-domain sentiment classifica-
tion. First, the target domain usually contains sentiment words or phrases that do
not appear or rarely appear in the source domain. For example, in the movie do-
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Figure 17.5 Illustrated examples for cross-domain (movie→electronics) senti-
ment classification. Words that are in italics and bold are non-pivots and those
that are underlined and in bold are pivots. Up-thumbing denotes the positive
sentiment while down-thumbing denotes the negative sentiment

main, the words engaging and thoughtful are used to express positive sentiment,
whereas insipid and plotless often indicate negative sentiment. However, in the
electronics domain, glossy and responsive are often used to express positive senti-
ment, whereas the words fuzzy and blurry are used to express negative sentiment.

Second, the semantic meaning of a word often differs from one domain to an-
other. For example, lightweight is usually used to express a positive sentiment to-
ward portable electronic devices in the electronics domain because a lightweight
device is easier to carry. However, the same word has a negative sentiment in the
movie domain since movies that do not invoke deep thoughts in viewers are con-
sidered to be lightweight. Therefore, due to this domain discrepancy, a sentiment
classifier trained in a source domain may not work well when directly applied to a
target domain.

In the following sections, we introduce some of the representative techniques
for cross-domain sentiment analysis based on transfer learning.

17.3.1 Problem Definition and Notations

In this section, we introduce some useful notations and definitions used for
cross-domain sentiment classification.

• Pivot: Blitzer et al. (2006) introduce the concept of the pivot. Pivots are the fea-
tures with two attributes. First, they are frequently occurring in both domains.
Second, they behave in the same way for discriminative learning in both do-
mains, that is, the semantic and the polarity of them are preserved across do-
mains.

• Non-pivot: Blitzer et al. (2006) propose the concept of a non-pivot phrase as op-
posite to the pivot. Non-pivots are usually the features with two characteristics.
First, in terms of occurrence, non-pivots are much more frequent in one do-



244 Transfer Learning in Natural Language Processing

main than in another one and their existence highly depends on the domains.
Second, the semantic meanings of non-pivots vary across domains.

Cross-domain sentiment classification can be divided into two categories de-
pending on whether labeled data are available for the target domain. In this chap-
ter, we focus on the more challenging case, where there are unlabeled data but no
labeled data for the target domain to guide the model learning from the labeled
source domain. In the following, we give the formal definition of the cross-domain
sentiment classification.

Definition 17.1 (cross-domain sentiment classification) We are given two do-
mains S and T, which denote a source domain and a target domain, respectively.
Suppose that we have a set of labeled data points Xs=

{
xs

i , y s
i

}ns

i=1
in the source

domain S. Besides, a set of unlabeled data points Xt = {xt
j }nt

j=1
is available in the

target domain T. The goal of cross-domain sentiment classification is to train an
accurate classifier for the target domain based on labeled source data and unla-
beled target data.

Here we divide the solutions to the cross-domain sentiment classification prob-
lem into shallow models an deep models.

17.3.2 Shallow Models

In order to align non-pivots from both domains, shallow models can be used.
Shallow models refer to those machine learning models that do not rely on deep
architectures such as DNNs. These models are based on knowledge on pivots that
link the source and target domains. Then more correspondence between domains
can be found by correlating pivots and non-pivots. Non-pivots, which are corre-
lated with the same pivots in different domains, are assumed to have correspon-
dence with pivots and hence they should be aligned with each other.

Here we introduce two typical shallow methods, the structural-correspondence-
based method and spectral-clustering-based method.

Structural Correspondence-Based Methods
Blitzer et al. (2007a) propose a structural correspondence learning (SCL)

method for cross-domain sentiment classification. The intuition of this method
is to notice that non-pivots can predict the occurrence of pivot in the unlabeled
data of both domains. If a non-pivot can predict the existence of a pivot well, the
learned weights for this pair can be used to map all non-pivots from both domains
corresponding to a pivot into a common feature space.

Suppose that we are performing a cross-domain sentiment classification task.
Suppose that we wish to transfer the knowledge from a movie domain to an elec-
tronics domain. While many features of a movie review are the same as an elec-
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tronics review, that is, the pivots like “great” and “awful,” many words are totally
different, such as “glossy” and “responsive.” Likewise, many words are useful for
the movie domain, but they are not useful for sentiment classification for the
electronics domain. For example, words like “engaging” and “thoughtful” are not
useful. The key intuition of SCL is that even when (“engaging,” “thoughtful”) and
(“glossy,” “responsive”) are domain specific, if they have high correlation with pivot
words such as “great” and have low correlations with words like “awful,” then they
can still be aligned with these pivot words, and thus with each other.

Figure 17.6 An illustrated example for the multiple pivot prediction tasks

Given the labeled data from a source domain and unlabeled data from both
domains, SCL first selects m pivots, which occur frequently in both domains and
have high mutual-information values with sentiment labels. These pivots act as
a bridge between the source and target domains. Then, all other n features are
regarded as the non-pivots. As shown in Figure 17.6, SCL models the correlation
between the pivots and the non-pivots by utilizing m linear pivot predictors to
predict the occurrence of each pivot from both domains and induces a projected
feature space that works well for both domains.

We can denote the weight vector of the i -th pivot predictor as wi ∈ Rn . This
allows positive entries in wi to mean that the corresponding non-pivots are pos-
itively correlated with the i -th pivot. All the weight vectors can be arranged into
a matrix W = [wi ]m

i=1 ∈ Rn×m and Θ ∈ Rn×k consists of the top k left singular vec-
tors of W. Here Θ are the principal predictors for the weight space. Given a feature
vector x ∈ Rd where d = m +n, let DS(x) denote its non-pivot part. SCL applies
the projection Φ(x) = DS(x)Θ to obtain new k-dimensional features and learns a
sentiment predictor for the augmented instance 〈x,DS(x)Θ〉, where 〈·, ·〉 is a con-
catenation operation.

Spectral Feature-Based Methods
Pan et al. (2010a) propose a spectral feature alignment (SFA) algorithm. This ap-

proach aims at learning model from the cooccurrence matrix formed by pivot and
non-pivot mapping. If a pivot feature and a non-pivot feature frequently cooccur
in some context, then the non-pivot feature is highly correlated with the pivot, and
this knowledge can be used to project a mapping from the cooccurrence matrix.

Based on this intuition, we can group non-pivots in the source and target do-
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mains into meaningful clusters by using the pivots as a bridge. The SFA algorithm
transforms the cooccurrence relations between pivots and non-pivots into a bi-
partite graph between domains and adapts a spectral clustering algorithm (Ng
et al., 2002) on the bipartite graph to solve the domain mismatch problem.

Figure 17.7 An example of the bipartite graph between pivots and non-pivots

SFA constructs a bipartite graph between domains. It first chooses l words that
have high term frequencies in both domains and low mutual-information values
as pivots and the remaining m− l words are treated as non-pivots, where m is the
total number of words. Let WP ∈Rl and WN P ∈R(m−l ) denote the vocabulary of the
pivots and non-pivots, respectively. SFA leverages the cooccurrence relationship
between pivots and non-pivots to construct a bipartite graph G = (VP ∪VN P ,E).
In G , each vertex in VP corresponds to a pivot in WP and each vertex in VN P corre-
sponds to a non-pivot in WN P . An edge in E connects two vertices in VP and VN P ,
respectively. For each edge ei j ∈ E , there is a non-negative weight ri j to measure
the relation between the pivot wi ∈WP and the non-pivot w j ∈WN P according to
their cooccurrence. In this way, they form a cooccurrence matrix M ∈R(m−l )×l . An
example for the bipartite graph is shown in Figure 17.7. Finally, we use the con-
structed bipartite graph to model the intrinsic relationship between pivots and
non-pivots.

17.3.3 Deep Learning Based Methods

DNNs have been successfully applied in various NLP tasks such as text classi-
fication (Kim, 2014), machine translation (Bahdanau et al., 2014) and QA (Wang
et al., 2017c). With the superior transferability of intermediate layers, DNNs are
also exploited in transfer learning to automatically learn domain-invariant fea-
ture representations for cross-domain sentiment classification. In this section, we
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introduce four categories based on DNNs, including autoencoder-based mod-
els (Glorot et al., 2011; Chen et al., 2012a; Zhou et al., 2016; Ziser and Reichart,
2017), embedding-based models (Bollegala et al., 2015), adversarial learning mod-
els (Goodfellow et al., 2014) and pivot-based neural models (Ziser and Reichart,
2017, 2018).

Autoencoder-Based Models
Autoencoder-based models aims to align domain-specific features based on a

reconstruction criterion and learn intermediate representations shared across do-
mains. In the following, we introduce several representative autoencoder-based
models.

Stacked Denoising Autoencoder

An autoencoder is a feedforward neural network that is trained in an unsuper-
vised manner to reproduce a given input from its latent representation (Bengio
et al., 2007). As shown in Figure 17.8, an autoencoder has three layers, includ-
ing the input layer, the hidden layer and the output layer and hence consists of
two parts, namely the encoder and the decoder. Mathematically, given an input
x ∈Rd , the encoder f attempts to map x into a latent representation z ∈Rk , where
k is equal to the number of neurons in the hidden layer and typically is smaller
than the dimension of the input. f is usually defined as a nonlinear function as

z= f (x)=σe (We x+be ), (17.2)

where σe is a nonlinear activation function in the encoder such as the Sigmoid
or hyperbolic tangent function, We ∈ Rk×d is a linear transformation matrix, and
be ∈ Rk is the bias. The decoder g aims to reproduce the input by mapping the
latent representation z to a reconstruction as

x̂= g (z)=σd (Wd z+bd ), (17.3)

where σd is a activation function of the decoder and Wd ∈Rd×k ,bd ∈Rd are learn-
able parameters. The objective of the autoencoder is to minimize the average re-
construction error:

L (x, x̂)= min
We ,be ,Wd ,bd

n∑
i=1

‖xi − x̂i‖2
2, (17.4)

where xi is the i -th training sample out of the total n training samples.
The denoising autoencoder (DAE) (Vincent et al., 2008) is an alternative to the

ordinary autoencoder. In DAE, each input x is stochastically corrupted to x̃, and its
objective is to reconstruct input data from their corruptions, that is, minimizing
a denoising reconstruction error L

(
x,g(f(x̃)

)
, as shown in Figure 17.9. Multiple

DAEs can be stacked into a deep learning architecture, which is called stacked
DAE (SDA).
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Figure 17.8 The architecture of an autoencoder

Figure 17.9 The architecture of a DAE

Glorot et al. (2011) successfully adapt the SDA to learn general feature repre-
sentations for cross-domain sentiment classification. Based on unlabeled data
from both domains and the label information in the source domain, the proposed
method tackles the cross-domain sentiment classification problem with a two-
step procedure. Glorot et al. (2011) train an SDA to reconstruct the input based
on the union of the source and target data. Then a linear classifier such as sup-
port vector machine is trained on the resulting feature representation f (x) of the
source labeled data. The SDA is able to disentangle hidden factors, which explains
the variations in the input data and automatically group the features according to
their relatedness to these factors.

Bi-transferring Autoencoder

Zhou et al. (2016) propose a bi-transferring autoencoder (BTAE) for cross
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-domain sentiment classification. Bi-transferring means that the autoencoder can
transfer the source domain data to the target domain and, at the same time,
transfer the target domain data to the source domain. Compared with the tra-
ditional autoencoder, BTAE consists of one encoder fc and two decoders gs and
gt for the source and target domains, respectively. The framework of the BTAE is
illustrated in Figure 17.10.

Transferred

source domain

Labeled

source domain

Unlabeled

target domain

Figure 17.10 The framework of the BTAE (adapted from Zhou et al. [2016])

Specifically, the encoder fc aims to map an input example x from both domains
into a latent feature representation z:

z= fc (x)=σe (We x+be ). (17.5)

The decoders gs and gt attempt to map the latent representation to the source or
target domain as

gs (z)=σd (Ws z+bs ), gt (z)=σd (Wt z+bt ).

The two domains can be generally reconstructed from each other. The objective
function for the BTAE system is formulated as

min
fc ,gs ,gt ,Bs ,Bt

∥∥Xs − gs
(

fc (Xs )
)∥∥2

2+
∥∥gt

(
fc (Xs )

)−Xt Bt
∥∥2

2+
∥∥Xt − gt

(
fc (Xt )

)∥∥2
2

+∥∥gs
(

fc (Xt )
)−Xs Bs

∥∥2
2+γ

(‖Bs‖2
F +‖Bt‖2

F

)
(17.6)

where γ is a regularization parameter. The first term in the objective function of
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(17.6) is to minimize the reconstruction error in the source domain. The second
term of the equation minimizes the reconstruction error of the target domain data
based on the source domain data with the help of a linear transformation matrix
Bt . The third and fourth terms are defined similarly. After solving (17.6), the trans-
ferred source domain data gt

(
fc (Xs )

)
have a similar distribution to that of the tar-

get domain and hence can be used to train a sentiment classifier for the target
domain.

Embedding-Based Models
Embedding-based models (Bollegala et al., 2015) focus on learning domain-

specific word representations that accurately capture the domain-specific aspects
of semantic meanings of words. Actually, this type of methods can solve both
problems of feature mismatch and semantic variation. Bollegala et al. (2015) pro-
pose a cross-domain word representation learning (CDWRL) method for cross-
domain sentiment analysis. The goal of CDWRL is to predict the surrounding non-
pivots of every pivot such that the semantic meaning and orientation of non-
pivots are captured. Therefore, there exist two requirements for learning the cross-
domain word embeddings. First, for both domains, pivots must accurately predict
the cooccurring non-pivots. Second, word representations learned for pivots must
be similar in the two domains. Thus, the objective function for CDWRL is formu-
lated as

minL(Cs ,Ws )+L(Ct ,Wt )+λR(Cs ,Ct ),

where s and t denote the source and target domain, respectively, and C and W
denote the pivot and non-pivot, respectively. L(Cs ,Ws ) is defined as a rank-based
predictive hinge loss:

L(Cs ,Ws )= ∑
d∈Ds

∑
(cs ,ws )∈d

∑
w∗

s ∼p(ws )

max(0,1−cT
s ws +cT

s w∗
s ),

where indices cs and ws denote a pivot and a non-pivot cooccurring in a docu-
ment, w∗

s denotes a non-pivot that does not cooccur with cs , and p(w), the
marginal distribution of non-pivots, can be estimated from the corpus counts.
Similarly, L(Ct ,Wt ) is defined as

L(Ct ,Wt )= ∑
d∈Dt

∑
(ct ,wt )∈d

∑
w∗

t ∼p(wt )

max(0,1−cT
t wt +cT

t w∗
t ).

The regularizer R(Cs ,Ct ) is defined as

R(Cs ,Ct )= 1

2

K∑
i=1

∥∥∥c(i )
s −c(i )

t

∥∥∥.

Through learning the embeddings for the pivots and non-pivots, their semantic
relation and sentiment orientation can be captured for domain adaptation.
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Adversarial Learning Models

A generative adversarial network (GAN) (Goodfellow et al., 2014) is a popular
deep generative model for a diverse range of tasks from style transfer in images
to data augmentation. The goal of GAN is to learn a generative distribution PX

G
that imitates the real data distribution PX

r eal . Specifically, GAN learns a generative
network G and a discriminative network D , where G generates samples from the
generator distribution PX

G and D learns to determine whether a sample is from PX
G

or PX
r eal . The objective of GANs is to optimize the following min-max risk as

φ=min
G

max
D

(
Ex∼PX

r eal

[
logD (x)

]+Ez∼PZ
G

[
log(1−D (G (z)))

])
. (17.7)

The success of GANs inspires innovations in which adversarial learning be used
to measure the discrepancy between distributions. Formally, Ganin and Lempit-
sky (2015) and Ganin et al. (2016) apply the adversarial loss to measure the H-
divergence between two distributions and propose a domain-adversarial training
of neural network (DANN) for domain adaptation.

Compared with the GAN, the DANN consists of three parts, the feature extractor
G f , the class predictor Gy and the domain classifier Gd . The input x is first mapped
by G f to a D-dimensional feature representation f=G f (x;θθθ f ) ∈RD , where θθθ f de-
notes parameters in G f . Then, the feature representation f is mapped by Gy to
the label y , where the parameters of Gy are denoted by θθθy . At the same time, the
feature representation f is also mapped by Gd to the domain label d with the pa-
rameters denoted by θθθd .

In the learning stage, the DANN aims to minimize the label prediction loss on
the source labeled data. Thus, the parameters of the feature extractor and the class
predictor, that is, θθθ f and θθθy , are both optimized to minimize the empirical loss
on the source domain. This guarantees the features f to be discriminative on the
source domain. At the same time, the DANN attempts to make the feature f in-
variant across the domain, which is equivalent to making the distributions of the
source and target domains similar. In order to obtain domain-invariant feature
representations, the parameters θθθ f are optimized to maximize the classification
loss of the domain classifier such that the distributions of the two domains are
similar as much as possible, while simultaneously optimizing the parameters θθθd

of the domain classifier to minimize the loss of the domain classifier and make the
domain classifier discriminate the feature representations from the source and
target domains.

On the surface, adversarial generative learning systems such as DANN can be
directly applied to transfer sentiment classification models between domains.
However, these aforementioned deep neural methods cannot directly identify the
pivots and they lack of the interpretability for what to transfer. In fact, interpret-
ability is a major problem in deep learning based models, where the model is often
referred to as the “black-box” models. In practice, it would be nice to explain to the
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Figure 17.11 The framework of the adversarial memory network

users why a model picks a certain word as pivot and non-pivot words, to provide
more confidence that the system is making a correct decision.

Another limitation of previous cross-domain sentiment classification works is
that, for the most part, pivots and non-pivots are hand-picked by humans. It would
be nice to automatically learn the pivots from two domains. Li et al. (2017b) pro-
pose a method known as the adversarial memory network (AMN), which is shown
in Figure 17.11, to automatically capture pivots in a cross-domain setting. They
also introduced a novel word attention mechanism into the domain adversarial
learning framework to allow for interpretability. They make use of the attention
mechanism of a memory network, which can automatically visualize which words
are more likely to be pivots and contribute more to the domain-invariant repre-
sentations based on attention scores, to interpret what to transfer.

Several illustrative examples of the learned result are shown in Figure 17.12 to
visualize the attentions of the AMN model. We can see that the words with high
attention weights such as great, good, best, beautiful, fantastic, gorgeous, terrible,
disappointed, disappointment and poor are pivots. These are indeed the words
chosen by humans.

Despite superior experimental performance, AMN is limited to only focusing
on word-level attention because it ignores the hierarchical structure of documents.
In practice, we wish to accurately capture pivots in long documents, which of-
ten follow a hierarchical structure. Besides, it cannot automatically capture and
exploit the relationship between non-pivots and pivots, which may result in the
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degraded performance when the source and target domains only have few over-
lapping pivots.

To simultaneously harness the collective power of pivots and non-pivots, and
to interpret what to transfer, Li et al. (2017b) introduce a hierarchical attention
transfer network (HATN) for cross-domain sentiment classification. HATN jointly
train two hierarchical attention networks named P-net and NP-net.

The first part is P-net, which aims to capture the pivots. To achieve this goal, the
labeled data Xs in the source domain is fed into the P-net for sentiment classifi-
cation and, in the meantime, all the data Xs and Xt in both domains are fed into
the P-net for domain classification based on adversarial learning to make the do-
main classifier indiscriminative between the representations from the source and
target domains. In this way, it guarantees that representations from the P-net are
both domain-shared and useful for sentiment classification. It can thus identity
the pivot features with the attention mechanism.

The second part is NP-net, which aims to align the non-pivots. To reach this
goal, the transformed labeled data g (Xs ) in the source domain S generated by hid-
ing all the pivots identified by the P-net are fed into the NP-net for sentiment clas-
sification. At the same time, all transformed data g (Xs ) and g (Xt ) in both domains
S and T generated in the same way are fed to NP-net for +(positive)/-(negative)
pivot predictions.

The P-Net and the NP-net work together to predict whether an original sample
x contains positive or negative pivots based on the transformed sample g (x). The
transformed sample g (x) has two labels, a label z+ indicating whether x contains
at least one positive pivot and a label z− indicating whether x contains at least one
negative pivot. The intuition behind it is that positive non-pivots tend to cooccur
with positive pivots and negative non-pivots tend to cooccur with negative pivots.
In this way, the NP-net can discover domain-specific features with the pivots as
a bridge and capture the non-pivots that are expected to correlate closely to the
pivots with the attention mechanism.

The NP-net needs positive and negative pivots as a bridge across domains. Since
the P-net possesses the ability of automatically capturing the pivots with atten-
tions, the training procedure of HATN consists of two stages.

• Individual attention learning: The P-net is trained for cross-domain sentiment
classification. We use the best parameters for P-net with early stopping on the
validation set and then select positive pivots based on the highest attention
scores in positive reviews. The negative pivots are obtained in a similar way.

• Joint attention learning: The P-net and the NP-net are jointly trained for cross-
domain sentiment classification. The labeled data Xs and its transformed data
g (Xs ) in the source domain S are simultaneously fed into the P-net and the
NP-net respectively and their representations are concatenated for sentiment
classification. Note that, the transformed labeled data g (Xs ) fed to the NP-net
are used for sentiment classification and +(positive)/-(negative) pivot predic-
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Figure 17.12 The visualization of attentions of the electronics→kitchen adapta-
tion task. Deeper color implies larger attention weights and higher probability to
be pivots

Figure 17.13 Visualization of attentions of the HATN model in the
book→electronics adaptation task (adapted from Li et al. [2017b]). Label 1
denotes the positive sentiment and label 0 denotes the negative sentiment

tions simultaneously, but transformed unlabeled data g (Xt ) fed to the NP-net
can only be used for the +(positive)/-(negative) pivot predictions.

Several illustrative examples are shown in Figure 17.13 to visualize attentions of
the HATN model. Figure 17.13 illustrates that the P-net tends to pay higher word
attentions to pivots between domains such as positive pivots best, excellent and
good and negative pivots disappointed, poor and annoying. The sentences that
contain these pivots also get higher sentence attentions in the P-net. Different
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from the P-net, the NP-net aims to pay higher word attentions to the non-pivots
in the two domains, such as source non-pivots readable and insipid in the books
domain and target non-pivots pixelated, fuzzy and distorted in the electronics do-
main. The sentences that contain these non-pivots also get higher sentence atten-
tions in the NP-net.

Pivot-Based Neural Models

Pivot-based neural models aim to learn a correlation mapping between the
non-pivots and pivots via neural networks. Ziser and Reichart (2017) propose an
autoencoder SCL (AE-SCL) method that applies the idea of SCL to autoencoder-
based neural networks. AE-SCL learns to encode the non-pivots of a data point
into a low-dimensional representation so that the existence of pivot features in
the example can be decoded from that representation. The architecture of the AE-
SCL is shown in Figure 17.14.

Figure 17.14 The architecture of the AE-SCL model (adapted from Ziser and Re-
ichart [2017])

Specifically, the feature set is denoted by f , the subset of pivots by fp ⊆
{
1, . . . ,

∣∣ f ∣∣},
and the subset of non-pivots by fnp ⊆ {1, . . . ,

∣∣ f ∣∣} such that fp ∪ fnp = f and fp ∩
fnp =�. Besides, the representations of a pivot and a non-pivot of an input x are
denoted by xp and xnp , respectively.

The goal of the AE-SCL aims to induce a robust and compact feature represen-
tation by learning a nonlinear prediction function from xp to xnp . The prediction
function is based on the framework of the autoencoder. Based on xnp , the AE-
SCL first encodes xnp into an intermediate representation hwh (xnp ) = σ

(
wh xnp

)
and then predicts the occurrence of the pivot xp with a decoder function
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o = rwr (hwh (xnp )) = σ
(
wr hwh (xnp )

)
, which reflects the probability that the pivot

appears in the input. Hence, the cross-entropy loss function is naturally used.
Two observations are in order. First, pivots with similar semantic meanings of-

ten have similar word embeddings. Second, pivots that occur in an input are much
fewer than pivots that do not occur in it. Thus, Ziser and Reichart (2017) pro-
pose an AE-SCL with similarity regularization, where pretrained word embed-
dings of the pivots are injected into the AE-SCL model to improve the general-
ization across examples with semantically similar pivots. Moreover, Ziser and Re-
ichart (2018) propose a pivot-based language modeling that incorporates pivots
into a language modeling method.



18

Transfer Learning in Dialogue Systems

18.1 Introduction

Dialogue systems can be roughly categorized into open-domain dialogue sys-
tems (Sutskever et al., 2014; Shang et al., 2015; Serban et al., 2016, 2017) and task-
oriented dialogue systems (Young et al., 2013). Open-domain dialogue systems do
not limit their dialogue domains and can be used for chit-chat. Task-oriented dia-
logue systems aim to guide a user to finish a certain task in a restricted domain. It
can be deployed in a call center, an online chatting platform or a customer service
center. It can reduce the need of human staff and thus the cost.

Open-domain dialogue systems do not have a restricted domain, so the top-
ics of questions can be very diversified and the domain knowledge can hardly
be incorporated. Sequence-to-sequence models or the encoder-decoder models
(Sutskever et al., 2014; Shang et al., 2015; Serban et al., 2016, 2017) are widely
used in the open-domain dialogue systems. There has been few works on apply-
ing transfer learning to open-domain dialogue systems, and we will focus more
on transfer learning in task-oriented systems in this chapter.

A task-oriented dialogue system takes text inputs from a user and generates text
responses to the user based on the context and the question. The design of cur-
rent task-oriented dialogue systems requires much human knowledge and man-
ual data labeling. Frame-based task-oriented dialogue systems are widely used. In
the frame-based systems, a slot is a basic piece of information with a set of possi-
ble values. For example, with respect to the choices of food, we can have Chinese
food, Japanese food, Indian food and so on.

Based on their functionalities, a dialogue system can be divided into different
components. Each component is responsible for a specific subtask, and the com-
munications between components are through a set of slots and their
values. There are four basic components in a task-oriented dialogue system,
including the spoken language understanding module, the dialogue state tracker
module, the dialogue policy learning (DPL) module and the natural language
generation module. The spoken language understanding module (He and Young,
2006; Mairesse et al., 2009; Henderson et al., 2012; Yao et al., 2013, 2014) is respon-
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Figure 18.1 The architecture of a task-oriented dialogue system

sible for detecting speech-acts, slots and the corresponding slot values. It takes a
user utterance as the input and identifies the speech-acts and slot values appeared
in the user utterance. The dialogue state tracker (Wang and Lemon, 2013; Hen-
derson et al., 2014; Zilka and Jurcicek, 2015; Lee and Kim, 2016; Sun et al., 2016)
is responsible of inferring and maintaining dialogue states. It takes a parsed user
utterance (including speech-acts, slots and slot values) as the input and keeps the
track of current dialogue state based on the user utterance and the previous dia-
logue state. The DPL module (Williams, 2008a, 2008b; Lefèvre et al., 2009; Young
et al., 2010) takes current dialogue state as the input and decides the next action
to take. The natural language generation module (Wen et al., 2015a) converts the
system action back to text response. Among these four modules, the DPL module
is the core component.

According to their training approaches, task-oriented dialogue systems can be
categorized into modular dialogue systems and end-to-end dialogue systems. The
components in modular dialogue systems can be built separately with different
objective functions, while end-to-end dialogue systems are trained jointly with
a single objective function. Modular dialogue systems have a low inter-modular
dependency, thus we can plug-in different components freely. Hence, compo-
nents can be trained or handcrafted independently and the data needed to train
each component can be obtained easily. However, without a consistent objective
function, the whole system with different components might not work well. End-
to-end dialogue systems have a single objective function. When trained jointly,
the whole system can learn together and achieve the better performance, and it
does not require intermediate annotation thus to reduce human efforts. However,
since all components are learned jointly, we cannot switch components with-
out retraining. Moreover, the training of an end-to-end dialogue system is more
difficult.

The rest parts of this chapter are organized as follows. We first introduce the
problem formulation, then we introduce each of the four modules one by one
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from Section 18.3 to Section 18.6, and finally we introduce the end-to-end dia-
logue systems in Section 18.7.

18.2 Problem Formulation

In a task-oriented dialogue system, given a sequence of historical dialogues
and current question, the goal is to predict the response. We use X to denote the
questions and use Y to denote the responses. The n-th question is denoted by
Xn = {x1, x2, · · · , xN x

n
} with N x

n as the number of associated words. Similarly the n-
th response is denoted by Yn = {y1, y2, · · · , yN

y
n

} where N y
n denotes the number of

words in Yn . N denotes the number of dialogue rounds in a dialogue. Given the
dialogue history Hn = {{X j ,Y j }n−1

j=1 , Xn}, our task is to predict Yn .
As discussed before, there are four components in a task-oriented dialogue

system.

(1) The spoken language understanding module. It takes a text utterance Xn as
input and identifies the abstract user action X̃n of the utterance at every time
step n.

(2) The dialogue state tracker module. Given a previous dialogue state H̃n−1, an
abstract system action Ỹn−1 and an abstract user utterance X̃n , the dialogue
state tracker aims to keep track of current dialogue state H̃n .

(3) The DPL module. It takes the dialogue state H̃n as the input and predict the
abstract system action Ỹn .

(4) The natural language generation module. It takes an abstract system action
Ỹn as the input and generates the final system response sentence Yn .

In the following four sections, we will introduce how transfer learning can help
the learning of the four modules.

18.3 Transfer Learning in Spoken Language Understanding

The spoken language understanding module is responsible for mapping a text
utterance to a structured output such as speech-acts, slots and slot values. In this
section, we summarize the transfer learning methods used for spoken language
understanding. There are mainly three methods to transfer knowledge, including
model adaptation, instance-based transfer and parameter transfer.

18.3.1 Problem Definition

The spoken language understanding module takes a raw text utterance Xn as
the input to identify the abstract user action X̃n in the utterance. The abstract
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user action X̃n = {an ,sn = {s j = v j }} consists of a user speech-act an (also known
as intention) and a sequence of slot value pairs sn = {s1 = v1, s2 = v2, · · · }.

There are two major problems in spoken language understanding. The first
problem is known as the speech-act classification and the other is known as slot-
filling.

(1) Speech-act classification: The input is a user utterance Xn and the output is
the speech-act an of the user utterance. The speech-act classification can be
viewed as a multi-label classification problem.

(2) Slot-filling: The problem is to find all possible slot value pairs sn = {s1 = v1, s2 =
v2, · · · } in the user utterance Xn . The slot-filling task can be viewed as a se-
quential classification problem based on the word sequence of a sentence.
For an input sentence “who played Zeus in the 2010 action movie Titans,” the
expected output is a semantic tag for each word in the input sentence like
“who:{} played:{} zeus:{character=zeus} in:{} the:{} 2010:{year=2010}
action:{genre=action} movie:{type=movie} Titans:{name=Titans}.”

18.3.2 Model Adaptation

Tür (2005) proposes to use model adaptation and boosting for the speech-act
classification. The source and target domains share the same set of speech-acts la-
bels but have different distributions. In this work, the objective is to regularize the
target domain model by minimizing the Kulback–Leibler (KL) divergence between
the source and target models. The loss function in the target domain is defined as

L(w)=∑
n

∑
a′

(ln(1+exp(−An[a′] f (Xn ,a′;w))))+ηKL(P (An[a′]=1|Xn)||σ( f (Xn ,a′;w))),

where n is the index of an instance, a′ is an element in the label set, P (An[a′] =
1|Xn) denotes the probability that Xn belongs to label a′ in the source domain and
σ( f (Xn),a′) defines the probability that Xn belongs to label a′ in the target domain.
In this objective function, the first term measures the training loss on the target
domain and the second term denotes the KL divergence between the source and
target models.

18.3.3 Instance-Based Transfer

Tür (2006) proposes transferring instances on the speech-act classification
problem. There are a number of similar intention classes in the source and
target domains, but no mapping is available. Instances with similar labels in the
source domain are chosen to help build a model for intention classification
in the target domain. Denote the target domain data set as {X , a} and the source
domain data set as {X s , as }. We can denote the classifier in the source
domain by p(as |X s ) = f s

as (X s ). The classifier in the target domain is denoted
by p(a|X )= f t

a (X ).
To ensure the quality instances being transferred, Tür (2006) applies the target
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domain classifier to each instance X s in the source domain. If the predicted prob-
ability that the source instance X s belongs to a target class a is above a thresh-
old, that is, f t

a (X s )> ρ, then X s is transferred to the target domain as an instance
of target domain class a. After some instances are transferred, the target-domain
classifier can be retrained with the transferred source domain instances and the
target domain instances.

18.3.4 Parameter Transfer

Yazdani and Henderson (2015) propose sharing model parameters between
classifiers with similar labels, so that similar classifiers can have similar decision
functions. The classification model for each speech-act a is a linear classifier, and
the parameter for the classifier corresponding to label a j (sk = vm) is a weight
vector wa j (sk=vm ). For each label a j (sk = vm), the classifier is a logistic regres-
sion formulated as y =σ(wT

a j (sk=vm )φ(xi )). Yazdani and Henderson (2015) assume
that the weight vector wa j (sk=vm ) can be modeled by a two-layer perceptron given
the embeddings of the label words. Specifically, the weight parameters for label
a j (sk = vm) is defined based on the word embedding of a j , sk and vm as

wa j (sk=vm ) =σ([φ(a j ),φ(sk ),φ(vm)]Wi h)Who ,

where φ(xi ) denotes the word embedding for word xi , σ is an activation function,
Wi h is a 3d ×h matrix and Who is a d ×d matrix. The parameter Wi h and Who are
shared for all labels, making it a transfer learning method.

Jeong and Lee (2009) propose dividing the model parameters into domain-
dependent and domain-independent parameters, where the domain-independent
parameters are shared across domains to transfer knowledge. A conditional ran-
dom field is used as the base model for the slot-filling problem. The probability of
the slot set is given by

s= argmax
s′

P (s′|X ),

where X = {x1, x2, · · · } is the input word sequence and s = {s1, s2, · · · } is the associ-
ated class label sequence. The probability of the slot set can be factorized by

P (s|X )=∏
t

P (st |xt , st−1),

P (st |xt , st−1)= 1

Z (xt , st−1)
exp(φd (st−1, st , xt )+φind(st−1, st , xt ),

where Z (xt , st−1) is the normalization term,φd (st−1, st , xt ) is the domain-dependent
component andφind(st−1, st , xt ) is the domain-independent component. The model
considers features such as n-gram lexical features in the sliding window and state
transition probability. The domain-independent component is shared across do-
mains for knowledge transfer.

In summary, model adaptation can be used to adapt an existing model from a
source domain to improve the performance in a target domain. Given the target
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domain data, the pretrained model is fine-tuned on a few instances in the target
domain. However, the source and target domains have to use the same kind of
models. Instance transfer can work without modifying the structure of the clas-
sifier and it is easy to train. However, the source and the target models need to
be trained for multiple times, which is time consuming. Parameter transfer can
transfer common model parameters from a source domain to a target domain.
However, the model parameters have to be partitioned into shared parameters
and domain-dependent parameters and, as a result, some classifiers could not be
used.

18.4 Transfer Learning in Dialogue State Tracker

The dialogue state tracker module tracks the dialogue state according to the
system action, the user utterance and the previous dialogue state. In this section,
we review the multi-domain transfer learning works for the dialogue state tracking
problem. These algorithms can be categorized into the feature-based approach
(Ren et al., 2014) and the model-based approach (Williams, 2013; Mrkšic et al.,
2015).

Feature-based multi-domain dialogue state trackers aim to learn general domain-
independent features so that the trained models can be reused in multi-domain
setting. Model-based multi-domain dialogue state trackers adapt a general domain-
independent tracking model with the domain-dependent data to build a dialogue
state tracker for multiple domains.

18.4.1 Feature-Based Multi-domain Dialogue State Tracker

A feature-based multi-domain dialogue state tracker aims to build general
domain-independent features that can be reused in multiple domains.

Ren et al. (2014) propose to share the dialogue state tracker model across dif-
ferent domains by using a domain-dependent feature set. For each utterance, a
joint feature representation is extracted. In the joint feature representation of the
utterance, different features are extracted for each domain. The extracted features
for each domain are specially designed, so that, for different domains, we can use
the same dialogue state tracker.

18.4.2 Model-Based Multi-domain Dialogue State Tracker

A model-based multi-domain dialogue state tracker adapts a general domain-
independent tracking model trained in the domain-dependent data sets to build
a dialogue state tracker for multiple domains.

Williams (2013) proposes to decompose the model into two parts, including
the domain-shared component and domain-specific component. To do this, the
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original feature representation is expanded to construct a new feature represen-
tation. For example, assuming we have three domains, the new feature represen-
tation of an instance in the first domain is (fT

1 ,0,0, fT
1 )T where f1 is the original

feature representation, that for an instance in the second domain take the form
of (0, fT

2 ,0, fT
2 )T and for the third domain is (0,0, fT

3 , fT
3 )T . Then the parameter of

the corresponding linear learner is formulated as (wT
1 ,wT

2 ,wT
3 ,wT

0 )T , where w1,w2

and w3 are the domain-shared model parameters, while wT
0 is shared by all the

domains.
Mrkšic et al. (2015) propose to first train a generalize dialogue state tracker re-

current neural network (RNN) for all domains and then they initialize the domain-
dependent tracker RNN with this general RNN. The key idea is to use delexicalized
features before processing. For example, the sentence “want available internet” is
preprocessed and turns into “want tag-slot-value tag-slot-name.” The delexical-
ized features allow knowledge transfer between not only domains, but also fine
granularity slots. However, due to different data distributions in different slots, a
model adaptation step is still required to make the general model work well for
each slot.

18.5 Transfer Learning in DPL

A popular model for the DPL module is the Markov decision process (MDP)
(Biermann and Long, 1996; Levin et al., 1997; Walker et al., 1998; Singh et al., 1999).
The DPL module is modeled as a system that tries to achieve a goal through a se-
ries of interactions with the user. The information about the current dialogue sit-
uation is modeled by the dialogue state and the DPL module can choose the opti-
mal system action. The next dialogue state depends only on the current state and
the action taken by the system, which follows the Markov assumption. In some
situations, the current state of a system cannot be fully determined. A partially
observable MDP (POMDP) (Young et al., 2013) is then used to model the dialogue
policy. At each step, instead of tracking the ground-truth dialogue state, POMDP
keeps track of a probability distribution on all possible dialogue states, which is
called a belief state. The belief state is assumed to follow the Markov assumption,
which means the next belief state depends only on current belief state and the
action taken. The POMDP policy decides the best system action based on the cur-
rent belief state instead of the true state.

Based on whether multiple domains are considered, dialogue systems can be
categorized into single-domain dialogue systems and multi-domain dialogue sys-
tems. The single domain means the training and testing data are in the same do-
main and the goal of single-domain DPL is to learn the optimal dialogue policy in
this domain. Multi-domain dialogue systems aim to use the knowledge in a source
domain to help the policy learning in a target domain. In this section, we intro-
duce the multi-domain transfer learning works for the DPL problem. Most meth-
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ods under this setting are based on the Q-learning framework and we categorize
these works into three categories, including transferred linear model, transferred
Gaussian process and transferred Bayesian committee machine.

Before presenting these three approaches, we first introduce some notations.
In a modular dialogue system, without loss of generality, we formulate the DPL
as an MDP since a POMDP policy could be represented by an MDP on the belief
state. The MDP is defined as {H ,Y ,P,R,γ}, where H denotes the dialogue state,
Y denotes the reply of the agent, P is the state transition probability function, R

is the reward function and γ ∈ [0,1] is the discounted factor. At time step n, H̃n

denotes the dialogue state, Ỹn denotes the agent reply and rn denotes the reward.
We assume the spoken language understanding module and the dialogue state
tracker have provided the current state H̃n at time step n, so we can observe H̃n , Ỹn

and rn . The goal is to find an optimal policy that can maximize the cumulative
return, defined as Gn =∑∞

k=0γ
k rn+k .

18.5.1 Transferred Linear Model for Q-learning

Genevay and Laroche (2016) adapt an existing user model to a new user by
transferring a liner model. Specifically, the action value function can be approxi-
mated by Q(H̃ , Ỹ ) = σ(φ(H̃ , Ỹ )T w), where φ(H̃ , Ỹ ) denotes the feature vector ex-
tracted for the state-action pair (H̃ , Ỹ ), w is the weight vector of this linear func-
tion and σ is an activation function. The proposed method selects only transitions
that are dissimilar to the the target domain data. That is, for each trajectory in the
source domain < H̃ s , Ỹ s , H̃ ′s ,r s >, if there exists a trajectory in the target domain
< H̃ , Ỹ , H̃ ′,r > whose Ỹ = Ỹ s and ||H̃ − H̃ s || ≤ η, then this source trajectory will
not be transferred to the target domain. The policy is initially trained on the se-
lected source data points Ds = {< H̃ s , Ỹ s , H̃ ′s ,r s >}. Then the policy parameters
are transferred to the target domain and updated on the target domain data.

Genevay and Laroche (2016) aim to adapt an existing user model to a new user.
The similarity between the source and target domains ||H̃−H̃ s || is calculated based
on a set of predefined features, including the utility loss between the last time slot
and the next one, the number of time slots, the length of the dialogue and the
speech recognition score.

Transferred linear models for Q-learning are simple and efficient, but they can
only work when the source and target data are in the same feature space.

18.5.2 Transferred Gaussian Process for Q-learning

In Gašić et al. (2013, 2014, 2015a, 2015b, 2015c), the authors use a Gaussian
process to learn the Q-function, which is defined as

Qπ(H̃ , Ỹ )∼N (m(H̃ , Ỹ ),k((H̃ , Ỹ ), (H̃ , Ỹ ))),
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where m(H̃ , Ỹ ) is the mean function and k((H̃ , Ỹ ), (H̃ ′, Ỹ ′)) is the kernel function.
The kernel function k((H̃ , Ỹ ), (H̃ ′, Ỹ ′)) can be factorized into separate kernels over
the state and action spaces via

k((H̃ , Ỹ ), (H̃ ′, Ỹ ′))= kH̃ (H̃ , H̃ ′)kỸ (Ỹ , Ỹ ′).

Given training state-action sequences B = [(H̃0, Ỹ0), · · · , (H̃n , Ỹn)]T and the cor-
responding immediate rewards r = [r0, · · · ,rn]T , the Q-function Qπ(H̃ , Ỹ ) for any
state-action pair (H̃ , Ỹ ) is given by

Q(H̃ , Ỹ )|B,r∼N (Q̄(H̃ , Ỹ ),cov((H̃ , Ỹ )(H̃ , Ỹ ))),

where the posterior mean is given by

Q̄(H̃ , Ỹ )= k(H̃ , Ỹ )T HT (HKHT +σ2HHT )−1(r−m),

and the covariance is given by

cov((H̃ , Ỹ ), (H̃ , Ỹ ))= k((H̃ , Ỹ ), (H̃ , Ỹ ))−k(H̃ , Ỹ )T HT (HKHT +σ2HHT )−1Hk(H̃ , Ỹ ),

where m = [m(H̃0, Ỹ0), · · · ,m(H̃n , Ỹn)]T , K is the kernel matrix, H is the band ma-
trix with diagonal [1,−γ], k(H̃ , Ỹ ) = [k((H̃0, Ỹ0), (H̃ , Ỹ )), · · · ,k((H̃n , Ỹn), (H̃ , Ỹ ))]T

and σ2 is the variance for the noise.
To transfer a Gaussian process policy, there are basically two approaches.

(1) Transferring the mean function Q̄(H̃ , Ỹ ). In the works by Gašić et al. (2015a,
2015b, 2015c), source data are used to build a good Q-function Q̄(H̃ , Ỹ ) for
the target domain. In the works by Gašić et al. (2013, 2014) and Casanueva
et al. (2015), the mean function in the source domain is used as a prior on that
of the target domain.

(2) Transferring the covariance function k((H̃ , Ỹ ), (H̃ , Ỹ )). In the works by Gašić
et al. (2013, 2014, 2015a, 2015b, 2015c) and Casanueva et al. (2015), the kernel
function on state-action pairs is defined from different domains.

The kernel function k((H̃ , Ỹ ), (H̃ ′, Ỹ ′)) is the core of transfer learning methods.
Based on different definitions of kernel functions, we have different kinds of
methods.

In Gašić et al. (2014), only the slots in the source domain S are used. In this
work, the belief state is defined according to Bayesian update of dialogue states
(Thomson and Young, 2010) and the cross-domain kernel function is

kH̃ (H̃ s , H̃)= ∑
s∈S

< H̃ s
s , H̃s >

where s denotes a source slot. The kernel function between a source speech-act
as and a target speech-act a is defined as

kA(as , a)=
{

δas (a) a ∈A s

0 a ∉A s ,
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where A s and A t are the collections of speech-acts in the source and the target
domains, respectively, and δas (a) is the kernel function defined in the source do-
main.

Gašić et al. (2013) define the cross-domain kernel function based on common
slots in the source and the target domains. For slots only appeared in the target
domain, the most similar slots are used to calculate the kernel function. Specifi-
cally, the kernel function is defined as

kH̃ (H̃ s , H̃)= ∑
ss∈S

< H̃ s
ss , H̃ss >+ ∑

st∉S

< H̃ s
l (st ), H̃st >

where ss denotes a slot in the source domain S , st denotes a slot in the target
domain T and function l : T →S finds a source slot l (st ) that is the most similar
to the target slot st . The kernel function for actions is defined as

ka(as , a)=
{

δas (a) a ∈A s

δas (L(a)) a ∉A s ,

where function L : A t →A s maps an action that does not exist in the source do-
main to a replaced action in the source domain and δas (a) is the kernel function
defined in the source domain.

By assuming that the source and target domains are from different users with
the same set of slots, Casanueva et al. (2015) propose to use additional features to
determine the kernel function as

k((H̃ s , Ỹ s ), (H̃ , Ỹ ))= kH̃ (H̃ s , H̃)kỸ (Ỹ s , Ỹ )kH̃ (ls , l),

where ls is an acoustic feature vector for the state-action pair in the source do-
main and similarly l is for the target domain. Hence, the kernel depends on some
external features to help calculate the cross-domain similarity.

Gašić et al. (2015a) propose building a distributed policy for each node in a
knowledge graph. A dialogue policy is decomposed into a set of topic-specific
policies that are distributed across the class nodes in the graph. The root node
in the knowledge graph is general for all its children nodes and so this policy can
work for all sub-domains. The proposed method matches only the common slots
with

kH̃ (H̃ s , H̃)= ∑
s∈S ∪T

< H̃ s
s , H̃s > and kA(as , a)=

{
δas (a) a ∈A s

0 a ∉A s ,

where δas (a) is the kernel function defined in the source domain. If there is no
common slots, the none-matching slots are treated as abstract slots and then re-
named to be some names such as “slot-1” and “slot-2.” The abstract slots in the
source and target domains are matched one-by-one in order.

Transferred Gaussian processes for Q-learning do not assume a completely iden-
tical feature space in the two domains, but they still assume that there are com-
mon slots between the two domains. Moreover, transferred Gaussian processes
are computationally expensive, thus they could not support large training data sets.
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18.5.3 Transferred Bayesian Committee Machine for Q-learning

Previous methods assume the existence of common slots but this assumption
is not always true. When there is no common slot, we can use the Bayesian com-
mittee machine to transfer a dialogue policy. The Bayesian committee machine
combines policies trained in different domains and it is particularly suitable for
Gaussian process (Gašić et al., 2015b, 2015c).

A Bayesian committee machine is a Gaussian process, where the combined
mean function Q̄(H̃ , Ỹ ) is calculated as

Q̄(H̃ , Ỹ )=ΣQ (H̃ , Ỹ )
M∑

i=1
Σ

Q
i (H̃ , Ỹ )−1Q̄i (H̃ , Ỹ ),

and the covariance function ΣQ is calculated as

ΣQ (H̃ , Ỹ )−1 =−(M −1)×k((H̃ , Ỹ ), (H̃ , Ỹ ))−1+
M∑

i=1
Σ

Q
i (H̃ , Ỹ )−1,

where M is the number of policies in the Bayesian committee machine, Qi (H̃ , Ỹ )
is the Q-function of the i -th policies, Q̄i is the mean of Qi (H̃ , Ỹ ) and Σ

Q
i is the

covariance of Qi (H̃ , Ỹ ). Note that Qi (H̃ , Ỹ ) is trained on a set of state-action and
reward pairs. To evaluate a state-action pair (H̃ , Ỹ ), the Bayesian committee ma-
chine requires this state-action pair to be predicted by all Qi (H̃ , Ỹ ). In this case, a
kernel function has to be defined between state-action pairs in different domains
and similar to the Gaussian process, it is core to transfer learning methods.

In the works by Gašic et al. (2015b, 2015c), no slot is assumed to be shared in
the source and target domains. The source and target slots are matched one-by-
one based on the normalized entropy. For each domain c ∈ {S ,T }, the slots are
sorted based on their normalized entropy so that η(sc

i )≥ η(sc
j ) for i ≤ j in domain

c. The kernel function between the source domain S and the target domain T is
calculated as

(1) Iteratively, for sc
i in domain c ∈ {S ,T } when index i satisfies i ≤min(|S |, |T |)

(|c| denotes the number of slots in domain c), we match the corresponding
elements of belief state and actions.

(2) Otherwise, we disregard the elements of the belief state related to the un-
paired slot j and if one of the actions is related to slot j , we set the action
kernel to be 0.

The Bayesian committee machine does not assume the existence of common
slots in the source and target domains. Instead, an entropy-based cross-domain
kernel function is defined to estimate the data similarity between different do-
mains. However, each committee is a Gaussian process model, which is still com-
putationally expensive, and thus it could not support large data sets.
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18.6 Transfer Learning in Natural Language Generation

In this section, we review some transfer learning works for the natural language
generation module. The natural language generation module aims to convert a
system action into a sentence with an appropriate adequacy, fluency and read-
ability. Walker et al. (2007) and Mairesse and Walker (2008, 2011) propose adapting
general sentence planning models to different personal linguistic styles. Although
these models can handle many linguistic problems, they are heavily dependent
on the human knowledge and handcrafted rules. Different from them, RNN-based
language models (Shi et al., 2015; Wen et al., 2015b, 2016) are flexible and general
to generate natural language and they do not require much human efforts. Here
we focus on transfer learning for RNN-based language models.

There are mainly three types of transfer learning techniques in the RNN-based
language models.

(1) Model fine-tuning: A model is first trained on a source domain and then it is
retrained with the target domain data.

(2) Curriculum learning: In each training epoch, the training instances are sorted
such that general instances are fed into the training of the model first and then
the specific target domain data are fed.

(3) Instance synthesis: Synthetic target domain sentences are built from delexi-
calized source domain sentences by substituting slot values.

18.6.1 Model Fine-tuning for Natural Language Generation

Wen et al. (2013, 2015b) propose to fine-tune an out-of-domain model with
the in-domain data to achieve transfer learning. The base model is the seman-
tically conditioned long short-term memory networks (SC-LSTM) model (Wen
et al., 2015a). First, the authors train an out-of-domain model with all source do-
main data. Second, the authors fine-tune the model parameters on various
proportion of target domain data. Two baseline models are used, including an
encoder-decoder model and the SC-LSTM model. The authors find that the fine-
tuned SC-LSTM model and SC-LSTM model perform better than the encoder-
decoder model when the data in the target domain is sufficient. However, when
data in the target domain is insufficient, the simple encoder-decoder model per-
forms better.

18.6.2 Curriculum Learning for Natural Language Generation

Shi et al. (2015) propose to use curriculum learning (Elman, 1993) to adapt an
RNN language model. The authors propose two curriculum learning strategies.
The first strategy is via data-sorting such that the model is first trained on plenty
of source domain data and then trained on a few target domain data. The second
curriculum learning strategy is based on the model fine-tuning to train the whole
model on the source domain first and then fine-tune this model with the target
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domain data. The data-sorting strategy and the model fine-tuning strategy differ
in the ordering under which the source and the target domain data are used. In the
data-sorting strategy, at each training epoch the model utilizes the source domain
data first and then the target domain data. In the model fine-tuning strategy, the
model is fully optimized on the source domain data and then adapted to the target
domain.

18.6.3 Instance Synthesis for Natural Language Generation

Wen et al. (2016) propose combining the model fine-tuning and the instance
synthesis based on the SC-LSTM model (Wen et al., 2015a) for domain adaptation
in natural language generation. First, the SC-LSTM model is trained on the delex-
icalized source domain and fine-tuned in the delexicalized target domain. In this
case, for sentences with new slot values that appear only in the target domain, the
model learns from scratch and no knowledge can be transferred. Second, some
synthetic instances are generated by adapting the source domain instances with
new slot values. In details, the slot values in the source data are substituted with
similar new slot values in the target domain. Then the synthetic data can be used
to train the model for the target domain to achieve knowledge transfer for new slot
values in the target domain. In this approach, a similarity metric between source
and target slot values is required and usually this similarity function is defined
based on the slot type.

In summary, both model fine-tuning and curriculum learning can be used to
transfer low-level language modeling knowledge but they differ in terms of how
the source domain data is used to help the target domain. Moreover, these two
approaches cannot handle new slot values that appear only in the target domain.
The instance synthesis approach can transfer language modeling knowledge to
new slot values in the target domain by assuming that the expressions of different
slot values are similar.

18.7 Transfer Learning in End-to-End Dialogue Systems

In this section, we introduce a special class of dialogue systems called end-
to-end task-oriented dialogue systems. Traditional modular dialogue systems re-
quire a large amount of handcrafted rules or a large amount of labeled data for
each component. Unlike modular dialogue systems whose modules are hand-
crafted or trained separately, the components in an end-to-end dialogue system
are trained together by optimizing a single objective function. End-to-end dia-
logue systems do not require intermediate annotations and hence they can reduce
the amount of human labor required for building a dialogue system.

Unlike modular dialogue systems that first identify current dialogue state and
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then decide the next action, there is no unique definition of a ground-truth dia-
logue state in an end-to-end dialogue system. Instead, in each time step, the dia-
logue system directly takes current question as the input and generates an output
sentence based on an internal state. The internal state is updated at each time step
and in some aspect, it represents the abstract dialogue state at each time step. So
the whole end-to-end dialogue system can be viewed as a policy function with
the input as the dialogue history as well as current question and the output as the
answer of the system. Unlike modular dialogue systems, the action space of an
end-to-end dialogue system is the space of all possible sentences.

Based on the the type of knowledge being transferred, we categorize relevant
works into the following two categories.

(1) The complete parameter fine-tuning methods: They first pretrain an end-to-
end dialogue model on the source domain with sufficient training data and
then fine-tune all parameters in the target domain with a few training data.

(2) The partial parameter sharing methods: They share only a part of model pa-
rameters across domains, in contrast to the model fine-tuning methods where
all parameters are transferred.

18.7.1 Complete Parameter Fine-tuning

The parameter fine-tuning methods consists of two steps. First, an end-to-end
dialogue model is pretrained on a source domain with a lot of training data.
Second, the pretrained model are fine-tuned in a target domain with a few data.

Serban et al. (2016) pretrained the word embeddings and the hierarchical
recurrent encoder-decode (HRED) dialogue model (Sordoni et al., 2015) on a large-
scale question answer corpus, and then adapted this model to the target domain.
Specifically, the word embeddings were pre-trained in a Google News Corpus
(Mikolov et al., 2013b), the source domain uses the SubTle data set to pretrain
the HRED dialogue model and the target domain uses the MovieTriples data set.
Experimental results show that pretraining the word embeddings can greatly im-
prove the performance of the dialogue model.

Zhang et al. (2017b) transferred an encoder-decoder dialogue model to a
chatting task among five volunteers. The encoder-decoder model was pretrained
on a large scale corpus with pairs of the post and response. The proposed method
contained two phrases, that is, the initialization and adaptation, to generate
responses that have a personalized style. The source data set consisted of one
million Chinese one-to-one post-response pairs collected from several Chinese
online forums. The target data set had 2,000 chatting messages without personal
information collected from five volunteers. In order to evaluate the personal style
of the responses, they proposed the use of the lexical distributions and word over-
lapping proportion as evaluation metrics. Experimental results show that the five
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transferred models can indeed capture the personal responding styles of the five
volunteers.

Yang et al. (2017) transfer a pretrained long short-term memory network-based
encoder-decoder dialogue model to a target domain with dual learning. They ini-
tialized a post agent and a response agent separately, then treated the post agent
as the primal task and the response agent as the dual task, and perform dual learn-
ing. The primal and dual tasks can form a closed loop and generate informative
feedbacks to train the dialogue system even with only a small number of training
data in the target domain. In the adaptation process, the post agent first generated
an intermediate response and then the response agent generated a post based on
the intermediate response. This dual process can monitor the quality of generated
responses, and improve the post agent and the response agent simultaneously.

Joshi et al. (2017) aimed to share parameters in a memory network among mul-
tiple users with different profiles. For each profile, the per-response accuracy is
used as an evaluation metric. In the experiment, the proposed multi-profile trans-
fer learning model outperforms the baselines trained with data from only one user.

18.7.2 Partial Parameter Sharing

In contrast to the complete parameter fine-tuning method, the partial parame-
ter sharing methods share only a part of model parameters. Due to domain differ-
ences, some model parameters are domain-dependent and should not be trans-
ferred. Transferring all model parameters may lead to the negative transfer, which
will harm the performance in the target domain. In order to alleviate the nega-
tive transfer, in a typical partial parameter sharing method, the model parameters
are divided into multiple parts, where some parameters are shared or transferred
across domains, while others keep private to its own domain.

Li et al. (2016) proposed a personalized neural response model to tackle the
speaker consistency problem for a group of users. The proposed model was an
encoder-decoder model, where general parameters in the encoder-decoder model
was learned and shared between all users. In addition, personal parameters were
learned for each user to capture the characteristic of individual users such as the
background information and the speaking style.

In the following two sections, we introduce two recent works about building
personalized dialogue systems based on transfer learning.

Transfer Reinforcement Learning through Personalized Q-function
Mo et al. (2018) aimed to transfer the general dialogue policy from a group of

source users to a target user to build a personalized dialogue policy for the target
user. Due to the difference in user preferences, directly fine-tuning the whole di-
alogue model might lead to the negative transfer. They proposed a PErsonalized
Task-oriented diALogue (PETAL) system, which is a transfer learning framework
based on the POMDP for learning a personalized dialogue system. The PETAL sys-
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Figure 18.2 An illustration of the setting in the PETAL system

tem first learns common dialogue knowledge from the source domain and then
adapts this knowledge to the target user.

An example about the coffee ordering dialogue is shown in Figure 18.2. X de-
notes users’ utterances and Y denotes the replies of the agent. In this example,
given the dialogue context H u

2 = {X1,Y1, X2} and the candidate reply set
{Yc1,Yc2,Yc3}, the dialogue policy should decide which reply is more appropriate.
Formally, the inputs for this problem include abundant dialogue data
{{X us

n ,Y us
n }T

n=0} of source customers {us }, and a few dialogue data {{X ut
n ,Y ut

n }T
n=0}

of the target customer ut . The expected output is a policy πut for target user.

A personalized coffee ordering dialogue can be formulated as a reinforcement
learning problem, and the flowchart is illustrated in Figure 18.3. In each turn of
the dialogue, based on the question Y asked by the system and the answer X of
the user, the dialogue belief state transits from one state to another. By asking a
personalized question Y p , the system can make the whole dialogue significantly
shorter. For example, if the system knows that a user always orders a cup of cold
mocha and delivers to his home, the system can ask a personalized question “Cold
mocha deliver to No. 1199 Mingsheng Road?,” and the user might say yes with a
high probability, making the dialogue shorter.

Due to the difference in user preferences, directly fine-tuning the whole dia-
logue model might lead to the negative transfer. In a reinforcement learning dia-
logue policy, Mo et al. (2018) propose a personalized Q-function, which consists
of a general part Qg and a personal part Qp as

Qπu
(H u

n ,Y u
n )=Qg (H u

n ,Y u
n ;w)+Qp (H u

n ,Y u
n ;pu , wp )

≈Eπu

[ ∞∑
k=0

γk r u,g
t+k+1|H u

n ,Y u
n

]
+Eπu

[ ∞∑
k=0

γk r u,p
t+k+1|H u

n ,Y u
n

]
, (18.1)

where r u,g
t and r u,p

t denote the general and personal rewards for user u at time t ,
respectively, the general Q-function Qg (H u

n ,Y u
n ;w) captures the expected reward

related to the general dialogue policy for all users, w is the set of parameters for
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Figure 18.3 The flowchart of the PETAL system on the coffee-ordering task

the general Q-function and contains a large number of parameters such that it
requires a lot of training data, and the personal Q-function Qp (H u

n ,Y u
n ;pu , wp )

captures the expected reward related to the preference of each user.

The general part accounts for the general dialogue policy, and it is pretrained in
the source domain and transferred to the target domain, while the personal part is
for personal preferences of each user and is learned with the target domain data
only. M, w and wp are shared across different users, and they could be trained
on source domains and then transferred to the target domain. These parameters
contain the common dialogue knowledge, which is independent of users’ prefer-
ences. Moreover, pu , which is user-specific, captures the preferences of different
users.

The detailed PETAL algorithm is shown in Algorithm 18.1. The PETAL algorithm
trains a model for each user in the source domain. M, w and wp are shared by all
users and there is a separate pu for each user in the source domain. The PETAL
algorithm transfers M, w and wp to the target domain by using them to initialize
the corresponding variables in the target domain, and then it trains them as well
as pu for each target user with limited training data. Since the source and target
users might have different preferences, pu learned in the source domain is not
very useful in the target domain. The personal preference of each target user will
be learned separately in each pu . Without modeling pu for each user, different
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Algorithm 18.1 The PETAL algorithm

Input: Ds ,D t

Output: Θ= {M,w, wp {pu}}
1: for {X u

n ,Y u
n } in Ds do

2: if pu exist then
load pu

3: else
pu ← 0

4: end if
5: for (H u

n ,Y u
n ,r u

n , H u
n+1,Y u

n+1) in {X u
n ,Y u

n } do
6: Θt+1 ←Θt +αΔΘL (Θt )
7: end for
8: end for
9: for {{X u

n ,Y u
n }T

n } in D t do
10: if pu exist then

load pu

11: else
pu ← 0

12: end if
13: for (H u

n ,Y u
n ,r u

n , H u
n+1,Y u

n+1) in {X u
n ,Y u

n } do
14: Θt+1 ←Θt +αΔΘL (Θt )
15: end for
16: end for

preferences of the source and target users might interfere with each other and
thus cause the negative transfer.

Transfer Reinforcement Learning through Personal Word Gating
Mo et al. (2017) transfer the general dialogue policy between end-to-end per-

sonalized dialogue policies. Since different users have different preferences, di-
rectly transferring dialogue policies might lead to negative transfer. For example,
the transferred policy might generate a wrong address for the target user accord-
ing to the data of the source users. Mo et al. (2017) propose a personalized de-
coder that can transfer shared phrase-level knowledge between different users
while keeping the personalized information of each user intact. A novel personal
control gate is introduced in the proposed personalized decoder, enabling the de-
coder to switch between generating shared phrases and personal phrases.

An example problem is illustrated in Figure 18.4. User u’s question in the n-th

turn is denoted by X u
n = {xu

n,t }
N u,x

n
t=1 , and N u,x

n is the number of words in X u
n . Agent’s

response in the n-th turn is denoted by Y u
n = {yu

n,t }N
u,y
n

t=1 , where N u,y
n is the num-

ber of words in Y u
n . In the example, given the dialogue context H u

2 = {X1,Y1, X2},
the dialogue system is to generate an appropriate reply Y2 word by word. The
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Figure 18.5 Personalized response generation with the personalized decoder.
The personal control gate at different time steps are denoted in gray circles

transfer learning problem is to learn an end-to-end personalized task-oriented
dialogue system for each user by leveraging the conversation history of multiple
other users. The input of this problem include the historical dialogue sessions
T u = {X u

n ,Y u
n ,r u

n }n=1 of each user, where r u
n is the reward obtained at n-th dia-

logue turn. Another input is the personal word label Ou
n = {ou

n,t }N
t=1 for each word

in Y u
n , where ou

n,t = 1 means that xu
n,t is a personal word and ou

n,t = 0 means the
word xu

n,t is a general word. Personal words are defined as the words related to
all possible user choices in the domain slots. For the example in Figure 18.5, “hot
latte” is a personal phrase and “still” and “?” are shared phrases. The output of this
problem is a dialogue policy πu for each user u, which generates a response Y u

n

for each dialogue history H u
n = {{X u

i ,Y u
i }n−1

i=1 , X u
n }.

Since different users have different preferences, directly transferring dialogue
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sentences might lead to negative transfer. For example, the transferred policy
might make a wrong suggestion to the target user according to the preferences
of source users. Different from traditional methods that transfer entire sentences,
the proposed model can transfer fine-grain phrases between a group of users.
Mo et al. (2017) propose a personalized decoder, which consists of a general de-
coder to generate general patterns and a personalized decoder to generate per-
sonal preference words. A personal word gating mechanism is introduced to select
the appropriate decoder for each generated word, making the personalized de-
coder switch between generating general pattern words and personalized phrases.
For the example in Figure 18.5, the personal control gate selects the personal de-
coder to generate the personal phrase “hot latte”, and uses the common decoder
to generate common phrases “Still” and “?.” The personalized decoder can gener-
ate different personal phrases for different users in a sentence, while the knowl-
edge for the shared phrases is shared among all users.

Basic decoder: The hidden state for the t-th word in the n-th turn is defined as

hu,d
n,t = tanh(Wd hu,d

n,t−1+Ud ŷu
n,t−1+Vd hu,c

n ),

where ŷu
n,t−1 is the word embedding of the last word ŷu

n,t−1 in the same sentence,

and tanh(·) denotes the hyperbolic tangent function. The decoder RNN takes hu,d
n,0

and hu,c
n as inputs and then generates the response word by word, where hu,c

n is
the embedding vector used to generate the current response. The probability of
generating the next word ŷu

n,t = y given hu,d
n,t and ŷu

n,t−1 is

ω(hu,d
n,t , ŷu

n,t−1)=H0hu,d
n,t +E0ŷu

n,t−1+bo (18.2)

g (hu,d
n,t , ŷu

n,t−1,y)=oT
y ω(hu,d

n,t , ŷu
n,t−1) (18.3)

p(ŷu
n,t = y)=

exp(g (hu,d
n,t , ŷu

n,t−1,y))∑
∀y′ exp(g (hu,d

n,t , ŷu
n,t−1,y′))

(18.4)

where oy is the output embedding for word y, and H0, E0 and bo are parameters.

Personalized dialogue decoder for phrase-level transfer learning: The proposed
personalized decoder is illustrated in Figure 18.5. While the sentence-level trans-
fer is to transfer entire sentences, the proposed personalized decoder is on the
phrase level and is to transfer a shared fraction of the sentences to the target do-
main, where a phrase is a short sequence of words containing a coherent meaning.
To achieve maximum knowledge transfer and to avoid negative transfer caused by
differences in user preferences, the proposed personalized decoder has a shared
component and a personalized component. To learn to switch between the shared
and personal components in the phrase level, Mo et al. (2017) introduce a per-
sonal control gate ou

n,t , which is learned from the training data, for each word.

Given the the embedding vector for the n-th response hu,c
n and initial hidden
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state hu,d
n,0 for the predicted word ŷu

n,0, the initial states are computed as

hu,g
n,0 =hu,d

n,0 ,hu
n,0 =hu,d

n,0 , ôu
n,0 = 0

ŷu
n,0 = 0, ŷu,g

n,0 = 0

where hu,g
n,t is the hidden state for the shared component, and ŷu,g

n,t records the last
word generated by the shared component, hu

n,t is the hidden state for the personal

component and hu,d
n,t is the hidden state for generating the word ŷu

n,t .
The shared component adopts the gated recurrent unit model to capture the

long-term dependency and is shared by all users. Specifically, at each time step t ,
the shared component is defined as

zu
n,t =σ(Wg

z hu,g
n,t−1+Ug

z ŷu,g
n,t−1+Vg

z hu,c
n +bz ) (18.5)

ru
n,t =σ(Wg

r hu,g
n,t−1+Ug

r ŷu,g
n,t−1+Vg

r hu,c
n +br ) (18.6)

h̃u,g
n,t =σ(Wg

h(ru
n,t "hu,g

n,t−1)+Ug
h ŷu,g

n,t−1+Vg
hhu,c

n +bh) (18.7)

ĥu,g
n,t =zu

n,t "hu,g
n,t−1+ (1−zu

n,t )" h̃u,g
n,t , (18.8)

where " denotes the element-wise product between vectors or matrices, σ(·) is
the sigmoid function, zu

n,t is the update gate, ru
n,t is the forget gate and ĥu,g

n,t is the
tentative updated hidden state. If the t-th word is a shared word (i.e., ôu

n,t = 0),
then the model updates the shared hidden state and last general word as usual and
otherwise hu,g

n,t and ŷu,g
t remain unchanged. Thus, hu,g

n,t and ŷu,g
t can be updated as

hu,g
n,t = (1− ôu

n,t )" ĥu,g
n,t + ôu

n,t "hu,g
n,t−1 (18.9)

ŷu,g
t = (1− ôu

n,t )" ŷu
t−1+ ôu

n,t " ŷu,g
t−1. (18.10)

The personal component is an RNN model, which generates personalized se-
quence based on sentence context hu,g

n,t from the shared component. There is a
separate RNN model for each user. At each time step t , the personal component
receives ŷu

t−1, ôu
n,t , hu

n,t−1 and hu,g
n,t−1 as inputs and outputs ĥu

n,t , which is defined
as

ĥu
n,t =σ(Wuhu

n,t−1+Uu ŷu
n,t−1+Vuhu,g

n,t−1). (18.11)

The personal hidden state will be update as

hu
n,t = (1− ôu

n,t )"hu,g
n,t + ôu

n,t " ĥu
n,t . (18.12)

hu
n,t equals ĥu

n,t if the control gate is corresponding to ôu
n,t = 1. If ôu

n,t equals 0, hu
n,t

will take the value of hu,g
n,t .

The personal control gate ou
n,t is binary, that is, ou

n,t ∈ {0,1}. The predicted con-
trol gate ôu

n,t at time t is a function of ôu
n,t−1, hu,g

n,t−1, hu
n,t−1 and ŷu

n,t−1 as1

p(ôu
n,t = 1)=

{
σ(Wg

o hu,g
n,t−1+Ug

o ŷu
n,t−1+bo) if ôu

n,t−1 = 0

σ(Wu
o hu

n,t−1+Uu
o ŷu

n,t−1+bu
o ) if ôu

n,t−1 = 1
. (18.13)

1 In training process, the ground-truth ou
n,t is used as a label to train the prediction function for ôu

n,t .
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ôu
n,t decides whether to use the personal component to generate the next word.

hu,d
n,t is defined as

hu,d
n,t = (1− ôu

n,t )"hu,g
n,t + ôu

n,t "hu
n,t , (18.14)

where hu,d
n,t is the hidden vector that directly generates the next word ŷu

n,t and the
probability of generating the next word yu

n,t is defined by the generation process
in (18.2)–(18.4).

The decoding procedure is as follows:

(1) Initialize hu,g
n,0 , hu

n,0, ôu
n,0, ŷu

n,0 and ŷu,g
n,0 based on hu,d

n,0 and hu,c
n . ôu

n,0 is initialized
to be 0 and ŷu

n,0 is initialized to be a zero vector 0.

(2) Compute personal control gate ôu
n,t based on hu,c

n , ôu
n,t−1, hu,g

n,t−1, hu
n,t−1 and

ŷu
t−1 with (18.13).

(3) Compute hu,g
n,t , hu

n,t and the outputted hidden state hu,d
n,t based on the personal

control gate ôu
n,t .

(4) Generate ŷu
n,t based on the outputted hidden state hu,d

n,t with (18.14).
(5) Repeat step 2 to step 4 until the ending symbol.

The shared and personal components can be trained together with supervised
learning and reinforcement learning.

The personalized decoder is capable of transferring dialogue knowledge, and it
can easily be combined with many models including the Seq2seq model (Sutskever
et al., 2014) and the HRED model (Serban et al., 2015). The architecture for person-
alized HRED, obtained by combining HRED with personalized decoder, is shown
in Figure 18.6.
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Transfer Learning in Recommender Systems

19.1 Introduction

Recommender systems are a critical component in many intelligent systems.
There are many examples of recommender systems in our everyday lives, ranging
from news recommendation to product recommendation, and to online adver-
tisement. In Amazon, Netflix and Facebook, for example, recommendation tech-
niques are used for the suggestions of books, movies and friends. Among all
recommendation techniques, collaborative filtering and its extensions are among
the first techniques used in many applications.

However, collaborative recommendation suffers from the data sparsity prob-
lem, that is, users’ preference data on products or items are usually too few to be
used to learn their true preferences. This is especially a limitation for personalized
recommendation. In addition, to support new recommendation applications, the
data sparsity implies that we face a cold-start problem, which makes it difficult to
boost a new recommendation service.

Recommendation technology can often be mapped to a matrix completion op-
eration, whose aim is to fill in the missing values in the matrix. These matrices are
often referred to as preference matrices. A preference matrix is often built in terms
of users and items. These matrices are often very sparse, but, fortunately, there
may often be some related source data that we may explore to alleviate the data
sparsity problem in the target domain. This can be done through transfer learning.

In many applications, transfer learning has achieved great success in text min-
ing, mobile computing, bioinformatics and so on. Like in many other machine
learning areas, transfer learning has indeed been proposed in recommendation
system area to improve the target learning task by extracting and transferring the
knowledge from the source data. Many auxiliary data exist to make the recom-
mendation performance in a target domain better. The main problem solved by
transfer learning in recommendation systems is the cold-start problem, which is
typically solved using variants of collaborative learning algorithms. In this chap-
ter, we survey approaches to transfer learning in collaborative recommendation.

Li et al. (2009a) propose one of the first algorithms for integrating recommenda-
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tion systems with transfer learning with an algorithm known as codebook transfer
(CBT). Subsequently, many research works appear that allow transfer learning to
be applied to recommender systems, which include all instance-based, feature-
based and model-based transfer learning frameworks.

The organization of this chapter is as follows. We first discuss some represen-
tative transfer learning methods for recommendation in Section 19.2. We then
present two transfer learning applications in news recommendation and VIP rec-
ommendation in Section 19.3 and Section 19.4, respectively.

19.2 What to Transfer in Recommendation

In this section, we take the perspective of “what to transfer” in transfer learning
and discuss three types of transfer learning methods in recommendation. These
methods include instance-based transfer learning, feature-based transfer learn-
ing and model-based transfer learning in recommendation. Before we discuss
some representative works in each category, we propose a unified framework for
knowledge transfer in recommendation as

minΘ,KI,KF,KM
l (Θ,K I,KF,KM|T,S)+ r (Θ|K I,KF,KM,S)+ r (KF), (19.1)

s.t. Θ ∈ c(K I,T,S),

where T is the target data, S is the source data, Θ is the parameter to be learned
and K I, KF and KM denote the knowledge in instance-based transfer learning,
feature-based transfer learning and model-based transfer learning, respectively.
We can see that the framework in (19.1) contains a loss function, two regulariza-
tion terms and a constraint.

In the previous equation, the function l (·) is the loss function, and r (·) is a reg-
ularization function. We wish the loss to be as small as possible provided that the
model size is also under control to ensure the generalization ability of learning.

19.2.1 Instance-Based Transfer Learning in Recommendation

Instance-based transfer learning methods in recommendation aim to transfer
knowledge such as users’ feedback or ratings as instances from the source data S

to the target data T. Mathematically, the optimization problem based on (19.1) is
formulated as

min
Θ,KI

l (Θ,K I|T,S)+ r (Θ|K I,S), s.t., Θ ∈ c(K I,T,S). (19.2)

In this equation, there are a loss function l (·), a regularization term r (·) and a con-
straint c(·). Different transfer learning methods may instantiate different parts of
problem statement. Examples are l (·) and r (·) in the works by Pan et al. (2015b,
2016b) and Hu et al. (2019) and l (·) and c(·) in the works by Pan et al. (2012, 2017).
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Pan et al. (2015b) study two types of one-class feedback that have different un-
certainties such as transactions and examinations for preference learning and
item ranking. Specifically, they propose learning the confidence of each exam-
ination instance and then transfering the confidence-weighted examination in-
stances to the target preference learning task with transaction records by an adap-
tive Bayesian personalized ranking (ABPR) algorithm.

Pan et al. (2016b) study labeled feedback such as numerical ratings and unla-
beled feedback such as examinations, and design a self transfer learning (sTL) al-
gorithm, which iteratively identifies some likely-to-prefer examination instances
and transfers them to improve the target rating prediction task.

Hu et al. (2019) develop a deep learning model called transfer meets hybrid
(TMH) to selectively transfer the interacted source item instances by the corre-
sponding target user via an attentive weighting scheme, as well as to exploit the
unstructured text information of the target (user, item) pair by a memory network
in a hybrid manner.

Pan et al. (2012) take users’ uncertain actions, that is, feedback in the form of
rating intervals, as source rating instances, and integrate them into the target five-
star rating matrix factorization task for preference learning via a transfer by inte-
grative factorization (TIF) method.

Pan et al. (2017) propose a transfer to rank (ToR) method to first exploit the
union of the target explicit feedback and source implicit feedback to obtain a can-
didate list of item instances of users’ potential interest, and then transfer them
to the target matrix factorization task with explicit feedback only to re-rank the
candidate list.

Observe that instance-based transfer learning methods have been applied to
different recommendation problems in terms of the input such as ratings, trans-
actions, examinations and installation, and the output including rating predic-
tion and item ranking. The transferred knowledge of instances can be in different
forms, including examination instances (Pan et al., 2015b, 2016b), installation in-
stances (Hu et al., 2019), rating instances (Pan et al., 2012) and candidate item in-
stances (Pan et al., 2017). Furthermore, the transfer learning algorithms can also
be formulated in different styles such as adaptive styles (Pan et al., 2015b), iter-
ative styles (Pan et al., 2016b), integrative styles (Pan et al., 2012; Hu et al., 2019)
and two-stage styles (Pan et al., 2017).

19.2.2 Feature-Based Transfer Learning in Recommendation

Feature-based transfer learning methods in recommendation usually choose to
share and transfer the knowledge in some latent feature factors learned from the
source data, or from both the source data and the target data. Mathematically, the
instantiated optimization problem based on (19.1) is formulated as

min
Θ,KF

l (Θ,KF|T,S)+ r (Θ|KF,S)+ r (KF), (19.3)
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which includes a loss function l (·) and two regularization terms r (·).

Singh and Gordon (2008) study users’ rating behaviors and items’ attributes in a
single framework, and bridge two different domains via sharing the knowledge of
items’ latent features. More specifically, they design a collective matrix factoriza-
tion (CMF) model that jointly factorizes a rating matrix in terms of users and items
and a data matrix about items, and share the collectively learned item-specific la-
tent feature matrix to achieve bidirectional knowledge transfer. Besides, Shi et al.
(2013b) propose a joint matrix factorization (JMF) method for a rating matrix and
an item similarity matrix defined on the contextual information.

Pan et al. (2010b) aim to leverage both user-side and item-side source exami-
nation information to improve the target rating prediction problem. In particular,
they design a coordinate system transfer (CST) algorithm, where the coordinate
systems are actually the user-specific and item-specific latent features learned
from the user-side and item-side source examination data, respectively. Such la-
tent features are then transferred to the target rating prediction task via two biased
regularization terms. We can see that the CST method is a two-stage approach, in-
cluding the coordinate system construction and transfer learning.

Pan and Yang (2013) turn to exploit the front-side binary feedback such as users’
likes and dislikes to assist the target rating prediction task. In order to acquire the
rich knowledge for sharing, they design a transfer by collective factorization (TCF)
approach, which models the data-independent knowledge via two shared latent
matrices and the data-dependent effect via two non-shared matrices simultane-
ously for the target numerical ratings and the source like/dislike binary ratings.
In TCF, the two shared latent feature matrices, that is, the user-specific latent fea-
ture matrix and the item-specific latent feature matrix, are designed to bridge two
heterogeneous data in a collective manner.

Pan et al. (2016a) study two one-class feedback such as purchases and browses
via a transfer via joint similarity learning (TJSL) method from the perspective of
joint similarity learning by sharing the item-specific latent feature matrix. In par-
ticular, the TJSL method proposes to learn a similarity between a candidate item
and a purchased item and also a similarity between a candidate item and a browsed
item. Such joint similarity learning via sharing item-specific latent features is em-
pirically shown to achieve better performance in terms of item ranking.

Hu et al. (2018) develop a deep transfer learning model for shared user cross-
domain recommendation. They propose a collaborative cross network (CoNet),
which can transfer source domain knowledge in a way of deep representations.
The knowledge transfer happens in both directions, from the source to target do-
main and from the target to source domain. The idea is to feed the representations
from the source network into the hidden layers in the target network. This makes
the preference learning in the target domain easier even in the sparse data case
since the target network only needs to learn an incremental “residual” represen-
tations with the reference of source representations.
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He et al. (2018a) design a deep learning model called General Cross-domain
framework via BAyesian Neural network (GCBAN) to bridge two recommendation
domains by sharing the latent representation of both the users and their profile
attributes.

Gao et al. (2019) develop a neural attentive transfer recommendation (NATR)
model to transfer items’ latent features, that is, embeddings, from an auxiliary rat-
ing matrix, which are further weighted via an item-level attention and a domain-
level attention for more effective knowledge transfer.

There are also some works combining deep learning, feature engineering and
hybrid methods in order to exploit different information and knowledge in a rec-
ommendation system more sufficiently (Cheng et al., 2016; Covington et al., 2016;
Zhang et al., 2017d). Moreover, some recent works turn to explore a deep model
for a nonlinear mapping from a source feature matrix to a target feature matrix
for better knowledge transfer in comparison with that of traditional linear map-
ping (Man et al., 2017; Zhu et al., 2018).

From the aforementioned representative works, we can see that latent feature
transfer can be applied to different learning tasks in recommendation, for exam-
ple, rating prediction with item-side source text information in the work by Singh
and Gordon (2008), both user-side and item-side examination information in the
work by Pan et al. (2010b), frontal-side binary ratings in the work by Pan and Yang
(2013), item ranking with both purchases and examinations in that by Pan et al.
(2016a), item-side numerical ratings in the wo Gao et al. (2019) and rating predic-
tion with user-side source text information and numerical ratings in the work by
He et al. (2018a). The shared common knowledge of latent features can be trans-
ferred from the source domain to the target domain in a collective manner as in
the work by Singh and Gordon (2008), Pan and Yang (2013), Pan et al. (2016a) and
He et al. (2018a) or an adaptive manner in the work by Pan et al. (2010b), Hu et al.
(2018) and Gao et al. (2019).

19.2.3 Model-Based Transfer Learning in Recommendation

For model-based transfer learning methods in recommendation, we focus on
extracting some common model or compressed knowledge from the source do-
main and transfer the knowledge to a target domain. Mathematically, we have the
reduced optimization problem from the general framework in (19.1), as

min
Θ,KM

l (Θ,KM|T,S)+ r (Θ|KM,S), (19.4)

which includes a loss function l (·) and a regularization term r (·).
Li et al. (2009a) propose one of the first algorithms for integrating recommen-

dation systems with transfer learning with an algorithm known as CBT. The CBT
model first constructs a codebook from the source rating data, which reflects the
correlation knowledge of user groups and item clusters, and then transfers the
codebook to the target rating prediction task in a non-negative matrix factoriza-
tion framework. Empirical studies show that the codebook can help alleviate the
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sparsity problem in the target domain. The transferred knowledge in the code-
book can also be shared in a collective manner as done in the rating-matrix gener-
ative model (RMGM) (Li et al., 2009b). Besides, Gao et al. (2013) propose a cluster-
level latent factor model (CLFM) with two types of codebooks, one for the shared
common rating pattern and another for the domain-specific rating pattern.

Pan et al. (2015a) propose a compressed knowledge transfer via factorization
machine (CKT-FM) to integrate explicit and implicit feedbacks. First, CKT-FM
mines the compressed knowledge of users and items via a clustering method,
where the extracted knowledge of membership information for both users and
items are assumed to be stable across two types of feedback. Second, CKT-FM
transfers the mined compressed knowledge to the target rating prediction task via
a generic feature engineering based factorization approach, that is, factorization
machine.

Kanagawa et al. (2019) apply a recent deep learning method called domain sep-
aration networks (DSNs) (Bousmalis et al., 2016) to a content-based cross-domain
recommendation problem with two preference data, where a common encoder
and a common decoder are shared between the source and target preference pre-
diction tasks, while two private encoders are also kept for the source data and the
target data.

We can see that the main idea of most model-based transfer learning in
recommendation is to share or transfer high-level rating behaviors such as clus-
ters or memberships of users and items, which are assumed to be relatively sta-
ble and consistent across explicit and implicit feedbacks. The transferred knowl-
edge is particularly useful when the target domain is extremely sparse in terms of
ratings.

Finally, we summarize the aforementioned transfer learning methods in rec-
ommendation in Table 19.1. We can see that most transfer learning models are
designed to transfer knowledge from the frontal-side source information such as
examinations, uncertain ratings and binary ratings.

19.3 News Recommendation

In this section, we introduce a recommendation problem, that is, news recom-
mendation, as a target problem for transfer learning.

News recommendation has been an important service in mobile devices for
most users to know what has happened in the world. In this section, we focus on
recommending latest news articles to new users. We assume that users have newly
registered in a certain news recommendation service and have not read any news
article before. This task is associated with the new user cold-start challenge and
the new item (i.e., news article) cold-start challenge, and is thus termed as dual
cold-start recommendation (DCSR).

For the DCSR problem, existing news recommendation methods (Das et al.,
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Table 19.1 A brief summary of transfer learning methods in recommendation

Categorization Method and problem setting

Instance-based

ABPR: from frontal-side examinations to transactions for item ranking
sTL: from frontal-side examinations to numerical ratings for rating prediction
TMH: from user-side installation behaviors to reading feedback for item ranking
TIF: from frontal-side uncertain rating to numerical rating for rating prediction
ToR: from frontal-side examinations to numerical ratings for item ranking

Feature-based

CMF, JMF: from item-side information to ratings for rating prediction
CST: from two-sided examinations to numerical ratings for rating prediction
TCF: from frontal-side binary ratings to numerical ratings for rating predition
TJSL: from frontal-side examinations to transactions for item ranking
CoNet: from user-side information to ratings for item ranking
GCBAN: from user-side information to ratings for rating prediction
NATR: from item-side numerical ratings to ratings for item recommendation

Model-based
CBT, RMGM, CLFM: from numerical ratings to numerical ratings for rating prediction
CKT-FM: from frontal-side examinations to numerical ratings for rating prediction
DSNs: from interactions to interactions for item recommendation

2007; Liu et al., 2010a) are not applicable, because they rely on users’ historical
reading behaviors and news articles’ content information that are not available in
the DCSR problem.

The DCSR problem can be solved from the perspective of transfer learning.
Although there are no users’ behaviors about the cold-start users and cold-start
items in the news domain, there may be some other related domains with users’
behaviors. Specifically, we leverage some knowledge from a related domain, that
is, the app domain, where the users’ app-installation behaviors are available. Most
cold-start users in the news domain have already installed some apps, and this in-
formation may be helpful in determining his/her preferences in news articles. In
particular, we assume that users with similar app-installation behaviors are likely
to have similar interests in news articles. With this assumption, the neighborhood
in the APP domain can be used as the knowledge to be transferred to the target
domain of news articles.

19.3.1 Problem Definition

In the news recommendation problem, we have two domains, an APP domain
acting as the source domain and a news domain as the target domain.

In the APP domain, we have a set of triples, that is, (u, g ,Gug ), indicating that
user u has installed Gug times of mobile apps belonging to the genre g . The data
of the APP domain can then be represented as a user-genre matrix G, as shown in
Figure 19.1.

In the news domain, we have a user-item matrix R to denote whether a user
has read an item or not. Each item i is associated with a level-1 category c1(i ) ∈
C1 and a level-2 category c2(i ) ∈ C2. We thus have a set of quadruples, that is,
(u, i ,c1(i ),c2(i )), denoting that user u has read an item i belonging to c1(i ) and
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c2(i ). After pre-processing, we have a user-category matrix C, in which each entry
denotes the number of items belonging to a certain category that a user has read.

The goal is to recommend a ranking list of new items (i.e., latest news articles)
to each new user who has not read any items before. Note that, under the DCSR
setting, we only make use of category information for items but not the content
information.

19.3.2 Challenges

The main difficulty of the DCSR problem is the lack of previous preference data
for new users and new items. We face the new user cold-start challenge, where the
target users to whom we will provide recommendations have not read any items
before. We also face the new item cold-start challenge, where the target items that
we will recommend to the target users are totally new for all users. Under such
challenges, most existing recommendation algorithms are not applicable.

To address the two challenges in the DCSR problem, we make a preference as-
sumption across the APP domain and news domain that neighborhood structure
in the two domains are similar. A neighborhood-based transfer learning (NTL)
method is introduced to transfer the knowledge of the neighborhood from the APP
domain to the news domain, which can address the new user cold-start challenge.
For the new item cold-start challenge, a category-level preference is designed to
replace the traditional item-level preference because the latter is not available for
the new items in the DCSR problem. With these two techniques addressing the
two challenges, some well-studied neighborhood-based recommendation meth-
ods are applicable to the DCSR problem.

Figure 19.1 An illustration of the NTL method for the DCSR problem
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19.3.3 A Solution: NTL

In most recommendation methods, the user-user (or item-item) similarity is a
central concept, because the neighborhood can be constructed for like-minded
users’ preference aggregation and then for the target user’s preference prediction.
Mathematically, the preference prediction rule for user u on item i can be formu-
lated as

r̂u,i = 1

|Nu |
∑

u′∈Nu

r̂u′,i , (19.5)

where Nu denotes a set of nearest neighbors of user u in terms of a similarity
measure such as the cosine similarity, and r̂u′,i is the estimated preference of user
u′ on item i . The average score r̂u,i is taken as the preference of user u on item i
and it will be used for item ranking and top-k recommendation.

For the DCSR problem, we cannot build correlations between a cold-start user
in the test data and a warm-start user in the training data using the data from the
news domain only. The main idea of the NTL method is to leverage the correla-
tions among users in the APP domain with the preference assumption that users
with similar app-installation behaviors are likely to be similar in the news domain.
For instance, two users with the installed apps in the same genre such as business
may both prefer news articles on the finance topic.

With the preference assumption, we first compute the cosine similarity between
a cold-start user u and a warm-start user u′ in the APP domain as

su,u′ =
Gu·GT

u′·√
Gu·GT

u·
√

Gu′·GT
u′·

, (19.6)

where Gu· is a row vector w.r.t. user u in the user-genre matrix G. Once we have
calculated the cosine similarity, for each cold-start user u, we first remove users
with small similarity values (e.g., su,u′ < 0.1), and then take the most similar users
to construct the neighborhood Nu .

For the item-level preference r̂u′,i in (19.5), we are unable to have such a score
directly because item i is new to all users, including the warm-start users and the
target cold-start user u′. We can propose approximating the item-level preference
by a category-level preference as

r̂u′,i ≈ r̂u′,c(i ), (19.7)

where c(i ) can be the level-1 or level-2 category. We can have two types of category-
level preferences as

r̂u′,c(i ) = r̂u′,c1(i ) = Nu′,c1(i ), (19.8)

r̂u′,c(i ) = r̂u′,c2(i ) = Nu′,c2(i ), (19.9)

where Nu′,c1(i ) and Nu′,c2(i ) denote the number of items (by user u′) belonging to
the level-1 category c1(i ) and the level-2 category c2(i ), respectively.
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Finally, with (19.7)–(19.9), we can rewrite (19.5) as

r̂u,i ≈ 1

|Nu |
∑

u′∈Nu

Nu′,c1(i ), (19.10)

r̂u,i ≈ 1

|Nu |
∑

u′∈Nu

Nu′,c2(i ), (19.11)

which will be used for the preference prediction. Specifically, the neighborhood
Nu helps address the new user cold-start challenge and the category-level prefer-
ence Nu′,c1(i ) or Nu′,c2(i ) addresses the new item cold-start challenge.

19.4 VIP Recommendation in Social Networks

In this section, we introduce another recommendation problem, that is, VIP or
key-opinion-leader (KOL) recommendation in social media and social networks.

Social network services such as microblogging (e.g., Twitter) and instant mes-
senger (e.g., Skype, etc.) are playing an increasingly important role in our everyday
life. Similar to the fundamental motivation of information overload (Toffler, 1970)
in recommender systems (Resnick and Varian, 1997), users may feel difficult to
find other interesting users to follow from hundreds of millions of users within the
same social network platform. One example of this challenge is that, in microblog-
ging services, a large number of new users join the network every day. Effective
solutions for recommendation must overcome the challenge of “user overload” in
such a social network, similar to the challenge of “information overload” in online
shopping sites like Amazon.

In a social network, some famous users known as VIPs contribute to the dis-
semination of information and growth in social networks significantly. VIP rec-
ommendation aims to recommend VIP users to other users. This is a strategically
important task for social network sustainability, since good VIP recommendation
brings in more relations and activities in the online social community. However,
even for VIP recommendation, the problem of user overload or more precisely VIP
overload still exists, since there are a large number of VIPs.

There are two main challenges for the task of VIP recommendation. First, the
“following” relation data in a microblogging social network are very sparse, mak-
ing it difficult to apply traditional similarity-based techniques. Second, this data
is extremely large, thus pairwise similarity calculation would be computationally
infeasible. To solve these two problems, in this section, we present a SOcial Re-
lation based Transfer (SORT) method, which extracts useful knowledge from the
source data consisting of other services and applies the common knowledge to
help improve the VIP recommendation.

The SORT method has two major advantages over traditional memory-based
methods such as the Resnick’s rule (Resnick et al., 1994). First, it is very efficient
for an extremely large user set as it avoids the similarity calculation, the bottle-
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neck step in traditional approaches. Second, it recommends accurately by lever-
aging additional knowledge from a mature social network of instant messenger
via transfer learning techniques.

19.4.1 Problem Definition

In a target domain consisting of a microblogging social network, we have n
users and m VIPs, where the m VIPs are selected by considering the various fac-
tors including social impact and business influence. The goal is to recommend
the top-k VIPs among the given m VIPs for each of n users. Due to the sparsity of
the user-VIP matrix of the following relations, we concern the efficiency and ef-
fectiveness of the solution, and wish to exploit the source data under the transfer
learning setting.

Mathematically, we have a matrix R = [rui ]n×m ∈ {1,?}n×m , where “1” denotes
the observed following relation between user u and VIP i and “?” denotes a miss-
ing or unobserved value. Note that the following relations are usually considered
as weak ties. We use a mask matrix Y= [yui ]n×m ∈ {0,1}n×m to denote whether the
entry (u, i ) is observed (yui = 1) or not (yui = 0). Similarly, in the source domain
of instant messenger, we have a matrix X= [xuw ]n×n ∈ {1,?}n×n , where “?” denotes
the missing value and “1” denotes the observed friendship relation between users
u and w . Since instant messenger services have been developed for a long time,
the friendship relations represent strong ties. Thus, we can simplify the friendship
relation matrix as X = [xuw ]n×n ∈ {1,0}n×n , where “0” denotes the non-friend re-
lation between user u and user w . Note that there is a one-one mapping between
the users of R and X. The goal is to help each user u find a personalized list of
top-k VIPs by transferring knowledge from X.

Note that the source social network of the instant messenger, X, can be replaced
by the following relations between users S1 ∈ {1,?}n×n or VIPs S2 ∈ {1,?}m×m within
the same target social network of microblog, where S1 and S2 represent the user–
user following and VIP–VIP following relations, respectively. Considering the “dis-
tance” or “analogy” of X and R, and that of S1 (or S2) and R, these two settings can
be considered as far transfer and near transfer, respectively (Hinrichs and Forbus,
2011).

In a brief summary, the proposed problem setting can be considered as trans-
ferring knowledge over two real heterogeneous social networks of instant messen-
ger and microblog as {

X⇒R, far transfer
S1,S2 ⇒R, near transfer

(19.12)

where far transfer represents knowledge transfer across two heterogeneous social
networks of instant messenger and microblog, and near transfer for that within
the target social network of microblog. The goal is to predict the missing values
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in R, and thus we can rank and recommend VIPs for each user. An illustration is
shown in Figure 19.2.

Figure 19.2 An illustration of the VIP recommendation

19.4.2 Challenges

VIP recommendation is basically a one-class collaborative filtering problem (Pan
et al., 2008a), since the rating of user u on VIP i is either “1” or unknown (missing
value). Hence, most memory-based collaborative filtering methods for rating pre-
diction cannot be used directly, which we will explain later. We observe two very
fundamental challenges in VIP recommendation.

(1) The first challenge is the scalability, since it’s extremely time consuming to
estimate the similarity between every two users when there are millions of
users.

(2) The second challenge is the sparsity, since the observed following relations in
R are very few, and thus the estimated similarities between users may be not
accurate.

We can see that these two challenges are rooted in the “similarity” in memory-
based collaborative filtering methods, for example, the Resnick’s rule (Resnick et al.,
1994). As far as we know, distributed algorithms can address the first challenge
and most transfer learning works focus on addressing the second challenge. How-
ever, few works study to address those two challenges in a single framework. In
the following section, we will introduce a solution to achieve this.
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19.4.3 A Solution: Social Relation-Based Transfer

A Simplified Prediction Rule
The Pearson correlation coefficient (PCC) is a widely adopted similarity mea-

sure for two users u and w based on the ratings on their commonly rated items
(Resnick et al., 1994) and it can be defined as

PCC (u, w)=
∑

i yui ywi (rui −mu·)(rwi −mw ·)√∑
i yui ywi (rui −mu·)2

√∑
i yui ywi (rwi −mw ·)2

,

where mu· = ∑
i yui ywi rui /

∑
i yui ywi is the average rating of user u and mw · =∑

i yui ywi rwi /
∑

i yui ywi is the average rating of user w . Then the normalized sim-
ilarity between users u and w can be calculated as

suw = PCC (u, w)∑
u′∈Nu PCC (u,u′)

,

where Nu is the set of nearest neighboring users of user u according to the PCC.
Finally, according to Resnick et al. (1994), we can predict the rating of user u on
item i as

r̂ui = r̄u· +
∑

w∈Nu

ywi suw (rwi −mw ·), (19.13)

where r̄u· =∑i yui rui /
∑

i yui is the average rating of user u on all items rated by
user u. (19.13) can equivalently be reformulated as

r̂ui = r̄u· −
∑

w∈Nu

ywi suw mw · +
∑

w∈Nu

ywi suw rwi , (19.14)

where the first term represents the globally average rating of user u and the second
term represents the aggregation of local average ratings of its nearest neighbors.
For the one-class collaborative filtering for VIP recommendation, we have r̄u· = 1
and mw · = 1, thus such average ratings do not contain any discriminative infor-
mation and can be safely discarded. Finally, we obtain a simplified prediction rule
as

r̂ui =
∑

w∈Nu

ywi suw rwi , (19.15)

which means that the rating of user u on item i can be estimated from the prefer-
ences of nearest neighbors of user u on item i via a weighted aggregation.

The SORT Method
As mentioned before, there are two challenges for the simplified prediction rule

in (19.15), including the scalability and the sparsity. Here we introduce the SORT
method to replace the similarity calculation in the target domain with existing
relations from a source domain. Specifically, we use a well-developed source so-
cial network of instant messenger, which can avoid the procedures of the similar-
ity calculation and neighborhood search. We replace Nu and suw in (19.15) with
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Ñu and xuw to obtain a revised prediction rule as

r̂ui =
∑

w∈Ñu

ywi xuw rwi , (19.16)

where Ñu denotes the set of user u’s friends in the social network of instant mes-
senger and xuw denotes the relationship of user u and his/her friend w . To con-
sider each friend equally, we set xuw = 1 in (19.16) and then we have

r̂ui =
∑

w∈Ñu

ywi rwi . (19.17)

For the one-class collaborative filtering problem in microblog, we can further re-

place the term ywi rwi in (19.17) with fwi =
{

1, user w has followed VIP i
0, otherwise

to

get

r̂ui =
∑

w∈Ñu

fwi , (19.18)

which implies that, if user u has |Ñu | friends in the social network of instant mes-
senger and

∑
w∈Ñu

fwi of them have followed VIP i in the social network of mi-
croblog, then the preference of user u on VIP i is equal to

∑
w∈Ñu

fwi . We can
see that two heterogeneous social networks of microblog (the following relation
fwi ) and instant messenger (the friendship relations Ñu) are integrated together
in such an intuitive way as shown in (19.18). The knowledge of social relations,
Ñu , of instant messenger is naturally embedded in the prediction method.

According to (19.18), we can see that the predicted score r̂ui must be an integer
since fwi is either 1 or 0, and user u may have the same score on several different
VIPs, where we cannot distinguish the ranking positions. To address this problem,
we further introduce a popularity score for each VIP i , 0 ≤ pi ≤ 1, i = 1, . . . ,m, to
obtain the prediction rule as

r̂ui = pi +
∑

w∈Ñu

fwi . (19.19)

The SORT method transfers friendship relations, Ñu , from a source social network
of instant messenger to a target VIP recommendation in microblog. We can see
that the procedures of similarity calculation and neighbor search in Resnick’s rule
(Resnick et al., 1994) is avoided.



20

Transfer Learning in Bioinformatics

20.1 Introduction

With the fast-growing biological technology comes the rapid growth in the
amount of biological data. These data are made available with increasingly lower
cost in bio-sensor technologies, and, as a result, in the next few years we expect to
witness a dramatic increase in the application of personal genomic and personal-
ized medicine.

Bioinformatics is an interdisciplinary field in nature, covering diverse areas such
as biology, biochemistry, machine learning, data management, information re-
trieval, computer science and so on. Researchers have exploited data from a wide
spectrum of devices such as microarray, genomic sequencing, medical imaging
and so on (Larrañaga et al., 2006). Based on these data, bioinformatics target the
task of learning statistical models to infer biological properties from them. Vari-
ous techniques such as supervised learning and unsupervised learning have been
developed with promising results and biological insights for different problems
such as sequence classification, gene expression data analysis, biological network
reconstruction and so on.

One common assumption in learning from biological data is that a sufficient
amount of annotated training data are available so that an accurate learning model
can be trained. However, in many real world bioinformatics problems, labeled
training data are limited or can only be obtained by paying a huge cost. This data
sparsity problem has become a major bottleneck for applying machine learning
methods in bioinformatics. Moreover, when the data sparsity problem occurs, the
overfitting can easily happen. As a result, the learned model will experience a re-
duction in the performance.

In response to the data sparsity problem, various novel machine learning meth-
ods have been developed. Among them, transfer learning and multitask learning
are good solutions. In the following sections, we introduce how to use transfer
learning and multitask learning to solve bioinformatics problems.
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20.2 Machine Learning Problems in Bioinformatics

In this chapter, we focus on several problems in bioinformatics, including bio-
logical sequence analysis, gene expression analysis, genetic analysis, systems bi-
ology and biomedical text and image mining.

Biological sequence analysis mainly aims to assign functional annotations to se-
quences of DNA segments, and it is important for our understanding of a genome.
One example is the identification of splice sites in terms of the exon and intron
boundaries, which is a complex task due to alternative splicing, which allows
many different protein products. Other examples include the prediction of regula-
tory regions that allow the binding of proteins and determine their functions, the
prediction of transcription start and initiation sites, and the prediction of coding
regions. Another important sequence analysis problem is the major histocompat-
ibility complex (MHC) binding prediction from the perspective of the sequence,
where sequences from pathogens provide a huge amount of potential vaccine
candidates (Dönnes and Elofsson, 2002). MHC molecules are key in the human
immune system, and the prediction of their binding peptides helps the design of
peptide-based vaccines. Despite much success in the prediction of MHC bind-
ings, lacking sufficient training data for the majority of these molecules has hin-
dered the application of machine learning to this problem. In addition, the protein
subcellular localization prediction based on sequences, an important problem in
biological sequence analysis, targets to provide location annotations to the pro-
tein sequences.

Gene expression analysis and genetic analysis through microarrays or gene chips
is an important task for the understanding of proteins and mRNAs. A microarray
measures the relative mRNA level of genes. One application is to compare the gene
expression levels of some biological samples over time to understand differences
between normal and cancer cells (Aas, 2001). One characteristics of this task is
that the number of features that correspond to genes are usually larger than the
number of samples and it makes it difficult to apply traditional feature selection
approaches directly on these data to reduce the dimensionality (Xing et al., 2001).
Another techinque applied to the gene expression data is co-clustering, which
aims to cluster both the samples and genes at the same time (Yang et al., 2011).
In genetic analysis, recent advances have allowed genome-wide association stud-
ies (GWASs) to assay hundreds of thousands of single nucleotide polymorphisms
(SNPs) and relate them to clinical conditions or measurable traits, where a com-
bination of statistical and machine learning methods has been exploited (Yang
et al., 2008; Wan et al., 2009).

Systems biology refers to the tasks of modeling gene-protein regulatory net-
works and making inferences based on protein–protein interaction networks and
so on. Data fusion and data integration become an important issue as many dif-
ferent types of data are considered, therefore computational challenges in sys-
tems biology lie in how to integrate and explore large-scale, multi-dimension and
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various types of data. Besides the automatic prediction based on statistical mod-
els, mixed initiative approaches such as visualization have also been developed to
tackle the large-scale data and complex modeling problems in systems biology.

Biomedical text mining refers to using information retrieval techniques to ex-
tract information on genes, proteins and their functional relationships from scien-
tific literature (Krallinger and Valencia, 2005). Today we face a vast amount of bi-
ological findings that are published as articles, journals, blogs, books and confer-
ence proceedings. For example, PubMed and MEDLINE provide much up-to-date
information for biological researchers. If we follow a traditional way of acquiring
the information, a researcher has to read through this huge volume of informa-
tion to discover potential findings in his/her field. With text mining technologies,
new findings that are published in text can be automatically detected and then
presented to researchers.

Biomedical image mining is an important problem in many applications. The
manual classification of images is time-consuming, repetitive and unreliable.
Given a set of training images classified into a number of classes, the goal of an
automatic image classification method is to train a model to accurately predict
the category of new images. A typical example is breast cancer identification from
medical imaging data through computer-aided detection in screening mammog-
raphy. An important issue for such models is how to reduce the false positive rates
of the classification.

Transfer learning is important to solving the data sparsity problem for each of
the aforementioned problems in bioinformatics. In the following sections, we will
survey recent transfer learning studies in these areas.

We introduce some notations that are used in this chapter. The data of the
source domain Ds is composed of data instances xi and their corresponding la-
bels yi , thus, the source domain data (Xs ,ys ) is denoted by {(xs

i , y s
i )}ns

i=1. Similarly,
the data of the target domain Dt is composed of data instances xt

i and their corre-
sponding labels y t

i , thus the target domain data (Xt ,yt ) is denoted by {(xt
i , y t

i )}nt
i=1.

The functions fs (·) and ft (·) denote the predictive functions in the source domain
Ds and the target domain Dt , respectively. In multitask learning, the data (Xi ,yi )
of task i for i = 1, . . .m can be represented by {(xi

j , yi
j )}ni

j=1, where m is the total
number of tasks.

20.3 Biological Sequence Analysis

In sequence classification, the goal is to annotate gene sequences or protein
sequences from a given set of training data. As mentioned earlier, learning to an-
notate sequences often suffers from the data sparsity problem and hence easily
causes the overfitting. To solve this problem, multitask learning methods are of-
ten used to annotate two or more sets of sequence data together. In this approach,
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the sequence data can be from different domains. By learning these tasks together,
the data sparsity problem can be alleviated.

In multitask learning, the regularization approach is often exploited. Under a
regularization framework, the objective function of this approach consists of two
terms, including an empirical loss on the training data of all tasks and a regular-
ization term that encodes the relationships among tasks.

As a pioneer work, Evgeniou and Pontil (2004) propose a multitask extension of
a support vector machine (SVM), which minimizes the following objective func-
tion as

ξ({wt })=
m∑

t=1

nt∑
i=1

l (y t
i ,wT

t xt
i )+λ1

m∑
t=1

||wt ||22+λ2

m∑
t=1

||wt − 1

m

m∑
t ′=1

wt ′ ||22. (20.1)

The first and second terms in (20.1) denote the empirical error and the squared
�2 norm regularization of parameter vectors, respectively, which are the same as
those of single-task SVMs. A difference between single-task SVMs and multitask
SVMs lies in the third term of (20.1), which is designed to penalize a large deviation
between each parameter vector and the mean parameter vector of all tasks. This
penalized term enforces the parameter vectors in all tasks to be similar to each
other.

One of the earliest works in multitask sequence classification is the one by Wid-
mer et al. (2010a), which proposes two regularization-based multitask learning
methods to predict the splice sites across different organisms. In order to lever-
age information from related organisms, Widmer et al. (2010a) suggest two princi-
pal approaches to incorporate relations across organisms. The proposed methods
modify the regularization term in the work by Evgeniou and Pontil (2004). How-
ever, different from Evgeniou and Pontil (2004), the relation among the organisms
in the work by Widmer et al. (2010a) is defined by a tree or a graph implied by their
taxonomy or phylogeny. The first approach trains the models in a top-down man-
ner, where a model is learned for each node in the hierarchy over the data set of
the corresponding task and the parent node provide the a priori information, and
its objective function is formulated as

ξ({wt })=
m∑

t=1

nt∑
i=1

l (y t
i ,wT

t xt
i )+λ1

m∑
t=1

||wt −wpar ent (t )||22. (20.2)

In biology, an organism and its ancestors should be similar, due to the inheritance
in the evolution. This information leads to the second approach in Widmer et al.
(2010a) with the objective function formulated as

ξ({wt })=
m∑

t=1

nt∑
i=1

l (y t
i ,wT

t xt
i )+λ1

m∑
t=1

m∑
t ′=1

γt t ′ ||wt −wt ′ ||22, (20.3)

where the regularization term enforces wt to be similar to wt ′ depending on γt t ′

which reflects the evolutionary similarity between two organisms.
In addition, Widmer et al. (2010a) consider not only the data of the task t , but

also the data of its corresponding ancestor rt according to a hierarchy structure R.
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The objective function is formulated as

ξ({wt })=
m∑

t=1

nt∑
i=1

l (y t
i ,wT

t xt
i )+λ1

m∑
t=1

||ut ||22+λ2

m∑
t=1

R∑
rt=1

||vrt ||22, (20.4)

where ut is the parameter vector of a leaf node and vrt denotes the parameter vec-
tor of its corresponding ancestor that are internal nodes in the hierarchy
structure.

Similarly, Schweikert et al. (2008) consider a number of domain transfer learn-
ing methods for the splice site recognition across several organisms by using a
model of a well-analyzed source domain with its associated data to obtain or re-
fine a model for a less analyzed target domain. In the work by Schweikert et al.
(2008), is the source domain, while Caenorhabditis remanei, Pristionchus pacifi-
cus, Drosophila melanogaster and Arabidopsis thaliana are treated as target do-
mains. The domain transfer learning methods used include

• Combination: As a baseline, the simplest way is to combine the source domain
data and the target domain data directly with equal weights.

• Convex combination:

F (x)=α ft (x)+ (1−α) fs (x), (20.5)

where α is the trade-off parameter to balance the contributions of the source
data and the target data.

• Dual-task learning:

ξ({ws,wt})=C
ns+nt∑

i=1
l (y s+t

i ,wt xs+t
i )+λ||ws −wt ||, (20.6)

where both ws and wt are optimized.

• Kernel mean matching:

Φ̂(xk )=Φ(xk )−α

(
1

ns

ns∑
i=1

Φ(xi )− 1

nt

ns+nt∑
i=ns+1

Φ(xi )

)
∀i = 1, . . . ,ns (20.7)

where Φ is a kernel mapping to project the data into a RKHS.

It is verified by the experiments in the work by Schweikert et al. (2008) that the dif-
ferences of classification functions for recognizing splice site in these organisms
will increase with increasing evolutionary distance.

Jacob and Vert (2007) design an algorithm to learn peptide-MHC-I binding mod-
els for many alleles simultaneously by sharing binding information across alleles.
The sharing of information is controlled by a user-defined measure of similar-
ity between alleles, where the similarity can be defined in terms of supertypes
or more directly by comparing key residues that are known to play a role in the
peptide-MHC binding. The pair of an allele a and a peptide candidate p is repre-
sented in a feature vector. Then, based on the kernel trick, Jacob and Vert (2007)
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define the kernel function between pairs of alleles and peptides as

K ((p, a), (p ′, a′))=Kpep (p, p ′)Kall (a, a′), (20.8)

where, for the peptide kernel Kpep , any kernel between the peptide representation
can be used and, for the allele kernel Kall , the authors exploit some methods to
model the relationships across alleles including the multitask kernel and super-
type kernel.

Jacob et al. (2008) propose a regularized multitask method for MHC class I bind-
ing prediction to group similar tasks in a cluster. To achieve this goal, the regular-
ization term is formulated as

Ω(W)= εMΩmean(W)+εBΩbet ween(W)+εW Ωwi thi n(W),

where Ωmean(W) measures on the average of weight vectors, Ωbet ween(W) is a
measure of between-cluster variance and Ωwi thi n(W) is a measure of within-
cluster variance.

Following Jacob and Vert (2007) and Jacob et al. (2008), Widmer et al. (2010b)
propose to improve the predictive power of a multitask kernel method for the
MHC class I binding prediction by developing an advanced kernel based on Jacob
and Vert (2007). In addition, Widmer et al. (2010c) investigate multitask learning
scenarios where a latent structural relation across tasks exists and apply the pro-
posed method for the splice site recognition as well as the MHC class I binding
prediction. More specifically, they model the relatedness between tasks based on
meta-tasks such that the information is transferred between two tasks t and t ′

according to the number of meta-tasks co-occurred in tasks t and t ′.
As mentioned in Section 20.2, the protein subcellular localization prediction

based on protein sequences can be categorized into biological sequence analysis.
Xu et al. (2011) compare a multitask learning method under SVMs (implementa-
tion (1) with a common feature representation-based approach (implementation
(2), which is based on Argyriou et al.’s (2006, 2008) works, for the protein subcel-
lular location prediction problem. To answer the question “can multi-task learn-
ing generate more accurate classifiers than single-task learning?,” Xu et al. (2011)
conduct several experiments on different organisms by comparing the test accu-
racy among the proposed multitask learning methods and baselines. Through ex-
perimental results, we can see that multitask learning techniques can generally
help improve the prediction performance for protein subcellular localization in
comparison with supervised single-task learning techniques and that the related-
ness of tasks may affect the performance of multitask learning techniques.

Liu et al. (2010b) propose a cross-platform model based on a multitask linear
regression model for the siRNA efficacy prediction. Given a vectorized represen-
tation of siRNAs, a linear ridge regression model is applied to predict the novel
siRNA efficacy from a set of siRNAs with known efficacy. It is shown that, in the
siRNA efficacy prediction, there exists certain efficacy distribution diversity across
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siRNAs binding to different mRNAs and that common properties across different
siRNAs have some influence on the potent siRNA design.

20.4 Gene Expression Analysis and Genetic Analysis

One way to represent the gene expression data is in the form of a matrix, where
each row corresponds to a data sample and each column is for a gene expression
pattern. There are two classes, including “control” and “case,” for a data sample.
The objective of the gene expression classification is to accurately classify new
samples into the two classes. This problem is particularly challenging because this
is a small sample problem, where the number of samples is much smaller than the
features, and the data are noisy.

Chen and Huang (2010) propose a multi-task support vector sample learning
(MTSVSL) method to classify the cancer gene expression data. The MTSVSL
method constructs two learning tasks, with the first task classifying the data and
the second one answering “is this sample a support vector sample?.” For the learn-
ing of the two tasks, the MTSVSL method first extracts important samples out of
support vectors and then learn the two tasks in a neural network simultaneously.

In genetic analysis, a main issue is the GWAS. To perform a joint GWAS from
multiple populations, Puniyani et al. (2010) develop a novel multi-task regressor
to use the �1,2 regularizer to identify useful SNPs for multiple populations with the
objective function formulated as

ξ(B)= 1

2

∑
t
‖yt −Xtβββt‖2

2+λ||B||1,2,

where B is a m ×P matrix, m is the number of SNPs and the j -th row βββ j corre-
sponds to the j -th SNP. Here the �1,2 regularizer is used to select features for all
the tasks.

20.5 Systems Biology

Over recent years, the application of transfer learning to systems biology has
become increasingly popular. Transfer learning techniques such as the task reg-
ularization approach, distribution matching approach, matrix factorization ap-
proach and Bayesian approach have been employed for systems biology.

Gene interaction network analysis has been very useful in gaining insights into
various cellular properties. Tamada et al. (2005) utilize the evolutionary infor-
mation between two organisms to reconstruct individual gene networks. Given
two organisms, A and B , with respective gene expression data, D A and DB , the
networks of the two organisms, G A and GB , are built simultaneously by a hill-
climbing algorithm that maximizes the posterior probability P (G A ,GB |D A ,DB ,
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HAB ), where HAB models the evolutionary information between A and B . In or-
der to calculate P (HAB |G A ,GB ) based on gene expression data D A and DB , two
free parameters are chosen empirically. As follow-up work, Nassar et al. (2008)
propose a new score function to capture the evolutionary information between A
and B by a parameter β instead of choosing two free parameters. The parameter
β represents the similarity between the underlying Bayesian networks.

Kato et al. (2010b) consider multiple assays where the learning happens via
sharing the local knowledge and the objective function is formulated as

ξ({wt })=
m∑

t=1

nt∑
i=1

l (y t
i ,wT

t xt
i )+λ1

m∑
t=1

||wt ||22+λ2

m∑
t=1

∑
v∈Vt

(||wv ||2+λ3||wv −wt ||),

(20.9)

where Vt represents the set of neighbors of a node t . Intuitively, this formulation
improves a task with the help of its neighbors.

The protein–protein interaction prediction is an important problem in systems
biology. Qi et al. (2010) propose a semi-supervised multitask model to predict
protein–protein interactions from not only labeled, but also partially labeled ref-
erence sets. The basic idea is to perform multitask learning on a supervised clas-
sification task and a semi-supervised auxiliary task via a regularization term. This
is equivalent to learning two tasks jointly with the loss function as

ξ({w})=
nl abeled∑

i=1
l (yi ,wTxi )+Loss(AuxiliaryTask). (20.10)

Xu et al. (2010) also exploit to solve this problem by borrowing the idea of the
collective matrix factorization (CMF) method (Singh and Gordon, 2008). The pro-
posed method uses the similarities of proteins between two interaction networks
and shows that, when the source matrix is sufficiently dense and similar to the
target network, transfer learning is effective for predicting protein–protein inter-
actions in a sparse network. Consider a similarity matrix S ∈ Rm×n as the corre-
spondence between networks G and P . The rows and columns of S correspond to
proteins in networks G and P , respectively, and each element Si j of S represents
the similarity between node i in network G and node j in network P . The objective
function of the proposed method is formulated as

min
Z,V,U

D(Xt ,ZVT )+λs D(Xa ,UVT )+λU ||U||2F +λV ||V||2F +λZ ||Z||2F , (20.11)

where Xt =
[

Lm×m 0
0 Ln×n

]
, Xa =

[
0 S

ST 0

]
, D(·, ·) denotes the divergence between

the two input arguments. Based on (20.11), we can see that ZVT is to approximate
Xt while UVT approximates Xa with a shared factor V that is to transfer useful
knowledge between two networks.

A sparse multitask regression approach is presented in Zhang et al. (2010b),
where a co-clustering algorithm is applied to gene expression data with pheno-
typic signatures. This algorithm can uncover the dependency between genes and



20.6 Biomedical Text and Image Mining 301

phenotypes. The objective function is formulated as

min
T,Pd

D∑
d=0

||X0TPd −Yd ||2F +λ||T||1 s.t. ||Pd ||F = 1,∀d ∈ {1, . . . ,D},

where Td =TPd means that the phenotype responses under different experimen-
tal conditions are lying on the same low-dimensional space T. Hence, the first
term in this objective function enforces the fitting between the gene expression
and the phenotypic signature under each condition, while the second term en-
forces the sparsity on T.

Bickel et al. (2008) study the problem of predicting the HIV therapy outcomes
of different drug combinations based on observed genetic properties of patients,
where each task corresponds to a particular drug combination. The authors pro-
pose to jointly train models for different drug combinations by pooling data to-
gether for all tasks and use the weights to adapt the data for each particular task.
The goal is to learn a hypothesis ft : x → y for each task t by minimizing the
loss function with respect to p(x, y |t ), where x describes the genotype of the virus
that a patient carries as well as the patient’s treatment history and y denotes the
class label indicating whether the therapy is successful or not. Simply pooling the
available data for all tasks will generate a set of training samples D = {(xi

j , yi
j , i )}.

The proposed method is to create a task-specific weight function rt (x, y) for each
sample.

20.6 Biomedical Text and Image Mining

In the biomedical domain, an important problem is semantic role labeling
(SRL), which labels the roles for genes, proteins and biological entities in the tex-
tual form. These texts are often manually labeled but such labeling is time con-
suming. To solve this problem, Dahlmeier and Ng (2010) formulate the SRL prob-
lem as a transfer learning problem to leverage existing SRL resources for a new do-
main. They employ three domain transfer learning methods, including instance
weighting, augment method and instance pruning.

In addition to biomedical text mining, biomedical image mining is also an im-
portant problem in bioinformatics. For example, Bi et al. (2008) formulate the
detection of different types of clinically related abnormal structures in medical
images from the perspective of multitask learning. The proposed method cap-
tures the task dependence by sharing common feature representation, which is
shown to be effective in eliminating irrelevant features and identifying discrimi-
native features. Given m tasks, for task t , the training data set is composed of the
data matrix Xt and the label vector yt . In the work by Bi et al. (2008), the model pa-
rameter for the linear learning function for tasks t , αααt , can be defined as αααt =Cβββt ,
where βββt is task-specific while C is a diagonal matrix with c as the non-negative
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diagonal vector. The objective function can be rewritten as

min
βββ,c

m∑
t=1

(
l (Cβββt ,Xt ,yt )+P1(βββt )

)
s.t. P2(c)≤ γ,

where P1 and P2 are regularization functions. Based on this objective function, we
can see that c is a vector indicating whether each feature will be used in the model
and hence this is to learn a common feature representation for all tasks.

20.7 Deep Learning for Bioinformatics

20.7.1 Deep Neural Pursuit

The emergence of deep learning has impacted numerous applications. There
have been some studies to apply deep transfer learning techniques to bioinfor-
matics.

Liu et al. (2017) present a deep learning-based algorithm for gene selection in
genetic data. The problem to be solved is typical in bioinformatics: phenotype
prediction using genetic variants suffers from the growing challenges of high di-
mensionality and low sample size. Until 2008, biologists had identified 15 million
genetic variants (SNPs) for Homo sapiens. The number of recognized genetic vari-
ants quadrupled in 2011 and increased to 150 million in 2016. In contrast, only
thousands of samples are available (1000 Genomes Project Consortium, 2015).
This kind of high dimension, low sample size (HDLSS) data is also vital for sci-
entific discoveries in other areas such as chemistry, financial engineering and so
on (Fan and Li, 2006).

When training on this kind of “fat data,” the severe overfitting and high-variance
gradients are the major challenges for the majority of machine learning algorithms
(Friedman et al., 2001).

First, selecting the optimal subset of features reduces the size of feature space,
thereby alleviating the risk of overfitting. Second, new scientific knowledge can be
discovered through selecting features.

For instance, selecting features from genotype-cancer data sets helps accumu-
late the knowledge of cancer-related genetic variants. However, selecting the op-
timal subset of features is known to be nondeterministic polynomial-time hard
(Amaldi and Kann, 1998). Instead, a large body of compromised methods for fea-
ture selection have been proposed. Among these methods, representative meth-
ods include sparse linear models such as least absolute shrinkage and selection
operator (Tibshirani, 1996). Unfortunately, sparse linear models ignore the non-
linear input–output relations and interactions among features, both of which have
been proved to be important in explaining the missing heritability in phenotype
prediction. Although some attempts have been made to achieve nonlinear fea-
ture selection via kernel methods (Li et al., 2005; Yamada et al., 2014) or gradient
boosted tree (Xu et al., 2014c), almost all of them address the curse of dimension-
ality under the blessing of large sample size.
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(a) (b) (c)

Figure 20.1 An illustration of the DNP algorithm: (a) The selected features and
the corresponding subnetwork; (b) the selection of a single feature; (c) gradients
with lower variance via multiple dropouts

Liu et al. (2017) introduce a deep neural network model tailored for the HDLSS
data, which is named deep neural pursuit (DNP). DNP selects a subset of features
from a very long sequence of genes (approximately 200,000 long) with very small
sample sizes. To alleviate the problem of overfitting, DNP takes the average over
multiple dropouts to calculate gradients with low variance. By using a deep neural
network, DNP enjoys the advantages of the high nonlinearity, robustness to high
dimensionality and the capability of learning from a small number of samples.
This allows it to maintain the stability in feature selection in an end-to-end style
of model training.

For a feedforward neural network, we can select a specific input feature if at
least one of the connections associated with that feature has non-zero weight. To
achieve this goal, we place the lp,1 norm to constrain the input weights, that is,
‖WF ‖p,1. We use WF j to denote the weights associated with the j -th input node
in WF . We can define the lp,1 norm of the input weights as ‖WF ‖p,1 =∑ j ‖WF j ‖p ,
where ‖ · ‖p is the lp norm on a vector. One effect of the lp,1 norm is to enforce
the group sparsity (Evgeniou and Pontil, 2007) and here we assume that weights
in WF j form a group. A general form of the objective function for training the
feedforward network in formulated as:

min
W

n∑
i
�(yi , f (xi |W)) s.t. ‖WF ‖p,1 ≤λ. (20.12)

Without loss of generality, we only consider the binary classification problem and
use the logistic loss in (20.12).

The whole process of the feature selection in the DNP consists of training a
deep neural network. We graphically illustrate DNP’s greedy feature selection in
Figure 20.1 and detail the learning process in Algorithm 20.1.
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In DNP, we maintain two sets, that is, a selected set S and a candidate set C ,
with S ∪C =F .

Initially, S starts from a bias to avoid the case that all rectified linear hidden
units are inactive. Except for the weights corresponding to the bias, all weights
in the neural network are initialized to be zero. Upon the selected set S , input
weights WF comprise of selected input weights WS , which are input weights as-
sociated with features in S , and candidate weights WC . We update the whole neu-
ral network until convergence while fixing all candidate weights WC to zero (i.e.,
steps 4 and 5 of Algorithm 20.1). In Figure 20.1(a), we plot S and C with solid cir-
cles and dotted circles, respectively. All dotted connections are fixed zero. Then,
GF is employed to select one feature, say the j -th one from C (step 7).

After initialization, WF is updated by initializing newly selected input weights
WF j with the Xavier initializer (Glorot and Bengio, 2010) and reusing earlier weights
WS (step 9). S and C are updated by adding and removing j , respectively (step 10).

One question is how to select features using GF . Without loss of generality, we
assume that all features are normalized.

The gradient’s magnitude implies how much the objective function may de-
crease by updating the corresponding weight (Perkins et al., 2003).

Similarly, the norm of a group of gradients infers how much the loss may de-
crease by updating this group of weights together. According to Tewari et al. (2011),
there exists an equivalence between minimizing the lp,1 norm in (20.12) and greed-
ily selecting features with the maximum lq norm of gradients, where q satisfies
1/p +1/q = 1.

We assume that the larger the ‖GF j ‖q is, the more j -th feature contributes
to minimizing (20.12). Consequently, we select the features with the maximum
‖GF j ‖q . Throughout our experiments, we choose p = q = 2 provided that our em-
pirical comparisons among different settings of p show a limited difference. On
the other hand, DNP can satisfy the norm constraint, that is, ||WF ||p,1 ≤ λ, by
early stopping at the k-th iteration. We illustrate the selection of a single feature
in Figure 20.1(b).

Due to the small sample size, the backpropagated gradients in DNP have es-
pecially high variance. This makes selecting the features according to gradients
misleading. As shown in Figure 20.1(c), DNP utilizes multiple dropouts technique
to avoid high-variance gradients. As a regularizer, the dropout (Srivastava et al.,
2014) randomly drops neurons and features during forward training and back
propagation. Therefore, gradients G are calculated on the subnetwork composed
of the rest neurons.

Multiple dropouts in DNP can improve the quality of the features selected. First,
according to step 6 of Algorithm 20.1, DNP randomly drops neurons multiple
times, computes GFc based on the remaining neurons and connections, and aver-
ages multiple GFc . Such multiple dropouts technique obtains averaged gradients
with low variance.

More importantly, multiple dropouts empower DNP with the stable feature se-
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Algorithm 20.1 Deep neural pursuit

1: Input: X ∈Rn×d , y ∈Rn , the maximum number of selected features k.
2: Initialize: S = {bi as}, C =F and WC = 0.
3: while |S | ≤ k +1 do
4: Fix candidate weights WC = 0;
5: Update weights of hidden layer and input WS ;
6: Dropout multiple times and average out GFc ;
7: j = argmaxc∈C ‖GFc ‖q ;
8: Update learning rates using Adagrad;
9: Initialize WF j with Xavier Initializer;

10: S =S ∪F j and C =C \F j ;
11: end while

lection. Stability, as a vital criterion for feature selection, indicates that identical
features should be consistently selected even using slightly changed training data
sets (Kalousis et al., 2007). Multiple dropouts combine selected features over many
random subnetworks to make the DNP method more stable and powerful.

20.7.2 Deep Transfer Learning in Bioinformatics

Sevakula et al. (2018) present a novel transfer learning framework for molecu-
lar cancer classification. The data from all the types of tumors are used to learn a
powerful feature representation based on stacked sparse auto-encoders and then
built on the learned feature representation, a classifier is learned to classify differ-
ent types of tumor data.

Deep transfer learning is adapted to the task of biomedical named-entity recog-
nition and for example, Giorgi and Bader (2018) demonstrate that transferring a
deep neural network trained on a large noisy corpora to a smaller but more reli-
able corpora improves the performance.

Deep learning has also been applied to biomedical image mining. Specifically,
Zhang et al. (2017c) employ the deep convolutional neural network as a multi-
layer feature extractor to generate generic representations for in situ hybridiza-
tion (ISH) images. They first directly use the model trained on natural images as
feature extractors and then fine-tune the pretrained model with labeled ISH im-
ages. The experimental results show that the proposed approach can get the better
classification performance and reduce the labeling cost.

Wang et al. (2017b) apply deep transfer learning methods for membrane pro-
tein contact prediction and folding. They predict MP contacts by concatenating
two deep residual neural networks (He et al., 2016). MPs are important for drug
design, but experimental study of MP structures is challenging and thus training
data is few. However, machine learning methods are challenging to apply due to
a lack of sufficient MPs with solved structures. To overcome this difficulty, Wang
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et al. (2017b) train a deep learning model using thousands of non-MPs with solved
structures. The non-MPs serve as the source data, while the MPs as the target data.
The transfer learning model works well for MP contact prediction by increasing
the determination accuracy by a large margin. The authors went on to study why
transfer learning worked well in MP prediction. They found that the underlying
contact occurrence patterns in both MPs and non-MPs are similar, implying that
the structure of the problem space is similar.

A data set is composed of enzyme–ligand interaction data, G-protein-coupled
receptors (GPCRs)–ligand interaction data and ion channel–ligand interaction
data. Another released ligand interaction data set contains four subsets for en-
zymes, ion channels, GPCRs, and nuclear receptors (Kashima et al., 2009), respec-
tively.
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Transfer Learning in Activity Recognition

21.1 Introduction

Human behavior recognition from sensor observations is an important topic
in both AI and mobile computing. It is also a difficult task as the sensor and be-
havior data are usually noisy and limited. In this chapter, we review two major
problems in human behavior recognition, including location estimation and ac-
tivity recognition. Solving these two problems helps answer typical questions in
human behavior recognition, such as where a user is, what the user is doing and
whether the user will be interested in doing something at somewhere. In the prior
attempts to solve these problems, we find that in practice the biggest challenge
comes from the data sparsity. Such data sparsity can be because we have lim-
ited labeled data for new contexts in localization, or limited sensor data for users
and activities in activity recognition. In order to address these challenges, transfer
learning, which can effectively incorporate domain-dependent auxiliary data in
the training process and thus greatly relieve the data sparsity problem, becomes
a viable approach. In the remainder part of this chapter, we introduce research
works on using transfer learning for wireless localization and sensor-based activ-
ity recognition.

21.2 Transfer Learning for Wireless Localization

Figure 21.1 shows an example of the indoor location estimation using the WiFi
signal strength. A user moving in an indoor environment carries a mobile device
such as a smartphone or laptop. The mobile device can detect multiple WiFi sig-
nals from various access points (APs). Then, the detected WiFi signal strength val-
ues are used to form a feature vector. As shown in Figure 21.1, in an environment
with d1 ∈ Z+ APs, a mobile device receives wireless signals from these APs. The
received signal strength (RSS) values at one location are used as a feature vector
x ∈ Rd1 , for example, x = [−30dBm,−50dBm,−70dBm], where dBm is a standard
signal strength measurement. The device’s location corresponds to a label y ∈Y ,
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where Y is the set of possible locations in the environment. Generally, the mobile
device receives different signal strength vectors at different locations. As a result,
given a signal-to-location mapping function, we can predict the user’s location
with her current signal strength vector. Such a signal-to-location mapping func-
tion is also referred as a localization model, which is capable of transforming a sig-
nal vector to a location. In the offline training stage, given sufficient labeled data
{(xi , yi )}, we learn a mapping function f : Rd1 →Y . In the online testing stage, we
use f to predict the location for a new signal vector x (Pan et al., 2007a).

Figure 21.1 WiFi indoor localization

21.2.1 Context-Dependent Data Sparsity Challenges

A major drawback of traditional localization methods is that they assume the
collected signal data are context-independent. In other words, the signal data dis-
tribution stays the same even when the context changes. However, this assump-
tion usually does not hold in practice. For example, sensor signals may vary from
device to device due to their different signal sensing capacities, or from time to
time due to multipath fading effects with signal refraction or diffraction, or from
space to space due to different APs. Figure 21.2 gives such an evidence. The RSS
can vary significantly on different devices or time periods, even though they were
detected from the same AP at the same location. Through some real world studies,
we find that, if we collect sufficient labeled data in the new context including time,
devices and spaces, we can provide localization results with the error around 1.5
meters. However, if we do not collect labeled data in the new context, but use the
data in the old context, the localization error greatly increases to 6 meters for the
time-varying case and 18 meters for the device-varying case. This observation mo-
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Figure 21.2 Signal variations over devices and time periods

tivates us to well consider such signal variation problem, where few/sparse data
are available in the new context.

As we cannot afford collecting a large amount of labeled data all the time when
the context changes, we are facing the data sparsity challenge in learning some
localization model for a new mobile device, or a new time period, or a new space.
Traditional learning algorithms may just ignore the signal data difference between
different contexts, and use the existing data in another context to train a model.
In general, such a simple strategy by overlooking the difference may greatly de-
teriorate the localization performance. This motivates us to take the difference
of these data into account and carefully design transfer learning algorithms. In
the following section, we review transfer learning algorithms in the application of
wireless localization according to different transfer strategies, including feature-
based, instance-based and model-based transfer learning.

21.2.2 Feature-Based Transfer Learning for Localization

Let us take cross-device wireless localization as an example to introduce
feature-based transfer learning. Consider a two-dimensional (2D) indoor local-
ization problem. In the environment, there are m APs, from which we collect the
RSS data. Each RSS data point is denoted by x= (x1, . . . , xd )T ∈Rd , and its location
label denoting the coordinates is y = (y1, y2) ∈ R2. For the source device, we have
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Figure 21.3 An illustration for the cross-device wireless localization

collected a large amount of labeled data Ds = {(x(i )
s ,y(i )

s )|i = 1, . . . ,ns }. On the target
device, we may collect a small amount of labeled data Dt = {(x(i )

t ,y(i )
t )|i = 1, ...,nt }.

Finally, we also have a test data set from the target device Dt st
t = {(xt st (i )

t ,yt st (i )
t )|i =

1, ...,nt st
t }. This setting is illustrated in Figure 21.3, where a matrix in the figure

denotes a 2D location space and a tick indicates labeled data collected in that
location.

Target device with data (i.e., Ds �= �): MeanShift (Haeberlen et al., 2004) treats the
signal variation as a Gaussian mean-value shift, and use a linear model as

xt , j = c1 ·xs, j +c2, (21.1)

to fit the RSS value xt , j of the j -th AP on a target device based on the RSS value xs, j

on a source device. Here, c1 and c2 are model parameters to be estimated by the
least square fit. Once c1 and c2 are learned, we can transform all the data from the
source device {x(i )

s |i = 1, ...,ns } into the target device. Finally, we can have much
more data for the target device and thus be able to train an accurate classifier for
the localization.

Similar to MeanShift, ModelTree (Yin et al., 2005) also applies a regression anal-
ysis to learn the temporal predictive relationship between the RSS values received
by sparsely located reference points and that received by the mobile device. Then
it uses the newly observed RSS values at the device and the reference points for
the localization with some decision tree algorithm.

Target device without data (i.e., Daux =�): Kjaergaard and Munk (2008) propose
a hyperbolic location fingerprinting (HLF) method to address the device signal
variation problem. The intuition is that, each single RSS from a certain AP is vul-
nerable to the device heterogeneity, but the relative value between two RSS from
two certain APs may be more stable. Therefore, the HLF method tries to turn the
absolute RSS values into ratios among different APs and uses them as the new
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feature representation to train a localization model.
The high-order pairwise (HOP) model proposed in Zheng et al. (2016) is moti-

vated by the HLF model to learn a device-robust feature representation g : Rd1 →
Rd2 such that for two RSS vectors xs and xt collected at the same location ỹ ∈ Y

by the source device S and target device T , we assume

g (E[xs ]|y s = ỹ)= g (E[xt ]|y t = ỹ), (21.2)

where the expectation is taken over each dimension of x to account for the ran-
domness in the RSS from each AP. Finally, given g (·), we can build a function
f : Rd2 →Y to locate the heterogeneous devices. Because pairwise RSS values can
be shown to be insufficient to discriminate different locations, the HOP model
designs some higher-order features as follows.

Definition 21.1 (HOP feature): A HOP feature h is defined as

h = δ
(∑

(k1,k2) ck1,k2 (xk1 −xk2 )+b > 0
)

. (21.3)

We then learn a set of hs such that they are representative for the data by solving
the following problem

max
h∈{0,1}d2

∑nL
k=1 logP (x(k);h), (21.4)

where h = [h1, ...,hd2 ] is a vector of d2 HOP features and P (x;h) is the data likeli-
hood to be defined later based on h. Directly learning h leads to optimizing an
excessive number of parameters. We can reduce the number of parameters by
rewriting (21.3) to an equivalent form as∑

(k1,k2) ck1,k2 (xk1 −xk2 )+b =∑d1
i=1αi xi +b, (21.5)

where αi =∑(k1,k2)
[
ck1,k2δ(k1 = i )−ck1,k2δ(k2 = i )

]
. Zheng et al. (2016) prove∑d1

i=1αi = 0, (21.6)

which means that a HOP feature defined in (21.3) corresponds to a special feature
transformation function with a constraint as

h = δ
(∑d1

i=1αi xi +b > 0
)

, s.t.
∑d1

i=1αi = 0. (21.7)

As a result, to learn HOP features, we only need to focus on learning linear weights
for each individual RSS value xi subject to a zero-sum constraint. A careful deriva-
tion shows that (21.4) can be learned through a constrained restricted Boltzmann
machine (RBM) as

P (x;h)= 1

Z

∑
h e−E(x,h), (21.8)

where E(x,h)=∑d1
i=1

(xi−ai )2

2π2
i

−∑d2
j=1 b j h j −∑i , j

xi
πi

h j wi j is an energy function and

Z =∑x,h e−E(x,h) is a partition function. The first term of E(x,h) models a Gaussian
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distribution over each xi , where ai and πi are the mean and standard deviation.
The second term models the bias b j for each h j . The third term models the linear

mapping between x and h j . In RBM, each h j can be seen as h j = δ(
∑d1

i=1
xi
πi

wi , j +
b j > 0), and it is sampled by a conditional probability (Krizhevsky and Hinton,
2009) as

P (h j = 1|x)=σ

(∑d1
i=1

xi

πi
wi , j +b j

)
, (21.9)

where σ(r ) = 1
1+e−r is the sigmoid function. To take the zero-sum constraint into

account, we compare (21.9) with (21.7), and set αi = 1
πi

wi j . Finally, the objective
function is formulated as

min− 1

nL

∑nL
k=1 logP (x(k)) s.t.

∑d1
i=1

1

πi
wi j = 0,∀ j . (21.10)

These HOP features can be learned together with the localization classifier.

In addition to this feature-based transfer learning methods, there are some
feature-based transfer learning methods for cross-space localization (Wang et al.,
2010) and cross-device and cross-time localization (Zhang et al., 2013).

21.2.3 Instance-Based Transfer Learning for Localization

Let us take cross-time wireless localization as an example to introduce instance-
based transfer learning for the localization. Given a 2D indoor localization prob-
lem with m APs, we assume that there are � reference points placed at various
locations to obtain real-time RSS values over different time periods. In a source
time period, we have collected some labeled data Ds = {(x(i )

s ,y(i )
s )|i = 1, ...,ns } and

in the target time period, we optionally collect a small amount of labeled data
Dt = {(x(i )

t ,y(i )
t )|i = 1, ...,nt }. Finally, we also have a test data set from the target

device Dt st
t = {(xt st (i )

t ,yt st (i )
t )|i = 1, ...,nt st

t }. The setting is illustrated in Figure 21.4
where the matrix denotes a 2D location space and a tick indicates labeled data
collected in that location. Optionally, we may have some trajectories in the blue
arrow line, which are collected in both the source and target time periods.

The LANDMARC model (Ni et al., 2003) and the LEASE model (Krishnan et al.,
2004) both utilize some additional hardware equipments, including stationary
emitters and sniffers, to obtain up-to-date RSS values and further apply some K
nearest neighbor (KNN) style algorithms to estimate the location. However, such
methods may suffer from the limited number of sniffers and the limited modeling
power of KNN.

Pan et al. (2007b) propose a LeManCoR model, which is a semi-supervised man-
ifold method. The LeManCoR model treats different time periods as multiple views
and uses a multiview learning framework to constrain the predictions on refer-
ence points to be consistent. Specifically, the objective function of the LeManCoR
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Figure 21.4 An illustration for cross-time wireless localization

model is formulated as

( f (s)∗, f (t )∗)= arg min
f (s), f (t )

μ

ns

ns∑
i=1

V (x(i )
s , y (i )

s , f (s))+γA‖ f (s)‖2
HK1

+γ(1)
I ‖ f (s)‖2

I

+ 1

ns

ns∑
i=1

V (x(i )
t , y (i )

t , f (t ))+γA‖ f (t )‖2
HK2

+γ(2)
I ‖ f (t )‖2

I

+ γI

�

�∑
i=1

[ f (s)(x(i )
s )− f (t )(x(i )

t )]2. (21.11)

The first term in (21.11) is to minimize the localization loss at the source time
period, and the second and third terms are for the manifold regularization. The
next three terms are defined similarly for the target time period. The last term in
(21.11) is to enforce the location prediction on the reference points, which can re-
ceive real time RSS values, to be consistent by two localization classifiers f (s) and
f (t ). In this way, the training instances in different time periods can be leveraged
together.

Xu et al. (2017) propose a metric transfer learning framework (MTLF). Many
previous studies use the Euclidean distance to measure the dissimilarity between
instances from two different domains. However, the Euclidean distance may be
suboptimal in some real world applications. In MTLF, instance weights are learned
and exploited to bridge the distributions of different domains, while the Maha-
lanobis distance is learned simultaneously to maximize the interclass distances
and minimize the intraclass distances for the target domain. In addition to these
instance-based transfer learning methods for the cross-time localization, there is
an instance-based transfer learning method for the cross-space localization (Pan
et al., 2008c).

This work on instance-based transfer learning focuses on handling localiza-
tion with wireless data. There exist some work that uses instance-based transfer
learning for the localization based on the image data. For example, in the work by
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Lu et al. (2016), the localization system considers two kinds of inputs, including
red green blue (RGB) images that are obtained under a normal light condition
and thermal images that are obtained under an emergency power outage condi-
tion. As thermal images are not obtained as easily as color images, an active trans-
fer learning method is proposed to treat RGB images as the source domain and
thermal images as the target domain. On the one hand, it uses an adaptive multi-
kernel learning framework to train the model with both labeled RGB images and
thermal images. On the other hand, it also tries to carefully choose thermal images
to be labeled by the human expert so as to maximize the performance gain.

21.2.4 Model-Based Transfer Learning for Localization

In this section, model-based transfer learning for the wireless localization is in-
troduced. We mainly introduce two works that consider nonsequential and se-
quential model-based transfer learning.

Non-sequential model: Let us take cross-device wireless localization as an exam-
ple to introduce model-based transfer learning. The LatentMTL method (Zheng
et al., 2008a) models different devices as different tasks and exploits the task re-
latedness by cross-task parameter sharing for improving the localization perfor-
mance. We model the localization with a regression function f (z) = wT z+ b to
estimate locations from some transformed signal vector z =ϕ(x) ∈ Rk , where w is
a weight vector, b is a bias term and ϕ is a feature mapping function. In this multi-
device problem, we treat T devices as T tasks, where T is simply set to 2 as we
consider one target device and one source device, and each task t ∈ {1, ...,T } has
a regression function parameterized as wt with a shared b for the computational
simplicity. By following (Evgeniou and Pontil, 2004), wt is defined as

wt =w0+vt ,∀t = 1, ...,T,

where w0 is shared by all the tasks and vt is specific to task t . We are interested in
finding appropriate feature mappings ϕt which can map the raw signal data to a
k-dimensional latent feature space where the learned hypotheses across tasks are
similar, that is, vt is “small.”

The objective function of the LatentMTL model is formulated as

min
w0,vt ,ξi t ,ξ∗i t ,b,ϕt

T∑
t=1

πt

nt∑
i=1

(ξi t +ξ∗i t )︸ ︷︷ ︸
loss

+ λ1

T

T∑
t=1

‖vt‖2

︸ ︷︷ ︸
knowledge share

+λ2 ‖w0‖2+ λ3

T

T∑
t=1

Ω(ϕt )︸ ︷︷ ︸
regularization

s.t. yi t − (w0+vt ) ·ϕt (xi t )−b ≤ ε+ξi t

(w0+vt ) ·ϕt (xi t )+b− yi t ≤ ε+ξ∗i t

ξi t ,ξ∗i t ≥ 0 (21.12)

We explain each term in (21.12) as follows.
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Figure 21.5 The TrHMM model to adapt a localization model from time 0 to time
t

• In the loss term, ξi t and ξ∗i t are slack variables measuring the errors. πt are the
weight parameters for each task t .

• In the knowledge share term, minimizing ‖vt‖2 regularizes the dissimilarities
among the task hypotheses in the latent feature space ϕt (x).

• In the regularization term, minimizing ‖w0‖2 corresponds to maximizing the
margin of the learned models to provide the generalization ability. Generally,
the regularization parameter λ1 is set to be larger than λ2 to force the task hy-
potheses to be similar. Ω(ϕt ) penalizes the complexity of the mapping function
ϕt . To make our problem tractable, we consider ϕt ∈ Rk×d as a linear transfor-
mation by letting ϕt (x) = ϕt x. We use the squared Frobenius norm for Ω(ϕt ),
that is, Ω(ϕt )= ∥∥ϕt

∥∥2
F .

• The constraints follow the routine of the standard ε-SVR (Scholkopf and Smola,
2001) with b as the bias term and ε as the tolerance parameter.

Sequential model: The TrHMM model (Zheng et al., 2008b) exploits the trajecto-
ries (i.e., the blue lines in Figure 21.4) by using the hidden Markov model (HMM)
and then for transfer learning, it allows HMM parameters to be shared and up-
dated carefully across different time periods.

For an HMM θ = (λ, A,π), the radio map λ= {P (xi |yi )} models the signal distri-
bution, for example, Gaussian distribution P (x|y) = 1

(2π)k/2|Σ|1/2 e−
1
2 (x−μμμ)T Σ(x−μμμ) at

each location, where μμμ is the mean and Σ is the covariance matrix. By assuming
the independence among the APs according to Ladd et al. (2002), we can simplify
Σ as a diagonal matrix. The transition matrix A = {P (yi+1|yi )} encodes the prob-
ability for a user to move from one location to another. The location prior π is
set to be a uniform distribution over all the locations as a user can start from any
location.
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TrHMM has three stages defined as follows.

• It learns the signal correlation model α from the source time period 0. Specif-
ically, TrHMM uses a multiple linear regression model on the data at time 0
over all the location grids and derives the regression coefficients αααk = {αk

i j },
which encode the signal correlations between reference locations {lc } and a
non-reference location k. That is,

sk
j =αk

0 j +αk
1 j r1 j + ...+αk

n j rn j +ε j , (21.13)

where sk
j is the RSS at location k from the j -th AP,αk

i j (1≤ i ≤n) is the regression
weights for the j -th AP signal at location k and ri j (1 ≤ i ≤ n) is the RSS at the
i -th reference point from the j -th AP.

• It applies the signal correlation model α to the target time period t and re-
estimates the radio map using up-to-date signal data D∈L

t ar . Specifically, it uses
the αs to update the non-reference point locations’ signal strengths with the
newly collected signal strengths on the reference point locations {lc }. As there
is a possible shift for the regression parameters over time, a trade-off constraint
is added to derive the new λt as

μμμt =βμμμ0+ (1−β)μμμr eg
t

Σt =β
[
Σ0+

(
μμμt −μμμ0

)(
μμμt −μμμ0

)T
]
+ (1−β)

[
Σ

r eg
t + (μμμt −μμμ

r eg
t

)(
μμμt −μμμ

r eg
t

)T
]

,

where we balance the regressed radio map λ
r eg
t = (μμμr eg

t ,Σr eg
t ) and the base ra-

dio map λ0 = (μμμ0,Σ0) by introducing a parameter β ∈ [0,1].
• It updates the model, whose the location prior π and transition matrix A are

shared from the source time 0, by using the trace data Tt . Specifically, we first
trained an HMM θ0 = (λ0, A0,π0) at time 0 as the base model. Then, in another
time period t , we improve λ0 by applying the regression analysis and obtain a
new HMM θt = (λt , A0,π0).

21.3 Transfer Learning for Activity Recognition

21.3.1 Background

In the activity recognition, the goal is to recognize human activities in their
daily lives such as walking, running or cycling by using wearable sensors like ac-
celerometers, GPS locations, object-based sensors like radio-frequency identifi-
cation tags and so on.
Traditional approaches: For activity recognition, one of the most common for-
mulation is to simply consider it as a supervised learning problem. Typically, a
data set is collected from several types of sensors and different kinds of features
are extracted based on domain and expert knowledge. Some ways of extracting
features (Bulling et al., 2014) include statistical features like the mean, variance or
kurtosis of the raw sensor readings, or some frequency-domain features like mel-
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frequency cepstral coefficients, Fourier transform, wavelet transform and so on.
After the feature extraction stage, different machine learning approaches rang-
ing from decision trees (Bao and Intille, 2004), SVM (Bulling and Roggen, 2011),
hidden Markov models (Bulling et al., 2008) and conditional random fields (van
Kasteren et al., 2008) have been successfully applied to a variety of activity recog-
nition data sets.
Deep learning approaches: Although a lot of traditional machine learning ap-
proaches have been successfully applied to the activity recognition problem, in
recent years more researchers have started looking into deep learning-based ap-
proaches. Wang et al. (2017a) mention two major drawbacks of traditional ma-
chine learning approaches. The first is that it would take a long time to handcraft
the features required to build a successful activity recognition system in a general
environment. Next, handcrafted features can only be used to recognize simple
and low-level activities like running and walking, but hard to infer high-level or
context-aware activities. Hammerla et al. (2016) explore deep feedforward neural
networks, convolutional neural networks (CNNs), and recurrent neural networks
on three different activity recognition data sets. Hammerla et al. (2016) discover
that recurrent neural networks outperform CNNs significantly on activities that
are short in duration but have a natural ordering. For prolonged and repetitive
activities, they recommend using CNNs.
Data sparsity challenges: One particular challenge for formulating activity recog-
nition as a supervised learning problem is the difficulty in collecting enough la-
beled data. The annotator has to go through the raw sensor readings and manu-
ally segments the activities. In some cases where the input contains motion sensor
readings like accelerometers or gyroscopes, it is extremely difficult to accurately
interpret the data (Bulling et al., 2014). As a result, almost all of the publicly avail-
able activity recognition data sets are small in terms of number of subjects, dura-
tion of the collected data sets and the number of activities monitored.

For example, for the three data sets evaluated by Hammerla et al. (2016), the Op-
portunity data set (Chavarriaga et al., 2013) consists of sensor readings from only
four subjects and eighteen common kitchen activities like opening and closing the
dishwasher as well as opening and closing fridge, the PAMAP2 data set (Reiss and
Stricker, 2012) consists of readings from nine subjects and twelve lifestyle activi-
ties, and the Daphnet Gait data set (Bächlin et al., 2009) consists of readings from
ten subjects and two activity classes. None of these has a rich activity hierarchy
that one can observe in “real world” activities of daily living.

In the context of activity recognition, the classic requirement of supervised learn-
ing manifest itself as: (1) the same feature space requirement meaning that train-
ing and testing data should use the same set of sensors; (2) the same underlying
distribution requirement meaning that the preferences or the habit of the subjects
should be similar in both training and testing data; and (3) the same label space
requirement meaning that the activity sets recognized in the training and testing
data are the same.
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With such severe labeled data sparsity problem, it becomes natural to consider
transfer learning in real world activity scenarios. In the context of transfer learn-
ing, we would hope that: (1) the source and target domains can have different fea-
ture spaces, for example, using sensor readings collected from smartphones (the
source domain) to help recognize activities from smart watch sensor readings (the
target domain); (2) the source and target domains can have different probability
distributions, for example, using the sensor readings collected on one person to
help recognize activities for another person; and (3) the source and target domains
can have different label spaces, for example, using sensor readings collected for
walking and running to help recognize activities for swimming.

Different transfer learning approaches have been proposed in recent years to
tackle different aspects of the aforementioned transfer learning settings. For trans-
ferring between different feature spaces, Khan et al. (2018) propose a transductive
transfer learning model based on CNNs. The proposed CNN model minimized
layerwise Kulback–Leibler divergence between the source and target domains.
For transferring between different persons, Deng et al. (2014) propose a cross-
person activity recognition approach that uses a reduced kernel extreme learn-
ing machine to realize the initial activity recognition model. Deng et al. (2014)
also propose an online learning algorithm to use highly confident recognition re-
sults to adapt the online model. For transferring between different label spaces,
Wang et al. (2018b) propose a stratified transfer learning framework to first ob-
tain pseudo labels on the target domain and then transform labels from both the
source and target domains into a subspace.

In the remainder part of this section, we will discuss some transfer learning ap-
proaches in details. In particular we will discuss how to relax the same feature
space requirement and the same label space requirement, that is, activity recog-
nition from different sets of sensors and activity recognition between different sets
of activities.

21.3.2 Problem Setting

We first define the problem setting for activity recognition based on transfer
learning. We study two domains that have different sets of sensors and different
activity labels. Specifically, we have a source domain S, where the labeled sensor
readings are in the form of {(xs ,ys )}, and a target domain T , which is assumed to
have only unlabeled sensor readings in the form of {xt }.

We make an assumption that the label spaces in the source and target domains
are related through a probability function p(ys , yt ), where ys and yt are source
and target-domain activity labels, respectively. This probability function between
the label spaces can be learned by labeling some of the target domain instances
or through some distance/similarity functions that can be approximated via Web
information.
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Our goal is to estimate p(yt |xt ). To achieve that, we have

p(yt |xt )=∑
c

p(c|xt )p(yt |c),

where c is an activity label. Since the activity-label spaces may be large, for sim-
plicity, we approximate the value of p(yt|xt ) by the mode, which is the most fre-
quent label of p(c|xt ) and denoted by ĉ. In other words,

p(yt |xt )≈ p(ĉ|xt )p(yt |ĉ), ĉ= argmax
c

p(c|xt ).

We assume that the two label spaces are different but related. Therefore, the
joint distribution p(ys ,yt ) should have high mutual information in general and
that p(yt |ĉ) should also be high.

From this equation, the introduced transfer learning framework takes two steps.
In the first step, we will estimate p(ĉ|xt ) where ĉ is labeled according to the source
domain label space. Briefly speaking, we aim to use the source domain label space
to explain the target domain sequences xt first. Since the two domains have dif-
ferent feature spaces, in the first step we need to transfer across different feature
spaces. Next, we estimate p(yt |ĉ) where yt is defined on the target domain label
space and ĉ is defined on the source domain label space, hence, in the second
step, we need to transfer across different label spaces.

21.3.3 Transfer across Feature Spaces

Based on these discussions, in this section we first need to transfer knowledge
between different feature spaces and estimate p(ĉ|xt ).

For each sensor reading xs in the source domain S, it is represented by features
fs . Similarly, for each sensor reading xt in the target domain T , it is represented by
features ft . For example, fs can be an on-body three-dimensional accelerometer
attached to the wrist and ft can be the WiFi signals from a cellphone. Here we
need to build a bridge between fs and ft .

Inspired by translated learning (Dai et al., 2008), when transferring across dif-
ferent feature spaces, an important step is to find a translator φ( ft , fs ) ∝ p( ft | fs )
between the source and target domains. Since ft and fs are conditionally inde-
pendent given xs , we have

p( ft , fs )=
∫
Xs

p( ft |xs )p( fs |xs )p(xs )dxs =
∫
Xs

p( ft ,xs )p( fs |xs )dxs .

In order to measure the joint distribution p( ft , fs ), we need to measure p( ft , xs ),
or, more precisely, the joint distribution between each feature in T with the source
domain sensor readings xs . Depending on computing based on the difference on
distributions or difference on signal data, we can use two basic tools to approxi-
mate p( ft , xs ), including Jeffrey’s J-divergence (Jeffreys, 1946), which is a symmet-
ric version of the KL divergence, and dynamic time warping (DTW) (Keogh and
Pazzani, 2000).
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We can extract two kinds of information from sensor readings. The first is that,
given a sequence of sensor reading, we can estimate the generative distribution
from which such a sensor reading is generated. Since we only care about the rel-
ative distance between two distributions of sensor readings instead of describing
these distributions accurately, we simply plot the frequency of each sensor value,
which will be discretized if it is continuous, and then smooth the discretized prob-
ability distribution. Since we have quite different feature spaces, we first normal-
ize all our sensor readings into the range of [0,1].

In particular, suppose that we have a training set in the source domain {xi , yi },
where xi is a sensor reading and yi is the corresponding label. For each activity
yi , we can select all sequences of sensor readings x that have yi as its label. Next,
we could count the occurrences of sensor values xi j , and then estimate the prob-
ability distribution for each of the sensor in the sensor reading sequence xi . An
intuitive explanation of aforementioned method is that we try to link each gener-
ative distribution of different sensors to a target activity.

Following a similar approach, we can also estimate the probability distribution
for each sensor reading sequence in the target domain. Now that for each sensor
reading sequence, we have an estimated distribution Q and we wish to find a close
distribution P in the source domain. Since KL divergence is asymmetric, that is,
DK L(P ∥ Q) �= DK L(Q ∥ P ). Therefore, instead of calculating DK L(P ∥ Q), we use
DK L(P ∥ Q)+DK L(Q ∥ P ), which is a symmetric measurement, to measure the
distance between two distributions generating sensor readings.

Two issues need to be addressed for the selection of candidate labels based
on the relative entropy measurements. The first issue is that, although DK L(P ∥
Q)+DK L(Q ∥ P ) equals zero if and only if the two distributions P and Q are iden-
tical, the fact that sensors have a very large value does not necessarily mean the
two distributions are highly uncorrelated. Consider two accelerometers where the
directions of accelerations are different. In this case, whenever the first accelerom-
eter senses a high value, the second accelerometer will sense a low value. There-
fore, we need to consider distribution pairs at both high divergence and low di-
vergence values. The second issue we consider is the different sampling rates of
different sensors when plotting their signal values versus time. Different kinds of
sensors have very different sampling rates and the accuracy of distributions esti-
mated can vary a lot. When calculating the correlation between different sensors,
another important step is to use a distance metric that can take different sampling
rates into account. Now given two series of sensor readings of only one dimension,
Q and C of length n and m, we wish to align two sequences based on DTW (Keogh
and Pazzani, 2000).

The idea of DTW is simple. We could construct an n-by-m matrix where the
(i , j )-th element contains the distance d(qi ,c j ) between the two points qi and
c j , which is measured as the absolute value of difference of qi and c j , that is,
d(qi ,c j ) = |qi − c j |. Since the (i , j )-th element corresponds to the alignment be-
tween qi and c j , the objective is to find a warping path W that is a contiguous set
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Algorithm 21.1 Projecting the labels in the source domain to the unlabeled sensor
readings in the target domain

Input: Source domain activities §s , source domain data Ds = {(xs ,ys )} =
{(xi , yi )|yi ∈ Ls }, target domain data Dt = {xt }
Output: Pseudo-labeled target domain data D′

t = {(xs ,y′s )}
begin

1: Normalize each sensor reading sequence in S and T .
2: For each pair of sensor reading and activity in (xs ,ys ) ∈ S, estimate its proba-

bility distribution p( fs |ys ).
3: For each unlabeled sequence in the target domain xt , estimate the distribution

of its feature values: P ( ft ).
4: Calculate the relative entropy between distributions in T and all the distribu-

tions in S. Take the top-K similar and the bottom-K similar distributions out
and record their labels as candidates.

5: Calculate the DTW score between this sensor reading sequence xt and all the
labeled sensor reading sequences (xs ,ys ) in the source domain. Take the top-K
highest and the bottom-K lowest similar sensor readings out and record their
labels as candidates.

6: Label an unlabeled sequence xt with the label that appeared maximum times
in the candidate label set.

end

of elements that define the mapping between Q and C . Thus, the element at posi-
tion K of the warping path W is defined as wk = (i , j )k . This warping path can be
found via dynamic programming with a quadratic time complexity.

Algorithm 21.1 shows the step for projecting the labels in the source domain to
the unlabeled sensor readings in the target domain. Notice that in Algorithm 21.1,
we introduce a parameter K , which is used to control the number of candidate
label sequences in the source domain.

21.3.4 Transfer across Label Spaces

In the previous section, we had already estimated the value for argmaxc p(ĉ|xt ).
In this section, we aim to estimate p(yt |ĉ). Since p(yt |c) = p(yt ,c)/p(c), if we as-
sume that there is no distinction between the prior distribution p(c), then we can
get p(yt |c)∝ p(yt ,c).

Based on the Markov assumption, we have

p(yt ,c)= p(y0
t )
∏

i
p(yi

t |yi−1
t )

∏
i

p(ci |yi
t )∝∏

i
p(yi

t |yi−1
t )

∏
i

p(ci |yi
t )

log p(yt ,c)∝∑
i

log p(yi
t |yi−1

t )+∑
i

log p(ci |yi
t ).

From this formulation, we can see that such a problem can be reduced to esti-
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Algorithm 21.2 Projecting target domain sequences with source domain labels to
target domain sequences with target domain labels

Input: Pseudo-labeled target domain data D′
t = {(xt , ĉ)}

Output: Labeled target domain data: D∗
t = {(xt ,yt )}

begin

1: For each pseudo-labeled target domain instance d ′
t , calculate its minimum

loss value R(i , j ) based on the recurrence relation R(i , j )=mink∈Lt {R(i−1,k)+
NGD(ĉi , j )+NGD(k, j )}, where NGD denotes the Google similarity distance
metric.

2: Relabel d ′
t using the labels in the target domain label space, thereby creating a

new sequence d∗
t .

end

mating p(ls |lt ), where ls ∈ Ls , lt ∈ Lt , and p(l 1
t |l 2

t ), where l 1
t , l 2

t ∈ Lt . Since the
number of labeled training data in the target domain is not sufficient, we need
extra knowledge sources to estimate such probabilities. For example, Shen et al.
(2006b) use web pages from the Open Directory Project as a bridge to estimate
the probabilities. Zheng et al. (2009) calculate the cosine similarity of two word
vectors, which are composed by the words in the Web search results when two
activity names are used as queries. In practice, such algorithms based on Web
pages could be extremely slow. Instead of measuring the conditional probabili-
ties directly, we choose to optimize a similar measurement that intrinsically can
be optimized similarly to p(yt ,c), as stated later.

We define R(i , j ) as the expected loss of assigning j ∈ Lt to yi
t and Q(l1, l2) as

the “information distance” between l1 and l2, which are activity labels from the
source and target domains, respectively. Then R(i , j ) is defined recursively as

R(i , j )=min
k∈Lt

{R(i −1,k)+Q(ĉi , j )+Q(k, j )}.

We briefly explain the nature of this recursive relation. In order to minimize the
loss up to time slice i , we need to consider the minimum loss up to time slice i−1.
To do that, we need to enumerate all possible R(i −1,k), where k ∈ Lt is the label
we assigned to time slice i−1. Next, we need to minimize the distance between the
original “pseudo-label” ĉi and this new label j ∈ Lt . Furthermore, Q(k, j ) is also
considered in the recursive function to minimize the distance between succes-
sive slices yi

t and yi−1
t . It can be seen that this recurrence relation could be solved

via dynamic programming. Here we use the Google similarity distance (Cilibrasi
and Vitányi, 2007) as Q to approximate the information distance between two
entities.

The Google similarity distance is defined as

NGD(x, y)= max{log f (x), log f (y)}− log f (x, y)

log N −min{log f (x), log f (y)}
,
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where f (x) denotes the number of pages containing x as reported by Google,
f (x, y) denotes the number of pages containing both x and y , and N is a normal-
ized factor. Therefore, what we need to know is just a count of the search results.
By using the Google similarity distance, we have

R(i , j )=min
k∈Lt

{R(i −1,k)+NGD(ĉi , j )+NGD(k, j )}.

Algorithm 21.2 further explains the procedure we use to bridge the gap between
different labels.

After these two steps, we now have the label yi
t ∈ Lt for each unlabeled sensor

reading in the target domain and then we can apply any machine learning algo-
rithm used for activity recognition such as hidden Markov models (Patterson et al.,
2005) or conditional random fields (Vail et al., 2007) to train an activity recognition
classifier in the target domain.
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Transfer Learning in Urban Computing

22.1 Introduction

Nowadays, cell phones, vehicles and infrastructures (e.g., traffic cameras and
air-quality monitoring stations) continuously generate a huge amount of data re-
lated to our cities in heterogeneous formats such as GPS points, online posts, road
conditions and weather conditions. This opens a new door for us to know about
the dynamics of our city from different perspectives and facilitates various urban
computing applications for traffic monitoring, society security, urban planning,
health care and so on. The current solutions can help streamline citywide plan-
ning and decision-making in the following way:

Fine-grained data inference: In many urban monitoring tasks, the obtained data
cannot cover the whole city area. A representative example is air-quality monitor-
ing where the stations for air-quality sensing are only sparsely located in a city.
Then, how to infer a more fine-grained data distribution based on the sparsely
collected data becomes an important research issue.

Future phenomenon prediction: Another important and hot research area is the
urban-event prediction problem, such as air quality and traffic prediction. Note
that, in traditional statistics, such a problem can often be modeled as a time-series
modeling problem and be solved via statistical models such as the autoregressive
integrated moving average. However, in complex urban computing applications,
in order to obtain a more accurate prediction, usually a more complicated ma-
chine learning model is constructed to take heterogeneous data sources into con-
sideration. For example, in the air-quality prediction, many conditions such as
road maps, weather conditions and traffic conditions can all be used to make the
prediction.

Event detection: Detecting abnormal events is very important in urban comput-
ing applications. For example, under destructive weather conditions such as ty-
phoons and hurricanes, it is a critical issue to detect road obstacles, such as fallen
trees and ponding water, in a real-time manner. City authorities can restore road
transportation in a timely manner to reduce losses.

Facility deployment: Finding appropriate sites for deploying a new facility such
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as the placement of shopping malls, electronic car-charging stations or environ-
ment monitoring stations is another major research topic. It is worth noting that,
for most facilities, once they are built, it will be difficult to move the facilities to
other sites. Hence, mechanisms for facility deployment tasks usually cannot adopt
a trial-and-error methodology, which makes this task more challenging.

Despite extensive research efforts in urban computing research, most existing
studies build their applications with an assumption that the amount of service-
relevant data is adequate and easily available, for example, traffic flow records
for the traffic prediction application. However, this is not always the case in re-
ality. Many cities may just start the urban digitization process and do not have
much historical service-relevant data. Hence, one key question in urban comput-
ing, while rarely studied yet, emerges: that is, how to cold-start a new urban com-
puting service given the problem of the data scarcity? For example, suppose that we
want to build a facility deployment assistant system to recommend sites of vari-
ous facilities such as large shopping malls or five-star hotels, but no such facilities
exist in the city yet. Then, how can we make such a site recommendation with
little data in this city?

In the remainder of this chapter, we will study how transfer learning can help
build such an urban computing application when the data scarcity problem ex-
ists. First, we will introduce how “what to transfer” materializes in urban com-
puting applications. Generally, this is an application-dependent issue, but, given
the common characteristics of urban computing applications, we can classify this
issue into three categories, cross-modality transfer, cross-region or city transfer,
and cross-application transfer. We then demonstrate several key issues in transfer
learning of smart-city applications, including identifying the appropriate source
domain, linking source and target domains, and assessing the transferability of
smart-city knowledge. Finally, two practical applications are elaborated to illus-
trate the state-of-the-art transfer learning techniques in urban computing.

22.2 “What to Transfer” in Urban Computing

To leverage transfer learning for building urban computing applications with
the data scarcity problem, the first critical issue to address is finding the appro-
priate source domain knowledge to transfer, that is, “what to transfer.” In urban
computing applications, this knowledge can primarily come from the following
sources:

Cross-modality transfer: One of the key characteristics of urban computing ap-
plications is that they are often dependent on heterogeneous data modalities.
For example, in the air-quality prediction task, a variety of data modalities such
as city-road maps, vehicle GPS trajectories, points-of-interest (POI) distributions,
weather information and so on, can help increase the prediction accuracy. How-
ever, in some cities or regions, it is possible that some data modalities are absent
and thus the prediction accuracy is not satisfactory. In such cases, if we can first in-



326 Transfer Learning in Urban Computing

fer the information of the missing modality by transferring knowledge from other
modalities, then we may improve the performance of the target application.

Cross-region and cross-city transfer: The auxiliary knowledge source for building
a new application in a city or region is the experience from other cities/regions
where the same (or similar) application has already been built in the past. In such
scenarios, we can also call the source city/region as the data-rich city/region and
the target city/region as the data-scarce city/region. While the basic idea of the
cross-city/region transfer is intuitive, we highlight that it practically faces plenty of
difficulties. For example, different cities have distinct development levels, which
makes a direct transfer usually useless and perhaps leads to “negative transfer.”

Cross-application transfer: For a new smart-city application to be developed,
another important knowledge source for transfer learning is from an existing and
related application that has already collected a lot of data. For example, suppose
we want to open a new ridesharing industry in a city, but we do not have any data
about the behaviors of ridesharing cars. Then, to implement an urban comput-
ing application related to ridesharing such as the demand-supply prediction, it is
possible to leverage existing data from taxi-related applications.

It is worth noting that these knowledge sources can be combined together in a
transfer learning application in urban computing. For example, suppose that we
want to build a reliable and useful connection between different data modalities
within a city for a target application. We can first learn the connection in a source
city where all the data modalities are adequate and then transfer it to a target city
where some data modalities and the target application data are lacking.

22.3 Key Issues of Transfer Learning in Urban Computing

In this section, we summarize several key issues that should be considered in
applying transfer learning to urban computing.

(1) Identifying the appropriate source domain: Although the previous section
elaborates some ways to obtain source domain knowledge for urban computing
applications, finding an appropriate source domain is still the most difficult part
in practice. First, for many applications, it may be hard to find a perfect source do-
main that includes all the desired information for building the target application.
Even worse, we may not be able to find any data modality, region/city or appli-
cation from which to transfer. In such a scenario, we may need to rely on simula-
tion software to generate data as the source domain or attempt to crawl data from
websites and apps. In many cases, social media platforms such as Facebook and
Twitter will be a useful data source because the activities of users on those plat-
forms (e.g., check-ins) can often be mapped to real-life physical spaces and reflect
urban dynamics.

(2) Linking source and target domains: Once determining the source domain,
the second step is to learn the knowledge that can be transferred from the source
domain to the target domain. In other words, the “invariant” part of the knowl-
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edge needs to be extracted between the two domains. While this part is usually
application specific and no single method can be always effective, here we give
some guidelines and suggestions.

• Building with privacy-preserving solutions in a systematic way: In urban com-
puting applications, many data can only be collected and shared in a privacy-
preserving way. This may incur the inconsistency between the source and target
domain data. For example, taxi trajectory records published by many cities only
include coarse pick-up and drop-off regions rather than detailed GPS coordi-
nates. Then, when we want to build a taxi-related urban computing application
by the cross-city transfer, probably we can only obtain the privacy-preserving
taxi data from the source city, while more fine-grained data can be retrieved
from the target city. Hence, some systematic ways to deal with such privacy-
preserving data may be desired to facilitate the transfer learning.

• Learning common representations via neural networks for transferability: With
the recent development of deep neural networks, it has become a very powerful
tool to automatically learn the feature representation for a large scope of tasks.
Similarly, in transfer learning applications in urban computing, it also becomes
a popular method recently. For example, we can use neural networks to learn
a new feature representation for a city region while its original feature can in-
clude POI distribution, temperature, traffic conditions and so on. Then, other
useful prior knowledge (e.g., two regions in two cities, such as central business
districts, are similar to each other) can be added into the neural network to help
learn a new feature representation with better transferability.

(3) Assessing transferability: Another fundamental issue is to quantitatively mea-
sure the transferability between the source and target domains. For example, given
several source city candidates, assessing the transferability will help select appro-
priate cities as the source cities. It is probable that we can consider the size, pop-
ulation, culture, economics and so on to quantify the intercity similarity and also
the intercity transferability. However, up to date, there is still little work focusing
on mathematically quantifying such intercity transferability. We believe that this
will be an important future research direction, which will significantly boost the
applications of transfer learning in urban computing.

In the next two sections, we introduce two practical problems in urban comput-
ing, that is, the chain store recommendation problem and the air-quality predic-
tion problem to elaborate how transfer learning can effectively address the data
scarcity issue in urban computing.

22.4 Chain Store Recommendation

Chain business dominates the market in the world. One critical issue to address
in the chain business is to select optimal locations for chain stores when a chain
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enterprise wants to start the business in a new city. Traditionally, operators ad-
dress this problem via questionnaire surveys to understand the needs of citizens
and detailed investigations to learn characteristics of candidate locations, based
on which locations for new stores will be selected. Obviously, these traditional
methods are too time-consuming to adopt, especially when cities are developing
rapidly nowadays. On the other hand, to adopt traditional machine learning tech-
nologies to solve this problem, we face the cold-start issue, that is, there is not
enough data about the chain stores in the target city.

In this situation, we turn to transfer learning for a solution. For example, Guo
et al. (2018a) propose a CityTransfer model to conduct the intercity knowledge
transfer between cities and the intracity knowledge transfer between enterprises.
In the following, we will introduce their problem settings and the CityTransfer
model in detail.

22.4.1 Problem Settings

Consider two large cities in China, that is, Beijing and Shanghai. Each city is
divided into uniform-sized grids as G = {g1, . . . , gm

}
. A vector of features, denoted

by fi , is extracted for each grid. Three popular economic chain hotel enterprises
in China are considered, that is, 7 Days Inn, Home Inn and Hanting Inn, which are
denoted by H = {h1,h2,h3}.

Suppose that in Beijing there has already been chain stores for these three en-
terprises while Shanghai has chain stores only for the “7 Days Inn” and “Home
Inn.” If “Hanting Inn” wants to start its business in Shanghai, it faces a cold-start
problem, which can be solved via a transfer learning method. The CityTransfer
method conducts inter- and intra-city knowledge transfer to adapt the knowl-
edge between different cities and enterprises. In our case, Beijing is treated as the
source city s, which has grids Gs = {g s

1, . . . , g s
m1

}
, while Shanghai is treated as a tar-

get city t , which has grids Gt = {
g t

1, . . . ., g t
m2

}
. Besides, h1 and h2 are the source

enterprises, while h3 is the target one.

The CityTransfer model leverages multiple heterogeneous data sources to con-
duct the store-location recommendation. The adopted data sources are from two
categories, that is, the urban characteristics data and chain hotel enterprise data.
The former includes the POIs in each grid crawled from the Gaode map, one of the
most popular digital map service provider in China, and the house prices in each
grid crawled from the Soufang, a popular website for real estate in China. The lat-
ter includes the enterprise profile information crawled from the company Ctrip
(www.ctrip.com), a popular travel reservation website in China, and consumer
reviews crawled from the Sina Weibo (www.sina.com), one of the most famous
microblogging service in China. We show the details of the data in Table 22.1. As
the business performance of an enterprise in a grid is reflected by theo number
of related reviews to this enterprise in this grid, the CityTransfer model approxi-

www.ctrip.com
www.sina.com
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mates ri j , which denotes the rating of a store of the enterprise hi in grid g j , by the
number of reviews in g j related to hi .

Table 22.1 Urban characteristics and chain hotel enterprise data (Guo et al.,
2018a)

Source Beijing Shanghai

7 Days Inn hotels 160 46
Home Inn hotels 179 156

Hanting Inn hotels 123 147
7 Days Inn reviews 31,215 8,610
Home Inn reviews 35,310 45,146

Hanting Inn reviews 18,195 22,875
POIs 348,863 444,703

Check-ins 21,222070 16,928,489
House prices 55,030 50,224

22.4.2 The CityTransfer Model

The CityTransfer model (Guo et al., 2018a) extends the traditional singular value
decomposition (SVD)-based collaborative filtering model to conduct inter- and
intra-city knowledge transfer. First, as the original feature representation extracted
from multimodal data for each grid is redundant and noisy, the intracity semantic
extraction component is designed to construct a more robust and informative fea-
ture representation from the original one for each grid, that is, fi → vi . Second, as
the feature and rating distributions in different cities may be different, the inter-
city knowledge association component is designed to guarantee that the new fea-
ture representation is in a shared semantic space. Third, based on the SVD-based
collaborative filtering model, the rating score of each grid for each enterprise can
be predicted via a transfer rating prediction model.

Intra-city semantic extraction: An autoencoder is adopted to construct a new
feature vector vi from the original feature fi . The construction process is defined
as

v s
i =σ

(
Ws f s

i + y s
1

)
(22.1)

v t
i =σ

(
Wt f t

i + y t
1

)
, (22.2)

where Ws , Wt , y s
1 and y t

1 are parameters and σ denotes an activation function.
Meanwhile, the original grid feature vectors can be reconstructed as

f̂ s
i =σ

(
W T

s v s
i + y s

2

)
(22.3)

f̂ t
i =σ

(
W T

t v t
i + y t

2

)
, (22.4)

where y s
2 and y t

2 are parameters. The parameters in the autoencoder are estimated
by minimizing the reconstruction error as

O1 =
m1∑
i=1

∥∥ f̂ s
i − f s

i

∥∥2
2+

m2∑
i=1

∥∥ f̂ t
i − f t

i

∥∥2
2 . (22.5)
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Inter-city knowledge association: To guarantee the new feature representa-
tions from different cities can be comparable, they should be projected to a shared
semantic space. One way to achieve that is to follow the following method. We first
calculate the Pearson correlation coefficient between any two cities based on the

original feature representations, that is, ρi j = ρ
(

f s
i , f t

j

)
. According to these coef-

ficients, for each grid in the source city, we choose its top k similar grids in the
target city, and similarly for each grid in the target city, we choose its top k simi-
lar grids in the source city, generating a set of similar grid pairs between the two

cities as Δ =
{(

g s
i , g t

j

)}
. To make these pairs of grids similar in the shared seman-

tic space, we can use the following function as a regularization term to obtain the
new representations:

O2 =
∑

(
g s

i ,g t
j

)
∈Δ

ρ
(

f s
i , f t

j

)(
v s

i − v t
j

)2
. (22.6)

Transfer rating prediction model: An SVD-based collaborative filtering model
is extended to predict the rating for each enterprise in a grid. We use ui to repre-
sent the feature representation of enterprise hi . The rating for an enterprise hi ∈ H
in grid j of the source city is estimated as

r̂ s
i j = bi +es

j +uT
i v s

j . (22.7)

Similarly, the rating for enterprise hi in grid j of the target city is estimated as

r̂ t
i j = bi +et

j +uT
i v t

j . (22.8)

To minimize the prediction error, the optimization objective is defined as

O3 =
∑

r t
i j∈Rt

(
r̂ t

i j − r t
i j

)2+λ1
∑

r s
i j∈Rs

(
r̂ s

i j − r s
i j

)2
. (22.9)

By combining these three components as well as a regularization term denoted
by R, the final objective function is formulated as

O = λ1

2
O1+ λ2

2
O2+ λ3

2
O3+ λ4

2
R. (22.10)

As we can see, the CityTransfer model is a feature-based transfer learning method,
where the feature representations of grids and enterprises are transferred from the
source city and enterprises to the target ones.

22.5 Air-Quality Prediction

Air pollution is a severe issue in urban life in many parts of the world as con-
tributed by an increasing number of factories, vehicles, human activities and so
on. Being able to accurately predicting the air quality in each region in a city is
important for citizens to plan their outdoor activities in advance. Clearly, the air
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quality in a region is impacted by many factors, for example, POIs, traffic, pro-
duction factories and so on. Thus, the level of pollution largely varies with the
location. In a pollution forecasting system, we wish to leverage these multimodal
data to estimate the fine-grained air quality in a city in advance.

More specifically, our task is to classify the air quality into good, moderate, un-
healthy and so on. We can formulate the air-quality prediction as a classification
problem. Given the multimodal data in each region during a specific period, we
wish to classify the corresponding air quality to a class. We note that the traditional
classification models cannot address this problem ideally for two reasons. First,
the air-quality data are very scarce because many cities have only a few air-quality
monitoring stations, resulting in a label scarcity issue. Second, there is a data in-
sufficiency issue because some multimodel data about important impacting fac-
tors may be missing in some regions or some periods, or even totally missing; for
example, the meteorology data in Shanghai may be missing for some hours. Like-
wise, the taxi trajectory data may not be available for some regions and for some
periods in certain areas of Shanghai.

Therefore, we consider the problem of whether it is feasible to transfer the knowl-
edge from a city to another city to help predict the air quality. In this section, we
explain one of the solutions known as the FLORAL model (Wei et al., 2016b) to
transfer multimodal data between cities.

22.5.1 Problem Settings

Suppose that Beijing, as a source domain, has collected sufficient labeled and
unlabeled data to build a predictive model on traffic while the target domain,
Shanghai, has only few labeled and some unlabeled data. Each data instance stands
for a region during a period and is denoted as a multimodal tuple, including the
data about various impacting factors to air quality. We assume that there are M
modalities and denote the labeled and unlabeled instances in the target domain
as Tl =

{
t 1

l i , t 2
l i , ..., t M

l i

}
and Tu = {t 1

ui , t 2
ui , ..., t M

ui

}
. Labeled and unlabeled instances

in the source domain are denoted in a similar way by Sl =
{

s1
l i , s2

l i , ..., sM
l i

}
and

Su = {s1
ui , s2

ui , ..., sM
ui

}
. As |Sl | $ |Tl | and some modalities are missing in some in-

stances in Tl , we wish to leverage Su and Sl to help learn a classifier for the target
domain more effectively and efficiently.

In our problem, there are four data modalities, that is, the road networks and
POIs data from Bing Maps, the meteorology data crawled from a public website
and the taxi trajectory data. Note that the taxi trajectory data are only available
in Beijing and some modalities for some instances are missing in Shanghai. The
details of the data for the other three modalities are summarized in Table 22.2.
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Table 22.2 Statistics of the modality used in (Wei et al., 2016b)

Modalities Beijing Shanghai

# Road segments 249,080 313,736
Highways 994 km 2,016 km

Roads 24,643 km 40,944 km
# POIs 379,022 433,016

Time span(2014) Feb. 1–May 31 Aug. 1–Sept. 10

22.5.2 The FLORAL Model

In this section, we introduce the FLORAL model for urban computing. The FLO-
RAL model includes two major components, that is, one component for learning
semantically related dictionaries for the multiple modalities in the source domain
and another for transferring the dictionaries and instances from the source do-
main to the target domain. Based on the sparse coding of each instance from both
the source and target domains, a classification model is to be learned to predict
the air quality in the target city. Here we introduce each component in turn.

Learning semantically related dictionaries: Dictionaries in the FLORAL model
are obtained by clustering, which has three steps, that is, graph construction, graph
clustering and dictionary inference. First, a similarity graph G = (V ,E) is con-
structed. The vertex set includes all modalities of each instance in the source do-
main and the edges describe pairwise relations between vertices, that is, intra-
edges within each modality and inter-edges across different modalities. For each
pair of vertices sm

i and sm
j in the m-th modality, we measure their similarity with

the Euclidean distance on their feature representations. They are connected with
an intra-edge if each of them is among the top k similar vertices of each other.
The weight of each inter-edge is calculated by a Gaussian kernel between them.
For a pair of vertices sm

i and sn
j in different modalities, we connect them with an

inter-edge whose weight is 1 if the two instance si and s j are known to be cor-
related, for example, two neighbored regions. Second, a submodular graph clus-
tering is designed to cluster the obtain similarity graph into K groups by guaran-
teeing some properties that the numbers of labeled instances are balanced across
different clusters and that modalities in each cluster are diverse enough. Third,
the dictionary for each modality can be inferred based on the obtained clusters.
That is, for each cluster k, we calculate the center of the vertices in modality m
as the dictionary element d m

k and, therefore, the final dictionary for modality m
combines the K dictionary elements inferred from the K clusters, that is, Dm =[
d m

1 ,d m
2 , ...,d m

K

]
,m = 1,2, . . . , M . These M dictionaries have the same size and are

semantically related.
Transfer dictionaries and instances to the target domain: The dictionaries ob-

tained from the source domain can be reused in the target domain and then sparse
codings of both the source and target instances are calculated. By leveraging the
sparse codings of the labeled instances from both the source and target domains,
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a multimodal transfer AdaBoost algorithm based on TrAdaBoost (Dai et al., 2007b)
is designed to learn a classifier for the target domain. As an extension of TrAd-
aBoost, this system can additionally learn the weights of different modalities.
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Concluding Remarks

In this book, we have explained the mathematical principles and computa-
tional foundations of transfer learning. We have introduced the basic concepts
underlying transfer learning and explored various types of knowledge transfer and
model adaptation algorithms. In terms of domain differences, we have looked at
both homogeneous and heterogeneous transfer learning settings and discussed
three research issues: when to transfer, what to transfer and how to transfer.

For the“what to transfer” issue, we considered four basic forms, including in-
stance, feature, model and relations that can be the target of knowledge transfer.
In terms of “how to transfer,” we considered algorithms of four types, including
instance-based, feature-based, model-based and relation-based transfer learning
algorithms. In the mathematical foundations of transfer learning, we introduced
the notion of distribution divergence and domain distance measure. We also ex-
plored strong ties to other types of machine learning paradigms including super-
vised learning, semi-supervised, active learning and multitask learning.

We have also taken a closer look at some advanced transfer learning algorithms,
including deep learning-based transfer learning, transitive transfer learning, life-
long machine learning and AutoTL algorithms for learning to how to conduct
transfer learning. We have introduced adversarial transfer learning, as well as trans-
fer learning in reinforcement learning.

We have also considered important application areas such as computer vision,
natural language processing, dialogue systems, recommender systems, bioinfor-
matics, activity recognition and urban computing. There are more areas in which
transfer learning continues to play a major role, which we cannot cover in the
space of this book, and we believe that more and more application areas will
emerge.

Transfer learning addresses a major problem facing the AI field, that is, the data
is often in short supply. Sometimes this lack of data is due to the difficulty in
data collection in a field, for example, in the medical domain, to confirm a com-
plete case requires years of treatment and operation. Sometimes though it is be-
cause that the society demands more management and control over ownership of
the data. More laws and regulations are placed on the sharing of data with third
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parties. Thus, data are increasingly difficult to obtain in many domains. Further-
more, as more areas in our society move to digitalization and datalization, pre-
dictive modeling is on increasing demand. In the “long tail” of application fields
where the distribution is over decreasing available data, only the heads are ben-
efiting from machine learning and AI. If we cannot provide the “have-nots” with
the benefits of the “haves,” our society will become more polarized.

Transfer learning can be a technical solution for this “small-data challenge.” If
we can take the models from a data-rich areas and transfer them to data-poor ar-
eas, we can potentially enable these data-poor areas with faster progress toward
an information- and knowledge-based society. Indeed, through many of the ap-
plication examples given in this book, we have seen that transfer learning can ef-
fectively alleviate the small data problem.

One of the areas to explore in the future is to continue to explore lifelong ma-
chine learning and automated transfer learning. One of humans’ intelligence
sources lies in our ability to quickly and effortlessly adapt to new tasks and new
environment. In fact, humans cannot only transfer knowledge to a new domain,
but also learn how to automatically transfer given new tasks and environments.
This indeed is a wonderful puzzle in nature that cannot be solved by computa-
tional means alone. Neural science and experimental neurology can potentially
shed light on the nature of such abilities, and we hope AI in general and transfer
learning in particular can benefit from such insights.

As we are witnessing one of the fundamental AI revolutions in human history,
transfer learning distinguishes itself as a deep research area that inspires new
ideas and thoughts into the nature of intelligence. In answering Turing’s question
“Can Machines Think?,” we hope to start shed light into the question by giving
answers to “How Can Machines Think in New Environments and for New Tasks?”
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Gašić, M., Kim, Dongho, Tsiakoulis, Pirros, and Young, Steve. 2015a. Distributed dialogue
policies for multi-domain statistical dialogue management. Pages 5371–5375 of: Pro-
ceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.
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Gašić, Milica, Breslin, Catherine, Henderson, Matthew, et al. 2013. POMDP-based dialogue
manager adaptation to extended domains. In: Proceedings of the 14th Annual Meeting
of the Special Interest Group on Discourse and Dialogue.
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