

Ethan Brown

Web Development with
Node and Express

Table of Contents

Foreword. xiii
Preface. xv

1. Introducing Express. 1
The JavaScript Revolution 1
Introducing Express 2
A Brief History of Express 4
Upgrading to Express 4.0 4
Node: A New Kind of Web Server 5
The Node Ecosystem 6
Licensing 7

2. Getting Started with Node. 9
Getting Node 9
Using the Terminal 10
Editors 11
npm 12
A Simple Web Server with Node 13

Hello World 14
Event-Driven Programming 14
Routing 15
Serving Static Resources 15

Onward to Express 17

3. Saving Time with Express. 19
Scaffolding 19
The Meadowlark Travel Website 20
Initial Steps 20

Views and Layouts 24

v

Static Files and Views 26
Dynamic Content in Views 27
Conclusion 28

4. Tidying Up. 29
Best Practices 29
Version Control 30
How to Use Git with This Book 30

If You’re Following Along by Doing It Yourself 31
If You’re Following Along by Using the Official Repository 32

npm Packages 33
Project Metadata 34
Node Modules 34

5. Quality Assurance. 37
QA: Is It Worth It? 38
Logic Versus Presentation 39
The Types of Tests 39
Overview of QA Techniques 40
Running Your Server 40
Page Testing 41
Cross-Page Testing 44
Logic Testing 47
Linting 48
Link Checking 49
Automating with Grunt 49
Continuous Integration (CI) 52

6. The Request and Response Objects. 53
The Parts of a URL 53
HTTP Request Methods 54
Request Headers 55
Response Headers 55
Internet Media Types 56
Request Body 56
Parameters 57
The Request Object 57
The Response Object 59
Getting More Information 60
Boiling It Down 61

Rendering Content 61
Processing Forms 63

vi | Table of Contents

Providing an API 64

7. Templating with Handlebars. 67
There Are No Absolute Rules Except This One 68
Choosing a Template Engine 69
Jade: A Different Approach 69
Handlebars Basics 71

Comments 72
Blocks 72
Server-Side Templates 74
Views and Layouts 74
Using Layouts (or Not) in Express 76
Partials 77
Sections 79
Perfecting Your Templates 80
Client-Side Handlebars 81

Conclusion 83

8. Form Handling. 85
Sending Client Data to the Server 85
HTML Forms 85
Encoding 86
Different Approaches to Form Handling 87
Form Handling with Express 89
Handling AJAX Forms 90
File Uploads 92
jQuery File Upload 94

9. Cookies and Sessions. 99
Externalizing Credentials 100
Cookies in Express 101
Examining Cookies 103
Sessions 103

Memory Stores 103
Using Sessions 104

Using Sessions to Implement Flash Messages 105
What to Use Sessions For 106

10. Middleware. 109
Common Middleware 114

Table of Contents | vii

Third-Party Middleware 116

11. Sending Email. 117
SMTP, MSAs, and MTAs 117
Receiving Email 118
Email Headers 118
Email Formats 119
HTML Email 119
Nodemailer 120

Sending Mail 120
Sending Mail to Multiple Recipients 121

Better Options for Bulk Email 122
Sending HTML Email 122

Images in HTML Email 123
Using Views to Send HTML Email 123
Encapsulating Email Functionality 125

Email as a Site Monitoring Tool 127

12. Production Concerns. 129
Execution Environments 129
Environment-Specific Configuration 130
Scaling Your Website 131

Scaling Out with App Clusters 132
Handling Uncaught Exceptions 135
Scaling Out with Multiple Servers 138

Monitoring Your Website 139
Third-Party Uptime Monitors 139
Application Failures 140

Stress Testing 140

13. Persistence. 143
Filesystem Persistence 143
Cloud Persistence 145
Database Persistence 146

A Note on Performance 146
Setting Up MongoDB 147
Mongoose 147
Database Connections with Mongoose 148
Creating Schemas and Models 149
Seeding Initial Data 150
Retrieving Data 151
Adding Data 152

viii | Table of Contents

Using MongoDB for Session Storage 154

14. Routing. 157
Routes and SEO 159
Subdomains 159
Route Handlers Are Middleware 160
Route Paths and Regular Expressions 162
Route Parameters 162
Organizing Routes 163
Declaring Routes in a Module 164
Grouping Handlers Logically 165
Automatically Rendering Views 166
Other Approaches to Route Organization 167

15. REST APIs and JSON. 169
JSON and XML 170
Our API 170
API Error Reporting 171
Cross-Origin Resource Sharing (CORS) 172
Our Data Store 173
Our Tests 173
Using Express to Provide an API 175
Using a REST Plugin 176
Using a Subdomain 178

16. Static Content. 181
Performance Considerations 182
Future-Proofing Your Website 182

Static Mapping 183
Static Resources in Views 185
Static Resources in CSS 185

Static Resources in Server-Side JavaScript 187
Static Resources in Client-Side JavaScript 187
Serving Static Resources 189
Changing Your Static Content 190
Bundling and Minification 190

Skipping Bundling and Minification in Development Mode 193
A Note on Third-Party Libraries 195
QA 195
Summary 197

17. Implementing MVC in Express. 199

Table of Contents | ix

Models 200
View Models 201
Controllers 203
Conclusion 205

18. Security. 207
HTTPS 207

Generating Your Own Certificate 208
Using a Free Certificate Authority 209
Purchasing a Certificate 210
Enabling HTTPS for Your Express App 212
A Note on Ports 213
HTTPS and Proxies 214

Cross-Site Request Forgery 215
Authentication 216

Authentication Versus Authorization 216
The Problem with Passwords 217
Third-Party Authentication 217
Storing Users in Your Database 218
Authentication Versus Registration and the User Experience 219
Passport 220
Role-Based Authorization 229
Adding Additional Authentication Providers 231

Conclusion 232

19. Integrating with Third-Party APIs. 233
Social Media 233

Social Media Plugins and Site Performance 233
Searching for Tweets 234
Rendering Tweets 237

Geocoding 241
Geocoding with Google 241
Geocoding Your Data 242
Displaying a Map 245
Improving Client-Side Performance 247

Weather Data 248
Conclusion 249

20. Debugging. 251
The First Principle of Debugging 251
Take Advantage of REPL and the Console 252
Using Node’s Built-in Debugger 253

x | Table of Contents

Node Inspector 253
Debugging Asynchronous Functions 257
Debugging Express 257

21. Going Live. 261
Domain Registration and Hosting 261

Domain Name System 262
Security 262
Top-Level Domains 263
Subdomains 264
Nameservers 265
Hosting 266
Deployment 269

Conclusion 272

22. Maintenance. 273
The Principles of Maintenance 273

Have a Longevity Plan 273
Use Source Control 275
Use an Issue Tracker 275
Exercise Good Hygiene 275
Don’t Procrastinate 276
Do Routine QA Checks 276
Monitor Analytics 277
Optimize Performance 277
Prioritize Lead Tracking 277
Prevent “Invisible” Failures 279

Code Reuse and Refactoring 279
Private npm Registry 280
Middleware 281

Conclusion 283

23. Additional Resources. 285
Online Documentation 285
Periodicals 286
Stack Overflow 286
Contributing to Express 288
Conclusion 290

Index. 291

Table of Contents | xi

Foreword

The combination of JavaScript, Node, and Express is an ideal choice for web teams that
want a powerful, quick-to-deploy technology stack that is widely respected in the de‐
velopment community and large enterprises alike.

Building great web applications and finding great web developers isn’t easy. Great apps
require great functionality, user experience, and business impact: delivered, deployed,
and supported quickly and cost effectively. The lower total cost of ownership and faster
time-to-market that Express provides is critical in the business world. If you are a web
developer, you have to use at least some JavaScript. But you also have the option of using
a lot of it. In this book, Ethan Brown shows you that you can use a lot of it, and it’s not
that hard thanks to Node and Express.

Node and Express are like machine guns that deliver upon the silver-bullet promise of
JavaScript.

JavaScript is the most universally accepted language for client-side scripting. Unlike
Flash, it’s supported by all major web browsers. It’s the fundamental technology behind
many of the attractive animations and transitions you see on the Web. In fact, it’s almost
impossible not to utilize JavaScript if you want to achieve modern client-side
functionality.

One problem with JavaScript is that it has always been vulnerable to sloppy program‐
ming. The Node ecosystem is changing that by providing frameworks, libraries, and
tools that speed up development and encourage good coding habits. This helps us bring
better apps to market faster.

We now have a great programming language that is supported by large enterprises, is
easy-to-use, is designed for modern browsers, and is supplemented with great frame‐
works and libraries on both client-side and server-side. I call that revolutionary.

—Steve Rosenbaum
President and CEO, Pop Art, Inc.

xiii

Preface

Who This Book Is For
Clearly, this book is for programmers who want to create web applications (traditional
websites, RESTful APIs, or anything in between) using JavaScript, Node, and Express.
One of the exciting aspects of Node development is that it has attracted a whole new
audience of programmers. The accessibility and flexibility of JavaScript has attracted
self-taught programmers from all over the world. At no time in the history of computer
science has programming been so accessible. The number and quality of online resour‐
ces for learning to program (and getting help when you get stuck) is truly astonishing
and inspiring. So to those new (possibly self-taught) programmers, I welcome you.

Then, of course, there are the programmers like me, who have been around for a while.
Like many programmers of my era, I started off with assembler and BASIC, and went
through Pascal, C++, Perl, Java, PHP, Ruby, C, C#, and JavaScript. At university, I was
exposed to more niche languages such as ML, LISP, and PROLOG. Many of these lan‐
guages are near and dear to my heart, but in none of these languages do I see so much
promise as I do in JavaScript. So I am also writing this book for programmers like myself,
who have a lot of experience, and perhaps a more philosophical outlook on specific
technologies.

No experience with Node is necessary, but you should have some experience with Java‐
Script. If you’re new to programming, I recommend Codecademy. If you’re an experi‐
enced programmer, I recommend Douglas Crockford’s JavaScript: The Good Parts
(O’Reilly). The examples in this book can be used with any system that Node works on
(which covers Windows, OS X, and Linux). The examples are geared toward command-
line (terminal) users, so you should have some familiarity with your system’s terminal.

Most important, this book is for programmers who are excited. Excited about the future
of the Internet, and want to be part of it. Excited about learning new things, new tech‐
niques, and new ways of looking at web development. If, dear reader, you are not excited,
I hope you will be by the time you reach the end of this book….

xv

http://www.codecademy.com/tracks/javascript
http://bit.ly/java-good-parts

How This Book Is Organized
Chapters 1 and 2 will introduce you to Node and Express and some of the tools you’ll
be using throughout the book. In Chapters 3 and 4, you start using Express and build
the skeleton of a sample website that will be used as a running example throughout the
rest of the book.

Chapter 5 discusses testing and QA, and Chapter 6 covers some of Node’s more im‐
portant constructs and how they are extended and used by Express. Chapter 7 covers
templating (using Handlebars), which lays the foundation of building useful websites
with Express. Chapters 8 and 9 cover cookies, sessions, and form handlers, rounding
out the things you need to know to build basic functional websites with Express.

Chapter 10 delves into “middleware,” a concept central to Connect (one of Express’s
major components). Chapter 11 explains how to use middleware to send email from
the server and discusses security and layout issues inherent to email.

Chapter 12 offers a preview into production concerns. Even though, at this stage in the
book, you don’t have all the information you need to build a production-ready website,
thinking about production now can save you from major headaches in the future.

Chapter 13 is about persistence, with a focus on MongoDB (one of the leading document
databases).

Chapter 14 gets into the details of routing with Express (how URLs are mapped to
content), and Chapter 15 takes a diversion into writing APIs with Express. Chapter 16
covers the details of serving static content, with a focus on maximizing performance.
Chapter 17 reviews the popular model-view-controller (MVC) paradigm, and how it
fits into Express.

Chapter 18 discusses security: how to build authentication and authorization into your
app (with a focus on using a third-party authentication provider), as well as how to run
your site over HTTPS.

Chapter 19 explains how to integrate with third-party services. Examples used are Twit‐
ter, Google Maps, and Weather Underground.

Chapters 20 and 21 get your ready for the big day: your site launch. They cover debug‐
ging, so you can root out any defects before launch, and the process of going live.
Chapter 22 talks about the next important (and oft-neglected) phase: maintenance.

The book concludes with Chapter 23, which points you to additional resources, should
you want to further your education about Node and Express, and where you can go to
get help.

xvi | Preface

Example Website
Starting in Chapter 3, a running example will be used throughout the book: the Mead‐
owlark Travel website. Just having gotten back from a trip to Lisbon, I have travel on
my mind, so the example website I have chosen is for a fictional travel company in my
home state of Oregon (the Western Meadowlark is the state bird of Oregon). Meadow‐
lark Travel allows travelers to connect to local “amateur tour guides,” and partners with
companies offering bike and scooter rentals and local tours. In addition, it maintains a
database of local attractions, complete with history and location-aware services.

Like any pedagogical example, the Meadowlark Travel website is contrived, but it is an
example that covers many of the challenges facing real-world websites: third-party
component integration, geolocation, ecommerce, performance, and security.

As the focus on this book is backend infrastructure, the example website will not be
complete; it merely serves as a fictional example of a real-world website to provide depth
and context to the examples. Presumably, you are working on your own website, and
you can use the Meadowlark Travel example as a template for it.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Preface | xvii

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/EthanRBrown/web-development-with-node-and-express.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Web Development with Node and Express
by Ethan Brown (O’Reilly). Copyright 2014 Ethan Brown, 978-1-491-94930-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database

xviii | Preface

https://github.com/EthanRBrown/web-development-with-node-and-express
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/web_dev_node_express.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
So many people in my life have played a part in making this book a reality: it would not
have been possible without the influence of all the people who have touched my life and
made me who I am today.

I would like to start out by thanking everyone at Pop Art: not only has my time at Pop
Art given me a renewed passion for engineering, but I have learned so much from
everyone there, and without their support, this book would not exist. I am grateful to
Steve Rosenbaum for creating an inspiring place to work, and to Del Olds for bringing
me on board, making me feel welcome, and being an honorable leader. Thanks to Paul
Inman for his unwavering support and inspiring attitude toward engineering, and Tony
Alferez for his warm support and for helping me carve out time for writing without

Preface | xix

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/web_dev_node_express
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

impacting Pop Art. Finally, thanks to all the great engineers I have worked with, who
keep me on my toes: John Skelton, Dylan Hallstrom, Greg Yung, Quinn Michael, and
CJ Stritzel.

Zach Mason, thank you for being an inspiration to me. This book may be no The Lost
Books of the Odyssey, but it is mine, and I don’t know if I would have been so bold without
your example.

I owe everything to my family. I couldn’t have wished for a better, more loving education
than the one they gave me, and I see their exceptional parenting reflected in my sister
too.

Many thanks to Simon St. Laurent for giving me this opportunity, and to Brian Anderson
for his steady and encouraging editing. Thanks to everyone at O’Reilly for their dedi‐
cation and passion. Thanks to Jennifer Pierce, Mike Wilson, Ray Villalobos, and Eric
Elliot for their thorough and constructive technical reviews.

Katy Roberts and Hanna Nelson provided invaluable feedback and advice on my “over
the transom” proposal that made this book possible. Thank you both so much! Thanks
to Chris Cowell-Shah for his excellent feedback on the QA chapter.

Lastly, thanks to my dear friends, without whom I surely would have gone insane. Byron
Clayton, Mark Booth, Katy Roberts, and Sarah Lewis, you are the best group of friends
a man could ask for. And thanks to Vickey and Judy, just for being who they are. I love
you all.

xx | Preface

CHAPTER 1

Introducing Express

The JavaScript Revolution
Before I introduce the main subject of this book, it is important to provide a little back‐
ground and historical context, and that means talking about JavaScript and Node.

The age of JavaScript is truly upon us. From its humble beginnings as a client-side
scripting language, not only has it become completely ubiquitous on the client side, but
its use as a server-side language has finally taken off too, thanks to Node.

The promise of an all-JavaScript technology stack is clear: no more context switching!
No longer do you have to switch mental gears from JavaScript to PHP, C#, Ruby, or
Python (or any other server-side language). Furthermore, it empowers frontend engi‐
neers to make the jump to server-side programming. This is not to say that server-side
programming is strictly about the language: there’s still a lot to learn. With JavaScript,
though, at least the language won’t be a barrier.

This book is for all those who see the promise of the JavaScript technology stack. Perhaps
you are a frontend engineer looking to extend your experience into backend develop‐
ment. Perhaps you’re an experienced backend developer like myself who is looking to
JavaScript as a viable alternative to entrenched server-side languages.

If you’ve been a software engineer for as long as I have, you have seen many languages,
frameworks, and APIs come into vogue. Some have taken off, and some have faded into
obsolescence. You probably take pride in your ability to rapidly learn new languages,
new systems. Every new language you come across feels a little more familiar: you
recognize a bit here from a language you learned in college, a bit there from that job
you had a few years ago. It feels good to have that kind of perspective, certainly, but it’s
also wearying. Sometimes you want to just get something done, without having to learn
a whole new technology or dust off skills you haven’t used in months or years.

1

JavaScript may seem, at first, an unlikely champion. I sympathize, believe me. If you
told me three years ago that I would not only come to think of JavaScript as my language
of choice, but also write a book about it, I would have told you you were crazy. I had all
the usual prejudices against JavaScript: I thought it was a “toy” language. Something for
amateurs and dilettantes to mangle and abuse. To be fair, JavaScript did lower the bar
for amateurs, and there was a lot of questionable JavaScript out there, which did not
help the language’s reputation. To turn a popular saying on its head, “Hate the player,
not the game.”

It is unfortunate that people suffer this prejudice against JavaScript: it has prevented
people from discovering how powerful, flexible, and elegant the language is. Many peo‐
ple are just now starting to take JavaScript seriously, even though the language as we
know it now has been around since 1996 (although many of its more attractive features
were added in 2005).

By picking up this book, you are probably free of that prejudice: either because, like me,
you have gotten past it, or because you never had it in the first place. In either case, you
are fortunate, and I look forward to introducing you to Express, a technology made
possible by a delightful and surprising language.

In 2009, years after people had started to realize the power and expressiveness of
JavaScript as a browser scripting language, Ryan Dahl saw JavaScript’s potential as a
server-side language, and Node was born. This was a fertile time for Internet technology.
Ruby (and Ruby on Rails) took some great ideas from academic computer science,
combined them with some new ideas of its own, and showed the world a quicker way
to build websites and web applications. Microsoft, in a valiant effort to become relevant
in the Internet age, did amazing things with .NET and learned not only from Ruby and
JavaScript, but also from Java’s mistakes, while borrowing heavily from the halls of
academia.

It is an exciting time to be involved in Internet technology. Everywhere, there are amaz‐
ing new ideas (or amazing old ideas revitalized). The spirit of innovation and excitement
is greater now than it has been in many years.

Introducing Express
The Express website describes Express as “a minimal and flexible node.js web applica‐
tion framework, providing a robust set of features for building single and multipage
and hybrid web applications.” What does that really mean, though? Let’s break that
description down:
Minimal

This is one of the most appealing aspects of Express. Many times, framework de‐
velopers forget that usually “less is more.” The Express philosophy is to provide the
minimal layer between your brain and the server. That doesn’t mean that it’s not

2 | Chapter 1: Introducing Express

robust, or that it doesn’t have enough useful features. It means that it gets in your
way less, allowing you full expression of your ideas, while at the same time providing
something useful.

Flexible
Another key aspect of the Express philosophy is that Express is extensible. Express
provides you a very minimal framework, and you can add in different parts of
Express functionality as needed, replacing whatever doesn’t meet your needs. This
is a breath of fresh air. So many frameworks give you everything, leaving you with
a bloated, mysterious, and complex project before you’ve even written a single line
of code. Very often, the first task is to waste time carving off unneeded functionality,
or replacing the functionality that doesn’t meet requirements. Express takes the
opposite approach, allowing you to add what you need when you need it.

Web application framework
Here’s where semantics starts to get tricky. What’s a web application? Does that
mean you can’t build a website or web pages with Express? No, a website is a web
application, and a web page is a web application. But a web application can be more:
it can provide functionality to other web applications (among other things). In
general, “app” is used to signify something that has functionality: it’s not just a static
collection of content (though that is a very simple example of a web app). While
there is currently a distinction between an “app” (something that runs natively on
your device) and a “web page” (something that is served to your device over the
network), that distinction is getting blurrier, thanks to projects like PhoneGap, as
well as Microsoft’s move to allow HTML5 applications on the desktop, as if they
were native applications. It’s easy to imagine that in a few years, there won’t be a
distinction between an app and a website.

Single-page web applications
Single-page web applications are a relatively new idea. Instead of a website requiring
a network request every time the user navigates to a different page, a single-page
web application downloads the entire site (or a good chunk of it) to the client’s
browser. After that initial download, navigation is faster because there is little or no
communication with the server. Single-page application development is facilitated
by the use of popular frameworks such as Angular or Ember, which Express is happy
to serve up.

Multipage and hybrid web applications
Multipage web applications are a more traditional approach to websites. Each page
on a website is provided by a separate request to the server. Just because this ap‐
proach is more traditional does not mean it is not without merit or that single-page
applications are somehow better. There are simply more options now, and you can
decide what parts of your content should be delivered as a single-page app, and

Introducing Express | 3

what parts should be delivered via individual requests. “Hybrid” describes sites that
utilize both of these approaches.

If you’re still feeling confused about what Express actually is, don’t worry: sometimes
it’s much easier to just start using something to understand what it is, and this book will
get you started building web applications with Express.

A Brief History of Express
Express’s creator, TJ Holowaychuk, describes Express as a web framework inspired by
Sinatra, which is a web framework based on Ruby. It is no surprise that Express borrows
from a framework built on Ruby: Ruby spawned a wealth of great approaches to web
development, aimed at making web development faster, more efficient, and more
maintainable.

As much as Express was inspired by Sinatra, it is also deeply intertwined with Connect,
a “plugin” library for Node. Connect coined the term “middleware” to describe pluggable
Node modules that can handle web requests to varying degrees. Up until version 4.0,
Express bundled Connect; in version 4.0, Connect (and all middleware except static)
was removed to allow these middleware to be updated independently.

Express underwent a fairly substantial rewrite between 2.x and 3.0,
then again between 3.x and 4.0. This book will focus on version 4.0.

Upgrading to Express 4.0
If you already have some experience with Express 3.0, you’ll be happy to learn that
upgrading to Express 4.0 is pretty painless. If you’re new to Express, you can skip this
section. Here are the high points for those with Express 3.0 experience:

• Connect has been removed from Express, so with the exception of the static
middleware, you will need to install the appropriate packages (namely, connect).
At the same time, Connect has been moving some of its middleware into their own
packages, so you might have to do some searching on npm to figure out where your
middleware went.

• body-parser is now its own package, which no longer includes the multipart
middleware, closing a major security hole. It’s now safe to use the body-parser
middleware.

• You no longer have to link the Express router into your application. So you should
remove app.use(app.router) from your existing Express 3.0 apps.

4 | Chapter 1: Introducing Express

1. Often called “Just in Time” (JIT) compilation.

• app.configure was removed; simply replace calls to this method by examining
app.get(env) (using either a switch statement or if statements).

For more details, see the official migration guide.

Express is an open source project and continues to be primarily developed and main‐
tained by TJ Holowaychuk.

Node: A New Kind of Web Server
In a way, Node has a lot in common with other popular web servers, like Microsoft’s
Internet Information Services (IIS) or Apache. What is more interesting, though, is how
it differs, so let’s start there.

Much like Express, Node’s approach to webservers is very minimal. Unlike IIS or
Apache, which a person can spend many years mastering, Node is very easy to set up
and configure. That is not to say that tuning Node servers for maximum performance
in a production setting is a trivial matter: it’s just that the configuration options are
simpler and more straightforward.

Another major difference between Node and more traditional web servers is that Node
is single threaded. At first blush, this may seem like a step backward. As it turns out, it
is a stroke of genius. Single threading vastly simplifies the business of writing web apps,
and if you need the performance of a multithreaded app, you can simply spin up more
instances of Node, and you will effectively have the performance benefits of multi‐
threading. The astute reader is probably thinking this sounds like smoke and mirrors.
After all, isn’t multithreading through server parallelism (as opposed to app parallelism)
simply moving the complexity around, not eliminating it? Perhaps, but in my experi‐
ence, it has moved the complexity to exactly where it should be. Furthermore, with the
growing popularity of cloud computing and treating servers as generic commodities,
this approach makes a lot more sense. IIS and Apache are powerful indeed, and they
are designed to squeeze the very last drop of performance out of today’s powerful hard‐
ware. That comes at a cost, though: they require considerable expertise to set up and
tune to achieve that performance.

In terms of the way apps are written, Node apps have more in common with PHP or
Ruby apps than .NET or Java apps. While the JavaScript engine that Node uses (Google’s
V8) does compile JavaScript to native machine code (much like C or C++), it does so
transparently,1 so from the user’s perspective, it behaves like a purely interpreted lan‐
guage. Not having a separate compile step reduces maintenance and deployment hassles:
all you have to do is update a JavaScript file, and your changes will automatically be
available.

Node: A New Kind of Web Server | 5

http://bit.ly/1pkw80L

Another compelling benefit of Node apps is that Node is incredibly platform inde‐
pendent. It’s not the first or only platform-independent server technology, but platform
independence is really more of a spectrum than a binary proposition. For example, you
can run .NET apps on a Linux server thanks to Mono, but it’s a painful endeavor.
Likewise, you can run PHP apps on a Windows server, but it is not generally as easy to
set up as it is on a Linux machine. Node, on the other hand, is a snap to set up on all the
major operating systems (Windows, OS X, and Linux) and enables easy collaboration.
Among website design teams, a mix of PCs and Macs is quite common. Certain plat‐
forms, like .NET, introduce challenges for frontend developers and designers, who often
use Macs, which has a huge impact on collaboration and efficiency. The idea of being
able to spin up a functioning server on any operating system in a matter of minutes (or
even seconds!) is a dream come true.

The Node Ecosystem
Node, of course, lies at the heart of the stack. It’s the software that enables JavaScript to
run on the server, uncoupled from a browser, which in turn allows frameworks written
in JavaScript (like Express) to be used. Another important component is the database,
which will be covered in more depth in Chapter 13. All but the simplest of web apps
will need a database, and there are databases that are more at home in the Node eco‐
system than others.

It is unsurprising that database interfaces are available for all the major relational da‐
tabases (MySQL, MariaDB, PostgreSQL, Oracle, SQL Server): it would be foolish to
neglect those established behemoths. However, the advent of Node development has
revitalized a new approach to database storage: the so-called “NoSQL” databases. It’s not
always helpful to define something as what it’s not, so we’ll add that these NoSQL da‐
tabases might be more properly called “document databases” or “key/value pair data‐
bases.” They provide a conceptually simpler approach to data storage. There are many,
but MongoDB is one of the frontrunners, and the one we will be using in this book.

Because building a functional website depends on multiple pieces of technology, acro‐
nyms have been spawned to describe the “stack” that a website is built on. For example,
the combination of Linux, Apache, MySQL, and PHP is referred to as the LAMP stack.
Valeri Karpov, an engineer at MongoDB, coined the acronym MEAN: Mongo, Express,
Angular, and Node. While it’s certainly catchy, it is limiting: there are so many choices
for databases and application frameworks that “MEAN” doesn’t capture the diversity of
the ecosystem (it also leaves out what I believe is an important component: templating
engines).

Coining an inclusive acronym is an interesting exercise. The indispensable component,
of course, is Node. While there are other server-side JavaScript containers, Node is
emerging as the dominant one. Express, also, is not the only web app framework avail‐
able, though it is close to Node in its dominance. The two other components that are

6 | Chapter 1: Introducing Express

usually essential for web app development are a database server and a templating engine
(a templating engine provides what PHP, JSP, or Razor provides naturally: the ability to
seamlessly combine code and markup output). For these last two components, there
aren’t as many clear frontrunners, and this is where I believe it’s a disservice to be re‐
strictive.

What ties all these technologies together is JavaScript, so in an effort to be inclusive, I
will be referring to the “JavaScript stack.” For the purposes of this book, that means
Node, Express, and MongoDB.

Licensing
When developing Node applications, you may find yourself having to pay more atten‐
tion to licensing than you ever have before (I certainly have). One of the beauties of the
Node ecosystem is the vast array of packages available to you. However, each of those
packages carries its own licensing, and worse, each package may depend on other pack‐
ages, meaning that understanding the licensing of the various parts of the app you’ve
written can be tricky.

However, there is some good news. One of the most popular licenses for Node packages
is the MIT license, which is painlessly permissive, allowing you to do almost anything
you want, including use the package in closed source software. However, you shouldn’t
just assume every package you use is MIT licensed.

There are several packages available in npm that will try to figure out
the licenses of each dependency in your project. Search npm for
license-sniffer or license-spelunker.

While MIT is the most common license you will encounter, you may also see the fol‐
lowing licenses:
GNU General Public License (GPL)

The GPL is a very popular open source license that has been cleverly crafted to keep
software free. That means if you use GPL-licensed code in your project, your project
must also be GPL licensed. Naturally, this means your project can’t be closed source.

Apache 2.0
This license, like MIT, allows you to use a different license for your project, includ‐
ing a closed source license. You must, however, include notice of components that
use the Apache 2.0 license.

Licensing | 7

Berkeley Software Distribution (BSD)
Similar to Apache, this license allows you to use whatever license you wish for your
project, as long as you include notice of the BSD-licensed components.

Software is sometimes dual licensed (licensed under two different
licenses). A very common reason for doing this is to allow the soft‐
ware to be used in both GPL projects and projects with more per‐
missive licensing. (For a component to be used in GPL software, the
component must be GPL licensed.) This is a licensing scheme I often
employ with my own projects: dual licensing with GPL and MIT.

Lastly, if you find yourself writing your own packages, you should be a good citizen and
pick a license for your package, and document it correctly. There is nothing more frus‐
trating to a developer than using someone’s package and having to dig around in the
source to determine the licensing or, worse, find that it isn’t licensed at all.

8 | Chapter 1: Introducing Express

CHAPTER 2

Getting Started with Node

If you don’t have any experience with Node, this chapter is for you. Understanding
Express and its usefulness requires a basic understanding of Node. If you already have
experience building web apps with Node, feel free to skip this chapter. In this chapter,
we will be building a very minimal web server with Node; in the next chapter, we will
see how to do the same thing with Express.

Getting Node
Getting Node installed on your system couldn’t be easier. The Node team has gone to
great lengths to make sure the installation process is simple and straightforward on all
major platforms.

The installation is so simple, as a matter of fact, that it can be summed up in three simple
steps:

1. Go to the Node home page.
2. Click the big green button that says INSTALL.
3. Follow instructions.

For Windows and OS X, an installer will be downloaded that walks you through the
process. For Linux, you will probably be up and running more quickly if you use a
package manager.

If you’re a Linux user and you do want to use a package manager,
make sure you follow the instructions in the aforementioned web
page. Many Linux distributions will install an extremely old ver‐
sion of Node if you don’t add the appropriate package repository.

9

http://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

You can also download a standalone installer, which can be helpful if you are distributing
Node to your organization.

If you have trouble building Node, or for some reason you would like to build Node
from scratch, please refer to the official installation instructions.

Using the Terminal
I’m an unrepentant fan of the power and productivity of using a terminal (also called a
“console” or “command prompt”). Throughout this book, all examples will assume
you’re using a terminal. If you’re not friends with your terminal, I highly recommend
you spend some time familiarizing yourself with your terminal of choice. Many of the
utilities in this book have corresponding GUI interfaces, so if you’re dead set against
using a terminal, you have options, but you will have to find your own way.

If you’re on OS X or Linux, you have a wealth of venerable shells (the terminal command
interpreter) to choose from. The most popular by far is bash, though zsh has its adher‐
ents. The main reason I gravitate toward bash (other than long familiarity) is ubiquity.
Sit down in front of any Unix-based computer, and 99% of the time, the default shell
will be bash.

If you’re a Windows user, things aren’t quite so rosy. Microsoft has never been partic‐
ularly interested in providing a pleasant terminal experience, so you’ll have to do a little
more work. Git helpfully includes a “Git bash” shell, which provides a Unix-like terminal
experience (it only has a small subset of the normally available Unix command-line
utilities, but it’s a useful subset). While Git bash provides you with a minimal bash shell,
it’s still using the built-in Windows console application, which leads to an exercise in
frustration (even simple functionaity like resizing a console window, selecting text, cut‐
ting, and pasting is unintuitive and awkward). For this reason, I recommend installing
a more sophisticated terminal such as Console2 or ConEmu. For Windows power users
—especially for .NET developers or for hardcore Windows systems or network admin‐
istrators—there is another option: Microsoft’s own PowerShell. PowerShell lives up to
its name: people do remarkable things with it, and a skilled PowerShell user could give
a Unix command-line guru a run for their money. However, if you move between OS
X/Linux and Windows, I still recommend sticking with Git bash for the consistency it
provides.

Another option, if you’re a Windows user, is virtualization. With the power and archi‐
tecture of modern computers, the performance of virtual machines (VMs) is practically
indistinguishable from actual machines. I’ve had great luck with Oracle’s free Virtual‐
Box, and Windows 8 offers VM support built in. With cloud-based file storage, such as
Dropbox, and the easy bridging of VM storage to host storage, virtualizing is looking
more attractive all the time. Instead of using Git bash as a bandage on Windows’s
lackluster console support, consider using a Linux VM for development. If you find the

10 | Chapter 2: Getting Started with Node

http://nodejs.org/download
http://bit.ly/node_installation
http://bit.ly/Console_2
http://bit.ly/Con-Emu

1. These days, vi is essentially synonymous with vim (vi improved). On most systems, vi is aliased to vim, but
I usually type vim to make sure I’m using vim.

UI isn’t as smooth as you would like, you could use a terminal application, such as
PuTTY, which is what I often do.

Finally, no matter what sytem you’re on, there’s the excellent Codio. Codio is a website
that will spin up a new Linux instance for every project you have and provide an IDE
and command line, with Node already installed. It’s extremely easy to use and is a great
way to get started very quickly with Node.

When you specify the -g (global) option when installing npm pack‐
ages, they are installed in a subdirectory of your Windows home
directory. I’ve found that a lot of these packages don’t perform well if
there are spaces in your username (my username used to be “Ethan
Brown,” and now it’s “ethan.brown”). For your sanity, I recommend
choosing a Windows username without a space in it. If you already
have such a username, it’s advisable to create a new user, and then
transfer your files over to the new account: trying to rename your
Windows home directory is possible but fraught with danger.

Once you’ve settled on a shell that makes you happy, I recommend you spend some time
getting to know the basics. There are many wonderful tutorials on the Internet, and
you’ll save yourself a lot of headaches later on by learning a little now. At minimum,
you should know how to navigate directories; copy, move, and delete files; and break
out of a command-line program (usually Ctrl-C). If you want to become a terminal
ninja, I encourage you to learn how to search for text in files, search for files and direc‐
tories, chain commands together (the old “Unix philosophy”), and redirect output.

On many Unix-like systems, Ctrl-S has a special meaning: it will
“freeze” the terminal (this was once used to pause output quickly
scrolling past). Since this is such a common shortcut for Save, it’s
very easy to unthinkingly press, which leads to a very confusing
situation for most people (this happens to me more often than I care
to admit). To unfreeze the terminal, simply hit Ctrl-Q. So if you’re
ever confounded by a terminal that seems to have suddenly frozen,
try pressing Ctrl-Q and see if it releases it.

Editors
Few topics inspire such heated debate among programmers as the choice of editors, and
for good reason: the editor is your primary tool. My editor of choice is vi1 (or an editor
that has a vi mode). vi isn’t for everyone (my coworkers constantly roll their eyes at me

Editors | 11

http://www.putty.org
https://codio.com

when I tell them how easy it would be to do what they’re doing in vi), but finding a
powerful editor and learning to use it will significantly increase your productivity and,
dare I say it, enjoyment. One of the reasons I particularly like vi (though hardly the most
important reason) is that like bash, it is ubiquitous. If you have access to a Unix system
(Cygwin included), vi is there for you. Many popular editors (even Microsoft Visual
Studio!) have a vi mode. Once you get used to it, it’s hard to imagine using anything
else. vi is a hard road at first, but the payoff is worth it.

If, like me, you see the value in being familiar with an editor that’s available anywhere,
your other option is Emacs. Emacs and I have never quite gotten on (and usually you’re
either an Emacs person or a vi person), but I absolutely respect the power and flexibility
that Emacs provides. If vi’s modal editing approach isn’t for you, I would encourage you
to look into Emacs.

While knowing a console editor (like vi or Emacs) can come in incredibly handy, you
may still want a more modern editor. Some of my frontend colleagues swear by Coda,
and I trust their opinion. Unfortunately, Coda is available only on OS X. Sublime Text
is a modern and powerful editor that also has an excellent vi mode, and it’s available on
Windows, Linux, and OS X.

On Windows, there are some fine free options out there. TextPad and Notepad++ both
have their supporters. They’re both capable editors, and you can’t beat the price. If you’re
a Windows user, don’t overlook Visual Studio as a JavaScript editor: it’s remarkably
capable, and has one of the best JavaScript autocomplete engines of any editor. You can
download Visual Studio Express from Microsoft for free.

npm
npm is the ubiquitous package manager for Node packages (and is how we’ll get and
install Express). In the wry tradition of PHP, GNU, WINE, and others, “npm” is not an
acronym (which is why it isn’t capitalized); rather, it is a recursive abbreviation for “npm
is not an acronym.”

Broadly speaking, a package manager’s two primary responsibilities are installing pack‐
ages and manging dependencies. npm is a fast, capable, and painless package manager,
which I feel is in large part responsible for the rapid growth and diversity of the Node
ecosystem.

npm is installed when you install Node, so if you followed the steps listed earlier, you’ve
already got it. So let’s get to work!

12 | Chapter 2: Getting Started with Node

The primary command you’ll be using with npm (unsurprisingly), is install. For ex‐
ample, to install Grunt (a popular JavaScript task runner), you would issue the following
command (on the console):

npm install -g grunt-cli

The -g flag tells npm to install the package globally, meaning it’s available globally on
the system. This distinction will become clearer when we cover the package.json files.
For now, the rule of thumb is that JavaScript utilities (like Grunt) will generally be
installed globally, whereas packages that are specific to your web app or project will not.

Unlike languages like Python—which underwent a major language
change from 2.0 to 3.0, necessitating a way to easily switch between
different environments—the Node platform is new enough that it is
likely that you should always be running the latest version of Node.
However, if you do find yourself needing to support multiple ver‐
sion of Node, there is a project, nvm, that allows you to switch
environments.

A Simple Web Server with Node
If you’ve ever built a static HTML website before, or are coming from a PHP or ASP
background, you’re probably used to the idea of the web server (Apache or IIS, for
example) serving your static files so that a browser can view them over the network. For
example, if you create the file about.html, and put it in the proper directory, you can
then navigate to http://localhost/about.html. Depending on your web server configu‐
ration, you might even be able to omit the .html, but the relationship between URL and
filename is clear: the web server simply knows where the file is on the computer, and
serves it to the browser.

localhost, as the name implies, refers to the computer you’re on. This
is a common alias for the IPv4 loopback address 127.0.0.1, or the IPv6
loopback address ::1. You will often see 127.0.0.1 used instead, but I
will be using localhost in this book. If you’re using a remote computer
(using SSH, for example), keep in mind that browsing to localhost will
not connect to that computer.

Node offers a different paradigm than that of a traditional web server: the app that you
write is the web server. Node simply provides the framework for you to build a web
server.

“But I don’t want to write a web server,” you might be saying! It’s a natural response: you
want to be writing an app, not a web server. However, Node makes the business of writing

A Simple Web Server with Node | 13

https://github.com/creationix/nvm

this web server a simple affair (just a few lines, even) and the control you gain over your
application in return is more than worth it.

So let’s get to it. You’ve installed Node, you’ve made friends with the terminal, and now
you’re ready to go.

Hello World
I’ve always found it unfortunate that the canonical introductory programming example
is the uninspired message “Hello World.” However, it seems almost sacrilegious at this
point to fly in the face of such ponderous tradition, so we’ll start there, and then move
on to something more interesting.

In your favorite editor, create a file called helloWorld.js:
var http = require('http');

http.createServer(function(req,res){
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello world!');
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

Make sure you are in the same directory as helloWorld.js, and type node hello
World.js. Then open up a browser and navigate to http://localhost:3000, and voilà! Your
first web server. This particular one doesn’t serve HTML; rather, it just transmits the
message “Hello world!” in plaintext to your browser. If you want, you can experiment
with sending HTML instead: just change text/plain to text/html and change 'Hello
world!' to a string containing valid HTML. I didn’t demonstrate that, because I try to
avoid writing HTML inside JavaScript for reasons that will be discussed in more detail
in Chapter 7.

Event-Driven Programming
The core philosophy behind Node is that of event-driven programming. What that means
for you, the programmer, is that you have to understand what events are available to
you and how to respond to them. Many people are introduced to event-driven pro‐
gramming by implementing a user interface: the user clicks on something, and you
handle the “click event.” It’s a good metaphor, because it’s understood that the program‐
mer has no control over when, or if, the user is going to click something, so event-driven
programming is really quite intuitive. It can be a little harder to make the conceptual
leap to responding to events on the server, but the principle is the same.

In the previous code example, the event is implicit: the event that’s being handled is an
HTTP request. The http.createServer method takes a function as an argument; that

14 | Chapter 2: Getting Started with Node

function will be invoked every time an HTTP request is made. Our simple program just
sets the content type to plaintext and sends the string “Hello world!”

Routing
Routing refers to the mechanism for serving the client the content it has asked for. For
web-based client/server applications, the client specifies the desired content in the URL;
specifically, the path and querystring (the parts of a URL will be discussed in more detail
in Chapter 6).

Let’s expand our “Hello world!” example to do something more interesting. Let’s serve
a really minimal website consisting of a home page, an About page, and a Not Found
page. For now, we’ll stick with our previous example and just serve plaintext instead of
HTML:

var http = require('http');

http.createServer(function(req,res){
 // normalize url by removing querystring, optional
 // trailing slash, and making it lowercase
 var path = req.url.replace(/\/?(?:\?.*)?$/, '').toLowerCase();
 switch(path) {
 case '':
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Homepage');
 break;
 case '/about':
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('About');
 break;
 default:
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end('Not Found');
 break;
 }
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

If you run this, you’ll find you can now browse to the home page (http://localhost:
3000) and the About page (http://localhost:3000/about). Any querystrings will be ig‐
nored (so http://localhost:3000/?foo=bar will serve the home page), and any other URL
(http://localhost:3000/foo) will serve the Not Found page.

Serving Static Resources
Now that we’ve got some simple routing working, let’s serve some real HTML and a
logo image. These are called “static resources” because they don’t change (as opposed
to, for example, a stock ticker: every time you reload the page, the stock prices change).

A Simple Web Server with Node | 15

Serving static resources with Node is suitable for developent and small
projects, but for larger projects, you will probably want to use a proxy
server such as Nginx or a CDN to serve static resources. See Chap‐
ter 16 for more information.

If you’ve worked with Apache or IIS, you’re probably used to just creating an HTML
file, navigating to it, and having it delivered to the browser automatically. Node doesn’t
work like that: we’re going to have to do the work of opening the file, reading it, and
then sending its contents along to the browser. So let’s create a directory in our project
called public (why we don’t call it static will become evident in the next chapter). In that
directory, we’ll create home.html, about.html, notfound.html, a subdirectory called
img, and an image called img/logo.jpg. I’ll leave that up to you: if you’re reading this
book, you probably know how to write an HTML file and find an image. In your HTML
files, reference the logo thusly: .

Now modify helloWorld.js:
var http = require('http'),
 fs = require('fs');

function serveStaticFile(res, path, contentType, responseCode) {
 if(!responseCode) responseCode = 200;
 fs.readFile(__dirname + path, function(err,data) {
 if(err) {
 res.writeHead(500, { 'Content-Type': 'text/plain' });
 res.end('500 - Internal Error');
 } else {
 res.writeHead(responseCode,
 { 'Content-Type': contentType });
 res.end(data);
 }
 });
}

http.createServer(function(req,res){
 // normalize url by removing querystring, optional
 // trailing slash, and making lowercase
 var path = req.url.replace(/\/?(?:\?.*)?$/, '')
 .toLowerCase();
 switch(path) {
 case '':
 serveStaticFile(res, '/public/home.html', 'text/html');
 break;
 case '/about':
 serveStaticFile(res, '/public/about.html', 'text/html');
 break;
 case '/img/logo.jpg':
 serveStaticFile(res, '/public/img/logo.jpg',

16 | Chapter 2: Getting Started with Node

 'image/jpeg');
 break;
 default:
 serveStaticFile(res, '/public/404.html', 'text/html',
 404);
 break;
 }
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

In this example, we’re being pretty unimaginative with our routing.
If you navigate to http://localhost:3000/about, the public/about.html
file is served. You could change the route to be anything you want,
and change the file to be anything you want. For example, if you had
a different About page for each day of the week, you could have files
public/about_mon.html, public/about_tue.html, and so on, and pro‐
vide logic in your routing to serve the appropriate page when the user
navigates to http://localhost:3000/about.

Note we’ve created a helper function, serveStaticFile, that’s doing the bulk of the
work. fs.readFile is an asynchronous method for reading files. There is a synchronous
version of that function, fs.readFileSync, but the sooner you start thinking asyn‐
chronously, the better. The function is simple: it calls fs.readFile to read the contents
of the specified file. fs.readFile executes the callback function when the file has been
read; if the file didn’t exist or there were permissions issues reading the file, the err
variable is set, and the function returns an HTTP status code of 500 indicating a server
error. If the file is read successfully, the file is sent to the client with the specified response
code and content type. Response codes will be discussed in more detail in Chapter 6.

__dirname will resolve to the directory the executing script resides in.
So if your script resides in /home/sites/app.js, __dirname will resolve
to /home/sites. It’s a good idea to use this handy global whenever
possible. Failing to do so can cause hard-to-diagnose errors if you run
your app from a different directory.

Onward to Express
So far, Node probably doesn’t seem that impressive to you. We’ve basically replicated
what Apache or IIS do for you automatically, but now you have some insight into how
Node does things and how much control you have. We haven’t done anything particu‐
larly impressive, but you can see how we could use this as a jumping-off point to do
more sophisticated things. If we continued down this road, writing more and more

Onward to Express | 17

sophisticated Node applications, you might very well end up with something that re‐
sembles Express….

Fortunately, we don’t have to: Express already exists, and it saves you from implementing
a lot of time-consuming infrastructure. So now that we’ve gotten a little Node experience
under our belt, we’re ready to jump into learning Express.

18 | Chapter 2: Getting Started with Node

CHAPTER 3

Saving Time with Express

In Chapter 2, you learned how to create a simple web server using only Node. In this
chapter, we will recreate that server using Express. This will provide a jumping-off point
for the rest of the content of this book and introduce you to the basics of Express.

Scaffolding
Scaffolding is not a new idea, but many people (myself included) were introduced to
the concept by Ruby. The idea is simple: most projects require a certain amount of so-
called “boilerplate” code, and who wants to recreate that code every time you begin a
new project? A simple way is to create a rough skeleton of a project, and every time you
need a new project, you just copy this skeleton, or template.

Ruby on Rails took this concept one step further by providing a program that would
automatically generate scaffolding for you. The advantage of this approach is that it
could generate a more sophisticated framework than just selecting from a collection of
templates.

Express has taken a page from Ruby on Rails and provided a utility to generate scaf‐
folding to start your Express project.

While the Express scaffolding utility is useful, it currently doesn’t generate the frame‐
work I will be recommending in this book. In particular, it doesn’t provide support for
my templating language of choice (Handlebars), and it also doesn’t follow some of the
naming conventions I prefer (though that is easy enough to fix).

While we won’t be using the scaffolding utility, I encourage you to take a look at it once
you’ve finished the book: by then you’ll be armed with everything you need to know to
evaluate whether the scaffolding it generates is useful for you.

Boilerplate is also useful for the actual HTML that will be delivered to the client. I
recommend the excellent HTML5 Boilerplate. It generates a great blank slate for an

19

HTML5 website. Recently, HTML5 Boilerplate has added the ability to generate a cus‐
tom build. One of the custom build options includes Twitter Bootstrap, a frontend
framework I highly recommend. We’ll be using a Bootstrap-based custom build in
Chapter 7 to provide a responsive, modern HTML5 website.

The Meadowlark Travel Website
Throughout this book, we’ll be using a running example: a fictional website for
Meadowlark Travel, a company offering services for people visiting the great state of
Oregon. If you’re more interested in creating a REST application, have no fear: the
Meadowlark Travel website will expose REST services in addition to serving a functional
website.

Initial Steps
Start by creating a new directory for your project: this will be the root directory for your
project. In this book, whenever we refer to the “project directory,” “app directory,” or
“project root,” we’re referring to this directory.

You’ll probably want to keep your web app files separate from all the
other files that usually accompany a project, such as meeting notes,
documentation, etc. For that reason, I recommend making your
project root a subdirectory of your project directory. For example, for
the Meadowlark Travel website, I might keep the project in ~/projects/
meadowlark, and the project root in ~/projects/meadowlark/site.

npm manages project dependencies—as well as metadata about the project—in a file
called package.json. The easiest way to create this file is to run npm init: it will ask you
a series of questions and generate a package.json file to get you started (for the “entry
point” question, use meadowlark.js or the name of your project).

Every time you run npm, you’ll get warnings unless you provide a
repository URL in package.json, and a nonempty README.md file.
The metadata in the package.json file is really only necessary if you’re
planning on publishing to the npm repository, but squelching npm
warnings is worth the small effort.

The first step will be installing Express. Run the following npm command:

npm install --save express

Running npm install will install the named package(s) in the node_modules directo‐
ry. If you specify the --save flag, it will update the package.json file. Since the

20 | Chapter 3: Saving Time with Express

http://bit.ly/boiler_plate

node_modules dirctory can be regenerated at any time with npm, we will not save it in
our repository. To ensure we don’t accidentally add it to our repository, we create a file
called .gitignore:

ignore packages installed by npm
node_modules

put any other files you don't want to check in here,
such as .DS_Store (OSX), *.bak, etc.

Now create a file called meadowlark.js. This will be our project’s entry point. Throughout
the book, we will simply be referring to this file as the “app file”:

var express = require('express');

var app = express();

app.set('port', process.env.PORT || 3000);

// custom 404 page
app.use(function(req, res){
 res.type('text/plain');
 res.status(404);
 res.send('404 - Not Found');
});

// custom 500 page
app.use(function(err, req, res, next){
 console.error(err.stack);
 res.type('text/plain');
 res.status(500);
 res.send('500 - Server Error');
});

app.listen(app.get('port'), function(){
 console.log('Express started on http://localhost:' +
 app.get('port') + '; press Ctrl-C to terminate.');
});

Many tutorials, as well as the Express scaffolding generator, encour‐
age you to name your primary file app.js (or sometimes index.js or
server.js). Unless you’re using a hosting service or deployment sys‐
tem that requires your main application file to have a specific name,
I don’t feel there’s a compelling reason to do this, and I prefer to name
the primary file after the project. Anyone who’s ever stared at a bunch
of editor tabs that all say “index.html” will immediately see the wis‐
dom of this. npm init will default to index.js; if you use a different
name for your application file, make sure to update the main proper‐
ty in package.json.

Initial Steps | 21

You now have a minimal Express server. You can start the server (node meadow
lark.js), and navigate to http://localhost:3000. The result will be disappointing: you
haven’t provided Express with any routes, so it will simply give you a generic 404 page
indicating that the page doesn’t exist.

Note how we specify the port that we want our application to run on:
app.set(port, process.env.PORT || 3000). This allows us to
override the port by setting an environment value before you start the
server. If your app isn’t running on port 3000 when you run this
example, check to see if your PORT environment variable is set.

I highly recommend getting a browser plugin that shows you the
status code of the HTTP request as well as any redirects that took
place. It will make it easier to spot redirect issues in your code, or
incorrect status codes, which are often overlooked. For Chrome, Ayi‐
ma’s Redirect Path works wonderfully. In most browsers, you can see
the status code in the Network section of the developer tools.

Let’s add some routes for the home page and an About page. Before the 404 handler,
we’ll add two new routes:

app.get('/', function(req, res){
 res.type('text/plain');
 res.send('Meadowlark Travel');
});
app.get('/about', function(req, res){
 res.type('text/plain');
 res.send('About Meadowlark Travel');
});

// custom 404 page
app.use(function(req, res, next){
 res.type('text/plain');
 res.status(404);
 res.send('404 - Not Found');
});

app.get is the method by which we’re adding routes. In the Express documentation,
you will see app.VERB. This doesn’t mean that there’s literally a method called VERB; it’s
just a placeholder for your (lowercased) HTTP verbs (“get” and “post” being the most
common). This method takes two parameters: a path and a function.

The path is what defines the route. Note that app.VERB does the heavy lifting for you:
by default, it doesn’t care about the case or trailing slash, and it doesn’t consider the
querystring when performing the match. So the route for the About page will work
for /about, /About, /about/, /about?foo=bar, /about/?foo=bar, etc.

22 | Chapter 3: Saving Time with Express

The function you provide will get invoked when the route is matched. The parameters
passed to that function are the request and response objects, which we’ll learn more
about in Chapter 6. For now, we’re just returning plaintext with a status code of 200
(Express defaults to a status code of 200—you don’t have to specify it explicitly).

Instead of using Node’s low-level res.end, we’re switching to using Express’s extension,
res.send. We are also replacing Node’s res.writeHead with res.set and res.sta
tus. Express is also providing us a convenience method, res.type, which sets the
Content-Type header. While it’s still possible to use res.writeHead and res.end, it isn’t
necessary or recommended.

Note that our custom 404 and 500 pages must be handled slightly differently. Instead
of using app.get, it is using app.use. app.use is the method by which Express adds
middleware. We’ll be covering middleware in more depth in Chapter 10, but for now,
you can think of this as a catch-all handler for anything that didn’t get matched by a
route. This brings us to a very important point: in Express, the order in which routes and
middleware are added is significant. If we put the 404 handler above the routes, the home
page and About page would stop working: instead, those URLs would result in a 404.
Right now, our routes are pretty simple, but they also support wildcards, which can lead
to problems with ordering. For example, what if we wanted to add subpages to About,
such as /about/contact and /about/directions? The following will not work as expected:

app.get('/about*',function(req,res){
 // send content....
})
app.get('/about/contact',function(req,res){
 // send content....
})
app.get('/about/directions',function(req,res){
 // send content....
})

In this example, the /about/contact and /about/directions handlers will never be
matched because the first handler uses a wildcard in its path: /about*.

Express can distinguish between the 404 and 500 handlers by the number of arguments
their callback functions take. Error routes will be covered in depth in Chapters 10 and 12.

Now you can start the server again, and see that there’s a functioning home page and
About page.

So far, we haven’t done anything that couldn’t be done just as easily without Express,
but already Express is providing us some functionality that isn’t immediately obvious.
Remember in the previous chapter how we had to normalize req.url to determine what
resource was being requested? We had to manually strip off the querystring and the
trailing slash, and convert to lowercase. Express’s router is now handling those details

Initial Steps | 23

for us automatically. While it may not seem like a large thing now, it’s only scratching
the surface of what Express’s router is capable of.

Views and Layouts
If you’re familiar with the “model-view-controller” paradigm, then the concept of a view
will be no stranger to you. Essentially, a view is what gets delivered to the user. In the
case of a website, that usually means HTML, though you could also deliver a PNG or a
PDF, or anything that can be rendered by the client. For our purposes, we will consider
views to be HTML.

Where a view differs from a static resource (like an image or CSS file) is that a view
doesn’t necessarily have to be static: the HTML can be constructed on the fly to provide
a customized page for each request.

Express supports many different view engines that provide different levels of abstrac‐
tion. Express gives some preference to a view engine called Jade (which is no surprise,
because it is also the brainchild of TJ Holowaychuk). The approach Jade takes is very
minimal: what you write doesn’t resemble HTML at all, which certainly represents a lot
less typing: no more angle brackets or closing tags. The Jade engine then takes that and
converts it to HTML.

Jade is very appealing, but that level of abstraction comes at a cost. If you’re a frontend
developer, you have to understand HTML and understand it well, even if you’re actually
writing your views in Jade. Most frontend developers I know are uncomfortable with
the idea of their primary markup language being abstracted away. For this reason, I am
recommending the use of another, less abstract templating framework called Handle‐
bars. Handlebars (which is based on the popular language-independent templating
language Mustache) doesn’t attempt to abstract away HTML for you: you write HTML
with special tags that allow Handlebars to inject content.

To provide Handlebars support, we’ll use Eric Ferraiuolo’s express3-handlebars
package (despite the name, this package works fine with Express 4.0). In your project
directory, execute:

npm install --save express3-handlebars

Then in meadowlark.js, add the following lines after the app has been created:

var app = express();

// set up handlebars view engine
var handlebars = require('express3-handlebars')
 .create({ defaultLayout:'main' });
app.engine('handlebars', handlebars.engine);
app.set('view engine', 'handlebars');

24 | Chapter 3: Saving Time with Express

This creates a view engine and configures Express to use it by default. Now create a
directory called views that has a subdirectory called layouts. If you’re an experienced
web developer, you’re probably already comfortable with the concepts of layouts (some‐
times called “master pages”). When you build a website, there’s a certain amount of
HTML that’s the same—or very close to the same—on every page. Not only does it
become tedious to rewrite all that repetitive code for every page, it creates a potential
maintenance nightmare: if you want to change something on every page, you have to
change all the files. Layouts free you from this, providing a common framework for all
the pages on your site.

So let’s create a template for our site. Create a file called views/layouts/main.handlebars:
<!doctype html>
<html>
<head>
 <title>Meadowlark Travel</title>
</head>
<body>
 {{{body}}}
</body>
</html>

The only thing that you probably haven’t seen before is this: {{{body}}}. This expression
will be replaced with the HTML for each view. When we created the Handlebars in‐
stance, note we specified the default layout (defaultLayout:'main'). That means that
unless you specify otherwise, this is the layout that will be used for any view.

Now let’s create view pages for our home page, views/home.handlebars:
<h1>Welcome to Meadowlark Travel</h1>

Then our About page, views/about.handlebars:
<h1>About Meadowlark Travel</h1>

Then our Not Found page, views/404.handlebars:
<h1>404 - Not Found</h1>

And finally our Server Error page, views/500.handlebars:
<h1>500 - Server Error</h1>

You probably want your editor to associate .handlebars and .hbs (an‐
other common extension for Handlebars files) with HTML, to enable
syntax highlighting and other editor features. For vim, you can add
the line au BufNewFile,BufRead *.handlebars set file

type=html to your ~/.vimrc file. For other editors, consult your
documentation.

Initial Steps | 25

Now that we’ve got some views set up, we have to replace our old routes with new routes
that use these views:

app.get('/', function(req, res) {
 res.render('home');
});
app.get('/about', function(req, res) {
 res.render('about');
});

// 404 catch-all handler (middleware)
app.use(function(req, res, next){
 res.status(404);
 res.render('404');
});

// 500 error handler (middleware)
app.use(function(err, req, res, next){
 console.error(err.stack);
 res.status(500);
 res.render('500');
});

Note that we no longer have to specify the content type or status code: the view engine
will return a content type of text/html and a status code of 200 by default. In the catch-
all handler, which provides our custom 404 page, and the 500 handler, we have to set
the status code explicitly.

If you start your server and check out the home or About page, you’ll see that the views
have been rendered. If you examine the source, you’ll see that the boilerplate HTML
from views/layouts/main.handlebars is there.

Static Files and Views
Express relies on a middleware to handle static files and views. Middleware is a concept
that will be covered in more detail in Chapter 10. For now, it’s sufficient to know that
middleware provides modularization, making it easier to handle requests.

The static middleware allows you to designate one or more directories as containing
static resources that are simply to be delivered to the client without any special handling.
This is where you would put things like images, CSS files, and client-side JavaScript files.

In your project directory, create a subdirectory called public (we call it public because
anything in this directory will be served to the client without question). Then, before
you declare any routes, you’ll add the static middleware:

app.use(express.static(__dirname + '/public'));

26 | Chapter 3: Saving Time with Express

The static middleware has the same effect as creating a route for each static file you
want to deliver that renders a file and returns it to the client. So let’s create an img
subdirectory inside public, and put our logo.png file in there.

Now we can simply reference /img/logo.png (note, we do not specify public; that di‐
rectory is invisible to the client), and the static middleware will serve that file, setting
the content type appropriately. Now let’s modify our layout so that our logo appears on
every page:

<body>
 <header></header>
 {{{body}}}
</body>

The <header> element was introduced in HTML5 to provide addi‐
tional semantic information about content that appears at the top of
the page, such as logos, title text, or navigation.

Dynamic Content in Views
Views aren’t simply a complicated way to deliver static HTML (though they can certainly
do that as well). The real power of views is that they can contain dynamic information.

Let’s say that on the About page, we want to deliver a “virtual fortune cookie.” In our
meadowlark.js file, we define an array of fortune cookies:

var fortunes = [
 "Conquer your fears or they will conquer you.",
 "Rivers need springs.",
 "Do not fear what you don't know.",
 "You will have a pleasant surprise.",
 "Whenever possible, keep it simple.",
];

Modify the view (/views/about.handlebars) to display a fortune:

<h1>About Meadowlark Travel</h1>

<p>Your fortune for the day:</p>
<blockquote>{{fortune}}</blockquote>

Now modify the route /about to deliver the random fortune cookie:

app.get('/about', function(req, res){
 var randomFortune =
 fortunes[Math.floor(Math.random() * fortunes.length)];
 res.render('about', { fortune: randomFortune });
});

Initial Steps | 27

Now if you restart the server and load the /about page, you’ll see a random fortune.
Templating is incredibly useful, and we will be covering it in depth in Chapter 7.

Conclusion
We’ve created a very basic website with Express. Even though it’s simple, it contains all
the seeds we need for a full-featured website. In the next chapter, we’ll be crossing our
ts and dotting our is in preparation for adding more advanced functionality.

28 | Chapter 3: Saving Time with Express

CHAPTER 4

Tidying Up

In the last two chapters, we were just experimenting: dipping our toes into the waters,
so to speak. Before we proceed to more complex functionality, we’re going to do some
housekeeping and build some good habits into our work.

In this chapter, we’ll start our Meadowlark Travel project in earnest. Before we start
building the website itself, though, we’re going to make sure we have the tools we need
to produce a high-quality product.

The running example in this book is not necessarily one you have to
follow. If you’re anxious to build your own website, you could follow
the framework of the running example, but modify it accordingly so
that by the time you finish this book, you could have a finished
website!

Best Practices
The phrase “best practices” is one you hear thrown around a lot these days, and it means
that you should “do things right” and not cut corners (we’ll talk about what this means
specifically in a moment). No doubt you’ve heard the engineering adage that your op‐
tions are “fast,” “cheap,” and “good,” and you can pick any two. The thing that’s always
bothered me about this model is that it doesn’t take into account the accrual value of
doing things correctly. The first time you do something correctly, it may take five times
as long to do it as it would have to do it quick and dirty. The second time, though, it’s
only going to take three times as long. By the time you’ve done it correctly a dozen times,
you’ll be doing it almost as fast as the quick and dirty way.

I had a fencing coach who would always remind us that practice doesn’t make perfect:
practice makes permanent. That is, if you do something over and over again, eventually
it will become automatic, rote. That is true, but it says nothing about the quality of the

29

thing you are practicing. If you practice bad habits, then bad habits become rote. Instead,
you should follow the rule that perfect practice makes perfect. In that spirit, I encourage
you to follow the rest of the examples in this book as if you were making a real-live
website, as if your reputation and remuneration were depending on the quality of the
outcome. Use this book to not only learn new skills, but to practice building good habits.

The practices we will be focusing on are version control and QA. In this chapter, we’ll
be discussing version control, and we’ll discuss QA in the next chapter.

Version Control
Hopefully I don’t have to convince you of the value of version control (if I did, that might
take a whole book itself). Broadly speaking, version control offers these benefits:
Documentation

Being able to go back through the history of a project to see the decisions that were
made and the order in which components were developed can be valuable docu‐
mentation. Having a technical history of your project can be quite useful.

Attribution
If you work on a team, attribution can be hugely important. Whenever you find
something in code that is opaque or questionable, knowing who made that change
can save you many hours. It could be that the comments associated with the change
are sufficient to answer your questions, and if not, you’ll know who to talk to.

Experimentation
A good version control system enables experimentation. You can go off on a tangent,
trying something new, without fear of affecting the stability of your project. If the
experiment is successful, you can fold it back into the project, and if it is not suc‐
cessful, you can abandon it.

Years ago, I made the switch to distributed version control systems (DVCS). I narrowed
my choices down to Git and Mercurial, and went with Git, due to its ubiquity and
flexibility. Both are excellent and free version control systems, and I recommend you
use one of them. In this book, we will be using Git, but you are welcome to substitute
Mercurial (or another version control system altogether).

If you are unfamiliar with Git, I recommend Jon Loeliger’s excellent Version Control
with Git (O’Reilly). Also, Code School has a nice introductory course on Git.

How to Use Git with This Book
First, make sure you have Git. Type git --version. If it doesn’t respond with a version
number, you’ll need to install Git. See the Git documentation for installation
instructions.

30 | Chapter 4: Tidying Up

http://bit.ly/Version_Ctrl_Git
http://bit.ly/Version_Ctrl_Git
http://try.github.io
http://git-scm.com

There are two ways to follow along with the examples in this book. One is to type out
the examples yourself, and follow along with the Git commands. The other is to clone
the Git repository I am using for all of the examples and check out the associated tags
for each example. Some people learn better by typing out examples, while some prefer
to just see and run the changes without having to type it all in.

If You’re Following Along by Doing It Yourself
We’ve already got a very rough framework for our project: some views, a layout, a logo,
a main application file, and a package.json file. Let’s go ahead and create a Git repository
and add all those files.

First, we go to the project directory and create a Git repository there:

git init

Now before we add all the files, we’ll create a .gitignore file to help prevent us from
accidentally adding things we don’t want to add. Create a text file called .gitignore in
your project directory in which you can add any files or directories you want Git to
ignore by default (one per line). It also supports wildcards. For example, if your editor
creates backup files with a tilde at the end (like meadowlark.js~), you might put *~ in
the .gitignore file. If you’re on a Mac, you’ll want to put .DS_Store in there. You’ll also
want to put node_modules in there (for reasons that will be discussed soon). So for now,
the file might look like this:

node_modules
*~
.DS_Store

Entries in the .gitignore file also apply to subdirectories. So if you put
*~ in the .gitignore in the project root, all such backup files will be
ignored even if they are in subdirectories.

Now we can add all of our existing files. There are many ways to do this in Git. I generally
favor git add -A, which is the most sweeping of all the variants. If you are new to Git,
I recommend you either add files one by one (git add meadowlark.js, for example)
if you only want to commit one or two files, or git add -A if you want to add all of
your changes (including any files you might have deleted). Since we want to add all the
work we’ve already done, we’ll use:

git add -A

How to Use Git with This Book | 31

Newcomers to Git are commonly confused by the git add command:
it adds changes, not files. So if you’ve modified meadowlark.js, and
then you type git add meadowlark.js, what you’re really doing is
adding the changes you’ve made.

Git has a “staging area,” where changes go when you run git add. So the changes we’ve
added haven’t actually been committed yet, but they’re ready to go. To commit the
changes, use git commit:

git commit -m "Initial commit."

The -m "Initial commit." allows you to write a message associated with this commit.
Git won’t even let you make a commit without a message, and for good reason. Always
strive to make meaningful commit messages: they should briefly but concisely describe
the work you’ve done.

If You’re Following Along by Using the Official Repository
For the official repository, I create a tag every time we add to or modify the existing
source code. To get started with it, simply clone it:

git clone https://github.com/EthanRBrown/web-development-with-node-and-express

For convenience, I’ve added a tag for the beginning of each chapter (which usually points
to the last commit of the previous chapter). So now you can just check out the tag
associated with this chapter:

git checkout ch04

Note that chapter tags (like ch04) represent the state of the project as you’re going into
that chapter, before we’ve covered anything, and may sometimes be concomitant with
the last tag in the previous chapter. As the chapter progresses, tags will be added after
the content is discussed. For example, once you read the upcoming “npm Packages”
section, you can check out the tag ch04-npm-packages to see the changes discussed in
that section. Not every section has a corresponding tag, but I’ve tried to make the
repository as easy to follow as possible. See the README file for more information
about how the repository is structured.

32 | Chapter 4: Tidying Up

https://github.com/EthanRBrown/web-development-with-node-and-express/blob/master/README.md

If at any point you want to experiment, keep in mind that the tag you
have checked out puts you in what Git calls a “detached HEAD” state.
While you are free to edit any files, it is unsafe to commit anything
you do without creating a branch first. So if you do want to base an
experimental branch off of a tag, simply create a new branch and
check it out, which you can do with one command: git checkout -b
experiment (where experiment is the name of your branch; you can
use whatever you want). Then you can safely edit and commit on that
branch as much as you want.

npm Packages
The npm packages that your project relies on reside in a directory called node_mod‐
ules (it’s unfortunate that this is called node_modules and not npm_packages, as Node
modules are a related but different concept). Feel free to explore that directory to satisfy
your curiosity or to debug your program, but you should never modify any code in this
directory. In addition to that being bad practice, all of your changes could easily be
undone by npm. If you need to make a modification to a package your project depends
on, the correct course of action would be to create your own fork of the project. If you
do go this route, and you feel that your improvements would be useful to others, con‐
gratulations: you’re now involved in an open source project! You can submit your
changes, and if they meet the project standards, they’ll be included in the official pack‐
age. Contributing to existing packages and creating customized builds is beyond the
scope of this book, but there is a vibrant community of developers out there to help you
if you want to contribute to existing packages.

The purpose of the package.json file is twofold: to describe your project and to list
dependencies. Go ahead and look at your package.json file now. You should see this:

{
 "dependencies": {
 "express": "^4.0.0",
 "express3-handlebars": "^0.5.0"
 }
}

Right now, our package.json file contains only information about dependencies. The
caret (^) in front of the package versions indicates that any version that starts with the
specified version number—up to the next major version number—will work. For ex‐
ample, this package.json indicates that any version of Express that starts with 4.0.0 will
work, so 4.0.1 and 4.9.9 would both work, but 3.4.7 would not, nor would 5.0.0. This is
the default version specificity when you use npm install --save, and is generally a
pretty safe bet. The consequence of this approach is that if you want to move up to a
newer version, you will have to edit the file to specify the new version. Generally, that’s
a good thing because it prevents changes in dependencies from breaking your project

npm Packages | 33

without your knowing about it. Version numbers in npm are parsed by a component
called “semver” (for “semantic versioner”). If you want more information about ver‐
sioning in npm, consult the semver documentation.

Since the package.json file lists all the dependencies, the node_modules directory is really
a derived artifact. That is, if you were to delete it, all you would have to do to get the
project working again would be to run npm install, which will recreate the directory
and put all the necessary dependencies in it. It is for this reason that I recommend
putting node_modules in your .gitignore file, and not including it in source control.
However, some people feel that your repository should contain everything necessary to
run the project, and prefer to keep node_modules in source control. I find that this is
“noise” in the repository, and I prefer to omit it.

Whenever you use a Node module in your project, you should make sure it’s listed as a
dependency in package.json. If you fail to do this, npm will be unable to construct the
right dependencies, and when another developer checks out the project (or when you
do on a different computer), the correct dependencies won’t be installed, which negates
the value of a package manager.

Project Metadata
The other purpose of the package.json file is to store project metadata, such as the name
of the project, authors, license information, and so on. If you use npm init to initially
create your package.json file, it will populate the file with the necessary fields for you,
and you can update them at any time. If you intend to make your project available on
npm or GitHub, this metadata becomes critical. If you would like more information
about the fields in package.json, see the package.json documentation. The other impor‐
tant piece of metadata is the README.md file. This file can be a handy place to describe
the overall architecture of the website, as well as any critical information that someone
new to the project might need. It is in a text-based wiki format called Markdown. Refer
to the Markdown documentation for more information.

Node Modules
As mentioned earlier, Node modules and npm packages are related but different con‐
cepts. Node modules, as the name implies, offer a mechanism for modularization and
encapsulation. npm packages provide a standardized scheme for storing, versioning,
and referencing projects (which are not restricted to modules). For example, we import
Express itself as a module in our main application file:

var express = require('express');

require is a Node function for importing a module. By default, Node looks for modules
in the directory node_modules (it should be no surprise, then, that there’s an express

34 | Chapter 4: Tidying Up

https://www.npmjs.org/doc/misc/semver.html
https://npmjs.org/doc/json.html
http://daringfireball.net/projects/markdown

directory inside of node_modules). However, Node also provides a mechanism for
creating your own modules (you should never create your own modules in the
node_modules directory). Let’s see how we can modularize the fortune cookie func‐
tionality we implemented in the previous chapter.

First let’s create a directory to store our modules. You can call it whatever you want, but
lib (short for “library”) is a common choice. In that folder, create a file called fortune.js:

var fortuneCookies = [
 "Conquer your fears or they will conquer you.",
 "Rivers need springs.",
 "Do not fear what you don't know.",
 "You will have a pleasant surprise.",
 "Whenever possible, keep it simple.",
];

exports.getFortune = function() {
 var idx = Math.floor(Math.random() * fortuneCookies.length);
 return fortuneCookies[idx];
};

The important thing to note here is the use of the global variable exports. If you want
something to be visible outside of the module, you have to add it to exports. In this
example, the function getFortune will be available from outside this module, but our
array fortuneCookies will be completely hidden. This is a good thing: encapsulation
allows for less error-prone and fragile code.

There are several ways to export functionality from a module. We will
be covering different methods throughout the book and summariz‐
ing them in Chapter 22.

Now in meadowlark.js, we can remove the fortuneCookies array (though there would
be no harm in leaving it: it can’t conflict in any way with the array with the same name
defined in lib/fortune.js). It is traditional (but not required) to specify imports at the top
of the file, so at the top of the meadowlark.js file, add the following line:

var fortune = require('./lib/fortune.js');

Note that we prefix our module name with ./. This signals to Node that it should not
look for the module in the node_modules directory; if we omitted that prefix, this would
fail.

Node Modules | 35

Now in our route for the About page, we can utilize the getFortune method from our
module:

app.get('/about', function(req, res) {
 res.render('about', { fortune: fortune.getFortune() });
});

If you’re following along, let’s commit those changes:

git add -A
git commit -m "Moved 'fortune cookie' functionality into module."

Or if you’re using the official repository, you can see the changes in this tag:

git checkout ch04

You will find modules to be a very powerful and easy way to encapsulate functionality,
which will improve the overall design and maintainability of your project, as well as
make testing easier. Refer to the official Node module documentaion for more
information.

36 | Chapter 4: Tidying Up

http://nodejs.org/api/modules.html

CHAPTER 5

Quality Assurance

Quality assurance: it’s a phrase that is prone to send shivers down the spines of devel‐
opers—which is unfortunate. After all, don’t you want to make quality software? Of
course you do. So it’s not the end goal that’s the sticking point: it’s the politics of the
matter. I’ve found that there are two common situations that arise in web development:
Large or well-funded organizations

There’s usually a QA department and, unfortunately, an adversarial relationship
springs up between QA and development. This is the worst thing that can happen.
Both departments are playing on the same team, for the same goal, but QA often
defines success as finding more bugs, while development defines success as gener‐
ating fewer bugs, and that serves as the basis for conflict and competition.

Small organizations and organizations on a budget
Often, there is no QA department; the development staff is expected to serve the
dual role of establishing QA and developing software. This is not a ridiculous stretch
of the imagination or a conflict of interest. However, QA is a very different discipline
than development, and it attracts different personalities and talents. This is not an
impossible situation, and certainly there are developers out there who have the QA
mindset, but when deadlines loom, it’s usually QA that gets the short shrift, to the
project’s detriment.

With most real-world endeavors, multiple skills are required, and increasingly, it’s
harder to be an expert in all of those skills. However, some competency in the areas for
which you are not directly responsible will make you more valuable to the team and
make the team function more effectively. A developer acquiring QA skills offers a great
example: these two disciplines are so tightly intertwined that cross-disciplinary under‐
standing is extremely valuable.

There is also a movement to merge the roles of QA and development, making developers
responsible for QA. In this paradigm, software engineers who specialize in QA act

37

almost as consultants to developers, helping them build QA into their development
workflow. Whether QA roles are divided or integrated, it is clear that understanding
QA is beneficial to developers.

This book is not for QA professionals; it is aimed at developers. So my goal is not to
make you a QA expert, but to give you some experience in that area. If your organization
has a dedicated QA staff, it will make it easier for you to communicate and collaborate
with them. If you do not, it will give you a starting point to establishing a comprehensive
QA plan for your project.

QA: Is It Worth It?
QA can be expensive—sometimes very expensive. So is it worth it? It’s a complicated
formula with complicated inputs. Most organizations operate on some kind of “return
on investment” model. If you spend money, you must expect to receive at least as much
money in return (preferably more). With QA, though, the relationship can be muddy.
A well-established and well-regarded product, for example, may be able to get by with
quality issues for longer than a new and unknown project. Obviously, no one wants to
produce a low-quality product, but the pressures in technology are high. Time-to-
market can be critical, and sometimes it’s better to come to market with something that’s
less than perfect than to come to market with the perfect product two months later.

In web development, quality can be broken down into three dimensions:
Reach

Reach refers to the market penetration of your product: the number of people
viewing your website or using your service. There’s a direct correlation between
reach and profitability: the more people who visit the website, the more people who
buy the product or service. From a development perspective, search engine opti‐
mization (SEO) will have the biggest impact on reach, which is why we will be
including SEO in our QA plan.

Functionality
Once people are visiting your site or using your service, the quality of your site’s
functionality will have a large impact on user retention: a site that works as
advertised is more likely to drive return visits than one that isn’t. Unlike the other
dimensions, functionality testing can often be automated.

Usability
Where functionality is concerned with functional correctness, usability evaluates
human-computer interaction (HCI). The fundamental question is, “Is the
functionality delivered in a way that is useful to the target audience?” This often
translates to, “Is it easy to use?” though the pursuit of ease can often oppose flexi‐
bility or power: what seems easy to a programmer might be different than what
seems easy to a nontechnical consumer. In other words, you must consider your

38 | Chapter 5: Quality Assurance

target audience when assessing usability. Since a fundamental input to a usability
measurement is a user, usability is not usually something that can be automated.
However, user testing should be included in your QA plan.

Aesthetics
Aesthetics is the most subjective of the three dimensions and is therefore the least
relevant to development. While there are few development concerns when it comes
to your site’s aesthetics, routine reviews of your site’s aesthetics should be part of
your QA plan. Show your site to a representative sample audience, and find out if
it feels dated or does not invoke the desired response. Keep in mind that aesthetics
is time sensitive (aesthetic standards shift over time) and audience specific (what
appeals to one audience may be completely uninteresting to another).

While all four dimensions should be addressed in your QA plan, functionality testing
and SEO can be tested automatically during development, so that will be the focus of
this chapter.

Logic Versus Presentation
Broadly speaking, in your website, there are two “realms”: logic (often called “business
logic,” a term I eschew because of its bias toward commercial endeavor) and presenta‐
tion. You can think of your website’s logic existing in kind of a pure intellectual domain.
For example, in our Meadowlark Travel scenario, there might be a rule that a customer
must possess a valid driver’s license before renting a scooter. This is a very simple data-
based rule: for every scooter reservation, the user needs a valid driver’s license. The
presentation of this is disconnected. Perhaps it’s just a checkbox on the final form of the
order page, or perhaps the customer has to provide a valid driver’s license number, which
is validated by Meadowlark Travel. It’s an important distinction, because things should
be as clear and simple as possible in the logic domain, whereas the presentation can be
as complicated or as simple as it needs to be. The presentation is also subject to usability
and aesthetic concerns, where the business domain is not.

Whenever possible, you should seek a clear delineation between your logic and pre‐
sentation. There are many ways to do that, and in this book, we will be focusing on
encapsulating logic in JavaScript modules. Presentation, on the other hand, will be a
combination of HTML, CSS, multimedia, JavaScript, and frontend libraries like jQuery.

The Types of Tests
The type of testing we will be considering in this book falls into two broad categories:
unit testing and integration testing (I am considering “system testing” to be a type of
integration testing). Unit testing is very fine-grained, testing single components to make
sure they function properly, whereas integration testing tests the interaction between
multiple components, or even the whole system.

Logic Versus Presentation | 39

In general, unit testing is more useful and appropriate for logic testing (although we
will see some instances where it is used in presentation code as well). Integration testing
is useful in both realms.

Overview of QA Techniques
In this book, we will be using the following techniques and software to accomplish
thorough testing:
Page testing

“Page testing,” as the name implies, tests the presentation and frontend functionality
of a page. This can involve both unit and integration testing. We will be using Mocha
to achieve this.

Cross-page testing
Cross-page testing involves testing functionality that requires navigation from one
page to another. For example, the checkout process in an ecommerce site usually
spans multiple pages. Since this kind of testing inherently involves more than one
component, it is generally considered integration testing. We will be using Zom‐
bie.js for this.

Logic testing
Logic testing will execute unit and integration tests against our logic domain. It will
be testing only JavaScript, disconnected from any presentation functionality.

Linting
Linting isn’t about finding errors, but potential errors. The general concept of linting
is that it identifies areas that could represent possible errors, or fragile constructs
that could lead to errors in the future. We will be using JSHint for linting.

Link checking
Link checking (making sure there are no broken links on your site) falls into the
category of “low-hanging fruit.” It may seem overkill on a simple project, but simple
projects have a way of becoming complicated projects, and broken links will happen.
Better to work link checking into your QA routine early. Link checking falls under
the category of unit testing (a link is either valid or invalid). We will be using Link‐
Checker for this.

Running Your Server
All of the techniques in this chapter assume your website is running. So far, we’ve been
running our website manually, with the command node meadowlark.js. This techni‐
que has the advantage of simplicity, and I usually have a dedicated window on the
desktop for that purpose. That’s not your only option, however. If you find yourself
forgetting to restart your website when you make JavaScript changes, you might want

40 | Chapter 5: Quality Assurance

to look into a monitor utility that will automatically restart your server when it detects
changes in JavaScript. nodemon is very popular, and there’s also a Grunt plugin. You
will be learning more about Grunt at the end of this chapter. For now, I recommend just
having your app always running in a different window.

Page Testing
My recommendation for page testing is that you actually embed tests in the page it‐
self. The advantage of this is that while you’re working on a page, you can immediately
spot any errors as you load it in a browser. Doing this will require a little setup, so let’s
get started.

The first thing we’ll need is a test framework. We’ll be using Mocha. First, we add the
package to the project:

npm install --save-dev mocha

Note that we used --save-dev instead of --save; this tells npm to list this package in
the development dependencies instead of the runtime dependencies. This will reduce
the number of dependencies the project has when we deploy live instances of the website.

Since we’ll be running Mocha in the browser, we need to put the Mocha resources in
the public folder so it will be served to the client. We’ll put these in a subdirectory, public/
vendor:

mkdir public/vendor
cp node_modules/mocha/mocha.js public/vendor
cp node_modules/mocha/mocha.css public/vendor

It’s a good idea to put third-party libraries that you are using in a
special directory, like vendor. This makes it easier to separate what
code you’re responsible for testing and modifying, and what code
should be hands off.

Tests usually require a function called assert (or expect). This is available in the Node
framework, but not inherently in a browser, so we’ll be using the Chai assertion library:

npm install --save-dev chai
cp node_modules/chai/chai.js public/vendor

Now that we have the necessary files, we can modify the Meadowlark Travel website to
allow running tests. The catch is, we don’t want the tests to always be there: not only
will it slow down your website, but your users don’t want to see the results of tests! Tests
should be disabled by default, but it should be very easy to enable them. To meet both
of these goals, we’re going to use a URL parameter to turn on tests. When we’re done,

Page Testing | 41

https://npmjs.org/package/nodemon
https://npmjs.org/package/grunt-nodemon

1. Remember the first principle of performance tuning: profile first, then optimize.

going to http://localhost:3000 will load the home page, and http://localhost:3000?
test=1 will load the home page complete with tests.

First, we’re going to use some middleware to detect test=1 in the querystring. It must
appear before we define any routes in which we wish to use it:

app.use(function(req, res, next){
 res.locals.showTests = app.get('env') !== 'production' &&
 req.query.test === '1';
 next();
});

// routes go here....

The specifics about this bit of code will become clear in later chapters; what you need
to know for right now is that if test=1 appears in the querystring for any page (and
we’re not running on a production server), the property res.locals.showTests will
set to be true. The res.locals object is part of the context that will be passed to views
(this will be explained in more detail in Chapter 7).

Now we can modify views/layouts/main.handlebars to conditionally include the test
framework. Modify the <head> section:

<head>
 <title>Meadowlark Travel</title>
 {{#if showTests}}
 <link rel="stylesheet" href="/vendor/mocha.css">
 {{/if}}
 <script src="//code.jquery.com/jquery-2.0.2.min.js"></script>
</head>

We’re linking in jQuery here because, in addition to using it as our primary DOM
manipulation library for the site, we can use it to make test assertions. You’re free to use
whatever library you like (or none at all), but I recommend jQuery. You’ll often hear
that JavaScript libraries should be loaded last, right before the closing </body> tag. There
is good reason for this, and we will learn some techniques to make this possible, but for
now, we’re going to include jQuery early.1

Then, right before the closing </body> tag:

 {{#if showTests}}
 <div id="mocha"></div>
 <script src="/vendor/mocha.js"></script>
 <script src="/vendor/chai.js"></script>
 <script>
 mocha.ui('tdd');
 var assert = chai.assert;
 </script>

42 | Chapter 5: Quality Assurance

 <script src="/qa/tests-global.js"></script>
 {{#if pageTestScript}}
 <script src="{{pageTestScript}}"></script>
 {{/if}}
 <script>mocha.run();</script>
 {{/if}}
</body>

Note that Mocha and Chai get included, as well as a script called /qa/global-tests.js. As
the name implies, these are tests that will be run on every page. A little farther down,
we optionally link in page-specific tests, so that you can have different tests for different
pages. We’ll start with the global tests, and then add page-specific tests. Let’s start with
a single, simple test: making sure the page has a valid title. Create the directory public/
qa and create a file tests-global.js in it:

suite('Global Tests', function(){
 test('page has a valid title', function(){
 assert(document.title && document.title.match(/\S/) &&
 document.title.toUpperCase() !== 'TODO');
 });
});

Mocha supports multiple “interfaces,” which control the style of your
tests. The default interface, behavior-driven development (BDD), is
tailored to make you think in a behavioral sense. In BDD, you de‐
scribe components and their behaviors, and the tests then verify those
behaviors. However, I find that very often, there are tests that don’t
fit this model, and then the BDD language just looks strange. Test-
driven development (TDD) is more matter-of-fact: you describe
suites of tests and tests within the suite. There’s nothing to stop you
from using both interfaces in your tests, but then it becomes a con‐
figuration hassle. For that reason, I’ve opted to stick with TDD in this
book. If you prefer BDD, or mixing BDD and TDD, by all means
do so.

Go ahead and run the site now. Visit the home page and examine the source: you’ll see
no evidence of test code. Now, add test=1 to the querystring (http://localhost:3000/?
test=1), and you’ll see the tests run on the page. Any time you want to test the site, all
you have to do is add test=1 to the querystring!

Now let’s add a page-specific test. Let’s say that we want to ensure that a link to the yet-
to-be-created Contact page always exists on the About page. We’ll create a file called
public/qa/tests-about.js:

suite('"About" Page Tests', function(){
 test('page should contain link to contact page', function(){
 assert($('a[href="/contact"]').length);

Page Testing | 43

 });
});

We have one last thing to do: specify in the route which page test file the view should
be using. Modify the About page route in meadowlark.js:

app.get('/about', function(req, res) {
 res.render('about', {
 fortune: fortune.getFortune(),
 pageTestScript: '/qa/tests-about.js'
 });
});

Load the About page with test=1 in the querystring: you’ll see two suites and one failure!
Now add a link to the nonexistent Contact page, and you’ll see the test become successful
when you reload.

Depending on the nature of your site, you may want this to be more automatic. For
example, if your route was /foo, you could automatically set the page-specific tests to
be /foo/tests-foo.js. The downside of this approach is that you lose flexibility. For exam‐
ple, if you have multiple routes that point to the same view, or even very similar content,
you might want to use the same test file.

Let’s resist the temptation to add more tests now: those will come as we progress through
the book. For now, we have the basic framework necessary to add global and page-
specific tests.

Cross-Page Testing
Cross-page testing is a little more challenging, because you need to be able to control
and observe the browser itself. Let’s look at an example of a cross-page testing scenario.
Let’s say your website has a Request Group Rate page that contains a contact form. The
marketing department wants to know what page the customer was last on before
following a link to Request Group Rate—they want to know whether the customer was
viewing the Hood River tour or Oregon Coast retreat. Hooking this up will require some
hidden form fields and JavaScript, and testing is going to involve going to a page, then
clicking Request Group Rate and verifying that the hidden field is populated
appropriately.

Let’s set up this scenario, and then see how we can test it. First, we’ll create a tour page,
views/tours/hood-river.handlebars:

<h1>Hood River Tour</h1>
<a class="requestGroupRate"
 href="/tours/request-group-rate">Request Group Rate.

And a quote page, views/tours/request-group-rate.handlebars:

44 | Chapter 5: Quality Assurance

<h1>Request Group Rate</h1>
<form>
 <input type="hidden" name="referrer">
 Name: <input type="text" id="fieldName" name="name">

 Group size: <input type="text" name="groupSize">

 Email: <input type="email" name="email">

 <input type="submit" value="Submit">
</form>
<script>
 $(document).ready(function(){
 $('input[name="referrer"]').val(document.referrer);
 });
</script>

Then we’ll create routes for these pages in meadowlark.js:
app.get('/tours/hood-river', function(req, res){
 res.render('tours/hood-river');
});
app.get('/tours/request-group-rate', function(req, res){
 res.render('tours/request-group-rate');
});

Now that we have something to test, we need some way to test it, and this is where things
get complicated. To test this functionality, we really need a browser or something a lot
like a browser. Obviously, we can do it by hand by going to the /tours/hood-river page
in a browser, then clicking on the Request Group Rate link, then inspecting the hidden
form element to see that it’s correctly populated with the referring page, but that’s a lot
of work—we want a way to automate that.

What we’re looking for is often called a headless browser: meaning that the browser
doesn’t actually need to display something on the screen, necessarily, it just has to behave
like a browser. Currently, there are three popular solutions for this problem: Selenium,
PhantomJS, and Zombie. Selenium is incredibly robust, with extensive testing support,
but configuring it is beyond the scope of this book. PhantomJS is a great project and
actually provides a headless WebKit browser (the same engine used in Chrome and
Safari) so, like Selenium, it represents a very high level of realism. However, it doesn’t
yet provide the simple test assertions that we’re looking for, which leaves us with Zombie.

Zombie doesn’t use an existing browser engine, so it isn’t suitable for testing browser
features, but it’s great for testing basic functionality, which is what we’re looking for.
Unfortunately, Zombie doesn’t currently support a Windows installation (it used to be
possible through Cygwin). People have gotten it to work, however, and there’s
information on the Zombie home page. I have made an effort to make this book
platform-agnostic, but there currently isn’t a Windows solution for simple headless
browser tests. If you’re a Windows developer, I encourage you to check out Selenium
or PhantomJS: it will be a steeper learning curve, but these projects have a lot to offer.

First, install Zombie:

Cross-Page Testing | 45

http://zombie.labnotes.org

npm install --save-dev zombie

Now we’ll create a new directory called simply qa (distinct from public/qa). In that
directory, we’ll create a file, qa/tests-crosspage.js:

var Browser = require('zombie'),
 assert = require('chai').assert;

var browser;

suite('Cross-Page Tests', function(){

 setup(function(){
 browser = new Browser();
 });

 test('requesting a group rate quote from the hood river tour page' +
 'should populate the referrer field', function(done){
 var referrer = 'http://localhost:3000/tours/hood-river';
 browser.visit(referrer, function(){
 browser.clickLink('.requestGroupRate', function(){
 assert(browser.field('referrer').value
 === referrer);
 done();
 });
 });
 });

 test('requesting a group rate from the oregon coast tour page should ' +
 'populate the referrer field', function(done){
 var referrer = 'http://localhost:3000/tours/oregon-coast';
 browser.visit(referrer, function(){
 browser.clickLink('.requestGroupRate', function(){
 assert(browser.field('referrer').value
 === referrer);
 done();
 });
 });
 });

 test('visiting the "request group rate" page dirctly should result ' +
 'in an empty referrer field', function(done){
 browser.visit('http://localhost:3000/tours/request-group-rate',
 function(){
 assert(browser.field('referrer').value === '');
 done();
 });
 });

});

setup takes a function that will get executed by the test framework before each test is
run: this is where we create a new browser instance for each test. Then we have three

46 | Chapter 5: Quality Assurance

tests. The first two check that the referrer is populated correctly if you’re coming from
a product page. The browser.visit method will actually load a page; when the page
has been loaded, the callback function is invoked. Then the browser.clickLink method
looks for a link with the requestGroupRate class and follows it. When the linked page
loads, the callback function is invoked, and now we’re on the Request Group Rate page.
All that remains to be done is to assert that the hidden “referrer” field correctly matches
the original page we visited. The browser.field method returns a DOM Element
object, which has a value property. The last test simply ensures that the referrer is blank
if the Request Group Rate page is visited directly.

Before we run the tests, you’ll have to start the server (node meadowlark.js). You’ll
want to do that in a different window so you can see any console errors. Then run the
test and see how we did (make sure you have Mocha installed globally:
npm install -g mocha):

mocha -u tdd -R spec qa/tests-crosspage.js 2>/dev/null

We’ll see that one of our tests is failing…it failed for the Oregon Coast Tour page, which
should be no surprise, since we haven’t added that page yet. But the other two tests are
passing! So our test is working; go ahead and add an Oregon Coast Tour page, and all
of the tests will pass. Note that in the previous command, I specified that our interface
is TDD (it defaults to BDD) and to use a reporter called spec. The spec reporter provides
a bit more information than the default reporter. (Once you have hundreds of tests, you
might want to switch back to the default reporter.) Finally, you’ll note that we’re dumping
the error output (2>/dev/null). Mocha reports all of the stack traces for failed tests. It
can be useful information, but usually you just want to see what tests are passing and
what tests are failing. If you need more information, leave the 2>/dev/null off and you
will see the error detail.

One advantage of writing your tests before you implement features is
that (if your tests are correct), they will all start out failing. Not only
does this give you satisfaction as you see your tests start to pass, but
it’s additional assurance that the test is correct. If your test starts out
passing before you even implement a feature, the test is probably
broken. This is sometimes called “red light, green light” testing.

Logic Testing
We’ll also be using Mocha for logic testing. For now, we have only one tiny bit of func‐
tionality (the fortune generator), so setting this up will be pretty easy. Also, since we
only have one component, we don’t have enough for integration tests, so we’ll just be
adding unit tests. Create the file qa/tests-unit.js:

Logic Testing | 47

var fortune = require('../lib/fortune.js');
var expect = require('chai').expect;

suite('Fortune cookie tests', function(){

 test('getFortune() should return a fortune', function(){
 expect(typeof fortune.getFortune() === 'string');
 });

});

Now we can just run Mocha against this new test suite:

mocha -u tdd -R spec qa/tests-unit.js

Not very exciting! But it provides the template that we will be using throughout the rest
of this book.

Testing entropic functionality (functionality that is random) comes
with its own challenges. Another test we could add for our fortune
cookie generator would be a test to make sure that it returns a ran‐
dom fortune cookie. But how do you know if something is random?
One approach is to get a large number of fortunes—a thousand, for
example—and then measure the distribution of the responses. If the
function is properly random, no one response will stand out. The
downside of this approach is that it’s nondeterministic: it’s possible
(but unlikely) to get one fortune 10 times more frequently than any
other fortune. If that happened, the test could fail (depending on how
aggressive you set the threshold of what is “random”), but that might
not actually indicate that the system being tested is failing; it’s just a
consequence of testing entropic systems. In the case of our fortune
generator, it would be reasonable to generate 50 fortunes, and expect
at least three different ones. On the other hand, if we were develop‐
ing a random source for a scientific simulation or security compo‐
nent, we would probably want to have much more detailed tests. The
point is that testing entropic functionality is difficult and requires
more thought.

Linting
A good linter is like having a second set of eyes: it will spot things that will slide right
past our human brains. The original JavaScript linter is Douglas Crockford’s JSLint. In
2011, Anton Kovalyov forked JSLint, and JSHint was born. Kovalyov found that JSLint
was becoming too opinionated, and he wanted to create a more customizable,
community-developed JavaScript linter. While I agree with almost all of Crockford’s

48 | Chapter 5: Quality Assurance

2. Nicholas Zakas’s ESLint is also an excellent choice.

linting suggestions, I prefer the ability to tailor my linter, and for that reason, I recom‐
mend JSHint.2

JSHint is very easy to get via npm:

npm install -g jshint

To run it, simply invoke it with the name of a source file:

jshint meadowlark.js

If you’ve been following along, JSHint shouldn’t have any complaints about meadow‐
lark.js. To see the kind of thing that JSHint will save you from, put the following line in
meadowlark.js, and run JSHint on it:

if(app.thing == null) console.log('bleat!');

(JSHint will complain about using == instead of ===, whereas JSLint would additionally
complain about the lack of curly brackets.)

Consistent use of a linter will make you a better programmer: I promise that. Given
that, wouldn’t it be nice if your linter integrated into your editor and you were informed
of potential errors as soon as you made them? Well, you’re in luck. JSHint integrates
into many popular editors.

Link Checking
Checking for dead links doesn’t seem very glamorous, but it can have a huge impact on
how your website is ranked by search engines. It’s an easy enough thing to integrate into
your workflow, so it’s foolish not to.

I recommend LinkChecker; it’s cross-platform, and it offers a command-line as well as
a graphical interface. Just install it and point it at your home page:

linkchecker http://localhost:3000

Our site doesn’t have very many pages yet, so LinkChecker should whip right through
it.

Automating with Grunt
The QA tools we’re using—test suites, linting, link checkers—provide value only if
they’re actually used, and this is where many a QA plan withers and dies. If you have to
remember all the components in your QA toolchain and all the commands to run them,
the chances that you (or other developers you work with) will reliably use them go down
considerably. If you’re going to invest the time required to come up with a

Link Checking | 49

http://eslint.org
http://www.jshint.com/install
http://wummel.github.io/linkchecker

comprehensive QA toolchain, isn’t it worth spending a little time automating the process
so that the toolchain will actually be used?

Fortunately, a tool called Grunt makes automating these tasks quite easy. We’ll be rolling
up our logic tests, cross-page tests, linting, and link checking into a single command
with Grunt. Why not page tests? This is possible using a headless browser like Phan‐
tomJS or Zombie, but the configuration is complicated and beyond the scope of this
book. Furthermore, browser tests are usually designed to be run as you work on an
individual page, so there isn’t quite as much value in rolling them together with the rest
of your tests.

First, you’ll need to install the Grunt command line, and Grunt itself:

sudo npm install -g grunt-cli
npm install --save-dev grunt

Grunt relies on plugins to get the job done (see the Grunt plugins list for all available
plugins). We’ll need plugins for Mocha, JSHint, and LinkChecker. As I write this, there’s
no plugin for LinkChecker, so we’ll have to use a generic plugin that executes arbitrary
shell commands. So first we install all the necessary plugins:

npm install --save-dev grunt-cafe-mocha
npm install --save-dev grunt-contrib-jshint
npm install --save-dev grunt-exec

Now that all the plugins have been installed, create a file in your project directory called
Gruntfile.js:

module.exports = function(grunt){

 // load plugins
 [
 'grunt-cafe-mocha',
 'grunt-contrib-jshint',
 'grunt-exec',
].forEach(function(task){
 grunt.loadNpmTasks(task);
 });

 // configure plugins
 grunt.initConfig({
 cafemocha: {
 all: { src: 'qa/tests-*.js', options: { ui: 'tdd' }, }
 },
 jshint: {
 app: ['meadowlark.js', 'public/js/**/*.js',
 'lib/**/*.js'],
 qa: ['Gruntfile.js', 'public/qa/**/*.js', 'qa/**/*.js'],
 },
 exec: {
 linkchecker:

50 | Chapter 5: Quality Assurance

http://gruntjs.com/plugins

3. See the grunt.option documentation to get started.

 { cmd: 'linkchecker http://localhost:3000' }
 },
 });

 // register tasks
 grunt.registerTask('default', ['cafemocha','jshint','exec']);
};

In the section “load plugins,” we’re specifying which plugins we’ll be using, which are
the same plugins we installed via npm. Because I don’t like to have to type loadNpm
Tasks over and over again (and once you start relying on Grunt more, believe me, you
will be adding more plugins!), I choose to put them all in an array and loop over them
with forEach.

In the “configure plugins” section, we have to do a little work to get each plugin to work
properly. For the cafemocha plugin (which will run our logic and cross-browser
tests), we have to tell it where our tests are. We’ve put all of our tests in the qa
subdirectory, and named them with a tests- prefix. Note that we have to specify the tdd
interface. If you were mixing TDD and BDD, you would have to have some way to
separate them. For example, you could use prefixes tests-tdd- and tests-bdd-.

For JSHint, we have to specify what JavaScript files should be linted. Be careful here!
Very often, dependencies won’t pass JSHint cleanly, or they will be using different JSHint
settings, and you’ll be inundated with JSHint errors for code that you didn’t write. In
particular, you want to make sure the node_modules directory isn’t included, as well as
any vendor directories. Currently, grunt-contrib-jshint doesn’t allow you to ex‐
clude files, only include them. So we have to specify all the files we want to include. I
generally break the files I want to include into two lists: the JavaScript that actually makes
up our application or website and the QA JavaScript. It all gets linted, but breaking it
up like this makes it a little easier to manager. Note that the wildcard /**/ means “all
files in all subdirectories.” Even though we don’t have a public/js directory yet, we will.
Implicitly excluded are the node_modules and public/vendor directories.

Lastly, we configure the grunt-exec plugin to run LinkChecker. Note that we’ve hard‐
coded this plugin to use port 3000; this might be a good thing to parameterize, which
I’ll leave as an exercise for the reader.3

Finally, we “register” the tasks: this puts individual plugins into named groups. A spe‐
cially named task, default, will be the task that gets run by default, if you just type grunt.

Automating with Grunt | 51

http://gruntjs.com/api/grunt.option

Now all you have to do is make sure a server is running (in the background or in a
different window), and run Grunt:

grunt

All of your tests will run (minus the page tests), all your code gets linted, and all your
links are checked! If any component fails, Grunt will terminate with an error message;
otherwise, it will report “Done, without errors.” There’s nothing quite so satisfying as
seeing that message, so get in the habit of running Grunt before you commit!

Continuous Integration (CI)
I’ll leave you with another extremely useful QA concept: continuous integration. It’s
especially important if you’re working on a team, but even if you’re working on your
own, it can provide some discipline that you might otherwise lack. Basically, CI runs
some or all of your tests every time you contribute code to a shared server. If all of the
tests pass, nothing usually happens (you may get an email saying “good job,” depending
on how your CI is configured). If, on the other hand, there are failures, the consequences
are usually more…public. Again, it depends on how you configure your CI, but usually
the entire team gets an email saying that you “broke the build.” If your integration master
is really sadistic, sometimes your boss is also on that email list! I’ve even known teams
that set up lights and sirens when someone breaks the build, and in one particularly
creative office, a tiny robotic foam missile launcher fired soft projectiles at the offending
developer! It’s a powerful incentive to run your QA toolchain before committing.

It’s beyond the scope of this book to cover installing and configuring a CI server, but a
chapter on QA wouldn’t be complete without mentioning it. Currently, the most popular
CI server for Node projects is Travis CI. Travis CI is a hosted solution, which can be
very appealing (it saves you from having to set up your own CI server). If you’re using
GitHub, it offers excellent integration support. Jenkins, a well-established CI server, now
has a Node plugin. JetBrains’s excellent TeamCity now offers Node plugins.

If you’re working on a project on your own, you may not get much benefit from a CI
server, but if you’re working on a team or an open source project, I highly recommend
looking into setting up CI for your project.

52 | Chapter 5: Quality Assurance

http://about.travis-ci.org/docs/user/getting-started
https://wiki.jenkins-ci.org/display/JENKINS/NodeJS+Plugin
http://www.jetbrains.com/teamcity

CHAPTER 6

The Request and Response Objects

When you’re building a web server with Express, most of what you’ll be doing starts
with a request object and ends with a response object. These two objects originate in
Node and are extended by Express. Before we delve into what these objects offer us, let’s
establish a little background on how a client (a browser, usually) requests a page from
a server, and how that page is returned.

The Parts of a URL

Protocol
The protocol determines how the request will be transmitted. We will be dealing
exclusively with http and https. Other common protocols include file and ftp.

Host
The host identifies the server. Servers on your computer (localhost) or a local net‐
work may simply be one word, or it may be a numeric IP address. On the Internet,
the host will end in a top-level domain (TLD) like .com or .net. Additionally, there
may be subdomains, which prefix the hostname. www is a very common subdo‐
main, though it can be anything. Subdomains are optional.

53

1. Ports 0-1023 are “well-known ports.”

Port
Each server has a collection of numbered ports. Some port numbers are “special,”
like 80 and 443. If you omit the port, port 80 is assumed for HTTP and 443 for
HTTPS. In general, if you aren’t using port 80 or 443, you should use a port number
greater than 1023.1 It’s very common to use easy-to-remember port numbers like
3000, 8080, and 8088.

Path
The path is generally the first part of the URL that your app cares about (it is possible
to make decisions based on protocol, host, and port, but it’s not good practice). The
path should be used to uniquely identify pages or other resources in your app.

Querystring
The querystring is an optional collection of name/value pairs. The querystring
starts with a question mark (?), and name/value pairs are separated by ampersands
(&). Both names and values should be URL encoded. JavaScript provides a built-in
function to do that: encodeURIComponent. For example, spaces will be replaced with
plus signs (+). Other special characters will be replaced with numeric character
references.

Fragment
The fragment (or hash) is not passed to the server at all: it is strictly for use by the
browser. It is becoming increasingly common for single-page applications or AJAX-
heavy applications to use the fragment to control the application. Originally, the
fragment’s sole purpose was to cause the browser to display a specific part of the
document, marked by an anchor tag ().

HTTP Request Methods
The HTTP protocol defines a collection of request methods (often referred to as HTTP
verbs) that a client uses to communicate with a server. Far and away, the most common
methods are GET and POST.

When you type a URL into a browser (or click a link), the browser issues an HTTP GET
request to the server. The important information passed to the server is the URL path
and querystring. The combination of method, path, and querystring is what your app
uses to determine how to respond.

For a website, most of your pages will respond to GET requests. POST requests are usually
reserved for sending information back to the server (form processing, for example). It’s
quite common for POST requests to respond with the same HTML as the corresponding
GET request after the server has processed any information included in the request (like

54 | Chapter 6: The Request and Response Objects

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

a form). Browsers will exclusively use the GET and POST methods when communicating
with your server (if they’re not using AJAX).

Web services, on the other hand, often get more creative with the HTTP methods used.
For example, there’s an HTTP method called DELETE that is useful for, well, an API call
that deletes things.

With Node and Express, you are fully in charge of what methods you respond to (though
some of the more esoteric ones are not very well supported). In Express, you’ll usually
be writing handlers for specific methods.

Request Headers
The URL isn’t the only thing that’s passed to the server when you navigate to a page.
Your browser is sending a lot of “invisible” information every time you visit a website.
I’m not talking about spooky personal information (though if your browser is infected
by malware, that can happen). The browser will tell the server what language it prefers
to receive the page in (for example, if you download Chrome in Spain, it will request
the Spanish version of pages you visit, if they exist). It will also send information about
the “user agent” (the browser, operating system, and hardware) and other bits of infor‐
mation. All this information is sent as a request header, which is made available to you
through the request object’s headers property. If you’re curious to see the information
your browser is sending, you can create a very simple Express route to display that
information:

app.get('/headers', function(req,res){
 res.set('Content-Type','text/plain');
 var s = '';
 for(var name in req.headers) s += name + ': ' + req.headers[name] + '\n';
 res.send(s);
});

Response Headers
Just as your browser sends hidden information to the server in the form of request
headers, when the server responds, it also sends information back that is not necessarily
rendered or displayed by the browser. The information typically included in response
headers is metadata and server information. We’ve already seen the Content-Type
header, which tells the browser what kind of content is being transmitted (HTML, an
image, CSS, JavaScript, etc.). Note that the browser will respect the Content-Type header
regardless of what the URL path is. So you could serve HTML from a path of /image.jpg
or an image from a path of /text.html. (There’s no legitimate reason to do this; it’s just
important to understand that paths are abstract, and the browser uses Content-Type to
determine how to render content.) In addition to Content-Type, headers can indicate
whether the response is compressed and what kind of encoding it’s using. Response

Request Headers | 55

headers can also contain hints for the browser about how long it can cache the resource.
This is an important consideration for optimizing your website, and we’ll be discussing
that in detail in Chapter 16. It is also common for response headers to contain some
information about the server, indicating what type of server it is, and sometimes even
details about the operating system. The downside about returning server information
is that it gives hackers a starting point to compromise your site. Extremely security-
conscious servers often omit this information, or even provide false information.
Disabling Express’s default X-Powered-By header is easy:

app.disable('x-powered-by');

If you want to see the response headers, they can be found in your browser’s developer
tools. To see the response headers in Chrome, for example:

1. Open the JavaScript console.
2. Click the Network tab.
3. Reload the page.
4. Pick the HTML from the list of requests (it will be the first one).
5. Click the Headers tab; you will see all response headers.

Internet Media Types
The Content-Type header is critically important: without it, the client would have to
painfully guess how to render the content. The format of the Content-Type header is
an Internet media type, which consists of a type, subtype, and optional parameters. For
example, text/html; charset=UTF-8 specifies a type of “text,” a subtype of “html,” and
a character encoding of UTF-8. The Internet Assigned Numbers Authority maintains
an official list of Internet media types. Often, you will hear “content type,” “Internet
media type,” and “MIME type” used interchangeably. MIME (Multipurpose Internet
Mail Extensions) was a precursor of Internet media types and, for the most part, is
equivalent.

Request Body
In addition to the request headers, a request can have a body (just like the body of a
response is the actual content that’s being returned). Normal GET requests don’t have
bodies, but POST requests usually do. The most common media type for POST bodies is
application/x-www-form-urlencoded, which is simply encoded name/value pairs
separated by ampersands (essentially the same format as a querystring). If the POST
needs to support file uploads, the media type is multipart/form-data, which is a more
complicated format. Lastly, AJAX requests can use application/json for the body.

56 | Chapter 6: The Request and Response Objects

http://www.iana.org/assignments/media-types/media-types.xhtml

Parameters
The word “parameters” can mean a lot of things, and is often a source of confusion. For
any request, parameters can come from the querystring, the session (requiring cookies;
see Chapter 9), the request body, or the named routing parameters (which we’ll learn
more about in Chapter 14). In Node applications, the param method of the request object
munges all of these parameters together. For this reason, I encourage you to avoid it.
This commonly causes problems when a parameter is set to one thing in the querystring
and another one in the POST body or the session: which value wins? It can produce
maddening bugs. PHP is largely to blame for this confusion: in an effort to be “conve‐
nient,” it munged all of these parameters into a variable called $_REQUEST, and for some
reason, people have thought it was a good idea ever since. We will learn about dedicated
properties that hold the various types of parameters, and I feel that that is a much less
confusing approach.

The Request Object
The request object (which is normally passed to a callback, meaning you can name it
whatever you want: it is common to name it req or request) starts its life as an instance
of http.IncomingMessage, a core Node object. Express adds additional functionality.
Let’s look at the most useful properties and methods of the request object (all of these
methods are added by Express, except for req.headers and req.url, which originate
in Node):
req.params

An array containing the named route parameters. We’ll learn more about this in
Chapter 14.

req.param(name)

Returns the named route parameter, or GET or POST parameters. I recommend
avoiding this method.

req.query

An object containing querystring parameters (sometimes called GET parameters)
as name/value pairs.

req.body

An object containing POST parameters. It is so named because POST parameters are
passed in the body of the REQUEST, not in the URL like querystring parameters. To
make req.body available, you’ll need middleware that can parse the body content
type, which we will learn about in Chapter 10.

Parameters | 57

req.route

Information about the currently matched route. Primarily useful for route
debugging.

req.cookies/req.signedCookies
Objects containing containing cookie values passed from the client. See Chapter 9.

req.headers

The request headers received from the client.

req.accepts([types])

A convenience method to determine whether the client accepts a given type or types
(optional types can be a single MIME type, such as application/json, a comma-
delimited list, or an array). This method is of primary interest to those writing public
APIs; it is assumed that browsers will always accept HTML by default.

req.ip

The IP address of the client.

req.path

The request path (without protocol, host, port, or querystring).

req.host

A convenience method that returns the hostname reported by the client. This in‐
formation can be spoofed and should not be used for security purposes.

req.xhr

A convenience property that returns true if the request originated from an AJAX
call.

req.protocol

The protocol used in making this request (for our purposes, it will either be http
or https).

req.secure

A convenience property that returns true if the connection is secure. Equivalent
to req.protocol==='https'.

req.url/req.originalUrl
A bit of a misnomer, these properties return the path and querystring (they do not
include protocol, host, or port). req.url can be rewritten for internal routing
purposes, but req.originalUrl is designed to remain the original request and
querystring.

req.acceptedLanguages

A convenience method that returns an array of the (human) languages the client
prefers, in order. This information is parsed from the request header.

58 | Chapter 6: The Request and Response Objects

The Response Object
The response object (which is normally passed to a callback, meaning you can name it
whatever you want: it is common to name it res, resp, or response) starts its life as an
instance of http.ServerResponse, a core Node object. Express adds additional func‐
tionality. Let’s look at the most useful properties and methods of the response object (all
of these are added by Express):
res.status(code)

Sets the HTTP status code. Express defaults to 200 (OK), so you will have to use
this method to return a status of 404 (Not Found) or 500 (Server Error), or any
other status code you wish to use. For redirects (status codes 301, 302, 303, and
307), there is a method redirect, which is preferable.

res.set(name, value)

Sets a response header. This is not something you will normally be doing manually.

res.cookie(name, value, [options]), res.clearCookie(name, [options])
Sets or clears cookies that will be stored on the client. This requires some middle‐
ware support; see Chapter 9.

res.redirect([status], url)

Redirects the browser. The default redirect code is 302 (Found). In general, you
should minimize redirection unless you are permanently moving a page, in which
case you should use the code 301 (Moved Permanently).

res.send(body), res.send(status, body)
Sends a response to the client, with an optional status code. Express defaults to a
content type of text/html, so if you want to change it to text/plain (for example),
you’ll have to call res.set('Content-Type', 'text/plain\') before calling
res.send. If body is an object or an array, the response is sent as JSON instead (with
the content type being set appropriately), though if you want to send JSON, I rec‐
ommend doing so explicitly by calling res.json instead.

res.json(json), res.json(status, json)
Sends JSON to the client with an optional status code.

res.jsonp(json), res.jsonp(status, json)
Sends JSONP to the client with an optional status code.

res.type(type)

A convenience method to set the Content-Type header. Essentially equivalent to
res.set('Content-Type', type), except that it will also attempt to map file ex‐
tensions to an Internet media type if you provide a string without a slash in it. For
example, res.type('txt') will result in a Content-Type of text/plain. There are
areas where this functionality could be useful (for example, automatically serving

The Response Object | 59

disparate multimedia files), but in general, you should avoid it in favor of explicitly
setting the correct Internet media type.

res.format(object)

This method allows you to send different content depending on the Accept request
header. This is of primary use in APIs, and we will discuss this more in Chap‐
ter 15. Here’s a very simple example: res.format({'text/plain': 'hi there',
'text/html': 'hi there'}).

res.attachment([filename]), res.download(path, [filename], [callback])
Both of these methods set a response header called Content-Disposition to at
tachment; this will prompt the browser to download the content instead of dis‐
playing it in a browser. You may specify filename as a hint to the browser. With
res.download, you can specify the file to download, whereas res.attachment just
sets the header; you still have to send content to the client.

res.sendFile(path, [options], [callback])

This method will read a file specified by path and send its contents to the client.
There should be little need for this method; it’s easier to use the static middleware,
and put files you want available to the client in the public directory. However, if you
want to have a different resource served from the same URL depending on some
condition, this method could come in handy.

res.links(links)

Sets the Links response header. This is a specialized header that has little use in
most applications.

res.locals, res.render(view, [locals], callback)
res.locals is an object containing default context for rendering views. res.ren
der will render a view using the configured templating engine (the locals param‐
eter to res.render shouldn’t be confused with res.locals: it will override the
context in res.locals, but context not overridden will still be available). Note that
res.render will default to a response code of 200; use res.status to specify a
different response code. Rendering views will be covered in depth in Chapter 7.

Getting More Information
Because of JavaScript’s prototypal inheritance, knowing exactly what you’re dealing with
can be challenging sometimes. Node provides you with objects that Express extends,
and packages that you add may also extend those. Figuring out exactly what’s available
to you can be challenging sometimes. In general, I would recommend working
backward: if you’re looking for some functionality, first check the Express API docu‐
mentation. The Express API is pretty complete, and chances are, you’ll find what you’re
looking for there.

60 | Chapter 6: The Request and Response Objects

http://expressjs.com/api.html
http://expressjs.com/api.html

If you need information that isn’t documented, sometimes you have to dive into the
Express source. I encourage you to do this! You’ll probably find that it’s a lot less in‐
timidating than you might think. Here’s a quick roadmap to where you’ll find things in
the Express source:
lib/application.js

The main Express interface. If you want to understand how middleware is linked
in, or how views are rendered, this is the place to look.

lib/express.js
This is a relatively short shell that extends Connect with the functionality in lib/
application.js, and returns a function that can be used with http.createServer to
actually run an Express app.

lib/request.js
Extends Node’s http.IncomingMessage object to provide a robust request object.
For information about all the request object properties and methods, this is where
to look.

lib/response.js
Extends Node’s http.ServerResponse object to provide the response object. For
information about response object properties and methods, this is where to look.

lib/router/route.js
Provides basic routing support. While routing is central to your app, this file is less
than 200 lines long; you’ll find that it’s quite simple and elegant.

As you dig into the Express source code, you’ll probably want to refer to the Node
documentation, especially the section on the HTTP module.

Boiling It Down
This chapter has tried to provide an overview of the request and response objects, which
are the meat and potatoes of an Express application. However, the chances are that you
will be using a small subset of this functionality most of the time. So let’s break it down
by functionality you’ll be using most frequently.

Rendering Content
When you’re rendering content, you’ll be using res.render most often, which renders
views within layouts, providing maximum value. Occasionally, you may wish to write
a quick test page, so you might use res.send if you just want a test page. You may use
req.query to get querystring values, req.session to get session values, or req.cook
ie/req.signedCookies to get cookies. Examples 6-1 to 6-8 demonstrate common con‐
tent rendering tasks:

Boiling It Down | 61

https://github.com/visionmedia/express/tree/master
http://nodejs.org/api/http.html
http://nodejs.org/api/http.html

Example 6-1. Basic usage
// basic usage
app.get('/about', function(req, res){
 res.render('about');
});

Example 6-2. Response codes other than 200
app.get('/error', function(req, res){
 res.status(500);
 res.render('error');
});
// or on one line...
app.get('/error', function(req, res){
 res.status(500).render('error');
});

Example 6-3. Passing a context to a view, including querystring, cookie, and session
values
app.get('/greeting', function(req, res){
 res.render('about', {
 message: 'welcome',
 style: req.query.style,
 userid: req.cookie.userid,
 username: req.session.username,
 });
});

Example 6-4. Rendering a view without a layout
// the following layout doesn't have a layout file, so views/no-layout.handlebars
// must include all necessary HTML
app.get('/no-layout', function(req, res){
 res.render('no-layout', { layout: null });
});

Example 6-5. Rendering a view with a custom layout
// the layout file views/layouts/custom.handlebars will be used
app.get('/custom-layout', function(req, res){
 res.render('custom-layout', { layout: 'custom' });
});

62 | Chapter 6: The Request and Response Objects

Example 6-6. Rendering plaintext output
app.get('/test', function(req, res){
 res.type('text/plain');
 res.send('this is a test');
});

Example 6-7. Adding an error handler
// this should appear AFTER all of your routes
// note that even if you don't need the "next"
// function, it must be included for Express
// to recognize this as an error handler
app.use(function(err, req, res, next){
 console.error(err.stack);
 res.status(500).render('error');
});

Example 6-8. Adding a 404 handler
// this should appear AFTER all of your routes
app.use(function(req, res){
 res.status(404).render('not-found');
});

Processing Forms
When you’re processing forms, the information from the forms will usually be in
req.body (or occasionally in req.query). You may use req.xhr to determine if the
request was an AJAX request or a browser request (this will be covered in depth in
Chapter 8). See Examples 6-9 and 6-10.

Example 6-9. Basic form processing
// body-parser middleware must be linked in
app.post('/process-contact', function(req, res){
 console.log('Received contact from ' + req.body.name +
 ' <' + req.body.email + '>');
 // save to database....
 res.redirect(303, '/thank-you');
});

Example 6-10. More robust form processing
// body-parser middleware must be linked in
app.post('/process-contact', function(req, res){
 console.log('Received contact from ' + req.body.name +
 ' <' + req.body.email + '>');
 try {
 // save to database....

 return res.xhr ?

Boiling It Down | 63

 res.render({ success: true }) :
 res.redirect(303, '/thank-you');
 } catch(ex) {
 return res.xhr ?
 res.json({ error: 'Database error.' }) :
 res.redirect(303, '/database-error');
 }
});

Providing an API
When you’re providing an API, much like processing forms, the parameters will usually
be in req.query, though you can also use req.body. What’s different about APIs is that
you’ll usually be returning JSON, XML, or even plaintext, instead of HTML, and you’ll
often be using less common HTTP methods like PUT, POST, and DELETE. Providing an
API will be covered in Chapter 15. Examples 6-11 and 6-12 use the following “products”
array (which would normally be retrieved from a database):

var tours = [
 { id: 0, name: 'Hood River', price: 99.99 },
 { id: 1, name: 'Oregon Coast', price: 149.95 },
];

The term “endpoint” is often used to describe a single function in an
API.

Example 6-11. Simple GET endpoint returning only JSON
app.get('/api/tours'), function(req, res){
 res.json(tours);
});

Example 6-12 uses the res.format method in Express to respond according to the
preferences of the client.

Example 6-12. GET endpoint that returns JSON, XML, or text
app.get('/api/tours', function(req, res){
 var toursXml = '<?xml version="1.0"?><tours>' +
 products.map(function(p){
 return '<tour price="' + p.price +
 '" id="' + p.id + '">' + p.name + '</tour>';
 }).join('') + '</tours>'';
 var toursText = tours.map(function(p){
 return p.id + ': ' + p.name + ' (' + p.price + ')';
 }).join('\n');
 res.format({

64 | Chapter 6: The Request and Response Objects

 'application/json': function(){
 res.json(tours);
 },
 'application/xml': function(){
 res.type('application/xml');
 res.send(toursXml);
 },
 'text/xml': function(){
 res.type('text/xml');
 res.send(toursXml);
 }
 'text/plain': function(){
 res.type('text/plain');
 res.send(toursXml);
 }
 });
});

In Example 6-13, the PUT endpoint updates a product and returns JSON. Parameters
are passed in the querystring (the ":id" in the route string tells Express to add an id
property to req.params).

Example 6-13. PUT endpoint for updating
// API that updates a tour and returns JSON; params are passed using querystring
app.put('/api/tour/:id', function(req, res){
 var p = tours.some(function(p){ return p.id == req.params.id });
 if(p) {
 if(req.query.name) p.name = req.query.name;
 if(req.query.price) p.price = req.query.price;
 res.json({success: true});
 } else {
 res.json({error: 'No such tour exists.'});
 }
});

Finally, Example 6-14 shows a DEL endpoint.

Example 6-14. DEL endpoint for deleting
// API that deletes a product
api.del('/api/tour/:id', function(req, res){
 var i;
 for(var i=tours.length-1; i>=0; i--)
 if(tours[i].id == req.params.id) break;
 if(i>=0) {
 tours.splice(i, 1);
 res.json({success: true});
 } else {
 res.json({error: 'No such tour exists.'});
 }
});

Boiling It Down | 65

CHAPTER 7

Templating with Handlebars

If you aren’t using templating—or if you don’t know what templating is—it’s the single
most important thing you’re going to get out of this book. If you’re coming from a PHP
background, you may wonder what the fuss is all about: PHP is one of the first languages
that could really be called a templating language. Almost all major languages that have
been adapted for the Web have included some kind of templating support. What is
different today is that the “templating engine” is being decoupled from the language.
Case in point is Mustache: an extremely popular language-agnostic templating engine.

So what is templating? Let’s start with what templating isn’t by considering the most
obvious and straightforward way to generate one language from another (specifically,
we’ll generate some HTML with JavaScript):

document.write('<h1>Please Don\'t Do This</h1>');
document.write('<p>document.write is naughty,\n');
document.write('and should be avoided at all costs.</p>');
document.write('<p>Today\'s date is ' + new Date() + '.</p>');

Perhaps the only reason this seems “obvious” is that it’s the way programming has always
been taught:

10 PRINT "Hello world!"

In imperative languages, we’re used to saying, “Do this, then do that, then do something
else.” For some things, this approach works fine. If you have 500 lines of JavaScript to
perform a complicated calculation that results in a single number, and every step is
dependent on the previous step, there’s no harm in it. What if it’s the other way around,
though? You have 500 lines of HTML and 3 lines of JavaScript. Does it make sense to
write document.write 500 times? Not at all.

Really, the problem boils down to this: switching context is problematic. If you’re writing
lots of JavaScript, it’s inconvenient and confusing to be mixing in HTML. The other way
isn’t so bad: we’re quite used to writing JavaScript in <script> blocks, but hopefully you

67

1. To paraphrase my friend and mentor, Paul Inman.

see the difference: there’s still a context switch, and you’re either writing HTML or you’re
in a <script> block writing JavaScript. Having JavaScript emit HTML is fraught with
problems:

• You have to constantly worry about what characters need to be escaped, and how
to do that.

• Using JavaScript to generate HTML that itself includes JavaScript quickly leads to
madness.

• You usually lose the nice syntax highlighting and other handy language-specific
features your editor has.

• It can be much harder to spot malformed HTML.
• It’s hard to visually parse.
• It can make it harder for other people to understand your code.

Templating solves the problem by allowing you to write in the target language, while at
the same time providing the ability to insert dynamic data. Consider the previous ex‐
ample rewritten as a Mustache template:

<h1>Much Better</h1>
<p>No document.write here!</p>
<p>Today's date is {{today}}.</p>

Now all we have to do is provide a value for {{today}}, and that’s at the heart of tem‐
plating languages.

There Are No Absolute Rules Except This One1

I’m not suggesting that you should never write HTML in JavaScript: only that you should
avoid it whenever possible. In particular, it’s slightly more palatable in frontend code,
thanks to libraries like jQuery. For example, this would pass with little comment
from me:

$('#error').html('Something very bad happened!');

However, if that eventually mutated into this:

$('#error').html('<div class="error"><h3>Error</h3>' +
 '<p>Something <a href="/error-detail/' + errorNumber
 +'">very bad ' +
 'happened. Try again<a>, or ' +
 'contact support.</p></div>');

68 | Chapter 7: Templating with Handlebars

I might suggest it’s time to employ a template. The point is, I suggest you use your best
judgment when deciding where to draw the line between HTML in strings and using
templates. I would err on the side of templates, however, and avoid generating HTML
with JavaScript except for the simplest cases.

Choosing a Template Engine
In the Node world, you have many templating engines to choose from, so how to pick?
It’s a complicated question, and very much depends on your needs. Here are some
criteria to consider, though:
Performance

Clearly, you want your templating engine to be as fast as possible. It’s not something
you want slowing down your website.

Client, server, or both?
Most, but not all, templating engines are available on both the server and client
sides. If you need to use templates in both realms (and you will), I recommend you
pick something that is equally capable in either capacity.

Abstraction
Do you want something familiar (like normal HTML with curly brackets thrown
in, for example), or do you secretly hate HTML and would love something that
saves you from all those angle brackets? Templating (especially server-side tem‐
plating) gives you some choices here.

These are just some of the more prominent criteria in selecting a templating lan‐
guage. If you want a more detailed discussion on this topic, I highly recommend Veena
Basavaraj’s blog post about her selection criteria when choosing a templating language
for LinkedIn.

LinkedIn’s choice was Dust, but Handlebars was also in the winner’s circle, which is my
preferred template engine, and the one we’ll be using in this book.

Express allows you to use any templating engine you wish, so if Handlebars is not to
your liking, you’ll find it’s very easy to switch it out. If you want to explore your options,
you can use this fun and useful Template-Engine-Chooser.

Jade: A Different Approach
Where most templating engines take a very HTML-centric approach, Jade stands out
by abstracting the details of HTML away from you. It is also worth noting that Jade is
the brainchild of TJ Holowaychuk, the same person who brought us Express. It should
come as no surprise, then, that Jade integration with Express is very good. The approach
that Jade takes is very noble: at its core is the assertion that HTML is a fussy and tedious

Choosing a Template Engine | 69

http://bit.ly/templating_selection_criteria
http://bit.ly/templating_selection_criteria
http://akdubya.github.io/dustjs
http://handlebarsjs.com
http://garann.github.io/template-chooser

language to write by hand. Let’s take a look at what a Jade template looks like, along with
the HTML it will output (taken from the Jade home page, and modified slightly to fit
the book format):

doctype html <!DOCTYPE html>
html(lang="en") <html lang="en">
 head <head>
 title= pageTitle <title>Jade Demo</title>
 script. <script>
 if (foo) { if (foo) {
 bar(1 + 5) bar(1 + 5)
 } }
 body </script>
 <body>
 h1 Jade <h1>Jade</h1>
 #container <div id="container">
 if youAreUsingJade
 p You are amazing <p>You are amazing</p>
 else
 p Get on it!
 p. <p>
 Jade is a terse and Jade is a terse and
 simple templating simple templating
 language with a language with a
 strong focus on strong focus on
 performance and performance and
 powerful features. powerful features.
 </p>
 </body>
 </html>

Jade certainly represents a lot less typing: no more angle brackets or closing tags. Instead
it relies on indentation and some common-sense rules, making it easier to say what you
mean. Jade has an additional advantage: theoretically, when HTML itself changes, you
can simply get Jade to retarget the newest version of HTML, allowing you to “future
proof ” your content.

As much as I admire the Jade philosophy and the elegance of its execution, I’ve found
that I don’t want the details of HTML abstracted away from me. As a web developer,
HTML is at the heart of everything I do, and if the price is wearing out the angle bracket
keys on my keyboard, then so be it. A lot of frontend developers I talk to feel the same,
so maybe the world just isn’t ready for Jade….

Here’s where we’ll part ways with Jade; you won’t be seeing it in this book. However, if
the abstraction appeals to you, you will certainly have no problems using Jade with
Express, and there are plenty of resources to help you do so.

70 | Chapter 7: Templating with Handlebars

http://jade-lang.com

Handlebars Basics
Handlebars is an extension of Mustache, another popular templating engine. I recom‐
mend Handlebars for its easy JavaScript integration (both frontend and backend) and
familiar syntax. For me, it strikes all the right balances and is what we’ll be focusing on
in this book. The concepts we’re discussing are broadly applicable to other templating
engines, though, so you will be well prepared to try different templating engines if
Handlebars doesn’t strike your fancy.

The key to understanding templating is understanding the concept of context. When
you render a template, you pass the templating engine an object called the context ob‐
ject, and this is what allows replacements to work.

For example, if my context object is { name: 'Buttercup' }, and my template is
<p>Hello, {{name}}!</p>, {{name}} will be replaced with Buttercup. What if you
want to pass HTML to the template? For example, if our context was instead { name:
'Buttercup' }, using the previous template will result in <p>Hello,
Buttercup</p>, which is probably not what you’re looking for. To
solve this problem, simply use three curly brackets instead of two: {{{name}}}.

While we’ve already established that we should avoid writing HTML
in JavaScript, the ability to turn off HTML escaping with triple curly
brackets has some important uses. For example, if you were build‐
ing a CMS with WYSIWYG editors, you would probably want to be
able to pass HTML to your views. Also, the ability to render properties
from the context without HTML escaping is important for layouts
and sections, which we’ll learn about shortly.

In Figure 7-1, we see how the Handlebars engine uses the context (represented by an
oval) combined with the template to render HTML.

Figure 7-1. Rendering HTML with Handlebars

Handlebars Basics | 71

Comments
Comments in Handlebars look like {{! comment goes here }}. It’s important to un‐
derstand the distinction between Handlebars comments and HTML comments. Con‐
sider the following template:

{{! super-secret comment }}
<!-- not-so-secret comment -->

Assuming this is a server-side template, the super-secret comment will never be sent to
the browser, whereas the not-so-secret comment will be visible if the user inspects the
HTML source. You should prefer Handlebars comments for anything that exposes im‐
plementation details, or anything else you don’t want exposed.

Blocks
Things start to get more complicated when you consider blocks. Blocks provide flow
control, conditional execution, and extensibility. Consider the following context object:

{
 currency: {
 name: 'United States dollars',
 abbrev: 'USD',
 },
 tours: [
 { name: 'Hood River', price: '$99.95' },
 { name: 'Oregon Coast', price, '$159.95' },
],
 specialsUrl: '/january-specials',
 currencies: ['USD', 'GBP', 'BTC'],
}

Now let’s examine a template we can pass that context to:

 {{#each tours}}
 {{! I'm in a new block...and the context has changed }}

 {{name}} - {{price}}
 {{#if ../currencies}}
 ({{../../currency.abbrev}})
 {{/if}}

 {{/each}}

{{#unless currencies}}
 <p>All prices in {{currency.name}}.</p>
{{/unless}}
{{#if specialsUrl}}
 {{! I'm in a new block...but the context hasn't changed (sortof) }}
 <p>Check out our specials!</p>
{{else}}

72 | Chapter 7: Templating with Handlebars

 <p>Please check back often for specials.</p>
{{/if}}
<p>
 {{#each currencies}}
 {{.}}
 {{else}}
 Unfortunately, we currently only accept {{currency.name}}.
 {{/each}}
</p>

There’s a lot going on in this template, so let’s break it down. It starts off with the each
helper, which allows us to iterate over an array. What’s important to understand is that
between {{#each tours}} and {{/each tours}}, the context changes. On the first
pass, it changes to { name: 'Hood River', price: '$99.95' }, and on the second
pass, the context is { name: 'Oregon Coast', price: '$159.95' }. So within that
block, we can refer to {{name}} and {{price}}. However, if we want to access the
currency object, we have to use ../ to access the parent context.

If a property of the context is itself an object, we can access its properties as normal with
a period, such as {{currency.name}}.

The if helper is special, and slightly confusing. In Handlebars, any block will change
the context, so within an if block, there is a new context...which happens to be a du‐
plicate of the parent context. In other words, inside an if or else block, the context is
the same as the parent context. This is normally a completely transparent implemen‐
tation detail, but it becomes necessary to understand when you’re using if blocks inside
an each loop. In the loop {{#each tours}}, we can access the parent context with ../.
However, in our {{#if ../currencies}} block, we have entered a new context…so to
get at the currency object, we have to use ../../. The first ../ gets to the product
context, and the second one gets back to the outermost context. This produces a lot of
confusion, and one simple expedient is to avoid using if blocks within each blocks.

Both if and each have an optional else block (with each, if there are no elements in
the array, the else block will execute). We’ve also used the unless helper, which is
essentially the opposite of the if helper: it executes only if the argument is false.

The last thing to note about this template is the use of {{.}} in the {{#each curren
cies}} block. {{.}} simply refers to the current context; in this case, the current context
is simply a string in an array that we want to print out.

Accessing the current context with a lone period has another use: it
can distinguish helpers (which we’ll learn about soon) from proper‐
ties of the current context. For example, if you have a helper called
foo and a property in the current context called foo, {{foo}} refers
to the helper, and {{./foo}} refers to the property.

Handlebars Basics | 73

Server-Side Templates
Server-side templates allow you to render HTML before it’s sent to the client. Unlike
client-side templating, where the templates are available for the curious user who knows
how to view HTML source, your users will never see your server-side template, or the
context objects used to generate the final HTML.

Server-side templates, in addition to hiding your implementation details, support tem‐
plate caching, which is important for performance. The templating engine will cache
compiled templates (only recompiling and recaching when the template itself changes),
which will improve the performance of templated views. By default, view caching is
disabled in development mode and enabled in production mode. If you want to explic‐
itly enable view caching, you can do so thusly: app.set('view cache', true);.

Out of the box, Express supports Jade, EJS, and JSHTML. We’ve already discussed Jade,
and I find little to recommend EJS or JSHTML (neither go far enough, syntactically, for
my taste). So we’ll need to add a node package that provides Handlebars support for
Express:

npm install --save express3-handlebars

Then we’ll link it into Express:

var handlebars = require('express3-handlebars')
 .create({ defaultLayout: 'main' });
app.engine('handlebars', handlebars.engine);
app.set('view engine', 'handlebars');

express3-handlebars expects Handlebars templates to have
the .handlebars extension. I’ve grown used to this, but if it’s too wor‐
dy for you, you can change the extension to the also common .hbs
when you create the express3-handlebars instance:
require('express3-handlebars').create({ extname: '.hbs' }).

Views and Layouts
A view usually represents an individual page on your website (though it could represent
an AJAX-loaded portion of a page, or an email, or anything else for that matter). By
default, Express looks for views in the views subdirectory. A layout is a special kind of
view—essentially, a template for templates. Layouts are essential because most (if not
all) of the pages on your site will have an almost identical layout. For example, they must
have an <html> element and a <title> element, they usually all load the same CSS files,
and so on. You don’t want to have to duplicate that code for every single page, which is
where layouts come in. Let’s look at a bare-bones layout file:

74 | Chapter 7: Templating with Handlebars

<!doctype>
<html>
<head>
 <title>Meadowlark Travel</title>
 <link rel="stylesheet" href="/css/main.css">
</head>
<body>
 {{{body}}}
</body>
</html>

Notice the text inside the <body> tag: {{{body}}}. That’s so the view engine knows where
to render the content of your view. It’s important to use three curly brackets instead of
two: our view is most likely to contain HTML, and we don’t want Handlebars trying to
escape it. Note that there’s no restriction on where you place the {{{body}}} field. For
example, if you were building a responsive layout in Bootstrap 3, you would probably
want to put your view inside a container <div>. Also, common page elements like
headers and footers usually live in the layout, not the view. Here’s an example:

<!-- ... -->
<body>
 <div class="container">
 <header><h1>Meadowlark Travel</h1></header>
 {{{body}}}
 <footer>© {{copyrightYear}} Meadowlark Travel</footer>
 </div>
</body>

In Figure 7-2, we see how the template engine combines the view, layout, and context.
The important thing that this diagram makes clear is the order of operations. The view
is rendered first, before the layout. At first, this may seem counterintuitive: the view is
being rendered inside the layout, so shouldn’t the layout be rendered first? While it could
technically be done this way, there are advantages to doing it in reverse. Particularly, it
allows the view itself to further customize the layout, which will come in handy when
we discuss sections.

Because of the order of operations, you can pass a property called
body into the view, and it will render correctly in the view. However,
when the layout is rendered, the value of body will be overwritten by
the rendered view.

Handlebars Basics | 75

Figure 7-2. Rendering a view with a layout

Using Layouts (or Not) in Express
Chances are, most (if not all) of your pages will use the same layout, so it doesn’t make
sense to keep specifying the layout every time we render a view. You’ll notice that when
we created the view engine, we specified the name of the default layout:

var handlebars = require('express3-handlebars')
 .create({ defaultLayout: 'main' });

By default, Express looks for views in the views subdirectory and layouts in views/
layouts. So if you have a view views/foo.handlebars, you can render it this way:

app.get('/foo', function(req, res){
 res.render('foo');
});

76 | Chapter 7: Templating with Handlebars

It will use views/layouts/main.handlebars as the layout. If you don’t want to use a layout
at all (meaning you’ll have to have all of the boilerplate in the view), you can specify
layout: null in the context object:

app.get('/foo', function(req, res){
 res.render('foo', { layout: null });
});

Or, if we want to use a different template, we can specify the template name:

app.get('/foo', function(req, res){
 res.render('foo', { layout: 'microsite' });
});

This will render the view with layout views/layouts/microsite.handlebars.

Keep in mind that the more templates you have, the more basic HTML layout you have
to maintain. On the other hand, if you have pages that are substantially different in
layout, it may be worth it: you have to find a balance that works for your projects.

Partials
Very often, you’ll have components that you want to reuse on different pages (often
called “widgets” in frontend circles). One way to achieve that with templates is to use
partials (so named because they don’t render a whole view or a whole page). Let’s imagine
we want a Current Weather component that displays the current weather conditions in
Portland, Bend, and Manzanita. We want this component to be reusable so we can easily
put it on whatever page we want, so we’ll use a partial. First, we create a partial file,
views/partials/weather.handlebars:

<div class="weatherWidget">
 {{#each partials.weather.locations}}
 <div class="location">
 <h3>{{name}}</h3>

 {{weather}}, {{temp}}

 </div>
 {{/each}}
 <small>Source: Weather
 Underground</small>
</div>

Note that we namespace our context by starting with partials.weather: since we want
to be able to use the partial on any page, it’s not practical to pass the context in for every
view, so instead we use res.locals (which is available to every view). But because we
don’t want to interfere with the context specified by individual views, we put all partial
context in the partials object.

Handlebars Basics | 77

In Chapter 19, we’ll see how to get current weather information from the free Weather
Underground API. For now, we’re just going to use dummy data. In our application file,
we’ll create a function to get current weather data:

function getWeatherData(){
 return {
 locations: [
 {
 name: 'Portland',
 forecastUrl: 'http://www.wunderground.com/US/OR/Portland.html',
 iconUrl: 'http://icons-ak.wxug.com/i/c/k/cloudy.gif',
 weather: 'Overcast',
 temp: '54.1 F (12.3 C)',
 },
 {
 name: 'Bend',
 forecastUrl: 'http://www.wunderground.com/US/OR/Bend.html',
 iconUrl: 'http://icons-ak.wxug.com/i/c/k/partlycloudy.gif',
 weather: 'Partly Cloudy',
 temp: '55.0 F (12.8 C)',
 },
 {
 name: 'Manzanita',
 forecastUrl: 'http://www.wunderground.com/US/OR/Manzanita.html',
 iconUrl: 'http://icons-ak.wxug.com/i/c/k/rain.gif',
 weather: 'Light Rain',
 temp: '55.0 F (12.8 C)',
 },
],
 };
}

Now we’ll create a middleware to inject this data into the res.locals.partials object
(we’ll learn more about middleware in Chapter 10):

app.use(function(req, res, next){
 if(!res.locals.partials) res.locals.partials = {};
 res.locals.partials.weather = getWeatherData();
 next();
});

Now that everything’s set up, all we have to do is use the partial in a view. For example,
to put our widget on the home page, edit views/home.handlebars:

<h2>Welcome to Meadowlark Travel!</h2>
{{> weather}}

The {{> partial_name}} syntax is how you include a partial in a view: express3-
handlebars will know to look in views/partials for a view called partial_name.handle‐
bars (or weather.handlebars, in our example).

78 | Chapter 7: Templating with Handlebars

express3-handlebars supports subdirectories, so if you have a lot of
partials, you can organize them. For example, if you have some so‐
cial media partials, you could put them in the views/partials/social
directory and include them using {{> social/facebook}}, {{> so
cial/twitter}}, etc.

Sections
One technique I’m borrowing from Microsoft’s excellent Razor template engine is the
idea of sections. Layouts work well if all of your view fits neatly within a single element
in your layout, but what happens when your view needs to inject itself into different
parts of your layout? A common example of this is a view needing to add something to
the <head> element, or to insert a <script> that uses jQuery (meaning it needs to come
after jQuery is referenced, which is sometimes the very last thing in the layout, for
performance reasons).

Neither Handlebars nor express3-handlebars has a built-in way to do this. Fortunately,
Handlebars helpers make this really easy. When we instantiate the Handlebars object,
we’ll add a helper called section:

var handlebars = require('express3-handlebars').create({
 defaultLayout:'main',
 helpers: {
 section: function(name, options){
 if(!this._sections) this._sections = {};
 this._sections[name] = options.fn(this);
 return null;
 }
 }
});

Now we can use the section helper in a view. Let’s add a view (views/jquery-
test.handlebars) to add something to the <head> and a script that uses jQuery:

{{#section 'head'}}
 <!-- we want Google to ignore this page -->
 <meta name="robots" content="noindex">
{{/section}}

<h1>Test Page</h1>
<p>We're testing some jQuery stuff.</p>

{{#section 'jquery'}}
 <script>
 $('document').ready(function(){
 $('h1').html('jQuery Works');
 });
 </script>
{{/section}}

Handlebars Basics | 79

Now in our layout, we can place the sections just as we place {{{body}}}:

<!doctype html>
<html>
<head>
 <title>Meadowlark Travel</title>
 {{{_sections.head}}}
</head>
<body>
 {{{body}}}
 <script src="http://code.jquery.com/jquery-2.0.2.min.js"></script>
 {{{_sections.jquery}}}
</body>
</html>

Perfecting Your Templates
Your templates are at the heart of your website. A good template structure will save you
development time, promote consistency across your website, and reduce the number
of places that layout quirks can hide. To achieve these benefits, though, you must spend
some time crafting your templates carefully. Deciding how many templates you should
have is an art: generally, fewer is better, but there is a point of diminishing returns,
depending on the uniformity of your pages. Your templates are also your first line of
defense against cross-browser compatibility issues and valid HTML. They should be
lovingly crafted and maintained by someone who is well versed in frontend develop‐
ment. A great place to start—especially if you’re new—is HTML5 Boilerplate. In the
previous examples, we’ve been using a minimal HTML5 template to fit the book format,
but for our actual project, we’ll be using HTML5 Boilerplate.

Another popular place to start with your template are third-party themes. Sites like
Themeforest and WrapBootstrap have hundreds of ready-to-use HTML5 themes that
you can use as a starting place for your template. Using a third-party theme starts with
taking the primary file (usually index.html) and renaming it to main.handlebars (or
whatever you choose to call your layout file), and placing any resources (CSS, JavaScript,
images) in the public directory you use for static files. Then you’ll have to edit the
template file and figure out where you want to put the {{{body}}} expression. De‐
pending on the elements of your template, you may want to move some of them into
partials. A great example is a “hero” (a tall banner designed to grab the user’s attention.
If the hero appears on every page (probably a poor choice), you would leave the hero
in the template file. If it appears on only one page (usually the home page), then it would
go only in that view. If it appears on several—but not all—pages, then you might consider
putting it in a partial. The choice is yours, and herein lies the artistry of making a unique,
captivating website.

80 | Chapter 7: Templating with Handlebars

http://html5boilerplate.com
http://themeforest.net/category/site-templates
https://wrapbootstrap.com

Client-Side Handlebars
Client-side templating with handlebars is useful whenever you want to have dynamic
content. Of course our AJAX calls can return HTML fragments that we can just insert
into the DOM as-is, but client-side Handlebars allows us to receive the results of AJAX
calls as JSON data, and format it to fit our site. For that reason, it’s especially useful for
communicating with third-party APIs, which are going to return JSON, not HTML
formatted to fit your site.

Before we use Handlebars on the client side, we need to load Handlebars. We can either
do that by putting Handlebars in with our static content or using an already available
CDN. We’ll be using the latter approach in views/nursery-rhyme.handlebars:

{{#section 'head'}}
 <script src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.3.0/↵
handlebars.min.js"></script>
{{/section}}

Now we’ll need somewhere to put our templates. One way is to use an existing element
in our HTML, preferably a hidden one. You can accomplish this by putting your HTML
in <script> elements in the <head>. It seems odd at first, but it works quite well:

{{#section 'head'}}
 <script src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.3.0/↵
handlebars.min.js"></script>

 <script id="nurseryRhymeTemplate" type="text/x-handlebars-template">
 Marry had a little \{{animal}}, its \{{bodyPart}}
 was \{{adjective}} as \{{noun}}.
 </script>
{{/section}}

Note that we have to escape at least one of the curly brackets; otherwise, server-side view
processing would attempt to make the replacements instead.

Before we use the template, we have to compile it:

{{#section 'jquery'}}
 $(document).ready(function(){
 var nurseryRhymeTemplate = Handlebars.compile(
 $('#nurseryRhymeTemplate').html());
 });
{{/section}}

And we’ll need a place to put the rendered template. For testing purposes, we’ll add a
couple of buttons, one to render directly from our JavaScript, the other to render from
an AJAX call:

<div id="nurseryRhyme">Click a button....</div>
<hr>
<button id="btnNurseryRhyme">Generate nursery rhyme</button>
<button id="btnNurseryRhymeAjax">Generate nursery rhyme from AJAX</button>

Handlebars Basics | 81

And finally the code to render the template:

{{#section 'jquery'}}
 <script>
 $(document).ready(function(){

 var nurseryRhymeTemplate = Handlebars.compile(
 $('#nurseryRhymeTemplate').html());

 var $nurseryRhyme = $('#nurseryRhyme');

 $('#btnNurseryRhyme').on('click', function(evt){
 evt.preventDefault();
 $nurseryRhyme.html(nurseryRhymeTemplate({
 animal: 'basilisk',
 bodyPart: 'tail',
 adjective: 'sharp',
 noun: 'a needle'
 }));
 });

 $('#btnNurseryRhymeAjax').on('click', function(evt){
 evt.preventDefault();
 $.ajax('/data/nursery-rhyme', {
 success: function(data){
 $nurseryRhyme.html(
 nurseryRhymeTemplate(data))
 }
 });
 });

 });
 </script>
{{/section}}

And route handlers for our nursery rhyme page and our AJAX call:

app.get('/nursery-rhyme', function(req, res){
 res.render('nursery-rhyme');
});
app.get('/data/nursery-rhyme', function(req, res){
 res.json({
 animal: 'squirrel',
 bodyPart: 'tail',
 adjective: 'bushy',
 noun: 'heck',
 });
});

Essentially, Handlebars.compile takes in a template, and returns a function. That func‐
tion accepts a context object and returns a rendered string. So once we’ve compiled our
templates, we have reusable template renderers that we just call like functions.

82 | Chapter 7: Templating with Handlebars

Conclusion
We’ve seen how templating can make your code easier to write, read, and maintain.
Thanks to templates, we don’t have to painfully cobble together HTML from JavaScript
strings: we can write HTML in our favorite editor and use a compact and easy-to-read
templating language to make it dynamic.

Conclusion | 83

CHAPTER 8

Form Handling

The usual way you collect information from your users is to use HTML forms. Whether
you let the browser submit the form normally, use AJAX, or employ fancy frontend
controls, the underlying mechanism is generally still an HTML form. In this chapter,
we’ll discuss the different methods for handling forms, form validation, and file uploads.

Sending Client Data to the Server
Broadly speaking, your two options for sending client data to the server are the query‐
string and the request body. Normally, if you’re using the querystring, you’re making a
GET request, and if you’re using the request body, you’re using a POST request (the HTTP
protocol doesn’t prevent you from doing it the other way around, but there’s no point
to it: best to stick to standard practice here).

It is a common misperception that POST is secure and GET is not: in reality, both are
secure if you use HTTPS, and neither is secure if you don’t. If you’re not using HTTPS,
an intruder can look at the body data for a POST just as easily as the querystring of a GET
request. However, if you’re using GET requests, your users will see all of their input
(including hidden fields) in the querystring, which is ugly and messy. Also, browsers
often place limits on querystring length (there is no such restriction for body length).
For these reasons, I generally recommend using POST for form submission.

HTML Forms
This book is focusing on the server side, but it’s important to understand some basics
about constructing HTML forms. Here’s a simple example:

<form action="/process" method="POST">
 <input type="hidden" name="hush" val="hidden, but not secret!">
 <div>
 <label for="fieldColor">Your favorite color: </label>

85

1. Very old browsers can sometimes have issues with multiple forms, so if you’re aiming for maximum com‐
patability, you might want to consider using only one form per page.

 <input type="text" id="fieldColor" name="color">
 </div>
 <div>
 <button type="submit">Submit</button>
 </div>
</form>

Notice the method is specified explicitly as POST in the <form> tag; if you don’t do this,
it defaults to GET. The action attribute specifies the URL that will receive the form when
it’s posted. If you omit this field, the form will be submitted to the same URL the form
was loaded from. I recommend that you always provide a valid action, even if you’re
using AJAX (this is to prevent you from losing data; see Chapter 22 for more
information).

From the server’s perspective, the important attribute in the <input> fields are the name
attributes: that’s how the server identifies the field. It’s important to understand that the
name attribute is distinct from the id attribute, which should be used for styling and
frontend functionality only (it is not passed to the server).

Note the hidden field: this will not render in the user’s browser. However, you should
not use it for secret or sensitive information: all the user has to do is examine the page
source, and the hidden field will be exposed.

HTML does not restrict you from having multiple forms on the same page (this was an
unfortunate restriction of some early server frameworks; ASP, I’m looking at you).1 I
recommend keeping your forms logically consistent: a form should contain all the fields
you would like submitted (optional/empty fields are okay), and none that you don’t. If
you have two different actions on a page, use two different forms. An example of this
would be to have a form for a site search and a separate form for signing up for an email
newsletter. It is possible to use one large form and figure out what action to take based
on what button a person clicked, but it is a headache, and often not friendly for people
with disabilities (because of the way accessibility browsers render forms).

When the user submits the form, the /process URL will be invoked, and the field values
will be transmitted to the server in the request body.

Encoding
When the form is submitted (either by the browser or via AJAX), it must be encoded
somehow. If you don’t explicitly specify an encoding, it defaults to application/x-www-
form-urlencoded (this is just a lengthy media type for “URL encoded”). This is a basic,
easy-to-use encoding that’s supported by Express out of the box.

86 | Chapter 8: Form Handling

If you need to upload files, things get more complicated. There’s no easy way to send
files using URL encoding, so you’re forced to use the multipart/form-data encoding
type, which is and is not handled directly by Express (actually, Express still supports
this encoding, but it will be removed in the next version of Express, and its use is not
recommended: we will be discussing an alternative shortly).

Different Approaches to Form Handling
If you’re not using AJAX, your only option is to submit the form through the browser,
which will reload the page. However, how the page is reloaded is up to you. There are
two things to consider when processing forms: what path handles the form (the action),
and what response is sent to the browser.

If your form uses method="POST" (which is recommended), it is quite common to use
the same path for displaying the form and processing the form: these can be distin‐
guished because the former is a GET request, and the latter is a POST request. If you take
this approach, you can omit the action attribute on the form.

The other option is to use a separate path to process the form. For example, if your
contact page uses the path /contact, you might use the path /process-contact to process
the form (by specifying action="/process-contact"). If you use this approach, you
have the option of submitting the form via GET (which I do not recommend; it needlessly
exposes your form fields on the URL). This approach might be preferred if you have
multiple URLs that use the same submission mechanism (for example, you might have
an email sign-up box on multiple pages on the site).

Whatever path you use to process the form, you have to decide what response to send
back to the browser. Here are your options:
Direct HTML response

After processing the form, you can send HTML directly back to the browser (a view,
for example). This approach will produce a warning if the user attempts to reload
the page and can interfere with bookmarking and the Back button, and for these
reasons, it is not recommended.

302 redirect
While this is a common approach, it is a misuse of the original meaning of the 302
(Found) response code. HTTP 1.1 added the 303 (See Other) response code, which
is preferable. Unless you have reason to target browsers made before 1996, you
should use 303 instead.

303 redirect
The 303 (See Other) response code was added in HTTP 1.1 to address the misuse
of the 302 redirect. The HTTP specification specifically indicates that the browser
should use a GET request when following a 303 redirect, regardless of the original

Different Approaches to Form Handling | 87

method. This is the recommended method for responding to a form submission
request.

Since the recommendation is that you respond to a form submission with a 303 redirect,
the next question is “Where does the redirection point to?” The answer to that is up to
you. Here are the most common approaches:
Redirect to dedicated success/failure pages

This method requires that you dedicate URLs for appropriate success or failure
messages. For example, if the user signs up for promotional emails, but there was
a database error, you might want to redirect to /error/database. If a user’s email
address were invalid, you could redirect to /error/invalid-email, and if everything
was successful, you could redirect to /promo-email/thank-you. One of the advan‐
tages of this method is that it’s very analytics friendly: the number of visits to
your /promo-email/thank-you page should roughly correlate to the number of
people signing up for your promotional email. It is also very straightforward to
implement. It has some downsides, however. It does mean you have to allocate URLs
to every possibility, which means pages to design, write copy for, and maintain.
Another disadvantage is that the user experience can be suboptimal: users like to
be thanked, but then they have to navigate back to where they were or where they
want to go next. This is the approach we’ll be using for now: we’ll switch to using
“flash messages” (not to be confused with Adobe Flash) in Chapter 9.

Redirect to the original location with a flash message
For small forms that are scattered throughout your site (like an email sign-up, for
example), the best user experience is not to interrupt the user’s navigation flow. That
is, provide a way to submit an email address without leaving the page. One way to
do this, of course, is AJAX, but if you don’t want to use AJAX (or you want your
fallback mechanism to provide a good user experience), you can redirect back to
the page the user was originally on. The easiest way to do this is to use a hidden
field in the form that’s populated with the current URL. Since you want there to be
some feedback that the user’s submission was received, you can use flash messages.

Redirect to a new location with a flash message
Large forms generally have their own page, and it doesn’t make sense to stay on that
page once you’ve submitted the form. In this situation, you have to make an intel‐
ligent guess about where the user might want to go next and redirect accordingly.
For example, if you’re building an admin interface, and you have a form to create
a new vacation package, you might reasonably expect your user to want to go to the
admin page that lists all vacation packages after submitting the form. However, you
should still employ a flash message to give the user feedback about the result of the
submission.

If you are using AJAX, I recommend a dedicated URL. It’s tempting to start AJAX
handlers with a prefix (for example, /ajax/enter), but I discourage this approach: it’s

88 | Chapter 8: Form Handling

attaching implementation details to a URL. Also, as we’ll see shortly, your AJAX handler
should handle regular browser submissions as a failsafe.

Form Handling with Express
If you’re using GET for your form handling, your fields will be available on the req.query
object. For example, if you have an HTML input field with a name attribute of email,
its value will be passed to the handler as req.query.email. There’s really not much more
that needs to be said about this approach: it’s just that simple.

If you’re using POST (which I recommend), you’ll have to link in middleware to parse
the URL-encoded body. First, install the body-parser middleware (npm install --
save body-parser), then link it in:

app.use(require('body-parser')());

Ocassionally, you will see the use of express.bodyParser discour‐
aged, and for good reason. However, this issue went away with Ex‐
press 4.0, and the body-parser middleware is safe and recommended.

Once you’ve linked in body-parser, you’ll find that req.body now becomes available
for you, and that’s where all of your form fields will be made available. Note that
req.body doesn’t prevent you from using the querystring. Let’s go ahead and add a form
to Meadowlark Travel that lets the user sign up for a mailing list. For demonstration’s
sake, we’ll use the querystring, a hidden field, and visible fields in /views/newslet
ter.handlebars:

<h2>Sign up for our newsletter to receive news and specials!</h2>
<form class="form-horizontal" role="form"
 action="/process?form=newsletter" method="POST">
 <input type="hidden" name="_csrf" value="{{csrf}}">
 <div class="form-group">
 <label for="fieldName" class="col-sm-2 control-label">Name</label>
 <div class="col-sm-4">
 <input type="text" class="form-control"
 id="fieldName" name="name">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldName" name="email">
 </div>
 </div>

Form Handling with Express | 89

 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-default">Register</button>
 </div>
 </div>
</form>

Note we are using Twitter Bootstrap styles, as we will be throughout the rest of the book.
If you are unfamiliar with Bootstrap, you may want to refer to the Twitter Bootstrap
documentation. Then see Example 8-1.

Example 8-1. Application file
app.use(require('body-parser')());

app.get('/newsletter', function(req, res){
 // we will learn about CSRF later...for now, we just
 // provide a dummy value
 res.render('newsletter', { csrf: 'CSRF token goes here' });
});

app.post('/process', function(req, res){
 console.log('Form (from querystring): ' + req.query.form);
 console.log('CSRF token (from hidden form field): ' + req.body._csrf);
 console.log('Name (from visible form field): ' + req.body.name);
 console.log('Email (from visible form field): ' + req.body.email);
 res.redirect(303, '/thank-you');
});

That’s all there is to it. Note that in our handler, we’re redirecting to a “thank you” view.
We could render a view here, but if we did, the URL field in the visitor’s browser would
remain /process, which could be confusing: issuing a redirect solves that problem.

It’s very important that you use a 303 (or 302) redirect, not a 301
redirect in this instance. 301 redirects are “permanent,” meaning your
browser may cache the redirection destination. If you use a 301 redi‐
rect and try to submit the form a second time, your browser may
bypass the /process handler altogether and go directly to /thank-
you since it correctly believes the redirect to be permanent. The 303
redirect, on the other hand, tells your browser “Yes, your request is
valid, and you can find your response here,” and does not cache the
redirect destination.

Handling AJAX Forms
Handling AJAX forms is very easy in Express; it’s even easy to use the same handler for
AJAX and regular browser fallbacks. Consider Examples 8-2 and 8-3.

90 | Chapter 8: Form Handling

http://getbootstrap.com
http://getbootstrap.com

Example 8-2. HTML (in /views/newsletter.handlebars)
<div class="formContainer">
 <form class="form-horizontal newsletterForm" role="form"
 action="/process?form=newsletter" method="POST">
 <input type="hidden" name="_csrf" value="{{csrf}}">
 <div class="form-group">
 <label for="fieldName" class="col-sm-2 control-label">Name</label>
 <div class="col-sm-4">
 <input type="text" class="form-control"
 id="fieldName" name="name">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldName" name="email">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-default">Register</button>
 </div>
 </div>
 </form>
</div>
{{#section 'jquery'}}
 <script>
 $(document).ready(function(){
 $('.newsletterForm').on('submit', function(evt){
 evt.preventDefault();
 var action = $(this).attr('action');
 var $container = $(this).closest('.formContainer');
 $.ajax({
 url: action,
 type: 'POST',
 success: function(data){
 if(data.success){
 $container.html('<h2>Thank you!</h2>');
 } else {
 $container.html('There was a problem.');
 }
 },
 error: function(){
 $container.html('There was a problem.');
 }
 });
 });
 });
 </script>
{{/section}}

Handling AJAX Forms | 91

Example 8-3. Application file
app.post('/process', function(req, res){
 if(req.xhr || req.accepts('json,html')==='json'){
 // if there were an error, we would send { error: 'error description' }
 res.send({ success: true });
 } else {
 // if there were an error, we would redirect to an error page
 res.redirect(303, '/thank-you');
 }
});

Express provides us with a couple of convenience properties, req.xhr and req.ac
cepts. req.xhr will be true if the request is an AJAX request (XHR is short for XML
HTTP Request, which is what AJAX relies on). req.accepts will try to determine the
most appropriate response type to return. In our case, req.accepts('json,html') is
asking if the best format to return is JSON or HTML: this is inferred from the Ac
cepts HTTP header, which is an ordered list of acceptable response types provided by
the browser. If the request is an AJAX request, or if the user agent has specifically re‐
quested that JSON is better than HTML, appropriate JSON will be returned; otherwise,
a redirect would be returned.

We can do whatever processing we need in this function: usually we would be saving
the data to the database. If there are problems, we send back a JSON object with an err
property (instead of success), or redirect to an error page (if it’s not an AJAX request).

In this example, we’re assuming all AJAX requests are looking for
JSON, but there’s no requirement that AJAX must use JSON for com‐
munication (as a matter of fact, the “X” in AJAX stands for XML).
This approach is very jQuery-friendly, as jQuery routinely assumes
everything is going to be in JSON. If you’re making your AJAX end‐
points generally available, or if you know your AJAX requests might
be using something other than JSON, you should return an appro‐
priate response exclusively based on the Accepts header, which we
can conveniently access through the req.accepts helper method. If
you’re responding based only on the Accepts header, you might want
to also look at c, which is a handy convenience method that makes it
easy to respond appropriately depending on what the client expects.
If you do that, you’ll have to make sure to set the dataType or ac
cepts properties when making AJAX requests with jQuery.

File Uploads
We’ve already mentioned that file uploads bring a raft of complications. Fortunately,
there are some great projects that help make file handling a snap.

92 | Chapter 8: Form Handling

http://expressjs.com/api.html#res.format

Currently, file uploads can be handled with Connect’s built-in multipart middleware;
however, that middleware has already been removed from Connect, and as soon as
Express updates its dependency on Connect, it will vanish from Express as well, so I
strongly recommend that you do not use that middleware.

There are two popular and robust options for multipart form processing: Busboy and
Formidable. I find Formidable to be slightly easier, because it has a convenience callback
that provides objects containing the fields and the files, whereas with Busboy, you must
listen for each field and file event. We’ll be using Formidable for this reason.

While it is possible to use AJAX for file uploads using XMLHttpRe‐
quest Level 2’s FormData interface, it is supported only on modern
browsers and requires some massaging to use with jQuery. We’ll be
discussing an AJAX alternative later on.

Let’s create a file upload form for a Meadowlark Travel vacation photo contest (views/
contest/vacation-photo.handlebars):

<form class="form-horizontal" role="form"
 enctype="multipart/form-data" method="POST"
 action="/contest/vacation-photo/{year}/{month}">
 <div class="form-group">
 <label for="fieldName" class="col-sm-2 control-label">Name</label>
 <div class="col-sm-4">
 <input type="text" class="form-control"
 id="fieldName" name="name">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldName" name="email">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldPhoto" class="col-sm-2 control-label">Vacation photo
 </label>
 <div class="col-sm-4">
 <input type="file" class="form-control" required accept="image/*"
 id="fieldPhoto" name="photo">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-primary">Submit</button>
 </div>
 </div>
</form>

File Uploads | 93

https://developer.mozilla.org/en-US/docs/Web/API/FormData

Note that we must specify enctype="multipart/form-data" to enable file uploads.
We’re also restricting the type of files that can be uploaded by using the accept attribute
(which is optional).

Now install Formidable (npm install --save formidable) and create the following
route handlers:

var formidable = require('formidable');

app.get('/contest/vacation-photo',function(req,res){
 var now = new Date();
 res.render('contest/vacation-photo',{
 year: now.getFullYear(),month: now.getMont()
 });
});

app.post('/contest/vacation-photo/:year/:month', function(req, res){
 var form = new formidable.IncomingForm();
 form.parse(req, function(err, fields, files){
 if(err) return res.redirect(303, '/error');
 console.log('received fields:');
 console.log(fields);
 console.log('received files:');
 console.log(files);
 res.redirect(303, '/thank-you');
 });
});

(Year and month are being specified as route parameters, which you’ll learn about in
Chapter 14.) Go ahead and run this and examine the console log. You’ll see that your
form fields come across as you would expect: as an object with properties corresponding
to your field names. The files object contains more data, but it’s relatively straight‐
forward. For each file uploaded, you’ll see there are properties for size, the path it was
uploaded to (usually a random name in a temporary directory), and the original name
of the file that the user uploaded (just the filename, not the whole path, for security and
privacy reasons).

What you do with this file is now up to you: you can store it in a database, copy it to a
more permanent location, or upload it to a cloud-based file storage system. Remember
that if you’re relying on local storage for saving files, your application won’t scale well,
making this a poor choice for cloud-based hosting. We will be revisiting this example
in Chapter 13.

jQuery File Upload
If you want to offer really fancy file uploads to your users—with the ability to drag and
drop, see thumbnails of the uploaded files, and see progress bars—then I recommend
Sebastian Tschan’s jQuery File Upload.

94 | Chapter 8: Form Handling

http://blueimp.github.io/jQuery-File-Upload

Setting up jQuery File Upload is not a walk in the park. Fortunately, there’s an npm
package to help you with the server-side intricacies. The frontend scripting is another
matter. The jQuery File Upload package uses jQuery UI and Bootstrap, and looks pretty
good out of the box. If you want to customize it, though, there’s a lot to work through.

To display file thumbnails, jquery-file-upload-middleware uses ImageMagick, a
venerable image manipulation library. This does mean your app has a dependency on
ImageMagick, which could cause problems depending on your hosting situation. On
Ubuntu and Debian systems, you can install ImageMagick with apt-get install im
agemagick, and on OS X, you can use brew install imagemagick. For other operating
systems, consult the ImageMagick documentation.

Let’s start with the server-side setup. First, install the jquery-file-upload-

middleware package (npm install --save jquery-file-upload-middleware), then
add the following to your app file:

var jqupload = require('jquery-file-upload-middleware');

app.use('/upload', function(req, res, next){
 var now = Date.now();
 jqupload.fileHandler({
 uploadDir: function(){
 return __dirname + '/public/uploads/' + now;
 },
 uploadUrl: function(){
 return '/uploads/' + now;
 },
 })(req, res, next);
});

If you look at the documentation, you’ll see something similar under “more sophisti‐
cated examples.” Unless you are implementing a file upload area that’s quite literally
shared by all of your visitors, you’ll probably want to be able to partition off the file
uploads. The example simply creates a timestamped directory to store the file uploads.
A more realistic example would be to create a subdirectory that uses the user’s ID or
some other unique ID. For example, if you were implementing a chat program that
supports shared files, you might want to use the ID of the chat room.

Note that we are mounting the jQuery File Upload middleware on the /upload prefix.
You can use whatever you want here, but make sure you don’t use that prefix for other
routes or middleware, as it will interfere with the operation of your file uploads.

To hook up your views to the file uploader, you can replicate the demo uploader: you
can upload the latest bundle on the project’s GitHub page. It will inevitably include a
lot of things you don’t need, like PHP scripts and other implementation examples, which
you are free to delete. Most of the files, you’ll put in your public directory (so they can
be served statically), but the HTML files you’ll have to copy over to views.

jQuery File Upload | 95

http://www.imagemagick.org
http://www.imagemagick.org/script/binary-releases.php
https://github.com/blueimp/jQuery-File-Upload/releases

If you just want a minimal example that you can build on, you’ll need the following
scripts from the bundle: js/vendor/jquery.ui.widget.js, js/jquery.iframe-transport.js, and
js/jquery.fileupload.js. You’ll also need jQuery, obviously. I generally prefer to put all of
these scripts in public/vendor/jqfu for neatness. In this minimal implementation, we
wrap the <input type="file"> element in a , and add a <div> in which we will
list the names of uploaded files:

 Upload
 <input type="file" class="form-control" required accept="image/*"
 id="fieldPhoto" data-url="/upload" multiple name="photo">

<div id="uploads"></div>

Then we attach jQuery File Upload:

{{#section 'jquery'}}
 <script src="/vendor/jqfu/js/vendor/jquery.ui.widget.js"></script>
 <script src="/vendor/jqfu/js/jquery.iframe-transport.js"></script>
 <script src="/vendor/jqfu/js/jquery.fileupload.js"></script>
 <script>
 $(document).ready(function(){

 $('#fieldPhoto').fileupload({
 dataType: 'json',
 done: function(e, data){
 $.each(data.result.files, function(index, file){
 $('#fileUploads').append($('<div class="upload">' +
 '' +
 ' ' + file.originalName + '</div>'));
 });
 }
 });

 });
 </script>
{{/section}}

We have to do some CSS gymnastics to style the upload button:

.btn-file {
 position: relative;
 overflow: hidden;
}
.btn-file input[type=file] {
 position: absolute;
 top: 0;
 right: 0;
 min-width: 100%;
 min-height: 100%;
 font-size: 999px;
 text-align: right;

96 | Chapter 8: Form Handling

 filter: alpha(opacity=0);
 opacity: 0;
 outline: none;
 background: white;
 cursor: inherit;
 display: block;
}

Note that the data-url attribute of the <input> tag must match the route prefix you
used for the middleware. In this simple example, when a file upload successfully com‐
pletes, a <div class="upload"> element is appended to <div id="uploads">. This
lists only filename and size, and does not offer controls for deletion, progress, or
thumbnails. But it’s a good place to start. Customizing the jQuery File Upload demo
can be daunting, and if your vision is significantly different, it might be easier to start
from the minimum and build your way up instead of starting with the demo and cus‐
tomizing. Either way, you will find the resources you need on the jQuery File Upload
documentation page.

For simplicity, the Meadowlark Travel example will not continue to use jQuery File
Upload, but if you wish to see this approach in action, refer to the jquery-file-upload-
example branch in the repository.

jQuery File Upload | 97

https://github.com/blueimp/jQuery-File-Upload/wiki
https://github.com/blueimp/jQuery-File-Upload/wiki

CHAPTER 9

Cookies and Sessions

HTTP is a stateless protocol. That means that when you load a page in your browser,
and then you navigate to another page on the same website, neither the server nor the
browser has any intrinsic way of knowing that it’s the same browser visiting the same
site. Another way of saying this is that the way the Web works is that every HTTP request
contains all the information necessary for the server to satisfy the request.

This is a problem, though: if the story ended there, we could never “log in” to anything.
Streaming media wouldn’t work. Websites wouldn’t be able to remember your prefer‐
ences from one page to the next. So there needs be a way to build state on top of HTTP,
and that’s where cookies and sessions enter the picture.

Cookies, unfortunately, have gotten a bad name thanks to the nefarious things that
people have done with them. This is unfortunate because cookies are really quite es‐
sential to the functioning of the “modern web” (although HTML5 has introduced some
new features, like local storage, that could be used for the same purpose).

The idea of a cookie is simple: the server sends a bit of information, and the browser
stores it for some configurable period of time. It’s really up to the server what the par‐
ticular bit of information is: often it’s just a unique ID number that identifies a specific
browser so that the illusion of state can be maintained.

There are some important things you need to know about cookies:
Cookies are not secret from the user

All cookies that the server sends to the client are available for the client to look at.
There’s no reason you can’t send something encrypted to protect its contents, but
there’s seldom any need for this (at least if you’re not doing anything nefarious!).
Signed cookies, which we’ll discuss in a bit, can obfuscate the contents of the cookie,
but this is in no way cryptographically secure from prying eyes.

99

The user can delete or disallow cookies
Users have full control over cookies, and browsers make it possible to delete cookies
in bulk or individually. Unless you’re up to no good, there’s no real reason for users
to do this, but it is useful during testing. Users can also disallow cookies, which is
more problematic: only the simplest web applications can make do without cookies.

Regular cookies can be tampered with
Whenever a browser makes a request of your server that has an associated cookie,
and you blindly trust the contents of that cookie, you are opening yourself up for
attack. The height of foolishness, for example, would be to execute code contained
in a cookie. To ensure cookies aren’t tampered with, use signed cookies.

Cookies can be used for attacks
A category of attacks called cross-site scripting attacks (XSS) has sprung up in recent
years. One technique of XSS attacks involves malicious JavaScript modifying the
contents of cookies. This is additional reason not to trust the contents of cookies
that come back to your server. Using signed cookies helps (tampering will be evident
in a signed cookie whether the user or malicious JavaScript modified it), and there’s
also a setting that specifies that cookies are to be modified only by the server. These
cookies can be limited in usefulness, but they are certainly safer.

Users will notice if you abuse cookies
If you set a lot of cookies on your users’ computers, or store a lot of data, it will
irritate your users, something you should avoid. Try to keep your use of cookies to
a minimum.

Prefer sessions over cookies
For the most part, you can use sessions to maintain state, and it’s generally wise to
do so. It’s easier, you don’t have to worry about abusing your users’ storage, and it
can be more secure. Sessions rely on cookies, of course, but with sessions, Express
will be doing the heavy lifting for you.

Cookies are not magic: when the server wishes the client to store a
cookie, it sends a header called Set-Cookie containing name/value
pairs, and when a client sends a request to a server for which it has
cookies, it sends multiple Cookie request headers containing the val‐
ue of the cookies.

Externalizing Credentials
To make cookies secure, a cookie secret is necessary. The cookie secret is a string that’s
known to the server and used to encrypt secure cookies before they’re sent to the client.
It’s not a password that has to be remembered, so it can just be a random string. I usually
use a random password generator inspired by xkcd to generate the cookie secret.

100 | Chapter 9: Cookies and Sessions

http://bit.ly/xkcd_pw_generator

It’s a common practice to externalize third-party credentials, such as the cookie secret,
database passwords, and API tokens (Twitter, Facebook, etc.). Not only does this ease
maintenance (by making it easy to locate and update credentials), it also allows you to
omit the credentials file from your version control system. This is especially critical for
open source repositories hosted on GitHub or other public source control repositories.

To that end, we’re going to externalize our credentials in a JavaScript file (it’s also fine
to use JSON or XML, though I find JavaScript to be the easiest appraoch). Create a file
called credentials.js:

module.exports = {
 cookieSecret: 'your cookie secret goes here',
};

Now, to make sure we don’t accidentally add this file to our repository, add creden‐
tials.js to your .gitignore file. To import your credentials into your application, all you
need to do is:

var credentials = require('./credentials.js');

We’ll be using this same file to store other credentials later on, but for now, all we need
is our cookie secret.

If you’re following along by using the companion repository, you’ll
have to create your own credentials.js file, as it is not included in the
repository.

Cookies in Express
Before you start setting and accessing cookies in your app, you need to include the
cookie-parser middleware. First, npm install --save cookie-parser, then:

app.use(require('cookie-parser')(credentials.cookieSecret));

Once you’ve done this, you can set a cookie or a signed cookie anywhere you have access
to a request object:

res.cookie('monster', 'nom nom');
res.cookie('signed_monster', 'nom nom', { signed: true });

Cookies in Express | 101

Signed cookies take precedence over unsigned cookies. If you name
your signed cookie signed_monster, you cannot have an unsigned
cookie with the same name (it will come back as undefined).

To retrieve the value of a cookie (if any) sent from the client, just access the cookie or
signedCookie properties of the request object:

var monster = req.cookies.monster;
var signedMonster = req.signedCookies.monster;

You can use any string you want for a cookie name. For example, we
could have used 'signed monster' instead of 'signed_monster', but
then we would have to use the bracket notation to retrieve the cookie:
req.signedCookies['signed monster']. For this reason, I recom‐
mend using cookie names without special characters.

To delete a cookie, use req.clearCookie:

res.clearCookie('monster');

When you set a cookie, you can specify the following options:
domain

Controls the domains the cookie is associated with; this allows you to assign cookies
to specific subdomains. Note that you cannot set a cookie for a different domain
than the server is running on: it will simply do nothing.

path

Controls the path this cookie applies to. Note that paths have an implicit wildcard
after them: if you use a path of / (the default), it will apply to all pages on your site.
If you use a path of /foo, it will apply to the paths /foo, /foo/bar, etc.

maxAge

Specifies how long the client should keep the cookie before deleting it, in millisec‐
onds. If you omit this, the cookie will be deleted when you close your browser. (You
can also specify a date for expiration with the expires option, but the syntax is
frustrating. I recommend using maxAge.)

secure

Specifies that this cookie will be sent only over a secure (HTTPS) connection.

httpOnly

Setting this to true specifies the cookie will be modified only by the server. That is,
client-side JavaScript cannot modify it. This helps prevent XSS attacks.

102 | Chapter 9: Cookies and Sessions

signed

Set to true to sign this cookie, making it available in res.signedCookies instead of
res.cookies. Signed cookies that have been tampered with will be rejected by the
server, and the cookie value will be reset to its original value.

Examining Cookies
As part of your testing, you’ll probably want a way to examine the cookies on your
system. Most browsers have a way to view individual cookies and the values they store.
In Chrome, open the developer tools, and select the Resources tab. In the tree on the
left, you’ll see Cookies. Expand that, and you’ll see the site you’re currently visiting listed.
Click that, and you will see all the cookies associated with this site. You can also right-
click the domain to clear all cookies, or right-click an individual cookie to remove it
specifically.

Sessions
Sessions are really just a more convenient way to maintain state. To implement sessions,
something has to be stored on the client; otherwise, the server wouldn’t be able to identify
the client from one request to the next. The usual method of doing this is a cookie that
contains a unique identifier. The server then uses that identifier to retrieve the appro‐
priate session information. Cookies aren’t the only way to accomplish this: during the
height of the “cookie scare” (when cookie abuse was rampant), many users were simply
turning off cookies, and other ways to maintain state were devised, such as decorating
URLs with session information. These techniques were messy, difficult, and inefficient,
and best left in the past. HTML5 provides another option for sessions, called local stor‐
age, but there’s currently no compelling reason to use this technique over tried and true
cookies.

Broadly speaking, there are two ways to implement sessions: store everything in the
cookie, or store only a unique identifier in the cookie and everything else on the serv‐
er. The former are called “cookie-based sessions,” and merely represent a convenience
over using cookies. However, it still means that everything you add to the session will
be stored on the client’s browser, which is an approach I don’t recommend. I would
recommend this approach only if you know that you will be storing just a small amount
of information, that you don’t mind the user having access to the information, and that
it won’t be growing out of control over time. If you want to take this approach, see the
cookie-session middleware.

Memory Stores
If you would rather store session information on the server, which I recommend, you
have to have somewhere to store it. The entry-level option is memory sessions. They

Examining Cookies | 103

https://www.npmjs.org/package/cookie-session

are very easy to set up, but they have a huge downside: when you restart the server
(which you will be doing a lot of over the course of this book!), your session information
disappears. Even worse, if you scale out by having multiple servers (see Chapter 12), a
different server could service a request every time: session data would sometimes be
there, and sometimes not. This is clearly an unacceptable user experience. However, for
our development and testing needs, it will suffice. We’ll see how to permanently store
session information in Chapter 13.

First, install express-session (npm install --save express-session); then, after
linking in the cookie parser, link in express-session:

app.use(require('cookie-parser')(credentials.cookieSecret));
app.use(require('express-session')());

The express-session middleware accepts a configuration object with the following
options:
key

The name of the cookie that will store the unique session identifier. Defaults to
connect.sid.

store

An instance of a session store. Defaults to an instance of MemoryStore, which is fine
for our current purposes. We’ll see how to use a database store in Chapter 13.

cookie

Cookie settings for the session cookie (path, domain, secure, etc.). Regular cookie
defaults apply.

Using Sessions
Once you’ve set up sessions, using them couldn’t be simpler: just use properties of the
request object’s session variable:

req.session.userName = 'Anonymous';
var colorScheme = req.session.colorScheme || 'dark';

Note that with sessions, we don’t have to use the request object for retrieving the value
and the response object for setting the value: it’s all performed on the request object.
(The response object does not have a session property.) To delete a session, you can
use JavaScript’s delete operator:

req.session.userName = null; // this sets 'userName' to null,
 // but doesn't remove it

delete req.session.colorScheme; // this removes 'colorScheme'

104 | Chapter 9: Cookies and Sessions

Using Sessions to Implement Flash Messages
“Flash” messages (not to be confused with Adobe Flash) are simply a way to provide
feedback to users in a way that’s not disruptive to their navigation. The easiest way to
implement flash messages is to use sessions (you can also use the querystring, but in
addition to those having uglier URLs, the flash messages will be included in a bookmark,
which is probably not what you want). Let’s set up our HTML first. We’ll be using
Bootstrap’s alert messages to display our flash messages, so make sure you have Boot‐
strap linked in. In your template file, somewhere prominent (usually directly below your
site’s header), add the following:

{{#if flash}}
 <div class="alert alert-dismissible alert-{{flash.type}}">
 <button type="button" class="close"
 data-dismiss="alert" aria-hidden="true">×<button>
 {{flash.intro}} {{{flash.message}}}
 </div>
{{/if}}

Note that we use three curly brackets for flash.message: this will allow us to provide
some simple HTML in our messages (we might want to emphasize words or include
hyperlinks). Now let’s add some middleware to add the flash object to the context if
there’s one in the session. Once we’ve displayed a flash message once, we want to remove
it from the session so it isn’t displayed on the next request. Add this code before your
routes:

app.use(function(req, res, next){
 // if there's a flash message, transfer
 // it to the context, then clear it
 res.locals.flash = req.session.flash;
 delete req.session.flash;
 next();
});

Now let’s see how to actually use the flash message. Imagine we’re signing up users for
a newsletter, and we want to redirect them to the newsletter archive after they sign up.
This is what our form handler might look like:

app.post('/newsletter', function(req, res){
 var name = req.body.name || '', email = req.body.email || '';
 // input validation
 if(!email.match(VALID_EMAIL_REGEX)) {
 if(req.xhr) return res.json({ error: 'Invalid name email address.' });
 req.session.flash = {
 type: 'danger',
 intro: 'Validation error!',
 message: 'The email address you entered was not valid.',
 };
 return res.redirect(303, '/newsletter/archive');
 }

Using Sessions to Implement Flash Messages | 105

 new NewsletterSignup({ name: name, email: email }).save(function(err){
 if(err) {
 if(req.xhr) return res.json({ error: 'Database error.' });
 req.session.flash = {
 type: 'danger',
 intro: 'Database error!',
 message: 'There was a database error; please try again later.',
 }
 return res.redirect(303, '/newsletter/archive');
 }
 if(req.xhr) return res.json({ success: true });
 req.session.flash = {
 type: 'success',
 intro: 'Thank you!',
 message: 'You have now been signed up for the newsletter.',
 };
 return res.redirect(303, '/newsletter/archive');
 });
});

Note how the same handler can be used for AJAX submissions (because we check
req.xhr), and that we’re careful to distinguish between input validation and database
errors. Remember that even if we do input validation on the frontend (and you should),
you should also perform it on the backend, because malicious users can circumvent
frontend validation.

Flash messages are a great mechanism to have available in your website, even if other
methods are more appropriate in certain areas (for example, flash messages aren’t always
appropriate for multiform “wizards” or shopping cart checkout flows). Flash messages
are also great during development, because they are an easy way to provide feedback,
even if you replace them with a different technique later. Adding support for flash mes‐
sages is one of the first things I do when setting up a website, and we’ll be using this
technique throughout the rest of the book.

Because the flash message is being transferred from the session to
res.locals.flash in middleware, you have to perform a redirect for
the flash message to be displayed. If you want to display a flash mes‐
sage without redirecting, set res.locals.flash instead of req.ses
sion.flash.

What to Use Sessions For
Sessions are useful whenever you want to save a user preference that applies across
pages. Most commonly, sessions are used to provide user authentication information:
you log in, and a session is created. After that, you don’t have to log in again every time
you re-load the page. Sessions can be useful even without user accounts, though. It’s

106 | Chapter 9: Cookies and Sessions

quite common for sites to remember how you like things sorted, or what date format
you prefer—all without your having to log in.

While I encourage you to prefer sessions over cookies, it’s important to understand how
cookies work (especially because they enable sessions to work). It will help you with
diagnosing issues and understanding the security and privacy considerations of your
application.

What to Use Sessions For | 107

CHAPTER 10

Middleware

By now, we’ve already had some exposure to middleware: we’ve used existing middle‐
ware (body-parser, cookie-parser, static, and connect-session, to name a few),
and we’ve even written some of our own (when we check for the presence of &test=1
in the querystring, and our 404 handler). But what is middleware, exactly?

Conceptually, middleware is a way to encapsulate functionality: specifically, function‐
ality that operates on an HTTP request to your application. Practically, a middleware is
simply a function that takes three arguments: a request object, a response object, and a
“next” function, which will be explained shortly. (There is also a form that takes four
arguments, for error handling, which will be covered at the end of this chapter.)

Middleware is executed in what’s known as a pipeline. You can imagine a physical pipe,
carrying water. The water gets pumped in at one end, and then there are gauges and
valves before the water gets where it’s going. The important part about this analogy is
that order matters: if you put a pressure gauge before a valve, it has a different effect
than if you put the pressure gauge after the valve. Similarly, if you have a valve that
injects something into the water, everything “downstream” from that valve will contain
the added ingredient. In an Express app, you insert middleware into the pipeline by
calling app.use.

Prior to Express 4.0, the pipeline was complicated by your having to link the router in
explicitly. Depending on where you linked in the router, routes could be linked in out
of order, making the pipeline sequence less clear when you mixed middleware and route
handlers. In Express 4.0, middleware and route handlers are invoked in the order in
which they were linked in, making it much clearer what the sequence is.

It’s common practice to have the very last middleware in your pipeline be a “catch all”
handler for any request that doesn’t match any other routes. This middleware usually
returns a status code of 404 (Not Found).

109

So how is a request “terminated” in the pipeline? That’s what the next function passed
to each middleware does: if you don’t call next(), the request terminates with that
middleware.

Learning how to think flexibly about middleware and route handlers is key to under‐
standing how Express works. Here are the things you should keep in mind:

• Route handlers (app.get, app.post, etc.—often referred to collectively as
app.VERB) can be thought of as middleware that handle only a specific HTTP verb
(GET, POST, etc.). Conversely, middleware can be thought of as a route handler that
handles all HTTP verbs (this is essentially equivalent to app.all, which handles
any HTTP verb; there are some minor differences with exotic verbs such as
PURGE, but for the common verbs, the effect is the same).

• Route handlers require a path as their first parameter. If you want that path to match
any route, simply use /*. Middleware can also take a path as its first parameter, but
it is optional (if it is omitted, it will match any path, as if you had specified /*).

• Route handlers and middleware take a callback function that takes two, three, or
four parameters (technically, you could also have zero or one parameters, but there
is no sensible use for these forms). If there are two or three parameters, the first two
parameters are the request and response objects, and the third paramater is the
next function. If there are four parameters, it becomes an error-handling middle‐
ware, and the first parameter becomes an error object, followed by the request,
response, and next objects.

• If you don’t call next(), the pipeline will be terminated, and no more route handlers
or middleware will be processed. If you don’t call next(), you should send a re‐
sponse to the client (res.send, res.json, res.render, etc.); if you don’t, the client
will hang and eventually time out.

• If you do call next(), it’s generally inadvisable to send a response to the client. If
you do, middleware or route handlers further down the pipeline will be executed,
but any client responses they send will be ignored.

110 | Chapter 10: Middleware

If you want to see this in action, let’s try some really simple middlewares:

app.use(function(req, res, next){
 console.log('processing request for "' + req.url + '"....');
 next();
});

app.use(function(req, res, next){
 console.log('terminating request');
 res.send('thanks for playing!');
 // note that we do NOT call next() here...this terminates the request
});

app.use(function(req, res, next){
 console.log('whoops, i\'ll never get called!');
});

Here we have three middlewares. The first one simply logs a message to the console
before passing on the request to the next middleware in the pipeline by calling
next(). Then the next middleware actually handles the request. Note that if we omitted
the res.send here, no response would ever be returned to the client. Eventually the
client would time out. The last middleware will never execute, because all requests are
terminated in the prior middleware.

Now let’s consider a more complicated, complete example:

var app = require('express')();

app.use(function(req, res, next){
 console.log('\n\nALLWAYS');
 next();
});

app.get('/a', function(req, res){
 console.log('/a: route terminated');
 res.send('a');
});
app.get('/a', function(req, res){
 console.log('/a: never called');
});
app.get('/b', function(req, res, next){
 console.log('/b: route not terminated');
 next();
});
app.use(function(req, res, next){
 console.log('SOMETIMES');
 next();
});
app.get('/b', function(req, res, next){
 console.log('/b (part 2): error thrown');
 throw new Error('b failed');
});

Middleware | 111

app.use('/b', function(err, req, res, next){
 console.log('/b error detected and passed on');
 next(err);
});
app.get('/c', function(err, req){
 console.log('/c: error thrown');
 throw new Error('c failed');
});
app.use('/c', function(err, req, res, next){
 console.log('/c: error deteccted but not passed on');
 next();
});

app.use(function(err, req, res, next){
 console.log('unhandled error detected: ' + err.message);
 res.send('500 - server error');
});

app.use(function(req, res){
 console.log('route not handled');
 res.send('404 - not found');
});

app.listen(3000, function(){
 console.log('listening on 3000');
});

Before trying this example, try to imagine what the result will be. What are the different
routes? What will the client see? What will be printed on the console? If you can correctly
answer all of those questions, then you’ve got the hang of routes in Express! Pay par‐
ticular attention to the difference between a request to /b and a request to /c; in both
instances, there was an error, but one results in a 404 and the other results in a 500.

Note that middleware must be a function. Keep in mind that in JavaScript, it’s quite easy
(and common) to return a function from a function. For example, you’ll note that
express.static is a function, but we actually invoke it, so it must return another func‐
tion. Consider:

app.use(express.static); // this will NOT work as expected
console.log(express.static()); // will log "function", indicating
 // that express.static is a function
 // that itself returns a function

Note also that a module can export a function, which can in turn be used directly as
middleware. For example, here’s a module called lib/tourRequiresWaiver.js (Meadow‐
lark Travel’s rock climbing packages require a liability waiver):

module.exports = function(req,res,next){
 var cart = req.session.cart;
 if(!cart) return next();
 if(cart.some(function(item){ return item.product.requiresWaiver; })){
 if(!cart.warnings) cart.warnings = [];

112 | Chapter 10: Middleware

 cart.warnings.push('One or more of your selected tours' +
 'requires a waiver.');
 }
 next();
}

We could link this middleware in like so:

app.use(require('./lib/requiresWaiver.js'));

More commonly, though, you would export an object that contains properties that are
middleware. For example, let’s put all of our shopping cart validation code in
lib/cartValidation.js:

module.exports = {
 checkWaivers: function(req, res, next){
 var cart = req.session.cart;
 if(!cart) return next();
 if(cart.some(function(i){ return i.product.requiresWaiver; })){
 if(!cart.warnings) cart.warnings = [];
 cart.warnings.push('One or more of your selected ' +
 'tours requires a waiver.');
 }
 next();
 },

 checkGuestCounts: function(req, res, next){
 var cart = req.session.cart;
 if(!cart) return next();
 if(cart.some(function(item){ return item.guests >
 item.product.maximumGuests; })){
 if(!cart.errors) cart.errors = [];
 cart.errors.push('One or more of your selected tours ' +
 'cannot accommodate the number of guests you ' +
 'have selected.');
 }
 next();
 }
}

Then you could link the middleware in like this:

var cartValidation = require('./lib/cartValidation.js');

app.use(cartValidation.checkWaivers);
app.use(cartValidation.checkGuestCounts);

In the previous example, we have a middleware aborting early with
the statement return next(). Express doesn’t expect middleware to
return a value (and it doesn’t do anything with any return values), so
this is just a shortened way of writing next(); return;.

Middleware | 113

Common Middleware
Prior to Express 4.0, Express bundled Connect, which is the component that contains
most of the most common middleware. Because of the way Express bundled it, it ap‐
peared as if the middleware was actually part of Express (for example, you would link
in the body parser like so: app.use(express.bodyParser)). This osbscured the fact that
this middleware was actually part of Connect. With Express 4.0, Connect was removed
from Express. Along with this change, some Connect middleware (body-parser is an
example) has itself moved out of Connect into its own project. The only middleware
Express retains is static. Removing middleware from Express frees Express from hav‐
ing to manage so many dependencies, and allows the individual projects to progress
and mature independent of Express.

Much of the middleware previously bundled with Express is quite fundamental, so it’s
important to know “where it went” and how to get it. You will almost always want
Connect, so it’s recommended that you always install it alongside Express (npm install
--save connect), and have it available in your application (var connect = re
quire(connect);).
basicAuth (app.use(connect.basicAuth)();)

Provides basic access authorization. Keep in mind that basic auth offers only the
most basic security, and you should use basic auth only over HTTPS (otherwise,
usernames and passwords are transmitted in the clear). You should use basic auth
only when you need something very quick and easy and you’re using HTTPS.

body-parser (npm install --save body-parser, app.use(require(bbody-
parser)());)

Convenience middleware that simply links in json and urlencoded. This
middleware is also still available in Connect, but will be removed in 3.0, so it’s
recommended that you start using this package instead. Unless you have a specific
reason to use json or urlencoded individually, I recommend using this package.

json (see body-parser)
Parses JSON-encoded request bodies. You’ll need this middleware if you’re writing
an API that’s expecting a JSON-encoded body. This is not currently very common
(most APIs still use application/x-www-form-urlencoded, which can be parsed
by the urlencoded middleware), but it does make your application robust and
future-proof.

urlencoded (see body-parser)
Parses request bodies with Internet media type application/x-www-form-
urlencoded. This is the most common way to handle forms and AJAX requests.

114 | Chapter 10: Middleware

multipart (DEPRECATED)
Parses request bodies with Internet media type multipart/form-data. This mid‐
dleware is deprecated and will be removed in Connect 3.0. You should be using
Busboy or Formidable instead (see Chapter 8).

compress (app.use(connect.compress);)
Compresses response data with gzip. This is a good thing, and your users will thank
you, especially those on slow or mobile connections. It should be linked in early,
before any middleware that might send a response. The only thing that I recom‐
mend linking in before compress is debugging or logging middleware (which do
not send responses).

cookie-parser (npm install --save cookie-parser, app.use(require(cookie-
parser)(your secret goes here);

Provides cookie support. See Chapter 9.

cookie-session (npm install --save cookie-session,
app.use(require(cookie-session)());)

Provides cookie-storage session support. I do not generally recommend this ap‐
proach to sessions. Must be linked in after cookie-parser. See Chapter 9.

express-session (npm install --save express-session,
app.use(require(express-session)());)

Provides session ID (stored in a cookie) session support. Defaults to a memory
store, which is not suitable for production, and can be configured to use a database
store. See Chapters 9 and 13.

csurf (npm install --save csurf, app.use(require(csurf)());
Provides protection against cross-site request forgery (CSRF) attacks. Uses sessions,
so must be linked in after express-session middleware. Currently, this is identical
to the connect.csrf middleware. Unfortunately, simply linking this middleware
in does not magically protect against CSRF attacks; see Chapter 18 for more
information.

directory (app.use(connect.directory());)
Provides directory listing support for static files. There is no need to include this
middleware unless you specifically need directory listing.

errorhandler (npm install --save errorhandler, app.use(require(errorhan
dler)());

Provides stack traces and error messages to the client. I do not recommend linking
this in on a production server, as it exposes implementation details, which can have
security or privacy consequences. See Chapter 20 for more information.

Common Middleware | 115

static-favicon (npm install --save static-favicon,
app.use(require(static-favicon)(path_to_favicon));

Serves the “favicon” (the icon that appears in the title bar of your browser). This is
not strictly necessary: you can simply put a favicon.ico in the root of your static
directory, but this middleware can improve performance. If you use it, it should be
linked in very high in the middleware stack. It also allows you to designate a filename
other than favicon.ico.

morgan (previously logger, npm install --save morgan, app.use(require(mor
gan)());

Provides automated logging support: all requests will be logged. See Chapter 20 for
more information.

method-override (npm install --save method-override,
app.use(require(method-override)());

Provides support for the x-http-method-override request header, which allows
browsers to “fake” using HTTP methods other than GET and POST. This can be useful
for debugging. Only needed if you’re writing APIs.

query

Parses the querystring and makes it available as the query property on the request
object. This middleware is linked in implicitly by Express, so do not link it in
yourself.

response-time (npm install --save response-time,
app.use(require(response-time)());

Adds the X-Response-Time header to the response, providing the response time in
milliseconds. You usually don’t need this middleware unless you are doing perfor‐
mance tuning.

static (app.use(express.static(path_to_static_files)());
Provides support for serving static (public) files. You can link this middleware in
multiple times, specifying different directories. See Chapter 16 for more details.

vhost (npm install --save vhost, var vhost = require(vhost);
Virtual hosts (vhosts), a term borrowed from Apache, makes subdomains easier to
manage in Express. See Chapter 14 for more information.

Third-Party Middleware
Currently, there is no “store” or index for third-party middleware. Almost all Express
middleware, however, will be available on npm, so if you search npm for “Express,”
“Connect,” and “Middleware,” you’ll get a pretty good list.

116 | Chapter 10: Middleware

CHAPTER 11

Sending Email

One of the primary ways your website can communicate with the world is email. From
user registration to password reset instructions to promotional emails to problem no‐
tification, the ability to send email is an important feature.

Neither Node or Express has any built-in way of sending email, so we have to use a
third-party module. The package I recommend is Andris Reinman’s excellent Node‐
mailer. Before we dive into configuring Nodemailer, let’s get some email basics out of
the way.

SMTP, MSAs, and MTAs
The lingua franca for sending email is the Simple Mail Transfer Protocol (SMTP). While
it is possible to use SMTP to send an email directly to the recipient’s mail server, this is
generally a very bad idea: unless you are a “trusted sender” like Google or Yahoo!,
chances are your email will be be tossed directly into the spam bin. Better to use a Mail
Submission Agent (MSA), which will deliver the email through trusted channels, re‐
ducing the chance that your email will be marked as spam. In addition to ensuring that
your email arrives, MSAs handle nuisances like temporary outages and bounced emails.
The final piece of the equation is the Mail Transfer Agent (MTA), which is the service
that actually sends the email to its final destination. For the purposes of this book, MSA,
MTA, and “SMTP server” are essentially equivalent.

So you’ll need access to an MSA. The easiest way to get started is to use a free email
service, such as Gmail, Hotmail, iCloud, SendGrid, or Yahoo!. This is a short-term
solution: in addition to having limits (Gmail, for example, allows only 500 emails in any
24-hour period, and no more than 100 recipients per email), it will expose your personal
email. While you can specify how the sender should appear, such as joe@meadowlark‐
travel.com, a cursory glance at the email headers will reveal that it was delivered by

117

https://npmjs.org/package/nodemailer
https://npmjs.org/package/nodemailer

joe@gmail.com; hardly professional. Once you’re ready to go to production, you can
switch to a professional MSA such as Sendgrid or Amazon Simple Email Service (SES).

If you’re working for an organization, the organization itself may have an MSA; you can
contact your IT department and ask them if there’s an SMTP relay available for sending
automated emails.

Receiving Email
Most websites only need the ability to send email, like password reset instructions and
promotional emails. However, some applications need to receive email as well. A good
example is an issue tracking system that sends out an email when someone updates an
issue: if you reply to that email, the issue is automatically updated with your response.

Unfortunately, receiving email is much more involved and will not be covered in this
book. If this is functionality you need, you should look into Andris Reinman’s Sim‐
pleSMTP or Haraka.

Email Headers
An email message consists of two parts: the header and the body (very much like an
HTTP request). The header contains information about the email: who it’s from, who
it’s addressed to, the date it was received, the subject, and more. Those are the headers
that are normally displayed to the user in an email application, but there are many more
headers. Most email clients allow you to look at the headers; if you’ve never done so, I
recommend you take a look. The headers give you all the information about how the
email got to you; every server and MTA that the email passed through will be listed in
the header.

It often comes as a surprise to people that some headers, like the “from” address, can be
set arbitrarily by the sender. When you specify a “from” address other than the account
from which you’re sending, it’s often referred to as “spoofing.” There is nothing pre‐
venting you from sending an email with the from address Bill Gates <billg@micro‐
soft.com>. I’m not recommending that you try this, just driving home the point that you
can set certain headers to be whatever you want. Sometimes there are legitimate reasons
to do this, but you should never abuse it.

An email you send must have a “from” address, however. This can sometimes cause
problems when sending automated email, which is why you often see email with a return
addresses like DO NOT REPLY <do-not-reply@meadowlarktravel.com>. Whether you
want to take this approach, or have automated emails come from an address like Mead‐
owlark Travel <info@meadowlarktravel.com> is up to you; if you take the latter ap‐
proach, though, you should be prepared to respond to emails that come to info@mead‐
owlarktravel.com.

118 | Chapter 11: Sending Email

http://bit.ly/simplesmtp
http://bit.ly/simplesmtp
http://haraka.github.com

Email Formats
When the Internet was new, all email was simply ASCII text. The world has changed a
lot since then, and people want to send email in different languages, and do crazy things
like include formatted text, images, and attachments. This is where things start to get
ugly: email formats and encoding are a horrible jumble of techniques and standards.
Fortunately, we won’t really have to address these complexities: Nodemailer will handle
that for us.

What’s important for you to know is that your email can either be plaintext (Unicode)
or HTML.

Almost all modern email applications support HTML email, so it’s generally pretty safe
to format your emails in HTML. Still, there are “text purists” out there who eschew
HTML email, so I recommend always including both text and HTML email. If you don’t
want to have to write text and HTML email, Nodemailer supports a shortcut that will
automatically generate the plaintext version from the HTML.

HTML Email
HTML email is a topic that could fill an entire book. Unfortunately, it’s not as simple as
just writing HTML like you would for your site: most mail clients support only a small
subset of HTML. Mostly, you have to write HTML like it was still 1996; it’s not much
fun. In particular, you have to go back to using tables for layout (cue sad music).

If you have experience with browser compatibility issues with HTML, you know what
a headache it can be. Email compatibility issues are much worse. Fortunately, there are
some things that can help.

First, I encourage you to read MailChimp’s excellent article about writing HTML
email. It does a good job covering the basics and explaining the things you need to keep
in mind when writing HTML email.

The next is a real time saver: HTML Email Boilerplate. It’s essentially a very well-written,
rigorously tested template for HTML email.

Finally, there’s testing…. You’ve read up on how to write HTML email, and you’re using
HTML Email Boilerplate, but testing is the only way to know for sure your email is not
going to explode on Lotus Notes 7 (yes, people still use it). Feel like installing 30 different
mail clients to test one email? I didn’t think so. Fortunately, there’s a great service that
does it for you: Litmus. It’s not an inexpensive service: plans start at about $80 a month.
But if you send a lot of promotional emails, it’s hard to beat.

On the other hand, if your formatting is modest, there’s no need for an expensive testing
service like Litmus. If you’re sticking to things like headers, bold/italic text, horizontal
rules, and some image links, you’re pretty safe.

Email Formats | 119

http://bit.ly/writing_html_email
http://bit.ly/writing_html_email
http://htmlemailboilerplate.com
https://litmus.com/email-testing

Nodemailer
First, we need to install the Nodemailer package:

npm install --save nodemailer

Then, require the nodemailer package and create a Nodemailer instance (a “transport”
in Nodemailer parlance):

var nodemailer = require('nodemailer');

var mailTransport = nodemailer.createTransport('SMTP',{
 service: 'Gmail',
 auth: {
 user: credentials.gmail.user,
 pass: credentials.gmail.password,
 }
});

Notice we’re using the credentials module we set up in Chapter 9. You’ll need to update
your credentials.js file accordingly:

module.exports = {
 cookieSecret: 'your cookie secret goes here',
 gmail: {
 user: 'your gmail username',
 password: 'your gmail password',
 }
};

Nodemailer offers shortcuts for most popular email services: Gmail, Hotmail, iCloud,
Yahoo!, and many more. If your MSA isn’t on this list, or you need to connect to an
SMTP server directly, that is supported:

var mailTransport = nodemailer.createTransport('SMTP',{
 host: 'smtp.meadowlarktravel.com',
 secureConnection: true, // use SSL
 port: 465,
 auth: {
 user: credentials.meadowlarkSmtp.user,
 pass: credentials.meadowlarkSmtp.password,
 }
});

Sending Mail
Now that we have our mail transport instance, we can send mail. We’ll start with a very
simple example that sends text mail to only one recipient:

mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joecustomer@gmail.com',
 subject: 'Your Meadowlark Travel Tour',

120 | Chapter 11: Sending Email

 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
}, function(err){
 if(err) console.error('Unable to send email: ' + error);
});

You’ll notice that we’re handling errors here, but it’s important to understand that no
errors doesn’t necessarily mean your email was delivered successfully to the recipient:
the callback’s error parameter will be set only if there was a problem communicating
with the MSA (such as a network or authentication error). If the MSA was unable to
deliver the email (for example, due to an invalid email address or an unknown user),
you will get a failure email delivered to the MSA account (for example, if you’re using
your personal Gmail as an MSA, you will get a failure message in your Gmail inbox).

If you need your system to automatically determine if the email was delivered success‐
fully, you have a couple of options. One is to use an MSA that supports error report‐
ing. Amazon’s Simple Email Service (SES) is one such service, and email bounce notices
are delivered through their Simple Notification Service (SNS), which you can configure
to call a web service running on your website. The other option is to use direct delivery,
bypassing the MSA. I do not recommend direct delivery, as it is a complex solution, and
your email is likely to be flagged as spam. Neither of these options is simple, and thus
they are beyond the scope of this book.

Sending Mail to Multiple Recipients
Nodemail supports sending mail to multiple recipients simply by separating recipients
with commas:

mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joe@gmail.com, "Jane Customer" <jane@yahoo.com>, ' +
 'fred@hotmail.com',
 subject: 'Your Meadowlark Travel Tour',
 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
}, function(err){
 if(err) console.error('Unable to send email: ' + error);
});

Note that, in this example, we mixed plain email addresses (joe@gmail.com) with email
addresses specifying the recipient’s name (“Jane Customer” <jane@yahoo.com>). This
is allowed syntax.

When sending email to multiple recipients, you must be careful to observe the limits of
your MSA. Gmail, for example, limits the number of recipients to 100 per email. Even
more robust services, like SendGrid, recommend limiting the number of recipients
(SendGrid recommends no more than a thousand in one email). If you’re sending bulk
email, you probably want to deliver multiple messages, each with multiple recipients:

Nodemailer | 121

// largeRecipientList is an array of email addresses
var recipientLimit = 100;
for(var i=0; i<largeRecipientList.length/recipientLimit; i++){
 mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: largeRecipientList
 .slice(i*recipientLimit, i*(recipientLimit+1)).join(','),
 subject: 'Special price on Hood River travel package!',
 text: 'Book your trip to scenic Hood River now!',
 }, function(err){
 if(err) console.error('Unable to send email: ' + error);
 });
}

Better Options for Bulk Email
While you can certainly send bulk email with Nodemailer and an appropriate MSA,
you should think carefully before going this route. A responsible email campaign must
provide a way for people to unsubscribe from your promotional emails, and that is not
a trivial task. Multiply that by every subscription list you maintain (perhaps you have a
weekly newsletter and a special announcements campaign, for example). This is an area
in which it’s best not to reinvent the wheel. Services like MailChimp and Campaign
Monitor offer everything you need, including great tools for monitoring the success of
your email campaigns. They’re very affordable, and I highly recommend using them
for promotional emails, newsletters, etc.

Sending HTML Email
So far, we’ve just been sending plaintext email, but most people these days expect some‐
thing a little prettier. Nodemailer allows you to send both HTML and plaintext versions
in the same email, allowing the email client to choose which version is displayed (usually
HTML):

mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joecustomer@gmail.com, "Jane Customer" ' +
 '<janecustomer@gyahoo.com>, frecsutomer@hotmail.com',
 subject: 'Your Meadowlark Travel Tour',
 html: '<h1>Meadowlark Travel</h1>\n<p>Thanks for book your trip with ' +
 'Meadowlark Travel. We look forward to your visit!',
 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
}, function(err){
 if(err) console.error('Unable to send email: ' + error);
});

This is a lot of work, and I don’t recommend this approach. Fortunately, Nodemailer
will automatically translate your HTML into plaintext if you ask it to:

122 | Chapter 11: Sending Email

http://mailchimp.com
http://www.campaignmonitor.com
http://www.campaignmonitor.com

mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joecustomer@gmail.com, "Jane Customer" ' +
 '<janecustomer@gyahoo.com>, frecsutomer@hotmail.com',
 subject: 'Your Meadowlark Travel Tour',
 html: '<h1>Meadowlark Travel</h1>\n<p>Thanks for book your trip with ' +
 'Meadowlark Travel. We look forward to your visit!',
 generateTextFromHtml: true,
}, function(err){
 if(err) console.error('Unable to send email: ' + error);
});

Images in HTML Email
While it is possible to embed images in HTML email, I strongly discourage it: they bloat
your email messages, and it isn’t generally considered good practice. Instead, you should
make images you want to use in email available on your web server, and link appropri‐
ately from the email.

It is best to have a dedicated location in your static assets folder for email images. You
should even keep assets that you use both on your site and in emails (like your log)
separate: it reduces the chance of negatively affecting the layout of your emails.

Let’s add some email resources in our Meadowlark Travel project. In your public direc‐
tory, create a subdirectory called email. You can place your logo.png in there, and any
other images you want to use in your email. Then, in your email, you can use those
images directly:

It should be obvious that you do not want to use localhost when
sending out email to other people; they probably won’t even have a
server running, much less on port 3000! Depending on your mail
client, you might be able to use localhost in your email for testing
purposes, but it won’t work outside of your computer. In Chap‐
ter 16, we’ll discuss some techniques to smooth the transition from
development to production.

Using Views to Send HTML Email
So far, we’ve been putting our HTML in strings in JavaScript, a practice you should try
to avoid. So far, our HTML has been simple enough, but take a look at HTML Email
Boilerplate: do you want to put all that boilerplate in a string? Absolutely not.

Fortunately, we can leverage views to handle this. Let’s consider our “Thank you for
booking your trip with Meadowlark Travel” email example, which we’ll expand a little
bit. Let’s imagine that we have a shopping cart object that contains our order informa‐

Sending HTML Email | 123

http://htmlemailboilerplate.com
http://htmlemailboilerplate.com

tion. That shopping cart object will be stored in the session. Let’s say the last step in our
ordering process is a form that’s processed by /cart/chckout, which sends a confirmation
email. Let’s start by creating a view for the “thank you” page, views/cart-thank-
you.handlebars:

<p>Thank you for booking your trip with Meadowlark Travel, {{cart.billing.name}}!</p>
<p>Your reservation number is {{cart.number}}, and an email has been
sent to {{cart.billing.email}} for your records.</p>

Then we’ll create an email template for the email. Download HTML Email Boilerplate,
and put in views/email/cart-thank-you.handlebars. Edit the file, and modify the body:

<body>
<table cellpadding="0" cellspacing="0" border="0" id="backgroundTable">
 <tr>
 <td valign="top">
 <table cellpadding="0" cellspacing="0" border="0" align="center">
 <tr>
 <td width="200" valign="top"><img class="image_fix"
 src="http://meadowlarktravel.com/email/logo.png"
 alt="Meadowlark Travel" title="Meadowlark Travel"
 width="180" height="220" /></td>
 </tr>
 <tr>
 <td width="200" valign="top"><p>
 Thank you for booking your trip with Meadowlark Travel,
 {{cart.billing.name}}.</p><p>Your reservation number
 is {{cart.number}}.</p></td>
 </tr>
 <tr>
 <td width="200" valign="top">Problems with your reservation?
 Contact Meadowlark Travel at
 555-555-0123.</td>
 </tr>
 </table>
 </td>
 </tr>
</table>
</body>

Because you can’t use localhost addresses in email, if your site isn’t live
yet, you can use a placeholder service for any graphics. For example,
http://placehold.it/100x100 dynamically serves a 100-pixel-square
graphic you can use. This technique is used quite often for for-
placement-only (FPO) images and layout purposes.

Now we can create a route for our cart “Thank you” page:

app.post('/cart/checkout', function(req, res){
 var cart = req.session.cart;

124 | Chapter 11: Sending Email

 if(!cart) next(new Error('Cart does not exist.'));
 var name = req.body.name || '', email = req.body.email || '';
 // input validation
 if(!email.match(VALID_EMAIL_REGEX))
 return res.next(new Error('Invalid email address.'));
 // assign a random cart ID; normally we would use a database ID here
 cart.number = Math.random().toString().replace(/^0\.0*/, '');
 cart.billing = {
 name: name,
 email: email,
 };
 res.render('email/cart-thank-you',
 { layout: null, cart: cart }, function(err,html){
 if(err) console.log('error in email template');
 mailTransport.sendMail({
 from: '"Meadowlark Travel": info@meadowlarktravel.com',
 to: cart.billing.email,
 subject: 'Thank You for Book your Trip with Meadowlark',
 html: html,
 generateTextFromHtml: true
 }, function(err){
 if(err) console.error('Unable to send confirmation: '
 + err.stack);
 });
 }
);
 res.render('cart-thank-you', { cart: cart });
});

Note that we’re calling res.render twice. Normally, you call it only once (calling it twice
will display only the results of the first call). However, in this instance, we’re circum‐
venting the normal rendering process the first time we call it: notice that we provide a
callback. Doing that prevents the results of the view from being rendered to the browser.
Instead, the callback receives the rendered view in the parameter html: all we have to
do is take that rendered HTML and send the email! We specify layout: null to prevent
our layout file from being used, because it’s all in the email template (an alternate ap‐
proach would be to create a separate layout file for emails and use that instead). Lastly,
we call res.render again. This time, the results will be rendered to the HTML response
as normal.

Encapsulating Email Functionality
If you’re using email a lot throughout your site, you may want to encapsulate the email
functionality. Let’s assume you always want your site to send email from the same sender
(“Meadowlark Travel” <info@meadowlarktravel.com>) and you always want the email
to be sent in HTML with automatically generated text. Create a module called lib/
email.js:

Sending HTML Email | 125

var nodemailer = require('nodemailer');

module.exports = function(credentials){

 var mailTransport = nodemailer.createTransport('SMTP',{
 service: 'Gmail',
 auth: {
 user: credentials.gmail.user,
 pass: credentials.gmail.password,
 }
 });

 var from = '"Meadowlark Travel" <info@meadowlarktravel.com>';
 var errorRecipient = 'youremail@gmail.com';

 return {
 send: function(to, subj, body){
 mailTransport.sendMail({
 from: from,
 to: to,
 subject: subj,
 html: body,
 generateTextFromHtml: true
 }, function(err){
 if(err) console.error('Unable to send email: ' + err);
 });
 }),

 emailError: function(message, filename, exception){
 var body = '<h1>Meadowlark Travel Site Error</h1>' +
 'message:
<pre>' + message + '</pre>
';
 if(exception) body += 'exception:
<pre>' + exception
 + '</pre>
';
 if(filename) body += 'filename:
<pre>' + filename
 + '</pre>
';
 mailTransport.sendMail({
 from: from,
 to: errorRecipient,
 subject: 'Meadowlark Travel Site Error',
 html: body,
 generateTextFromHtml: true
 }, function(err){
 if(err) console.error('Unable to send email: ' + err);
 });
 },
}

Now all we have to do to send an email is:

var emailService = require('./lib/email.js')(credentials);

emailService.send('joecustomer@gmail.com', 'Hood River tours on sale today!',
 'Get \'em while they\'re hot!');

126 | Chapter 11: Sending Email

You’ll notice we also added a method emailError, which we’ll discuss in the next section.

Email as a Site Monitoring Tool
If something goes wrong with your site, wouldn’t you rather know about it before your
client does? Or before your boss does? One great way to accomplish that is to have your
site email you distress messages when something goes wrong. In the previous example,
we added just such a method, so that when there’s an error in your site, you can do the
following:

if(err){
 email.sendError('the widget broke down!', __filename);
 // ... display error message to user
}

// or

try {
 // do something iffy here....
} catch(ex) {
 email.sendError('the widget broke down!', __filename, ex);
 // ... display error message to user
}

This is not a substitute for logging, and in Chapter 12, we will consider a more robust
logging and notification mechanism.

Email as a Site Monitoring Tool | 127

CHAPTER 12

Production Concerns

While it may feel premature to start discussing production concerns at this point, you
can save yourself a lot of time and suffering down the line if you start thinking about
production early on: launch day will be here before you know it.

In this chapter, we’ll learn about Express’s support for different execution environments,
methods to scale your website, and how to monitor your website’s health. We’ll see how
you can simulate a production environment for testing and development, and also how
to perform stress testing so you can identify production problems before they happen.

Execution Environments
Express supports the concept of execution environments: a way to run your application
in production, development, or test mode. You could actually have as many different
environments as you want. For example, you could have a staging environment, or a
training environment. However, keep in mind that development, production, and test
are “standard” environments: Express, Connect, and third-party middleware may make
decisions based on those environments. In other words, if you have a “staging” envi‐
ronment, there’s no way to make it automatically inherit the properties of a production
environment. For this reason, I recommend you stick with the standards of production,
development, and test.

While it is possible to specify the execution environment by calling app.set('env',
'production'), it is inadvisable to do so: it means your app will always run in that
environment, no matter what the situation. Worse, it may start running in one envi‐
ronment and then switch to another.

It’s preferable to specify the execution environment by using the environment variable
NODE_ENV. Let’s modify our app to report on the mode it’s running in by calling
app.get('env'):

129

http.createServer(app).listen(app.get('port'), function(){
 console.log('Express started in ' + app.get('env') +
 ' mode on http://localhost:' + app.get('port') +
 '; press Ctrl-C to terminate.');
});

If you start your server now, you’ll see you’re running in development mode: it’s the
default if you don’t specify otherwise. Let’s try putting it in production mode:

$ export NODE_ENV=production
$ node meadowlark.js

If you’re using a Unix/BSD system or Cygwin, there’s a handy syntax that allows you to
modify the environment only for the duration of that command:

$ NODE_ENV=production node meadowlark.js

This will run the server in production mode, but once the server terminates, the
NODE_ENV environment variable won’t be modified.

If you start Express in production mode, you may notice warnings
about components that are not suitable for use in production mode.
If you’ve been following along with the examples in this book, you’ll
see that connect.session is using a memory store, which is not suit‐
able for a production environment. Once we switch to a database store
in Chapter 13, this warning will disappear.

Environment-Specific Configuration
Just changing the execution environment won’t do much, though Express will log more
warnings to the console in production mode (for example, informing you of modules
that are deprecated and will be removed in the future). Also, in production mode, view
caching is enabled by default (see Chapter 7).

Mainly, the execution environment is a tool for you to leverage, allowing you to easily
make decisions about how your application should behave in the different environ‐
ments. As a word of caution, you should try to minimize the differences between your
development, test, and production environments. That is, you should use this feature
sparingly. If your development or test environments differ wildly from production, you
are increasing your chances of different behavior in production, which is a recipe for
more defects (or harder-to-find ones). Some differences are inevitable: for example, if
your app is highly database driven, you probably don’t want to be messing with the
production database during development, and that would be a good candidate for
environment-specific configuration. Another low-impact area is more verbose logging.
There are a lot of things you might want to log in development that are unnecessary to
record in production.

130 | Chapter 12: Production Concerns

Let’s add some logging to our application. For development, we’ll use Morgan (npm
install --save morgan), which uses colorized output that’s easy on the eyes. For
production, we’ll use express-logger (npm install --save express-logger), which
supports log rotation (every 24 hours, the log is copied, and a new one starts, to prevent
logfiles from growing unwieldy). Let’s add logging support to our application file:

switch(app.get('env')){
 case 'development':
 // compact, colorful dev logging
 app.use(require('morgan')('dev'));
 break;
 case 'production':
 // module 'express-logger' supports daily log rotation
 app.use(require('express-logger')({
 path: __dirname + '/log/requests.log'
 }));
 break;
}

If you want to test the logger, you can run your application in production mode
(NODE_ENV=production node meadowlark.js). If you would like to see the rotation
feature in action, you can edit node_modules/express-logger/logger.js and change the
variable defaultInterval to something like 10 seconds instead of 24 hours (remember
that modifying packages in node_modules is only for experimentation or learning).

In the previous example, we’re using __dirname to store the request
log in a subdirectory of the project itself. If you take this approach,
you will want to add log to your .gitignore file. Alternatively, you could
take a more Unix-like approach, and save the logs in a subdirectory
of /var/log, like Apache does by default.

I will stress again that you should use your best judgment when making environment-
specific configuration choices. Always keep in mind that when your site is live, your
production instances will be running in production mode (or they should be). When‐
ever you’re tempted to make a development-specific modification, you should always
think first about how that might have QA consequences in production. We’ll see a more
robust example of environment-specific configuration in Chapter 13.

Scaling Your Website
These days, scaling usually means one of two things: scaling up or scaling out. Scaling
up refers to making servers more powerful: faster CPUs, better architecture, more cores,
more memory, etc. Scaling out, on the other hand, simply means more servers. With
the increased poularity of cloud computing and the ubiquity of virtualization, server

Scaling Your Website | 131

computational power is becoming less relevant, and scaling out is the most cost-effective
method for scaling websites according to their needs.

When developing websites for Node, you should always consider the possibility of scal‐
ing out. Even if your application is tiny (maybe it’s even an intranet application that will
always have a very limited audience) and will never conceivably need to be scaled out,
it’s a good habit to get into. After all, maybe your next Node project will be the next
Twitter, and scaling out will be essential. Fortunately, Node’s support for scaling out is
very good, and writing your application with this in mind is painless.

The most important thing to remember when building a website designed to be scaled
out is persistence. If you’re used to relying on file-based storage for persistence, stop
right there. That way lies madness. My first experience with this problem was nearly
disastrous. One of our clients was running a web-based contest, and the web application
was designed to inform the first 50 winners that they would receive a prize. With that
particular client, we were unable to easily use a database due to some corporate IT
restrictions, so most persistence was achieved by writing flat files. I proceeded just as I
always had, saving each entry to a file. Once the file had recorded 50 winners, no more
people would be notified that they had won. The problem is that the server was load-
balanced: half the requests were served by one server, and the other half by another.
One server notified 50 people that they had won…and so did the other server. Fortu‐
nately, the prizes were small (fleece blankets) and not iPads, and the client took their
lumps and handed out 100 prizes instead of 50 (I offered to pay for the extra 50 blankets
out-of-pocket for my mistake, but they generously refused to take me up on my offer).
The moral of this story is that unless you have a filesystem that’s accessible to all of your
servers, you should not rely on the local filesystem for persistence. The exceptions are
read-only data, like logging, and backups. For example, I have commonly backed up
form submission data to a local flat file in case the database connection failed. In the
case of a database outage, it is a hassle to go to each server and collect the files, but at
least no damage has been done.

Scaling Out with App Clusters
Node itself supports app clusters, a simple, single-server form of scaling out. With app
clusters, you can create an independent server for each core (CPU) on the system (hav‐
ing more servers than the number of cores will not improve the performance of your
app). App clusters are good for two reasons: first, they can help maximize the perfor‐
mance of a given server (the hardware, or virtual machine), and second, it’s a low-
overhead way to test your app under parallel conditions.

Let’s go ahead and add cluster support to our website. While it’s quite common to do
all of this work in your main application file, we are going to create a second application
file that will run the app in a cluster, using the nonclustered application file we’ve been

132 | Chapter 12: Production Concerns

using all along. To enable that, we have to make a slight modification to meadow‐
lark.js first:

function startServer() {
 http.createServer(app).listen(app.get('port'), function(){
 console.log('Express started in ' + app.get('env') +
 ' mode on http://localhost:' + app.get('port') +
 '; press Ctrl-C to terminate.');
 });
}

if(require.main === module){
 // application run directly; start app server
 startServer();
} else {
 // application imported as a module via "require": export function
 // to create server
 module.exports = startServer;
}

This modification allows meadowlark.js to either be run directly (node meadow

lark.js) or included as a module via a require statement.

When a script is run directly, require.main === module will be true;
if it is false, it means your script has been loaded from another script
using require.

Then, we create a new script, meadowlark_cluster.js:
var cluster = require('cluster');

function startWorker() {
 var worker = cluster.fork();
 console.log('CLUSTER: Worker %d started', worker.id);
}

if(cluster.isMaster){

 require('os').cpus().forEach(function(){
 startWorker();
 });

 // log any workers that disconnect; if a worker disconnects, it
 // should then exit, so we'll wait for the exit event to spawn
 // a new worker to replace it
 cluster.on('disconnect', function(worker){
 console.log('CLUSTER: Worker %d disconnected from the cluster.',
 worker.id);
 });

Scaling Your Website | 133

 // when a worker dies (exits), create a worker to replace it
 cluster.on('exit', function(worker, code, signal){
 console.log('CLUSTER: Worker %d died with exit code %d (%s)',
 worker.id, code, signal);
 startWorker();
 });

} else {

 // start our app on worker; see meadowlark.js
 require('./meadowlark.js')();

}

When this JavaScript is executed, it will either be in the context of master (when it is
run directly, with node meadowlark_cluster.js), or in the context of a worker, when
Node’s cluster system executes it. The properties cluster.isMaster and cluster.is
Worker determine which context you’re running in. When we run this script, it’s exe‐
cuting in master mode, and we start a worker using cluster.fork for each CPU in the
system. Also, we respawn any dead workers by listening for exit events from workers.

Finally, in the else clause, we handle the worker case. Since we configured meadow‐
lark.js to be used as a module, we simply import it and immediately invoke it (remember,
we exported it as a function that starts the server).

Now start up your new clustered server:

node meadowlark_cluster.js

If you are using virtualization (like Oracle’s VirtualBox), you may have
to configure your VM to have multiple CPUs. By default, virtual
machines often have a single CPU.

Assuming you’re on a multicore system, you should see some number of workers started.
If you want to see evidence of different workers handling different requests, add the
following middleware before your routes:

app.use(function(req,res,next){
 var cluster = require('cluster');
 if(cluster.isWorker) console.log('Worker %d received request',
 cluster.worker.id);
});

Now you can connect to your application with a browser. Reload a few times, and see
how you can get a different worker out of the pool on each request.

134 | Chapter 12: Production Concerns

Handling Uncaught Exceptions
In the asynchronous world of Node, uncaught exceptions are of particular concern. Let’s
start with a simple example that doesn’t cause too much trouble (I encourage you to
follow along with these examples):

app.get('/fail', function(req, res){
 throw new Error('Nope!');
});

When Express executes route handlers, it wraps them in a try/catch block, so this isn’t
actually an uncaught exception. This won’t cause too much problem: Express will log
the exception on the server side, and the visitor will get an ugly stack dump. However,
your server is stable, and other requests will continue to be served correctly. If we want
to provide a “nice” error page, create a file views/500.handlebars and add an error han‐
dler after all of your routes:

app.use(function(err, req, res, next){
 console.error(err.stack);
 app.status(500).render('500');
});

It’s always a good practice to provide a custom error page: not only does it look more
professional to your users when errors do occur, but it allows you to take action when
errors occur. For example, this error handler would be a good place to send an email to
your dev team letting them know that an error occurred. Unfortunately, this helps only
for exceptions that Express can catch. Let’s try something worse:

app.get('/epic-fail', function(req, res){
 process.nextTick(function(){
 throw new Error('Kaboom!');
 });
});

Go ahead and try it. The result is considerably more catastrophic: it brought your whole
server down! In addition to not displaying a friendly error message to your user, now
your server is down, and no requests are being served. This is because setTimeout is
executing asynchronously; execution of the function with the exception is being deferred
until Node is idle. The problem is, when Node is idle and gets around to executing the
function, it no longer has context about the request it was being served from, so it has
no resource but to unceremoniously shut down the whole server, because now it’s in an
undefined state (Node can’t know the purpose of the function, or its caller, so it can no
longer assume that any further functions will work correctly).

Scaling Your Website | 135

process.nextTick is very similar to calling setTimeout with an
argument of zero, but it’s more efficient. We’re using it here for dem‐
onstration purposes: it’s not something you would generally use in
server-side code. However, in coming chapters, we will be dealing
with many things that execute asynchronously: database access, file‐
system access, and network access, to name a few, and they are all
subject to this problem.

There is action that we can take to handle uncaught exceptions, but if Node can’t de‐
termine the stability of your application, neither can you. In other words, if there is an
uncaught exception, the only recourse is to shut down the server. The best we can do
in this circumstance is to shut down as gracefully as possible and have a failover mech‐
anism. The easiest failover mechanism is to use a cluster (as mentioned previously). If
your application is operating in clustered mode and one worker dies, the master will
spawn another worker to take its place. (You don’t even have to have multiple workers:
a cluster with one worker will suffice, though the failover may be slightly slower.)

So with that in mind, how can we shut down as gracefully as possible when confronted
with an unhandled exception? Node has two mechanisms to deal with this: the uncaugh
tException event and domains.

Using domains is the more recent and recommended approach (uncaughtException
may even be removed in future versions of Node). A domain is basically an execution
context that will catch errors that occur inside it. Domains allow you to be more flexible
in your error handling: instead of having one global uncaught exception handler, you
can have as many domains as you want, allowing you to create a new domain when
working with error-prone code.

A good practice is to process every request in a domain, allowing you to trap any un‐
caught errors in that request and respond appropriately (by gracefully shutting down
the server). We can accomplish this very easily by adding a middleware. This middle‐
ware should go above any other routes or middleware:

app.use(function(req, res, next){
 // create a domain for this request
 var domain = require('domain').create();
 // handle errors on this domain
 domain.on('error', function(err){
 console.error('DOMAIN ERROR CAUGHT\n', err.stack);
 try {
 // failsafe shutdown in 5 seconds
 setTimeout(function(){
 console.error('Failsafe shutdown.');
 process.exit(1);
 }, 5000);

 // disconnect from the cluster

136 | Chapter 12: Production Concerns

 var worker = require('cluster').worker;
 if(worker) worker.disconnect();

 // stop taking new requests
 server.close();

 try {
 // attempt to use Express error route
 next(err);
 } catch(err){
 // if Express error route failed, try
 // plain Node response
 console.error('Express error mechanism failed.\n', err.stack);
 res.statusCode = 500;
 res.setHeader('content-type', 'text/plain');
 res.end('Server error.');
 }
 } catch(err){
 console.error('Unable to send 500 response.\n', err.stack);
 }
 });

 // add the request and response objects to the domain
 domain.add(req);
 domain.add(res);

 // execute the rest of the request chain in the domain
 domain.run(next);
});

// other middleware and routes go here

var server = http.createServer(app).listen(app.get('port'), function(){
 console.log('Listening on port %d.', app.get('port'));
});

The first thing we do is create a domain, and then attach an error handler to it. This
function will be invoked any time an uncaught error occurs in the domain. Our approach
here is to attempt to respond appropriately to any in-progress requests, and then shut
down this server. Depending on the nature of the error, it may not be possible to respond
to in-progress requests, so the first thing we do is establish a deadline for shutting down.
In this case, we’re allowing the server five seconds to respond to any in-progress requests
(if it can). The number you choose will be dependent on your application: if it’s common
for your application to have long-running requests, you should allow more time. Once
we establish the deadline, we disconnect from the cluster (if we’re in a cluster), which
should prevent the cluster from assigning us any more requests. Then we explicitly tell
the server that we’re no longer accepting new connections. Finally, we attempt to re‐
spond to the request that generated the error by passing on to the error-handling route
(next(err)). If that throws an exception, we fall back to trying to respond with the plain

Scaling Your Website | 137

Node API. If all else fails, we log the error (the client will receive no response, and
eventually time out).

Once we’ve set up the unhandled exception handler, we add the request and response
objects to the domain (allowing any methods on those objects that throw an error to be
handled by the domain), and finally, we run the next middleware in the pipeline in the
context of the domain. Note that this effectively runs all middleware in the pipeline in
the domain, since calls to next() are chained.

If you search npm, you will find several middleware that essentially offer this function‐
ality. However, it’s very important to understand how domain error handling works,
and also the importance of shutting down your server when there are uncaught excep‐
tions. Lastly, what “shutting down gracefully” means is going to vary depending on your
deployment configuration. For example, if you were limited to one worker, you may
want to shut down immediately, at the expense of any sessions in progress, whereas if
you had multiple workers, you would have more leeway in letting the dying worker
serve the remaining requests before shutting down.

I highly recommend reading William Bert’s excellent article, The 4 Keys to 100% Uptime
with Node.js. William’s real-world experience running Fluencia and SpanishDict on
Node make him an authority on the subject, and he considers using domains to be
essential to Node uptime. It is also worth going through the official Node documenta‐
tion on domains.

Scaling Out with Multiple Servers
Where scaling out using clustering can maximize the performance of an individual
server, what happens when you need more than one server? That’s where things get a
little more complicated. To achieve this kind of parallelism, you need a proxy server.
(It’s often called a reverse proxy or forward-facing proxy to distinguish it from proxies
commonly used to access external networks, but I find this language to be confusing
and unnecessary, so I will simply refer to it as a proxy).

The two rising stars in the proxy sphere are Nginx (pronounced “engine X”) and HAP‐
roxy. Nginx servers in particular are springing up like weeds: I recently did a competitive
analysis for my company and found upward of 80% of our competitors were using
Nginx. Nginx and HAproxy are both robust, high-performance proxy servers, and are
capable of the most demanding applications (if you need proof, consider that Netflix,
which accounts for as much as 30% of all Internet traffic, uses Nginx).

There are also some smaller Node-based proxy servers, such as proxy and node-http-
proxy. These are great options if your needs are modest, or for development. For pro‐
duction, I would recommend using Nginx or HAProxy (both are free, though they offer
support for a fee).

138 | Chapter 12: Production Concerns

http://bit.ly/100_percent_uptime
http://bit.ly/100_percent_uptime
http://nodejs.org/api/domain.html
http://nodejs.org/api/domain.html
https://npmjs.org/package/proxy
https://npmjs.org/package/http-proxy
https://npmjs.org/package/http-proxy

Installing and configuring a proxy is beyond the scope of this book, but it is not as hard
as you might think (especially if you use proxy or node-http-proxy). For now, using
clusters gives us some assurance that our website is ready for scaling out.

If you do configure a proxy server, make sure you tell Express that you are using a proxy
and that it should be trusted:

app.enable('trust proxy');

Doing this will ensure that req.ip, req.protocol, and req.secure will reflect the de‐
tails about the connection between the client and the proxy, not between the client and
your app. Also, req.ips will be an array that indicates the original client IP, and the
names or IP addresses of any intermediate proxies.

Monitoring Your Website
Monitoring your website is one of the most important—and most often overlooked—
QA measures you can take. The only thing worse than being up at three in the morning
fixing a broken website is being woken up at three by your boss because the website is
down (or, worse still, coming in in the morning to realize that your client just lost ten
thousand dollars in sales because the website had been down all night and no one
noticed).

There’s nothing you can do about failures: they are as inevitable as death and taxes.
However, if there is one thing you can do to convince your boss and your clients that
you are great at your job, it’s to always know about failures before they do.

Third-Party Uptime Monitors
Having an uptime monitor running on your website’s server is as effective as having a
smoke alarm in a house that nobody lives in. It might be able to catch errors if a certain
page goes down, but if the whole server goes down, it may go down without even sending
out an SOS. That’s why your first line of defense should be third-party uptime monitors.
UptimeRobot is free for up to 50 monitors and is simple to configure. Alerts can go to
email, SMS (text message), Twitter, or an iPhone app. You can monitor for the return
code from a single page (anything other than a 200 is considered an error), or to check
for the presence or absence of a keyword on the page. Keep in mind that if you use a
keyword monitor, it may affect your analytics (you can exclude traffic from uptime
monitors in most analytics services).

If your needs are more sophisticated, there are other, more expensive services out there
such as Pingdom and Site24x7.

Monitoring Your Website | 139

http://uptimerobot.com
http://pingdom.com
http://www.site24x7.com

Application Failures
Uptime monitors are great for detecting massive failures. And they can even be used to
detect application failures if you use keyword monitors. For example, if you religiously
include they keyword “server failure” when your website reports an error, keyword
monitoring may meet your needs. However, often there are failures that you want to
handle gracefully. Your user gets a nice “We’re sorry, but this service is currently not
functioning” message, and you get an email or text message letting you know about the
failure. Commonly, this is the approach you would take when you rely on third-party
components, such as databases or other web servers.

One easy way to handle application failures is to have errors emailed to yourself. In
Chapter 11, we showed how you can create an error-handling mechanism that notifies
you of errors.

If your notification needs are sophisticated (for example, if you have a large IT staff,
some of whom are “on call” on a rotating basis), you might consider looking into a
notification service, like Amazon’s Simple Notification Service (SNS).

You can also look into dedicated error-monitoring services, such as
Sentry or Airbrake, which can provide a more friendly experience
than getting error emails.

Stress Testing
Stress testing (or load testing) is designed to give you some confidence that your server
will function under the load of hundreds or thousands of simultaneous requests. This
is another deep area that could be the subject for a whole book: stress testing can be
arbitrarily sophisticated, and how complicated you want to get depends largely on the
nature of your project. If you have reason to believe that your site could be massively
popular, you might want to invest more time in stress testing.

For now, let’s add a simple test to make sure your application can serve the home page
a hundred times in under a second. For the stress testing, we’ll use a Node module called
loadtest:

npm install --save loadtest

Now let’s add a test suite, called qa/tests-stress.js:
var loadtest = require('loadtest');
var expect = require('chai').expect;

suite('Stress tests', function(){

140 | Chapter 12: Production Concerns

https://getsentry.com
https://airbrake.io

 test('Homepage should handle 100 requests in a second', function(done){
 var options = {
 url: 'http://localhost:3000',
 concurrency: 4,
 maxRequests: 100
 };
 loadtest.loadTest(options, function(err,result){
 expect(!err);
 expect(result.totalTimeSeconds < 1);
 done();
 });
 });

});

We’ve already got our Mocha task configured in Grunt, so we should just be able to run
grunt, and see our new test passing (don’t forget to start your server in a separate window
first).

Stress Testing | 141

CHAPTER 13

Persistence

All but the simplest websites and web applications are going to require persistence of
some kind; that is, some way to store data that’s more permanent than volatile memory,
so that your data will survive server crashes, power outages, upgrades, and relocations.
In this chapter, we’ll be discussing the options available for persistence, with a focus on
document databases.

Filesystem Persistence
One way to achieve persistence is to simply save data to so-called “flat files” (“flat” be‐
cause there’s no inherent structure in a file: it’s just a sequence of bytes). Node makes
filesystem persistence possible through the fs (filesystem) module.

Filesystem persistence has some drawbacks. In particular, it doesn’t scale well: the mi‐
nute you need more than one server to meet traffic demands, you will run into problems
with filesystem persistence, unless all of your servers have access to a shared filesystem.
Also, because flat files have no inherent structure, the burden of locating, sorting, and
filtering data will be on your application. For these reasons, you should favor databases
over filesystems for storing data. The one exception is storing binary files, such as im‐
ages, audio files, or videos. While many databases can handle this type of data, they
rarely do so more efficiently than a filesystem (though information about the binary
files is usually stored in a database to enable searching, sorting, and filtering).

If you do need to store binary data, keep in mind that filesystem storage still has the
problem of not scaling well. If your hosting doesn’t have access to a shared filesystem
(which is usually the case), you should consider storing binary files in a database (which
usually requires some configuration so the database doesn’t grind to a stop), or a cloud-
based storage service, like Amazon S3 or Microsoft Azure Storage.

143

Now that we’ve got the caveats out of the way, let’s look at Node’s filesystem support.
We’ll revisit the vacation photo contest from Chapter 8. In our application file, let’s fill
in the handler that processes that form:

// make sure data directory exists
var dataDir = __dirname + '/data';
var vacationPhotoDir = dataDir + '/vacation-photo';
fs.existsSync(dataDir) || fs.mkdirSync(dataDir);
fs.existsSync(vacationPhotoDir) || fs.mkdirSync(vacationPhotoDir);

function saveContestEntry(contestName, email, year, month, photoPath){
 // TODO...this will come later
}

app.post('/contest/vacation-photo/:year/:month', function(req, res){
 var form = new formidable.IncomingForm();
 form.parse(req, function(err, fields, files){
 if(err) return res.redirect(303, '/error');
 if(err) {
 res.session.flash = {
 type: 'danger',
 intro: 'Oops!',
 message: 'There was an error processing your submission. ' +
 'Pelase try again.',
 };
 return res.redirect(303, '/contest/vacation-photo');
 }
 var photo = files.photo;
 var dir = vacationPhotoDir + '/' + Date.now();
 var path = dir + '/' + photo.name;
 fs.mkdirSync(dir);
 fs.renameSync(photo.path, dir + '/' + photo.name);
 saveContestEntry('vacation-photo', fields.email,
 req.params.year, req.params.month, path);
 req.session.flash = {
 type: 'success',
 intro: 'Good luck!',
 message: 'You have been entered into the contest.',
 };
 return res.redirect(303, '/contest/vacation-photo/entries');
 });
});

There’s a lot going on there, so let’s break it down. We first create a directory to store
the uploaded files (if it doesn’t already exist). You’ll probably want to add the data
directory to your .gitignore file so you don’t accidentally commit uploaded files. We then
create a new instance of Formidable’s IncomingForm and call its parse method, passing
in the req object. The callback provides all the fields and the files that were uploaded.
Since we called the upload field photo, there will be a files.photo object containing
information about the uploaded files. Since we want to prevent collisions, we can’t just

144 | Chapter 13: Persistence

use the filename (in case two users both upload portland.jpg). To avoid this problem,
we create a unique directory based on the timestamp: it’s pretty unlikely that two users
will both upload portland.jpg in the same millisecond! Then we rename (move) the
uploaded file (Formidable will have given it a temporary name, which we can get from
the path property) to our constructed name.

Finally, we need some way to associate the files that users upload with their email ad‐
dresses (and the month and year of the submission). We could encode this information
into the file or directory names, but we are going to prefer storing this information in
a database. Since we haven’t learned how to do that yet, we’re going to encapsulate that
functionality in the vacationPhotoContest function and complete that function later
in this chapter.

In general, you should never trust anything that the user uploads: it’s
a possible vector for your website to be attacked. For example, a ma‐
licious user could easily take a harmful executable, rename it with
a .jpg extension, and upload it as the first step in an attack (hoping to
find some way to execute it at a later point). Likewise, we are taking
a little risk here by naming the file using the name property provided
by the browser: someone could also abuse this by inserting special
characters into the filename. To make this code completely safe, we
would give the file a random name, taking only the extension (mak‐
ing sure it consists only of alphanumeric characters).

Cloud Persistence
Cloud storage is becoming increasingly popular, and I highly recommend you take
advantage of one of these inexpensive, easy-to-use services. Here’s an example of how
easy it is to save a file to an Amazon S3 account:

var filename = 'customerUpload.jpg';

aws.putObject({
 ACL: 'private',
 Bucket: 'uploads',
 Key: filename,
 Body: fs.readFileSync(__dirname + '/tmp/ + filename)
});

See the AWS SDK documentation for more information.

And an example of how to do the same thing with Microsoft Azure:

var filename = 'customerUpload.jpg';

var blobService = azure.createBlobService();
blobService.putBlockBlobFromFile('uploads', filename, __dirname +
 '/tmp/' + filename);

Cloud Persistence | 145

http://aws.amazon.com/sdkfornodejs

See the Microsoft Azure documentation for more information.

Database Persistence
All except the simplest websites and web applications require a database. Even if the
bulk of your data is binary, and you’re using a shared filesystem or cloud storage, the
chances are you’ll want a database to help catalog that binary data.

Traditionally, the world “database” is shorthand for “relational database management
system” (RDBMS). Relational databases, such as Oracle, MySQL, PostgreSQL, or SQL
Server are based on decades of research and formal database theory. It is a technology
that is quite mature at this point, and the power of these databases is unquestionable.
However, unless you are Amazon or Facebook, you have the luxury of expanding your
ideas of what constitutes a database. “NoSQL” databases have come into vogue in recent
years, and they’re challenging the status quo of Internet data storage.

It would be foolish to claim that NoSQL databases are somehow better than relational
databases, but they do have certain advantages (and vice versa). While it is quite easy
to integrate a relational database with Node apps, there are NoSQL databases that seem
almost to have been designed for Node.

The two most popular types of NoSQL databases are document databases and key-value
databases. Document databases excel at storing objects, which makes them a natural fit
for Node and JavaScript. Key-value databases, as the name implies, are extremely simple,
and are a great choice for applications with data schemas that are easily mapped into
key-value pairs.

I feel that document databases represent the optimal compromise between the con‐
straints of relational databases and the simplicity of key-value databases, and for that
reason, we will be using a document database for our examples. MongoDB is the leading
document database, and is very robust and established at this point.

A Note on Performance
The simplicity of NoSQL databases is a double-edged sword. Carefully planning a re‐
lational database can be a very involved task, but the benefit of that careful planning is
databases that offer excellent performance. Don’t be fooled into thinking that because
NoSQL databases are generally more simple, that there isn’t an art and a science to tuning
them for maximum performance.

Relational databases have traditionally relied on their rigid data structures and decades
of optimization research to achieve high performance. NoSQL databases, on the other
hand, have embraced the distributed nature of the Internet and, like Node, have instead
focused on concurrency to scale performance (relational databases also support con‐
currency, but this is usually reserved for the most demanding applications).

146 | Chapter 13: Persistence

http://bit.ly/azure_documentation

Planning for database performance and scalability is a large, complex topic that is
beyond the scope of this book. If your application requires a high level of database
performance, I recommend starting with Kristina Chodorow’s MongoDB: The Defini‐
tive Guide (O’Reilly).

Setting Up MongoDB
The difficulty involved in setting up a MongoDB instance varies with your operating
system. For this reason, we’ll be avoiding the problem altogether by using an excellent
free MongoDB hosting service, MongoLab.

MongoLab is not the only MongoDB service available. MongoHQ,
among others, offer free development/sandbox accounts. These ac‐
counts are not recommended for production purposes, though. Both
MongoLab and MongoHQ offer production-ready accounts, so you
should look into their pricing before making a choice: it will be less
hassle to stay with the same hosting service when you make the switch
to production.

Getting started with MongoLab is simple. Just go to http://mongolab.com and click Sign
Up. Fill out the registration form and log in, and you’ll be at your home screen. Under
Databases, you’ll see “no databases at this time.” Click “Create new,” and you will be
taken to a page with some options for your new database. The first thing you’ll select is
a cloud provider. For a free (sandbox) account, the choice is largely irrelevant, though
you should look for a data center near you (not every data center will offer sandbox
accounts, however). Select “Single-node (development),” and Sandbox. You can select
the version of MongoDB you want to use: the examples in this book use version 2.4.
Finally, choose a database name, and click “Create new MongoDB deployment.”

Mongoose
While there’s a low-level driver available for MongoDB, you’ll probably want to use an
“object document mapper” (ODM). The officially supported ODM for MongoDB is
Mongoose.

One of the advantages of JavaScript is that its object model is extremely flexible: if you
want to add a property or method to an object, you just do it, and you don’t need to
worry about modifying a class. Unfortunately, that kind of free-wheeling flexibility can
have a negative impact on your databases: they can become fragmented and hard to
optimize. Mongoose attempts to strike a balance: it introduces schemas and models
(combined, schemas and models are similar to classes in traditional object-oriented
programming). The schemas are flexible but still provide some necessary structure for
your database.

Database Persistence | 147

http://bit.ly/Mongo_DB_Guide
http://bit.ly/Mongo_DB_Guide
https://www.mongohq.com
http://mongolab.com
https://npmjs.org/package/mongodb

Before we get started, we’ll need to install the Mongoose module:

npm install --save mongoose

Then we’ll add our database credentials to the credentials.js file:

mongo: {
 development: {
 connectionString: 'your_dev_connection_string',
 },
 production: {
 connectionString: 'your_production_connection_string',
 },
},

You’ll find your connection string on the database page in MongoLab: from your home
screen, click the appropriate database. You’ll see a box with your MongoDB connection
URI (it starts with mongodb://). You’ll also need a user for your database. To create one,
click Users, then “Add database user.”

Notice that we store two sets of credentials: one for development and one for production.
You can go ahead and set up two databases now, or just point both to the same database
(when it’s time to go live, you can switch to using two separate databases).

Database Connections with Mongoose
We’ll start by creating a connection to our database:

var mongoose = require('mongoose');
var opts = {
 server: {
 socketOptions: { keepAlive: 1 }
 }
};
switch(app.get('env')){
 case 'development':
 mongoose.connect(credentials.mongo.development.connectionString, opts);
 break;
 case 'production':
 mongoose.connect(credentials.mongo.production.connectionString, opts);
 break;
 default:
 throw new Error('Unknown execution environment: ' + app.get('env'));
}

The options object is optional, but we want to specify the keepAlive option, which will
prevent database connection errors for long-running applications (like a website).

148 | Chapter 13: Persistence

Creating Schemas and Models
Let’s create a vacation package database for Meadowlark Travel. We start by defining a
schema and creating a model from it. Create the file models/vacation.js:

var mongoose = require('mongoose');

var vacationSchema = mongoose.Schema({
 name: String,
 slug: String,
 category: String,
 sku: String,
 description: String,
 priceInCents: Number,
 tags: [String],
 inSeason: Boolean,
 available: Boolean,
 requiresWaiver: Boolean,
 maximumGuests: Number,
 notes: String,
 packagesSold: Number,
});
vacationSchema.methods.getDisplayPrice = function(){
 return '$' + (this.priceInCents / 100).toFixed(2);
};
var Vacation = mongoose.model('Vacation', vacationSchema);
module.exports = Vacation;

This code declares the properties that make up our vacation model, and the types of
those properties. You’ll see there are several string properties, two numeric properties,
two Boolean properties, and an array of strings (denoted by [String]). At this point,
we can also define methods on our schema. We’re storing product prices in cents instead
of dollars to help prevent any floating-point rounding trouble, but obviously we want
to display our products in US dollars (until it’s time to internationalize, of course!). So
we add a method called getDisplayPrice to get a price suitable for display. Each product
has a “stock keeping unit” (SKU); even though we don’t think about vacations being
“stock items,” the concept of an SKU is pretty standard for accounting, even when tan‐
gible goods aren’t being sold.

Once we have the schema, we create a model using mongoose.model: at this point,
Vacation is very much like a class in traditional object-oriented programming. Note
that we have to define our methods before we create our model.

Due to the nature of floating-point numbers, you should always be
careful with financial computations in JavaScript. Storing prices in
cents helps, but it doesn’t eliminate the problems. A decimal type
suitable for financial calculations will be available in the next ver‐
sion of JavaScript (ES6).

Database Persistence | 149

We are exporting the Vacation model object created by Mongoose. To use this model
in our application, we can import it like this:

var Vacation = require('./models/vacation.js');

Seeding Initial Data
We don’t yet have any vacation packages in our database, so we’ll add some to get us
started. Eventually, you may want to create a way to manage products, but for the pur‐
poses of this book, we’re just going to do it in code:

Vacation.find(function(err, vacations){
 if(vacations.length) return;

 new Vacation({
 name: 'Hood River Day Trip',
 slug: 'hood-river-day-trip',
 category: 'Day Trip',
 sku: 'HR199',
 description: 'Spend a day sailing on the Columbia and ' +
 'enjoying craft beers in Hood River!',
 priceInCents: 9995,
 tags: ['day trip', 'hood river', 'sailing', 'windsurfing', 'breweries'],
 inSeason: true,
 maximumGuests: 16,
 available: true,
 packagesSold: 0,
 }).save();

 new Vacation({
 name: 'Oregon Coast Getaway',
 slug: 'oregon-coast-getaway',
 category: 'Weekend Getaway',
 sku: 'OC39',
 description: 'Enjoy the ocean air and quaint coastal towns!',
 priceInCents: 269995,
 tags: ['weekend getaway', 'oregon coast', 'beachcombing'],
 inSeason: false,
 maximumGuests: 8,
 available: true,
 packagesSold: 0,
 }).save();

 new Vacation({
 name: 'Rock Climbing in Bend',
 slug: 'rock-climbing-in-bend',
 category: 'Adventure',
 sku: 'B99',
 description: 'Experience the thrill of climbing in the high desert.',
 priceInCents: 289995,
 tags: ['weekend getaway', 'bend', 'high desert', 'rock climbing'],
 inSeason: true,

150 | Chapter 13: Persistence

 requiresWaiver: true,
 maximumGuests: 4,
 available: false,
 packagesSold: 0,
 notes: 'The tour guide is currently recovering from a skiing accident.',
 }).save();
});

There are two Mongoose methods being used here. The first, find, does just what it
says. In this case, it’s finding all instances of Vacation in the database and invoking the
callback with that list. We’re doing that because we don’t want to keep readding our seed
vacations: if there are already vacations in the database, it’s been seeded, and we can go
on our merry way. The first time this executes, though, find will return an empty list,
so we proceed to create two vacations, and then call the save method on them, which
saves these new objects to the database.

Retrieving Data
We’ve already seen the find method, which is what we’ll use to display a list of vacations.
However, this time we’re going to pass an option to find that will filter the data. Specif‐
ically, we want to display only vacations that are currently available.

Create a view for the products page, views/vacations.handlebars:
<h1>Vacations</h1>
{{#each vacations}}
 <div class="vacation">
 <h3>{{name}}</h3>
 <p>{{description}}</p>
 {{#if inSeason}}
 {{price}}
 Buy Now!
 {{else}}
 We're sorry, this vacation is currently
 not in season.
 {{! The "notify me when this vacation is in season"
 page will be our next task. }}
 Notify me when
 this vacation is in season.
 {{/if}}
 </div>
{{/each}}

Now we can create route handlers that hook it all up:

// see companion repository for /cart/add route....

app.get('/vacations', function(req, res){
 Vacation.find({ available: true }, function(err, vacations){
 var context = {
 vacations: vacations.map(function(vacation){

Database Persistence | 151

 return {
 sku: vacation.sku,
 name: vacation.name,
 description: vacation.description,
 price: vacation.getDisplayPrice(),
 inSeason: vacation.inSeason,
 }
 })
 };
 res.render('vacations', context);
 });
});

Most of this should be looking pretty familiar, but there might be some things that
surprise you. For instance, how we’re handling the view context for the vacation listing
might seem odd. Why did we map the products returned from the database to a nearly
identical object? One reason is that there’s no built-in way for a Handlebars view to use
the output of a function in an expression. So to display the price in a neatly formatted
way, we have to convert it to a simple string property. We could have done this:

var context = {
 vacations: products.map(function(vacations){
 vacation.price = vacation.getDisplayPrice();
 return vacation;
 });
};

That would certainly save us a few lines of code, but in my experience, there are good
reasons not to pass unmapped database objects directly to views. The view gets a bunch
of properties it may not need, possibly in formats that are incompatible with it. Our
example is pretty simple so far, but once it starts to get more complicated, you’ll probably
want to do even more customization of the data that’s passed to a view. It also makes it
easy to accidentally expose confidential information, or information that could com‐
promise the security of your website. For these reasons, I recommend mapping the data
that’s returned from the database and passing only what’s needed onto the view (trans‐
forming as necessary, as we did with price).

In some variations of the MVC architecture, a third component called
a “view model” is introduced. A view model essentially distills and
transforms a model (or models) so that it’s more appropriate for dis‐
play in a view. What we’re doing above is essentially creating a view
model on the fly.

Adding Data
We’ve already seen how we can add data (we added data when we seeded the vacation
collection) and how we can update data (we update the count of packages sold when we

152 | Chapter 13: Persistence

book a vacation), but let’s take a look at a slightly more involved scenario that highlights
the flexibility of document databases.

When a vacation is out of season, we display a link that invites the customer to be notified
when the vacation is in season again. Let’s hook up that functionality. First, we create
the schema and model (models/vacationInSeasonListener.js):

var mongoose = require('mongoose');

var vacationInSeasonListenerSchema = mongoose.Schema({
 email: String,
 skus: [String],
});
var VacationInSeasonListener = mongoose.model('VacationInSeasonListener',
 vacationInSeasonListenerSchema);

module.exports = VacationInSeasonListener;

Then we’ll create our view, views/notify-me-when-in-season.handlebars:
<div class="formContainer">
 <form class="form-horizontal newsletterForm" role="form"
 action="/notify-me-when-in-season" method="POST">
 <input type="hidden" name="sku" value="{{sku}}">
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldName" name="email">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-default">Submit</button>
 </div>
 </div>
 </form>
</div>

And finally, the route handlers:

var VacationInSeasonListener = require('./models/vacationInSeasonListener.js');

app.get('/notify-me-when-in-season', function(req, res){
 res.render('notify-me-when-in-season', { sku: req.query.sku });
});

app.post('/notify-me-when-in-season', function(req, res){
 VacationInSeasonListener.update(
 { email: req.body.email },
 { $push: { skus: req.body.sku } },
 { upsert: true },
 function(err){

Database Persistence | 153

 if(err) {
 console.error(err.stack);
 req.session.flash = {
 type: 'danger',
 intro: 'Ooops!',
 message: 'There was an error processing your request.',
 };
 return res.redirect(303, '/vacations');
 }
 req.session.flash = {
 type: 'success',
 intro: 'Thank you!',
 message: 'You will be notified when this vacation is in season.',
 };
 return res.redirect(303, '/vacations');
 }
);
});

What magic is this? How can we “update” a record in the VacationInSeasonListen
er collection before it even exists? The answer lies in a Mongoose convenience called
an upsert (a portmanteau of “update” and “insert”). Basically, if a record with the given
email address doesn’t exist, it will be created. If a record does exist, it will be updated.
Then we use the magic variable $push to indicate that we want to add a value to an array.
Hopefully this will give you a taste of what Mongoose provides for you, and why you
may want to use it instead of the low-level MongoDB driver.

This code doesn’t prevent multiple SKUs from being added to the
record if the user fills out the form multiple times. When a vacation
comes into season, and we find all the customers who want to be
notified, we will have to be careful not to notify them multiple times.

Using MongoDB for Session Storage
As we discussed in Chapter 9, using a memory store for session data is unsuitable in a
production environment. Fortunately, it’s very easy to set up MongoDB to use as a
session store.

We’ll be using a package called session-mongoose to provide MongoDB session stor‐
age. Once you’ve installed it (npm install --save session-mongoose), we can set it
up in our main application file:

var MongoSessionStore = require('session-mongoose')(require('connect'));
var sessionStore = new MongoSessionStore({ url:
 credentials.mongo.connectionString });

app.use(require('cookie-parser')(credentials.cookieSecret));
app.use(require('express-session')({ store: sessionStore }));

154 | Chapter 13: Persistence

Let’s use our newly minted session store for something useful. Imagine we want to be
able to display vacation prices in different currencies. Furthermore, we want the site to
remember the user’s currency preference.

We’ll start by adding a currency picker at the bottom of our vacations page:

<hr>
<p>Currency:
 USD |
 GBP |
 BTC
</p>

Now a little CSS:

a.currency {
 text-decoration: none;
}
.currency.selected {
 font-weight: bold;
 font-size: 150%;
}

Lastly, we’ll add a route handler to set the currency, and modify our route handler
for /vacations to display prices in the current currency:

app.get('/set-currency/:currency', function(req,res){
 req.session.currency = req.params.currency;
 return res.redirect(303, '/vacations');
});

function convertFromUSD(value, currency){
 switch(currency){
 case 'USD': return value * 1;
 case 'GBP': return value * 0.6;
 case 'BTC': return value * 0.0023707918444761;
 default: return NaN;
 }
}

app.get('/vacations', function(req, res){
 Vacation.find({ available: true }, function(err, vacations){
 var currency = req.session.currency || 'USD';
 var context = {
 currency: currency,
 vacations: vacations.map(function(vacation){
 return {
 sku: vacation.sku,
 name: vacation.name,
 description: vacation.description,
 inSeason: vacation.inSeason,
 price: convertFromUSD(vacation.priceInCents/100, currency),
 qty: vacation.qty,

Database Persistence | 155

 }
 })
 };
 switch(currency){
 case 'USD': context.currencyUSD = 'selected'; break;
 case 'GBP': context.currencyGBP = 'selected'; break;
 case 'BTC': context.currencyBTC = 'selected'; break;
 }
 res.render('vacations', context);
 });
});

This isn’t a great way to perform currency conversion, of course: we would want to utilize
a third-party currency conversion API to make sure our rates are up-to-date. But this
will suffice for demonstration purposes. You can now switch between the various
currencies and—go ahead and try it—stop and restart your server…you’ll find it re‐
members your currency preference! If you clear your cookies, the currency preference
will be forgotten. You’ll notice that now we’ve lost our pretty currency formatting: it’s
now more complicated, and I will leave that as an exercise for the reader.

If you look in your database, you’ll find there’s a new collection called “sessions”: if you
explore that collection, you’ll find a document with your session ID (property sid) and
your currency preference.

MongoDB is not necessarily the best choice for session storage: it is
overkill for that purpose. Another popular and easy-to-use alterna‐
tive for session persistence is Redis. See the connect-redis package for
instructions on setting up a session store with Redis.

156 | Chapter 13: Persistence

http://redis.io
https://www.npmjs.org/package/connect-redis

CHAPTER 14

Routing

Routing is one of the most important aspects of your website or web service; fortunately,
routing in Express is simple, flexible, and robust. Routing is the mechanism by which
requests (as specified by a URL and HTTP method) are routed to the code that handles
them. As we’ve already noted, routing used to be file based and very simple: if you put
the file foo/about.html on your website, you would access it from the browser with the
path /foo/about.html. Simple, but inflexible. And, in case you hadn’t noticed, having
“HTML” in your URL is extremely passé these days.

Before we dive into the technical aspects of routing with Express, we should discuss the
concept of information architecture (IA). IA refers to the conceptual organization of
your content. Having an extensible (but not overcomplicated) IA before you begin
thinking about routing will pay huge dividends down the line.

One of the most intelligent and timeless essays on IA is by Tim Berners-Lee, who prac‐
tically invented the Internet. You can (and should) read it now: http://www.w3.org/
Provider/Style/URI.html. It was written in 1998. Let that sink in for a minute: there’s not
much that was written on Internet technology in 1998 that is just as true today as it was
then.

From that essay, here is the lofty responsibility we are being asked to take on:
It is the duty of a Webmaster to allocate URIs which you will be able to stand by in 2 years,
in 20 years, in 200 years. This needs thought, and organization, and commitment.

— Tim Berners-Lee

I like to think that if web design ever required professional licensing, like other kinds
of engineering, that we would take an oath to that effect. (The astute reader of that article
will find humor in the fact that the URL to that article ends with .html.)

To make an analogy (that may sadly be lost on the younger audience), imagine that
every two years, your favorite library completely reordered the Dewey Decimal System.

157

http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html

You would walk into the library one day, and you wouldn’t be able to find anything.
That’s exactly what happens when you redesign your URL structure.

Put some serious thought into your URLs: will they still make sense in 20 years? (200
years may be a bit of a stretch: who knows if we’ll even be using URLs by then. Still, I
admire the dedication of thinking that far into the future.) Carefully consider the break‐
down of your content. Categorize things logically, and try not to paint yourself into a
corner. It’s a science, but it’s also an art.

Perhaps most important, work with others to design your URLs. Even if you are the best
information architect for miles around, you might be surprised at how people look at
the same content with a different perspective. I’m not saying that you should try for an
IA that makes sense from everyone’s perspective (because that is usually quite impossi‐
ble), but being able to see the problem from multiple perspectives will give you better
ideas and expose the flaws in your own IA.

Here are some suggestions to help you achieve a lasting IA:
Never expose technical details in your URLs

Have you ever been to a website, noticed that the URL ended in .asp, and thought
that the website was hopelessly out-of-date? Remember that, once upon a time, ASP
was cutting-edge. Though it pains me to say it, so too shall fall JavaScript and JSON
and Node and Express. Hopefully not for many, many productive years, but time
is not often kind to technology.

Avoid meaningless information in your URLs
Think carefully about every word in your URL. If it doesn’t mean anything, leave
it out. For example, it always makes me cringe when websites use the word home
in URLs. Your root URL is your home page. You don’t need to additionally have
URLs like /home/directions and /home/contact.

Avoid needlessly long URLs
All things being equal, a short URL is better than a longer URL. However, you
should not try to make URLs short at the expense of clarity, or SEO. Abbreviations
are tempting, but think carefully about them: they should be very common and
ubiquitous before you immortalize them in a URL.

Be consistent with word separators
It’s quite common to separate words with hyphens, and a little less common to do
so with underscores. Hyphens are generally considered more aesthetically pleasing
than underscores, and most SEO experts recommend them. Whether you choose
hyphens or underscores, be consistent in their use.

Never use whitespace or untypable characters
Whitespace in a URL is not recommended. It will usually just be converted to a plus
sign (+), leading to confusion. It should be obvious that you should avoid untypable

158 | Chapter 14: Routing

characters, and I would caution you strongly against using any characters other
than alphanumeric characters, numbers, dashes, and underscores. It may feel clever
at the time, but “clever” has a way of not standing the test of time. Obviously, if your
website is not for an English audience, you may use non-English characters (using
percent codes), though that can cause headaches if you ever want to localize your
website.

Use lowercase for your URLs
This one will cause some debate: there are those who feel that mixed case in URLs
is not only acceptable, but preferable. I don’t want to get in a religious debate over
this, but I will point out that the advantage of lowercase is that it can always auto‐
matically be generated by code. If you’ve ever had to go through a website and
sanitize thousands of links, or do string comparisons, you will appreciate this ar‐
gument. I personally feel that lowercase URLs are more aesthetically pleasing, but
in the end, this decision is up to you.

Routes and SEO
If you want your website to be discoverable (and most people do), then you need to
think about SEO, and how your URLs can affect it. In particular, if there are certain
keywords that are very important—and it makes sense—consider making it part of the
URL. For example, Meadowlark Travel offers several Oregon Coast vacations: to ensure
high search engine ranking for these vacations, we use the string “Oregon Coast” in the
title, header, body, and meta description, and the URLs start with /vacations/oregon-
coast. The Manzanita vacation package can be found at /vacations/oregon-coast/manza‐
nita. If, to shorten the URL, we simply used /vacations/manzanita, we would be losing
out on valuable SEO.

That said, resist the temptation to carelessly jam keywords into URLs in an attempt to
improve your rankings: it will fail. For example, changing the Manzanita vacation URL
to /vacations/oregon-coast-portland-and-hood-river/oregon-coast/manzanita in an ef‐
fort to say “Oregon Coast” one more time, and also work the “Portland” and “Hood
River” keywords in at the same time, is wrong-headed. It flies in the face of good IA,
and will likely backfire.

Subdomains
Along with the path, subdomains are the other part of the URL that is commonly used
to route requests. Subdomains are best reserved for significantly different parts of your
application—for example, a REST API (api.meadowlarktravel.com) or an admin inter‐
face (admin.meadowlarktravel.com). Sometimes subdomains are used for technical
reasons. For example, if we were to build our blog with WordPress (while the rest of
our site uses Express), it can be easier to use blog.meadowlarktravel.com (a better

Routes and SEO | 159

solution would be to use a proxy server, such as Nginx). There are usually SEO
consequences to partitioning your content using subdomains, which is why you should
generally reserve them for areas of your site that aren’t important to SEO, such as admin
areas and APIs. Keep this in mind and make sure there’s no other option before using
a subdomain for content that is imporant to your SEO plan.

The routing mechanism in Express does not take subdomains into account by default:
app.get(/about) will handle requests for http://meadowlarktravel.com/about, http://
www.meadowlarktravel.com, and http://admin.meadowlarktravel.com/about. If you
want to handle a subdomain separately, you can use a package called vhost (for “virtual
host,” which comes from an Apache mechanism commonly used for handling subdo‐
mains). First, install the package (npm install --save vhost), then edit your appli‐
cation file to create a subdomain:

// create "admin" subdomain...this should appear
// before all your other routes
var admin = express.Router();
app.use(vhost('admin.*', admin));

// create admin routes; these can be defined anywhere
admin.get('/', function(req, res){
 res.render('admin/home');
});
admin.get('/users', function(req, res){
 res.render('admin/users');
});

express.Router() essentially creates a new instance of the Express router. You can treat
this instance just like your original instance (app): you can add routes and middleware
just as you would to app. However, it won’t do anything until you add it to app. We add
it through vhost, which binds that router instance to that subdomain.

Route Handlers Are Middleware
We’ve already seen very basic route: simply matching a given path. But what does
app.get('/foo',…) actually do? As we saw in Chapter 10, it’s simply a specialized piece
of middleware, down to having a next method passed in. Let’s look at some more so‐
phisticated examples:

app.get('/foo', function(req,res,next){
 if(Math.random() < 0.5) return next();
 res.send('sometimes this');
});
app.get('/foo', function(req,res){
 res.send('and sometimes that');
});

160 | Chapter 14: Routing

In the previous example, we have two handlers for the same route. Normally, the first
one would win, but in this case, the first one is going to pass approximately half the
time, giving the second one a chance. We don’t even have to use app.get twice: you can
use as many handlers as you want for a single app.get call. Here’s an example that has
an approximately equal chance of three different responses:

app.get('/foo',
 function(req,res, next){
 if(Math.random() < 0.33) return next();
 res.send('red');
 },
 function(req,res, next){
 if(Math.random() < 0.5) return next();
 res.send('green');
 },
 function(req,res){
 res.send('blue');
 },
)

While this may not seem particularly useful at first, it allows you to create generic func‐
tions that can be used in any of your routes. For example, let’s say we have a mechanism
that shows special offers on certain pages. The special offers change frequently, and
they’re not shown on every page. We can create a function to inject the specials into the
res.locals property (which you’ll remember from Chapter 7):

function specials(req, res, next){
 res.locals.specials = getSpecialsFromDatabase();
 next();
}

app.get('/page-with-specials', specials, function(req,res){
 res.render('page-with-specials');
});

We could also implement an authorization mechanism with this approach. Let’s say our
user authorization code sets a session variable called req.session.authorized. We can
use the following to make a reusable authorization filter:

function authorize(req, res, next){
 if(req.session.authorized) return next();
 res.render('not-authorized');
}

app.get('/secret', authorize, function(){
 res.render('secret');
})

app.get('/sub-rosa', authorize, function(){
 res.render('sub-rosa');
});

Route Handlers Are Middleware | 161

Route Paths and Regular Expressions
When you specify a path (like /foo) in your route, it’s eventually converted to a regular
expression by Express. Some regular expression metacharacters are available in route
paths: +, ?, *, (, and). Let’s look at a couple of examples. Let’s say you want the
URLs /user and /username to be handled by the same route:

app.get('/user(name)?', function(req,res){
 res.render('user');
});

One of my favorite novelty websites is http://khaaan.com. Go ahead: I’ll wait while you
visit it. Feel better? Good. Let’s say we want to make our own “KHAAAAAAAAN” page,
but we don’t want our users to have to remember if it’s 2 a’s or 3 or 10. The following
will get the job done:

app.get('/khaa+n', function(req,res){
 res.render('khaaan');
});

Not all normal regex metacharacters have meaning in route paths, though—only the
ones listed earlier. This is important, because periods, which are normally a regex met‐
acharacter meaning “any character,” can be used in routes unescaped.

Lastly, if you really need the full power of regular expressions for your route, that is
supported:

app.get(/crazy|mad(ness)?|lunacy/, function(req,res){
 res.render('madness');
});

I have yet to find a good reason for using regex metacharacters in my route paths, much
less full regexes, but it’s good to know the functionality is there.

Route Parameters
Where regex routes may find little day-to-day use in your Expression toolbox, you’ll
most likely be using route parameters quite frequently. In short, it’s a way to make part
of your route into a variable parameter. Let’s say in our website we want to have a page
for each staff member. We have a database of staff members with bios and pictures. As
our company grows, it becomes more and more unwieldy to add a new route for each
staff member. Let’s see how route parameters can help us:

var staff = {
 mitch: { bio: 'Mitch is the man to have at your back in a bar fight.' },
 madeline: { bio: 'Madeline is our Oregon expert.' },
 walt: { bio: 'Walt is our Oregon Coast expert.' },
};

162 | Chapter 14: Routing

app.get('/staff/:name', function(req, res){
 var info = staff[req.params.name];
 if(!info) return next(); // will eventually fall through to 404
 res.render('staffer', info);
})

Note how we used :name in our route. That will match any string (that doesn’t include
a forward slash) and put it in the req.params object with the key name. This is a feature
we will be using often, especially when creating a REST API. You can have multiple
parameters in our route. For example, if we want to break up our staff listing by city:

var staff = {
 portland: {
 mitch: { bio: 'Mitch is the man to have at your back.' },
 madeline: { bio: 'Madeline is our Oregon expert.' },
 },
 bend: {
 walt: { bio: 'Walt is our Oregon Coast expert.' },
 },
};

app.get('/staff/:city/:name', function(req, res){
 var info = staff[req.params.city][req.params.name];
 if(!info) return next(); // will eventually fall through to 404
 res.render('staffer', info);
});

Organizing Routes
It may be clear to you already that it would be unwieldy to define all of our routes in the
main application file. Not only will that file grow over time, it’s also not a great separation
of functionality: there’s a lot going on in that file already. A simple site may have only a
dozen routes or fewer, but a larger site could have hundreds of routes.

So how to organize your routes? Well, how do you want to organize your routes? Express
is not opinionated about how you organize your routes, so how you do it is limited only
by your own imagination.

I’ll cover some popular ways to handle routes in the next sections, but at the end of the
day, I recommend four guiding principles for deciding how to organize your routes:
Use named functions for route handlers

Up to now, we’ve been writing our route handlers inline, by actually defining the
function that handles the route right then and there. This is fine for small applica‐
tions or prototyping, but it will quickly become unwieldy as your website grows.

Routes should not be mysterious
This principle is intentionally vague, because a large, complex website may by ne‐
cessity require a more complicated organizational scheme than a 10-page website.

Organizing Routes | 163

At one end of the spectrum is simply putting all of the routes for your website in
one single file so you know where they are. For large websites, this may be unde‐
sirable, so you break the routes out by functional areas. However, even then, it
should be clear where you should go to look for a given route. When you need to
fix something, the last thing you want to do is have to spend an hour figuring out
where the route is being handled. I have an ASP.NET MVC project at work that is
a nightmare in this respect: the routes are handled in at least 10 different places,
and it’s not logical or consistent, and it’s often contradictory. Even though I am
intimately familiar with that (very large) website, I still have to spend a significant
amount of time tracking down where certain URLs are handled.

Route organization should be extensible
If you have 20 or 30 routes now, defining them all in one file is probably fine. What
about in three years when you have 200 routes? It can happen. Whatever method
you choose, you should ensure you have room to grow.

Don’t overlook automatic view-based route handlers
If your site consists of many pages that are static and have fixed URLs, all of your
routes will end up looking like this: app.get('/static/thing', function(req,
res){ res.render('static/thing'); }. To reduce needless code repetition,
consider using an automatic view-based route handler. This approach is described
later in this chapter and can be used together with custom routes.

Declaring Routes in a Module
The first step to organizing our routes is getting them all into their own module. There
are multiple ways to do this. One approach is to make your module a function that
returns an array of objects containing “method” and “handler” properties. Then you
could define the routes in your application file thusly:

var routes = require('./routes.js')();

routes.forEach(function(route){
 app[route.method](route.handler);
})

This method has its advantages, and could be well suited to storing our routes dynam‐
ically, such as in a database or a JSON file. However, if you don’t need that functionality,
I recommend passing the app instance to the module, and letting it add the routes. That’s
the approach we’ll take for our example. Create a file called routes.js and move all of our
existing routes into it:

164 | Chapter 14: Routing

module.exports = function(app){

 app.get('/', function(req,res){
 app.render('home');
 }))

 //...

};

If we just cut and paste, we’ll probably run into some problems. For example, our /about
handler uses the fortune object that isn’t available in this context. We could add the
necessary imports, but hold off on that: we’ll be moving the handlers into their own
module soon, and we’ll solve the problem then.

So how do we link our routes in? Simple: in meadowlark.js, we simply import our routes:

require('./routes.js')(app);

Grouping Handlers Logically
To meet our first guiding principle (use named functions for route handlers), we’ll need
somewhere to put those handlers. One rather extreme option is to have a separate Java‐
Script file for every handler. It’s hard for me to imagine a situation in which this approach
would have benefit. It’s better to somehow group related functionality together. Not only
does that make it easier to leverage shared functionality, but it makes it easier to make
changes in related methods.

For now, let’s group our functionality into separate files: handlers/main.js, where we’ll
put the home page handler, the “about” handler, and generally any handler that doesn’t
have another logical home; handlers/vacations.js, where vacation-related handlers will
go; and so on.

Consider handlers/main.js:
var fortune = require('../lib/fortune.js');

exports.home = function(req, res){
 res.render('home');
};

exports.about = function(req, res){
 res.render('about', {
 fortune: fortune.getFortune(),
 pageTestScript: '/qa/tests-about.js'
 });
};

//...

Grouping Handlers Logically | 165

Now let’s modify routes.js to make use of this:

var main = require('./handlers/main.js');

module.exports = function(app){

 app.get('/', main.home);
 app.get('/about', main.about);
 //...

};

This satisfies all of our guiding principles. /routes.js is very straightforward. It’s easy to
see at a glance what routes there are in your site and where they are being handled. We’ve
also left ourselves plenty of room to grow. We can group related functionality in as many
different files as we need. And if routes.js ever gets unwieldy, we can use the same tech‐
nique again, and pass the app object on to another module that will in turn register more
routes (though that is starting to veer into the “overcomplicated” territory—make sure
you can really justify an approach that complicated!).

Automatically Rendering Views
If you ever find yourself wishing for the days of old where you could just put an HTML
file in a directory and—presto!—your website would serve it, then you’re not alone. If
your website is very content-heavy without a lot of functionality, you may find it a
needless hassle to add a route for every view. Fortunately, we can get around this
problem.

Let’s say you just want to add the file views/foo.handlebars and just magically have it
available on the route /foo. Let’s see how we might do that. In our application file, right
before the 404 handler, add the following middleware:

var autoViews = {};
var fs = require('fs');

app.use(function(req,res,next){
 var path = req.path.toLowerCase();
 // check cache; if it's there, render the view
 if(autoViews[path]) return res.render(autoViews[path]);
 // if it's not in the cache, see if there's
 // a .handlebars file that matches
 if(fs.existsSync(__dirname + '/views' + path + '.handlebars')){
 autoViews[path] = path.replace(/^\//, '');
 return res.render(autoViews[path]);
 }
 // no view found; pass on to 404 handler
 next();
});

166 | Chapter 14: Routing

Now we can just add a .handlebars file to the view directory and have it magically render
on the appropriate path. Note that regular routes will circumvent this mechanism (be‐
cause we placed the automatic view handler after all other routes), so if you have a route
that renders a different view for the route /foo, that will take precedence.

Other Approaches to Route Organization
I’ve found that the approach I’ve outlined here offers a great balance between flexibility
and effort. However, there are some other popular approaches to route organization.
The good news is that they don’t conflict with the technique I have described here. So
you can mix and match techniques if you find certain areas of your website work better
when organized differently (though you run the danger of confusing your architecture).

The two most popular approaches to route organization are namespaced routing and
resourceful routing. Namespaced routing is great when you have many routes that all
start with the same prefix (for example, /vacations). There’s a Node module called
express-namespace that makes this approach easy. Resourceful routing automatically
adds routes based on the methods in an object. It can be a useful technique if your site
logic is naturally object-oriented. The package express-resource is an example of how
to implement this style of route organization.

Routing is an important part of your project, and if the module-based routing technique
I’ve described in this chapter doesn’t seem right for you, I recommend you check out
the documentation for express-namespace or express-resource.

Other Approaches to Route Organization | 167

CHAPTER 15

REST APIs and JSON

So far, we’ve been designing a website to be consumed by browsers. Now we turn our
attention to making data and functionality available to other programs. Increasingly,
the Internet is no longer a collections of siloed websites, but a true web: websites com‐
municate freely with each other in order to provide a richer experience for the user. It’s
a programmer’s dream come true: the Internet is becoming as accessible to your code
as it has traditionally been to real people.

In this chapter, we’ll add a web service to our app (there’s no reason that a web server
and a web service can’t coexist in the same application). The term “web service” is a
general term that means any application programming interface (API) that’s accessible
over HTTP. The idea of web services has been around for quite some time, but until
recently, the technologies that enabled them were stuffy, byzantine, and overcomplica‐
ted. There are still systems that use those technologies (such as SOAP and WSDL), and
there are Node packages that will help you interface with these systems. We won’t be
covering those, though: instead, we will be focused on providing so-called “RESTful”
services, which are much more straightforward to interface with.

The acronym REST stands for “representational state transfer,” and the grammatically
troubling “RESTful” is used as an adjective to describe a web service that satisfies the
principles of REST. The formal description of REST is complicated, and steeped in
computer science formality, but the basics are that REST is a stateless connection be‐
tween a client and a server. The formal definition of REST also specifies that the service
can be cached and that services can be layered (that is, when you use a REST API, there
may be other REST APIs beneath it).

From a practical standpoint, the constraints of HTTP actually make it difficult to create
an API that’s not RESTful; you’d have to go out of your way to establish state, for example.
So our work is mostly cut out for us.

169

We’ll be adding a REST API to the Meadowlark Travel website. To encourage travel to
Oregon, Meadowlark Travel maintains a database of attractions, complete with inter‐
esting historical facts. An API allows the creation of apps that enable visitors to go on
self-guided tours with their phones or tablets: if the device is location-aware, the app
can let them know if they are near an interesting site. So that the database can grow, the
API also supports the addition of landmarks and attractions (which go into an approval
queue to prevent abuse).

JSON and XML
Vital to providing an API is having a common language to speak in. Part of the com‐
munication is dictated for us: we must use HTTP methods to communicate with the
server. But past that, we are free to use whatever data language we choose. Traditionally,
XML has been a popular choice, and it remains an important markup language. While
XML is not particularly complicated, Douglas Crockford saw that there was room for
something more lightweight, and JavaScript object notation (JSON) was born. In ad‐
dition to being very JavaScript-friendly (though it is by no means proprietary: it is an
easy format for any language to parse), it also has the advantage of being generally easier
to write by hand than XML.

I prefer JSON over XML for most applications: there’s better JavaScript support, and it’s
a simpler, more compact format. I recommend focusing on JSON and providing XML
only if existing systems require XML to communicate with your app.

Our API
We’ll plan our API out before we start implementing it. We will want the following
functionality:
GET /api/attractions

Retrieves attractions. Takes lat, lng, and radius as querystring parameters and
returns a list of attractions.

GET /api/attraction/:id

Returns an attraction by ID.

POST /api/attraction

Takes lat, lng, name, description, and email in the request body. The newly added
attraction goes into an approval queue.

PUT /api/attraction/:id

Updates an existing attraction. Takes an attraction ID, lat, lng, name, descrip
tion, and email. Update goes into approval queue.

170 | Chapter 15: REST APIs and JSON

1. If your client can’t use different HTTP methods, see https://github.com/expressjs/method-override, which
allows you to “fake” different HTTP methods.

DEL /api/attraction/:id

Deletes an attraction. Takes an attraction ID, email, and reason. Delete goes into
approval queue.

There are many ways we could have described our API. Here, we’ve chosen to use
combinations of HTTP methods and paths to distinguish our API calls, and a mix of
querystring and body parameters for passing data. As an alternative, we could have had
different paths (such as /api/attractions/delete) with all the same method.1 We could
also have passed data in a consistent way. For example, we might have chosen to pass
all the necessary information for retrieving parameters in the URL instead of using a
querystring: GET /api/attractions/:lat/:lng/:radius. To avoid excessively long
URLs, I recommend using the request body to pass large blocks of data (for example,
the attraction description).

It has become a standard to use POST for creating something, and
PUT for updating (or modifying) something. The English mean‐
ing of these words doesn’t support this distinction in any way, so
you may want to consider using the path to distinguish between
these two operations to avoid confusion.

For brevity, we will implement only three of these functions: adding an attraction, re‐
trieving an attraction, and listing attractions. If you download the book source, you can
see the whole implementation.

API Error Reporting
Error reporting in HTTP APIs is usually achieved through HTTP status codes: if the
request returns 200 (OK), the client knows the request was successful. If the request
returns 500 (Internal Server Error), the request failed. In most applications, however,
not everything can (or should be) categorized coarsely into “success” or “failure.” For
example, what if you request something by an ID, but that ID doesn’t exist? This does
not represent a server error: the client has asked for something that doesn’t exist. In
general, errors can be grouped into the following categories:
Catastrophic errors

Errors that result in an unstable or unknown state for the server. Usually, this is the
result of an unhandled exception. The only safe way to recover from a catastrophic
error is to restart the server. Ideally, any pending requests would receive a 500
response code, but if the failure is severe enough, the server may not be able to
respond at all, and the request will time out.

API Error Reporting | 171

https://github.com/expressjs/method-override

Recoverable server errors
Recoverable errors do not require a server restart, or any other heroic action. The
error is a result of an unexpected error condition on the server (for example, a
database connection being unavailable). The problem may be transient or perma‐
nent. A 500 response code is appropriate in this situation.

Client error
Client errors are a result of the client making the mistake, usually missing or invalid
parameters. It isn’t appropriate to use a 500 response code: after all, the server has
not failed. Everything is working normally, the client just isn’t using the API cor‐
rectly. You have a couple of options here: you could respond with a status code of
200 and describe the error in the response body, or you could additionally try to
describe the error with an appropriate HTTP status code. I recommend the latter
approach. The most useful response codes in this case are 404 (Not Found), 400
(Bad Request), and 401 (Unauthorized). Additionally, the response body should
contain an explanation of the specifics of the error. If you want to go above and
beyond, the error message would even contain a link to documentation. Note that
if the user requests a list of things, and there’s nothing to return, this is not an error
condition: it’s appropriate to simply return an empty list.

In our application, we’ll be using a combination of HTTP response codes and error
messages in the body. Note that this approach is compatible with jQuery, which is an
important consideration given the prevalance of API access using jQuery.

Cross-Origin Resource Sharing (CORS)
If you’re publishing an API, you’ll likely want to make the API available to others. This
will result in a cross-site HTTP request. Cross-site HTTP requests have been the subject
of many attacks and have therefore been restricted by the same-origin policy, which
restricts where scripts can be loaded from. Specifically, the protocol, domain, and port
must match. This makes it impossible for your API to be used by another site, which is
where CORS comes in. CORS allows you to lift this restriction on a case-by-case basis,
even allowing you to list which domains specifically are allowed to access the script.
CORS is implemented through the Access-Control-Allow-Origin header. The easiest
way to implement it in an Express application is to use the cors package (npm install
--save cors). To enable CORS for your application:

app.use(require('cors')());

Because the same-origin API is there for a reason (to prevent attacks), I recommend
applying CORS only where necessary. In our case, we want to expose our entire API
(but only the API), so we’re going to restrict CORS to paths starting with /api:

app.use('/api', require('cors')());

172 | Chapter 15: REST APIs and JSON

See the package documentation for information about more advanced use of CORS.

Our Data Store
Once again, we’ll use Mongoose to create a schema for our attraction model in the
database. Create the file models/attraction.js:

var mongoose = require('mongoose');

var attractionSchema = mongoose.Schema({
 name: String,
 description: String,
 location: { lat: Number, lng: Number },
 history: {
 event: String,
 notes: String,
 email: String,
 date: Date,
 },
 updateId: String,
 approved: Boolean,
});
var Attraction = mongoose.model('Attraction', attractionSchema);
module.exports = Attraction;

Since we wish to approve updates, we can’t let the API simply update the original record.
Our approach will be to create a new record that references the original record (in its
updateId property). Once the record is approved, we can update the original record
with the information in the update record and then delete the update record.

Our Tests
If we use HTTP verbs other than GET, it can be a hassle to test our API, since browsers
only know how to issue GET requests (and POST requests for forms). There are ways
around this, such as the excellent “Postman - REST Client” Chrome plugin. However,
whether or not you use such a utility, it’s good to have automated tests. Before we write
tests for our API, we need a way to actually call a REST API. For that, we’ll be using a
Node package called restler:

npm install --save-dev restler

We’ll put the tests for the API calls we’re going to implement in qa/tests-api.js:
var assert = require('chai').assert;
var http = require('http');
var rest = require('restler');

suite('API tests', function(){

Our Data Store | 173

https://www.npmjs.org/package/cors

 var attraction = {
 lat: 45.516011,
 lng: -122.682062,
 name: 'Portland Art Museum',
 description: 'Founded in 1892, the Portland Art Museum\'s colleciton ' +
 'of native art is not to be missed. If modern art is more to your ' +
 'liking, there are six stories of modern art for your enjoyment.',
 email: 'test@meadowlarktravel.com',
 };

 var base = 'http://localhost:3000';

 test('should be able to add an attraction', function(done){
 rest.post(base+'/api/attraction', {data:attraction}).on('success',
 function(data){
 assert.match(data.id, /\w/, 'id must be set');
 done();
 });
 });

 test('should be able to retrieve an attraction', function(done){
 rest.post(base+'/api/attraction', {data:attraction}).on('success',
 function(data){
 rest.get(base+'/api/attraction/'+data.id).on('success',
 function(data){
 assert(data.name===attraction.name);
 assert(data.description===attraction.description);
 done();
 })
 })
 });

});

Note that in the test that retrieves an attraction, we add an attraction first. You might
think that we don’t need to do this because the first test already does that, but there are
two reasons for this. The first is practical: even though the tests appear in that order in
the file, because of the asynchronous nature of JavaScript, there’s no guarantee that the
API calls will execute in that order. The second reason is a matter of principle: any test
should be completely standalone and not rely on any other test.

The syntax should be straightforward: we call rest.get or rest.put, pass it the URL,
and an options object containing a data property, which will be used for the request
body. The method returns a promise that raises events. We’re concerned with the suc
cess event. When using restler in your application, you may want to also listen for
other events, like fail (server responded with 4xx status code) or error (connection
or parsing error). See the restler documentation for more information.

174 | Chapter 15: REST APIs and JSON

https://github.com/danwrong/restler

Using Express to Provide an API
Express is quite capable of providing an API. Later on in this chapter, we’ll learn how
to do it with a Node module that provides some extra functionality, but we’ll start with
a pure Express implementation:

var Attraction = require('./models/attraction.js');

app.get('/api/attractions', function(req, res){
 Attraction.find({ approved: true }, function(err, attractions){
 if(err) return res.send(500, 'Error occurred: database error.');
 res.json(attractions.map(function(a){
 return {
 name: a.name,
 id: a._id,
 description: a.description,
 location: a.location,
 }
 }));
 });
});

app.post('/api/attraction', function(req, res){
 var a = new Attraction({
 name: req.body.name,
 description: req.body.description,
 location: { lat: req.body.lat, lng: req.body.lng },
 history: {
 event: 'created',
 email: req.body.email,
 date: new Date(),
 },
 approved: false,
 });
 a.save(function(err, a){
 if(err) return res.send(500, 'Error occurred: database error.');
 res.json({ id: a._id });
 });
});

app.get('/api/attraction/:id', function(req,res){
 Attraction.findById(req.params.id, function(err, a){
 if(err) return res.send(500, 'Error occurred: database error.');
 res.json({
 name: a.name,
 id: a._id,
 description: a.description,
 location: a.location,
 });
 });
});

Using Express to Provide an API | 175

Note that when we return an attraction, we don’t simply return the model as returned
from the database. That would expose internal implementation details. Instead, we pick
the information we need and construct a new object to return.

Now if we run our tests (either with Grunt, or mocha -u tdd -R spec qa/tests-
api.js), we should see that our tests are passing.

Using a REST Plugin
As you can see, it’s easy to write an API using only Express. However, there are advan‐
tages to using a REST plugin. Let’s use the robust connect-rest to future-proof our
API. First, install it:

npm install --save connect-rest

And import it in meadowlark.js:
var rest = require('connect-rest');

Our API shouldn’t conflict with our normal website routes (make sure you don’t create
any website routes that start with /api). I recommend adding the API routes after the
website routes: the connect-rest module will examine every request and add properties
to the request object, as well as do extra logging. For this reason, it fits better after you
link in your website routes, but before your 404 handler:

// website routes go here

// define API routes here with rest.VERB....

// API configuration
var apiOptions = {
 context: '/api',
 domain: require('domain').create(),
};

// link API into pipeline
app.use(rest.rester(apiOptions));

// 404 handler goes here

If you’re looking for maximum separation between your website and
your API, consider using a subdomain, such as api.meadowlark.com.
We will see an example of this later.

176 | Chapter 15: REST APIs and JSON

Already, connect-rest has given us a little efficiency: it’s allowed us to automatically
prefix all of our API calls with /api. This reduces the possibility of typos, and enables
us to easily change the base URL if we wanted to.

Let’s now look at how we add our API methods:

rest.get('/attractions', function(req, content, cb){
 Attraction.find({ approved: true }, function(err, attractions){
 if(err) return cb({ error: 'Internal error.' });
 cb(null, attractions.map(function(a){
 return {
 name: a.name,
 description: a.description,
 location: a.location,
 };
 }));
 });
});

rest.post('/attraction', function(req, content, cb){
 var a = new Attraction({
 name: req.body.name,
 description: req.body.description,
 location: { lat: req.body.lat, lng: req.body.lng },
 history: {
 event: 'created',
 email: req.body.email,
 date: new Date(),
 },
 approved: false,
 });
 a.save(function(err, a){
 if(err) return cb({ error: 'Unable to add attraction.' });
 cb(null, { id: a._id });
 });
});

rest.get('/attraction/:id', function(req, content, cb){
 Attraction.findById(req.params.id, function(err, a){
 if(err) return cb({ error: 'Unable to retrieve attraction.' });
 cb(null, {
 name: attraction.name,
 description: attraction.description,
 location: attraction.location,
 });
 });
});

REST functions, instead of taking the usual request/response pair, take up to three pa‐
rameters: the request (as normal); a content object, which is the parsed body of the
request; and a callback function, which can be used for asynchronous API calls. Since
we’re using a database, which is asynchronous, we have to use the callback to send a

Using a REST Plugin | 177

response to the client (there is a synchronous API, which you can read about in the
connect-rest documentation).

Note also that when we created the API, we specified a domain (see Chapter 12). This
allows us to isolate API errors and take appropriate action. connect-rest will auto‐
matically send a response code of 500 when an error is detected in the domain, so all
that remains for you to do is logging and shutting down the server. For example:

apiOptions.domain.on('error', function(err){
 console.log('API domain error.\n', err.stack);
 setTimeout(function(){
 console.log('Server shutting down after API domain error.');
 process.exit(1);
 }, 5000);
 server.close();
 var worker = require('cluster').worker;
 if(worker) worker.disconnect();
});

Using a Subdomain
Because an API is substantially different from a website, it’s a popular choice to use a
subdomain to partition the API from the rest of your website. This is quite easy to do,
so let’s refactor our example to use api.meadowlarktravel.com instead of meadowlark‐
travel.com/api.

First, make sure the vhost middleware is installed (npm install --save vhost). In
your development environment, you probably don’t have your own domain nameserver
(DNS) set up, so we need a way to trick Express into thinking that you’re connecting to
a subdomain. To do this, we’ll add an entry to our hosts file. On Linux and OS X systems,
your hosts file is /etc/hosts; for Windows, it’s located at %SystemRoot%\system32\drivers
\etc\hosts. If the IP address of your test server is 192.168.0.100, you would add the
following line to your hosts file:

192.168.0.100 api.meadowlark

If you’re working directly on your development server, you can use 127.0.0.1 (the nu‐
meric equivalent of localhost) instead of the actual IP address.

Now we simply link in a new vhost to create our subdomain:

app.use(vhost('api.*', rest.rester(apiOptions));

You’ll also need to change the context:

var apiOptions = {
 context: '/',
 domain: require('domain').create(),
};

178 | Chapter 15: REST APIs and JSON

https://github.com/imrefazekas/connect-rest

That’s all there is to it. All of the API routes you defined via rest.VERB calls will now
be available on the api subdomain.

Using a Subdomain | 179

1. It is possible to use uncompiled LESS in a browser, with some JavaScript magic. There are performance
consequences to this approach, so I don’t recommend it.

CHAPTER 16

Static Content

Static content refers to the resources your app will be serving that don’t change on a per-
request basis. Here are the usual suspects:
Multimedia

Images, videos, and audio files. It’s quite possible to generate image files on the fly,
of course (and video and audio, though that’s far less common), but most multi‐
media resources are static.

CSS
Even if you use an abstracted CSS language like LESS, Sass, or Stylus, at the end of
the day, your browser needs plain CSS,1 which is a static resource.

JavaScript
Just because the server is running JavaScript doesn’t mean there won’t be client-side
JavaScript. Client-side JavaScript is considered a static resource. Of course, now the
line is starting to get a bit hazy: what if there was common code that we wanted to
use on the backend and client side? There are ways to solve this problem, but at the
end of the day, the JavaScript that gets sent to the client is generally static.

Binary downloads
This is the catch-all category: any PDFs, ZIP files, installers, and the like.

You’ll note that HTML doesn’t make the list. What about HTML pages that are static?
If you have those, it’s fine to treat them as a static resource, but then the URL will end
in .html, which isn’t very “modern.” While it is possible to create a route that simply
serves a static HTML file without the .html extension, it’s generally easier to create a
view (a view doesn’t have to have any dynamic content).

181

Note that if you are building an API only, there may be no static resources. If that’s the
case, you may skip this chapter.

Performance Considerations
How you handle static resources has a significant impact on the real-world performance
of your website, especially if your site is multimedia-heavy. The two primary perfor‐
mance considerations are reducing the number of requests and reducing content size.

Of the two, reducing the number of (HTTP) requests is more critical, especially for
mobile (the overhead of making an HTTP request is significantly higher over a cellular
network). Reducing the number of requests can be accomplished in two ways: com‐
bining resources and browser caching.

Combining resources is primarily an architectural and frontend concern: as much as
possible, small images should be combined into a single sprite. Then use CSS to set the
offset and size to display only the portion of the image you want. For creating sprites, I
highly recommend the free service SpritePad. It makes generating sprites incredibly
easy, and it generates the CSS for you as well. Nothing could be easier. SpritePad’s free
functionality is probably all you’ll ever need, but if you find yourself creating a lot of
sprites, you might find their premium offerings worth it.

Browser caching helps reduce HTTP requests by storing commonly used static resour‐
ces in the client’s browser. Though browsers go to great lengths to make caching as
automatic as possible, it’s not magic: there’s a lot you can and should do to enable browser
caching of your static resources.

Lastly, we can increase performance by reducing the size of static resources. Some tech‐
niques are lossless (size reduction can be achieved without losing any data), and some
techniques are lossy (size reduction is achieved by reducing the quality of static resour‐
ces). Lossless techniques include minification of JavaScript and CSS, and optimizing
PNG images. Lossy techniques include increasing JPEG and video compression levels.
We’ll be discussing PNG optimization and minification (and bundling, which also re‐
duces HTTP requests) in this chapter.

You generally don’t have to worry about cross-domain resource shar‐
ing (CORS) when using a CDN. External resources loaded in HTML
aren’t subject to CORS policy: you only have to enable CORS for
resources that are loaded via AJAX (see Chapter 15).

Future-Proofing Your Website
When you move your website into production, the static resources must be hosted on
the Internet somewhere. You may be used to hosting them on the same server where all

182 | Chapter 16: Static Content

http://wearekiss.com/spritepad

your dynamic HTML is generated. Our example so far has also taken this approach: the
Node/Express server we spin up when we type node meadowlark.js serves all of the
HTML as well as static resources. However, if you want to maximize the performance
of your site (or allow for doing so in the future), you will want to make it easy to host
your static resources on a content delivery network (CDN). A CDN is a server that’s
optimized for delivering static resources. It leverages special headers (that we’ll learn
about soon) that enable browser caching. Also, CDNs can enable geographic optimiza‐
tion; that is, they can deliver your static content from a server that is geographically
closer to your client. While the Internet is very fast indeed (not operating at the speed
of light, exactly, but close enough), it is still faster to deliver data over a hundred miles
than a thousand. Individual time savings may be small, but if you multiply across all of
your users, requests, and resources, it adds up fast.

It’s quite easy to “future-proof ” your website so that you can move your static content
to a CDN when the time comes, and I recommend that you get in the habit of always
doing it. What it boils down to is creating an abstraction layer for your static resources
so that relocating them all is as easy as flipping a switch.

Most of your static resources will be referenced in HTML views (<link> elements to
CSS files, <script> references to JavaScript files, tags referencing images, and
multimedia embedding tags). Then, it is common to have static references in CSS, usu‐
ally the background-image property. Lastly, static resources are sometimes referenced
in JavaScript, such as JavaScript code that dynamically changes or inserts tags or
the background-image property.

Static Mapping
At the heart of our strategy for making static resources relocatable, and friendly to
caching, is the concept of mapping: when we’re writing our HTML, we really don’t want
to have to worry about the gory details of where our static resources are going to be
hosted. What we are concerned with is the logical organization of our static resources.
That is to say, it’s important that photos of our Hood River vacations go in /img/vaca‐
tions/hood-river and photos of Manzanita in /img/vacations/manzanita. So we’ll focus
on making it easy to use only this organization when specifying static resources. For
example, in HTML, you want to be able to write <img src="/img/meadow

lark_logo.png" alt="Meadowlark Travel Logo">, not <img src="//s3-us-

west-2.amazonaws.com/meadowlark/img/meadowlark_logo-3.png" alt="Meadow

lark Travel Logo"> (as it might look if you’re using Amazon’s cloud storage).

Future-Proofing Your Website | 183

We will be using “protocol-relative URLs” to reference our static
resources. This refers to URLs that begin only with // not http:// or
https://. This allows the browser to use whatever protocol is
appropriate. If the user is viewing a secure page, it will use HTTPS;
otherwise, it will use HTTP. Obviously, your CDN must support
HTTPS, and I haven’t found one that doesn’t.

So this boils down to a mapping problem: we wish to map less specific paths (/img/
meadowlark_logo.png) to more specific paths (//s3-us-west-2.amazonaws.com/mead‐
owlark/img/meadowlark_logo-3.png). Furthermore, we wish to be able to change that
mapping at will. For example, before you sign up for an Amazon S3 account, you may
wish to host your images locally (//meadowlarktravel.com/img/meadowlark_logo.png).

In these examples, all we’re doing to achieve our mapping is adding something to the
start of the path, which we’ll call a base URL. However, your mapping scheme could be
more sophisticated than that: essentially the sky’s the limit here. For example, you could
employ a database of digital assets to map "Meadowlark Logo" to http://meadowlark‐
travel.com/img/meadowlark_logo.png. While that’s possible, I would warn you away
from it: using filenames and paths is a pretty standard and ubiquitous way to organize
content, and you should have a compelling reason to deviate from that. A more practical
example of a more sophisticated mapping scheme is to employ asset versioning (which
we’ll be discussing later). For example, if the Meadowlark Travel logo has undergone
five revisions, you could write a mapper that would map /img/meadowlark_logo.png
to /img/meadowlark_logo-5.png.

For now, we’re going to be sticking with a very simple mapping scheme: we just add a
base URL. We’re assuming all static assets begin with a slash. Since we’ll be using our
mapper for several different types of files (views, CSS, and JavaScript), we’ll want to
modularize it. Let’s create a file called lib/static.js:

var baseUrl = '';

exports.map = function(name){
 return baseUrl + name;
}

Not very exciting, is it? And right now, it doesn’t do anything at all: it just returns its
argument unmodified (assuming the argument is a string, of course). That’s okay; right
now, we’re in development, and it’s fine to have our static resources hosted on local‐
host. Note that also we’ll probably want to read the value of baseUrl from a configuration
file; for now, we’ll just leave it in the module.

184 | Chapter 16: Static Content

It’s tempting to add some functionality that checks for the presence
of a beginning slash in the asset name and adds it if it isn’t present,
but keep in mind that your asset mapper is going to be used every‐
where, and therefore should be as fast as possible. We can statically
analyze our code as part of our QA toolchain to make sure our asset
names always start with a slash.

Static Resources in Views
Static resources in views are the easiest to deal with, so we’ll start there. We can create
a Handlebars helper (see Chapter 7) to give us a link to a static resource:

// set up handlebars view engine
var handlebars = require('express3-handlebars').create({
 defaultLayout:'main',
 helpers: {
 static: function(name) {
 return require('./lib/static.js').map(name);
 }
 }
});

We added a Handlebars helper called static, which simply calls our static mapper. Now
let’s modify main.layout to use this new helper for the logo image:

<header><img src="{{static '/img/logo.jpg'}}"
 alt="Meadowlark Travel Logo"></header>

If we run the website, we’ll see that absolutely nothing has changed: if we inspect the
source, we’ll see that the URL of the logo image is still /img/meadowlark_logo.jpg, as
expected.

Now we’ll take some time and replace all of our references to static resources in our
views and templates. Now static resources in all of our HTML should be ready to be
moved to a CDN.

Static Resources in CSS
CSS is going to be slightly more complicated, because we don’t have Handlebars to help
us out (it is possible to configure Handlebars to generate CSS, but it’s not supported—
it’s not what Handlebars was designed for). However, CSS preprocessors like LESS, Sass,
and Stylus all support variables, which is what we need. Of these three popular prepro‐
cessors, I prefer LESS, which is what we’ll be using here. If you use Sass or Stylus, the
technique is very similar, and it should be clear how to adapt this technique to a different
preprocessor.

Future-Proofing Your Website | 185

We’ll add a background image to our site to provide a little texture. Create a directory
called less, and a file in it called main.less:

body {
 background-image: url("/img/backgrouind.png");
}

This looks exactly like CSS so far, and that’s not by accident: LESS is backward compatible
with CSS, so any valid CSS is also valid LESS. As a matter of fact, if you already have
any CSS in your public/css/main.css file, you should move it into less/main.less. Now we
need a way to compile the LESS to generate CSS. We’ll use a Grunt task for that:

npm install --save-dev grunt-contrib-less

Then modify Gruntfile.js. Add grunt-contrib-less to the list of Grunt tasks to load,
then add the following section to grunt.initConfig:

less: {
 development: {
 files: {
 'public/css/main.css': 'less/main.less',
 }
 }
}

The syntax essentially reads “generate public/css/main.css from less/main.less.” Now run
grunt less, and you’ll see you now have a CSS file. Let’s link it into our layout, in the
<head> section:

 <!-- ... -->
 <link rel="stylesheet" href="{{static /css/main.css}}">
</head>

Note that we’re using our newly minted static helper! This is not going to solve the
problem of the link to /img/background.png inside the generated CSS file, but it will
create a relocatable link to the CSS file itself.

Now that we’ve got the framework set up, let’s make the URL used in the CSS file relo‐
catable. First, we’ll link in our static mapper as a LESS custom function. This can all be
accomplished in Gruntfile.js:

less: {
 development: {
 options: {
 customFunctions: {
 static: function(lessObject, name) {
 return 'url("' +
 require('./lib/static.js').map(name.value) +
 '")';
 }
 }
 },

186 | Chapter 16: Static Content

 files: {
 'public/css/main.css': 'less/main.less',
 }
 }
}

Note that we add the standard CSS url specifier and double quotes to the output of the
mapper: that will ensure that our CSS is valid. Now all we have to do is modify our LESS
file, less/main.less:

body {
 background-image: static("/img/background.png");
}

Notice that all that really changed was that we replaced url with static; it’s as easy as
that.

Static Resources in Server-Side JavaScript
Using our static mapper in server-side JavaScript is really easy, as we’ve already written
a module to do our mapping. For example, let’s say we want to add an easter egg to our
application. At Meadowlark Travel, we’re huge fans of Bud Clark (a former Portland
mayor). We want our logo replaced with a logo with a picture of Mr. Clark on his
birthday. Modify meadowlark.js:

var static = require('./lib/static.js').map;

app.use(function(req, res, next){
 var now = new Date();
 res.locals.logoImage = now.getMonth()==11 && now.getDate()==19 ?
 static('/img/logo_bud_clark.png') :
 static('/img/logo.png');
 next();
});

Then in views/layouts/main.handlebars:
<header></header>

Note that we don’t use the static Handlebars helper in the view: that’s because we
already used it in the route handler, and if we used it here, we’d be double-mapping the
file, which would be no good!

Static Resources in Client-Side JavaScript
Your first instinct might simply be to make the static mapper available to the client, and
for our simple case, it would work fine (although we would have to use browserify, which
allows you to use Node-style modules in the browser). However, I am going to recom‐
mend against this approach because it will quickly fall apart as our mapper gets more

Static Resources in Server-Side JavaScript | 187

sophisticated. For example, if we start to use a database for more sophisticated mapping,
that will no longer work in the browser. Then we would have to get into the business of
making an AJAX call so the server could map a file for us, which will slow things down
considerably.

So what to do? Fortunately, there’s a simple solution. It’s not quite as elegant as having
access to the mapper, but it won’t cause problems for us down the line.

Let’s say you use jQuery to dynamically change the shopping cart image: when it’s empty,
the visual representation of the shopping cart is empty. After the user has added items
to it, a box appears in the cart. (We would really want to use a sprite for this, but for the
sake of the example, we will use two different images).

Our two images are called /img/shop/cart_empty.png and /img/shop/cart_full.png.
Without mapping, we might use something like this:

$(document).on('meadowlark_cart_changed'){
 $('header img.cartIcon').attr('src', cart.isEmpty() ?
 '/img/shop/cart_empty.png' : '/img/shop/cart_full.png');
}

This will fall apart when we move our images to a CDN, so we want to be able to map
these images too. The solution is just to do the mapping on the server, and set custom
JavaScript variables. In views/layouts/main.handlebars, we can do that:

<!-- ... -->
<script>
 var IMG_CART_EMPTY = '{{static '/img/shop/cart_empty.png'}}';
 var IMG_CART_FULL = '{{static '/img/shop/cart_full.png'}}';
</script>

Then our jQuery simply uses those variables:

$(document).on('meadowlark_cart_changed', function(){
 $('header img.cartIcon').attr('src', cart.isEmpty() ?
 IMG_CART_EMPTY : IMG_CART_FULL);
});

If you do a lot of image swapping on the client side, you’ll probably want to consider
organizing all of your image variables in an object (which itself becomes something of
a map). For example, we might rewrite the previous code as:

<!-- ... -->
<script>
 var static = {
 IMG_CART_EMPTY: '{{static '/img/shop/cart_empty.png'}}',
 IMG_CART_FULL: '{{static '/img/shop/cart_full.png'}}
 }
</script>

188 | Chapter 16: Static Content

Serving Static Resources
Now that we’ve seen how we can create a framework that allows us to easily change
where our static resources are served from, what is the best way to actually store the
assets? It helps to understand the headers that your browser uses to determine how (and
whether) to cache a resource:
Expires/Cache-Control

These two headers tell your browser the maximum amount of time a resource can
be cached. They are taken seriously by the browser: if they inform the browser to
cache something for a month, it simply won’t redownload it for a month, as long
as it stays in the cache. It’s important to understand that a browser may remove the
image from the cache prematurely, for reasons you have no control over. For ex‐
ample, the user could clear the cache manually, or the browser could clear your
resource to make room for other resources the user is visiting more frequently. You
only need one of these headers, and Expires is more broadly supported, so it’s
preferable to use that one. If the resource is in the cache, and it has not expired yet,
the browser will not issue a GET request at all, which improves performance, espe‐
cially on mobile.

Last-Modified/ETag
These two tags provide a versioning of sorts: if the browser needs to fetch the re‐
source, it will examine these tags before downloading the content. A GET request is
still issued to the server, but if the values returned by these headers satisfy the
browser that the resource hasn’t changed, it will not proceed to download the file.
As the name implies, Last-Modified allows you to specify the date the resource
was last modified. ETag allows you to use an arbitrary string, which is usually a
version string or a content hash.

When serving static resources, you should use the Expires header and either Last-
Modified or ETag. Express’s built-in static middleware sets Cache-Control, but
doesn’t handle either Last-Modified or ETag. So, while it’s suitable for development, it’s
not a great solution for deployment.

If you choose to host your static resources on a CDN, such as Amazon CloudFront,
Microsoft Azure, or MaxCDN, the advantage is that they will handle most of these details
for you. You will be able to fine-tune the details, but the defaults provided by any of
these services are already good.

If you don’t want to host your static resources on a CDN, but want something more
robust than Express’s built-in connect middleware, consider using a proxy server, such
as Nginx (see Chapter 12), which is quite capable.

Serving Static Resources | 189

Changing Your Static Content
Caching significantly improves the performance of your website, but it isn’t without its
consequences. In particular, if you change any of your static resources, clients may not
see them until the cached versions expire in your browser. Google recommends you
cache for a month, preferably a year. Imagine a user who uses your website every day
on the same browser: that person might not see your updates for a whole year!

Clearly this is an undesirable situation, and you can’t just tell your users to clear their
cache. The solution is fingerprinting. Fingerprinting simply decorates the name of the
resource with some kind of version information. When you update the asset, the re‐
source name changes, and the browser knows it needs to download it.

Let’s take our logo, for example (/img/meadowlark_logo.png). If we host it on a CDN
for maximum performance, specifying an expiration of one year, and then go and
change the logo, your users may not see the updated logo for up to a year. However, if
you rename your logo /img/meadowlark_logo-1.png (and reflect that name change in
your HTML), the browser will be forced to download it, because it looks like a new
resource.

If you consider the dozens—or even hundreds or thousands—of images on your site,
this approach may seem very daunting. If you’re in that situation (large numbers of
images hosted on a CDN), this is where you might consider making your static mapper
more sophisticated. For example, you might store the current version of all your digital
assets in a database, and the static mapper could look up the asset name (/img/mead‐
owlark_logo.png, for example) and return a URL to the most recent version of the asset
(/img/meadowlark_logo-12.png).

At the very least, you should fingerprint your CSS and JavaScript files. It’s one thing if
your logo is not current, but it’s incredibly frustrating to roll out a new feature, or change
the layout on a page, only to find that your users aren’t seeing the changes because the
resources are cached.

A popular alternative to fingerprinting individual files is to bundle your resources.
Bundling takes all of your CSS and smashes it into one file that’s impossible for a human
to read, and does the same for your client-side JavaScript. Since new files are being
created anyway, it’s usually easy and common to fingerprint those files.

Bundling and Minification
In an effort to reduce HTTP requests and reduce the data sent over the wire, “bundling
and minification” has become popular. Bundling takes like files (CSS or JavaScript) and
bundles multiple files into one (thereby reducing HTTP requests). Minification removes
anything unnecessary from your source, such as whitespace (outside of strings), and it
can even rename your variables to something shorter.

190 | Chapter 16: Static Content

One additional advantage of bundling and minification is that it reduces the number of
assets that need to be fingerprinted. Still, things are getting complicated quick! Fortu‐
nately, there are some Grunt tasks that will help us manage the madness.

Since our project doesn’t currently have any client-side JavaScript, let’s create two files:
one will be for “contact us” form submission handling, and the other will be for shopping
cart functionality. We’ll just put some logging in there for now so we can verify that the
bundling and minification is working:

public/js/contact.js:
$(document).ready(function(){
 console.log('contact forms initialized');
});

public/js/cart.js:
$(document).ready(function(){
 console.log('shopping cart initialized');
});

We’ve already got a CSS file (generated from a LESS file), but let’s add another one. We’ll
put our cart-specific styles in their own CSS file. Call it less/cart.less:

div.cart {
 border: solid 1px black;
}

Now in Gruntfile.js add it to the list of LESS files to compile:

files: {
 'public/css/main.css': 'less/main.less',
 'public/css/cart.css': 'less/cart.css',
}

We’ll use no fewer than three Grunt tasks to get where we’re going: one for the JavaScript,
one for the CSS, and another to fingerprint the files. Let’s go ahead and install those
modules now:

npm install --save-dev grunt-contrib-uglify
npm install --save-dev grunt-contrib-cssmin
npm install --save-dev grunt-hashres

Then load these tasks in the Gruntfile:

 [
 // ...
 'grunt-contrib-less',
 'grunt-contrib-uglify',
 'grunt-contrib-cssmin',
 'grunt-hashres',
].forEach(function(task){
 grunt.loadNpmTasks(task);
 });

Bundling and Minification | 191

And set up the tasks:

 grunt.initConfig({
 // ...
 uglify: {
 all: {
 files: {
 'public/js/meadowlark.min.js': ['public/js/**/*.js']
 }
 }
 },
 cssmin: {
 combine: {
 files: {
 'public/css/meadowlark.css': ['public/css/**/*.css',
 '!public/css/meadowlark*.css']
 }
 },
 minify: {
 src: 'public/css/meadowlark.css',
 dest: 'public/css/meadowlark.min.css',
 }
 },
 hashres: {
 options: {
 fileNameFormat: '${name}.${hash}.${ext}'
 },
 all: {
 src: [
 'public/js/meadowlark.min.js',
 'public/css/meadowlark.min.css',
],
 dest: [
 'views/layouts/main.handlebars',
]
 },
 }
 });
};

Let’s look at what we just did. In the uglify task (minification is often called “uglifying”
because…well, just look at the output, and you’ll understand), we take all the site Java‐
Script and combine it into one file called meadowlark.min.js. For cssmin, we have two
tasks: we first combine all the CSS files into one called meadowlark.css (note the second
element in that array: the exclamation point at the beginning of the string says not to
include these files…this will prevent it from circularly including the files it generates
itself!). Then we minify the combined CSS into a file called meadowlark.min.css.

Before we get to hashres, let’s pause for a second. We’ve now taken all of our JavaScript
and put it in meadowlark.min.js and all of our CSS and put it in meadowlark.min.css.

192 | Chapter 16: Static Content

Now, instead of referencing individual files in our HTML, we’ll want to reference them
in our layout file. So let’s modify our layout file:

 <!-- ... -->
 <script src="http://code.jquery.com/jquery-2.0.2.min.js"></script>
 <script src="{{static '/js/meadowlark.min.js'}}"></script>
 <link rel="stylesheet" href="{{static '/css/meadowlark.min.css'}}">
</head>

So far, it may seem like a lot of work for a small payoff. However, as your site grows, you
will find yourself adding more and more JavaScript and CSS. I’ve seen projects that have
had a dozen or more JavaScript files and five or six CSS files. Once you reach that point,
bundling and minification will yield impressive performance improvements.

Now on to the hashres task. We want to fingerprint these bundled and minified CSS
and JavaScript files so that when we update our website, our clients see the changes
immediately, instead of waiting for their cached version to expire. The hashres task
handles the complexities of that for us. Note that we tell it that we want to rename the
public/js/meadowlark.min.js and public/css/meadowlark.min.css file. hashres will gen‐
erate a hash of the file (a mathematical fingerprinting) and append it to the file. So now,
instead of /js/meadowlark.min.js, you’ll have /js/meadowlark.min.62a6f623.js (the ac‐
tual value of the hash will be different if your version differs by even a single character).
If you had to remember to change the references in views/layout/main.handlebars every
time, well…you would probably forget sometimes. Fortunately, the hashres task comes
to the rescue: it can automatically change the references for you. See in the configuration
how we specified views/layouts/main.handlebars in the dest section? That will auto‐
matically change the references for us.

So now let’s give it a try. It’s important that we do things in the right order, because these
tasks have dependencies:

grunt less
grunt cssmin
grunt uglify
grunt hashres

That’s a lot of work every time we want to change our CSS or JavaScript, so let’s set up
a Grunt task so we don’t have to remember all that. Modify Gruntfile.js:

grunt.registerTask('default', ['cafemocha', 'jshint', 'exec']);
grunt.registerTask('static', ['less', 'cssmin', 'uglify', 'hashres']);

Now all we have to do is type grunt static, and everything will be taken care of
for us.

Skipping Bundling and Minification in Development Mode
One problem with bundling and minification is that it makes frontend debugging all
but impossible. All of your JavaScript and CSS are smashed into their own bundles, and

Bundling and Minification | 193

the situation can even be worse if you choose extremely aggressive options for your
minification. What would be ideal is a way to disable bundling and minification in
development mode. Fortunately, I’ve written just the module for you: connect-bundle.

Before we get started with that module, let’s create a configuration file. We’ll be defining
our bundles now, but we will also use this configuration file later to specify database
settings. It’s common to specify your configuration in a JSON file, and it’s a little known
but very useful trick that you can read and parse a JSON file using require, just as if it
were a module:

var config = require('./config.json');

However, because I get tired of typing quotation marks, I generally prefer to put my
configuration in a JavaScript file (which is almost identical to a JSON file, minus a few
quotation marks). So let’s create config.js:

module.exports = {
 bundles: {

 clientJavaScript: {
 main: {
 file: '/js/meadowlark.min.js',
 location: 'head',
 contents: [
 '/js/contact.js',
 '/js/cart.js',
]
 }
 },

 clientCss: {
 main: {
 file: '/css/meadowlark.min.css',
 contents: [
 '/css/main.css',
 '/css/cart.css',
]
 }
 }
 }
}

We’re defining bundles for JavaScript and CSS. We could have multiple bundles (one
for desktop and one for mobile, for example), but for our example, we just have one
bundle, which we call “main.” Note that in the JavaScript bundle, we can specify a lo‐
cation. For reasons of performance and dependency, it may be desirable to put your
JavaScript in different locations. In the <head>, right after the open <body> tag, and right
before the close <body> tag are all common locations to include a JavaScript file. Here,
we’re just specifying “head” (we can call it whatever we want, but JavaScript bundles
must have a location).

194 | Chapter 16: Static Content

Now we modify views/layouts/main.handlebars:
 <!-- ... -->
 {{#each _bundles.css}}
 <link rel="stylesheet" href="{{static .}}">
 {{/each}}
 {{#each _bundles.js.head}}
 <script src="{{static .}}"></script>
 {{/each}}
</head>

Now if we want to use a fingerprinted bundle name, we have to modify config.js instead
of views/layouts/main.handlebars. Modify Gruntfile.js accordingly:

hashres: {
 options: {
 fileNameFormat: '${name}.${hash}.${ext}'
 },
 all: {
 src: [
 'public/js/meadowlark.min.js',
 'public/css/meadowlark.min.css',
],
 dest: [
 'config.js',
]
 },
}

Now you can run grunt static; you’ll see that config.js has been updated with the
fingerprinted bundle names.

A Note on Third-Party Libraries
You’ll notice I haven’t included jQuery in any bundles in these examples. jQuery is so
incredibly ubiquitous, I find that there is dubious value in including it in a bundle: the
chances are, your browser probably has a cached copy. The gray area would be libraries
such as Handlebars, Backbone, or Bootstrap: they’re quite popular, but not as likely to
be always cached in the browser. If you’re using only one or two third-party libraries,
it’s probably not worth bundling them with your scripts. If you’ve got five or more
libraries, though, you might see a performance gain by bundling the libraries.

QA
Instead of waiting for the inevitable bug, or hoping that code reviews will catch the
problem, why not add a component to our QA toolchain to fix the problem? We’ll use
a Grunt plugin called grunt-lint-pattern, which simply searches for a pattern in
source files and generates an error if it’s found. First, install the package:

A Note on Third-Party Libraries | 195

npm install --save-dev grunt-lint-pattern

Then add grunt-lint-pattern to the list of modules to be loaded in Gruntfile.js, and
add the following configuration:

lint_pattern: {
 view_statics: {
 options: {
 rules: [
 {
 pattern: /<link [^>]*href=["'](?!\{\{static)/,
 message: 'Un-mapped static resource found in <link>.'
 },
 {
 pattern: /<script [^>]*src=["'](?!\{\{static)/,
 message: 'Un-mapped static resource found in <script>.'
 },
 {
 pattern: /]*src=["'](?!\{\{static)/,
 message: 'Un-mapped static resource found in .'
 },
]
 },
 files: {
 src: [
 'views/**/*.handlebars'
]
 }
 },
 css_statics: {
 options: {
 rules: [
 {
 pattern: /url\(/,
 message: 'Un-mapped static found in LESS property.'
 },
]
 },
 files: {
 src: [
 'less/**/*.less'
]
 }
 }
}

And add lint_pattern to your default rule:

grunt.registerTask('default', ['cafemocha', 'jshint', 'exec', 'lint_pattern']);

Now when we run grunt (which we should be doing regularly), we will catch any in‐
stances of unmapped statics.

196 | Chapter 16: Static Content

Summary
For what seems like such a simple thing, static resources are a lot of trouble. However,
they probably represent the bulk of the data actually being transferred to your visitors,
so spending some time optimizing them will yield substantial payoff.

Depending on the size and complexity of your website, the techniques for static mapping
I’ve outlined here may be overkill. For those projects, the other viable solution is to
simply host your static resources on a CDN from the start, and always use the full URL
to the resource in your views and CSS. You will probably still want to run some kind of
linting to make sure you’re not hosting static resources locally: you can use grunt-lint-
pattern to search for links that don’t start with (?:https?:)?//; that will prevent you
from accidentally using local resources.

Elaborate bundling and minification is another area in which you can save time if the
payoff isn’t worth it for your application. In particular, if your site includes only one or
two JavaScript files, and all of your CSS lives in a single file, you could probably skip
bundling altogether, and minification will produce only modest gains, unless your Java‐
Script or CSS is massive.

Whatever technique you choose to use to serve your static resources, I highly recom‐
mend hosting them separately, preferably on a CDN. If it sounds like a hassle to you,
let me assure that it’s not nearly as difficult as it sounds, especially if you spend a little
time on your deployment system, so deploying static resources to one location and your
application to another is automatic.

If you’re concerned about the hosting costs of CDNs, I encourage you to take a look at
what you’re paying now for hosting. Most hosting providers essentially charge for
bandwidth, even if you don’t know it. However, if all of a sudden your site is mentioned
on Slashdot, and you get “Slashdotted,” you may find yourself with a hosting bill you
didn’t expect. CDN hosting is usually set up so that you pay for what you use. To give
you an example, a website that I manage for a medium-sized regional company, which
uses about 20 GB a month of bandwidth, pays only a few dollars per month to host static
resources (and it’s a very media-heavy site).

The performance gains you realize by hosting your static resources on a CDN are sig‐
nificant, and the cost and inconvenience of doing so is minimal, so I highly recommend
going this route.

Summary | 197

CHAPTER 17

Implementing MVC in Express

We’ve covered a lot of ground by now, and if you’re feeling a little overwhelmed, you’re
not alone. This chapter will discuss some techniques to bring a little order to the
madness.

One of the more popular development paradigms to come to prominence in recent
years is the model-view-controller (MVC) pattern. This is quite an old concept, actually,
dating back to the 1970s. It’s experienced a resurgence thanks to its suitability for web
development.

One of the biggest advantages of MVC that I’ve observed is a reduced ramp-up time on
projects. For example, a PHP developer who’s familiar with MVC frameworks can jump
into a .NET MVC project with surprising ease. The actual programming language is
usually not so much a barrier as just knowing where to find stuff. MVC breaks down
functionality into very well-defined realms, giving us a common framework for devel‐
oping software.

In MVC, the model is a “pure” view of your data and logic. It does not concern itself
with user interaction at all. Views convey models to the user, and the controller accepts
user input, manipulates models, and chooses what view(s) to display. (I’ve often thought
“coordinator” would be a better term than “controller”: after all, a controller does not
sound like something that accepts user input, and yet this is one of the main responsi‐
bilities of the controller in an MVC project.)

MVC has spawned what seems like countless variations. Microsoft’s “model-view-view
model” (MVVM) in particular introduces a valuable concept: the view model (it also
rolls the controller into the view, a simplification I find less interesting). The idea of a
view model is that it is a transformation of a model. Furthermore, a single view model
may combine more than one model, or parts of models, or parts of a single model. At
first blush, it may seem like an unnecessary complication, but I’ve found it to be a very
valuable concept. Its value lies in “protecting” the model. In pure MVC, it’s tempting

199

(or even necessary) to contaminate your model with transformations or enhancements
that are necessary only for the views. Model views give you an “out”: if you need a view
of your data that’s only needed for presentation, it belongs in a view model.

Like any pattern, you have to decide how rigid you want to be about it. Too much rigidity
leads to heroic efforts to accomplish edge cases “the right way,” and too little rigidity
leads to maintenance issues and technical debt. My preference is to lean more toward
the side of rigidity. Fortunately, MVC (with view models) provides very natural areas
of responsibility, and I find it’s very rare to run into a situation that can’t easily be ac‐
commodated by this pattern.

Models
To me, the models are far and away the most important components. If your model is
robust and well designed, you can always scrap the presentation layer (or add an addi‐
tional presentation layer). Going the other way is harder, though: your models are the
foundations of your project.

It is vitally important that you don’t contaminate your models with any presentation or
user-interaction code. Even if it seems easy or expedient, I assure you that you are only
making trouble for yourself in the future. A more complicated—and contentious—issue
is the relationship between your models and your persistence layer.

In an ideal world, your models and the persistence layer could be completely separate.
And certainly this is achievable, but usually at significant cost. Very often, the logic in
your models is heavily dependent on persistence, and separating the two layers may be
more trouble than it’s worth.

In this book, we’ve taken the path of least resistance by using Mongoose (which is specific
to MongoDB) to define our models. If being tied to a specific persistence technology
makes you nervous, you might want to consider using the native MongoDB driver
(which doesn’t require any schemas or object mapping) and separating your models
from your persistence layer.

There are those who submit that models should be data only. That is, they contain no
logic, only data. While the word “model” does conjure the idea of data more than func‐
tionality, I don’t find this to be a useful restriction, and prefer to think of a model as
combining data and logic.

I recommend creating a subdirectory in your project called models that you can keep
your models in. Whenever you have logic to implement, or data to store, you should do
so in a file within the models directory. For example, we might keep our customer data
and logic in a file called models/customer.js:

var mongoose = require('mongoose');
var Orders = require('./orders.js');

200 | Chapter 17: Implementing MVC in Express

var customerSchema = mongoose.Schema({
 firstName: String,
 lastName: String,
 email: String,
 address1: String,
 address2: String,
 city: String,
 state: String,
 zip: String,
 phone: String,
 salesNotes: [{
 date: Date,
 salespersonId: Number,
 notes: String,
 }],
});

customerSchema.methods.getOrders = function(){
 return Orders.find({ customerId: this._id });
};

var Customer = mongoose.model('Customer', customerSchema);
modules.export = Customer;

View Models
While I prefer not to be dogmatic about passing models directly to views, I definitely
recommend creating a view model if you’re tempted to modify your model just because
you need to display something in a view. View models give you a way to keep your model
abstract, while at the same time providing meaningful data to the view.

Take the previous example. We have a model called Customer. Now we want to create
a view showing customer information, along with a list of orders. Our Customer model
doesn’t quite work, though. There’s data in it we don’t want to show the customer (sales
notes), and we may want to format the data that is there differently (for example, cor‐
rectly formatting mailing address and phone number). Furthermore, we want to display
data that isn’t even in the Customer model, such as the list of customer orders. This is
where view models come in handy. Let’s create a view model in viewModels/customer.js:

var Customer = require('../model/customer.js');

// convenience function for joining fields
function smartJoin(arr, separator){
 if(!separator) separator = ' ';
 return arr.filter(function(elt){
 return elt!==undefined &&
 elt!==null &&
 elt.toString().trim() !== '';
 }).join(separator);

View Models | 201

}

module.exports = function(customerId){
 var customer = Customer.findById(customerId);
 if(!customer) return { error: 'Unknown customer ID: ' +
 req.params.customerId };
 var orders = customer.getOrders().map(function(order){
 return {
 orderNumber: order.orderNumber,
 date: order.date,
 status: order.status,
 url: '/orders/' + order.orderNumber,
 }
 });
 return {
 firstName: customer.firstName,
 lastName: customer.lastName,
 name: smartJoin([customer.firstName, customer.lastName]),
 email: customer.email,
 address1: customer.address1,
 address2: customer.address2,
 city: customer.city,
 state: customer.state,
 zip: customer.zip,
 fullAddress: smartJoin([
 customer.address1,
 customer.address2,
 customer.city + ', ' +
 customer.state + ' ' +
 customer.zip,
], '
'),
 phone: customer.phone,
 orders: customer.getOrders().map(function(order){
 return {
 orderNumber: order.orderNumber,
 date: order.date,
 status: order.status,
 url: '/orders/' + order.orderNumber,
 }
 }),
 }
}

In this code example, you can see how we’re discarding the information we don’t need,
reformatting some of our info (such as fullAddress), and even constructing additional
information (such as the URL that can be used to get more order details).

The concept of view models is essential to protecting the integrity and scope of your
model. If you find all of the copying (such as firstname: customer.firstName), you
might want to look into Underscore, which gives you the ability to do more elaborate
composition of objects. For example, you can clone an object, picking only the prop‐

202 | Chapter 17: Implementing MVC in Express

http://underscorejs.org

erties you want, or go the other way around and clone an object while omitting only
certain properties. Here’s the previous example rewritten with Underscore (install with
npm install --save underscore):

var _ = require('underscore');

// get a customer view model
function getCustomerViewModel(customerId){
 var customer = Customer.findById(customerId);
 if(!customer) return { error: 'Unknown customer ID: ' +
 req.params.customerId };
 var orders = customer.getOrders().map(function(order){
 return {
 orderNumber: order.orderNumber,
 date: order.date,
 status: order.status,
 url: '/orders/' + order.orderNumber,
 }
 });
 var vm = _.omit(customer, 'salesNotes');
 return _.extend(vm, {
 name: smartJoin([vm.firstName, vm.lastName]),
 fullAddress: smartJoin([
 customer.address1,
 customer.address2,
 customer.city + ', ' +
 customer.state + ' ' +
 customer.zip,
], '
'),
 orders: customer.getOrders().map(function(order){
 return {
 orderNumber: order.orderNumber,
 date: order.date,
 status: order.status,
 url: '/orders/' + order.orderNumber,
 }
 }),
 });
}

Note that we are also using JavaScript’s .map method to set the order list for the customer
view model. In essence, what we’re doing is creating an ad hoc (or anonymous) view
model. The alternate approach would be to create a “customer order view model” object.
That would be a better approach if we needed to use that view model in multiple places.

Controllers
The controller is responsible for handling user interaction and choosing the appropriate
views to display based on that user interaction. Sounds a lot like request routing, doesn’t
it? In reality, the only difference between a controller and a router is that controllers

Controllers | 203

typically group related functionality. We’ve already seen some ways we can group related
routes: now we’re just going to make it more formal by calling it a controller.

Let’s imagine a “customer controller”: it would be responsible for viewing and editing
a customer’s information, including the orders a customer has placed. Let’s create such
a controller, controllers/customer.js:

var Customer = require('../models/customer.js');
var customerViewModel = require('../viewModels/customer.js');

exports = {

 registerRoutes: function(app) {
 app.get('/customer/:id', this.home);
 app.get('/customer/:id/preferences', this.preferences);
 app.get('/orders/:id', this.orders);

 app.post('/customer/:id/update', this.ajaxUpdate);
 }

 home: function(req, res, next) {
 var customer = Customer.findById(req.params.id);
 if(!customer) return next(); // pass this on to 404 handler
 res.render('customer/home', customerViewModel(customer));
 }

 preferences: function(req, res, next) {
 var customer = Customer.findById(req.params.id);
 if(!customer) return next(); // pass this on to 404 handler
 res.render('customer/preferences', customerViewModel(customer));
 }

 orders: function(req, res, next) {
 var customer = Customer.findById(req.params.id);
 if(!customer) return next(); // pass this on to 404 handler
 res.render('customer/preferences', customerViewModel(customer));
 }

 ajaxUpdate: function(req, res) {
 var customer = Customer.findById(req.params.id);
 if(!customer) return res.json({ error: 'Invalid ID.'});
 if(req.body.firstName){
 if(typeof req.body.firstName !== 'string' ||
 req.body.firstName.trim() === '')
 return res.json({ error: 'Invalid name.'});
 customer.firstName = req.body.firstName;
 }
 // and so on....
 customer.save();
 return res.json({ success: true });
 }
}

204 | Chapter 17: Implementing MVC in Express

Note that in our controller, we separate route management from actual functionality.
In this case, the home, preferences, and orders methods are identical except for the
choice of view. If that’s all we were doing, I would probably combine those into a generic
method, but the idea here is that they might be further customized.

The most complicated method in this controller is ajaxUpdate. It’s clear from the name
that we’ll be using AJAX to do updates on the frontend. Notice that we don’t just blindly
update the customer object from the parameters passed in the request body: that would
open us up to possible attacks. It’s more work, but much safer, to handle the fields
individually. Also, we want to perform validation here, even if we’re doing it on the
frontend as well. Remember that an attacker can examine your JavaScript and construct
an AJAX query that bypasses your frontend validation in attempt to compromise your
application, so always do validation on the server, even if it’s redundant.

Your options are once again limited by your imagination. If you wanted to completely
separate controllers from routing, you could certainly do that. In my opinion, that would
be an unnecessary abstraction, but it might make sense if you were trying to write a
controller that could also handle different kinds of UIs attached to it (like a native app,
for example).

Conclusion
Like many programming paradigms or patterns, MVC is more of a general concept than
a specific technique. As you’ve seen in this chapter, the approach we’ve been taking is
already mostly there: we just made it a little more formal by calling our route handler
a “controller” and separating the routing from the functionality. We also introduced the
concept of a view model, which I feel is critical to preserving the integrity of your model.

Conclusion | 205

CHAPTER 18

Security

Most websites and applications these days have some kind of security requirement. If
you are allowing people to log in, or if you’re storing personally identifiable information
(PII), you’ll want to implement some kind of security for your site.

In this chapter, we’ll be discussing HTTP Secure (HTTPS), which establishes a foun‐
dation on which you can build a secure website, and authentication mechanisms, with
a focus on third-party authentication.

Security is a big topic that could fill up an entire book itself. For that reason, the focus
in this book is going to be leveraging existing authentication modules. Writing your
own authentication system is certainly possible, but is a large and complicated under‐
taking. Furthermore, there are good reasons to prefer a third-party login approach,
which we will discuss later in this chapter.

HTTPS
The first step in providing secure services is using HTTP Secure (HTTPS). The nature
of the Internet makes it possible for a third party to intercept packets being transmitted
between clients and servers. HTTPS encrypts those packets, making it extremely
difficult for an attacker to get access to the information being transmitted. (I say very
difficult, not impossible, because there’s no such thing as perfect security. However,
HTTPS is considered sufficiently secure for banking, corporate security, and
healthcare.)

You can think of HTTPS as sort of a foundation for securing your website. It does not
provide authentication, but it lays the groundwork for authentication. For example, your
authentication system probably involves transmitting a password: if that password is
transmitted unencrypted, no amount of authentication sophistication will secure your
system. Security is as strong as the weakest link, and the first link in that chain is the
network protocol.

207

The HTTPS protocol is based on the server having a public key certificate, sometimes
called an SSL certificate. The current standard format for SSL certificates is called X.
509. The idea behind certificates is that there are certificate authorities (CAs) that issue
certificates. A certificate authority makes trusted root certificates available to browser
vendors. Browsers include these trusted root certificates when you install a browser,
and that’s what establishes the chain of trust between the CA and the browser. For this
chain to work, your server must use a certificate issued by a CA.

The upshot of this is that to provide HTTPS, you need a certificate from a CA, so how
does one go about acquiring such a thing? Broadly speaking, you can generate your
own, get one from a free CA, or purchase one from a commercial CA.

Generating Your Own Certificate
Generating your own certificate is easy, but generally suitable only for development and
testing purposes (and possibly for intranet deployment). Due to the hierarchical nature
established by certificate authorities, browsers will trust only certificates generated by
a known CA (and that’s probably not you). If your website uses a certificate from a CA
that’s not known to the browser, the browser will warn you in very alarming language
that you’re establishing a secure connection with an unknown (and therefore untrusted)
entity. In development and testing, this is fine: you and your team know that you gen‐
erated your own certificate, and you expect this behavior from browsers. If you were to
deploy such a website to production for consumption by the public, they would turn
away in droves.

If you control the distribution and installation of browsers, you can
automatically install your own root certificate when you install the
browser: this will prevent people using that browser from being
warned when they connect to your website. This is not trivial to set
up, however, and applies only to environments in which you control
the browser(s) being used. Unless you have a very solid reason to take
this approach, it’s generally more trouble than it’s worth.

To generate your own certificate, you’ll need an OpenSSL implementation. Table 18-1
shows how to acquire an implementation:

Table 18-1. Acquiring an implementation for different platforms
Platform Instructions

OS X brew install openssl

Ubuntu, Debian sudo apt-get install openssl

Other Linux Download from http://www.openssl.org/source/; extract tarball and follow instructions

Windows Download from http://gnuwin32.sourceforge.net/packages/openssl.htm

208 | Chapter 18: Security

http://www.openssl.org/source/
http://gnuwin32.sourceforge.net/packages/openssl.htm

If you are a Windows user, you may need to specify the location of
the OpenSSL configuration file, which can be tricky due to Win‐
dows pathnames. The surefire way is to locate the openssl.cnf file
(usually in the share directory of the installation), and before you run
the openssl command, set the OPENSSL_CNF environment variable:
SET OPENSSL_CONF=openssl.cnf.

Once you’ve installed OpenSSL, you can generate a private key and a public certificate:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout meadowlark.pem
 -out meadowlark.crt

You will be asked for some details, such as your country code, city, and state, fully
qualified domain name (FQDN), and email address. Since this certificate is for devel‐
opment/testing purposes, the values you provide are not particularly important (in fact,
they’re all optional, but leaving them out will result in a certificate that will be regarded
with even more suspicion by a browser). The common name (FQDN) is what the
browser uses to identify the domain. So if you’re using localhost, you can use that for
your FQDN, or you can use the IP address of the server, or the server name, if available.
The encryption will still work if the common name and domain you use in the URL
don’t match, but your browser will give you an additional warning about the
discrepancy.

If you’re curious about the details of this command, you can read about them on the
OpenSSL documentation page. It is worth pointing out that the -nodes option doesn’t
have anything to do with Node, or even the plural word “nodes”: it actually means “no
DES,” meaning the private key is not DES-encrypted.

The result of this command is two files, meadowlark.pem and meadowlark.crt. The PEM
(Privacy-enhanced Electronic Mail) file is your private key, and should not be made
available to the client. The CRT file is the self-signed certificate that will be sent to the
browser to establish a secure connection.

Alternatively, there are websites that will provide free self-signed certificates, such as
http://www.selfsignedcertificate.com.

Using a Free Certificate Authority
HTTPS is based on trust, and it’s an uncomfortable reality that one of the easiest ways
to gain trust on the Internet is to buy it. And it’s not all snake oil, either: establishing
the security infrastructure, insuring certificates, and maintaining relationships with
browser vendors is expensive. However, buying a certificate is not your only legitimate
option for production-ready certificates: CACert employs a point-based “web of trust”
to ensure you are who you say you are. To get enough points to be issued a certificate,

HTTPS | 209

http://www.openssl.org/docs/apps/req.html
http://www.selfsignedcertificate.com
http://www.cacert.org

you have to meet with a CACert member who is qualified as an “assurer.” Or you can
attend events at which you can get points.

Unfortunately, you get what you pay for: CACert is not currently supported by any major
browser. It is likely that they will eventually be supported by Mozilla Firefox, but given
the nonprofit nature of CACert, it’s unlikely that it will ever be supported for Google
Chrome, Internet Explorer, or Apple Safari.

For this reason, I can really only recommend using a CACert certificate for development
or testing purposes, or if your service is specifically for consumption by the open source
crowd, who will not be as intimidated by an untrusted certificate.

All of the major certificate vendors (such as Comodo and Symantec) offer free trial
certificates that last anywhere from 30 to 90 days. This is a valid option if you want to
test a commercial certificate, but you will need to purchase a certificate before the trial
period is up if you want to ensure continuity of service.

Purchasing a Certificate
Currently, 90% of the approximately 50 root certificates distributed with every major
browser are owned by four companies: Symantec (who purchased VeriSign), Comodo
Group, Go Daddy, and GlobalSign. Purchasing directly from a CA can be quite expen‐
sive: it usually starts around $300 per year (though some offer certificates less than $100
per year). A less expensive option is going through a reseller, from whom you can get
an SSL certificate for as little as $10 per year or less.

It’s important to understand exactly what it is you’re paying for, and why you would pay
$10, $150, or $300 (or more) for a certificate. The first important point to understand
is that there is no difference whatsoever in the level of encryption offered between a $10
certificate and a $1,500 certificate. This is something that expensive certificate author‐
ities would rather you not know: their marketing tries hard to obscure this fact.

There are four considerations I use in selecting a certificate vendor:
Customer support

If you ever have problems with your certificate, whether it be browser support
(customers will let you know if your certificate is flagged by their browser as not
trustworthy), installation issues, or renewal hassles, you will appreciate good
customer support. This is one reason why you might purchase a more expensive
certificate. Often, your hosting provider will resell certificates, and in my experi‐
ence, they provide a higher level of customer support, because they want to keep
you as a hosting client as well.

Avoid chained root certificates
It is common to chain certificates, meaning you actually require multiple certificates
to establish a secure connection. Chained certificates result in additional

210 | Chapter 18: Security

installation effort, and for this reason, I will spend a little more to purchase a cer‐
tificate that relies on a single root certificate. Often it’s difficult (or impossible) to
determine what you’re getting, and this is another reason to look for good customer
support. If you ask whether the root certificate is chained, and they can’t or won’t
tell you, you should look elsewhere.

Single-domain, multisubdomain, multidomain, and wildcard certificates
The most inexpensive certificates are usually single domain. That may not sound
so bad, but remember that it means that if you purchase a certificate for meadow‐
larktravel.com, then the certificate will not work for www.meadowlarktravel.com,
or vice versa. For this reason, I tend to avoid single-domain certificates, though it
can be a good option for the extremely budget conscious (you can always set up
redirects to funnel requests to the proper domain). Multisubdomain certificates are
good in that you can purchase a single certificate that covers meadowlarktravel.com,
www.meadowlark.com, blog.meadowlarktravel.com, shop.meadowlarktravel.com,
etc. The downside is that you have to know in advance what subdomains you want
to use. If you see yourself adding or using different subdomains over the course of
a year (that need to support HTTPS), you might be better off going with a wild‐
card certificate, which are generally more expensive. But they will work for any
subdomain, and you never have to specify what the subdomains are. Lastly, there
are multidomain certificates which, like wildcard certificates, tend to be more ex‐
pensive. These certificates support whole multiple domains so, for example, you
could have meadowlarktravel.com, meadowlarktravel.us, meadowlarktravel.com,
and the www variants.

Domain, organization, and extended validation certificates
There are three kinds of certificates: domain, organization, and extended valida‐
tion. Domain certificates, as the name implies, simply provide confidence that
you’re doing business with the domain that you think you are. Organization cer‐
tificates, on the other hand, provide some assurance about the actual organization
you’re dealing with. They’re more difficult to get: there’s usually paperwork in‐
volved, and you must provide things like state and/or federal business name records,
physical addresses, etc. Different certificate vendors will require different docu‐
mentation, so make sure to ask your certificate vendor what’s required to get one
of these certificates. Lastly are extended validation certificates, which are the Rolls
Royce of SLL certificates. They are like organization certificates in that they verify
the existence of the organization, but they require a higher standard of proof, and
can even require expensive audits to establish your data security practices (though
this seems to be increasingly rare). They can be had for as little as $150 for a single
domain. I recommend either the less expensive domain certificates or the extended
validation certificates. Organization certificates, while they verify the existence of
your organization, are not displayed any differently than browsers, so in my expe‐
rience, unless the user actually examines the certificate (which is rare) there will be

HTTPS | 211

no apparent difference between this and a domain certificate. Extended validation
certificates, on the other hand, usually display some clues to users that they are
dealing with a legitimate business (such as the URL bar being displayed in green,
and the organization name being displayed next to the SSL icon).

If you’ve dealt with SSL certificates before, you might be wondering why I didn’t mention
certificate insurance. I’ve omitted that price differentiator because essentially it’s insur‐
ance against something that’s almost impossible. The idea is that if someone suffers
financial loss due to a transaction on your website, and they can prove it was due to
inadequate encryption, the insurance is there to cover your damages. While it is certainly
possible that, if your application involves financial transactions, someone may attempt
to take legal action against you for financial loss, the likelihood of it being due to
inadequate encryption is essentially zero. If I were to attempt to seek damages from a
company due to financial loss linked to their online services, the absolute last approach
I would take is to attempt to prove that the SSL encryption was broken. If you’re faced
with two certificates that differ only in price and insurance coverage, buy the cheaper
certificate.

Once you’ve purchased a certificate, you will have access to a secure area where you can
download your private key and the certificate (you might want to double-check that the
download link is over HTTPS itself: transmitting a private key over an unencrypted
channel is unwise!). Avoid certificate vendors who will email you the private key: email
is not a secure channel. Standard extensions for the private key are .pem and some‐
times .key. The certificate will have an extension of .crt, .cer, or .der (the certificate will
be in a format called “Distinguished Encoding Rules” or DER, hence the less com‐
mon .der extension).

Enabling HTTPS for Your Express App
Once you have your private key and certificate, using them in your app is easy. Let’s
revisit how we’ve been creating our server:

http.createServer(app).listen(app.get('port'), function(){
 console.log('Express started in ' + app.get('env') +
 ' mode on port ' + app.get('port') + '.');
});

Switching over to HTTPS is simple. I recommend that you put your private key and
SSL cert in a subdirectory called ssl (though it’s quite common to keep it in your project
root). Then you just use the https module instead of http, and pass an options object
along to the createServer method:

var https = require('https'); // usually at top of file

var options = {
 key: fs.readFileSync(__dirname + '/ssl/meadowlark.pem');
 cert: fs.readFileSync(__dirname + '/ssl/meadowlark.crt');

212 | Chapter 18: Security

};

https.createServer(options, app).listen(app.get('port'), function(){
 console.log('Express started in ' + app.get('env') +
 ' mode on port ' + app.get('port') + '.');
});

That’s all there is to it. Assuming you’re still running your server on port 3000, you can
now connect to https://localhost:3000. If you try to connect to http://localhost:3000, it
will simply time out.

A Note on Ports
Whether you know it or not, when you visit a website, you’re always connecting to a
specific port, even though it’s not specified in the URL. If you don’t specify a port, port
80 is assumed for HTTP. As a matter of fact, most browsers will simply not display the
port number if you explicitly specify port 80. For example, navigate to http://
www.apple.com:80; chances are, when the page loads, the browser will simply strip off
the :80. It’s still connecting on port 80, it’s just implicit.

Similarly, there’s a standard port for HTTPS, 443. Browser behavior is similar: if you
connect to https://www.google.com:443, most browsers will simply not display
the :443, but that’s the port they’re connecting over.

If you’re not using port 80 for HTTP or port 443 for HTTPS, you’ll have to explicitly
specify the port and the protocol to connect correctly. There’s no way to run HTTP and
HTTPS on the same port (technically, it’s possible, but there’s no good reason to do it,
and the implementation would be very complicated).

If you want to run your HTTP app on port 80, or your HTTPS app on port 443 so you
don’t have to specify the port explicitly, you have two things to consider. First is that
many systems already have a default web server running on port 80. For example, if
you’re using OS X and you have web sharing enabled, Apache will be running on port
80, and you won’t be able to start your app on port 80.

The other thing to know is that on most operating systems, ports 1–1024 require elevated
privileges to open. For example, on a Linux or OS X machine, if you attempt to start
your app on port 80, it will fail with an EACCES error. To run on port 80 or 443 (or any
port under 1025), you’ll need to elevate your privileges by using the sudo command. If
you don’t have administrator rights, you will be unable to start the server directly on
port 80 or 443.

Unless you’re managing your own servers, you probably don’t have root access to your
hosted account: so what happens when you want to run on port 80 or 443? Generally,
hosting providers have some kind of proxy service that runs with elevated privileges
that will pass requests through to your app, which is running on a nonprivileged port.
We’ll learn more about this in the next section.

HTTPS | 213

HTTPS and Proxies
As we’ve seen, it’s very easy to use HTTPS with Express, and for development, it will
work fine. However, when you want to scale your site out to handle more traffic, you
will want to use a proxy server such as Nginx (see Chapter 12). If your site is running
in a shared hosting environment, it is almost certain that there will be a proxy server
that will route requests to your application.

If you’re using a proxy server, then the client (the user’s browser) will communicate with
the proxy server, not your server. The proxy server, in turn, will most likely communicate
with your app over regular HTTP (since your app and the proxy server will be running
together on a trusted network). You will often hear people say that the HTTPS termi‐
nates at the proxy server.

For the most part, once you or your hosting provider has correctly configured the proxy
server to handle HTTPS requests, you won’t need to do any additional work. The ex‐
ception to that rule is if your application needs to handle both secure and insecure
requests.

There are three solutions to this problem. The first is simply to configure your proxy
to redirect all HTTP traffic to HTTPS, in essence forcing all communication with your
application to be over HTTPS. This approach is becoming much more common, and
it’s certainly an easy solution to the problem.

The second approach is to somehow communicate the protocol used in the client-proxy
communication to the server. The usual way to communicate this is through the X-
Forwarded-Proto header. For example, to set this header in Nginx:

proxy_set_header X-Forwarded-Proto $scheme;

Then, in your app, you could test to see if the protocol was HTTPS:

app.get('/', function(req, res){
 // the following is essentially
 // equivalent to: if(req.secure)
 if(req.headers['x-forwarded-proto']==='https') {
 res.send('line is secure');
 } else {
 res.send('you are insecure!');
 }
});

214 | Chapter 18: Security

In Nginix, there is a separate server configuration block for HTTP
and HTTPS. If you fail to set the X-Forwarded-Protocol in the
configuration block corresponding to HTTP, you open yourself up
to the possibility of a client spoofing the header and thereby fool‐
ing your application into thinking that the connection is secure even
though it isn’t. If you take this approach, make sure you always set
the X-Forwarded-Protocol header.

Express provides some convenience properties that change behavior (quite correctly)
when you’re using a proxy. Don’t forget to tell Express to trust the proxy by using
app.enable('trust proxy'). Once you do, req.protocol, req.secure, and req.ip
will refer to the client’s connection to the proxy, not to your app.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) attacks exploit the fact that users generally trust their
browser and visit multiple sites in the same session. In a CSRF attack, script on a ma‐
licious site makes requests of another site: if you are logged in on the other site, the
malicious site can successfully access secure data from another site.

To prevent CSRF attacks, you must have a way to make sure a request legitimately came
from your website. The way we do this is to pass a unique token to the browser. When
the browser then submits a form, the server checks to make sure the token matches.
The csurf middleware will handle the token creation and verification for you; all you’ll
have to do is make sure the token is included in requests to the server. Install the csurf
middleware (npm install --save csurf), then link it in and add a token to res.lo
cals:

// this must come after we link in cookie-parser and connect-session
app.use(require('csurf')());
app.use(function(req, res, next){
 res.locals._csrfToken = req.csrfToken();
 next();
});

The csurf middleware adds the csurfToken method to the request object. We don’t
have to assign it to res.locals; we could just pass req.csurfToken() explicitly to every
view that needs it, but this is generally less work.

Now on all of your forms (and AJAX calls), you’ll have to provide a field called _csrf,
which must match the generated token. Let’s see how we would add this to one of our
forms:

<form action="/newsletter" method="POST">
 <input type="hidden" name="_csrf" value="{{_csrfToken}}">
 Name: <input type="text" name="name">

Cross-Site Request Forgery | 215

 Email: <input type="email" name="email">

 <button type="submit">Submit</button>
</form>

The csurf middleware will handle the rest: if the body contains fields, but no valid _csrf
field, it will raise an error (make sure you have an error route in your middleware!). Go
ahead and remove the hidden field and see what happens.

If you have an API, you probably don’t want the csurf middleware
interfering with it. If you want to restrict access to your API from
other websites, you should look into the “API key” functionality of
connect-rest. To prevent csurf from interfering with your middle‐
ware, link it in before you link in csurf.

Authentication
Authentication is a big, complicated topic. Unfortunately, it’s also a vital part of most
nontrivial web applications. The most important piece of wisdom I can impart to you
is don’t try to do it yourself. If you look at your business card and it doesn’t say “Security
Expert,” you probably aren’t prepared for the complex considerations involved in de‐
signing a secure authentication system.

Note that I’m not saying that you shouldn’t try to understand the security systems in
your application. I’m just recommending that you don’t try to build it yourself. Feel free
to study the open source code of the authentication techniques I’m going to recommend.
It will certainly give you some insight as to why you might not want to take on this task
unaided!

Authentication Versus Authorization
While the two terms are often used interchangeably, there is a subtle difference.
Authentication refers to verifying users’ identities. That is, they are who they say they
are. Authorization refers to determining what a user is authorized to access, modify, or
view. For example, customers might be authorized to access their account information,
whereas an Meadowlark Travel employee would be authorized to access another person’s
account information or sales notes.

Usually (but not always), authentication comes first, and then authorization is deter‐
mined. Authorization can be very simple (authorized/not authorized), broad (user/
administrator), or very fine-grained, specifying read, write, delete, and update privileges
against different account types. The complexity of your authorization system is depen‐
dent on the type of application you’re writing.

216 | Chapter 18: Security

Because authorization is so dependent on the details of your application, I’ll be giving
only a rough outline in this book, using a very broad authentication scheme (customer/
employee).

I will often use the abbreviation “auth,” but only when it is clear from the context whether
it means “authentication” or “authorization,” or when it doesn’t matter.

The Problem with Passwords
The problem with passwords is that every security system is as strong as its weakest link.
And passwords require the user to invent a password—and there’s your weakest link.
Humans are notoriously bad at coming up with secure passwords. As I write this, in an
analysis of security breaches in 2013, the most popular password is “12345.” “password”
is #2 (it was #1 the previous year). Even in the security conscious year of 2013, people
are still choosing abysmally bad passwords. Having password policies requiring, for
example, a capital letter, a number, and a punctuation mark is just going to result in a
password of “Password1!”.

Even analyzing passwords against a list of common passwords doesn’t do much to stop
the problem. Then people start writing down their higher quality passwords on note
pads, leaving them in unencrypted files on their computers, or emailing them to
themselves.

At the end of the day, it’s a problem that you, the app designer, cannot do much to fix.
However, there are things you can do that promote more secure passwords. One is to
pass the buck and rely on a third party for authentication. The other is to make your
login system friendly to password management services, like LastPass, RoboForm, and
PasswordBox.

Third-Party Authentication
Third-party authentication takes advantage of the fact that pretty much everyone on
the Internet has an account on at least one major service, such as Google, Facebook,
Twitter, or LinkedIn. All of these services provide a mechanism to authenticate and
identify your users through their service.

Third-party authentication is often referred to as federated
authentication or delegated authentication. The terms are largely in‐
terchangeable, though federated authentication is usually associated
with Security Assertion Markup Language (SAML) and OpenID, and
delegated authentication is often associated with OAuth.

Third-party authentication has three major advantages. First, your authentication bur‐
den is lowered. You do not have to worry about authenticating individual users, only

Authentication | 217

interacting with a trusted third party. The second advantage is that it reduces “password
fatigue”: the stress associated with having too many accounts. I use LastPass, and I just
checked my password vault: I have almost 400 passwords. As a technology professional,
I may have more than your average Internet user, but it’s not uncommon for even a
casual Internet user to have dozens or even hundreds of accounts. Lastly, third-party
authentication is “frictionless”: it allows your users to start using your site more quickly,
with credentials they already have. Often, if users see that they have to create yet an‐
other username and password, they will simply move on.

If you don’t use a password manager, the chances are, you’re using the same password
for most of those sites (most people have a “secure” password they use for banking and
the like, and an “insecure” password they use for everything else). The problem with
this approach is that if even one of the sites you use that password for is breached, and
your password becomes known, then hackers will try using that same password with
other services. It’s like putting all of your eggs in one basket.

Third-party authentication has its downsides. Hard as it is to believe, there are folks out
there who don’t have an account on Google, Facebook, Twitter, or LinkedIn. Then,
among the people who do have such accounts, suspicion (or a desire for privacy) may
make them unwilling to use those credentials to log onto your website. Many websites
solve this particular problem by encouraging users to use an existing account, but those
who don’t have them (or are unwilling to use them to access your service) can create a
new login for your service.

Storing Users in Your Database
Whether or not you rely on a third party to authenticate your users, you will want to
store a record of users in your own database. For example, if you’re using Facebook for
authentication, that only verifies a user’s identity. If you need to save settings specific to
that user, you can’t reasonably use Facebook for that: you have to store information
about that user in your own database. Also, you probably want to associate an email
address with your users, and they may not wish to use the same email address they use
for Facebook (or whatever third-party authentication service you use). Lastly, storing
user information in your database allows you to perform authentication yourself, should
you wish to provide that option.

So let’s create a model for our users, models/user.js:
var mongoose = require('mongoose');

var userSchema = mongoose.Schema({
 authId: String,
 name: String,
 email: String,
 role: String,
 created: Date,

218 | Chapter 18: Security

http://lastpass.com

});

var User = mongoose.model('User', userSchema);
module.exports = User;

Recall that every object in a MongoDB database has its own unique ID, stored in its _id
property. However, that ID is controlled by MongoDB, and we need some way to map
a user record to a third-party ID, so we have our own ID property, called authId. Since
we’ll be using multiple authentication strategies, that ID will be a combination of a
strategy type and a third-party ID, to prevent collisions. For example, a Facebook user
might have an authId of facebook:525764102, whereas a Twitter user would have an
authId of twitter:376841763.

We will be using two roles in our example: “customer” and “employee.”

Authentication Versus Registration and the User Experience
Authentication refers to verifying a user’s identity, either with a trusted third party, or
through credentials you’ve provided the user (such as a username and password).
Registration is the process by which a user gets an account on your site (from our
perspective, registration is when we create a User record for that user in the database).

When users join your site for the first time, it should be clear to them that they’re
registering. Using a third-party authentication system, we could register them without
their knowledge if they successfully authenticate through the third party. This is not
generally considered a good practice, and it should be clear to users that they’re regis‐
tering for your site (whether they’re authenticating through a third party or not), and
provide a clear mechanism for canceling their membership.

One user experience situation to consider is “third-party confusion.” If a user registers
in January for your service using Facebook, then returns in July, and is confronted with
a screen offering the choices of logging in with Facebook, Twitter, Google, or LinkedIn,
the user may very well have forgotten what registration service was originally used. This
is one of the pitfalls of third-party authentication, and there is precious little you can
do about it. It’s another good reason to ask the user to provide an email address: this
way, you can give the user an option to look up an account by email, and send an email
to that address specifying what service was used for authentication.

If you feel that you have a firm grasp on the social networks your users use, you can ease
this problem by having a “primary” authentication service. For example, if you feel pretty
confident that the majority of your users have a Facebook account, you could have a big
button that says, “Log in with Facebook.” Then, using smaller buttons or even just text
links, say, “or log in with Google, Twitter, or LinkedIn.” This approach can cut down on
the instance of third-party confusion.

Authentication | 219

1. It is unlikely that the third party is storing passwords either. A password can be verified by storing something
called a salted hash, which is a one-way transformation of the password. That is, once you generate a hash
from a password, you can’t recover the password. Salting the hash provides additional protection against
certain kinds of attacks.

Passport
Passport is a very popular and robust authentication module for Node/Express. It is not
tied to any one authentication mechanism; rather, it is based on the idea of pluggable
authentication strategies (including a local strategy if you don’t want to use third-party
authentication). Understanding the flow of authentication information can be over‐
whelming, so we’ll start with just one authentication mechanism and add more later.

The detail that’s important to understand is that, with third-party authentication, your
app never receives a password. That is handled entirely by the third party. This is a good
thing: it’s putting the burden of secure handling and storage of passwords on the third
party.1

The whole process, then, relies on redirects (it must, if your application is never to
receive the user’s third-party password). At first, you might be confused about why you
can pass localhost URLs to the third party and still successfully authenticate (after all,
the third-party server handling your request doesn’t know about your localhost). It
works because the third party simply instructs your browser to redirect, and your
browser is inside your network, and can therefore redirect to local addresses.

The basic flow is shown in Figure 18-1. This diagram shows the important flow of
functionality, making it clear that the authentication actually occurs on the third-party
website. Enjoy the simplicity of the diagram—things are about to get a lot more
complicated.

When you use Passport, there are four steps that your app will be responsible for. Con‐
sider a more detailed view of the third-party authentication flow, as shown in
Figure 18-2.

220 | Chapter 18: Security

Figure 18-1. Third-party authentication flow

For simplicity, we are using Meadowlark Travel to represent your app, and Facebook
for the third-party authentication mechanism. Figure 18-2 illustrates how the user goes
from the login page to the secure “account info” page (the “account info” page is just
used for illustration purposes: this could be any page on your website that requires
authentication).

This diagram shows detail you don’t normally think about, but is important to under‐
stand in this context. In particular, when you visit a URL, you aren’t making the request
of the server: the browser is actually doing that. That said, the browser can do three
things: make an HTTP request, display the response, and perform a redirect (which is
essentially making another request and displaying another response…which in turn
could be another redirect).

In the “Meadowlark” column, you can see the four steps your application is actually
responsible for. Fortunately, we’ll be leveraging Passport (and pluggable strategies) to
perform the details of those steps; otherwise, this book would be much, much longer.

Authentication | 221

Figure 18-2. Detailed view of third-party authentication flow

Before we get into implementation details, let’s consider each of the steps in a little more
detail:
Login page

The login page is where the user can choose the login method. If you’re using a
third-party authentication, it’s usually just a button or a link. If you’re using local
authentication, it will include username and password fields. If the user attempts
to access a URL requiring authentication (such as /account in our example) without
being logged in, this is probably the page you will want to redirect to (alternatively,
you could redirect to a “Not Authorized” page with a link to the login page).

Construct authentication request
In this step, you’ll be constructing a request to be sent to a third party (via a redirect).
The details of this request are complicated and specific to the authentication

222 | Chapter 18: Security

strategy. Passport (and the strategy plugin) will be doing all the heavy lifting here.
The auth request includes protection against “man in the middle” attacks, as well
as other vectors an attacker might exploit. Usually the auth request is short-lived,
so you can’t store it and expect to use it later: this helps prevent attacks by limiting
the window in which an attacker has time to act. This is where you can request
additional information from the third-party authorization mechanism. For exam‐
ple, it’s common to request the user’s name, and possibly email address. Keep in
mind that the more information you request from users, the less likely they are to
authorize your application.

Verify authentication response
Assuming the user authorized your application, you’ll get back a valid auth response
from the third party, which is proof of the user’s identity. Once again, the details of
this validation are complicated and will be handled by Passport (and the strategy
plugin). If the auth response indicates that the user is not authorized (if invalid
credentials were entered, or your application wasn’t authorized by the user), you
would then redirect to an appropriate page (either back to the login page, or to a
“Not Authorized” or “Unable to Authorize” page). Included in the auth response
will be an ID for the user that is unique to that specific third party, as well as any
additional details you requested in step 2. To enable step 4, we must “remember”
that the user is authorized. The usual way to do this is to set a session variable
containing the user’s ID, indicating that this session has been authorized (cookies
can also be used, though I recommend using sessions).

Verify authorization
In step 3, we stored a user ID in the session. The presence of that user ID allows us
to retrieve a user object from the database that contains information about what
the user is authorized to do. In this manner, we don’t have to authenticate with the
third party for every request (which would result in a slow and painful user expe‐
rience). This task is simple, and we no longer need Passport for this: we have our
own User object that contains our own authentication rules. (If that object isn’t
available, it indicates the request isn’t authorized, and we can redirect to the login
or “Not Authorized” page.)

Using Passport for authentication is a fair amount of work, as you’ll
see in this chapter. However, authentication is an important part of
your application, and I feel that it is wise to invest some time in getting
it right. There are projects such as LockIt that try to provide a more
“off the shelf” solution. To make the most effective use of LockIt (or
similar solutions), however, it behooves you to understand the de‐
tails of authentication and authorization, which is what this chapter
is designed to do. Also, if you ever need to customize an authentica‐
tion solution, Passport is a great place to start.

Authentication | 223

http://bit.ly/lock_it

Setting up Passport
To keep things simple, we’ll start with a single authentication provider. Arbitrarily, we’ll
choose Facebook. Before we can set up Passport and the Facebook strategy, we’ll need
to do a little configuration in Facebook. For Facebook authentication, you’ll need a
Facebook app. If you already have a suitable Facebook app, you can use that, or you can
create a new one specifically for authentication. If possible, you should use your orga‐
nization’s official Facebook account to create the app. That is, if you worked for Mead‐
owlark Travel, you would use the Meadowlark Travel Facebook account to create the
app (you can always add your personal Facebook account as an administrator of the
app for ease of administration). For testing purposes, it’s fine to use your own Facebook
account, but using a personal account for production will appear unprofessional and
suspicious to your users.

The details of Facebook app administration seem to change fairly frequently, so I am
not going to explain the details here. Consult the Facebook developer documentation
if you need details on creating and administering your app.

For development and testing purposes, you will need to associate the development/
testing domain name with the app. Facebook allows you to use localhost (and port
numbers), which is great for testing purposes. Alternatively, you can specify a local IP
address, which can be helpful if you’re using a virtualized server, or another server on
your network for testing. The important thing is that the URL you enter into your
browser to test the app (for example, http://localhost:3000) is associated with the Face‐
book app. Currently, you can only associate one domain with your app: if you need to
be able to use multiple domains, you will have to create multiple apps (for example, you
could have “Meadowlark Dev,” “Meadowlark Test,” and “Meadowlark Staging”; your
production app can simply be called “Meadowlark Travel”).

Once you’ve configured your app, you will need its unique app ID, and its app secret,
both of which can be found on the Facebook app management page for that app.

One of the biggest frustrations you’ll probably face is receiving a
message from Facebook such as “Given URL is not allowed by the
Application configuration.” This indicates that the hostname and port
in the callback URL do not match what you’ve configured in your app.
If you look at the URL in your browser, you will see the encoded URL,
which should give you a clue. For example, if I’m using
192.168.0.103:3443, and I get that message, I look at the URL. If I see
redirect_uri=https%3A%2F%2F192.68.0.103%3A3443%2Fauth
%2Ffacebook%2Fcallback in the querystring, I can quickly spot the
mistake: I used “68” instead of “168” in my hostname.

Now let’s install Passport, and the Facebook authentication strategy:

224 | Chapter 18: Security

https://developers.facebook.com/docs

npm install --save passport passport-facebook

Before we’re done, there’s going to be a lot of authentication code (especially if we’re
supporting multiple strategies), and we don’t want to clutter up meadowlark.js with all
that code. Instead, we’ll create a module called lib/auth.js. This is going to be a large file,
so we’re going to take it piece by piece. We’ll start with the imports and two methods
that Passport requires, serializeUser and deserializeUser:

var User = require('../models/user.js'),
 passport = require('passport'),
 FacebookStrategy = require('passport-facebook').Strategy;

passport.serializeUser(function(user, done){
 done(null, user._id);
});

passport.deserializeUser(function(id, done){
 User.findById(id, function(err, user){
 if(err || !user) return done(err, null);
 done(null, user);
 });
});

Passport uses serializeUser and deserializeUser to map requests to the authenti‐
cated user, allowing you to use whatever storage method you want. In our case, we are
only going to store the MongoDB-assigned ID (the _id property of User model instan‐
ces) in the session. The way we’re using it here makes “serialize” and “deserialize” a bit
of a misnomer: we’re actually just storing a user ID in the session. Then, when needed,
we can get a User model instance by finding that DB in the database.

Once these two methods are implemented, as long as there is an active session, and the
user has successfully authenticated, req.session.passport.user will be the corre‐
sponding User model instance.

Next, we’re going to choose what to export. To enable Passport’s functionality, we’ll need
to do two distinct activities: initialize Passport and register routes that will handle au‐
thentication and the redirected callbacks from our third-party authentication services.
We don’t want to combine these two in one function because in our main application
file, we may want to choose when Passport is linked into the middleware chain (re‐
member that order is significant when adding middleware). So, instead of having our
module export function that does either of these things, we’re going to have it return a
function that returns an object that has the methods we need. Why not just return an
object to start with? Because we need to bake in some configuration values. Also, since
we need to link the Passport middleware into our application, a function is an easy way
to pass in the Express application object:

module.exports = function(app, options){

 // if success and failure redirects aren't specified,

Authentication | 225

 // set some reasonable defaults
 if(!options.successRedirect)
 options.successRedirect = '/account';
 if(!options.failureRedirect)
 options.failureRedirect = '/login';

 return {

 init: function() { /* TODO */ },

 registerRoutes: function() { /* TODO */ },

 };
};

Before we get into the details of the init and registerRoutes methods, let’s look at
how we’ll use this module (hopefully that will make this business of returning a function
that returns an object a little more clear):

var auth = require('./lib/auth.js')(app, {
 providers: credentials.authProviders,
 successRedirect: '/account',
 failureRedirect: '/unauthorized',
});
// auth.init() links in Passport middleware:
auth.init();

// now we can specify our auth routes:
auth.registerRoutes();

Notice that, in addition to specifying the success and failure redirect paths, we also
specify a property called providers, which we’ve externalized in the credentials.js file
(see Chapter 13). We’ll need to add the authProviders property to credentials.js:

module.exports = {
 mongo: {
 //...
 },

 authProviders: {
 facebook: {
 development: {
 appId: 'your_app_id',
 appSecret: 'your_app_secret',
 },
 },
 },
}

Notice that we put the app details in a property called development; this will allow us
to specify both development and production apps (remember that Facebook does not
allow you to associate more than one URL with an application).

226 | Chapter 18: Security

Another reason to bundle our authentication code in a module like
this is that we can reuse it for other projects…as a matter of fact, there
are already some authentication packages that do essentially what
we’re doing here. However, it’s important to understand the details of
what’s going on, so even if you end up using a module someone else
wrote, this will help you understand everything that’s going on in your
authentication flow.

Now let’s take care of our init method:

init: function() {
 var env = app.get('env');
 var config = options.providers;

 // configure Facebook strategy
 passport.use(new FacebookStrategy({
 clientID: config.facebook[env].appId,
 clientSecret: config.facebook[env].appSecret,
 callbackURL: '/auth/facebook/callback',
 }, function(accessToken, refreshToken, profile, done){
 var authId = 'facebook:' + profile.id;
 User.findOne({ authId: authId }, function(err, user){
 if(err) return done(err, null);
 if(user) return done(null, user);
 user = new User({
 authId: authId,
 name: profile.displayName,
 created: Date.now(),
 role: 'customer',
 });
 user.save(function(err){
 if(err) return done(err, null);
 done(null, user);
 });
 });
 }));

 app.use(passport.initialize());
 app.use(passport.session());
},

This is a pretty dense bit of code, but most of it is actually just Passport boilerplate. The
important bit is inside the function that gets passed to the FacebookStrategy instance.
When this function gets called (after the user has successfully authenticated), the pro
file parameter contains information about the Facebook user. Most important, it in‐
cludes a Facebook ID: that’s what we’ll use to associate a Facebook account to our own
User model. Note that we namespace our authId property by prefixing facebook:.
Slight as the chance may be, this prevents the possibility of a Facebook ID colliding with
a Twitter or Google ID (it also allows us to examine user models to see what authenti‐

Authentication | 227

cation method a user is using, which could be useful). If the database already contains
an entry for this namespaced ID, we simply return it (this is when serializeUser gets
called, which will put the MongoDB ID into the session). If no user record is returned,
we create a new User model and save it to the database.

The last thing we have to do is create our registerRoutes method (don’t worry, this
one is much shorter):

registerRoutes: function(){
 // register Facebook routes
 app.get('/auth/facebook', function(req, res, next){
 passport.authenticate('facebook', {
 callbackURL: '/auth/facebook/callback?redirect=' +
 encodeURIComponent(req.query.redirect),
 })(req, res, next);
 });
 app.get('/auth/facebook/callback', passport.authenticate('facebook',
 { failureRedirect: options.failureRedirect },
 function(req, res){
 // we only get here on successful authentication
 res.redirect(303, req.query.redirect || options.successRedirect);
 }
));
},

Now we have the path /auth/facebook; visiting this path will automatically redirect the
visitor to Facebook’s authentication screen (this is done by passport.authenti
cate('facebook')), step 2 in Figure 18-1. Note that we override the default callback
URL here: this is because we want to include information about where we came from.
Since we’re redirecting the browser to Twitter for authentication, we might want some
way to come back to where we started. Once the user authorizes with Twitter, the browser
will be redirected back to your site. Specifically, to the /auth/facebook/callback path (with
the optional redirect querystring indicating where the user was originally). Also on
the querystring are authentication tokens that Passport will verify. If the verification
fails, Passport will redirect the browser to options.failureRedirect. If the verification
is successful, Passport will call next(), which is where your application comes back in.
Note how the middleware is chained in the handler for /auth/facebook/callback: pass
port.authenticate is called first. If it calls next(), control passes over to your function,
which then redirects to either the original location or options.successRedirect, if the
redirect querystring parameter wasn’t specified.

228 | Chapter 18: Security

Omitting the redirect querystring parameter can simplify your au‐
thentication routes, which may be tempting if you only have one URL
that requires authentication. However, having this functionality
available will eventually come in handy and provide a better user
experience. No doubt you’ve experienced this yourself before: you’ve
found the page you want, and you’re instructed to log in. You do, and
you’re redirected to a default page, and you have to navigate back to
the original page. It’s not a very satisfying user experience.

The “magic” that Passport is doing during this process is saving the user (in our case,
just a MongoDB database user ID) to the session. This is a good thing, because the
browser is redirecting, which is a different HTTP request: without having that
information in the session, we wouldn’t have any way to know that the user had been
authenticated! Once a user has been successfully authenticated, req.session.pass
port.user will be set, and that’s how future requests will know that the user has been
authenticated.

Let’s look at our /account handler to see how it checks to make sure the user is au‐
thenticated (this route handler will be in our main application file, or in a separate
routing module, not in /lib/auth.js):

app.get('/account', function(req, res){
 if(!req.session.passport.user)
 return res.redirect(303, '/unauthorized');
 res.render('account');
});

Now only authenticated users will see the account page; everyone else will be redirected
to a “Not Authorized” page.

Role-Based Authorization
So far, we’re not technically doing any authorization (we’re only differentiating between
authorized and unauthorized users). However, let’s say we only want customers to see
their account views (employees might have an entirely different view where they can
see user account information).

Remember that in a single route, you can have multiple functions, which get called in
order. Let’s create a function called customerOnly that will allow only customers:

function customerOnly(req, res){
 var user = req.session.passport.user;
 if(user && req.role==='customer') return next();
 res.redirect(303, '/unauthorized');
}

Authentication | 229

Let’s also create a employeeOnly function that will operate a little differently. Let’s say
we have a path /sales that we want to be available only to employees. Furthermore, we
don’t want nonemployees to even be aware of its existence, even if they stumble on it
by accident. If a potential attacker went to the /sales path, and saw a “Not Authorized”
page, that is a little information that might make an attack easier (simply by knowing
that the page is there). So, for a little added security, we want nonemployees to see a
regular 404 page when they visit the /sales page, giving potential attackers nothing to
work with:

function employeeOnly(req, res, next){
 var user = req.session.passport.user;
 if(user && req.role==='employee') return next();
 next('route');
}

Calling next('route') will not simply execute the next handler in the route: it will skip
this route altogether. Assuming there’s not a route further on down the line that will
handle /account, this will eventually pass to the 404 handler, giving us the desired result.

Here’s how easy it is to put these functions to use:

// customer routes

app.get('/account', customerOnly, function(req, res){
 res.render('account');
});
app.get('/account/order-history', customerOnly, function(req, res){
 res.render('account/order-history');
});
app.get('/account/email-prefs', customerOnly, function(req, res){
 res.render('account/email-prefs');
});

// employer routes
app.get('/sales', employeeOnly, function(req, res){
 res.render('sales');
});

It should be clear that role-based authorization can be as simple or as complicated as
you wish. For example, what if you want to allow multiple roles? You could use the
following function and route:

function allow(roles) {
 var user = req.session.passport.user;
 if(user && roles.split(',').indexOf(user.role)!==-1) return next();
 res.redirect(303, '/unauthorized');
}

app.get('/account', allow('customer,employee'), function(req, res){
 res.render('account');
});

230 | Chapter 18: Security

Hopefully that example gives you an idea of how creative you can be with role-based
authorization. You could even authorize on other properties, such as the length of time
a user has been a member or how many vacations that user has booked with you.

Adding Additional Authentication Providers
Now that our framework is in place, adding additional authentication providers is
easy. Let’s say we want to authenticate with Google. In the case of Google, we don’t even
need to get an app secret or modify our authProviders.js file. We simply add the following
to the init method of lib/auth.js:

passport.use(new GoogleStrategy({
 returnURL: 'https://' + host + '/auth/google/return',
 realm: 'https://' + host +'/',
}, function(identifier, profile, done){
 var authId = 'google:' + identifier;
 User.findOne({ authId: authId }, function(err, user){
 if(err) return done(err, null);
 if(user) return done(null, user);
 user = new User({
 authId: authId,
 name: profile.displayName,
 created: Date.now(),
 role: 'customer',
 });
 user.save(function(err){
 if(err) return done(err, null);
 done(null, user);
 });
 });
}));

And the following to the registerRoutes method:

// register Google routes
app.get('/auth/google', function(req, res, next){
 passport.authenticate('google', {
 callbackURL: '/auth/google/callback?redirect=' +
 encodeURIComponent(req.query.redirect),
 })(req, res, next);
});
app.get('/auth/google/callback', passport.authenticate('google',
 { failureRedirect: options.failureRedirect },
 function(req, res){
 // we only get here on successful authentication
 res.redirect(303, req.query.redirect || options.successRedirect);
 }
));

Authentication | 231

Conclusion
Congratulations on making it through the most intricate chapter! It’s unfortunate that
such an important feature (authentication and authorization) is so complicated, but in
a world rife with security threats, it’s an unavoidable complexity. Fortunately, projects
like Passport (and the excellent authentication schemes based on it) lessen our burden
somewhat. Still, I encourage you not to give short shrift to this area of your application:
exercising diligence in the area of security will make you a good Internet citizen. Your
users may never thank you for it, but woe be to the owners of an application who allow
user data to be compromised due to poor security.

232 | Chapter 18: Security

CHAPTER 19

Integrating with Third-Party APIs

Increasingly, successful websites are not completely standalone. To engage existing users
and find new users, integration with social networking is a must. To provide store lo‐
cators or other location-aware services, using geolocation and mapping services is es‐
sential. It doesn’t stop there: more and more organizations are realizing that providing
an API helps expand their service and makes it more useful.

In this chapter, we’ll be discussing the two most common integration needs: social media
and geolocation.

Social Media
Social media is a great way to promote your product or service: if that’s your goal, the
ability for your users to easily share your content on social media sites is essential. As I
write this, the dominant social networking services are Facebook and Twitter. Google+
may be struggling for a piece of the pie, but don’t count them out: they are, after all,
backed by one of the largest, most savvy Internet companies in the world. Sites like
Pinterest, Instagram, and Flickr have their place, but they are usually a little more au‐
dience specific (for example, if your website is about DIY crafting, you would absolutely
want to support Pinterest). Laugh if you will, but I predict that MySpace will make a
comeback. Their site redesign is inspired, and it’s worth noting that they built it on
Node.

Social Media Plugins and Site Performance
Most social media integration is a frontend affair. You reference the appropriate Java‐
Script files in your page, and it enables both incoming content (the top three stories
from your Facebook page, for example) and outgoing content (the ability to tweet abut
the page you’re on, for example). While this often represents the easiest path to social
media integration, it comes at a cost: I’ve seen page load times double or even triple

233

thanks to the additional HTTP requests. If page performance is important to you (and
it should be, especially for mobile users), you should carefully consider how you inte‐
grate social media.

That said, the code that enables a Facebook “Like” button or a “Tweet” button leverages
in-browser cookies to post on the user’s behalf. Moving this functionality to the backend
would be difficult (and, in some instances, impossible). So if that is functionality you
need, linking in the appropriate third-party library is your best option, even though it
can affect your page performance. One saving grace is that the Facebook and Twitter
APIs are so ubiquitous that there’s a high probability that your browser already has them
cached, in which case there will be little effect on performance.

Searching for Tweets
Let’s say that we want to mention the top 10 most recent tweets that contain the hashtag
#meadowlarktravel. We could use a frontend component to do this, but it will involve
additional HTTP requests. Furthermore, if we do it on the backend, we have the option
of caching the tweets for performance. Also, if we do the searching on the backend, we
can “blacklist” uncharitable tweets, which would be more difficult on the frontend.

Twitter, like Facebook, allows you to create apps. It’s something of a misnomer: a Twitter
app doesn’t do anything (in the traditional sense). It’s more like a set of credentials that
you can use to create the actual app on your site. The easiest and most portable way to
access the Twitter API is to create an app and use it to get access tokens.

Create a Twitter app by going to http://dev.twitter.com. Click your user icon in the upper-
lefthand corner, and then select “My applications.” Click “Create a new application,” and
follow the instructions. Once you have an application, you’ll see that you now have a
consumer key and a consumer secret. The consumer secret, as the name implies, should
be kept secret: do not ever include this in responses sent to the client. If a third party
were to get access to this secret, they could make requests on behalf of your application,
which could have unfortunate consequences for you if the use is malicious.

Now that we have a consumer key and consumer secret, we can communicate with the
Twitter REST API.

To keep our code tidy, we’ll put our Twitter code in a module called lib/twitter.js:
var https = require('https');

module.exports = function(twitterOptions){

 return {
 search: function(query, count, cb){
 // TODO
 }
 };
};

234 | Chapter 19: Integrating with Third-Party APIs

http://dev.twitter.com

This pattern should be starting to become familiar to you. Our module exports a func‐
tion into which the caller passes a configuration object. What’s returned is an object
containing methods. In this way, we can add functionality to our module. Currently,
we’re only providing a search method. Here’s how we will be using the library:

var twitter = require('./lib/twitter')({
 consumerKey: credentials.twitter.consumerKey,
 consumerSecret: credentials.twitter.consumerSecret,
});

twitter.search('#meadowlarktravel', 10, function(result){
 // tweets will be in result.statuses
});

(Don’t forget to put a twitter property with consumerKey and consumerSecret in your
credentials.js file.)

Before we implement the search method, we must provide some functionality to au‐
thenticate ourselves to Twitter. The process is simple: we use HTTPS to request an access
token based on our consumer key and consumer secret. We only have to do this once:
currently, Twitter does not expire access tokens (though you can invalidate them man‐
ually). Since we don’t want to request an access token every time, we’ll cache the access
token so we can reuse it.

The way we’ve constructed our module allows us to create private functionality that’s
not available to the caller. Specifically, the only thing that’s available to the caller is
module.exports. Since we’re returning a function, only that function is available to the
caller. Calling that function results in an object, and only the properties of that object
are available to the caller. So we’re going to create a variable accessToken, which we’ll
use to cache our access token, and a getAccessToken function that will get the access
token. The first time it’s called, it will make a Twitter API request to get the access token.
Subsequent calls will simply return the value of accessToken:

var https = require('https');

module.exports = function(twitterOptions){

 // this variable will be invisible outside of this module
 var accessToken;

 // this function will be invisible outside of this module
 function getAccessToken(cb){
 if(accessToken) return cb(accessToken);
 // TODO: get access token
 }

 return {
 search: function(query, count, cb){
 // TODO

Social Media | 235

 },
 };
};

Because getAccessToken may require an asynchronous call to the Twitter API, we have
to provide a callback, which will be invoked when the value of accessToken is valid.
Now that we’ve established the basic structure, let’s implement getAccessToken:

function getAccessToken(cb){
 if(accessToken) return cb(accessToken);

 var bearerToken = Buffer(
 encodeURIComponent(twitterOptions.consumerKey) + ':' +
 encodeURIComponent(twitterOptions.consumerSecret)
).toString('base64');

 var options = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'POST',
 path: '/oauth2/token?grant_type=client_credentials',
 headers: {
 'Authorization': 'Basic ' + bearerToken,
 },
 };

 https.request(options, function(res){
 var data = '';
 res.on('data', function(chunk){
 data += chunk;
 });
 res.on('end', function(){
 var auth = JSON.parse(data);
 if(auth.token_type!=='bearer') {
 console.log('Twitter auth failed.');
 return;
 }
 accessToken = auth.access_token;
 cb(accessToken);
 });
 }).end();
}

The details of constructing this call are available on Twitter’s developer documentation
page for application-only authentication. Basically, we have to construct a bearer token
that’s a base64-encoded combination of the consumer key and consumer secret. Once
we’ve constructed that token, we can call the /oauth2/token API with the Authoriza
tion header containing the bearer token to request an access token. Note that we must
use HTTPS: if you attempt to make this call over HTTP, you are transmitting your secret
key unencrypted, and the API will simply hang up on you.

236 | Chapter 19: Integrating with Third-Party APIs

http://bit.ly/application-only-auth
http://bit.ly/application-only-auth

Once we receive the full response from the API (we listen for the end event of the
response stream), we can parse the JSON, make sure the token type is bearer, and be
on our merry way. We cache the access token, then invoke the callback.

Now that we have a mechanism for obtaining an access token, we can make API calls.
So let’s implement our search method:

search: function(query, count, cb){
 getAccessToken(function(accessToken){
 var options = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'GET',
 path: '/1.1/search/tweets.json?q=' +
 encodeURIComponent(query) +
 '&count=' + (count || 10),
 headers: {
 'Authorization': 'Bearer ' + accessToken,
 },
 };
 https.request(options, function(res){
 var data = '';
 res.on('data', function(chunk){
 data += chunk;
 });
 res.on('end', function(){
 cb(JSON.parse(data));
 });
 }).end();
 });
},

Rendering Tweets
Now we have the ability to search tweets…so how do we display them on our site?
Largely, it’s up to you, but there are some things to consider. Twitter has an interest in
making sure its data is used in a manner consistent with the brand. To that end, it does
have display requirements, which employ functional elements you must include to dis‐
play a tweet.

There is some wiggle room in the requirements (for example, if you’re displaying on a
device that doesn’t support images, you don’t have to include the avatar image), but for
the most part, you’ll end up with something that looks very much like an embedded
tweet. It’s a lot of work, and there is a way around it…but it involves linking to Twitter’s
widget library, which is the very HTTP request we’re trying to avoid.

If you need to display tweets, your best bet is to use the Twitter widget library, even
though it incurs an extra HTTP request (again, because of Twitter’s ubiquity, that
resource is probably already cached by the browser, so the performance hit may be

Social Media | 237

https://dev.twitter.com/terms/display-requirements

negligible). For more complicated use of the API, you’ll still have to access the REST
API from the backend, so you will probably end up using the REST API in concert with
frontend scripts.

Let’s continue with our example: we want to display the top 10 tweets that mention the
hashtag #meadowlarktravel. We’ll use the REST API to search for the tweets and the
Twitter widget library to display them. Since we don’t want to run up against usage limits
(or slow down our server), we’ll cache the tweets and the HTML to display them for 15
minutes.

We’ll start by modifying our Twitter library to include a method embed, which gets the
HTML to display a tweet (make sure you have var querystring = require('query
string'); at the top of the file):

embed: function(statusId, options, cb){
 if(typeof options==='function') {
 cb = options;
 options = {};
 }
 options.id = statusId;
 getAccessToken(function(accessToken){
 var requestOptions = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'GET',
 path: '/1.1/statuses/oembed.json?' +
 querystring.stringify(options);
 headers: {
 'Authorization': 'Bearer ' + accessToken,
 },
 };
 https.request(requestOptions, function(res){
 var data = '';
 res.on('data', function(chunk){
 data += chunk;
 });
 res.on('end', function(){
 cb(JSON.parse(data));
 });
 }).end();
 });
},

Now we’re ready to search for, and cache, tweets. In our main app file, let’s create an
object to store the cache:

var topTweets = {
 count: 10,
 lastRefreshed: 0,
 refreshInterval: 15 * 60 * 1000,

238 | Chapter 19: Integrating with Third-Party APIs

 tweets: [],
}

Next we’ll create a function to get the top tweets. If they’re already cached, and the cache
hasn’t expired, we simply return topTweets.tweets. Otherwise, we perform a search
and then make repeated calls to embed to get the embeddable HTML. Because of this
last bit, we’re going to introduce a new concept: promises. A promise is a technique for
managing asynchronous functionality. An asynchronous function will return immedi‐
ately, but we can create a promise that will resolve once the asynchronous part has been
completed. We’ll use the Q promises library, so make sure you run npm install --save
q and put var Q = require(q); at the top of your app file. Here’s the function:

function getTopTweets(cb){
 if(Date.now() < topTweets.lastRefreshed + topTweets.refreshInterval)
 return cb(topTweets.tweets);

 twitter.search('#meadowlarktravel', topTweets.count, function(result){
 var formattedTweets = [];
 var promises = [];
 var embedOpts = { omit_script: 1 };
 result.statuses.forEach(function(status){
 var deferred = Q.defer();
 twitter.embed(status.id_str, embedOpts, function(embed){
 formattedTweets.push(embed.html);
 deferred.resolve();
 });
 promises.push(deferred.promise);
 });
 Q.all(promises).then(function(){
 topTweets.lastRefreshed = Date.now();
 cb(topTweets.tweets = formattedTweets);
 });
 });
}

If you’re new to asynchronous programming, this may seem very alien to you, so let’s
take a moment and analyze what’s happening here. We’ll examine a simplified example,
where we do something to each element of a collection asynchronously.

In Figure 19-1, I’ve assigned arbitrary execution steps. They’re arbitrary in that the first
async block could be step 23 or 50 or 500, depending on how many other things are
going on in your application; likewise, the second async block could happen at any time
(but, thanks to promises, we know it has to happen after the first block).

Social Media | 239

https://npmjs.org/package/q

Figure 19-1. Promises

In step 1, we create an array to store our promises, and in step 2, we start iterating over
our collection of things. Note that even though forEach takes a function, it is not
asynchronous: the function will be called synchronously for each item in the collection,
which is why we know that step 3 is inside the function. In step 4, we call api.async,
which represents a method that works asynchronously. When it’s done, it will invoke
the callback you pass in. Note that console.log(num) will not be step 4: that’s because
asynchronous function hasn’t had a chance to finish and invoke the callback. Instead,
line 5 executes (simply adding the promise we’ve created to the array), and then starts
again (step 6 will be the same line as step 3). Once the iteration has completed (three
times), the forEach loop is over, and line 12 executes. Line 12 is special: it says, “when
all the promises have resolved, then execute this function.” In essence, this is another
asynchronous function, but this one won’t execute until all three of our calls to
api.async complete. Line 13 executes, and something is printed to the console. So even
though console.log(num) appears before console.log('other stuff…') in the code,
“other stuff ” will be printed first. After line 13, “other stuff ” happens. At some point,
there will be nothing left to do, and the JavaScript engine will start looking for other
things to do. So it proceeds to execute our first asynchronous function: when that’s done,
the callback is invoked, and we’re at steps 23 and 24. Those two lines will be repeated
two more times. Once all the promises have been resolved, then (and only then) can we
get to step 35.

Asynchronous programming (and promises) can take a while to wrap your head
around, but the payoff is worth it: you’ll find yourself thinking in entirely new, more
productive ways.

240 | Chapter 19: Integrating with Third-Party APIs

Geocoding
Geocoding refers to the process of taking a street address or place name (Bletchley Park,
Sherwood Drive, Bletchley, Milton Keynes MK3 6EB, UK) and converting it to geo‐
graphic coordinates (latitude 51.9976597, longitude –0.7406863). If your application is
going to be doing any kind of geographic calculation—distances or directions—or dis‐
playing a map, then you’ll need geographic coordinates.

You may be used to seeing geographic coordinates specified in de‐
grees, minutes, and seconds (DMS). Geocoding APIs and mapping
services use a single floating-point number for latitude and longi‐
tude. If you need to display DMS coordinates, see http://en.wikipe
dia.org/wiki/geographic_coordinate_conversion.

Geocoding with Google
Both Google and Bing offer excellent REST services for Geocoding. We’ll be using
Google for our example, but the Bing service is very similar. First, let’s create a module
lib/geocode.js:

var http = require('http');

module.exports = function(query, cb){

 var options = {
 hostname: 'maps.googleapis.com',
 path: '/maps/api/geocode/json?address=' +
 encodeURIComponent(query) + '&sensor=false',
 };

 http.request(options, function(res){
 var data = '';
 res.on('data', function(chunk){
 data += chunk;
 });
 res.on('end', function(){
 data = JSON.parse(data);
 if(data.results.length){
 cb(null, data.results[0].geometry.location);
 } else {
 cb("No results found.", null);
 }
 });
 }).end();
}

Now we have a function that will contact the Google API to geocode an address. If it
can’t find an address (or fails for any other reason), an error will be returned. The API

Geocoding | 241

http://en.wikipedia.org/wiki/geographic_coordinate_conversion
http://en.wikipedia.org/wiki/geographic_coordinate_conversion

can return multiple addresses. For example, if you search for “10 Main Street” without
specifying a city, state, or postal code, it will return dozens of results. Our implemen‐
tation simply picks the first one. The API returns a lot of information, but all we’re
currently interested in are the coordinates. You could easily modify this interface to
return more information. See the Google geocoding API documentation for more in‐
formation about the data the API returns. Note that we included &sensor=false in the
API request: this is a required field that should be set to true for devices that have a
location sensor, such as mobile phones. Your server is probably not location aware, so
it should be set to false.

Usage restrictions
Both Google and Bing have usage limits for their geocoding API to prevent abuse, but
they’re very high. At the time of writing, Google’s limit is 2,500 requests per 24-hour
period. Google’s API also requires that you use Google Maps on your website. That is,
if you’re using Google’s service to geocode your data, you can’t turn around and display
that information on a Bing map without violating the terms of service. Generally, this
is not an onerous restriction, as you probably wouldn’t be doing geocoding unless you
intended to display locations on a map. However, if you like Bing’s maps better than
Google’s, or vice versa, you should be mindful of the terms of service and use the ap‐
propriate API.

Geocoding Your Data
Let’s say Meadowlark Travel is now selling Oregon-themed products (T-shirts, mugs,
etc.) through dealers, and we want “find a dealer” functionality on our website, but we
don’t have coordinate information for our dealers, only street addresses. This is where
we’ll want to leverage a geocoding API.

Before we start, there are two things to consider. Initially, we’ll probably have some
number of dealers already in the database. We’ll want to geocode those dealers in bulk.
But what happens in the future when we add new dealers, or dealer addresses change?

As it happens, both cases can be handled with the same code, but there are complications
to consider. The first is usage limits. If we have more than 2,500 dealers, we’ll have to
break up our initial geocoding over multiple days to avoid Google’s API limits. Also, it
may take a long time to do the initial bulk geocoding, and we don’t want our users to
have to wait an hour or more to see a map of dealers! After the initial bulk geocoding,
however, we can handle new dealers trickling in, as well as dealers who have changed
addresses. Let’s start with our dealer model, in models/dealer.js:

var mongoose = require('mongoose');

var dealerSchema = mongoose.Schema({
 name: String,
 address1: String,

242 | Chapter 19: Integrating with Third-Party APIs

https://developers.google.com/maps/documentation/geocoding

 address2: String,
 city: String,
 state: String,
 zip: String,
 country: String,
 phone: String,
 website: String,
 active: Boolean,
 geocodedAddress: String,
 lat: Number,
 lng: Number,
});

dealerSchema.methods.getAddress = function(lineDelim){
 if(!lineDelim) lineDelim = '
';
 var addr = this.address1;
 if(this.address2 && this.address2.match(/\S/))
 addr += lineDelim + this.address2;
 addr += lineDelim + this.city + ', ' +
 this.state + this.zip;
 addr += lineDelim + (this.country || 'US');
 return addr;
};

var Dealer = mongoose.model("Dealer", dealerSchema);
module.exports = Dealer;

We can populate the database (either by transforming an existing spreadsheet, or man‐
ual data entry) and ignore the geocodedAddress, lat, and lng fields. Now that we’ve
got the database populated, we can get to the business of geocoding.

We’re going to take an approach similar to what we did for Twitter caching. Since we
were caching only 10 tweets, we simply kept the cache in memory. The dealer infor‐
mation could be significantly larger, and we want it cached for speed, but we don’t want
to do it in memory. We do, however, want to do it in a way that’s super fast on the client
side, so we’re going to create a JSON file with the data.

Let’s go ahead and create our cache:

var dealerCache = {
 lastRefreshed: 0,
 refreshInterval: 60 * 60 * 1000,
 jsonUrl: '/dealers.json',
 geocodeLimit: 2000,
 geocodeCount: 0,
 geocodeBegin: 0,
}
dealerCache.jsonFile = __dirname +
 '/public' + dealerCache.jsonUrl;

First we’ll create a helper function that geocodes a given Dealer model and saves the
result to the database. Note that if the current address of the dealer matches what was

Geocoding | 243

last geocoded, we simply do nothing and return. This method, then, is very fast if the
dealer coordinates are up-to-date:

function geocodeDealer(dealer){
 var addr = dealer.getAddress(' ');
 if(addr===dealer.geocodedAddress) return; // already geocoded

 if(dealerCache.geocodeCount >= dealerCache.geocodeLimit){
 // has 24 hours passed since we last started geocoding?
 if(Date.now() > dealerCache.geocodeCount + 24 * 60 * 60 * 1000){
 dealerCache.geocodeBegin = Date.now();
 dealerCache.geocodeCount = 0;
 } else {
 // we can't geocode this now: we've
 // reached our usage limit
 return;
 }
 }

 geocode(addr, function(err, coords){
 if(err) return console.log('Geocoding failure for ' + addr);
 dealer.lat = coords.lat;
 dealer.lng = coords.lng;
 dealer.save();
 });
}

We could add geocodeDealer as a method of the Dealer model.
However, since it has a dependency on our geocoding library, we are
opting to make it its own function.

Now we can create a function to refresh the dealer cache. This operation can take a while
(especially the first time), but we’ll deal with that in a second:

dealerCache.refresh = function(cb){

 if(Date.now() > dealerCache.lastRefreshed + dealerCache.refreshInterval){
 // we need to refresh the cache
 Dealer.find({ active: true }, function(err, dealers){
 if(err) return console.log('Error fetching dealers: '+
 err);

 // geocodeDealer will do nothing if coordinates are up-to-date
 dealers.forEach(geocodeDealer);

 // we now write all the dealers out to our cached JSON file
 fs.writeFileSync(dealerCache.jsonFile, JSON.stringify(dealers));

 // all done -- invoke callback

244 | Chapter 19: Integrating with Third-Party APIs

 cb();
 });
 }

}

Finally, we need to establish a way to routinely keep our cache up-to-date. We could use
setInterval, but if a lot of dealers change, it’s possible (if unlikely) that it would take
more than an hour to refresh the cache. So instead, when one refresh is done, we have
it use setTimeout to wait an hour before refreshing the cache again:

function refreshDealerCacheForever(){
 dealerCache.refresh(function(){
 // call self after refresh interval
 setTimeout(refreshDealerCacheForever,
 dealerCache.refreshInterval);
 });
}

We don’t make refreshDealerCacheForever a method of
dealerCache because of a quirk in the way JavaScript handles the this
object. In particular, when you invoke a function (not a method), this
does not bind to the context of the calling object.

Now we can finally set our plan in motion. When we first start our app, the cache won’t
exist, so we simply create an empty one, then start dealerCache.refreshForever:

// create empty cache if it doesn't exist to prevent 404 errors
if(!fs.existsSync(dealerCache.jsonFile)) fs.writeFileSync(JSON.stringify([]));
// start refreshing cache
refreshDealerCacheForever();

Note that the cache file will be updated only after all the dealers have been returned
from the database, and any dealers that need to be geocoded have been so. So worst case,
if a dealer is added or updated, it will take the refresh interval plus however long it takes
to do the geocoding before the updated information shows up on the website.

Displaying a Map
While displaying a map of the dealers really falls under “frontend” work, it would be
very disappointing to get this far and not see the fruits of our labor. So we’re going to
take a slight departure from the backend focus of this book, and see how to display our
newly geocoded dealers on a map.

Unlike the geocoding REST API, using an interactive Google map on your web page
requires an API key, which means you’ll have to have a Google account. Instructions
for obtaining an API key are found on Google’s API key documentation page.

Geocoding | 245

https://developers.google.com/maps/documentation/javascript/tutorial#api_key

First we’ll add some CSS styles:

.dealers #map {
 width: 100%;
 height: 400px;
}

This will create a mobile-friendly map that stretches the width of its container, but has
a fixed height. Now that we have some basic styling, we can create a view
(views/dealers.handlebars) that displays the dealers on a map, as well as a list of the
dealers:

<script src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY↵
&sensor=false"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.3.0/↵
handlebars.min.js"></script>

<script id="dealerTemplate" type="text/x-handlebars-template">
 \{{#each dealers}}
 <div class="dealer">
 <h3>\{{name}}</h3>
 \{{address1}}

 \{{#if address2}}\{{address2}}
\{{/if}}
 \{{city}}, \{{state}} \{{zip}}

 \{{#if country}}\{{country}}
\{{/if}}
 \{{#if phone}}\{{phone}}
\{{/if}}
 \{{#if website}}\{{website}}
\{{/if}}
 </div>
 \{{/each}}
</script>

<script>
 var map;
 var dealerTemplate = Handlebars.compile($('#dealerTemplate').html());
 $(document).ready(function(){

 // center map on US, set zoom to show whole country
 var mapOptions = {
 center: new google.maps.LatLng(38.2562, -96.0650),
 zoom: 4,
 };

 // initialize map
 map = new google.maps.Map(
 document.getElementById('map'),
 mapOptions);

 // fetch JSON
 $.getJSON('/dealers.json', function(dealers){

 // add markers on map for each dealer
 dealers.forEach(function(dealer){
 // skip any dealers without geocoding

246 | Chapter 19: Integrating with Third-Party APIs

 if(!dealer.lat || !dealer.lng) return;
 var pos = new google.maps.LatLng(dealer.lat, dealer.lng);
 var marker = new google.maps.Marker({
 position: pos,
 map: map,
 title: dealer.name
 });
 });

 // update dealer list using Handlebars
 $('#dealerList').html(dealerTemplate({ dealers: dealers }));

 });

 });
</script>

<div class="dealers">
 <div id="map"></div>
 <div id="dealerList"></div>
</div>

Note that since we wish to use Handlebars on the client side, we have to escape our
initial curly braces with a backslash to prevent Handlebars from trying to render the
template on the backend. The meat of this bit of code is inside jQuery’s .getJSON helper
(where we fetch the /dealers.json cache). For each dealer, we create a marker on the map.
After we’ve created all the markers, we use Handlebars to update the list of dealers.

Improving Client-Side Performance
Our simple display example works for a small number of dealers. But if you have hun‐
dreds of markers to display or more, we can squeeze a little bit more performance out
of our display. Currently, we’re parsing the JSON and iterating over it: we could skip
that step.

On the server side, instead of (or in addition to) emitting JSON for our dealers, we could
emit JavaScript directly:

function dealersToGoogleMaps(dealers){
 var js = 'function addMarkers(map){\n' +
 'var markers = [];\n' +
 'var Marker = google.maps.Marker;\n' +
 'var LatLng = google.maps.LatLng;\n';
 dealers.forEach(function(d){
 var name = d.name.replace(/'/, '\\\'')
 .replace(/\\/, '\\\\');
 js += 'markers.push(new Marker({\n' +
 '\tposition: new LatLng(' +
 d.lat + ', ' + d.lng + '),\n' +
 '\tmap: map,\n' +
 '\ttitle: \'' + name + '\',\n' +

Geocoding | 247

 '}));\n';
 });
 js += '}';
 return js;
}

We would then write this JavaScript to a file (/dealers-googleMapMarkers.js, for exam‐
ple), and include that with a <script> tag. Once the map has been initialized, we can
just call addMarkers(map), and it will add all of our markers.

The downsides of this approach are that it’s now tied to the choice of Google Maps; if
we wanted to switch to Bing, we’d have to rewrite our server-side JavaScript generation.
But if maximum speed is needed, this is the way to go. Note that we have to be careful
when emitting strings. If we were to simply emit “Paddy’s Bar and Grill,” we would end
up with some invalid JavaScript, which would crash our whole page. So whenever you
emit a string, make sure to mind what kind of string delimiters you’re using, and escape
them. While it’s less common to encounter backslashes in company names, it’s still wise
to make sure any backslashes are escaped as well.

Weather Data
Remember our “current weather” widget from Chapter 7? Let’s get that hooked up with
some live data! We’ll be using Weather Underground’s free API to get local weather data.
You’ll need to create a free account, which you can do at http://www.wunderground.com/
weather/api/. Once you have your account set up, you’ll create an API key (once you
get an API key, put it in your credentials.js file as WeatherUnderground.ApiKey). Use of
the free API is subject to usage restrictions (as I write this, you are allowed no more
than 500 requests per day, and no more than 10 per minute). To stay under the free
usage restrictions, we’ll cache the data hourly. In your application file, replace the get
WeatherData function with the following:

var getWeatherData = (function(){
 // our weather cache
 var c = {
 refreshed: 0,
 refreshing: false,
 updateFrequency: 360000, // 1 hour
 locations: [
 { name: 'Portland' },
 { name: 'Bend' },
 { name: 'Manzanita' },
]
 };
 return function() {
 if(!c.refreshing && Date.now() > c.refreshed + c.updateFrequency){
 c.refreshing = true;
 var promises = [];
 c.locations.forEach(function(loc){

248 | Chapter 19: Integrating with Third-Party APIs

http://www.wunderground.com/weather/api/
http://www.wunderground.com/weather/api/

 var deferred = Q.defer();
 var url = 'http://api.wunderground.com/api/' +
 credentials.WeatherUnderground.ApiKey +
 '/conditions/q/OR/' + loc.name + '.json'
 http.get(url, function(res){
 var body = '';
 res.on('data', function(chunk){
 body += chunk;
 });
 res.on('end', function(){
 body = JSON.parse(body);
 loc.forecastUrl = body.current_observation.forecast_url;
 loc.iconUrl = body.current_observation.icon_url;
 loc.weather = body.current_observation.weather;
 loc.temp = body.current_observation.temperature_string;
 deferred.resolve();
 });
 });
 promises.push(deferred);
 });
 Q.all(promises).then(function(){
 c.refreshing = false;
 c.refreshed = Date.now();
 });
 }
 return { locations: c.locations };
 }
})();
// initialize weather cache
getWeatherData();

If you’re not used to immediately invoked function expressions (IIFEs), this might look
pretty strange. Basically, we’re using an IIFE to encapsulate the cache, so we don’t con‐
taminate the global namespace with a lot of variables. The IIFE returns a function, which
we save to a variable getWeatherData, which replaces the previous version that returns
dummy data. Note that we have to use promises again because we’re making an HTTP
request for each location: because they’re asynchronous, we need a promise to know
when all three have finished. We also set c.refreshing to prevent multiple, redundant
API calls when the cahce expires. Lastly, we call the function when the server starts up:
if we didn’t, the first request wouldn’t be populated.

In this example, we’re keeping our cache in memory, but there’s no reason we couldn’t
store the cached data in a database instead, which would lend itself better to scaling out
(enabling multiple instances of our server to access the same cached data).

Conclusion
We’ve really only scratched the surface of what can be done with third-party API inte‐
gration. Everywhere you look, new APIs are popping up, offering every kind of data

Conclusion | 249

imaginable (even the City of Portland is now making a lot of public data available
through REST APIs). While it would be impossible to cover even a small percentage of
the APIs available to you, this chapter has covered the fundamentals you’ll need to know
to use these APIs: http.request, https.request, and parsing JSON.

250 | Chapter 19: Integrating with Third-Party APIs

CHAPTER 20

Debugging

“Debugging” is perhaps an unfortunate term, what with its association with defects. The
fact is, what we refer to as “debugging” is an activity you will find yourself doing all the
time, whether you’re implementing a new feature, learning how something works, or
actually fixing a bug. A better term might be “exploring,” but we’ll stick with “debugging,”
since the activity it refers to is unambiguous, regardless of the motivation.

Debugging is an oft-neglected skill: it seems to be that most programmers are expected
to be born knowing how to do it. Perhaps computer science professors and book authors
see debugging as such an obvious skill that they overlook it.

The fact is, debugging is a skill that can be taught, and it is an important way by which
programmers come to understand not just the framework they are working in, but also
their own code and that of their team.

In this chapter, we’ll discuss some of the tools and techniques you can use for debugging
Node and Express applications effectively.

The First Principle of Debugging
As the name implies, “debugging” often refers to the process of finding and eliminating
defects. Before we talk about tools, let’s consider some general debugging principles.

How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth?

— Sir Authur Conan Doyle

The first and most important principle of debugging is the process of elimination.
Modern computer systems are incredibly complicated, and if you had to hold the whole
system in your head, and pluck the source of a single problem out of that vast cloud,
you probably wouldn’t even know where to start. Whenever you’re confronted with a
problem that isn’t immediately obvious, your very first thought should be “What can I

251

eliminate as the source of the problem?” The more you can eliminate, the fewer places
you have to look.

Elimination can take many forms. Here are some common examples:

• Systematically commenting out or disabling blocks of code.
• Writing code that can be covered by unit tests; the unit tests themselves provide a

framework for elimination.
• Analyzing network traffic to determine if the problem is on the client or server side.
• Testing a different part of the system that has similarities to the first.
• Using input that has worked before, and changing that input one piece at a time

until the problem exhibits.
• Using version control to go back in time, one step at a time, until the problem

disappears.
• “Mocking” functionality to eliminate complex subsystems.

Elimination is not a silver bullet, though. Often, problems are due to complex
interactions between two or more components: eliminate (or mock) any one of the
components, and the problem could go away, but the problem can’t be isolated to any
single component. Even in this situation, though, elimination can help narrow down
the problem, even if it doesn’t light up a neon sign over the exact location.

Elimination is most successful when it’s careful and methodical. It’s very easy to miss
things when you just wantonly eliminate components without considering how those
components affect the whole. Play a game with yourself: when you consider a compo‐
nent to eliminate, walk through how the removal of that component will affect the
system. This will inform you about what to expect and whether or not removing the
component tells you anything useful.

Take Advantage of REPL and the Console
Both Node and your browser offer you a read-eval-print loop (REPL); this is basically
just a way to write JavaScript interactively. You type in some JavaScript, press Enter, and
immediately see the output. It’s a great way to play around, and is often the quickest and
most intuitive way to locate an error in small bits of code.

In a browser, all you have to do is pull up your JavaScript console, and you have a REPL.
In Node, all you have to do is type node without any arguments, and you enter REPL
mode; you can require packages, create variables and functions, or do anything else you
could normally do in your code (except create packages: there’s no meaningful way to
do that in the REPL).

252 | Chapter 20: Debugging

Console logging is also your friend. It’s a crude debugging technique, perhaps, but an
easy one (both easy to understand and easy to implement). Calling console.log in Node
will output the contents of an object in an easy-to-read format, so you can easily spot
problems. Keep in mind that some objects are so large that logging them to the console
will produce so much output that you’ll have a hard time finding any useful information.
For example, try console.log(req) in one of your path handlers.

Using Node’s Built-in Debugger
Node has a built-in debugger that allows you to step through your application, as if you
were going on a ride-along with the JavaScript interpreter. All you have to do to start
debugging your app is use the debug argument:

node debug meadowlark.js

When you do, you’ll immediately notice a couple of things. First, on your console you
will see debugger listening on port 5858; this is because the Node debugger works
by creating its own web server, which allows you to control the execution of the appli‐
cation being debugged. This may not be impressive right now, but the usefulness of this
approach will be clear when we discuss Node Inspector.

When you’re in the console debugger, you can type help to get a list of commands. The
commands you will use most often are n (next), s (step in), and o (step out). n will step
“over” the current line: it will execute it, but if that instruction calls other functions, they
will be executed before control is returned to you. s, in contrast, will step into the current
line: if that line invokes other functions, you will be able to step through them. o allows
you to step out of the currently executing function. (Note that “stepping in” and “step‐
ping out” refer only to functions; they do not step into or out of if or for blocks or other
flow-control statements.)

The command-line debugger has more functionality, but chances are, you won’t want
to use it that often. The command line is great for many things, but debugging isn’t one
of them. It’s good that it’s available in a pinch (for example, if all you have is SSH access
to the server, or if your server doesn’t even have a GUI installed). More often, you’ll
want to use a graphical debugger like Node Inspector.

Node Inspector
While you probably won’t want to use the command-line debugger except in a pinch,
the fact that Node exposes its debugging controls through a web service gives you other
options. In particular, Danny Coates’s excellent Node Inspector (now maintained by
StrongLoop) allows you to debug Node applications with the same interface you use to
debug client-side JavaScript.

Using Node’s Built-in Debugger | 253

Node Inspector utilizes the Chromium project’s Blink engine, which powers Chrome.
If you’re already familiar with Chrome’s debugger, you will feel right at home. If you’re
completely new to debugging, buckle up: the first time you see a debugger in action is
revelatory.

Obviously, you’ll need Chrome (or Opera; the latest versions also use the Blink engine).
Go ahead and install one of those browsers if you haven’t already. Once you’ve done
that, install Node Inspector:

sudo npm install -g node-inspector

Once you’ve installed it, you’ll need to start it. You can run it in a separate window if
you like, but aside from a helpful startup message, it doesn’t log much to the console,
so I generally just run it in the background and forget about it:

node-inspector&

On Linux or OS X, putting an ampersand at the end of a command
will run it in the background. If you need to bring it back to the
foreground, simply type fg. If you start something without putting it
in the background, you can pause it by pressing Ctrl-Z, then re‐
sume it in the background by typing bg.

When you start Node Inspector, you will see the following message: “Visit http://
127.0.0.1:8080/debug?port=5858 to start debugging.” In addition to telling you how to
get started with the debugging, it’s telling you that it’s expecting the debugging interface
to be on port 5858 (which is the default).

Now that Node Inspector is running (and you can just leave it running…on my dev
server, it’s pretty much constantly running and will automatically attach to whatever
app you have running in debug mode), you can start your app in debug mode:

node --debug meadowlark.js

Note that we used --debug instead of just debug; this runs your program in debug mode
without invoking the command-line debugger (which we don’t need because we’ll be
using Node Inspector). Then, before any console output from your application, you’ll
see debugger listening on port 5858 again, and now we have the whole picture:
your app is exposing its debugging interface on port 5858, and Node Inspector is run‐
ning on port 8080, listening to port 5858. You have three different applications running
on three different ports! It may seem dizzying at first, but each server is performing an
important function.

Now the fun begins: connect to http://localhost:8080/debug?port=5858 (remember that
localhost is an alias for 127.0.0.1). Along the top of your browser, you’ll see a menu with
Sources and Console. If you select Sources you’ll see a small arrow right beneath it. Click

254 | Chapter 20: Debugging

that, and you’ll see all of the source files that make up your application. Go ahead and
navigate to your main app file (meadowlark.js); you’ll see the source in your browser.

Unlike our previous experience with the commnad-line debugger, your application is
already running: all of the middleware has been linked in, and the app is listening. So
how do we step through our code? The easiest way (and the method you’ll probably use
the most often), is to set a breakpoint. This just tells the debugger to stop execution on
a specific line so you can step through the code. All you have to do to set a breakpoint
is click the line number (in the left column); a little blue arrow will appear, indicating
there’s a breakpoint on that line (click again to turn it off). Go ahead and set a breakpoint
inside one of your route handlers. Then, in another browser window, visit that route.
You’ll find that your browser just spins…that’s because the debugger has heeded your
breakpoint.

Switch back to the debugger window, and now you can step through the program in a
much more visual manner than we did with the command-line debugger. You’ll see that
the line you set a breakpoint on is highlighted in blue. That means that’s the current
execution line (which is actually the next line that will execute). From here, you have
access to the same commands as we did in the command-line debugger. Similar to the
command-line debugger, we have the following actions available to us:
Resume script execution (F8)

This will simply “let it fly”; you will no longer be stepping through the code, unless
you stop on another breakpoint. You usually use this when you’ve seen what you
need to see, or you want to skip ahead to another breakpoint.

Step over next function call (F10)
If the current line invokes a function, the debugger will not descend into that func‐
tion. That is, the function will be executed, and the debugger will advance to the
next line after the function invocation. You’ll use this when you’re on a function
call that you’re not interested in the details of.

Step into next function call (F11)
This will descend into the function call, hiding nothing from you. If this is the only
action you ever used, you would eventually see everything that gets executed—
which sounds fun at first, but after you’ve been at it for an hour, you’ll have a
newfound respect for what Node and Express are doing for you!

Step out of current function (Shift-F11)
Will execute the rest of the function you’re currently in and resume debugging on
the next line of the caller of this function. Most commonly, you’ll use this when you
either accidentally step into a function or have seen as much as you need of the
function.

In addition to all of the control actions, you have access to a console: that console is
executing in the current context of your application. So you can inspect variables and

Node Inspector | 255

even change them, or invoke functions…. This can be incredibly handy for trying out
really simple things, but it can quickly get confusing, so I don’t encourage you to dy‐
namically modify your running application too much in this manner; it’s too easy to
get lost.

On the right, you have some useful data. Starting at the top are watch expressions; these
are JavaScript expressions you can define that will be updated in real time as you step
through the application. For example, if there was a specific variable you wanted to keep
track of, you could enter it here.

Below watch expressions is the call stack; this shows you how you got where you are.
That is, the function you’re in was called by some function, and that function was called
by some function…the call stack lists all of those functions. In the highly asynchronous
world of Node, the call stack can be very difficult to unravel and understand, especially
when anonymous functions are involved. The topmost entry in that list is where you
are now. The one right below it is the function that called the function that you’re in
now, and so on. If you click any entry in this list, you will be magically transported to
that context: all of your watches and your console context will now be in that context.
It can be very confusing! It’s a great way to learn at a really deep level how your app is
working, but it’s not for the faint of heart. Because the call stack can be so confusing to
unravel, I look at it as a last resort when trying to solve a problem.

Below the call stack are the scope variables. As the name implies, these are the variables
that are currently in scope (which includes variables in the parent scope that are visible
to us). This section can often provide you a lot of information about the key variables
you’re interested in at a glance. If you have a lot of variables, this list will become un‐
wieldy, and you might be better off defining just the variables you’re interested in as
watch expressions.

Next, there is a list of all breakpoints, which is really just bookkeeping: it’s handy to have
if you’re debugging a hairy problem and you have a lot of breakpoints set. Clicking one
will take you directly there (but it won’t change the context, like clicking something in
the call stack; this makes sense because not every breakpoint will represent an active
context, whereas everything in the call stack does).

Finally, there are DOM, XHR, and event listener breakpoints. These apply only to Java‐
Script running in the browers, and you can ignore when debugging Node apps.

Sometimes, what you need to debug is your application setup (when you’re linking
middleware into Express, for example). Running the debugger as we have been, that will
all happen in the blink of an eye before we can even set a breakpoint. Fortunately, there’s
a way around that. All we have to do is specify --debug-brk instead of simply --debug:

node --debug-brk meadowlark.js

The debugger will break on the very first line of your application, and then you can step
through or set breakpoints as you see fit.

256 | Chapter 20: Debugging

For more information on Node Inspector (and some additional tips and tricks), see the
project home page.

Debugging Asynchronous Functions
One of the most common frustrations people have when being exposed to asynchronous
programming for the first time is in debugging. Consider the following code, for
example:

1 console.log('Baa, baa, black sheep,');
2 fs.readFile('yes_sir_yes_sir.txt', function(err, data){
3 console.log('Have you any wool?');
4 console.log(data);
5 });
6 console.log('Three bags full;');

If you’re new to asynchronous programming, you might expect to see:

Baa, baa, black sheep,
Have you any wool?
Yes, sir, yes, sir,
Three bags full;

But you won’t; instead you’ll see:

Baa, baa, black sheep,
Three bags full;
Have you any wool?
Yes, sir, yes, sir,

If you’re confused about this, debugging probably won’t help. You’ll start on line 1, then
step over it, which puts you on line 2. You then step in, expecting to enter the function,
ending up on line 3, but you actually end up on line 5! That’s because fs.readFile
executes the function only when it’s done reading the file, which won’t happen until your
application is idle. So you step over line 5, and you land on line 6…you then keep trying
to step, but never get to line 3 (you eventually will, but it could take a while).

If you want to debug lines 3 or 4, all you have to do is set a breakpoint on line 3, and
then let the debugger run. When the file is read and the function is invoked, you’ll break
on that line, and hopefully all will be clear.

Debugging Express
If, like me, you’ve seen a lot of overengineered frameworks in your career, the idea of
stepping through the framework source code might sound like madness (or torture) to
you. And exploring the Express source code is not child’s play, but it is well within the
grasp of anyone with a good understanding of JavaScript and Node. And sometimes,

Debugging Asynchronous Functions | 257

https://github.com/node-inspector/node-inspector

when you are having problems with your code, debugging those problems can best be
solved by stepping through the Express source code itself (or third-party middleware).

This section will be a brief tour of the Express source code so that you can be more
effective in debugging your Express applications. For each part of the tour, I will give
you the filename with respect to the Express root (which you can find in your
node_modules/express directory), and the name of the function. I’m not using line
numbers, because of course they may differ depending on what exact version of Express
you’re using.
Express app creation (lib/express.js, function createApplication())

This is where your Express app begins its life. This is the function that’s being
invoked when you call var app = express() in your code.

Express app initialization (lib/application.js, app.defaultConfiguration)
This is where Express gets initialized: it’s a good place to see all the defaults Express
starts out with. It’s rarely necessary to set a breakpoint in here, but it is useful to
step through it at least once to get a feel for the default Express settings.

Add middleware (lib/application.js, app.use)
Every time Express links middleware in (whether you do it explicitly, or it’s explicitly
done by Express or any third parties), this function gets called. It’s deceptively sim‐
ple, but really understanding it takes some effort. It’s sometimes useful to put a
breakpoint in here (you’ll want to use --debug-brk when you run your app; other‐
wise, all the middleware will be added before you can set a breakpoint), but it can
be overwhelming: you’ll be surprised at how much middleware is linked in in a
typical application.

Render view (lib/application.js, app.render)
This is another pretty meaty function, but a useful one if you need to debug tricky
view-related issues. If you step through this function, you’ll see how the view engine
is selected and invoked.

Request extensions (lib/request.js)
You will probably be surprised at how sparse and easy to understand this file is.
Most of the methods Express adds to the request objects are very simple conve‐
nience functions. It’s rarely necessary to step through this code or set breakpoints
because of the simplicity of the code. It is, however, often helpful to look at this code
to understand how some of the Express convenience methods work.

Send response (lib/response.js, res.send)
It almost doesn’t matter how you construct a response—.send, .render, .json,
or .jsonp—it will eventually get to this function (the exception is .sendFile). So
this is a very handy place to set a breakpoint, because it should be called for every
response. You can then use the call stack to see how you got there, which can be
very handy in figuring out where there might be a problem.

258 | Chapter 20: Debugging

Response extensions (lib/response.js)
While there is some meat in res.send, most of the other methods in the response
object are pretty straightforward. It’s occasionally useful to put breakpoints in these
functions to see exactly how your app is responding to the request.

Static middleware (node_modules/serve-static/index.js, function staticMiddleware)
Generally, if static files aren’t being served as you expect, the problem is with your
routing, not with the static middleware: routing takes precedence over the static
middleware. So if you have a file public/test.jpg, and a route /test.jpg, the static
middleware will never even get called in deference to the route. However, if you
need specifics about how headers are set differently for static files, it can be useful
to step through the static middleware.

If you’re scratching your head wondering where all the middleware is…that’s because
there is very little middleware in Express (the static middleware and the router being
the notable exceptions). Most of the middleware actually comes from Connect, which
is what we’ll discuss next.

Since Express 4.0 no longer bundles Connect, you will have Connect installed separately,
so you will find the Connect source code (including all its middleware) in node_mod‐
ules/connect. Connect has also been shedding some of its middleware into standalone
packages. Here are the locations of some of the more important ones:
Session middleware (node_modules/express-session/index.js, function session)

A lot goes into making sessions work, but the code is pretty straightforward. You
may want to set a breakpoint in this function if you’re having issues that are related
to sessions. Keep in mind that it is up to you to provide the storage engine for the
session middleware.

Logger middleware (node_modules/morgan/index.js, function logger)
The logger middleware is really there for you as a debugging aid, not to be debugged
itself. However, there’s some subtlety to the way logging works that you’ll get only
by stepping through the logger middleware once or twice. The first time I did it, I
had a lot of “aha” moments, and found myself using logging more effectively in my
applications, so I recommend taking a tour of this middleware at least once.

URL-encoded body parsing (node_modules/body-parser/index.js, function
urlencoded)

The manner in which request bodies are parsed is often a mystery to people. It’s not
really that complicated, and stepping through this middleware will help you un‐
derstand the way HTTP requests work. Aside from a learning experience, you won’t
find that you need to step into this middleware for debugging very often.

We’ve discussed a lot of middleware in this book. I can’t reasonably list every landmark
you might want to look at on your tour of Express internals, but hopefully these high‐
lights take away some of Express’s mystery, and embolden you to explore the framework

Debugging Express | 259

source code whenever needed. Middleware vary greatly not just in quality but in ac‐
cessibility: some middleware are wickedly difficult to understand, while some are as
clear as a pool of water. Whatever the case, don’t be afraid to look: if it’s too complicated,
you can move on (unless you really need to understand it, of course), and if not, you
might learn something.

260 | Chapter 20: Debugging

CHAPTER 21

Going Live

The big day is here: you’ve spent weeks or months toiling over your labor of love, and
now your website or service is ready to launch. It’s not as easy as just “flipping a switch”
and then your website is live…or is it?

In this chapter (which you should really read weeks before launch, not the day of!), you’ll
learn about some of the domain registration and hosting services available to you, tech‐
niques for moving from a staging environment to production, deployment techniques,
and things to consider when picking production services.

Domain Registration and Hosting
People are often confused about the difference between domain registration and host‐
ing. If you’re reading this book, you probably aren’t, but I bet you know people who are,
like your clients or your manager.

Every website and service on the Internet can be identified by an Internet protocol (IP)
address (or more than one). These numbers are not particularly friendly to humans (and
that situation will only get worse as IPv6 adoption improves), but your computer ulti‐
mately needs these numbers to show you a web page. That’s where domain names come
in. They map a human-friendly name (like google.com) with an IP address
(74.125.239.13).

A real-world analogy would be the difference between a business name and a physical
address. A domain name is like your business name (Apple), and an IP address is like
your physical address (1 Infinite Loop, Cupertino, CA 95014). If you need to actually
get in your car and visit Apple’s headquarters, you’ll need to know the physical address.
Fortunately, if you know the business name, you can probably get the physical address.
The other reason this abstraction is helpful is that an organization can move (getting a
new physical address), and people can still find it even though it’s moved.

261

Hosting, on the other hand, describes the actual computers that run your website. To
continue the physical analogy, hosting could be compared to the actual buildings you
see once you reach the physical address. What is often confusing to people is that domain
registration has very little to do with hosting, and rarely do you purchase your domain
from the same entity that you pay for hosting (in the same way that you usually buy
land from one person and pay another person to build and maintain buildings for you).

While it’s certainly possible to host your website without a domain name, it’s quite
unfriendly: IP addresses aren’t very marketable! Usually, when you purchase hosting,
you’re automatically assigned a subdomain (which we’ll cover in a moment), which can
be thought of as something between a marketing-friendly domain name and an IP
address (for example, ec2-54-201-235-192.us-west-2.compute.amazonaws.com).

Once you have a domain, and you go live, you could reach your website with multiple
URLs. For example:

• http://meadowlarktravel.com/
• http://www.meadowlarktravel.com/
• http://ec2-54-201-235-192.us-west-2.compute.amazonaws.com/
• http://54.201.235.192/

Thanks to domain mapping, all of these addresses point to the same website. Once the
requests reach your website, it is possible to take action based on the URL that was used.
For example, if someone gets to your website from the IP address, you could automat‐
ically redirect to the domain name, though that is not very common as there is little
point to it (it is more common to redirect from http://meadowlarktravel.com/ to http://
www.meadowlarktravel.com/).

Most domain registrars offer hosting services (or partner with companies that do). I’ve
never found registrar hosting options to be particularly attractive, and I recommend
separating domain registration and hosting for reasons of security and flexibility.

Domain Name System
The Domain Name System (DNS) is what’s responsible for mapping domain names to
IP addresses. The system is fairly intricate, but there are some things about DNS that
you should know as a website owner.

Security
You should always keep in mind that domain names are valuable. If a hacker were to
completely compromise your hosting service and take control of your hosting, but you
retained control of your domain, you could get new hosting and redirect the domain.
If, on the other hand, your domain were compromised, you could be in real trouble.

262 | Chapter 21: Going Live

Your reputation is tied to your domain, and good domain names are carefully guarded.
People who have lost control of domains have found that it can be devastating, and there
are those in the world who will actively try to compromise your domain (especially if
it’s a particularly short or memorable one) so they can sell it off, ruin your reputation,
or blackmail you. The upshot is that you should take domain security very seriously,
perhaps even more seriously than your data (depending on how valuable your data is).
I’ve seen people spend inordinate amounts of time and money on hosting security while
getting the cheapest, sketchiest domain registration they can find. Don’t make that mis‐
take. (Fortunately, quality domain registration is not particularly expensive.)

Given the importance of protecting ownership of your domain, you should employ
good security practices with respect to your domain registration. At the very least, you
should use strong, unique passwords, and employ proper password hygiene (no keeping
it on a sticky note attached to your monitor). Preferably, you should use a registrar that
offers two-factor authentication. Don’t be afraid to ask your registrar pointed questions
about what is required to authorize changes to your account. The registrars I recom‐
mend are Name.com and Namecheap.com. Both offer two-factor authentication, and I
have found their support to be good and their online control panels to be easy and
robust.

When you register a domain, you must provide a third-party email address that’s asso‐
ciated with that domain (i.e., if you’re registering meadowlarktravel.com, you shouldn’t
use admin@meadowlarktravel.com as your registrant email). Since any security system
is as strong as its weakest link, you should use an email address with good security. It’s
quite common to use a Gmail or Outlook account, and if you do, you should employ
the same security standards as you do with your domain registrar account (good pass‐
word hygiene and two-factor authentication).

Top-Level Domains
What your domain ends with (such as .com or .net) is called a top-level-domain (TLD).
Generally speaking, there are two types of TLD: country code TLDs and general TLDs.
Country code TLDs (such as .us, .es, and .uk) are designed to provide a geographic
categorization. However, there are few restrictions on who can acquire these TLDs (the
Internet is truly a global network, after all), so they are often used for “clever” domains,
such as placehold.it and goo.gl.

General TLDs (gTLDs) include the familiar .com, .net, .gov, .fed, .mil, and .edu. While
anyone can acquire an available .com or .net domain, there are restrictions in place for
the others mentioned. For more information, see Table 21-1.

Domain Registration and Hosting | 263

Table 21-1. Restricted gTLDs
TLD More information

.gov, .fed https://www.dotgov.gov

.edu http://net.educause.edu/edudomain

.mil Military personnel and contractors should contact their IT department, or the DoD Network Information Center

The Internet Corporation for Assigned Names and Numbers (ICANN) is ultimately
responsible for management of TLDs, though they delegate much of the actual admin‐
istration to other organizations. Recently, the ICANN has authorized many new gTLDs,
such as .agency, .florist, .recipes, and even .ninja. For the foreseeable future, .com will
probably remain the “premium” TLD, and the hardest one to get real estate in. People
who were lucky (or shrewd) enough to purchase .com domains in the Internet’s
formative years received massive payouts for prime domains (for example, Facebook
purchased fb.com in 2010 for a whopping $8.5 million dollars).

Given the scarcity of .com domains, people are turning to alternative TLDs, or us‐
ing .com.us to try to get a domain that accurately reflects their organization. When
picking a domain, you should consider how it’s going to be used. If you plan on mar‐
keting primarily electronically (where people are more likely to click a link than type
in a domain), then you should probably focus more on getting a catchy or meaningful
domain than a short one. If you’re focusing on print advertising, or you have reason to
believe people will be entering your URL manually into their devices, you might consider
alternative TLDs so you can get a shorter domain name. It’s also common practice to
have two domains: a short, easy-to-type one, and a longer one more suitable for mar‐
keting.

Subdomains
Where a TLD goes after your domain, a subdomain goes before it. By far, the most
common subdomain is www. I’ve never particularly cared for this subdomain. After all,
you’re at a computer, using the World Wide Web; I’m pretty sure you’re not going to be
confused if there isn’t a www to remind you of what you’re doing. For this reason, I
recommend using no subdomain for your primary domain: http://meadowlarktra‐
vel.com/ instead of http://www.meadowlarktravel.com/. It’s shorter and less busy, and
thanks to redirects, there’s no danger of losing visits from people who automatically
start everything with www.

Subdomains are used for other purposes too. I commonly see things like blogs.mead‐
owlarktravel.com, api.meadowlarktravel.com, and m.meadowlarktravel.com (for a mo‐
bile site). Often this is done for technical reasons: it can be easier to use a subdomain
if, for example, your blog uses a completely different server than the rest of your site. A
good proxy, though, can redirect traffic appropriately based on either subdomain or
path, so the choice of whether to use a subdomain or a path should be more content-

264 | Chapter 21: Going Live

https://www.dotgov.gov
http://net.educause.edu/edudomain
http://www.disa.mil/Services/Network-Services/Service-Support

focused than technology-focused (remember what Tim Berners-Lee said about URLs
expressing your information architecture, not your technical architecture).

I recommend that subdomains be used to compartmentalize significantly different parts
of your website or service. For example, I think it’s a good use of subdomains to make
your API available at api.meadowlarktravel.com. Microsites (sites that have a different
appearance than the rest of your site, usually highlighting a single product or subject)
are also good candidates for subdomains. Another sensible use for subdomains is to
separate admin interfaces from public interfaces (admin.meadowlarktravel.com, for
employees only).

Your domain registrar, unless you specify otherwise, will redirect all traffic to your server
regardless of subdomain. It is up to your server (or proxy), then, to take appropriate
action based on the subdomain.

Nameservers
The “glue” that makes domains work are nameservers, and this is what you’ll be asked
to provide when you establish hosting for your website. Usually, this is pretty straight‐
forward, as your hosting service will do most of the work for you. For example, let’s say
we choose to host meadowlarktravel.com at WebFaction. When you set up your hosting
account with WebFaction, you’ll be given the names of the WebFaction nameservers
(there are multiple ones for redundancy). WebFaction, like most hosting providers, calls
their nameservers ns1.webfaction.com, ns2.webfaction.com, and so on. Go to your do‐
main registrar and set the nameservers for the domain you want to host, and you’re
all set.

The way the mapping works in this case is:

1. Website visitor navigates to http://meadowlarktravel.com/.
2. The browser sends the request to the computer’s network system.
3. The computer’s network system, which has been given an Internet IP address and

a DNS server by the Internet provider, asks the DNS resolver to resolve meadow‐
larktravel.com.

4. The DNS resolver is aware that meadowlarktravel.com is handled by ns1.webfac‐
tion.com, so it asks ns1.webfaction.com to give it an IP address for meadowlarktra‐
vel.com.

5. The server at ns1.webfaction.com receives the request and recognizes that mead‐
owlarktravel.com is indeed an active account, and returns the associated IP address.

While this is the most common case, it’s not the only way to configure your domain
mapping. Since the server (or proxy) that actually serves your website has an IP address,
we can cut out the middleman by registering that IP address with the DNS resolvers

Domain Registration and Hosting | 265

https://www.webfaction.com

(this effectively cuts out the middleman of the nameserver ns1.webfaction.com in the
previous example). For this approach to work, your hosting service must assign you a
static IP address. Commonly, hosting providers will give your server(s) a dynamic IP
address, which means it may change without notice, which would render this scheme
ineffective. It can sometimes cost extra to get a static IP address instead of a dynamic
one: check with your hosting provider.

If you want to map your domain to your website directly (skipping your host’s name‐
servers), you will either be adding an A record or a CNAME record. An A record maps
a domain name directly to an IP address, whereas a CNAME maps one domain name
to another. CNAME records are usually a little less flexible, so A records are generally
preferred.

Whatever technique you use, domain mapping is usually aggressively cached, meaning
that when you change your domain records, it can take up to 48 hours for your domain
to be attached to the new server. Keep in mind that this is also subject to geography: if
you see your domain working in Los Angeles, your client in New York may see the
domain attached to the previous server. In my experience, 24 hours is usually sufficient
for domains to resolve correctly in the continental US, with international resolution
taking up to 48 hours.

If you need something to go live precisely at a certain time, you should not rely on DNS
changes. Rather, modify your server to redirect to the “coming soon” site or page, and
make the DNS changes in advance of the actual switchover. At the appointed moment,
then, you can have your server switch over to the live site, and your visitors will see the
change immediately, regardless of where they are in the world.

Hosting
Choosing a hosting service can seem overwhelming at first. Node has taken off in a big
way, and everyone’s clamoring to offer Node hosting to meet the demand. How you
select a hosting provider depends very much on your needs. If you have reason to believe
your site will be the next Amazon or Twitter, you’ll have a very different set of concerns
than you would if you were building a website for your local stamp collector’s club.

Traditional hosting, or cloud hosting?
The term “cloud” is one of the most nebulous tech terms to crop up in recent years.
Really, it’s just a fancy way to say “the Internet,” or “part of the Internet.” The term is not
entirely useless, though. While not part of the technical definition of the term, hosting
in the cloud usually implies a certain commoditizing of computing resources. That is
to say, we no longer think about a “server” as a distinct, physical entity: it’s simply a
homogeneous resource somewhere in the cloud, and one is as good as another. I’m
oversimplifying, of course: computing resources are distinguished (and priced)
according to their memory, number of CPUs, etc. The difference is between knowing

266 | Chapter 21: Going Live

(and caring) what actual server your app is hosted on, and knowing it’s hosted on some
server in the cloud, and it could just as easily be moved over to a different one without
you knowing (or caring).

Cloud hosting is also highly virtualized. That is, the server(s) your app is running on
are not usually physical machines, but virtual machines running on physical servers.
This idea was not introduced by cloud hosting, but it has become synonymous with it.

While cloud hosting is not really anything new, it does represent a subtle shift in think‐
ing. It can be a little disconcerting at first, not knowing anything about the actual physical
machine your server is running on, trusting that your servers aren’t going to be affected
by the other servers running on the same computer. Really, though, nothing has
changed: when your hosting bill comes, you’re still paying for essentially the same thing:
someone taking care of the physical hardware and networking that enables your web
applications. All that’s changed is that you’re more removed from the hardware.

I believe that “traditional” hosting (for lack of a better term) will eventually disappear
altogether. That’s not to say hosting companies will go out of business (though some
inevitably will); they will just start to offer cloud hosting themselves.

XaaS
When considering cloud hosting, you will come across the acronyms SaaS, PaaS,
and IaaS:
Software as a Service (SaaS)

SaaS generally describes software (websites, apps) that are provided to you: you just
use them. An example would be Google Documents or Dropbox.

Platform as a Service (PaaS)
PaaS provides all of the infrastructure for you (operating systems, networking—all
of that is handled). All you have to do is write your applications. While there is often
a blurry line between PaaS and IaaS (and you will often find yourself straddling that
line as a developer), this is generally the service model we’re discussing in this book.
If you’re running a website or web service, PaaS is probably what you’re looking for.

Infrastructure as a Service (IaaS)
IaaS gives you the most flexibility, but at cost. All you get are virtual machines and
a basic network connecting them. You are then responsible for installing and main‐
taining operating systems, databases, and network policies. Unless you need this
level of control over your environment, you will generally want to stick with PaaS.
(Note that PaaS does allow you to have control over the choice of operating systems
and network configuration: you just don’t have to do it yourself.)

Domain Registration and Hosting | 267

The behemoths
The companies that essentially run the Internet (or, at least, are heavily invested in the
running of the Internet) have realized that with the commoditization of computing
resources, they have another viable product to sell. Microsoft, Amazon, and Google all
offer cloud computing services, and their services are quite good.

All of these services are priced similarly: if your hosting needs are modest, there will be
minimal price difference among the three. If you have very high bandwidth or storage
needs, you will have to evaluate the services more carefully, as the cost difference could
be greater, depending on your needs.

While Microsoft does not normally leap to mind when we consider open source plat‐
forms, I would not overlook Azure. Not only is the platform established and robust, but
Microsoft has bent over backward to make it friendly to not just Node, but the open
source community. Microsoft offers a one-month Azure trial, which is a great way to
determine if the service meets your needs; if you’re considering one of the big three, I
definitely recommend the free trial to evaluate Azure. Microsoft offers Node APIs for
all of their major services, including their cloud storage service. In addition to excellent
Node hosting, Azure offers Git-based deployments, an excellent cloud storage system
(with a JavaScript API), as well as good support for MongoDB. The downside to Azure
is that they don’t offer a pricing tier for small projects. You can expect to spend a min‐
imum of $80 a month for production hosting on Azure. Keep in mind that you can
easily host multiple projects for that price, so if you’re looking to consolidate a bunch
of websites, it can be very cost effective.

Amazon offers the most comprehensive set of resources, including SMS (text message),
cloud storage, email services, payment services (ecommerce), DNS, and more. In ad‐
dition, Amazon offers a free usage tier, making it very easy to evaluate.

Google’s cloud platform does not yet offer an option for Node hosting, though Node
apps can be hosted through their IaaS service. Google does not currently offer a free tier
or trial.

In addition to the “big three,” it is worth considering Joyent, who is currently heavily
involved in Node development. Nodejitsu, a Joyent partner, provides Node-specific
hosting and are experts in the field. They offer a unique option for deployment: a private
npm repository. If Git-based deployment (which we will be focusing on in this book)
doesn’t appeal to you, I encourage you to look into Nodejitsu’s npm-based deployment.

Boutique hosting
Smaller hosting services, which I’m going to call “boutique” hosting services (for lack
of a better word), may not have the infrastructure or resources of Microsoft, Amazon,
or Google, but that doesn’t mean they don’t offer something valuable.

268 | Chapter 21: Going Live

Because boutique hosting services can’t compete in terms of infrastructure, they usually
focus on customer service and support. If you need a lot of support, you might want to
consider a boutique hosting service. For personal projects, I’ve been using WebFac‐
tion for many years. Their service is extremely affordable, and they have offered Node
hosting for some time now. If you have a hosting provider you’ve been happy with, don’t
hesitate to ask them if they offer (or plan on offering) Node hosting.

Deployment
It still surprises me that, in 2014, many people are still using FTP to deploy their appli‐
cations. If you are, please stop. FTP is in no way secure. Not only are all your files
transmitted unencrypted, your username and password are also. If your hosting pro‐
vider doesn’t give you an option, find a new hosting provider. If you really have no
choice, make sure you use a unique password that you’re not using for anything else.

At minimum, you should be using SFTP or FTPS (not to be confused), but there’s even
a better way: Git-based deployment.

The idea is simple: you use Git for version control anyway, and Git is very good at
versioning, and deployment is essentially a problem of versioning, making Git a natural
fit. (This technique is not restricted to Git; you could use Mercurial or Subversion for
deployment if you want to.)

To make this technique work, your development repositories need some way of syn‐
chronizing with the deployment repositories. Git offers almost unlimited ways to do
this, but the easiest by far is to use an Internet service like GitHub. GitHub is free for
public repositories, but you may not want to make the source code for your website
public. You can upgrade to a private Git repository for a fee. Alternatively, Atlassian
Bitbucket offers free private repository hosting for up to five users.

While Git-based deployments can be set up on almost any service, Azure offers it out
of the box, and their implementation is excellent and demonstrates the promise of Git-
based deployment. We’ll start with that excellent model, then cover how we can partially
emulate this with other hosting providers.

Git deployment
Git’s greatest strength (and greatest weakness) is its flexibility. It can be adapted to almost
any workflow imaginable. For the sake of deployment, I recommend creating one or
more branches specifically for deployment. For example, you might have a production
branch and a staging branch. How you use those branches is very much up to your
individual workflow. One popular approach is to flow from master to staging to pro
duction. So once some changes on master are ready to go live, you could merge them
into staging. Once they have been approved on the staging server, you could then merge
staging into master. While this makes logical sense, I dislike the clutter it creates

Domain Registration and Hosting | 269

http://webfaction.com
http://webfaction.com

(merges merges everywhere). Also, if you have lots of features that need to be staged
and pushed to production in different orders, this can get messy quickly. I feel a better
approach is to merge master into staging and, when you’re ready to go live with
changes, then merge master into production. In this way, staging and production
become less associated: you can even have multiple staging branches to experiment with
different features before going live (and you can merge things other than master into
them). Only when something has been approved for production do you merge it into
production.

What happens when you need to roll back changes? This is where things can get
complicated. There are multiple techniques for undoing changes, such as applying the
inverse of a commit to undo prior commits (git revert), but not only are these
techniques complicated, they can also cause problems down the line. The approach I
recommend is to treat production (and your staging branches, if you wish) as dispos‐
able: they are really just reflections of your master branch at different points in time. If
you need to roll back changes, then you just do a git reset --hard <old commit
id> on your production branch, and then git push origin production --force. In
essence, this is “rewriting history,” which is often decried by dogmatic Git practitioners
as dangerous or “advanced.” While it certainly can be, in this case, it is understood that
production is a read-only branch; developers should never commit to it (which is where
rewriting history can get you into trouble).

In the end, it is up to you and your team to decide on a Git workflow. More important
than the workflow you pick is the consistency with which you use it, and the training
and communication surrounding it.

We’ve already discussed the value of keeping your binary assets (mul‐
timedia and documents) separate from your code repository. Git-
based deployment offers another incentive for this approach. If you
have four gigabytes of multimedia data in your repository, they’re
going to take forever to clone, and you have an unnecessary copy of
all of your data for every production server.

Deployment to Azure
With Azure, you can deploy from a GitHub or Bitbucket repository, or a local reposi‐
tory. I strongly recommend you use either GitHub or Bitbucket; it will make it much
easier to add people to your development team. For the following example, we’ll be
using either GitHub or Bitbucket (the procedure is almost identical for both). You’ll
need a repository set up in your GitHub or Bitbucket account.

One important note is that Azure expects your main application file to be called
server.js. We’ve been using meadowlarktravel.js for our main application file, so we’ll
have to rename it to server.js for Azure deployment.

270 | Chapter 21: Going Live

Once you’ve logged into your Azure portal, you can create a new website:

1. Click the Website icon along the left.
2. Click New along the bottom.
3. Choose Quick Create; choose a name and a region, and click Create Web Site.

Then set up source control deployment:

1. Click your website in the main portal window.
2. Under the “Your site has been created!” message, look for “Set up deployment from

source control”; click that link.
3. Choose either GitHub or Bitbucket; if this is your first time, you will be asked to

authorize Azure access to your GitHub or Bitbucket account.
4. Choose the repository you want to use and the branch (I recommend production).

That’s all you have to do…now some amazing stuff happens. If Azure detects that there
is an update to the production branch, it will automatically update the code on the
server (I have done this hundreds of times, and it’s never taken more than 30 seconds,
though it could take longer if you have very large changes, such as multimedia assets).
Even better? If you’ve added any new dependencies to package.json, Azure will auto‐
matically install them for you. It will also handle file deletions (unsurprisingly, since this
is standard Git behavior). In other words, you have seamless development.

Not only is this the ultimate in seamless, Git-based deployment, but this technique also
works well if you scale out your app. So if you have four server instances going, they
will all be updated simultaneously with a single push to the appropriate branch.

If you go to the Azure control panel for your website, you will see a tab labeled De‐
ployments. In that tab, you will see information about the history of deployments, which
can be helpful in debugging if something goes wrong with your automatic deployment
system. Also, you can redeploy previous deployments, which can be a quick way to
revert if there’s a problem.

Manual Git-based deployment
If your hosting service does not support any kind of automated Git-based deployment,
your approach will involve additional steps. Let’s say our setup is the same: we’re using
GitHub or Bitbucket for version control, and we have a branch called production, which
is what we want reflected on the production servers.

For each server, you will have to clone the repository, check out the production branch,
and then set up the infrastructure necessary to start/restart your app (which will be
dependent on your choice of platform). When you update the production branch, you

Domain Registration and Hosting | 271

will have to go to each server, run git pull --ff-only, run npm install (if you’ve
updated any dependencies), and then restart the app. If your deployments aren’t often,
and you don’t have very many servers, this may not represent a terrible hardship, but if
you’re updating more often, this will get old fast, and you’ll want to find some way to
automate the system.

The --ff-only argument to git pull allows only fast-forward pulls,
preventing automatic merging or rebasing. If you know the pull is
fast-forward only, you may safely omit it, but if you get in the habit
of doing it, you will never accidentally invoke a merge or rebase!

Unfortunately, automation is not a simple matter. Git has hooks that allow you to take
automated action, but not if it’s a remote repository that’s being updated. If you’re look‐
ing for automated deployment, the easiest approach is to run an automated job that
runs git pull --ff-only periodically. If an update occurs, you can then run npm in
stall and restart the app.

Amazon deployment with Elastic Beanstalk
If you’re using Amazon AWS, you can use their product Elastic Beanstalk (EB) to do
automated deployments with Git. EB is a sophisticated product that offers a lot of fea‐
tures that may be attractive if you can’t afford to ever make a mistake in deployment.
Along with those features comes increased complexity, however: setting up automated
deployment with EB is fairly involved. You can find instructions for the various ways
to configure EB on the EB documentation page.

Conclusion
Deploying your website (especially for the first time) should be an exciting occasion.
There should be champagne and cheering, but all too often, there is sweating, cursing,
and late nights. I’ve seen far too many websites launched at three in the morning by an
irritable, exhausted team. Fortunately, that’s changing, partly thanks to cloud deploy‐
ment. No matter what deployment strategy you choose, the most important thing you
can do is to start production deployments early, before the site is ready to go live. You
don’t have to hook up the domain, so the public doesn’t need to know. If you’ve already
deployed the site to production servers half a dozen times before the day of launch, your
chances of a successful launch will be much higher. Ideally, your functioning website
will already be running on the production server long before launch: all you have to do
is flip the switch from the old site to the new site.

272 | Chapter 21: Going Live

http://bit.ly/ebeanstalk

1. As it happened, the term “postpartum” was a little too visceral. We now call them “retrospectives.”

CHAPTER 22

Maintenance

You launched the site! Congratulations, now you never have to think about it again.
What’s that? You do have to keep thinking about it? Well, in that case, keep reading.

While it has happened a couple of times in my career, it has been the exception to the
rule that you finish a site and then never have to touch it again (and when it does happen,
it’s usually because someone else is doing the work, not that work doesn’t need to be
done). I distinctly remember one website launch “postmortem.” I piped up and said,
“Shouldn’t we really call it a postpartum?”1 Launching a website really is more of a birth
than a death. Once it launches, you’re glued to the analytics, anxiously awaiting the
client’s reaction, waking up at three in the morning to check to see if the site is still up…
it’s your baby.

Scoping a website, designing a website, building a website: these are all activities that
can be planned to death. But what usually receives short shrift is planning the mainte‐
nance of a website. This chapter will give you some advice on navigating those waters.

The Principles of Maintenance
Have a Longevity Plan
It always surprises me when a client agrees on a price to build a website, but it’s never
discussed how long the site is expected to last. My experience is that if you do good
work, clients are happy to pay for it. What clients do not appreciate is the unexpected:
being told after three years that their site has to be rebuilt when they had an unspoken
expectation that it would last five.

273

The Internet moves fast. If you built a website with the absolute best and newest tech‐
nology you could find, it might feel like a creaky relic in two short years. Or it could
truck along for seven, aging, but doing so gracefully (this is a lot less common!).

Setting expectations about website longevity is part art, part salesmanship, and part
science. The science of it involves something that all scientists, but very few web devel‐
opers, do: keep records. Imagine if you had a record of every website your team had
ever launched, the history of maintenance requests and failures, the technologies used,
and how long before each site was rebuilt. There are many variables, obviously, from
the team members involved to the economy to the shifting winds of technology, but
that doesn’t mean that meaningful trends can’t be discovered in the data. You may find
that certain development approaches work better for your team, or certain platforms
or technologies. What I almost guarantee you will find is a correlation between “pro‐
crastination” and defects: the longer you put off an infrastructure update or platform
upgrade that’s causing pain, the worse it will be. Having a good issue tracking system
and keeping meticulous records will allow you to give your client a much better (and
more realistic) picture of what the life cycle of their project is going to be.

The salesmanship of it boils down to money, of course. If a client can afford to have
their website completely rebuilt every three years, then they won’t be very likely to suffer
from aging infrastructure (they will have other problems, though). On the flip side,
there will be clients who need their dollar to stretch as far as possible, wanting a website
that will last for five or even seven years (I’ve known websites that have dragged on for
even longer than that, but I feel that seven years is the maximum realistic life expectancy
for websites that have any hope of continuing to be useful). You have a responsibility to
both of these clients, and both come with their own challenge. With the clients who
have a lot of money, don’t just take their money because they have it: use that extra
money to give them something extraordinary. With the clients on a tight budget, you
will have to find creative ways to design their website for greater longevity in the face
of constantly changing technology. Both of these extremes have their own challenges,
but ones that can be solved. What’s important, though is that you know what the ex‐
pectations are.

Lastly, there’s the art of the matter. This is what ties it all together: understanding what
the client can afford, and where you can honestly convince the client to spend more
money so they get value where they need it. It is also the art of understanding technology
futures, and being able to predict what technologies will be painfully obsolete in five
years and which will be going strong.

There’s no way to predict anything with absolute certainty, of course. You could bet
wrong on technologies, personnel shifts can completely change the technical culture of
your organization, and technology vendors can go out of business (though this is usually
less of a problem in the open source world). The technology that you thought would be
solid for the lifetime of your product may turn out to be a fad, and you’ll find yourself

274 | Chapter 22: Maintenance

facing the decision to rebuild sooner than you expected. On the flip side, sometimes the
exactly right team comes together at the exact right time with the exact right technology,
and something is created that far outlives any reasonable expectations. None of this
uncertainty should deter you from having a plan, however: better to have a plan that
goes awry than to always be rudderless.

It should be clear to you by now that I feel that JavaScript and Node are technologies
that are going to be around for a while. The Node community is vibrant and enthusiastic,
and wisely based on a language that has clearly won. Most important, perhaps, is that
JavaScript is a multiparadigm language: object-oriented, functional, procedural, syn‐
chronous, asynchronous—it’s all there. This makes JavaScript an inviting platform for
developers from many different backgrounds, and is in large part responsible for the
pace of innovation in the JavaScript ecosystem.

Use Source Control
This probably seems obvious to you, but it’s not just about using source control, it’s
about using it well. Why are you using source control? Understand the reasons, and
make sure the tools are supporting those reasons. There are many reasons to use source
control, but the one that always seems to me to have the biggest payoff is attribution:
knowing exactly what change was made when and who did it, so I can ask for more
information if necessary. Version control is one of our greatest tools for understanding
the history of our projects and how we work together as a team.

Use an Issue Tracker
Issue trackers go back to the science of development. Without a systematic way to record
the history of a project, no insight is possible. You’ve probably heard it said that the
definition of insanity is “doing the same thing over and over again and expecting dif‐
ferent results” (often dubiously attributed to Albert Einstein). It does seem crazy to
repeat your mistakes over and over again, but how can you avoid it if you don’t know
what mistakes you’re making? Record everything: every defect the client reports; every
defect you find before the client sees it; every complaint, every question, every bit of
praise. Record how long it took, who fixed it, what Git commits were involved, and who
approved the fix. The art here is finding tools that don’t make this overly time-
consuming or onerous. A bad issue tracking system will languish, unused, and it will
be worse than useless. A good issue tracking system will yield vital insights into your
business, your team, and your clients.

Exercise Good Hygiene
I’m not talking about brushing your teeth—though you should do that too—I’m talking
about version control, testing, code reviews, and issue tracking. The tools you use are
useful only if you use them, and use them correctly. Code reviews are a great way to

The Principles of Maintenance | 275

2. Mike Wilson of Fuel’s rule of thumb is “the third time you do something, take the time to automate it.”

encourage hygiene because everything can be touched on, from discussing the use of
the issue tracking system in which the request originated to the tests that had to be added
to verify the fix to the version control commit comments.

The data you collect from your issue tracking system should be reviewed on a periodic
basis and discussed with the team. From this data, you can gain insights about what’s
working and what’s not. You might be surprised by what you find.

Don’t Procrastinate
Institutional procrastination can be one of the hardest things to combat. Usually it’s
something that doesn’t seem so bad: you notice that your team is routinely eating up a
lot of hours on a weekly update that could be drastically improved by a little refactoring.
Every week you delay refactoring is another week you’re paying the inefficiency cost.2

Worse, some costs may increase over time. A great example of this is failing to update
software dependencies. As the software ages, and team members change, it’s harder to
find people who remember (or ever understood) the creaky old software. The support
community starts to evaporate, and before long, the technology is deprecated and you
can’t get any kind of support for it. You often hear this described as technical debt, and
it’s a very real thing. While you should avoid procrastinating, understanding the website
longevity can factor into these decisions: if you’re just about to redesign the whole web‐
site, there’s little value in eliminating technical debt that’s been building up.

Do Routine QA Checks
For each of your websites, you should have a documented routine QA check. That check
should include a link checker, HTML and CSS validation, and running your tests. The
key here is documented: if the items that compose the QA check aren’t documented, you
will inevitably miss things. A documented QA checklist for each site not only helps
prevent overlooked checks, but it allows new team members to be effective immediately.
Ideally, the QA checklist can be executed by a nontechnical team member. Not only will
this give your (possibly) nontechnical manager confidence in your team, it will allow
you to spread QA responsibilities around if you don’t have a dedicated QA department.
Depending on your relationship with your client, you may also want to share your QA
checklist (or part of it) with the client; it’s a good way to remind them what they’re paying
for, and that you are looking out for their best interests.

As part of your routine QA check, I recommend using Google Webmaster Tools and
Bing Webmaster Tools. They are easy to set up, and they give you a very important view
of your site: how the major search engines see it. It will alert you to any problems with

276 | Chapter 22: Maintenance

http://www.fuelyouth.com
https://www.google.com/webmasters
http://www.bing.com/toolbox/webmaster

your robots.txt file, HTML issues that are interfering with good search results, security
issues, and more.

Monitor Analytics
If you’re not running analytics on your website, you need to start now: it provides a vital
insight into not just the popularity of your website, but also how your users are using
it. Google Analytics (GA) is excellent (and free!), and even if you supplement it with
additional analytics services, there’s little reason not to include GA on your site. Often,
you will be able to spot subtle UX issues by keeping an eye on your analytics. Are there
certain pages that are not getting the traffic that you expect? That could indicate a
problem with your navigation or promotions, or an SEO issue. Are your bounce rates
high? That could indicate the content on your pages needs some tailoring (people are
getting to your site by searching, but when they arrive on your site, they realize it’s not
what they’re looking for). You should have an analytics checklist to go along with your
QA checklist (it could even be part of your QA checklist). That checklist should be a
“living document”; over the lifetime of your website, you or your client may have shifting
priorities about what content is most important.

Optimize Performance
Study after study has shown the dramatic effect of performance on website traffic. It’s
a fast-paced world, and people expect their content delivered quickly,especially on mo‐
bile platforms. The number one principle in performance tuning is to profile first, then
optimize. “Profiling” means finding out what it actually is that’s slowing your site
down. If you spend days speeding up your content rendering when the problem is
actually your social media plugins, you’re wasting precious time and money.

Google PageSpeed is a great way to measure the performance of your website (and now
PageSpeed data is recorded in Google Analytics so you can monitor performance
trends). Not only will it give you an overall score for mobile and desktop performance,
it will also make prioritized suggestions about how to improve performance.

Unless you currently have performance issues, it’s probably not necessary to do periodic
performance checks (monitoring Google Analytics for significant changes in perfor‐
mance scores should be sufficient); however, it is gratifying to watch your boost in traffic
when you improve performance.

Prioritize Lead Tracking
In the Internet world, the strongest signal your visitors can give you that they are in‐
terested in your product or service is to give you contact information: you should treat
this information with the utmost care. Any form that collects an email or phone number
should be tested routinely as part of your QA checklist, and there should always be

The Principles of Maintenance | 277

redundancy when you collect that information. The worst thing you can do to a potential
customer is collect contact information and then lose it.

Because lead tracking is so critical to the success of your website, I recommend these
five principles for collecting information:
Have a fallback in case JavaScript fails

Collecting customer information via AJAX is fine—it often results in a better user
experience. However, if JavaScript should fail for any reason (the user could disable
it, or a script on your website could have an error, preventing your AJAX from
functioning correctly), the form submission should work anyway. A great way to
test this is to disable JavaScript and use your form. It’s okay if the user experience
is not ideal: the point is that user data is not lost. To implement this, always have a
valid and working action parameter in your <form> tag, even if you normally
use AJAX.

If you use AJAX, get the URL from the form’s action parameter
While not strictly necessary, this helps prevent you from accidentally forgetting the
action parameter on your <form> tags. If you tie your AJAX to successful no-
JavaScript submission, it’s much harder to lose customer data. For example, your
form tag could be <form action="/submit/email" method="POST">; then in your
AJAX handler, you would do the following: $('form').on('submit', func
tion(evt){ evt.preventDefault(); var action = $(this).attr(\'ac

tion'); /* perform AJAX submission */ });.

Provide at least one level of redundancy
You’ll probably want to save leads to a database or an external service such as Cam‐
paign Monitor. But what if your database fails, or Campaign Monitor goes down,
or there’s a network issue? You still don’t want to lose that lead. A common way to
provide redundancy is to send an email in addition to storing the lead. If you take
this approach, you should not use a person’s email address, but a shared email
address (such as dev@meadowlarktravel.com): the redundancy does no good if you
send it to a person and that person leaves the organization. You could also store the
lead in a backup database, or even a CSV file. However, whenever your primary
storage fails, there should be some mechanism to alert you of the failure. Collecting
a redundant backup is the first half of the battle: being aware of failures and taking
appropriate action is the second half.

In case of total storage failure, inform the user
Let’s say you have three levels of redundancy: your primary storage is Campaign
Monitor, and if that fails, you back up to a CSV file and send an email to dev@mead‐
owlarktravel.com. If all of these channels fail, the user should receive a message that
says something like “We’re sorry, we’re experiencing technical difficulties. Please
try again later, or contact support@meadowlarktravel.com.”

278 | Chapter 22: Maintenance

Check for positive confirmation, not absence of an error
It’s quite common to have your AJAX handler return an object with an err property
in the case of failure; the client code then has something that looks like this: if(da
ta.err){ /* inform user of failure */ } else { /* thank user for suc

cessful submission */ }. Avoid this approach. There’s nothing wrong with
setting an err property, but if there’s an error in your AJAX handler, leading the
server to respond with a 500 response code or a response that isn’t valid JSON, this
approach will fail silently. The user’s lead will disappear into the void, and they
will be none the wiser. Instead, provide a success property for successful submis‐
sion (even if the primary storage failed: if the user’s information was recorded by
something, you may return success). Then your client-side code becomes if(da
ta.success){ /* thank user for successful submission */ } else { /*

inform user of failure */ }.

Prevent “Invisible” Failures
I see it all the time: because developers are in a hurry, they record errors in ways that
never get checked. Whether it is a logfile, a table in a database, a client-side console log,
or an email that goes to a dead address, the end result is the same: your website has
quality problems that are going unnoticed. The number one defense you can have
against this problem is to provide an easy, standard method for logging errors. Docu‐
ment it. Don’t make it difficult. Don’t make it obscure. Make sure every developer that
touches your project is aware of it. It can be as simple as exposing a meadowlarkLog
function (log is often used by other packages). It doesn’t matter if the function is re‐
cording to a database, flat file, email, or some combination thereof: the important thing
is that it is standard. It also allows you to improve your logging mechanism (for example,
flat files are less useful when you scale out your server, so you would modify your
meadowlarkLog function to record to a database instead). Once you have the logging
mechanism in place, documented, and everyone on your team knows about it, add
“check logs” to your QA checklist, and have instructions on how to do that.

Code Reuse and Refactoring
One tragedy I see all the time is the reinvention of the wheel, over and over and over
again. Usually it’s just small things: tidbits that feel easier to just rewrite than to dig up
in some project that you did months ago. All of those little rewritten snippets add up.
Worse, it flies in the face of good QA: you’re probably not going to go to the trouble to
write tests for all these little snippets (and if you do, you’re doubling the time that you’re
wasting by not reusing existing code). Each snippet—doing the same thing—can have
different bugs. It’s a bad habit.

Code Reuse and Refactoring | 279

Development in Node and Express offers some great ways to combat this problem. Node
brought namespacing (via modules) and packages (via npm), and Express brings the
concept of middleware (via Connect). With these tools at your disposal, it makes it a
lot easier to develop reusable code.

Private npm Registry
npm registries are a great place to store shared code; it’s what npm was designed for,
after all. In addition to simple storage, you get versioning, and a convenient way to
include those packages in other projects.

There’s a fly in the ointment, though: unless you’re working in a completely open source
organization, you may not want to create npm packages for all of your reusable code.
(There can be other reasons than intellectual property protection, too: your packages
could be so organization- or project-specific that it doesn’t make sense to make them
available on a public registry.)

One way to handle this is private npm registries. Setting up a private npm registry can
be an involved process, but it is possible.

The biggest hurdle to creating your own private registry is that npm currently doesn’t
allow you to pull from multiple repositories. So if your package.json file contains a mix
of packages from the public npm registry (and it will) and packages from a private
registry, npm will fail (if you specify the public registry, the private dependencies will
fail, and if you specify the private registry, the public dependencies will fail). The npm
team has said they don’t have the resources to implement this feature (see https://
github.com/npm/npm/issues/1401), but there are alternatives.

One way to handle that problem is to replicate the entire public npm. If that sounds
daunting and expensive (in terms of storage, bandwidth, and maintenance), you’re right.
A better approach is to provide a proxy to the public npm, which will pass requests for
a public package through to the public registry, while serving private packages from its
own database. Fortunately, there is just such a project: Sinopia.

Sinopia is incredibly easy to install and, in addition to supporting private packages,
provides a handy cache of packages for your organization. If you choose to use Sinopia,
you should be aware that it uses the local filesystem to store private packages: you would
definitely want to add the package directory to your backup plan! Sinopia suggests using
the prefix test- for local packages: if you’re creating a private registry for your orga‐
nization, I recommend you use the organization’s name (meadowlark-).

Since npm is configured to support only one registry, once you “switch over” to using
Sinopia (using npm set registry and npm adduser), you will be unable to use the
public npm registry (except through Sinopia). To switch back to using the public npm
registry, you can either use npm set registry https://registry.npmjs.org/, or

280 | Chapter 22: Maintenance

https://github.com/npm/npm/issues/1401
https://github.com/npm/npm/issues/1401
https://github.com/rlidwka/sinopia

simply delete the file ~/.npmjs. You will have to do this if you want to publish packages
to the public registry.

A much easier solution is to use a hosted private repository. Nodejitsu and Gemfury
both offer private npm repositories. Unfortunately, both these services are rather ex‐
pensive. Ninjitsu’s service starts at $25/month and offers only 10 packages. To get a more
manageable number of packages (50), it’ll set you back $100/month. Gemfury’s pricing
is comparable. If budget is not an issue, this is certainly a no-fuss way to go.

Middleware
As we’ve seen throughout this book, writing middleware is not some big, scary, com‐
plicated thing: we’ve done it a dozen times in this book and, after a while, you will do it
without even thinking about it. The next step, then, is to put reusable middleware in a
package and put it in a npm registry.

If you find that your middleware is too project-specific to put in a reusable package,
you should consider refactoring the middleware to be configured for more general use.
Remember that you can pass configuration objects into middleware to make them useful
in a whole range of situations. Here is an overview of the most common ways to expose
middleware in a Node module. All of the following assume that you’re using exporting
these modules as a package, and that package is called meadowlark-stuff:

Module exposes middleware function directly
Use this method if your middleware doesn’t need a configuration object:

module.exports = function(req, res, next){
 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected
 // to be an endpoint
 next();
}

To use this middleware:

var stuff = require('meadowlark-stuff');

app.use(stuff);

Module exposes a function that returns middleware
Use this method if your middleware needs a configuration object or other information:

module.exports = function(config){
 // it's common to create the config object
 // if it wasn't passed in:
 if(!config) config = {};

 return function(req, res, next){

Code Reuse and Refactoring | 281

https://www.nodejitsu.com/
http://www.gemfury.com/l/npm-registry

 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected
 // to be an endpoint
 next();
 }
}

To use this middleware:

var stuff = require('meadowlark-stuff')({ option: 'my choice' });

app.use(stuff);

Module exposes an object that contains middleware
Use this option if you want to expose multiple related middleware:

module.exports = function(config){
 // it's common to create the config object
 // if it wasn't passed in:
 if(!config) config = {};

 return {
 m1: function(req, res, next){
 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected
 // to be an endpoint
 next();
 },
 m2: function(req, res, next){
 next();
 }
 }
}

To use this middleware:

var stuff = require('meadowlark-stuff')({ option: 'my choice' });

app.use(stuff.m1);
app.use(stuff.m2);

Module exposes an object constructor
This is probably the most uncommon method for returning middleware, but is useful
if your middleware is well suited for an object-oriented implementation. It is also the
trickiest way to implement middleware, because if you expose your middleware as in‐
stance methods, they will not be invoked against the object instance by Express, so this
will not be what you expect it to be. If you need to access instance properties, see m2:

function Stuff(config){
 this.config = config || {};
}

282 | Chapter 22: Maintenance

Stuff.prototype.m1 = function(req, res, next){
 // BEWARE: 'this' will not be what you expect; don't use it
 next();
};
Stuff.prototype.m2 = function(){
 // we use Function.prototype.bind to associate this instance
 // to the 'this property
 return (function(req, res, next){
 // 'this' will now be the Stuff instance
 next();
 }).bind(this);
);

module.exports = Stuff;

To use this middleware:

var Stuff = require('meadowlark-stuff');

var stuff = new Stuff({ option: 'my choice' });

app.use(stuff.m1);
app.use(stuff.m2());

Note that we can link in the m1 middleware directly, but we have to invoke m2 (which
then returns middleware that we can link in).

Conclusion
When you’re building a website, the focus is often on the launch, and for good reason:
there’s a lot of excitement surrounding a launch. However, a client that is delighted by
a newly launched website will quickly become a dissatisfied customer if care isn’t taken
in maintaining the website. Approaching your maintenance plan with the same care
with which you launch websites will provide the kind of experience that keeps clients
coming back.

Conclusion | 283

CHAPTER 23

Additional Resources

In this book, I have tried to give you a comprehensive overview of building websites
with Express. And we have covered a remarkable amount of ground, but we’ve still only
scratched the surface of the packages, techniques, and frameworks that are available to
you. In this chapter, we’ll discuss where you can go for additional resources.

Online Documentation
For JavaScript, CSS, and HTML documentation, the Mozilla Developer Network
(MDN) is without equal. If I need JavaScript documentation, I either search directly on
MDN or append “mdn” to my search query. Otherwise, inevitably, w3schools appears
in the search. Whoever is managing SEO for w3schools is a genius, but I recommend
avoiding this site: I find the documentation is often severely lacking.

Where MDN is a great HTML reference, if you’re new to HTML5 (or even if you’re not),
you should read Mark Pilgrim’s Dive Into HTML5. WHATWG maintains an excellent
“living standard” HTML5 specification; it is usually where I turn to first for really hard-
to-answer HTML questions. Finally, the official specifications for HTML and CSS are
located on the W3C website; they are dry, difficult-to-read documents, but sometimes
it’s your only recourse for the very hardest problems.

JavaScript adheres to the ECMA-262 ECMAScript language specification. Information
about the next version of JavaScript, called ES6 (codenamed Harmony) can be found at
http://bit.ly/es6_harmony. To track the availability of ES6 features in Node (and various
browsers), see the excellent guide maintained by @kangax.

Both jQuery and Bootstrap have extremely good online documentation.

The Node documentation is very good, and comprehensive, and it should be your first
choice for authoritative documentation about Node modules (such as http, https, and
fs). The Express documentation is quite good, but not as comprehensive as one might

285

https://developer.mozilla.org
https://developer.mozilla.org
http://diveintohtml5.info
http://developers.whatwg.org
http://www.w3.org
http://bit.ly/ECMA-262_specs
http://bit.ly/es6_harmony
http://kangax.github.io/es5-compat-table/es6
http://api.jquery.com
http://getbootstrap.com
http://nodejs.org/api
http://expressjs.com

like. The npm documentation is comprehensive and useful, particularly the page on the
package.json file.

Periodicals
There are three free periodicals you should absolutely subscribe to and read dutifully
every week:

• JavaScript Weekly
• Node Weekly
• HTML5 Weekly

These three periodicals will keep you informed of the latest news, services, blogs, and
tutorials as they become available.

Stack Overflow
Chances are good that you’ve already used Stack Overflow (SO): since its inception in
2008, it has become the dominant online Q&A site, and is your best resource to get your
JavaScript, Node, and Express questions answered (and any other technology covered
in this book). Stack Overflow is a community-maintained, reputation-based Q&A site.
The reputation model is what’s responsible for the quality of the site and its continued
success. Users can gain reputation by having their questions or answers “upvoted” or
having an accepted answer. You don’t have to have any reputation to ask a question, and
registration is free. However, there are things you can do to increase the chances of
getting your question answered in a useful manner, which we’ll discuss in this section.

Reputation is the currency of Stack Overflow, and while there are people out there who
genuinely want to help you, it’s the chance to gain reputation that’s the icing on the cake
that motivates good answers. There are a lot of really smart people on SO, and they’re
all competing to provide the first and/or best correct answer to your question (there’s
a strong disincentive to provide a quick but bad answer, thankfully). Here are things
you can do to increase the chances of getting a good answer for your question:
Be an informed SO user

Take the SO tour, then read “How do I ask a good question?” If you’re so inclined,
you can go on to read all of the help documentation—you’ll earn a badge if you
read it all!

Don’t ask questions that have already been answered
Do your due diligence, and try to find out of someone has already asked your
question. If you ask a question that has an easily found answer already on SO, your
question will quickly be closed as a duplicate, and people will often downvote you
for this, negatively affecting your reputation.

286 | Chapter 23: Additional Resources

https://npmjs.org/doc
https://npmjs.org/doc/json.html
https://npmjs.org/doc/json.html
http://javascriptweekly.com
http://nodeweekly.com
http://html5weekly.com
http://stackoverflow.com/tour
http://stackoverflow.com/help/how-to-ask
http://stackoverflow.com/help

Don’t ask people to write your code for you
You will quickly find your question downvoted and closed if you simply ask “How
do I do X?” The SO community expects you to make an effort to solve your own
problem before resorting to SO. Describe in your question what you’ve tried and
why it isn’t working.

Ask one question at a time
Questions that are asking five things—“How do I do this, then that, then the other
things, and what’s the best way to do this?”—are difficult to answer, and are
discouraged.

Craft a minimal example of your issue
I answer a lot of SO questions, and the ones I almost automatically skip over are
those where I see three pages of code (or more!). Just taking your 5,000-line file and
pasting into an SO question is not a great way to get your question answered (but
people do it all the time). It’s a lazy approach that isn’t often rewarded. Not only are
you less likely to get a useful answer, but the very process of eliminating things that
aren’t causing the problem can lead you to solving the problem yourself (then you
don’t even need to ask a question on SO). Crafting a minimal example is good for
your debugging skills and for your critical thinking ability, and makes you a good
SO citizen.

Learn Markdown
Stack Overflow uses Markdown for formatting questions and answers. A well-
formatted question has a better chance of being answered, so you should invest the
time to learn this useful and increasingly ubiquitous markup language.

Accept and upvote answers
If someone answers your question satisfactorily, you should upvote and accept it;
it boosts the reputation of the answerer, and reputation is what drives SO. If multiple
people provide acceptable answers, you should pick the one you think is best and
accept that, and upvote anyone else you feel offered a useful answer.

If you figure out your own problem before someone else does, answer your own ques‐
tion

SO is a community resource: if you have a problem, chances are, someone else has
it too. If you’ve figured it out, go ahead and answer your own question for the benefit
of others.

If you enjoy helping the community, consider answering questions yourself: it’s fun and
rewarding, and it can lead to benefits that are more tangible than an arbitrary reputation
score. If you have a question for which you’ve received no useful answers for two days,
you can start a bounty on the question, using your own reputation. The reputation is
withdrawn from your account immediately, and it is nonrefundable. If someone answers
the question to your satisfaction, and you accept their answer, they will receive the

Stack Overflow | 287

http://stackoverflow.com/help/formatting

bounty. The catch is, of course, you have to have reputation to start a bounty: the min‐
imum bounty is 50 reputation points. While you can get reputation from asking quality
questions, it’s usually quicker to get reputation by providing quality answers.

Answering people’s questions also have the benefit of being a great way to learn. I gen‐
erally feel that I learn more from answering other people’s questions than I do from
having my questions answered. If you want to really thoroughly learn a technology,
learn the basics and then start trying to tackle people’s questions on SO: at first you
might be consistently beat out by people who are already experts, but before long, you’ll
find that you are one of the experts.

Lastly, you shouldn’t hesitate to use your reputation to further your career. A good
reputation is absolutely worth putting on a résumé. It’s worked for me and, now that
I’m in the position of interviewing developers myself, I’m always impressed to see a good
SO reputation (I consider a “good” SO reputation anything over 3,000; five-digit repu‐
tations are great). A good SO reputation tells me that someone is not just competent in
their field, but they are clear communicators and generally helpful.

Contributing to Express
Express and Connect are open source projects, so anyone can submit “pull requests”
(GitHub lingo for changes you’ve made that you would like included in the project).
This is not easy to do: the developers working on these projects are pros and the ultimate
authority on their own projects. I’m not discouraging you from contributing, but I am
saying you have to dedicate some significant effort to be a successful contributor, and
you cannot take submissions lightly.

The actual process of contributing is pretty easy: you fork the project in your own
GitHub account, clone that fork, make your changes, push them back to GitHub, and
then create a pull request, which will be reviewed by someone on the project. If your
submissions are small, or are bug fixes, you may have luck simply submitting the pull
request. If you’re trying to do something major, you should communicate with one of
the main developers and discuss your contribution. You don’t want to waste hours or
days on a complicated feature only to find that it doesn’t fit with the maintainer’s vision,
or it’s already being worked on by someone else.

The other way to contribute (indirectly) to the development of Express and Connect is
to publish npm packages, specifically middleware. Publishing your own middleware
requires approval from no one, but that doesn’t mean you should carelessly clutter the
npm registry with low-quality middleware: plan, test, implement, and document, and
your middleware will enjoy more success.

If you do publish your own packages, here are the minimum things you should have:

288 | Chapter 23: Additional Resources

Package name
While package naming is up to you, you obviously have to pick something that isn’t
already taken, which can sometimes be a challenge. Unlike GitHub, npm packages
are not namespaced by account, so you’re competing globally for names. If you’re
writing middleware, it’s customary to prefix your package name with connect- or
express-. Catchy package names that don’t have any particular relation to what it
does are fine, but even better is a package name that hints at what it does (a great
example of a catchy but appropriate package name is zombie, for headless browser
emulation).

Package description
Your package description should be short, concise, and descriptive. This is one of
the primary fields that is indexed when people search for packages, so it’s best to be
descriptive, not clever (there’s room for some cleverness and humor in your doc‐
umentation, don’t worry).

Author/contributors
Take some credit. Go on.

License(s)
This is often neglected, and there is nothing more frustrating than encountering a
package without a license (leaving you unsure if you can use it in your project).
Don’t be that person. The MIT license is an easy choice if you don’t want any re‐
strictions on how your code is used. If you want it to be open source (and stay open
source), another popular choice is the GPL license. It’s also wise to include license
files in the root directory of your project (they should start with LICENSE). For
maximum coverage, dual-license with MIT and GPL. For an example of this in
package.json and in LICENSE files, see my connect-bundle package.

Version
For the versioning system to work, you need to version your packages. Note that
npm versioning is separate from commit numbers in your repository: you can up‐
date your repository all you like, but it won’t change what people get when they use
npm to install your package. You need to increment your version number and re-
publish for changes to be reflected in the npm registry.

Dependencies
You should make an effort to be conservative about dependencies in your packages.
I’m not suggesting constantly reinventing the wheel, but dependencies increase the
size and licensing complexity of your package. At a minimum, you should make
sure you aren’t listing dependencies that you don’t need.

Keywords
Along with description, keywords are the other major metadata used for people
trying to find your package, so choose appropriate keywords.

Contributing to Express | 289

http://bit.ly/mit_license
http://bit.ly/gpl_license
http://bit.ly/connect-bundle

Repository
You should have one. GitHub is the most common, but others are welcome.

README.md
The standard documentation format for both GitHub and npm is Markdown. It’s
an easy, wiki-like syntax that you can quickly learn. Quality documentation is vitally
important if you want your package to be used: if I land on an npm page and there’s
no documentation, I usually just skip it without further investigation. At a mini‐
mum, you should describe basic usage (with examples). Even better is to have all
options documented. Describing how to run tests goes the extra mile.

When you’re ready to publish your own package, the process is quite easy. Register for
a free npm account, then follow these steps:

1. Type npm adduser, and log in with your npm credentials.
2. Type npm publish to publish your package.

That’s it! You’ll probably want to create a project from scratch, and test your package by
using npm install.

Conclusion
It is my sincere hope that this book has given you all the tools you need to get started
with this exciting technology stack. At no time in my career have I felt so invigorated
by a new technology (despite the odd main character that is JavaScript), and I hope I
have managed to convey some of the elegance and promise of this stack. Though I have
been building websites professionally for many years, I feel that, thanks to Node and
Express, I understand the way the Internet works at a deeper level than I ever have
before. I believe that it’s a technology that truly enhances understanding, instead of
trying to hide the details from you, all while still providing a framework for quickly and
efficiently building websites.

Whether you are a newcomer to web development, or just to Node and Express, I wel‐
come you to the ranks of JavaScript developers. I look forward to seeing you at user
groups and conferences, and most important, seeing what you will build.

290 | Chapter 23: Additional Resources

http://daringfireball.net/projects/markdown/syntax
https://npmjs.org/signup

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
302 redirect, 87
303 redirect, 87

A
A records, 266
Accepts HTTP header, 92
Access-Control-Allow-Origin header, 172
action attribute, <form> tag, 86
admin interfaces, 159
aesthetics, 39
Airbrake, 140
AJAX, 278

form handling, using dedicated URL, 88
handling AJAX forms in Express, 90
results of calls, receiving as JSON, 81

Amazon S3 account, saving files to, 145
Amazon Simple Email Service (SES), 118, 121
Amazon Simple Notification Service (SNS), 140
Amazon Web Services (AWS), Elastic Beanstalk

(EB), 272
Amazon, cloud computing services, 268
analytics, 277
Angular framework, 3
Apache 2.0 license, 7
Apache, Node versus, 5
APIs

csurf middlewae and, 216

providing, 64
third-party, integrating with, 233–250

geocoding, 241–248
social media, 233–240
weather data, 248

app clusters, 132
adding cluster support to the website, 132
uncaught exceptions and, 136

app file, 21
naming, 21

app.all, 110
app.configure, 5
app.defaultConfiguration, 258
app.get, 22, 110
app.get(env), 5
app.post, 110
app.render, 258
app.set, 129
app.use, 23, 109, 258
app.use(app.router), removal for Express 4.0, 4
application failures, monitoring, 140
assert function, 41
asset versioning, 184, 190
asynchronous functions, debugging, 257
attribution, 30
authentication, 216

adding additional providers, 231
HTTPS and, 207

291

Passport module, 220–229
setting up, 224

passwords, problem with, 217
storing users in your database, 218
third-party, 217
versus authorization, 216
versus registration and user experience, 219

authorization
role-based, 229
verifying, 223
versus authentication, 216

authorization filter, creating, 161
Azure, 268

deployment to, 270
Git-based deployments, 269

B
Basavaraj, Veena, 69
bash shell, 10
basicAuth middleware, 114
behavior-driven development (BDD)

in Mocha, 43
Berkeley Software Distribution (BSD) license, 8
Berners-Lee, Tim, 157
Bert, William, 138
best practices, 29
binary downloads, 181
Bing

geocoding service, 241
Webmaster Tools, 276

Bitbucket, 270
blocks, 72
body-parser middleware, 4, 89, 114
boilerplate code, 19
Bootstrap, 20, 90

alert messages, 105
online documentation, 285

boutique hosting services, 268
breakpoints, 256
browserify, 187
browsers

CACert and, 210
caching, 182, 189
headless, 45, 50
information passed in request headers, 55
plugin showing status code of HTTP re‐

quests and redirects, 22
trusted root certificates, 208
viewing cookies, 103

viewing response headers, 56
BSD (Berkeley Software Distribution) license, 8
bulk email, sending, 121
bundling, 190

and minification, 190
skipping in development mode, 194
third-party libraries and, 195

C
CACert, 209
Cache-Control header, 189
caching

browser, 182, 189
refreshing server-side cache (example), 245
templates, 74

call stack, 256
Campaign Monitor, 122, 278
catastrophic errors, 171
CDNs (see content delivery networks)
certificate authorities (CAs), 208

commercial, purchasing a certificate from,
210

using a free CA, 209
certificate insurance, 212
certificates, 208

chained root certificates, avoiding, 210
domain, organization, and extended valida‐

tion, 211
generating your own, 208
single-domain, multisubdomain, multido‐

main, and wildcard, 211
Chai assertion library, 41
chained root certificates, 210
Chrome, 254

Ayima’s Redirect Path, 22
Postman - REST Client plugin, 173
viewing cookies, 103
viewing response headers, 56

Chromium project, Blink engine, 254
CI (see continuous integration)
client errors, 172
client-side JavaScript, 181

static resources in, 187
client-side templating with Handlebars, 81
client/server applications, web-based, 15
cloud computing

and treating web servers as generic com‐
modities, 5

services, 268

292 | Index

storage services, 143
cloud hosting, 266

SaaS, PaaS, and IaaS, 267
cloud persistence, 145
cluster.fork, 134
cluster.isMaster and cluster.isWorker properties,

134
CNAME records, 266
Coates, Danny, 253
code examples from this book, xviii
code reuse and refactoring, 279

middleware, 281
private npm registry, 280

code reviews, 275
Codio, 11
command prompt, 10

(see also terminals)
comments in Handlebars versus HTML, 72
Comodo Group, 210
compilation of JavaScript by Google’s V8, 5
compression, 182
ConEmu, 10
Connect library, 4

common middleware in, 114
contributing to, 288
installing and having available in applica‐

tions, 114
installing for Express version 4.0, 4

connect-bundle module, 194
connect-redis package, 156
connect-rest plugin, 176, 216
consoles, 10

(see also terminals)
Node Inspector, 255
using REPL and the console in debugging,

252
consumer key and consumer secret, 234
content delivery networks (CDNs), 183
content type, view engine returning text/html

by default, 26
Content-Type header, 23, 55

Internet media types, 56
context, view engine/Handlebars, 60, 71

accessing current context with . (period), 73
blocks and, 73
partials, 77
specifying a different template, 77
specifying layout: null, 77

template engine combining view, layout, and
context, 75

continuous integration (CI), 52
controllers (in model-view-controller pattern),

199
creating, 203

Cookie request headers, 100
cookie secret, 100
cookie-based sessions, 103
cookie-parser middleware, 101, 115
cookie-session middleware, 115
cookies, 99–103

examining, 103
externalizing credentials, 100
important points about cookies, 99
in Express, 101

names of, 102
specifying cookie options, 102

sessions and, 107
CORS (see cross-origin resource sharing)
createApplication function, 258
credentials

externalizing, 100
importing into your application, 101

Crockford, Douglas, 48, 170
cross-origin resource sharing (CORS), 172, 182
cross-page testing, 40, 44
cross-site HTTP requests, 172
cross-site request forgery (CSRF), 215
CRT file, 209
CSS, 181

bundling and minifying files, 192
online documentation, 285
static resources in, 185
static resources referenced in, 183
styling file upload button, 96

csurf middleware, 115, 215
Ctrl-S on Unix-like systems, 11
currency conversions, 156

D
Dahl, Ryan, 2
database persistence, 146

adding data, 153
creating schemas and models, 149
database connections with Mongoose, 148
for REST API, 173
performance and, 146
retrieving data, 151

Index | 293

seeding initial data, 150
setting up MongoDB, 147
using MongoDB for session storage, 154

database server, 7
databases

performance, NoSQL versus relational data‐
bases, 146

relational, 146
storing users in, 218
use with Node, 6

debugging, 251–260
asynchronous functions, 257
Express, 257
first principle of, 251
using Node Inspector, 253–257
using Node’s built-in debugger, 253
using REPL and the console, 252

default layout for views, 25
delegated authentication, 217
DELETE method, 55

DEL endpoint, 65
dependencies, listing for a project, 33
deployment, 269–272

manual Git-based deployment, 271
to Azure, 270
using Git, 269

Amazon deployment with Elastic Bean‐
stalk, 272

development and quality assurance (QA), 37
development mode

environment-specific configuration choices,
131

skipping bundling and minification, 194
using morgan for logging, 131

directory middleware, 115
distributed version control systems (DVCS), 30
DNS (Domain Name System, 262
document databases, 146
documentation, 30

online, 285
domain certificates, 211
domain names, 261
domain registration and hosting, 261–269

hosting, 266
traditional or cloud, 266

name servers, 265
security, 262
subdomains, 264
top-level domains (TLDs), 263

domains
specifying for REST API, 178
using to deal with uncaught exceptions, 136

Doyle, Arthur Conan, 251
dual licensed software, 8
Dust (template engine), 69
DVCS (distributed version control systems), 30
dynamic IP address, 266

E
EB (Elastic Beanstalk), 272
ECMA-262 ECMAScript language specification,

285
editors, 11

associating .handlebars and .hbs files with
HTML, 25

Elastic Beanstalk (EB), 272
elimination, 251
Emacs, 12
email, 117–127

formats, 119
headers, 118
HTML, 119
Nodemailer, 120
receiving, 118
sending

bulk email, 122
encapsulating email functionality, 125
HTML email, 122
images in HTML email, 123
SMTP, MSAs, and MTAs, 117
to multiple recipients, 121
using Nodemailer, 120
using views to send HTML email, 123

using as site monitoring tool, 127
using to monitor application failures, 140

Ember framework, 3
encapsulation, using Node modules, 35
encoding for forms, 86
encryption, 212

level of, certificates and, 210
endpoint, 64
entropic functionality, testing, 48
error-handling middleware, 110
errorhandler middleware, 115
errors

AJAX handler returning object with err
property, 279

failed tests in Mocha, 47

294 | Index

finding potential errors using linting, 40
in AJAX form handling, 92
invisible failures, 279
monitoring for your site, using email, 127
providing custom error page, 135
reporting in a REST API, 171
sending email using Nodemailer, 121

ESLint, 49
ETag header, 189
event-driven programming, 14
example website, xvii
exceptions, uncaught, handling, 135
execution environments, 129
expect function (Chai assertion library), 41
Expires header, 189
exporting functionality from Node modules, 35
Express, xv, 19–28

brief history of, 4
contributing to, 288
cookies in, 101
debugging, 257
defined, 2
disabling X-Powered-By response header, 56
documentation, 285
Express API documentation, 60
form handling, 89
form handling with

AJAX forms, 90
Handlebars support for, 74
HTTPS, enabling for your app, 212
installing, 20
JavaScript revolution, 1
licensing Node applications, 7
Meadowlark Travel example website, 20

ititial steps, 20
model-view-controller (MVC) pattern, im‐

plementing, 199–205
Node ecosystem, 6
Node, a new kind of server, 5
removal of middleware from, 114
request object, 57
response object, 59
REST API, 175
routing

subdomains, 160
saving time with

scaffolding, 19
source code, 61

static files and views, handling by middle‐
ware, 26

upgrading from version 3.0 to 4.0, 4
versions, 4
views and layouts, 24
views, dynamic content in, 27

express-logger, 131
express-namespace, 167
express-resource, 167
express-session middleware, 104, 115
express.Router(), 160
express3-handlebars package, 24
extended validation certificates, 211
externalizing credentials, 100

F
Facebook, 233

purchase of fb.com domain, 264
Facebook app, 224
Facebook authentication strategy, 224–231
federated authentication, 217
Ferraiuolo, Eric, 24
file uploads, 92

creating for Meadowlark Travel example
website, 93

jQuery, 94
file-based storage, problems with, 132
filesystem persistence, 143

storing files from photo contest (example),
144

fingerprinting resource bundles, 190
bundled and minified CSS and JavaScript

files, 193
flash messages, implemening using sessions, 105
flat files, 143
flexibility of Express, 3
FormData interface, 93
Formidable, 94
forms, 85–97

constructing HTML forms, 85
encoding, 86
form handler for vacation photo contest (ex‐

ample), 144
handling

AJAX forms, 90
deciding on response to send back to

browser, 87
different approaches to, 87
file uploads, 92

Index | 295

jQuery file upload, 94
with Express, 89

processing, 63
sending client data to the server, 85

fortune cookies for Meadowlark Travel example
website, 27
modularizing, 35
unit testing the fortune generator, 47

forward-facing proxy, 138
fragment in URLs, 54
fs (filesystem) module, 143
fs.readFile function, 17, 257
Fuel, 276
fully qualified domain name (FQDN), 209
functionality of your site, quality of, 38

G
-g (global) option, installing npm packages on

Windows, 11
Gemfury, 281
geocoding, 241–248

using Google API, 241
displaying a map, 245
geocoding your data, 242
improving client-side performance, 247
usage restrictions, 242

geographic coordinates, 241
geographic optimization, 183
GET method, 54, 85

GET endpoints, 64
in a REST API, 170
in REST API tests, 173

Git, 30
adding files to repository with git add, 31
committing changes with git commit, 32
creating .gitignore file, 31
creating a repository, 31
creating experimental branch, 33
deploying your application with, 269–272

automated deployments, 272
manual Git-based deployment, 271

following along using official repository, 32
how to use it in this book, 30

GitHub, 269
GlobalSign, 210
Go Daddy, 210
going live, 261–272

deployment, 269–272

domain registration and hosting, 261–269
DNS (Domain Name System), 262
hosting, 266–269
nameservers, 265
security, 262
subdomains, 264
top-level domains (TLDs), 263

Google
API key, 245
authenticating with, 231
cloud computing services, 268
Geocoding API, 241
PageSpeed, 277
V8, 5
Webmaster Tools, 276

Google Analytics (GA), 277
GPL (GNU General Public License), 7

combining with MIT license, 8
Grunt, 41

automating QA testing with, 49
compiling LESS to generate CSS, 186
grunt-lint-pattern module, 196
Gruntfile.js, configure plugins section, 51
Gruntfile.js, load plugins section, 51
installing globally, using npm, 13
plugins, 50
registering tasks in Gruntfile.js, 51
running, 52
using for bundling and minification, 191

H
Handlebars templating engine, 24, 69

(see also templating with Handlebars)
HAProxy, 138
Haraka, 118
hash in URLs, 54
hashres task, 193
<head> element in main.handlebars, modifying

to include test framework, 42
<header> element, 27
headers

email, 118
HTTP requests, 55
HTTP responses, 55

headers property (request object), 55
headless browser, 45, 50
Holowaychuk, TJ, 4, 5, 24
hosting, 262, 266–269

boutique hosting services, 268

296 | Index

cloud hosting
acronyms, 267
the behemoths, 268

traditional or cloud, 266
hosts file, 178
hosts, hostname in URLs, 53
HTML

email, 119
images in, 123
sending, 122
using views to send, 123

files for static resources, 16
generating using JavaScript, 67
in Content-Type response header, 55
online documentation, 285
rendering with Handlebars, 71
sending direct HTML response in form han‐

dling, 87
views, 24

HTML Email Boilerplate, 119, 124
HTML5

<header> element, 27
local storage, 103
online documentation, 285

HTML5 Boilerplate, 19, 80
HTTP

port 80 as default, 213
requests and responses (see request and re‐

sponse objects)
stateless protocol, 99

HTTP module, 61
HTTP status codes

browser plugin showing, 22
error reporting in a REST API, 171
view engine returning 200 status code by de‐

fault, 26
HTTP verbs, 22, 54

in a REST API, 170
method-override middleware, 116
route handlers for, 110
testing our REST API, 173

http.IncomingMessage object, 57
http.ServerResponse object, 59
HTTPS, 207

enabling for your Express app, 212
generating your own certificate, 208
getting certificate from free certificate au‐

thority, 209
ports and, 213

proxies and, 214
purchasing a certificate, 210

hybrid (multipage and single-page) web applica‐
tions, 3

I
IA (see information architecture)
IaaS (Infrastructure as a Service), 267
IIS (Internet Information Services), Node ver‐

sus, 5
ImageMagick, 95
images

background image for a site, 186
in HTML email, 123
shopping cart, on the client, 188
small, combining into a single sprite, 182

information architecture (IA), 157
suggestions for designing lasting IA, 158

Infrastructure as a Service (IaaS), 267
installer (standalone) for node, 10
integration testing, 39
Internet Corporation for Assigned Names and

Numbers (ICANN), 264
Internet media types, 56
invisible failures, preventing, 279
IP addresses, 261

static and dynamic, 266
issue tracking, 275

J
Jade, 24, 69
JavaScript

bundling and minifying files, 192
client-side, as static resource, 181
credentials.js file, 101
failure of, fallback for, 278
floating-point numbers and financial com‐

putations, 149
generating HTML with, 67
in Node, 6
JavaScript engine used by Node (Google V8),

5
logic testing (fortune generator example), 47
misconceptions about, 2
online documentation, 285
promise of all-JavaScript technology stack, 1
resources for learning, xv
server-side containers, 6

Index | 297

specifying files to be linted for JSHint, 51
static resources in client-side JavaScript, 187
static resources in server-side JavaScript, 187
static resources referenced in code, 183
utilities, installing globally, using npm, 13

JavaScript stack, 7
Jenkins (CI server), 52
JetBrain (CI server), 52
Joyent, 268
jQuery

dynamically changing shopping cart image,
188

File Upload middleware, 94
documentation, 97

not included in bundles, 195
online documentation, 285
using to test assertions, 42

JSHint, 48
Grunt plugin for, 50
specifying JavaScript files to be linted, 51

JSLint, 48
JSON, 170

configuration file for connect-bundle, 194
receiving results of AJAX calls as, 81
returning in AJAX form handling, 92

json (middleware), 114
Just in Time (JIT) compilation, 5

K
key-value databases, 146
keyword monitors, 139
Kovalyov, Anton, 48

L
LAMP stack (Linux, Apache, MySQL, and

PHP), 6
Last-Modified header, 189
LastPass, 218
layouts, 25, 74

adding header to every page, 27
modifying to conditionally include test

framework, 42
referencing bundled and minified files, 193
templating engine rendering view with a lay‐

out, 75
using (or not) in Express, 76

lead tracking, prioritizing, 277

LESS, 185
linking in static mapper as LESS custom

function, 186
lib/application.js (Express source code), 61
lib/express.js (Express source code), 61
lib/request.js (Express source code), 61
lib/response.js (Express source code), 61
lib/router/route.js (Express source code), 61
libraries

bundling third-party libraries, 195
third-party, 41

licensing for Node applications, 7
link checking, 40, 49
LinkChecker, 49

configuring grunt-exec plugin to run, 51
no Grunt plugin for, 50

LinkedIn, templating language, 69
links, testing in page-specific test, 43
linting, 40, 48

catching unmapped statics, 195
specifying JavaScript files for JSHint, 51

Linux
commands in background and foreground,

254
installing Node, 9
Node on, 6
package managers, Node installation and, 9
shells, 10

Linux VM, using for development on Windows,
10

Litmus, email testing, 119
load testing, 140
loadtest, 140
localhost, 13, 178
logging

adding to an application, 131
console, 253
errors, 279
logger middleware, 259

logic testing, 40, 47
configuring Mocha plugin for Grunt, 51

logic versus presentation, 39
longevity plan, 273
loopback address, IPv4 or IPv6, 13
lossless size reduction, 182
lossy size reduction, 182

298 | Index

M
Mac OS X

creating .gitignore file, 31
installing Node, 9
Node on, 6
running commands in background or fore‐

ground, 254
shells, 10

Mail Submission Agents (MSAs), 117
errors sending email, 121

Mail Transfer Agents (MTAs), 117
MailChimp

article on writing HTML email, 119
bulk email service, 122

main.handlebars file, modifying <head> ele‐
ment to include test framework, 42

maintenance, 273–283
code reuse and refactoring, 279
principles of

doing routine QA checks, 276
don’t procrastinate, 276
exercising good hygiene, 275
longevity plan, 273
monitoring analytics, 277
optimizing performance, 277
preventing invisible failures, 279
prioritizing lead tracking, 277
using an issue tracker, 275
using source control, 275

maps, 241
(see also geocoding)
displaying geocoded dealers map (example),

245
Markdown, 34, 287
master pages, 25
MDN (Mozilla Developer Network), 285
Meadowlark Travel example website, xvii, 20

creating file upload for photo contest, 93
cross-page testing, 44
initial steps, 20
modifying to allow running tests, 41

meadowlark.js file (example), 21
defining array of fortune cookies, 27
linting with JSHint, 49

MEAN stack (Mongo, Express, Angular, and
Node), 6

Mercurial, 30, 269
method-override middleware, 116

Microsoft
.NET, 2
Azure cloud storage, saving files to, 145
cloud computing services, 268
IIS (Internet Information Services), 5
model-view-view model (MVVM), 199
PowerShell, 10
Visual Studio, 12

middleware, 4, 109–116
adding in Express, 23, 258
common, 114
defined, 109
function exported by a module, 112
handling static files and views in Express, 26
important points about middleware and

route handlers, 110
injecting weather data into res.locals.partials

object, 78
jquery-file-upload-middleware package, 95
logger, 259
module exporting an object containing

properties, 113
requirement to be a function, 112
reusable, packaging, 281

module exposing a function returning
middleware, 281

module exposing an object constructor,
282

module exposing an object containing
middleware, 282

module exposing middleware function
directly, 281

route handlers, 160
session, 259
static, 259
third-party, 116

migration guide, upgrading Express 3.0 to 4.0, 5
MIME (Multipurpose Internet Mail Extensions)

types, 56
minification, 190

skipping in development mode, 194
MIT license, 7

combining with GPL, 8
Mocha, 41

configuring cafemocha plugin for Grunt, 51
Grunt plugin for, 50
multiple interfaces controlling style of your

tests, 43
using for cross-page testing, 47

Index | 299

using for logic testing, 47
model-view-controller (MVC) pattern, 24

implementing in Express, 199–205
controllers, 203
models, 200
view models, 201

model-view-view model (MVVM), 199
models, 147, 200

creating, 149, 153
creating for users, 218
defined, 199

modules
declaring routes in, 164
exposing a function returning middleware,

281
exposing an object constructor, 282
exposing an object containing middleware,

282
exposing middleware function directly, 281

MongoDB, 7, 146, 200, 219
retrieving data from, 151
seeding initial data, 150
setting up, 147
using for session storage, 154

MongoHQ, 147
MongoLab, 147
Mongoose, 147, 200

creating dealer model, 242
creating model for users, 218
creating schema and model for REST API

data store, 173
creating schemas and models, 149
database connections with, 148
upserts, 154

monitor utility for automatic server restarts, 41
monitoring your website, 139

application failures, 140
third-party uptime monitors, 139

morgan middleware, 116
using for logging in development environ‐

ment, 131
Mozilla Developer Network (MDN), 285
MSAs (Mail Submission Agents), 117

errors sending email, 121
MTAs (Mail Transfer Agents), 117
multidomain certificates, 211
multimedia, 181
multipage web applications, 3
multipart form processing, 93

multipart middleware (deprecated), 115
multipart/form-data encoding, 87

specifying for file uploads, 94
multithreading through server parallelism, 5
Mustache templating engine, 24, 67
MVVM (model-view-view model), 199

N
name attribute in <input> fields, 86
nameservers, 265
next function, 110
Nginx, 138

setting X-Forwarded-Proto header, 214
Ninjitsu, 281
Node, xv, 2

app clusters, support for, 132
apps, 5
components of, 6
Connect library, 4
debugger, 253
documentation, 61, 285
filesystem persistence, 143
getting started with, 9–18

editors, 11
event-driven programming, 14
installing Node, 9
npm package manager, 12
routing, 15
serving static resources, 15
simple web server, 13
supporting multiple versions of Node, 13
using the terminal, 10

licensing for applications, 7
new kind of web server, 5
param method of request object, 57
platform-independence of, 6
proxy servers, 138
request object, 57
response object, 59
support for scaling out, 132

Node Inspector, 253–257
available actions, 255
setting breakpoints, 256

Node modules, 34
exporting functionality from, 35
importing, 34
official documentation site, 36

Nodejitsu, 268

300 | Index

Nodemailer, 120
HTML or plaintext email, 122
sending email, 120

to multiple recipients, 121
nodemon, 41
NODE_ENV, 129
node_modules directory, 20, 33
NoSQL databases, 6, 146
notification services, 140
npm (package manager), 12

-g (global) option, 11
install command, 13
installing Express, 20
managing Express project dependencies and

project metadata, 20
online documentation, 286
packages your project relies on, 33
private npm registries, 280

npm init command, 20

O
object document mappers (ODMs), 147
online documentation, 285
OpenSSL, 208

generating private key and public key certifi‐
cate, 209

Opera, 254
operating systems

hosts file, 178
installing ImageMagick, 95
installing Node, 9
Node on, 6
ports, 213
Unix/BSD system or Cygwin, modifying ex‐

ecution environment, 130
organization certificates, 211
OS X (see Mac OS X; operating systems)

P
PaaS (Platform as a Service), 267
package managers

installing Node via, 9
npm, 12

package.json file, 20, 33
main property, 21
project metadata, 34

page testing, 40
embedding tests in the page, 41

global tests, 43
Grunt and, 50
page-specific test, 43

PageSpeed, 277
parameters, request object, 57
partials, 77

organizing into subdirectories, 79
partials object, 77
Passport, 220–229

setting up, 224
passwords

problem with, 217
third-party authentication and, 220

path in URLs, 54
PEM (Privacy-enhanced Electronic Mail) file,

209
performance

and handling of static resources, 182
databases, NoSQL versus relational, 146
optimizing, 277
social media plugins and, 233

periodicals, 286
persistence, 143–156

cloud storage, 145
database, 146

adding data, 153
creating schemas and models, 149
database connections with Mongoose,

148
performance and NoSQL databases, 146
retrieving data, 151
seeding initial data, 150
setting up MongoDB, 147
using MongoDB for session storage, 154

filesystem, 143
website designed to be scaled out, 132

personally identifiable information (PII), securi‐
ty for, 207

PhantomJS, 45
PHP, templating in, 67
Pilgrim, Mark, 285
Pingdom, 139
pipeline, 109
Platform as a Service (PaaS), 267
platform-independence of Node, 6
PNG images, 182
PORT environment variable, 22
ports, 213

port in URLs, 54

Index | 301

POST method, 54, 85
bodies of POST requests, 56
in a REST API, 170
specifying in the <form> tag, 86
using for form submission, 85

Postman - REST Client Chrome plugin, 173
PowerShell, 10
presentation, logic versus, 39
private key, generating, 209
private npm registries, 280
process.nextTick, 136
processing forms, 63
procrastination, 276
production concerns, 129–141

environment-specific configuration, 130
execution environments, 129
monitoring your website, 139

application failures, 140
third-party uptime monitors, 139

scaling your website, 131
handling uncaught exceptions, 135
scaling out with app clusters, 132
scaling out with multiple servers, 138

stress testing, 140
production mode, NODE_ENV, 130
profile first, then optimize, 277
project dependencies, 33
project files, keeping separate from web app

files, 20
project metadata, 34
promises, 239
protocol in URLs, 53
protocol relative URLs, 184
proxy servers, 138

HTTPS and, 214
informing Express of, 139

public key certificates, 208
(see also certificates)
generating your own, 208

PUT method
in a REST API, 170
PUT endpoint, 65

PuTTY, 11

Q
quality assurance, 37–52

automating testing with Grunt, 49
continuous integration (CI), 52
cost of, and return on investment model, 38

cross-page testing, 44
doing routine QA checks, 276
in small or budget-conscious organizations,

37
link checking, 49
linting, 48
logic testing, 47
logic versus presentation, 39
overview of techniques, 40
page testing, 41
QA department in large or well-funded or‐

ganizations, 37
running your server, 40
types of tests, 39

query middleware, 116
querystring in URLs, 54

R
random functionality, testing, 48
random password generator, 100
Razor template engine, 79
reach, 38
read-eval-print loop (REPL), 252
README.md file, 20, 34
recoverable server errors, 172
red light, green light testing, 47
redirects

browser plugin showing, 22
for flash message display, 106
responding to form submissions, 87

choices of where redirection points, 88
Redis, 156
redundancy, 278
registration, 219
regular expressions, route paths and, 162
relational database management system

(RDBMS), 146
relational databases

interfaces for Node, 6
performance, 146

rendering content, 61
representational state transfer (see REST APIs)
req.accepts property, 92
req.body, 64
req.cookie method, 61
req.cookies, 102
req.query, 57, 61, 64
req.session, 61, 104
req.session.authorized, 161

302 | Index

req.session.flash, 106
req.signedCookies, 61, 102
req.xhr property, 92, 106
request and response objects, 53–66

getting more information, 60
HTTP request methods, 54
Internet media types, 56
most frequently used functionality in Ex‐

press, 61
processing forms, 63
providing an API, 64
rendering content, 61

parameters, 57
request body, 56
request extensions, 258
request headers, 55
request object, 57
response extensions, 259
response headers, 55
response object, 59
sending a response, 258
sessions and, 104
URLs, 53

requests, reducing number of, 182
require function, 34
require statement, running a script as a module

via, 133
res.cookie, 101
res.format, 92
res.locals object, 42, 60

function to inject special offers data into, 161
res.locals.flash, 106
res.locals.partials object, middleware to inject

weather data into, 78
res.locals.showTests property, 42
res.render method, 61, 125
res.send method, 61, 111, 258
res.set method, 23
res.status method, 23
res.type method, 23
resources, additional, 285–290
response-time middleware, 116
REST APIs, 159, 169–179

cross-origin resource sharing (CORS), 172
csurf middleware and, 216
data store, 173
error reporting, 171
JSON and XML, 170
planning an API, 170

testing our API, 173
using a REST plugin, 176
using a subdomain, 178
using Express to provide, 175

REST functions, 177
rest.get, 174
rest.put, 174
RESTful services, 169
restler package, 173
reverse proxy, 138
role-based authorization, 229
route handlers, 110

as middleware, 160
routers

controllers (MVC) versus, 203
explicit linking into the pipeline, 109

routing, 15, 17, 157–167
adding routes in Express, 22

order of, 23
adding routes to new views in Express, 26
automatically rendering views, 166
declaring routes in a module, 164
defined, 157
grouping route handlers logically, 165
lib/router/route.js in Express source, 61
organizing routes, 163
route handlers as middleware, 160
route organization, other approaches, 167
route parameters, 162
route paths and regular expressions, 162
routers versus controllers, 203
routes and SEO, 159
static middleware serving static files, 27
subdomains, 159

Ruby, 2
scaffolding, 19
Sinatra framework and Express, 4

Ruby on Rails, scaffolding utility, 19

S
SaaS (Software as a Service), 267
same-origin policy, 172
Sass, 185
scaffolding, 19
scaffolding utility (Express), 19
scaling out, 131
scaling up, 131
scaling your website, 131

handling uncaught exceptions, 135

Index | 303

scaling out with app cllusters, 132
scaling out with multiple servers, 138

scaling, filesystem persistence and, 143
schemas (database), 147

creating, 149, 153
scope variables, 256
<script> elements in the <head>, putting HTML

in, 81
scripts, running directly or included as a mod‐

ule via require statement, 133
search engine optimization (SEO), 38, 276

routes and, 159
sections, 79
security, 207–232

authentication, 216
adding additional providers, 231
Passport module, 220–229
passwords, problem with, 217
storing users in your database, 218
third-party, 217
versus authorization, 216
versus registration and user experience,

219
cross-site request forgery (CSRF), 215
domain, 262
HTTPS, 207

enabling for Express apps, 212
generating your own certificate, 208
ports, 213
proxies and, 214
purchasing a certificate, 210
using a free certificate authority, 209

role-based authorization, 229
Selenium, 45
semver (semantic versioner) in npm, 34
SendGrid, 118

limits on number of email recipients, 121
Sentry, 140
server errors, 17
server-side JavaScript, 1

static resources in, 187
server-side templates, 74
servers

continuous integration (CI), 52
information passed in response headers, 55
running in production mode, 130
running your server, 40

serveStaticFile helper function, 17
session-mongoose package, 154

sessions, 103–107
cookie-based, 103
memory stores, 103
middleware, 259
preferring over cookies, 100
storing, using MongoDB, 154
using, 104
using to implement flash messages, 105
when to use, 106

Set-Cookie header, 100
setTimeout, 135
shells, 10

learning to use, 11
signed cookies, 99, 102
SimpleSMTP, 118
Sinatra framework, 4
single threading (Node), 5
single-domain certificates, 211
single-page web applications, 3
Sinopia, 280
Site24x7, 139
SMTP (Simple Mail Transfer Protocol), 117
social media, 233–240

integration with
social media plugins and performance,

233
Twitter, 234–240

Software as a Service (SaaS), 267
source control, 275
spoofing, 118
SpritePad, 182
sprites, 182
SSL certificates, 208
Stack Overflow (SO), 286
stateless protocols, 99
static content, 181–197

bundling and minification, 190
skipping in development mode, 194

changing, 190
future-proofing your website, 182

static mapping, 183
static resources in CSS, 185
static resources in views, 185

performance considerations, 182
serving static resources, 189
static resources in server-side JavaScript, 187

static IP address, 266
static middleware, 26, 114, 116, 259

304 | Index

static resources
serving with Node, 15
views versus, 24

static-favicon middleware, 116
storage failure, total, 278
stress testing, 140
Stylus, 185
subdomains, 53, 159, 264

using for REST APIs, 178
Subversion, 269
Symantec, 210

T
technical debt, 276
templating

defined, 68
what it isn’t, 67
with Jade, 69

templating engine, 7
choosing, criteria for, 69
decoupled from programming language, 67

templating with Handlebars, 67–83
basics, 71
blocks, 72
client-side templating, 81

loading Handlebars, 81
comments, 72
perfecting your templates, 80
server-side templates, 74
using partials, 77
views and layouts, 74

rendering a view with a layout, 75
sections, 79
using layouts in Express, 76

terminals, using, 10
Unix-like systems, Ctrl-S, 11

test-driven development (TDD) in Mocha, 43
testing, 275

types of, 39
writing tests before implementing features,

47
Themeforest, 80
themes, third-party, 80
top-level domains (TLDs), 53, 263
Travis CI, 52
trusted root certificates, 208
Twitter, 233

creating apps for, 234–237
rendering tweets, 237–240

Twitter Bootstrap, 20, 90
(see also Bootstrap)

U
uglify task, 192
uncaught exceptions, handling, 135

using domains, 136
uncaughtException event, 136
Underscore, 202
unit testing, 39

unit test for fortune generator (example), 47
Unix-like systems, Ctrl-S, 11
upserts, 154
UptimeRobot, 139
URL encoding, 86
URL-encoded body parsing, 259
urlencoded (middleware), 114
URLs

design suggestions for lasting IA, 158
designing for website content, 157
fragment (or hash), 54
host, 53
path, 54
port, 54
protocol, 53
protocol relative, using to reference static re‐

sources, 184
querystring, 54
subdomains, 159

usability, 38
user uploads, never trusting, 145

V
version control, 30, 275
versioning, semver in npm, 34
vhost middleware, 116, 178
vi (editor), 11
vi mode (editors), 11
view models, 152, 199

creating, 201
views, 24, 74

adding routes to, in Express, 26
automatic view-based route handlers, 164
caching, 74
creating view pages for Meadowlark Travel

website (example), 25
defined, 199
dynamic content in, 27

Index | 305

handling by middleware, in Express, 26
layout, 25
modifying to conditionally include test

framework, 42
rendering automatically, 166
rendering using configured templating en‐

gine, 60
rendering with a templating engine, 75
rendering with Handlebars

using layouts in Express, 76
using partials, 77
using sections, 79

static resources in, 185
static resources referenced in, 183
unmapped database objects and, 152
using to send HTML email, 123

vim editor, associating .handlebars and .hbs files
with HTML, 25

virtual machines (VMs), 10
VirtualBox, 10
virtualization, 10, 267
Visual Studio as JavaScript editor, 12

W
watch expressions, 256
weather data, current

creating middleware to inject data into
res.locals.partials object, 78

function to get weather data, 78
using partials for weather widget in Handle‐

bars, 77
using Weather Underground API, 248

web application framework, Express as, 3
web applications

creating with JavaScript, Node, and Express,
xv

defined, 3
mltipage and hybrid, 3

single-page, 3
web page for this book, xix
web servers

Node versus other web servers, 5
writing with Node, 13

“Hello World” example, 14
web services, 169

(see also REST APIs)
WebFaction, 265, 269
Webmaster Tools, 276
websites

launching (see going live)
Meadowlark Travel (example), xvii
stacks that they’re built on, 6

widgets, 77
wildcard certificates, 211
wildcards in Express routes, 23
Wilson, Mike, 276
Windows systems

editors, 12
installing Node, 9
Node on, 6
OpenSSL on, 209
using a terminal and shell, 10

WrapBootstrap, 80

X
X-Forwarded-Proto header, 214
X.509 certificates, 208
xkcd password generator, 100
XML, 170
XMLHttpRequest Level 2’s FormData interface,

93

Z
Zombie, 45
zsh shell, 10

306 | Index

	4cb7c7edad7181dc2fa767a70a947263203f76b5e0819f0faccb84b4a0d8425b.pdf
	Web Development with Node and Express
	Table of Contents

	Web Development with Node and Express
	Foreword

	Web Development with Node and Express
	Preface
	Who This Book Is For
	How This Book Is Organized
	Example Website
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Express
	The JavaScript Revolution
	Introducing Express
	A Brief History of Express
	Upgrading to Express 4.0
	Node: A New Kind of Web Server
	The Node Ecosystem
	Licensing

	Chapter 2. Getting Started with Node
	Getting Node
	Using the Terminal
	Editors
	npm
	A Simple Web Server with Node
	Hello World
	Event-Driven Programming
	Routing
	Serving Static Resources

	Onward to Express

	Chapter 3. Saving Time with Express
	Scaffolding
	The Meadowlark Travel Website
	Initial Steps
	Views and Layouts
	Static Files and Views
	Dynamic Content in Views
	Conclusion

	Chapter 4. Tidying Up
	Best Practices
	Version Control
	How to Use Git with This Book
	If You’re Following Along by Doing It Yourself
	If You’re Following Along by Using the Official Repository

	npm Packages
	Project Metadata
	Node Modules

	Chapter 5. Quality Assurance
	QA: Is It Worth It?
	Logic Versus Presentation
	The Types of Tests
	Overview of QA Techniques
	Running Your Server
	Page Testing
	Cross-Page Testing
	Logic Testing
	Linting
	Link Checking
	Automating with Grunt
	Continuous Integration (CI)

	Chapter 6. The Request and Response Objects
	The Parts of a URL
	HTTP Request Methods
	Request Headers
	Response Headers
	Internet Media Types
	Request Body
	Parameters
	The Request Object
	The Response Object
	Getting More Information
	Boiling It Down
	Rendering Content
	Processing Forms
	Providing an API

	Chapter 7. Templating with Handlebars
	There Are No Absolute Rules Except This OneTo paraphrase my friend and mentor, Paul Inman.
	Choosing a Template Engine
	Jade: A Different Approach
	Handlebars Basics
	Comments
	Blocks
	Server-Side Templates
	Views and Layouts
	Using Layouts (or Not) in Express
	Partials
	Sections
	Perfecting Your Templates
	Client-Side Handlebars

	Conclusion

	Chapter 8. Form Handling
	Sending Client Data to the Server
	HTML Forms
	Encoding
	Different Approaches to Form Handling
	Form Handling with Express
	Handling AJAX Forms
	File Uploads
	jQuery File Upload

	Chapter 9. Cookies and Sessions
	Externalizing Credentials
	Cookies in Express
	Examining Cookies
	Sessions
	Memory Stores
	Using Sessions

	Using Sessions to Implement Flash Messages
	What to Use Sessions For

	Chapter 10. Middleware
	Common Middleware
	Third-Party Middleware

	Chapter 11. Sending Email
	SMTP, MSAs, and MTAs
	Receiving Email
	Email Headers
	Email Formats
	HTML Email
	Nodemailer
	Sending Mail
	Sending Mail to Multiple Recipients

	Better Options for Bulk Email
	Sending HTML Email
	Images in HTML Email
	Using Views to Send HTML Email
	Encapsulating Email Functionality

	Email as a Site Monitoring Tool

	Chapter 12. Production Concerns
	Execution Environments
	Environment-Specific Configuration
	Scaling Your Website
	Scaling Out with App Clusters
	Handling Uncaught Exceptions
	Scaling Out with Multiple Servers

	Monitoring Your Website
	Third-Party Uptime Monitors
	Application Failures

	Stress Testing

	Chapter 13. Persistence
	Filesystem Persistence
	Cloud Persistence
	Database Persistence
	A Note on Performance
	Setting Up MongoDB
	Mongoose
	Database Connections with Mongoose
	Creating Schemas and Models
	Seeding Initial Data
	Retrieving Data
	Adding Data
	Using MongoDB for Session Storage

	Chapter 14. Routing
	Routes and SEO
	Subdomains
	Route Handlers Are Middleware
	Route Paths and Regular Expressions
	Route Parameters
	Organizing Routes
	Declaring Routes in a Module
	Grouping Handlers Logically
	Automatically Rendering Views
	Other Approaches to Route Organization

	Chapter 15. REST APIs and JSON
	JSON and XML
	Our API
	API Error Reporting
	Cross-Origin Resource Sharing (CORS)
	Our Data Store
	Our Tests
	Using Express to Provide an API
	Using a REST Plugin
	Using a Subdomain

	Chapter 16. Static Content
	Performance Considerations
	Future-Proofing Your Website
	Static Mapping
	Static Resources in Views
	Static Resources in CSS

	Static Resources in Server-Side JavaScript
	Static Resources in Client-Side JavaScript
	Serving Static Resources
	Changing Your Static Content
	Bundling and Minification
	Skipping Bundling and Minification in Development Mode

	A Note on Third-Party Libraries
	QA
	Summary

	Chapter 17. Implementing MVC in Express
	Models
	View Models
	Controllers
	Conclusion

	Chapter 18. Security
	HTTPS
	Generating Your Own Certificate
	Using a Free Certificate Authority
	Purchasing a Certificate
	Enabling HTTPS for Your Express App
	A Note on Ports
	HTTPS and Proxies

	Cross-Site Request Forgery
	Authentication
	Authentication Versus Authorization
	The Problem with Passwords
	Third-Party Authentication
	Storing Users in Your Database
	Authentication Versus Registration and the User Experience
	Passport
	Role-Based Authorization
	Adding Additional Authentication Providers

	Conclusion

	Chapter 19. Integrating with Third-Party APIs
	Social Media
	Social Media Plugins and Site Performance
	Searching for Tweets
	Rendering Tweets

	Geocoding
	Geocoding with Google
	Geocoding Your Data
	Displaying a Map
	Improving Client-Side Performance

	Weather Data
	Conclusion

	Chapter 20. Debugging
	The First Principle of Debugging
	Take Advantage of REPL and the Console
	Using Node’s Built-in Debugger
	Node Inspector
	Debugging Asynchronous Functions
	Debugging Express

	Chapter 21. Going Live
	Domain Registration and Hosting
	Domain Name System
	Security
	Top-Level Domains
	Subdomains
	Nameservers
	Hosting
	Deployment

	Conclusion

	Chapter 22. Maintenance
	The Principles of Maintenance
	Have a Longevity Plan
	Use Source Control
	Use an Issue Tracker
	Exercise Good Hygiene
	Don’t Procrastinate
	Do Routine QA Checks
	Monitor Analytics
	Optimize Performance
	Prioritize Lead Tracking
	Prevent “Invisible” Failures

	Code Reuse and Refactoring
	Private npm Registry
	Middleware

	Conclusion

	Web Development with Node and Express
	Chapter 23. Additional Resources
	Online Documentation
	Periodicals
	Stack Overflow
	Contributing to Express
	Conclusion

	Index

