

Zakaria Ziouziou

Full-stack e-commerce application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Mobile Solutions

Bachelor’s Thesis

9 February 2023

Contents

1 Introduction 1

1.1 Process and project structure 2

2 Full-stack web development 3

2.1 Security 5

3 Mern stack 6

3.1 Node Js 7

3.2 Express Js 7

3.3 MongoDB 8

3.4 React Js 8

3.5 Firebase 9

4 Client side 9

4.1 Project structure 10

4.2 Pages and components 13

 Authentication 14

 Shop 16

 Sale 17

 Designers 19

 Categories 21

 Profile 23

4.3 Payment gateway 27

5 Backend side 29

5.1 Project structure 30

5.2 Mongoose models 31

 Admin model 31

 Product model 32

 User model 33

 Order model 34

5.3 Controllers 35

 Admin controller 36

 Product controller 37

 User controller 38

 Order controller 40

5.4 Routes 41

 Admin routes 42

 Product routes 43

 User routes 45

 Order route 46

6 Discussion 47

6.1 Evaluation 47

6.2 Improvements 47

7 Conclusion 50

References 51

List of Abbreviations

DBMS: Database management system. Software for maintaining, querying

and updating data and metadata in a database.

DB: Database. An organized collection of structured information, or data,

typically stored electronically in a computer system.

ORM: Object-relational mapping. The set of rules for mapping objects in a

programming language to records in a relational database, and vice

versa.

UI: User interface refers to the screens, buttons, toggles, icons, and

other visual elements that the user interacts with when using a

website or an app.

API: API is a mechanism that enables two software components to

communicate with each other using a set of definitions and protocols.

DB: Database. An organized collection of structured information, or data,

typically stored electronically in a computer system.

XXS: Cross-Site Scripting is a security flaw found in some Web

applications that enables unauthorized parties to cause client-side

scripts to be executed by other users of the Web application.

SQL: Structured Query Language is a domain-specific language used in

programming and designed for managing data held in a relational

database management system.

CSRF: Cross-Site Request Forgery is an attack that forces authenticated

users to submit a request to a Web application against which they

are currently authenticated.

1

1 Introduction

In the past decades, humans have used several means for trading and

purchasing goods starting from modest shops to big malls and open markets.

And as a result of the booming population increase rate, people have shown a

growing demand for both national and international services and goods, where

clients are facing a lack of resources and local offers or high-cost goods due to

competition between big vendors, and here the role of e-commerce websites can

be noticed as a solution for both consumers and manufacturers. At the same

time, there have been some social media platforms integrating the same idea in

their business model by providing a seamless experience and benefits. However,

due to the original nature of social media, the user is always losing attention when

shopping due to entertainment subjects broadcasted on platforms and the lack of

an online store shopping experience.

The goal of this thesis is to discover the great potential of the MERN technology

for building a complete full-stack E-commerce web application using Node JS,

Express JS, MongoDB, Firebase and React JS, as they have gained wide

popularity amongst web and mobile developers as they provide a highly scalable

and powerful solution for building full-stack applications, at the same time

providing a dynamic usage across different platforms.

The primary objective of this full-stack application is to deliver a hassle-free online

shopping experience to its users, with an extensive product range, uncomplicated

payment options, and a user-friendly interface. The application targets a

consumer audience of diverse ages and backgrounds who prioritize convenience

and prefer to shop from the comfort of their homes. Additionally, it caters to

individuals with busy lifestyles who may find it challenging to visit physical stores

in person.

As this study will go through the detailed process of developing a full-stack e-

commerce web application, by simplifying and splitting the different stages

starting from where and how the data is stored in the backend, the

2

implementation of the front-end part which will interact with the client actions and

the communication with the backend to execute the desired operations and

queries.

1.1 Process and project structure

To build an e-commerce full-stack application the developer has to go through a

strict process starting by defining the technology stacks that going to be used

throughout the back-end and frontend next to other necessary services and

software tools to develop the application in a good shape and support various

features.

Figure 1. Project process structure

The above figure represents the process in which this project has been carried

on. Firstly, services were researched to understand which options to integrate in

the current e-commerce application. Lastly, when services are defined, the

project implementation can be divided into two parts frontend and back-end to a

well-structured and clear implementation process.

3

2 Full-stack web development

Full-stack web development is a software development approach that has grown

in popularity in the last decade, as it permits developers to build and maintain

websites and web platforms, as it combines both the frontend part that interacts

with the client and back-end side which stores and takes care of the logical layer

for handling the data of the application [1.], which puts full-stack web developers

in a high necessity to have knowledge and experience in both front-end and back-

end technologies. They must also understand how to integrate both layers to craft

a seamless web application. This requires knowledge of various web

development tools and technologies, including web servers, application servers,

databases, and APIs

In addition to technical skills, full-stack web developers also need to have strong

problem-solving skills and a team player spirit, as they need to communicate

effectively with all the project partners to ensure that the final product is delivered

on time, meets the exact project features and delivers useful needs to users.

On the other hand, a full-stack developer has an advantage to work on a project

from beginning to end, which allows for greater flexibility and efficiency.

Additionally, full-stack developers can make changes to both the front-end and

back-end components of a web application, which can enhance the overall

functionality and user experience. Another benefit of being a full-stack developer

is the ability to work with various web development technologies, including

programming languages, frameworks, and databases, which allows for greater

adaptability and versatility. Due to these advantages, full-stack web development

is in high demand in the tech industry.

4

Figure 2. Structure of a full-stack application

As shown in the figure above, the presentation layer, or as known as (the front

end) is most of the application that the user interacts with, and it is responsible

part for displaying all the information and data in a more readable and user-

friendly way. In our case, we will be using React JS.

The second part in the figure indicates the application server-side layer, which

handles the logic of connecting the Database part with the front-end part, as it

also specifies routes that the front end can use for any specific query, in which

we will be using Node JS and Express JS.

The last part shown in the picture demonstrates the Database layer, which holds

and stores all the information and data that the application is using. And for our

case, we will be using Firebase and MongoDB.

5

2.1 Security

Full-stack web applications are vulnerable to security threats, as organisations

always thrive to provide new features to their customer base or audience on a

wide range over a shared network, as a result all the shared data is subject to

an unauthorized access, data theft, and system compromise. [2, p.4].

There are various types of attacks that a full-stack application can be threatened

by, such as XSS attacks, that can highly happen when the attacker injects

malicious codebase script into a web page, which can execute scripts and access

sensitive data, and to mitigate this threat, developers should sanitize user input

and use encoding techniques to prevent the execution of malicious code, also

(WAFs) or Web application firewalls shall be used as a security measure by

detecting and blocking XSS attacks. [3.]

On the other hand, SQL injection attacks involve the insertion of malicious SQL

statements into an application's input fields, which can allow attackers to view,

modify or delete data, and in order to prevent SQL injection attacks, developers

should consider parameterized queries or stored procedures. Parameterized

queries make use of placeholders for user input, which are validated and

sanitized before execution. [4.]

Also, CSRF attacks is one of the threats that occur when an attacker sends a

request from a user's browser to a web application without the user's knowledge

or consent, which can result in unwanted actions such as unauthorized

transactions. [4.] Developers can use CSRF tokens or nonce values to ensure

that each request is valid and initiated by an authorized user. Tokens are

generated by the server and included in each form or link, which the user must

submit along with the request to prove authenticity.

In addition to these specific threats, developers should also follow general

security best practices to protect their full-stack web applications. Passwords

should be securely stored using hashing and salting techniques to prevent

6

unauthorized access to user accounts. HTTPS can be used to encrypt all data

transmitted between the client and server.

To improve the security of full-stack web applications, developers can use various

tools and techniques such as static code analysis, penetration testing, and

monitoring. Static code analysis tools can identify potential vulnerabilities in the

codebase before deployment. Penetration testing has the ability to replicate

genuine attacks and detect areas of weakness that were not detected during

development. Monitoring and logging can be used to detect and respond to

security incidents quickly, allowing developers to take appropriate action to

prevent further damage.

3 Mern stack

Figure 3. MERN stack components

The MERN Stack, a popular full-stack development technology stack, is

composed of four primary technologies. The M in MERN stands for MongoDB,

which is a NoSQL (Non-Structured Query Language) database system primarily

utilized for document database preparation. The E in MERN stands for Express,

a web development framework for Node.js. The R in MERN stands for React.js,

7

which is mainly employed for client-side JavaScript application development.

Lastly, the N in MERN represents Node.js, which is used as the foundation for

JavaScript web server development. See figure 3 above.

All four of these technologies are JavaScript based and can be contributed to as

they are open source, and due to their independent state on each other, the

developer needs to familiarize himself with them to understand their basic usage

and work combination from both the front-end and the back end. [5, pp. 9-10.]

3.1 Node Js

Node.js is an environment in which JavaScript codebases can be compiled and

run. It's open-source and works on multiple platforms. The Node.js application

functions within a single process, and the libraries it uses employ non-blocking

paradigms. This means that blocking behaviours are not common. [6.]

Furthermore, when the Node application is running, and to ensure the efficiency

of the asynchronous running processes, all files should be loaded into memory.

3.2 Express Js

Express is the most widely used Node web framework, and many other popular

Node web frameworks use it as their foundation. It offers a range of capabilities,

such as the ability to write request handlers for different HTTP verbs at various

URL paths (routes). [7.]

Additionally, Express can work together with "view" rendering engines to create

responses by injecting data into templates. Express also provides options for

customizing common web application settings, such as the port used for

connections and the location of templates used for rendering responses. [7].

Lastly, Express allows for the addition of extra request processing "middleware"

at any stage within the request handling pipeline. [7.]

8

3.3 MongoDB

MongoDB is a database that is based on a distributed architecture, which

enables it to have inherent features for high availability, horizontal scaling, and

geographic distribution without any additional configuration. This distributed

system ensures that data can be easily replicated across multiple servers,

enabling the efficient storage and retrieval of large amounts of data. Moreover,

MongoDB has built-in capabilities that make it user-friendly and easy to

manage, providing a flexible and powerful database solution. Consequently, it

has gained popularity among businesses and organizations that require a

reliable and scalable database system. [8, p.7].

In MongoDB, a record is referred to as a document, which consists of pairs of

fields and values within a data structure. MongoDB documents are similar to

JSON objects and can include other documents, arrays, and arrays of

documents as values for fields. Documents in MongoDB are stored in

collections, which are similar to tables in traditional relational databases, with

each document serving as a row within a collection.

3.4 React Js

React.js is a freely available JavaScript library that is utilized to develop UIs for

single-page applications. It is particularly useful in handling the view layer for web

and mobile applications. Also, React.js offers the capability to create reusable UI

elements. Jordan Walke, who was employed as a software engineer by

Facebook, is the original creator of React.js, and the first usage of React.js was

on Facebook's newsfeed in 2011, while in 2012 it was utilized on Instagram.com.

Additionally, React.js is a library that is purpose-built for creating user interfaces,

which is the fundamental requirement in many cases. This description is

commendable because it doesn't attempt to include every conceivable feature.

React.js isn't an extensive framework that addresses every aspect of a full-stack

9

solution, from the database to real-time updates over WebSocket connections.

[9, p.10.]

3.5 Firebase

Firebase has established itself as a leading player in the BaaS (Backend as a

Service) realm, consistently enhancing the cloud experience through the

introduction of innovative features and functionalities. Among its peers, Firebase

is the sole provider of auto-syncing database functionality, enabling the creation

of exceptional applications, the expansion of consumer bases, and the

generation of increased monetary value. Each feature of Firebase operates

independently, and when used together, they perform exceptionally well.

Consequently, Firebase has generated significant excitement within the

developer community. Unlike many traditional backend services that necessitate

substantial implementation efforts to launch a product, Firebase is quite

straightforward to set up and deploy. It is the perfect choice for time-constrained

development projects that require real-time data and scalability. [10, p.10.]

Moreover, developers can effortlessly mix and match Firebase products to tackle

daily app development challenges.

4 Client side

The significance of client-side technologies in full-stack development has

expanded beyond using JavaScript for client-side validations to create fully-

fledged, single-page applications employing client-side MVVM frameworks.

However, the frameworks and toolchains employed have become increasingly

intricate and daunting for inexperienced developers who are new to client-side

development. [11, p.25.]

In the next chapters, we will go through the front-end part implementation of the

application for a deeper understanding of the detailed steps in the creation

process.

10

The client can only interact with the UI from the front end which then executes

the actions described based on our view pages. In Total, we have 6 different

pages from the concept point of view (Authentication, Home, Sale, Designers,

Categories, and Profile)

4.1 Project structure

Making a good readable project structure is vital for the developer when it comes

to organizing the work and implementing the logic between various files and

folders.

11

Figure 4. Project structure

12

As the above figure shows, we have structured our front-end application to

include 5 separate folders in the ‘/src’ folder, as we have:

• ‘api’ folder contains ‘authentication.js’ that is responsible for direct

authentication with the server side in the case of login and register.

• ‘assets’ folder, contains all the images that we show on our application

as logos and other product brand images.

• ‘components’ folder contains 2 child folders. First, we have the context

folder, which has ‘context.js’ file, which handles passing the data from

the child component to the parent and vice-versa, without the need to

pass a prop through all the application tree levels, which will be

consuming as our application is using React navigation. Second, we

have the navigation folder which holds the navigation upper bar

component that helps the user navigate through our application hierarchy

to access all the view pages.

• ‘pages’ folder contains all our view pages that the user can access and

interact with by either inserting, fetching the data, as we will see in the

next chapter.

13

4.2 Pages and components

Figure 5. Project page’s structure

As shown in the figure above, our front-end application has a total of 8 public

pages, that the client can access. Starting from the ‘profile’ page, where the

user can see his personal information and orders history.

‘brand’ and ‘Category’ pages are more complex pages that give a unique

shopping experience and wide variety of selection for the client to filter among

product different brands and categories.

‘shop’ page is the home view of the entire application as it is the first page the

client gets to interact with after the authentication.

‘sale’ page is containing all the discounted products, that are currently on sale.

‘login’ and ‘register’ are clearly intended to authenticate the user before

accessing the main view pages.

14

‘AboutUs’ is a profile component that contains more information and business

goals about the store, also providing instructions for clients to contact the store

owner.

‘product’ component is the most reusable component throughout the application

as it provides same structure for displaying the product card containing all the

requested data, which we will get to see later in the coming chapters.

4.2.1 Authentication

The authentication is required in our application as it gives a security layer to

access our databases data and information, as it is not possible to navigate and

interact with other view pages if the client has not logged-in or registered to

become a member of our clients group.

15

Figure 6. Authentication functionality

As shown in the above image, the `Autheticate()` function is called from ‘Login’

& ‘Register’ pages that passes an action property the user want to perform

either ‘login’ or ‘register’, and the ‘userType’ property which will define the

profile page content restrictions for normal users.

16

In case of a failed authentication, a toast will be visible containing the failure

reason for better usability and user experience.

After a successful success, the returned user/admin data will be stored in local

storage by calling `localStorage.setItem`. and the data will be passed to the

global context in order to bypass the security checks in the App.js.

4.2.2 Shop

After a succesful authentication the user will be redirected to the shop page, as it

is the first view page the user interacts with, and contains several card sections

for product categories, brands, and discounts to select and chose from.

Figure 7. Shop view page

17

4.2.3 Sale

Figure 8. Sale page

Figure 9. Sale page code base

18

When the ‘Sale’ view page is accessed, getSaleProducts() function is executed,

to fetch discounted products from the endpoint ‘/products/sale’, the returned data

is assigned to the stateful variable ‘products’, which will be used to visualize a

singleProduct grid. ‘SingleProduct’ is a reusable component that represents a

product layout with all the desired data to show, as represented in the code block

below.

products.map((product) => {

 return (

 <Grid item xs={3} key={product._id + product.title}>

 <SingleProduct

 key={product._id}

 id={product._id}

 imageUrl={product.product_main_image}

 title={product.title}

 description={product.description}

 price={product.price}

 discount_price={product.discount_price}

 brand={product.brand}

 sub_category={product.sub_category}

 />

 </Grid>

);

 })

19

4.2.4 Designers

Figure 10. Designer’s page

The designers page contains all the products brands supported by the store, as

the client can select the desired designer from the top of the page, and the content

of product list will be changed accordingly.

20

Figure 11. Designer page code base

As shown in the figure above, ‘getDesignerProducts()’ function is responsible for

fetching the selected product brands by calling the GET method to the endpoint

‘/products/brand/${brandValue}’, where the brandValue instance is the selected

brand by the client.

After a successful api call, the fetched products are assigned to the local variable

‘products’ which will be passed to ‘SingleProduct’ component in order to display

the product data for the client on the UI.

21

Figure 12. Usage of SingleProduct component inside designer page

4.2.5 Categories

Categories pages can be visualized as separate pages of clothes, bags, shoes,

and jewellery containing different types of products in order to give the client a

better user experience on an online store, instead of mixing every type and

category in one page, which will lead to very low interest and lack of decision

making when purchasing [12].

22

Figure 13.Category page code base

All the four different categories (Clothes, Shoes, Bags and Jewellery are

implementing the same code base, in which ‘getCategoryProducts()’ function is

responsible for calling a get Method for the endpoint ‘/category/categoryName’,

where the ‘categoryName’ is the parameter passed from the navigation by calling

‘props.match.params.categoryName’, which can be either ‘clothing’, ‘shoes’,

‘bags’ or ‘jewellery’. The entity ‘products will hold all the fetched products and will

be passed for the common component ‘SingleProducts’.

23

4.2.6 Profile

Figure 14. Variables declaration in the Profile page

As shown in the figure above, multiple variables have been declared in the

beginning of the ‘Profile’ function.

The Profile page will be customized based on the type of ‘isClient’ storage entity

that has been initialized after the authentication, meaning that if the user has

successfully authenticated as an admin, the ‘isClient’ storage entity will hold a

‘false’ value otherwise it will be ‘true’, and this value will be assigned to the local

variable ‘isUserClient’ in the ‘Profile’ page by calling

‘localStorage.getItem(‘isClient’)’.

24

‘selectedTab’ will hold the value of the current selected tab that can be either:

• ‘admin’ tab, which will be visible only if ‘isClient’ is false, and when

selected, the admin can add new products and other admins too.

• ‘contact’ tab, which will be holding the general information about the

online store and how to get in touch with admins.

• ‘profile’ tab, which will be visible only if ‘isClient’ is true, meaning that the

profile tab is showing the general information of the current client but not

admin’s information.

• ‘order’ tab, which will be visible only if ‘isClient’ is true, where the client

can visualize his orders history.

25

Figure 15. Implementation of getting orders and user information

As shown in the figure above, the useEffect hook will be listening to ‘selectedTab’

value throughout the lifecycle of the ‘Profile’ page. One case is when the

‘selectedTab’ has a value of ‘orders’, the ‘getUserOrders()’ function will be called,

which fetches all the order history of the current user and assigns the returned

data to ‘useOrders’ state variable that will be rendered later and passed to

‘SingleProduct’ component. The other case is when the ‘selectedTab’ has a value

of ‘profile’, the ‘getUserDetails()’ function will be called, and the fetched client data

will be assigned to ‘userDetails’ state variable.

26

Figure 16. Upload new Product function.

As shown in the above figure, the upload product function will be called in the

product panel for admins only, where the endpoint ‘/newProduct’ is used with

POST method.

27

4.3 Payment gateway

As the e-commerce represents an online version of the traditional shop, there

should be a way to process and accept payments from clients. And in this

application, we will be using Stripe checkout.

Stripe is a payment service company providing payment solutions to merchants

to accept payments on behalf of the sellers, by minimizing the burden of settling

official agreement with banks to process payment internationally, Also Stripe

made it easy to integrate their checkout process system on custom websites,

easily by adding the stripe component to the html. [13, pp. 61-62.]

Figure 17. stripe checkout process

As shown in the figure above, instead of collecting client’s data locally, the stripe

checkout component will handle all the sensitive data, as we only need to show

the stripe form where the user enters his personal name and credit card.

28

Figure 18. Stripe checkout react component implementation.

As shown in the figure above, the ‘stripeCheckout’ component needs two

mandatory properties:

• stripeKey: represents the stripe public key, which is a unique string that

can be found on the merchant dashboard on stripe.com as shown in the

below figure.

• token: is a function type property that can handle the result of the payment

checkout, and in this case we are calling handleOrder() function.

Figure 19. Merchant stripe dashboard.

29

Figure 20. Add new order function.

The above figure represents the handleOrder function which is called as a result

of a successful payment processing, the ’/ order/create’ endpoint with POST

method accepts multiple parameters related to the buyer and the bought product

as buyer_id, product_id, order_image, order_title, order_price and

order_category.

5 Backend side

In general, the backend in software development is the hidden part that the

application user cannot see or interact with, as it is the data access layer that

the frontend connects to, in order to make API calls in a form of sending or

receiving the data to be displayed for the user on the UI.

30

5.1 Project structure

Figure 21. Backend project files structure

As figure 21 represents the root folder “server” containing a package.json which

holds the project metadata and handles the project’s dependencies. Package-

lock.json, that is automatically generated when installing npm dependencies from

the terminal. .gitignore that specifies what should be ignored when committing

the project changes to git. .env is the file that controls the application environment

constants and stores sensitive code that cannot be exposed on git. Index.js is the

entry file that will be accessed to run our application. Then we do have routes

folder which will hold our defined routes related to products, user, admin and

orders endpoints that can be accessed from our frontend. Also, the model’s folder

that includes mongoose schema files for defining the structure of the documents

on the Mongodb database. Next, we have firebase folder, which will contain all

related files that have access and interaction with the firebase console, and lastly

31

we have the controller’s folder that are responsible for manipulating the

mongoose models, write and read the data received from the routes.

5.2 Mongoose models

Mongoose models allow to access data by providing an interface to MongoDB.

The first step to creating a model is defining the schema for it. Afterwards, we'll

need to register the model with Mongoose and export it so that we can use it

throughout our application.

5.2.1 Admin model

Figure 22 as shown below represents the Admin model, whereas schema

defines the structure of the document and by calling Mongoose.schema we will

create properties ‘name’ and ‘email’ both of type String and default value “”.

Figure 22. Admin model

32

5.2.2 Product model

Figure 23. Product model

Figure 23 represents the largest mongoose model in the project, as it holds

multiple vital properties (title, description, price, discounted_price, quantity and

product_main_image), then we find other optional values that will be used

mainly for customizing search and filtering from the client side as tags, gender,

category, sub_category, brand, is_available_for_sale. And lastly other

properties that will be shown as a meta data of the product and holding extra

details for the it as is_inStock, is_discount_applied, latest_update and

createdAt.

33

5.2.3 User model

Figure 24. User model

As shown in figure 24 above, we are defining only three properties (name, email

and country) then we export it as Users to be used in the user routes page. We

have eliminated the password entity from the Users Schema for security reasons

with mongoDb and only store it in Firebase that will handle the authentication for

us.

34

5.2.4 Order model

Figure 25. Order model

Figure 25 represents the mongoose order schema which will hold various entities

as the ’buyer_id’ that represents the user who made this order, also we find

35

‘product_id’, ‘order_image’, ‘order_title’, ‘order_price’, ‘order_date’ and

‘order_category’ all of the later entities that starts with the key-name ‘product’ are

fetched from the bought product at the time of creating this order, as we will see

in the order controller.

5.3 Controllers

Figure 26. Relationship between model, router and controller

In mongoose, controller functions are called from routes to get the requested

data from the corresponding model which starts the view renderer and

manipulates the subjected model [14, p 91.]

36

5.3.1 Admin controller

Figure 27. Admin controller

In the admin controller file, we imported multiple functions that will have a direct

interaction with firebase functions as (login, signUp and authenticate). Then, we

defined 4 methods to be called in the admin routes, as createAdmin() function,

which is responsible for registering admins and saving admins data into Firebase

then saves the forwarded data to mongoDb by calling await

newAdminToDb.save(). Then we have loginAdmin function that does two-layer

authentication by skimming through the admin table from Mongodb and find if the

admin email is existing then tries to authenticate from firebase by passing the

37

admin email and the password, as a success response we are returning access-

token to be used later for secured API calls from the client side. We also have a

signOut() function that logout the admin from the platform. And since products

are only added by admins, we have createProduct() function that can be split

into two parts, the first part is responsible for uploading the image file to firebase

storage by using ‘uploadImage()’ function imported from ‘storageHandler.js’ file,

which returns the hosted URL of the image which can be easily stored in

mongoDB product model as a string into the ‘product_main_image’ entity.

Furthermore, we have ‘updateProduct()’ function by using the integrated

findByIdAndUpdate functionality from Mongoose.

5.3.2 Product controller

Figure 28. Product controller

38

The product controller will be managing all the product related manipulations

starting by getting all products and by id, then getting products by category by

calling getProductByCategory() function which will have two optional fields for

subcategory and product brand which will be useful for filtering. we also have

other filtering functions as getProductsByBrand(), getProductsBySubcategory(),

and get productByGender().

5.3.3 User controller

Figure 29. User controller

39

The user controller file has only three basic functions(createUser, loginUser and

signOut) that will be used for the normal buyer as a way of separation from

admins.

In the case of Login and Signup , the Firebase integrated functionalities such as

login and register are used to first authenticate the user on the Firebase layer

which return a token that will be used to authenticate the current user API calls

throughout the lifecycle of the application, then authenticating the user on the

mongoDB layer which return all information regarding the user to be used in the

profile page.

40

5.3.4 Order controller

Figure 30. Order controller

Figure 30 represents the order controller which has a createOrder() function that

populates the order array with the data received from the request and then saves

it into the order table in MongoDB by calling newOrder.save(). Then we find a

function called getOrdersByBuyerID which is responsible of finding all the orders

41

in the order table in MongoDB by the matching buyerID passed in the get request.

Furthermore, we can find to filtering order functions as getOrdersByCategory and

getOrdersByPurchaseDate.

5.4 Routes

In this Full stack application we will use Express JS to create and handle routes

from the server side that can be addressed next from the front end for specific

queries and methods as (‘GET’, ‘POST‘, ‘PUT’, ‘DELETE’) and for different

endpoints as (‘USER‘, ‘ADMIN’, ‘PRODUCT’, ‘ORDER’).

For that reason, we should add express.json() as a middleware, that takes care

of parsing the incoming JSON requests and structures the data in the req.body.

And as we will upload product image as a file type, we need to add

‘express.urlencoded({ extended: true })’ as a middleware.

Furthermore, we will be adding Cors middleware to bypassing the Access-

Control-Allow-Origin headers in the requests, that indicates which origins is

permitted to access our Api.

42

5.4.1 Admin routes

Figure 31. Admin routes supported by the backend.

As seen in the Mongoose models earlier, we have defined admins to be

different from users, as they are responsible for handling all products within

the store, and for that purpose we need to define separate routes for admins

such as Login, Register, createProduct, and getAdminById.

Furthermore, by separating the admin's routes from the client’s routes, we are

securing sensitive endpoints as creating products and adding new admins from

any potential data leak and bridge hacking, as we keep clients routes to only

have more read than write access throughout the application.

43

5.4.2 Product routes

Our product routes will be consisting just of reading data from the database as

we added earlier the create product route to the admin route for security

reasons as explained.

Figure 32. Product routes supported by the backend.

As the figure above shows, we have defined a route for getting single product

by the id entity with the endpoint ‘/singleProduct/:id’, getting all available

44

products with the plain ‘/’ route that calls getProduct() function from the product

controller folder.

Then we can add filtering for our product queries, such as:

• Filtering by brand, with the endpoint ‘/brand/:brand’ that calls

getProductByBrand() function.

• Filtering by subCategory, with the endpoint ‘/subCategory/:subCategory’,

that calls getProductsBySubCategory() function.

• Filtering products by gender and category, with the endpoint

‘gender/:gender/:category’ that calls getProductByGenderAndCategory()

function.

• Filtering product by the Sale option, that indicates if there are some

discounts offer on some products, with the endpoint ‘/sale’, that calls

getProductSale() function.

• Filtering with many options simultaneously, as (‘category’, ‘subCategory’,

‘brand’ and ‘floorNumber’), with the endpoint

‘/category/:category/:subCategory?/:brands?/:floorNumber?’, that calls

getProductByCategory() function, in which ‘floorNumber’ entity will be

used in the product controller as a maximum number of products to

return with a random order.

45

5.4.3 User routes

Figure 33. User routes supported by the backend.

As the above figure shows multiple user routes endpoints that consists of

getting the user information with the endpoint ‘/:id’ which calls getUserById()

function.

Then, the authentication part responsible for login, with the endpoint ‘/login’ and

register, with the endpoint ‘/signUp’. Both of the createUser() and loginUser()

functions have more similarities from the codebase point of view, as seen in the

user controller file.

And finally the signOut route with the endpoint ‘/signOut’ which calls signOut()

function from the user controller file.

46

5.4.4 Order route

Figure 34. Order routes supported by the backend.

As shown in the figure above, we can fetch orders based on the buyer id entity,

with the endpoint ‘/:buyer_id’ which is a unique entity for each client.

Also, the client have the possibility to create orders from the front end, with the

endpoint ‘/create’ using the POST method that calls createOrder() function from

the order controller file.

 Furthermore, other order routes can be represented as endpoints for getting

the purchased goods orders information with filtering such as:

• Getting orders by category, with the endpoint

"/category/:buyer_id/:order_category".

• Getting orders by the purchase date, with the endpoint

“/purchaseDate/:buyer_id/:order_date”.

47

6 Discussion

In this part we will go through the outcomes of this thesis and possibilities for

improvement that can be made for the developed full-stack e-commerce

application.

6.1 Evaluation

Ultimately, by leveraging the four core technologies that comprise the MERN

stack and employing numerous Node modules, a prototype version of an

electronic commerce application that mirrors an internet-based shop was

successfully developed. This particular application is designed to be efficient,

user-friendly, and operate seamlessly.

The clients of this platform have access to several features such as

authentication, surfing the available products, and making and reviewing their

order histories. Additionally, this application provides various different product

filtering options that rely on the product's category, sale, brand, and sub-category.

The administrative users of this platform enjoy the same capabilities and

functions as regular users and have access to additional features such as

creating and managing new products. Furthermore, the payment gateways for

this application have already undergone rigorous testing in a sandbox account

and have demonstrated reliable functionality.

In terms of the operational effectiveness of a comprehensive e-commerce

application designed with small businesses in mind, particularly an online shop,

that was conceptualized from the outset, the output product successfully satisfied

all the criteria for functionality.

6.2 Improvements

During the development of this application, several improvements ideas have

been noticed such as:

48

Firstly, the application's security can be enhanced. Security is a critical aspect of

any e-commerce application since it involves sensitive information such as

personal details and payment information. Implementing features such as two-

factor authentication, SSL/TLS encryption, and secure password storage can

help bolster the application's security and increase user trust. [15].

Figure 35. Similar product match feature in the product page.

Secondly, although the application has a similar product match feature on the

product page, It is beneficial to incorporate an artificial intelligence smart product

recommendation functionality into the platform. This feature can suggest

products that are relevant to the client's past orders or browsing history, thereby

improving the probability of conversion and elevating the user experience,

resulting in higher customer loyalty and retention rates. [16.]

49

Figure 36. Two-factor authentication workflow.

Thirdly, incorporating a chatbot feature into the application can provide prompt

responses to customer inquiries, resulting in higher levels of satisfaction and

loyalty. Additionally, it can ease the burden on customer support representatives,

freeing up their time to tackle more intricate issues. [17.]

50

7 Conclusion

The goal of this dissertation was to investigate the unique features of every

technology in the MERN stack and build a complete e-commerce web application

utilizing it. The author dedicated a significant amount of time to research and

thoroughly study each contemporary technology in order to facilitate the

development of the web application. The dissertation presented a detailed

examination of all the technologies that make up the MERN stack, including

fundamental principles and advanced features, and their use in the e-commerce

domain to ensure the readers' comprehension. Additionally, the dissertation

provided a detailed guide on the necessary steps for developing an e-commerce

application.

Also, the author accomplished the creation and publication of a comprehensive

e-commerce application that included an online store, with the intention of

generating a functional e-shop that could be assimilated into any small business.

The primary objective of this e-shop was to provide clients and customers with

access to its services, while also increasing its popularity by embracing the virtual

world in conjunction with the physical world.

To summarize, this thesis can be utilized as a guide or point of reference for

individuals interested in the MERN stack or full-stack web development as a

whole. The author has acquired invaluable knowledge by conducting extensive

research and studying this manuscript, resulting in a deeper comprehension of

the reasons behind the recent surge in popularity and leadership role of the

MERN stack in web development. Despite the application's existing limitations,

such as stylistic issues and the need for new features, it nevertheless represents

an amalgamation of the most commonly used web stack technology with one of

the most burgeoning business concepts of our time - e-commerce.

