
Series Editors: Ramesh Sharda · Stefan Voß

Integrated Series in Information Systems 36

Shan Suthaharan

Machine Learning
Models and
Algorithms for Big
Data Classifi cation
Thinking with Examples for Eff ective
Learning

https://chools.in https://choolsgroup.com https://choolskool.com

Contents

1 Science of Information . 1
1.1 Data Science . 1

1.1.1 Technological Dilemma . 2
1.1.2 Technological Advancement . 2

1.2 Big Data Paradigm . 3
1.2.1 Facts and Statistics of a System . 3
1.2.2 Big Data Versus Regular Data . 5

1.3 Machine Learning Paradigm . 7
1.3.1 Modeling and Algorithms . 7
1.3.2 Supervised and Unsupervised . 7

1.4 Collaborative Activities . 10
1.5 A Snapshot . 10

1.5.1 The Purpose and Interests . 10
1.5.2 The Goal and Objectives . 11
1.5.3 The Problems and Challenges . 11

Problems . 11
References . 12

Part I Understanding Big Data

2 Big Data Essentials . 17
2.1 Big Data Analytics . 17

2.1.1 Big Data Controllers . 18
2.1.2 Big Data Problems . 19
2.1.3 Big Data Challenges . 19
2.1.4 Big Data Solutions . 20

2.2 Big Data Classification . 20
2.2.1 Representation Learning . 21
2.2.2 Distributed File Systems . 22
2.2.3 Classification Modeling . 23
2.2.4 Classification Algorithms . 25

xiii

https://chools.in https://choolsgroup.com https://choolskool.com

xiv Contents

2.3 Big Data Scalability . 26
2.3.1 High-Dimensional Systems . 27
2.3.2 Low-Dimensional Structures . 27

Problems . 28
References . 28

3 Big Data Analytics . 31
3.1 Analytics Fundamentals . 31

3.1.1 Research Questions . 32
3.1.2 Choices of Data Sets . 33

3.2 Pattern Detectors . 34
3.2.1 Statistical Measures . 34
3.2.2 Graphical Measures . 38
3.2.3 Coding Example . 41

3.3 Patterns of Big Data . 44
3.3.1 Standardization: A Coding Example . 47
3.3.2 Evolution of Patterns . 49
3.3.3 Data Expansion Modeling . 51
3.3.4 Deformation of Patterns . 62
3.3.5 Classification Errors . 66

3.4 Low-Dimensional Structures . 67
3.4.1 A Toy Example . 67
3.4.2 A Real Example . 69

Problems . 73
References . 74

Part II Understanding Big Data Systems

4 Distributed File System . 79
4.1 Hadoop Framework . 79

4.1.1 Hadoop Distributed File System . 80
4.1.2 MapReduce Programming Model . 81

4.2 Hadoop System . 81
4.2.1 Operating System . 82
4.2.2 Distributed System . 82
4.2.3 Programming Platform . 83

4.3 Hadoop Environment . 83
4.3.1 Essential Tools . 84
4.3.2 Installation Guidance . 85
4.3.3 RStudio Server . 93

4.4 Testing the Hadoop Environment . 94
4.4.1 Standard Example . 94
4.4.2 Alternative Example . 95

https://chools.in https://choolsgroup.com https://choolskool.com

Contents xv

4.5 Multinode Hadoop . 95
4.5.1 Virtual Network . 96
4.5.2 Hadoop Setup . 96

Problems . 97
References . 97

5 MapReduce Programming Platform . 99
5.1 MapReduce Framework . 99

5.1.1 Parametrization . 100
5.1.2 Parallelization . 101

5.2 MapReduce Essentials . 102
5.2.1 Mapper Function . 102
5.2.2 Reducer Function . 103
5.2.3 MapReduce Function . 104
5.2.4 A Coding Example . 104

5.3 MapReduce Programming . 107
5.3.1 Naming Convention . 107
5.3.2 Coding Principles . 108
5.3.3 Application of Coding Principles . 110

5.4 File Handling in MapReduce . 113
5.4.1 Pythagorean Numbers . 114
5.4.2 File Split Example . 115
5.4.3 File Split Improved . 116

Problems . 118
References . 118

Part III Understanding Machine Learning

6 Modeling and Algorithms . 123
6.1 Machine Learning . 123

6.1.1 A Simple Example . 124
6.1.2 Domain Division Perspective . 125
6.1.3 Data Domain . 128
6.1.4 Domain Division . 129

6.2 Learning Models . 130
6.2.1 Mathematical Models . 132
6.2.2 Hierarchical Models . 134
6.2.3 Layered Models . 135
6.2.4 Comparison of the Models . 135

6.3 Learning Algorithms . 140
6.3.1 Supervised Learning . 140
6.3.2 Types of Learning . 141

Problems . 142
References . 142

https://chools.in https://choolsgroup.com https://choolskool.com

xvi Contents

7 Supervised Learning Models . 145
7.1 Supervised Learning Objectives . 145

7.1.1 Parametrization Objectives . 146
7.1.2 Optimization Objectives . 148

7.2 Regression Models . 150
7.2.1 Continuous Response . 151
7.2.2 Theory of Regression Models . 151

7.3 Classification Models . 160
7.3.1 Discrete Response . 160
7.3.2 Mathematical Models . 162

7.4 Hierarchical Models . 166
7.4.1 Decision Tree . 167
7.4.2 Random Forest . 167

7.5 Layered Models . 170
7.5.1 Shallow Learning . 171
7.5.2 Deep Learning . 177

Problems . 179
References . 180

8 Supervised Learning Algorithms . 183
8.1 Supervised Learning . 183

8.1.1 Learning . 185
8.1.2 Training . 186
8.1.3 Testing . 188
8.1.4 Validation . 190

8.2 Cross-Validation . 192
8.2.1 Tenfold Cross-Validation . 193
8.2.2 Leave-One-Out . 193
8.2.3 Leave-p-Out . 194
8.2.4 Random Subsampling . 195
8.2.5 Dividing Data Sets . 195

8.3 Measures . 196
8.3.1 Quantitative Measure . 197
8.3.2 Qualitative Measure . 198

8.4 A Simple 2D Example . 202
Problems . 204
References . 205

9 Support Vector Machine . 207
9.1 Linear Support Vector Machine . 207

9.1.1 Linear Classifier: Separable Linearly . 208
9.1.2 Linear Classifier: Nonseparable Linearly 218

9.2 Lagrangian Support Vector Machine . 219
9.2.1 Modeling of LSVM . 219
9.2.2 Conceptualized Example . 219
9.2.3 Algorithm and Coding of LSVM . 220

https://chools.in https://choolsgroup.com https://choolskool.com

Contents xvii

9.3 Nonlinear Support Vector Machine . 223
9.3.1 Feature Space . 224
9.3.2 Kernel Trick . 224
9.3.3 SVM Algorithms on Hadoop . 227
9.3.4 Real Application . 233

Problems . 234
References . 235

10 Decision Tree Learning . 237
10.1 The Decision Tree . 237

10.1.1 A Coding Example—Classification Tree 241
10.1.2 A Coding Example—Regression Tree 244

10.2 Types of Decision Trees . 245
10.2.1 Classification Tree . 246
10.2.2 Regression Tree . 247

10.3 Decision Tree Learning Model . 248
10.3.1 Parametrization . 248
10.3.2 Optimization . 249

10.4 Quantitative Measures . 250
10.4.1 Entropy and Cross-Entropy . 250
10.4.2 Gini Impurity . 252
10.4.3 Information Gain . 255

10.5 Decision Tree Learning Algorithm . 256
10.5.1 Training Algorithm . 257
10.5.2 Validation Algorithm . 263
10.5.3 Testing Algorithm . 263

10.6 Decision Tree and Big Data . 266
10.6.1 Toy Example . 266

Problems . 268
References . 269

Part IV Understanding Scaling-Up Machine Learning

11 Random Forest Learning . 273
11.1 The Random Forest . 273

11.1.1 Parallel Structure . 274
11.1.2 Model Parameters . 275
11.1.3 Gain/Loss Function . 276
11.1.4 Bootstrapping and Bagging . 276

11.2 Random Forest Learning Model . 278
11.2.1 Parametrization . 279
11.2.2 Optimization . 279

11.3 Random Forest Learning Algorithm . 279
11.3.1 Training Algorithm . 280
11.3.2 Testing Algorithm . 283

https://chools.in https://choolsgroup.com https://choolskool.com

xviii Contents

11.4 Random Forest and Big Data . 284
11.4.1 Random Forest Scalability . 284
11.4.2 Big Data Classification . 284

Problems . 287
References . 288

12 Deep Learning Models . 289
12.1 Introduction . 289
12.2 Deep Learning Techniques . 291

12.2.1 No-Drop Deep Learning . 291
12.2.2 Dropout Deep Learning . 291
12.2.3 Dropconnect Deep Learning . 292
12.2.4 Gradient Descent . 293
12.2.5 A Simple Example . 297
12.2.6 MapReduce Implementation . 298

12.3 Proposed Framework . 301
12.3.1 Motivation . 301
12.3.2 Parameters Mapper . 301

12.4 Implementation of Deep Learning . 303
12.4.1 Analysis of Domain Divisions . 303
12.4.2 Analysis of Classification Accuracies 303

12.5 Ensemble Approach . 305
Problems . 306
References . 306

13 Chandelier Decision Tree . 309
13.1 Unit Circle Algorithm . 309

13.1.1 UCA Classification . 310
13.1.2 Improved UCA Classification . 311
13.1.3 A Coding Example . 312
13.1.4 Drawbacks of UCA . 315

13.2 Unit Circle Machine . 315
13.2.1 UCM Classification . 315
13.2.2 A Coding Example . 316
13.2.3 Drawbacks of UCM . 318

13.3 Unit Ring Algorithm . 318
13.3.1 A Coding Example . 319
13.3.2 Unit Ring Machine . 321
13.3.3 A Coding Example . 321
13.3.4 Drawbacks of URM . 323

13.4 Chandelier Decision Tree . 323
13.4.1 CDT-Based Classification . 324
13.4.2 Extension to Random Chandelier . 328

Problems . 328
References . 328

https://chools.in https://choolsgroup.com https://choolskool.com

Contents xix

14 Dimensionality Reduction . 329
14.1 Introduction . 329
14.2 Feature Hashing Techniques . 330

14.2.1 Standard Feature Hashing . 331
14.2.2 Flagged Feature Hashing . 331

14.3 Proposed Feature Hashing . 332
14.3.1 Binning and Mitigation . 332
14.3.2 Mitigation Justification . 333
14.3.3 Toy Example . 333

14.4 Simulation and Results . 334
14.4.1 A Matlab Implementation . 334
14.4.2 A MapReduce Implementation . 337

14.5 Principal Component Analysis . 340
14.5.1 Eigenvector . 341
14.5.2 Principal Components . 343
14.5.3 The Principal Directions . 346
14.5.4 A 2D Implementation . 348
14.5.5 A 3D Implementation . 350
14.5.6 A Generalized Implementation . 352

Problems . 354
References . 354

Index . 357

https://chools.in https://choolsgroup.com https://choolskool.com

Chapter 1
Science of Information

Abstract The main objective of this chapter is to provide an overview of the modern
field of data science and some of the current progress in this field. The overview
focuses on two important paradigms: (1) big data paradigm, which describes a prob-
lem space for the big data analytics, and (2) machine learning paradigm, which
describes a solution space for the big data analytics. It also includes a preliminary
description of the important elements of data science. These important elements
are the data, the knowledge (also called responses), and the operations. The terms
knowledge and responses will be used interchangeably in the rest of the book. A pre-
liminary information of the data format, the data types and the classification are also
presented in this chapter. This chapter emphasizes the importance of collaboration
between the experts from multiple disciplines and provides the information on some
of the current institutions that show collaborative activities with useful resources.

1.1 Data Science

Data science is an emerging field in the twenty-first century. The article by Mike
Loukides at the O’reilly website [1] provides an overview, and it talks about data
source, and data scalability. We can define data science as the management and
analysis of data sets, the extraction of useful information, and the understanding of
the systems that produce the data. The system can be a single unit (e.g., a com-
puter network or a wireless sensor network) that is formed by many interconnecting
subunits (computers or sensors) that can collaborate under a certain set of prin-
ciples and strategies to carry out tasks, such as the collection of data, facts, or
statistics of an environment the system is expected to monitor. Some examples of
these systems include network intrusion detection systems [2], climate-change det-
ection systems [3], and public space intruder detection systems [4]. These real-world
systems may produce massive amounts of data, called big data, from many data
sources that are highly complex, unstructured, and hard to manage, process, and

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 1

1

2 1 Science of Information

analyze. This is currently a challenging problem for many industries, institutions,
and organizations, including businesses, health care sectors, information technology
divisions, government agencies, and research organizations. To address this prob-
lem, a separate field, big data science, has been created and requires a new direction
in research and educational efforts for its speedy and successful advancements [5].

One of the research problems in big data science is the big data classification,
as reported in [6, 7], which involves the classification of different types of data
and the extraction of useful information from the massive and complex data sets.
The big data classification research requires technology that can handle problems
caused by the data characteristics (volume, velocity, and variety) of big data [5].
It also requires mathematical models and algorithms to classify the data efficiently
using appropriate technology, and these mathematical models and algorithms form
the field of machine learning discussed in [8–10].

1.1.1 Technological Dilemma

One of the technological dilemmas in big data science is the nonexistence of a
technology that can manage and analyze dynamically growing massive data effi-
ciently and extract useful information. Another dilemma is the lack of intelligent ap-
proaches that can select suitable techniques from many design choices (i.e., models
and algorithms) to solve big data problems. Additionally, if we invest in expensive
and modern technology, assuming that the data in hand is big data, and we later find
out that the data is not big data (which could have been solved by simple technology
and tools), then the investment is basically lost. In this case, the machine-learning
techniques like the supervised learning [11] and the dimensionality reduction [8, 12]
techniques are useful. A simple explanation on supervised learning can be found
at the MATLAB website [13]. One of the dimensionality reduction approaches is
called principal component analysis (PCA), and a simple tutorial on PCA can be
found at Brian Russell’s website [14]. In addition to these techniques, a framework
(or a systematic design) to test and validate the data early is also required and a
framework for this purpose is presented in Chap. 3.

1.1.2 Technological Advancement

The current advancements in the technology include the modern distributed file sys-
tems and the distributed machine learning. One such technology is called Hadoop
[15, 16], which facilitates distributed machine learning using external libraries, like
the scikit-learn library [17], to process big data. Among several machine-learning
techniques in the libraries, most of them are based on classical models and algo-
rithms, may not be suitable for big data processing. However, some techniques,

1.2 Big Data Paradigm 3

like the decision tree learning and the deep learning, are suitable for big data clas-
sification, and they may help develop better supervised learning techniques in the
upcoming years. The classification techniques evolved from these models and alg-
orithms are the main focus, and they will be discussed in detail in the rest of the
book.

1.2 Big Data Paradigm

In this book, it is assumed that the big data paradigm consists of a big data system
and an environment. The goal of a system is to observe an environment and learn
its characteristics to make accurate decisions. For example, the goal of a network
intrusion detection system is to learn traffic characteristics and detect intrusions
to improve the security of a computer network. Similarly, the goal of a wireless
sensor network is to monitor changes in the weather to learn the weather patterns
for forecasting. The environment generates events, and the system collects the facts
and statistics, transforms them into knowledge with suitable operations, learns the
event characteristics, and predicts the environmental characteristics.

1.2.1 Facts and Statistics of a System

To understand a system and develop suitable technology, mathematical/statistical
models, and algorithms, we need clear definitions for two important terms, data and
knowledge, and for three operations, physical, mathematical, and logical operations.
The descriptions of these terms and operations are presented below.

1.2.1.1 Data

Data can be described as the hidden digital facts that the monitoring system collects.
Hidden digital facts are the digitized facts that are not obvious to the system without
further comprehensive processing. The definition of data should be based on the
knowledge that must be gained from it. One of the important requirements for the
data is the format. For example, the data could be presented mathematically or in a
two-dimensional tabular representation. Another important requirement is the type
of data. For example, the data could be labeled or not labeled. In the labeled data,
the digital facts are not hidden and can be used for training the machine-learning
techniques. In the unlabeled data, the digital facts are hidden and can be used for
testing or validation as a part of the machine-learning approach.

4 1 Science of Information

Fig. 1.1 Transformation of data into knowledge

1.2.1.2 Knowledge

Knowledge can be described as the learned information acquired from the data.
For example, the knowledge could be the detection of patterns in the data, the
classification of the varieties of patterns in the data, the calculation of unknown
statistical distributions, or the computation of the correlations of the data. It forms
the responses for the system, and it is called the “knowledge set” or “response
set” (sometimes called the “labeled set”). The data forms the domain, called “data
domain,” on which the responses are generated using a model f as illustrated in
Fig. 1.1. In addition to these two elements (i.e., the data and the knowledge), a
monitoring system needs three operations, called physical operations, mathemati-
cal operations, and logical operations in this book. The descriptions of these three
important operations are presented in the following subsections.

1.2.1.3 Physical Operation

Physical operations describe the steps involved in the processes of data capture,
data storage, data manipulation, and data visualization [18]. These are the important
contributors to the development of a suitable data domain for a system so that the
machine-learning techniques can be applied efficiently. Big data also means mas-
sive data, and the assumption is that it cannot be solved with a single file or a single
machine. Hence, the indexing and distribution of the big data over a distributed net-
work becomes necessary. One of the popular tools available in the market for this
purpose is the Hadoop distributed file system (http://hadoop.apache.org/), which
uses the MapReduce framework (http://hadoop.apache.org/mapreduce/) to accom-
plish these objectives. These modern tools help enhance the physical operations of a
system which, in turn, helps generate sophisticated, supervised learning models and
algorithms for big data classifications.

http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/

1.2 Big Data Paradigm 5

1.2.1.4 Mathematical Operation

Mathematical operations describe the theory and applications of appropriate
mathematical and statistical techniques and tools required for the transformation
of data into knowledge. This transformation can be written as a knowledge function
f : D ⇒ K as illustrated in Fig. 1.1, where the set D stands for the data domain and
the set K stands for the knowledge or response set. In this knowledge function, if the
data (i.e., the data domain) is structured, then the executions of these operations are
not difficult. Even if the structured data grows exponentially, these operations are not
difficult because they can be carried out using existing resources and tools. Hence,
the size of the data does not matter in the case of a structured data in general.

1.2.1.5 Logical Operation

Logical operations describe the logical arguments, justifications, and interpretations
of the knowledge, which can be used to derive meaningful facts. For example, the
knowledge function f : D ⇒ K can divide (classify) the data domain and provide
data patterns, and then the logical operations and arguments must be used to justify
and interpret the class types from the patterns.

1.2.2 Big Data Versus Regular Data

In addition to the terminologies mentioned earlier, we also need to understand the
distinction between the new definition of big data and the definition of regular data.
Figure 1.2 demonstrates this distinction. Before we understand the information in
this figure, we need to understand three parameters, n, p, and t of a system, because
they determine the characteristics of data whether it is a big data set or a regular
data set.

1.2.2.1 Scenario

An element of a monitoring system’s data can also be called an observation (or an
event). This book will use the term “observation” and the term “event” interchange-
ably. For example, an observation of a network intrusion detection system is the
traffic packet captured at a particular instance. Millions of events (n) may be cap-
tured within a short period of time (t) using devices like sensors and network routers
and analyzed using software tools to measure the environmental characteristics. An
observation generally depends on many independent variables called features, and
they form a space called feature space. The number of features (p) determines the
dimensionality of the system, and it controls the complexity of processing the data.
The features represent the characteristics of the environment that is monitored by

6 1 Science of Information

Fig. 1.2 Big data and regions of interest

the system. As an example, the source bytes, destination count, and protocol type
information found in a packet can serve as features of the computer network traf-
fic data. The changes in the values of feature variables determine the type (or the
class) of an event. To determine the correct class for an event, the event must be
transformed into knowledge.

In summary, the parameter n represents the number of observations captured
by a system at time t, which determines the size (volume) of the data set, and the
parameter p represents the number of features that determines the dimension of the
data and contributes to the number of classes (variety) in the data set. In addition,
the ratio between the parameters n and t determines the data rate (velocity) term as
described in the standard definition of big data [6].

Now referring back to Fig. 1.2, the horizontal axis represents p (i.e., the dimen-
sion) and the vertical axis represents n (i.e., the size or the volume). The domain
defined by n and p is divided into four subdomains (small, large, high dimension,
and massive) based on the magnitudes of n and p. The arc boundary identifies the
regular data and massive data regions, and the massive data region becomes big data
when velocity and variety are included.

1.2.2.2 Data Representation

A data set may be defined in mathematical or tabular form. The tabular form is vi-
sual, and it can be easily understood by nonexperts. Hence this section first presents
the data representation tool in a tabular form, and it will be defined mathematically
from Chap. 2 onward. The data sets generally contain a large number of events as
mentioned earlier. Let us denote these events by E1,E2, . . . ,Emn. Now assume that

1.3 Machine Learning Paradigm 7

these observations can be divided into n separable classes denoted by C1,C2, . . . ,Cn

(where n is much smaller than mn), where C1 is a set of events E1,E2, . . . ,Em1 , C2

is a set of events E1,E2, . . . ,Em2 , and so on (where m1 +m2 + · · · = mn). These
classes of events may be listed in the first column of a table. The last column of
the table identifies the corresponding class types. In addition, every set of events
depends on p features that are denoted by F1,F2, . . . ,Fp, and the values associated
with these features can be presented in the other columns of the table. For example,
the values associated with feature F1 of the first set E1,E2, . . . ,Em1 can be denoted
by x11,x12, . . . ,x1m1 , indicating the event E1 takes x11, event E2 takes x12, and so on.
The same pattern can be followed for the other sets of events.

1.3 Machine Learning Paradigm

Machine learning is about the exploration and development of mathematical models
and algorithms to learn from data. Its paradigm focuses on classification objectives
and consists of modeling an optimal mapping between the data domain and the
knowledge set and developing the learning algorithms. The classification is also
called supervised learning, which requires a training (labeled) data set, a validation
data set, and a test data set. The definitions and the roles of these data sets will be
discussed in Chap. 2. However, to briefly explain, the training data set helps find the
optimal parameters of a model, the validation data set helps avoid overfitting of the
model, and the test data set helps determine the accuracy of the model.

1.3.1 Modeling and Algorithms

The term modeling refers to both mathematical and statistical modeling of data.
The goal of modeling is to develop a parametrized mapping between the data do-
main and the response set. This mapping could be a parametrized function or a
parametrized process that learn the characteristics of a system from the input (la-
beled) data. The term algorithm is a confusing term in the context of machine learn-
ing. For a computer scientist, the term algorithm means step-by-step systematic in-
structions for a computer to solve a problem. In machine learning, the modeling,
itself, may have several algorithms to derive a model; however, the term algorithm
here refers to a learning algorithm. The learning algorithm is used to train, validate,
and test the model using a given data set to find an optimal value for the parameters,
validate it, and evaluate its performance.

1.3.2 Supervised and Unsupervised

It is best to define supervised learning and unsupervised learning based on the class
definition. In supervised learning, the classes are known and class boundaries are

8 1 Science of Information

Fig. 1.3 Classification is defined

well defined in the given (training) data set, and the learning is done using these
classes (i.e., class labels). Hence, it is called classification. In unsupervised learning,
we assume the classes or class boundaries are not known, hence the class labels
themselves are also learned, and classes are defined based on this. Hence, the class
boundaries are statistical and not sharply defined, and it is called clustering.

1.3.2.1 Classification

In classification problems [11], we assume labeled data (classes) are available to
generate rules (i.e., generate classifiers through training) that can help to assign a
label to new data (i.e., testing) that does not have labels. In this case, we can derive
an exact rule because of the availability of the labels. Figure 1.3 illustrates this
example. It shows two classes, labeled with white dots and black dots, and a straight
line rule that helps to assign a label to a new data point. As stated before, the labeled
data sets are available for the purpose of evaluating and validating machine-learning
techniques, hence the classification problem can be defined mathematically.

The classification problem may be addressed mathematically based on the data-
to-knowledge transformation mentioned earlier. Suppose a data set is given, and its
data domain D is Rl , indicating that the events of the data set depend on l features
and form an l-dimensional vector space. If we assume that there are n classes, then
we can define the knowledge function (i.e., the model) as follows:

f : Rl ⇒ {0,1,2, . . . ,n} (1.1)

In this function definition, the range {0,1,2, . . . ,n} is the knowledge set which
assigns the discrete values (labels) 0,1,2, . . . ,n to different classes. This mathe-
matical function helps us to define suitable classifiers for the classification of the
data. Several classification techniques have been proposed in the machine learning

1.3 Machine Learning Paradigm 9

Fig. 1.4 Clustering is defined

literature, and some of the well-known techniques are: support vector machine [19],
decision tree [20], random forest [21], and deep learning [22]. These techniques will
be discussed in detail in this book with programming and examples.

1.3.2.2 Clustering

In clustering problems [23, 24], we assume data sets are available to generate rules,
but they are not labeled. Hence, we can only derive an approximated rule that can
help to label new data that do not have labels. Figure 1.4 illustrates this example.
It shows a set of points labeled with white dots; however, a geometric pattern that
determines two clusters can be found. These clusters form a rule that helps to assign
a label to the given data points and thus to a new data point. As a result, the data may
only be clustered, not classified. Hence, the clustering problem can also be defined
as follows with an approximated rule. The clustering problem may also be addressed
mathematically based on the data-to-knowledge transformation mentioned earlier.
Once again, let us assume a data set is given, and its domain D is Rl , indicating that
the events of the data set depend on l features and form an l-dimensional vector
space. If we extract structures (e.g., statistical or geometrical) and estimate there are
n̂ classes, then we can define the knowledge function as follows:

f̂ : Rl ⇒{0,1,2 . . . , n̂} (1.2)

The range {0,1,2, . . . , n̂} is the knowledge set which assigns the discrete labels
0,1,2, . . . , n̂ to different classes. This function helps us to assign suitable labels to
new data. Several clustering algorithms have been proposed in machine learning:
k-Means clustering, Gaussian mixture clustering, and hierarchical clustering [23].

10 1 Science of Information

1.4 Collaborative Activities

Big data means big research. Without strong collaborative efforts between the
experts from many disciplines (e.g., mathematics, statistics, computer science, med-
ical science, biology, and chemistry) and the dissemination of educational resources
in a timely fashion, the goal of advancing the field of data science may not be prac-
tical. These issues have been realized not only by researchers and academics but
also by government agencies and industries. This momentum can be noticed in the
last several years. Some of the recent collaborative efforts and the resources that can
provide long-term impacts in the field of big data science are:

• Simons Institute UC Berkeley—http://simons.berkeley.edu/
• Statistical Applied Mathematical Science Institute—http://www.samsi.info/
• New York University Center for Data science—http://datascience.nyu.edu/
• Institute for Advanced Analytics—http://analytics.ncsu.edu/
• Center for Science of Information, Purdue University—http://soihub.org/
• Berkeley Institute for Data Science—http://bids.berkeley.edu/
• Stanford and Coursera—https://www.coursera.org/
• Institute for Data Science—http://www.rochester.edu/data-science/
• Institute for Mathematics and its Applications—http://www.ima.umn.edu/
• Data Science Institute—http://datascience.columbia.edu/
• Data Science Institute—https://dsi.virginia.edu/
• Michigan Institute for Data Science—http://minds.umich.edu/

An important note to the readers: The websites (or web links) cited in the entire book
may change rapidly, please be aware of it. My plan is to maintain the information in
this book current by updating the information at the following website: http://www.
uncg.edu/cmp/downloads/

1.5 A Snapshot

The snapshot of the entire book always helps readers by informing the topics cov-
ered in the book ahead of time. This allows them to conceptualize, summarize, and
understand the theory and applications. This section provides a snapshot of this book
under three categories: the purpose and interests, the goals and objectives, and the
problems and challenges.

1.5.1 The Purpose and Interests

The purpose of this book is to provide information on big data classification and
the related topics with simple examples and programming. Several interesting top-
ics contribute to big data classification, including the characteristics of data, the
relationships between data and knowledge, the models and algorithms that can help

http://www.uncg.edu/cmp/downloads/
http://www.uncg.edu/cmp/downloads/
http://minds.umich.edu/
https://dsi.virginia.edu/
http://datascience.columbia.edu/
http://www.ima.umn.edu/
http://www.rochester.edu/data-science/
https://www.coursera.org/
http://bids.berkeley.edu/
http://soihub.org/
http://analytics.ncsu.edu/
http://datascience.nyu.edu/
http://www.samsi.info/
http://simons.berkeley.edu/

Problems 11

learn the characteristics (or patterns) in the data, and the emerging technologies that
help manage, process, and analyze data.

1.5.2 The Goal and Objectives

The goal of this book is to teach the details of the development of models and
algorithms to address big data classification. To achieve these goals, the chapter
objectives are developed: (1) the analysis and the understanding of big data, (2) the
configuration and the understanding of big data systems, (3) the exploration and the
understanding of supervised learning models and algorithms, (4) the development
of the models and algorithms with the focus of reducing the classification errors and
computational complexity, and (5) the understanding of the scalability problems.

1.5.3 The Problems and Challenges

Problems are the controlling of the following three errors: (1) approximation errors,
(2) estimation errors, and (3) optimization errors. The challenges are how to control
the above errors under the following three data conditions (or characteristics): (1)
class characteristics, (2) error characteristics, and (3) domain characteristics.

Problems

1.1. A Physical System
Suggest a physical system capable of handling big data management, processing,
and analysis. Think about an application you are interested in and familiar with, and
use the knowledge gained in Sect. 1.2 to develop a solution for this question.

1.2. Network Traffic Data
A data set has been created at a network router by capturing network traffic over a
period of 15 min. Do you think it is regular data, large data, high-dimensional data,
massive data, or big data? Justify your opinion with examples.

1.3. Is a Data Set a Big Data Set?

(a) Empirically show a data set is evolving into a big data set. You may select a data
set, identify its features, and increase observations of each feature assuming they
follow a statistical distribution (e.g., Gaussian or uniform).

(b) Develop a theory that proves or shows a data set is a big data set if the data set
is actually big data, otherwise it is not a big data set.

12 1 Science of Information

Acknowledgements Thanks to the Department of Statistics, University of California, Berkeley;
the Center for Science of Information, Purdue University; the Statistical Applied Mathematical
Science Institute; and the Institute for Mathematics and its Applications, University of Minnesota
for their support which contributed to the development of this book.

References

1. M. Loukides. “What is data science?” http://radar.oreilly.com/2010/06/what-is-data-science.
html, 2010.

2. A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A survey,” Managing Cyber
Threats, vol.5, Part I, pp. 19–78, June 2005.

3. S. Suthaharan, M. Alzahrani, S. Rajasegarar, C. Leckie and M. Palaniswami. “Labelled data
collection for anomaly detection in wireless sensor networks,” in Proceedings of the 6th In-
ternational Conference on Intelligent Sensors, Sensor Networks and Information Processing,
pp. 269–274, 2010.

4. S. Bandari and S. Suthaharan. “Intruder detection in public space using suspicious behavior
phenomena and wireless sensor networks,” in Proceedings of the 1st ACM International Work-
shop on Sensor-Enhanced Safety and Security in Public Spaces at ACM MOBIHOC, pp. 3–8,
2012.

5. P. Zikopoulos, C. Eaton, et al. “Understanding big data: Analytics for enterprise class hadoop
and streaming data.” McGraw-Hill Osborne Media, 2011.

6. S. Suthaharan. “Big data classification: Problems and challenges in network intrusion predic-
tion with machine learning,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 4, pp. 70–73, 2014.

7. H. Tong. “Big data classification,” Data Classification: Algorithms and Applications. Chap-
ter 10. (Eds.) C.C. Aggarwal. Taylor and Francis Group, LLC. pp. 275–286. 2015.

8. C.M. Bishop. “Pattern recognition and machine learning,” Springer Science+Business Media,
LLC, 2006.

9. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

10. T. G. Dietterich, “Machine-learning research: Four current directions,” AI Magazine, vol. 18,
no. 4, pp. 97–136, 1997.

11. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

12. S. Yan, D. Xu, B. Zhang, H.J. Zhang, Q. Yang, and S. Lin, “Graph embedding and extensions:
A general framework for dimensionality reduction,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 1, pp. 40–51, 2007.

13. http://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-
algorithms.html

14. http://www.cggveritas.com/technicalDocuments/cggv 0000014063.pdf
15. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The hadoop distributed file system,”

In Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies,
pp. 1–10, 2010.

16. T. White. Hadoop: the definitive guide. O’Reilly, 2012.
17. http://scikit-learn.org/stable/
18. P. C. Wong, H.-W. Shen, C. R. Johnson, C. Chen, and R. B. Ross. “The top 10 challenges

in extreme-scale visual analytics.” Computer Graphics and Applications, IEEE, 32(4):63–67,
2012.

19. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. “Support vector machines.”
Intelligent Systems and their Applications, IEEE, 13(4), pp. 18–28, 1998.

http://scikit-learn.org/stable/
http://www.cggveritas.com/technicalDocuments/cggv_0000014063.pdf
algorithms.html
http://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-
http://radar.oreilly.com/2010/06/what-is-data-science.html
http://radar.oreilly.com/2010/06/what-is-data-science.html

References 13

20. S.K. Murthy. “Automatic construction of decision trees from data: A multi-disciplinary sur-
vey,” Data Mining and Knowledge Discovery, Kluwer Academic Publishers, vol. 2, no. 4,
pp. 345–389, 1998.

21. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
22. L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. “Regularization of neural networks

using dropconnect.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 1058–1066, 2013.

23. http://www.mathworks.com/discovery/cluster-analysis.html
24. A. K. Jain. “Data clustering: 50 years beyond K-means.” Pattern recognition letters, vol. 31,

no. 8, pp. 651–666, 2010.

http://www.mathworks.com/discovery/cluster-analysis.html

Part I
Understanding Big Data

Chapter 2
Big Data Essentials

Abstract The main objective of this chapter is to organize the big data essentials that
contribute to the analytics of big data systematically. It includes their presentations
in a simple form that can help readers conceptualize and summarize the classifica-
tion objectives easily. The topics are organized into three sections: big data analyt-
ics, big data classification, and big data scalability. In the big data analytics section,
the big data controllers that play major roles in data representation and knowledge
extraction will be presented and discussed in detail. These controllers, the problems
and challenges that they bring to big data analytics, and the solutions to address
these problems and challenges will also be discussed. In the big data classification
section, the machine learning processes, the classification modeling that is charac-
terized by the big data controllers, and the classification algorithms that can manage
the effect of big data controllers will be discussed. In the big data scalability sec-
tion, the importance of the low-dimensional structures that can be extracted from a
high-dimensional system for addressing scalability issues will be discussed as well.

2.1 Big Data Analytics

In [1], Philip Russom defined the term “Big data analytics” by dividing it into two
keywords “big data” and “analytics,” and he described them individually based on
their combined influence on business intelligence. Business intelligence is one of
the applications that can benefit from the big data techniques and technologies. Big
data analytics also has a scientific significance in real-world applications; therefore,
it is appropriate to define it based on class characteristics, feature characteristics,
and observation characteristics—the three important controllers of big data. This
chapter discusses these big data controllers in detail. The understanding of big data
controllers, the analysis of the problems that the controllers create in a big data envi-
ronment, the confrontation of the challenges for solving these problems efficiently,

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 2

17

18 2 Big Data Essentials

Fig. 2.1 The contributors to the analytics of big data: the controllers, problems,
challenges, and solutions (techniques and technologies)

and the development of techniques and technologies to address big data classifica-
tion are the important contributors in big data analytics. The definition of big data
analytics based on the contributors would help the classification of the structured
and unstructured data significantly. Whether a data set is structured or unstructured
may be determined by proper understanding of the controllers.

2.1.1 Big Data Controllers

The main goal of this book is to address big data classification problems, challenges,
and solutions. In [2], these topics are presented focusing on network intrusion det-
ection, which is considered a big data application. A complete understanding of the
class characteristics, feature characteristics, and observation characteristics can help
address these issues. These three controllers are illustrated in Fig. 2.1. Let us first
understand the information presented in the first column of this figure. It presents a
3D representation of a set of data. The observations (the vertical axis) represent the
events that are recorded or observed by a system, and they describe the big data’s
term volume. The number of observations, n, states that the size of the data set is n.

2.1 Big Data Analytics 19

They may also describe the big data’s term velocity which may be defined by the
availability of data on demand. Hence, the observation controls the classification
issues that resulted from the volume and velocity of the big data. The features
(the horizontal axis) represent the independent variables that generate the events
(or responses), and hence they determine the volume and the dimensionality of the
data. The number of features, p, means the data set has p-dimensions. They control
the scalability of the data, and the parameters, n and p, together define the charac-
teristics of dimensionality. For example, if n < p, then the data set is said to be high
dimensional. The third big data controller, the classes (the diagonal axis), represents
the types of the events and determines the variety term of big data. It helps to group
the data and creates the need for dividing the data domain robustly.

2.1.2 Big Data Problems

The individualization of the controllers and their uncoordinated efforts can create
problems in the big data realm. Each controller defines its own contribution to big
data, and it affects the individualization of the other controllers orthogonally, and
hence we define the controllers’ problems using a three-dimensional space as shown
in the second column of Fig. 2.1. As it is defined, the controller class contributes to
the unpredictability of big data. It means that the detection (or classification) of
classes with the growth in big data is very difficult and unpredictable. The growth in
the class types is system dependent, and it is independent to the users’ knowledge
and the experience. Hence, the big data classification becomes unpredictable, and
the application of machine-learning models and algorithms becomes difficult.

Similarly, the controller feature contributes to the complexity of big data. It makes
the classification of patterns difficult by increasing the dimensionality of data. It is
one of the major contributors to the scalability problems in a big data paradigm. The
third controller observation contributes to the difficulties of managing, processing,
and analyzing the data. Its growth increases the volume of data and makes the pro-
cessing difficult with the current technologies. Therefore, if we understand the indi-
viduality of these controllers and their uncoordinated efforts clearly, then we should
be able to confront the challenges that they bring to big data classification.

2.1.3 Big Data Challenges

The individualization and orthogonality problems reported in the previous section
create several challenges to the current techniques and technologies. The bottom
figure in the second column of Fig. 2.1 illustrates the challenges. The challenges
associated with the techniques may be categorized as classification, scalability,
and analysis. The challenges associated with the technologies may be categorized
as computation, communication, and storage. In addition, the problems can bring

20 2 Big Data Essentials

security challenges as reported in the papers [2, 3] as well. Let us now connect these
challenges with the corresponding big data controllers.

The problems caused by the controller class can impact the performance degra-
dation of the classification techniques, while imposing challenges on the choice of
computing power and storage requirements. The problems caused by the controller
feature challenge the reduction of dimensionality and the storage and computing
power. Similarly the controller observation brings challenges in the data processing,
storage requirements, and communication issues when the data are distributed as
demonstrated in [2] to solve intrusion detection problems.

2.1.4 Big Data Solutions

The big data solutions are illustrated in the third column of Fig. 2.1. The big data
solutions are divided into techniques and technologies as illustrated in these figures.
The techniques involve solving problems by addressing the challenges associated
with the big data controllers with respect to their speed, complexity, unpredictabil-
ity, (un)manageability, and scalability. The techniques may be divided into modeling
and algorithms whereas the technologies may be divided into systems and frame-
work. The modeling and algorithms may be described more specifically with super-
vised machine learning (related to classes) [4], feature hashing (related to features)
[5, 6], and stochastic gradient descent (related to observations) [7, 8]. Similarly the
systems and framework may be described more specifically with the modern dis-
tributed file systems like the Hadoop distributed file system [9, 10] and modern
programming frameworks like the MapReduce programming model [11, 12].

2.2 Big Data Classification

The main focus of this book is on big data classification [2, 13], which is one of
the important and difficult problems in big data analytics. In simple terms, big data
classification is a process of classifying big data under the problems and challenges
introduced by the controllers of big data. The steps involved in the big data clas-
sification objectives are presented in the top figure of Fig. 2.2, which shows the
processes involved with the management of big data, the configuration of big data
technology, and the development of machine-learning techniques.

In the top figure of Fig. 2.2, the steps involved in the classification process are
clearly presented: collecting the input data, understanding the data, shaping up the
data (e.g., data cleaning and representation learning), and understanding the big
data environment based on the hardware requirements and constraints of controllers.
Finally, the understanding of the modeling and algorithms is also required for the
success of big data classifications. The first bottom figure of Fig. 2.2 shows the spe-
cific parameters that influence the management of the big data controllers and lead

2.2 Big Data Classification 21

Fig. 2.2 Top: the classification processes of big data are illustrated. Bottom left:
the classification modeling of big data is illustrated. Bottom right: the classification
algorithms of big data are illustrated

to challenges in the development of learning models. In the second bottom figure of
Fig. 2.2, the steps involved in learning algorithms are presented. It shows the flow
from training phase to validation phase and then to testing phase. In the validation
phase, cross-validation techniques can be applied and an early stopping decision
may be made to avoid a so-called overfitting problem.

2.2.1 Representation Learning

The representation learning techniques [14, 15] are useful for understanding and
shaping the data. These techniques require statistical measures and processes. Sta-
tistical measures like the mean, standard deviation, and covariance can help detect
the patterns numerically. Similarly, the graphical tools like pie charts, histograms,
and scatter plots can help in understanding the patterns. Statistical processes like
normalization and standardization can manipulate data to extract and understand
patterns. Representation learning mainly focuses on the big data controller fea-
ture, and its goal is the feature selection. Hence it contributes to the dimensionality

22 2 Big Data Essentials

Fig. 2.3 Characteristics problems with the modeling

reduction objectives in machine learning. In big data analytics, the data sets grow
dynamically; therefore, the representation learning techniques take the dynamically
changing data characteristics into consideration. In general, representation learning
techniques have been applied to understand the data, but it does not incorporate the
domain division (class-separate) objectives. The recent cross-domain representation
learning framework proposed by Tu and Sun [16] may be useful to understand the
data for big data analytics.

2.2.2 Distributed File Systems

Distributed file systems are suitable for big data management, processing, and
analysis [17]. They may be customized to satisfy the hardware requirements and
remove computing environmental constraints. They must be configured to handle a
large volume of data (big data storage), real-time data (big data on demand), and
large varieties of computations associated with the data types (computer memory).
The modern Hadoop distributed file system can be configured to meet these require-
ments, thus eliminating the constraints that arise from the size, dimensionality, and
data unavailability for on demand applications.

2.2 Big Data Classification 23

2.2.3 Classification Modeling

Classification modeling was illustrated in Fig. 1.1 and discussed in Chap. 1. As we
recall, it defines a map f between a data domain and a knowledge (or response) set.
This definition may be extended to the analysis of class labels in order to describe
the class characteristics defined by imbalanced [18], incomplete [19], and inaccurate
data [20]; to the analysis of the observations in order to describe the error charac-
teristics defined by the approximation, the estimation, and the optimization [21, 22]
errors; and to the analysis of the features in order to describe the domain character-
istics defined by the degree of dimensionality, the sparsity, and the subspace. This
extended definition is illustrated in Fig. 2.3. It also shows the relationships between
the three characteristics. It states that the approximation, estimation, and optimiza-
tion issues must be taken into consideration, when the mapping f is defined, the
dimensionality, sparsity, and subspace must be taken into consideration when the
data domain is divided, and the imbalance, incomplete, and inaccurate class charac-
teristics must be considered when the subdomains are mapped to the responses.

2.2.3.1 Class Characteristics

Imbalanced, incomplete, and inaccurate class characteristics can be defined in the
response set portion of the modeling objective (see Fig. 2.3). These characteristics
are influenced by the big data controllers: classes, features, and observations. We
can describe these characteristics using simple examples.

Let us take two classes: {(1,5),(1.5,5.2),(2,4.6)} and {(5,1),(6,0.5),
(6.5,1.4)}. This is balanced data, the observations are represented by (x1,x2) with
two features and the number of observations in each class is 3. If we assume these
are the true observations, but a system generates {(1,5),(1.5,5.2),(2,4.6)} and
{(6,0.5),(6.5,1.4)}, then we can call this imbalanced data [18]. You will see a
detailed explanation in Chap. 3. That is, if we have more observations in one class
than in the other class, then we can say the data is imbalanced, and the smaller class
is the minority class, and the other class is the majority class.

If the system generates {(1,5),(1.5,5.2),(2,4.6)} and {(5,1),(6,0.5),(6.5,−)}
then we can call this incomplete data, because a class has missing information and
is not complete. Similarly, if the system generates {(1,5),(1.5,5.2),(6.5,1.4)} and
{(5,1),(6,0.5),(2,4.6)}, then we can call it inaccurate data because class observa-
tions are labeled incorrectly.

This scenario is illustrated visually in Fig. 2.4. The top row shows two classes
“class 1” and “class 2” with the balanced, complete, and accurate data. In the first
image of the second row, an imbalanced data example is shown; in the second image
of this row, an incomplete data example (data are missing) is illustrated; and in the
third image, an example of inaccurate data (labels are switched) is shown. In [19],
Little and Rubin provide different examples for explaining the patterns that are exp-
ected when the data is incomplete. These three class characteristics are the major
players for the deformation of patterns.

24 2 Big Data Essentials

Fig. 2.4 Examples of imbalanced data, incomplete data, and inaccurate data based
on the class labels and information abnormalities

2.2.3.2 Error Characteristics

The error characteristics can be defined in the mapping portion of the modeling pro-
cess. This is shown in Fig. 2.3. Bottou and Bousquet [21] discuss the decomposition
of classification errors using estimation, approximation, and optimization errors,
and then Dalessandro [22] simplifies it in his paper. Based on these references, the
estimation error may be defined as the differences in the models derived from the
data sets of different sizes (e.g., finite and infinite sizes); the approximation error
may be defined as the differences in the models derived from the parametrized mod-
els assumed (e.g., linear and nonlinear models); and the optimization error may be
defined as the differences in the algorithms used to derive the models (e.g., efficient
and inefficient algorithms). It is described in Fig. 2.5.

Suppose there is a true model, and we don’t know that model; hence, we assume a
model and develop a classification technique. Then the error between the true model
and the model that we assumed will impact the accuracy of the classification model
that we developed. This error is called the approximation error. Similarly, suppose
there is a best algorithm, but we don’t know that, and we develop an algorithm and
use it for our classification. This error will impact the classification accuracy as
well. This is called the optimization error. In the third error, suppose we use the true
model and the best algorithm, in that case, we would get the actual results, but if we
use our assumed model and the algorithm, we produce a different result. This error
is called the estimation error. The task of big data classification is to minimize these
three errors in the modeling and the algorithms. These three error characteristics are
the major players for the classification errors.

2.2 Big Data Classification 25

Fig. 2.5 Differences in modeling, algorithm and results can define approximation,
optimization and estimation errors respectively

2.2.3.3 Domain Characteristics

Dimensionality, sparsity, and subspace can be defined based on the information of
the features (one of the big data controllers). The number of features determines
the dimensionality of the data. However, some of the features may not be relevant
features, and they may not contribute to the patterns in the data. This can lead to
dimensionality reduction, and the new space with fewer features is called the sub-
space. For example, take three observations with three features: (2,6,1.1), (4,8,2.2),
and (3,7,0.5); they are drawn from two classes, “even” and “odd.” They form a
three-dimensional data domain. We can easily classify them with only the first two
features, so it means new data points are (2,6), (4,8), and (3,7), and they now form
a two-dimensional subspace. The first two points represent the “even” class and the
last one represents “odd” class. Therefore, the subspaces can have low-dimensional
structures that are useful for classification. Let us now define sparsity using a modi-
fied example. In this example, let us take the following three observations with three
features: (2,0,0), (0,8,0), and (0,0,3). Here the features are sparse and they create the
sparsity problem of big data classification.

2.2.4 Classification Algorithms

The classification algorithms mainly involve machine-learning processes, which are
training, validation, and testing [4]. However, cross-validation and early stopping
processes must be incorporated in the validation step.

26 2 Big Data Essentials

2.2.4.1 Training

The training phase provides an algorithm to train the model. In other words, we can
say that the parameters of a machine-learning model are estimated, approximated,
and optimized using a labeled data set, the domain characteristics (dimensionality,
sparsity, and subspace), and the class characteristics (imbalanced, incomplete, and
inaccurate). The data set used in this phase is called the training set, and when a data
set is called a training set then we can assume that it is a labeled data set. That is
when the class labels are known.

2.2.4.2 Validation

The validation phase provides an algorithm to validate the effectiveness of the model
using another data set, which was not used in the training phase. In this case, the data
set is called the validation set, and it is also labeled. The validation phase helps to
show that the parameters derived in the training phase work based on a quantita-
tive measure. Hence, the quantitative measure plays a major role in this validation
process. Some of these measures are entropy and root mean-squared error.

If the results are not satisfactory, then the model must be trained again to obtain
better parameter values. This is the phase where the effects of the problems (the se-
lection of an incorrect model, or the use of an inefficient algorithm) reported in
Fig. 2.5 can be seen and corrected. The validation phase can also help to correct the
over-training problem, which leads to the overfitting problem. The main technique
used for this purpose is called the cross-validation [23].

2.2.4.3 Testing

This is a simple phase, and provides an algorithm to test if the trained and cross-
validated model works using another data set, which was not used in the training
or validation phases. In this algorithm, the labeled data set is used only to compare
the results produced by the final model in terms of classification accuracy and com-
putational time. Several measures are available for this purpose, and they are called
qualitative measure as they are used to measure the performance of the model. Some
of these measures are listed in [24], and they are: accuracy, sensitivity, specificity,
and precision. These measures are used later in this book for performance analysis.

2.3 Big Data Scalability

Scalability is an unavoidable problem in big data applications [25]. Uncontrollable
and continuous growth in the features create the scalability problem. In simple terms,
the classification results obtained with a set of features expires instantaneously

2.3 Big Data Scalability 27

because of the new additions in the features. Scalability occurs in high-dimensional
systems, and it may be addressed using efficient representation learning and feature
hashing algorithms.

2.3.1 High-Dimensional Systems

A large number of feature does not mean the data is high dimensional. A data set
is high dimensional only if the number of features (p) of the data set are larger
than the number of observations (n) in the data set. In big data analytics, the prob-
lem, challenges, and solution related to scalability have been treated separately, as it
forms a separate problem space and gives significant challenges to different applica-
tions like text processing (spam filter) and forensic linguistics. The features are the
main controller that contribute to this scalability problem and associated challenges.
Hence, the scalable machine learning topic emerged into the big data paradigm. In
this problem space, the features dynamically grow, and the system becomes high
dimensional and difficult to manage. Therefore, one solution is to understand the
patterns in low dimensions to develop efficient big data classification models and
algorithms. Removal of irrelevant features can bring the number of features to less
than the number of observations and, hence, help define low-dimensional structures.

2.3.2 Low-Dimensional Structures

In this section, two approaches are discussed: representation learning and feature
hashing. Representation learning [14] provides models and algorithms to represent
data at the preprocessing stage and help learn data characteristics through under-
standing of the roles of controllers and extracting geometrical and statistical struc-
tures. In [15], a simple representation learning technique, called a single-domain,
representation-learning model, has been proposed, and its objective is to separate
two classes over two-dimensional subspaces. It adopts the concept of unit-circle
algorithm proposed in [26]. The main big data controller that may be manipulated
to extract low-dimensional structures by generating subspaces in the representation-
learning algorithms is the features.

Therefore, the techniques called hashing techniques have been proposed in the
field to create low-dimensional subspaces. The feature hashing techniques provide
dimensionality reduction to the data through the mapping of entire feature space to
subspaces that are formed by subsets of features. Hence, it is sensitive to the inferi-
ority of the algorithm used to generate such mappings.

28 2 Big Data Essentials

Problems

2.1. Select several data sets from the University of California, Irvine, Machine
Learning repository and explore: What is the purpose of the data sets? How many
observations are there? How many features are there? How many classes are there?
Is it useful to analyze the data sets? Will they evolve into big data sets?

2.2. Data Analytics

(a) Identify two data sets based on the answers that you found for the question in
the first problem.

(b) Apply statistical analysis tools (such as scatter plots, histograms, pie charts, sta-
tistical distributions, etc.) and determine if the data sets are imbalanced, incom-
plete, or inaccurate.

(c) Make the data sets balanced, complete, and correct through randomization.
Assume Gaussian properties for each feature, or conduct a distribution test to
find a suitable distribution. Have you succeeded?

Acknowledgements I would like to thank Bin Yu and Richard Smith for the opportunities they
gave me to attend several big data related workshops at their respective institutions. The knowledge
gained from these workshops helped me write some of the topics presented in this book.

References

1. P. Russom, “Big data analytics,” TDWI Best Practices Report, Fourth Quarter, Cosponsored
by IBM, pp. 1–38, 2011.

2. S. Suthaharan. 2014. “Big Data Classification: Problems and challenges in network intru-
sion prediction with machine learning,” ACM SIGMETRICS Performance Evaluation Review,
vol. 41, no. 4, pp. 70–73.

3. J. Whitworth and S. Suthaharan. 2014. “Security problems and challenges in a machine
learning-based hybrid big data processing network systems,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 41, no. 4, pp. 82–85.

4. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

5. K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. “Feature hashing for
large scale multitask learning.” In Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 1113–1120. ACM, 2009.

6. Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and V. Vishwanathan. “Hash kernels for
structured data.” The Journal of Machine Learning Research 10, pp. 2615–2637, 2009.

7. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition.” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

8. T. Zhang. “Solving large scale linear prediction problems using stochastic gradient
descent algorithms.” In Proceedings of the International Conference on Machine learning,
pp. 919–926, 2004.

9. P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise class hadoop
and streaming data. McGraw-Hill Osborne Media, 2011.

10. T. White. Hadoop: the definitive guide. O’Reilly, 2012.

References 29

11. J. Dean, and S. Ghemawat, S. “MapReduce: simplified data processing on large clusters.”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

12. J. Dean, and S. Ghemawat. “MapReduce: a flexible data processing tool.” Communications of
the ACM, vol. 53, no. 1, pp. 72–77, 2010.

13. H. Tong. “Big data classification,” Data Classification: Algorithms and Applications. Chap-
ter 10. (Eds.) C.C. Aggarwal. Taylor and Francis Group, LLC. pp. 275–286. 2015.

14. Y. Bengio, A. Courville, and P. Vincent. “Representation learning: A review and new per-
spectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

15. S. Suthaharan. “A single-domain, representation-learning model for big data classification of
network intrusion,” Machine Learning and Data Mining in Pattern Recognition, Lecture Notes
in Computer Science Volume 7988, pp. 296–310, 2013.

16. W. Tu, and S. Sun, “Cross-domain representation-learning framework with combination
of class-separate and domain-merge objectives,” In: Proc. of the CDKD 2012 Conference,
pp. 18–25, 2012.

17. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The hadoop distributed file system,” In
Proc. of the IEEE 26th Symposium on Mass Storage Systems and Technologies, pp. 1–10,
2010.

18. K. Kotipalli and S. Suthaharan. 2014. “Modeling of class imbalance using an empirical
approach with spambase data set and random forest classification,” in Proceedings of the 3rd
Annual Conference on Research in Information Technology, ACM, pp. 75–80.

19. R.J.A. Little and D.B. Rubin. “Statistical analysis with missing data,” Wiley Series in Proba-
bility and Statistics, John Wiley and Sons, Inc. second edition, 2002.

20. B. Frenay and M. Verleysen, “Classification in the presence of label noise: a survey,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–869, 2014.

21. L. Bottou, and O. Bousquet. “The tradeoffs of large scale learning.” In Proceedings of NIPS,
vol 4., p. 8, 2007.

22. B. Dalessandro. “Bring the noise: Embracing randomness is the key to scaling-up machine
learning algorithms.” Big Data vol. 1, no. 2, pp. 110–112, 2013.

23. S. Arlot, and A. Celisse. “A survey of cross-validation procedures for model selection,” Statis-
tics surveys, vol. 4, pp. 40–79, 2010.

24. Machine Learning Corner (Design models that learn from data), “Evaluation of Classifier’s
Performance,” https://mlcorner.wordpress.com/tag/specificity/, Posted on April 30, 2013.

25. P. Domingos, and G. Hulten. “A general method for scaling-up machine learning algorithms
and its application to clustering.” In Proceedings of the International Conference on Machine
Learning, pp. 106–113. 2001.

26. S. Suthaharan. 2012. “A unit-circle classification algorithm to characterize back attack and
normal traffic for network intrusion detection systems,” in Proceedings of the IEEE Interna-
tional Conference on Intelligence and Security Informatics, pp. 150–152.

https://mlcorner.wordpress.com/tag/specificity/

Chapter 3
Big Data Analytics

Abstract An in-depth analysis of data can reveal many interesting properties of the
data, which can help us predict the future characteristics of the data. The objective
of this chapter is to illustrate some of the meaningful changes that may occur in a set
of data when it is transformed into big data through evolution. To make this objec-
tive practical and interesting, a split-merge-split framework is developed, presented,
and applied in this chapter. A set of file-split, file-merge, and feature-split tasks is
used in this framework. It helps explore the evolution of patterns from the cause of
transformation from a set of data to a set of big data. Four digital images are used
to create data sets, and statistical and geometrical techniques are applied with the
split-merge-split framework to understand the evolution of patterns under different
class characteristics, domain characteristics, and error characteristics scenarios.

3.1 Analytics Fundamentals

The statistical and geometrical properties are the main analytics fundamentals that
can help us understand the evolution of patterns. One of the focuses of big data
classification is the development of an efficient domain division technique; there-
fore, the analytics fundamentals must be understood clearly. Some of the statis-
tical measures that contribute to accomplishing this objective are the counting, the
mean, the variance (or standard deviation), the covariance, and the correlation [1, 2].
The connection between these statistical measures and the geometrical properties of
the data must be clearly defined. In addition to these numerical measures, several
graphical tools that support visual analytics are also available, and three of them
considered in this chapter are: graphs, histograms, and scatter plots [3]. These nu-
merical and visual measures, alone, are not enough to understand the evolution of
patterns in a big data environment. The statistical processes that contribute to this
objective are also required, and the important processes incorporated in the analytics
discussed in this chapter are: standardization, normalization, linear transformation,

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 3

31

32 3 Big Data Analytics

and orthogonalization. Some of these statistical measures and the statistical pro-
cesses are discussed in detail in the book by Layth C. Alwan [4], and I encourage
readers to consult this book for additional information.

3.1.1 Research Questions

The above-mentioned statistical and geometrical measures are useful to answer sev-
eral questions, and these answers can play a major role in understanding and devel-
oping machine-learning models and algorithms for big data classification. Some of
the questions related to big data sets are listed and briefly described below:

• Is the data set a regular data set or a big data set? This means the data in hand
may be analyzed and processed by current techniques and technologies. There-
fore, it is important to understand some of the basic properties of data so that
advanced technologies may be deployed if the data is big data or expected to
grow to big data.

• Does the data set have separable classes or non-separable classes? The answer
can help determine the processes, modeling, and algorithms required to learn
the classification characteristics and develop efficient classifiers. Non-separable
classes will have to face higher false positives than the separable classes and,
hence, linear algorithms may not work as expected.

• Is the data set an imbalanced, inaccurate, or incomplete? Data sets have their
own structures that may lead to complicated structures when a set of data is
transformed into big data. These properties may be described using imbalance,
inaccurate, and incomplete data characteristics. They will be discussed in detail
with examples later in the chapter.

• Does the data set have a scalability problem? As we discussed in the previ-
ous chapter, scalability is the problem that results from the growing number of
features and the complicated data structures. This problem is elevated, in gen-
eral, when the data has grown to big data, and this problem must be identified
correctly.

• Is the data set high dimensional? If the number of observations in a data set
is significantly lower than the number of features, then we can define the data
set as high dimensional, and significant care must be taken to extract useful
information.

• Does the data set have low-dimensional structures? High-dimensional data may
carry very useful information in low dimensions; and these low-dimensional
structures must be extracted to process data, and these structures may be used
to process and analyze big data.

The questions were grouped according to the structures of the data, characteris-
tics of the data, scalability of the data, dimensionality of the data, and the existence
of meaningful low-dimensional structures. In general, the machine learning (more
specifically, the supervised learning) attempts to answer the question: Which class
does the observation belong to? To answer this question, we develop a classifier

3.1 Analytics Fundamentals 33

(a supervised learning model), and train and validate it using a labeled data set.
However, in a big data system, we need to answer: Which class does the group of
observations belong to? Say, for example, we want to decide if a photo (face image)
transmitted over a computer network belongs to person A or person B. In this exam-
ple, each image has many sub-image blocks (8×8 = 64 pixels) that are transmitted
using a network protocol. These blocks are available together for deciding whether
a group of blocks belongs to the picture of A or B. Thus, batch learning of a sin-
gle class is highly feasible in a big data system. This chapter mainly focuses on
the techniques that are suitable for a similar batch learning environment. Hence, the
data sets and the way they are manipulated and interpreted are important for big data
analytics.

3.1.2 Choices of Data Sets

Two simple data sets are selected for the first set of simulations, and they are called
Hardwood Floor and Carpet Floor. The images are presented in Figs. 3.1 and 3.2.
These are simple examples, and they satisfy Gaussian models with minimum insep-
arability problems, and thus, they are chosen for the simulations first. Note that two
more complex data sets, Biltmore Estate and MyPrismaColors, are also considered,
and they will be used later for different examples since they provide good examples
of a mixture of Gaussian models.

The choices of data sets and the way they are handled to explain the big data clas-
sification are very important. It is also important to address these problems compu-
tationally and provide explanation scientifically. Therefore, it is necessary to write
programs to read the data and carry out the machine-learning tasks systematically.
It is also vital to make the data balanced (if it is imbalanced), accurate (if it is inac-
curate), and complete (if it is incomplete) through a randomization process. As per
a recent study by Dalessandro [5], randomization is a good solution to address most
of the big data problems. Therefore, randomization is used to create larger data sets
from these data sets. The split-merge-split framework requires these expanded data
sets, and it will be discussed later in the chapter.

You can download these images and their corresponding .csv files from the
website [6] at the Department of Computer Science, University of North Carolina at
Greensboro. The images are of the size 256×256 pixels. Considering these images,
it is possible to obtain many images of these objects (or places), or many subblocks
of these images. This book considers 1024 subblocks of size 8×8 pixels. Each block
is of size 8×8 pixels, and it is considered an observation of the data set. Each pixel
is considered a feature, hence there are 1024 observations and 64 features.

The data patterns may be extracted from the numerical measures and visual aids.
Some of the simple statistical pattern detectors are the mean, median, mode, vari-
ance, pie chart, and histogram. In this section, a few of these pattern detectors are
applied to the data sets, and results are presented with discussions.

34 3 Big Data Analytics

3.2 Pattern Detectors

The statistical and geometrical pattern detectors significantly contribute to the
successful understanding of data characteristics to optimize the classification ac-
curacies of the machine-learning models. In this section, some of the statistical and
visual measures are presented and discussed with examples.

3.2.1 Statistical Measures

Statistical measures can help understand the measurements of various patterns hid-
den within the data. They can help us characterize the data based on their size,
number of distinct patterns, the spread of the patterns, and so on. The counting,
mean, and standard deviations are discussed below. I strongly suggest that readers
refer to a statistics book like [4] to learn the analysis of statistical processes.

3.2.1.1 Counting

Counting is a simple measure, but it is very powerful and helpful in many aspects
of big data analytics, including pattern detection, resource allocation, and data man-
agement. Some of the questions that can be answered using the counting measure
are: How many observations are there? How many features are there? and How
many classes are there? This measure is the major player in addressing imbalanced
data problems (minority class versus majority class) in big data classification.

Thinking with Example 3.1:

Consider the hardwood floor and carpet floor data sets. Each observation in these
data sets comes from one of these two classes of images; therefore, we have a
two-class classification problem. These images were divided into 1024 nonover-
lapping blocks of size 8× 8 (= 64) pixels, hence we have 1024 observations from
each class, and 64 features (where each pixel is a feature). Simply, we have two
classes, 64 features, and 2048 observations; therefore, the volume of data is 2048,
the dimensionality of data is 64, and there are two balanced classes.

3.2.1.2 Mean and Variance

The statistical mean and the variance can also be used to measure the effect of the
big data controllers. Some questions that can be answered using these measures are:
What are the differences in the feature characteristics? How do the between-class
observations differ? Are there any subgroups of features (subspace)? Are there are
any similarities between the subgroups?

3.2 Pattern Detectors 35

Fig. 3.1 Hardwood floor

Fig. 3.2 Carpet floor

Thinking with Example 3.2:

Figure 3.3 presents an example that illustrates the meanings of mean and variance.
It shows the two-dimensional data domain formed by two features named Feature
1 and Feature 2, and four points that are connected by straight lines to show the
deformation of patterns. The original four points are connected to form a square
(in blue), and its mean and variance are calculated and plotted on the data domain.

36 3 Big Data Analytics

0
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5
feature 1

fe
at

ur
e

2

6 7 8 9 10

Fig. 3.3 A toy example—mean and variance are illustrated

The means of the features (1 and 2) are 4.75 and 1.5, and their variances are 0.3333.
The horizontal sides show the variability in Feature 1, and the vertical sides show
the variability in Feature 2. However, when Feature 1 varies, there is no variability
in Feature 2. Similarly when Feature 2 varies, there is no variability in Feature 1.
It indicates zero covariance and correlation. If we now disperse the data (square)
horizontally and move it upward over Feature 2 as shown in the rectangle (in red),
then the new means and variances are: 4.70, 3.7, 1.3333, and 0.3333. Feature 1 is
dispersed, but Feature 2 is not, hence the variance of Feature 1 has changed sig-
nificantly. Similarly, the mean of Feature 2 has changed because of the vertical
shift. Once again, Feature 2 does not change with respect to Feature 1 or Feature
1 does not change with respect to Feature 2; hence, we have zero covariance and
correlation.

Thinking with Example 3.3:

As mentioned before, the images considered have 64 features (because each block of
64 pixels is considered an observation). Suppose we are interested in understanding
the features’ properties. We can calculate their mean and standard deviations. These
values are presented in Figs. 3.5 and 3.6. We can clearly see the hardwood floor

3.2 Pattern Detectors 37

0
0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10

feature 1

fe
at

ur
e

2

12 14 16 18 20

Fig. 3.4 A toy example—covariance and correlation are illustrated

has lower intensity values than the carpet floor. It also has lower local variations
than that of the carpet floor. These properties can help to classify these images and
predict if a new block of data belongs to a hardwood floor or carpet floor.

3.2.1.3 Covariance and Correlation

The covariance and correlation measures are also illustrated in Fig. 3.3. Suppose we
change the values of the four points to form the parallelogram shown in the right-
hand side of the data domain (in black), then we can see the changes in Feature 2
values with respect to Feature 1 and vice versa. In this case, we have co-variability
(means the covariance). The calculation of the statistical measures (means, vari-
ances, covariance, and correlation) for this example are: 7.20, 6.70, 1.3333, 1.6667,
1.00, and 0.6708, respectively. We can see the Feature 2 values increase with respect
to Feature 1, which indicates the positive covariance and correlation. Similarly, if we
change the values of the four points to form the parallelogram shown in the left-hand
side of the data domain (in magenta), then the values of the statistical measures can
be calculated as: 2.2000, 6.7000, 1.3333, 1.6667, −1.0000, and −0.6708. It shows
the negative covariance and correlation because the Feature 2 values decrease with
respect to Feature 1.

Another example is shown in Fig. 3.4 which illustrates the effect on the covariance
and correlation with respect to geometrical pattern deformation. In this example, the

38 3 Big Data Analytics

blue parallelogram is the original shape formed by the original data points on the
data domain. The covariance and correlation are 2.2500 and 0.5606 respectively.
If we disperse the top right-hand corner point to form the polygon shape shown in
red, then the new covariance and correlation are: 4.7500 and 0.6282, respectively.
It clearly shows the increase in the magnitude of these measures. Similarly, if we
disperse the top left-hand point to form the polygon shown in black, then the covari-
ance and correlation values are: −0.8125 and −0.0678. It clearly shows the negative
correlation. Therefore, the southwest ⇔ northeast dispersion will give a positive in-
crease, and the northwest ⇔ southeast dispersion will give a negative increase in the
covariance and correlation.

3.2.2 Graphical Measures

In the statistical field, there are several visual tools available that can be used for
visual analytics. The paper by Wong et al. [7] reports several challenges in visual
analytics problems; however, simple statistical tools like pie charts, histograms, and
scatter plots, and their applications to big data analytics must be first understood.

3.2.2.1 Histogram

An important visual tool that can help detect the statistical distribution of data and
validate the numerical statistical hypothesis testing is the histogram [4]. It can be
used to answer the following questions as a part of data analytics: Does the data
follow a single distribution? Are there any multiple distributions to determine multi-
class property? Does the data follow a Gaussian distribution? The histograms of the
hardwood floor and carpet floor data sets presented in Figs. 3.7 and 3.8 show the
Gaussian properties (approximately) of the images.

3.2.2.2 Skewness

Skewness is one of the visual tools that can help classification objectives. It may be
used as a numerical measure as well when computed. If the distribution of one class
is skewed on one side (say left-positively skewed), and the distribution of another
class is skewed on the other side (i.e., right-negatively skewed), then these classes
can be easily classified based on the skewness [4]. If a data set contained within-
class multiple distributions, then the different skewness of within-class distributions
can also help to explain the data characteristics. Therefore, skewness is a helpful
measure to achieve classification objectives.

3.2 Pattern Detectors 39

0 10 20 30 40 50 60 70
90

100

110

120

130

140

150

160

Feature Numbers

M
ea

n
V

al
ue

s

Fig. 3.5 Mean—hardwood floor (in blue) and carpet floor (in red)

0

24

23

22

21

20

19

18

17

Feature Numbers

S
td

 V
al

ue
s

70605040302010

Fig. 3.6 STD—hardwood floor (in blue) and carpet floor (in red)

40 3 Big Data Analytics

250200150100500
0

10

20

30

40

50

60

70

Fig. 3.7 Histogram: hardwood floor

250200150100500
0

10

20

30

40

50

60

70

Fig. 3.8 Histogram: carpet floor

3.2 Pattern Detectors 41

3.2.2.3 Scatter Plot

A scatter plot is also a very useful visual tool, and it can show local distribution of a
class [4]. It can show the visual aspects of central tendency, dispersion, and associa-
tion very clearly. It can also show the relationships between the original domain and
a transformed domain if the data is transformed into another domain based on the
features. It can also help to see the effect of dimensionality reduction and identify
meaningful low-dimensional structures. Figures 3.9 and 3.10 show scatter plots of
hardwood floor and carpet floor, and they clearly show the separable (approximate)
properties of these classes in three and two dimensions, respectively.

3.2.3 Coding Example

Use the coding example provided in this subsection to reproduce the figures pre-
sented in Figs. 3.1 and 3.2, and Figs. 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10, and understand
the properties of the data sets given. This program may be modified to input your
own data sets and produce results for understanding their data characteristics.

Listing 3.1 A Matlab example—plotting some of the pattern detectors

1 clear all;
2 close all;
3
4 I1=double(imread(’hardwood.jpeg’));
5 aa1=imresize(I1(:,:,1),[256 256]);
6 figure;imshow(aa1,[]);
7
8 kk=1;nn=8;
9 for ii=1:8:256

10 for jj=1:8:256
11 bb1=aa1(ii:ii+7,jj:jj+7);
12 cc1(kk,:)=reshape(bb1,1,64);
13 kk=kk+1;
14 end
15 end
16 csvwrite(’hardwood.csv’,cc1);
17 bt=csvread(’hardwood.csv’);
18
19 I2=double(imread(’carpet.jpeg’));
20 aa2=imresize(I2(:,:,1),[256 256]);
21 figure;imshow(aa2,[]);
22
23 kk=1;
24 for ii=1:8:256
25 for jj=1:8:256
26 bb2=aa2(ii:ii+7,jj:jj+7);
27 cc2(kk,:)=reshape(bb2,1,64);
28 kk=kk+1;
29 end

42 3 Big Data Analytics

250
200

150
100

Feature 1Feature 54

F
e

a
tu

re
 5

9

50
00

100

200

300
0

50

100

150

200

250

Fig. 3.9 A 3D scatter plot of hardwood (blue) and carpet (red) floors

220200180160140120100806040
40

60

80

100

120

140

160

180

200

220

Fig. 3.10 A 2D scatter plot of hardwood (blue) and carpet (red) floors

3.2 Pattern Detectors 43

30 end
31 csvwrite(’carpet.csv’,cc2);
32 ct=csvread(’carpet.csv’);
33
34 mcc1=mean(bt);
35 scc1=std(bt);
36
37 mcc2=mean(ct);
38 scc2=std(ct);
39
40 figure;plot(mcc1);hold on;plot(mcc2,’color’,’red’);grid on;
41 xlabel(’Feature Numbers’);ylabel(’Mean Values’);
42 figure;plot(scc1);hold on;plot(scc2,’color’,’red’);grid on;
43 xlabel(’Feature Numbers’);ylabel(’Std Values’);
44
45 f1=1;f54=54;f59=59;
46
47 figure;hist(bt(:,f1),40);grid on;
48 axis([0 255 0 70]);
49 figure;hist(ct(:,f1),40);grid on;
50 axis([0 255 0 70]);
51
52 figure;plot3(bt(:,f1),bt(:,f54),bt(:,f59),’.’);
53 hold on;plot3(ct(:,f1),ct(:,f54),ct(:,f59),’r.’);grid on;
54 xlabel(’Feature 1’);ylabel(’Feature 54’);zlabel(’Feature 59’);
55
56 figure;plot(bt(:,f1),bt(:,f54),’.’);
57 hold on;plot(ct(:,f1),ct(:,f54),’r.’);grid on;
58 xlabel(’Feature 1’);ylabel(’Feature 54’);

The block of code from lines 4 to 17 reads the original 256×256 pixel hardwood
floor image, displays it (Fig. 3.1), reshapes it to 1024, 8×8 pixel blocks, saves them
to a .csv file as 1024 observations, and then reads them from the file for processing.
The .csv files can be found at http://www.uncg.edu/cmp/downloads. Similar tasks
are carried out on the original 256× 256 pixel carpet floor image, and this block of
codes is given in lines 19–32. Figure 3.2 shows the image that was produced by this
block of code. There are 64 pixels in each block, and they represent 64 features for
the observation, represented from left to right and then top to bottom.

The statistical means and standard deviations are calculated for both images in
lines 34–38, then these measures are plotted in Figs. 3.5 and 3.6 using the codes
in lines 40–43. Line 45 shows the selection of features 1, 54, and 59 from the 64
features. The block of code in lines 47–50 produces the histograms presented in
Figs. 3.7 and 3.8. The lines from 52 to 54 show the block of codes that plot the three
feature values as the 3D plot presented in Fig. 3.9. Similarly, lines 56–58 plot the
features 1 and 54 as a 2D plot illustrated in Fig. 3.10.

http://www.uncg.edu/cmp/downloads

44 3 Big Data Analytics

3.3 Patterns of Big Data

Evolution of patterns is a natural phenomenon in a big data environment. We know
that the changes happen in an environment over time; therefore, the conclusion
made based on the information at a given time may not be valid later in the time
sequence. However, some similarity may be available at both instances that may
be used to devise conclusions. In real big data systems, the patterns may propa-
gate, may deform or new patterns may evolve. The evolution of patterns increases
the complexity of the data, and, therefore, the development of supervised learning
models and algorithms for big data classification is difficult.

Let us now look at a more complex example. For this purpose, the Biltmore
Estate and MyPrismaColors images presented in Figs. 3.11 and 3.12 are considered.
Only a part (256× 256 pixels) of the gray scale version [24] of the Biltmore Estate
image in Fig. 3.11 is used to construct the data set. If we create a scatter plot of
features 1, 22, and 59 of these image data sets, then we can obtain the plots in
Fig. 3.13 for the two classes (blue for Biltmore Estate and red for MyPrismacolors).
Recall we divided the images into 1024 blocks, where each block has 8× 8 pixels.
In this scatter plot, we can clearly see complex structures (e.g., a mixture Gaussian
model), and thus the classification of the images is not an easy task. However, some
interesting patterns are hidden in the plot, and we should be able to bring them
out using standardization, normalization, linear transformation (e.g., with Gaussian
weights), and orthogonalization over the feature variables.

Thinking with Example 3.4:

In the Biltmore Estate and MyPrismaColor examples, we have 64 features, 1024
observations, and 2 classes. For example, if we want to standardize the 800th obser-
vation, then each feature value, x800 j; j = 1 . . .64, of that observation is updated as
follows: x̂800 j =(x800 j− x̄800)/s800, where x̄800 and s800 represent the mean and stan-
dard deviation of the observation 800 over the 64 features. Let us now plot the 800th
observation before (blue) and after (red) the standardization process. The graphs are
shown in Fig. 3.14. We can see the standardization process bring up the local vari-
ations. Now if we plot the features 1, 22, and 59 of the standardized image data
sets then we can obtain the scatter plot shown in Fig. 3.15. If we compare the corre-
sponding plots in Figs. 3.13 and 3.15, we can see the image class MyPrismaColors is
separated from the plot of class Biltmore Estate, and it makes the classification task
much easier. However, we notice still some points belong to Biltmore Estate class
(blue) are present in the subdomain where the MyPrismaColors class (red) points
are. This subdomain is zoomed in Fig. 3.16. We can see fewer blue points than red,
indicating that the MyPrismaColors class dominates in that subdomain.

3.3 Patterns of Big Data 45

Fig. 3.11 Biltmore Estate

Fig. 3.12 MyPrismaColors

46 3 Big Data Analytics

300

200

100

00

100

200

300
0

50

100

150

200

250

300

Feature 1Feature 22

F
e

a
tu

re
 5

9

Fig. 3.13 Scatter plot of both Biltmore Estate and MyPrismaColors

706050403020100
−150

−100

−50

0

50

100

150

200

Fig. 3.14 Comparison between the original and standardized data

3.3 Patterns of Big Data 47

10

−10
−20

−30

−100

−80

−60

−40

−20

0

20

−6

−4

−2

0
2

0

Feature 1Feature 22

F
e

a
tu

re
 5

9

Fig. 3.15 It shows the class separation by the standardization

Fig. 3.16 It shows that the subdomain (red) is zoomed

3.3.1 Standardization: A Coding Example

You can use the coding example provided in this subsection to reproduce the figures
presented in Figs. 3.11, 3.12, 3.13, 3.14, 3.15, and 3.16 and understand the properties
of these complex data sets given. You can also modify this program, use your own
data sets to produce similar results, and understand the data characteristics.

48 3 Big Data Analytics

Listing 3.2 A Matlab example—standardization example

1 clear all;
2 close all;
3
4 I1=double(imread(’biltmore31.jpg’));
5 figure;imshow(I1,[]);
6
7 I2=double(imread(’MyPrismacolors1.jpg’));
8 figure;imshow(I2,[]);
9

10 [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
11 [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);
12
13 nn=64;
14 i1=1;i2=22;i3=59;
15
16 figure;plot3(num1(:,i1),num1(:,i2),num1(:,i3),’.’);grid on;
17 hold on;plot3(num2(:,i1),num2(:,i2),num2(:,i3),’r.’);grid on;
18 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
19
20 [a1,b1,c1]=xlsread(’randnums1.xls’);
21 [a2,b2,c2]=xlsread(’randnums2.xls’);
22
23 a1=(a1-mean(a1))/std(a1);
24 a2=(a2-mean(a2))/std(a2);
25
26 a1=a1/max(abs(a1));
27 a2=a2/max(abs(a2));
28
29 mn1=mean(num1’);
30 sd1=std(num1’);
31 mn2=mean(num2’);
32 sd2=std(num2’);
33
34 for jj=1:nn
35 new1(:,jj)=a2(jj)*(num1(:,jj)-mn1(:,jj))./(1+sd1(:,jj));
36 end
37
38 for jj=1:nn
39 neww1(:,jj)=a2(jj)*(num2(:,jj)-mn2(:,jj))./(1+sd2(:,jj));
40 end
41
42 figure;plot(num1(800,:));hold on;plot(new1(800,:),’color’,’red’);

grid on;
43
44 figure;plot3(new1(:,i1),new1(:,i2),new1(:,i3),’b.’);grid on;
45 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
46 hold on;plot3(neww1(:,i1),neww1(:,i2),neww1(:,i3),’r.’);grid on;
47 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);

The block of code from lines 4 to 8 reads the image files (Biltmore Estate and
MyPrismaColors) and displays them on the screen. These images are presented in
Figs. 3.11 and 3.12, respectively. Lines 10 and 11 read their corresponding .csv files

3.3 Patterns of Big Data 49

and assign the data to the variables num1 and num2. The number of features and the
selected features are initialized in lines 13 and 14. The 3D scatter plot of the data
stored in the variables num1 and num2 is plotted in lines 16–18, and the result is
presented in Fig. 3.13. Two files with Gaussian random numbers are read and stored
in two variables a1 and a2 in lines 20–21. These values are standardized and then
normalized in the block of codes in 23 to 24 and 26 to 27, respectively.

In lines 29–32, the mean and standard deviation of each observation over the
features are calculated for both data sets. You can interpret this as the calculation
of mean and the standard deviation of each block. Lines 34–36 transform the orig-
inal Biltmore Estate data stored in num1 to new1 using a weighted standardization
process. Note: Integer 1 is added to the standard deviation to avoid the NAN error
in Matlab coding. Similarly, the MyPrismaColors data is transformed and stored in
a new variable neww1 in lines 38–40. Also, note that the same Gaussian weight a2
is used in both transformations. In line 42, the 800th observation is of the original
data, and the transformed data are plotted to see the effect of the Gaussian weighted
standardization process. Figure 3.14 shows the results of this code. The block of
codes in lines 44–47 plots the features 1, 22, and 59 of the data sets and the resulted
scatter plot is presented in Fig. 3.15. In this scatter plot, the blue points show the
Biltmore Estate data and the red points show the MyPrismaColors data. The sub-
domain around the MyPrismaColors data is zoomed and presented in Fig. 3.16 to
highlight the patterns of the MyPrismaColors data.

3.3.2 Evolution of Patterns

To understand the evolution of patterns better, it is important to create big data simu-
lations and study the patterns under different class characteristics, domain character-
istics, and error characteristics. To support this goal, a split-merge-split framework
is introduced. This framework is illustrated in Fig. 3.17 and presents a two-class and
three-feature classification example. It shows an input table (i.e., the data domain
and response set) which has three features f1, f2, and f3, and two classes: C1 and C2.
It also shows the split, merge, and split processes.

In the first split process, the input table is divided into two tables such that each
table has the data domain for a single class. Then it shows the integration of a data
expansion technique that adds more observations to each table (i.e., each feature’s
values are expanded). These tables are then merged to get much larger table (big
data) than the original input table. In the next split process, this big data is divided
by pairing only two features at a time and creating two-dimensional data domains.
This framework allows us to change the data expansion technique, obtain results,
and analyze the data in low dimensions to understand the future data characteristics.

The framework presented in Fig. 3.17 is used in this simulation. The main unit
in this framework is the data expansion unit, and we can adopt different techniques
in this unit and see their effects in the analytics unit. The localization and globaliza-
tion of the data patterns may help to create big data based on a set of data available.
Mainly, localization contributes to the evolution of local patterns by maintaining

50 3 Big Data Analytics

Split Split

Analytics

Analytics

SplitSplit

Feature
Split

Merge

Merge

Class
Split

f1

f1 f2 f3

f2 f3

c1

c1

c1

c1

c2

c2 c2

c2

c2

c1

c1

c2

c2

c1

c1

c2

C

f1 f2 f3 C

f1 f2 f3 C

f1 f2 f3 C

C f1 f2 f3 C
f2 f3 C

f1 f3 C

f1 f2 C

Class
Split

Data
Expansion
Technique

Data
Expansion
Technique

Observation
Merge

Observation
Merge

Feature
Split

Fig. 3.17 A big data analytics framework that helps integrate expansion techniques
and study the effect for future data characteristics over a big data environment

the similarity and propagating the patterns. It also contributes to the evolution of
new patterns. In contrast, globalization contributes to the removal of the original
data characteristics and induces complexity of big data classification. The exam-
ple considered in this section is the development of big data for analytics based
on the globalization principles. The creation of new data is performed based on the
assumption of a single Gaussian model. If the localization principle was considered,
we could have adopted a mixture Gaussian model [8].

The data expansion is divided into four methods based on three objectives. The
three objectives are: (a) we want to shift the classes based on their respective
statistical means, (b) we want to add weights to shift the features, and (c) we want
to assume certain distribution to the observations. The four methods are:

• No mean-shift, Max Weights, Gaussian Increase,

• Mean-shift, Max Weights, Gaussian Increase,

• No mean-shift, Gaussian weights, Gaussian Increase,

• Mean-shift, Gaussian weights, Gaussian Increase.

3.3 Patterns of Big Data 51

These four approaches are explained in the subsequent sections using the highly
complex data sets, Biltmore Estate and MyPrismaColors, in Figs. 3.11 and 3.12. The
scatter plot of these images in Fig. 3.13 clearly shows the complexity of these data
sets and the difficulties of classification. The evolution of patterns will be studied
and compared using the scatter plots so that the big data classification problems can
be clearly understood. For this purpose a simple parametrized data expansion model
must first be developed and this is the objective of the next subsection.

3.3.3 Data Expansion Modeling

The data expansion model is the major player in the split-merge-split framework
for big data analytics simulation. Data expansion can provide evolution and the
deformation of patterns to study the data characteristics. We can model it using sta-
tistical and mathematical approaches. The generalized model for the data expansion
is based on the standardization using the standard score formula [2]. It also uses
normalization, linear transformation, and orthogonalization. The standard score is
also called z-score and it is defined by Berry and Lindgren [2]:

z = (x− μ)/σ . (3.1)

The variable z is assumed to follow normal distribution when the population
parameters μ and σ are known. As mentioned in [4], the sample mean (x̄) and the
sample standard deviation (sx) can be used to replace the population parameters μ
and σ in the standardization process. Therefore, it can be rewritten as follows:

t = (x− x̄)/sx. (3.2)

In this case, the variable t follows a t-distribution [4]. This standard score or
the standardization can be interpreted differently, and it can help formulate big
data applications. Suppose we have n observations x1 j,x2 j, . . . ,xn j of the feature
x j, where j = 1 . . . p. Let us also assume its population mean μ and the standard de-
viation σ are not known then with (1−α)% confidence; we can define the following
interval:

x̄ j − tsx j ≤ μ j ≤ x̄ j + tsx j . (3.3)

In other words, we can interpret this as: the values of the feature x j are dense
toward the mean μ j and dispersed by tsx j , and therefore, we can assume all the
observations of the feature x j fall inside this range. With this confidence interval,
we have a range of values from x̄ j − tsx j to x̄ j + tsx j , and they may be divided into
n values: x̄ j + t1 jsx j , x̄ j + t2 jsx j , . . . , x̄ j + tn jsx j . Let us now use the divided values to
score the n observations:

xi j = x̄ j + ti jsx j , (3.4)

where i = 1 . . .n and j = 1 . . . p. If we rearrange this equation, we will get:

sx j ti j = xi j − x̄ j. (3.5)

52 3 Big Data Analytics

If sx j �= 0, then we can divide both sides of the equation, but in an environ-
ment like big data, we cannot make such an assumption for all the feature vari-
ables. Therefore, let us divide both sides by 1+sx j , and it will give us the following
equation:

sx j

1+ sx j

ti =
xi j − x̄ j

1+ sx j

, (3.6)

where i = 1 . . .n and j = 1 . . . p. Hence, we can take the weighted score on the left-
hand side as an approximated standardized score wi j for big data applications:

wi j =
xi j − x̄ j

1+ sx j

, (3.7)

where i = 1 . . .n. This process will also take care of the coding problem (like the
undefined term NAN in Matlab) in the implementation of the standardization pro-
cess. Using this weighted standard score, we can build the following parametrized
data expansion model (where the approximated standard score is scaled using a
parameter β and mean-shift using the parameter α):

x′ = α x̄+β (x− x̄)/(1+ sx). (3.8)

The parameters α and β are normalized. A proper selection of the values for
these parameters can induce orthogonality properties between classes. It is illus-
trated in the next section.

3.3.3.1 Orthogonalization: A Coding Example

Notice that an orthogonalization of classes may be achieved with a certain set of
β values corresponding to the data sets (images) considered. The coding example
is given in Listing 3.3 and the results of images in Figs. 3.18 and 3.19. It can be
clearly seen that the classes displayed in Fig. 3.18 are orthogonal, and this property
is validated using the vector dot-product values displayed in Fig. 3.19. You can see
the dot-product values of two vectors are closer to zero.

Listing 3.3 A Matlab example—orthogonalization example

1 clear all;
2 close all;
3
4 [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
5 [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);
6
7 nn=64; alpha=0.00001;
8 i1=1;i2=22;i3=59;
9

10 figure;plot3(num1(:,i1),num1(:,i2),num1(:,i3),’.’);grid on;
11 hold on;plot3(num2(:,i1),num2(:,i2),num2(:,i3),’r.’);grid on;

3.3 Patterns of Big Data 53

1
0.5

−0.5
−1−1

−1

−0.5

0.5

1

0

0

Feature 1Feature 22

F
e
a
tu

re
 5

9

0

1

2

Fig. 3.18 Orthogonalization of two-class classification—a 3D example

10009008007006005004003002001000
−2

−1.5

−0.5

0.5

1.5

1

2

0

−1

Fig. 3.19 Validating the orthogonality of the data

54 3 Big Data Analytics

12 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
13
14 [a1,b1,c1]=xlsread(’randnums1.xls’);
15 [a2,b2,c2]=xlsread(’randnums2.xls’);
16
17 a1=(a1-mean(a1))/std(a1);
18 a2=(a2-mean(a2))/std(a2);
19
20 a1=a1/max(abs(a1));
21 a2=a2/max(abs(a2));
22
23 mn1=mean(num1);
24 sd1=std(num1);
25 mn2=mean(num2);
26 sd2=std(num2);
27
28 for jj=1:nn
29 new1(:,jj)=alpha*mn1(jj)+a1(jj)*(num1(:,jj)-mn1(jj))./(1+

sd1(jj));
30 end
31
32 for jj=1:nn
33 neww1(:,jj)=alpha*mn2(jj)+a2(jj)*(num2(:,jj)-mn2(jj))./(1+

sd2(jj));
34 end
35
36 figure;plot3(new1(:,i1),new1(:,i2),new1(:,i3),’.’);grid on;
37 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
38 hold on;plot3(neww1(:,i1),neww1(:,i2),neww1(:,i3),’r.’);grid on
39 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
40
41 %A simple orgthogonality test: dot product must be close to zero
42 v1=[new1(:,i1) new1(:,i2) new1(:,i3)];
43 v2=[neww1(:,i1) neww1(:,i2) neww1(:,i3)];
44
45 %calculation of vectors on the planes
46 v11=v1(1:end-1,:)-v1(2:end,:);
47 v12=v2(1:end-1,:)-v2(2:end,:);
48
49 %calculation of dot product
50 vv=v11.*v12;
51
52 %check the dot product is close to zero
53 uu=sum(vv’);
54 mean(uu) %close to zero -0.0012
55
56 figure;plot(uu);grid on;
57 axis([0 1024 -2 2]);

The codes in lines 4 and 5 read the .csv files corresponding to Biltmore Estate
and MyPrismaColors and assign the data to the variables num1 and num2. In lines
7 and 8, the number of features and the selected features are initialized. In addition,
the value of the mean-shift is selected closer to 0 by assigning 0.0001 to the param-
eter alpha. The block of code from line 10 to line 26 is the same as the block of
code in line 16 to line 32. The original Biltmore Estate data is transformed in lines

3.3 Patterns of Big Data 55

28–30 and stored in the variable new1 using a weighted standardization process as
before. However, this time the Gaussian weights stored in variable a1 is used. Once
again, the integer 1 is added to the standard deviation to avoid the NAN error in
Matlab coding. Similarly, the MyPrismaColors data is transformed and stored in a
new variable neww1 in lines 32–34 using the Gaussian weight a2.

The differences in the Gaussian weights a1 and a2 provide the orthogonality,
and it is important to note that not all the combinations of a1 and a2 will give the
orthogonality. It must be learned. Figure 3.18 is obtained using the block of code
in lines 36–39, and it shows the orthogonality between classes in the data domain
formed by the features 1, 22, and 59. Once again, in this scatter plot, the blue points
show the Biltmore Estate data, and the red points show the MyPrismaColors data.
The rest of the code from lines 41 to 54 performs the orthogonality test using dot-
products with vectors. Lines 56 and 57 produce the graph in Fig. 3.19, which shows
the dot-products of several vectors (in lines 46 and 47) closer to zero (i.e., −0.0012).
Hence, we can confirm they are orthogonal.

3.3.3.2 No Mean-Shift, Max Weights, Gaussian Increase

For the purpose of no mean-shift and max weights, the parameter α is chosen closer
to 0 and the parameter β equal to 1. The generalized equation in Eq. (3.8) becomes:

x′ ≈ (x− x̄)/(1+ sx). (3.9)

For the purpose of making Gaussian increase, the new data are generated using
the mean x̄′ and s′x of the new random variable x′, and the following equation results:

z = x̄′+ sx′ .∗ randn(M,1); (3.10)

In this equation MATLAB function randn helps generate M new observations
with the random variable z that follows the Gaussian distribution with mean x̄′ and
standard deviation sx′ . Figure 3.20 shows the effect of the data increase based on
this computational process. The classes are heavily mixed and not easy to classify.

3.3.3.3 Mean-Shift, Max Weights, Gaussian Increase

To integrate the mean-shift effect that can help us understand the data characteristics
better, the classes are shifted by the scaled mean α x̄ of the features. Therefore, the
original data expansion model has changed to the following:

x′ = α x̄+(x− x̄)/(1+ sx). (3.11)

Figure 3.21 shows a mean-shifted version of the plot in Fig. 3.20. In this case,
the value of the parameter α is 0.1.

56 3 Big Data Analytics

4
2

−2
−4−4

−4

−2

0

2

4

−2

0

2

4

0

Feature 1
Feature 22

F
e

a
tu

re
 5

9

Fig. 3.20 An example of increased data using Biltmore Estate image

18
16

14
12

Feature 1Feature 22

F
e

a
tu

re
 5

9

10
85

10

15

20
8

10

12

14

16

18

Fig. 3.21 An illustration of a mean-shift using the example in Fig. 3.20

3.3 Patterns of Big Data 57

3.3.3.4 No Mean-Shift, Gaussian Weights, Gaussian Increase

The parameter α is selected to be closer to 0. For the purpose of Gaussian weights,
the MATLAB’s randn() function is used. Hence, we can define the model as:

x′ ≈ β (x− x̄)/(1+ sx), (3.12)

where the distribution of the parameter β is the standard normal distribution.

3.3.3.5 Mean-Shift, Gaussian Weights, Gaussian Increase

The parameter α is selected to be closer to 1. For the purpose of Gaussian weights,
the MATLAB’s randn() function is used. Hence, we can define the model as:

x′ = α x̄+β (x− x̄)/(1+ sx), (3.13)

where the distribution of the parameter β is also the standard normal distribution
N(0,1) as same as before. We can generate different sets of values for the parameter
β related to the features (we considered the features 1, 22, and 59 out of 64 features);
however, the values selected give an interesting visual characteristic as shown in
Figs. 3.22 and 3.23.

3.3.3.6 Coding Example

The code in Listing 3.4 is provided to illustrate the data expansion processes and
the results. You can use this Matlab program to reproduce the figures presented in
Figs. 3.20, 3.21, 3.22, and 3.23 and understand the properties of the data expansion
techniques. You can also input your own data sets and produce expanded data sets
for understanding your own data sets, and conduct big data processing later.

Listing 3.4 A Matlab example—data expansion examples

1 clear all;
2 close all;
3
4 [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
5 [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);
6
7 nn=64;
8 i1=1;i2=22;i3=59;
9

10 figure;plot3(num1(:,i1),num1(:,i2),num1(:,i3),’.’);grid on;
11 hold on;plot3(num2(:,i1),num2(:,i2),num2(:,i3),’r.’);grid on;
12 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
13
14 mn1=mean(num1);
15 sd1=std(num1);

58 3 Big Data Analytics

Feature 1Feature 22

F
e

a
tu

re
 5

9

2

−2

−1.5

−0.5

0.5

1.5

0

1

−1

−4 −2
−1

0
1

20

Fig. 3.22 An orthogonalized version of the Biltmore Estate data in Fig. 3.20

Feature 1Feature 22

F
e
a

tu
re

 5
9

10
5.5

6.5

7.5

8.5

6

7

8

8

6

4

2 5
6

7
8

9

Fig. 3.23 An illustration of a mean-shift using the example in Fig. 3.22

3.3 Patterns of Big Data 59

16 mn2=mean(num2);
17 sd2=std(num2);
18
19 [a1,b1,c1]=xlsread(’randnums1.xls’);
20 [a2,b2,c2]=xlsread(’randnums2.xls’);
21
22 a1=(a1-mean(a1))/std(a1);
23 a2=(a2-mean(a2))/std(a2);
24
25 a1=a1/max(abs(a1));
26 a2=a2/max(abs(a2));
27
28 %%%%%%%%%%% No mean shift and maximum weights
29 alpha=0.00001;
30 for jj=1:nn
31 new1(:,jj)=alpha*mn1(jj)+(num1(:,jj)-mn1(jj))./(1+sd1(jj));
32 end
33
34 mcc1=mean(new1);
35 scc1=std(new1);
36 mm1=length(new1);
37
38 randn(’seed’,111);
39 for jj=1:nn
40 rr1(:,jj) = mcc1(jj) + scc1(jj).*randn(mm1,1);
41 end
42
43 rrr1=[new1;rr1];
44
45 figure;plot3(rrr1(:,i1),rrr1(:,i2),rrr1(:,i3),’.’);grid on
46 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
47
48 for jj=1:nn
49 neww1(:,jj)=alpha*mn2(jj)+(num2(:,jj)-mn2(jj))./(1+sd2(jj))

;
50 end
51
52 mccn1=mean(neww1);
53 sccn1=std(neww1);
54 mmm1=length(neww1);
55
56 randn(’seed’,129);
57 for jj=1:nn
58 rrn1(:,jj) = mccn1(jj) + sccn1(jj).*randn(mmm1,1);
59 end
60
61 rrr11=[neww1;rrn1];
62
63 hold on;plot3(rrr11(:,i1),rrr11(:,i2),rrr11(:,i3),’r.’);grid on;
64 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
65
66
67 %%%%%%%%%%% Mean shift and maximum weights
68 nn=64;

60 3 Big Data Analytics

69 i1=1;i2=22;i3=59;
70
71 alpha=0.1;
72 for jj=1:nn
73 new1(:,jj)=alpha*mn1(jj)+(num1(:,jj)-mn1(jj))./(1+sd1(jj));
74 end
75
76 mcc1=mean(new1);
77 scc1=std(new1);
78 mm1=length(new1);
79
80 randn(’seed’,111);
81 for jj=1:nn
82 rr1(:,jj) = mcc1(jj) + scc1(jj).*randn(mm1,1);
83 end
84
85 rrr1=[new1;rr1];
86
87 figure;plot3(rrr1(:,i1),rrr1(:,i2),rrr1(:,i3),’.’);grid on
88 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
89
90 for jj=1:nn
91 neww1(:,jj)=alpha*mn2(jj)+(num2(:,jj)-mn2(jj))./(1+sd2(jj))

;
92 end
93
94 mccn1=mean(neww1);
95 sccn1=std(neww1);
96 mmm1=length(neww1);
97
98 randn(’seed’,129);
99 for jj=1:nn

100 rrn1(:,jj) = mccn1(jj) + sccn1(jj).*randn(mmm1,1);
101 end
102
103 rrr11=[neww1;rrn1];
104
105 hold on;plot3(rrr11(:,i1),rrr11(:,i2),rrr11(:,i3),’r.’);grid on;
106 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
107
108
109 %%%%%%%%%%% No mean shift and Gaussian weights for orthogonality
110 nn=64;
111 i1=1;i2=22;i3=59;
112
113 alpha=0.00001;
114 for jj=1:nn
115 new1(:,jj)=alpha*mn1(jj)+a1(jj)*(num1(:,jj)-mn1(jj))./(1+

sd1(jj));
116 end
117
118 mcc1=mean(new1);
119 scc1=std(new1);
120 mm1=length(new1);

3.3 Patterns of Big Data 61

121
122 randn(’seed’,111);
123 for jj=1:nn
124 rr1(:,jj) = mcc1(jj) + scc1(jj).*randn(mm1,1);
125 end
126
127 rrr1=[new1;rr1];
128
129 figure;plot3(rrr1(:,i1),rrr1(:,i2),rrr1(:,i3),’.’);grid on
130 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
131
132 for jj=1:nn
133 neww1(:,jj)=alpha*mn2(jj)+a2(jj)*(num2(:,jj)-mn2(jj))./(1+

sd2(jj));
134 end
135
136 mccn1=mean(neww1);
137 sccn1=std(neww1);
138 mmm1=length(neww1);
139
140 randn(’seed’,129);
141 for jj=1:nn
142 rrn1(:,jj) = mccn1(jj) + sccn1(jj).*randn(mmm1,1);
143 end
144
145 rrr11=[neww1;rrn1];
146
147 hold on;plot3(rrr11(:,i1),rrr11(:,i2),rrr11(:,i3),’r.’);grid on;
148 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
149
150 %%%%%%%%%%% Mean shift and Gaussian weights for orthogonality
151 nn=64;
152 i1=1;i2=22;i3=59;
153
154 alpha=0.1;
155 for jj=1:nn
156 new1(:,jj)=alpha*mn1(jj)+a1(jj)*(num1(:,jj)-mn1(jj))./(1+

sd1(jj));
157 end
158
159 mcc1=mean(new1);
160 scc1=std(new1);
161 mm1=length(new1);
162
163 randn(’seed’,111);
164 for jj=1:nn
165 rr1(:,jj) = mcc1(jj) + scc1(jj).*randn(mm1,1);
166 end
167
168 rrr1=[new1;rr1];
169
170 figure;plot3(rrr1(:,i1),rrr1(:,i2),rrr1(:,i3),’.’);grid on
171 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
172

62 3 Big Data Analytics

173 for jj=1:nn
174 neww1(:,jj)=alpha*mn2(jj)+a2(jj)*(num2(:,jj)-mn2(jj))./(1+

sd2(jj));
175 end
176
177 mccn1=mean(neww1);
178 sccn1=std(neww1);
179 mmm1=length(neww1);
180
181 randn(’seed’,129);
182 for jj=1:nn
183 rrn1(:,jj) = mccn1(jj) + sccn1(jj).*randn(mmm1,1);
184 end
185
186 rrr11=[neww1;rrn1];
187
188 hold on;plot3(rrr11(:,i1),rrr11(:,i2),rrr11(:,i3),’r.’);grid on;
189 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);

You are already familiar with the block of code from line 4 to line 26, therefore
no explanation is given again in this section. From line 29 to line 64, the block
of code for the method no-mean-shift-and-maximum-weights is given. For the pur-
pose of no-mean-shift, the alpha value is selected as 0.00001. This block of code
produced the scatter plot in Fig. 3.20, and we can see a significant overlap in the
two classes. The block of code from line 68 to line 106, mean-shift-and-maximum-
weight method is illustrated, and in this case alpha = 0.1 is selected for mean-shift.
The effect of this selection can be seen in Fig. 3.21, which was produced by this
block of code.

The block of code in line 110 to line 148 illustrates the method no-mean-shift-
and Gaussian-weights. This method shows the no-mean-shift effect, therefore the
alpha = 0.00001 is selected with the Gaussian weights. Figure 3.22 was produced
by this block of code. You can see the orthogonality property that was revealed by
the use of a1 and a2 Gaussian weights. Finally, the block of code from line 151 to
line 189 illustrates the mean-shift-and-Gaussian-weights method. In this case, the
alpha = 0.1 is used, and the effect of mean-shift that was produced by this block of
code can be seen in Fig. 3.23.

3.3.4 Deformation of Patterns

The deformation of patterns by big data can be described by three class characteris-
tics: imbalanced data, incomplete data, and inaccurate data. These class characteris-
tics were discussed in Chap. 2 briefly. The class characteristics are the effects of the
big data controllers: classes, features, and observations. It can be interpreted as illus-
trated in Fig. 3.24. It shows the data domain (formed by the features) is divided into
two classes (just called class characteristics) by a divisor to make them imbalanced.
It also shows some of the features in the top may be characterized as incomplete
data. It also shows that the observations may be switched between the classes, and

3.3 Patterns of Big Data 63

Features are
Incomplete

Observations are
inaccurate

Classes are
Imbalanced

O
B
S
E
R
V
A
T
I
O
N
S

C
L
A
S
S
E
S

Class Characteristics

Class Characteristics

FEATURES

Fig. 3.24 Interpreting the class characteristics with respect to the effect resulted
from the big data controllers—classes, features, and observations

hence, it can be characterized as inaccurate observations. Let us now discuss them
in detail with the hardwood floor and carpet floor data sets.

3.3.4.1 Imbalanced Data

Imbalanced data means the classes are not balanced (i.e., not informatively equal)
[9–12]. In simple terms, using a simple two-class example, we can say that the
number of observations in one class is significantly smaller than the other class. It is
an example of between-class imbalanced data. In this case, we call the smaller class
a minority class and the other class a majority class [10]. In some data sets, to be
significantly smaller, the minority class must have only 1 % observations whereas
the majority class has 99 % [12] so that they are not informatively equal. The scatter
plot at the top left-hand corner of Fig. 3.25 illustrates an example of imbalanced-
class characteristics. The hardwood floor and carpet floor data sets are used, where
the hardwood floor is undersampled to make it as a minority class.

3.3.4.2 Inaccurate Data

Inaccurate data means the observations are not correct [13–15]. In classification
problems, it means some of the observations are not correctly labeled. This prob-
lem is called the label noise problem, and the classification objectives have been
addressed under this specific problem recently [15]. The scatter plot at the top right-

64 3 Big Data Analytics

0
0

20

40

60

80

100

120

140

160

180

200

220

20 40 60 80 100 120

Feature 1

Imbalance Inaccurate

Incomplete Balanced, Accurate and Complete

F
e

a
tu

re
 5

4

0

20

40

60

80

100

120

140

160

180

200

220

F
e

a
tu

re
 5

4

0

20

40

60

80

100

120

140

160

180

200

220

F
e

a
tu

re
 5

4

0

20

40

60

80

100

120

140

160

180

200

220

F
e

a
tu

re
 5

4

140 160 180 200 220
0 20 40 60 80 100 120

Feature 1

140 160 180 200 220

0 20 40 60 80 100 120

Feature 1

140 160 180 200 220 0 20 40 60 80 100 120

Feature 1

140 160 180 200 220

Fig. 3.25 Visually comparing the effect of imbalanced, inaccurate, and incomplete
data with the balanced, accurate, and complete data

hand corner of Fig. 3.25 illustrates an example of inaccurate-class characteristics.
Once again, the hardwood floor and carpet floor data sets are used here, where some
of the labels are switched.

3.3.4.3 Incomplete data

Incomplete data simply means the incomplete features (missing values in some of
the features). There are several possible incomplete (i.e., missing data) patterns as
reported in [16–20]. One of them is called the “univariate nonresponse,” and its
effect is illustrated in the bottom left-hand corner of Fig. 3.25. The hardwood floor
and carpet floor data sets are used again; the features 1 and 54 are selected and
some of the values are removed. The balanced data is presented in the last figure of
Fig. 3.25. The four artifacts presented in Fig. 3.25 are created using the Matlab code
in Listing 3.5.

3.3 Patterns of Big Data 65

3.3.4.4 Coding Example

The scatter plots in Fig. 3.25 are produced using the code in the Listing 3.5. The
purpose of this coding example is to show how the imbalanced, inaccurate, and
incomplete class characteristics affect the patterns of the data. The data sets hard-
wood floor and carpet floor are used to show the effects; however, you can simply
modify the code and integrate your data sets to produce similar results.

Listing 3.5 A Matlab example—effect of class characteristics example

1 clear all;
2 close all;
3
4 ht=csvread(’hardwood.csv’);
5 ct=csvread(’carpet.csv’);
6
7 i1=1;i2=54;i3=59;
8
9 figure;plot(ht(:,i1),ht(:,i2),’.’);

10 hold on;plot(ct(:,i1),ct(:,i2),’r.’);grid on;
11 xlabel(’Feature 1’);ylabel(’Feature 54’);
12 axis([0 220 0 220]);
13
14 % Understand the effect of Imbalanced data
15 rand(’seed’,131);
16 ind=round(1024*rand(1,10))+1;
17 imb1=ht(abs(ht(:,i1)-70)<10 & abs(ht(:,i2)-70)<10,:);
18 imb2=ht(ind,:);
19 imb=[imb1;imb2];
20
21 figure;plot(imb(:,i1),imb(:,i2),’.’);
22 hold on;plot(ct(:,i1),ct(:,i2),’r.’);grid on;
23 xlabel(’Feature 1’);ylabel(’Feature 54’);
24 axis([0 220 0 220]);
25
26 % Understand the effect of Inaccurate data
27 ind=find(ht(:,i1)<90 & ht(:,i1)>70 & ht(:,i2)<90 & ht(:,i2)>70

...
28 | ht(:,i1)<120 & ht(:,i1)>110 & ht(:,i2)<120 & ht(:,i2)

>110);
29
30 tmpht=ht;
31 tmpct=ct;
32
33 tmp=tmpht(ind,:);
34 tmpht(ind,:)=tmpct(ind,:);
35 tmpct(ind,:)=tmp;
36
37 figure;plot(tmpht(:,i1),tmpht(:,i2),’.’);
38 hold on;plot(tmpct(:,i1),tmpct(:,i2),’r.’);grid on;
39 xlabel(’Feature 1’);ylabel(’Feature 54’);
40 axis([0 220 0 220]);
41

66 3 Big Data Analytics

42 % Understand the effect of Incomplete data
43 tmpht=ht;
44 tmpct=ct;
45
46 ind=find((abs(ht(:,i1)-75)<3 | abs(ht(:,i2)-75)<3) | abs(ht(:,i1)

-100)<3 ...
47 | abs(ht(:,i2)-100)<3 | abs(ht(:,i1)-120)<15);
48 tmpht(ind,i1)=0;
49
50 h1=tmpht(tmpht(:,i1)˜=0,:);
51
52 figure;plot(h1(:,i1),h1(:,i2),’.’);
53 hold on;plot(ct(:,i1),ct(:,i2),’r.’);grid on;
54 xlabel(’Feature 1’);ylabel(’Feature 54’);
55 axis([0 220 0 220]);

There are many ways to produce these effects on the data sets; however, in this
example, the magnitude of the data (i.e., the intensity of the pixels in this case) is
used to characterize and induce these effects. The block of code from line 14 to line
24 implements the imbalanced data effect; the block of code from line 26 to line 40
implements the inaccurate data effect; and the lines from 42 to 55 implement the
incomplete data effects.

The block of code from line 15 to line 19 creates a minority data set from the
hardwood floor data set by selecting 10 random observations and the observations
with the values of the features 1 and 54 closer to the intensity value 70 (i.e., between
60 and 80). Lines 21 to 24 generated the imbalance scatter plot in Fig. 3.25. Simi-
larly, the block of code in lines 27 to 35 selects some observations based on intensity
values and swaps their class labels to introduce label noise, which leads to inaccu-
rate data. Lines 37 to 40 produced the inaccurate scatter plot shown in Fig. 3.25. In
lines 43 to 50, some observations are selected, and some of their feature’s values
are assigned with 0 value to integrate incompleteness. Lines 52 to 55 plotted the
incomplete scatter plot in Fig. 3.25.

3.3.5 Classification Errors

The classification error is defined with three error characteristics called approxima-
tion error, estimation error, and optimization error, and discussed in detail in [21]
and briefly in [5]. These errors are described with simple examples below.

3.3.5.1 Approximation

Approximation is defined as the error in the parametrized model used. For exam-
ple, suppose the actual unknown model is y = 0.001x2 + 1.2x+ 3.0, but the model
assumed in training, validation, and testing is y = 1.2x+ 3.0, then we can say the

3.4 Low-Dimensional Structures 67

model is approximated. In this particular case, the trained model will not give the
expected classification accuracy no matter how accurately the model was trained
and validated.

3.3.5.2 Estimation

Estimation is defined as the error in the parameters used. Suppose the true model is
y= ax+b with the values a= 2.1 and b= 4.8. This is the model that we were trying
to find, but we developed the model y= 2x+5, then we can call the parameters a and
b in the model y= ax+b are estimated with estimation errors of εa = |2.1−2|= 0.1
and εb = |4.8− 5|= 0.2.

3.3.5.3 Optimization

Optimization is defined as the error in the learning algorithms used. Suppose there
is an efficient algorithm, and it is unknown. Thus we have used an inefficient algo-
rithm, and the best values for a and b cannot be obtained. This is called optimization
error, and it cannot be directly obtained. The way to approach this issue is, as an ex-
ample, if the efficient algorithm is used, we would get y = 2x+ 5, but if we use a
different algorithm we get y = 2.1x+ 4.8; therefore, the optimization error can be
obtained by comparing the estimation errors derived using different algorithms.

3.4 Low-Dimensional Structures

This section mainly focuses on the revelation of meaningful low-dimensional struc-
tures [22, 23]. It demonstrates the usefulness of data reduction to low dimensions
and data interpretation. Low-dimensional structures can display meaningful pat-
terns. A toy example is given first to transform data from three dimensions to two
dimensions, and then the same transformation is applied to real data sets.

3.4.1 A Toy Example

Let us start with a simple example to understand low-dimensional structures. How
many points can you observe in the 3D scatter plot shown in Fig. 3.26? We can see
only two points that are denoted by stars; however, this plot was generated using
three points (3,5,−1),(1,3,−2), and (1,1,3), and they are shown in Fig. 3.27. Let
us now transform the 3D data domain in Fig. 3.26 to a 2D data domain.

68 3 Big Data Analytics

X
Y

Z

10

10

10

5

5

5
−5

−5

−5
−10

−10

−10

0

0

0

Fig. 3.26 Toy example—you can see two points, but there are three points

0

X

Y

2−2−4−6−8−10
−10

−8

−6

−4

−2

0

2

4

6

8

10

4 6 8 10

Fig. 3.27 Toy example—now you can see three points and two classes

3.4 Low-Dimensional Structures 69

M =

[
0.75 −0.75 0.25
0.25 −0.25 0.75

]
. (3.14)

This transformation provides us the plot in Fig. 3.27. The matrix M transforms
(3,5,−1),(1,3,−2), and (1,1,3) to (−1.75,−1.25),(−2,−2), and (0.75,2.25)
respectively. The following matrix multiplication shows one transformation which
is the transformation from (3,5,−1) to (−1.75,−1.25):

[−1.75
−1.25

]
=

[
0.75 −0.75 0.25
0.25 −0.25 0.75

]
∗
⎡
⎣ 3

5
−1

⎤
⎦ . (3.15)

You can now do the same for the other two points. In this example, we were able
to extract some useful information from a low dimension using the following 3D to
2D generalized transformation:

[
U
V

]
=

[
0.75 −0.75 0.25
0.25 −0.25 0.75

]
∗
⎡
⎣X

Y
Z

⎤
⎦ . (3.16)

It is important to understand at this point that the matrix used above is not neces-
sarily an optimal matrix. We may parametrize this matrix model and train it to find
an optimal value. In real machine-learning applications, optimization algorithms are
used to obtain the best matrix. One example is the principal component analysis that
performs dimensionality reduction using eigenvectors [8].

3.4.2 A Real Example

You clearly understood the transformation process explained in the above section;
therefore, we can now apply the same process to a real example. We can select the
complex Biltmore Estate and MyPrismaColors data sets used earlier in this chapter.
However, we realize its complex structures can be reduced significantly using a
standardization process over the feature variables.

3.4.2.1 Relative Scoring

In Eq. (3.7), we have seen an approximated standardized scoring for the observations
of a variable based on its mean and the standard deviation. What will happen if we
assign scoring to the observations of a variable based on the mean and standard
deviation of another variable? Let us modify Eq. (3.7) as follows:

w′
i j =

xi j − ȳi

1+ syi

, (3.17)

70 3 Big Data Analytics

where xi j is the value that is being scored with respect to the variable yi which
has its mean ȳi and standard deviation syi and i, j = 1, . . . , p. This mean and the
standard deviation correspond to values yi = {yi1,yi2, . . . ,yip}. The error caused by
the substitution of ȳi for x̄ j, and syi for sx j , where i, j = 1, . . . , p results in the isolation
(and some orthogonality effect) of classes as can be seen in Fig. 3.28. This process,
as can be seen, can also help to extract low-dimensional structures.

2D Transformation

The scatter plot in Fig. 3.28 reveals the structures that can help the classification
objectives. Now let us transform this 3D scatter plot to a 2D scatter plot using the
matrix M in the following equation:

[
U
V

]
=

[
0.9526 0.8208 −0.5895
−0.6764 −1.1584 −0.0804

]
∗
⎡
⎣X

Y
Z

⎤
⎦ . (3.18)

These transformed results are shown in Fig. 3.29. It was easy to select the trans-
formation matrix M for the toy example because of its simplicity. However, the
matrix in Eq. (3.18) was selected randomly just to show the structure of these data
sets in another low dimension. Once again, they are not necessarily optimal.

3.4.2.2 Coding Example

This coding example provides Matlab code for performing matrix transformation
that allows three-dimensional data to a two-dimensional representation. Figures 3.28
and 3.29 are produced by this code. The input to this program is the data shown
in Fig. 3.13. You can input your own data sets and transform them to 3D and 2D
representations and study their data characteristics.

Listing 3.6 A Matlab example—matrix transformation example

1 clear all;
2 close all;
3
4 [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
5 [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);
6
7 nn=64;
8 i1=1;i2=22;i3=59;
9

10 figure;plot3(num1(:,i1),num1(:,i2),num1(:,i3),’.’);grid on;
11 hold on;plot3(num2(:,i1),num2(:,i2),num2(:,i3),’r.’);grid on;
12 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
13
14 mn1=mean(num1’);
15 sd1=std(num1’);

3.4 Low-Dimensional Structures 71

Feature 1Feature 22

F
e

a
tu

re
 5

9

0.2
0.1

−0.1

−100

−80

−60

−40

−20

20

0

−0.2 −10
−5

0
5

10

0

Fig. 3.28 Transformed with first matrix

0 10 20 30 40 50 60

U

V

−10
−6

−4

−2

0

2

4

6

8

Fig. 3.29 Transformed with the second matrix

72 3 Big Data Analytics

16 mn2=mean(num2’);
17 sd2=std(num2’);
18
19 rand(’seed’,11111);
20 nd=randperm(1024);
21 mmn1=mn1(nd(1:64));
22 mmn2=mn2(nd(1:64));
23 ssd1=sd1(nd(1:64));
24 ssd2=sd2(nd(1:64));
25
26 [a1,b1,c1]=xlsread(’randnums1.xls’);
27 [a2,b2,c2]=xlsread(’randnums2.xls’);
28
29 a1=(a1-mean(a1))/std(a1);
30 a2=(a2-mean(a2))/std(a2);
31
32 a1=a1/max(abs(a1));
33 a2=a2/max(abs(a2));
34
35 for jj=1:nn
36 new1(:,jj)=a2(jj)*(num1(:,jj)-mmn1(:,jj))./(1+ssd1(:,jj));
37 end
38
39 for jj=1:nn
40 neww1(:,jj)=a2(jj)*(num2(:,jj)-mmn2(:,jj))./(1+ssd2(:,jj));
41 end
42
43 figure;plot3(new1(:,i1),new1(:,i2),new1(:,i3),’.’);grid on;
44 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
45 hold on;plot3(neww1(:,i1),neww1(:,i2),neww1(:,i3),’r.’);grid on;
46 xlabel(’Feature 1’);ylabel(’Feature 22’);zlabel(’Feature 59’);
47
48 randn(’seed’,111);
49 M=randn(2,3);
50
51 Zb=M*[new1(:,i1) new1(:,i2) new1(:,i3)]’;
52 Zr=M*[neww1(:,i1) neww1(:,i2) neww1(:,i3)]’;
53
54 figure;plot(Zb(1,:),Zb(2,:),’b.’);
55 hold on;plot(Zr(1,:),Zr(2,:),’r.’);grid on;
56 xlabel(’U’);ylabel(’V’);

You are already familiar with the block of code presented in line 4 to line 12,
so the rest of the program is explained here. The block of code in lines from 14 to
17 shows the calculation of the mean and the standard deviation, but this time they
are calculated for the observations rather than for the features. The block of code
from line 19 to line 24 selects means and standard deviations of 64 observations
that are pseudorandomly selected. These statistical measures can be used to assign
standard scores for the features. As we can see, the block of code from lines 35
to 41 uses these measures and transforms the feature values num1 and num2 to
new1 and neww1, respectively. You are already familiar with the standardization
and normalization processes showed in lines 29–33, thus no further explanation is
not provided for this block of code.

Problems 73

Lines 43–46 plot the transformed features 1, 22, and 59 to show the effect
of using the standard score with the statistical measures of the observations in-
stead of those of the corresponding features. In lines 48 and 49, a transformation
matrix is created pseudorandomly, and the matrix that was produced is presented
in Eq. (3.14). The actual transformation is done in lines 51 and 52, and the resulted
scatter plot presented in Fig. 3.29 was produced by the code in lines 54 to 56.

Problems

3.1. Split-Merge-Split

To illustrate big data analytics through simulation, you need data sets that satisfy
big data characteristics and a system such as the Hadoop distributed file system that
is capable of managing big data problems and challenges. In this problem, you will
adopt the big data analytics framework presented in Fig. 3.17 and study how differ-
ent data expansion techniques will affect the evolution and deformation of patterns.
You may use two different distributions, Gaussian and uniform, to implement the
data expansion model. Select or create your own data sets. Suppose you have a data
set with n number of observations, d number of features, and m number of classes,
then complete the following tasks (If your raw data set does not have such a format,
you need to transform it to this tabular format).

• Your first task is to read this file, split it according to class labels, and save the
output files separately using their class labels as corresponding file names.
For example, if you are using the NSL-KDD data set (https://archive.ics.uci.
edu/ml/datasets/KDD+Cup+1999+Data), then you have 22 network traffic types,
such as normal traffic, back attack traffic, and neptune attack traffic. Hence, you
may name the files like normal.txt (or normal.csv if it is a csv file), back.txt, and
neptune.txt, respectively.

• Your second task is to—assuming these data follow normal distribution and are
identically independently distributed—increase the size of each data set (each
file) by randomly adding new observations. Make the files very large to conduct
a big data experiment later. Create another expanded data set, assuming that the
data follow uniform distribution. The goal of the data expansion is to study the
effect of big data, so the size of the expanded data set is subjective, and you must
decide its value appropriately based on the data characteristics.

• Your third task is to select any two files randomly and merge them. Observe the
effects and performance on both Hadoop and non-Hadoop environments. Now
you have a large data set with two classes. You may create multiple pairs (two
classes at a time).

• Your fourth task is to split this new large data set into multiple files according to
the features and store them separately with their names—you may call the files
feature1.txt, feature2.txt, and so on. These files will have data with a particular
feature and two classes only.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

74

• Your fifth task is to produce two-dimensional and three-dimensional plots using
several combinations of two features and three features, respectively. Once again,
do this on both Hadoop and non-Hadoop environments.

Finally, select a few combinations of features based on your visual interpreta-
tions, and keep them so that you can classify them using the classification algo-
rithms (e.g., support vector machine, random forest, decision tree, and deep learning
techniques such as no-drop and drop-out) that you will learn in detail later in this
book.

3.2. Localization

(a) Create big data from the hardwood floor, carpet floor, Biltmore Estate, and
MyPrismaColors data sets using localization and globalization properties. Use
the programs presented in this chapter to implement this task.

(b) Analyze data sets using the statistical techniques, such as standardization, nor-
malization, orthogonalization, mean and variance, and covariance and correla-
tion presented in this chapter.

Acknowledgements I would like to thank my daughter Prattheeba Suthaharan for generating
the “MyPrismaColors” data set (image) presented in Fig. 3.12. I would also like to thank my
graduate student Tyler Wendell, who took my Big Data Analytics and Machine Learning course
(CSC495/693) in fall 2014 at the Department of Computer Science, the University of North Car-
olina at Greensboro, and then extended the application of Split-Merge-Split technique to his music
data to classify country music and classical music from other genres (e.g., blues, jazz, etc.) using
Hadoop distributed file system and Java platform. I greatly appreciate Mr. Brent Ladd and Mr.
Robert Brown for their support in developing the Big Data Analytics and Machine Learning course
through a subaward approved by the National Science Foundation.

References

1. S.M. Ross. A Course in Simulation, Macmillan Publishing Company, 1990.
2. D.A. Berry and B.W. Lindgren. Statistics: Theory and Methods, Second Edition, International

Thomson Publishing Company, 1996.
3. J. Maindonald, and J. Braun. Data analysis and graphics using R: an example-based approach,

Second Edition, Cambridge University Press, 2007.
4. L.C. Alwan. Statistical Process Analysis, Irwin/McGraw-Hill Publication, 2000.
5. B. Dalessandro. “Bring the noise: Embracing randomness is the key to scaling-up machine

learning algorithms.” Big Data vol. 1, no. 2, pp. 110–112, 2013.
6. (Electronic Version): LWSNDR, Labelled Wireless Sensor Network Data Repository,

The University of North Carolina at Greensboro, 2010. WEB: http://www.uncg.edu/cmp/
downloads.

7. P. C. Wong, H. W. Shen, C. R. Johnson, C. Chen, and R. B. Ross. “The top 10 challenges in
extreme-scale visual analytics,” IEEE Computer Graphics and Applications, pp. 63–67, 2012.

8. C.M. Bishop. “Pattern recognition and machine learning,” Springer Science+Business Media,
LLC, 2006.

9. R. Akbani, S. Kwek, and N. Japkowicz. “Applying support vector machines to imbalanced
datasets.” Machine Learning: ECML 2004. Springer Berlin Heidelberg, pp. 39–50, 2004.

http://www.uncg.edu/cmp/downloads
http://www.uncg.edu/cmp/downloads

References 75

10. K. Kotipalli and S. Suthaharan. 2014. “Modeling of class imbalance using an empirical ap-
proach with spambase data set and random forest classification,” in Proceedings of the 3rd
Annual Conference on Research in Information Technology, ACM, pp. 75–80.

11. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. “SMOTE: synthetic minority
oversampling technique.” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357,
2002.

12. H. He, and E.A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

13. B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under adversarial label noise,”
Asian Conference on Machine Learning, JMLR: Workshop and Conference Proceedings,
vol. 20, pp. 97–112, 2011.

14. S. Fefilatyev, M. Shreve, K. Kramer, L. Hall, D. Goldgof, R. Kasturi, K. Daly, A. Remsen, and
H. Bunke. “Label-noise reduction with support vector machines,” 21st International Confer-
ence on Pattern Recognition, pp. 3504–3508, 2012.

15. B. Frenay and M. Verleysen, “Classification in the presence of label noise: a survey,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–869, 2014.

16. R.J.A. Little and D.B. Rubin. “Statistical analysis with missing data,” Wiley Series in Proba-
bility and Statistics, John Wiley and Sons, Inc. second edition, 2002.

17. E.A. Gustavo, P.A. Batista, and M.C. Monard. “An analysis of four missing data treatment
methods for supervised learning,” Applied Artificial Intelligence, Taylor & Francis, vol. 17,
pp. 519–533, 2003.

18. M. Ramoni and P. Sebastiani. “Robust learning with missing data,” Machine Learning, Kluwer
Academic Publishers, vol. 45, pp. 147–170, 2001.

19. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

20. K. Lakshminarayan, S.A. Harp, R. Goldman, and T. Samad. “Imputation of missing data using
machine learning techniques,” KDD-96 Proceedings, AAAI, pp. 140–145, 1996. Available at:
http://www.aaai.org/Papers/KDD/1996/KDD96-023.pdf

21. L. Bottou, and O. Bousquet. “The tradeoffs of large scale learning.” In Proc. of NIPS, vol 4.,
p. 8, 2007.

22. S. H. Sengamedu. “Scalable analytics – algorithms and systems.” Big Data Analytics, Springer
Berlin Heidelberg, BDA 2012, LNCS 7678, pp. 1–7, 2012.

23. C. Caragea, A. Silvescu, and P. Mitra. “Combining hashing and abstraction in sparse high
dimensional feature spaces.” AAAI, p. 7, 2012.

24. S. Suthaharan (2008), “Chaos-based image encryption scheme using Galois field for fast and
secure transmission”. Real-Time Image Processing 2008, Proceedings of SPIE, vol. 6811,
pp. 1–9, 2008, 681105.

http://www.aaai.org/Papers/KDD/1996/KDD96-023.pdf

Part II
Understanding Big Data Systems

Chapter 4
Distributed File System

Abstract The main objective of this chapter is to provide information and guidance
for building a Hadoop distributed file system to address the big data classification
problem. This system can help one to implement, test, and evaluate various machine-
learning techniques presented in this book for learning purposes. The objectives
include a detailed explanation of the Hadoop framework and the Hadoop system,
the presentation of the Internet resources that can help you build a virtual machine-
based Hadoop distributed file system with the R programming platform, and the
establishment of an easy-to-follow, step-by-step instruction to build the Revolutio-
nAnalytics’ RHadoop system for your big data computing environment. The objec-
tive also includes the presentation of simple examples to test the system to ensure
the Hadoop system works. A brief discussion on setting up a multi node Hadoop
system is also presented.

4.1 Hadoop Framework

A Hadoop framework typically has two parts: the Hadoop distributed file system
and the MapReduce programming model [1]. The Hadoop distributed file sys-
tem is a computer network environment that was developed by Doug Cutting and
Mike Cafarella to manage big data applications [2] efficiently. It provides modern
techniques and technologies to build a distributed network environment with res-
ources, such as multiple processors, storage devices, and software packages for the
MapReduce programming model to communicate and process big data, and exe-
cute commands dynamically [3, 4]. The MapReduce programming model provides
libraries and a graphical user interface to communicate with the Hadoop distributed
file system efficiently [5, 6]. The basic components, such as the master and worker
computers, data and name nodes, and job-tracker and task-tracker of the Hadoop
framework and their communication concepts, with a layering structure for learning
are shown in Fig. 4.1. They are clearly explained in the following subsections.

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 4

79

80 4 Distributed File System

Task-tracker Task-tracker

Map
Reduce
Engine

Slave

Master

Slave

HDFS

Data-node

Data-nodeData-node

Name-node

Task-tracker

J
R
E

Job-tracker

Fig. 4.1 Hadoop computing environment is illustrated with its two basic
components: Hadoop distributed file system and MapReduce programming
framework

4.1.1 Hadoop Distributed File System

The Hadoop distributed file system can be conceptualized using a master computer
and a set of worker (slave) computers with several name-nodes and data-nodes as
illustrated in Fig. 4.1. For additional information, refer to the book by Tom White
[1]. This system may be conceptualized using three layers as illustrated in the figure.
The middle layer shows an example of connections (communications) between the
master and two worker computers. One can interpret these as physical connections
between the devices. The bottom layer shows name-node and data-nodes associated
with the master and the workers and the connections between them. These connec-
tions can be conceptualized as logical communications. When jobs are assigned to
the workers, they are carried out by the name-nodes and data-nodes.

4.2 Hadoop System 81

The main job of the name-node is to maintain the complete directory structure of
the distributed file system, while the main job of the data-node is to store the active
data associated with the directory structure [1]. If an error message appears related
to name-node (for example, missing name node), we know there is a problem in
the HDFS layer, and the directory structure of the distributed system must be fixed.
We may fix this problem by formatting (or recovering) the directory structure of
Hadoop. Hence, the layered structure presented in Fig. 4.1 should help us visualize
the internal modules and communication between them, and apply that information
when problems, such as a missing name-node message, occur during the installation
and configuration of a Hadoop distributed network environment.

4.1.2 MapReduce Programming Model

The MapReduce programming model may be conceptualized using the top two lay-
ers illustrated in Fig. 4.1. The master computer and the set of worker-computers in
the middle layer are connected to several job-tracker units and several task-tracker
units, respectively. For additional information, refer to the MapReduce introduction
paper by Dean and Ghemawat [5]. The MapReduce programming model will be
discussed in the next chapter in detail, focusing on its programming objectives. The
main job of job-tracker is to find the task-trackers that are close to the data-node
where the data in process reside. To access these data, as you can see in Fig. 4.1, the
job-tracker connects to the name-node via the master and the connection tube, and
request the data nodes where the data are. The users of MapReduce programming
model can perform these tasks using the three functions: the mapreduce(), the map-
per(), and the reducer(). These functions will also be discussed in the next chapter.

4.2 Hadoop System

The Hadoop system can be a physical system or a virtual system. The physical sys-
tem mainly consists of several networked computers with the Hadoop framework
installed on each computer. They are capable of dealing with many big data prob-
lems with the addition of extra nodes to the system based on the need for additional
resources. The virtual system may be described by the diagram presented in Fig. 4.2.
The virtual system has limited capacity, is slow in general, and can only be used
under certain restrictions, but it may be cost effective for some applications. The
virtual Hadoop computing environment is the best option for testing and learning
the big data concepts. A Hadoop system may be divided into the operating system,
the distributed system, and the programming platform.

82 4 Distributed File System

Fig. 4.2 A setting up process of a Hadoop computing environment

4.2.1 Operating System

The operating systems that you may consider when you build a Hadoop framework
may be grouped into the base operating system or the virtual operating system.
A brief description of these operating systems is presented below:

• Base Operating System: The base operating system is the original operating sys-
tem that you have installed on your computer. It has a direct connection to the
hardware and other software resources. In many cases, Microsoft Windows is the
base operating system; however, if you have a Unix-based operating system as
the base operating system, then you may not need a virtual operating system.

• Virtual Operating System: It is also known as the guest operating system. It may
be installed on top of the base operating system, and thus it is called the guest op-
erating system. You may install multiple virtual operating systems on top of the
base operating system; therefore, you can have multiple virtual machine. In gen-
eral, the goal is to have a Linux operating system as a virtual operating system
on top of the Microsoft Windows operating system.

We really need tools that facilitate the integration of multiple guest operating
systems on top of the base operating system. One of the tools available for this
purpose is the Oracle VM VirtualBox [7], and its use will be discussed later.

4.2.2 Distributed System

The main goal of the Hadoop framework is parallel processing, which is ena-
bled by the distributed file system with multiple computers (called nodes) and the

4.3 Hadoop Environment 83

MapReduce programming model. This distributed computing environment has at
least the following two components:

• Big Data Platform: The goal is to create a big data platform to manage massive,
unstructured, and scalable data sets. The Cloudera Hadoop [8] is used in this
book for the purpose of building a big data platform.

• Application Packages: The big data processing jobs must be implemented using
models and algorithms, and for this purpose, we need a programming environ-
ment with libraries for enabling a distributed system for parallel processing. We
may choose R, Java, or Python programming environment for big data process-
ing, but in this book the R programming language has been selected.

The Cloudera Hadoop distributed system [8] with R programming environment
is capable of processing big data applications, and it can provide a suitable environ-
ment for testing and learning machine-learning models and algorithms.

4.2.3 Programming Platform

The programming languages are the essential tools for the user to communicate
with the computers or with a network of computers. They may be grouped into
the implementation facilitators and the graphical user interface. They are discussed
briefly below:

• Implementation Facilitator: The implementation facilitator is a set of built-in
functions that help users communicate with the systems. For example, the imple-
mentation facilitator in the Hadoop system facilitates the MapReduce developers
to run Mapper and Reducer jobs on the Hadoop (for example, RHadoop [9])
system.

• Graphical User Interface: The graphical user interface provides a comfortable
programming environment to execute commands for big data processing instead
of implementing jobs on command lines. Such a graphical user interface for the
R programming language is the RStudio [10].

The programming languages used in this book are Matlab [11] and R [12], how-
ever, the R programming language and the RStudio graphical user interface have
been selected for the big data computing framework because they will enhance your
learning experiences in the topics.

4.3 Hadoop Environment

The Hadoop environment should have a suitable operating system, distributed sys-
tem, and programming platform to build a system that can process big data applica-
tions efficiently. To accomplish these objectives, we need a set of essential tools and
suitable instructions to install and configure the system successfully. The following
two subsections focus on these two important aspects.

84 4 Distributed File System

4.3.1 Essential Tools

We may need five essential tools to build a Hadoop environment for the big data
processing, storage, and analysis. The recommended tools based on my current ins-
tallation experience are the Windows 7 operating system (WN) for the base operat-
ing system, the Oracle VM VirtualBox (VB) for the virtual machine, the Ubuntu for
the guest operating system (UB), the Cloudera Hadoop system (CH) for the Hadoop
computing environment, and R programming language with RStudio graphical user
interface (RR) for the programming platform.

4.3.1.1 Windows 7 (WN)

The specifications for the use of Microsoft Windows 7 as the base operating sys-
tem for the development of the network environment are: (a) Windows 7 Enter-
prise, (b) x64, ISP Build model, (c) Intel Core i7-4600U processor with CPU @
2.10 GHz 2.70 GHz, (d) RAM capacity of 8.00 GB, (e) 64-bit Operating System,
and (f) 240 GB storage capacity. The base operating system with these specifications
was compatible with the other components installed and did not give any problems
in the installation. It also worked very well with the experiments conducted to study
the machine-learning models and algorithms with big data classification problems.

4.3.1.2 VirtualBox (VB)

The virtual machine allows another operating system (commonly called the guest
operating system) to be installed on top of the base operating system and provides
an emulator that creates an environment like the real computers. At the same time,
it can allocate computer resources like the memory, the processor tasks, and the
necessary storage dynamically. In the system that was built as part of this book
project, the Oracle VM VirtualBox [7] was used. The executable file VirtualBox-
4.3.16-95972-Win.exe was downloaded from [7] and used to install the VirtualBox
and build Oracle VM VirtualBox for the experiments conducted in this book. As an
alternative, you can use VMware player [13]. You can download the necessary files
from [13] and build a VMware virtual machine.

4.3.1.3 Ubuntu Linux (UB)

The guest operating system, or the virtual operating system, considered here is
the Ubuntu Desktop 14.04 LTS with 64-bit option [14]. The downloaded ISO file
from [14] was the “ubuntu-14.04.1-desktop.amd64.iso.” You may have the choice
of setting up a 32-bit machine or a 64-bit machine; however, my recommendation
is to build the entire Hadoop environment as a 64-bit Hadoop system. To ensure
you will have a successful system, you must first check if your computer also has
64-bit processors. This may be checked by a right-mouse-click on the “My Com-
puter” icon on your desktop, and reading the properties option.

4.3 Hadoop Environment 85

4.3.1.4 Cloudera Hadoop (CH)

This book recommends the Cloudera Hadoop [8] for the Hadoop system if you
want to have the R programming environment, and Apache Hadoop [15] if you
want to have Java or Python. However, you may have, Cloudera and Java/Python
combination which is not discussed, as I have not installed that combination and
tested it. The Cloudera Hadoop version that I tested here is ‘‘cdh4-repository 1.0 al
l.deb,’’ and it provides the following two software packages for processing big data:

• rmr2-package: It is an r-map-reduce package [16] that helps MapReduce appli-
cations to run on R and Hadoop. This package may be downloaded from [16].
Its library must be included in the r-script. The rmr2 package that I used for my
Hadoop environment and tested successfully was ‘‘rmr2 2.3.0.tar.gz.’’

• rhdfs-package: It is an R-Hadoop-distributed-file-system package [17] that also
helps R to be deployed on Hadoop. This package may be downloaded from [17].
Its library must also be included in the r-script followed by rmr2 package. The
rhdfs package that I used for my Hadoop environment (and rmr2) and tested
successfully was ‘‘rhdfs 1.0.5.tar.gz.’’

The directory structure formed as a result of the installation of a Hadoop dis-
tributed file system will be presented based on this version of the Cloudera Hadoop.
If you install a newer version, check the location of the Cloudera files according to
the instructions in the corresponding download pages.

4.3.1.5 R and RStudio (RR)

We now need a programming environment that allows the users to communicate
with the Hadoop system. The R programming language can serve that purpose and
work with the Cloudera Hadoop system. The instructions available at the following
website can help you find the software to build that programming environment:

• http://cran.r-project.org/bin/linux/ubuntu/README.

It provides a command line environment; therefore, RStudio, a graphical user
interface, may be downloaded and installed on your system. This software can be
found at the following website:

• www.rstudio.com/products/rstudio/download

It is easy to set up this programming environment; follow the instructions pro-
vided in the above website to install and configure this programming platform.

4.3.2 Installation Guidance

The process of building a Hadoop environment may be described by the diagram
presented in Fig. 4.3. This diagram is provided to help you understand the sequential

www.rstudio.com/products/rstudio/download
http://cran.r-project.org/bin/linux/ubuntu/README

86 4 Distributed File System

Fig. 4.3 The steps to install a single-node virtual Hadoop system

process of the installation of the entire Hadoop system and record the completed
steps for the purpose of the systematic installation and configuration guidance.
This installation guidance is divided into six subsection presented below.

4.3.2.1 Internet Resources

The Internet sources listed below provide excellent information and guidelines to
install and configure a virtual Hadoop system with the R programming platform:

1. https://www.virtualbox.org/wiki/Downloads. Read the contents of this website to
understand and download the Oracle VM VirtualBox software.

2. https://www.youtube.com/watch?v=hK-oggHEetc. Consult this website and
watch the entire video before installing the Ubuntu operating system.

3. http://cran.r-project.org/bin/linux/ubuntu/README. This readme file must be
consulted to install ubuntu packages that support the R programming platform.

4. https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads. This Revo-
lution Analytics website provides software packages for the RHadoop system.

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
http://cran.r-project.org/bin/linux/ubuntu/README
https://www.youtube.com/watch?v=hK-oggHEetc
https://www.virtualbox.org/wiki/Downloads

4.3 Hadoop Environment 87

5. http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-4-1-1.html.
Download the Cloudera Hadoop from this website.

6. http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-
rhadoop/. This website provides guidelines to install the R and RHadoop
packages.

7. http://www.meetup.com/Learning-Machine-Learning-by- Example/pages/Insta-
lling R and RHadoop/. Follow the steps to install the R and RHadoop system.

The information in these Internet sources has been used to build the system
adopted in the experiments conducted in this book. Other Internet resources that
helped the installation and configuration of the Hadoop system are:

1. http://www.michael-noll.com/tutorials/. It provides additional information to
understand the hadoop environment.

2. http://www.rdatamining.com/tutorials/r-hadoop-setup-guide. The information in
this website can help install the RHadoop system.

3. http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html. It also
provides information on the R and RHadoop installation and configuration.

The information in all of these websites tremendously helped me install the
RHadoop virtual distributed file system successfully for this book project.

4.3.2.2 Setting Up a Virtual Machine

There may be several options to build a virtual machine, and two of them are the
installation and configuration of “Virtualbox” [7] and “VMware Player” [13]. How-
ever, the system developed for this book is based on the Oracle VM VirtualBox.
Download and install the Oracle VM Virtualbox from the website at [7]. This web-
site provides detailed instructions for the installation. Simply follow the instructions
to install it in a few minutes. You may also watch the YouTube video at [18] and
follow the instructions to configure the Virtualbox on Ubuntu.

4.3.2.3 Setting Up a Ubuntu O/S

The next step is to install a virtual operating system in the virtual machine that
you built using virtualbox package. Once again, the tutorial is available at [18],
and this helped me install the Ubuntu Desktop 12.04 LTS inside the Oracle VM
VirtualBox. Now download the Ubuntu O/S software from [14]. You most likely
will want the desktop version of this software. Note that the website instructions
change frequently, hence you need to make an effort to find the binary distribution
of the desktop version at the Ubuntu website.

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://www.rdatamining.com/tutorials/r-hadoop-setup-guide
http://www.michael-noll.com/tutorials/
http://www.meetup.com/Learning-Machine-Learning-by- Example/pages/Installing_R_and_RHadoop/
http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-4-1-1.html

88 4 Distributed File System

Fig. 4.4 This is an example of the general directory structure that the Linux and
Hadoop installations generate. It shows the locations of the HADOOP-HOME, the
HADOOP-CMD, the HADOOP-STREAMING, and the JAVA-HOME directories

The instructions to download and install are clear on the website, so simply fol-
low the steps. You have installed a Unix-based operating system on your virtual
machine, and type hadoop at the command prompt. The system will display the
message command not found’ or a similar message. I also recommend that you
draw the directory structure of your Linux environment at this time, similar to the
one given in Fig. 4.4; it will help you find where the things are, such as the Linux
command, your home directory, and java-home, etc. It will also help to monitor the
changes that occur when the new software installed and configured.

4.3.2.4 Setting Up a Hadoop Distributed File System

The instructions on the website at [19] are very helpful to install the Cloudera
Hadoop. There are different versions of CDH at the Cloudera website, and you may
select the version that you need. Make sure you perform the installation steps while
logged in the Unix environment. The following steps may be followed [19]:

1. Download the version cdh4.1.1 by clicking at http://www.cloudera.com/content/
cloudera/en/downloads/cdh/cdh-4-1-1.html. If you cannot find this version of the
software, install it from another version.

2. Change the directory using the command cd /home/username/Downloads and
check if you have downloaded the file cdh4-repository 1.1 all.deb for CHD
version 4.1.1.

3. Execute the command sudo dpkg -i cdh4-repository 1.1 all.deb as per [19].
It creates a secure ring and imports the public key from Cloudera.

http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-4-1-1.html
http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-4-1-1.html

4.3 Hadoop Environment 89

4. Now you have installed new software, which is the Cloudera Hadoop; therefore,
you must inform this new addition to the Linux system. To do this, execute the
following command:

sudo apt-get update

Now check your Linux directory structure and find where the Cloudera Hadoop-
related files and directories are created. You may develop the directory structure
like the one in Fig. 4.5, and it will help you find the files and executables as
needed later. When an error occurs, you will find this tree like directory structure
especially useful. If you had installed the Apache hadoop [15], then you would
have generated the directory structure like the one in Fig. 4.6.

5. In the above steps, you have installed the Hadoop distributed file system, but not
the MapReduce framework. To do this, execute the following command: sudo
apt-get install followed by the mapreduce-jobtracker file. This file can be found
in the directory /usr/lib/hadoop-0.20-mapreduceof the directory hierarchy shown
in Fig. 4.5. Therefore, to install the MapReduce framework, you can execute the
following command [19]:

sudo apt-get install hadoop-0.20-mapreduce-jobtracker

6. Type the command hadoop on the Linux command prompt, and the system
should recognize it now and confirm that the Hadoop system with MapReduce
frame has been installed. You should see the Hadoop-related directories have
been added to the Linux directory structure, and you should update the directory
structure presented in Fig. 4.5 accordingly.

4.3.2.5 Setting Up an R Environment

Install the R programming platform on your system. You can follow the instructions
in the README file available at [12]. Note that the instructions on this website help
you install the R programming environment, but do not connect it to the Cloudera
Hadoop installed in the previous subsection. There are different locations, differ-
ent versions, and different methods of installation of R programming platform that
you can download. Therefore, it is advisable to follow the instructions in the above
README file carefully and add the following statement to your /etc/apt/sources.list
files as stated in the README file [12].

deb http://cran.stat.ucla.edu/bin/linux/ubuntutrusty/

Note: Please include a space between unbuntu and trusty in the above link.

http://cran.stat.ucla.edu/bin/linux/ubuntu trusty/

90 4 Distributed File System

Fig. 4.5 An example of Cloudera Hadoop directory structure with Ubuntu Linux
environment

Because of this modification to the Linux environment, you must update the sys-
tem. To do this, execute the following command as before:

sudo apt-get update

You might get a GPG error for a public key request—you may ignore it or follow
the instructions in the README file to set one up. Either way, your software has
already been installed and the system has been updated. You can test to see if the R
environment works by executing the following command inside the R environment:

sudo R

Then quit R using q(). Now you can connect the R environment to the Hadoop
system. The R environment requires several r-packages to be installed to connect to
the Hadoop system, and the ones required at this point are: r-base, r-base-dev, and
r-cran-java. These packages may be installed using the following command [19]:

4.3 Hadoop Environment 91

Fig. 4.6 An example of Apache Hadoop directory structure with Ubuntu Linux en-
vironment

sudo apt-get install r-base r-base-dev r-cran-rjava

Another package that is required by R is RCurl, and this may be installed using
the Ubuntu command line instruction and the following command:

sudo apt-get install libcurl4-openssl-dev

It also requires the package called “plyr,” which may be installed within R envi-
ronment, so invoke the command sudo R to bring up the R environment, then use
install.package(‘plyr’). Note that this will ask you to select CRAN repository, and
you may select USA(CA1), which is the UC-Berkeley repository.

Another set of packages required by R environment is RJSONIO, itertools,
digest, Rcpp, httr, functional, devtools, and as suggested by [19, 20]. They can

92 4 Distributed File System

be installed from http://cran.revolutionanalytics.com using the install.packages()
command inside the R environment. Make sure you use sudo R to bring up the R
environment before executing this command as before. The packages installed for
R programming environment can be found in the /usr/local/R/site-library directory.

4.3.2.6 RStudio

RStudio provides a programming environment for you to comfortably work with
the R programming language. It provides features for you to create, edit, and run
R code for your applications. It also helps to create programs to connect your R
environment to Hadoop in order to run big data applications. The installation of
RStudio can be done by downloading the necessary software from:

• www.rstudio.com/products/rstudio/download

It is important to select the correct version of the software depending on if the
RStudio will be housed on a 32-bit or 64-bit machine. It is also important to make
sure the operating system (in this case, Ubuntu) and the Hadoop distributed file sys-
tems are also compatible with either a 32-bit or a 64-bit machine, depending on your
selection. It means that if your Ubuntu and Hadoop are compatible with a 64-bit ma-
chine, then you should select RStudio also for the 64-bit machine, otherwise select
the 32-bit version of RStudio. If the software has been downloaded successfully,
you should be able to see rstudio-0.98.1056-amd64.deb in your /usr/home/Down-
loads directory of Ubuntu. The RStudio environment also requires libjpeg62 for the
purpose of graphical displays; therefore, it is important to install it before installing
RStudio. It can be easily installed via the Ubuntu software center. Now change the
directory to cd your home/Downloads and execute the following command:

sudo dpkg -i rstudio-0.98.1056-amd64.deb

The next step is the installation of two other software packages: caTools and re-
shape2. These packages can also be downloaded through the Ubuntu software cen-
ter to the Rstudio environment. However, it is easier to install them via the RStudio
graphical user interface, and it is highly recommended based on my RStudio instal-
lation experience. The applications of R and the RStudio environment require two
RevolutionAnalytics software packages called rmr2 and rhdfs to connect them to a
Hadoop environment and run big data applications. These packages can be down-
loaded from the following GitHub website:

• https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

Now you should be able to see the hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar file
in the download directory /home/username/Downloads, which must be exported
into the RStudio environment as suggested in [19] and [20] using the environ-
ment variables HADOOP HOME, HADOOP CMD, and HADOOP STREAMING
as follows:

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
www.rstudio.com/products/rstudio/download
http://cran.revolutionanalytics.com

4.3 Hadoop Environment 93

Sys.setenv(HADOOP HOME=’/usr/lib/hadoop-0.20-mapreduce’)
Sys.setenv(HADOOP CMD=’/usr/bin/hadoop’)
Sys.setenv(HADOOP STREAMING=’/usr/lib/hadoop-0.20-mapreduce/contrib/str
eaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)

These environment variables will be set, as suggested in [19] and [20], in every
R program presented in the rest of the book. The next step is to download rhdfs and
install it in RStudio. This can be done through Rstudio as suggested on [19].

4.3.3 RStudio Server

This is a separate option so that you can remotely work with R on Hadoop and also
allow other users to work remotely. It is a good option if you are an instructor who
teaches a course and expects students to work remotely and submit their work on
the server. It can also help monitor students’ progress.

4.3.3.1 Server Setup

You can download RStudio server software from www.rstudio.com/products/rstudi
o/download-server/ and follow the instructions to install it on the machine that you
want to set up as a server. You may need to execute the following three commands:

sudo apt-get install psmisc
sudo apt-get update
sudo apt-get upgrade

You may also have to wait for a long time before the upgrade is complete. Do not
forget to create a user in the system so that you can log in as the user from the client
after the client is set up.

4.3.3.2 Client Setup

Identify another computer which may be connected to the server over the Internet.
Then download the RStudio desktop version from www.rstudio.com/products/rstud
io/desktop/ and follow the instructions to install it on the computer. Now go to the
server computer and execute the following command:

94 4 Distributed File System

sudo rstudio-server start

The server is now running, so you should be able to access the server from the
client machine. To do that, bring up a browser and then type:

http://ipaddress-of-the-server:8787

Replace the phrase ip-address-of-the-server with the actual IP address of the
server. You should use the user name and password to log in.

4.4 Testing the Hadoop Environment

Once the Hadoop environment is built, you can either use the standard examples
available in the Hadoop system, or you can write your own programs and run on
the command line to test to see if the system works. The standard examples are
packed in the “.jar” file which can be found in the following location in the Ubuntu
directory:

/usr/lib/hadoop-0.20-mapreduce/hadoop-examples-2.0.0-mr1-cdh4.7.0.jar

The standard examples include wordcount, aggregatewordcount, aggregateword-
hist, pi, and randomtextwriter. They use the mapreduce(), mapper(), and reduce()
functions.

4.4.1 Standard Example

To illustrate the steps involved in running these MapReduce programs using the
above “.jar” file and the Hadoop command, the word count example is selected and
demonstrated. The following command may be executed:

hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-examples-2.0.0-mr1-cdh4.7.0.j
ar wordcount input.txt output-dir

This command reads the content of the file input.txt, creates a directory named
output-dir, and then writes the word counts as a file with a name like part-00000
inside the directory. You can go (cd) to that directory and issue the “cat” command
to look at the content.

http://ipaddress-of-the-server:8787

4.5 Multinode Hadoop 95

4.4.2 Alternative Example

The goal of this example is to use “cat” and “uniq” commands together with Hadoop
streaming, mapper, and reducer features to read two files and create a sorted file by
removing the duplicate entries. In order to implement this, first create the following
two text files using an editor (e.g., vi 1.txt and vi 2.txt):

3 Australia Victoria
1 America Greensboro
2 India Madras
1 Australia Melbourne

4 Australia Melbourne
1 Australia Vic
8 America Arizona
6 Greensboro America
1 Australia Melbourne

Then create a shell script: for example, file-merge.sh, as follows:

hadoopjar/usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.
0.0-mr1-cdh4.7.0.jar-input1.txt2.txt-outputalt-mappercat-reduceruniq

hadoop fs -cat alt/part-00000

hadoop fs -rm -r alt

The first command uses the Hadoop’s mapreduce streaming capabilities to in-
put the two files and output the results to a directory with a file name part-00000
[21]. The second command reads this file and displays it on the screen. The third
command deletes the directory. The output of the first command is:

1 America Greensboro
1 Australia Melbourne
1 Australia Vic
2 India Madras
3 Australia Victoria
4 Australia Melbourne
6 Greensboro America
8 America Arizona

As you can see, the duplicate entry of “1 Australia Melbourne” is removed.

4.5 Multinode Hadoop

In order to build a multinode Hadoop system, a virtual network must first be estab-
lished. The Oracle VM virtualbox allows multiple virtual machines to be integrated
in the environment. The nodes VB and UB in Fig. 4.7 show the integration of four

96 4 Distributed File System

Fig. 4.7 The steps to install a multinode virtual Hadoop system

hosts in the virtual network. The rest of the structure in the figure shows all the
installation and network configuration steps to build a complete big data system.

4.5.1 Virtual Network

A virtual network can be created through the Oracle VM VirtualBox Manager by
adding several virtual machines and connecting them through network settings.
Then, we must install the Ubuntu operating system on every virtual machine as
explained in Sect. 4.3.2.3. Using the “ping” command, we can then test to see the
virtual machines respond to each other.

4.5.2 Hadoop Setup

As the next step, the Cloudera Hadoop and R programming platforms may be
installed on each machine as it has been explained in Sects. 4.3.2.4 and 4.3.2.5,
respectively.

References 97

Problems

4.1. Virtual Network

Construct a virtual network with four virtual machines (hosts) in the Oracle VM
Virtualbox. You must set up IP addresses and the other necessary network param-
eters. Install the Ubuntu operating system in all virtual machines. Open the shell
environment for each operating system and execute ping commands to confirm that
these machines can communicate with each other.

4.2. Virtual Hadoop

You have built a virtual network in the previous problem. Now install Cloudera
Hadoop in all machines. Confirm all the Hadoop nodes are running.

Acknowledgements I would like to thank my graduate student Sumanth Reddy Yanala for helping
to produce the drawing in Fig. 4.1. The information and discussions on “wrapletters” available
at http://www.latex-community.org/forum/viewtopic.php?f=44&t=3798 helped the formatting of
several long continuous text, like Uniform Resource Locator (URL), in this book.

References

1. T. White. “Hadoop: the definitive guide.” O’Reilly Inc, 2009.
2. http://en.wikipedia.org/wiki/Apache Hadoop
3. D. Borthakur. “The hadoop distributed file system: Architecture and design.” Hadoop Project

Website 11: 21, 2007.
4. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The hadoop distributed file system.” In

Proceedings of the IEEE Symposium on Mass Storage Systems and Technologies, pp. 1–10,
2010.

5. J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large clusters.”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

6. J. Dean, and S. Ghemawat. “MapReduce: a flexible data processing tool.” Communications of
the ACM, vol. 53, no. 1, pp. 72–77, 2010.

7. https://www.virtualbox.org/wiki/Downloads
8. http://www.cloudera.com
9. https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

10. http://www.rstudio.com/products/rstudio/download
11. http://www.mathworks.com/products/matlab/index-b.html
12. http://cran.r-project.org/bin/linux/ubuntu/README
13. http://www.vmware.com/products/player
14. http://www.ubuntu.com/download/desktop
15. http://wiki.apache.org/hadoop/Hadoop2OnWindows
16. https://github.com/RevolutionAnalytics/rmr2/tree/master/build
17. https://github.com/RevolutionAnalytics/rhdfs/tree/master/build
18. https://www.youtube.com/watch?v=hK-oggHEetc
19. http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing R and

RHadoop/
20. http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
21. http://hortonworks.com/blog/using-r-and-other-non-java-languages-in-mapreduce-and-hive/

http://hortonworks.com/blog/using-r-and-other-non-java-languages-in-mapreduce-and-hive/
http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing_R_and_RHadoop/
http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing_R_and_RHadoop/
https://www.youtube.com/watch?v=hK-oggHEetc
https://github.com/RevolutionAnalytics/rhdfs/tree/master/build
https://github.com/RevolutionAnalytics/rmr2/tree/master/build
http://wiki.apache.org/hadoop/Hadoop2OnWindows
http://www.ubuntu.com/download/desktop
http://www.vmware.com/products/player
http://cran.r-project.org/bin/linux/ubuntu/README
http://www.mathworks.com/products/matlab/index-b.html
http://www.rstudio.com/products/rstudio/download
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
http://www.cloudera.com
https://www.virtualbox.org/wiki/Downloads
http://en.wikipedia.org/wiki/Apache_Hadoop
http://www.latex-community.org/forum/viewtopic.php?f=44&t=3798

Chapter 5
MapReduce Programming Platform

Abstract The main objective of this chapter is to explain the MapReduce framework
based on RevolutionAnalytics’ RHadoop environment. The MapReduce framework
relies on its underlying structures, the parametrization, and the parallelization. These
structures have been explained clearly in this chapter. The implementation of these
structures requires a MapReduce programming platform. An explanation of this
programming platform is also presented together with a discussion on the three
important functions, mapper(), reducer(), and mapreduce(). These functions help
the implementation of the parametrization and parallelization structures to address
scalability problems in big data classification. The chapter also presents a set of
coding principles, which provide good programming practices to the users of the
MapReduce programming platform in the context of big data processing and analy-
sis. Several programming examples are also presented to help the reader to practice
coding principles and better understand the MapReduce framework.

5.1 MapReduce Framework

The Mapreduce framework [1] provides techniques and technologies to address big
data problems, and they are predominantly useful for solving big data classifica-
tion problems. The techniques and technologies from RevolutionAnalytics [2] have
been selected to apply and explain the MapReduce programming platform.The soft-
ware packages provided by RevolutionAnalytics can be used to build a Hadoop dis-
tributed file system called the RHadoop with a MapReduce programming platform
[3]. The MapReduce framework can be easily explained with these packages, and
thus the RHadoop system has been selected in this chapter. Let us first explore the
underlying structure of the MapReduce framework The underlying structure of the
MapReduce framework is a combination of two main concepts called parametriza-
tion and the parallelization [4]. They help solve the main scalability problems in big
data environment. These two concepts are discussed in the following subsections.

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 5

99

100 5 MapReduce Programming Platform

Table 5.1 A p dimensional data table
f1 f2 f3 .. fp

f11 f21 f31 .. fp1

f12 f22 f32 .. fp2

: : : .. :
f1n f2n n3n .. fpn

5.1.1 Parametrization

The parametrization of the MapReduce framework enables users to specify two
parameters, called the key and the value, within a data set so that the data can be
efficiently processed using a distributed file system. In MapReduce models, these
parameters are called the key-value pair, and it is represented by a tuple (key,value).
What does the parametrization in the MapReduce framework mean exactly?

Suppose we have a data set represented by p columns and n rows as shown
in Table 5.1, and it shows the vertical operation, top to bottom. For simplicity,
assume the user selects the data in the first column as the parameter key and the
third column as the parameter value, then the key-value pair is (f1, f3). The user
has many choices, some of them are (f1, f10), (f1, . . . , f8, fp), and (f3, fi, . . . , f j).
It shows several choices for users to select the (key, value) pair; hence, the tuple
(key, value) becomes the parameter for this model. In addition, this process gener-
ates a key domain and a value range, and gives a one-to-one mapping between the
key domain and the value range from the data based on the user’s choice.

Thinking with Example 5.1:

For this example, let us consider the grades (0–100), the rating (good, fair, bad),
and the status (U or G) of 13 university students, where U represents undergraduate
student and G represents graduate student. In connecting this with Table 5.1, we
have p = 3 (i.e., 3 columns) and n = 13 (i.e., 13 rows). Assume the entries in this
table as: f1 = {96, 92, 68, 95, 96, 11, 50, 32, 75, 50, 93, 98, 12}, f2 = {good, good,
fair, good, good, bad, fair, fair, good, fair, good, good, bad}, and f3 = {U, G, G, G,
U, G, U, G, U, U, U, U, G}.

Suppose the user, in this case the instructor, selects the rating as the key and the
grades as the value for the (key, value) pair, then we have the mapping between f2 =
{good, good, fair, good, good, bad, fair, fair, good, fair, good, good, bad} and f1 =
{96, 92, 68, 95, 96, 11, 50, 32, 75, 50, 93, 98, 12}. Therefore, this selection maps:
good → 96, good → 92, fair → 68, . . . , bad → 12. This process serves the purpose
of the mapper concept in the MapReduce framework.

5.1 MapReduce Framework 101

reduce

key = fairkey = bad

value = 11, 12

results = 11.5 results = 50 results = 92.1

key = good

value = 96, 92, 95, 96, 75, 93, 98value = 68, 50, 32, 50

Fig. 5.1 MapReduce programming model that describes the (key, value) pair con-
cept together with user request component and Mapper and Reducer functions

5.1.2 Parallelization

The parallelization of the MapReduce framework converts the one-to-one mapping
generated in the Parametrization process to a one-to-many mapping based on
the grouping of the same key values. For example, if the key domain has val-
ues {a, a, b, a, b, b, a} that map to value range {v1,v2,v3,v4,v5,v6,v7}, then
the grouping may be done using the same key values {a, b} map to many like
{{v1,v2,v4,v7},{v3,v5,v6}}. This process helps the MapReduce framework to com-
press the key domain and maps the compressed keys to their corresponding values as
a one-to-many map. This transformation enables each mapping of the compressed
keys be processed in parallel by a distributed file system, hence it is called the par-
allelization. While it helps the parallel processing, it also reduces the data, and thus
it serves the purpose of the reducer concept of the MapReduce framework.

Thinking with Example 5.2:

Let us take the same example considered in Thinking with Example 5.1 to under-
stand the parallelization or the reducer better. In that example, we derived a one-
to-one mapping as follows: good → 96, good → 92, fair → 68, . . . , bad → 12.
Therefore, we can reduce this data by the following one-to-many mapping to dis-
tribute over multiple computers: good→{96, 92, 95, 96, 75, 93, 98}, fair→{68, 50,
32, 50}, and bad → {11, 12}. However, the MapReduce framework sorts the key
[5] before transferring the results to this parallelization process, and therefore the

102 5 MapReduce Programming Platform

correct sequence is the key-sorted list as follows: bad → {11, 12}, fair → {68, 50,
32, 50}, and good → {96, 92, 95, 96, 75, 93, 98}. This example and the processes
may be illustrated by the diagram shown in Fig. 5.1. This figure shows three hierar-
chical branches that facilitate parallelism in the tree like structure where the tasks
associated with each branch can be processed by separate processors in parallel. The
first level of the tree shows the keys, and the second level shows the value list (or
the iterator). The third row is a computation, in this case the averaging, result using
the iterator list.

5.2 MapReduce Essentials

The essential tasks of the MapReduce framework, as we have seen in the previous
section, are the parametrization and parallelization as well as the sorting performed
between these two tasks by the MapReduce framework [5]. We can assign map-
per() function for the parametrization process and the reducer() function for the
parallelization process, and a main mapreduce() function to execute the mapper()
function, sort the output of this function, and transfer the results to the reducer()
function. This MapReduce model can be illustrated as shown in Fig. 5.2.

It shows the three process involved in the MapReduce model: the first one is
the use of the mapper() function to parametrize the key domain and value range;
the second one is the sorting applied by the mapreduce() during the transfer of the
results from the mapper() function to the reducer() function; the third process is the
use of reducer() function to parallelize the final results. These underlying structures
of the MapReduce framework are explained in the following subsections, and these
are the extracts of the R code used in the examples presented later in this chapter.

5.2.1 Mapper Function

The mapper() function may be visualized as a vertical operation (or a columnar
operation) on the data. Suppose we have p columns (e.g., variables or files) of data
with n observations as a table form, then the goal of the mapper() function is to
divide the data table vertically as a key domain and value range:

grades.map.fn = function(k, v) {
k=v[,2]
kk1=keyval(k,v[,1])
rmr.str(kk1)

}

This mapper() function follows the format of the function included in RHadoop
software [2, 3] and used in several other applications [6, 7]. In this example, the

5.2 MapReduce Essentials 103

reducermapper

mapreduce

sorting

key

value value value

results results results

key value

pa
ra

m
et

er
iz

at
io

n
P
arallelization

key key

Fig. 5.2 MapReduce programming model is illustrated using the transmission of
(key, value) pairs through Mapper function and Reducer function

second column of the data is assigned to a key space, then the key space and the val-
ues in the first column are mapped. The rmr.str function, in general, helps to debug
a rmr2 program [8], and it has been used here to display the content of the variable
kk1. The variable kk1 is a temporary variable; hence, a proper naming convention is
not followed. However, the letter k is used to indicate it is a key-related variable.

5.2.2 Reducer Function

The reducer() function may be visualized as a horizontal operation (or a row
operation) on the data resulted from the mapper() function. Suppose the key do-
main has k key labels (i.e., variety of keys) key1,key2, . . . ,keyk, then the function
selects the key’s values in their value ranges and performs the operations.

grades.reduce.fn = function(k, v) {
rmr.str(k)
rmr.str(v)
kk2=keyval(k,mean(v))
rmr.str(kk2)

}

104 5 MapReduce Programming Platform

In this example, the first two rmr.str functions display the (key, value) pairs
received by the reducer() from the mapper(). In the next statement, the keyval()
function performs the horizontal operation, in this case “mean” operation on the
value ranges. The resulting reductions based on the key labels are stored in the vari-
able kk2, and the subsequent statement displays the stored results. As before, proper
naming convention is not followed in the naming of the temporary variable kk2
which is used to display the results.

5.2.3 MapReduce Function

We now need an engine that reads these functions, executes them correctly, and
produces results. The mapreduce() function serves this purpose. It provides a formal
parameter list, which copies the input data, the mapper() function, and the reducer()
function, and executes them appropriately, according to parametrization, sorting,
and parallelization processes. This function may look like this:

grades.output.mr = mapreduce(input = grades.input.df,
map = grades.map.fn, reduce = grades.reduce.fn)

It shows three parameters in the formal parameters list: input, map, and reduce.
The parameters enable a programmer to transmit the data, mapper(), and reducer()
into the mapreduce engine which handles communication with the Hadoop dis-
tributed file system. It fetches the results from the Hadoop system and stores them
in a variable which may be accessed from outside the Hadoop environment.

5.2.4 A Coding Example

In this coding example, the input file created for Thinking with Example 5.1 is
used. It is stored in the file very-first.txt used as an input to the program given in this
section. The data in the file are presented below and are listed in three sections for
the purpose of display only:

96 good U
92 good G
68 fair G
95 good G
96 good U

11 bad G
50 fair U
32 fair G
75 good U
50 fair U

93 good U
98 good U
12 bad G

The first column of data shows the grades, the second column the rating, and the
last column shows the student status. Assuming the data in the second column as
key and the first column as value, study the program Listed in 5.1.

5.2 MapReduce Essentials 105

Listing 5.1 The parallelization of MapReduce framework

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 grades.input.fi <- read.table("very-first.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 grades.input.df = to.dfs(grades.input.fi)
13
14 grades.map.fn = function(k, v) {
15 k=v[,2]
16 kk1=keyval(k,v[,1])
17 rmr.str(kk1)
18 }
19
20 grades.reduce.fn = function(k, v) {
21 rmr.str(k)
22 rmr.str(v)
23 kk2=keyval(k,mean(v))
24 rmr.str(kk2)
25 }
26
27 grades.output.mr = mapreduce(input = grades.input.df, map =

grades.map.fn, reduce = grades.reduce.fn)
28
29 grades.output.df = from.dfs(grades.output.mr)
30 grades.output.df

In this program, lines 1–3 list the standard settings of the environment variables
as performed in [3, 6, 7]; however, the path and the versions of the files are based
on the Hadoop system built as a part of this book project. The code in line 5 reads
the data file “very-first.txt,” which contains the data listed above. Lines 7 and 8
include the libraries rmr2 and rhdfs to execute commands on the RHadoop system.
The code in line 10 initializes the hdfs and the code in line 12 inputs the data read
in line 5. The block of code in lines 14–18 defines the mapper() function whereas
the block of code in lines 20–25 defines the reducer() function.

Within the mapper() function, the second column of the value v is assigned as
the key in line 15, and then the key value pair is generated and stored in kk1 in line
16. In line 17, the key value pair is displayed. To see the effect of the transformation
of the data from mapper to reducer, the key k and value v are displayed in lines 21
and 22. In line 23, the data is reduced and mean values are calculated. The results
are printed in line 24. The output of this program, during and after the program

106 5 MapReduce Programming Platform

execution, in the RStudio platform on the Hadoop system built as a part of this book
project is discussed below in segments. The first segment is the output from the
mapper() function code in lines 14–18:

kk1
List of 2
$ key: Factor w/ 3 levels "bad","fair","good": 3 3 2

3 3 1 2 2 3 2 ...
$ val: int [1:13] 96 92 68 95 96 11 50 32 75 50 ...

It shows the key domain and value range generated by the mapper() function
using the user’s key selection. It lists the key labels, bad, fair, and good, detected in
the key domain by the mapper() function. It assigns key labels:1 for bad, 2 for fair,
and 3 for good; and stores the values in the value range val:int[1:13]. There are three
segments listed below based on the key labels 1, 2, and 3, and the results from the
reducer() function in lines 20–25.

k
Factor w/ 3 levels "bad","fair","good": 1

v
int [1:2] 11 12

kk2
List of 2
$ key: Factor w/ 3 levels "bad","fair","good": 1
$ val: num 11.5

In the above segment, the data related to the key label 1 (i.e., bad) are processed.
As we can see, key 1 is selected, the values 11 and 12 mapped to the key are pro-
cessed, and then the operation mean is performed in the values and calculated as
11.5. In parallel, the next segment is processed:

k
Factor w/ 3 levels "bad","fair","good": 2

v
int [1:4] 68 50 32 50

kk2
List of 2
$ key: Factor w/ 3 levels "bad","fair","good": 2
$ val: num 50

In this segment, the sorted key label 2 is selected; its values are processed and
operation is performed, and then the result is displayed. Finally, the same sequence
of executions take place on the key label 3.

5.3 MapReduce Programming 107

k
Factor w/ 3 levels "bad","fair","good": 3

v
int [1:7] 96 92 95 96 75 93 98

kk2
List of 2
$ key: Factor w/ 3 levels "bad","fair","good": 3
$ val: num 92.1

Note that the keys are sorted using the key labels and this task was carried out
by the mapreduce() function in line 27 during transfer between the mapper() and
reducer() functions. It is also important to note that the reducer() function completes
the tasks for the key labels 1, 2, and 3 in parallel as the branches shown in Fig. 5.2.
The above information is the display of the program during program execution. The
following is the final output of the program:

$key
[1] bad fair good
Levels: bad fair good

$val
[1] 11.50000 50.00000 92.14286

In order to implement the mapreduce(), mapper(), and reducer() functions on a
big data environment (e.g., Hadoop), it is advisable to strictly adopt a good pro-
gramming practice. In the following section, a coding principle is presented and
recommended, and it will be adopted in the R programs created for the book.

5.3 MapReduce Programming

To be a good programmer, coding discipline is very important, and MapReduce
programming has not been exempted from it. The MapReduce coding discipline can
be divided into naming convention and coding principles. In this section, a naming
convention and a set of coding principles are presented to help readers practice
them. They are developed based on the programming styles practiced in [3, 6, 7, 9];
however, this section organizes them for readers structure their programs.

5.3.1 Naming Convention

In MapReduce programming, like object-oriented programming, there are two main
attributes: data and functions. However, the data could be input data or output data,

108 5 MapReduce Programming Platform

Table 5.2 Coding principles and descriptions
Coding principles Descriptions

Initialize resources It makes the program generic to access executables and libraries.
Fork jobs It allocates the Hadoop-related resources for data processing.
Add input to (h)dfs It transfers the data from a regular system to Hadoop system.
Define mapper() It creates (key, value) pairs and an iterator list to match duplicates.
Define reducer() It receives the (key, value) pair and reduces the data from the list.
Call mapreduce() It bridges mapper and reducer to sort and transfer iterator list.
Get output from (h)dfs It transfers results from the Hadoop system to the regular system.

and the functions could be mapper() function, reducer() function, or mapreduce()
function. Furthermore, the input data could be the input to the overall program
environment or the input to the distributed file systems (dfs), the output could be
the output from the mapreduce() function or the output from dfs, and the functions
could be the MapReduce-based functions or the user-defined functions.

Therefore, to distinguish these different options for each object, we need to fol-
low naming conventions in our programming practice. The confusion between these
different cases can be avoided by naming style that uses the dot notation as follows:
object name.attributes name.descriptor. This is the main contributor to the coding
principle presented in this section.

5.3.2 Coding Principles

You can develop your own coding principles and adopt them in your programs. This
section suggests a coding principle and adopts the R-codes presented in the rest
of the book. The coding principles for MapReduce programming follow the basic
programming principles of input-processing-output. Hence, as shown in Table 5.2,
they focus on initializing the resources, forking jobs, adding data to hdfs, defining
mapper() and reducer() functions, calling the built-in mapreduce() function, and
getting the results from hdfs.

5.3.2.1 Input: Initialization

The initialization process mainly focuses on the language-specific tasks such as
exporting the paths for the executables and libraries, reading the input files, and
initializing variables. As suggested in [6, 7], and mentioned in the previous chap-
ter, the environment variables HADOOP HOME, HADOOP CMD, and HADOOP
STREAMING must be set to access certain commands and libraries. These are
included in every R program that deals with the MapReduce framework presented
in this book, based on the system installed for this book [3, 6, 7]:

5.3 MapReduce Programming 109

Sys.setenv(HADOOP HOME=’/usr/lib/hadoop-0.20-mapreduce’)
Sys.setenv(HADOOP CMD=’/usr/bin/hadoop’)
Sys.setenv(HADOOP STREAMING=’/usr/lib/hadoop-0.20-mapreduce/
contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)

Once these variables are set and the paths are available to access the relevant
command and libraries, the following libraries must be included [3, 6, 7]:

library(rmr2)
library(rhdfs)

The “rmr2” and “rhdfs” are the two main libraries to carry out big data processing
on RHadoop, and therefore, they are also included in every R program that deals
with the MapReduce framework presented in this book.

object.input.fi=data
object.input.ki=data
object.input.hi=data

The variable name that may be used to store the data is object.input.id, where
object represents the name selected for the object, input indicates it is an input, and
fi describes it is an input data from a file, ki describes the data from the keyboard,
and hi describes the data as hard coded.

5.3.2.2 Input: Fork MapReduce job

This is where you run the commands that invoke Hadoop-related resources, which
include Hadoop distributed files system and MapReduce framework [3, 6, 7].

hdfs.init()

5.3.2.3 Input: Add Input to dfs

In this step, the data to be processed should be stored.

object.input.df=to.dfs(data)

http://Sys.setenv(HADOOP_STREAMING='/usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar')
http://Sys.setenv(HADOOP_STREAMING='/usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar')
http://Sys.setenv(HADOOP_CMD='/usr/bin/hadoop')
http://Sys.setenv(HADOOP_HOME='/usr/lib/hadoop-0.20-mapreduce')

110 5 MapReduce Programming Platform

5.3.2.4 Processing: Mapper

This function assigns initial and intermediate (key, value) pairs [3, 6, 7].

object.map.fn=function(key, value)

5.3.2.5 Processing: Reducer

This function accepts the iterator list of values from the mapper() function and
mapreduce() function, and then reduces (e.g., counts) the values [3, 6, 7].

object.reduce.fn=function(key, value)

5.3.2.6 Processing: MapReduce

This function helps sort the output of the mapper() function and create the iterator
list of values, which are passed into the reducer() function [3, 6, 7].

object.output.mr=mapreduce(input=object1, map=object2, reduce=object3)

5.3.2.7 Output: Get Output from dfs

The results are in the protected space of Hadoop dfs and regular O/S-based com-
mands cannot be used to get the results. Hence, the Hadoop-related output command
must be issued [3, 6, 7].

object.output.df=from.dfs(object4)

5.3.3 Application of Coding Principles

In this section, two simple coding examples (Gaussian and Pythagorean) are pre-
sented to show the proper use of the coding principles presented in this section. The
blocks of codes presented in the first example have also been extracted and summa-
rized in this section.

5.3 MapReduce Programming 111

5.3.3.1 A Coding Example

The example presented below is based on the following justification: The generation
of pseudorandom numbers based on a statistical distribution is needed to study the
various machine-learning techniques later in this book. Therefore, this example is
provided to generate five pseudo Gaussian random numbers (x) with mean 2.1 and
variance 1.1, and transform them using y = 3x2 + 2x+ 1, and you may extend this
to generate a very large such random set.

Listing 5.2 The use of coding principles with Gaussian samples

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 set.seed(5)
6 gauss.input.hi = rnorm(5,2.1,1.1)
7
8 library(rmr2)
9 library(rhdfs)

10
11 hdfs.init()
12
13 gauss.input.df = to.dfs(gauss.input.hi)
14
15 gauss.map.fn = function(k, v) {
16 keyval(v,v)
17 }
18
19 gauss.reduce.fn = function(k, v) {
20 keyval(k, 3*vˆ2+2*v+1)
21 }
22
23 gauss.output.mr = mapreduce(input = gauss.input.df , map = gauss.

map.fn, reduce = gauss.reduce.fn)
24
25 gauss.output.df = from.dfs(gauss.output.mr)
26 gauss.output.df

It is a simple program, and it generates five pseudorandom numbers, which
follow the Gaussian distribution properties as shown in lines 5 and 6. These num-
bers are transferred to the Hadoop system and the mapper() and reducer() func-
tions are executed. In line 16, the values are selected as keys in mapper() and then
the reducer() calculates the values based on the quadratic function listed in line
20. The output of this program is: 7.492409, 47.619527, 3.988624, 19.574352, and
56.548119. It confirms the validity of the program. The main advantage of the latest
program is the modularity which helps the readability of the program as well as the
maintainability.

112 5 MapReduce Programming Platform

5.3.3.2 Pythagorean Numbers

We know the integers 4, 5, and 3 form the Pythagorean number, and therefore let
us write a simple MapReduce program that reads in these integers in this order,
checks for correctness, and then outputs the message “Pythagorean.” This program
is presented in the Listing 5.3.

Listing 5.3 The use of coding principles with Pythagorean Numbers

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 pythag.input.hi = c(4,5,3)
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 pythag.input.df = to.dfs(pythag.input.hi)
13
14 pythag.map.fn = function(k, v) {
15 k=1
16 ss=sort(v)
17 val <- ifelse(ss[3]ˆ2==ss[1]ˆ2+ss[2]ˆ2, "Pythagorean", "Not

Pythagorean")
18 keyval(k,val)
19 }
20
21 pythag.reduce.fn = function(k, v) {
22 keyval(k, v)
23 }
24
25 pythag.output.mr = mapreduce(input = pythag.input.df, map =

pythag.map.fn, reduce = pythag.reduce.fn)
26
27 pythag.output.df = from.dfs(pythag.output.mr)
28 pythag.output.df

In this program, the three integers 4, 5, and 3 are assigned to a variable in line
5 and transferred to the Hadoop system in line 12. The mapper() function is then
defined in which an “ifelse” statement is used to validate whether the integers satisfy
the properties of Pythagorean numbers, then the results are labeled accordingly in
line 17. It is important to note that the values are sorted in line 16 to push the largest
value to the end of the list. The output of this program is: “Pythagorean.”

5.4 File Handling in MapReduce 113

Table 5.3 Description of coding principles

Coding principles Coding example

Initialize resources gauss.input.hi = rnorm(5,2.1,1.1), library(rmr2), library(rhdfs)

Fork job hdfs.init()

Add input to (h)dfs gauss.input.df = to.dfs(gauss.input.hi)

Define mapper() gauss.map.fn = function(k, v) {keyval(v,v)}
Define reducer() gauss.reduce.fn = function(k, v) {keyval(k, 3× v2 +2× v+1)}
Define mapreduce() gauss.output.mr = mapreduce(input = gauss.input.df, map =

gauss.map.fn, reduce = gauss.reduce.fn))

Get output from (h)dfs gauss.output.df = from.dfs(gauss.output.mr)

5.3.3.3 Summarization

We have seen several examples for the MapReduce model implementation using R
programming language and RHadoop environment. Let us now put them together
in a tabular form to understand the correct use of the coding principles. This tab-
ular explanation is presented in Table 5.3 using the example code in Listing 5.2.
Each block of related codes is mapped to the coding principles discussed based on
Table 5.2.

5.4 File Handling in MapReduce

As mentioned earlier, big data processing through efficient file handling with a dis-
tributed environment is the main objective of modern distributed file systems like
the Hadoop system with MapReduce programming platform. Some of the important
tasks that take place during the big data processing management in the Hadoop-like
environment are the file input, the file split, and the file merge. Therefore, explo-
ration of the file handling examples will help readers better understand the big data
processing environment and develop efficient machine-learning techniques. In this
section, three examples are presented where the first example illustrates the file-read
mechanism using the Pythagorean numbers, and the next example demonstrates the
file split mechanism. The third example elucidates an improved version of the file
split example. The file merge example is reserved as an exercise and included in
the “problem” section of the chapter for you to develop solutions and write a pro-
gram using the coding principles learned.

114 5 MapReduce Programming Platform

5.4.1 Pythagorean Numbers

Suppose we have a data set with several integers, and we want to find the triples that
satisfy the properties of the Pythagorean numbers. Let us also assume the data set is
organized with three columns and a number of rows where each row has the three
integers to be tested for Pythagorean properties. The data set used in this program is
given below (listed in three segments for the purpose of display):

1 2 3
4 5 3
2 5 4

13 5 12
32 255 257
29 421 420

19 22 85
5 3 4

The ultimate goal is to mark the rows that have Pythagorean integers with the
phrase “Pythagorean” and mark others with the phrase “Not Pythagorean.”

Listing 5.4 The use of coding principles with Pythagorean numbers

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 pythag.input.fi <- read.table("pythag.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 pythag.input.df = to.dfs(pythag.input.fi)
13
14 pythag.map.fn = function(k, v) {
15 k=which(v[,1]==v[,1])
16 ss=t(apply(v,1,sort))
17 val <- ifelse(ss[,3]ˆ2==ss[,1]ˆ2+ss[,2]ˆ2, "Pythagorean", "Not

Pythagorean")
18 keyval(k,val)
19 }
20
21 pythag.reduce.fn = function(k, v) {
22 keyval(k, v)
23 }
24
25 pythag.output.mr = mapreduce(input = pythag.input.df, map =

pythag.map.fn, reduce = pythag.reduce.fn)
26
27 pythag.output.df = from.dfs(pythag.output.mr)
28 pythag.output.df

This program is also similar to other programs; however, the block of code in the
mapper() function is presented in lines from 14 to 19. The code in line 15 helps to

5.4 File Handling in MapReduce 115

assign the current index to the key and the code in line 16 helps sort the integers
at each index. Then in line 17, the Pythagorean mathematical relationship is vali-
dated and labeled with the phrases “Pythagorean” or “Not Pythagorean.” The rest
of the program has similar code to previous programs, an, thus are not explained.
The output of the program follows:

$key
[1] 1 2 3 4 5 6 7 8

$val
1 2 3
4

"Not Pythagorean" "Pythagorean" "Not Pythagorean"
"Pythagorean"

5 6 7
8

"Pythagorean" "Pythagorean" "Not Pythagorean"
"Pythagorean"

We can confirm the result of the key assignment in line 15 with the first output
$key and the results of line 17 and the reducer function with the output $val, which
has the key as the index and the phrases as the validated results.

5.4.2 File Split Example

Consider an example that illustrates the file split concept using an “ifelse” statement
to generate (key, value) pairs. It inputs a file, extracts the unique keys, and writes
their corresponding values to the files with filenames associated with those keys.
The data in the input file file1.txt are:

96 good
92 good
68 fair
89 good
85 good

50 fair
32 fair
75 good
42 fair
98 good

98 good
10 bad
12 bad

Once again, the program in Listing 5.5 has many similar blocks of code like
the ones that we already reviewed. Therefore, only the main blocks of code in this
listing are explained. In this example, both the mapper() function and the reducer()
function have significant changes. The key is selected using the “ifelse” statement
in line 8, and they will be used as the output file names in the reducer() function at
line 23.

116 5 MapReduce Programming Platform

Listing 5.5 Identifying the Pythagorean numbers from a set of numbers

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 grade.input.fi <- read.table("file1.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 grade.input.df <- to.dfs(grade.input.fi)
13
14 grade.map.fn <- function(k,v) {
15 key <- ifelse(v[2] == "good", "good", ifelse(v[2] == "fair", "

fair", "bad"))
16 keyval(key,v[,1])
17 }
18
19 grade.reduce.fn <- function(k,v) {
20 write(v, paste(k,".txt"))
21 keyval(k, length(v))
22 }
23
24 grade.output.mr <- mapreduce(input=grade.input.df,
25 map = grade.map.fn,
26 reduce = grade.reduce.fn)
27
28 grade.output.df = from.dfs(grade.output.mr)
29 grade.output.df

The output of this program is similar to the one obtained in the next example,
hence the explanation is deferred to the improved version presented in the next
example. However, I encourage you to study this program, run the program, obtain
results, and interpret them.

5.4.3 File Split Improved

Consider another example that illustrates the file split example without using the
“ifelse” statement to generate (key, value) pairs. In big data classification problems,
a large number of class types are expected; therefore, the use of an “ifelse” statement
is inefficient. The data presented below are the input to the program, and they are
stored in the text file named “file2.txt,” and the output to the program is the files
with the file names based on the class labels and their corresponding data.

5.4 File Handling in MapReduce 117

90 96 good
89 92 good
69 68 fair
92 89 good
86 85 good

60 50 fair
70 32 fair
80 75 good
55 42 fair
78 98 good

79 98 good
15 10 bad
12 12 bad

The use of “ifelse” is inefficient for large files with many numbers of classes
(which may serve the purpose of key assignment). Therefore, an alternative approach
is required, and this is achieved in the program presented in Listing 5.6.

Listing 5.6 An improved version of the file split example

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 grades.input.fi <- read.table("file2.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 grades.input.df <- to.dfs(grades.input.fi)
13
14 grades.map.fn <- function(k,v) {
15 key <- v[,3]
16 val <- c(v[,1],v[,2])
17 keyval(key,val)
18 }
19
20 grades.reduce.fn <- function(k,v) {
21 write.table(matrix(v, ncol=2, byrow=FALSE), paste(k,".txt"))
22 keyval(k, length(v))
23 }
24
25 grades.output.mr <- mapreduce(input=grades.input.df,
26 map = grades.map.fn,
27 reduce = grades.reduce.fn)
28
29 grades.output.df = from.dfs(grades.output.mr)
30 grades.output.df

The main differences are the codes in lines 15, 16, and 21. The key assignment is
performed in line 15 using the third column data, and the values are the remaining
two columns. The (key, value) pair is generated in line 17 and carried over to the
reduce() function via the mapreduce() function in line 25. The reduce function in
lines 20–23 generates the matrix using v, assigns keys as the names of the output
files, and writes the matrix to the files. The output of this program looks like this:

118 5 MapReduce Programming Platform

bad.txt

"V1" "V2"
"1" 15 10
"2" 12 12

fair.txt

"V1" "V2"
"1" 69 68
"2" 60 50
"3" 70 32
"4" 55 42

good.txt

"V1" "V2"
"1" 90 96
"2" 89 92
"3" 92 89
"4" 86 85
"5" 80 75
"6" 78 98
"7" 79 98

We can see the three files saved with the names bad.txt, fair.txt, and good.txt as
coded in the program. Comparing the output with the content of the input file, we
can easily confirm the program correctly split the data files. Note that the file names
are manually inserted above only for the purpose of display; they are not the output
of the program listed in the Listing 5.6.

Problems

5.1. Small File Merge

(a) Increase the number of observations in the data sets bad.txt, fair.txt, and good.txt
created in one of the file split examples presented before. Make sure you write
the program to do this task and save the results inside the Hadoop system.

(b) Write a MapReduce program to read these files, merge them, and create a single
file. Save it in the Hadoop system.

5.2. Large File Merge

(a) Use the above file merge program to merge the files hardwood floor and carpet
floor, or use your own large files.

(b) Extend this to merge three or more large files, observe the computational time,
and interpret the effect of the file size.

5.3. Split-Merge-Split

Read the split-merge-split problem presented in Problem 3.1 of Chap. 3, and re-
peat the tasks with the RHadoop system and MapReduce programming discussed in
Chaps. 4 and 5. Compare the results and computing time.

References

1. J. Dean, and S. Ghemawat. “MapReduce: a flexible data processing tool.” Communications of
the ACM, vol. 53, no. 1, pp. 72–77, 2010.

2. http://www.revolutionanalytics.com/. Accessed April 23rd, 2015.

http://www.revolutionanalytics.com/

References 119

3. http://projects.revolutionanalytics.com/rhadoop/. Accessed April 23rd, 2015.
4. J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large clusters.” Com-

munications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
5. T. White. Hadoop: the definitive guide. O’Reilly, 2012.
6. http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/. Accessed

May 30th, 2015.
7. http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing R and

RHadoop/. Accessed May 30th, 2015.
8. https://github.com/RevolutionAnalytics/RHadoop/wiki/user-rmr-Debugging-rmr-programs.

Accessed May 31st, 2015.
9. http://www.rdatamining.com/big-data/rhadoop. Accessed May 31st, 2015.

http://www.rdatamining.com/big-data/rhadoop
https://github.com/RevolutionAnalytics/RHadoop/wiki/user-rmr-Debugging-rmr-programs
http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing_R_and_RHadoop/
http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing_R_and_RHadoop/
http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
http://projects.revolutionanalytics.com/rhadoop/

Part III
Understanding Machine Learning

Chapter 6
Modeling and Algorithms

Abstract The main objective of this chapter is to explain the machine learning
concepts, mainly modeling and algorithms; batch learning and online learning; and
supervised learning (regression and classification) and unsupervised learning (clus-
tering) using examples. Modeling and algorithms will be explained based on the do-
main division characteristics, batch learning and online learning will be explained
based on the availability of the data domain, and supervised learning and unsuper-
vised learning will be explained based on the labeling of the data domain. This ob-
jective will be extended to the comparison of the mathematical models, hierarchical
models, and layered models, using programming structures, such as control struc-
tures, modularization, and sequential statements.

6.1 Machine Learning

The field of Machine Learning provides a ground for scientists to explore learning
models and learning algorithms that can help machines (e.g., computers) learn the
system from data [1]. In other words, one of the objectives of machine learning
is to build an intelligent system. The two main components that can help machine
learning approaches achieve this goal are learning models and learning algorithms.
Learning models and learning algorithms are, in one way or the other, pattern recog-
nition tools. For example, what will you do if a data set is given to you for analysis?
Naturally, you will search for patterns to understand the characteristics of the data
for extracting knowledge, predict the trend of the data, or identify the number of
groups (or classes) in the data. In a general definition, the machine-learning prob-
lem may be described as follows. Suppose a data set and its corresponding response
set of a system are given. Then the machine-earning problem may be defined as
how to fit a model between them and how to train and validate the model to learn
the system’s characteristics from data.

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 6

123

124 6 Modeling and Algorithms

Data Domain

Models and Algorithms are Required

Response Set

Fig. 6.1 This figure illustrates the relationships between a data domain, a response
set, and the learning models and algorithms

6.1.1 A Simple Example

A system produces responses y using y = 2x+3 over the domain D = [0,2] without
errors. Then it is easy to find the responses for any data points in the data do-
main. For example, if we select two points x = 1.1 and x = 1.2 in D, then we have
their responses y = 5.2 and y = 5.4, respectively. Similarly, we can calculate re-
sponses for all the points in the domain, and this will result in the response set
C = [3,7]. The data domain and the response set of this system are illustrated in
Fig. 6.1. It shows the need for mapping between these two sets to establish models
and algorithms for classification.

We can represent this relationship with a mathematical function y = f2,3(x)
showing its slope and y-intercept as index. Therefore, if the relationship is de-
fined as y = f−2,3.4(x) with the same domain D, then the corresponding equation
is y =−2x+3.4 with the response set C = [−0.6,3.4]. Following this mathematical
process, we can define a set of straight lines by using slope and y-intercept parame-
ters a and b with the equation as y = fa,b(x). Hence, its corresponding parametrized
straight line equation is y = ax+ b. This linear equation becomes the parametrized
model for this particular example.

In the first example, the domain D = [0,2] and the parametrized mapping y =
fa,b(x) with a = 2 and b = 3 were given, and thus we were able to determine the
system’s response set C = [3,7]. However, if the domain D = [0,2] and the response
set C = [3,7] are given, then deriving a model is not a straightforward task. We need
two tasks to solve this problem: the first task is to derive the parametrized model
y = fa,b(x), and the second task is to develop an algorithm for searching for optimal
values for a(= 2) and b(= 3) from a large pool of parameter values. For simplicity,
suppose that we have derived a model y= ax+b and developed a learning algorithm
that provides a = 1.99 and b = 3.01 then, they are a reasonably well-defined model
and an algorithm, because they give the tuples (1.1,5.199) and (1.2,5.398), which
are close to (1.1,5.2) and (1.2,5.4).

The process of deriving a parametrized model and developing a learning al-
gorithm to find an optimal value for the parameters is considered a machine-
learning task, and a simple interpretation of this definition is presented in Fig. 6.2.
It first shows an input model y = fa,b(x) to the modeling unit, which establishes
the parametrized models fa1,b1(x), fa2,b2(x), . . . , fan,bn(x) for classification. Then the
next learning-algorithm unit takes them as inputs and provides measures that can
help optimization. In the subsequent step, these measures (in this case, a simple

6.1 Machine Learning 125

Machine
Learning
Modeling

y =fa,b(x)

y = fa1,b1(x1)

y = fai,bi(x)

d1 = d(y - x1)

d2 = d(y - x1) di = min{d1,d2,..., dn}

d3 = d(y - x1)

dn = d(y - x1)

y = fa2,b2(x1)

y = fa3,b3(x1)

y = fan,bn(x1)

Machine
Learning
Algorithm

Known
x1 maps to y1

Fig. 6.2 The processes of developing parametrized models, implementing the
learning algorithm, and finding optimal parameters are illustrated

distance measure is shown) are compared, and the parameters which give the
minimum are selected as optimal values. It also shows the propagation and utiliza-
tion of the actual labels in this comparison as well as the trained model as the final
output fai,bi(x), which gives the minimum distance, assuming ai and bi are optimal.

6.1.2 Domain Division Perspective

In machine learning, we come across important terminologies like regression [2],
classification [3], clustering [4], supervised learning [5], and unsupervised learning.
The description of these terminologies using data domain division can better help
us understand their differences. In the machine learning literature, they have been
compared and explained in many ways. However, it is easier if they are compared
based on the domain division properties so that clear distinctions can be established.

According to domain division properties, regression, classification, and cluster-
ing may define the modeling aspect of machine learning, and supervised learning
and unsupervised learning may define the learning algorithm aspect of machine
learning [5, 6]. Suppose the domain cannot be (or shouldn’t be) divided, then we can
only study the trend pattern of the data. In this case, the machine-learning approach
that we develop is called regression. In other words, we can say that regression is a
modeling of the entire data domain. For example, if we use the straight line example
considered previously, we can model it using the multiplication and addition oper-
ators, and the entire domain as illustrated in Fig. 6.3. It illustrates a linear modeling
that the data points x in the data domain are multiplied by the slope parameter a and
then incremented by the intercept parameter b to construct a response set. On the
other hand, if the domain can be divided (or domain division is allowed), then the
modeling can be derived to extract different groups (classes or types) and subgroups

126 6 Modeling and Algorithms

Models and Algorithms

parameters

Data Domain Response set+�

a b

y = ax + b

x y

Fig. 6.3 A linear (straight line) modeling between a data domain and a response
set—it forms a regression scenario

+

+

+

�

�

�

Sub Domain

y
Class 1

y
Class 2

Classifier

Sub Domain

x

y = a1x + b1

y = a2x + b2

y = Ax+B

A B

a1

a2

b1

b2

Fig. 6.4 A simple insight of processes that occur during the division of a data
domain. The top and the bottom processes may be interpreted as the regression
scenarios, and the middle process as the classification scenarios in the subdomains

in the data. Figure 6.4 illustrates this example. In this case, it would have been eas-
ier if the two distinct patterns were highlighted as shown in the figure. If that is the
case, we can be sure that the classes are labeled with which one is which, so we can
divide them. This modeling strategy is called classification. In other words, classifi-
cation is the modeling of subdomains where the parameters A and B play important
roles. If these classes are not labeled (i.e., subdomains are not finely defined), and
we guess and divide them into two classes, then it is called clustering [4].

Domain division can also play an important role in defining learning algorithms.
Suppose the domain may be divided and class labels are given, then we can derive a
classification model and supervise to obtain optimal parameters. Hence, it is called
supervised learning (and classification is assigned under the supervised learning

6.1 Machine Learning 127

Data

Not LabeledLabeled

Clustering

Cannot be
divided

Regression

UnseparableSeparable

Can be
divided

Domain

Division

Input Space
Classification

Feature Space
Classification

Fig. 6.5 A hierarchical structure that shows the distinction between regression,
classification, and clustering based on data-domain-division

paradigm). When a domain is divisible and no class labels are given, then it is called
unsupervised learning (it is assigned under the unsupervised learning paradigm).

Suppose the domain may not be divided, then there is no question of where to
divide the domain. In this case, the classification or the clustering objective is not
possible. Hence, this is a regression learning, and it is always supervised, and it is
assigned under the supervised learning category. Therefore, we can create a hierar-
chical representation of different machine-learning approaches under the categories
shown in Fig. 6.5 based on data → domain → division. From the top to bottom of
the hierarchy, it first shows two categories of data: if the data set is not labeled, then
the application is clustering, and if the data is labeled, then the characteristics of the
data domain must be understood. In this case, if the data domain cannot be divided
or should not be divided, then the application is regression, and if it can be divided,
then the ease of the domain division must be analyzed. If the data points associated
with the classes are separable, then the original data domain may be divided and
the classification may be applied. However, if the classes are nonseparable, then the

128 6 Modeling and Algorithms

Regression - linear Clustering

Regression - nonlinear

Classification

Fig. 6.6 A set of visual examples that can help conceptualize the supervised learn-
ing and unsupervised learning techniques based on the domain division

original domain must be transformed to a transformed domain, generally called fea-
ture space. Among the three applications highlighted, this book mainly focuses on
the classification approaches and their applications. If we focus on big data, then
the data node in this hierarchy is “big data,” hence the “domain” is highly unstruc-
tured, and thus the “division” is complex and difficult. As a result, the classification
models and algorithms will encounter significant challenges.

6.1.3 Data Domain

The best way to make an efficient machine-learning algorithm is to develop a ro-
bust parametrized learning model. We can now generalize the example discussed
above so that the standard definition of a machine-learning model can be estab-
lished. The example has used a two-dimensional Euclidean space to explain the
machine-learning problem, but in a generalized model, a higher-dimensional vector
space must be used. Suppose the domain D is a p-dimensional data set with x =
(x1,x2, . . . ,xn)

′ points in the domain, and there are k responses y = (y1,y2, . . . ,yk),

6.1 Machine Learning 129

where each response represents a class label. Then each vector xi,(i = 1 . . .n) maps
to one of the responses with high probability. Hence, we may develop a model:

yk×1 = Ak×pxp×1 +Bk×1, (6.1)

where A and B are the parameters of the hyperplane formed by the vector x and y,
and these two parameters create the parameter set β as in the generalized parametric
model y = fβ (x). Each row of matrix A helps assign a point of domain D to a
particular response y, and each row of B helps regularize them. As a result, the
domain D is divided into k subspaces. Now, the problem is to find a set of optimal
values for the matrices A and B for a given set of x (domain) and y (corresponding
responses) so that this model can be used to predict a response y′ for a new data
vector x′. We can simplify this problem even further so that this process can be
clearly explained and understood.

Suppose you have a simple linear model y = ax + b, where a and b are the
parameters that control the slope and the intercept of this straight line. Then the
parametrization means the selection of a suitable value or values for the parameters
a and b from a set of values {a1,a2, . . . ,an} and {b1,b2, . . . ,bn}, respectively. Now
suppose we select the parameter combinations (ai,bi) and (a j,b j) for further anal-
ysis to determine which one of these is the best parameter tuple that will maximize
the classification accuracy. The process that we adopt to find the best parameter
values is called the optimization.

6.1.4 Domain Division

The main goal of a learning algorithm is to train a model using a labeled data set
in hand (generally, it is large) and obtain optimal values for the parameters. Hence,
the best way to define learning algorithms is by integrating the concept of training,
validation, and testing procedures. The learning algorithms may be divided into su-
pervised learning algorithms [5] or unsupervised learning algorithms [6]. However,
there are other forms of learning algorithms including semi-supervised learning al-
gorithms [7] and reinforcement learning algorithms [8]. The main focus of this book
is on the supervised learning algorithms. Let us look at the scatter plots presented
in Fig. 6.6. It shows some examples of patterns that highlight the applications of
regression (linear and nonlinear), clustering (unsupervised learning), and classifica-
tion (supervised learning) techniques.

The problem explained in the first figure is a one class problem, and the goal was
to fit a model to extract the relationship between x and y. An example is the data
set which consists of the heights (x) and weights (y) of boys (class 1) only or girls
(class 2) only. Suppose there are 100 boy participants, and we select a boy with the
height x, ask for his weight, and his response is y. Because we have these 100 boys
in the participants set, we can use their height and weight information to fit a linear
model y = Ax+B and find the relationship between the heights and weights of the

130 6 Modeling and Algorithms

boys. This becomes a predictive model, and it can be used to predict the weight
of a new boy based on his height. This type of problem is called regression, and
the algorithm that we use to train the model using the data set is called supervised
learning because we know where the data x come from—in this case the boys—so
the response y provides similar answers to the training responses.

In the previous examples, the data vectors x and y were given, we came with the
model y = Ax+B and we said we wanted to learn the optimal values that fit the
data. Now add one more piece of information. We assume there are two class types
in vector y. Suppose we have both girl and boy participants. Then we can divide the
problem space into three categories. The first category is the relationship between
the height and weight of girls, the second category is the relationship between the
height and weight of boys, and the third category is a comparison between girls
and boys. The first two cases are regression problems, and the third case is the
classification problem.

Now we can define this problem in an interesting way. We may derive two dif-
ferent linear models y = Agx+Bg and y = Abx+Bb for girls and boys, respectively.
When a new girl participant arrives, we can measure her height and predict her
weight using the first equation, and if a new boy participant comes, we can use the
second equation. However, the challenge is to have a single equation (that is, one
set of parameters A and B) that helps to determine whether a participant is a girl or
a boy using the participant’s height and the weight (response) information.

Therefore, in summary, the learning models are: regression, classification, and
clustering. The learning algorithms are supervised learning and unsupervised learn-
ing. Among the three models stated, the regression and classification require su-
pervised learning; hence, they are called supervised learning models. The cluster-
ing model requires unsupervised learning; hence, it is called unsupervised learning
model. The interest of this book is the supervised learning models and algorithms;
hence, the rest of the book discusses these learning models.

6.2 Learning Models

The term supervised learning comes from the analogy that a baby is initially su-
pervised by her mother or father. For example, a baby has learned to identify a
pencil or a pen and is able to distinguish them by the labeling done by her parents.
Hence, the supervised learning requires label data sets, and we can call this environ-
ment a known data domain and known response (labels) set. Therefore, a supervised
learning model and an algorithm deal with an environment where the given data is
known, and their corresponding responses are also known “see Fig. 6.7”. This def-
inition must be extended to a big data environment as well. However, in big data,
the data domain is controlled by the three common parameters: volume, variety,
and velocity, and the modeling definition is presented in Fig. 6.8. Recently, a new

6.2 Learning Models 131

Known
Data

Models and Algorithms

Known
Response Set

Fig. 6.7 Supervised learning (models and algorithms) is illustrated using the
definition of mapping between a known data domain and a known response set

Big Data

Models and Algorithms

Variety

Velocity

Volume

Response Set

Fig. 6.8 The standard definition of big data classification based on a data domain.
It shows the volume, the variety, and the velocity parameters of big data

Big Data

Models and Algorithms

Complexity

Continuity

Cardinality

Response Set

Fig. 6.9 A new definition of big data classification based on data domain. It can
help scientific applications to big data environment. It shows cardinality, continuity,
and complexity as new parameters for big data

definition has been proposed for big data based on cardinality, continuity, and com-
plexity (C3) definitions that can help the scientific interpretation of big data [3] for
big data classification. This model is illustrated in Fig. 6.9.

As we see in these illustrations, the learning models rely on the characteristics
of the data domain. Hence, the learning models must be explained using the char-
acteristics of the data domain. Consider a simple scenario: given the classes (red
and blue) shown in Fig. 6.10a and scissors, you are required to have a straight line
cut and separate these classes into two pieces. What will you do? You will proba-
bly perform a mathematical calculation: (1) you will pick a set of points along the
boundary of the class objects as shown in Fig. 6.10b—we may call them support

132 6 Modeling and Algorithms

Fig. 6.10 It illustrates a conceptualization of classification as a tool for domain
division objectives: (a) It shows two classes (red and blue), and (b) It shows how a
linear classifier may be chosen to divide data domain

points, (2) then you will visualize them by moving them along the boundary to find
the best straight line (optimal) between the objects (i.e., you include a direction to
the points)—hence, we can call them support vectors, and (3) then draw a slope and
intercept for the line. Therefore, we can say that you have modeled (or selected) a
straight line using some support vectors, and then you applied an optimization al-
gorithm (machine) to select the best straight line. As such, we can call it a support
vector algorithm—this became the support vector machine (SVM) [9] in the field of
machine learning. As such, we may interpret this classification goal in four ways (or
four choices) as shown in Fig. 6.11a–d. The first choice is a linear (straight line) cut,
and the linear SVM performs as the cut shown in Fig. 6.11a. In this case, the ques-
tion is what should be the slope and the intercept of the straight line—they become
parameters for the model.

The second choice is to have a few vertical and horizontal cuts as shown in
Fig. 6.11b, and this process is performed by a decision tree (DT) technique [10].
In this case, the question is where to cut vertically and horizontally, and they are the
parameters for this model. The third choice is to have several vertical and horizontal
cuts as shown in Fig. 6.11c. This process is performed by random forest (RF) us-
ing many decision trees [11]. In this case, the parameters include the decision trees
and their locations of the vertical and horizontal cuts. The fourth choice is to have
a smooth cut as demonstrated in Fig. 6.11d. This process is done by deep learning
(DL) techniques [12]. These four cases may be grouped as follows: (1) the first
case is a mathematical model—SVM, (2) the second and third cases are hierarchi-
cal models—DT and RF, and (3) the fourth case is a layered model—DL. There is
always one question remaining: which one is the best algorithm? (i.e., which one is
the optimal technique?) This can be determined by the machine-learning algorithms.

6.2.1 Mathematical Models

The first approach is mathematical modeling, which classifies by dividing the data
domain into two pieces (for example). The first important thing you should know

6.2 Learning Models 133

Fig. 6.11 Visualization examples for the classification characteristics of well-
known supervised learning algorithms: SVM, DT, RF, and DL. You can now see
how these algorithms classify the data by dividing the data domain. (a) Linear
model: SVM; (b) hierarchical model: decision tree; (c) hierarchical model: random
forest; (d) nonlinear model: deep learning

about mathematical modeling is that they use all the data points in the data domain
together to find classifiers. Therefore, they require that the data domain is defined
a priori and available for developing the learning models and algorithms. Several
mathematical models have been proposed in the machine learning literature for this
purpose. Among them, the support vector machine-based approaches have been well
accepted, but they are mathematically intensive. Some of the approaches are: the lin-
ear (or standard) support vector machine [9], the nonlinear support vector machine
[13], the Lagrangian support vector machine [14], the pq-SVM [15], and the RK-
pq-SVM [16]. They can also be grouped into two-class [17] and multi-class [18]
support vector machines. Recently scalable support machine algorithms have also
been proposed [19], and they are highly suitable for big data applications.

We can conceptualize the working mechanisms of these techniques as follows:
We place a straight line (or a hyperplane for higher dimensions) on the data domain
and rotate and shift it with the goal of maximizing the classification accuracy using
the class label information available on the data domain. Take the example shown
in Fig. 6.10 which illustrates the placement of a straight line, adjusting its place-
ment and the orientation so that the straight line can separate the classes optimally.
This conceptualized modeling is incorporated in the mathematical derivation of the

134 6 Modeling and Algorithms

0 0

0

0.2

0.4

0.6

0.8

1

0 0

50 50

100 100

20 20
40 40

X Xy Y

Z

0

0.2

0.4

0.6

0.8

1

Z

60 6080 80
100 100

Fig. 6.12 A softmax function and a degraded version

support vector machines. Instead of placing one straight line and transforming it to
an optimal one, we can perform it another way and interpret it as follows: For ex-
ample, you place many straight lines between the classes so that they can separate
the classes, and then you calculate their distances from all the points of the classes.
Then, maximize the average distances and select the one that is farthest from both
classes as the best straight line to classify. In essence, both scenarios parametrize the
model and optimize the parameters to reach the maximum classification accuracy.

6.2.2 Hierarchical Models

The second set of approaches is the hierarchical approaches, and they divide the data
domain into a few pieces using a small number of vertical and horizontal cuts. While
dividing the data domain, it also cuts the classes into pieces and merges them later
to form the actual classes. Like the mathematical models, the hierarchical models
also use all the data points in the data domain together to find classifiers. The well-
known hierarchical approaches are the decision tree [10] and random forest [11].
However, several hierarchical models have been proposed based on the DT and RF
concepts. Note that the RF approach is a decision tree-based approach, but it uses
bootstrap sampling and bagging approaches [20] to create forests of trees randomly
and combine them by voting to select the best trees. We can now conceptualize the
working mechanisms of the hierarchical techniques as follows: Draw a vertical or
horizontal line (or a hyperplane for higher dimensions) to divide the data domain.
Suppose we pick the vertical line to split, then shift it horizontally to get the optimal
line by using the class label information of all the data points. Now we have two
subdomains, and we repeat the same process to both of these domains to divide into
more subdomains. We repeat it until no more division is required—the decision may
be applied when only the data points of a single class are present in a subdomain.

6.2 Learning Models 135

6.2.3 Layered Models

The layered models are significantly different from the standard mathematical and
hierarchical models. They do not use all the data points in the data domain together;
instead, they process one data point at a time through a sequence of layers, where
each layer carries out a set of related tasks. Thus, they are called layered models.
They can divide the data domain like an expert tailor cuts cloth using scissors to
form a smooth, curved cut. The concept of layered models is borrowed from the
neural network techniques used in artificial intelligence. One of the modern sub-
fields of machine learning is called deep learning [12], and its use is significant for
big data classification because of its online learning capability. There are several ap-
proaches, and they are called deep learning, deep nets, etc. Some of the recent ones
are no-drop, drop-out, and dropconnect models [21]. The layered models generally
require that the probabilities are defined; therefore, it can benefit from some math-
ematical functions like softmax function. A two-dimensional softmax function may
be defined as follows, based on the generalized function shown in [2]:

px =
eβ1x

(eβ1x + eβ2y)
(6.2)

py =
eβ2y

(eβ1x + eβ2y)
, (6.3)

where px + py = 1. The first figure in Fig. 6.12 shows a plot of this function, and
we can clearly see two properties: (1) the values are mapped between 0 and 1, and
(2) both of these functions, px and py, are complement to each other. These two
properties make the softmax function useful to assign probabilities to each data
point and classify it. The second figure is a modified version of the softmax function
using an additive Gaussian noise.

6.2.4 Comparison of the Models

The three learning models were explained individually based on their ability to di-
vide the data domain and the subdomains that they create. However, it is important
to compare them focusing on applications. The following two subsections are dedi-
cated to comparing them with respect to the availability of the data domain and the
programming structures.

6.2.4.1 Data Domain Perspective

It is obvious that the domain division is practical only if the data domain is available.
In this case, the mathematical and hierarchical models are applicable. As we have
seen, the main goal of these models is to divide the data domain using all the data

136 6 Modeling and Algorithms

0
0

1

2

3

4

5

6

7

8

9

0.5 1 1.5
Feature 1

F
ea

tu
re

 2

0

1

2

3

4

5

6

7

8

9

F
ea

tu
re

 2

2 2.5 3 0 0.5 1 1.5
Feature 1

2 2.5 3

Fig. 6.13 The domain division examples of the mathematical and hierarchical
models produced by the code in Listing 6.1

points (observations) in the domain. Each observation can be compared with other
observations, and then the data domain can be divided. Thus, these models facilitate
batch learning. When the data domain is not available, we only have one observation
at a time, and it is not possible to use the information from the other observations.
Thus, the models for this scenario can only perform online learning. However, we
may create probabilities for the observations to assign a class label. In order to carry
this out, we need to establish randomness over each observation and assign certain
sets of operations which form layers of tasks, and they are called the layered models.

6.2.4.2 Programming Perspective

In the programming point of view, we can think of mathematical models as the
models that adopt the if-then-else coding structure. The hierarchical models can be
conceptualized as the nested if-then-else statements. In contrast, the layered models
can be described as a sequence of function calls, where each function performs sep-
arate tasks using the results received from the previous function (or the layer). Now
the question is how to write such programming structures efficiently, and this objec-
tive is the learning algorithm that optimizes the parameters used in the conditions
of if-then-else statements or in the functions argument list. The coding examples
in Listings 6.1 and 6.2 demonstrate the differences in the three types of learning
models.

Listing 6.1 A Matlab example—mathematical and hierarchical models

1 clear all;
2 close all;
3
4 %%%% Mathematical Modeling
5 figure;
6 for x1=0:0.1:3
7 %mathematical model

6.2 Learning Models 137

8 x2=2*x1+3;
9 for yy=0:0.1:9

10 %if-then-else
11 if yy>x2
12 aa=’.’;
13 else
14 aa=’r.’;
15 end
16 plot(x1,yy,aa);hold on;
17 end
18 end
19
20 %%%% Hierarchical Modeling
21 figure;
22 for x1=0:0.1:3
23 for x2=0:0.1:9
24 %hierarchical model
25 %nested if-then-else
26 if x1<1
27 if x2<3
28 aa=’.’;
29 else
30 aa=’r.’;
31 end
32 else
33 if x2<6
34 aa=’g.’;
35 else
36 aa=’m.’;
37 end
38 end
39 plot(x1,x2,aa);hold on;
40 end
41 end

The main purpose of the coding in Listing 6.1 is to provide you with a simple
insight on mathematical and hierarchical modeling. The block of code in lines 5–18
illustrates a programming structure that can describe the properties of mathematical
modeling. In line 8, a simple linear model is presented and lines 11–15 mark the
data points above the line with a blue dot symbol and the points below the line
with a red dot symbol. The code in line 16 takes this information and plots it as
shown in the first figure in Fig. 6.13. Similarly, the block of code in lines 21–41
illustrates a programming structure which can describe the properties of hierarchical
modeling. In hierarchical modeling, the parametrization and domain division are
done simultaneously, as shown in the code from line 26 to line 38. When feature
1 is less than 1, if feature 2 is less than 3, then mark the data point with the blue
dot symbol; otherwise, mark it with the red dot symbol. This process is presented
in lines 26–31. Similarly, when feature 1 is greater than or equal to 1, if feature 2 is
less than 6, then mark the data point with the green dot symbol; otherwise, mark it

138 6 Modeling and Algorithms

with the magenta dot symbol. The plot function in line 39 takes this information as
input and plots it as the second figure shown in Fig. 6.13.

Listing 6.2 A Matlab example—layered models

1 clear all;
2 close all;
3
4 randn(’seed’,138);
5 cc=randn(3,2);
6 randn(’seed’,534);
7 uu=randn(2,3);
8
9 figure;

10 for x1=0:0.01:1
11 for x2=0:0.01:1
12 %layer 1 tasks
13 y=rlines(cc,[x1;x2]);
14
15 %layer 2 tasks
16 z=renhance(uu,y);
17
18 %layer 3 tasks
19 [p1 p2] = sftmxcal(z);
20
21 if(p1>p2)
22 aa=’.’;
23 else
24 aa=’r.’;
25 end
26 plot(x1,x2,aa);hold on;
27 end
28 end
29 xlabel(’Feature 1’);ylabel(’Feature 2’);

The Listing 6.2 provides a coding example that can help you understand the
meaning of layering the layered model. The layered models also perform the
parametrization and the domain division simultaneously. The block of code in lines
4–7 generates two matrices cc and uu using Gaussian random numbers. These ma-
trices (i.e., the random numbers) are used to generate some straight lines using the
user-defined function rlines in line 13. These straight lines are enhanced using an-
other user-defined function renhance in line 16. The purpose of using these user-
defined functions is to show a layering effect. To incorporate the third layer, another
user-defined function sftmaxcal, which uses the softmax function to create proba-
bilities for the data points, is added in line 19. These probabilities are used to mark
the data points with a blue dot and a red dot as shown in lines 21–25. Then the data
points are plotted using this color coding, and the resulted image is presented in
Fig. 6.14. The three functions, rline, renhance, and sftmaxcal used in this program
are presented in Listing 6.3.

6.2 Learning Models 139

Feature 1

F
ea

tu
re

 2

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.14 An example layered model’s domain division produced by the code in
Listing 6.2

Listing 6.3 It presents the functions used in the previous program

1 function [y] = rlines(cc,xx)
2
3 y = cc*xx;
4
5 end
6
7 function [z] = renhance(uu,y)
8
9 z=uu*y+0.03*rand(2,1);

10
11 end
12
13 function [p1 p2] = sftmxcal(z)
14
15 p1=exp(z(1))/(exp(z(1))+exp(z(2)));
16 p2=exp(z(2))/(exp(z(1))+exp(z(2)));
17
18 end

140 6 Modeling and Algorithms

6.3 Learning Algorithms

Supervised learning algorithms make use of the known data and known responses
(as labels—see Fig. 6.7) and use that information to train and validate the model.
They can fine-tune the parameters using the labels to derive an optimal model based
on the data available. A larger training data set is better because it may have enough
labels to train the model to face all possible circumstances; however, it may also lead
to a problem called overfitting. Hence, the validation process is required to stop the
training early and help alleviate the problem.

6.3.1 Supervised Learning

Supervised learning algorithms for trivial data varies from application to applica-
tion; however, they fall under three categories: training phase, validation phase, and
testing phase [5]. The actual algorithms developed for a particular problem under
these categories rest on the designer and the developer of the algorithm. Supervised
learning algorithms for big data is more complex. They must take the physical op-
eration into consideration. The volume of the data is unmanageable, the number of
class types are large, and the speed required to process the data is high. Hence, it
needs distributed file sharing, parallel processing technology, lifelong learning tech-
niques, and cross-domain representation learning techniques [22].

Supervised learning means building a parametrized model that can divide the
data domain, and then optimizing the parameters using training, validation,
and testing algorithms. Classification means dividing the data domain.

The training scenario was presented in Fig. 6.7 with an explanation of a mapping
concept between the known data and known response set. In this case, the develop-
ment of models and the application of training algorithms to learn the model param-
eters are the mapping between the data domain and the response set. The validation
scenario is illustrated in Fig. 6.15, and it shows the application of the trained model
using a known validation set and its responses. If the validation fails, retraining is
required, or it may need an early stopping to avoid an overfitting problem. The test-
ing scenario is explained in Fig. 6.16, and it shows the trained and validated model
applied to a new data, and the responses are predicted. In this phase, the labels are
not provided to the model or the algorithm, but they can be used to calculate the
classification accuracies.

6.3 Learning Algorithms 141

Known
Data

Validated
Response

Application of the Model

Fig. 6.15 Validation: It illustrates the validation phase of a supervised learning al-
gorithm. The response that we get from the model is the cross-validated response
for the input data

New
Data

Application of the Model

Predicted
Response

Fig. 6.16 Testing: It illustrates the testing phase of a supervised learning algorithm.
The response that we get from the model is the predicted response for the input data

6.3.2 Types of Learning

Supervised learning may be grouped into batch learning and online learning. In
batch learning, all the labeled data points in the data domain are used together for
learning and optimizing the model parameters. As mentioned before, the mathemat-
ical models like the support vector machine and the hierarchical models like the
decision tree and the random forest require the entire data set to learn the model
parameters. In batch learning, the global information is available for processing be-
cause of the availability of the entire data set during training.

The layered models process one data point at a time to learn the model parame-
ters, and thus facilitate online learning. In this approach, the learned parameters are
updated at every step using the new observation. Therefore, in the layered models,
when an observation is processed, it does not have the information of future data
points. In other words, it does not have global information, just the local informa-
tion. The advantage of the layered models is the online learning, which is highly
suitable for big data classification. Additionally, it provides nonlinear classifiers, in
contrast to the mathematical and hierarchical models.

In summary, the data domain plays a major role in the machine-learning mod-
els and algorithms, especially in the supervised learning paradigm. Therefore, the
recommendation is to focus on the data domain and how efficiently it can be di-
vided to maximize the classification accuracy. The classification techniques in the
subsequent chapters are explained, focusing on the domain division objectives. If
the data domain represents the big data, then the appropriate care must be taken in
the development and application of supervised learning models and algorithms. In
this case, the big data technologies like the Hadoop distributed file system can also
help; however, it is important to understand the properties of the data domain such
that the scalable machine learning techniques can be developed.

142 6 Modeling and Algorithms

Problems

6.1. Understanding Parametrization

Write a program to create a data set with the classes similar to the ones shown in
Fig. 6.10a and display it on a computer screen with the same color coding. Your pro-
gram must create a .csv file as well. Then extend your program to generate a straight
line as shown in Fig. 6.10b—select your own parameter values for this straight line.
Calculate the average of the distances of the points from the lines. Now change the
parameter values and select the ones that maximize this distance.

6.2. Steps Toward Understanding Optimization

(a) Write a program to determine whether the point (2,10) is closer to the straight
line y =−x+ 5 or y = 2x+ 3.

(b) Write a program to create a line that is parallel to y = 2x+ 3, but closer to the
point (2,10) than y = 2x+ 3. Interpret your results with a detailed discussion.

References

1. T. G. Dietterich, “Machine-learning research: Four current directions,” AI Magazine, vol. 18,
no. 4, pp. 97–136,1997.

2. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

3. S. Suthaharan. “Big data classification: Problems and challenges in network intrusion predic-
tion with machine learning,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 4, pp. 70–73, 2014.

4. A. K. Jain. “Data clustering: 50 years beyond K-means.” Pattern recognition letters, vol. 31,
no. 8, pp. 651–666, 2010.

5. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

6. O. Okun, and G. Valentini (Eds.), “Supervised and unsupervised ensemble methods and their
applications,” Studies in Computational Intelligence series, vol. 126, 2008.

7. M. Ji, T. Yang, B. Lin, R. Jin, and J. Han. “A simple algorithm for semi-supervised learning
with improved generalization error bound,” in Proceedings of the 29th International Confer-
ence on Machine Learning, pp. 1223–1230, 2012.

8. M.G. Lagoudakis and R. Parr. “Reinforcement learning as classification: Leveraging modern
classifiers,” in Proceedings of the 20th International Conference on Machine Learning, vol. 3,
pp. 424–431, 2003.

9. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. “Support vector machines.”
Intelligent Systems and their Applications, IEEE, vol. 13, no. 4, pp. 18–28, 1998.

10. L. Rokach, and O. Maimon. “Top-down induction of decision trees classifiers-a survey.” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35,
no. 4, pp. 476–487, 2005.

11. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
12. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.

“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

13. D. Meyer, F. Leisch, and K. Hornik. “The support vector machine under test.” Neurocomputing
55, pp. 169–186, 2003.

References 143

14. O. L. Mangasarian and D. R. Musicant. 2000. “LSVM Software: Active set support vector
machine classification software.” Available online at http://research.cs.wisc.edu/dmi/lsvm/.

15. M. Dunbar, J. M. Murray, L. A. Cysique, B. J. Brew, and V. Jeyakumar. “Simultaneous clas-
sification and feature selection via convex quadratic programming with application to HIV-
associated neurocognitive disorder assessment.” European Journal of Operational Research
206(2): pp. 470–478, 2010.

16. V. Jeyakumar, G. Li, and S. Suthaharan. “Support vector machine classifiers with uncertain
knowledge sets via robust optimization.” Optimization, pp. 1–18, 2012.

17. G. Huang, H. Chen, Z. Zhou, F. Yin and K. Guo. “Two-class support vector data description.”
Pattern Recognition, 44, pp. 320–329, 2011.

18. V. Franc, and V. Hlavac. “Multi-class support vector machine.” In Proceedings of the IEEE
16th International Conference on Pattern Recognition, vol. 2, pp. 236–239, 2002.

19. D. Wang, J. Zheng, Y. Zhou, and J. Li. “A scalable support vector machine for distributed
classification in ad hoc sensor networks.” Neurocomputing, vol. 74, no. 1, pp. 394–400, 2010.

20. L. Breiman. “Bagging predictors.” Machine learning 24, pp. 123–140, 1996.
21. L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. “Regularization of neural networks

using dropconnect.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 1058–1066, 2013.

22. W. Tu, and S. Sun, “Cross-domain representation-learning framework with combination of
class-separate and domain-merge objectives,” In: Proceedings of the CDKD 2012 Conference,
pp. 18–25, 2012.

http://research.cs.wisc.edu/dmi/lsvm/

Chapter 7
Supervised Learning Models

Abstract The main objective of this chapter is to discuss various supervised learning
models in detail. The supervised learning models provide parametrized mapping
that projects a data domain into a response set, and thus helps extract knowl-
edge (known) from data (unknown). These learning models, in simple form, can
be grouped into predictive models and classification models. Firstly, the predic-
tive models, such as the standard regression, ridge regression, lasso regression, and
elastic-net regression are discussed in detail with their mathematical and visual in-
terpretations using simple examples. Secondly, the classification models are dis-
cussed and grouped into three models: mathematical models, hierarchical models,
and layered models. Also discussed are the mathematical models, such as the logis-
tic regression and support vector machine; the hierarchical models, like the decision
tree and the random forest; and the layered models, like the deep learning. They are
discussed only from the modeling point of view, and they will be discussed in detail
together as the modeling and algorithms in separate chapters later in the book.

7.1 Supervised Learning Objectives

Supervised learning [1] has two main objectives: parametrization objectives and op-
timization objectives. These objectives may be defined and differentiated using the
continuous and discrete nature of the response variables [2]. The parametrization
objective is defined as regression-related action if the response set is continuous,
and it is defined as classification-related action if the response set is discrete. The
main idea for defining these objectives is to develop supervised learning models
first, then efficient supervised learning algorithms. The regression-related objectives
in general have two parts: the prediction and the optimization [3]. It also has a regu-
larization component, but it can be part of the prediction requirement. Similarly, the
classification-related objectives have two parts: the classification and the optimiza-
tion. As an example, look at Fig. 1.3b. It shows two sets (classes) of data points.

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 7

145

146 7 Supervised Learning Models

Responses Y Responses Y

Classifier
Predictor

Data domain XData domain Xx = b / a x = b / a

Fig. 7.1 Domain division by a classifier and a predictor

We may divide them by the straight line as shown in the figure—this is a classifier.
However, if we ask different people to divide the two classes, they may come up with
different straight lines (i.e., the classifiers). Then the question becomes which one is
the best classifier; to answer this question, we need an optimizer. This is the reason
the support vector machine-based techniques use the so-called support vectors (i.e.,
some of the most suitable data points) to determine the optimal classifier [4, 5].

7.1.1 Parametrization Objectives

Let us start with a simple example by designating the mathematical expression ax−
b, where x ∈ X , and X is the data domain. If we assume ax− b = 0, then we have a
vertical line at x = b/a as shown in Fig. 7.1a. If we assume y is a response variable in
the response set Y associated with the changes in the parameters a and b, and define
ax−b= y, then we have a straight line with a slope a and an intercept −b as shown
in Fig. 7.1b. If we consider these two straight lines, we can see both of them divide
the data domain into two subdomains, but the first one allows the same labeling to
all the points (x) in a subdomain as illustrated in Fig. 7.2a, and the second one does
not allow as shown in Fig. 7.2b. Therefore, the first line is suitable for classifications,
and the second line is suitable for regression. This is a simple way of distinguishing
the classification and regression definitions.

7.1.1.1 Prediction Point of View

The above considered example divided the one-dimensional data domain (x ∈ X)
with a response variable y∈Y , and parametrized the domain division. It is illustrated
in Fig. 7.3a. Now assume that the data domain is two-dimensional, and they are
represented by X1 and X2 as shown in Fig. 7.3b. In this particular case, we may

7.1 Supervised Learning Objectives 147

Responses Y Responses Y

Classifier

Data domain X

−1

1

Predictor

x = b / a Data domain X

Cannot be labelled

x = b / a

Fig. 7.2 An important difference between a classifier and a predictor

consider the mathematical expression a1x1 + a2x2 − b as a learning model. If we
now incorporate the response variable y, and assume a1x1 + a2x2 − b = y, then we
have a regression-related problem. It can be written in the following matrix form:
[a1,a2][x1,x2]

′ −b= y. It expresses the fitting of a regression plane to the data points
in a two-dimensional data domain. Following the same parametrization steps, we
can define a hyperplane regression for the data points in higher dimensions, and as
such we can generalize this regression model and parametrize it in a matrix form:

y = Ax′ − b (7.1)

In this equation, A and b represent the slope and intercept parameters of the re-
gression plane that is defined by this linear equation. Also note that the symbol x′
is the transpose of the matrix x. This section helped you understand the generaliza-
tion of a regression model from a simple example; now we can take similar steps to
define the classification problem.

7.1.1.2 Classification Point of View

For the purpose of classification, we must define a1x1 +a2x2 −b = 0 so that we can
create a plane that can divide the data domain X1X2 into two subdomains D1 and
D2, such that all the points in a subdomain can be labeled the same:

D1 = {(x1,x2) : [a1,a2][x1,x2]
′ − b ≤ 0} (7.2)

D2 = {(x1,x2) : [a1,a2][x1,x2]
′ − b > 0} (7.3)

148 7 Supervised Learning Models

Responses Y Responses Y

Data domain X
Data domain

X1

X2

Fig. 7.3 An important difference between classification (classifier) and regression
(predictor)

Therefore, our classifiers may be defined: [a1,a2][x1,x2]
′ − b = −1 for the data

points in domain D1 and [a1,a2][x1,x2]
′ − b = 1 for the data points in domain D2.

Following the same parametrization steps, we can define the high-dimensional clas-
sifiers for the data points in a three-dimensional data domain, four-dimensional data
domain, and so on. We can generalize this classification model and parametrize it in
the following matrix form:

Ax′ − b =−1;x ∈ D1 (7.4)

Ax′ − b = 1;x ∈ D2 (7.5)

and the subdomains are:
D1 = {x : Ax′ −B ≤ 0} (7.6)

D2 = {x : Ax′ −B > 0} (7.7)

Equation (7.1) and the set of equations in Eqs. (7.4)–(7.7) provide parameter
models; however, there are many possible values for the parameters. The selection of
such possible values satisfies the parametrization objectives. Once we defined them,
then the objective is to select the optimal values for the parameters. It is called the
optimization objectives, and it is discussed below.

7.1.2 Optimization Objectives

The simplest way to explain the optimization objective is to select several mod-
els, and then select the best model using a distance measure and the labeled data
sets provided. The optimization cannot be done unless the labeled data set is given.
Therefore, the optimization process must be defined mathematically or structurally,
assuming the availability of a labeled data set.

7.1 Supervised Learning Objectives 149

Table 7.1 Regression—results using equation x2 = 0.5x1 + 3.0

x1 Predicted x2 Actual x2 Difference Squared MSE RMSE
2.0 0.5×2.0+3 = 4.00 2.0 −2.00 4.00 9.26 3.04
3.0 0.5×3.0+3 = 4.50 3.0 −1.50 2.25 9.26 3.04
1.0 0.5×1.0+3 = 3.50 6.0 2.50 6.25 9.26 3.04
2.5 0.5×2.5+3 = 4.25 9.5 5.25 27.56 9.26 3.04
2.0 0.5×2.0+3 = 4.00 6.5 2.50 6.25 9.26 3.04

Table 7.2 Classification—results using equation x2 = 0.5x1 + 3.0

x1 x2 Distance Calculation Distance Assigned
label

Class
label

Match
label

Avg

2.0 2.0 (0.5×2.0−1×2.0+3)/1.12 1.79 +1 +1 1 2.46
3.0 3.0 (0.5×3.0−1×3.0+3)/1.12 1.34 +1 +1 1 2.46
1.0 6.0 (0.5×1.0−1×6.0+3)/1.12 −2.24 −1 −1 1 2.46
2.5 9.5 (0.5×2.5−1×9.5+3)/1.12 −4.69 −1 −1 1 2.46
2.0 6.5 (0.5×2.0−1×6.5+3)/1.12 −2.24 −1 −1 1 2.46

7.1.2.1 Prediction Point of View

It is convenient if we first understand the optimization objectives through a simple
example before exploring the actual mathematical implementation. Suppose we
have five data points: (2,2), (3,3), (1,6), (2.5,9.5), and (2,6.5), where the first num-
bers in the tuples are the data points (x), and the second numbers are the responses
(y), and we want to fit regression models. Suppose we have selected four models: (1)
y = 0.5x+3.0, (2) y = 1.5x+0.5, (3) y = 2.0x+2.0, and (4) y = 3.5x+3.0, then we
can select the best model that leads to a minimum mean squared error (MSE) or root
mean squared error (RMSE) [3]. The RMSE values of these models are: 3.04, 3.43,
3.21, and 6.19, respectively. From these values, we can determine y = 0.5x+ 3.0 is
the best model, and it is highlighted in red in Fig. 7.4a with other models.

Table 7.1. shows the steps used to calculate the RMSE for the first straight line
and, using the same steps, the RMSE values for the other straight lines are cal-
culated. Hence, the best regression line for this data set is the first straight line
y = 0.5x+ 3.0, and it is highlighted in red in Fig. 7.4a. Now suppose we want to
find the classifier that defines the classes 1 and −1 shown in Fig. 7.4b. In this case,
we should calculate the perpendicular distances from the points to a straight line
(a model) and minimize the average distance. The following subsection ellaborates
this classification example.

150 7 Supervised Learning Models

0
0

2

4

6

8

10

12

0

2

4

6

8

10

12

0.5 1.5 2.5 3.51 2 3 4 0 0.5 1.5 2.5 3.51 2

−1
−1

−1

+1
+1

3 4

Fig. 7.4 It illustrates four possible classifiers for a set of five points—the horizontal
axis represents the variable x1 and the vertical axis represents the variable x2

7.1.2.2 Classification Point of View

Suppose we now label the five data points: (2,2,1), (3,3,1), (1,6,−1), (2.5,9.5,−1),
and (2,6.5,−1), where the first two points (2,2) and (3,3) are labeled as class 1 (i.e.,
the response y is equal to 1), and the next three points are labeled as class −1. Hence,
in this case we have a two-dimensional data domain with responses 1 and −1 in the
third dimension. Now suppose we select the same straight lines for the classification
(i.e., to divide the data domain), then the four models are: (1) x2 = 0.5x1 + 3.0, (2)
x2 = 1.5x1 + 0.5, (3) x2 = 2.0x1 + 2.0, and (4) x2 = 3.5x1 + 3.0. In this particular
case, we should consider the perpendicular distances of the points from the lines.

Table 7.2 shows the steps to calculate those distances using the first model
y = 0.5x + 3.0. The variable y is considered as another feature (or independent
variable) in this case. Similarly the averages of the perpendicular distances for the
other straight lines have been calculated. The averages of the perpendicular distance
values, with respect to these lines are: 2.46, 1.75, 1.25, and 1.36, thus the best line is
the third straight line, which is highlighted in red in Fig. 7.4b. We can also see that
this is one of the straight lines that classifies the classes with zero false positives [6],
which is one of the measures that can be used for classification.

7.2 Regression Models

Regression models are predictors and they are suitable for the systems that produce
continuous responses. There are several regression models, which include standard
regression, ridge regression, lasso regression, and elastic-net regression [7, 8].

7.2 Regression Models 151

7.2.1 Continuous Response

The continuous response variable Y of a system may be modeled using a linear
relationship between X and the domain variable x. Consider a simple two- dimen-
sional parametrized model for these variables as follows:

Y = aX (7.8)

If the actual responses are y, and the domain values are x, then we can define a
nonlinear error factor as follows:

E = (y− ax)2 (7.9)

A minimization of this error and distinct regularization are contributors to the
regression models, like regular regression, ridge regression, lasso regression, and
elastic-net regression [3, 7]. The continuous property of the variables x and y al-
lows the application of derivatives for minimization. This principle of derivatives is
also true when the model is high dimensional with vector model representation as
follows:

E = (y−Ax)2 (7.10)

When a data domain and its corresponding response values are available, we should
be able to estimate the parameter (matrix) A from this error minimization, and thus
we can have the model defined in Eq. (7.8) as a predictive model.

7.2.2 Theory of Regression Models

In the regression models, the parameter a plays a major role in minimizing the er-
ror as a slope parameter and a regularization parameter. There are different ways
of calculating this parameter, and thus we have different approaches [3, 7]. These
approaches are discussed in this section.

7.2.2.1 Standard Regression

In the regular regression, the classification objective is achieved by defining a
parametrized model using the simple model y = ax. Then the optimization objective
is achieved through the minimization of the following error factor with respect to
the parameter a:

E = (y− ax)2 (7.11)

152 7 Supervised Learning Models

0
0

2

4

6

8

10

12

0.5 1.5 2.5

Feature 1

Feature 1

R
es

po
ns

es

Feature 2

F
ea

tu
re

 2

3.51 2 3
3

2
1

0

0

0

5

10

1

2

3

4

4 4

Fig. 7.5 Results of the standard regression model

To minimize the error function with respect to the parameter a, we can operate a
partial derivative. This will give us the following:

∂E
∂a

= 2(y− ax)(−x) = 0 (7.12)

This equality gives us the following estimate for a that minimizes the error factor:

a =
yx
x2 (7.13)

In another form we can write this estimate as follows:

a = yx(x2)−1 (7.14)

If we now generalize this estimate for the vector (matrix) model E = (y−
Ax)2, then we will have the following [3, 7]:

A = yx′(xx′)−1 (7.15)

with the model y = Ax.

Thinking with Example 7.1:

The coding example listed in Listing 7.1 uses the models in Eqs. (7.14) and (7.15),
and fits the one-dimensional regression model (i.e., a straight line) and the two-
dimensional regression model (i.e., a plane) to a given set of data. Figures 7.5 and
7.6 show these results, respectively. In this coding example, lines 5 and 6 declare an

7.2 Regression Models 153

independent variable x (i.e., one-dimensional data domain) and its response variable
y, respectively. These variables are used to calculate the parameter A in line 8
using the equation in Eq. (7.15). The standard regression model defined as a part
of Eq. (7.15) is implemented in lines 10 and 11, and the results are then plotted in
lines 13 and 14. These blocks of codes produced the scatter plot presented in the
first figure of Fig. 7.5. As we can see, the standard regression model fits very well
with the data points used and plotted in the figure.

Listing 7.1 A Matlab example—standard regression

1 clear all;
2 close all;
3
4 %%% 1D Data Domain
5 x=[2 3 1 2 2.5];
6 y=[2 3 6 6.5 9.5];
7
8 A=y*x’*inv(x*x’);
9

10 xt=[0 4];
11 yt=A*xt;
12
13 figure;plot(x,y,’.’);axis([0 4 0 12]);grid on;
14 hold on;line(xt,yt);xlabel(’Feature 1’);ylabel(’Feature 2’);
15
16 %%% 2D Data Domain
17 x1=[2 3 1 2 2.5];
18 x2=[2 3 2.1 2 2.5];
19 yy=[2 3 6 6.5 9.5];
20
21 xx=[x1; x2];
22 AA=yy*xx’*inv(xx*xx’);
23
24 xx1=[0 0 4 4];
25 xx2=[0 4 0 4];
26 xxx=[xx1; xx2];
27
28 yy1=AA*xxx;
29 yy2=reshape(yy1,2,2);
30 [mg1,mg2]=meshgrid(0:4:4);
31
32 figure;plot3(x1,x2,yy,’r.’);grid on;axis([0 4 0 4 0 12]);
33 hold on;surf(mg1,mg2,yy2);view([259 44]);
34 xlabel(’Feature 1’);ylabel(’Feature 2’);zlabel(’Responses’);

Similarly, a two-dimensional dependent variable (x) (i.e., a two-dimensional data
domain) is defined in lines 17 and 18 along with its response variable y in line
19. The block of code in lines 21 and 22 calculate the parameter A presented in
Eq. (7.15), and the standard regression model is defined in line 28. The rest of the
program generates the three-dimensional plot in Fig. 7.5.

154 7 Supervised Learning Models

7.2.2.2 Ridge Regression

For this model the regularization parameter λ a2 is added to the error factor stated in
the regular regression model [3, 7]:

E = (y− ax)2 +λ a2 (7.16)

To minimize the error function with respect to the parameter a, we can operate a
partial derivative. This will give us the following:

∂E
∂a

= 2(y− ax)(−x)+ 2λ a= 0 (7.17)

This equality gives us the following estimate for a that minimizes the error factor:

a =
yx

x2 +λ
(7.18)

In another form, we can write this estimate as follows:

a = yx(x2 +λ)−1 (7.19)

If we now generalize this estimate for the vector (matrix) model E =
(y−Ax)2 +λ ||A||2, then we will have the following [3, 7]:

A = yx′(xx′+λ I)−1 (7.20)

with the model y = Ax.

Thinking with Example 7.2:

The coding example provided in Listing 7.2 uses the ridge regression models in
Eqs. (7.19) and (7.20). The one-dimensional and two-dimensional ridge regression
models are applied to the data sets used in the previous Thinking with Example. The
three-dimensional ridge regression result is presented in the first figure of Fig. 7.6.

Listing 7.2 A Matlab example—ridge regression

1 clear all;
2 close all;
3
4 %%% 1D Data Domain
5 x=[2 3 1 2 2.5];
6 y=[2 3 6 6.5 9.5];
7 lamda=0.1;
8

7.2 Regression Models 155

0 0

0

0

0

0

10

a b

5 5

1 1
11 2 2

22

3 3

33

4 4

4

Feature 2 Feature 2
Feature 1 Feature 1

R
es

po
ns

es

10

R
es

po
ns

es

4

Fig. 7.6 (a) Results of the ridge regression. (b) Results of the Lasso regression

9 A=y*x’*inv(x*x’+lamda);
10
11 xt=[0 4];
12 yt=A*xt;
13
14 figure;plot(x,y,’.’);axis([0 4 0 12]);grid on;
15 hold on;line(xt,yt);xlabel(’Feature 1’);ylabel(’Feature 2’);
16
17 %%% 2D Data Domain
18 x1=[2 3 1 2 2.5];
19 x2=[2 3 2.1 2 2.5];
20 yy=[2 3 6 6.5 9.5];
21
22 xx=[x1; x2];
23 nn=length(xx*xx’);
24 AA=yy*xx’*inv(xx*xx’+lamda*eye(nn));
25
26 xx1=[0 0 4 4];
27 xx2=[0 4 0 4];
28 xxx=[xx1; xx2];
29
30 yy1=AA*xxx;
31 yy2=reshape(yy1,2,2);
32 [mg1,mg2]=meshgrid(0:4:4);
33
34 figure;plot3(x1,x2,yy,’r.’);grid on;axis([0 4 0 4 0 12]);
35 hold on;surf(mg1,mg2,yy2);view([-120 47]);
36 xlabel(’Feature 1’);ylabel(’Feature 2’);zlabel(’Responses’);

This program is similar to the one in Listing 7.1, but the calculation of the model
parameter A presented in the corresponding blocks of codes is different, which is
based on the ridge regression model.

156 7 Supervised Learning Models

7.2.2.3 Lasso Regression

The word lasso stands for Least Absolute Shrinkage and Selection Operator. The
definition of Lasso has been presented in generalized forms in many books and
research papers, including [3, 7], and [8]; however, it is easier if we simplify its
definition by adding the regularization parameter λ |a| to the error factor as shown:

E = (y− ax)2 +λ |a| (7.21)

To minimize the error factor with respect to the parameter a, we can apply a
partial derivative operator. This application will give us the following:

∂E
∂a

= 2(y− ax)(−x)+λ
∂ |a|
∂a

= 0 (7.22)

We can write |a|=
√

a2, therefore

∂ |a|
∂a

=
1
2
(a2)−

1
2 2a =

a
|a| (7.23)

If we substitute this partial derivative in Eq. (7.22), then we can get the following
estimate for the parameter a that minimizes the error factor in Eq. (7.21):

a =
yx− λ

2
a
|a|

x2 (7.24)

If we assume a is a positive number, then we have the fraction a
|a| = 1, and if we

assume a is a negative number, then we have a
|a| = −1. Therefore, the fraction a

|a|
describes the sign of the parameter a. Hence, we can rewrite Eq. (7.24) as follows:

a =

(
yx− λ

2
s

)
(x2)−1 (7.25)

where s = 1 if a is positive and s =−1 if a is negative.

If we now generalize this estimate for the vector (matrix) model E = (y−Ax)2

+λ ||A||, then we will have the following [3, 7]:

A =

(
yx′ − λ

2
s
)
(xx′)−1 (7.26)

with the model y = Ax.

7.2 Regression Models 157

Thinking with Example 7.3:

The program in Listing 7.3 illustrates the Lasso regression model. The lasso regres-
sion model in Eq. (7.26) is implemented as one-dimensional and two-dimensional
data domain examples.

Listing 7.3 A Matlab example—lasso regression

1 clear all;
2 close all;
3
4 %%% 1D Data Domain
5 x=[2 3 1 2 2.5];
6 y=[2 3 6 6.5 9.5];
7 lamda=0.1;
8
9 A1=y*x’*inv(x*x’);

10 S=sign(A1);
11
12 A=(y*x’-S*lamda/2)*inv(x*x’);
13
14 xt=[0 4];
15 yt=A*xt;
16
17 figure;plot(x,y,’.’);axis([0 4 0 12]);grid on;
18 hold on;line(xt,yt);xlabel(’Feature 1’);ylabel(’Feature 2’);
19
20 %%% 2D Data Domain
21 x1=[2 3 1 2 2.5];
22 x2=[2 3 2.1 2 2.5];
23 yy=[2 3 6 6.5 9.5];
24
25 xx=[x1; x2];
26 nn=length(xx*xx’);
27
28 AA1=yy*xx’*inv(xx*xx’);
29 SS=sign(AA1);
30
31 AA=(yy*xx’-SS*(lamda/2))*inv(xx*xx’);
32
33 xx1=[0 0 4 4];
34 xx2=[0 4 0 4];
35 xxx=[xx1; xx2];
36
37 yy1=AA*xxx;
38 yy2=reshape(yy1,2,2);
39 [mg1,mg2]=meshgrid(0:4:4);
40
41 figure;plot3(x1,x2,yy,’r.’);grid on;axis([0 4 0 4 0 12]);
42 hold on;surf(mg1,mg2,yy2);view([-120 47]);
43 xlabel(’Feature 1’);ylabel(’Feature 2’);zlabel(’Responses’);

The three-dimensional results of this program (i.e., the lasso regression example)
are presented in the second figure of Fig. 7.6. Comparing the results of standard

158 7 Supervised Learning Models

regression, ridge regression, and lasso regression results in Figs. 7.5 and 7.6, we can
only see a slight difference between the models. Note that the data is small, thus
significant differences are not expected. You must apply these techniques to large
data sets to observe the differences.

7.2.2.4 Elastic-Net Regression

For this model, both regularization parameters λ1a2 and λ2a are added to the error
factor stated in the regular regression model [3, 7, 8].

E = (y− ax)2 +λ1a2 +λ2|a| (7.27)

To minimize the error function with respect to the parameter a we can operate a
partial derivative. This will give us the following:

∂E
∂a

= 2(y− ax)(−x)+ 2λ1a+λ2
a
|a| = 0 (7.28)

This equality gives us the following estimate for a that minimizes the error factor:

a =
yx− λ2

2 s

x2 +λ1
(7.29)

In another form, we can write this estimate as follows:

a =

(
yx− λ2

2
s

)
(x2 +λ1)

−1 (7.30)

If we now generalize this estimate for the vector (matrix) model E = (y−
Ax)2 +λ ||A||2, then we will have the following [3, 7]:

A =

(
yx′ − λ2

2
s
)
(xx′+λ1I)−1 (7.31)

with the model y = Ax.

Thinking with Example 7.4:

The coding example for the illustration of the elastic-net regression is presented
in Listing 7.4. The results of this program are given in Fig. 7.7. The results from
two different viewpoints are presented to show the disappearance of some points;
however, it fits the model for the points considered.

7.2 Regression Models 159

0 0

0 0

0

10

a b

5

1 1
1 12 2

2 2

3 3

3 3

4 4Feature 2 Feature 2
Feature 1

Feature 1

R
es

po
ns

es

0

10

5

R
es

po
ns

es

4 4

Fig. 7.7 (a) Results of the elastic-net regression model at a viewpoint 1. (b) Results
of the elastic-net regression model at a viewpoint 2

Listing 7.4 A Matlab example—elastic-net regression

1 clear all;
2 close all;
3
4 %%% 1D Data Domain
5 x=[2 3 1 2 2.5];
6 y=[2 3 6 6.5 9.5];
7 lamda1=0.1;
8 lamda2=0.2;
9

10 A1=y*x’*inv(x*x’);
11 S=sign(A1);
12
13 A=(y*x’-(lamda2/2)*S)*inv(x*x’+lamda1);
14
15 xt=[0 4];
16 yt=A*xt;
17
18 figure;plot(x,y,’.’);axis([0 4 0 12]);grid on;
19 hold on;line(xt,yt);xlabel(’Feature 1’);ylabel(’Feature 2’);
20
21 %%% 2D Data Domain
22 x1=[2 3 1 2 2.5];
23 x2=[2 3 2.1 2 2.5];
24 yy=[2 3 6 6.5 9.5];
25
26 xx=[x1; x2];
27
28 AA1=yy*xx’*inv(xx*xx’);
29 SS=sign(AA1);
30
31 nn=length(xx*xx’);
32 AA=(yy*xx’-(lamda2/2)*SS)*inv(xx*xx’+lamda1*eye(nn));
33

160 7 Supervised Learning Models

34 xx1=[0 0 4 4];
35 xx2=[0 4 0 4];
36 xxx=[xx1; xx2];
37
38 yy1=AA*xxx;
39 yy2=reshape(yy1,2,2);
40 [mg1,mg2]=meshgrid(0:4:4);
41
42 figure;plot3(x1,x2,yy,’r.’);grid on;axis([0 4 0 4 0 12]);
43 hold on;surf(mg1,mg2,yy2);view([-120 47]);
44 xlabel(’Feature 1’);ylabel(’Feature 2’);zlabel(’Responses’);
45
46 figure;plot3(x1,x2,yy,’r.’);grid on;axis([0 4 0 4 0 12]);
47 hold on;surf(mg1,mg2,yy2);view([-120 50]);
48 xlabel(’Feature 1’);ylabel(’Feature 2’);zlabel(’Responses’);

Once again, significant differences cannot be observed between the results of the
four regression models. These examples are given to help readers understand the
theory and implementation of the models.

7.3 Classification Models

Classification models are suitable for the system that produces discrete responses.
There are several classification models that may be grouped under mathematically
intensive models, hierarchical models, and layered models. Some of these models
discussed in this book are the support vector machine [9], decision tree [10], ran-
dom forest [11], and deep learning [12]. We have discussed their differences in terms
of domain division perspectives and programming perspectives. However, they can
be distinguished more meaningfully with respect to the data domain and the sub-
space management and manipulation. The mathematical and hierarchical models
manage and manipulate the data domain, and the shallow and deep learning models
manage and manipulate feature space. Figure 7.8 illustrates these differences.

7.3.1 Discrete Response

The nature of the discrete responses of a system has been illustrated in Fig. 7.9 using
two color labels (red and blue). The first figure in Fig. 7.9 shows a data domain (X)
with two classes, but the second figure shows a third dimension that represents the
responses (Y), red and blue, from the classes. These discrete responses, red and blue,
may be represented by 1 and 0, respectively. Let us first represent the mathematical
relationship between the data domain X and the response set Y using the same model
we assumed for the continuous case:

Y = aX (7.32)

7.3 Classification Models 161

Layered model

Feature Space

Features

Mathematical and
hierarchical

models

C
lasses

C
lasses

D
at

a
D

om
ai

n

O
bs

er
va

ti
on

s

R
esponse Set

Fig. 7.8 Relationship between learning models and big data controllers

Response Variable
(color)

We see the responses, red
and blue, but they are not

mathematically
represented.

Data Domain Data Domain

+1

−1

Fig. 7.9 The effect of discrete responses

However, in this equation, X is continuous, and Y is discrete. In a visual sense,
this mathematical relationship forms a staircase effect so it is difficult to fit a lin-
ear or nonlinear mathematical model for the data. Therefore, we must define an
intermediate response set, which is continuous to fit a model and then apply some
thresholding techniques to map them to discrete values. This is the reason the logis-
tic regression defines the following intermediate mathematical equation [3]:

log

(
p

1− p

)
= aX (7.33)

162 7 Supervised Learning Models

where the new intermediate variable represents a probability p, and it gives us:

p =
eax

1+ eax (7.34)

This definition helps the logistic regression to define an error factor using an
entropy with respect to probabilities and find the optimal parameter a. A similar
concept of introducing intermediate variables has been used in the SVM models.

7.3.2 Mathematical Models

The two mathematical learning models considered in this section are logistic regres-
sion and SVM techniques. The logistic regression model has been built upon the
probability nature of the classes, and the SVM model has been built upon the sepa-
rability nature of the classes. In the following subsections, these two mathematical
models are discussed using fewer variables and simple examples. The explanation
includes the optimization of an error factor and derivation of the models.

7.3.2.1 Logistic Regression

A discussion on generalized logistic regression can be found in detail in the book
by Hastie et al. [3]. The logistic regression provides a classification model, and
this model is presented in this section with fewer variables and a simple two-class
classification example. The logistic regression focuses on minimizing the entropy
E , and it can be defined for a two-class problem as follows:

E = y log(p)+ (1− y) log(1− p) (7.35)

In this equation, y is the class label either 0 or 1, and p is the probability of the
class label y is detected. It can be simplified as follows:

E = log(1− p)+ y log
p

(1− p)
(7.36)

If we now assume the probability p satisfies a logistic function with a parameter
a, then we can define the probabilities p and 1− p as follows:

p =
eax

1+ eax (7.37)

1− p =
1

1+ eax (7.38)

7.3 Classification Models 163

By substituting these mathematical expressions for both p and 1− p in Eq. (7.36),
we can rewrite it with the following equation:

E = log
1

1+ eax + y logeax (7.39)

This equation can be simplified as follows:

E =− log(1+ eax)+ yax (7.40)

If we now apply a partial derivative operator with respect to the parameter a, then
we get the following equation:

∂E
∂a

= yx− eax

1+ eax x = 0 (7.41)

We have defined a mathematical expression for the probability p in Eq. (7.37),
and if we substitute it in the above equation, we can get the following:

∂E
∂a

= (y− p)x = 0 (7.42)

The next step is to derive an expression for the second derivative from Eq. (7.41).
As discussed by Hastie et al. [3], a second derivative is important to update the
parameter a. The results of the application of the second partial derivative are:

∂ 2E
∂a2 =− (1+ eax)xeaxx− eaxxeaxx

(1+ eax)2 = 0 (7.43)

∂ 2E
∂a2 =− xeaxx

(1+ eax)2 = 0 (7.44)

∂ 2E
∂a2 =−x

eax

(1+ eax)

1
(1+ eax)

x = 0 (7.45)

By substituting the mathematical expression in Eq. (7.37) for p, we can simplify
the above equation and obtain the following:

∂ 2E
∂a2 =−xp(1− p)x = 0 (7.46)

By representing p(1− p) with w, we can rewrite this equation as follows:

∂ 2E
∂a2 =−xwx = 0 (7.47)

164 7 Supervised Learning Models

We can now use the Newton–Raphson approach as Hastie et al. used in their
book [3] to update the logistic regression parameter a:

acurr = aprev −
(

∂ 2E
∂a2

)−1 ∂E
∂a

(7.48)

Using Eqs. (7.42) and (7.47), we can change the above equation to:

acurr = aprev − (xwx)−1 (y− p)x (7.49)

If we now generalize this equation for the parameter updates, then we will
have the following: [3, 7]:

acurr = aprev −
(
x′Wx

)−1
(y− p)x (7.50)

where W is a matrix with the diagonal elements w.

7.3.2.2 SVM Family

Let us start with a straight line equation used previously to divide the data domain
presented in Fig. 7.4:

x2 = ax1 − b (7.51)

Suppose we define the parameter a as a ratio between two new parameters w1

and w2 such that a =−w1/w2, then we can have the following linear equation:

x2 =−
(

w1

w2

)
x1 − b (7.52)

We can write it as w1x1 +w2x2 + γ = 0, where γ = w2b. We can also write this
equation in a matrix form as follows: [w1,w2][x1,x2]

T + γ = 0. Hence, the general-
ized straight line equation will be [13]:

wxT + γ = 0 (7.53)

Let us now consider the example illustrated in Fig. 7.10: It shows a straight line
represented by w1x1 +w2x2 + γ = 0 and a point (a,b) above the line with a perpen-
dicular to the straight line from the point. Then the length of this perpendicular line
describes the distance (with the direction) as follows [14]:

d1 =
w1a+w2b+ γ√

w2
1 +w2

2

(7.54)

7.3 Classification Models 165

(a,b)

w 1x
1
+

w 2x
2
+

γ

X1

X2

Fig. 7.10 A point and a straight line to illustrate classification

Now if we consider the line x2 = 2.0x1 + 2.0 (which was the best line chosen in
the example illustrated in the second figure of Fig. 7.4), and the point (2,6.5) exists
above that line, then the distance to that point from the line is:

d1 =
2.0× 2− 1× 6.5+2√

22 + 12
=

−0.5√
5

< 0 (7.55)

The negative distances are true for all the points above the line. Now use the point
(2,2) which exists below the straight line and calculate its distance from the straight
line. This will give us:

d2 =
2.0× 2− 1× 2+2√

22 + 12
=

4√
5
> 0 (7.56)

The positive distances are true for all the points below the line. Note that the
points on the line satisfy the equation of the line (i.e., equal to zero). Therefore, we
can define the absolute distance measure as follows:

d = s× w1a+w2b+ γ√
w2

1 +w2
2

> 0 (7.57)

where s =−1 when the point (a,b) lies above the line and s = 1 when the point lies
below the line. To optimize the classification accuracy, it is appropriate to select w1

and w2 such that they maximize the distances d for the points on both sides of the
line. Therefore, the combined distance that should be maximized is:

D = 2s× w1a+w2b+ γ√
w2

1 +w2
2

(7.58)

166 7 Supervised Learning Models

This will give us:

D = s× w1a+w2b+ γ√
w2

1 +w2
2/2

(7.59)

We know that the class response (y) is the dependent variable with the equation
w1x1 +w2x2 + γ = y, so we have the combined distance as follows:

D =
s× y√

w2
1 +w2

2/2
(7.60)

It is obvious that we must keep the numerator s×y greater than or equal to 1 and

then minimize the denominator
√

w2
1 +w2

2/2 by selecting suitable values for w1 and
w2 to maximize the distance D. Therefore, we write this as an optimization problem
as follows:

Minimize:
w1,w2

√
w2

1 +w2
2/2

subject to: s× (w1x1 +w2x2 + γ)≥ 1
(7.61)

We can now generalize this optimization problem to [13]:

Minimize:
w

||w||2/2

subject to: S× (wxT + γI)≥ I
(7.62)

This optimization problem is the basis for the development of the linear SVM
models. It can also be used to make an optimal straight line cut (in any direction)
that divides the data domain into two for classifying two classes. For additional in-
formation, consult the paper [13] by Dunbar et al., which provides the mathematical
background of the support vector machine in a simple form, and the reader can eas-
ily grasp the concept and the mathematical derivation of SVM. Figure 1 in [13] can
help the conceptualization of the technique.

Since the introduction of SVM, several versions (e.g., Lagrangian SVM [15]
and pq-SVM) have been proposed, and some of them, including the original SVM,
will be discussed later in the book. The SVM can be divided into two categories:
the SVM for multiclass classification and the SVM for two-class classification (or
binary classification). In general, the multiclass SVMs have been created using com-
binations of several two-class SVMs; therefore, this book focuses only on the two-
class SVM in detail. The readers who are interested in deriving multi-lass SVM
from two-class SVM are encouraged to consult the paper [16] by Franc and Hlavac.

7.4 Hierarchical Models

Hierarchical models help classify even isolated groups of points by connecting them
with their parent classes using tree like structures. These models are highly suitable
for modern requirements, which include big data and distributed machine learning.
It adopts both regression and classification strategies with a tree that may be built
through a sequence of decisions. Hence, it is also called a decision tree.

7.4 Hierarchical Models 167

0
0

2

4

6

8

10

12

0

2

4

6

8

10

12

0.5 1 2

+1

+1 +1
+1

−1
−1

−1 −1

−1
−1

3 42.5 3.51.5 0 0.5 1 2 3 42.5 3.51.5

Fig. 7.11 An example that illustrates a domain division by a decision tree

7.4.1 Decision Tree

In machine learning, there are two types of decision trees: regression trees and clas-
sification trees [17]. An article that discusses these two types of trees can be found
in the blog at [18]. A decision tree uses a rule-based approach to divide the do-
main into multiple linear spaces and predict responses. If the predicted responses
are continuous (i.e., the responses can be a real number), then the decision tree is
a regression tree, and if the predicted responses are discrete (i.e., a response can
belong to a class), then the tree is a classification tree.

In simple terms, the decision trees make several vertical and horizontal cuts on
the data domain, and thus they are highly suitable for multiclass classification as
well. The data domain can be mapped to several classes (responses), and the deci-
sion tree can classify them by developing multiple subdomains. Consider the same
example used in the explanation of SVM: The first figure of Fig. 7.11 shows the five
data points (2,2,1), (3,3,1), (1,6,−1), (2.5,9.5,−1), and (2,6.5,−1) that come from
two classes 1 and −1. There is a horizontal cut that can separate the classes, but let
us assume a vertical cut (horizontal decision—horizontal axis is used for decision)
was chosen by the decision tree algorithm. The second figure of Fig. 7.11 shows the
vertical cut at 2.2. Note that we need an algorithm to choose a suitable position to
cut and this will be explained later in the book. Hence, two subdomains are gener-
ated, and they form a left and a right tree. Now a horizontal cut is chosen to cut the
left subdomain (left tree) at 4.2. This process separates the classes 1 and −1 on the
left side. Similarly, the right subdomain is divided with a horizontal cut at 6.2. We
can represent the results as a decision tree shown in Fig. 7.12.

7.4.2 Random Forest

In random forest, the decision tree modeling plays a major role. It is applied to sev-
eral bootstrap samples of the original data [11]. The bootstrap samples are taken
by sampling the original data with replacement, and the number of observation in

168 7 Supervised Learning Models

(2,2,1), (1,6,−1), (2,6.5,−1)

(2,2,1)

(2,2,1)

(3,3,1), (2.5,9.5,−1)

(2.5,9.5,−1)

(2.5,9.5,−1)

x2=4.2 x2=6.2

x1=2.2

(1,6,−1), (2,6.5,−1)

(1,6,−1)
(2,6.5,−1)

(3,3,1)

>

>>

(3,3,1)

≤

≤ ≤

Fig. 7.12 The decision tree that corresponds to the example in Fig. 7.11

each sample is the same as that of the original data. Consider the same example we
used for SVM classification: (2,2,1), (3,3,1), (1,6,−1), (2,6.5,−1), and (2.5,9.5,−1).
However, add indexes to these points as follows: (1,2,2,1), (2,3,3,1), (3,1,6,−1),
(4,2,6.5,−1), and (5,2.5,9.5,−1). The indexes help generate bootstrap samples, and
thus let us generate four bootstrap samples, with each sample having five observa-
tions. They are presented in Table 7.3. The first, fourth, seventh, and tenth columns
show the indexes selected in each bootstrap samples. Other columns show their cor-
responding points and the labels as we can clearly see.

Table 7.3 Bootstrap samples

Index Point Label Index Point Label Index Point Label Index Point Label
1 (2.0,2.0) +1 5 (2.5,9.5) −1 1 (2.0,2.0) +1 3 (1.0,6.0) −1
2 (3.0,3.0) +1 1 (2.0,2.0) +1 4 (2.0,6.5) −1 3 (1.0,6.0) −1
5 (2.5,9.5) −1 2 (3.0,3.0) +1 5 (2.5,9.5) −1 3 (1.0,6.0) −1
3 (1.0,6.0) −1 2 (3.0,3.0) +1 1 (2.0,2.0) +1 1 (2.0,2.0) +1
5 (2.5,9.5) −1 3 (1.0,6.0) −1 4 (2.0,6.5) −1 1 (2.0,2.0) +1

These samples are plotted in Fig. 7.13 in their respective order, and we can see
the effect of the sampling with replacement (i.e., bootstrap sampling). To show a
possible domain division by decision tree, these four examples of vertical split and
horizontal split are selected. This set of four decision trees forms a random forest.
The features x1 (horizontal) and x2 (vertical) are selected to explain the concept of
random forest. The example in the first figure of Fig. 7.13 assumes the feature x2 was
selected and an algorithm was used to do a horizontal split (cut) at 4.5. It separates

7.4 Hierarchical Models 169

0
0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0.5 1 2

+1

+1 +1

+1 +1
+1

−1

−1

−1−1

−1 −1

−1

3 42.5 3.51.5 0 0.5 1 2 3 42.5 3.51.5

0 0.5 1 2 3 42.5 3.51.50 0.5 1 2 3 42.5 3.51.5

Fig. 7.13 Examples of four bootstrap samples are illustrated

the classes perfectly, and the left side (i.e., top subdomain) of its corresponding tree
has the points of class 1, and the right side (i.e., bottom subdomain) has the points
of class −1.

7.4.2.1 A Coding Example

The Matlab code in Listing 7.5 was used to produce the samples and figures that
are presented in this section. Now suppose a new observation (1.4,5.8,?) arrives,
and it doesn’t have a label. Hence, we must determine the class label of this ob-
servation using the random forest classifiers developed and presented in Fig. 7.9.
We have run this observation down the trees of the random forest. For example, the
first tree (top left) suggests (1.4,5.8,−1), meaning that the observation belongs to
class −1. The second tree (top right) suggests (1.4,5.8,−1), the third tree suggests
(1.4,5.8,+1), and the fourth tree suggests (1.4,5.8,−1). Therefore, with a voting
mechanism known as bagging [11], we can decide the observation (1.4,5.8) belongs
to class −1. This is the actual process carried out in random forest, and Chap. 11 is
dedicated to a full explanation of random forest with its associated algorithms.

170 7 Supervised Learning Models

Listing 7.5 A Matlab example—bootstrap sampling

1 clear all;
2 close all;
3
4 x=[2 3 1 2 2.5];
5 y=[2 3 6 6.5 9.5];
6 L=[1 1 -1 -1 -1];
7
8 rand(’seed’,131);
9 for ii=1:4

10 ind{ii}=floor(5*rand(5,1))+1;
11 end
12
13 for ii=1:4
14 xx{ii}=x(ind{ii});
15 yy{ii}=y(ind{ii});
16 ll{ii}=L(ind{ii});
17 end
18
19 for ii=1:4
20 idx1{ii}=find(ll{ii}==1);
21 idx2{ii}=find(ll{ii}==-1);
22 end
23
24 for ii=1:4
25 figure;plot(xx{ii}(idx1{ii}),yy{ii}(idx1{ii}),’.’);axis([0 4 0

12]);grid on;
26 hold on;text(xx{ii}(idx1{ii})+0.05,yy{ii}(idx1{ii})+0.2,’+1’);
27 plot(xx{ii}(idx2{ii}),yy{ii}(idx2{ii}),’.’);axis([0 4 0 12]);

grid on;
28 hold on;text(xx{ii}(idx2{ii})+0.05,yy{ii}(idx2{ii})+0.2,’-1’);
29 end

In this program, the block of code in lines 4–6 initializes the points and their
labels. Four sets of random indexes are created from lines 8 to 11, and it provides
indexes with repetition. The bootstrap samples are created from lines 13 to 17 using
the above indexes. Class labels are extracted from lines 19 to 22. The figures in
Fig. 7.13 are generated in the block of code in lines 25–28.

7.5 Layered Models

Layered models may be conceptualized as a transformation of a data domain
through multiple layers of executions so that each point in the data domain can
be characterized by some sort of probabilistic measure. Layered models may be
divided into two groups: shallow learning models and deep learning models. In sim-
ple terms, the number of layers adopted in shallow learning models is significantly

7.5 Layered Models 171

smaller than in the deep learning models. These two models are explained below
using a simple example, and Chap. 12 is dedicated to a detailed discussion on deep
learning models.

7.5.1 Shallow Learning

The standard machine-learning approaches typically adopt the shallow learning
models, including support vector machine and logistic regression. A paper by Li
Deng [19] provides excellent information. These standard approaches may be con-
sidered as single layer learning models. As mentioned by Yoshua Bengi [20], even if
a machine-learning approach uses two to three layers, they should be considered as
shallow learning models [20] because the adaptivity of the nonlinear transformation
is almost nonexistence in these models. As Li Deng mentioned in his paper [19],
the adaptivity of the nonlinear transformation of the features is the important factor
that differentiates the shallow and deep learning models. Therefore, in essence, the
rate of nonlinearity is the backbone of the shallow and deep learning models. The
shallow learning model considered in this section is based on the models suggested
by Hinton et al. [12] and Wan et al. [21] that provide building blocks for the under-
standing and the development of the modern deep learning architecture. To make
the transition to deep learning easier, consider some examples that use two-to-three
layers to transform the data domain to a probabilistic representation.

7.5.1.1 A Coding Example

The shallow and deep learning models provide methods that are suitable for online
learning, and thus support big data classification. These models can also be used
for batch learning. The model adopted for this explanation is illustrated in Fig. 7.14.
This is a very simple example that shows how a data point (in this case (2.0,2.1)) on
a two-dimensional data domain may be transformed into a probabilistic measure,
which can be used to match the class label to reduce entropy in the training phase.

Listing 7.6 A Matlab example—it partially follows the model in [21]

1 clear all;
2 close all;
3
4 randn(’seed’,131);
5 W=randn(8,3);
6
7 randn(’seed’,181);
8 B=randn(2,8);
9

10 nn=400;
11
12 for ii=1:nn

172 7 Supervised Learning Models

(2.0, 2.1)

x2

x1

r 2
 =

 1
/(
1+

ex
p(

-u
2)

)

r1 = 1/(1+exp(-u1))

u1 = 0.5882x1 + 0.4118x2

s1 = 10.1291r1 + -9.1291r2

o1=exp(s1)/(exp(s1) + exp(s2))

o 2
=

ex
p(

s 2
)/
(e

xp
(s

1)
 +

 e
xp

(s
2)

)

s 2
=

-0
.6

67
9r

1
+

 -
1.

71
99

r 2

u 2
=

-0
.3

68
3x

1
+

 0
.6

31
7x

2

(0.8851, 0.8873)
(0.9518, 0.0482)

(0.8648, -21172)

(2.0412, 2.0632)
New

observation

Fig. 7.14 The transformation of a data point by a layered model

13
14 if ii<(nn/2)
15 X=[6 6 6]’;
16 %X=[6 6 6]’+randn(3,1);
17 y=1;
18 else
19 X=[-6 -6 -6]’;
20 %X=[-6 -6 -6]’+randn(3,1);
21 y=1;
22 end
23
24 U=W*X;
25
26 R=1./(1+exp(-U));
27
28 P=B*R;
29 p1=P(1);
30 p2=P(2);
31
32 p=exp(p1)/(exp(p1)+exp(p2));
33 q=exp(p2)/(exp(p1)+exp(p2));
34
35 o(ii)=p;
36
37 dd1=repmat(p*(1-p),1,3);
38 K1=diag(dd1);

7.5 Layered Models 173

39
40 dd2=repmat(p*(1-p),1,8);
41 K2=diag(dd2);
42
43 neta1=(1/(X’*K1*X))*(y-p)*X;
44 neta2=(1/(R’*K2*R))*(y-p)*R;
45
46 daba1=repmat(neta1’,8,1);
47 daba2=repmat(neta2’,2,1);
48
49 ee(ii)=-y*log(p)-(1-y)*log(1-p);
50
51 W=W+0.1*daba1;
52 B=B+0.1*daba2;
53
54 end
55
56 figure;plot(o);grid on;
57 xlabel(’Number of observations’);ylabel(’Probabilities’);
58 figure;plot(ee);grid on;
59 xlabel(’Number of observations’);ylabel(’Entropy’);

We can see five domains, which include the given data domain and four other
transformed domains. The point (2.0, 2.1) is shown in the given data domain and
then it is transformed into a new domain defined by the linear combination of the
features using randomly selected weights (0.5882, 0.4118). The transformed point
(2.0412, 2.0632) is shown in this domain, and then the point is transformed into
a nonlinear domain defined by an exponential function. The new point is (0.8851,
0.8873). It is the sigmoid function [22]. This data point is then transformed into an
another domain defined by a linear combination using randomly selected weights
(10.1291, −9.1291). In the next transformation, the values are converted to proba-
bilities using a probabilistic measure. As a result, we have the probabilities (0.9518,
0.0482), and they can be assigned to the class label of the point (2.0, 2.1). When
the new point arrives, the weights (0.5882, 0.4118) and (10.1291, −9.1291) will be
updated using a method. The method used in the paper by Wan et al. [21] is the
stochastic gradient descent [23].

This layered architecture is presented in the Matlab code in Listing 7.6. The code
in this listing partially adopts the model in [21]. It uses two classes of data (three
dimensional) to train a layered model, assuming the observations arrive one after
the other in two batches. The block of code in lines 4–8 generates the parameters W
and B (β) randomly. In line 10, the total number of observations is set to 400. From
line 12 to line 54, the layered model’s processes are iterated 400 times. The block of
code from lines 14 to 22 generates observations X = [6,6,6] and X = [−6,−6,−6]
from two classes, such that the first 200 observations come from the first class and
the next 200 observations from the second class, respectively.

This scenario can help illustrate the nonlinearity of the model. In lines 24 and
26, the intermediate values U and R are calculated. The code in line 28 fits a model,
and the code in lines 29 and 30 prints the values. These values are used to generate
probabilities in lines 32 and 33. The code in line 35 stores the probability in an array

174 7 Supervised Learning Models

400
0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
ie

s

E
nt

ro
py

0.8

0.9

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

350300250200
Number of observations

150100500 400350300250200
Number of observations

150100500

Fig. 7.15 Probabilities and entropy of two classes as separate batches

400
0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
ie

s

E
nt

ro
py

0.8

0.9

1 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
350300250200

Number of observations
150100500 400350300250200

Number of observations
150100500

Fig. 7.16 Probabilities and entropy of two classes mixed

named o for plotting them later. The block of code in lines 37 to 47 implements the
logistic regression model explained in Sect. 7.3.2 so that the parameters W and B
updated in lines 51 and 52 according to Eq. (7.50) can be executed. The block of
code in lines 56 to 59 plot the graphs presented in Fig. 7.15. They illustrate the
probabilities and the entropy at each iteration.

The first figure shows that the probability for the classification of class 1 starts
with 0.8, decreases up to the 5th iteration, and then starts to increase. It reaches
its maximum at the 150th iteration and maintains until the 200th iteration, when
the observations from the next class start to arrive. Hence, the probability suddenly
drops and it makes sense. Then the classification of the second class increases to its
maximum at about the 300th iteration, then becomes steady after iteration 350.

In the second figure of Fig. 7.15, we see similar results on the entropy measure,
where we get the low entropy when we have high probability for the classification of
the appropriate classes. Let us now consider dispersion (or error) in the data. That is,
if we uncomment the code in lines 16 and 20, and comment the lines 15 and 19), then

7.5 Layered Models 175

we will add random dispersion to the data. We will then get the results presented in
Fig. 7.16 for this new data. We get similar results as the ones in Fig. 7.15, but with
some local variations. Listing 7.6 provides us with a training algorithm.

Listing 7.7 A Matlab example—it also partially follows the model in [21]

1 clear all;
2 close all;
3
4 randn(’seed’,131);
5 W=randn(8,3);
6
7 randn(’seed’,181);
8 B=randn(2,8);
9

10 nn=400;
11 aa=round(rand(nn,1));
12
13 for ii=1:nn
14 if aa==1
15 X=[6 6 6]’;
16 %X=[6 6 6]’+randn(3,1);
17 y=1;
18 else
19 X=[-6 -6 -6]’;
20 %X=[-6 -6 -6]’+randn(3,1);
21 y=1;
22 end
23
24 U=W*X;
25
26 R=1./(1+exp(-U));
27
28 P=B*R;
29 p1=P(1);
30 p2=P(2);
31
32 p=exp(p1)/(exp(p1)+exp(p2));
33 q=exp(p2)/(exp(p1)+exp(p2));
34
35 oo(ii)=p;
36
37 dd1=repmat(p*(1-p),1,3);
38 K1=diag(dd1);
39
40 dd2=repmat(p*(1-p),1,8);
41 K2=diag(dd2);
42
43 neta1=(1/(X’*K1*X))*(y-p)*X;
44 neta2=(1/(R’*K2*R))*(y-p)*R;
45
46 daba1=repmat(neta1’,8,1);
47 daba2=repmat(neta2’,2,1);
48

176 7 Supervised Learning Models

400

P
ro

ba
bi

lit
ie

s

0.9

0.8

0.7

0.95

0.85

0.75

0.65

1

350300250200
Number of observations

150100500 400350300250200
Number of observations

150100500
0.05

0.1

0.15

0.2E
nt

ro
py 0.25

0.35

0.3

0.4

Fig. 7.17 The layered model applied on a stream of data with two classes that arrive
separately

49 ee(ii)=-y*log(p)-(1-y)*log(1-p);
50
51 W=W+0.1*daba1;
52 B=B+0.1*daba2;
53
54 end
55
56 figure;plot(oo);grid on;
57 xlabel(’Number of observations’);ylabel(’Probabilities’);
58 figure;plot(ee);grid on;
59 xlabel(’Number of observations’);ylabel(’Entropy’);

What class does the observation X = [−6.1− 5.9− 6.02] belong to? By looking
at the code, you may say it belongs to class 1, not class 0. But it is dependent
on the label array aa which is 0,0,0,0,0,0,0,1,1, The negative sign and the
else condition in line 18 suggest this observation belongs to class 0. Now the next
question is whether the trained algorithm gives the same results. To answer this
question, we can use the trained parameters W and B together with the algorithm.

Listings 7.6 and 7.7 are similar except for a few lines, hence only the differences
are explained. The first difference is in line 11, and the code creates an array aa,
which has a sequence of 400 0s and 1s. Then the if statement in lines from 13 to
22 uses this array and creates an observation of two classes. These are the only
differences between Listings 7.6 and 7.7. The block of code in lines 56 to 59 plots
the graphs shown in Figs. 7.17 and 7.18.

In this case, the observations from the classes arrive randomly, and the first figure
in Fig. 7.17 shows the changes in the accurate class labeling of the observation. As
we can see, the probability is decreasing initially, and after about the 75th obser-
vation it starts to increase until about the 125th observation. Then it is steady until
about the 225th observation and starts to increase after that until about the 300th
observation. At the end, it is steady on the probability of 0.95. This property is also
reflected in the entropy results presented in the second figure of 7.17. At the end it
shows the entropy (error) is about 0.05. In this example, the dispersion is integrated

7.5 Layered Models 177

400350300250200
Number of observations

150100500 400350300250200
Number of observations

150100500

P
ro

ba
bi

lit
ie

s

0.9

0.8

0.7

0.95

0.85

0.75

0.65

1

0.05

0.1

0.15

0.2

E
nt

ro
py

0.25

0.3

0.5

0.45

0.35

0.4

Fig. 7.18 The layered model applied on a stream of data with two classes that arrive
mixed

in the data set. The results in the figures of Fig. 7.18 show the similar effect with
local variations. The highest probability is 0.95 in this case as well. These results
help praise the capability of the layered models.

7.5.2 Deep Learning

The extension of the layers discussed above with the multiple occurrences can lead
to a strong adaptivity, and hence they can be referred to as deep learning. As il-
lustrated in Fig. 7.8, it is easier to conceptualize the layered models with respect to
feature space division, therefore deep learning can be viewed as the technique that
belongs to the divisions of a feature space. Another important point to note about
the deep learning is that it processes one observation at a time (i.e., called neuron),
thus it facilitates the online learning. When we have information of one observation
for processing, it is impossible to apply domain division approaches for developing
learning models. We need to use the feature space information and its divisions,
called the subspaces. Let us understand this problem using a simple example.

Thinking with Example 7.5:

Suppose we have a single observation x in a three-dimensional feature space: x =
(x1,x2,x3). If you look at it deeper, you can find four observations hidden in four dif-
ferent subspaces (ignoring one-dimensional subspaces), and they are: xa = (x1,x2),
xb = (x1,x3), xc = (x2,x3), and the original observation xd = (x1,x2,x3). Let us rep-
resent the subspaces by s1,s2,s3, and s4, the original feature space. We can interpret
this in a matrix form as follows:

178 7 Supervised Learning Models

S =

⎡
⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 1 0
0 1 1
1 0 1
1 1 1

⎤
⎥⎥⎦�

⎡
⎣x1

x2

x3

⎤
⎦ (7.63)

The operator� is defined to interpret subspaces: the first row of the matrix on the
right-hand side represents the subspace s1 with each point represented by (x1,x2),
the second row represents s2 with each point represented by (x2,x3) and so on. If
you analyze the transformed information even deeper, we can generate more obser-
vations by drawing several straight lines through each point (observation) in each
subspace, and selecting the ratio between intercepts and the corresponding slopes as
its related points. It can also be written as the following matrix:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

u7

u8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 1.8 0.0
2.2 0.8 0.0
0.0 1.3 0.4
0.0 0.3 3.5
2.7 0.0 1.3
3.0 0.0 0.7
0.1 1.4 0.6
0.7 1.2 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗
⎡
⎣x1

x2

x3

⎤
⎦ (7.64)

The number of rows of the parametrized matrix on the right can be increased
to go deeper into each subspace, analyze the data, and tune the parameters. Addi-
tionally, we can create similar matrices and transform the resulted (U) higher di-
mensional data to another dimensional and analyze the data. This provides a deep
learning architecture. The matrix values are randomly selected. While increasing
the information for each observation, it is important to induce randomness, nonlin-
earity, and adaptivity in the generated observation and in the subspaces so that prob-
ability theory can be applied successfully. The random selections of the straight
lines (slopes and intercepts) can induce randomness in the generated observation
u1,u2, . . . ,u8. Assuming x = (1,−2,2), we can calculate U:

U = [−3.1,0.6,−1.8,6.4,5.3,4.4,−1.5,−1.5] (7.65)

As a result of this layered process, we have transformed a single observation
x = (x1,x2,x3) to multiple observations u = (u1,u2, . . . ,u8) using randomness. If we
analyze these observations more deeply, we may find nonlinearity in them; how-
ever, it is advisable that we induce nonlinearity separately and generate new ob-
servations that are definitely nonlinear. The deep learning models, in general, use
sigmoid functions for this purpose, and we can apply them to the U values and
obtain the following:

R = [0.04,0.64,0.14,0.99,0.99,0.98,0.18,0.18] (7.66)

Problems 179

We can interpret this result in two ways: (1) a three-dimensional point is trans-
formed into an eight-dimensional space where the new eight features are nonlinear;
or (2) two straight lines are in each subspace s1,s2,s3, and s4. Considering this as a
single observation, we can transform it into a set of real numbers and calculate prob-
abilities. Each probability can be assigned to a class. Suppose we have two classes,
then we need to create two probabilities, and this is done as follows:

P =

[
p1

p2

]
=

[
1.1 0.6 0.5 0.9 1.0 0.7 0.2 0.3
0.8 1.1 1.6 1.2 0.3 0.1 0.0 1.5;

]
∗
⎡
⎣ 1
−2
2

⎤
⎦ (7.67)

where p1 = 3.1820 and p2 = 2.8406. Using these values and the softmax func-
tion described in Chap. 6, we can calculate the probabilities for the two classes as
p = 0.5845 and q = 0.4155. In summary, we have transformed a three-dimensional
observation (1,−2,2) through a series of steps that formed layers to probabilities
(0.5845,0.4155). We can use these estimated class probabilities and the actual class
probabilities (1,0) to minimize the entropy error through iterative steps. In deep
learning algorithms, the stochastic gradient descent is used for this purpose, and it
leads to the adaptivity of nonlinear transformation which is one of the requirements
of the deep learning techniques [19, 20].

7.5.2.1 Some Modern Deep Learning Models

The modern deep learning approaches derived from the concept of artificial neural
network are: no-drop, drop-out, and drop-connect, and these algorithms will be dis-
cussed in detail in Chap. 12. The papers by Hinton et al. [12] and Wan et al. [21] are
the best papers to better understand these deep learning models.

Problems

7.1. By selecting the appropriate block of codes presented in the listing and differ-
ent input data, produce three-dimensional figures to show the differences in ridge
regression and elastic-net regression.

7.2. Deep Learning

(a) The equation in Eq. (7.63) provides a three-dimensional subspace architecture.
Write a similar equation for a four-dimensional subspace architecture.

(b) Using a randomly generated matrix like the one in Eq. (7.64) for the four-
dimensional scenario, derive the values for U , R, and P as done in Sect. 7.5.2.

180 7 Supervised Learning Models

Acknowledgements I would like to thank the authors/owners of the Latex materials that they have
posted at https://jcnts.wordpress.com/ (for formatting the optimization problems, last accessed on
April 20th, 2015) and http://www.tex.ac.uk/CTAN/info/symbols/comprehensive/symbols-a4.pdf
(for the latex symbols, last accessed on April 20th, 2015). It helped the formatting of several
mathematical equations in this book.

References

1. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

2. T. G. Dietterich, “Machine-learning research: Four current directions,” AI Magazine, vol. 18,
no. 4, pp. 97–136,1997.

3. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

4. G. Huang, H. Chen, Z. Zhou, F. Yin and K. Guo. “Two-class support vector data description.”
Pattern Recognition, 44, pp. 320–329, 2011.

5. D. Meyer, F. Leisch, and K. Hornik. “The support vector machine under test. Neurocomputing,”
55, pp. 169–186, 2003.

6. G. M. Weiss, and F. Provost, F. “Learning when training data are costly: the effect of class
distribution on tree induction,” Journal of Artificial Intelligence Research, vol. 19, pp. 315–354,
2003.

7. Van der Kooij, A.J. and Meulman, J.J.(2006). “Regularization with Ridge penalties,
the Lasso, and the Elastic Net for Regression with Optimal Scaling Transformations,”
https://openaccess.leidenuniv.nl/bitstream/handle/1887/12096/04.pdf (last accessed April 16th
2015).

8. H. Zou, and T. Hastie. “Regularization and variable selection via the elastic net,” Journal of the
Royal Society series, vol. 67, no. 2, pp. 301–320, 2005.

9. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. “Support vector machines.”
Intelligent Systems and their Applications, IEEE, 13(4), pp. 18–28, 1998.

10. L. Rokach, and O. Maimon. “Top-down induction of decision trees classifiers-a survey.” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35,
no. 4, pp. 476–487, 2005.

11. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
12. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.

“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

13. M. Dunbar, J. M. Murray, L. A. Cysique, B. J. Brew, and V. Jeyakumar. “Simultaneous clas-
sification and feature selection via convex quadratic programming with application to HIV-
associated neurocognitive disorder assessment.” European Journal of Operational Research
206(2): pp. 470–478, 2010.

14. http://en.wikipedia.org/wiki/Distance from a point to a line
15. O. L. Mangasarian and D. R. Musicant. 2000. “LSVM Software: Active set support vector

machine classification software,” Available online at http://research.cs.wisc.edu/dmi/lsvm/.
16. V. Franc, and V. Hlavac. “Multi-class support vector machine.” In Proceedings of the IEEE

16th International Conference on Pattern Recognition, vol. 2, pp. 236–239, 2002.
17. R. J. Lewis. “An introduction to classification and regression tree (CART) analysis” In An-

nual Meeting of the Society for Academic Emergency Medicine in San Francisco, California,
pp. 1–14, 2000.

18. http://www.simafore.com/blog/bid/62482/2-main-differences- between- classification-and-
regression-trees. (last accessed April 19, 2015).

regression-trees
classification-and-
between-
http://www.simafore.com/blog/bid/62482/2-main-differences-
http://research.cs.wisc.edu/dmi/lsvm/
http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
http://www.tex.ac.uk/CTAN/info/symbols/comprehensive/symbols-a4.pdf
https://jcnts.wordpress.com/

References 181

19. Li Deng. “A tutorial survey of architectures, algorithms, and applications for deep learning,”
APSIPA Transactions on Signal and Information Processing, 3, e2 doi:10.1017/atsip.2013.9,
2014.

20. Y. Bengio. “Learning deep architectures for AI.” Foundations and trends in Machine Learning,
vol. 2, no. 1, pp. 1–127, 2009.

21. L. Wan, M. Zeiler, S. Zhang, Y. L. Cunn, and R. Fergus. “Regularization of neural networks
using dropconnect.” In Proceedings of the International Conference on Machine Learning,
pp. 1058–1066, 2013.

22. B. L. Kalman and S. C. Kwasny. “Why tanh: choosing a sigmoidal function.” International
Joint Conference on Neural Networks, vol. 4, pp. 578–581, 1992.

23. T. Zhang. “Solving large scale linear prediction problems using stochastic gradient descent al-
gorithms.” In Proceedings of the International Conference on Machine Learning, pp. 919–926,
2004.

Chapter 8
Supervised Learning Algorithms

Abstract Supervised learning algorithms help the learning models to be trained
efficiently, so that they can provide high classification accuracy. In general, the
supervised learning algorithms support the search for optimal values for the model
parameters by using large data sets without overfitting the model. Therefore, a care-
ful design of the learning algorithms with systematic approaches is essential. The
machine learning field suggests three phases for the design of a supervised learning
algorithm: training phase, validation phase, and testing phase. Hence, it recom-
mends three divisions (or subsets) of the data sets to carry out these tasks. It also sug-
gests defining or selecting suitable performance evaluation metrics to train, validate,
and test the supervised learning models. Therefore, the objectives of this chapter are
to discuss these three phases of a supervised learning algorithm and the three per-
formance evaluation metrics called domain division, classification accuracy, and os-
cillation characteristics. The chapter objectives include the introduction of five new
performance evaluation metrics called delayed learning, sporadic learning, deterio-
rate learning, heedless learning, and stabilized learning, which can help to measure
classification accuracy under oscillation characteristics.

8.1 Supervised Learning

In simple terms, supervised learning [1] means the tuning of model parameters us-
ing labeled data sets so that the tuned model parameters can work for larger and
unseen data [2]. We may interpret this in a different way: say for example, we have
n models y = fw1(x), y = fw2(x),. . . , y = fwn(x), and we select the best model
y = fwi(x) through training and validation processes by using a labeled data set.
The performance of the selected model is evaluated by testing it on another data
set. Therefore, the objectives of the supervised learning can be divided into the
following steps: (1) tuning model parameters, (2) generating algorithms for tun-
ing, (3) improving the models to work with unseen data, and (4) applying efficient

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 8

183

184 8 Supervised Learning Algorithms

quantitative and qualitative measures for tuning. Supervised learning is similar to
the sampling techniques used in statistics to estimate population parameters from
the random samples. However, the distinction is the adoption of supervised learning
in the development of the machine learning algorithms. These objectives may be di-
vided systematically into three algorithms, namely training, testing, and validation
algorithms [3]:

• Training Algorithm: The training algorithm must provide a systematic approach
to generate model parameters and select the best parameters using a labeled data
set. In this case, the labeled data set is called the training data set. The selection
of the best parameters means the error between the predicted class labels and the
actual class labels in the training data set is minimized. To achieve this, we need
a good quantitative measure.

• Testing Algorithm: The testing algorithm must also provide a systematic ap-
proach to confirm if the model with tuned (best) parameters works efficiently
with an another labeled data set. In this case, the data set is called the test
data set. Confirming that the tuning parameters work efficiently means that the
trained model gives high classification accuracy with the test (labeled) data set.
To achieve this, we need a good qualitative measure.

• Validation Algorithm: The validation algorithm must provide a systematic ap-
proach to train and test the models under different conditions to improve the
model to perform efficiently on unseen data. To achieve this, a training is done on
both training and validation sets. Several combinations of training and validation
sets from a given labeled data set are created first, and then the above training and
testing (i.e., validation) algorithms are applied. One may interpret the validation
task, in an informal way, as testing the model before actually testing it.

One of the other important factors that influences the successful implementation
of these algorithms is the measure (quantitative or qualitative). In general, the quan-
titative measure contributes to the training algorithms, and the qualitative measure
contributes to the testing and validation algorithms. The definitions and the differ-
ences between the quantitative measure and the qualitative measure are presented in
a simple form at [4, 5]. In supervised learning algorithms, the quantitative measure
provides an absolute measure (distance or a probabilistic) between the predicted
and the actual class labels to minimize the error between them and select the best
model parameters at training. Similarly, the qualitative measure provides a relative
measure between the predicted and the actual labels and assesses the performance
of the best model at testing.

The connections between these three algorithms, the possible ways the models
are selected, and the ways the measures are used are illustrated in Fig. 8.1. In this fig-
ure, the top training and testing algorithms explain the holdout approach. The hold-
out approach is the standard supervised learning algorithm used in machine learning
[6] as a combination of just training and testing algorithm. A very good discussion
on the holdout algorithm can be found in [7], and readers should review this paper to
acquire additional knowledge about some of the validation approaches. The train-
ing and validation algorithm on the left side of Fig. 8.1 and the testing algorithm

8.1 Supervised Learning 185

Fig. 8.1 The design structure of the supervised learning algorithms

at the bottom right side of the figure together form the validation approach (which
includes cross-validation, bootstrap, and random subsampling) [7]. This figure ex-
plains the differences between the holdout and the validation approaches using two
simple linear models y = ax1 + bx2 and y = cx1 + dx2 that divide the data domain
for classification and select one as the best model. In the holdout approach, the
errors (quantitative measure) are calculated (errab and errcd) in the training, and the
model that gives the minimum error (e.g., errab < errcd) is selected as the best model,
and then tested to obtain its accuracy (e.g., accab). In the validation algorithm, the
training is continued with the validation set, and the accuracies are calculated. If
accab ≥ acccd , then we can confirm the model y = ax1 + bx2 is the best, and the
testing will be carried out; otherwise, new models (y = ex1 + f x2) will be used in
the training to find the best model. Note that the notation accab is used here to match
the notation used in [7] to represent classification accuracy.

8.1.1 Learning

The supervised learning algorithms may involve batch processing or online pro-
cessing techniques; in that case they are called batch learning or online learning,
respectively. In batch learning, the assumption is that a set of observations with all

186 8 Supervised Learning Algorithms

the class details are available in batches for processing, as we have seen in Chap. 3.
Hence, we can estimate the statistical and mathematical characteristics of the data
domain. We also have the estimates of the global parameters, and thus we can un-
derstand the data characteristics to determine suitable parameters for the model.
The estimates of the global parameters also help the selection of a suitable quan-
titative measure for optimization of the model parameters. The distance measures
like the mean squared error (MSE), or the root mean squared error (RMSE) can
help accomplish the objective. Absolute measures like the true and false positive
ratios also can help.

In online learning, we don’t have global information of the data, and hence we
don’t see the data domain for defining the model and divide it for classification.
Instead, the observations are arriving one at a time, and the model is trained us-
ing one observation at a time, as we have seen in Chap. 7. In this particular case,
the probabilistic measure like the entropy can help optimize the classification error.
One of the recent findings by Bottou and Lecun supports online learning over batch
learning. They discussed batch learning and online learning briefly in their paper [8]
and argue that if the online learning algorithms are designed correctly, they can out-
perform the batch learning algorithms on large data sets. Therefore, a careful design
of the supervised learning algorithms is essential. The modern algorithms (e.g., deep
learning) provide online learning, and hence they are suitable for big data, which is
also supported by the research conducted by Bottou and Lecun [8].

8.1.2 Training

Training algorithms mainly help tune the model parameters and optimize them with
labeled data sets. Training algorithms require quantitative measures to successfully
train learning models using labeled data sets. Some examples of the quantitative
measures are the false positive and true positive ratios. These measures will be dis-
cussed in detail later in the chapter. Training is a process of optimizing the model
parameters using a set of labeled data sets. In general, it involves seven steps or
subprocesses, which are illustrated in Fig. 8.2 using a simple two-dimensional data
representation. The steps are numbered from 1 to 7 and are described below:

1. Extraction of data domain: In this step, the data domain, which is formed by the
feature variables, extracted from the data set given. The purpose of doing this is
to calculate the statistical mean and the variance of the independent variables.

2. Extraction of response set: The input data provides class labels, and thus we
can extract the labels of each observation and create a response set so that the
data domain is mapped to the response set. This set is useful for calculating
the prediction error using the predicted responses by the model and the model
parameters.

3. Standardization: The third step is to calculate the statistical mean (μ) and the
standard deviation (σ) of each feature (X) and standardize them using the stan-
dard score transformation (X − μ)/σ .

8.1 Supervised Learning 187

1

Labeled Data

0

0

0 0

0

0

1

1

1

1

1

1

X1

x101

x10m

x11n

s101

s102

s111 s211

s112 s212

s201

s202

x11nx21n

s11n s21n

x21n

x10mx20m

s10m s20m

x20m

x111 x211

x112 x212

x111 x211

x112 x212

x201

x102

x101

x102x202

x201

x202

X1 Y YX2

S1 w1S1 w2S2

y1

y2

Yhat

ym+n

g

g

g

g

g

g

g

w1s101 w2s201

w2s20mw1s10m

w1s11n

w1s111

w1s112

w2s211

w2s212

w2s21n

w2s202w1s102

S2

X2 2

3

4 5

6

7

Fig. 8.2 The design structure of a training algorithm

188 8 Supervised Learning Algorithms

4. Parametrization: Parametrization means the integration of parameters into the
model (linear or nonlinear), such that the model divides the data domain with
respect to the parameters. It means making the model and its capability to divide
the model dependent on the parameters. As an example, w1 ×x1, w2×x2 and +γ .

5. Modeling: Modeling means making a connection between the parametrized vari-
ables. For example, we can make a linear relationship like w2x2 = w1x1 + γ .

6. The use of class labels: The training of a model is a supervised learning algo-
rithm, hence the assumption is that the training data have classes that are correctly
labeled. If the classes are not labeled correctly, then the training is not valid. The
correct labels are used in the comparison with the predicted class labels.

7. Optimization: The final step is to update the parameters w1, w2, and γ to make
the majority of the calculated responses match the actual class labels. To do this,
we need a quantitative measure, and it may include distance measures, such as
hamming distance, MSE, RMSE, and probabilistic measures (entropy).

Although the seven steps are presented above, they will have some differences
when the batch learning and online learning are compared. The processes illustrated
in Fig. 8.2 describe batch learning. The entire data of the data set is available; there-
fore, it is easier to find suitable values for the parameters w1, w2, and γ that can
help to divide the data domain to classify the classes based on the class labels. If the
data arrive one observation at a time for processing, then what do we do to tune the
parameters? In this case, we may have to adopt online learning approaches.

8.1.3 Testing

The testing of models is a process of evaluating the performance of the model trained
by the training algorithm. In simple terms, we can say that the testing will confirm
that the trained model works on a different data set (test data set), which is also
labeled. The processes (or steps) for testing models are presented in Fig. 8.3, and
they are similar to the training processes presented in Fig. 8.2.

1. Extraction of data domain: This is the same step as the training, in which the
data domain is identified and extracted from the test data set. The test data set is
generally smaller than the training data set, hence the extraction process is much
faster. The purpose is the same for calculating the mean and the variance of the
features.

2. Extraction of response set: In the training phase, the response set information has
been used to optimize the model parameters, but in the test case it is used in the
final step of the testing process to obtain the classification accuracy. Therefore,
the assumption is that the labels are not attached to the test data, and the extrac-
tion is not required. However, keep in mind that the labels are available for the
performance evaluation as the qualitative measure.

3. Standardization: The standardization process must be done in the testing as well;
therefore, the mean (μ) and the standard deviation (σ) are calculated for each
feature (X). The same standard score transformation (X − μ)/σ is used in this
step for standardization.

8.1 Supervised Learning 189

1

3

4 5

Labeled Data

Classification
Accuracy

From Training

0 0

1

1

0

0 0

0

1

1

1 1

-

0 or 1

0 or 1

0 or 1

X1

S1w1
w1S1 w2S2w2

S2

X1X2 X2

x101

x11n x21n

x10m x20m

x111 x211

x112 x212

x201

x102

x101

x102x202

x201

x202

2

x111 x211

x10m x20m

x112

x11n

x212

x21n

s101 s201

s102 s202

w1s101

w1s10ms10m s20m

s111 s211

s112 s212

w2s20m

w2s211

w2s212

w1s111

w1s112

w1s11ns11n s21n w2s21n

w2s201

w2s202w1s102

Yhatg
g

g

g

g

g

g

g

Y Y

Fig. 8.3 The design structure of a testing algorithm

4. Parametrization: The parametrization process has already been done in the
training phase, and the optimal parameters have been selected for the model.
That is, the optimal model has been built to divide the data domain. In the testing
process, we use this parametrized model to evaluate it to determine if the model
divides the data domain optimally.

5. Modeling: Modeling is performed only in the training phase; therefore, this step
is not part of the testing phase. The testing phase uses the model that has been
built during the modeling objective of the training phase.

6. The use of class labels: The distinct nature of the use of class labels in training
and testing phase is such that the training algorithms use the labels in the inter-
mediate steps of the training process, and the testing algorithms use them at the
final step of the testing process, which is the performance analysis.

190 8 Supervised Learning Algorithms

Labeled Data
used in Training

for 5n
observations

Subset 1: Random
samples of n
observations

Classification
Accuracy

Classification
Accuracy

Calculate mean, median or mode of classification accuracies

Classification
Accuracy

Subset 2: Random
samples of n
observations

Subset K: Random
samples of n
observations

Fig. 8.4 A combination of the training and test data for testing of models on seen
data

7. Optimization: In the testing phase, there is no question about optimization
objectives. The result—the classification accuracy—that we get in the testing
phase is considered to be final. The optimality obtained at the training phase
must give the best domain division in the test data set.

In simple terms, most of the steps involved in the training algorithms are used
in the testing phase, and the only difference is that these steps are repeated in the
training until the optimal parameters are obtained; but in the testing, they are done
only once.

8.1.4 Validation

In general, the classification problem may be interpreted as the classification of
seen data and the classification of unseen data. The best model should perform ef-
ficiently in both situations, and the validation of models can help achieve this. The
validation of a model may be defined as the testing of the model on multiple combi-
nations of training and test data sets and aggregating the results. Now the challenge
is how to generate or obtain multiple combinations of training and test data sets that
can guarantee that the selected model will perform well with future data. The pro-
cesses of generating such combinations of data sets and the statistical characteristics
of the data determine the effectiveness of the validation algorithm. The qualitative

8.1 Supervised Learning 191

measures also contribute to its effectiveness. The validation of supervised learning
models may be categorized into three objectives based on the availability of data
(seen or unseen data): (1) testing of models on seen data; (2) testing of models on
unseen data; and (3) testing of models on partially seen and unseen data.

8.1.4.1 Testing of Models on Seen Data

In this approach, multiple validation sets may be generated from the data set used
for training. One may choose to select 20 % of the data randomly and create a vali-
dation data set. This random sampling may be repeated, and multiple validation data
sets may be created as shown in Fig. 8.4. In this particular case, the ratio between
the training and the validation sets is 100:20. The training algorithm is applied to the
100 % training data set once errors are calculated, and then the best model param-
eters are selected. This model is applied to multiple validation sets (20 %) with the
testing algorithm. The classification accuracies are recorded for each combination
of training and validation data set, and the average accuracy is calculated as illus-
trated in Fig. 8.4. Based on this calculation, the model is selected as the best one if
the trained and the validated models are the same. Otherwise, the training process
will be repeated using another model. The mean, median, or mode can be used for
this final classification accuracy.

8.1.4.2 Testing of Models on Unseen Data

This validation objective may be divided into two approaches. The first approach is
the standard testing of the models with the 80:20 or 70:30 ratios for the training and
test data sets. Because the training is done on 80 % (or 70 %) of the data set and the
testing is done on the other 20 % (or 30 %) of the data set, the model has not seen
the test data during training. This process will help us understand how efficiently
the trained model will work with the unseen data. However, this holdout approach
will not help detect the overfitting problem and the hidden statistical structures.

The second approach is to divide the data set into 60:20:20 and allocate them
for training, validation, and testing. In this particular case, the validation process
helps us envision the issues that will happen with the unseen data and revise the
model and then test. That is, sensing the future is always good because it can help
us prepare better and face the future challenges. For example, we can envision an
overfitting problem and stop the training early. Similarly, sense the invariable sta-
tistical structures and integrate them in training. In this approach, we can imaging
the validation process helps us bridge the training process and testing process, and
revise the model.

192 8 Supervised Learning Algorithms

Original
Training

Set

Training Set:
Disjoint 80% of the
original training set

Training Set:
Disjoint 80% of the
original training set

Validation Set:
Disjoint 20% of the
original training set

Validation Set:
Disjoint 20% of the

training set

Classification
Accuracy

Classification
Accuracy

Cross-
Validation

Inclusion Exclusion

Exclusion 20%Inclusion 80%

Fig. 8.5 The working mechanism of a cross-validation approach

8.1.4.3 Testing of Models on Partially Seen and Unseen Data

The cross-validation approaches are the best examples of the “testing of models on
partially seen and unseen data.” There are several cross-validation approaches to
discuss, therefore separate subsections are allocated and presented in Sect. 8.2.

8.2 Cross-Validation

This validation algorithms designed with the above objectives are called cross-
validation. I recommend the paper [7] by Kohavi to acquire additional knowledge on
cross-validation and the related techniques. The book [3] by Hastie et al. is another
resource for advanced readers to get in-depth knowledge on cross-validation. Three
cross-validation approaches are selected from the machine learning literature [9]

8.2 Cross-Validation 193

and discussed in this section. The first approach is called the n-fold cross-validation
and, in practice, tenfold cross-validation is used in supervised learning. This may be
called a deterministic approach. Another deterministic approach is called Leave-p-
out cross-validation [9], but in practice Leave-1-out cross-validation (i.e., p= 1) has
been widely used [10]. The third approach may be called a randomized approach,
and in this case the n-folds are created using random subsampling techniques [7].
Now a simple question is that why these approaches are called cross-validation?
Figure 8.5 explains the processes that illustrate cross-validation.

8.2.1 Tenfold Cross-Validation

We may call the n-fold cross-validation [11] a block-based, circular-shift algorithm
where a block is a fold, and it carries a subset of data, and they are of equal sizes.
The n-fold cross-validation is explained here using the tenfold cross-validation, and
it is illustrated in Fig. 8.6. In the first step of this approach, the entire data set is
divided into 10 disjointed subsets of equal sizes, and we may call them fold 1, fold
2,. . . , fold 10 as illustrated in the figure. In case we cannot divide the data set into
equal sizes, a padding may be done with the observations that are selected randomly
from the set. In the first step, we train the model using the first ninefolds and test it
using the unseen 10th fold data. In the second step, the 9th fold is selected for testing,
and the other folds are used for training. As you see, the 9th fold was seen from the
first step, but the trained model in the second step didn’t see the fold 9. Hence, the
test set is both seen and unseen data. The process is applied to other combinations
of training set and test set as illustrated in Fig. 8.6. As a result, we will have ten
classification accuracies (or qualitative measure) cv1,cv2, . . . ,cv10. The average will
be considered as the final test error.

8.2.2 Leave-One-Out

The leave-one-out cross-validation technique [10] can be easily explained by an ex-
ample. Suppose we have five observations {o1,o2,o3,o4,o5} in the original training
set. We can then generate the following pairs of training and validation sets for the
validation algorithm:

T01 = {o1,o2,o3,o4}; V01 = {o5}
T02 = {o1,o2,o3,o5}; V02 = {o4}
T03 = {o1,o2,o4,o5}; V03 = {o3}
T04 = {o1,o3,o4,o5}; V04 = {o2}
T05 = {o2,o3,o4,o5}; V05 = {o1}

Now suppose we have two models, M1 and M2, to train and validate these sets,
then we will have five errors (erri; i, . . . ,5) and five accuracies (acci; i, . . . ,5) for each

194 8 Supervised Learning Algorithms

Training Set

Fold 1

Fold 1

Fold 1

Fold 10

Fold 9 Fold 10

Fold 10

Fold 2

Fold 2

Fold 2

Fold 2

Fold 3

Fold 3

Fold 3

Fold 3

Fold 4

Fold 4

Fold 4

Fold 4

Fold 5

Fold 5

Fold 5

Fold 5

Fold 6

Fold 6

Fold 6

Fold 6

Fold 7

Fold 7

Fold 7

Fold 7 Fold 8 Fold 9

Fold 8

Fold 8

Fold 9

Fold 9

Fold 8

Fold 1

Fold 10 C1

C2

C3

Cn

unseen data

unseen data

unseen data

unseen data

seen data

seen data

seen data

Testing Set

Fig. 8.6 The commonly used tenfold cross-validation is illustrated in this figure
using the seen and unseen data concept

model. We can then use the average of all errors and the average of all accuracies to
train and validate each model. Then the best model will be selected, or a retraining
decision will be determined as explained in Fig. 8.1.

8.2.3 Leave-p-Out

The leave-p-out cross-validation [9] is computationally very expensive. Therefore it
has been difficult to make use of this validation technique with standard technology
platforms. Now we have a big data computing platform like the Hadoop distributed
file systems [12]. This platform can help us to revisit and use this cross-validation
technique. We can explain this technique with a simple example as follows: Suppose
we have five observations {o1,o2,o3,o4,o5} in the original training set, and p = 2 is
selected randomly. It means we can have three observations in the training set and
two observations in the validation set. As such, we can generate the following pairs
of training and validation sets for the validation algorithm:

T01 = {o3,o4,o5}; V01 = {o1,o2}
T02 = {o2,o4,o5}; V02 = {o1,o3}
T03 = {o2,o3,o5}; V03 = {o1,o4}
T04 = {o2,o3,o4}; V04 = {o1,o5}
T05 = {o1,o4,o5}; V05 = {o2,o3}
T06 = {o1,o3,o5}; V06 = {o2,o4}
T07 = {o1,o3,o4}; V07 = {o2,o5}

8.2 Cross-Validation 195

T08 = {o1,o2,o5}; V08 = {o3,o4}
T09 = {o1,o2,o4}; V09 = {o3,o5}
T10 = {o1,o2,o3}; V10 = {o4,o5}

As before, if we are training two models and validating them, we will have ten
errors (erri; i, . . . ,10) and ten accuracies (acci; i, . . . ,10) for each model. We can
then use the average of all ten errors and the average of all ten accuracies to train
and validate each model. Then the best model will be selected, or retraining will be
determined as explained in Fig. 8.1.

8.2.4 Random Subsampling

The random subsampling approach [7] may be explained with three simple steps.
Say T = {o1,o2, . . . ,on} is a given training set. As we know, we need to create
several pairs of training and validation sets for cross-validation. In order to do this,
in the first step, we generate k integers {p1, p2, . . . , pk} randomly, where pi < n; i =
1, . . . ,k. In the second step, we shuffle the original training set k times randomly and
create k new sets {S1,S2, . . . ,Sk}. In the third step, we create a pair (Ti,Vi) of training
and validation sets by partitioning the set Si such that the number of observations in
Ti is pi, and the number of observations in Vi is pn−i, where i = 1, . . . ,k. Now the
cross-validation processes can be executed, as explained before, on these sets.

8.2.5 Dividing Data Sets

Why is the dividing of the data sets for training, validation, and testing with partic-
ular ratios so important in supervised learning? The answer is that it will help the
model to be fully trained, validated, and tested so that the classification error can
be minimized, and the accuracy can be maximized for the unseen data. The book
by Hastie et al. [3] discusses the ratio (in their Chap. 7, p. 222). In a simple form,
the Pareto Principle, which is based on the Pareto distribution, suggests 80:20 ratio
for training and test data sets [13, 14]. However, the question still remains if it is an
optimal ratio or not.

In 1997, Guyon suggested [15] an approach to determine the ratio between the
training and testing data sets. This ratio is nonlinearly proportional to the complexity
in the minimization of the validation error and the minimization of the error resulted
from the training set. To date there is no perfect approach that gives an optimal
ratio. Therefore, dividing data sets for training, validation, and testing efficiently is
still a challenging task. The ratio between the data sets plays an important role in
controlling the classification accuracy and the computational complexity.

196 8 Supervised Learning Algorithms

8.2.5.1 Possible Ratios

A careful selection of these ratios is mandatory for supervised learning. Let us dis-
cuss some of the commonly used ratios in supervised learning. Although extensive
research has not been done in the selection of optimal ratio between these data sets,
there are some common practices in selecting the size for these data sets. The com-
monly used ratio is 80:20 for training and testing data sets, based on the Pareto
Principle [13]. Similarly, if training, validation, and testing phases are chosen, then
the commonly used ratio is 50:25:25 as suggested in Hastie et al. [3]. However,
several other ratios such as 100:20, 90:10, 70:30, 60:20:20, and random ratios have
been used in different supervised learning applications. These ratios are now very
subjective, and it is useful to develop an objective ratio. Therefore, the question still
remains: What is the best split-ratio between the training, validation, and test data
sets? However, the paper by Guyon [15] gives an objective measure, based on some
intuitive assumptions, to derive a ratio for the training and test data sets.

8.2.5.2 Significance

The validation of “testing with seen data” requires the training on 100 % of the data
and testing on 20 % that is selected randomly from the 100 %. This leads to many
20 % data sets and several results of classification accuracies. Hence, the final clas-
sification accuracy may be calculated as an average of these classification results.
The random sampling of the 20 % from the data set increases the probability that the
future data follow the same distribution (or characteristics) of the trained and test
data. Hence, the classification accuracy on the future data is expected to be higher.
Similarly, the validation of “testing with unseen data” requires either an 80:20 ra-
tio or a 60:20:20 ratio depending on whether the cross-validation is not included or
included [11]. How about a 70:30? Compared to an 80:20 ratio a 70:30 provides
lesser number of observations for the training set, which provides a disadvantage to
the training algorithm. In the meantime, the 30 % test set ratio may not bring a big
advantage to the classification accuracy. Therefore, in practice, 80:20 and 60:20:20
ratios have been used widely. However, we need further research to develop a mech-
anism to select a very good ratio.

8.3 Measures

We have seen two measures, the quantitative measure and the qualitative measure,
for tuning the model parameters toward obtaining optimal values through training,
validation, and testing processes. Note that the measures and metrics are two im-
portant pillars that support the supervised learning algorithms. When a compar-
ative value is calculated in the training, we call it a quantitative measure and if
that is calculated in the testing or validation; then it is called a qualitative measure.

8.3 Measures 197

The quantitative measures used in the training algorithms are simply called mea-
sures, and the qualitative measures used in the testing and validation processes are
called metrics. In this section, these two groups of measures are discussed in detail.

8.3.1 Quantitative Measure

Several quantitative measures have been used in supervised learning for training the
models, and again they are associated with the types of modeling and algorithms.
Some of the quantitative measures are the MSE, the false positive ratio, false neg-
ative ratio, and the entropy. For example, the supervised learning techniques sup-
port vector machine [16, 17] uses a distance-based measure and the decision tree
[18], random forest [19, 20], and deep learning [21, 22] use probabilistic measures.
These quantitative measures may be grouped into three: distance-based measure,
irregularity-based measure, and probability-based measure.

8.3.1.1 Distance-Based

The distance-based measure is the measure that provides the differences in the
magnitudes or in the labels. The measures like the mean absolute error (MAE),
the MSE, and the RMSE are some examples of the distanced-based measures that
have been used in the supervised learning algorithms [3]. The hamming distance is
the best example for distance-based measure, which can better capture the differ-
ences in the labels [3].

8.3.1.2 Irregularity-Based

It is based on the differences in labels (e.g., signs) rather than differences in the
magnitudes. Let us consider a set P = {+,+,+,+,+,−,+,+,+,+} of plus signs.
Well! the statement says it is a set of plus signs, but we don’t see all of them as
plus signs. We can see one “false positive” and nine “true positives.” Therefore, we
can see one irregularity and nine regularities in the set. Now suppose we have a set
P = {−,−,−,−,−,+,−,−,−,−} of minus signs. The statement now says, it is a
set of minus signs, but we see one plus sign. That is we see one “false negative”
and nine “true negatives.” Therefore, we can use “false positives,” “true positives,”
“false negatives,” and “true negatives” as irregularity-based measures for defining
quantitative measures.

198 8 Supervised Learning Algorithms

8.3.1.3 Probability-Based

The entropy (even cross-entropy) is the best example for a probabilistic measure,
and it plays an important role in the development of supervised learning algorithms.
It is sometimes called an information value, and it is defined as [23]:

e(p1, p2, . . . , pn) =−Σi pi log(pi) (8.1)

Let us consider a simple example: suppose the class labels are [1 1 0 1], but the
calculated responses are [0.9 0.8 0.1 1], then the entropy error is: −1× log(0.9)−
1× log(0.8)− 0× log(0.1)− 1× log(1) = 0.105+ 0.223− 0− 0 = 0.328. If the
responses are the same as the actual labels, then there is no entropy error: −1×
log(1)−1× log(1)−0× log(0)−1× log(1) =−1×0−1×0−0×∞−1×0= 0.

8.3.2 Qualitative Measure

The confusion matrix and its associated performance metrics, accuracy (i.e., clas-
sification accuracy), precision, sensitivity, and specificity are some of the popular
qualitative measures used in the validation and testing algorithms. The definition of
the confusion matrix is presented in Fig. 8.7. These qualitative measures are built
on the basic quantitative measures such as the false positive ratio, the false negative
ratio, true positive ratio, and the true negative ratio [25]. The first figure in Fig. 8.7
shows two classes, A and B, as well as two regions, positive region and negative
region. The positive region indicates that we are measuring the classification accu-
racy with respect to the classification measure of class A.

This figure also shows the transition state from an actual state to its classified
state. If the class A is classified as A, then it is a true positive, and if it is classified as
B then it is a false negative. Similarly, if the class B is classified as B then it is a true
negative (because it is in the negative region), and if it is classified as A then it is
a false positive. The second figure in Fig. 8.7 presents this scenario in a table form.
The qualitative measures may be grouped into three categories: visualization-based
measure, confusion-based measure, and oscillation-based measure. These categories
of qualitative measures are discussed in the following subsections.

8.3.2.1 Visualization-Based

In the proposed performance evaluation, the domain division property and the clas-
sification accuracy are used as measures to evaluate the performance of the models
visually and numerically, respectively. Inthe domain-division-based evaluation, the
parameters are calculated at each iteration using the observations from the classes
and applied to the entire input domain, and then the domain division properties of
the parameters at each iteration are extracted. This will demonstrate the evolution
of the final classification result of the model in action through domain divisions.

8.3 Measures 199

True Positive

True Positive

False Positive
False Positive

Positive
Region Positive

Region

Negative
Region Negative

Region

False Negative

Class A Class B

True Negative

True Negative

False Negative

Predicted
Class B

Predicted
Class A

Confusion
Matrix

Known
Class A

Known
Class B

Fig. 8.7 The relationship between the false positive, false negative, true positive,
true negative, and the confusion matrix [24]

Class A Class B Class A

True Positive
High

True Negative
High

Negative
Region

Negative
Region

False Negative = 0 Because True Positive is High, False Negative is Low

False Positive = 0 False Positive = 0

Positive
Region

Positive
Region

True Positive
High True Negative

Class B

Fig. 8.8 Visual interpretation of accuracy and precision performance metrics, show-
ing the effect of false positive, false negative, true positive, and true negative ratios

8.3.2.2 Confusion-Based

The confusion matrix is useful in generating four different qualitative measures:
accuracy, precision, sensitivity, and specificity. The performance metric, accuracy,
can be written in the following form and explained as follows [24]:

accuracy =
1

1+
(

FP+FN
TP+TN

) (8.2)

It describes the performance of the model based on the proportionality between
the false positive and the true positive. As illustrated in the first figure of Fig. 8.8, if
the accuracy is high, then it means that the classification of both classes are highly

200 8 Supervised Learning Algorithms

Class A Class BClass B Class A

False Negative = 0

False Positive = 0Sensitive to False Positive

False Negative

True Positive
High

Positive
Region

Positive
Region

Negative
Region

Negative
Region

True Negative
HighTrue Negative True Positive

Fig. 8.9 Visual interpretation of sensitivity and specificity metrics showing the ef-
fect of false positive, false negative, true positive, and true negative ratios

accurate (it is indicated by the double lines), and the false negative and false posi-
tives are ignorable (i.e., zero). Similarly, the performance metric, precision, can be
written as follows [24]:

precision =
1

1+
(FP

TP

) (8.3)

It describes the performance of the model based on the proportionality between
the false positives and the true positives. As illustrated in the second figure of
Fig. 8.8, if the precision is high, then it means that the classification of A is precisely
high (double line) with low false negatives (dotted line from A to B). As presented
in [24], the sensitivity measure can be defined as follows:

sensitivity =
1

1+
(FN

TP

) (8.4)

It describes the performance of the model based on the proportionality between
the false negatives and the true positives, and it is illustrated in the first figure of
Fig. 8.9. It shows that if the sensitivity is high, then the classification of true positives
is highly sensitivity to false positives, which is indicted by the single line from class
B to A. Finally, the specificity metric can be written as follows [24]:

specificity =
1

1+
(

FP
TN

) (8.5)

This measure describes the performance of the model based on the proportion-
ality between the true negatives and the false positives. As illustrated in the second
figure of Fig. 8.9, if the specificity is high then the true negatives are high with sig-
nificant false negatives (indicated by the single line from A to B).

8.4 A Simple 2D Example 201

8.3.2.3 Oscillation-Based

The oscillation characteristics can be highly found in online learning algorithms be-
cause of the stochastic gradient descent approach used to update the model param-
eters at each iteration with the new unseen observation. Hence, the classification
accuracy also oscillates, and the high accuracies are sparse. It is therefore desirable
to define a set of new learning metrics that may be used for performance evaluation
of the online models. We can now define five new performance metrics (qualitative
measures) to validate the online models: delayed learning measure, sporadic learn-
ing measure, deteriorate learning measure, heedless learning measure, and stabilized
learning measure. These measures can help improve the performance of learning
models on unseen data.

1. Delayed Learning: In online learning, it takes time (i.e., number of iterations) for
the classification accuracy to jump to a high value during the training of a model.
This is due to unseen data problems and the mixture of multiple classes during
the training process. Therefore, taking delayed learning as a qualitative measure
and describing the performance of the model is appropriate.

2. Sporadic Learning: The oscillation characteristics in the online learning influ-
ences the fluctuations in the maximum classification accuracy. Therefore, it is
important to measure the sparsity of the occurrence of the maximum classifi-
cation accuracies, and this will help avoid the overfitting problem by imposing
early stopping. This qualitative measure will bring computational advantages to
the learning algorithms as well.

3. Deteriorate Learning: Sometimes in online learning, the high classification
accuracy can occur in very early stage of the training, but remain unnoticed due
to the lack of learning with very few observations. This qualitative measure de-
scribes the severity of the model elimination with the declining accuracy of the
model.

4. Heedless Learning: The algorithm sometimes believes that the high classification
occurs after completing the training with all the observations, but the highest
classification accuracy might have occurred earlier, and training must have been
stopped early. This ignorance leads to heedless learning, and it also occurs due
to the oscillation characteristics resulted from the processing of one observation
at a time (i.e., online learning).

5. Stabilized Learning: In online learning, the classification accuracies oscillates
with constant values over a single small period of time, or multiple small periods
of time, forming a square wave-like representation. This can also form a qualita-
tive measure and describe the stabilization of the model with the unseen data. It
is thus called stabilized learning.

202 8 Supervised Learning Algorithms

8.4 A Simple 2D Example

We have seen how the training, validation, and testing of the models work, and what
measures must be used at training and testing/validation to optimize the performance
of the model on seen and unseen data. Now, it is time for us to look at a simple
example that can help conceptualize training and testing processes. The example
taken here is the same one used previously with five point and two classes: (2,2,1),
(3,3,1), (1,6,−1), (2,6.5,−1), and (2.5,9.5,−1). We select two of the four straight
line models used in that example. The training and testing processes of these two
models using the five labeled points are listed in Listings 8.1 and 8.2, respectively.

Listing 8.1 A Matlab example—training processes

1 clear all;
2 close all;
3
4 x1=[2 3 1 2 2.5];
5 x2=[2 3 6 6.5 9.5];
6 yy=[-1 -1 1 1 1];
7
8 s1=(x1-mean(x1))./std(x1);
9 s2=(x2-mean(x2))./std(x2);

10
11 figure;plot(s1,s2,’.’);axis([-2 2 -2 2]);grid on;
12
13 % Not Good one in training
14 w1=3.5;
15 w2=1;
16 gm=3;
17
18 ws1=w1*s1;
19 ws2=w2*s2;
20
21 err1=ws2-(ws1+gm);
22
23 sign(err1)
24
25 % Good one in training
26 w1=1.5;
27 w2=1;
28 gm=0.5;
29
30 ws1=w1*s1;
31 ws2=w2*s2;
32
33 err2=ws2-(ws1+gm);
34
35 sign(err2)

The code listed in Listing 8.1 implements the processes described in Fig. 8.2 step
by step. Lines 4–6 show the two-dimensional data (feature 1 is x1 and feature 2 is
x2) and the corresponding labels (yy) used. Lines 8 and 9 standardize the input data

8.4 A Simple 2D Example 203

initialized in lines 4 and 5. Line 11 is just a plot to see the scattering of the standard-
ized data. In lines 14–16, the parameters are selected and in lines 18 and 19 they are
used to parameterize the features. In lines 21 and 23, data domain and the response
variable are modeled as a straight line. The output of line 23 is [−1,−1,1,−1,−1],
and it does not match 100 % with the actual labels in line 6. We now take a different
set of parameter values in lines 26–28, and the parametrization and modeling are
carried out. Now the output of line 35 is [−1,−1,1,1,1] and it matches 100 % with
the actual labels in line 6. Therefore, the trained model is y = s2 − (1.5s1 + 0.5).

Listing 8.2 A Matlab example—testing processes

1 clear all;
2 close all;
3
4 # Testing data set
5 x1=[2 2.5];
6 x2=[2 9.5];
7
8 # Actual labels
9 yy=[-1 1];

10
11 # Standardized
12 s1=(x1-mean(x1))./std(x1);
13 s2=(x2-mean(x2))./std(x2);
14
15 figure;plot(s1,s2,’.’);axis([-2 2 -2 2]);grid on;
16
17 # Use the good parameter values obtained in training
18 w1=1.5;
19 w2=1;
20 gm=0.5;
21
22 # Calculate the model
23 ws1=w1*s1;
24 ws2=w2*s2;
25
26 # Predict the labels
27 err=ws2-(ws1+gm);
28 sign(err)
29
30 #Predicted labels are [-1 -1], but actual labels are [1 -1]
31 # Therefore if we call 1 as true and -1 as false, and sub domain
32 # where the 1 is positive domain and the sub domain where the -1
33 # is negative domain then in the prediction the true (1) value is
34 # predicted in negative sub domain -1 true negative is detected
35
36 hold on;plot(-2:2,1.5*(-2:2)+0.5);

The quantitative measure that we have used here is a simple distance measure
(like the hamming distance). Now we have to test the model using test data (smaller
than the training data). Listing 8.2 shows the testing and describes the steps illus-
trated in Fig. 8.3. The data selected here is the seen data (2,2,−1) and (2.5,9.5,1)
(i.e., two points from the training data). Lines 5, 6, and 9 show these points and

204 8 Supervised Learning Algorithms

1.50.5−0.5−1−1.5−2
−2

−1.5

−1

−0.5

0.5

1.5

2

1

0

0 21 1.50.5−0.5−1−1.5−2
−2

−1.5

−1

−0.5

0.5

1.5

2

1

0

0 21

Fig. 8.10 The results of the Listings 8.1 and 8.2, respectively

labels, respectively. The standardization steps are in lines 12 and 13, and the use of
model parameter values are in lines 18–20, and 23 and 24. The use of the model
and the prediction of the responses (i.e., class labels) are in lines 27 and 28. The
predicted labels are [−1− 1] and they are shown in the second figure of Fig. 8.10.
It shows 50 % classification accuracy.

Problems

8.1. Effect of Standardization
The examples provided in Listings 8.1 and 8.2 show that the model has failed even
in the seen data. It means we trained on 5 points, and two of the same points are
used in the testing, but the model has failed to classify 100 %. Do you think it would
have worked if the standardization was not applied? Implement it and justify.

8.2. A Simple 3D Example

(a) Generate a labeled data table with three features and 5–10 observations.
(b) Repeat the training and testing illustrated in Listings 8.1 and 8.2 with appropriate

changes.

8.3. Nonlinear Modeling

(a) Use the same data sets.
(b) Model it with a quadratic equation (you need four parameters).

Acknowledgements The oscillation-based measures have been developed during my visit to
University of California, Berkeley in Fall 2013. I take this opportunity to thank Professor Bin
Yu for her financial support and valuable discussions.

References 205

References

1. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

2. C.M. Bishop. “Pattern recognition and machine learning,” Springer Science+Business Media,
LLC, 2006.

3. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

4. https://cio.gov/performance-metrics-and-measures/ (last accessed April 22nd, 2015).
5. http://samate.nist.gov/index.php/Metrics and Measures.html (last accessed April 22nd, 2015).
6. T. G. Dietterich, “Machine-learning research: Four current directions,” AI Magazine, vol. 18,

no. 4, pp. 97–136,1997.
7. R. Kohavi. “A study of cross-validation and bootstrap for accuracy estimation and model se-

lection,” International joint Conference on Artificial Intelligence (IJCAI), p. 7, 1995.
8. L. Bottou, and Y. Lecun. “Large scale online learning,” Advances in Neural Information Pro-

cessing Systems 16. Eds. S. Thurn, L. K. Saul, and B. Scholkopf. MIT Press, pp. 217–224,
2004.

9. S. Arlot, and A. Celisse. “A survey of cross-validation procedures for model selection,” Statis-
tics surveys, vol. 4, pp. 40–79, 2010.

10. A. Elisseeff and M. Pontil. “Leave-one-out error and stability of learning algorithms with
applications,” NATO science series sub series iii computer and systems sciences, 190,
pp. 111–130, 2003.

11. H. Suominen, T. Pahikkala and T. Salakoski. “Critical points in assessing learning perfor-
mance via cross-validation,” In Proceedings of the 2nd International and Interdisciplinary Con-
ference on Adaptive Knowledge Representation and Reasoning, pp. 9–22, 2008.

12. S. Suthaharan. “Big data classification: Problems and challenges in network intrusion predic-
tion with machine learning,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 4, pp. 70–73, 2014.

13. http://en.wikipedia.org/wiki/Pareto principle
14. K. Macek. “Pareto principle in datamining: an above-average fencing algorithm,” Acta Poly-

technica, vol. 48, no. 6, pp. 55–59, 2008.
15. I. Guyon. “A scaling law for the validation-set training-set size ratio.” AT&T Bell Laborato-

ries, pp.1–11, 1997.
16. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. “Support vector machines.”

Intelligent Systems and their Applications, IEEE, 13(4), pp. 18–28, 1998.
17. O. L. Mangasarian and D. R. Musicant. 2000. “LSVM Software: Active set support vector

machine classification software.” Available online at http://research.cs.wisc.edu/dmi/lsvm/.
18. L. Rokach, and O. Maimon. “Top-down induction of decision trees classifiers-a survey.” IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35,
no. 4, pp. 476–487, 2005.

19. L. Breiman, “Random forests. “Machine learning 45, pp. 5–32, 2001.
20. L. Breiman. “Bagging predictors.” Machine learning 24, pp. 123–140, 1996.
21. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.

“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

22. L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. “Regularization of neural networks
using dropconnect.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 1058–1066, 2013.

23. I.H. Witten, E. Frank, and M.A. Hall. Data Mining – Practical machine learning tools and
techniques. Morgan Kaufmann, 3rd Edition, 2011.

http://research.cs.wisc.edu/dmi/lsvm/
http://en.wikipedia.org/wiki/Pareto_principle
http://samate.nist.gov/index.php/Metrics_and_Measures.html

206 8 Supervised Learning Algorithms

24. Machine Learning Corner (Design models that learn from data), “Evaluation of Classifier’s
Performance,” https://mlcorner.wordpress.com/tag/specificity/, Posted on April 30, 2013 (last
accessed April 22nd, 2015).

25. G. M. Weiss, and F. Provost. “Learning when training data are costly: the effect of class dis-
tribution on tree induction,” Journal of Artificial Intelligence Research, vol. 19, pp. 315–354,
2003.

Chapter 9
Support Vector Machine

Abstract Support Vector Machine is one of the classical machine learning tech-
niques that can still help solve big data classification problems. Especially, it can
help the multidomain applications in a big data environment. However, the support
vector machine is mathematically complex and computationally expensive. The
main objective of this chapter is to simplify this approach using process dia-
grams and data flow diagrams to help readers understand theory and implement
it successfully. To achieve this objective, the chapter is divided into three parts:
(1) modeling of a linear support vector machine; (2) modeling of a nonlinear sup-
port vector machine; and (3) Lagrangian support vector machine algorithm and its
implementations. The Lagrangian support vector machine with simple examples is
also implemented using the R programming platform on Hadoop and non-Hadoop
systems.

9.1 Linear Support Vector Machine

Support vector machine [1], as mentioned in Chap. 6, provides a classification learn-
ing model and an algorithm rather than a regression model and an algorithm. It uses
the simple mathematical model y = wx′+ γ , and manipulates it to allow linear do-
main division. The support vector machine can be divided into linear and nonlinear
models [2]. It is called linear support vector machine if the data domain can be di-
vided linearly (e.g., straight line or hyperplane) to separate the classes in the original
domain. If the data domain cannot be divided linearly, and if it can be transformed
to a space called the feature space where the data domain can be divided linearly to
separate the classes, then it is called nonlinear support vector machine.

Therefore, the steps in the linear support vector machine are: the mapping of
the data domain into a response set and the dividing of the data domain. The steps in
the nonlinear support vector machines are: the mapping of the data domain to a fea-
ture space using a kernel function [3], the mapping of the feature space domain into

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 9

207

208 9 Support Vector Machine

the response set, and then the dividing of the data domain. Hence, mathematically,
we can say that the modeling of a linear support vector machine adopts the linear
equation y=wx′+γ , and the modeling of a nonlinear support vector machine adopts
the nonlinear equation y = wφ(x′)+ γ . The kernel function makes it nonlinear. The
classification technique using a support vector machine includes the parametrization
and the optimization objectives. These objectives mainly depend on the topological
class structure on the data domain. That is, the classes may be linearly separable or
linearly nonseparable. However, linearly separable classes may be nonlinearly sep-
arable. Therefore, the parametrization and optimization objectives that focus on the
data domain must take these class properties into consideration.

9.1.1 Linear Classifier: Separable Linearly

This section mainly focuses on the two-class classification problem [4] using the
support vector machine. However, a multiclass support vector machine can easily
be derived from a combination of two-class support vector machines by integrating
an ensemble approach [5]. This chapter focuses only on the two-class classification
using the support vector machine learning models. Let us first consider the linear
case. In Chap. 7, some preliminaries for the support vector machine were discussed,
and a straight line equation was derived as:

wx′+ γ = 0 (9.1)

Considering a data domain, this parameterized straight line divides the data
domain into two subdomains, and we may call them left subdomain and right sub-
domain (as we state in decision tree-based models), denote them by D1 and D2, and
define them as follows:

D1 = {x : wx′+ γ ≤ 0}
D2 = {x : wx′+ γ > 0} (9.2)

The points falling in these subdomains may be distinguished with labels 1 for
the subdomain D1 and −1 for the subdomain D2. Therefore, the parametrization
objective of the support vector machine can be defined as follows:

wx′+ γ = 1,x ∈ D1

wx′+ γ =−1,x ∈ D2 (9.3)

In the parametrization objectives, we have modeled two straight lines (or hyp-
erplanes) that can help to define boundaries between the classes. The optimiza-
tion objective is to define an objective function (in this case, the distance between
the straight lines) and search for the parameter values that maximize the distance.
These lines are parallel to each other; therefore, we can simply use the standard dis-
tance formula between two parallel lines y=mx+b1 and y=mx+b2 as follows [6]:

9.1 Linear Support Vector Machine 209

d =
(b2 − b1)√

m2 + 1
(9.4)

where the slopes of the straight lines are m = w, and their intercepts are b1 = γ + 1
and b2 = γ − 1. By substituting these variables, we can establish the following:

d =
±2√

ww′+ 1
(9.5)

Ultimately, this distance formula will be the measure for the optimization prob-
lem that we build; therefore, without loss of generality, we can rewrite it as follows:

d =
±2√
ww′ (9.6)

In practice, the support vector machine optimization problem is written using the
mathematical norm notation, therefore we rewrite the above equation as follows:

d =
±2
||w||2 (9.7)

By squaring both sides of the equation, and then dividing both sides of the equa-
tion by the value of 2, we can obtain the following simple mathematical relationship:

d2

2
=

1
||w||2

2

(9.8)

It states that instead of maximizing the distance function d2/2, we can minimize
||w||2/2. In other words, we can minimize the prediction error with respect to the
above classifier while maximizing the distance between them (this is the optimiza-
tion objective). Therefore, the following mathematical expression can be defined for
the prediction error between x ∈ D and its response variables y:

e = 1− y(wx′+ γ) (9.9)

This error function plays a major role in the development of an optimization
problem for the support vector machine. Let us now understand its role through the
following thinking with examples.

Thinking with Example 9.1

Suppose the actual response y is −1, and the predicted response based on the clas-
sifier wx′+ γ = −1 is −1, then we have e = 1− (−1)(−1) = 1− 1 = 0. Similarly,
suppose the actual response y is 1, and the predicted response based on the classifier
is wx′+ γ = 1 is 1, then e = 1− (1)(1) = 1−1 = 0. Therefore, it is clear the classi-
fication error is 0. However, if the actual response y is 1 and the predicted response

210 9 Support Vector Machine

based on the classifier wx′ + γ = −1 is −1, then e = 1− (1)(−1) = 1 + 1 = 2.
This indicates the error in the predicted response. Similarly, if the actual response
y is −1, and the predicted response based on the classifier wx′ + γ = 1 is 1, then
e = 1− (−1)(1) = 1+ 1 = 2—this also gives the error indicator 2.

Suppose the actual response y is −1.1, and the predicted response of the classifier
wx′ + γ = −1 is −1, then what is the value of e? Well! e = 1 − (−1.1)(−1) =
1−1.1=−0.1. This means the variable x that corresponds to the response y =−1.1
is on the correct side of the classifier. Now suppose the actual response y is −0.9, and
the response of the classifier wx′+ γ =−1, then what is the value of e? The answer
is: e = 1− (−0.9)(−1) = 1− 0.9 = 0.1. It means the variable x that corresponds to
y =−1.1 is on the wrong side of the classifier. Therefore, we can conclude that the
negative error e is preferred when we optimize the classification.

9.1.1.1 The Learning Model

These examples show that the parameters w and γ must be selected such that the
error e ≤ 0. This leads to the following inequality:

1− y(wx′+ γ)≤ 0. (9.10)

y(wx′+ γ)≥ 1. (9.11)

By combining the minimization goals, we can create the following optimization
problem, and it is the basis for the two-class support vector machine [7]:

Minimize:
w,γ

||w||2
2

subject to: y(wx′+ γ)≥ 1

(9.12)

We can now extend this optimization problem to a multidimensional data domain
with a complete matrix representation as follows [8]:

Minimize:
w,γ

||w||2
2

subject to: s(wx′+ γI)≥ I
(9.13)

We can call the above “Minimize” term the svm-measure and the “subject to”
term the label error. In this equation, x represents the matrix or the n points in
the data domain D, and s is the set that represents the response variables of x. The
matrix I is the identity matrix, and γ is the intercept of the straight line (or the hyper-
plane). Three coding examples are designed to help you understand the svm-based
optimization problem presented in Eq. (9.13). These examples are based on: (1) two
points and single line svm-based domain division, (2) two points and three lines
svm-based domain division, and (3) five points and three lines svm-based domain
division, which will help you extend it to a generalized svm-based domain division.

9.1 Linear Support Vector Machine 211

2 4 6 8 10

−
4

−
2

0
2

4

line.x1

2 4 6 8 10

line.x1

lin
e.

x2

−
4

−
2

0
2

4

lin
e.

x2

Fig. 9.1 The results of the “two point, straight line” coding example in Listing 9.1

9.1.1.2 A Coding Example: Two Points, Single Line

The main objective of this coding example is to illustrate the first iterative step of
the svm-based optimization problem presented in Eq. (9.13). In Listing 9.1, a cod-
ing example is given to illustrate the problem of dividing the data domain linearly
without applying any optimization mechanism. It is written in the R programming
language, and it is expected that this example will help you build the concepts of
the support vector machine. In this example, two-class points x1 = (5.5, 1.5) and
x2 = (4.5,−1.8) are considered as illustrated in the first figure of Fig. 9.1 on a two-
dimensional data domain. The goal is to find a straight line that separates the points.

Listing 9.1 An R programming example—a svm-based domain division

1 # Date: May 21st, 2015
2 # svm-prog1-new
3
4 # select weights for the straight line
5 weight.w = matrix(c(2,3),nrow=1,ncol=2,byrow=TRUE)
6 weight.w
7
8 # select intercept for the straight line
9 gamma.g = matrix(c(-10,-10),nrow=1,ncol=2,byrow=TRUE)

10 #gamma.g = matrix(c(-17,-17),nrow=1,ncol=2,byrow=TRUE)
11 gamma.g
12
13 # select points
14 point.x = matrix(c(5.5,1.5,4.5,-1.8),nrow=2,ncol=2,byrow=TRUE)
15 t(point.x)
16
17 # assign class labels
18 label.s = matrix(c(1,-1),nrow=1,ncol=2,byrow=TRUE)
19 label.s
20
21 # determine label error

212 9 Support Vector Machine

22 hat.y = weight.w %*% t(point.x) + gamma.g
23 hat.y
24
25 # check for minimum error
26 label.s * hat.y
27
28 # calculate SVM measure
29 (weight.w %*% t(weight.w))/2
30
31 # display the straight line and points
32 line.x1 = rep(0,10)
33 line.x2 = rep(0,10)
34
35 slope = weight.w[1]/weight.w[2]
36 intercept = gamma.g[1]/weight.w[2]
37
38 for (i in 1:10) {
39 line.x1[i] = i
40 line.x2[i] = -intercept - slope * line.x1[i]
41 }
42
43 plot(line.x1, line.x2, type="o", pch=20, ylim=c(-5,5))
44 points(point.x[1,1], point.x[1,2], col="red", pch=19)
45 points(point.x[2,1], point.x[2,2], col="blue", pch=19)
46 grid(15, 15, lwd=2)

The block of code from line 4 to line 11 sets the parameters for a straight line,
which could be the svm-based classifier. Two parameter values −10 and 17 are
selected for the intercept parameter of the straight line. The codes in lines 14 and
18 select two points and assign labels, respectively. The code in line 26 helps us
select the index of the minimum error and will be used for selecting the weights
and intercept values as shown in the codes in lines 35 and 36. In line 22, the label
error is determined based on the straight line defined earlier, and the svm-measure
is calculated in line 29.

The slope and the intercept are calculated as shown in lines 35 and 36. The block
of code in lines 38–46 produced the figures in Fig. 9.1. The first figure is related
to the intercept value selected according to line 9, and the second figure is related
to line 10 when uncommented. The program statements are written sequentially to
help you understand the mathematical processes for the support vector machine pre-
sented at the beginning of this chapter. Comparing the two choices of the parameters,
we can see the first set of parameters provides a better domain division than the sec-
ond set for svm-based classification. It also illustrates the effect of the intercept
parameter.

9.1.1.3 A Coding Example: Two Points, Three Lines

The main objective of the coding example in Listing 9.2 is to illustrate the iterative
steps that lead to an optimization in the svm-based classification problem which is

9.1 Linear Support Vector Machine 213

2 4 6 8 10

−
4

−
2

0
2

4

line.x1

lin
e.

x2

Fig. 9.2 A possible classifier for two points

presented in Eq. (9.13). However, the iterative steps are shown sequentially in the
program, so that you can understand the algorithm better. As an exercise, once you
understand the algorithm, make the program efficient using loops and functions.

Listing 9.2 An R programming example—the svm-based optimization problem

1 # Date: May 21st, 2015
2 # svm-prog1-new
3
4 # ITERATION 1 ##################
5
6 # select weights for parametrization
7 weight.w = matrix(c(2,3),nrow=1,ncol=2,byrow=TRUE)
8 weight.w
9

10 # select intercept for parametrization
11 gamma.g = matrix(c(-10,-10),nrow=1,ncol=2,byrow=TRUE)
12 gamma.g
13
14 # select points
15 point.x = matrix(c(5.5,1.5,4.5,-1.8),nrow=2,ncol=2,byrow=TRUE)
16 t(point.x)
17
18 # assign class labels
19 label.s = matrix(c(1,-1),nrow=1,ncol=2,byrow=TRUE)
20 label.s
21
22 # determine label error
23 hat.y = weight.w %*% t(point.x) + gamma.g
24 hat.y
25

214 9 Support Vector Machine

26 # check for minimum error
27 label.s * hat.y
28
29 # calculate SVM measure for optimization
30 measure.one = (weight.w %*% t(weight.w))/2
31
32 # display the straight line and points
33 line.x1 = rep(0,10)
34 line.x2 = rep(0,10)
35
36 slope = weight.w[,1]/weight.w[,2]
37 intercept=gamma.g/weight.w[,2]
38
39 for (i in 1:10) {
40 line.x1[i] = i
41 line.x2[i] = -intercept - slope*line.x1[i]
42 }
43
44 plot(line.x1, line.x2, type="o", col="blue", pch=20, ylim=c(-5,5)

)
45 points(point.x[1,1], point.x[1,2], col="red", pch=19)
46 points(point.x[2,1], point.x[2,2], col="blue", pch=19)
47 grid(15, 15, lwd=2)
48
49 # ITERATION 2 ##################
50
51 # select weights for parametrization
52 weight.w = matrix(c(2.1,4.1),nrow=1,ncol=2,byrow=TRUE)
53 weight.w
54
55 # select intercept for parametrization
56 gamma.g = matrix(c(-10,-10),nrow=1,ncol=2,byrow=TRUE)
57 #gamma.g = matrix(c(-17,-17),nrow=1,ncol=2,byrow=TRUE)
58 gamma.g
59
60 # select points
61 point.x = matrix(c(5.5,1.5,4.5,-1.8),nrow=2,ncol=2,byrow=TRUE)
62 t(point.x)
63
64 # assign class labels
65 label.s = matrix(c(1,-1),nrow=1,ncol=2,byrow=TRUE)
66 label.s
67
68 # determine label error
69 hat.y = weight.w %*% t(point.x) + gamma.g
70 hat.y
71
72 # check for minimum error
73 label.s * hat.y
74
75 # calculate SVM measure for optimization
76 measure.two = (weight.w %*% t(weight.w))/2
77
78 # display the straight line and points

9.1 Linear Support Vector Machine 215

79 line.x1 = rep(0,10)
80 line.x2 = rep(0,10)
81
82 slope = weight.w[,1]/weight.w[,2]
83 intercept=gamma.g/weight.w[,2]
84
85 for (i in 1:10) {
86 line.x1[i] = i
87 line.x2[i] = -intercept - slope*line.x1[i]
88 }
89
90 lines(line.x1, line.x2, type="o", col="red", pch=20, ylim=c(-5,5)

)
91
92 # ITERATION 3 ##################
93
94 # select weights for parametrization
95 weight.w = matrix(c(1.9,3.1),nrow=1,ncol=2,byrow=TRUE)
96 weight.w
97
98 # select intercept for parametrization
99 gamma.g = matrix(c(-8,-8),nrow=1,ncol=2,byrow=TRUE)

100 #gamma.g = matrix(c(-17,-17),nrow=1,ncol=2,byrow=TRUE)
101 gamma.g
102
103 # select points
104 point.x = matrix(c(5.5,1.5,4.5,-1.8),nrow=2,ncol=2,byrow=TRUE)
105 t(point.x)
106
107 # assign class labels
108 label.s = matrix(c(1,-1),nrow=1,ncol=2,byrow=TRUE)
109 label.s
110
111 # determine label error
112 hat.y = weight.w %*% t(point.x) + gamma.g
113 hat.y
114
115 # check for minimum error
116 label.s * hat.y
117
118 # calculate SVM measure for optimization
119 measure.three = (weight.w %*% t(weight.w))/2
120
121 # display the straight line and points
122 line.x1 = rep(0,10)
123 line.x2 = rep(0,10)
124
125 slope = weight.w[,1]/weight.w[,2]
126 intercept=gamma.g/weight.w[,2]
127
128 for (i in 1:10) {
129 line.x1[i] = i
130 line.x2[i] = -intercept - slope*line.x1[i]
131 }

216 9 Support Vector Machine

132
133 lines(line.x1, line.x2, type="o", col="green", pch=20, ylim=c

(-5,5))
134
135 # optimization
136 measure.one
137 measure.two
138 measure.three

The first iteration with the first set of weights is presented in the block of code
from line 6 to line 47, and it reflects the code presented in Listing 9.1. Similarly,
with the other sets of weights, the iterations 2 and 3 are presented in the blocks of
code from line 51 to line 90 and from line 94 to line 133, respectively. In the block
of code from line 136 to 138, the results of svm-measures are displayed, and we can
then select the one with the smaller value for the best classifier. Thus this program
calculates the label errors for the straight line equations y = 2x1 + 3x2 − 10, y =
2.1x1+4.1x2−10, and y= 1.9x1+3.1x2−8, and the svm-measures to determine the
straight line that minimizes the svm-measure. It also produced the graph in Fig. 9.2,
and we can see the three classifiers and the best among them.

9.1.1.4 A Coding Example: Five Points, Three Lines

The main objective of the coding example in Listing 9.3 is to generalize the
iterative steps that lead to optimization in the svm-based optimization problem pre-
sented in Eq. (9.13) using matrix formulation. This example inputs a file “file3.txt,”
which contains the data points and class labels. The file contains three columns
where the first two columns represent the two features, and the third column repre-
sents the class labels. It has two features f1 and f2 with values f1 = {5.5,5.7,6.1,
4.5,4.3} and f2={1.5,0.5,1.1,−1.8,−1.5}, and their corresponding label set
L={1,1,1,−1,−1}.

Listing 9.3 An R programming example—linear svm-based classifiers

1 # Date: May 21st, 2015
2 # svm-prog2-new
3
4 # read data from a file
5 data <- read.table("file3.txt", sep="")
6
7 # extract feature and separate the labels
8 point.x = matrix(c(data$V1, data$V2),nrow=2,ncol=5,byrow=TRUE)
9 point.x

10
11 # select weights for parametrization
12 weight.w=matrix(c(2,3,2.1,4.1,1.9,3.1),nrow=3,ncol=2,byrow=TRUE)
13 weight.w
14
15 # select intercepts for parametrization
16 gamma.g = matrix(c(-10,-10,-8),nrow=3,ncol=1,byrow=TRUE)
17 gamma.g
18

9.1 Linear Support Vector Machine 217

2 4 6 8 10

−
4

−
2

0
2

4

line.x1

lin
e.

x2

Fig. 9.3 A possible classifier for five points

19 mgamma.g = matrix(rep(gamma.g,5),nrow=3,ncol=5)
20 mgamma.g
21
22 # assign class labels
23 label.s = matrix(c(data$V3),nrow=5,ncol=1,byrow=TRUE)
24 label.s
25
26 label.ss=matrix(rep(label.s,3),ncol=3)
27 label.ss
28
29 # determine label error
30 hat.y = weight.w %*% point.x + mgamma.g
31 hat.y
32
33 # check for minimum error
34 t(label.ss) * hat.y
35
36 # calculate SVM measure for optimization
37 measure.m = (weight.w %*% t(weight.w))/2
38 measure.m
39
40 # display the straight line and points
41 line.x1 = rep(0,10)
42 line.x2 = rep(0,10)
43
44 slope = weight.w[,1]/weight.w[,2]
45 intercept=gamma.g/weight.w[,2]
46
47 line.x1 = 1:10
48 line.x2 = -intercept[1]-slope[1]*line.x1
49

218 9 Support Vector Machine

50 plot(line.x1, line.x2, type="o", col="blue", pch=20, ylim=c(-5,5)
)

51 points(point.x[1,], point.x[2,], col=ifelse(data$V3==1,"blue","
red"), pch=19)

52 grid(15, 15, lwd=2)
53
54 line.x1 = 1:10
55 line.x2 = -intercept[2]-slope[2]*line.x1
56 lines(line.x1, line.x2, type="o", col="red", pch=20, ylim=c(-5,5)

)
57
58 line.x1 = 1:10
59 line.x2 = -intercept[3]-slope[3]*line.x1
60 lines(line.x1, line.x2, type="o", col="green", pch=20, ylim=c

(-5,5))
61
62 # optimization - select the weights that correspond
63 # to the smallest measure.
64 diag(measure.m)

This program has produced the figure presented in Fig. 9.3, and we can see the
five points in the data domain with two classes separated by the same three straight
lines considered previously. The program has also produced svm-measures that are
calculated in line 37 and displayed in line 64. The difference between Listing 9.3,
and Listings 9.2 and 9.1 is the calculations using the matrix form rather than the
iterative steps; hence, the diagonal values of the matrix variable “measure.m” are
the svm-measures for the three lines considered.

9.1.2 Linear Classifier: Nonseparable Linearly

In the above section we studied the classification problem of separable classes.
If classes are nonseparable to an acceptable level, then a slack variable that de-
scribes the false positives must be introduced to the optimization problem described
in Eq. (9.12). This will lead to the following equation [7]:

Minimize:
w,γ,ζ≥0

||w||2
2

+ ε(ζ)

subject to: s(wx′+ γI)+ ζ ≥ I

(9.14)

where the new variable ζ is called the slack variable, and it describes the acceptance
of false positive and true negative errors in the classification results. Incorporating
this error variable in the optimization goal of the support vector machine, we can
obtain a better and acceptable classifier.

9.2 Lagrangian Support Vector Machine 219

9.2 Lagrangian Support Vector Machine

The Lagrangian Support Vector Machine may be conceptualized as matrix ex-
pansion and matrix multiplications. The paper [9] by Mangasarian and Musicant
provides mathematical modeling of this approach with a detail explanation. It is
mathematically intensive; therefore, this approach is simplified in this section with
the usage of matrix expansions and multiplications with a conceptualized example.

9.2.1 Modeling of LSVM

The modeling of the Lagrangian support vector machine can be easily understood
if you have a clear understanding of the support vector machine theory presented
in Chap. 7 and in the earlier sections of this chapter. The Lagrangian support vector
machine may be explained based on the details in [7, 9], however, adopting the fol-
lowing optimization problem proposed by Dunbar [10] as a new formulation (called
L1 +L2 −SVM) can help with better implementation:

Minimize:
W,γ,ζ̂≥0

W′L1W
2

+
γ2

2
+

λ2

2
ζ̂ ′ζ̂

subject to: S(XW+ Îγ)+ ζ̂ ≥ Î

(9.15)

where

W =

[
w
v

]
;L1 = λ1

[
I 0
0 0

]
;S =

[
s 0
0 I

]
; Î =

[
I
0

]
; (9.16)

X =

⎡
⎣ x 0

I 0
−I 0

⎤
⎦ ; ζ̂ =

⎡
⎣ζ

v
0

⎤
⎦ . (9.17)

It can be considered as the generalized model of the support vector machine
presented in Eq. (9.14). Say, for example, if you substitute value 1 for λ1 and λ2 with
appropriate matrix dimensions, then we will be able to obtain the same optimization
model as the one presented in Eq. (9.14).

9.2.2 Conceptualized Example

The optimization model L1 +L2 −SVM proposed in [10] and presented above may
be simplified for its implementation by the process diagram with data flow illus-
trated in Figs. 9.4 and 9.5. These figures illustrate the approach using a simple exam-
ple with two classes (labeled 1 and −1), and 5 data points {(5.5, 1.5), (5.7, 0.5), (6.1,
1.1), (4.5, −1.8), (4.3, −1.5)}, λ1 = 0.95, and λ2 = 1. Let us begin our explanation

220 9 Support Vector Machine

with the “Start” from the top of the diagram. The data table is first divided into the
data domain and the response set. The data domain is then processed via the left side
of the diagram, and the response set is processed via the right side of the diagram,
and the results are combined to generate the input to the Mangasarian and Musicant
code, which provides the results in the bottom right-hand corner of the figure. The
step to get the final weights for the slope and the intercept of the classifier is illus-
trated in Fig. 9.5. The process in Figs. 9.4 and 9.5 reflects the code in Listing 9.4.
This conceptualized example provides a simple visual tool to understand the code
of L1 +L2 −SVM in Listing 9.4.

9.2.3 Algorithm and Coding of LSVM

The code in Listing 9.4 is written in R programming language, based on the process
diagram with the data flow in Fig. 9.4, which was developed based on the L1 +
L2 −SVM formulation proposed by Dunbar [10] and the pseudo code presented by
Mangasarian and Musicant in [9].

Fig. 9.4 The process diagram with data flow to develop the classifier based on L1 +
L2 −SVM and the Mangasarian and Musicant pseudo code in [9]

9.2 Lagrangian Support Vector Machine 221

Fig. 9.5 Calculation of the final output of the process diagram presented in the
previous figure in Fig. 9.4

Listing 9.4 An R programming example—implementation of LSVM

1 # Date: October 4th, 2014
2 # my-svm
3
4 data <- read.table("file3.txt", sep="")
5
6 A = data[1:2]
7 tmp1.A = scale(A)
8
9 scaled.A = tmp1.A[,]

10 class.label = data[3]
11 plot(scaled.A[,1], scaled.A[,2], col=ifelse(data$V3==1,"blue","

red"), pch=19)
12
13 dim1.A = dim(A)[1]
14 dim2.A = dim(A)[2]
15
16 tmp1.D = c(t(class.label),rep(1,2*dim2.A))
17 diag.D = diag(tmp1.D)
18
19 tmp2.A = cbind(scaled.A, matrix(0,dim1.A,dim2.A))
20 tmp3.A = cbind(diag(dim2.A),0.0*diag(dim2.A))
21 tmp4.A = cbind(-diag(dim2.A),diag(dim2.A))
22

222 9 Support Vector Machine

23
24 tmp.expanded.A = rbind(tmp2.A, tmp3.A, tmp4.A)
25 dim1.expanded.A = dim(tmp.expanded.A)[1]
26 dim2.expanded.A = dim(tmp.expanded.A)[2]
27 expanded.A = matrix(tmp.expanded.A, dim1.expanded.A, dim2.

expanded.A)
28
29 lamda = 0.95
30 tmp1.lamda = sqrt(1/lamda)*diag(dim2.A)
31 tmp2.lamda = 0*diag(dim2.A)
32 tmp3.lamda = cbind(tmp1.lamda, tmp2.lamda)
33 tmp4.lamda = cbind(tmp2.lamda, tmp2.lamda)
34
35 expanded.lamda = rbind(tmp3.lamda, tmp4.lamda)
36
37 one.zero = c(rep(1,dim1.A), rep(0,2*dim2.A))
38
39 inter1.A = expanded.A \%*\% expanded.lamda
40 inter2.A = cbind(inter1.A, -one.zero)
41
42 lsvm.H = diag.D \%*\% inter2.A
43
44
45 ##### Mangasarian code starts #####
46 nu =1
47 lsvm.S = lsvm.H \%*\% solve((1/nu)*diag(2*dim2.A + 1) + t(lsvm.H)

\%*\% lsvm.H)
48
49 lsvm.u = nu*(1-lsvm.S \%*\% (t(lsvm.H) \%*\% one.zero))
50
51 prev.lsvm.u = lsvm.u + 1
52
53 ii=0
54 alpha = 1.9/nu
55 while(ii < 1000 & norm(prev.lsvm.u-lsvm.u) > 0.0001) {
56 z = ((1/nu) + lsvm.H \%*\% t(lsvm.H) - alpha) \%*\% lsvm.u - 1
57 z = 1 + (abs(z) + z)/2
58 prev.lsvm.u = lsvm.u
59 lsvm.u = nu*(z-lsvm.S \%*\% (t(lsvm.H) \%*\% z))
60 ii = ii+1
61 }
62 ##### Mangasarian code ends #####
63
64 lsvm.y = expanded.lamda \%*\% t(expanded.A) \%*\% diag.D \%*\%

lsvm.u
65 lsvm.y
66
67 lsvm.gamma = -t(one.zero) \%*\% diag.D \%*\% lsvm.u
68 lsvm.gamma
69
70 lsvm.w = lsvm.y[1:dim2.A] - lsvm.y[(dim2.A+1):(2*dim2.A)]
71 lsvm.w
72
73 intercept = lsvm.gamma/lsvm.w[2]

9.3 Nonlinear Support Vector Machine 223

0.0 0.5−0.5−1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.0

scaled.A[, 1]

sc
al

ed
.A

[,
2]

Fig. 9.6 The implementation of SVM and the classifier

74 slope = -lsvm.w[1]/lsvm.w[2]
75
76 abline(a=intercept, b=slope, col=2)
77 grid(15, 15, lwd=2)

The output of this program is presented in Fig. 9.6. It shows the scatter plot of
the input data in file “file3.txt” and the support vector machine classifier calculated
by this program. We can easily agree with this linear classification result.

9.3 Nonlinear Support Vector Machine

We have seen that the scatter plots play a major role in classification by facilitating
the domain divisions. In the scatter plots, the dimension (i.e., each axis) is defined
by a feature, and the space defined by the feature is called the vector space. The
scatter plot describes the relationship between the features, and thus the correlated
and uncorrelated data points can be identified in the vector space. The classification
(in other words, the domain division) may be carried out either in a vector space or
in a feature space, where the vector space is defined as the space that contains the
scatter plot of the original features, and the feature space is defined as the space that
contains the scatter plot of the transformed features using kernel functions [3].

224 9 Support Vector Machine

9.3.1 Feature Space

Suppose there are p features X1,X2, . . . ,Xp and the ith observation is denoted
by xi1,xi2, . . . ,xip, where i = 1, . . . ,n. Then we can plot these n data points in a
p-dimensional space to form a multidimensional scatter plot. This space is the vec-
tor space, and it displays both the magnitude and the directional information of the
data. This set of p features may be transformed to a new set of d features using a
polynomial kernel [3]. This space is called the feature space and, in general, each
data point in the feature space carries information about a single data point in the
vector space. The advantage of a feature space is that the nonseparable classes in the
vector space may be turned into separable classes using a right choice of a kernel.
However, finding a kernel and generating such a transformation are not simple.

φ : Rp → Rd (9.18)

where Rp is the vector space (original domain) and Rd is the feature space, which
is high dimensional (generally d >> p). It is possible to find φ that helps transform
the vector space to a feature space where the classes are linearly separable. Hence,
the support vector machine classifier in the feature space can be written as follows:

Minimize:
w,γ

||w||2
2

subject to: s(wφ(x′)+ γI)≥ I
(9.19)

However, φ(x) is high dimensional, thus the computation becomes very expen-
sive. This can be tackled using an approach called a kernel trick. Very useful lecture
notes on kernel trick can be found at http://www.cs.berkeley.edu/∼jordan/courses/
281B-spring04/lectures/lec3.pdf.

9.3.2 Kernel Trick

The usefulness of the kernel trick technique is explained in this section using the
data points shown in Fig. 9.7. This figure shows classes that are not linearly sepa-
rable. However, if we transform them to a three-dimensional feature space (higher
dimensional) using the following transformation, then we can obtain linear separa-
bility as shown in Fig. 9.8:

φ(u1,u2) = (au1
2,bu2

2,cu1u2) (9.20)

Therefore, the support vector machine technique can be applied to this higher
dimensional space, and a hyperplane can be derived as a classifier. In many real
applications, such linear separability may be achieved in a very high-dimensional
space, which makes it infeasible to apply the support vector machine techniques.

http://www.cs.berkeley. edu/~jordan/courses/281B-spring04/lectures/lec3.pdf
http://www.cs.berkeley. edu/~jordan/courses/281B-spring04/lectures/lec3.pdf

9.3 Nonlinear Support Vector Machine 225

This is where the kernel tricks help. What exactly is the kernel trick? It is explained
with the following simple example: Let us take two points (u1,u2) and (v1,v2) from
the two-dimensional space presented in Fig. 9.7. Then we can have their transformed
points as follows:

φ(u1,u2) = (au1
2,bu2

2,cu1u2)

φ(v1,v2) = (av1
2,bv2

2,cv1v2) (9.21)

Let us now define a new function, which is called the kernel function, as follows:

k(u,v) = φ(u1,u2).φ(v1,v2) (9.22)

It gives us

k(u,v) = a2u1
2v1

2 + b2u2
2v2

2 + c2u1v1u2v2 (9.23)

If we select c2 = 2ab, then we can have

k(u,v) = (au1v1 + bu2v2)
2 (9.24)

This can be written in the following matrix form:

k(u,v) =

([
u1 u2

]∗
[

a 0
0 b

]
∗
[

v1

v2

])2

(9.25)

It shows that even if the function φ transforms the original data domain to a
higher dimensional domain, the product φ .φ can be easily defined based on the data
in the original domain. Therefore, we can conclude that the kernel functionpresented

1.00.5−0.5

−0
.5

0.
0

0.
5

1.
0

−1.0 0.0

data$V1

da
ta

$V
2

Fig. 9.7 It shows nonlinear classifiers are required to classify these two classes—a
circle or an ellipse is needed to separate these two classes

226 9 Support Vector Machine

d1

d2

d3

0

0.2

0.4

0.6
0

0.2
0.4

0.6

1

0.5

−0.5

−1

0

Fig. 9.8 This example shows that the classification of nonlinear separable classes is
possible in a higher dimensional space called feature space

in Eq. (9.22) can be obtained by the matrix operations inside the original vector
space rather than in the higher dimensional feature space. With the dual form [10]
and the kernel function, the support vector machine can be applied in the original
space (which is the lower dimension) with the same effect as its application inside
the higher dimensional feature space.

Listing 9.5 An R programming example—Kernel trick example

1 # Date: May 23rd, 2015
2 # kernel-trick
3
4 library("rgl")
5
6 data <- read.table("file4.txt", sep="")
7
8 png("nonlinear2d.png", width=4, height=4, units="in",res=300)
9 plot(data$V1, data$V2, col=ifelse(data$V3==1,"blue","red"), pch

=19)
10 grid(15, 15, lwd=2)
11 dev.off()
12
13 a = 1
14 b = 1
15 c = sqrt(2*a*b)
16
17 d1 = a*data$V1*data$V1
18 d2 = b*data$V2*data$V2
19 d3 = c*data$V1*data$V2
20
21 plot3d(d1,d2,d3,col=ifelse(data$V3==1,"blue","red"))
22 rgl.snapshot("somefile.png")

9.3 Nonlinear Support Vector Machine 227

This R program reads the contents of “file4.txt” and first generates the scatter
plot in Fig. 9.7. We can see the need for a nonlinear classifier. A kernel trick code in
the rest of the program transforms the data to a higher dimension (in this case, 3D)
and generates the plot as shown in Fig. 9.8. We can clearly see a linear separation in
the transformed data.

The kernel trick generally increases the dimensionality and, in turn, it can
increase the computational time.

9.3.3 SVM Algorithms on Hadoop

Big data classification requires the support vector machine to be implemented on the
system like the RHadoop, which provides a distributed file system and the R pro-
gramming framework. As we recall, this framework provides mapper(), reducer(),
and mapreduce() functions. Therefore, the MapReduce programming on Hadoop
distributed files systems allows the implementation of svm-based algorithms either
inside the mapper() function or inside the reducer() function. Two examples are con-
sidered in this section: the first example adopts the five points, three lines svm-based
example discussed earlier and implements it inside the reducer() function, and the
second example implements the lsvm algorithm inside the mapper() function and
illustrates the conceptual example presented previously.

9.3.3.1 SVM: Reducer Implementation

Once again, the L1 + L2 − SVM formulation proposed by Dunbar [10] and the
pseudo code presented by Mangasarian and Musicant in [9] have been used in this
implementation. The RHadoop system requires a number of environment variables
[11]; therefore, they are included in the program from lines 4 to 6 in Listing 9.6.
They provide path to the home of MapReduce (to access necessary libraries), to the
Hadoop command (for program execution), and streaming jar file in the Linux sys-
tem. In line 8, the data is uploaded into the R environment. The implementations on
RHadoop requires two libraries [12, 13], rmr2, and rhdfs, and they are included in
lines 10 and 11.

Listing 9.6 An RHadoop example—LSVM as a reducer() function

1 # Date: May 21st, 2015
2 # svm-on-hadoop
3
4 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
5 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)

228 9 Support Vector Machine

2 4 6 8 10

−
4

−
2

0
2

4

line.x1

lin
e.

x2

Fig. 9.9 It shows the implementation of SVM and the classifier

6 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/
contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)

7
8 data <- read.table("file3.txt", sep="")
9

10 library(rmr2)
11 library(rhdfs)
12
13 hdfs.init()
14 data.content <- to.dfs(data)
15
16 data.map.fn <- function(k,v) {
17 key <- 1
18 val <- c(v[,1],v[,2],v[,3])
19 #val <- c(scale(v[,1]),scale(v[,2]),v[,3])
20 keyval(key,val)
21 }
22
23 data.reduce.fn <- function(k,v) {
24
25 # extract feature and separate the labels
26 rmr.str(v)
27 point.x = matrix(v[1:10],nrow=2,ncol=5,byrow=TRUE)
28
29 # select weights for parametrization
30 weight.w = matrix(c(2,3,2.1,4.1,1.9,3.1),nrow=3,ncol=2,byrow=

TRUE)
31 weight.w
32
33 # select intercepts for parametrization

9.3 Nonlinear Support Vector Machine 229

34 gamma.g = matrix(c(-10,-10,-8),nrow=3,ncol=1,byrow=TRUE)
35 gamma.g
36
37 mgamma.g = matrix(rep(gamma.g,5),nrow=3,ncol=5)
38 mgamma.g
39
40 # assign class labels
41 label.s = matrix(c(v[11:15]),nrow=5,ncol=1,byrow=TRUE)
42 label.s
43
44 label.ss=matrix(rep(label.s,3),ncol=3)
45 label.ss
46
47 # determine label error
48 hat.y = weight.w %*% point.x + mgamma.g
49 hat.y
50
51 # check for minimum error
52 t(label.ss) * hat.y
53
54 # calculate SVM measure for optimization
55 measure.m = (weight.w %*% t(weight.w))/2
56 measure.m
57
58 # display the straight line and points
59 line.x1 = rep(0,10)
60 line.x2 = rep(0,10)
61
62 slope = -weight.w[,1]/weight.w[,2]
63 intercept = -gamma.g/weight.w[,2]
64
65 line.x1 = 1:10
66 line.x2 = intercept[1]+slope[1]*line.x1
67
68 plot(line.x1, line.x2, type="o", col="blue", pch=20, ylim=c

(-5,5))
69 points(point.x[1,], point.x[2,], col=ifelse(data$V3==1,"blue","

red"), pch=19)
70 grid(15, 15, lwd=2)
71
72 line.x1 = 1:10
73 line.x2 = intercept[2]+slope[2]*line.x1
74 lines(line.x1, line.x2, type="o", col="red", pch=20, ylim=c

(-5,5))
75
76 line.x1 = 1:10
77 line.x2 = intercept[3]+slope[3]*line.x1
78 lines(line.x1, line.x2, type="o", col="green", pch=20, ylim=c

(-5,5))
79
80 # optimization - select the weights that correspond
81 # to the smallest measure.
82 kk = diag(measure.m)
83 ii = which(kk == min(kk))

230 9 Support Vector Machine

84 ss=c(slope[ii],intercept[ii])
85 keyval(k, ss)
86 }
87
88 classify <- mapreduce(input=data.content,
89 map = data.map.fn,
90 reduce = data.reduce.fn)
91
92 results = from.dfs(classify)
93 results

We should initialize the Hadoop environment and feed the data to it, and these
tasks are presented in lines 13 and 14. Once these tasks are performed, we can
define mapper() and reducer() functions, and then input them to the MapReduce
model. The mapper() function is defined from line 16 to 21, and it creates a (key,
value) pair from the input data. The integer value of 1 is used as key (see line 17)
because of the single file processing, and the features in the first and the second
column (v[,1],v[,2]) of the file are used as values (see line 18) in the key value
pair presented in line 20. The reducer() function accepts the (key, value) pair, and
uses the values to find the classifier (i.e., the slope and the intercept), which gives
the minimum measure adopted in the svm’s optimization approach [see Eq. (9.13)].
These steps are in the code from lines 23 to 86. Then these optimal parameters
are tagged with the key (see line 85). Each block of code in this program is com-
mented such that they are self explanatory. The block of code from line 58 to line 78
produces the scatter plot and the straight lines (possible svm-based classifiers) pre-
sented in Fig. 9.9. Because this program is executed inside the RHadoop it saves this
result as Rplots.pdf file. The MapReduce model in lines 88–90 then assigns them to
the variable called “classify.” These data processing tasks occur inside the Hadoop
environment, and they must be transferred to outside the Hadoop environment as
performed with the command in line 92.

9.3.3.2 LSVM: Mapper Implementation

The mapper implementation of the L1 +L2 −SVM formulation proposed by Dun-
bar [10] is presented, and it uses the pseudo code presented by Mangasarian and
Musicant in [9]. In the reducer() implementation, the sorted data was obtained from
the mapper(), and then the reducer() implemented the LSVM-based approach to de-
rive the weights for the slope and intercept parameters of the svm classifier. But
in the mapper implementation, the LSM-based approach is implemented in the
mapper() function, and the slope and intercept parameters are calculated. These
parameters are passed to the reducer() function. In both cases, a single key is used.
However, multiple keys can be used to take advantage of the parallelization and
sorting features of the MapReduce framework.

9.3 Nonlinear Support Vector Machine 231

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

line.x1

lin
e.

x2

●

●

●

●

●

Fig. 9.10 The implementation of SVM on RHadoop and the classifier

Listing 9.7 An RHadoop example—LSVM as a mapper() function

1 # Date: May 21st, 2015
2 # lsvm-on-hadoop
3
4 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
5 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
6 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
7
8 data <- read.table("file3.txt", sep="")
9

10 library(rmr2)
11 library(rhdfs)
12
13 hdfs.init()
14 data.content <- to.dfs(data)
15
16 data.map.fn <- function(k,v) {
17 key <- 1
18 vw <- cbind(scale(v[,1]),scale(v[,2]))
19
20 scaled.A <- matrix(vw, ncol=2, byrow=FALSE)
21 class.label <- v[,3]
22 rmr.str(class.label)
23
24 dim1.A = dim(scaled.A)[1]
25 dim2.A = dim(scaled.A)[2]
26

232 9 Support Vector Machine

27 tmp1.D = c(t(class.label),rep(1,2*dim2.A))
28 diag.D = diag(tmp1.D)
29
30 tmp2.A = cbind(scaled.A, matrix(0,dim1.A,dim2.A))
31 tmp3.A = cbind(diag(dim2.A),0.0*diag(dim2.A))
32 tmp4.A = cbind(-diag(dim2.A),diag(dim2.A))
33
34 tmp.expanded.A = rbind(tmp2.A, tmp3.A, tmp4.A)
35 dim1.expanded.A = dim(tmp.expanded.A)[1]
36 dim2.expanded.A = dim(tmp.expanded.A)[2]
37 expanded.A = matrix(tmp.expanded.A, dim1.expanded.A, dim2.

expanded.A)
38
39 lamda = 0.95
40 tmp1.lamda = sqrt(1/lamda)*diag(dim2.A)
41 tmp2.lamda = 0*diag(dim2.A)
42 tmp3.lamda = cbind(tmp1.lamda, tmp2.lamda)
43 tmp4.lamda = cbind(tmp2.lamda, tmp2.lamda)
44
45 expanded.lamda = rbind(tmp3.lamda, tmp4.lamda)
46 one.zero = c(rep(1,dim1.A), rep(0,2*dim2.A))
47
48 inter1.A = expanded.A %*% expanded.lamda
49 inter2.A = cbind(inter1.A, -one.zero)
50
51 #rmr.str(scaled.A)
52 lsvm.H = diag.D %*% inter2.A
53
54 ##### Mangasarian code starts ################
55 nu =1
56 lsvm.S = lsvm.H %*% solve((1/nu)*diag(2*dim2.A + 1) + t(lsvm.H)

%*% lsvm.H)
57
58 lsvm.u = nu*(1-lsvm.S %*% (t(lsvm.H) %*% one.zero))
59
60 prev.lsvm.u = lsvm.u + 1
61
62 ii=0
63 alpha = 1.9/nu
64 while(ii < 1000 & norm(prev.lsvm.u-lsvm.u) > 0.0001) {
65 z = ((1/nu) + lsvm.H %*% t(lsvm.H) - alpha) %*% lsvm.u - 1
66 z = 1 + (abs(z) + z)/2
67 prev.lsvm.u = lsvm.u
68 lsvm.u = nu*(z-lsvm.S %*% (t(lsvm.H) %*% z))
69 ii = ii+1
70 }
71 ###### end of Mangasarian
72
73 lsvm.y = expanded.lamda %*% t(expanded.A) %*% diag.D %*% lsvm.u
74
75 lsvm.gamma = -t(one.zero) %*% diag.D %*% lsvm.u
76 lsvm.gamma
77
78 lsvm.w = lsvm.y[1:dim2.A] - lsvm.y[(dim2.A+1):(2*dim2.A)]

9.3 Nonlinear Support Vector Machine 233

79 lsvm.w
80
81 intercept = lsvm.gamma/lsvm.w[2]
82 slope = -lsvm.w[1]/lsvm.w[2]
83
84 line.x1 = rep(0,10)
85 line.x2 = rep(0,10)
86
87 xx = -2.0
88 for (i in 1:40) {
89 line.x1[i] = xx
90 line.x2[i] = slope*line.x1[i] + intercept
91 xx=xx+0.1
92 }
93
94 plot(line.x1, line.x2, type="o", pch=20)
95 points(vw[,1], vw[,2], col=ifelse(v[,3]==1,"blue","red"), pch

=19)
96 grid(15, 15, lwd=2)
97
98 val <- c(intercept,slope)
99 keyval(key,val)

100 }
101
102 data.reduce.fn <- function(k,v) {
103 keyval(k, v)
104 }
105
106 classify <- mapreduce(input=data.content,
107 map = data.map.fn,
108 reduce = data.reduce.fn)
109
110 aa = from.dfs(classify)
111 aa

The output of this program is presented in Fig. 9.10. This is similar to the one
in Fig. 9.6, except this classifier is obtain using the RHadoop and MapReduce com-
puting tools. However, the results show a significant similarity. The slopes and the
intercepts may be numerically compared to determine their similarities.

9.3.4 Real Application

In this real application, the hardwood floor and carpet floor data sets are used. As
you recall, these data sets have 1024 observations in each with 64 features that cor-
respond to the intensity values of the pixels. To show the performance of the support
vector machine implemented in Listing 9.7 in a two-dimensional data domain, the
features 48 and 49 are selected. The scatter plots of the data sets corresponding

234 9 Support Vector Machine

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

line.x1

lin
e.

x2

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

● ●

●

●
●

●

●● ●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

● ●
●

● ● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●●
●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

● ●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

● ●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

Fig. 9.11 The implementation of SVM on RHadoop, and the classifier with hard-
wood floor and carpet floor data sets

to these two features and the support vector machine classifier obtained using the
algorithm are presented in Fig. 9.11. We can clearly see the linear classification per-
formance of the Lagrangian support vector machine.

Problems

9.1. Code Revision
Revise the MapReduce programs presented in this chapter using the coding princi-
ples taught in Chap. 5.

9.2. Coding Efficiency

(a) Study the programs presented in the listings and draw the structure diagrams,
data flow diagrams, and process diagrams based on the software engineering
principles.

(b) Study the R programs in the Listings and improve their efficiencies using coding
principles and modularization. Make this program more efficient using arrays
and input files as well.

9.3. Comparison
Discuss the advantages and disadvantages of the mapper() and the reducer() imple-
mentations of the svm-based approaches. You may also run these implementations
and obtain the system times to support the discussion.

References 235

9.4. Split-Merge-Split

(a) Assuming that you have completed the problem presented in “Problem 3.1,”
perform the same steps using the RHadoop system with the R programming
framework.

(b) Compare the results that you obtained in (a) with the results that you obtained
in Problem 3.1.

Acknowledgements I would like to thank Professor Vaithilingam (Jeya) Jeyakumar of the Uni-
versity of New South Wales, Australia, for giving me an opportunity to work with him and his
research team on support vector machine problems and associated implementations to different
applications. I also participated in the research focusing on enhancing the support vector machine
technique and published our theory, results, and findings. This research contributed to this chapter.

References

1. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. “Support vector machines.”
Intelligent Systems and their Applications, IEEE, 13(4), pp. 18–28, 1998.

2. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

3. B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Muller, G. Ratsch and A. J. Smola.
“Input space versus feature space in kernel-based methods,” IEEE Trans. On Neural Networks,
vol. 10, no. 5, pp. 1000–1017, 1999.

4. G. Huang, H. Chen, Z. Zhou, F. Yin and K. Guo. “Two-class support vector data description.”
Pattern Recognition, 44, pp. 320–329, 2011.

5. V. Franc, and V. Hlavac. “Multi-class support vector machine.” In Proceedings of the IEEE
16th International Conference on Pattern Recognition, vol. 2, pp. 236–239, 2002.

6. http://en.wikipedia.org/wiki/Distance between two straight lines, accessed June 5th, 2015.
7. M. Dunbar, J. M. Murray, L. A. Cysique, B. J. Brew, and V. Jeyakumar. “Simultaneous clas-

sification and feature selection via convex quadratic programming with application to HIV-
associated neurocognitive disorder assessment.” European Journal of Operational Research
206(2): pp. 470–478, 2010.

8. V. Jeyakumar, G. Li, and S. Suthaharan. “Support vector machine classifiers with uncertain
knowledge sets via robust optimization.” Optimization, pp. 1–18, 2012.

9. O. L. Mangasarian and D. R. Musicant. 2000. “LSVM Software: Active set support vector
machine classification software.” Available online at http://research.cs.wisc.edu/dmi/lsvm/.

10. M. Dunbar. “Optimization approaches to simultaneous classification and feature selections,”
Technical Report (supervised by V. Jeyakumar) School of Mathematics and Statistics, The
University of New South Wales, Australia, pp. 1–118, 2007.

11. http://www.meetup.com/Learning-Machine-Learning-by-Example/pages/Installing R and R
Hadoop/

12. http://projects.revolutionanalytics.com/rhadoop/
13. http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/

http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
http://projects.revolutionanalytics.com/rhadoop/
http://research.cs.wisc.edu/dmi/lsvm/
http://en.wikipedia.org/wiki/Distance_between_two_straight_lines

Chapter 10
Decision Tree Learning

Abstract The main objective of this chapter is to introduce you to hierarchical
supervised learning models. One of the main hierarchical models is the decision
tree. It has two categories: classification tree and regression tree. The theory and
applications of these decision trees are explained in this chapter. These techniques
require tree split algorithms to build the decision trees and require quantitative mea-
sures to build an efficient tree via training. Hence, the chapter dedicates some dis-
cussion to the measures like entropy, cross-entropy, Gini impurity, and information
gain. It also discusses the training algorithms suitable for classification tree and reg-
ression tree models. Simple examples and visual aids explain the difficult concepts
so that readers can easily grasp the theory and applications of decision tree.

10.1 The Decision Tree

In practice, the decision tree-based supervised learning is defined as a rule-based,
binary-tree building technique (see [1–3]), but it is easier to understand if it is int-
erpreted as a hierarchical domain division technique. Therefore, in this book, the
decision tree is defined as a supervised learning model that hierarchically maps a
data domain onto a response set. It divides a data domain (node) recursively into
two subdomains such that the subdomains have a higher information gain than the
node that was split. We know the goal of supervised learning is the classification of
the data, and therefore, the information gain means the ease of classification in the
subdomains created by a split. Finding the best split that gives the maximum infor-
mation gain (i.e., the ease of classification) is the goal of the optimization algorithm
in the decision tree-based supervised learning.

Suppose we have a system that produces events (observations) that can be one of
the classes 0 or 1 (e.g., rain or no rain, head or tail), and these events depend on only
one feature. Hence, let us define the data domain as D = {e1,e2, . . . ,en} (assume

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 10

237

238 10 Decision Tree Learning

Fig. 10.1 Classification example. A decision tree building with a one-dimensional
data domain—output is a discrete value

this is a sorted list), and their corresponding class labels are L = {r1,r2, . . . ,rn},
where ri ∈ {0,1}, and i = 1 . . .n. The spread (or the distribution pattern) of the class
labels over the data domain determines the ease of classification. Let us represent the
information gain of D with respect to L by Ii and split the sorted set at the location
m to form two subdomains D1 = {e1,e2, . . . ,em} and D2 = {em+1,e2, . . . ,en} with
the corresponding response sets L1 = {r1,r2, . . . ,rm} and L2 = {rm+1,r2, . . . ,rn}.
If their information gains are Ii1 and Ii2, then m will be considered as the best split
if average(Ii1, Ii2)> Ii. Of course, we need a good quantitative measure to measure
the information gain, or the ease of classification, with respect to the domain split.

Suppose p0 and p1 represent the probabilities that class 0 and class 1 can be
drawn from the domain D, respectively. Take an example that |p0 − p1| → 1; then
we can see one particular class dominates highly in that domain, hence further do-
main division is not required. Similarly if |p0 − p1| → 0, then the classes have equal
domination in that domain; therefore, further split is needed. In that case, we gener-
ate two subdomains D1 and D2. Say, q0 and q1 are the probabilities that class 0 and
class 1 can be drawn from the subdomain D1, respectively. If the split is efficient,
q0 > p0 or q1 > p1. Assume q0 > p0, then q0 = p0 + ε , where ε > 0.

|q0 − q1|= |2q0 − 1|= |2(p0 + ε)− 1|= |2p0 + 2ε − 1| (10.1)

|q0 − q1|= |p0 + 1− p1+ 2ε − 1|= |p0 − p1 + 2ε|. (10.2)

10.1 The Decision Tree 239

Fig. 10.2 Classification example. A decision tree building with a two-dimensional
data domain—output is a discrete value

This mathematical equation emphasizes the following inequality (when q0 > p0):

|q0 − q1|> |p0 − p1|. (10.3)

The absolute differences in the above inequality are the quantitative measures
that measures the proportionality between the classes in the respective subdomains.
This probabilistic measure is a good measure to address the optimization objectives
of the decision tree. Let us look at some “Thinking with Examples” and understand
the decision tree better in terms of domain division focusing on information gain.

Thinking with Example 10.1:

The purpose of this example is to show you how a data domain formed by a single
feature may be divided and mapped to a two-class (discrete) response set. Suppose
the data domain is a single feature set X1 = {1,2,3,8,9,10} with a set of assigned
class labels L = {1,1,0,1,1,0}, respectively. Then the root node of the decision
tree is the feature X1, and its value is used to divide the data domain as shown in
Fig. 10.1. We now need a parameter and an approach to divide this root node to
build a decision tree. For simplicity, we can choose the mean value (m = 5.5) as
the parameter value, and the approach as the values ≤ m form the left subdomain
and the values > m form the right subdomain. We can see these subdomains at the
second level of the tree (assuming the root is the first level). The mean values of

240 10 Decision Tree Learning

10 0 2 4 6 8 10 12

0 2 4 6 8 10 12

987654321
4

5

6

7

8

9

10

11

12

4

5

6

7

8

9

10

11

12

4

5

6

7

8

9

10

11

12

0 2 4 6 8 10 12
4

5

6

7

8

9

10

11

12

Fig. 10.3 Results from the code in Listing 10.1

the subdomains (m = 2 and m = 9) can be used to expand the tree as shown in
Fig. 10.1. Finally, the leaves that show the class labels are determined by the mean
as the split criterion and feature X1 as the domain and subdomains variables. Let us
now consider a two-dimensional data domain example.

Thinking with Example 10.2:

Suppose the system adds another feature set {4,5,12,6,9,12} to the same data with
the same labeling order. Hence, it creates the two-dimensional data domain formed
by the features X1 and X2. We now have two features, thus we must adopt an app-
roach to select one feature for the root node first. For simplicity, assume that the
feature X2 is selected randomly. Then the data domain considered at the root of the
tree is {4,5,12,6,9,12}, as shown in Fig. 10.2. Once again, if we use the mean as
the split criterion with the same splitting approach, then we get the subdomains as
shown in the figure. The left node at this level has the same class (i.e., class 1), so
no further split is required. The right node needs a split, and now we have a choice

10.1 The Decision Tree 241

Fig. 10.4 Regression example. A decision tree building with a one-dimensional data
domain—output is a real number

to have either X1 or X2. The tree shows the selection of the same feature. The mean
is calculated, and the node is split. Now the leaves have the class labels from the
same classes. The code in Listing 10.1 provides the results of the domain division
example in Fig. 10.2.

10.1.1 A Coding Example—Classification Tree

The block of code in line 4 to line 14, a two-dimensional data set with two classes is
created, a data domain and a response set are established, and these data points are
plotted as shown in the first figure in Fig. 10.3. In lines 18–20, the data domain is
divided into two subdomains using the mean value of feature 2 as the split location.
This statistical mean value is a part of the classifier. Note that this is the place where
the decision tree calculates the information gain using Gini index to find the opti-
mal split location. The block of code in lines 22–23 creates the subdomains (or the
children of the tree node). The classifier mean at this node is plotted in the second
figure of Fig. 10.3.

Listing 10.1 A Matlab example—classification tree

1 clear all;
2 close all;
3
4 x1=[1 2 3 8 9 10];

242 10 Decision Tree Learning

5 x2=[4 5 12 6 9 12];
6 yy=[1 1 0 1 1 0];
7
8 xx=[x1’ x2’ yy’];
9

10 ind1=find(xx(:,3)==1);
11 ind2=find(xx(:,3)==0);
12
13 figure;plot(xx(ind1,1),xx(ind1,2),’b*’);grid on;
14 hold on;plot(xx(ind2,1),xx(ind2,2),’r*’);grid on;
15
16 %%%
17
18 m1=mean(xx(:,2));
19 indL=find(xx(:,2)<m1);
20 indR=find(xx(:,2)>=m1);
21
22 xxL=xx(indL,:)
23 xxR=xx(indR,:)
24
25 hold on;line([0, max(xx(:,2))],[m1,m1]);
26
27 %%%
28
29 ind=2;
30 m2=mean(xxR(:,ind));
31 indRL=find(xxR(:,ind)<m2);
32 indRR=find(xxR(:,ind)>=m2);
33
34 xxRL=xxR(indRL,:)
35 xxRR=xxR(indRR,:)
36
37 if (ind==2)
38 hold on;line([0, max(xxR(:,ind))],[m2,m2],’color’,’k’);
39 else
40 hold on;line([m2,m2],[8, 12],’color’,’k’);
41 end

This is a toy example; therefore, we can see the intermediate output and observe
that the left domain does not need the split. Only the right subdomain is further
divided using the same feature (i.e., feature 2) in lines 29–32. By changing the value
of the variable ind in line 29 to 1, we can perform the split based on feature 1. The
third and fourth figures show the second split using the statistical means of features
1 and 2, respectively. The block of code in lines 37–41 performs this task. The
numerical output of this program is (if ind = 2):

xxL =
1 4 1
2 5 1
8 6 1

xxR =
3 12 0
9 9 1

10 12 0

10.1 The Decision Tree 243

xxRL =
9 9 1

xxRR =
3 12 0

10 12 0

These results are presented in a two-column format only for the purpose of im-
proving the presentation of the results. Similarly, the output of this program is (if
ind = 1):

xxL =
1 4 1
2 5 1
8 6 1

xxR =
3 12 0
9 9 1

10 12 0

xxRL =
3 12 0

xxRR =
9 9 1

10 12 0

These outputs are also presented in a two-column format for the purpose of im-
proving the presentation. This example leads us to ask the following questions: (1)
Which features must be selected for the nodes? (2) How do we parametrize the node
split? (3) What parameter values must be chosen? (4) How do we parametrize the
depth of the tree? and (5) How do we optimize the tree structure?

We can simply state: in decision tree supervised learning, there is a data do-
main which must be split into two subdomains at a location on a feature set
with the focus of obtaining an information gain at each split. This process
must be recursively carried out until the data domain is divided into several
subdomains, where each domain presents an optimal classification.

Thinking with Example 10.3:

The purpose of this example is to show you how a data domain formed by a single
feature may be divided and mapped to a continuous response set. Suppose the data
domain is a single feature set X1 = {1,2,3,8,9,10}with a set of assigned continuous
responses R = {1.1,1.2,0.5,1.3,1.4,0.8}. We use the same decision tree building
as shown in Fig. 10.1, and it is presented in Fig. 10.4 with minor differences. The
responses are averaged over the values of the subdomains resulting in at the leaves
of the tree. This is called the regression tree, and we will study this in detail later in
this chapter. The code in Listing 10.2 provides the results of the domain division for
a regression tree.

244 10 Decision Tree Learning

Fig. 10.5 Regression example. A decision tree building with a two-dimensional
data domain—output is a real number—result of Listing 10.2

10.1.2 A Coding Example—Regression Tree

The program in this section can be explained by the diagram in Fig. 10.5. The block
of code in lines 4–6 defines the two-dimensional data domain and the response set
with real numbers for regression. Line 8 defines a single matrix which contains both
data domain and response set.

Listing 10.2 A Matlab example—regression tree

1 clear all;
2 close all;
3
4 x1=[1 2 3 8 9 10];
5 x2=[4 5 12 6 9 12];
6 yy=[1.1 1.2 0.5 1.3 1.4 0.8];
7
8 xx=[x1’ x2’ yy’];
9

10 ind1=find(xx(:,3)==1);
11 ind2=find(xx(:,3)==0);
12
13 figure;plot3(xx(:,1),xx(:,2),xx(:,3),’*’);grid on;
14
15 %%%
16
17 m1=mean(xx(:,2));
18 indL=find(xx(:,2)<m1);

10.2 Types of Decision Trees 245

19 indR=find(xx(:,2)>=m1);
20
21 xxL=xx(indL,:);
22 xxR=xx(indR,:);
23
24 mean(xxL(:,3))
25
26 %%%
27
28 ind=2;
29 m2=mean(xxR(:,ind));
30 indRL=find(xxR(:,ind)<m2);
31 indRR=find(xxR(:,ind)>=m2);
32
33 xxRL=xxR(indRL,:);
34 xxRR=xxR(indRR,:);
35
36 mean(xxRL(:,3))
37 mean(xxRR(:,3))

The block of code from line 17 to 24 performs the first split using feature 2 and
prints the average of the responses of the subdomain in the left side of the tree. The
block of code in lines 28–34 splits the subdomain in the right side of the tree further
using feature 2. The averages of the responses in the new branches of the tree are
printed in lines 36–37. Hence, the final output of this program is:

ans =
1.2000

ans =
1.4000

ans =
0.6500

This program is hardcoded; therefore, you can modify the program in appropriate
places to investigate the effect of the features at different tree nodes. For example,
modify the code in line 28 to ind = 1, and study the effect.

10.2 Types of Decision Trees

In supervised learning, the decision tree has been divided into classification trees and
regression trees by Breiman et al. [4]. In simple terms, we can say the classification
tree helps predict a class label (i.e., discrete) for a response variable whereas the
regression tree helps predict a value (i.e., continuous) for the response variable. In
Figs. 10.6 and 10.7, the processes of a classification tree and regression tree are
illustrated using a hierarchical structure to show the evolution of domain division
properties.

246 10 Decision Tree Learning

Fig. 10.6 The classification tree is illustrated in 3D using two classes with domain
division properties. Response variable Y has two discrete values, red or blue

10.2.1 Classification Tree

The classification tree helps assign a label to a new data set. For example, it can
help us decide if a new observation belongs to a class 1 or a class 0. The concept
of the classification tree is explained using the illustration in Fig. 10.6, where two
classes (red and blue) are used. Note that the explanation is the construction of a
classification tree at the training phase, and it gives a visual example of a decision
tree building. It also uses the data domain and its changes during the construction
of a decision tree. The left diagram shows the propagation of tree split that divides
the data domain and creates subdomains for appropriate classification based on the
given class labels. It can be seen as the generation of simple multiple thin layers of
data domains with split-regions. The first thin layer shows the given data domain
and a split condition which is applied to the first feature. The domain is divided
into two subdomains, and it is shown in the second thin layer. These subdomains
are further divided into four subdomains based on the second feature, and they are
shown in the third thin layer. Finally, the class labels are highlighted and we can see
they are classified into different disjointed subdomains.

The diagram on the right side shows the given data domain and the final classi-
fied data domain. It illustrates the effect on the response variable (discrete) with two
classes, where the related subdomains are combined to show the class separation.
The main parameters of the classification tree models are the values of the features

10.2 Types of Decision Trees 247

Fig. 10.7 The regression tree is illustrated in 3D using two classes with domain
division properties. Response variable Y has two continuous red and blue values

used to split the tree at a particular node, and these parameters are trained using
information gain as a quantitative measure. The combination of parameters selected
by the classification tree at training is considered the classifier. The decision param-
eters and the actual classification with the tree-based classifier are explained later in
the chapter.

In classification trees, the split criterion must give an information gain so that the
subdomains (i.e., the leaves of the current tree) have class information that help
separate the classes. The split criterion needs decision parameters that form the
classification model. The decision parameters (a feature and its split location) are
calculated based on the maximization of the information gain. That is, the decision
parameters shown in Fig. 10.6 can be calculated according to this principle.

10.2.2 Regression Tree

The regression tree helps assign a value for new data. The objective of the regres-
sion tree model is to divide the data domain into disjoint, rectangular subdomains
by splitting features, and then map the subdomains to nonoverlapping groups of
responses that are estimated with the minimum error criterion (e.g., least square

248 10 Decision Tree Learning

method). See Fig. 10.7. This statement shows four tasks: (1) feature selection for a
node, (2) parametrization of the split location, (3) parametrization of the depth of
the tree, and (4) estimation of the response variables.

The PhD thesis by Torgo [5] provides a very good explanation, and I encourage
readers refer to it for additional information. The full version of the thesis can be
found at the following website: http://www.dcc.fc.up.pt/∼ltorgo/PhD/. The popular
book by Breiman et al. [4] is another best resource for exploring regression trees in
depth. The decision parameters are chosen based on the least square criterion (see
Leo Breiman’s classification and regression trees book [4] and Torgo’s thesis [5]).
The example in the figure shows the decision parameters that are calculated based
on the mean value of the respond variable for each subdomain and the domain.

10.3 Decision Tree Learning Model

We have seen in a previous chapter that modeling means the definition of a function
or a mapping between a data domain and a response set followed by the parametriza-
tion of the model and the optimization of the parameters. It is clear that the decision
tree satisfies this definition and forms a supervised learning model because it can
be trained, validated, and tested using the supervised learning algorithms. Let us
now study the processes of parametrization and optimization of the decision tree
supervised learning model.

10.3.1 Parametrization

As discussed before, a supervised model must be parametrized so that it can be
trained, validated, and tested. This is true for a decision tree as well. The question
now is how to parametrize a tree-like structure and find the parameters. In building
a tree-like structure, the nodes are split and leaves are generated, and this process
is recursively done. Therefore, we can parametrize (1) the choice of features for
a node, (2) the threshold that splits the node and divides the feature set into two
subsets, and (3) the number of levels that the entire tree should have. It is illustrated
in Figs. 10.8 and 10.9.

• Parametrization: select the features for the root node and intermediate nodes of
the decision tree. Hence, I would say the feature must be considered as one of
the parameters for the decision tree. We have two options: (1) We may select a
feature for a node randomly, or (2) We may select a feature that can give some
information gain (or error reduction) when it is used and subdomains are con-
structed.

• Parametrization: select a parameter to split criterion (e.g., split location in the
feature set). Hence, a threshold for the feature values can form a parameter for
the decision tree. We have two options: (1) We may select the statistical tech-

http://www.dcc.fc.up.pt/~ltorgo/PhD/

10.3 Decision Tree Learning Model 249

i =1

m =1

mth location

fth location
{fl, f2, ...,fn}

fl, m1, I1

f2, m2, I2

fk, mk, Ik

fn, mn, In

fi, p(0), p(1)

q(0), q(1) #(0), #(1)

m = m + 1

i = i + 1

Fig. 10.8 The process of selecting the best features (with its split location) that give
the maximum information gain (i = 1, . . . ,n)

niques like mean or median to find the split location, or (2) We can find the split
location which will give two subdomains that lead to an acceptable information
gain (or error reduction) by splitting.

• Parametrization: select a parameter to stop the tree building. It means that the
number of levels in the decision tree must be a parameter.

• Optimization: select an algorithm that helps optimize the parameters such that
the final decision tree is optimal so that the tree can perform a very good pre-
diction of class labels. This may lead to a computationally expensive process,
because all of the possible combinations of features and the split locations must
be processed toward obtaining information gain values and selecting the feature
and split location combination that gives maximum gain or minimum error.

10.3.2 Optimization

The example in Fig. 10.1 shows the dividing of a tree node (i.e., building a model)
and building a decision tree, but it doesn’t show how to divide a tree node efficiently
(i.e., the training). To find an answer to this question, we may need to ask sev-
eral other questions: Which feature must be selected first to start building the tree?
Which features must be selected at the intermediate steps of the tree building? It

250 10 Decision Tree Learning

Fig. 10.9 The process of finding the best split location using the maximum infor-
mation gain—a sub process for Fig. 10.8

means that we need a good quantitative measure which is applicable to tree build-
ing structure. Tree building means the generation of leaves (or branches) from a
node, and carrying out this process iteratively. Let me explain the standard quan-
titative measures like entropy [6], Gini impurity [3, 7], information gain [3], and
cross-entropy [8].

10.4 Quantitative Measures

In decision tree modeling, the quantitative measures are required in two places:
(1) to measure the information gain resulted by a feature split over data domains (or
subdomains), and (2) to measure the significance in the class difference at each node
to decide further split. Useful measures for the first requirement are the entropy,
Gini impurity, and information gain. Useful measures for the second requirement
are the class proportions, count differences, and a probability measure (e.g., ratios
and percentages).

10.4.1 Entropy and Cross-Entropy

Entropy provides a measure based on the proportionality of the events. For example,
if one event occurs more than another event in a place or with an object, then we
have good knowledge about that place or the object relative to the majority event. If
both events occur the same number of times in that place or with the object, then it
is hard to characterize the place or the object. Say, for example, if a football team

10.4 Quantitative Measures 251

100806040200 120 100806040200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

120

Fig. 10.10 The entropy characteristics with and without an error factor,
respectively—horizontal axis represents the probability index and the vertical axis
represents the entropy

has 9 wins and 1 loss, then we should be able to characterize the team as a “hard
to beat team.” Similarly, the rainfall recorded over 365 days in a place shows 360
days of rain, then we may characterize the place possibly as a “rainforest.” This is
the characteristic of the entropy measure. The entropy is defined as follows [6]:

en =−∑
i

pi log2(pi), (10.4)

where pi is the probability of the ith event. To understand better, take four different
examples. In all examples, the assumption is that two events are occurring in an
environment.

Thinking with Example 10.4:

Say, for example, “rain” or “no rain.” In this first example, we take the probability
for the first event is 1 (i.e., p1 = 1) and the second event is 0 (i.e., p1 = 0), and let us
denote the probabilities of the first and the second events by [1,0] matrix. Then the
entropy is: en =−1× log(1)−0× log(0) =−1×0−0×∞= 0−0= 0. This result
indicates that there is no-error, and it means we can characterize the environment by
the first event at 100 %. The characteristics of entropy are illustrated in Fig. 10.10
and the results are generated using the Matlab code in Listing 10.3.

Listing 10.3 A Matlab example—shows entropy noise

1 clear all;
2 close all;
3
4 p=0:0.01:1;
5 s=length(p);
6

252 10 Decision Tree Learning

7 randn(’seed’,13);
8 r=0.01*randn(1,s);
9 q=p+r;

10 q=(q-min(q))/(max(q)-min(q));
11
12 x=-p.*log2(p);
13 y=-q.*log2(q);
14
15 figure;plot(x);grid on;
16 figure;plot(x);grid on;
17 hold on;plot(y,’color’,’red’);

Thinking with Example 10.5:

Now suppose we take the probability for the first and second events as 0.5 (i.e., p1 =
p2 = 0.5). Then we can denote the probabilities of the first and second events by
[0.5,0.5]matrix. In this case, the entropy is: en=−0.5× log(0.5)−0.5× log(0.5)=
1. This is the maximum error as shown in Fig. 10.10, and it means that we cannot
characterize the environment by either of these two events.

Thinking with Example 10.6:

In the next example, suppose the probability for the first and second events are
p1 = 0.9 and p2 = 0.1, then we can denote the probabilities of the events by [0.9,0.1]
matrix. If we calculate the entropy for these events, then we have en = −0.9×
log(0.9)− 0.1× log(0.1) = 0.4690.

Thinking with Example 10.7:

Similarly, if we take the probabilities as p1 = 0.7 and p2 = 0.3, then the entropy is
0.8813. We can see the probabilities reach [0.5,0.5] and the entropy (i.e., error) is
getting higher.

10.4.2 Gini Impurity

The Gini impurity is another type of measure which can be used to measure in-
correct labelling [3, 7] with matching the patterns. The abbreviation Gini stands
for generalized inequality index. The Gini impurity may be used in decision tree
building, instead of entropy, and it is defined as follows [3]:

Gini =−∑
i

pi(1− pi), (10.5)

10.4 Quantitative Measures 253

100806040200 120
0

0.05

0.1

0.15

0.2

0.25

100806040200 120
0

0.05

0.1

0.15

0.2

0.25

Fig. 10.11 The Gini indexes characteristics with and without an error factor,
respectively—horizontal axis represents the probability index and the vertical axis
represents the Gini impurity

where pi is the probability of the ith event. The characteristics of Gini impurity are
illustrated in Fig. 10.11. We can see the differences in entropy (in Fig. 10.10) and
Gini impurity (in Fig. 10.11) clearly. One difference is the spread and the other is
skewness (symmetry).

Listing 10.4 A Matlab example—shows Gini impurity

1 clear all;
2 close all;
3
4 p=0:0.01:1;
5 s=length(p);
6
7 randn(’seed’,13);
8 r=0.01*randn(1,s);
9 q=p+r;

10 q=(q-min(q))/(max(q)-min(q));
11
12 x=p.*(1-p);
13 y=q.*(1-q);
14
15 figure;plot(x);grid on;
16 figure;plot(x);grid on;
17 hold on;plot(y,’color’,’red’);

We have seen that the entropy measure is useful when multiple events occur at a
particular instance or a location. In contrast, the cross-entropy is used to measure the
error when multiple events (but the same events) occur at two different instances or
locations. We can distinguish these two cases as follows: in the first case, the events
come from the same statistical distribution, but in the second case, the events are
from two distributions. Therefore, we can say the entropy measures within as the
intra-error (i.e., within a distribution) and cross-entropy as the inter-error between
two distributions. Suppose two events a and b occur at two different instances with

254 10 Decision Tree Learning

probabilities [p1, p2], and [q1,q2], where p1+ p2 = 1 and q1+q2 = 1, then the cross-
entropy is defined as follows [6]:

x en =−p1 log2(q1)− p2 log2(q2). (10.6)

In the actual entropy definition, the probabilities p1 and p2 occupy the places of
q1 and q2. Therefore, the difference in the probability q from p is reflected on the
cross-entropy. We can generalize this as follows [8]:

x en =−∑
i

pi log2(qi), (10.7)

where ∑ pi = 1 and ∑qi = 1. Let us now understand the meaning of the cross-
entropy through some examples.

Thinking with Example 10.11:

In this example, suppose a container has 10 balls, and the only additional infor-
mation given to you is that either all of them are red balls or all of them are blue
balls. However, I know that the container has only 10 red balls. The game is that I
draw a ball without showing it to you, but you must predict its color by guessing it
10 times. Because I know that all the balls are red, the actual probability matrix is
[1,0]. Now suppose your predicted probability is [1,0] (i.e., all 10 guesses you said
red), then the cross-entropy is x en = −1× log(1)− (0)× log(0) = 0− 0×∞ = 0.
This indicates that there is no error in actual and predicted values. Suppose your
predicted probability is [0,1]. It means all 10 guesses you said blue, then the cross-
entropy is: x en =−1× log(0)− (0)× log(1) =−1×∞− 0× 0=−∞. It indicates
a very large error in your prediction. Suppose your probability matrix is [0.9, 0.1].
It means you guessed 9 times as red and 1 time as blue. Then the cross-entropy is:
x en=−1× log(9/10)−(0)× log(1/9). The program Listing 10.5 may be used for
this purpose and it produces the results in Fig. 10.12.

Listing 10.5 A Matlab example—shows cross-entropy

1 clear all;
2 close all;
3
4 p=0.01:0.01:0.5;
5 x_en=-p.*log2(p) - (1-p).*log2(1-p);
6 figure;plot(p,x_en);grid on;
7
8 q1=0.01:0.01:0.99;
9 p1=ones(1,length(q1));

10
11 x_en1=-p1.*log2(q1) - (1-p1).*log2(1-q1);
12 figure;plot(q1,x_en1);
13 hold on;plot(0.5,1,’o’);grid on;

10.4 Quantitative Measures 255

Thinking with Example 10.12:

Now suppose the container has 9 red balls and 1 blue ball, then the actual
probability matrix is [0.9,0.1], and your predicted probability is [0.9,0.1], then the
cross-entropy is: x en=−0.9× log(0.9)−(0.1)× log(0.1) = 0.4690. Suppose your
predicted probability is [0.1,0.9], then the cross-entropy is x en=−0.9× log(0.1)−
(0.1)× log(0.9) = 3.0049. In another example, if the container has 5 red balls and
5 blue balls, and if you predict 5 times red and 5 times blue, then the actual prob-
ability matrix is [0.5,0.5], and the predicted probability measure is also [0.5,0.5].
Therefore, the cross-entropy is: x en =−0.5× log(0.5)− (0.5)× log(0.5) = 1. It is
highlighted in the second figure of Fig. 10.12.

10.4.3 Information Gain

Suppose we have set of binary events, such as success or failure, rain or no rain,
head or tail, etc. A set of binary events carries information that characterize the
system that generated these events. This is true for any number of events, not just
binary events. As we have seen, the entropy measure or the Gini impurity may be
used to describe these characteristics. However, if we divide the set into two subsets,
these subsets may lead to gain in the information. For example, the original set of
events may have an entropy (error), and when the set is divided into subsets then the
average of the entropies of these subsets may have a reduced error (entropy) leading
to an information gain.

Thinking with Example 10.8:

An example is selected and the steps involved in analyzing the information gain
is presented. Consider two events a and b, and a set of these binary events is
S = {a,b,a,a,b,a,b,b,b,a,a,a}. There are seven observations in event a and five
observations in event b. Let us write this in a matrix form: [7a,5b]. They can be
written as the following probability matrix: [7/12,5/12], where the first element
corresponds to event a and the other event b. Therefore, the entropy of this set of
binary events is: en =−(7/12)× log(7/12)− (5/12)× log(5/12) = 0.9799.

Thinking with Example 10.9:

Let us now split the set into two subsets. The question is, where to split? The
different split locations will give different subsets and, in turn, will give a differ-
ent information gain. The best information gain will help select the best split. Let
us first split the set at the middle, and it gives us two subsets S1 and S2, where
S1 = {a,b,a,a,b,a} and S2 = {b,b,b,a,a,a}. We can write their event matrices

256 10 Decision Tree Learning

0
0.50.450.350.250.150.10.050 0

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.40.30.2

0.1

0.2

0.3

0.4

0.5

0.6

0.8

0.9

1

Fig. 10.12 The cross-entropy results of Listing 10.5

as [4a,2b] and [3a,3b]. Therefore, their probability matrices are: [4/6,2/6] and
[3/6,3/6]. If we calculate their entropies as before, we get en = 0.9183 and en = 1
for these subsets of events. As we can see, the second subset has an equal number
of events, and the entropy is high as illustrated earlier. The fractions of these subsets
with respect to the original set are: 6/12 and 6/12. Therefore, the average entropy is:
(6/12)× 0.9183+(6/12)× 1= 0.9591, which is smaller than the entropy 0.9799
of the original set. Therefore, there is a gain in the information or the reduction in
the error (entropy) from 0.9799 to 0.9591 through the split at the middle of the set.

Thinking with Example 10.10:

What will happen if we split the data set at the 9th location and create the subsets
S1 = {a,b,a,a,b,a,b,b,b} and S = {a,a,a}? The entropies of these subsets can
be calculated, and they are 0.9911 and 0, respectively. The fractions of the subsets
from the original set are 9/12 and 3/12; therefore, the average entropy of the subsets
is: (9/12)× 0.9911+(3/12)× 0 = 0.7433. This is a significant reduction in the
entropy, and thus it gives a very good information gain. Among these two splits, the
split at the 9th location is preferred.

10.5 Decision Tree Learning Algorithm

The goal of the decision tree learning algorithm is to focus on each one-dimensional
subspace (i.e., single feature at a time), select the best feature (the best one-
dimensional subspace) and best split location, extract the feature value at the best
split location, and divide the domain into two subdomains. Then repeat the same
process with the subdomains until no domain divisions are required (until a subdo-
main has a particular class significantly higher than others).

10.5 Decision Tree Learning Algorithm 257

10.5.1 Training Algorithm

The best feature and the best split location of that feature are the first and the most
important requirement in the training of a decision tree. As we have discussed ear-
lier, the parametrization and the optimization are performed simultaneously at each
node while a decision tree is built (i.e., the data domain and subdomains are divided).
The parameters of a decision tree (at each node) are: the best features and the best
features’ value at the best split location—the value at the split location that gives
the maximum information gain. The leafs of a node are the subdomains. Hence, the
training algorithm is as follows:

1. Assuming the data is p-dimensional, analyze all the p, one-dimensional sub-
spaces (i.e., a feature at a time) to search for the best features and split locations.
If p is high, then the search will be exhaustive, and the process will be computa-
tionally expensive.

2. In each one-dimensional subspace, its data domain will be split at each location
(i.e., n−2 locations, if there are n observations) and the information gain resulted
from the split to two subdomains will be calculated.

3. For each feature, the best split location is selected based on the split that gives the
highest information gain, and the feature values at that location will be recorded.

4. The best feature and the feature value at the split location will be assigned to the
node that is being processed.

5. The data domain is then divided into two subdomains (SD1 and SD2) at the split
locations.

6. Steps 1–5 will be repeated for the subdomains SD1 and SD2 to get the best fea-
ture, best split location, and the best split feature value for the new nodes.

7. The decision tree will be built following these processes until the subdomain
that does not need a split because of the subdomain that has a significantly large
number of observations from a single class.

The Matlab code, created as a function named calc ig f n and presented in List-
ing 10.6, illustrates these tasks. It uses the hardwood floor and carpet floor data sets
presented previously and generates a decision tree. It generates only a two-level
decision tree as illustrated in Fig. 10.13.

Listing 10.6 A Matlab example—a function to create information gain

1 function [sl,mx,ig]=calc_ig_fn(xx,yy)
2
3 ll=length(yy);
4 for ii=2:ll-1
5 %sp is the split location

258 10 Decision Tree Learning

2048 (class 1 and class 0)

No need for this split
− the program must

check this.1024 (class 1)
406 (class 0)

0 (class 1)
191 (class 0)

1024 (class 1)
215 (class 0)

Further split is
required.

Class 0 Class 0

0 (class 1)
618 (class 0)

(56,49)

(52,44) (1,2)

145.93

152.95 93.59

0 (class 1)
2 (class 0)

0 (class 1)
616 (class 0)

Fig. 10.13 This is the two-level decision tree of the data. The visual effects of these
results are presented in Fig. 10.14

6 sp=xx(ii);
7
8 %build left and right tree
9 xl=yy(xx<sp);

10 xr=yy(xx>=sp);
11
12 %length of the left tree
13 l1=length(xl);
14 %sum of class 1s
15 n1=sum(xl);
16 %sum of class 0s
17 n2=l1-n1;
18
19 %probabilities
20 p1=n1/(n1+n2)+0.0001; %1.0e-14; %0.000001;
21 p2=n2/(n1+n2)+0.0001; %1.0e-14; %0.000001;
22
23 %entropy of the left tree
24 en1 = -p1*log(p1)-p2*log(p2);
25
26 %length of the right tree
27 l2=length(xr);
28 %sum of class 1s
29 n1=sum(xr);
30 %sum of class 0s
31 n2=l2-n1;
32

10.5 Decision Tree Learning Algorithm 259

40 60 80 100 120 140
feature 56

fe
at

ur
e

49

160 180 200 220

80 100 120 140

feature 1

feature 52

fe
at

ur
e

1

feature 56160 180 200 220

200
100

0 0
50 100

150
200

250
300

0

50

100

150

200

250

40 60 80 100 120 140
feature 52

160 180 200 220
0

50

100

150

200

250
fe

at
ur

e
2

0

50

100

150

200

250

fe
at

ur
e

44

0

50

100

150

200

250

Fig. 10.14 The visual effects of the results obtained in the two-level decision tree
presented in the previous figure

33 %probabilities
34 p1=n1/(n1+n2)+0.0001; %1.0e-14; %0.000001;
35 p2=n2/(n1+n2)+0.0001; %1.0e-14; %0.000001;
36
37 %entropy of the right tree
38 en2 = -p1*log(p1)-p2*log(p2);
39
40 %Calculates information gain
41 ig(ii-1)=1-((l1/ll)*en1 + (l2/ll)*en2);
42 end
43 %find the split location with the maximum information gain
44 tmp=find(ig==max(ig));
45 sl=tmp(1);
46 mx=max(ig);
47 end

This function accepts the data domain stored in a variable xx together with their
corresponding class labels (only two classes), and then gives the best feature mx and
best feature split sl. It also gives information gain values ig for each feature at each
split. The second task is to customize the data, pass it through the function, obtain
the best feature and best split location, find the feature value at that location, split
the data domain (i.e., the data table) at that location, and analyze if the subdomains

260 10 Decision Tree Learning

(left and right) require further split. The Matlab code in Listing 10.7 perform these
tasks only at two nodes sequentially. The program has been written to simplify the
explanation, and thus it requires programming enhancement. One way to do it is to
write this program with recursive, iterative statements or functions.

Listing 10.7 A Matlab example—decision tree building algorithm

1 function best_subspaces=dt_build_fn(hw,cp)
2
3 %%
4 % Building the root node
5 %%
6
7 yy=[ones(1,size(hw,1)) zeros(1,size(cp,1))];
8 xx=[hw;cp]’;
9

10 for ii=1:size(xx,1)
11 [slx(ii),fmx(ii),igx{ii}]=calc_ig_fn(xx(ii,:),yy);
12 end
13
14 fmxsort=sort(fmx,’descend’);
15 tmp1=find(fmx==fmxsort(1));
16 f1=tmp1(1);
17 fmx(f1)=0;
18 tmp2=find(fmx==fmxsort(2));
19 f2=tmp2(1);
20 fval=xx(f1,slx(f1));
21
22 %%
23 % Splitting the root node
24 %%
25
26 idxL=find(xx(f1,:)<fval);
27 idxR=find(xx(f1,:)>=fval);
28
29 xxL=xx(:,idxL);
30 xxR=xx(:,idxR);
31
32 yyL=yy(idxL);
33 yyR=yy(idxR);
34
35 fprintf(’\n’);
36 fprintf(’Left side class 1 = %d\n’,sum(yyL));
37 fprintf(’Left side class 0 = %d\n\n’,length(yyL)-sum(yyL));
38
39 fprintf(’Right side class 1 = %d\n’,sum(yyR));
40 fprintf(’Right side class 0 = %d\n’,length(yyR)-sum(yyR));
41
42 %%
43 % Building the left node
44 %%
45
46 for ii=1:size(xxL,1)

10.5 Decision Tree Learning Algorithm 261

47 [slxL(ii),fmxL(ii),igxL{ii}]=calc_ig(xxL(ii,:),yyL);
48 end
49
50 fmxsortL=sort(fmxL,’descend’);
51 tmp3=find(fmxL==fmxsortL(1));
52 f1L=tmp3(1);
53 fmxL(f1L)=0;
54 tmp4=find(fmxL==fmxsortL(2));
55 f2L=tmp4(1);
56 fvalL=xx(f1L,slxL(f1L));
57
58 %%
59 % Splitting the left node
60 %%
61
62 idxLL=find(xxL(f1L,:)<fvalL);
63 idxRL=find(xxL(f1L,:)>=fvalL);
64
65 xxLL=xxL(:,idxLL);
66 xxRL=xxL(:,idxRL);
67
68 yyLL=yyL(idxLL);
69 yyRL=yyL(idxRL);
70
71 fprintf(’\n’);
72 fprintf(’Left side class 1 = %d\n’,sum(yyLL));
73 fprintf(’Left side class 0 = %d\n\n’,length(yyLL)-sum(yyLL));
74
75 fprintf(’Right side class 1 = %d\n’,sum(yyRL));
76 fprintf(’Right side class 0 = %d\n’,length(yyRL)-sum(yyRL));
77
78 %%
79 % Building the right node
80 %%
81
82 for ii=1:size(hw,2)
83 [slxR(ii),fmxR(ii),igxR{ii}]=calc_ig(xxR(ii,:),yyR);
84 end
85
86 fmxsortR=sort(fmxR,’descend’);
87 tmp5=find(fmxR==fmxsortR(1));
88 f1R=tmp5(1);
89 fmxR(f1R)=0;
90 tmp6=find(fmxR==fmxsortR(2));
91 f2R=tmp6(1);
92 fvalR=xx(f1R,slxR(f1R));%%%%%%%%%%%%%%%%%%%%%%%
93
94 %%
95 % Splitting the right node
96 %%
97
98 idxLR=find(xxR(f1R,:)<fvalR);
99 idxRR=find(xxR(f1R,:)>=fvalR);

100

262 10 Decision Tree Learning

101 xxLR=xxR(:,idxLR);
102 xxRR=xxR(:,idxRR);
103
104 yyLR=yyR(idxLR);
105 yyRR=yyR(idxRR);
106
107 fprintf(’\n’);
108 fprintf(’Left side class 1 = %d\n’,sum(yyLR));
109 fprintf(’Left side class 0 = %d\n\n’,length(yyLR)-sum(yyLR));
110
111 fprintf(’Right side class 1 = %d\n’,sum(yyRR));
112 fprintf(’Right side class 0 = %d\n’,length(yyRR)-sum(yyRR));
113 fprintf(’===\n’);
114
115 %%
116 % Printing root node and split
117 %%
118
119 figure; grid on;
120 for ii=1:size(xx,2)
121 if(yy(ii)==1)
122 hold on;plot(xx(f1,ii),xx(f2,ii),’.’);
123 else
124 hold on;plot(xx(f1,ii),xx(f2,ii),’r.’);
125 end
126 end
127 hold on;line([fval fval],[0 250]);
128
129 %%
130 % Printing left node and split
131 %%
132 figure; grid on;
133 for ii=1:size(xxL,2)
134 if(yyL(ii)==1)
135 hold on;plot(xxL(f1L,ii),xxL(f2L,ii),’.’);
136 else
137 hold on;plot(xxL(f1L,ii),xxL(f2L,ii),’r.’);
138 end
139 end
140 hold on;line([fvalL fvalL],[0 250]);
141
142 %%
143 % Printing right node and split
144 %%
145 figure; grid on;
146 for ii=1:size(xxR,2)
147 if(yyR(ii)==1)
148 hold on;plot(xxR(f1R,ii),xxR(f2R,ii),’.’);
149 else
150 hold on;plot(xxR(f1R,ii),xxR(f2R,ii),’r.’);
151 end
152 end
153 hold on;line([fvalR fvalR],[0 250]);
154

10.5 Decision Tree Learning Algorithm 263

155 best_subspaces=[f1 f2; f1L f2L; f1R f2R];
156
157 end

In this program the first two blocks of codes from line 3 to line 20 and from
line 22 to 40 perform the building and splitting the root node, respectively. After
splitting, it builds the left node which is provided in the lines 42–56 and then split
the left node. The block of code from line 58 to 76 performs this left node split and
then the code from line 78 to 113 perform the right node split. The rest of the code
prints the results as commented in the program.

Listing 10.8 A Matlab example—initiates decision tree training

1 clear all;
2 close all;
3
4 hw=csvread(’hardwood.csv’);
5 cp=csvread(’carpet.csv’);
6
7 best_subspaces=dt_build_fn(hw,cp);

This program simply calls the function presented in the Listing 10.7 and per-
forms the two-level decision tree construction for the input data the hardwood floor
(Fig. 10.15) and the carpet floor (previously used). The results will be the best sub
spaces.

10.5.2 Validation Algorithm

The cross-validation may be conducted to determine the depth of the tree, and it can
allow a tree pruning mechanism to speed up the testing when the new data arrives
to be classified. Hence, it can bring computational advantages.

10.5.3 Testing Algorithm

The testing algorithm is simple in decision tree learning. It takes one observation at a
time from the test data (Fig. 10.16) and puts it through the decision tree constructed
using the training algorithm. The feature and the feature value at the root node of
the decision tree classifier are observed, and they are used to assign the observation
to the left or the right tree. It is pushed into the tree until it reaches one of the
leaves. Then the corresponding class label is assigned to the observation if it is a
classification tree, and if it is a regression tree then the actual predicted value is
assigned.

264 10 Decision Tree Learning

Fig. 10.15 Training Image Hardwood Floor

Listing 10.9 A Matlab example—a simple decision tree testing

1 clear all;
2 close all;
3
4 hw=csvread(’hardwood.csv’);
5 cp=csvread(’carpet.csv’);
6
7 oo=size(hw,1);
8 ff=size(hw,2);
9 rand(’seed’,131);

10 rr=1:2048; %randperm(2048);
11
12 %1 represents hardwood floor and 0 represents carpet floor
13 ty=[ones(1,oo) zeros(1,oo)];
14 tx=[hw;cp]’;
15 yy=ty(rr);
16 xx=tx(:,rr);
17
18 %For each feature xx{ii}, it provides information gains igx{ii}
19 %For each feature xxii}, it also provides split locations slx{ii}
20 for ii=1:ff
21 [slx(ii),fmx(ii),igx{ii}]=calc_ig(xx(ii,:),yy);
22 end
23
24 fnum=find(fmx==max(fmx))
25 w1=slx(fnum)+1;
26 fmx(fnum);

10.5 Decision Tree Learning Algorithm 265

Fig. 10.16 Test Image Hardwood Floor

27
28 in=xx(fnum,w1)
29
30 tt1=csvread(’test_hw3.csv’);
31 hw=tt1’;
32
33 f1=find(hw(fnum,:)<in);
34 f2=find(hw(fnum,:)>=in);
35
36 %total on the left side is 1430
37 length(yy(f1))
38
39 %left hand side all 1024 hardwood and 1430-1024=406 carpet
40 sum(yy(f1))
41
42 %right hand side ALL carpets 618
43 sum(yy(f2))
44
45 figure; grid on;
46 for ii=1:1024
47 if(yy(ii)==1)
48 hold on;plot(hw(56,ii),hw(52,ii),’.’);
49 else
50 hold on;plot(hw(56,ii),hw(52,ii),’r.’);
51 end
52 end
53 hold on; line([in in],[0 250]);

266 10 Decision Tree Learning

10.6 Decision Tree and Big Data

In this section, a toy example to help implement decision tree modeling and al-
gorithm is presented. It uses the sorting and parallelization features of the big data
processing platform, a single node RHadoop with R programming environment, and
the MapReduce framework presented in Chaps. 4 and 5. The structure of the toy ex-
ample may be used to write the full implementation of the decision tree and process
real data sets to illustrate the performance of the decision tree classification on a
Hadoop platform.

10.6.1 Toy Example

This example does not provide a program for building a decision tree; instead, it
brings the features of MapReduce framework that can help you write a program to
implement decision tree supervised learning. The content of the data file used for
this purpose is presented below:

1 4 1
2 5 1
3 12 0
8 6 1
9 9 1
1 12 0

It shows a three-column table with six observations. The first two columns show
the data points (or the data domain), and the last column shows the class labels (or
the response set). The goal of this program is to divide the data domain based on
the mean value of feature 2 (second column) first, then map them to the labels. This
will be the split at the root node of the tree. Then repeat the process on the left side
(left subdomain) of the tree and the right side (right subdomain) of the tree until the
split is no longer necessary.

Listing 10.10 An RHadoop example—it can help you write a decision tree tech-
nique for big data applications

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 data <- read.table("tree1.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11

10.6 Decision Tree and Big Data 267

12 gauss.data = to.dfs(data)
13
14 gauss.map.fn = function(k, v) {
15
16 #Split at the root
17 m1=mean(v[,2])
18 k=ifelse(v[,2]<m1,1,0)
19 v[,2]=k
20 keyval(k,v)
21
22 #divide the tree
23 l=which(v[,2]==0)
24 r=which(v[,2]==1)
25
26 vl=v[l,]
27 vr=v[r,]
28
29 #Split needed on the left side
30 m2=mean(vl[,1])
31 kl=ifelse(vl[,1]<m2,0,1)
32 vl[,1]=kl
33 keyval(kl,vl)
34
35 #Split not needed on the right side
36 kr=vr[,3]
37 vr[,1]=kr
38 keyval(kr,vr)
39
40 #Concatenate (key, value) pair
41 c.keyval(keyval(kl,vl),keyval(kr,vr))
42 }
43
44 gauss.reduce.fn = function(k, v) {
45
46 keyval(k, v)
47 }
48
49 mr.gauss = mapreduce(input = gauss.data, map = gauss.map.fn,

reduce = gauss.reduce.fn)
50
51 mr.results = from.dfs(mr.gauss)
52 mr.results

We have already seen some of the statements required for performing MapRe-
duce using rmr2 package [9]. The codes needed for this specific example are de-
scribed below. The block of code in lines 16–20 splits the data domain based on
the mean of feature 2 (line 17) and labels them with 1 and 0 (line 18). Then it gen-
erates (key, value) at lines 19 and 20—this will help the mapreduce() function to
sort them with respect to the key value, which is the label. In the block of code in
lines 23–27, the subdomains (or the left and right children) are created. The block
of code from lines 29–33 performs the split using feature 1 as in lines 16–20. This
should be done either iteratively or recursively as, this being a toy example, these

268 10 Decision Tree Learning

tasks are performed sequentially. The right split is not required, as we can see the
output after labeling the data based on the split condition of feature 2. However, a
(key, value) pair is generated for the right child of the tree. The (key, value) pairs are
then concatenated in line 41. The output of the program is given below, which gives
the sorted (key, value) pair:

$key
[1] 0 0 1 1 1 1

$val
V1 V2 V3

3 0 0 0
6 0 0 0
5 1 0 1
1 1 1 1
2 1 1 1
4 1 1 1

As we can see, the data is sorted with respect to the key, which is the label of
the classes in column three of the data set. Based on the mean value of feature 2,
the data domain is split at the third row, and class 0 is assigned to the top half of
feature 2, and class 1 is assigned to the bottom half of feature 2. If we compare the
feature 2 column (V2) and the labels column (V3), then we can see the majority of
the actual labels matches, except the third row. If we now extend this to feature 1,
then its label correctly matches with the actual label. This output is similar to the
results presented in Fig. 10.2.

Problems

10.1. Code Revision
Revise the MapReduce programs presented in this chapter using the coding princi-
ples taught in Chap. 5.

10.2. Building a Decision Tree
The decision tree illustrated in Fig. 10.1 used the tree split using X3, X2, and X1

order. Reproduce the decision tree with the order X2, X1, and X3. Then compare the
classifiers and the results.

10.3. Real Example

(a) Complete the toy example using iteration (or recursion) together with the actual
method of calculating split location and selection of features using the Gini
index and the information gain approaches.

(b) Use this implementation to the real data sets like the hardwood floor and carpet
floor data sets. Make sure the programs follow the coding principles presented
in a previous chapter.

References 269

References

1. S. B. Kotsiantis. “Supervised machine learning: A review of classification techniques,” Infor-
matica 31, pp. 249–268, 2007.

2. S.K. Murthy. “Automatic construction of decision trees from data: A multi-disciplinary sur-
vey,” Data Mining and Knowledge Discovery, Kluwer Academic Publishers, vol. 2, no. 4,
pp. 345–389, 1998.

3. http://en.wikipedia.org/wiki/Decision tree learning
4. L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. “Classification and Regression Trees,”

CRC Press, 1984.
5. L. Torgo. “Inductive learning of tree-based regression models,” PhD Thesis, Department of

Computer Science, Faculty of Science, University of Porto, Porto, Portugal, pp. 57–104, 1999.
6. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:

Springer, 2009.
7. https://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm
8. L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. “Regularization of neural networks

using dropconnect.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 1058–1066, 2013.

9. http://www.rdocumentation.org/packages/rmr2.

http://www.rdocumentation.org/packages/rmr2
http://en.wikipedia.org/wiki/Decision_tree_learning

Part IV
Understanding Scaling-Up Machine

Learning

Chapter 11
Random Forest Learning

Abstract The main objective of this chapter is to introduce you to the random
forest supervised learning model. The random forest technique uses the decision
tree model for parametrization, but it integrates a sampling technique, a subspace
method, and an ensemble approach to optimize the model building. The sampling
approach is called the bootstrap, which adopts a random sampling approach with
replacement. The subspace method also adopts a random sampling approach, but it
helps extract smaller subsets (i.e., subspaces) of features. It also helps build decision
trees based on them and select decision trees for the random forest construction. The
ensemble approach helps build classifiers based on the so-called bagging approach.
The objectives of this chapter include detailed discussions on these approaches. The
chapter also discusses the training and testing algorithms that are suitable for the
random forest supervised learning. The chapter also presents simple examples and
visual aids to better understand the random forest supervised learning technique.

11.1 The Random Forest

The random forest is a supervised learning technique and, as the name suggests, it
forms forest-like structures with decision trees that are generated using the random
sampling with replacement [1, 2]. These decision trees may either be the classi-
fication trees or the regression trees; therefore, the random forest can be applied
to both classification problems and regression problems. In Chap. 10, we have dis-
cussed and learned that the decision tree supervised learning technique provides a
single trained decision tree classifier for the testing phase. The advantage of the ran-
dom forest is that it provides multiple trained decision tree classifiers for the testing
phase. This property of the random forest supervised learning technique makes the
random forest a preferred technique over regular decision tree learning.

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 11

273

274 11 Random Forest Learning

Class
Labels

Data Domain Response Set
X1

Class
Labels

Class
Labels

X1

X1

0

0

0

03

3

8

3

8

Mean = 5.7

 X1 > 5.7

X1 ≤ 5.7 9 1

0

0

1

1

1

1

8

8

9

1

3

3

3

Fig. 11.1 The construction of a decision tree using one-dimensional data domain
and bootstrap sampling

Thinking with Example 11.1

The purpose of this example is to show that sampling with replacement may help
the decision trees improve their classification performances and reduce the depth of
the tree. Look at the same example used in “Thinking with Example 10.1,” where a
single feature set f1 = {1,2,3,8,9,10} with a set of class labels L = {1,1,0,1,1,0}
was considered. Suppose we applied the sampling technique with replacement and
created a new data domain as shown in Fig. 11.1. If we compare the classification
results at each node of the tree with the depth of the tree in Figs. 10.1 and 11.1, we
can say the sampling with replacement (i.e., the bootstrap sampling, or simply the
bootstrapping approach) has helped the decision tree building.

11.1.1 Parallel Structure

Parallelization is one of the contributing properties of the random forest supervised
learning toward the enhanced classification performances. The parallel structure
of the random forest technique may be described as illustrated in the diagram in

11.1 The Random Forest 275

Data Domain

Bootstrapping

Decision
Tress

How many
bootstrap

samples? N
Parametrize it!!

Trained Model NTrained Model 2Trained Model 1

Domain NDomain 2Domain 1

What is the
subspace?

Parametrize it!

What is the
subspace?

Parametrize it!

What is the
subspace?

Parametrize it!

What are the split
locations?

Parametrize it!

What are the split
locations?

Parametrize it!

What are the split
locations?

Parametrize it!

What is the best
decision tree?

Optimize them!

What is the best
decision tree?

Optimize them!

What is the best
decision tree?

Optimize them!

Fig. 11.2 The parallelization feature of the random forest technique

Fig. 11.2. We can interpret random forest modeling as the parallelization of the dec-
ision trees because multiple decision trees are built at the same time for classifica-
tion. To carry out this task, it creates multiple domains using bootstrapping [2, 3]
from the data domain and applies the decision tree technique to each domain using
a procedure to generate classifiers. This parallel structure of random forest can help
big data classification, which is required by the modern big data technologies like
the Hadoop distributed file system [4] and the MapReduce [5] framework.

11.1.2 Model Parameters

The parametrization of random forest includes the parametrization of a decision tree
model because it adopts the decision tree model. Therefore, all the parameters of the
decision tree model are also the parameters of the random forest model. However,
it adds a new parameter that represents the number of feature subsets (i.e., the sub-
spaces) selected for the number of decision trees for the construction of a random
forest. This is stated in the questions for parametrization in Fig. 11.2.

276 11 Random Forest Learning

1
1

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

910

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 11.3 A simple example is provided to illustrate the effect of bootstrapping

11.1.3 Gain/Loss Function

The parameters are optimized based on bootstrap sampling and the subspace inte-
gration in model building. The tree building, as in the decision tree, uses the quanti-
tative approaches like entropy [2], the Gini impurity [3, 6], and the information gain
[6] to select the best features for building the optimal decision trees. These measures
are used to answer the optimization question in Fig. 11.2.

11.1.4 Bootstrapping and Bagging

In random forest supervised learning, the statistical measures, the bootstrapping,
and the bagging, play important roles for optimizing the classification objectives.
These two measures are discussed in the following subsections. Their definitions
and their data domain division properties are also discussed with simple examples.

11.1.4.1 Bootstrapping

Bootstrapping is a simple randomization technique, but its effect on the supervised
learning algorithms, especially on the random forest, is magnificent. It helps gen-
erate several subsets from a set of data by randomly selecting the same number of
observations as the original data set, but with the replacement. This allows some ob-
servations from the original data to be repeated in a subset of the data set. The notion
of bootstrap sampling in random forest models is to maximize the “class-distance”
at each intermediate node and the leaves of the decision trees.

11.1 The Random Forest 277

Bootstrapping is applied at the training phase of the random forest algorithm.

Thinking with Example 11.4

The purpose of this example is to show how bootstrap samples may be generated
from a given data domain. In this example, ten consecutive integers form the data
domain and show how the bootstrapping makes changes to these consecutive inte-
gers. The data domain (sorted) is: D = {1,2,3,4,5,6,7,8,9,10}. A domain (sorted)
generated by bootstrapping in Listing 1: D1 = {2,2,2,3,4,4,5,8,9,9}. This set is
generated using the Matlab program listed in Listing 11.1. The sorted data domain
and the sorted bootstrap sample are plotted in Fig. 11.3. It clearly shows the repeti-
tion of some integers and the dropping of other integers.

Listing 11.1 A Matlab example—a simple bootstrapping example

1 clear all;
2 close all;
3
4 mm=10;
5 sig=1:mm;
6 figure;plot(sig);grid on;
7
8 rand(’seed’,131);
9 rnd=round(mm*rand(1,mm));

10
11 figure;plot(sort(rnd));grid on;

The code in lines 4 and 5 generates ten consecutive integers from 1, and then the
code in line 6 plots the points (see Fig. 11.3). The code in line 8 sets a seed value
to generate pseudorandom numbers as shown in line 9. It generates ten random
numbers between 0 and 1, multiply them by 10, and rounds the results. Hence, the
duplicated indexes may appear, which provides sampling with replacement. Note
that a minor modification is needed for the code in line 9 to get the values from 1 to
10 inclusive.

11.1.4.2 Overlap Thinning

Let us study some of the effects that bootstrapping brings to a data domain. In simple
terms, we can say that bootstrapping generates several domains where the classes
may be isolated more than the original data domain. Suppose we have a data domain
D = {1,2,3,4} with the corresponding class labels L = {1,0,1,0} indicating odd
and even classes, then some of the possible bootstrap samples are: S1 = {1,1,3,4},

278 11 Random Forest Learning

S2 = {1,1,2,2}, and S2 = {1,1,3,3}. They provide the following domains: D1 =
{1,−,3,4}= {1,3,4}, D2 = {1,2,−,−}= {1,2}, and D3 = {1,−,3,−}= {1,3}
with the class labels L1 = {1,1,0}, L2 = {1,0}, and L3 = {1,1}. The classes in
these domains can be easily separated by single splits. According to L1, we can split
D1 at the second location; according to L2, we can split D2 at the first location; and
according to L3, no split is needed—it forms the odd class. However, to separate the
classes in actual domain D, three splits are required.

11.1.4.3 Bagging

Bagging means the averaging of the prediction (or classification) responses the boot-
strap samples gave to obtain the final prediction (or classification) result. The term
Bagging comes from Bootstrap aggregating [7]. Bootstrapping is applied as a part of
the training algorithm in random forest technique. It helps generate multiple dom-
ains with simple class overlap thinning, and these domains help create multiple clas-
sification models. The multiple classification models allow the testing algorithm to
evaluate the performance of the classifiers efficiently.

Bagging is applied at the testing phase of the random forest algorithm.

How does bagging work? Suppose N decision trees T = {T1,T2, . . . ,TN} were
generated from N bootstrap samples of a data domain D as the random forest classi-
fier through training. Now we have a new data X that must be classified or predicted
based on if the tree was a classification tree or a regression tree. This is a test case.
Then the bagging suggests to insert the new data X through each decision tree and
get its class label or the predicted value. Hence, we will have N classification results
C = ci,ci ∈ 0,1, i = 1 . . .N (assuming it is a two-class problem) or N predicted val-
ues Y = yi, i = 1 . . .N. Then the bagging suggests the final class label for the new
data as the label, which is majority in the set C if it is a classification problem, and
mean(Y) if it is a regression problem.

11.2 Random Forest Learning Model

The random forest learning model, like the other machine learning models discussed
previously, accomplishes the parametrization objectives and optimization objec-
tives. These two objectives are discussed in the following two subsections. Note
that the random forest learning model adopts the decision tree learning model, and
thus includes the parametrization and optimization objectives of the decision tree
learning model. We have already studied these objectives in the previous chapter so
they are not included in these subsections.

11.3 Random Forest Learning Algorithm 279

11.2.1 Parametrization

We have already selected the parameters for the random forest learning model, and
they are the number of domains generated using bootstrapping, the size of the sub-
space for each node (domain), and the threshold for a domain split. For the purpose
of parametrization, we need to find or suggest possible values for the parameters.
The typical number of bootstrap samples used to build the random forest are 10;
however, it is appropriate to conduct cross-validation and determine a suitable range
of values for the number of bootstrap samples (or domains). For the subspace size
selection, there are two possible constraints that may be used, [3] and [6]. The first
constraint is from Leo Breiman and it can be found at [3]. The recommendation is
that n << p, and it must be kept constant throughout the construction of the deci-
sion tree. The second constraint, from [6], and it suggests n ≤ √

p. We should be
able to show this intuitively. Suppose there are p features in the data domain, and
n of them are good ones, but we don’t know what they are. Therefore, the fraction
of good ones is n/p. Among the good ones let us assume 1 of them is the best one,
then its fraction among the good ones is 1/n. Therefore we can write it as follows:

1
n
≥ n

p
(11.1)

It give us n2 ≤ p. Therefore, we have n ≤ √
p. Several papers have used the

random selection of
√

p number of features for the nodes of a tree, where p is the
number of features which determines the dimensionality of the data and contributes
to the scalability problem in the big data applications.

11.2.2 Optimization

In general, after the parameters are selected for the model, and the model is
parametrized, then the parameters must be optimized. However, in random for-
est, the parametrization and the optimization are nested, and they are performed
at the same time. The optimization has been done at each node of the tree. The
major players for the optimization of the random forest learning model are the Gini
index (entropy) and the information gain. Hence, random forest modeling provides
a mechanism to parametrize and optimize the model during the application of the
training algorithm.

11.3 Random Forest Learning Algorithm

The random forest learning algorithms, like other machine learning algorithms, have
three parts: training, validation, and testing algorithms. However, the cross-validation

280 11 Random Forest Learning

is already integrated in the training algorithm; therefore, no separate validation
algorithm is required for the random forest technique [3].

In simple terms, we can say that random forest learning gives us several sub-
spaces (i.e., best feature combinations), where the best domain divisions can
be performed and high classification accuracies can be obtained.

Hence, in practice, the classification objectives of the random forest techniques
are divided into only training algorithms and testing algorithms.

11.3.1 Training Algorithm

The training algorithm of random forest supervised learning provides a systematic
approach to developing multiple classifiers (decision trees) so that the testing algo-
rithm uses multiple classifiers to select the best way to classify the new data. Let us
understand this process step by step:

• Step 1: Multiple subspaces are created from the given data set. For example, if
the dimension of the space (number of features) of a given data set is p, then we
can generate multiple subspaces with dimension r, where r ≤ √

p. We may call
this a subspace division.

• Step 2: Now we have an r-dimensional subspace, where r is significantly smaller,
and we can find the best feature and the best split location (domain division) for
the root node of a decision tree using the decision tree-building process explained
in the previous chapter. However, we do not perform this process to this subspace;
instead, we do the next step first.

• Step 3: We alter the subspace randomly using bootstrap samples and create mul-
tiple bootstrap-subspaces where the overlap thinning occurred in their respective
data domains.

• Step 4: Apply the decision tree learning algorithm to find the best feature and the
best split location (together with the feature value at that split location) for each
bootstrap-subspace to construct the nodes for the decision trees.

• Step 5: As a result of step 4, we have a decision tree (classifier) for each bootstrap
sample. Therefore, if we create m bootstrap samples, then we will have m deci-
sion trees for the random forest classifier. These trees can be used by the testing
algorithm to classify the new data.

11.3 Random Forest Learning Algorithm 281

Therefore, the advantages of the random forest algorithm over the decision tree
algorithm are: (1) multiple decision trees are available for classification at the test-
ing phase, which will increase the classification accuracy; (2) bootstrap samples are
used for multiple decision trees, which will help increase the sharpening of the clas-
sification boundary (i.e., domain divisions) through overlap thinning; and (3) the
exhaustive search done for finding the best feature and best split location in the en-
tire space is eliminated by the subspace search with a small additional computation
cost in the bootstrap sampling. This process still brings the computational advan-
tages to the random forest algorithm over the decision tree algorithm.

11.3.1.1 Coding Example

Using two-level trees, this example shows how the random forest learning algo-
rithm splits the bootstrap samples and creates forests of decision trees. This ex-
ample will help you understand the algorithm, and then take overthe incremental
development of the code to build iterative or recursive functions to construct the
complete decision trees and then the entire forest. This coding example is presented
in Listing 11.2, followed by the explanation. This program uses the Matlab modules
(or functions) developed in the previous chapter to build a decision tree with two

220200180160140
feature 2

feature 26
feature 15

fe
at

ur
e

26

feature 2

fe
at

ur
e

15
fe

at
ur

e
2

fe
at

ur
e

15

120100

80
0

0 0
50

100100
200

300
0

50

100

150

200

250

150
200

250
50

100

150

200

250

100 120 140 160 180 200 220

60 8040
0

50

100

150

200

250

0

50

100

150

200

250

220200180160140
feature 6

120100806040

Fig. 11.4 A partial result of the random forest application to classify hardwood floor
and carpet floor data sets

282 11 Random Forest Learning

Fig. 11.5 This is the two-level decision tree built for the first bootstrap sample. The
visual effects of these results are presented in the next figure

levels. The results of the program are presented in Fig. 11.4, and its tree structure is
given in Fig. 11.5.

Listing 11.2 A Matlab example—random forest training

1 clear all;
2 close all;
3
4 hw1=csvread(’hardwood.csv’);
5 cp1=csvread(’carpet.csv’);
6
7 %%
8 % Subspace selection
9 %%

10 rand(’seed’,189);
11 rp1=randperm(64);
12 rp2=rp1(1:8)
13
14 hw2=hw1(:,rp2);
15 cp2=cp1(:,rp2);
16
17 % Loops over 10 bootstrap samples
18 for tt=1:10
19 %%
20 % Bootstrapping
21 %%
22 rand(’seed’,131*tt); %111, 131,
23 rn=round(1023*rand(1,1023))+1;

11.3 Random Forest Learning Algorithm 283

24 hw=hw2(rn’,:);
25 cp=cp2(rn’,:);
26
27 % Decision tree building
28 best_subspaces=dt_build_fn(hw,cp)
29
30 end

The random forest implementation selects feature 2 as the best feature with the
split location 15 and the data value of 145.55, as shown in the first level of the tree
presented in Fig. 11.5. This selection divides the data domain, as shown in the first
figure of Fig. 11.4. This domain division gives 1023 points of class 1 and 396 points
of class 0 on the left leaf of the tree, and 0 points from class 1 and 627 points of
class 0 on the right side leaf. The random forest implementation then selects feature
6 as the best feature on the left side of the tree, with the split location 15 and the data
value 167.51. This is described in the tree in Fig. 11.5. The corresponding domain
division is presented in the second figure of Fig. 11.4. You can now follow the tree in
Fig. 11.5 and interpret the third figure in Fig. 11.4. The fourth figure is the original
plot of both hardwood floor and carpet floor data sets.

11.3.2 Testing Algorithm

The testing algorithm requires the entire random forest be constructed using sev-
eral bootstrap samples, typically ten samples. It provides a systematic approach to
label newly arriving data using the random forest classifier generated in the training
phase. We can describe this process by the following steps:

• Feature selection: In this step, the correct sequence of features from the incoming
data for the nodes of the trees must be observed.

• Tree selection: Suppose we have generated N random forest classifiers (decision
trees of the bootstrap samples), then we push the new data according to the fea-
tures through all of these decision trees and obtain its class labels.

• Bagging: In this step, the trees selected in the previous steps are used to find
the aggregate of the results obtained—this is the bagging technique as explained
earlier.

Suppose you have ten decision trees in your random forest, and you push the
new data through the trees and determine that nine trees labeled it as class 1. You
can then use a voting mechanism and conclude that the new observation belongs
to class 1, because of the majority votes. This is applicable if the problem is the
classification problem. If it is a regression problem, then you can use the average of
the results obtained from the trees for prediction.

284 11 Random Forest Learning

11.4 Random Forest and Big Data

Random forest supervised learning is an excellent technique to deal with the big
data classification problems because of its flexible parallelized structure, which co-
operates with the requirements of the modern big data technologies like the Hadoop
distributed files systems and the MapReduce framework. The usage of subspaces
and bootstrapping to build trees can deal with the scalability problems associated
with big data applications. The recent technique proposed by Li et al. [8] is briefly
discussed in the following subsections. For additional information, I encourage you
to consult the original paper by Li et al. [8].

11.4.1 Random Forest Scalability

In a typical data science application, the number of features is fixed and the random
forest technique selects a subspace from them and builds the depth-first decision
trees based on bootstrapping to construct the random forest. But in a big data appli-
cation, the feature set can dynamically grow (e.g., text processing application like
the email-spam filtering) causing a scalability problem. The approach proposed by
Li et al. [8] can handle this problem by constructing the breadth-first decision trees
for the random forest. In a typical random forest implementation, the root node for
a tree is built first (i.e., the data domain is divided) and then it is split into two sub-
trees (i.e., subdomains). This process is repeated until the entire tree is built. Then
the next tree is constructed, and this is the process of the standard random forest
technique. But in the approach they proposed, the trees were built in parallel. As an
example, they first selected K nodes, then generated 2K children (two children per
node), and then repeated the process to build the next level of the trees which will
have 4K altogether, and so on.

11.4.2 Big Data Classification

The dynamic parallelization can be achieved by using the big data processing plat-
form that uses the MapReduce engine with the mapper() and reducer() functions.
The paper by Li et al. [8] presents pseudo codes for implementing these functions
and illustrates that their breadth-first random forest can be successfully implemented
to handle scalability problems. The coding example in Listing 11.3 will help you
develop a scalable random forest algorithm. The data set used for this illustration is:

1 4 1
2 5 1
3 12 0

11.4 Random Forest and Big Data 285

8 6 1
9 9 1
1 12 0

This data set has three columns where the first two columns define the data
domain and the last column defines the class labels. The goal is to generate bootstrap
samples and show the parallelism and sorting feature of the MapReduce framework.

Listing 11.3 An RHadoop example—toward the depth-first random forest

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 data <- read.table("tree1.txt", sep="")
6 data
7
8 library(rmr2)
9 library(rhdfs)

10
11 hdfs.init()
12
13 gauss.data = to.dfs(data)
14
15 gauss.map.fn = function(k, v) {
16 # Extract the number of observations
17 nn=dim(v)[1]
18
19 # Create the first bootstrap sample
20 set.seed(129)
21 ind1=round(runif(nn,min=1,max=nn))
22 oo=matrix(1,nn,1)
23 v1=cbind(v[ind1,],oo) # add the bootstrap index too
24
25 # Create the second bootstrap sample
26 set.seed(131)
27 ind2=round(runif(nn,min=1,max=nn))
28 oo=matrix(2,nn,1)
29 v2=cbind(v[ind2,],oo) # add the bootstrap index too
30
31 # Combine the bootstrap samples
32 vv=rbind(v1,v2)
33
34 # Assign key value pairs
35 # key is the bootstrap sample index
36 k=vv[,4]
37 keyval(k,vv)
38 }
39
40 gauss.reduce.fn = function(k, v) {
41
42 # Find split location for the feature 2
43 # Use a loop and the information gain to find

286 11 Random Forest Learning

44 # the feature and its best split location
45 #v[,2]=ifelse(v[,2]<mean(v[,2]),1,0)
46 keyval(k, v)
47 }
48
49 mr.gauss = mapreduce(input = gauss.data, map = gauss.map.fn,

reduce = gauss.reduce.fn)
50
51 mr.results = from.dfs(mr.gauss)
52 mr.results

Some of the blocks of code in this program are already familiar to you; therefore,
the explanation in this section only focuses on the blocks of code that are directly
related to the example. The block of code in lines 17–23 extracts the number of obs-
ervations in the data set, generates integers uniformly between 1 and the number of
observations (inclusive), uses them to draw observations with repetition, and labels
them with the bootstrap sample number 1. Similarly, the block of code in lines
26–29 creates the second bootstrap sample. You can use a loop control structure to
generate as many bootstrap samples as needed. Line 32 then combines them using
the rbind() function, and lines 36 and 37 create (key, value) pairs assuming the
bootstrap sample number as the key. Therefore, each key (in this example 1 and 2)
holds a set of related bootstrap samples. Thus the job instructed in the reducer()
function executes on them parallel with respect to the sorted key. If uncommented,
the job in line 45 is to change the feature 2 with the class labels determined by the
mean value of the feature. The output of this program, with line 45 commented, is
given below:

$key
[1] 1 1 1 1 1 1 2 2 2 2 2 2

$val
V1 V2 V3 oo

2 2 5 1 1
3 3 12 0 1
2.1 2 5 1 1
3.1 3 12 0 1
1 1 4 1 1
4 8 6 1 1
21 2 5 1 2
2.11 2 5 1 2
2.2 2 5 1 2
31 3 12 0 2
5 9 9 1 2
41 8 6 1 2

We can see a column is added to the table, and this column carries the bootstrap
sample number. The data table is sorted with respect to these “key” numbers as
expected. By uncommenting line 45, we can obtain the following output:

Problems 287

$key
[1] 1 1 1 1 1 1 2 2 2 2 2 2

$val
V1 V2 V3 oo

2 2 1 1 1
3 3 0 0 1
2.1 2 1 1 1
3.1 3 0 0 1
1 1 1 1 1
4 8 1 1 1
21 2 1 1 2
2.11 2 1 1 2
2.2 2 1 1 2
31 3 0 0 2
5 9 0 1 2
41 8 1 1 2

In this output, the values of feature 2 are substituted with the class labels deter-
mined by the mean value of each set of bootstrap samples separately based on the
key assignment. This indicates the use of the parallelization feature of the MapRe-
duce framework, and it forms the depth-first scenario.

Problems

11.1. Code Revision

Revise the MapReduce programs presented in this chapter using the coding princi-
ples taught in Chap. 5.

11.2. Revising the Programs

Revise the programs presented in this chapter by applying the coding principles
taught in Chap. 5. While revising, understand the program and complete all required
tasks to satisfy the goal of each program.

11.3. Random Forest for Big Data

(a) Write a mapper() function based on random forest implementation. Use the
hardwood floor and carpet floor data sets, or your own data set to show the
working mechanism of your program.

(b) Write a reducer() function based on random forest implementation. Once again,
use the hardwood floor and carpet floor data sets, or your own data set to show
the working mechanism of your program.

288 11 Random Forest Learning

References

1. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
2. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:

Springer, 2009.
3. https://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm
4. T. White. Hadoop: the definitive guide. OReilly, 2012.
5. J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large clusters.” Com-

munications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
6. http://en.wikipedia.org/wiki/Decision tree learning
7. L. Breiman. “Bagging predictors.” Machine learning 24, pp. 123–140, 1996.
8. B. Li, X. Chen, M.J. Li, J.Z. Huang, and S. Feng. “Scalable random forests for massive data,”

P.N. Tan et al. (Eds): PAKDD 2012, Part I, LNAI 7301, pp. 135–146, 2012.

http://en.wikipedia.org/wiki/Decision_tree_learning
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Chapter 12
Deep Learning Models

Abstract The main objective of this chapter is to discuss the modern deep learning
techniques, called the no-drop, the dropout, and the dropconnect in detail and pro-
vide programming examples that help you clearly understand these approaches.
These techniques heavily depend on the stochastic gradient descent approach; and
this approach is also discussed in detail with simple iterative examples. These
parametrized deep learning techniques are also dependent on two parameters
(weights), and the initial values of these parameters can significantly affect the deep
learning models; therefore, a simple approach is presented to enhance the classifi-
cation accuracy and improve computing performance using perceptual weights. The
approach is called the perceptually inspired deep learning framework, and it incor-
porates edge-sharpening filters and their frequency responses for the classifier and
the connector parameters of the deep learning models. They preserve class charac-
teristics and regularize the deep learning model parameters.

12.1 Introduction

One of the requirements in a big data environment is scalability of learning algo-
rithms, especially the scaling-up of machine learning [1]. The scaling-up problem
may occur due to the rapid growth in the number of observations that define the
size of the data, the number of features that define the dimensionality of the data,
and the number of classes that define the variety of data types. This scaling-up
problem can be handled by the modern machine learning technique called deep
learning [2], which is an alternative version of the artificial neural network mod-
els [3] used in the Artificial Intelligence arena for decades. The main goal of deep
learning algorithms is to develop computational models that can find an optimal
mapping between the input variables (also called input neurons or predictors) and
their corresponding class labels. There are several contributors to the successful

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 12

289

290 12 Deep Learning Models

Fig. 12.1 Insight of a deep learning model, known as the no-drop deep learning

development of deep learning models. Among them, the neuron connector, the neu-
ron shooter, and the neuron classifier are the major and minimum number of contrib-
utors required. The methodological processes between these modules are presented
in Fig. 12.1. The first module, the neuron connector, establishes a connection bet-
ween the input neurons, using a neural network approach and the tuning parameter
w, called weights [4]. Subsequently, the neuron shooter fires the neurons suitable
for classification using activation functions like sigmoid [5] and tanh [6]. Finally,
the neuron classifier assigns a map between the fired neurons and the class labels
using a parametrized transformation and the tuning parameter β . Hence, w and β
parametrize the map between the input neurons and the class labels, and they help
optimize the map by iteratively tuning them using training data sets. In the deep
learning models, the Stochastic Gradient Descent (SGD) with backward propaga-
tion approach [5, 7, 8] has been used for learning the parameters and scaling-up
machine learning.

The performance of a deep learning model is heavily dependent on the starting
values of the parameters w and β . The overfitting problem caused by the incorrect
value choices of w and β has been reported in the book by Hastie et al. [4]. In
general, these starting values are selected randomly, and this randomization is the
cause for the unpredictable overfitting problem manifested from the integration of
the SGD-based backward propagation technique. The randomization also causes
inconsistent and unpredictable arrival of an optimal solution between applications.
Another cause for the overfitting and the time delay problems is the independent
selection of the starting values. Currently, there is no standard mechanism to det-
ermine a suitable connection between these parameters. Therefore, one of the obj-
ectives of this chapter is to present a technique to control the independent updates
of the parameters. This technique employs the edge-sharpening filters [9] for the
classification parameter and their frequency responses [10] for the neuron connector
parameters to connect them so that the class characteristics can be preserved and the
deep learning parameters can be regularized.

12.2 Deep Learning Techniques 291

12.2 Deep Learning Techniques

The classification problem for a deep learning technique can be defined as follows:
Suppose we denote a given training example by the following equation:

X = {(Xi,Yi)|Xi ∈ Rp;Yi ∈ {1, . . . ,k} ; i = 1, . . . ,n} , (12.1)

where Xi is the ith training example (or input neuron) with dimension p, and Yi is
its corresponding class label. Then the goal of classification is to find an optimal
function

f : Rp → {1,2, . . . ,k} such that f (Xi) = Yi, i = 1, . . . ,n. (12.2)

Finding such an optimal function mathematically is a difficult task; hence, deep
learning models have been proposed in which a set of parameters may be estimated
using training and cross-validation techniques. This definition can be used to define
the deep learning models [2, 3]: no-drop, dropout, and dropconnect, and they are
discussed in detail in the following subsections.

12.2.1 No-Drop Deep Learning

The no-drop deep learning model is defined based on the paper [3] by Hinton et al.
For no-drop, the classification function f (i.e., the classifier) is defined by a compo-
sition of two parametric functions, h and s, and a sigmoid function a [3]:

f (Xi) = sβi
(a(hwi(Xi))), (12.3)

where wi and βi are the parameters of the functions h and s at iteration i, and
i = 1, . . . ,n, and they are iteratively updated using the SGD approach with back
propagation [8]. The no-drop model is described in Fig. 12.1, and it shows the pro-
cesses and the modeling parameters.

12.2.2 Dropout Deep Learning

The dropout deep learning model is presented here based on the papers by Hinton
et al. [3] and Wan et al. [2]. Similarly, the classifier f for the dropout is defined by
Wan et al. [2]:

f (Xi) = sβi
(mi � a(hwi(Xi))), (12.4)

where the operator � denotes the element-by-element matrix multiplication. It int-
roduces the parameter mi, which is generated using a Bernoulli distribution with
probability 0.5 to drop output neurons. The dropout model is illustrated in Fig. 12.2.

292 12 Deep Learning Models

Fig. 12.2 Insight of the dropout deep learning model

Fig. 12.3 Insight of the dropconnect deep learning model

12.2.3 Dropconnect Deep Learning

The dropconnect is discussed based on the information available in the paper [2] by
Wan et al. Similarly, the dropconnect defines [2]:

f (Xi) = sβi
(a(Mi � hwi(Xi))). (12.5)

This model introduces the parameter Mi, which is generated using a Bernoulli
distribution with probability 0.5 to drop input neurons (i.e., the connections as
defined in neural networks). The dropconnect model is illustrated in Fig. 12.3.
The dropout and dropconnect can remove some important information randomly,
and it may adversely affect the model’s classification accuracy and the computing

12.2 Deep Learning Techniques 293

Fig. 12.4 Insight of the proposed perceptually inspired deep learning model

time. Additionally, the initial values for w0 and β0 are selected randomly. The pro-
posed approach will focus on the preservation of feature variability in dropout and
dropconnect models as illustrated in Fig. 12.4 which will be discussed in Sect. 12.3.
These modern deep learning approaches require an iterative technique for optimiza-
tion through the updates of the parameters, and they use the gradient descent-based
approach. It is discussed in the following subsection.

12.2.4 Gradient Descent

In this section, two examples, a conceptualized example and a numerical example,
are formulated to help you understand the gradient descent and the SGD techniques.
These examples will also help you distinguish these two techniques and apply them
correctly to various applications.

In the gradient descent approach, multiple models are assumed, and the best
model is selected based on the minimization of the global misclassification
error using all the misclassified observations together.

In the SGD approach, one model is assumed, and it is updated using
the minimization of the misclassification error using a single misclassified
observation at a time.

While the gradient descent can use the global characteristics of the observa-
tions to derive a model, the SGD uses the local characteristics of the observation
to iteratively revise the model to drive a final model. The following two subsec-
tions provide a conceptualized example and a numerical example that can help you
understand and describe the meaning of these statements in detail.

294 12 Deep Learning Models

12.2.4.1 Conceptualized Example

Suppose we have the data domain D with the response set C, where x ∈ D and its
response y ∈ C, and we want to find the optimal model y = β x+ γ . For simplicity,
let us assume we want to find the best model among the following two models:

y = β1x+ γ1, (12.6)

y = β2x+ γ2. (12.7)

Then the gradient descent suggests the minimization of the misclassified res-
ponses as follows [4]:

eβ ,γ = ∑yiŷi, (12.8)

where ŷi are the predicted, but misclassified responses, and yi are their actual res-
ponses. It means that the values of yi and ŷi are opposite to each other. For example,
their values may be either 1 and −1 or −1 and 1. Then the gradient descent is [4]:

∂e
∂β

=−∑yixi, (12.9)

∂e
∂γ

=−∑yi. (12.10)

Obviously, the parameters β and γ that make these partial derivatives 0 give their
respective optimal values through the minimization of the error factor in Eq. (12.8).
However, to select the best among the two models, we can select the parameters β
and γ that make the partial derivatives minimum rather than 0.

Therefore, conceptually we can say that the models are assumed, and the best
model that minimizes the misclassification (i.e., minimizes the incorrect labels) is
selected as the optimal model in the gradient descent method, which uses the global
characteristics of the data domain. The “global characteristics” means that all the
data points are used together in the selection of the model as noted in Eqs. (12.9)
and (12.10). In SGD, as stated before, one model is assumed:

y = βcurrx+ γcurr (12.11)

and then they are updated using the following iterative sequences:

βnext −βcurr

h
= yixi, (12.12)

γnext − γcurr

h
= yi, (12.13)

where h is called the learning rate, but it is the small displacement used in the cal-
culation of the derivatives. If you compare Eqs. (12.12) and (12.13) with Eqs. (12.9)
and (12.10), then we can see the localization and globalization properties in the SGD
and the standard gradient descent approaches.

12.2 Deep Learning Techniques 295

12.2.4.2 Numerical Example

Let us consider the classification example used in Chap. 7, Sect. 7.1.2 (see the sec-
ond figure of Fig. 7.4). Let us also select the worst classifier x2 = 3.5x1 + 3.0. The
following table shows the actual and predicted label with this worst classifier.

x1 x2 yi ei
1.00 6.00 -1 1
2.00 2.00 1 1
2.00 6.50 -1 1
2.50 9.50 -1 1
3.00 3.00 1 1

We can now demonstrate the steps to show how the SGD improves this worst
model. As you can see, the predicted label of the first observation suggests the obs-
ervation is misclassified, and we can start the parameter correction from there. The
parameters β = (3.5,−1) and γ = 3.0 used here will be corrected (or updated) using
Eqs. (12.12) and (12.13) as follows:

β = (3.5,−1)− 1(1,6) = (2.5,−7), (12.14)

γ = 3.0− 1 = 2.0. (12.15)

Therefore, the new classifier is 7x2 = 2.5x1 + 2.0. We must now check to see if
the next observation will be misclassified with this new classifier. We can observe
that it is misclassified, too. Therefore, we must update the parameters again. This
time we have the following corrections:

β = (2.5,−7)+ 1(2,2) = (4.5,−5), (12.16)

γ = 2.0+ 1 = 3.0. (12.17)

Therefore, the new classifier is 5x2 = 4.5x1+3.0, and it predicts the actual labels
for the rest of the points, and it is illustrated in the Matlab code given in Listing 12.1.

Listing 12.1 A Matlab example—SGD dynamic parameter correction

1 clear all;
2 close all;
3
4 x=[1 2 2 2.5 3;
5 6 2 6.5 9.5 3];
6
7 l=[-1 1 -1 -1 1];
8
9 b=[3.5 -1];

10 g=3.0;
11 %%%%%% classifier is x2 = 3.5 x1 + 3.0
12
13 % Misclassified- actual is -1 predicted is 1
14 den=sqrt(b*b’);

296 12 Deep Learning Models

15 d=sign((b*x + g)/den);
16
17 fprintf(’\n\n\n%4s %8s %8s %8s\n’,’x1’, ’x2’, ’yi’, ’ei’);
18
19 for i=1:5
20 fprintf(’%4.2f %8.2f %8d %8d\n’,x(1,i), x(2,i), l(1,i), d(1,i

));
21 end
22
23 % 1. dynamic correction to the parameters beta (b) and gamma (g)
24
25 b = b + l(1)*x(:,1)’
26 g = g + l(1)
27 %%%%%% we have updated classifier is 7.0 x2 = 2.5 x1 + 2.0
28
29 % Misclassified- actual is 1 predicted is -1
30 den=sqrt(b*b’);
31 d=sign((b*x(:,2) + g)/den)
32
33 % 2. dynamic correction to the parameters beta (b) and gamma (g)
34 b = b + l(2)*x(:,2)’
35 g = g + l(2)
36 %%%%%% we have updated classifier is 5.0 x2 = 4.5 x1 + 3.0
37
38 % No misclassification, no update - actual is -1 predicted is -1
39 den=sqrt(b*b’);
40 d=sign((b*x(:,3) + g)/den)
41
42 % 3. no correction required
43
44 % No misclassification- original is -1 predicted is -1
45 den=sqrt(b*b’);
46 d=sign((b*x(:,4) + g)/den)
47
48 % 4. no correction required
49
50 % No misclassification- original is 1 predicted is 1
51 den=sqrt(b*b’);
52 d=sign((b*x(:,5) + g)/den)
53
54 % 5. no correction required
55
56 %%%%%% final classifier is 5.0 x2 = 4.5 x1 + 3.0

As you can see, the block of code in lines 4–7 declare the data domain and the res-
ponse set. The data domain has five points, as listed above, together with the labels.
The initial model selected for this illustration is x2 = 3.5x1+3.0, and its parameters
are listed in lines 9 and 10. The rest of the code follows the steps described above,
and the relevant blocks of code are also presented with comments. Each iterative
step and the parameter updates are numbered 1 through 4 from lines 23 to 56.

12.2 Deep Learning Techniques 297

Fig. 12.5 Insight of no-drop model with an example

12.2.5 A Simple Example

These techniques may be easily understood using the simple example, which is
extended from the explanation provided in Chap. 7 in the “Thinking with Example
7.5.” This example provides the explanation of the no-drop model based on the steps
explained in the paper [2] by Wan et al. , but it can easily be modified to explain the
other two techniques. The example uses a four-dimensional single point (or neurons)
(V1,V2,V3,V4) to explain this approach and two classes (0,1), and it is illustrated
in Fig. 12.5. The two parameters W and W s, as denoted in [2], are presented in
the illustration. The activation function max(.) is used in the illustration; however,
the implementation uses the sigmoid function. The first parameter W connects the
neurons, the activation function transmits impulses (or fires neurons), and the second
parameter Ws generates a predictive model. Then the softmax function is used to
predict the labels with probabilities. Finally, the cross-entropy is calculated using
the predicted and the actual labels. This model is implemented in the next section.

298 12 Deep Learning Models

12.2.6 MapReduce Implementation

The example presented in the Listing 12.1 showed the usefulness of the stochas-
tic descent in updating the model parameters toward optimality. In this section, a
MapReduce implementation of the no-drop model, based on the modeling proce-
dures presented in the paper [2] by Wan et al., is partially adopted. However, it will
help you understand its MapReduce implementation and develop your own com-
plete implementation for the big data classification.

Listing 12.2 An RHadoop example—implementation of no-drop model

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 deep.data.fi <- read.table("deep1.txt", sep="")
6
7 library(rmr2)
8 library(rhdfs)
9

10 hdfs.init()
11
12 deep.data.df = to.dfs(deep.data.fi)
13
14 deep.map.fn = function(k, v) {
15 # get the number of observations
16 nn=dim(v)[1]
17
18 # initialize the weight parameter W
19 set.seed(129)
20 m1=rnorm(12,0.5,2.1)
21 m1=m1/max(m1)
22 W=matrix(m1,nrow=3,ncol=4)
23
24 # initialize the beta parameter B
25 set.seed(131)
26 m2=rnorm(6,0.5,2.1)
27 m2=m2/max(m2)
28 B=matrix(m2,nrow=2,ncol=3)
29
30 # initialize arrays of weight matrices
31 WW<-list()
32 BB<-list()
33
34 # initialize entropy matrices
35 ee<-NULL
36
37 # update the W and B using the observations
38 for(ii in 1:nn){
39
40 # get the data domain
41 X=v[ii,1:4]

12.2 Deep Learning Techniques 299

42 # get the response set
43 y=v[ii,5]
44
45 # store the W and B to get them later
46 WW[[ii]]=W
47 BB[[ii]]=B
48
49 # calculate U
50 U=W %*% t(X)
51
52 # calculate R
53 R=1/(1+exp(-U))
54
55 # calculate the P matrix
56 P=B %*% R
57
58 # calculate probabilities
59 p1=P[1]
60 p2=P[2]
61
62 p=exp(p1)/(exp(p1)+exp(p2))
63 q=exp(p2)/(exp(p1)+exp(p2))
64
65 # calculate entropy
66 ee[ii]=-y*log(p)-(1-y)*log(1-p)
67
68 # calculate parameters for logistic regression
69 pq=p*(1-p)
70
71 dd1=rep(pq,1,4)
72 K1=diag(dd1)
73
74 dd2=rep(pq,1,3)
75 K2=diag(dd2)
76
77 # calculate parameters to update W and B
78 Y=t(X)
79 neta1=as.numeric((1/(t(Y) %*% K1 %*% Y)) * (y-p)) * Y
80 neta2=as.numeric((1/(t(R) %*% K2 %*% R)) * (y-p)) * R
81
82 # convert to the matrix forms
83 daba1=matrix(rep(t(neta1),3),nrow=3,byrow=TRUE)
84 daba2=matrix(rep(t(neta2),2),nrow=2,byrow=TRUE)
85
86 # update W and B
87 W=W+0.1*daba1
88 B=B+0.1*daba2
89 }
90
91 # entropy as the key
92 k=ee
93
94 keyval(k,c(WW,BB))
95 }

300 12 Deep Learning Models

96 deep.reduce.fn = function(k, v) {
97
98 keyval(k, v)
99 }

100
101 deep.output.mr = mapreduce(input = deep.data.df, map = deep.map.

fn, reduce = deep.reduce.fn)
102
103 deep.output.df = from.dfs(deep.output.mr)
104 deep.output.df

It reads the following deep1.txt file, which consists of a four-dimensional data
domain with six observations and their corresponding class labels, and generates
parameter updates together with their corresponding entropy at each observation.

2.0 8 1 4 1
2 5 5 1 1
3 4 2 12 0
8 8 5 6 1
9 2 7 9 1
1 11 1 12 0

The entropy values are nominated as the key of the (key, value) pair as shown
in line 93. In line 95, the (key, value) pairs are generated where the value is tuple,
which transmits the model parameters W and β (i.e., B).

$key
[1] 0.4182887 0.4182887 0.4368713 0.4368713 0.4397458
0.4397458 0.4602714 0.4602714
[9] 1.0281549 1.0281549 1.0489053 1.0489053

$val
$val[[1]]

[,1] [,2] [,3] [,4]
[1,] -0.3840013 -0.4710894 0.4689858 -0.341270869
[2,] -0.3253059 1.0289663 0.1222893 0.608256671
[3,] -0.4975646 0.4468758 0.5748454 -0.007758183

$val[[2]]
[,1] [,2] [,3]

[1,] -0.4439768 1.0751781 -0.0762585
[2,] -0.2255478 0.3013913 0.1132608

$val[[3]]
[,1] [,2] [,3] [,4]

[1,] -0.3905531 -0.4776412 0.4648909 -0.34618470
[2,] -0.3318576 1.0224145 0.1181945 0.60334284
[3,] -0.5041164 0.4403240 0.5707506 -0.01267201

12.3 Proposed Framework 301

$val[[4]]
[,1] [,2] [,3]

[1,] -0.4440815 0.9901814 -0.15328188
[2,] -0.2256525 0.2163946 0.03623744
:
:

You can observe, each entropy value appears twice in the key-list that indicating
the sequence W,β ,W,β , In each iteration presented in the val-list, the first 3×4
matrix is the parameter W , and the next 2× 3 matrix is the parameter β . This list
shows only a partial output of the program in Listing 12.2.

12.3 Proposed Framework

The proposed framework provides an approach, which is a combination of a deep
learning model and a mapper, which connects the modeling parameters of the deep
learning models (see Fig. 12.4). It allows the deep learning models, such as no-drop,
dropout, and dropconnect, to be integrated in the framework. The mapper provides
an initialization mechanism to the initial w0 and β0 parameters.

12.3.1 Motivation

The motivation behind the proposed approach is to incorporate perceptual param-
eters in the mapper between the deep learning parameters w and β . The output of
the neuron shooter (see Fig. 12.1) displays edge-like structures because of the appli-
cation of a sigmoid function. This structure is strengthened using edge-sharpening
filters and is assigned to the initial parameter β0 to rectify class characteristics. The
original class characteristics of an observation are propagated using the discrete
cosine transform (DCT) coefficients [11] of the edge-sharpening filters by assigning
the DCT coefficients to the initial parameter w0 of the neuron connector.

12.3.2 Parameters Mapper

In the proposed deep learning framework, the parameters mapper is a simple math-
ematical function that uses the edge-sharpening filters, and it is defined as follows:

β0 = edge sharp(w0), (12.18)

where the function edge sharp helps manipulate important information from the
drop mechanism adopted in modern deep learning models and algorithms like the

302 12 Deep Learning Models

10.5
feature 1

fe
at

ur
e

2
fe

at
ur

e
2

fe
at

ur
e

2

−0.5
−0.4

−0.2

0.2

0.4

0.6

0.8

1

0

0

10.5
feature 1

feature 1

fe
at

ur
e

2

fe
at

ur
e

2

−0.5
−0.2

0.2

0.4

0.6

0.8

1

1.21

0.8

0.6

0.4

0.2

0

0
0

0.2

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1

feature 1
0 0.2 0.4 0.6 0.8 1

0

0

10.5−0.5−1
−1

−0.5

0.5

1

0

feature 1
0

Fig. 12.6 Domain division (standard approach)

dropout and the dropconnect, and it must be defined selectively by the user. In this
paper, the two-dimensional discrete cosine transformation has been selected because
its coefficients carry useful edge (vertical, horizontal, and diagonal) information,
and it can help preserve edge effect [11]. The parameters β0 and w0 represent an
edge-sharpening filter and its discrete transform coefficients, respectively.

12.4 Implementation of Deep Learning 303

12.4 Implementation of Deep Learning

The simulation compares the classification and domain division performances of
no-drop, dropout, dropconnect, and the proposed mapper model. For this simula-
tion, five data sets are considered: (E1) a Gaussian data set with two separable
classes; (E2) a Gaussian data set with nonseparable classes (from the historical
example presented by Leo Breiman [12]); (E3) a data set with concave-shaped
classes (a good example for evaluating nonlinear classification properties of the
models)—the concave-shaped classes have been previously used [13, 14]; (E4) the
publicly available intrusion data set NSL-KDD [15] (only the regular network traffic
and the “neptune” attack traffic are considered in this simulation); and (E5) a data set
in which the neptune attack traffic data and regular traffic data are transformed into
circular patterns, and the intersection of these circles are computed. Figures 12.6
and 12.7 show the results of these data, respectively.

12.4.1 Analysis of Domain Divisions

Domain division results of the dropconnect model for the five data sets are pre-
sented in Fig. 12.6. Similar domain division results are obtained for the no-drop and
dropout model. As we can see, the dropconnect model provides linear classifica-
tion boundaries for these examples with two features. Domain division results of
the no-drop with mapper model (i.e., the proposed model) for the same five data
sets are presented in Fig. 12.7. In these examples, nonlinear boundaries can be seen.
Several noticeable observations make the proposed approach more unique than the
no-drop, dropout, and dropconnect models. For example, the first result shows that
the proposed approach gives an importance to a single data point in the classification
results. We can observe that the classification boundary bends at a location (0, 0.2)
classifies the data point at that location correctly. Another interesting result is in
the third example. The classification boundaries bend at both tips of the concave
classes, making the proposed approach far more superior with two features. Similar
nonlinear and desired results are obtained in the other three examples as well.

12.4.2 Analysis of Classification Accuracies

The classification accuracies are first calculated at the end of all iterations (i.e.,
no early stopping). The results for all data sets and the models no-drop, dropout,
and dropconnect are presented in Table 12.1. The results show that the dropconnect
model performs poorly on the concave-shaped data set. Overall, no-drop performs
better than the other two models. The maximum classification accuracies with early-
stopping strategy are presented in Table 12.2. It has five columns (data sets), and the
values show equal performance in the models.

304 12 Deep Learning Models

10.5−0.5 0
feature 1

feature 1
110.80.60.40.20

feature 1
10.80.60.40.20

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

0.5−0.5
−0.2

0
feature 1

10.5−0.5−1
−1

−0.5

0.5

0

1

0
feature 1

fe
at

ur
e

2

fe
at

ur
e

2
fe

at
ur

e
2

0

0.2

0.4

0.6

0.8

1

fe
at

ur
e

2

fe
at

ur
e

2

−0.4

−0.2

0.2

0.4

0.6

0.8

1

0

Fig. 12.7 Domain division (proposed approach)

The classification accuracies calculated for no-drop with the mapper model are
presented in the first row of Table 12.3 (i.e., without an ensemble approach). These
results show improvements overall; however, it shows excellent performance on
concave-shaped data sets. The empirical observation indicated that combining sev-
eral domain division results could improve the performance; hence, an ensemble
approach is proposed and discussed in the next section.

12.5 Ensemble Approach 305

Table 12.1 Final step classification accuracies

Models E1 E2 E3 E4 E5

No-drop 100.00 70.59 92.53 94.83 96.00
Dropout 100.00 65.88 89.07 95.00 82.13
Dropconnect 100.00 71.76 50.13 88.50 92.27

Table 12.2 Maximum classification accuracies

Models E1 E2 E3 E4 E5

No-drop 100.00 75.88 93.07 98.33 97.60
Dropout 100.00 75.88 92.80 98.17 94.93
Dropconnect 100.00 74.71 91.47 98.33 94.93

Table 12.3 Classification accuracy of the proposed approach

Models E1 E2 E3 E4 E5

W/o ensemble 100.00 76.60 99.73 95.47 94.50
With ensemble 100.00 78.82 99.73 97.60 99.27

12.5 Ensemble Approach

The proposed approach provides many parameter-pairs, w and β , that can give
high classification accuracies. Therefore, several robust domain divisions can be
obtained. These domain divisions may give better classification accuracies when
combined selectively. An ensemble approach is proposed for this purpose in this
section. The goal of the ensemble approach is to select a number of parameter-pairs,
(say L) that can help improve the classification accuracy. Suppose the training pro-
vides n pairs, then we can denote this set by: ws={(w1, β1), (w2, β2), . . . , (wn, βn)}.
If this set is sorted in descending order using their classification accuracies, then our
new set is: w′

s={(w′
1, β ′

1), (w′
2, β ′

2), . . . , (w′
n, β ′

n)}. We can notice that the first 7, 6,
16, 5, and 2 % parameter-pairs give the maximum classification accuracies for the
examples E1–E5, respectively. Hence, these percentages can be used to derive L for
these examples. The classification results produced by these L parameters for their
corresponding examples can be combined in the ensemble classification. However,
this process must be automated.

Suppose we select the first L parameter-pairs (i.e., the L parameter-pairs with
highest classification accuracies) from the sorted set w′

s and apply them to the entire
domain for classification. Now, to ensemble the data points (i.e., input neurons),
each data point in an example is analyzed against the L domain division results
produced by the L high classification accuracy parameters selected. If a data point
belongs to a class domain more than L/2 times, then the data point is marked
with that class label. Otherwise, it is marked with the other class label. The entire

306 12 Deep Learning Models

domain will undergo this threshold-based labeling process. The ensemble classifi-
cation results for the examples E1–E5 are presented in the second row of Table 12.3.
We can see the improvements in the classification accuracies for no-drop with map-
per and the ensemble approach.

Problems

12.1. Code Revision
Revise the MapReduce programs presented in this chapter using the coding princi-
ples taught in Chap. 5.

12.2. Real Example with No-Drop Model

(a) Modify the program in Listing 12.2 to read all the features from the hardwood
floor and carpet floor data sets with appropriate labels.

(b) Run the program with these data sets and produce the results. Observe the char-
acteristics of this deep learning model and interpret the results.

12.3. Implementation of DropConnect

(a) Understand the SGD explained in this chapter and derive similar iterative se-
quences for the deep learning parameters W and Ws (or β) stated in the paper
[2] by Wan et al.

(b) Incorporate this SGD in the code in Listing 12.2 by modifying the block of code
in lines 69–89 based on the Algorithm 1 in [2]. Run and observe the results.
Then interpret the results and discuss the differences (if any) with the results
obtained from the code in Listing 12.2.

Acknowledgements I would like to thank Professor Bin Yu from the University of California,
Berkeley for giving me an opportunity to visit the Statistics Department and work on the Deep
Learning research. This work was carried out with Professor Bin Yu. I also would like to thank
Dr. Jinzhu Jia from Peaking University, who was a visiting scholar at the University of California,
Berkeley during this research, for his help in validating the SGD implementation.

References

1. B. Dalessandro. “Bring the noise: Embracing randomness is the key to scaling up machine
learning algorithms.” Big Data vol. 1, no. 2, pp. 110–112, 2013.

2. L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. “Regularization of neural networks using
dropconnect.” In Proceedings of the International Conference on Machine Learning, pp. 1058–
1066, 2013.

3. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. “Im-
proving neural networks by preventing co-adaptation of feature detectors.” Technical Report,
arXiv:1207.0580, pp. 1–18, 2012.

References 307

4. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

5. J. Han and C. Moraga. “The influence of the sigmoid function parameters on the speed of
backpropagation learning.” In From Natural to Artificial Neural Computation, pp. 195–201,
Springer, 1995.

6. B. L. Kalman and S. C. Kwasny. “Why tanh: choosing a sigmoidal function.” International Joint
Conference on Neural Networks, vol. 4, pp. 578–581, 1992.

7. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition.” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

8. T. Zhang. “Solving large scale linear prediction problems using stochastic gradient descent
algorithms.” In Proceedings of the International Conference on Machine learning, pp. 919–926,
2004.

9. Subtle Sharpen Filter, http://lodev.org/cgtutor/filtering.html.
10. S. Suthaharan. “No-reference visually significant blocking artifact metric for natural scene

images.” Signal Processing, vol. 89, no. 8, pp. 1647–1652, 2009.
11. N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transactions on

Computers, vol. 100, no. 1, pp. 90–93, 1974.
12. Twonorm, http://www.cs.toronto.edu/\simdelve/data/datasets.html, (dataset used by Leo

Breiman).
13. G. Montavon, M. L. Braun, and K. R. Muller. “Kernel analysis of deep networks,” The Journal

of Machine Learning Research, vol. 12, pp. 2563–2581, 2011.
14. C. Jose, P. Goyal, P. Aggrwal, and M. Varma. “Local deep kernel learning for efficient non-

linear svm prediction,” In Proceedings of the 30th International Conference on Machine Learn-
ing, pp. 486–494, 2013.

15. NSL-KDD, https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://www.cs.toronto.edu/$sim $delve/data/datasets.html
http://lodev.org/cgtutor/filtering.html

Chapter 13
Chandelier Decision Tree

Abstract This chapter proposes two new techniques called the chandelier decision
tree and the random chandelier. This pair of techniques is similar to the well-known
pair of techniques, the decision tree and the random forest. The chapter also presents
a previously proposed algorithm called the unit circle algorithm (UCA) and pro-
poses a family of UCA-based algorithms called the unit circle machine (UCM), unit
ring algorithm (URA), and unit ring machine (URM). The unit circle algorithm int-
egrates a normalization process to define a unit circle domain, and thus the other
proposed algorithms adopt the phrase “unit circle.” The chandelier decision tree and
the random chandelier use the unit ring machine to build the chandelier trees.

13.1 Unit Circle Algorithm

The unit circle algorithm (UCA) proposed in a recent paper [1] is one of the impor-
tant contributors to the chandelier decision tree and random chandelier techniques
presented in this chapter. The main concept of the UCA is the transformation of
a given data domain to a circular data domain (or hypersphere) and the execution
of domain division on that circular domain for classification. To achieve these obj-
ectives, the data have been represented in unit circles with two regions called the
inner circle and the outer circle and then used to classify two classes. One of the
advantages of this algorithm is that it can provide a classifier with a fewer number
of parameters compared to the current algorithms.

Another advantage is that it can classify the similar unseen data that maps to
the classified data; as a result, it is very useful for big data classification. However,
its application is limited because, as you will see, it is heavily dependent on the
topographical structure (especially the orientation) of the data and the degree of
separability of the classes. The step-by-step enhancement of this algorithm can lead

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 13

309

310 13 Chandelier Decision Tree

0

0 0

1 1

0 0

1

0

0

1

An example
best split

An example
best split

Misclassification Misclassification

1

0

x101

x10m x20m

1

1

x111

x11n

x10m

x211

x21n

x20m xp0m0 x10m x20m

r01

r02

r0m

r11 1

0

0

0

1

ri11

riom

ri02

ri01

ri12

ri1n

r12

r1n

x201

X1 X2

Unit Circle Algorithm (UCA) Unit Circle Machine (UCM)

Y X1 X2 Xp

xp01

xp0m

xp11

xp1n

x201x101

x10m

x111

x20m

x211

1 x11n x21n

YYR YRi

1r12 1ri12

Fig. 13.1 UCA and UCM algorithms are illustrated in this figure

to a good classification algorithm, and it is discussed in this chapter. In simple terms,
the goal of this algorithm is to represent the data domain using circles, and then
parametrize the learning model with the radius of the circles.

13.1.1 UCA Classification

The UCA classification is demonstrated on the left side of Fig. 13.1 using two fea-
ture sets, X1 and X2 with a response set Y , and two class labels, 0 and 1. In this
example, the two-dimensional data domain D1, which is defined by the features X1

and X2, is transformed into a one-dimensional data domain defined by R as follows:

r =
√
(x1

2 + x2
2), (13.1)

where r ∈ R, x1 ∈ X1, and x2 ∈ X2. This mathematical transformation is also shown
in the left figure of Fig. 13.1. The transformation provides the radius of a circle on
which an observation resides. Hence, all the unseen observations which reside on
the circle can be classified when the given observation is classified.

Also note that multiple observations in the data domain D1 may be mapped to
a single observation in the newly created circular data domain D2. This brings the
advantage of data reduction as well. Also note that the misclassification can occur as
illustrated in this example (i.e., an observation with class label 0 can map to a class

13.1 Unit Circle Algorithm 311

300200100−100−200−300
−300

−200

−100

0

100

200

300

−300

−200

−100

0

100

200

300

0 300200100−100−200−300 0

Fig. 13.2 UCA’s class location requirements

label 1 and vice versa). This figure also shows a possible domain division (split)
which encounters a misclassification problem. The misclassification causes a fuzzy
boundary in the domain division at classification. As reported in [1], the classifier
r = 0.7071 was obtained for classifying two intrusion attacks with a fuzzy boundary
of 0.005. We can simply say that in this approach a circular learning model has been
proposed, and it has been parametrized using the radius of the unit circles.

We can also say that the regions formed by the circles have been used for classi-
fication. It is a good technique to classify separable classes, and its performance is
poor when the classes are nonseparable. The first figure in Fig. 13.2 shows the pre-
ferred location and orientation of the classes on a data domain. The second figure
shows the overlapping classes obtained from the hardwood floor and carpet floor
images—it illustrates a fuzzy boundary. The fuzzy boundary can be captured by
defining a ring boundary, and it becomes the new technique called, unit ring algo-
rithm, which will be explained later. Let us now look at a coding example, which
implements an improved version of unit circle machine (UCM) in which the data
domain is divided using the entropy-based information gain approach.

13.1.2 Improved UCA Classification

The original UCA does not incorporate any algorithms to find an optimal split lo-
cation for the domain division. In this section, the original UCA has been improved
by integrating the entropy-based information gain technique to find the best split
location on the circular domain R. The best split algorithm will help to minimize the
misclassification and reduce the fuzzy boundary. This improved approach is imple-
mented in Matlab and presented in the following subsection.

312 13 Chandelier Decision Tree

13.1.3 A Coding Example

This section provides two Matlab programs, the first one is a function that imple-
ments the information gain calculator as before in Chap. 10, and the second one
is the main program that implements the UCA classification using the information
gain calculator. The main objective of the function is to read a feature variable with
its label information and find the best split location for domain division.

Listing 13.1 A Matlab example—information gain calculator

1 function [sl,mx,ig]=uca_calc_ig_fn(xx,yy)
2
3 ll=length(xx);
4 for ii=2:ll-1
5 %sp is the split location
6 sp=xx(ii);
7
8 %build left and right tree
9 xl=yy(xx<sp);

10 xr=yy(xx>=sp);
11
12 %length of the left tree
13 l1=length(xl);
14 %sum of class 1s
15 n1=sum(xl);
16 %sum of class 0s
17 n2=l1-n1;
18
19 %probabilities
20 p1=n1/(n1+n2)+0.00001;
21 p2=n2/(n1+n2)+0.00001;
22
23 %entropy of the left tree
24 en1 = -p1*log(p1)-p2*log(p2);
25
26 %length of the right tree
27 l2=length(xr);
28 %sum of class 1s
29 n1=sum(xr);
30 %sum of class 0s
31 n2=l2-n1;
32
33 %probabilities
34 p1=n1/(n1+n2)+0.00001;
35 p2=n2/(n1+n2)+0.00001;
36
37 %entropy of the right tree
38 en2 = -p1*log(p1)-p2*log(p2);
39
40 %Calculates information gain
41 ig(ii-1)=1-((l1/ll)*en1 + (l2/ll)*en2);
42 end
43 %find the split location with the maximum information gain

13.1 Unit Circle Algorithm 313

44 tmp=find(ig==max(ig));
45 sl=tmp(1);
46 mx=max(ig);
47 end

In line 1, the function uca calc ig f n is defined, and it accepts a single feature
set (xx) and its class labels (yy) (only two classes) and outputs the best split location
(sl), the maximum information gain (mx), and the list of information gains at each
location (ig). Line 3 provides the number of observations in the data domain (ll).
The for-loop in lines 4–42 carries out the task of calculating the information gain
when split occurs, starting from the observation 2 to the observation ll-1. The pro-
gram has comments for each block of code, and it explains the purpose of the code.
The goal of each step is to complete a set of tasks that will lead to the information
gain for each split. Finally, the split location that gives the maximum information
gain is selected as the best split location.

Listing 13.2 A Matlab example—improved UCA-based classification

1 clear all;
2 close all;
3
4 % Two-classes input data sets
5 hw1=csvread(’hardwood.csv’);
6 cp1=csvread(’carpet.csv’);
7
8 % The first two features are used
9 tw1=hw1(:,1); tw2=hw1(:,2);

10 tw3=sqrt(tw1.*tw1+tw2.*tw2);
11 figure;plot(tw1,tw2,’.’);grid on
12 axis([-300 300 -300 300]);
13
14 tp1=cp1(:,1); tp2=cp1(:,2);
15 tp3=sqrt(tp1.*tp1+tp2.*tp2);
16 hold on;plot(tp1,tp2,’r.’);grid on;
17 axis([-300 300 -300 300]);
18
19 % Labels are added
20 yy=[ones(1,size(tw3,1)) zeros(1,size(tp3,1))];
21 xx=[tw3;tp3]’;
22
23 % Finding the best split using information gain
24 [slx,fmx,igx]=uca_calc_ig_fn(xx,yy);
25
26 fmxsort=sort(fmx,’descend’);
27 tmp1=find(fmx==fmxsort(1));
28 f1=tmp1(1);
29 fval=xx(f1,slx(f1));
30
31 % Splitting the circular domain
32 idxL=find(xx(f1,:)<fval);
33 idxR=find(xx(f1,:)>=fval);
34
35 xxL=xx(:,idxL);
36 xxR=xx(:,idxR);

314 13 Chandelier Decision Tree

300200100−100−200−300
−300

−200

−100

0

100

200

300

−300

−200

−100

0

100

200

300

0 300200100−100−200−300 0

Fig. 13.3 UCA’s circular domain division and overlap revelation

37 yyL=yy(idxL);
38 yyR=yy(idxR);
39
40 % Showing the classification counts
41 fprintf(’\n’);
42 fprintf(’Left side class 1 = %d\n’,sum(yyL));
43 fprintf(’Left side class 0 = %d\n\n’,length(yyL)-sum(yyL));
44
45 fprintf(’Right side class 1 = %d\n’,sum(yyR));
46 fprintf(’Right side class 0 = %d\n’,length(yyR)-sum(yyR));
47
48 % Showing the classes using circles
49 figure;
50 for ii=1:size(xx,2)
51 if yy(ii)==1
52 circle(0,0,xx(f1,ii),’.’,0.01);
53 else
54 circle(0,0,xx(f1,ii),’r.’,0.01);
55 end
56 hold on;grid on;
57 end
58
59 %Showing the overlapping region
60 figure;
61 for ii=1:size(xx,2)
62 if yy(ii)==1
63 circle(0,0,xx(f1,ii),’.’,0.01);
64 else
65 circle(0,0,xx(f1,ii),’r.’,0.09);
66 end
67 hold on;grid on;
68 end

13.2 Unit Circle Machine 315

The block of code in lines 50–58 has produced the result presented in the first fig-
ure of Fig. 13.3, where we can see circular subdomains for two classes represented
by blue (label 1) and red (label 0). This figure gives the impression of perfect sepa-
ration (classification) between the classes, but there is a hidden circular subdomain,
where we can see a large quantity of misclassified data. The block of code in line
61 to line 69 makes the red class thinner, thus the hidden subdomain can be seen.
Observe it in the second figure of Fig. 13.3. This is the fuzzy boundary problem in
UCA-based approaches.

13.1.4 Drawbacks of UCA

One of the problems is that the circular domains from different classes may overlap.
The overlapping region may also be significantly high as illustrated in Fig. 13.3. We
cannot see the overlap in the first figure, but the overlapping region is disclosed in
the second figure by thinning the circular domain of the class 0 (in red). Despite
this fuzzy boundary problem, it can work nicely with the classification of separable
classes. There are several features in the problem space, and therefore nonoverlap-
ping regions may be found in other subspaces. We must deploy an optimization
process to find the best feature pair and the best split. This is the goal of UCM
which is discussed in the next section.

13.2 Unit Circle Machine

The UCA provides a machine learning model and algorithms. However, it does not
provide a good optimization because of the absence of a simultaneous feature sel-
ection algorithm. The UCM fulfills this requirement through an iterative approach.
The main difference is that the UCM technique scans through all the features and
selects the best feature that gives the best split on the circular domain using the
information gain approach as performed in decision tree [2] and random forest [3]
approaches. The UCM classification is also good for the separable classes, but it
tries to find the separability in subspaces and gives the subspace that has the best
separability or split. It brings the same advantages as UCA, but it also helps to
optimize the classification to a certain extent.

13.2.1 UCM Classification

The UCM classification is illustrated on the right side of Fig. 13.1 using p feature
sets X1,X2, . . . ,Xp with a response set Y and two class labels 0 and 1. The same
as UCA, the misclassification is also illustrated in this figure. In this example, the

316 13 Chandelier Decision Tree

p dimensional data domain D1, which is defined by the features X1,X2, . . . ,Xp, is
transformed into p− 1 one-dimensional data domains defined by Ri as follows:

r =
√
(xi

2 + x j
2), (13.2)

where r ∈Ri, xi ∈Xi, x j ∈Xi+1, and i= 1, . . . , p−1. It means that the circular domain
is defined iteratively pairing the features and calculating the radius of the circle for
each observation. The second figure in Fig. 13.1 shows the construction of circular
domain for the ith feature pair and the domain split with a misclassification example.
This process is done repeatedly for i = 1, . . . , p− 1, and the feature that gives the
best split (maximum information gain) is selected as the best feature. Hence, we
have the best feature and the best split location on the data domain.

13.2.2 A Coding Example

The Matlab code for UCM classification is presented in this section. It uses the UCA
function presented in Listing 13.1. The overall goal of the code is to find the best
feature that gives the best split location for domain division. It uses the hardwood
floor and carpet floor data sets introduced earlier in this book.

Listing 13.3 A Matlab example—UCM classification

1 clear all;
2 close all;
3
4 hw1=csvread(’hardwood.csv’);
5 cp1=csvread(’carpet.csv’);
6
7 % Iteration over the features
8 tw1=hw1(:,1:1:end-1); tw2=hw1(:,2:1:end);
9 hw=sqrt(tw1.*tw1+tw2.*tw2);

10
11 tp1=cp1(:,1:1:end-1); tp2=cp1(:,2:1:end);
12 cp=sqrt(tp1.*tp1+tp2.*tp2);
13
14 % Labels are added
15 yy=[ones(1,size(hw,1)) zeros(1,size(cp,1))];
16 xx=[hw;cp]’;
17
18 % Finding the best split and the best feature
19 % using information gain
20 for ii=1:size(xx,1)
21 sig=std(xx(ii,:));
22 [slx(ii),fmx(ii),igx{ii}]=uca_calc_ig_fn(xx(ii,:),yy);
23 end
24
25 fmxsort=sort(fmx,’descend’);
26 tmp1=find(fmx==fmxsort(1));
27 f1=tmp1(1);

13.2 Unit Circle Machine 317

28 fval=xx(f1,slx(f1));
29
30 % Splitting the circular domain
31 idxL=find(xx(f1,:)<fval);
32 idxR=find(xx(f1,:)>=fval);
33
34 xxL=xx(:,idxL);
35 xxR=xx(:,idxR);
36
37 yyL=yy(idxL);
38 yyR=yy(idxR);
39
40 % Showing the classification counts
41 fprintf(’\n’);
42 fprintf(’Left side class 1 = %d\n’,sum(yyL));
43 fprintf(’Left side class 0 = %d\n\n’,length(yyL)-sum(yyL));
44
45 fprintf(’Right side class 1 = %d\n’,sum(yyR));
46 fprintf(’Right side class 0 = %d\n’,length(yyR)-sum(yyR));
47
48 % Showing the classes using circles
49 figure;
50 for ii=1:size(xx,2)
51 if yy(ii)==1
52 circle(0,0,xx(f1,ii),’.’,0.01);
53 else
54 circle(0,0,xx(f1,ii),’r.’,0.09);
55 end
56 hold on;grid on;
57 end
58
59 % Showing the features 1 and 2
60 figure;plot(hw1(:,1),hw1(:,2),’.’);
61 hold on;plot(cp1(:,1),cp1(:,2),’r.’);
62 axis([40 240 40 240]);grid on;
63
64 % Showing the best features 48 and 49
65 figure;plot(hw1(:,48),hw1(:,49),’.’);
66 hold on;plot(cp1(:,48),cp1(:,49),’r.’);
67 axis([40 240 40 240]);grid on;

The block of code in line 60 to line 62 has produced the scatter plot in the first
figure of Fig. 13.4, which shows the two classes (hardwood floor and carpet floor)
in the data domain defined by features 1 and 2. But UCM selects the features 48 and
49 as the best features to construct the circular domain and to obtain the best split
(domain division), and the results are presented in the second figure of Fig. 13.4. In
this figure, we can clearly see a better separation between the classes.

318 13 Chandelier Decision Tree

240200180160140
Feature 1

F
ea

tu
re

 2

F
ea

tu
re

 4
9

120 220100806040 240200180160140
Feature 1

120 220100806040
40

60

80

100

120

140

160

180

200

220

240

40

60

80

100

120

140

160

180

200

220

240

Fig. 13.4 We can see the UCM technique selects the best features to construct cir-
cular classifiers and gives good classification—compared to the first plot, we can
see less class overlap. The same scales are used to show the effect

13.2.3 Drawbacks of UCM

As illustrated in Fig. 13.2, the topological structure is the major restriction in both
UCA and UCM approaches. Although the UCM approach helps find the best fea-
ture pair, still the overlapping subdomain can be high, and the misclassification
can be increased. There is an alternative way of handling this problem, which is
called the unit ring algorithm [4]. The main goal of URA is to find the ring split
that minimizes the misclassification by absorbing the observations that increase the
misclassification.

13.3 Unit Ring Algorithm

The UCA and UCM techniques suffer from the fuzzy boundary problem, which
leads to high misclassification. Therefore, it is desirable to search for the best fea-
ture that gives the best split in order to minimize the misclassification, meaning the
reduction of fuzzy boundary. For this purpose, the unit ring algorithm is proposed.
In the URA approach, the circular domain is split by a ring, such that the ring-split
minimizes the misclassification by finding the subdomains that give the maximum
information gain on the ring-split. Thus, it helps alleviate the problem of misclassi-
fication by identifying the fuzzy boundary which falls within the ring and gives the
best domain split. It is also called best-split, worst-ring technique because it gives
the subdomains that have the maximum information gain while the ring does not
have the maximum information gain. The first diagram in Fig. 13.5 illustrates this
technique. It shows that the ring absorbs the misclassification and thus reduces the
misclassification in the separated circular sub domains.

13.3 Unit Ring Algorithm 319

0 0

0

00

1

1

0

1No misclassification

1

1

An example
best split

ring

An example
best split

ring

x101

x10m

x111

x11n

x10m x20m

r12 1

1

1

0

0

0

No misclassification ri12

ri1n

ri12

ri11

ri0m

ri02

ri01

x211

x21n r1n

r12

r11

r02

r01

r0mx20m

x201 0

0

1

1

0

x101

x10m

x111

x11n

x10m

x201

x20m

x211

x20m

x21n

xp01

xp0m

xp11

xp1n

xp0m

Y R YX1 X2 Y YX1 X2
Xp Ri

Unit Ring Algorithm (URA) Unit Ring Machine (URM)

1 1

Fig. 13.5 URA and URM algorithms are illustrated in this figure—the iteration over
feature space to find the best feature is integrated in URM

To accomplish this task, URA deploys an iterative mechanism with a ring con-
cept, which is similar to the sliding window technique used in many computer sci-
ence applications. It also adopts the entropy-based information gain approach (as
the same as UCA and UCM) to find the best split. The width of the ring (i.e., the
window size) is selected as a proportion of the standard deviation (σ) of the obser-
vations. The examples presented in this section use 0.5σ . However, URA suggests
finding a suitable value for the window size using cross-validation approach.

By sliding the window (i.e., by expanding the ring over the circular data domain,
but keeping the window size fixed), the information gains of domain split are calcu-
lated, and the ring that gives the maximum information gain is selected as the best
split ring. This is called the URA approach, and the algorithm is provided in Matlab
code in the following subsection.

13.3.1 A Coding Example

This section presents a Matlab function. The objective of this function is to accept a
feature variable with its labels and standard deviation, and then outputs the best split
ring with two circular subdomains. It also returns other variables (or information)
for readers to explore.

320 13 Chandelier Decision Tree

Listing 13.4 A Matlab example—unit ring algorithm

1 function [sl,mx,ig,md1,md0,n1,n2,o1,o2]=ura_calc_ig_fn(xx,yy,sig)
2
3 ll=length(yy);
4 for ii=2:ll-1
5 %sp is the split location
6 sp=xx(ii);
7
8 %build left and right tree
9 wd=0.5*sig;

10 xl=yy(xx<sp);
11 xr=yy(xx>=(sp+wd));
12 xm=yy(xx>=sp & xx<(sp+wd));
13
14 %length of the node
15 m1=length(xm);
16 %sum of class 1s
17 md1=sum(xm);
18 %sum of class 0s
19 md0=m1-md1;
20
21 %length of the left tree
22 l1=length(xl);
23 %sum of class 1s
24 n1=sum(xl);
25 %sum of class 0s
26 n2=l1-n1;
27
28 %probabilities
29 p1=n1/(n1+n2)+0.00001;
30 p2=n2/(n1+n2)+0.00001;
31
32 %entropy of the left tree
33 en1 = -p1*log(p1)-p2*log(p2);
34
35 %length of the right tree
36 l2=length(xr);
37 %sum of class 1s
38 o1=sum(xr);
39 %sum of class 0s
40 o2=l2-o1;
41
42 %probabilities
43 p1=o1/(o1+o2)+0.00001;
44 p2=o2/(o1+o2)+0.00001;
45
46 %entropy of the right tree
47 en2 = -p1*log(p1)-p2*log(p2);
48
49 %Calculates information gain
50 ig(ii-1)=1-((l1/ll)*en1 + (l2/ll)*en2);
51 end
52 %find the split location with the maximum information gain

13.3 Unit Ring Algorithm 321

53 tmp=find(ig==max(ig));
54 sl=tmp(1);
55 mx=max(ig);
56 end

The URA technique is applied to features 1 and 2 and the result is presented in
the first figure of Fig. 13.6. It shows that URA requires a feature selection algorithm
to find the best feature with the best split location.

13.3.2 Unit Ring Machine

The unit ring machine is an extension of the URA approach like the way the UCM
approach was developed from UCA. In URM, the URA approach is applied to all
pairs of features iteratively as performed previously, and the best feature pair that
gives the best URA split over the circular domain is selected as the classifier. It uses
all the feature pairs iteratively with the sliding window technique and finds the best
feature pair that forms a ring, which provides the maximum information gain at ring
split. The URM approach is illustrated in the second figure of Fig. 13.5.

13.3.3 A Coding Example

Listing 13.5 A Matlab example—URM classification

1 clear all;
2 close all;
3
4 hw1=csvread(’hardwood.csv’);
5 cp1=csvread(’carpet.csv’);
6
7 % Iteration over the features
8 tw1=hw1(:,1:1:end-1); tw2=hw1(:,2:1:end);
9 hw=sqrt(tw1.*tw1+tw2.*tw2);

10
11 tp1=cp1(:,1:1:end-1); tp2=cp1(:,2:1:end);
12 cp=sqrt(tp1.*tp1+tp2.*tp2);
13
14 % Labels are added
15 yy=[ones(1,size(hw,1)) zeros(1,size(cp,1))];
16 xx=[hw;cp]’;
17
18 % Finding the best split and the best feature
19 % using information gain
20 for ii=1:size(xx,1)

322 13 Chandelier Decision Tree

21 sig=std(xx(ii,:));
22 [slx(ii),fmx(ii),igx{ii},md1(ii),md0(ii),n1(ii),n2(ii), \

ldots
23 o1(ii),o2(ii)]=ura_calc_ig_fn(xx(ii,:),yy,sig);
24 end
25
26 fmxsort=sort(fmx,’descend’);
27 tmp1=find(fmx==fmxsort(1));
28 f1=tmp1(1);
29 fval=xx(f1,slx(f1));
30
31 % Splitting the circular domain
32 idxL=find(xx(f1,:)<fval);
33 idxR=find(xx(f1,:)>=fval);
34
35 xxL=xx(:,idxL);
36 xxR=xx(:,idxR);
37
38 yyL=yy(idxL);
39 yyR=yy(idxR);
40
41 % Showing the classification counts
42 fprintf(’\n’);
43 fprintf(’Left side class 1 = %d\n’,sum(yyL));
44 fprintf(’Left side class 0 = %d\n\n’,length(yyL)-sum(yyL));
45
46 fprintf(’Right side class 1 = %d\n’,sum(yyR));
47 fprintf(’Right side class 0 = %d\n’,length(yyR)-sum(yyR));
48
49 % Showing the classes using circles
50 figure;
51 for ii=1:size(xx,2)
52 if yy(ii)==1
53 circle(0,0,xx(f1,ii),’.’,0.01);
54 else
55 circle(0,0,xx(f1,ii),’r.’,0.09);
56 end
57 hold on;grid on;
58 end
59
60 % Showing the features 1 and 2
61 figure;plot(hw1(:,1),hw1(:,2),’.’);
62 hold on;plot(cp1(:,1),cp1(:,2),’r.’);
63 axis([40 240 40 240]);grid on;
64 xlabel(’Feature 1’);ylabel(’Feature 2’);
65
66 % Showing the best features 48 and 49
67 figure;plot(hw1(:,48),hw1(:,49),’.’);
68 hold on;plot(cp1(:,48),cp1(:,49),’r.’);
69 axis([40 240 40 240]);grid on;
70 xlabel(’Feature 48’);ylabel(’Feature 49’);
71
72 figure;plot(md1);hold on;plot(md1,’.’);grid on;
73 hold on;plot(md0,’color’,’r’);hold on;plot(md0,’r.’);

13.4 Chandelier Decision Tree 323

240200180160140
Feature 1

F
ea

tu
re

 2

120 220100806040 240200180160140
Feature 48

120 220100806040
40

60

80

100

120

140

160

180

200

220

240

F
ea

tu
re

 4
9

40

60

80

100

120

140

160

180

200

220

240

Fig. 13.6 Comparison between URA and URM

74
75 figure;plot(fmx);grid on;
76 xlabel(’Feature number’);ylabel(’Information gain’);

The final result of this program is presented in the second figure of Fig. 13.6.
It shows that URM selects feature 48 and feature 49 as best features and divided
it with a unit ring at the best split location. Comparing the results in the first and
second figure, we can appreciate the capability of URM over URA.

13.3.4 Drawbacks of URM

The overlapping region may be very high. As presented earlier, the second figure in
Fig. 13.3 discloses the overlapping region. However, nonoverlapping regions may
be found in other subspaces. Therefore, an optimization process must be integrated
to find the best feature pair and the best split. The chandelier decision tree addresses
this process and it is discussed in the next section.

13.4 Chandelier Decision Tree

The chandelier decision tree is the machine learning technique that integrates the
URM approach and the concepts used in the decision tree. It divides the circular
data domain into a tree of circular subdomains, where a node has the ring with data
that gives two branches (subdomains) that have maximum information gain.

324 13 Chandelier Decision Tree

Feature Index

N
um

be
r

of
 C

la
ss

 L
ab

el
s

In
fo

rm
at

io
n

ga
in

10 20 30 40 50 60 700
Feature number

10 20 30 40 50 60 700
0 0.84

0.86

0.88

0.9

0.92

0.94

0.96

50

100

150

200

250

300

350

Fig. 13.7 Number of class labels and information gain for each feature split with
chandelier decision tree

The main difference between the decision tree and the chandelier
decision tree

The decision tree builds the best node that gives the best split, but the
chandelier decision tree builds the worst node that gives the best split.

However, each node in the tree has a ring of subdomains, which is split as
arcs to give a good classification.

13.4.1 CDT-Based Classification

As mentioned before, the CDT approach adopts URM, divides the data domain
iteratively, and builds a decision tree. The use of URM provides a best split ring at
each node and circular subdomains for two leaves. The URM approach is repeatedly
applied on the subdomains and a tree like structure is built. It looks like a chandelier;
therefore, it is called the chandelier decision tree. The nodes of the tree are the best
split rings, and these rings must also be divided to get additional classifiers.

This process also makes this approach unique and differentiates it from the stan-
dard decision tree approach. The subdomains of these best split rings form arc
shapes, and thus the entire tree looks like the chandelier. Hence, the name chan-
delier decision tree fits very well for this approach. The examples presented for the
CDT approach in this chapter build the first level of the chandelier tree, which has
a node with a unit ring, and the leaves have circular subdomains. It can be easily
extended (iteratively or recursively) to a complete CDT as we do with the regular
decision tree. The program in Listing 13.6 demonstrates the concept of CDT and
some of its results are presented in Figs. 13.7 and 13.8. The calculation of informa-
tion gain for each feature is one of the information tasks of CDT and it is carried out

13.4 Chandelier Decision Tree 325

in the block of code in lines 20–24, and the results are presented in Fig. 13.7. The
first figure shows the number of class labels in the best split ring associated with
each feature, and the second figure shows information gain of each feature—we can
see the maximum information gain is achieved with the split of feature 48.

Listing 13.6 A Matlab example—CDT classification

1 clear all;
2 close all;
3
4 hw1=csvread(’hardwood.csv’);
5 cp1=csvread(’carpet.csv’);
6
7 % Iteration over the features
8 tw1=hw1(:,1:1:end-1); tw2=hw1(:,2:1:end);
9 hw=sqrt(tw1.*tw1+tw2.*tw2);

10
11 tp1=cp1(:,1:1:end-1); tp2=cp1(:,2:1:end);
12 cp=sqrt(tp1.*tp1+tp2.*tp2);
13
14 % Labels are added
15 yy=[ones(1,size(hw,1)) zeros(1,size(cp,1))];
16 xx=[hw;cp]’;
17
18 % Finding the best split and the best feature
19 % using information gain
20 for ii=1:size(xx,1)
21 sig(ii)=std(xx(ii,:));
22 [slx(ii),fmx(ii),igx{ii},md1(ii),md0(ii),n1(ii),n2(ii), \

ldots
23 o1(ii),o2(ii)]=ura_calc_ig_fn(xx(ii,:),yy,sig(ii));
24 end
25
26 fmxsort=sort(fmx,’descend’);
27 tmp1=find(fmx==fmxsort(1));
28 f1=tmp1(1);
29 fval=xx(f1,slx(f1));
30
31 % Splitting the circular domain
32 idxL=find(xx(f1,:)<fval);
33 idxR=find(xx(f1,:)>=fval+0.5*sig(f1));
34 idxM=find(xx(f1,:)>=fval & xx(f1,:)<fval+0.5*sig(f1));
35
36 xxL=xx(:,idxL);
37 xxR=xx(:,idxR);
38 xxM=xx(:,idxM);
39
40 yyL=yy(idxL);
41 yyR=yy(idxR);
42 yyM=yy(idxM);
43
44 % Showing the classification counts
45 fprintf(’\n’);
46 fprintf(’Left side class 1 = %d\n’,sum(yyL));

326 13 Chandelier Decision Tree

47 fprintf(’Left side class 0 = %d\n\n’,length(yyL)-sum(yyL));
48
49 fprintf(’Middle class 1 = %d\n’,sum(yyM));
50 fprintf(’Middle class 0 = %d\n\n’,length(yyM)-sum(yyM));
51
52 fprintf(’Right side class 1 = %d\n’,sum(yyR));
53 fprintf(’Right side class 0 = %d\n’,length(yyR)-sum(yyR));
54
55 % Showing the classes using circles
56 figure;
57 for ii=1:size(xx,2)
58 if yy(ii)==1
59 circle(0,0,xx(f1,ii),’.’,0.01);
60 else
61 circle(0,0,xx(f1,ii),’r.’,0.09);
62 end
63 hold on;grid on;
64 end
65
66 % Showing the maximum IG for each feature
67 figure;plot(md1);hold on;plot(md1,’.’);grid on;
68 hold on;plot(md0,’color’,’r’);hold on;plot(md0,’r.’);
69
70 figure;plot(fmx);grid on;
71 xlabel(’Feature number’);ylabel(’Information gain’);
72
73 % Showing the features 1 and 2
74 figure;plot(hw1(:,1),hw1(:,2),’.’);
75 hold on;plot(cp1(:,1),cp1(:,2),’r.’);
76 axis([40 240 40 240]);grid on;
77 xlabel(’Feature 1’);ylabel(’Feature 2’);
78
79 jj=48;
80 % Showing the best features 48 and 49
81 figure;plot(hw1(:,jj),hw1(:,jj+1),’.’);
82 hold on;plot(cp1(:,jj),cp1(:,jj+1),’r.’);
83 axis([40 240 40 240]);grid on;
84 xlabel(’Feature 48’);ylabel(’Feature 49’);
85
86 quartcircle(0,0,fval,’m.’,0.001);
87 quartcircle(0,0,fval+0.5*sig(jj),’m.’,0.001);
88
89 %%%%%%%%%%%%%%
90 idxx=find(xx(f1,:)>=fval & xx(f1,:)<fval+0.5*sig(jj));
91 hww1=hw1(idxx(idxx<=1024),:);
92 cpp1=cp1(idxx(idxx>1024)-1024,:);
93
94 % figure;plot(hww1(:,jj),hww1(:,jj+1),’.’);
95 % hold on;plot(cpp1(:,jj),cpp1(:,jj+1),’r.’);grid on;
96
97 % Unit Ring Domain Division
98 tww1=hww1(:,1:1:end-1); tww2=hww1(:,2:1:end);
99 hww=tww2./tww1;

100

13.4 Chandelier Decision Tree 327

240200180160140
Feature 1

F
ea

tu
re

 2

F
ea

tu
re

 4
9

120 220100806040 200160140120100
Feature 48

80 1806040200
0

20

40

60

80

100

120

140

160

180

200

40

60

80

100

120

140

160

180

200

220

240

Fig. 13.8 Domain division by chandelier decision tree is illustrated

101 tpp1=cpp1(:,1:1:end-1); tpp2=cpp1(:,2:1:end);
102 cpp=tpp2./tpp1;
103
104 wyy=[ones(1,size(hww,1)) zeros(1,size(cpp,1))];
105 wxx=[hww;cpp];
106
107 uu=(max(wxx(:,jj))-min(wxx(:,jj)))/9;
108 for tt=min(wxx(:,jj))-0.05:uu:max(wxx(:,jj))+0.05
109 iddx=find((tt<wxx(:,jj) & wxx(:,jj)<tt+uu));
110 s1=sum(wyy(iddx));
111 l1=length(wyy(iddx));
112 fprintf(’(%4.2f,%4.2f),(%4.2f,%4.2f),\n’,s1,(l1-s1)\ldots
113 ,s1/l1,(l1-s1)/l1);
114 end
115
116 m1=0;
117 m2=max(cpp1(:,jj))+40;
118
119 for tt=min(wxx(:,jj))-0.05:uu:max(wxx(:,jj))+uu
120 tt
121 hold on;line([m1:m2],tt*[m1:m2]);
122 axis([0 200 0 200]);
123 end

The block of code in lines 73–77 plots feature 1 and feature 2 of hardwood floor
and carpet floor data sets and it is presented in the first figure of Fig. 13.8. We can see
a significant overlap between classes. The block of code in lines 80–84 plots feature
48 and feature 49 of hardwood floor and carpet floor data sets. These features are
selected by CDT as the best features. This scatter plot is presented in the second
figure of Fig. 13.8. The overlap between classes is significantly lower than the one
presented in the first figure. The second figure also shows the best ring (based on
URM) of the CDT technique and the ring splits (arcs) forming a chandelier like
structure. Within each arc significant classification can clearly be seen.

328 13 Chandelier Decision Tree

13.4.2 Extension to Random Chandelier

The proposed random chandelier approach is similar to the random forest approach.
The extension is similar to the extension of the decision tree to random forest in the
sense that it is an extension from the chandelier decision tree. Bootstrapping [5] and
bagging [6] are the two techniques that play important roles in the approach, just
as they played a role in the extension of the decision tree to random forest. Hence
these techniques are also adopted in the development of the random chandelier from
the chandelier decision tree. However, this extension has a slight difference in the
sense that it is applied on the circular subdomains. It brings the computational and
classification accuracy advantages.

Problems

13.1. Chandelier Decision Tree
The examples presented in this chapter only illustrated the creation of the first level
of the chandelier decision tree. Now write a Matlab program to perform the entire
chandelier decision tree building. Use the knowledge that you gained on the standard
decision tree learning.

13.2. Random Chandelier

(a) Generate bootstrap samples from the hardwood floor and carpet floor data sets.
You may select your own data sets as well.

(b) Generate chandelier decision trees using these bootstrap samples and the knowl-
edge that you gained from random forest and decision tree techniques. (c) Using
the bagging techniques and the CDT classifiers that you created, perform a test-
ing process using a test set. Identify the training and test data sets clearly.

References

1. S. Suthaharan. “unit-circle classification algorithm to characterize back attack and normal traf-
fic for network intrusion detection systems,” in Proceedings of the IEEE International Confer-
ence on Intelligence and Security Informatics, pp. 150–152, 2012.

2. L. Rokach, and O. Maimon. “Top-down induction of decision trees classifiers-a survey.” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35,
no. 4, pp. 476–487, 2005.

3. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
4. S. Suthaharan. “A single-domain, representation-learning model for big data classification of

network intrusion,” Machine Learning and Data Mining in Pattern Recognition, Lecture Notes
in Computer Science Volume 7988, pp. 296–310, 2013.

5. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York:
Springer, 2009.

6. L. Breiman. “Bagging predictors.” Machine learning 24, pp. 123–140, 1996.

Chapter 14
Dimensionality Reduction

Abstract The main objective of this chapter is to explain the two important di-
mensionality reduction techniques, feature hashing and principal component analy-
sis, that can support scaling-up machine learning. The standard and flagged feature
hashing approaches are explained in detail. The feature hashing approach suffers
from the hash collision problem, and this problem is reported and discussed in detail
in this chapter, too. Two collision controllers, feature binning and feature mitigation,
are also proposed in this chapter to address this problem. The principal component
analysis uses the concepts of eigenvalues and eigenvectors, and these terminologies
are explained in detail with examples. The principal component analysis is also ex-
plained using a simple two-dimensional example, and several coding examples are
also presented.

14.1 Introduction

Scaling-up machine learning is one of the important and recent research topics in
machine learning, as stated in [1]. It can help solve many emerging big data prob-
lems, including scalability, reliability, and maintainability. In general, it deals with
the scaling-up problems between finite and infinite data. In particular, it focuses on
the scaling-up problems associated with a massive data set (big data controller: ob-
servations), dynamically changing objects (big data controller: features), and large
numbers of classes (big data controller: labels). As stated in [1], stochastic gradient
descent [2, 3] and feature hashing [4, 5] are the two most important mathematical
techniques that have recently shown significant positive impact on scaling-up ma-
chine learning. Additionally, the modern technologies like Hadoop distributed file
system [6] with the MapReduce framework [7] can also help to evaluate machine
learning techniques in a big data environment [8]. The stochastic gradient descent
technique mainly focuses on the size of the dynamically growing data set, whereas

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3 14

329

330 14 Dimensionality Reduction

the feature hashing focuses on the size of the dynamically growing feature set. Sim-
ilarly, the hierarchical classification techniques, like the decision tree [9] and the
random forest [10], have been used to handle the size of the dynamically growing
number of labels. The main focus of the stochastic gradient descent is to efficiently
manage three different types of errors—called the estimation error, the approxima-
tion error, and the optimization error, as stated in [1] and [11]. The main focus of the
feature hashing techniques is to reduce the dimension of the data through hashing
an infinite feature space to a finite feature space.

We have reviewed deep learning in detail in a previous chapter, and it can address
all of these scaling-up problems simultaneously. Many real-world applications, like
document classification, speech recognition, and email spam filtering, can easily be
affected by the drawbacks of feature hashing techniques. Therefore, it is important
to understand the drawbacks of the feature hashing techniques so that efficient so-
lutions can be found. The main drawback of the feature hashing techniques is the
hash collision, and a solution for this problem is needed to improve scaling-up ma-
chine learning techniques. Many electronic (digital) applications can benefit from
this solution. In the past decade, scaling-up machine learning has been studied in
different directions. In [12], Domingos and Hulten proposed a method that mini-
mizes the learner’s loss function while controlling the error in the cases of finite and
infinite input data. Then they demonstrated its effectiveness to large data sets using
K-means clustering.

In recent years, the benefits of feature hashing to scaling-up machine learning
have been emphasized through research. In 2009, Shi et al. [13] proposed a hash
kernels approach that maps a large feature space to a finite feature space as a di-
mensionality reduction approach, and its effectiveness to multiclass classification
problems has also been presented in their work. They also studied and presented
the hash kernels to structured data in another paper [14]. Subsequently, Weinberger
et al. [4] improved the feature hashing approach by combining two hash functions
to flag the hash collisions. The difficulty of avoiding hash collisions led to a new
approach called supervised semantic indexing [15], in which a multiple binning
technique has been used. Similarly, Caragea et al. [16] combined hashing and ab-
straction (hierarchical binning) to enhance feature hashing. However, minimization
of feature collision is not achieved satisfactorily.

14.2 Feature Hashing Techniques

In this section, the mathematics behind the standard feature hashing technique pre-
sented in [4] and the flagged feature hashing technique in [13] are briefly discussed.
The subtle differences between these two approaches are highlighted, and the need
for an improvement is also pointed out.

14.2 Feature Hashing Techniques 331

14.2.1 Standard Feature Hashing

Suppose F is a set of N features denoted by F={ f1, f2, . . ., fN}, and they are available
for learning (or training), where N is very large. Then the goal is to explore a suitable
feature hashing technique that hashes these features to a set I of indices denoted by
I = {1,2, . . . ,n} and reduces the dimension to n as defined by the user specifications
and requirements, where n << N. In the standards feature hashing approach, this
process may be defined as follows [13]:

j = h(f); f ∈ F; (14.1)

i = j mod n; i ∈ I (14.2)

This two-step hashing technique, by ignoring the intermediate results j, may be
written as follows:

i = φ(f) (14.3)

The hashing process leads to several features (f ∈ F) that map to a single index
i, hence we can construct a set of features that map to the index i as follows [4]:

s(i) =
⋃

f :φ(f)=i

f (14.4)

φi = #(s(i)) (14.5)

Where the symbol # denotes the number of elements in the set s(i).

14.2.2 Flagged Feature Hashing

In general, the standard feature hashing [5] creates bias in the hash kernel of φ(.)
as stated in [4] and does not flag hash collisions. Hence, a new hash function ξ
was suggested in the alternative hashing approach and added to the process as an
additional step to remove this bias as follows [13]:

s(i) =
⋃

f :φ(f)=i

ξ (f) f (14.6)

The binary hash function ξ helps decide if a feature should be added to or re-
moved from the hashed set s(i). This process helps remove the bias and flag 50 % of
the hash collisions. It has also been suggested to add more binary hash functions to
flag more hash collisions. Therefore, in the following section, a new hashing tech-
nique, which suggests steps to address this issue, is proposed.

332 14 Dimensionality Reduction

14.3 Proposed Feature Hashing

In the proposed feature hashing technique, as an object arrives, it is assigned to
a bin with similar features (e.g., word length). This object is then processed with
the feature mitigation unit before applying the hash function. The hash function is
then applied, and an index is created to assign its feature. Hence, the object receives
the index for its feature. This proposed approach is expected to reduce the hash
collision as shown in the forthcoming examples. The combined processes, binning
and mitigation are especially designed so that the MapReduce framework with the
Hadoop distributed file system can be effectively used.

14.3.1 Binning and Mitigation

Suppose X is a set of N objects denoted by X = {x1,x2, . . . ,xN}, and they have
variable length (size). The maximum length is denoted by L, and it is treated as a
scalable parameter. Hence, L number of bins, denoted by B = {b1,b2, . . . ,bL} can
be defined, and the rth bin will be used to store the objects of length r. The bins are
of equal size, and the maximum size for a bin is denoted by M. It means that the
maximum number of objects that can be stored in a bin is M, and it is also treated
as a scalable parameter.

The maximum length for an object is L; therefore, L number of weights W =
{w1,w2, . . . ,wL} are generated to mitigate features pertinent to an object. The
weights will be learned using machine learning techniques. In the proposed fea-
ture hashing technique, each object is hashed to an index which serves as a feature
for the objects. Consider the ith object xi,(i = 1 . . .N) and suppose the length of this
object is l with the content xi = xi1xi2 . . .xil , where l ≤ L; then, the first il weights
{w1,w2, . . . ,wil} will be selected for the feature mitigation process. Also, this object
will be indexed by bin l. The feature mitigation is then done as follows:

hi =
l

∑
k=1

wikxik (14.7)

Then the hashed index j for the object xi in bin l is defined by

(l, j) = (l − 1)∗M+ hi mod M (14.8)

f(l, j) = f(l, j) + 1 (14.9)

The first term in Eq. (14.8) describes the interbin indexing and the second term
describes the intrabin indexing. It means that the interbin indexing completely elim-
inates the collision that can occur between dissimilar features (i.e., different length
objects). However, the intrabin indexing may cause hash collision. The careful train-
ing and selection of W , as well as the suitable selection of scaling parameters, can
avoid hash collisions. In the other feature hashing algorithms, the collision between
dissimilar objects exists, and this collision must be avoided.

14.3 Proposed Feature Hashing 333

14.3.2 Mitigation Justification

The objective of this section is to justify the effectiveness of the feature mitigation
approach to feature hashing when applied together with feature binning. Suppose X
and Y are words selected at two instances. It is obvious that X and Y collide when
X = Y , but it is a good collision, hence we can write

H(X) = H(Y);X = Y (14.10)

In the feature mitigation, we make them not collide when the words detected at
two instances are the same. In this case, we want to degrade X using parameters a
and b, such that

H(aX)−H(bX) = t1 (14.11)

Although we made them not collide, the feature binning based on the length of
the words helps them assign in the same bin. Consider the case of collision, (i.e.,
H(X) = H(Y) when X �= Y) then we have:

H(aX)−H(bY) = H(aX)−H(bX)+H(bX)−H(bY) (14.12)

H(aX)−H(bY) = t1 +H(bX)−H(bY) (14.13)

X and Y already collide; hence, according to the strong hash function definition,
for every b, bX and bY do not collide. Therefore, we can write H(bX) �= H(bY), and

H(aX)−H(bY) = t1 + t2 (14.14)

where t1 and t2 are greater than 0; therefore, aX and bY do not collide. It shows
that using the feature mitigation in Eq. (14.7), we can reduce collision, and the ran-
domness can play a major role in this objective. In summary, when the two words
are the same, we select weight to make them not collide; these weights can help
the two distinct words not collide if a robust hash function is selected. The strong
cryptographic hash functions must be used for this purpose.

14.3.3 Toy Example

In this section, a simple text classification example has been used to demonstrate
the effectiveness of the proposed feature hashing technique. In this example, 21
words (objects), which include regular English dictionary words, the author’s name,
and a dictionary word with a typo, are considered. This information is presented
in Table 14.1. The words “catch,” “accommodation,” and “machine” occur multiple
times as shown in the third column of the table. The words are of varying lengths,
from 2 to 14 characters, but the maximum length is defined as 16. Therefore, 16 bins
are selected with the bin sizes of 8, 16, and 32 for three separate simulations.

334 14 Dimensionality Reduction

Table 14.1 Some of the objects and their length and frequency
Object (X) L ≤ 16 Freq. M = 8 M = 16 M = 32

“bat” 3 1 – – –
“ballu” 5 1 – – –
“tab” 3 1 – – –

“catch” 5 2 – – –
“suthaharan” 10 1 – – –

“patch” 5 1 – – –
“dad” 3 1 – – –
“god” 3 1 – – –
“dog” 3 1 – – –

“accommodation” 13 2 – – –
“performance” 11 1 – – –
“degradation” 11 1 – – –

“methods” 7 1 – – –
“telephone” 9 1 – – –
“computer” 8 1 – – –
“science” 7 1 – – –
“machine” 7 3 – – –
“learning” 8 1 – – –

“am” 2 1 – – –
“to” 2 1 – – –

“shanmugathasan” 14 1 – – –

14.4 Simulation and Results

Two programs that implement the proposed binning and feature mitigation approach
are presented in this section. The first program has been written in Matlab and is
presented in the first subsection, and the second program has been written in R and
is presented in the second subsection.

14.4.1 A Matlab Implementation

The set of words in Table 14.1 has been used as the input to this program, and it is
presented in Listing 14.1. This input is hardcoded; however, you can read this data
from an external file for efficiency.

Listing 14.1 A Matlab example—proposed feature hashing

1 clear all;
2 close all;
3
4 data={’bat’, ’ballu’, ’tab’, ’catch’, ’suthaharan’, ’catch’, ’

patch’, \ldots

14.4 Simulation and Results 335

5 ’dad’, ’god’, ’dog’, ’accommodation’, ’accommodation’, ’
performance’, \ldots

6 ’degradation’, ’methods’, ’telephone’, ’computer’, ’science’,
’machine’, \ldots

7 ’learning’, ’am’, ’to’, ’shanmugathasan’,’machine’,’machine’
}; %ballu and patch collide

8
9 NN=size(data,2); %number of features

10 LL=16; %predefined number of bins
11 MM=8; %predefined size for the bins (bin cells)
12 randn(’seed’,129);
13 tt=10+floor(131*randn(1,LL));
14
15 bin=zeros(1,LL*MM); %size for 2D vector
16
17 for ii=1:NN
18 xx{ii}=(data{ii}+data{ii})/2;
19 sz{ii}=length(data{ii}); %length of the word in process
20 ww{ii}=tt(1:size(xx{ii},2));
21 hh{ii}=sum(ww{ii}.*xx{ii});
22
23 ind{ii}=(sz{ii}-1)*MM + mod(hh{ii},MM); %indexing of vector
24 bin(1+ind{ii})=bin(1+ind{ii}) + 1; %updating at each index
25 end
26
27 LL=find(bin>0);
28
29 figure;plot(bin,’.’);grid on;axis([min(LL)-100 max(LL)+100 0 3]);
30 xlabel(’Feature Index’);ylabel(’Number of Features’);
31
32 figure
33 au=find(bin>0);
34 ax=au;
35 ay=bin(au);
36 plot(ax,ay,’.’);grid on;
37 for ii=1:size(au,2)
38 line([ax(ii) ax(ii)],[0 ay(ii)]);
39 end
40 set(gca,’YLim’,[0 max(ay)]);
41
42 gg=[data; sz; ind];
43 jj=0;ii=1;
44 while(jj<size(data,2))
45 fprintf(’%17s \t %4d \t %4d \n’,gg{ii},gg{ii+1},gg{ii+2})
46 jj=jj+1;
47 ii=3*jj+1;
48 end
49
50 sortrows(gg’,2)

The block of code in lines 4–7 declares the input data presented in the first col-
umn of Table 14.1. These are considered features in scalable machine learning, and
the number of features in this example is calculated in line 9. The number of bins

336 14 Dimensionality Reduction

Table 14.2 Output of the program presented in Listing 14.1
Object (X) 8(i) 8(j) 16(i) 16(j) 32(i) 32(j)

“am” [2] [10] [2] [18] [2] [50]
“to” [2] [8] [2] [24] [2] [40]
“bat” [3] [20] [3] [36] [3] [84]
“tab” [3] [16] [3] [32] [3] [80]

“dad’ ’ [3] [16] [3] [40] [3] [88]
“god” [3] [22] [3] [46] [3] [78]
“dog” [3] [20] [3] [36] [3] [68]

“ballu” [5] [33] [5] [73] [5] [137]
“catch” [5] [37] [5] [77] [5] [157]
“catch” [5] [37] [5] [77] [5] [157]
“patch” [5] [39] [5] [71] [5] [135]

“methods” [7] [50] [7] [106] [7] [218]
“science” [7] [55] [7] [111] [7] [207]
“machine” [7] [48] [7] [96] [7] [208]
“machine” [7] [48] [7] [96] [7] [208]
“machine” [7] [48] [7] [96] [7] [208]
“computer” [8] [58] [8] [122] [8] [234]
“learning” [8] [57] [8] [113] [8] [241]

“telephone” [9] [71] [9] [143] [9] [271]
“suthaharan” [10] [79] [10] [151] [10] [295]

“performance” [11] [80] [11] [160] [11] [320]
“degradation” [11] [81] [11] [161] [11] [321]

“accommodation” [13] [96] [13] [200] [13] [392]
“accommodation” [13] [96] [13] [200] [13] [392]
“shanmugathasan” [14] [106] [14] [210] [14] [418]

and the size of these bins are predefined in lines 10 and 11, respectively. As you re-
call, the proposed feature hashing technique requires weights for feature mitigation
and they are generated pseudorandomly in lines 12 and 13. The total memory of the
bins is initialized to zero in line 15. For each feature, the hashed index is generated
according to Eqs. (14.7)–(14.9), and this process is presented in lines 17–25. The
block of code in lines 27–40 prints the figure in Fig. 14.1. However, by changing the
bin size (MM) to 16 and 32, other two figures in Figs. 14.2 and 14.3 can be gener-
ated, respectively. The block of code in lines 42–50 prints the results in Table 14.2.
The results in Figs. 14.1, 14.2, and 14.3, and Table 14.2 show the hashed values and
the collisions when the proposed feature hashing is applied to the examples with bin
sizes of 8, 16, and 32.

As we can see, there is no collision between dissimilar words as they are in-
dexed into different bins. However, there are collisions within a bin under restricted
conditions. For example, when M = 8, we can see two collisions in bin 3: bat col-
lides with dog, and tab collides with dad. Similarly, when M = 16 is considered,
we can see one collision: bat collides with dog. In the case of M = 32, we don’t
see any collision. This simple example demonstrates that the proposed concepts
of feature binning and feature mitigation helped feature hashing controls feature

14.4 Simulation and Results 337

0
0

0.5

1

1.5

2

2.5

3

20 40 60

Bin Index

N
um

be
r

of
 F

ea
tu

re
s

80 100 120

Fig. 14.1 The collision results with bin size of 8

collision. These algorithms provide flexibility and scalability; therefore, the com-
bined approach is capable of supporting scaling-up machine learning. The structure
of the algorithms shows that the capabilities of the modern MapReduce framework
with Hadoop distributed file systems can be adopted to enhance its scaling-up ma-
chine learning objectives.

14.4.2 A MapReduce Implementation

In this section, the proposed feature hashing approach is implemented using the
mapper(), the reducer(), and the mapreduce() functions using the R programming
framework on the RHadoop system. The same input table is used, and same as
before, it is hardcoded.

Listing 14.2 An RHadoop example—proposed feature hashing

1 Sys.setenv(HADOOP_HOME=’/usr/lib/hadoop-0.20-mapreduce’)
2 Sys.setenv(HADOOP_CMD=’/usr/bin/hadoop’)
3 Sys.setenv(HADOOP_STREAMING=’/usr/lib/hadoop-0.20-mapreduce/

contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.7.0.jar’)
4
5 data=c(’bat’, ’ballu’, ’tab’, ’catch’, ’suthaharan’, ’catch’, ’

patch’,
6

338 14 Dimensionality Reduction

0
0

0.5

1

1.5

2

2.5

3

50 100

Bin Index

N
um

be
r

of
 F

ea
tu

re
s

150 200 250

Fig. 14.2 The collision results with bin size of 16

7 ’dad’, ’god’, ’dog’, ’accommodation’, ’accommodation’, ’
performance’,

8
9 ’degradation’, ’methods’, ’telephone’, ’computer’, ’

science’, ’machine’,
10
11 ’learning’, ’am’, ’to’, ’shanmugathasan’,’machine’,’

machine’)
12
13 library(rmr2)
14 library(rhdfs)
15
16 hdfs.init()
17
18 gauss.data = to.dfs(data)
19
20 gauss.map.fn = function(k, v) {
21
22 NN=length(v)
23 k=nchar(v)
24
25 # generate weights for mitigation
26 LL=16
27 MM=16
28 set.seed(5)
29 ww = rnorm(LL,10,131)
30

14.4 Simulation and Results 339

0
0

0.5

1.5

2.5

1

2

3

50 100 150 200 250 300 350 400 450

Bin Index

N
um

be
r

of
 F

ea
tu

re
s

Fig. 14.3 The collision results with bin size of 32

31 vv=matrix(0,nrow=1, ncol=NN)
32 for(ii in 1:NN) {
33 # crop the weights w.r.t feature length
34 tt=strtoi(charToRaw(v[ii]),16L)
35 ss=length(tt)
36 pp=floor(ww[1:ss])
37
38 # apply binning and mitigation
39 uu=sum(tt * pp)
40 vv[ii]=(ss-1)*MM + uu %% MM
41 }
42
43 # generate key value pairs
44 keyval(k, c(v,vv))
45 }
46
47 gauss.reduce.fn = function(k, v) {
48
49 keyval(k,v)
50 }
51
52 mr.gauss = mapreduce(input = gauss.data, map = gauss.map.fn,

reduce = gauss.reduce.fn)
53
54 mr.results = from.dfs(mr.gauss)
55 mr.results

340 14 Dimensionality Reduction

The output of this program is presented below as sorted (key, value) pairs:

$key
[1] 2 2 2 2 3 3 3 3 3 3 3 3 3 3 5 5
5 5 5 5 5 5 7 7 7 7 7 7

[29] 7 7 7 7 8 8 8 8 9 9 10 10 11 11 11 11
13 13 13 13 14 14

$val
[1] "am" "to" "30"
"29" "bat"

[6] "tab" "dad" "god"
"dog" "41"

[11] "37" "47" "34"
"32" "ballu"

[16] "catch" "catch" "patch"
"71" "77"

[21] "77" "76" "methods"
"science" "machine"

[26] "machine" "machine" "108"
"99" "101"

[31] "101" "101" "computer"
"learning" "121"

[36] "123" "telephone" "134"
"suthaharan" "158"

[41] "performance" "degradation" "163"
"174" "accommodation"

[46] "accommodation" "199" "199"
"shanmugathasan" "215"

14.5 Principal Component Analysis

In general, the feature variables of a system that produces observations (or re-
sponses) are assumed to be independent variables, and the responses are dependent
variables. But some of the independent variables may be correlated. Therefore, if we

14.5 Principal Component Analysis 341

detect the correlated variables, then we should be able to reduce the dimensionality
of the data by selecting the uncorrelated variable. As we know, the dimensionality
of data is determined by the independent variables (or features). The goal of princi-
pal component analysis is to find such a set of linearly uncorrelated features called
principal components [17]. It is always preferable to understand complicated theory
by using simple examples and the PCA is simplified and explained in the following
subsections.

14.5.1 Eigenvector

The Eigenvector plays a major role in PCA. What does eigenvector mean? What
does eigenvalue mean? What does eigenspace mean? A discussion on eigenvectors
can be found in the book ”Advanced Engineering Mathematics” by Erwin Kreyszig
(6th edition, John Wiley and Sons, Inc., 1988). The major player of the eigenvector
theory is the following simple equation:

Ax = xλ (14.15)

where A is a matrix, x is a vector (data), and λ is a scalar. The left-hand side of this
equation simply transforms the input data x, and the right-hand side of the equation
scales the data by λ . Hence, it simply says the new point that we get after trans-
forming it by A and the new point that we get after moving it by a scalar λ are the
same. The questions are: (1) How to find such an A and λ pair for a specific data x?
and (2) most importantly, Does this pair exist for the data x? If the above equation is
satisfied, then we can define the following three important terms in the eigenvector
theory:

1. If there is a scalar λ and a matrix A such that they can satisfy the above equation,
then we call the scalar λ the eigenvalue of A.

2. If there is a scalar λ and a matrix A such that they can satisfy the above equation,
then we call the data x the eigenvector of A.

3. If there is a scalar λ and a matrix A such that they can satisfy the above equation,
then we call the vector space formed by x the vector space with the parameters A
and λ the eigenspace.

It is easier to understand the properties of this simple equation in the eigenvector
theory. Therefore, the following “thinking with example” has been developed and
presented here.

342 14 Dimensionality Reduction

Thinking with Example 14.1

Suppose we take a set of points and transform them using a matrix. What will hap-
pen to the original points? The points and the matrix selected for the example can
be found in the code provided in Listing 14.3. Similarly, the points are scaled using
a scalar λ , and the scalar selected for the example is 3+ sqrt(7) to move the points.
Note that the example is a toy example, and thus the points are artificially gener-
ated to help explain the eigenvector and the eigenvalue in a meaningful way using
visual tools. The block of code in lines 5 to 6 selects the parameters A and λ , cre-
ates eight points pseudorandomly, and modifies a sub set of three points to satisfy
the eigenvector equation.

Listing 14.3 A Matlab example—eigenvector theory is explained

1 clear all;
2 close all;
3
4 %%
5 A=[5 -3; -1 1];
6 lamda=(3+sqrt(7));
7
8 %%
9 randn(’seed’,129);

10 x1=0.1+0.1*randn(1,8);
11 randn(’seed’,131);
12 x2=0.2+0.2*randn(1,8);
13
14 rand(’seed’,3);
15 ind=1+floor(8*rand(1,3));
16 yy=(1/(1-lamda))*x1;
17
18 x2(1,ind)=yy(1,ind);
19
20 figure;plot(x1,x2,’.’,’MarkerSize’,14);
21 %hold on;plot(x1(1,ind),x2(1,ind),’r.’,’MarkerSize’,14);
22 grid on;axis([-1.5 1.6 -1 3.5]);
23
24 %%
25 lhs=A*[x1;x2];
26 figure;plot(x1,x2,’.’,’MarkerSize’,14);
27 hold on;plot(lhs(1,:),lhs(2,:),’m.’,’MarkerSize’,14);
28 grid on;axis([-1.5 1.6 -1 3.5]);
29
30 %%
31 rhs=lamda*[x1;x2];
32 figure;plot(x1,x2,’.’,’MarkerSize’,14);
33 hold on;plot(rhs(1,:),rhs(2,:),’m.’,’MarkerSize’,14);
34 grid on;axis([-1.5 1.6 -1 3.5]);
35
36 %%
37 figure;plot(lhs(1,:),lhs(2,:),’.’,’MarkerSize’,14);
38 hold on;plot(rhs(1,:),rhs(2,:),’r.’,’MarkerSize’,14);
39 grid on;axis([-1.5 1.6 -1 3.5]);

14.5 Principal Component Analysis 343

40
41 ind1=find(abs(lhs(1,:)-rhs(1,:))<0.000001);
42 hold on;plot(rhs(1,ind1),rhs(2,ind1),’o’,’MarkerSize’,10);
43 grid on;axis([-1.5 1.6 -1 3.5]);
44
45 %%
46 figure;plot(x1,x2,’.’,’MarkerSize’,14);grid on;
47 hold on;plot(x1(ind1),x2(ind1),’o’,’MarkerSize’,10);
48 axis([-1.5 1.6 -1 3.5]);
49
50 figure;plot(x1,x2,’.’,’MarkerSize’,14);
51 hold on;plot(x1(1,ind),x2(1,ind),’r.’,’MarkerSize’,14);
52 grid on;axis([-1.5 1.6 -1 3.5]);

The block of code in lines 20–22 plots the eight points artificially created, and
this scatter plot is given in Fig. 14.4a. Line 25 executes the left side of eigenvector
equation, and then the block of code in lines 26–28 plots the transformed data as
shown in Fig. 14.4b. Similarly, line 31 executes the right side of eigenvector equation
and then the block of code in lines 32–34 plots the scaled data as shown in Fig. 14.4c.
The block of code in lines 37–43 plots both scatter plots in Fig. 14.4b, c, and circles
the overlapping points as shown in Fig. 14.4d—the points that satisfy eigenvector
equation. The block of code in lines 46–52 provides the results in Fig. 14.5 and
validates the eigenvectors calculated by the program.

14.5.2 Principal Components

The principal component analysis and its effect of dimensionality reduction can be
easily understood if we comprehend the eigenvector equation and a suitable lin-
ear transformation. The following two simple equations play important roles in the
principal component analysis and the dimensionality reduction [17, 18]:

Aw = wλ (14.16)

y = w′x (14.17)

In the first equation, A represents a matrix, w represents its eigenvector, and
λ represents its eigenvalues. In the second equation, x represents the input data
centered with respect to their statistical means, and y represents the transformed
variable using the eigenvectors. For a better description of these equations, they are
rewritten to show their dimensions below:

Ap×pwp×k = wp×kλk×k (14.18)

yk×n = w′
k×pxp×n (14.19)

Therefore, the first equation defines the eigenvalues/eigenvectors equation,
whereas the second equation transforms the original data set X from p dimensions

344 14 Dimensionality Reduction

1.50.5−0.5−1−1.5
−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

a b

c d

0

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

0

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

0

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

0

10 1.50.5−0.5−1−1.5 10

1.50.5−0.5−1.5 −1 10 1.50.5−0.5−1−1.5 10

Fig. 14.4 Intermediate steps of eigenvector explanation—the horizontal axis repre-
sents x1 and vertical axis represents x2

to k (where k ≤ p) dimensions data set Y . In other words, we can say the number of
features are reduced from p to k. Also note that the number of observations in each
feature is represented by n.

In principal component analysis, the matrix A is defined by the covariance matrix
C of x and, in this case, the eigenvector w is called the principal component. Thus the
second equation describes the linear transformation from x to y using the principal
components as the weights. Also note the matrix multiplications transform the p
dimensional data x to k dimension data y. The challenge is the selection of k such
that k ≤ p, so that the dimensionality reduction can be achieved. Therefore, using
the covariance matrix C, we can write these equations as follows:

Cp×pwp×k = wp×kλk×k (14.20)

yk×n = w′
k×pxp×n (14.21)

The covariance matrix C is a symmetric square matrix, and its dimension is p× p,
which reflects the dimension of the data x. It can be calculated as follows (note that
x is centered around its mean):

14.5 Principal Component Analysis 345

−1

−0.5

0.5

1

1.5

−1.5 −1 −0.5 0.5 1 1.50 −1.5 −1 −0.5 0.5 1 1.50

2

2.5

3

3.5

0

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

0

Fig. 14.5 Final step of eigenvector explanation—the horizontal axis represents x1
and vertical axis represents x2

Cp×p =
1

n− 1
xp×nx′n×p (14.22)

If the dimensionality reduction is not required, then the dimension p of the orig-
inal data set and the dimension k of the transformed data set are the same, hence the
above equations can be written as follows:

Cp×pwp×p = wp×pλp×p (14.23)

yp×n = w′
p×pxp×n (14.24)

Now the challenge is to solve the eigenvector equations to calculate the eigen-
values, λ , and eigenvectors, w, for a covariance matrix C. Once eigenvalues are
available, if the dimensionality reduction is not required, then all the eigenvectors
are used in the transformation of the input data x. If the dimensionality reduction is
required, then the eigenvalues are sorted, and the eigenvectors corresponding to the
k largest eigenvalues are selected to transform the data to k dimensional data.

In Matlab, the eig function can be used to calculate the eigenvalue (eval) and
eigenvector (evec) for the covariance matrix C as follows:

[evec,eval] = eig(C);

According to Matlab instructions, eval is a diagonal matrix which con-
tains eigenvalues of C, and evec is a matrix that contains column wise
eigenvectors, and it satisfies the eigenvector equation C ∗ evec = evec∗ eval.

The principal components give the principal directions of a data set. This is
demonstrated in the coding example presented in Listing 14.4, which uses the

346 14 Dimensionality Reduction

100 150

100

150

−50

−100

−150

0

−100
−100 −50 50

Feature 48 PC1

F
ea

tu
re

 4
9

P
C

2

100 150 −60 −40 −20 0 20 40 60 800

80

−80

60

−60

40

−40

20

−20

0

Fig. 14.6 PCA is explained in 2D, similar to the one at [17]

hardwood floor and carpet floor data sets. We have seen previously that the fea-
tures 48 and 49 are highly suitable for getting a very good classification between
the hardwood floor and carpet floor data. Therefore, these features are considered in
this example.

14.5.3 The Principal Directions

The principal direction of a set of data can be obtained from the principal compo-
nents of the data as demonstrated in the first figure of Fig. 14.6. This figure has been
produced by the Matlab code in Listing 14.4. The second figure is also produced
by this code, and it illustrates the classes in a new space defined by the principal
components of these data sets.

Listing 14.4 A Matlab example—PCA characteristics

1 clear all;
2 close all;
3
4 % read class data files
5 hw1=csvread(’hardwood.csv’);
6 cp1=csvread(’carpet.csv’);
7
8 % select feature 48 and 49
9 x1=[hw1(:,48);cp1(:,48)];

10 x2=[hw1(:,49);cp1(:,49)];
11
12 % center them w.r.t their mean
13 x1=x1-mean(x1);
14 x2=x2-mean(x2);
15
16 % concatenate them
17 xx=[x1’;x2’];
18

14.5 Principal Component Analysis 347

19 % plot the classes
20 figure;plot(xx(1,1:1024),xx(2,1:1024),’.’);grid on;
21 hold on;plot(xx(1,1025:end),xx(2,1025:end),’r.’);grid on;
22
23 % calculate covariance matrix
24 C=(xx*xx’)/(length(xx)-1);
25
26 % calculate eignvectors and eigenvalue of C
27 [ww,ee]=eig(C);
28
29 % get eigenvalues
30 ss=sum(ee);
31
32 %validate eigenvector equation
33 C*ww(:,1)
34 ss(1)*ww(:,1)
35
36 C*ww(:,2)
37 ss(2)*ww(:,2)
38 %validation ends
39
40 % plot and show the principal directions
41 hold on;line([0 30*ww(1,2)],[0 30*ww(2,2)],’color’,’black’,’

LineWidth’,3);
42 hold on;line([0 -30*ww(1,2)],[0 -30*ww(2,2)],’color’,’black’,’

LineWidth’,3);
43 hold on;line([0 30*ww(1,1)],[0 30*ww(2,1)],’color’,’black’,’

LineWidth’,3);
44
45 % transform to a new space using principal components
46 yy=ww’*xx;
47
48 % plot the classes in the new space
49 figure;plot(yy(1,1:1024),yy(2,1:1024),’.’);grid on;
50 hold on;plot(yy(1,1025:end),yy(2,1025:end),’r.’);grid on;

The block of code in lines 5 and 6, 9 and 10, and 13 and 14 reads the data sets,
selects the features 48 and 49, and centralizes the data, respectively. The code in line
17 concatenates them to form a single matrix. The block of code in lines 20 and 21
plots the two classes (in red and blue) and gives the first figure in Fig. 14.6. The code
in line 24 gives the covariance matrix of the concatenated data. The eigenvector and
eigenvalue are calculated using the Matlab’s eig function in the block of code in
lines 26–30. The block of code in lines 32–38 validates the eigenvector equation
by comparing the left and right sides of the equation. The directional indicators
displayed on the first figure of Fig. 14.6 have been produced by the code in lines
41–43. The data sets are transformed to a new space using the principal components
using the code in line 46. Finally, the transformed data sets are presented in the
second figure of Fig. 14.6.

348 14 Dimensionality Reduction

Eigenvector 1

x

x

x

x

x

x

x

x
x x

=
=

=

=

=

=

=

=

Eigenvector 1 Eigenvector 2 Eigenvalue 1Eigenvector 2 Eigenvalue 1

0

0

λ1

λ2

0

0

λ1

λ2

Eigenvalue 2
Eigenvalue 2

u1
C2x2

C3x3

C3x3

C3x3

C3x3

C2x2

C2x2

C2x2

u2 v2

v1 u1 v1

u2 v2

u3 v3

u1

u1 u1

u2 u2

u3 u3

v1

v1 v1

v2 v2

v3 v3

u2 v2

u3 v3

u1 v1

u2 v2

u3 v3

u1

u1

u2

u2

u1

u2

v2

v1

v2

v1

v2

v1

u1

u1λ1

λ1

λ2

λ2

λ1

u2λ1 v2λ2

v1λ2

u1λ1

u2λ1

u3λ1

v1λ2

v2λ2

v3λ2

u2 v2

v1

2D Operation of PCA
Matrix Multiplication

3D Operation of PCA
Matrix Multiplication

Fig. 14.7 PCA operations explained in 2D and 3D

14.5.4 A 2D Implementation

Understanding the operations of the principal component analysis using a simple
two-dimensional example can help apply this technique in scalable machine learn-
ing. Hence, these operations are implemented, demonstrated, and explained in List-
ing 14.5. Its 2D implementation (i.e. p = 2), in a matrix form, is explained in the
left figure of Fig. 14.7. Let us select four observations from each of the hardwood
floor and carpet floor data sets used previously.

Listing 14.5 A Matlab example—PCA operations in 2D

1 clear all;
2 close all;
3
4 % read the class data files
5 [num1,txt1,raw1]=xlsread(’hardwood.csv’);
6 [num2,txt2,raw2]=xlsread(’carpet.csv’);
7
8 % [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
9 % [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);

10

14.5 Principal Component Analysis 349

11 % shuffle the observations of a class randomly
12 rand(’seed’,129);
13 nd1=randperm(1024);
14
15 % select the observation corresponding to
16 % the first 4 indexes
17 t1=num1(nd1(1:4),:);
18
19 % shuffle the observations of a class randomly
20 rand(’seed’,131);
21
22 % select the observation corresponding to
23 % the first 4 indexes
24 nd2=randperm(1024);
25 t2=num2(nd2(1:4),:);
26
27 % collect the values of the 48th feature
28 x1=[t1(:,48);t2(:,48)];
29
30 % collect the values of the 49th feature
31 x2=[t1(:,49);t2(:,49)];
32
33 % center them w.r.t their means
34 xx1=x1-mean(x1);
35 xx2=x2-mean(x2);
36
37 % concatenate them
38 xx=[xx1’;xx2’];
39
40 % plot the observations
41 figure;plot(xx1,xx2,’.’,’MarkerSize’,14);
42 grid on;xlabel(’Feature 48’);ylabel(’Feature 49’);
43
44 % calculate covariance matrix
45 C=(xx*xx’)/(length(xx)-1);
46
47 % calculate eigenvector (principal component)
48 % and eigenvalue
49 [ww,ee]=eig(C);
50
51 % transform using principal compoments
52 yy=ww’*xx;
53
54 % plot the original and pc-transformed values
55 figure;plot(xx1,xx2,’.’,’MarkerSize’,14);
56 hold on;plot(yy(1,:),yy(2,:),’r.’,’MarkerSize’,14);
57 grid on;xlabel(’PC 1’);ylabel(’PC 2’);

This program is self-explanatory as it gives comments for each block of code.
These comments explain the steps illustrated in the first diagram (i.e., the 2D imple-
mentation of PCA) in Fig. 14.7. The results are presented in Fig. 14.8. Orthogonality
effect of principal components can clearly be seen in the second figure.

350 14 Dimensionality Reduction

40

30

20

10

−10

−20

−30

−40

−50
−60 −40 −20 20 40 60 800 −60 −40 −20 20 40 60 800

0

40

60

20

80

−20

−40

−60

−80

0

Fig. 14.8 PCA is explained in 2D scatter plot—the axes represent the PCs

14.5.5 A 3D Implementation

Let us now study the three-dimensional implementation of operations of the PCA
to understand the differences between them so that the generalization of the PCA
operations in higher dimensions can be easily understood. The 3D implementation
example in Listing 14.6 and the right figure in Fig. 14.7 present the principal com-
ponent analysis as the dimensionality reduction from p = 3 to k = 2.

Listing 14.6 A Matlab example—PCA operations in 3D

1 clear all;
2 close all;
3
4 % read the class data files
5 [num1,txt1,raw1]=xlsread(’hardwood.csv’);
6 [num2,txt2,raw2]=xlsread(’carpet.csv’);
7
8 % [num1,txt1,raw1]=xlsread(’biltmore31.csv’);
9 % [num2,txt2,raw2]=xlsread(’MyPrismacolors1.csv’);

10
11 % shuffle the observations of a class randomly
12 rand(’seed’,129);
13 nd1=randperm(1024);
14
15 % select the observation corresponding to
16 % the first 4 indexes
17 t1=num1(nd1(1:4),:);
18
19 % shuffle the observations of a class randomly
20 rand(’seed’,131);
21 nd2=randperm(1024);
22
23 % select the observation corresponding to
24 % the first 4 indexes
25 t2=num2(nd2(1:4),:);
26

14.5 Principal Component Analysis 351

27 % collect the values of the 47th feature
28 x1=[t1(:,47);t2(:,47)];
29
30 % collect the values of the 48th feature
31 x2=[t1(:,48);t2(:,48)];
32
33 % collect the values of the 49th feature
34 x3=[t1(:,49);t2(:,49)];
35
36 % center them w.r.t their means
37 xx1=x1-mean(x1);
38 xx2=x2-mean(x2);
39 xx3=x3-mean(x3);
40
41 % concatenate them
42 xx=[xx1’;xx2’;xx3’];
43
44 % plot the observations
45 figure;plot3(xx1,xx2,xx3,’.’,’MarkerSize’,14);
46 grid on;
47
48 % calculate covariance matrix
49 C=(xx*xx’)/(length(xx)-1);
50
51 % calculate eigenvector (principal component)
52 % and eigenvalue
53 [ww,ee]=eig(C);
54
55 % transform using principal components
56 yy=ww’*xx;
57
58 ss=sum(ee);
59 [r1,r2]=sort(ss,’descend’);
60
61 kk=2;
62 wwt=ww(:,r2(1:kk));
63
64 yyt=wwt’*xx;
65
66 figure;plot3(xx1,xx2,xx3,’.’,’MarkerSize’,14);
67 hold on;plot3(yy(1,:),yy(2,:),yy(3,:),’r.’,’MarkerSize’,14);
68 grid on;
69
70 figure;plot(yyt(1,:),yyt(2,:),’.’,’MarkerSize’,14);
71 grid on;

The results of this program are presented in Figs. 14.9 and 14.10. The first figure
in Fig. 14.9 shows the three-dimensional scatter plot of the eight points based on
their features 47–49. The second figure shows these points and their principal com-
ponents. The dimensionality reduction using the best two principal components is
presented in Fig. 14.10. We can see a clear classification between the classes.

352 14 Dimensionality Reduction

F
ea

tu
re

 4
9

180

160

140

120

100

80
200

150

100

50 50
100

150
200

250
200
50

100

150

200

250

300

350

100

−100 −100

100
200

300

0
0

Feature 47 PC1

P
C

3

PC2Feature 48

Fig. 14.9 PCA is explained in 3D

40

30

20

10

0

−10

140 160 180 200 220
PC1

240 260 280 300 320120
−20

P
C

2

Fig. 14.10 PCA is explained with dimensionality reduction

14.5.6 A Generalized Implementation

This generalized implementation example in Listing 14.7 shows the principal com-
ponent analysis as well as the dimensionality reduction from p = 64 to k = 2. It
shows better separation than p = 3 to k = 2. It uses hardwood floor and carpet floor
data sets as a one set, and Biltmore estate and MyPrismaColors data sets as another.
The program reads the data sets, calculates the principal components (PCs), selects
the first two PCs, and transforms the data using them.

14.5 Principal Component Analysis 353

200

a b
800

600

400

200

0

−200

−400

−600

−800

150

100

50

−50

−100

−150
−600 −400 −200 200 400 600 −1000 −500 500 1000 150000

PC1 PC1

0

P
C

2

P
C

2
Fig. 14.11 PCA is explained with dimensionality reduction. (a) PC1 and PC2 of
hardwood floor and carpet floor data sets. (b) PC1 and PC2 of Biltmore estate and
MyPrismaColors data sets

Listing 14.7 A Matlab example—PCA’s generalized operations

1 clear all;
2
3 close all;
4
5 % read class data files
6 hw1=csvread(’hardwood.csv’);
7 cp1=csvread(’carpet.csv’);
8
9 % hw1=csvread(’biltmore31.csv’);

10 % cp1=csvread(’MyPrismacolors1.csv’);
11
12 % concatenate them
13 tt=[hw1;cp1];
14
15 for jj=1:64
16 qq(:,jj)=tt(:,jj)-mean(tt(:,jj));
17 end
18
19 xx=qq’;
20
21 % calculate covariance matrix
22 C=(xx*xx’)/(length(xx)-1);
23
24 % calculate eigenvector (principal component)
25 % and eigenvalue
26 [ww,ee]=eig(C);
27
28 % transform using principal components
29 yy=ww’*xx;
30
31 % sort the eigenvectors in descending order

354 14 Dimensionality Reduction

32 ss=sum(ee);
33 [r1,r2]=sort(ss,’descend’);
34
35 % dimensionality reduction
36 kk=2;
37 wwt=ww(:,r2(1:kk));
38
39 % transform using reduced principal components
40 yyt=wwt’*xx;
41
42 % plot the pc-transformed values
43 figure;plot(yyt(1,1:1024),yyt(2,1:1024),’.’);
44 hold on;plot(yyt(1,1025:end),yyt(2,1025:end),’r.’);
45 grid on;xlabel(’PC 1’);ylabel(’PC 2’);

The results are presented in Fig. 14.11 where the first image is the results of
the pairs of data sets, hardwood floor and carpet floor; and the second image is
the results of Biltmore estate and MyPrismaColors data sets. These are the best
separations (or classification) we can obtain between classes using their principal
components. Note that the dimensions are also reduced.

Problems

14.1. Code Revision

Revise the MapReduce programs presented in this chapter using the coding princi-
ples taught in Chap. 5.

14.2. Scaling-up Machine Learning

The MapReduce program provided for the feature hashing problem implemented
the technique inside the mapper() function. Using your own data sets, implement a
complete classification algorithm in the reducer() function that receives the feature
indexes from the mapper() function.

14.3. 3D PCA

(a) Derive the principal components for three variables following the steps used in
Sect. 14.5.2.

(b) Create a simple numerical example, similar to the one used in 14.5.2, and derive
the principal component values.

References

1. B. Dalessandro. “Bring the noise: Embracing randomness is the key to scaling up machine
learning algorithms.” Big Data vol. 1, no. 2, pp. 110–112, 2013.

2. L. Bottou. “Large-scale machine learning with stochastic gradient descent.” in Proceedings of
COMPSTAT’2010. Physica-Verlag HD, pp. 177–186, 2010.

References 355

3. J. Han and C. Moraga. “The influence of the sigmoid function parameters on the speed of
backpropagation learning.” In From Natural to Artificial Neural Computation, pages 195–201.
Springer, 1995.

4. K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. “Feature hashing for
large scale multitask learning.” In Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 1113–1120. ACM, 2009.

5. http://en.wikipedia.org/wiki/Feature hashing
6. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The hadoop distributed file system.” In

Proceedings of the IEEE Symposium on Mass Storage Systems and Technologies, pp. 1–10,
2010.

7. J. Dean, and S. Ghemawat. “MapReduce: a flexible data processing tool.” Communications of
the ACM, vol. 53, no. 1, pp. 72–77, 2010.

8. B. Li, X. Chen, M.J. Li, J.Z. Huang, and S. Feng. “Scalable random forests for massive data,”
P.N. Tan et al. (Eds): PAKDD 2012, Part I, LNAI 7301, pp. 135–146, 2012.

9. L. Rokach, and O. Maimon. “Top-down induction of decision trees classifiers-a survey.” Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 35,
no. 4, pp. 476–487, 2005.

10. L. Breiman, “Random forests.” Machine learning 45, pp. 5–32, 2001.
11. L. Bottou, and O. Bousquet. “The tradeoffs of large scale learning.” In Proceedings of NIPS,

vol 4., p. 8, 2007.
12. P. Domingos, and G. Hulten. “A general method for scaling up machine learning algorithms

and its application to clustering.” In ICML, pp. 106–113. 2001.
13. Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and V. Vishwanathan. “Hash

kernels.” In Proceedings of the International Conference on Artificial Intelligence and Statis-
tics, pp. 496–503. 2009.

14. Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and V. Vishwanathan. “Hash kernels for
structured data.” The Journal of Machine Learning Research 10, pp. 2615–2637, 2009.

15. B. Bai, J. Weston, D. Grangier, R. Collobert, O. Chapelle, and K. Weinberger, “Supervised se-
mantic indexing.” In Proceedings of the 18th ACM conference on Information and knowledge
management, pp. 187–196, 2009.

16. C. Caragea, A. Silvescu, and P. Mitra. “Combining hashing and abstraction in sparse high
dimensional feature spaces.” AAAI, p. 7, 2012.

17. http://en.wikipedia.org/wiki/Principal component analysis
18. http://www.math.northwestern.edu/∼mlerma/papers/princcomp2d.pdf, Last accessed: May

14, 2015.

http://www.math.northwestern.edu/~mlerma/papers/princcomp2d.pdf
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Feature_hashing

Index

A
Algorithm, 7
Analytics, 17
Analytics fundamentals, 31
Approximation, 66

B
Bagging, 276
Base operating system, 82
Big data, 1
Big data analytics, 17
Big data challenges, 19
Big data classification, 2, 20
Big data controllers, 18
Big data platform, 83
Big data problems, 19
Big data scalability, 26
Big data science, 2
Big data solutions, 20
Binning, 330
Bootstrap samples, 168
Bootstrapping, 276

C
CaTools, 92
CDT-based classification, 324
Chandelier decision tree, 323
Class characteristics, 23
Classification, 8, 145
Classification algorithms, 25
Classification errors, 66
Classification model, 160
Classification modeling, 23
Classification Tree, 246

Classification tree, 245
Cloudera Hadoop, 89
Clustering, 9
Coding principles, 108
Continuous response, 151
Correlation, 37
Counting, 34
Covariance, 37
Cross-entropy, 250

D
Data, 3
Data domain, 128
Data expansion modeling, 51
Data representation, 6
Data science, 1
Decision tree, 167
Deep learning, 177
Deformation of patterns, 62
Digital images, 31
Dimensionality reduction, 2
Discrete response, 160
Distance-based measure, 197
Distributed file systems, 22
Domain characteristics, 25
Domain division, 125
Dual form, 226

E
Eigenspace, 341
Eigenvalue, 341
Eigenvector, 341
Elastic-net regression, 158
Entropy, 250

© Springer Science+Business Media New York 2016
S. Suthaharan, Machine Learning Models and Algorithms for Big
Data Classification, Integrated Series in Information Systems 36,
DOI 10.1007/978-1-4899-7641-3

357

358 Index

Error characteristics, 24
Estimation, 67
Evolution of patterns, 49

F
Feature hashing, 330
Feature mitigation, 332
Feature space, 5
Features, 5
Flagged feature hashing, 331

G
Gaussian distribution, 55
Gaussian increase, 55
Gaussian mixture clustering, 9
Gaussian models, 33
Gaussian properties, 28
Gaussian weights, 44
Gini impurity, 252
Gini index, 241
Globalization, 49
Graphical measures, 38
Graphical user interface, 83
Graphs, 31
Guest operating system, 82

H
Hadoop, 2
Hadoop distributed file system, 80
Hadoop framework, 79
Hash collision, 332
Hash function, 330, 331
Hashing techniques, 27
Hierarchical binning, 330
Hierarchical clustering, 9
Hierarchical models, 166
High-dimensional systems, 27
Histogram, 31, 38
Holdout algorithm, 184

I
Imbalanced data, 63
Implementation facilitator, 83
Inaccurate data, 63
Incomplete data, 64
Information gain, 255
Intelligent system, 123
Irregularity-based measure, 197

K
k-Means clustering, 9
Kernel function, 208
Kernel trick, 224
Knowledge, 4

Knowledge set, 4

L
Label error, 210, 212
Lagrangian support vector machine, 219
Lasso regression, 156
Layered model, 170
Learning algorithms, 123
Learning models, 123
Linear support vector machine, 207
Linear transformation, 32
Localization, 49
Logical operation, 5
Logistic regression, 162
Low-dimensional structures, 27, 67

M
Machine learning, 123
Machine learning paradigm, 7
Mangasarian-Musicant iteration, 230
Mapper implementation, 230
Mapper() function, 102
MapReduce, 99
MapReduce essentials, 102
MapReduce model, 230
MapReduce Programming Framework, 81
MapReduce() function, 104
Mathematical models, 162
Mathematical operation, 5
Mean, 34
Mean absolute error, 197
Mean squared error, 197
Modeling, 7

N
Naming convention, 107
Nonlinear support vector machine, 223
Normalization, 31, 44, 51

O
Optimization, 67, 129, 145, 148
Orthogonalization, 32, 52
Overlap thinning, 277

P
Parallelization, 101
Parametrization, 100, 145
Parametrization objectives, 146
parametrized model, 124
Pattern detectors, 34
Patterns of big data, 44
Physical operation, 4
Prediction, 145
Principal component analysis, 2, 340
Probability-based measure, 198

Index 359

Q
Qualitative measure, 184, 198
Quantitative measure, 184, 197

R
Random chandelier, 328
Random forest, 167, 273
RCurl, 91
Reducer implementation, 227
Reducer() function, 103
Regression models, 150
Regression tree, 245
Regularization, 145
Relative scoring, 69
Representation learning, 21
reshape2, 92
Response set, 4
Revolution Analytics, 99
rhdfs, 85, 92
Ridge regression, 154
rmr.str() function, 103
rmr2, 85, 92
Root mean squared error, 197
RStudio, 92
RStudio server, 93

S
Scalability, 26
Scatter plot, 41
Scatter plots, 31
Shallow learning, 171
Skewness, 38
Softmax, 135
Sparsity, 23
Split-merge-split framework, 31
Standard deviation, 43
Standard feature hashing, 331

Standard regression, 151
Standardization, 31, 47
Statistical measures, 34
Sub domain, 126
Subspace, 23
Supervised learning, 7, 145
Support vector machine, 207
SVM-measure, 210, 212

T
Testing, 26, 188
Training, 26, 186

U
Ubuntu O/S, 87
Unit circle algorithm, 309
Unit circle machine, 315
Unit ring algorithm, 318
Unit ring machine, 321
Unsupervised learning, 7

V
Validation, 26
Variance, 34
Virtual machine, 87
Virtual operating system, 82
Virtualbox, 87
Visual analytics, 31
VMware player, 87

W
Weighted standard score, 52
Weighted standardization, 49

Z
Z-score, 51

	a94d7a041470f96fb365fa5931383f22a0be00a64cf5b05a7f4282a921a907e9.pdf
	5ba7bf174a0a71e0be89272be5fa85537beacd4857d05aca0034bc6395dff7b0.pdf
	Contents

	7ff5e1d9054fe845988573c4171951872af26c03b3a06ef2f0d257325779f41b.pdf
	6f5a7fa6427e7311dd9b7ffcd360b9fd0e57ed09f607152b6b2120ae7e4fa996.pdf
	1 Science of Information
	1.1 Data Science
	1.1.1 Technological Dilemma
	1.1.2 Technological Advancement

	1.2 Big Data Paradigm
	1.2.1 Facts and Statistics of a System
	1.2.1.1 Data
	1.2.1.2 Knowledge
	1.2.1.3 Physical Operation
	1.2.1.4 Mathematical Operation
	1.2.1.5 Logical Operation

	1.2.2 Big Data Versus Regular Data
	1.2.2.1 Scenario
	1.2.2.2 Data Representation

	1.3 Machine Learning Paradigm
	1.3.1 Modeling and Algorithms
	1.3.2 Supervised and Unsupervised
	1.3.2.1 Classification
	1.3.2.2 Clustering

	1.4 Collaborative Activities
	1.5 A Snapshot
	1.5.1 The Purpose and Interests
	1.5.2 The Goal and Objectives
	1.5.3 The Problems and Challenges

	Problems
	References

	Part I Understanding Big Data
	2 Big Data Essentials
	2.1 Big Data Analytics
	2.1.1 Big Data Controllers
	2.1.2 Big Data Problems
	2.1.3 Big Data Challenges
	2.1.4 Big Data Solutions

	2.2 Big Data Classification
	2.2.1 Representation Learning
	2.2.2 Distributed File Systems
	2.2.3 Classification Modeling
	2.2.3.1 Class Characteristics
	2.2.3.2 Error Characteristics
	2.2.3.3 Domain Characteristics

	2.2.4 Classification Algorithms
	2.2.4.1 Training
	2.2.4.2 Validation
	2.2.4.3 Testing

	2.3 Big Data Scalability
	2.3.1 High-Dimensional Systems
	2.3.2 Low-Dimensional Structures

	Problems
	References

	3 Big Data Analytics
	3.1 Analytics Fundamentals
	3.1.1 Research Questions
	3.1.2 Choices of Data Sets

	3.2 Pattern Detectors
	3.2.1 Statistical Measures
	3.2.1.1 Counting
	3.2.1.2 Mean and Variance
	3.2.1.3 Covariance and Correlation

	3.2.2 Graphical Measures
	3.2.2.1 Histogram
	3.2.2.2 Skewness
	3.2.2.3 Scatter Plot

	3.2.3 Coding Example

	3.3 Patterns of Big Data
	3.3.1 Standardization: A Coding Example
	3.3.2 Evolution of Patterns
	3.3.3 Data Expansion Modeling
	3.3.3.1 Orthogonalization: A Coding Example
	3.3.3.2 No Mean-Shift, Max Weights, Gaussian Increase
	3.3.3.3 Mean-Shift, Max Weights, Gaussian Increase
	3.3.3.4 No Mean-Shift, Gaussian Weights, Gaussian Increase
	3.3.3.5 Mean-Shift, Gaussian Weights, Gaussian Increase
	3.3.3.6 Coding Example

	3.3.4 Deformation of Patterns
	3.3.4.1 Imbalanced Data
	3.3.4.2 Inaccurate Data
	3.3.4.3 Incomplete data
	3.3.4.4 Coding Example

	3.3.5 Classification Errors
	3.3.5.1 Approximation
	3.3.5.2 Estimation
	3.3.5.3 Optimization

	3.4 Low-Dimensional Structures
	3.4.1 A Toy Example
	3.4.2 A Real Example
	3.4.2.1 Relative Scoring
	3.4.2.2 Coding Example

	Problems
	References

	Part II Understanding Big Data Systems
	4 Distributed File System
	4.1 Hadoop Framework
	4.1.1 Hadoop Distributed File System
	4.1.2 MapReduce Programming Model

	4.2 Hadoop System
	4.2.1 Operating System
	4.2.2 Distributed System
	4.2.3 Programming Platform

	4.3 Hadoop Environment
	4.3.1 Essential Tools
	4.3.1.1 Windows 7 (WN)
	4.3.1.2 VirtualBox (VB)
	4.3.1.3 Ubuntu Linux (UB)
	4.3.1.4 Cloudera Hadoop (CH)
	4.3.1.5 R and RStudio (RR)

	4.3.2 Installation Guidance
	4.3.2.1 Internet Resources
	4.3.2.2 Setting Up a Virtual Machine
	4.3.2.3 Setting Up a Ubuntu O/S
	4.3.2.4 Setting Up a Hadoop Distributed File System
	4.3.2.5 Setting Up an R Environment
	4.3.2.6 RStudio

	4.3.3 RStudio Server
	4.3.3.1 Server Setup
	4.3.3.2 Client Setup

	4.4 Testing the Hadoop Environment
	4.4.1 Standard Example
	4.4.2 Alternative Example

	4.5 Multinode Hadoop
	4.5.1 Virtual Network
	4.5.2 Hadoop Setup

	Problems
	References

	5 MapReduce Programming Platform
	5.1 MapReduce Framework
	5.1.1 Parametrization
	5.1.2 Parallelization

	5.2 MapReduce Essentials
	5.2.1 Mapper Function
	5.2.2 Reducer Function
	5.2.3 MapReduce Function
	5.2.4 A Coding Example

	5.3 MapReduce Programming
	5.3.1 Naming Convention
	5.3.2 Coding Principles
	5.3.2.1 Input: Initialization
	5.3.2.2 Input: Fork MapReduce job
	5.3.2.3 Input: Add Input to dfs
	5.3.2.4 Processing: Mapper
	5.3.2.5 Processing: Reducer
	5.3.2.6 Processing: MapReduce
	5.3.2.7 Output: Get Output from dfs

	5.3.3 Application of Coding Principles
	5.3.3.1 A Coding Example
	5.3.3.2 Pythagorean Numbers
	5.3.3.3 Summarization

	5.4 File Handling in MapReduce
	5.4.1 Pythagorean Numbers
	5.4.2 File Split Example
	5.4.3 File Split Improved

	Problems
	References

	Part III Understanding Machine Learning
	6 Modeling and Algorithms
	6.1 Machine Learning
	6.1.1 A Simple Example
	6.1.2 Domain Division Perspective
	6.1.3 Data Domain
	6.1.4 Domain Division

	6.2 Learning Models
	6.2.1 Mathematical Models
	6.2.2 Hierarchical Models
	6.2.3 Layered Models
	6.2.4 Comparison of the Models
	6.2.4.1 Data Domain Perspective
	6.2.4.2 Programming Perspective

	6.3 Learning Algorithms
	6.3.1 Supervised Learning
	6.3.2 Types of Learning

	Problems
	References

	7 Supervised Learning Models
	7.1 Supervised Learning Objectives
	7.1.1 Parametrization Objectives
	7.1.1.1 Prediction Point of View
	7.1.1.2 Classification Point of View

	7.1.2 Optimization Objectives
	7.1.2.1 Prediction Point of View
	7.1.2.2 Classification Point of View

	7.2 Regression Models
	7.2.1 Continuous Response
	7.2.2 Theory of Regression Models
	7.2.2.1 Standard Regression
	7.2.2.2 Ridge Regression
	7.2.2.3 Lasso Regression
	7.2.2.4 Elastic-Net Regression

	7.3 Classification Models
	7.3.1 Discrete Response
	7.3.2 Mathematical Models
	7.3.2.1 Logistic Regression
	7.3.2.2 SVM Family

	7.4 Hierarchical Models
	7.4.1 Decision Tree
	7.4.2 Random Forest
	7.4.2.1 A Coding Example

	7.5 Layered Models
	7.5.1 Shallow Learning
	7.5.1.1 A Coding Example

	7.5.2 Deep Learning
	7.5.2.1 Some Modern Deep Learning Models

	Problems
	References

	8 Supervised Learning Algorithms
	8.1 Supervised Learning
	8.1.1 Learning
	8.1.2 Training
	8.1.3 Testing
	8.1.4 Validation
	8.1.4.1 Testing of Models on Seen Data
	8.1.4.2 Testing of Models on Unseen Data
	8.1.4.3 Testing of Models on Partially Seen and Unseen Data

	8.2 Cross-Validation
	8.2.1 Tenfold Cross-Validation
	8.2.2 Leave-One-Out
	8.2.3 Leave-p-Out
	8.2.4 Random Subsampling
	8.2.5 Dividing Data Sets
	8.2.5.1 Possible Ratios
	8.2.5.2 Significance

	8.3 Measures
	8.3.1 Quantitative Measure
	8.3.1.1 Distance-Based
	8.3.1.2 Irregularity-Based
	8.3.1.3 Probability-Based

	8.3.2 Qualitative Measure
	8.3.2.1 Visualization-Based
	8.3.2.2 Confusion-Based
	8.3.2.3 Oscillation-Based

	8.4 A Simple 2D Example
	Problems
	References

	9 Support Vector Machine
	9.1 Linear Support Vector Machine
	9.1.1 Linear Classifier: Separable Linearly
	9.1.1.1 The Learning Model
	9.1.1.2 A Coding Example: Two Points, Single Line
	9.1.1.3 A Coding Example: Two Points, Three Lines
	9.1.1.4 A Coding Example: Five Points, Three Lines

	9.1.2 Linear Classifier: Nonseparable Linearly

	9.2 Lagrangian Support Vector Machine
	9.2.1 Modeling of LSVM
	9.2.2 Conceptualized Example
	9.2.3 Algorithm and Coding of LSVM

	9.3 Nonlinear Support Vector Machine
	9.3.1 Feature Space
	9.3.2 Kernel Trick
	9.3.3 SVM Algorithms on Hadoop
	9.3.3.1 SVM: Reducer Implementation
	9.3.3.2 LSVM: Mapper Implementation

	9.3.4 Real Application

	Problems
	References

	10 Decision Tree Learning
	10.1 The Decision Tree
	10.1.1 A Coding Example—Classification Tree
	10.1.2 A Coding Example—Regression Tree

	10.2 Types of Decision Trees
	10.2.1 Classification Tree
	10.2.2 Regression Tree

	10.3 Decision Tree Learning Model
	10.3.1 Parametrization
	10.3.2 Optimization

	10.4 Quantitative Measures
	10.4.1 Entropy and Cross-Entropy
	10.4.2 Gini Impurity
	10.4.3 Information Gain

	10.5 Decision Tree Learning Algorithm
	10.5.1 Training Algorithm
	10.5.2 Validation Algorithm
	10.5.3 Testing Algorithm

	10.6 Decision Tree and Big Data
	10.6.1 Toy Example

	Problems
	References

	Part IV Understanding Scaling-Up Machine Learning
	11 Random Forest Learning
	11.1 The Random Forest
	11.1.1 Parallel Structure
	11.1.2 Model Parameters
	11.1.3 Gain/Loss Function
	11.1.4 Bootstrapping and Bagging
	11.1.4.1 Bootstrapping
	11.1.4.2 Overlap Thinning
	11.1.4.3 Bagging

	11.2 Random Forest Learning Model
	11.2.1 Parametrization
	11.2.2 Optimization

	11.3 Random Forest Learning Algorithm
	11.3.1 Training Algorithm
	11.3.1.1 Coding Example

	11.3.2 Testing Algorithm

	11.4 Random Forest and Big Data
	11.4.1 Random Forest Scalability
	11.4.2 Big Data Classification

	Problems
	References

	12 Deep Learning Models
	12.1 Introduction
	12.2 Deep Learning Techniques
	12.2.1 No-Drop Deep Learning
	12.2.2 Dropout Deep Learning
	12.2.3 Dropconnect Deep Learning
	12.2.4 Gradient Descent
	12.2.4.1 Conceptualized Example
	12.2.4.2 Numerical Example

	12.2.5 A Simple Example
	12.2.6 MapReduce Implementation

	12.3 Proposed Framework
	12.3.1 Motivation
	12.3.2 Parameters Mapper

	12.4 Implementation of Deep Learning
	12.4.1 Analysis of Domain Divisions
	12.4.2 Analysis of Classification Accuracies

	12.5 Ensemble Approach
	Problems
	References

	13 Chandelier Decision Tree
	13.1 Unit Circle Algorithm
	13.1.1 UCA Classification
	13.1.2 Improved UCA Classification
	13.1.3 A Coding Example
	13.1.4 Drawbacks of UCA

	13.2 Unit Circle Machine
	13.2.1 UCM Classification
	13.2.2 A Coding Example
	13.2.3 Drawbacks of UCM

	13.3 Unit Ring Algorithm
	13.3.1 A Coding Example
	13.3.2 Unit Ring Machine
	13.3.3 A Coding Example
	13.3.4 Drawbacks of URM

	13.4 Chandelier Decision Tree
	13.4.1 CDT-Based Classification
	13.4.2 Extension to Random Chandelier

	Problems
	References

	14 Dimensionality Reduction
	14.1 Introduction
	14.2 Feature Hashing Techniques
	14.2.1 Standard Feature Hashing
	14.2.2 Flagged Feature Hashing

	14.3 Proposed Feature Hashing
	14.3.1 Binning and Mitigation
	14.3.2 Mitigation Justification
	14.3.3 Toy Example

	14.4 Simulation and Results
	14.4.1 A Matlab Implementation
	14.4.2 A MapReduce Implementation

	14.5 Principal Component Analysis
	14.5.1 Eigenvector
	14.5.2 Principal Components
	14.5.3 The Principal Directions
	14.5.4 A 2D Implementation
	14.5.5 A 3D Implementation
	14.5.6 A Generalized Implementation

	Problems
	References

	Index

