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Chapter 1

Exploratory data analysis

The thesis of this book is that data combined with practical methods can
answer questions and guide decisions under uncertainty.

As an example, I present a case study motivated by a question I heard when
my wife and I were expecting our first child: do first babies tend to arrive
late?

If you Google this question, you will find plenty of discussion. Some people
claim it’s true, others say it’s a myth, and some people say it’s the other way
around: first babies come early.

In many of these discussions, people provide data to support their claims. I
found many examples like these:

“My two friends that have given birth recently to their first ba-
bies, BOTH went almost 2 weeks overdue before going into labour
or being induced.”

“My first one came 2 weeks late and now I think the second one
is going to come out two weeks early!!”

“I don’t think that can be true because my sister was my mother’s
first and she was early, as with many of my cousins.”

Reports like these are called anecdotal evidence because they are based
on data that is unpublished and usually personal. In casual conversation,
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there is nothing wrong with anecdotes, so I don’t mean to pick on the people
I quoted.

But we might want evidence that is more persuasive and an answer that is
more reliable. By those standards, anecdotal evidence usually fails, because:

• Small number of observations: If pregnancy length is longer for first
babies, the difference is probably small compared to natural variation.
In that case, we might have to compare a large number of pregnancies
to be sure that a difference exists.

• Selection bias: People who join a discussion of this question might be
interested because their first babies were late. In that case the process
of selecting data would bias the results.

• Confirmation bias: People who believe the claim might be more likely
to contribute examples that confirm it. People who doubt the claim
are more likely to cite counterexamples.

• Inaccuracy: Anecdotes are often personal stories, and often misremem-
bered, misrepresented, repeated inaccurately, etc.

So how can we do better?

1.1 A statistical approach

To address the limitations of anecdotes, we will use the tools of statistics,
which include:

• Data collection: We will use data from a large national survey that
was designed explicitly with the goal of generating statistically valid
inferences about the U.S. population.

• Descriptive statistics: We will generate statistics that summarize the
data concisely, and evaluate different ways to visualize data.

• Exploratory data analysis: We will look for patterns, differences, and
other features that address the questions we are interested in. At the
same time we will check for inconsistencies and identify limitations.
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• Estimation: We will use data from a sample to estimate characteristics
of the general population.

• Hypothesis testing: Where we see apparent effects, like a difference
between two groups, we will evaluate whether the effect might have
happened by chance.

By performing these steps with care to avoid pitfalls, we can reach conclusions
that are more justifiable and more likely to be correct.

1.2 The National Survey of Family Growth

Since 1973 the U.S. Centers for Disease Control and Prevention (CDC)
have conducted the National Survey of Family Growth (NSFG), which is
intended to gather “information on family life, marriage and divorce, preg-
nancy, infertility, use of contraception, and men’s and women’s health. The
survey results are used ... to plan health services and health education pro-
grams, and to do statistical studies of families, fertility, and health.” See
http://cdc.gov/nchs/nsfg.htm.

We will use data collected by this survey to investigate whether first babies
tend to come late, and other questions. In order to use this data effectively,
we have to understand the design of the study.

The NSFG is a cross-sectional study, which means that it captures a snap-
shot of a group at a point in time. The most common alternative is a lon-
gitudinal study, which observes a group repeatedly over a period of time.

The NSFG has been conducted seven times; each deployment is called a
cycle. We will use data from Cycle 6, which was conducted from January
2002 to March 2003.

The goal of the survey is to draw conclusions about a population; the
target population of the NSFG is people in the United States aged 15-44.
Ideally surveys would collect data from every member of the population,
but that’s seldom possible. Instead we collect data from a subset of the

http://cdc.gov/nchs/nsfg.htm
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population called a sample. The people who participate in a survey are
called respondents.

In general, cross-sectional studies are meant to be representative, which
means that every member of the target population has an equal chance of
participating. That ideal is hard to achieve in practice, but people who
conduct surveys come as close as they can.

The NSFG is not representative; instead it is deliberately oversampled. The
designers of the study recruited three groups—Hispanics, African-Americans
and teenagers—at rates higher than their representation in the U.S. popula-
tion, in order to make sure that the number of respondents in each of these
groups is large enough to draw valid statistical inferences.

Of course, the drawback of oversampling is that it is not as easy to draw
conclusions about the general population based on statistics from the survey.
We will come back to this point later.

When working with this kind of data, it is important to be familiar with
the codebook, which documents the design of the study, the survey ques-
tions, and the encoding of the responses. The codebook and user’s guide for
the NSFG data are available from http://www.cdc.gov/nchs/nsfg/nsfg_

cycle6.htm

1.3 Importing the data

The code and data used in this book are available from https://github.

com/AllenDowney/ThinkStats2. For information about downloading and
working with this code, see Section 0.2.

Once you download the code, you should have a file called
ThinkStats2/code/nsfg.py. If you run it, it should read a data file,
run some tests, and print a message like, “All tests passed.”

Let’s see what it does. Pregnancy data from Cycle 6 of the NSFG is in a file
called 2002FemPreg.dat.gz; it is a gzip-compressed data file in plain text
(ASCII), with fixed width columns. Each line in the file is a record that
contains data about one pregnancy.

http://www.cdc.gov/nchs/nsfg/nsfg_cycle6.htm
http://www.cdc.gov/nchs/nsfg/nsfg_cycle6.htm
https://github.com/AllenDowney/ThinkStats2
https://github.com/AllenDowney/ThinkStats2
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The format of the file is documented in 2002FemPreg.dct, which is a Stata
dictionary file. Stata is a statistical software system; a “dictionary” in this
context is a list of variable names, types, and indices that identify where in
each line to find each variable.

For example, here are a few lines from 2002FemPreg.dct:

infile dictionary {

_column(1) str12 caseid %12s "RESPONDENT ID NUMBER"

_column(13) byte pregordr %2f "PREGNANCY ORDER (NUMBER)"

}

This dictionary describes two variables: caseid is a 12-character string that
represents the respondent ID; pregorder is a one-byte integer that indicates
which pregnancy this record describes for this respondent.

The code you downloaded includes thinkstats2.py, which is a Python mod-
ule that contains many classes and functions used in this book, including
functions that read the Stata dictionary and the NSFG data file. Here’s how
they are used in nsfg.py:

def ReadFemPreg(dct_file='2002FemPreg.dct',

dat_file='2002FemPreg.dat.gz'):

dct = thinkstats2.ReadStataDct(dct_file)

df = dct.ReadFixedWidth(dat_file, compression='gzip')

CleanFemPreg(df)

return df

ReadStataDct takes the name of the dictionary file and returns dct, a
FixedWidthVariables object that contains the information from the dic-
tionary file. dct provides ReadFixedWidth, which reads the data file.

1.4 DataFrames

The result of ReadFixedWidth is a DataFrame, which is the fundamental data
structure provided by pandas, which is a Python data and statistics package
we’ll use throughout this book. A DataFrame contains a row for each record,
in this case one row per pregnancy, and a column for each variable.
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In addition to the data, a DataFrame also contains the variable names and
their types, and it provides methods for accessing and modifying the data.

If you print df you get a truncated view of the rows and columns,
and the shape of the DataFrame, which is 13593 rows/records and 244
columns/variables.

>>> import nsfg

>>> df = nsfg.ReadFemPreg()

>>> df

...

[13593 rows x 244 columns]

The DataFrame is too big to display, so the output is truncated. The last
line reports the number of rows and columns.

The attribute columns returns a sequence of column names as Unicode
strings:

>>> df.columns

Index([u'caseid', u'pregordr', u'howpreg_n', u'howpreg_p', ... ])

The result is an Index, which is another pandas data structure. We’ll learn
more about Index later, but for now we’ll treat it like a list:

>>> df.columns[1]

'pregordr'

To access a column from a DataFrame, you can use the column name as a
key:

>>> pregordr = df['pregordr']

>>> type(pregordr)

<class 'pandas.core.series.Series'>

The result is a Series, yet another pandas data structure. A Series is like a
Python list with some additional features. When you print a Series, you get
the indices and the corresponding values:

>>> pregordr

0 1

1 2

2 1

3 2
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...

13590 3

13591 4

13592 5

Name: pregordr, Length: 13593, dtype: int64

In this example the indices are integers from 0 to 13592, but in general they
can be any sortable type. The elements are also integers, but they can be
any type.

The last line includes the variable name, Series length, and data type; int64
is one of the types provided by NumPy. If you run this example on a 32-bit
machine you might see int32.

You can access the elements of a Series using integer indices and slices:

>>> pregordr[0]

1

>>> pregordr[2:5]

2 1

3 2

4 3

Name: pregordr, dtype: int64

The result of the index operator is an int64; the result of the slice is another
Series.

You can also access the columns of a DataFrame using dot notation:

>>> pregordr = df.pregordr

This notation only works if the column name is a valid Python identifier, so
it has to begin with a letter, can’t contain spaces, etc.

1.5 Variables

We have already seen two variables in the NSFG dataset, caseid and
pregordr, and we have seen that there are 244 variables in total. For the
explorations in this book, I use the following variables:

• caseid is the integer ID of the respondent.
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• prglngth is the integer duration of the pregnancy in weeks.

• outcome is an integer code for the outcome of the pregnancy. The code
1 indicates a live birth.

• pregordr is a pregnancy serial number; for example, the code for a
respondent’s first pregnancy is 1, for the second pregnancy is 2, and so
on.

• birthord is a serial number for live births; the code for a respondent’s
first child is 1, and so on. For outcomes other than live birth, this field
is blank.

• birthwgt_lb and birthwgt_oz contain the pounds and ounces parts
of the birth weight of the baby.

• agepreg is the mother’s age at the end of the pregnancy.

• finalwgt is the statistical weight associated with the respondent. It is
a floating-point value that indicates the number of people in the U.S.
population this respondent represents.

If you read the codebook carefully, you will see that many of the variables
are recodes, which means that they are not part of the raw data collected
by the survey; they are calculated using the raw data.

For example, prglngth for live births is equal to the raw variable wksgest

(weeks of gestation) if it is available; otherwise it is estimated using mosgest

* 4.33 (months of gestation times the average number of weeks in a month).

Recodes are often based on logic that checks the consistency and accuracy of
the data. In general it is a good idea to use recodes when they are available,
unless there is a compelling reason to process the raw data yourself.

1.6 Transformation

When you import data like this, you often have to check for errors, deal with
special values, convert data into different formats, and perform calculations.
These operations are called data cleaning.
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nsfg.py includes CleanFemPreg, a function that cleans the variables I am
planning to use.

def CleanFemPreg(df):

df.agepreg /= 100.0

na_vals = [97, 98, 99]

df.birthwgt_lb.replace(na_vals, np.nan, inplace=True)

df.birthwgt_oz.replace(na_vals, np.nan, inplace=True)

df['totalwgt_lb'] = df.birthwgt_lb + df.birthwgt_oz / 16.0

agepreg contains the mother’s age at the end of the pregnancy. In the data
file, agepreg is encoded as an integer number of centiyears. So the first line
divides each element of agepreg by 100, yielding a floating-point value in
years.

birthwgt_lb and birthwgt_oz contain the weight of the baby, in pounds
and ounces, for pregnancies that end in live birth. In addition it uses several
special codes:

97 NOT ASCERTAINED

98 REFUSED

99 DON'T KNOW

Special values encoded as numbers are dangerous because if they are not
handled properly, they can generate bogus results, like a 99-pound baby.
The replace method replaces these values with np.nan, a special floating-
point value that represents “not a number.” The inplace flag tells replace
to modify the existing Series rather than create a new one.

As part of the IEEE floating-point standard, all mathematical operations
return nan if either argument is nan:

>>> import numpy as np

>>> np.nan / 100.0

nan

So computations with nan tend to do the right thing, and most pandas
functions handle nan appropriately. But dealing with missing data will be a
recurring issue.

The last line of CleanFemPreg creates a new column totalwgt_lb that com-
bines pounds and ounces into a single quantity, in pounds.
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One important note: when you add a new column to a DataFrame, you must
use dictionary syntax, like this

# CORRECT

df['totalwgt_lb'] = df.birthwgt_lb + df.birthwgt_oz / 16.0

Not dot notation, like this:

# WRONG!

df.totalwgt_lb = df.birthwgt_lb + df.birthwgt_oz / 16.0

The version with dot notation adds an attribute to the DataFrame object,
but that attribute is not treated as a new column.

1.7 Validation

When data is exported from one software environment and imported into
another, errors might be introduced. And when you are getting familiar
with a new dataset, you might interpret data incorrectly or introduce other
misunderstandings. If you take time to validate the data, you can save time
later and avoid errors.

One way to validate data is to compute basic statistics and compare them
with published results. For example, the NSFG codebook includes tables
that summarize each variable. Here is the table for outcome, which encodes
the outcome of each pregnancy:

value label Total

1 LIVE BIRTH 9148

2 INDUCED ABORTION 1862

3 STILLBIRTH 120

4 MISCARRIAGE 1921

5 ECTOPIC PREGNANCY 190

6 CURRENT PREGNANCY 352

The Series class provides a method, value_counts, that counts the num-
ber of times each value appears. If we select the outcome Series from the
DataFrame, we can use value_counts to compare with the published data:

>>> df.outcome.value_counts(sort=False)

1 9148
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2 1862

3 120

4 1921

5 190

6 352

The result of value_counts is a Series; sort=False doesn’t sort the Series
by values, so them appear in order.

Comparing the results with the published table, it looks like the values in
outcome are correct. Similarly, here is the published table for birthwgt_lb

value label Total

. INAPPLICABLE 4449

0-5 UNDER 6 POUNDS 1125

6 6 POUNDS 2223

7 7 POUNDS 3049

8 8 POUNDS 1889

9-95 9 POUNDS OR MORE 799

And here are the value counts:

>>> df.birthwgt_lb.value_counts(sort=False)

0 8

1 40

2 53

3 98

4 229

5 697

6 2223

7 3049

8 1889

9 623

10 132

11 26

12 10

13 3

14 3

15 1

51 1
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The counts for 6, 7, and 8 pounds check out, and if you add up the counts
for 0-5 and 9-95, they check out, too. But if you look more closely, you will
notice one value that has to be an error, a 51 pound baby!

To deal with this error, I added a line to CleanFemPreg:

df.loc[df.birthwgt_lb > 20, 'birthwgt_lb'] = np.nan

This statement replaces invalid values with np.nan. The attribute loc pro-
vides several ways to select rows and columns from a DataFrame. In this
example, the first expression in brackets is the row indexer; the second ex-
pression selects the column.

The expression df.birthwgt_lb > 20 yields a Series of type bool, where
True indicates that the condition is true. When a boolean Series is used as
an index, it selects only the elements that satisfy the condition.

1.8 Interpretation

To work with data effectively, you have to think on two levels at the same
time: the level of statistics and the level of context.

As an example, let’s look at the sequence of outcomes for a few respondents.
Because of the way the data files are organized, we have to do some processing
to collect the pregnancy data for each respondent. Here’s a function that does
that:

def MakePregMap(df):

d = defaultdict(list)

for index, caseid in df.caseid.iteritems():

d[caseid].append(index)

return d

df is the DataFrame with pregnancy data. The iteritems method enumer-
ates the index (row number) and caseid for each pregnancy.

d is a dictionary that maps from each case ID to a list of indices. If you are not
familiar with defaultdict, it is in the Python collections module. Using
d, we can look up a respondent and get the indices of that respondent’s
pregnancies.
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This example looks up one respondent and prints a list of outcomes for her
pregnancies:

>>> caseid = 10229

>>> preg_map = nsfg.MakePregMap(df)

>>> indices = preg_map[caseid]

>>> df.outcome[indices].values

[4 4 4 4 4 4 1]

indices is the list of indices for pregnancies corresponding to respondent
10229.

Using this list as an index into df.outcome selects the indicated rows and
yields a Series. Instead of printing the whole Series, I selected the values

attribute, which is a NumPy array.

The outcome code 1 indicates a live birth. Code 4 indicates a miscarriage;
that is, a pregnancy that ended spontaneously, usually with no known med-
ical cause.

Statistically this respondent is not unusual. Miscarriages are common and
there are other respondents who reported as many or more.

But remembering the context, this data tells the story of a woman who was
pregnant six times, each time ending in miscarriage. Her seventh and most
recent pregnancy ended in a live birth. If we consider this data with empathy,
it is natural to be moved by the story it tells.

Each record in the NSFG dataset represents a person who provided honest
answers to many personal and difficult questions. We can use this data to
answer statistical questions about family life, reproduction, and health. At
the same time, we have an obligation to consider the people represented by
the data, and to afford them respect and gratitude.

1.9 Exercises

Exercise 1.1 In the repository you downloaded, you should find a file named
chap01ex.ipynb, which is an IPython notebook. You can launch IPython
notebook from the command line like this:
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$ ipython notebook &

If IPython is installed, it should launch a server that runs in the back-
ground and open a browser to view the notebook. If you are not familiar
with IPython, I suggest you start at http://ipython.org/ipython-doc/

stable/notebook/notebook.html.

To launch the IPython notebook server, run:

$ ipython notebook &

It should open a new browser window, but if not, the startup message pro-
vides a URL you can load in a browser, usually http://localhost:8888.
The new window should list the notebooks in the repository.

Open chap01ex.ipynb. Some cells are already filled in, and you should
execute them. Other cells give you instructions for exercises you should try.

A solution to this exercise is in chap01soln.ipynb

Exercise 1.2 In the repository you downloaded, you should find a file named
chap01ex.py; using this file as a starting place, write a function that reads
the respondent file, 2002FemResp.dat.gz.

The variable pregnum is a recode that indicates how many times each re-
spondent has been pregnant. Print the value counts for this variable and
compare them to the published results in the NSFG codebook.

You can also cross-validate the respondent and pregnancy files by comparing
pregnum for each respondent with the number of records in the pregnancy
file.

You can use nsfg.MakePregMap to make a dictionary that maps from each
caseid to a list of indices into the pregnancy DataFrame.

A solution to this exercise is in chap01soln.py

Exercise 1.3 The best way to learn about statistics is to work on a project
you are interested in. Is there a question like, “Do first babies arrive late,”
that you want to investigate?

Think about questions you find personally interesting, or items of conven-
tional wisdom, or controversial topics, or questions that have political conse-
quences, and see if you can formulate a question that lends itself to statistical
inquiry.

http://ipython.org/ipython-doc/stable/notebook/notebook.html
http://ipython.org/ipython-doc/stable/notebook/notebook.html
http://localhost:8888
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Look for data to help you address the question. Governments are good
sources because data from public research is often freely available. Good
places to start include http://www.data.gov/, and http://www.science.

gov/, and in the United Kingdom, http://data.gov.uk/.

Two of my favorite data sets are the General Social Survey at http://www3.
norc.org/gss+website/, and the European Social Survey at http://www.

europeansocialsurvey.org/.

If it seems like someone has already answered your question, look closely to
see whether the answer is justified. There might be flaws in the data or the
analysis that make the conclusion unreliable. In that case you could perform
a different analysis of the same data, or look for a better source of data.

If you find a published paper that addresses your question, you should be
able to get the raw data. Many authors make their data available on the
web, but for sensitive data you might have to write to the authors, provide
information about how you plan to use the data, or agree to certain terms of
use. Be persistent!

1.10 Glossary

• anecdotal evidence: Evidence, often personal, that is collected casu-
ally rather than by a well-designed study.

• population: A group we are interested in studying. “Population”
often refers to a group of people, but the term is used for other subjects,
too.

• cross-sectional study: A study that collects data about a population
at a particular point in time.

• cycle: In a repeated cross-sectional study, each repetition of the study
is called a cycle.

• longitudinal study: A study that follows a population over time,
collecting data from the same group repeatedly.

• record: In a dataset, a collection of information about a single person
or other subject.

http://www.data.gov/
http://www.science.gov/
http://www.science.gov/
http://data.gov.uk/
http://www3.norc.org/gss+website/
http://www3.norc.org/gss+website/
http://www.europeansocialsurvey.org/
http://www.europeansocialsurvey.org/
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• respondent: A person who responds to a survey.

• sample: The subset of a population used to collect data.

• representative: A sample is representative if every member of the
population has the same chance of being in the sample.

• oversampling: The technique of increasing the representation of a
sub-population in order to avoid errors due to small sample sizes.

• raw data: Values collected and recorded with little or no checking,
calculation or interpretation.

• recode: A value that is generated by calculation and other logic ap-
plied to raw data.

• data cleaning: Processes that include validating data, identifying er-
rors, translating between data types and representations, etc.



Chapter 2

Distributions

2.1 Histograms

One of the best ways to describe a variable is to report the values that appear
in the dataset and how many times each value appears. This description is
called the distribution of the variable.

The most common representation of a distribution is a histogram, which is a
graph that shows the frequency of each value. In this context, “frequency”
means the number of times the value appears.

In Python, an efficient way to compute frequencies is with a dictionary. Given
a sequence of values, t:

hist = {}

for x in t:

hist[x] = hist.get(x, 0) + 1

The result is a dictionary that maps from values to frequencies. Alternatively,
you could use the Counter class defined in the collections module:

from collections import Counter

counter = Counter(t)

The result is a Counter object, which is a subclass of dictionary.
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Another option is to use the pandas method value_counts, which we saw in
the previous chapter. But for this book I created a class, Hist, that represents
histograms and provides the methods that operate on them.

2.2 Representing histograms

The Hist constructor can take a sequence, dictionary, pandas Series, or an-
other Hist. You can instantiate a Hist object like this:

>>> import thinkstats2

>>> hist = thinkstats2.Hist([1, 2, 2, 3, 5])

>>> hist

Hist({1: 1, 2: 2, 3: 1, 5: 1})

Hist objects provide Freq, which takes a value and returns its frequency:

>>> hist.Freq(2)

2

The bracket operator does the same thing:

>>> hist[2]

2

If you look up a value that has never appeared, the frequency is 0.

>>> hist.Freq(4)

0

Values returns an unsorted list of the values in the Hist:

>>> hist.Values()

[1, 5, 3, 2]

To loop through the values in order, you can use the built-in function sorted:

for val in sorted(hist.Values()):

print(val, hist.Freq(val))

Or you can use Items to iterate through value-frequency pairs:

for val, freq in hist.Items():

print(val, freq)
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Figure 2.1: Histogram of the pound part of birth weight.

2.3 Plotting histograms

For this book I wrote a module called thinkplot.py that provides functions
for plotting Hists and other objects defined in thinkstats2.py. It is based
on pyplot, which is part of the matplotlib package. See Section 0.2 for
information about installing matplotlib.

To plot hist with thinkplot, try this:

>>> import thinkplot

>>> thinkplot.Hist(hist)

>>> thinkplot.Show(xlabel='value', ylabel='frequency')

You can read the documentation for thinkplot at http://greenteapress.
com/thinkstats2/thinkplot.html.

2.4 NSFG variables

Now let’s get back to the data from the NSFG. The code in this chapter is in
first.py. For information about downloading and working with this code,
see Section 0.2.

When you start working with a new dataset, I suggest you explore the vari-
ables you are planning to use one at a time, and a good way to start is by

http://greenteapress.com/thinkstats2/thinkplot.html
http://greenteapress.com/thinkstats2/thinkplot.html
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Figure 2.2: Histogram of the ounce part of birth weight.

looking at histograms.

In Section 1.6 we transformed agepreg from centiyears to years, and com-
bined birthwgt_lb and birthwgt_oz into a single quantity, totalwgt_lb.
In this section I use these variables to demonstrate some features of his-
tograms.

I’ll start by reading the data and selecting records for live births:

preg = nsfg.ReadFemPreg()

live = preg[preg.outcome == 1]

The expression in brackets is a boolean Series that selects rows from the
DataFrame and returns a new DataFrame. Next I generate and plot the
histogram of birthwgt_lb for live births.

hist = thinkstats2.Hist(live.birthwgt_lb, label='birthwgt_lb')

thinkplot.Hist(hist)

thinkplot.Show(xlabel='pounds', ylabel='frequency')

When the argument passed to Hist is a pandas Series, any nan values are
dropped. label is a string that appears in the legend when the Hist is
plotted.

Figure 2.1 shows the result. The most common value, called the mode, is 7
pounds. The distribution is approximately bell-shaped, which is the shape
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Figure 2.3: Histogram of mother’s age at end of pregnancy.
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Figure 2.4: Histogram of pregnancy length in weeks.
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of the normal distribution, also called a Gaussian distribution. But unlike
a true normal distribution, this distribution is asymmetric; it has a tail that
extends farther to the left than to the right.

Figure 2.2 shows the histogram of birthwgt_oz, which is the ounces part of
birth weight. In theory we expect this distribution to be uniform; that is, all
values should have the same frequency. In fact, 0 is more common than the
other values, and 1 and 15 are less common, probably because respondents
round off birth weights that are close to an integer value.

Figure 2.3 shows the histogram of agepreg, the mother’s age at the end of
pregnancy. The mode is 21 years. The distribution is very roughly bell-
shaped, but in this case the tail extends farther to the right than left; most
mothers are in their 20s, fewer in their 30s.

Figure 2.4 shows the histogram of prglngth, the length of the pregnancy in
weeks. By far the most common value is 39 weeks. The left tail is longer
than the right; early babies are common, but pregnancies seldom go past 43
weeks, and doctors often intervene if they do.

2.5 Outliers

Looking at histograms, it is easy to identify the most common values and
the shape of the distribution, but rare values are not always visible.

Before going on, it is a good idea to check for outliers, which are extreme
values that might be errors in measurement and recording, or might be ac-
curate reports of rare events.

Hist provides methods Largest and Smallest, which take an integer n and
return the n largest or smallest values from the histogram:

for weeks, freq in hist.Smallest(10):

print(weeks, freq)

In the list of pregnancy lengths for live births, the 10 lowest values are [0,

4, 9, 13, 17, 18, 19, 20, 21, 22]. Values below 10 weeks are certainly
errors; the most likely explanation is that the outcome was not coded cor-
rectly. Values higher than 30 weeks are probably legitimate. Between 10 and
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30 weeks, it is hard to be sure; some values are probably errors, but some
represent premature babies.

On the other end of the range, the highest values are:

weeks count

43 148

44 46

45 10

46 1

47 1

48 7

50 2

Most doctors recommend induced labor if a pregnancy exceeds 42 weeks,
so some of the longer values are surprising. In particular, 50 weeks seems
medically unlikely.

The best way to handle outliers depends on “domain knowledge”; that is,
information about where the data come from and what they mean. And it
depends on what analysis you are planning to perform.

In this example, the motivating question is whether first babies tend to be
early (or late). When people ask this question, they are usually interested in
full-term pregnancies, so for this analysis I will focus on pregnancies longer
than 27 weeks.

2.6 First babies

Now we can compare the distribution of pregnancy lengths for first babies
and others. I divided the DataFrame of live births using birthord, and
computed their histograms:

firsts = live[live.birthord == 1]

others = live[live.birthord != 1]

first_hist = thinkstats2.Hist(firsts.prglngth)

other_hist = thinkstats2.Hist(others.prglngth)

Then I plotted their histograms on the same axis:
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Figure 2.5: Histogram of pregnancy lengths.

width = 0.45

thinkplot.PrePlot(2)

thinkplot.Hist(first_hist, align='right', width=width)

thinkplot.Hist(other_hist, align='left', width=width)

thinkplot.Show(xlabel='weeks', ylabel='frequency',

xlim=[27, 46])

thinkplot.PrePlot takes the number of histograms we are planning to plot;
it uses this information to choose an appropriate collection of colors.

thinkplot.Hist normally uses align=’center’ so that each bar is centered
over its value. For this figure, I use align=’right’ and align=’left’ to
place corresponding bars on either side of the value.

With width=0.45, the total width of the two bars is 0.9, leaving some space
between each pair.

Finally, I adjust the axis to show only data between 27 and 46 weeks. Fig-
ure 2.5 shows the result.

Histograms are useful because they make the most frequent values immedi-
ately apparent. But they are not the best choice for comparing two distribu-
tions. In this example, there are fewer “first babies” than “others,” so some
of the apparent differences in the histograms are due to sample sizes. In the
next chapter we address this problem using probability mass functions.
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2.7 Summarizing distributions

A histogram is a complete description of the distribution of a sample; that is,
given a histogram, we could reconstruct the values in the sample (although
not their order).

If the details of the distribution are important, it might be necessary to
present a histogram. But often we want to summarize the distribution with
a few descriptive statistics.

Some of the characteristics we might want to report are:

• central tendency: Do the values tend to cluster around a particular
point?

• modes: Is there more than one cluster?

• spread: How much variability is there in the values?

• tails: How quickly do the probabilities drop off as we move away from
the modes?

• outliers: Are there extreme values far from the modes?

Statistics designed to answer these questions are called summary statistics.
By far the most common summary statistic is the mean, which is meant to
describe the central tendency of the distribution.

If you have a sample of n values, xi, the mean, x̄, is the sum of the values
divided by the number of values; in other words

x̄ =
1

n

∑
i

xi

The words “mean” and “average” are sometimes used interchangeably, but I
make this distinction:

• The “mean” of a sample is the summary statistic computed with the
previous formula.

• An “average” is one of several summary statistics you might choose to
describe a central tendency.
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Sometimes the mean is a good description of a set of values. For example,
apples are all pretty much the same size (at least the ones sold in supermar-
kets). So if I buy 6 apples and the total weight is 3 pounds, it would be a
reasonable summary to say they are about a half pound each.

But pumpkins are more diverse. Suppose I grow several varieties in my gar-
den, and one day I harvest three decorative pumpkins that are 1 pound each,
two pie pumpkins that are 3 pounds each, and one Atlantic Giant R© pumpkin
that weighs 591 pounds. The mean of this sample is 100 pounds, but if I
told you “The average pumpkin in my garden is 100 pounds,” that would be
misleading. In this example, there is no meaningful average because there is
no typical pumpkin.

2.8 Variance

If there is no single number that summarizes pumpkin weights, we can do a
little better with two numbers: mean and variance.

Variance is a summary statistic intended to describe the variability or spread
of a distribution. The variance of a set of values is

S2 =
1

n

∑
i

(xi − x̄)2

The term xi − x̄ is called the “deviation from the mean,” so variance is the
mean squared deviation. The square root of variance, S, is the standard
deviation.

If you have prior experience, you might have seen a formula for variance with
n − 1 in the denominator, rather than n. This statistic is used to estimate
the variance in a population using a sample. We will come back to this in
Chapter 8.

Pandas data structures provides methods to compute mean, variance and
standard deviation:

mean = live.prglngth.mean()

var = live.prglngth.var()

std = live.prglngth.std()
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For all live births, the mean pregnancy length is 38.6 weeks, the standard
deviation is 2.7 weeks, which means we should expect deviations of 2-3 weeks
to be common.

Variance of pregnancy length is 7.3, which is hard to interpret, especially
since the units are weeks2, or “square weeks.” Variance is useful in some
calculations, but it is not a good summary statistic.

2.9 Effect size

An effect size is a summary statistic intended to describe (wait for it) the
size of an effect. For example, to describe the difference between two groups,
one obvious choice is the difference in the means.

Mean pregnancy length for first babies is 38.601; for other babies it is 38.523.
The difference is 0.078 weeks, which works out to 13 hours. As a fraction of
the typical pregnancy length, this difference is about 0.2%.

If we assume this estimate is accurate, such a difference would have no prac-
tical consequences. In fact, without observing a large number of pregnancies,
it is unlikely that anyone would notice this difference at all.

Another way to convey the size of the effect is to compare the difference
between groups to the variability within groups. Cohen’s d is a statistic
intended to do that; it is defined

d =
x̄1 − x̄2

s

where x̄1 and x̄2 are the means of the groups and s is the “pooled standard
deviation”. Here’s the Python code that computes Cohen’s d:

def CohenEffectSize(group1, group2):

diff = group1.mean() - group2.mean()

var1 = group1.var()

var2 = group2.var()

n1, n2 = len(group1), len(group2)
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pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2)

d = diff / math.sqrt(pooled_var)

return d

In this example, the difference in means is 0.029 standard deviations, which
is small. To put that in perspective, the difference in height between men
and women is about 1.7 standard deviations (see https://en.wikipedia.

org/wiki/Effect_size).

2.10 Reporting results

We have seen several ways to describe the difference in pregnancy length (if
there is one) between first babies and others. How should we report these
results?

The answer depends on who is asking the question. A scientist might be
interested in any (real) effect, no matter how small. A doctor might only
care about effects that are clinically significant; that is, differences that
affect treatment decisions. A pregnant woman might be interested in results
that are relevant to her, like the probability of delivering early or late.

How you report results also depends on your goals. If you are trying to
demonstrate the importance of an effect, you might choose summary statis-
tics that emphasize differences. If you are trying to reassure a patient, you
might choose statistics that put the differences in context.

Of course your decisions should also be guided by professional ethics. It’s ok
to be persuasive; you should design statistical reports and visualizations that
tell a story clearly. But you should also do your best to make your reports
honest, and to acknowledge uncertainty and limitations.

2.11 Exercises

Exercise 2.1 Based on the results in this chapter, suppose you were asked
to summarize what you learned about whether first babies arrive late.

https://en.wikipedia.org/wiki/Effect_size
https://en.wikipedia.org/wiki/Effect_size
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Which summary statistics would you use if you wanted to get a story on
the evening news? Which ones would you use if you wanted to reassure an
anxious patient?

Finally, imagine that you are Cecil Adams, author of The Straight Dope
(http://straightdope.com), and your job is to answer the question, “Do
first babies arrive late?” Write a paragraph that uses the results in this
chapter to answer the question clearly, precisely, and honestly.

Exercise 2.2 In the repository you downloaded, you should find a file named
chap02ex.ipynb; open it. Some cells are already filled in, and you should
execute them. Other cells give you instructions for exercises. Follow the
instructions and fill in the answers.

A solution to this exercise is in chap02soln.ipynb

In the repository you downloaded, you should find a file named chap02ex.py;
you can use this file as a starting place for the following exercises. My solution
is in chap02soln.py.

Exercise 2.3 The mode of a distribution is the most frequent value; see
http://wikipedia.org/wiki/Mode_(statistics). Write a function called
Mode that takes a Hist and returns the most frequent value.

As a more challenging exercise, write a function called AllModes that returns
a list of value-frequency pairs in descending order of frequency.

Exercise 2.4 Using the variable totalwgt_lb, investigate whether first ba-
bies are lighter or heavier than others. Compute Cohen’s d to quantify the
difference between the groups. How does it compare to the difference in
pregnancy length?

2.12 Glossary

• distribution: The values that appear in a sample and the frequency of
each.

• histogram: A mapping from values to frequencies, or a graph that
shows this mapping.

http://straightdope.com
http://wikipedia.org/wiki/Mode_(statistics)
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• frequency: The number of times a value appears in a sample.

• mode: The most frequent value in a sample, or one of the most frequent
values.

• normal distribution: An idealization of a bell-shaped distribution; also
known as a Gaussian distribution.

• uniform distribution: A distribution in which all values have the same
frequency.

• tail: The part of a distribution at the high and low extremes.

• central tendency: A characteristic of a sample or population; intu-
itively, it is an average or typical value.

• outlier: A value far from the central tendency.

• spread: A measure of how spread out the values in a distribution are.

• summary statistic: A statistic that quantifies some aspect of a distri-
bution, like central tendency or spread.

• variance: A summary statistic often used to quantify spread.

• standard deviation: The square root of variance, also used as a measure
of spread.

• effect size: A summary statistic intended to quantify the size of an
effect like a difference between groups.

• clinically significant: A result, like a difference between groups, that is
relevant in practice.
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Probability mass functions

The code for this chapter is in probability.py. For information about
downloading and working with this code, see Section 0.2.

3.1 Pmfs

Another way to represent a distribution is a probability mass function
(PMF), which maps from each value to its probability. A probability is a
frequency expressed as a fraction of the sample size, n. To get from frequen-
cies to probabilities, we divide through by n, which is called normalization.

Given a Hist, we can make a dictionary that maps from each value to its
probability:

n = hist.Total()

d = {}

for x, freq in hist.Items():

d[x] = freq / n

Or we can use the Pmf class provided by thinkstats2. Like Hist, the Pmf
constructor can take a list, pandas Series, dictionary, Hist, or another Pmf
object. Here’s an example with a simple list:
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>>> import thinkstats2

>>> pmf = thinkstats2.Pmf([1, 2, 2, 3, 5])

>>> pmf

Pmf({1: 0.2, 2: 0.4, 3: 0.2, 5: 0.2})

The Pmf is normalized so total probability is 1.

Pmf and Hist objects are similar in many ways; in fact, they inherit many
of their methods from a common parent class. For example, the methods
Values and Items work the same way for both. The biggest difference is
that a Hist maps from values to integer counters; a Pmf maps from values
to floating-point probabilities.

To look up the probability associated with a value, use Prob:

>>> pmf.Prob(2)

0.4

The bracket operator is equivalent:

>>> pmf[2]

0.4

You can modify an existing Pmf by incrementing the probability associated
with a value:

>>> pmf.Incr(2, 0.2)

>>> pmf.Prob(2)

0.6

Or you can multiply a probability by a factor:

>>> pmf.Mult(2, 0.5)

>>> pmf.Prob(2)

0.3

If you modify a Pmf, the result may not be normalized; that is, the probabil-
ities may no longer add up to 1. To check, you can call Total, which returns
the sum of the probabilities:

>>> pmf.Total()

0.9
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To renormalize, call Normalize:

>>> pmf.Normalize()

>>> pmf.Total()

1.0

Pmf objects provide a Copy method so you can make and modify a copy
without affecting the original.

My notation in this section might seem inconsistent, but there is a system: I
use Pmf for the name of the class, pmf for an instance of the class, and PMF
for the mathematical concept of a probability mass function.

3.2 Plotting PMFs

thinkplot provides two ways to plot Pmfs:

• To plot a Pmf as a bar graph, you can use thinkplot.Hist. Bar graphs
are most useful if the number of values in the Pmf is small.

• To plot a Pmf as a step function, you can use thinkplot.Pmf. This
option is most useful if there are a large number of values and the Pmf
is smooth. This function also works with Hist objects.

In addition, pyplot provides a function called hist that takes a sequence of
values, computes a histogram, and plots it. Since I use Hist objects, I usually
don’t use pyplot.hist.

Figure 3.1 shows PMFs of pregnancy length for first babies and others using
bar graphs (left) and step functions (right).

By plotting the PMF instead of the histogram, we can compare the two
distributions without being mislead by the difference in sample size. Based
on this figure, first babies seem to be less likely than others to arrive on time
(week 39) and more likely to be a late (weeks 41 and 42).

Here’s the code that generates Figure 3.1:
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Figure 3.1: PMF of pregnancy lengths for first babies and others, using bar
graphs and step functions.

thinkplot.PrePlot(2, cols=2)

thinkplot.Hist(first_pmf, align='right', width=width)

thinkplot.Hist(other_pmf, align='left', width=width)

thinkplot.Config(xlabel='weeks',

ylabel='probability',

axis=[27, 46, 0, 0.6])

thinkplot.PrePlot(2)

thinkplot.SubPlot(2)

thinkplot.Pmfs([first_pmf, other_pmf])

thinkplot.Show(xlabel='weeks',

axis=[27, 46, 0, 0.6])

PrePlot takes optional parameters rows and cols to make a grid of figures,
in this case one row of two figures. The first figure (on the left) displays the
Pmfs using thinkplot.Hist, as we have seen before.

The second call to PrePlot resets the color generator. Then SubPlot

switches to the second figure (on the right) and displays the Pmfs using
thinkplot.Pmfs. I used the axis option to ensure that the two figures are
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on the same axes, which is generally a good idea if you intend to compare
two figures.

3.3 Other visualizations

Histograms and PMFs are useful while you are exploring data and trying to
identify patterns and relationships. Once you have an idea what is going on,
a good next step is to design a visualization that makes the patterns you
have identified as clear as possible.

In the NSFG data, the biggest differences in the distributions are near the
mode. So it makes sense to zoom in on that part of the graph, and to
transform the data to emphasize differences:

weeks = range(35, 46)

diffs = []

for week in weeks:

p1 = first_pmf.Prob(week)

p2 = other_pmf.Prob(week)

diff = 100 * (p1 - p2)

diffs.append(diff)

thinkplot.Bar(weeks, diffs)

In this code, weeks is the range of weeks; diffs is the difference between the
two PMFs in percentage points. Figure 3.2 shows the result as a bar chart.
This figure makes the pattern clearer: first babies are less likely to be born
in week 39, and somewhat more likely to be born in weeks 41 and 42.

For now we should hold this conclusion only tentatively. We used the same
dataset to identify an apparent difference and then chose a visualization that
makes the difference apparent. We can’t be sure this effect is real; it might
be due to random variation. We’ll address this concern later.

3.4 The class size paradox

Before we go on, I want to demonstrate one kind of computation you can do
with Pmf objects; I call this example the “class size paradox.”
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Figure 3.2: Difference, in percentage points, by week.

At many American colleges and universities, the student-to-faculty ratio is
about 10:1. But students are often surprised to discover that their average
class size is bigger than 10. There are two reasons for the discrepancy:

• Students typically take 4–5 classes per semester, but professors often
teach 1 or 2.

• The number of students who enjoy a small class is small, but the num-
ber of students in a large class is (ahem!) large.

The first effect is obvious, at least once it is pointed out; the second is more
subtle. Let’s look at an example. Suppose that a college offers 65 classes in
a given semester, with the following distribution of sizes:

size count

5- 9 8

10-14 8

15-19 14

20-24 4

25-29 6

30-34 12

35-39 8

40-44 3

45-49 2
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If you ask the Dean for the average class size, he would construct a PMF,
compute the mean, and report that the average class size is 23.7. Here’s the
code:

d = { 7: 8, 12: 8, 17: 14, 22: 4,

27: 6, 32: 12, 37: 8, 42: 3, 47: 2 }

pmf = thinkstats2.Pmf(d, label='actual')

print('mean', pmf.Mean())

But if you survey a group of students, ask them how many students are in
their classes, and compute the mean, you would think the average class was
bigger. Let’s see how much bigger.

First, I compute the distribution as observed by students, where the proba-
bility associated with each class size is “biased” by the number of students
in the class.

def BiasPmf(pmf, label):

new_pmf = pmf.Copy(label=label)

for x, p in pmf.Items():

new_pmf.Mult(x, x)

new_pmf.Normalize()

return new_pmf

For each class size, x, we multiply the probability by x, the number of students
who observe that class size. The result is a new Pmf that represents the
biased distribution.

Now we can plot the actual and observed distributions:

biased_pmf = BiasPmf(pmf, label='observed')

thinkplot.PrePlot(2)

thinkplot.Pmfs([pmf, biased_pmf])

thinkplot.Show(xlabel='class size', ylabel='PMF')

Figure 3.3 shows the result. In the biased distribution there are fewer small
classes and more large ones. The mean of the biased distribution is 29.1,
almost 25% higher than the actual mean.

It is also possible to invert this operation. Suppose you want to find the
distribution of class sizes at a college, but you can’t get reliable data from
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Figure 3.3: Distribution of class sizes, actual and as observed by students.

the Dean. An alternative is to choose a random sample of students and ask
how many students are in their classes.

The result would be biased for the reasons we’ve just seen, but you can use it
to estimate the actual distribution. Here’s the function that unbiases a Pmf:

def UnbiasPmf(pmf, label):

new_pmf = pmf.Copy(label=label)

for x, p in pmf.Items():

new_pmf.Mult(x, 1.0/x)

new_pmf.Normalize()

return new_pmf

It’s similar to BiasPmf; the only difference is that it divides each probability
by x instead of multiplying.
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3.5 DataFrame indexing

In Section 1.4 we read a pandas DataFrame and used it to select and modify
data columns. Now let’s look at row selection. To start, I create a NumPy
array of random numbers and use it to initialize a DataFrame:

>>> import numpy as np

>>> import pandas

>>> array = np.random.randn(4, 2)

>>> df = pandas.DataFrame(array)

>>> df

0 1

0 -0.143510 0.616050

1 -1.489647 0.300774

2 -0.074350 0.039621

3 -1.369968 0.545897

By default, the rows and columns are numbered starting at zero, but you
can provide column names:

>>> columns = ['A', 'B']

>>> df = pandas.DataFrame(array, columns=columns)

>>> df

A B

0 -0.143510 0.616050

1 -1.489647 0.300774

2 -0.074350 0.039621

3 -1.369968 0.545897

You can also provide row names. The set of row names is called the index;
the row names themselves are called labels.

>>> index = ['a', 'b', 'c', 'd']

>>> df = pandas.DataFrame(array, columns=columns, index=index)

>>> df

A B

a -0.143510 0.616050

b -1.489647 0.300774

c -0.074350 0.039621

d -1.369968 0.545897



40 Chapter 3. Probability mass functions

As we saw in the previous chapter, simple indexing selects a column, return-
ing a Series:

>>> df['A']

a -0.143510

b -1.489647

c -0.074350

d -1.369968

Name: A, dtype: float64

To select a row by label, you can use the loc attribute, which returns a
Series:

>>> df.loc['a']

A -0.14351

B 0.61605

Name: a, dtype: float64

If you know the integer position of a row, rather than its label, you can use
the iloc attribute, which also returns a Series.

>>> df.iloc[0]

A -0.14351

B 0.61605

Name: a, dtype: float64

loc can also take a list of labels; in that case, the result is a DataFrame.

>>> indices = ['a', 'c']

>>> df.loc[indices]

A B

a -0.14351 0.616050

c -0.07435 0.039621

Finally, you can use a slice to select a range of rows by label:

>>> df['a':'c']

A B

a -0.143510 0.616050

b -1.489647 0.300774

c -0.074350 0.039621

Or by integer position:
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>>> df[0:2]

A B

a -0.143510 0.616050

b -1.489647 0.300774

The result in either case is a DataFrame, but notice that the first result
includes the end of the slice; the second doesn’t.

My advice: if your rows have labels that are not simple integers, use the
labels consistently and avoid using integer positions.

3.6 Exercises

Solutions to these exercises are in chap03soln.ipynb and chap03soln.py

Exercise 3.1 Something like the class size paradox appears if you survey
children and ask how many children are in their family. Families with many
children are more likely to appear in your sample, and families with no chil-
dren have no chance to be in the sample.

Use the NSFG respondent variable NUMKDHH to construct the actual distribu-
tion for the number of children under 18 in the household.

Now compute the biased distribution we would see if we surveyed the children
and asked them how many children under 18 (including themselves) are in
their household.

Plot the actual and biased distributions, and compute their means. As a
starting place, you can use chap03ex.ipynb.

Exercise 3.2 In Section 2.7 we computed the mean of a sample by adding
up the elements and dividing by n. If you are given a PMF, you can still
compute the mean, but the process is slightly different:

x̄ =
∑
i

pi xi

where the xi are the unique values in the PMF and pi = PMF (xi). Similarly,
you can compute variance like this:

S2 =
∑
i

pi (xi − x̄)2
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Write functions called PmfMean and PmfVar that take a Pmf object and com-
pute the mean and variance. To test these methods, check that they are
consistent with the methods Mean and Var provided by Pmf.

Exercise 3.3 I started with the question, “Are first babies more likely to be
late?” To address it, I computed the difference in means between groups of
babies, but I ignored the possibility that there might be a difference between
first babies and others for the same woman.

To address this version of the question, select respondents who have at least
two babies and compute pairwise differences. Does this formulation of the
question yield a different result?

Hint: use nsfg.MakePregMap.

Exercise 3.4 In most foot races, everyone starts at the same time. If you
are a fast runner, you usually pass a lot of people at the beginning of the
race, but after a few miles everyone around you is going at the same speed.

When I ran a long-distance (209 miles) relay race for the first time, I noticed
an odd phenomenon: when I overtook another runner, I was usually much
faster, and when another runner overtook me, he was usually much faster.

At first I thought that the distribution of speeds might be bimodal; that is,
there were many slow runners and many fast runners, but few at my speed.

Then I realized that I was the victim of a bias similar to the effect of class
size. The race was unusual in two ways: it used a staggered start, so teams
started at different times; also, many teams included runners at different
levels of ability.

As a result, runners were spread out along the course with little relationship
between speed and location. When I joined the race, the runners near me
were (pretty much) a random sample of the runners in the race.

So where does the bias come from? During my time on the course, the chance
of overtaking a runner, or being overtaken, is proportional to the difference
in our speeds. I am more likely to catch a slow runner, and more likely to be
caught by a fast runner. But runners at the same speed are unlikely to see
each other.
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Write a function called ObservedPmf that takes a Pmf representing the actual
distribution of runners’ speeds, and the speed of a running observer, and
returns a new Pmf representing the distribution of runners’ speeds as seen
by the observer.

To test your function, you can use relay.py, which reads the results from
the James Joyce Ramble 10K in Dedham MA and converts the pace of each
runner to mph.

Compute the distribution of speeds you would observe if you ran a relay
race at 7.5 mph with this group of runners. A solution to this exercise is in
relay_soln.py.

3.7 Glossary

• Probability mass function (PMF): a representation of a distribution as
a function that maps from values to probabilities.

• probability: A frequency expressed as a fraction of the sample size.

• normalization: The process of dividing a frequency by a sample size to
get a probability.

• index: In a pandas DataFrame, the index is a special column that
contains the row labels.
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Chapter 4

Cumulative distribution
functions

The code for this chapter is in cumulative.py. For information about down-
loading and working with this code, see Section 0.2.

4.1 The limits of PMFs

PMFs work well if the number of values is small. But as the number of
values increases, the probability associated with each value gets smaller and
the effect of random noise increases.

For example, we might be interested in the distribution of birth weights. In
the NSFG data, the variable totalwgt_lb records weight at birth in pounds.
Figure 4.1 shows the PMF of these values for first babies and others.

Overall, these distributions resemble the bell shape of a normal distribution,
with many values near the mean and a few values much higher and lower.

But parts of this figure are hard to interpret. There are many spikes and
valleys, and some apparent differences between the distributions. It is hard
to tell which of these features are meaningful. Also, it is hard to see overall
patterns; for example, which distribution do you think has the higher mean?



46 Chapter 4. Cumulative distribution functions

0 2 4 6 8 10 12 14 16
weight (pounds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

pr
ob

ab
ili

ty

Birth weight PMF

first
other

Figure 4.1: PMF of birth weights. This figure shows a limitation of PMFs:
they are hard to compare visually.

These problems can be mitigated by binning the data; that is, dividing the
range of values into non-overlapping intervals and counting the number of
values in each bin. Binning can be useful, but it is tricky to get the size of
the bins right. If they are big enough to smooth out noise, they might also
smooth out useful information.

An alternative that avoids these problems is the cumulative distribution func-
tion (CDF), which is the subject of this chapter. But before I can explain
CDFs, I have to explain percentiles.

4.2 Percentiles

If you have taken a standardized test, you probably got your results in the
form of a raw score and a percentile rank. In this context, the percentile
rank is the fraction of people who scored lower than you (or the same). So
if you are “in the 90th percentile,” you did as well as or better than 90% of
the people who took the exam.

Here’s how you could compute the percentile rank of a value, your_score,
relative to the values in the sequence scores:
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def PercentileRank(scores, your_score):

count = 0

for score in scores:

if score <= your_score:

count += 1

percentile_rank = 100.0 * count / len(scores)

return percentile_rank

As an example, if the scores in the sequence were 55, 66, 77, 88 and 99, and
you got the 88, then your percentile rank would be 100 * 4 / 5 which is
80.

If you are given a value, it is easy to find its percentile rank; going the other
way is slightly harder. If you are given a percentile rank and you want to
find the corresponding value, one option is to sort the values and search for
the one you want:

def Percentile(scores, percentile_rank):

scores.sort()

for score in scores:

if PercentileRank(scores, score) >= percentile_rank:

return score

The result of this calculation is a percentile. For example, the 50th per-
centile is the value with percentile rank 50. In the distribution of exam scores,
the 50th percentile is 77.

This implementation of Percentile is not efficient. A better approach is to
use the percentile rank to compute the index of the corresponding percentile:

def Percentile2(scores, percentile_rank):

scores.sort()

index = percentile_rank * (len(scores)-1) // 100

return scores[index]

The difference between “percentile” and “percentile rank” can be confus-
ing, and people do not always use the terms precisely. To summarize,
PercentileRank takes a value and computes its percentile rank in a set of
values; Percentile takes a percentile rank and computes the corresponding
value.
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4.3 CDFs

Now that we understand percentiles and percentile ranks, we are ready to
tackle the cumulative distribution function (CDF). The CDF is the func-
tion that maps from a value to its percentile rank.

The CDF is a function of x, where x is any value that might appear in the
distribution. To evaluate CDF(x) for a particular value of x, we compute
the fraction of values in the distribution less than or equal to x.

Here’s what that looks like as a function that takes a sequence, sample, and
a value, x:

def EvalCdf(sample, x):

count = 0.0

for value in sample:

if value <= x:

count += 1

prob = count / len(sample)

return prob

This function is almost identical to PercentileRank, except that the result
is a probability in the range 0–1 rather than a percentile rank in the range
0–100.

As an example, suppose we collect a sample with the values [1, 2, 2, 3,

5]. Here are some values from its CDF:

CDF (0) = 0

CDF (1) = 0.2

CDF (2) = 0.6

CDF (3) = 0.8

CDF (4) = 0.8

CDF (5) = 1

We can evaluate the CDF for any value of x, not just values that appear in
the sample. If x is less than the smallest value in the sample, CDF(x) is 0.
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Figure 4.2: Example of a CDF.

If x is greater than the largest value, CDF(x) is 1.

Figure 4.2 is a graphical representation of this CDF. The CDF of a sample
is a step function.

4.4 Representing CDFs

thinkstats2 provides a class named Cdf that represents CDFs. The funda-
mental methods Cdf provides are:

• Prob(x): Given a value x, computes the probability p = CDF(x). The
bracket operator is equivalent to Prob.

• Value(p): Given a probability p, computes the corresponding value,
x; that is, the inverse CDF of p.

The Cdf constructor can take as an argument a list of values, a pandas
Series, a Hist, Pmf, or another Cdf. The following code makes a Cdf for the
distribution of pregnancy lengths in the NSFG:

live, firsts, others = first.MakeFrames()

cdf = thinkstats2.Cdf(live.prglngth, label='prglngth')
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Figure 4.3: CDF of pregnancy length.

thinkplot provides a function named Cdf that plots Cdfs as lines:

thinkplot.Cdf(cdf)

thinkplot.Show(xlabel='weeks', ylabel='CDF')

Figure 4.3 shows the result. One way to read a CDF is to look up percentiles.
For example, it looks like about 10% of pregnancies are shorter than 36 weeks,
and about 90% are shorter than 41 weeks. The CDF also provides a visual
representation of the shape of the distribution. Common values appear as
steep or vertical sections of the CDF; in this example, the mode at 39 weeks
is apparent. There are few values below 30 weeks, so the CDF in this range
is flat.

It takes some time to get used to CDFs, but once you do, I think you will
find that they show more information, more clearly, than PMFs.

4.5 Comparing CDFs

CDFs are especially useful for comparing distributions. For example, here is
the code that plots the CDF of birth weight for first babies and others.

first_cdf = thinkstats2.Cdf(firsts.totalwgt_lb, label='first')

other_cdf = thinkstats2.Cdf(others.totalwgt_lb, label='other')
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Figure 4.4: CDF of birth weights for first babies and others.

thinkplot.PrePlot(2)

thinkplot.Cdfs([first_cdf, other_cdf])

thinkplot.Show(xlabel='weight (pounds)', ylabel='CDF')

Figure 4.4 shows the result. Compared to Figure 4.1, this figure makes the
shape of the distributions, and the differences between them, much clearer.
We can see that first babies are slightly lighter throughout the distribution,
with a larger discrepancy above the mean.

4.6 Percentile-based statistics

Once you have computed a CDF, it is easy to compute percentiles and per-
centile ranks. The Cdf class provides these two methods:

• PercentileRank(x): Given a value x, computes its percentile rank,
100 · CDF(x).

• Percentile(p): Given a percentile rank p, computes the correspond-
ing value, x. Equivalent to Value(p/100).

Percentile can be used to compute percentile-based summary statistics.
For example, the 50th percentile is the value that divides the distribution in
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half, also known as the median. Like the mean, the median is a measure of
the central tendency of a distribution.

Actually, there are several definitions of “median,” each with different prop-
erties. But Percentile(50) is simple and efficient to compute.

Another percentile-based statistic is the interquartile range (IQR), which
is a measure of the spread of a distribution. The IQR is the difference between
the 75th and 25th percentiles.

More generally, percentiles are often used to summarize the shape of a distri-
bution. For example, the distribution of income is often reported in “quin-
tiles”; that is, it is split at the 20th, 40th, 60th and 80th percentiles. Other
distributions are divided into ten “deciles”. Statistics like these that rep-
resent equally-spaced points in a CDF are called quantiles. For more, see
https://en.wikipedia.org/wiki/Quantile.

4.7 Random numbers

Suppose we choose a random sample from the population of live births and
look up the percentile rank of their birth weights. Now suppose we compute
the CDF of the percentile ranks. What do you think the distribution will
look like?

Here’s how we can compute it. First, we make the Cdf of birth weights:

weights = live.totalwgt_lb

cdf = thinkstats2.Cdf(weights, label='totalwgt_lb')

Then we generate a sample and compute the percentile rank of each value in
the sample.

sample = np.random.choice(weights, 100, replace=True)

ranks = [cdf.PercentileRank(x) for x in sample]

sample is a random sample of 100 birth weights, chosen with replacement;
that is, the same value could be chosen more than once. ranks is a list of
percentile ranks.

Finally we make and plot the Cdf of the percentile ranks.

https://en.wikipedia.org/wiki/Quantile
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Figure 4.5: CDF of percentile ranks for a random sample of birth weights.

rank_cdf = thinkstats2.Cdf(ranks)

thinkplot.Cdf(rank_cdf)

thinkplot.Show(xlabel='percentile rank', ylabel='CDF')

Figure 4.5 shows the result. The CDF is approximately a straight line, which
means that the distribution is uniform.

That outcome might be non-obvious, but it is a consequence of the way the
CDF is defined. What this figure shows is that 10% of the sample is below
the 10th percentile, 20% is below the 20th percentile, and so on, exactly as
we should expect.

So, regardless of the shape of the CDF, the distribution of percentile ranks
is uniform. This property is useful, because it is the basis of a simple and
efficient algorithm for generating random numbers with a given CDF. Here’s
how:

• Choose a percentile rank uniformly from the range 0–100.

• Use Cdf.Percentile to find the value in the distribution that corre-
sponds to the percentile rank you chose.

Cdf provides an implementation of this algorithm, called Random:
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# class Cdf:

def Random(self):

return self.Percentile(random.uniform(0, 100))

Cdf also provides Sample, which takes an integer, n, and returns a list of n
values chosen at random from the Cdf.

4.8 Comparing percentile ranks

Percentile ranks are useful for comparing measurements across different
groups. For example, people who compete in foot races are usually grouped
by age and gender. To compare people in different age groups, you can
convert race times to percentile ranks.

A few years ago I ran the James Joyce Ramble 10K in Dedham MA; I finished
in 42:44, which was 97th in a field of 1633. I beat or tied 1537 runners out
of 1633, so my percentile rank in the field is 94%.

More generally, given position and field size, we can compute percentile rank:

def PositionToPercentile(position, field_size):

beat = field_size - position + 1

percentile = 100.0 * beat / field_size

return percentile

In my age group, denoted M4049 for “male between 40 and 49 years of age”,
I came in 26th out of 256. So my percentile rank in my age group was 90%.

If I am still running in 10 years (and I hope I am), I will be in the M5059
division. Assuming that my percentile rank in my division is the same, how
much slower should I expect to be?

I can answer that question by converting my percentile rank in M4049 to a
position in M5059. Here’s the code:

def PercentileToPosition(percentile, field_size):

beat = percentile * field_size / 100.0

position = field_size - beat + 1

return position
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There were 171 people in M5059, so I would have to come in between 17th
and 18th place to have the same percentile rank. The finishing time of the
17th runner in M5059 was 46:05, so that’s the time I will have to beat to
maintain my percentile rank.

4.9 Exercises

For the following exercises, you can start with chap04ex.ipynb. My solution
is in chap04soln.ipynb.

Exercise 4.1 How much did you weigh at birth? If you don’t know, call your
mother or someone else who knows. Using the NSFG data (all live births),
compute the distribution of birth weights and use it to find your percentile
rank. If you were a first baby, find your percentile rank in the distribution
for first babies. Otherwise use the distribution for others. If you are in the
90th percentile or higher, call your mother back and apologize.

Exercise 4.2 The numbers generated by random.random are supposed to be
uniform between 0 and 1; that is, every value in the range should have the
same probability.

Generate 1000 numbers from random.random and plot their PMF and CDF.
Is the distribution uniform?

4.10 Glossary

• percentile rank: The percentage of values in a distribution that are less
than or equal to a given value.

• percentile: The value associated with a given percentile rank.

• cumulative distribution function (CDF): A function that maps from
values to their cumulative probabilities. CDF(x) is the fraction of the
sample less than or equal to x.

• inverse CDF: A function that maps from a cumulative probability, p,
to the corresponding value.
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• median: The 50th percentile, often used as a measure of central ten-
dency.

• interquartile range: The difference between the 75th and 25th per-
centiles, used as a measure of spread.

• quantile: A sequence of values that correspond to equally spaced per-
centile ranks; for example, the quartiles of a distribution are the 25th,
50th and 75th percentiles.

• replacement: A property of a sampling process. “With replacement”
means that the same value can be chosen more than once; “without
replacement” means that once a value is chosen, it is removed from the
population.



Chapter 5

Modeling distributions

The distributions we have used so far are called empirical distributions
because they are based on empirical observations, which are necessarily finite
samples.

The alternative is an analytic distribution, which is characterized by a
CDF that is a mathematical function. Analytic distributions can be used to
model empirical distributions. In this context, a model is a simplification
that leaves out unneeded details. This chapter presents common analytic
distributions and uses them to model data from a variety of sources.

The code for this chapter is in analytic.py. For information about down-
loading and working with this code, see Section 0.2.

5.1 The exponential distribution

I’ll start with the exponential distribution because it is relatively simple.
The CDF of the exponential distribution is

CDF(x) = 1− e−λx

The parameter, λ, determines the shape of the distribution. Figure 5.1 shows
what this CDF looks like with λ = 0.5, 1, and 2.
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Figure 5.1: CDFs of exponential distributions with various parameters.

In the real world, exponential distributions come up when we look at a series
of events and measure the times between events, called interarrival times.
If the events are equally likely to occur at any time, the distribution of
interarrival times tends to look like an exponential distribution.

As an example, we will look at the interarrival time of births. On December
18, 1997, 44 babies were born in a hospital in Brisbane, Australia.1 The
time of birth for all 44 babies was reported in the local paper; the complete
dataset is in a file called babyboom.dat, in the ThinkStats2 repository.

df = ReadBabyBoom()

diffs = df.minutes.diff()

cdf = thinkstats2.Cdf(diffs, label='actual')

thinkplot.Cdf(cdf)

thinkplot.Show(xlabel='minutes', ylabel='CDF')

ReadBabyBoom reads the data file and returns a DataFrame with columns
time, sex, weight_g, and minutes, where minutes is time of birth converted
to minutes since midnight.

diffs is the difference between consecutive birth times, and cdf is the distri-

1This example is based on information and data from Dunn, “A Simple Dataset for
Demonstrating Common Distributions,” Journal of Statistics Education v.7, n.3 (1999).
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Figure 5.2: CDF of interarrival times (left) and CCDF on a log-y scale (right).

bution of these interarrival times. Figure 5.2 (left) shows the CDF. It seems
to have the general shape of an exponential distribution, but how can we
tell?

One way is to plot the complementary CDF, which is 1 − CDF(x), on a
log-y scale. For data from an exponential distribution, the result is a straight
line. Let’s see why that works.

If you plot the complementary CDF (CCDF) of a dataset that you think is
exponential, you expect to see a function like:

y ≈ e−λx

Taking the log of both sides yields:

log y ≈ −λx

So on a log-y scale the CCDF is a straight line with slope −λ. Here’s how
we can generate a plot like that:

thinkplot.Cdf(cdf, complement=True)

thinkplot.Show(xlabel='minutes',

ylabel='CCDF',

yscale='log')
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With the argument complement=True, thinkplot.Cdf computes the com-
plementary CDF before plotting. And with yscale=’log’, thinkplot.Show
sets the y axis to a logarithmic scale.

Figure 5.2 (right) shows the result. It is not exactly straight, which indicates
that the exponential distribution is not a perfect model for this data. Most
likely the underlying assumption—that a birth is equally likely at any time
of day—is not exactly true. Nevertheless, it might be reasonable to model
this dataset with an exponential distribution. With that simplification, we
can summarize the distribution with a single parameter.

The parameter, λ, can be interpreted as a rate; that is, the number of events
that occur, on average, in a unit of time. In this example, 44 babies are
born in 24 hours, so the rate is λ = 0.0306 births per minute. The mean of
an exponential distribution is 1/λ, so the mean time between births is 32.7
minutes.

5.2 The normal distribution

The normal distribution, also called Gaussian, is commonly used because
it describes many phenomena, at least approximately. It turns out that there
is a good reason for its ubiquity, which we will get to in Section 14.4.

The normal distribution is characterized by two parameters: the mean, µ, and
standard deviation σ. The normal distribution with µ = 0 and σ = 1 is called
the standard normal distribution. Its CDF is defined by an integral that
does not have a closed form solution, but there are algorithms that evaluate
it efficiently. One of them is provided by SciPy: scipy.stats.norm is an
object that represents a normal distribution; it provides a method, cdf, that
evaluates the standard normal CDF:

>>> import scipy.stats

>>> scipy.stats.norm.cdf(0)

0.5

This result is correct: the median of the standard normal distribution is 0
(the same as the mean), and half of the values fall below the median, so
CDF(0) is 0.5.
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Figure 5.3: CDF of normal distributions with a range of parameters.

norm.cdf takes optional parameters: loc, which specifies the mean, and
scale, which specifies the standard deviation.

thinkstats2 makes this function a little easier to use by providing
EvalNormalCdf, which takes parameters mu and sigma and evaluates the
CDF at x:

def EvalNormalCdf(x, mu=0, sigma=1):

return scipy.stats.norm.cdf(x, loc=mu, scale=sigma)

Figure 5.3 shows CDFs for normal distributions with a range of parameters.
The sigmoid shape of these curves is a recognizable characteristic of a normal
distribution.

In the previous chapter we looked at the distribution of birth weights in the
NSFG. Figure 5.4 shows the empirical CDF of weights for all live births and
the CDF of a normal distribution with the same mean and variance.

The normal distribution is a good model for this dataset, so if we summarize
the distribution with the parameters µ = 7.28 and σ = 1.24, the resulting
error (difference between the model and the data) is small.

Below the 10th percentile there is a discrepancy between the data and the
model; there are more light babies than we would expect in a normal distribu-
tion. If we are specifically interested in preterm babies, it would be important
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Figure 5.4: CDF of birth weights with a normal model.

to get this part of the distribution right, so it might not be appropriate to
use the normal model.

5.3 Normal probability plot

For the exponential distribution, and a few others, there are simple transfor-
mations we can use to test whether an analytic distribution is a good model
for a dataset.

For the normal distribution there is no such transformation, but there is
an alternative called a normal probability plot. There are two ways to
generate a normal probability plot: the hard way and the easy way. If you are
interested in the hard way, you can read about it at https://en.wikipedia.
org/wiki/Normal_probability_plot. Here’s the easy way:

1. Sort the values in the sample.

2. From a standard normal distribution (µ = 0 and σ = 1), generate a
random sample with the same size as the sample, and sort it.

3. Plot the sorted values from the sample versus the random values.

https://en.wikipedia.org/wiki/Normal_probability_plot
https://en.wikipedia.org/wiki/Normal_probability_plot
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Figure 5.5: Normal probability plot for random samples from normal distri-
butions.

If the distribution of the sample is approximately normal, the result is a
straight line with intercept mu and slope sigma. thinkstats2 provides
NormalProbability, which takes a sample and returns two NumPy arrays:

xs, ys = thinkstats2.NormalProbability(sample)

ys contains the sorted values from sample; xs contains the random values
from the standard normal distribution.

To test NormalProbability I generated some fake samples that were actually
drawn from normal distributions with various parameters. Figure 5.5 shows
the results. The lines are approximately straight, with values in the tails
deviating more than values near the mean.

Now let’s try it with real data. Here’s code to generate a normal probability
plot for the birth weight data from the previous section. It plots a gray line
that represents the model and a blue line that represents the data.

def MakeNormalPlot(weights):

mean = weights.mean()

std = weights.std()

xs = [-4, 4]

fxs, fys = thinkstats2.FitLine(xs, inter=mean, slope=std)
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Figure 5.6: Normal probability plot of birth weights.

thinkplot.Plot(fxs, fys, color='gray', label='model')

xs, ys = thinkstats2.NormalProbability(weights)

thinkplot.Plot(xs, ys, label='birth weights')

weights is a pandas Series of birth weights; mean and std are the mean and
standard deviation.

FitLine takes a sequence of xs, an intercept, and a slope; it returns xs and
ys that represent a line with the given parameters, evaluated at the values
in xs.

NormalProbability returns xs and ys that contain values from the standard
normal distribution and values from weights. If the distribution of weights
is normal, the data should match the model.

Figure 5.6 shows the results for all live births, and also for full term births
(pregnancy length greater than 36 weeks). Both curves match the model
near the mean and deviate in the tails. The heaviest babies are heavier than
what the model expects, and the lightest babies are lighter.

When we select only full term births, we remove some of the lightest weights,
which reduces the discrepancy in the lower tail of the distribution.

This plot suggests that the normal model describes the distribution well
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Figure 5.7: CDF of adult weights on a linear scale (left) and log scale (right).

within a few standard deviations from the mean, but not in the tails.
Whether it is good enough for practical purposes depends on the purposes.

5.4 The lognormal distribution

If the logarithms of a set of values have a normal distribution, the values
have a lognormal distribution. The CDF of the lognormal distribution is
the same as the CDF of the normal distribution, with log x substituted for
x.

CDFlognormal(x) = CDFnormal(log x)

The parameters of the lognormal distribution are usually denoted µ and
σ. But remember that these parameters are not the mean and standard
deviation; the mean of a lognormal distribution is exp(µ + σ2/2) and the
standard deviation is ugly (see http://wikipedia.org/wiki/Log-normal_

distribution).

If a sample is approximately lognormal and you plot its CDF on a log-x scale,
it will have the characteristic shape of a normal distribution. To test how
well the sample fits a lognormal model, you can make a normal probability
plot using the log of the values in the sample.

http://wikipedia.org/wiki/Log-normal_distribution
http://wikipedia.org/wiki/Log-normal_distribution
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Figure 5.8: Normal probability plots for adult weight on a linear scale (left)
and log scale (right).

As an example, let’s look at the distribution of adult weights, which is ap-
proximately lognormal.2

The National Center for Chronic Disease Prevention and Health Promotion
conducts an annual survey as part of the Behavioral Risk Factor Surveillance
System (BRFSS).3 In 2008, they interviewed 414,509 respondents and asked
about their demographics, health, and health risks. Among the data they
collected are the weights in kilograms of 398,484 respondents.

The repository for this book contains CDBRFS08.ASC.gz, a fixed-width ASCII
file that contains data from the BRFSS, and brfss.py, which reads the file
and analyzes the data.

Figure 5.7 (left) shows the distribution of adult weights on a linear scale

2I was tipped off to this possibility by a comment (without citation) at http:

//mathworld.wolfram.com/LogNormalDistribution.html. Subsequently I found a pa-
per that proposes the log transform and suggests a cause: Penman and Johnson, “The
Changing Shape of the Body Mass Index Distribution Curve in the Population,” Prevent-
ing Chronic Disease, 2006 July; 3(3): A74. Online at http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC1636707.
3Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveil-

lance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human
Services, Centers for Disease Control and Prevention, 2008.

http://mathworld.wolfram.com/LogNormalDistribution.html
http://mathworld.wolfram.com/LogNormalDistribution.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636707
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636707
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with a normal model. Figure 5.7 (right) shows the same distribution on a log
scale with a lognormal model. The lognormal model is a better fit, but this
representation of the data does not make the difference particularly dramatic.

Figure 5.8 shows normal probability plots for adult weights, w, and for their
logarithms, log10w. Now it is apparent that the data deviate substantially
from the normal model. On the other hand, the lognormal model is a good
match for the data.

5.5 The Pareto distribution

The Pareto distribution is named after the economist Vilfredo Pareto,
who used it to describe the distribution of wealth (see http://wikipedia.

org/wiki/Pareto_distribution). Since then, it has been used to describe
phenomena in the natural and social sciences including sizes of cities and
towns, sand particles and meteorites, forest fires and earthquakes.

The CDF of the Pareto distribution is:

CDF (x) = 1−
(
x

xm

)−α
The parameters xm and α determine the location and shape of the distribu-
tion. xm is the minimum possible value. Figure 5.9 shows CDFs of Pareto
distributions with xm = 0.5 and different values of α.

There is a simple visual test that indicates whether an empirical distribution
fits a Pareto distribution: on a log-log scale, the CCDF looks like a straight
line. Let’s see why that works.

If you plot the CCDF of a sample from a Pareto distribution on a linear
scale, you expect to see a function like:

y ≈
(
x

xm

)−α
Taking the log of both sides yields:

log y ≈ −α(log x− log xm)

http://wikipedia.org/wiki/Pareto_distribution
http://wikipedia.org/wiki/Pareto_distribution
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Figure 5.9: CDFs of Pareto distributions with different parameters.

So if you plot log y versus log x, it should look like a straight line with slope
−α and intercept α log xm.

As an example, let’s look at the sizes of cities and towns. The U.S. Census
Bureau publishes the population of every incorporated city and town in the
United States.

I downloaded their data from http://www.census.gov/popest/data/

cities/totals/2012/SUB-EST2012-3.html; it is in the repository for this
book in a file named PEP_2012_PEPANNRES_with_ann.csv. The repository
also contains populations.py, which reads the file and plots the distribution
of populations.

Figure 5.10 shows the CCDF of populations on a log-log scale. The largest
1% of cities and towns, below 10−2, fall along a straight line. So we could
conclude, as some researchers have, that the tail of this distribution fits a
Pareto model.

On the other hand, a lognormal distribution also models the data well. Fig-
ure 5.11 shows the CDF of populations and a lognormal model (left), and
a normal probability plot (right). Both plots show good agreement between
the data and the model.

Neither model is perfect. The Pareto model only applies to the largest 1% of

http://www.census.gov/popest/data/cities/totals/2012/SUB-EST2012-3.html
http://www.census.gov/popest/data/cities/totals/2012/SUB-EST2012-3.html
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Figure 5.10: CCDFs of city and town populations, on a log-log scale.

cities, but it is a better fit for that part of the distribution. The lognormal
model is a better fit for the other 99%. Which model is appropriate depends
on which part of the distribution is relevant.

5.6 Generating random numbers

Analytic CDFs can be used to generate random numbers with a given dis-
tribution function, p = CDF(x). If there is an efficient way to compute
the inverse CDF, we can generate random values with the appropriate dis-
tribution by choosing p from a uniform distribution between 0 and 1, then
choosing x = ICDF (p).

For example, the CDF of the exponential distribution is

p = 1− e−λx

Solving for x yields:
x = − log(1− p)/λ

So in Python we can write

def expovariate(lam):
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Figure 5.11: CDF of city and town populations on a log-x scale (left), and
normal probability plot of log-transformed populations (right).

p = random.random()

x = -math.log(1-p) / lam

return x

expovariate takes lam and returns a random value chosen from the expo-
nential distribution with parameter lam.

Two notes about this implementation: I called the parameter lam because
lambda is a Python keyword. Also, since log 0 is undefined, we have to be
a little careful. The implementation of random.random can return 0 but not
1, so 1− p can be 1 but not 0, so log(1-p) is always defined.

5.7 Why model?

At the beginning of this chapter, I said that many real world phenomena can
be modeled with analytic distributions. “So,” you might ask, “what?”

Like all models, analytic distributions are abstractions, which means they
leave out details that are considered irrelevant. For example, an observed
distribution might have measurement errors or quirks that are specific to the
sample; analytic models smooth out these idiosyncrasies.
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Analytic models are also a form of data compression. When a model fits
a dataset well, a small set of parameters can summarize a large amount of
data.

It is sometimes surprising when data from a natural phenomenon fit an an-
alytic distribution, but these observations can provide insight into physical
systems. Sometimes we can explain why an observed distribution has a par-
ticular form. For example, Pareto distributions are often the result of gen-
erative processes with positive feedback (so-called preferential attachment
processes: see http://wikipedia.org/wiki/Preferential_attachment.).

Also, analytic distributions lend themselves to mathematical analysis, as we
will see in Chapter 14.

But it is important to remember that all models are imperfect. Data from
the real world never fit an analytic distribution perfectly. People sometimes
talk as if data are generated by models; for example, they might say that
the distribution of human heights is normal, or the distribution of income
is lognormal. Taken literally, these claims cannot be true; there are always
differences between the real world and mathematical models.

Models are useful if they capture the relevant aspects of the real world and
leave out unneeded details. But what is “relevant” or “unneeded” depends
on what you are planning to use the model for.

5.8 Exercises

For the following exercises, you can start with chap05ex.ipynb. My solution
is in chap05soln.ipynb.

Exercise 5.1 In the BRFSS (see Section 5.4), the distribution of heights is
roughly normal with parameters µ = 178 cm and σ = 7.7 cm for men, and
µ = 163 cm and σ = 7.3 cm for women.

In order to join Blue Man Group, you have to be male between 5’10” and
6’1” (see http://bluemancasting.com). What percentage of the U.S. male
population is in this range? Hint: use scipy.stats.norm.cdf.

http://wikipedia.org/wiki/Preferential_attachment
http://bluemancasting.com


72 Chapter 5. Modeling distributions

Exercise 5.2 To get a feel for the Pareto distribution, let’s see how different
the world would be if the distribution of human height were Pareto. With the
parameters xm = 1 m and α = 1.7, we get a distribution with a reasonable
minimum, 1 m, and median, 1.5 m.

Plot this distribution. What is the mean human height in Pareto world?
What fraction of the population is shorter than the mean? If there are 7
billion people in Pareto world, how many do we expect to be taller than 1
km? How tall do we expect the tallest person to be?

Exercise 5.3 The Weibull distribution is a generalization of the exponential
distribution that comes up in failure analysis (see http://wikipedia.org/

wiki/Weibull_distribution). Its CDF is

CDF (x) = 1− e−(x/λ)k

Can you find a transformation that makes a Weibull distribution look like a
straight line? What do the slope and intercept of the line indicate?

Use random.weibullvariate to generate a sample from a Weibull distribu-
tion and use it to test your transformation.

Exercise 5.4 For small values of n, we don’t expect an empirical distribution
to fit an analytic distribution exactly. One way to evaluate the quality of
fit is to generate a sample from an analytic distribution and see how well it
matches the data.

For example, in Section 5.1 we plotted the distribution of time between births
and saw that it is approximately exponential. But the distribution is based
on only 44 data points. To see whether the data might have come from an
exponential distribution, generate 44 values from an exponential distribution
with the same mean as the data, about 33 minutes between births.

Plot the distribution of the random values and compare it to the actual
distribution. You can use random.expovariate to generate the values.

Exercise 5.5 In the repository for this book, you’ll find a set of data files
called mystery0.dat, mystery1.dat, and so on. Each contains a sequence
of random numbers generated from an analytic distribution.

You will also find test_models.py, a script that reads data from a file and
plots the CDF under a variety of transforms. You can run it like this:

http://wikipedia.org/wiki/Weibull_distribution
http://wikipedia.org/wiki/Weibull_distribution
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$ python test_models.py mystery0.dat

Based on these plots, you should be able to infer what kind of distribution
generated each file. If you are stumped, you can look in mystery.py, which
contains the code that generated the files.

Exercise 5.6 The distributions of wealth and income are sometimes modeled
using lognormal and Pareto distributions. To see which is better, let’s look
at some data.

The Current Population Survey (CPS) is a joint effort of the Bureau of Labor
Statistics and the Census Bureau to study income and related variables.
Data collected in 2013 is available from http://www.census.gov/hhes/www/

cpstables/032013/hhinc/toc.htm. I downloaded hinc06.xls, which is an
Excel spreadsheet with information about household income, and converted
it to hinc06.csv, a CSV file you will find in the repository for this book.
You will also find hinc.py, which reads this file.

Extract the distribution of incomes from this dataset. Are any of the analytic
distributions in this chapter a good model of the data? A solution to this
exercise is in hinc_soln.py.

5.9 Glossary
• empirical distribution: The distribution of values in a sample.

• analytic distribution: A distribution whose CDF is an analytic func-
tion.

• model: A useful simplification. Analytic distributions are often good
models of more complex empirical distributions.

• interarrival time: The elapsed time between two events.

• complementary CDF: A function that maps from a value, x, to the
fraction of values that exceed x, which is 1− CDF(x).

• standard normal distribution: The normal distribution with mean 0
and standard deviation 1.

• normal probability plot: A plot of the values in a sample versus random
values from a standard normal distribution.

http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm
http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm
hinc_soln.py
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Chapter 6

Probability density functions

The code for this chapter is in density.py. For information about down-
loading and working with this code, see Section 0.2.

6.1 PDFs

The derivative of a CDF is called a probability density function, or PDF.
For example, the PDF of an exponential distribution is

PDFexpo(x) = λe−λx

The PDF of a normal distribution is

PDFnormal(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

Evaluating a PDF for a particular value of x is usually not useful. The result
is not a probability; it is a probability density.

In physics, density is mass per unit of volume; in order to get a mass, you
have to multiply by volume or, if the density is not constant, you have to
integrate over volume.

Similarly, probability density measures probability per unit of x. In order
to get a probability mass, you have to integrate over x.
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thinkstats2 provides a class called Pdf that represents a probability density
function. Every Pdf object provides the following methods:

• Density, which takes a value, x, and returns the density of the distri-
bution at x.

• Render, which evaluates the density at a discrete set of values and
returns a pair of sequences: the sorted values, xs, and their probability
densities, ds.

• MakePmf, which evaluates Density at a discrete set of values and re-
turns a normalized Pmf that approximates the Pdf.

• GetLinspace, which returns the default set of points used by Render

and MakePmf.

Pdf is an abstract parent class, which means you should not instantiate
it; that is, you cannot create a Pdf object. Instead, you should define a
child class that inherits from Pdf and provides definitions of Density and
GetLinspace. Pdf provides Render and MakePmf.

For example, thinkstats2 provides a class named NormalPdf that evaluates
the normal density function.

class NormalPdf(Pdf):

def __init__(self, mu=0, sigma=1, label=''):

self.mu = mu

self.sigma = sigma

self.label = label

def Density(self, xs):

return scipy.stats.norm.pdf(xs, self.mu, self.sigma)

def GetLinspace(self):

low, high = self.mu-3*self.sigma, self.mu+3*self.sigma

return np.linspace(low, high, 101)

The NormalPdf object contains the parameters mu and sigma. Density uses
scipy.stats.norm, which is an object that represents a normal distribution
and provides cdf and pdf, among other methods (see Section 5.2).
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The following example creates a NormalPdf with the mean and variance
of adult female heights, in cm, from the BRFSS (see Section 5.4). Then it
computes the density of the distribution at a location one standard deviation
from the mean.

>>> mean, var = 163, 52.8

>>> std = math.sqrt(var)

>>> pdf = thinkstats2.NormalPdf(mean, std)

>>> pdf.Density(mean + std)

0.0333001

The result is about 0.03, in units of probability mass per cm. Again, a
probability density doesn’t mean much by itself. But if we plot the Pdf, we
can see the shape of the distribution:

>>> thinkplot.Pdf(pdf, label='normal')

>>> thinkplot.Show()

thinkplot.Pdf plots the Pdf as a smooth function, as contrasted with
thinkplot.Pmf, which renders a Pmf as a step function. Figure 6.1 shows
the result, as well as a PDF estimated from a sample, which we’ll compute
in the next section.

You can use MakePmf to approximate the Pdf:

>>> pmf = pdf.MakePmf()

By default, the resulting Pmf contains 101 points equally spaced from mu

- 3*sigma to mu + 3*sigma. Optionally, MakePmf and Render can take
keyword arguments low, high, and n.

6.2 Kernel density estimation

Kernel density estimation (KDE) is an algorithm that takes a sample
and finds an appropriately smooth PDF that fits the data. You can read
details at http://en.wikipedia.org/wiki/Kernel_density_estimation.

scipy provides an implementation of KDE and thinkstats2 provides a class
called EstimatedPdf that uses it:

http://en.wikipedia.org/wiki/Kernel_density_estimation
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Figure 6.1: A normal PDF that models adult female height in the U.S., and
the kernel density estimate of a sample with n = 500.

class EstimatedPdf(Pdf):

def __init__(self, sample):

self.kde = scipy.stats.gaussian_kde(sample)

def Density(self, xs):

return self.kde.evaluate(xs)

__init__ takes a sample and computes a kernel density estimate. The result
is a gaussian_kde object that provides an evaluate method.

Density takes a value or sequence, calls gaussian_kde.evaluate, and re-
turns the resulting density. The word “Gaussian” appears in the name be-
cause it uses a filter based on a Gaussian distribution to smooth the KDE.

Here’s an example that generates a sample from a normal distribution and
then makes an EstimatedPdf to fit it:

>>> sample = [random.gauss(mean, std) for i in range(500)]

>>> sample_pdf = thinkstats2.EstimatedPdf(sample)

>>> thinkplot.Pdf(sample_pdf, label='sample KDE')

sample is a list of 500 random heights. sample_pdf is a Pdf object that
contains the estimated KDE of the sample.
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Figure 6.1 shows the normal density function and a KDE based on a sam-
ple of 500 random heights. The estimate is a good match for the original
distribution.

Estimating a density function with KDE is useful for several purposes:

• Visualization: During the exploration phase of a project, CDFs are
usually the best visualization of a distribution. After you look at a
CDF, you can decide whether an estimated PDF is an appropriate
model of the distribution. If so, it can be a better choice for presenting
the distribution to an audience that is unfamiliar with CDFs.

• Interpolation: An estimated PDF is a way to get from a sample to
a model of the population. If you have reason to believe that the
population distribution is smooth, you can use KDE to interpolate the
density for values that don’t appear in the sample.

• Simulation: Simulations are often based on the distribution of a sample.
If the sample size is small, it might be appropriate to smooth the sample
distribution using KDE, which allows the simulation to explore more
possible outcomes, rather than replicating the observed data.

6.3 The distribution framework

At this point we have seen PMFs, CDFs and PDFs; let’s take a minute to
review. Figure 6.2 shows how these functions relate to each other.

We started with PMFs, which represent the probabilities for a discrete set of
values. To get from a PMF to a CDF, you add up the probability masses to
get cumulative probabilities. To get from a CDF back to a PMF, you compute
differences in cumulative probabilities. We’ll see the implementation of these
operations in the next few sections.

A PDF is the derivative of a continuous CDF; or, equivalently, a CDF is the
integral of a PDF. Remember that a PDF maps from values to probability
densities; to get a probability, you have to integrate.

To get from a discrete to a continuous distribution, you can perform various
kinds of smoothing. One form of smoothing is to assume that the data come
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Figure 6.2: A framework that relates representations of distribution func-
tions.

from an analytic continuous distribution (like exponential or normal) and
to estimate the parameters of that distribution. Another option is kernel
density estimation.

The opposite of smoothing is discretizing, or quantizing. If you evaluate a
PDF at discrete points, you can generate a PMF that is an approximation of
the PDF. You can get a better approximation using numerical integration.

To distinguish between continuous and discrete CDFs, it might be better for
a discrete CDF to be a “cumulative mass function,” but as far as I can tell
no one uses that term.

6.4 Hist implementation

At this point you should know how to use the basic types provided by
thinkstats2: Hist, Pmf, Cdf, and Pdf. The next few sections provide de-
tails about how they are implemented. This material might help you use
these classes more effectively, but it is not strictly necessary.

Hist and Pmf inherit from a parent class called _DictWrapper. The leading
underscore indicates that this class is “internal;” that is, it should not be
used by code in other modules. The name indicates what it is: a dictionary
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wrapper. Its primary attribute is d, the dictionary that maps from values to
their frequencies.

The values can be any hashable type. The frequencies should be integers,
but can be any numeric type.

_DictWrapper contains methods appropriate for both Hist and Pmf, includ-
ing __init__, Values, Items and Render. It also provides modifier methods
Set, Incr, Mult, and Remove. These methods are all implemented with
dictionary operations. For example:

# class _DictWrapper

def Incr(self, x, term=1):

self.d[x] = self.d.get(x, 0) + term

def Mult(self, x, factor):

self.d[x] = self.d.get(x, 0) * factor

def Remove(self, x):

del self.d[x]

Hist also provides Freq, which looks up the frequency of a given value.

Because Hist operators and methods are based on dictionaries, these methods
are constant time operations; that is, their run time does not increase as the
Hist gets bigger.

6.5 Pmf implementation

Pmf and Hist are almost the same thing, except that a Pmf maps values to
floating-point probabilities, rather than integer frequencies. If the sum of the
probabilities is 1, the Pmf is normalized.

Pmf provides Normalize, which computes the sum of the probabilities and
divides through by a factor:

# class Pmf

def Normalize(self, fraction=1.0):
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total = self.Total()

if total == 0.0:

raise ValueError('Total probability is zero.')

factor = float(fraction) / total

for x in self.d:

self.d[x] *= factor

return total

fraction determines the sum of the probabilities after normalizing; the de-
fault value is 1. If the total probability is 0, the Pmf cannot be normalized,
so Normalize raises ValueError.

Hist and Pmf have the same constructor. It can take as an argument a dict,
Hist, Pmf or Cdf, a pandas Series, a list of (value, frequency) pairs, or a
sequence of values.

If you instantiate a Pmf, the result is normalized. If you instantiate a Hist,
it is not. To construct an unnormalized Pmf, you can create an empty Pmf
and modify it. The Pmf modifiers do not renormalize the Pmf.

6.6 Cdf implementation

A CDF maps from values to cumulative probabilities, so I could have imple-
mented Cdf as a _DictWrapper. But the values in a CDF are ordered and
the values in a _DictWrapper are not. Also, it is often useful to compute the
inverse CDF; that is, the map from cumulative probability to value. So the
implementaion I chose is two sorted lists. That way I can use binary search
to do a forward or inverse lookup in logarithmic time.

The Cdf constructor can take as a parameter a sequence of values or a pan-
das Series, a dictionary that maps from values to probabilities, a sequence
of (value, probability) pairs, a Hist, Pmf, or Cdf. Or if it is given two pa-
rameters, it treats them as a sorted sequence of values and the sequence of
corresponding cumulative probabilities.

Given a sequence, pandas Series, or dictionary, the constructor makes a Hist.
Then it uses the Hist to initialize the attributes:
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self.xs, freqs = zip(*sorted(dw.Items()))

self.ps = np.cumsum(freqs, dtype=np.float)

self.ps /= self.ps[-1]

xs is the sorted list of values; freqs is the list of corresponding frequen-
cies. np.cumsum computes the cumulative sum of the frequencies. Dividing
through by the total frequency yields cumulative probabilities. For n values,
the time to construct the Cdf is proportional to n log n.

Here is the implementation of Prob, which takes a value and returns its
cumulative probability:

# class Cdf

def Prob(self, x):

if x < self.xs[0]:

return 0.0

index = bisect.bisect(self.xs, x)

p = self.ps[index - 1]

return p

The bisect module provides an implementation of binary search. And here
is the implementation of Value, which takes a cumulative probability and
returns the corresponding value:

# class Cdf

def Value(self, p):

if p < 0 or p > 1:

raise ValueError('p must be in range [0, 1]')

index = bisect.bisect_left(self.ps, p)

return self.xs[index]

Given a Cdf, we can compute the Pmf by computing differences between
consecutive cumulative probabilities. If you call the Cdf constructor and
pass a Pmf, it computes differences by calling Cdf.Items:

# class Cdf

def Items(self):

a = self.ps

b = np.roll(a, 1)

b[0] = 0

return zip(self.xs, a-b)
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np.roll shifts the elements of a to the right, and “rolls” the last one back
to the beginning. We replace the first element of b with 0 and then compute
the difference a-b. The result is a NumPy array of probabilities.

Cdf provides Shift and Scale, which modify the values in the Cdf, but the
probabilities should be treated as immutable.

6.7 Moments

Any time you take a sample and reduce it to a single number, that number is
a statistic. The statistics we have seen so far include mean, variance, median,
and interquartile range.

A raw moment is a kind of statistic. If you have a sample of values, xi, the
kth raw moment is:

m′k =
1

n

∑
i

xki

Or if you prefer Python notation:

def RawMoment(xs, k):

return sum(x**k for x in xs) / len(xs)

When k = 1 the result is the sample mean, x̄. The other raw moments don’t
mean much by themselves, but they are used in some computations.

The central moments are more useful. The kth central moment is:

mk =
1

n

∑
i

(xi − x̄)k

Or in Python:

def CentralMoment(xs, k):

mean = RawMoment(xs, 1)

return sum((x - mean)**k for x in xs) / len(xs)

When k = 2 the result is the second central moment, which you might
recognize as variance. The definition of variance gives a hint about why
these statistics are called moments. If we attach a weight along a ruler at
each location, xi, and then spin the ruler around the mean, the moment
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of inertia of the spinning weights is the variance of the values. If you are
not familiar with moment of inertia, see http://en.wikipedia.org/wiki/

Moment_of_inertia.

When you report moment-based statistics, it is important to think about the
units. For example, if the values xi are in cm, the first raw moment is also
in cm. But the second moment is in cm2, the third moment is in cm3, and
so on.

Because of these units, moments are hard to interpret by themselves. That’s
why, for the second moment, it is common to report standard deviation,
which is the square root of variance, so it is in the same units as xi.

6.8 Skewness

Skewness is a property that describes the shape of a distribution. If the
distribution is symmetric around its central tendency, it is unskewed. If the
values extend farther to the right, it is “right skewed” and if the values extend
left, it is “left skewed.”

This use of “skewed” does not have the usual connotation of “biased.” Skew-
ness only describes the shape of the distribution; it says nothing about
whether the sampling process might have been biased.

Several statistics are commonly used to quantify the skewness of a distri-
bution. Given a sequence of values, xi, the sample skewness, g1, can be
computed like this:

def StandardizedMoment(xs, k):

var = CentralMoment(xs, 2)

std = math.sqrt(var)

return CentralMoment(xs, k) / std**k

def Skewness(xs):

return StandardizedMoment(xs, 3)

g1 is the third standardized moment, which means that it has been nor-
malized so it has no units.

http://en.wikipedia.org/wiki/Moment_of_inertia
http://en.wikipedia.org/wiki/Moment_of_inertia
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Negative skewness indicates that a distribution skews left; positive skewness
indicates that a distribution skews right. The magnitude of g1 indicates the
strength of the skewness, but by itself it is not easy to interpret.

In practice, computing sample skewness is usually not a good idea. If there
are any outliers, they have a disproportionate effect on g1.

Another way to evaluate the asymmetry of a distribution is to look at the
relationship between the mean and median. Extreme values have more effect
on the mean than the median, so in a distribution that skews left, the mean is
less than the median. In a distribution that skews right, the mean is greater.

Pearson’s median skewness coefficient is a measure of skewness based
on the difference between the sample mean and median:

gp = 3(x̄−m)/S

Where x̄ is the sample mean, m is the median, and S is the standard devia-
tion. Or in Python:

def Median(xs):

cdf = thinkstats2.Cdf(xs)

return cdf.Value(0.5)

def PearsonMedianSkewness(xs):

median = Median(xs)

mean = RawMoment(xs, 1)

var = CentralMoment(xs, 2)

std = math.sqrt(var)

gp = 3 * (mean - median) / std

return gp

This statistic is robust, which means that it is less vulnerable to the effect
of outliers.

As an example, let’s look at the skewness of birth weights in the NSFG
pregnancy data. Here’s the code to estimate and plot the PDF:

live, firsts, others = first.MakeFrames()

data = live.totalwgt_lb.dropna()
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Figure 6.3: Estimated PDF of birthweight data from the NSFG.

pdf = thinkstats2.EstimatedPdf(data)

thinkplot.Pdf(pdf, label='birth weight')

Figure 6.3 shows the result. The left tail appears longer than the right,
so we suspect the distribution is skewed left. The mean, 7.27 lbs, is a bit
less than the median, 7.38 lbs, so that is consistent with left skew. And
both skewness coefficients are negative: sample skewness is -0.59; Pearson’s
median skewness is -0.23.

Now let’s compare this distribution to the distribution of adult weight in the
BRFSS. Again, here’s the code:

df = brfss.ReadBrfss(nrows=None)

data = df.wtkg2.dropna()

pdf = thinkstats2.EstimatedPdf(data)

thinkplot.Pdf(pdf, label='adult weight')

Figure 6.4 shows the result. The distribution appears skewed to the right.
Sure enough, the mean, 79.0, is bigger than the median, 77.3. The sample
skewness is 1.1 and Pearson’s median skewness is 0.26.

The sign of the skewness coefficient indicates whether the distribution skews
left or right, but other than that, they are hard to interpret. Sample skewness
is less robust; that is, it is more susceptible to outliers. As a result it is less
reliable when applied to skewed distributions, exactly when it would be most
relevant.
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Figure 6.4: Estimated PDF of adult weight data from the BRFSS.

Pearson’s median skewness is based on a computed mean and variance, so
it is also susceptible to outliers, but since it does not depend on a third
moment, it is somewhat more robust.

6.9 Exercises

A solution to this exercise is in chap06soln.py.

Exercise 6.1 The distribution of income is famously skewed to the right. In
this exercise, we’ll measure how strong that skew is.

The Current Population Survey (CPS) is a joint effort of the Bureau of Labor
Statistics and the Census Bureau to study income and related variables.
Data collected in 2013 is available from http://www.census.gov/hhes/www/

cpstables/032013/hhinc/toc.htm. I downloaded hinc06.xls, which is an
Excel spreadsheet with information about household income, and converted
it to hinc06.csv, a CSV file you will find in the repository for this book.
You will also find hinc2.py, which reads this file and transforms the data.

The dataset is in the form of a series of income ranges and the number of
respondents who fell in each range. The lowest range includes respondents
who reported annual household income “Under $5000.” The highest range
includes respondents who made “$250,000 or more.”

http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm
http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm
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To estimate mean and other statistics from these data, we have to make some
assumptions about the lower and upper bounds, and how the values are dis-
tributed in each range. hinc2.py provides InterpolateSample, which shows
one way to model this data. It takes a DataFrame with a column, income,
that contains the upper bound of each range, and freq, which contains the
number of respondents in each frame.

It also takes log_upper, which is an assumed upper bound on the highest
range, expressed in log10 dollars. The default value, log_upper=6.0 repre-
sents the assumption that the largest income among the respondents is 106,
or one million dollars.

InterpolateSample generates a pseudo-sample; that is, a sample of house-
hold incomes that yields the same number of respondents in each range as
the actual data. It assumes that incomes in each range are equally spaced
on a log10 scale.

Compute the median, mean, skewness and Pearson’s skewness of the resulting
sample. What fraction of households reports a taxable income below the
mean? How do the results depend on the assumed upper bound?

6.10 Glossary

• Probability density function (PDF): The derivative of a continuous
CDF, a function that maps a value to its probability density.

• Probability density: A quantity that can be integrated over a range
of values to yield a probability. If the values are in units of cm, for
example, probability density is in units of probability per cm.

• Kernel density estimation (KDE): An algorithm that estimates a PDF
based on a sample.

• discretize: To approximate a continuous function or distribution with
a discrete function. The opposite of smoothing.

• raw moment: A statistic based on the sum of data raised to a power.

• central moment: A statistic based on deviation from the mean, raised
to a power.



90 Chapter 6. Probability density functions

• standardized moment: A ratio of moments that has no units.

• skewness: A measure of how asymmetric a distribution is.

• sample skewness: A moment-based statistic intended to quantify the
skewness of a distribution.

• Pearson’s median skewness coefficient: A statistic intended to quantify
the skewness of a distribution based on the median, mean, and standard
deviation.

• robust: A statistic is robust if it is relatively immune to the effect of
outliers.
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Relationships between variables

So far we have only looked at one variable at a time. In this chapter we
look at relationships between variables. Two variables are related if knowing
one gives you information about the other. For example, height and weight
are related; people who are taller tend to be heavier. Of course, it is not a
perfect relationship: there are short heavy people and tall light ones. But if
you are trying to guess someone’s weight, you will be more accurate if you
know their height than if you don’t.

The code for this chapter is in scatter.py. For information about down-
loading and working with this code, see Section 0.2.

7.1 Scatter plots

The simplest way to check for a relationship between two variables is a scat-
ter plot, but making a good scatter plot is not always easy. As an example,
I’ll plot weight versus height for the respondents in the BRFSS (see Sec-
tion 5.4).

Here’s the code that reads the data file and extracts height and weight:

df = brfss.ReadBrfss(nrows=None)

sample = thinkstats2.SampleRows(df, 5000)

heights, weights = sample.htm3, sample.wtkg2
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Figure 7.1: Scatter plots of weight versus height for the respondents in the
BRFSS, unjittered (left), jittered (right).

SampleRows chooses a random subset of the data:

def SampleRows(df, nrows, replace=False):

indices = np.random.choice(df.index, nrows, replace=replace)

sample = df.loc[indices]

return sample

df is the DataFrame, nrows is the number of rows to choose, and replace

is a boolean indicating whether sampling should be done with replacement;
in other words, whether the same row could be chosen more than once.

thinkplot provides Scatter, which makes scatter plots:

thinkplot.Scatter(heights, weights)

thinkplot.Show(xlabel='Height (cm)',

ylabel='Weight (kg)',

axis=[140, 210, 20, 200])

The result, in Figure 7.1 (left), shows the shape of the relationship. As we
expected, taller people tend to be heavier.

But this is not the best representation of the data, because the data are
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packed into columns. The problem is that the heights are rounded to the
nearest inch, converted to centimeters, and then rounded again. Some infor-
mation is lost in translation.

We can’t get that information back, but we can minimize the effect on the
scatter plot by jittering the data, which means adding random noise to
reverse the effect of rounding off. Since these measurements were rounded to
the nearest inch, they might be off by up to 0.5 inches or 1.3 cm. Similarly,
the weights might be off by 0.5 kg.

heights = thinkstats2.Jitter(heights, 1.3)

weights = thinkstats2.Jitter(weights, 0.5)

Here’s the implementation of Jitter:

def Jitter(values, jitter=0.5):

n = len(values)

return np.random.uniform(-jitter, +jitter, n) + values

The values can be any sequence; the result is a NumPy array.

Figure 7.1 (right) shows the result. Jittering reduces the visual effect of
rounding and makes the shape of the relationship clearer. But in general you
should only jitter data for purposes of visualization and avoid using jittered
data for analysis.

Even with jittering, this is not the best way to represent the data. There
are many overlapping points, which hides data in the dense parts of the
figure and gives disproportionate emphasis to outliers. This effect is called
saturation.

We can solve this problem with the alpha parameter, which makes the points
partly transparent:

thinkplot.Scatter(heights, weights, alpha=0.2)

Figure 7.2 (left) shows the result. Overlapping data points look darker, so
darkness is proportional to density. In this version of the plot we can see
two details that were not apparent before: vertical clusters at several heights
and a horizontal line near 90 kg or 200 pounds. Since this data is based on
self-reports in pounds, the most likely explanation is that some respondents
reported rounded values.
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Figure 7.2: Scatter plot with jittering and transparency (left), hexbin plot
(right).

Using transparency works well for moderate-sized datasets, but this figure
only shows the first 5000 records in the BRFSS, out of a total of 414 509.

To handle larger datasets, another option is a hexbin plot, which divides the
graph into hexagonal bins and colors each bin according to how many data
points fall in it. thinkplot provides HexBin:

thinkplot.HexBin(heights, weights)

Figure 7.2 (right) shows the result. An advantage of a hexbin is that it shows
the shape of the relationship well, and it is efficient for large datasets, both
in time and in the size of the file it generates. A drawback is that it makes
the outliers invisible.

The point of this example is that it is not easy to make a scatter plot that
shows relationships clearly without introducing misleading artifacts.
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Figure 7.3: Percentiles of weight for a range of height bins.

7.2 Characterizing relationships

Scatter plots provide a general impression of the relationship between vari-
ables, but there are other visualizations that provide more insight into the
nature of the relationship. One option is to bin one variable and plot per-
centiles of the other.

NumPy and pandas provide functions for binning data:

df = df.dropna(subset=['htm3', 'wtkg2'])

bins = np.arange(135, 210, 5)

indices = np.digitize(df.htm3, bins)

groups = df.groupby(indices)

dropna drops rows with nan in any of the listed columns. arange makes a
NumPy array of bins from 135 to, but not including, 210, in increments of
5.

digitize computes the index of the bin that contains each value in df.htm3.
The result is a NumPy array of integer indices. Values that fall below the
lowest bin are mapped to index 0. Values above the highest bin are mapped
to len(bins).

groupby is a DataFrame method that returns a GroupBy object; used in a
for loop, groups iterates the names of the groups and the DataFrames that
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represent them. So, for example, we can print the number of rows in each
group like this:

for i, group in groups:

print(i, len(group))

Now for each group we can compute the mean height and the CDF of weight:

heights = [group.htm3.mean() for i, group in groups]

cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups]

Finally, we can plot percentiles of weight versus height:

for percent in [75, 50, 25]:

weights = [cdf.Percentile(percent) for cdf in cdfs]

label = '%dth' % percent

thinkplot.Plot(heights, weights, label=label)

Figure 7.3 shows the result. Between 140 and 200 cm the relationship between
these variables is roughly linear. This range includes more than 99% of the
data, so we don’t have to worry too much about the extremes.

7.3 Correlation

A correlation is a statistic intended to quantify the strength of the rela-
tionship between two variables.

A challenge in measuring correlation is that the variables we want to compare
are often not expressed in the same units. And even if they are in the same
units, they come from different distributions.

There are two common solutions to these problems:

1. Transform each value to a standard scores, which is the number
of standard deviations from the mean. This transform leads to the
“Pearson product-moment correlation coefficient.”

2. Transform each value to its rank, which is its index in the sorted list
of values. This transform leads to the “Spearman rank correlation
coefficient.”
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If X is a series of n values, xi, we can convert to standard scores by sub-
tracting the mean and dividing by the standard deviation: zi = (xi − µ)/σ.

The numerator is a deviation: the distance from the mean. Dividing by σ
standardizes the deviation, so the values of Z are dimensionless (no units)
and their distribution has mean 0 and variance 1.

If X is normally distributed, so is Z. But if X is skewed or has outliers,
so does Z; in those cases, it is more robust to use percentile ranks. If we
compute a new variable, R, so that ri is the rank of xi, the distribution of R
is uniform from 1 to n, regardless of the distribution of X.

7.4 Covariance

Covariance is a measure of the tendency of two variables to vary together.
If we have two series, X and Y , their deviations from the mean are

dxi = xi − x̄

dyi = yi − ȳ

where x̄ is the sample mean of X and ȳ is the sample mean of Y . If X and
Y vary together, their deviations tend to have the same sign.

If we multiply them together, the product is positive when the deviations have
the same sign and negative when they have the opposite sign. So adding up
the products gives a measure of the tendency to vary together.

Covariance is the mean of these products:

Cov(X, Y ) =
1

n

∑
dxi dyi

where n is the length of the two series (they have to be the same length).

If you have studied linear algebra, you might recognize that Cov is the dot
product of the deviations, divided by their length. So the covariance is
maximized if the two vectors are identical, 0 if they are orthogonal, and
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negative if they point in opposite directions. thinkstats2 uses np.dot to
implement Cov efficiently:

def Cov(xs, ys, meanx=None, meany=None):

xs = np.asarray(xs)

ys = np.asarray(ys)

if meanx is None:

meanx = np.mean(xs)

if meany is None:

meany = np.mean(ys)

cov = np.dot(xs-meanx, ys-meany) / len(xs)

return cov

By default Cov computes deviations from the sample means, or you can pro-
vide known means. If xs and ys are Python sequences, np.asarray converts
them to NumPy arrays. If they are already NumPy arrays, np.asarray does
nothing.

This implementation of covariance is meant to be simple for purposes of
explanation. NumPy and pandas also provide implementations of covariance,
but both of them apply a correction for small sample sizes that we have not
covered yet, and np.cov returns a covariance matrix, which is more than we
need for now.

7.5 Pearson’s correlation

Covariance is useful in some computations, but it is seldom reported as a
summary statistic because it is hard to interpret. Among other problems,
its units are the product of the units of X and Y . For example, the covari-
ance of weight and height in the BRFSS dataset is 113 kilogram-centimeters,
whatever that means.

One solution to this problem is to divide the deviations by the standard
deviation, which yields standard scores, and compute the product of standard
scores:

pi =
(xi − x̄)

SX

(yi − ȳ)

SY



7.5. Pearson’s correlation 99

Where SX and SY are the standard deviations of X and Y . The mean of
these products is

ρ =
1

n

∑
pi

Or we can rewrite ρ by factoring out SX and SY :

ρ =
Cov(X, Y )

SXSY

This value is called Pearson’s correlation after Karl Pearson, an influential
early statistician. It is easy to compute and easy to interpret. Because
standard scores are dimensionless, so is ρ.

Here is the implementation in thinkstats2:

def Corr(xs, ys):

xs = np.asarray(xs)

ys = np.asarray(ys)

meanx, varx = MeanVar(xs)

meany, vary = MeanVar(ys)

corr = Cov(xs, ys, meanx, meany) / math.sqrt(varx * vary)

return corr

MeanVar computes mean and variance slightly more efficiently than separate
calls to np.mean and np.var.

Pearson’s correlation is always between -1 and +1 (including both). If ρ is
positive, we say that the correlation is positive, which means that when one
variable is high, the other tends to be high. If ρ is negative, the correlation
is negative, so when one variable is high, the other is low.

The magnitude of ρ indicates the strength of the correlation. If ρ is 1 or -1,
the variables are perfectly correlated, which means that if you know one, you
can make a perfect prediction about the other.

Most correlation in the real world is not perfect, but it is still useful. The cor-
relation of height and weight is 0.51, which is a strong correlation compared
to similar human-related variables.
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Figure 7.4: Examples of datasets with a range of correlations.

7.6 Nonlinear relationships

If Pearson’s correlation is near 0, it is tempting to conclude that there is no
relationship between the variables, but that conclusion is not valid. Pear-
son’s correlation only measures linear relationships. If there’s a nonlinear
relationship, ρ understates its strength.

Figure 7.4 is from http://wikipedia.org/wiki/Correlation_and_

dependence. It shows scatter plots and correlation coefficients for several
carefully constructed datasets.

The top row shows linear relationships with a range of correlations; you can
use this row to get a sense of what different values of ρ look like. The second
row shows perfect correlations with a range of slopes, which demonstrates
that correlation is unrelated to slope (we’ll talk about estimating slope soon).
The third row shows variables that are clearly related, but because the rela-
tionship is nonlinear, the correlation coefficient is 0.

The moral of this story is that you should always look at a scatter plot of
your data before blindly computing a correlation coefficient.

http://wikipedia.org/wiki/Correlation_and_dependence
http://wikipedia.org/wiki/Correlation_and_dependence


7.7. Spearman’s rank correlation 101

7.7 Spearman’s rank correlation

Pearson’s correlation works well if the relationship between variables is linear
and if the variables are roughly normal. But it is not robust in the presence
of outliers. Spearman’s rank correlation is an alternative that mitigates
the effect of outliers and skewed distributions. To compute Spearman’s cor-
relation, we have to compute the rank of each value, which is its index in
the sorted sample. For example, in the sample [1, 2, 5, 7] the rank of
the value 5 is 3, because it appears third in the sorted list. Then we compute
Pearson’s correlation for the ranks.

thinkstats2 provides a function that computes Spearman’s rank correlation:

def SpearmanCorr(xs, ys):

xranks = pandas.Series(xs).rank()

yranks = pandas.Series(ys).rank()

return Corr(xranks, yranks)

I convert the arguments to pandas Series objects so I can use rank, which
computes the rank for each value and returns a Series. Then I use Corr to
compute the correlation of the ranks.

I could also use Series.corr directly and specify Spearman’s method:

def SpearmanCorr(xs, ys):

xs = pandas.Series(xs)

ys = pandas.Series(ys)

return xs.corr(ys, method='spearman')

The Spearman rank correlation for the BRFSS data is 0.54, a little higher
than the Pearson correlation, 0.51. There are several possible reasons for the
difference, including:

• If the relationship is nonlinear, Pearson’s correlation tends to underes-
timate the strength of the relationship, and

• Pearson’s correlation can be affected (in either direction) if one of the
distributions is skewed or contains outliers. Spearman’s rank correla-
tion is more robust.

In the BRFSS example, we know that the distribution of weights is roughly
lognormal; under a log transform it approximates a normal distribution, so it
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has no skew. So another way to eliminate the effect of skewness is to compute
Pearson’s correlation with log-weight and height:

thinkstats2.Corr(df.htm3, np.log(df.wtkg2)))

The result is 0.53, close to the rank correlation, 0.54. So that suggests that
skewness in the distribution of weight explains most of the difference between
Pearson’s and Spearman’s correlation.

7.8 Correlation and causation

If variables A and B are correlated, there are three possible explanations: A
causes B, or B causes A, or some other set of factors causes both A and B.
These explanations are called “causal relationships”.

Correlation alone does not distinguish between these explanations, so it
does not tell you which ones are true. This rule is often summarized with
the phrase “Correlation does not imply causation,” which is so pithy it
has its own Wikipedia page: http://wikipedia.org/wiki/Correlation_

does_not_imply_causation.

So what can you do to provide evidence of causation?

1. Use time. If A comes before B, then A can cause B but not the other
way around (at least according to our common understanding of causa-
tion). The order of events can help us infer the direction of causation,
but it does not preclude the possibility that something else causes both
A and B.

2. Use randomness. If you divide a large sample into two groups at ran-
dom and compute the means of almost any variable, you expect the
difference to be small. If the groups are nearly identical in all variables
but one, you can eliminate spurious relationships.

This works even if you don’t know what the relevant variables are, but
it works even better if you do, because you can check that the groups
are identical.

These ideas are the motivation for the randomized controlled trial, in
which subjects are assigned randomly to two (or more) groups: a treatment

http://wikipedia.org/wiki/Correlation_does_not_imply_causation
http://wikipedia.org/wiki/Correlation_does_not_imply_causation
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group that receives some kind of intervention, like a new medicine, and a
control group that receives no intervention, or another treatment whose
effects are known.

A randomized controlled trial is the most reliable way to demonstrate a
causal relationship, and the foundation of science-based medicine (see http:

//wikipedia.org/wiki/Randomized_controlled_trial).

Unfortunately, controlled trials are only possible in the laboratory sciences,
medicine, and a few other disciplines. In the social sciences, controlled ex-
periments are rare, usually because they are impossible or unethical.

An alternative is to look for a natural experiment, where different “treat-
ments” are applied to groups that are otherwise similar. One danger of
natural experiments is that the groups might differ in ways that are not
apparent. You can read more about this topic at http://wikipedia.org/

wiki/Natural_experiment.

In some cases it is possible to infer causal relationships using regression
analysis, which is the topic of Chapter 11.

7.9 Exercises

A solution to this exercise is in chap07soln.py.

Exercise 7.1 Using data from the NSFG, make a scatter plot of birth weight
versus mother’s age. Plot percentiles of birth weight versus mother’s age.
Compute Pearson’s and Spearman’s correlations. How would you character-
ize the relationship between these variables?

7.10 Glossary

• scatter plot: A visualization of the relationship between two variables,
showing one point for each row of data.

• jitter: Random noise added to data for purposes of visualization.

http://wikipedia.org/wiki/Randomized_controlled_trial
http://wikipedia.org/wiki/Randomized_controlled_trial
http://wikipedia.org/wiki/Natural_experiment
http://wikipedia.org/wiki/Natural_experiment
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• saturation: Loss of information when multiple points are plotted on
top of each other.

• correlation: A statistic that measures the strength of the relationship
between two variables.

• standardize: To transform a set of values so that their mean is 0 and
their variance is 1.

• standard score: A value that has been standardized so that it is ex-
pressed in standard deviations from the mean.

• covariance: A measure of the tendency of two variables to vary together.

• rank: The index where an element appears in a sorted list.

• randomized controlled trial: An experimental design in which subjects
are divided into groups at random, and different groups are given dif-
ferent treatments.

• treatment group: A group in a controlled trial that receives some kind
of intervention.

• control group: A group in a controlled trial that receives no treatment,
or a treatment whose effect is known.

• natural experiment: An experimental design that takes advantage of
a natural division of subjects into groups in ways that are at least
approximately random.



Chapter 8

Estimation

The code for this chapter is in estimation.py. For information about down-
loading and working with this code, see Section 0.2.

8.1 The estimation game

Let’s play a game. I think of a distribution, and you have to guess what it
is. I’ll give you two hints: it’s a normal distribution, and here’s a random
sample drawn from it:

[-0.441, 1.774, -0.101, -1.138, 2.975, -2.138]

What do you think is the mean parameter, µ, of this distribution?

One choice is to use the sample mean, x̄, as an estimate of µ. In this example,
x̄ is 0.155, so it would be reasonable to guess µ = 0.155. This process is
called estimation, and the statistic we used (the sample mean) is called an
estimator.

Using the sample mean to estimate µ is so obvious that it is hard to imagine
a reasonable alternative. But suppose we change the game by introducing
outliers.

I’m thinking of a distribution. It’s a normal distribution, and here’s a sam-
ple that was collected by an unreliable surveyor who occasionally puts the
decimal point in the wrong place.
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[-0.441, 1.774, -0.101, -1.138, 2.975, -213.8]

Now what’s your estimate of µ? If you use the sample mean, your guess is
-35.12. Is that the best choice? What are the alternatives?

One option is to identify and discard outliers, then compute the sample mean
of the rest. Another option is to use the median as an estimator.

Which estimator is best depends on the circumstances (for example, whether
there are outliers) and on what the goal is. Are you trying to minimize errors,
or maximize your chance of getting the right answer?

If there are no outliers, the sample mean minimizes the mean squared error
(MSE). That is, if we play the game many times, and each time compute the
error x̄− µ, the sample mean minimizes

MSE =
1

m

∑
(x̄− µ)2

Where m is the number of times you play the estimation game, not to be
confused with n, which is the size of the sample used to compute x̄.

Here is a function that simulates the estimation game and computes the root
mean squared error (RMSE), which is the square root of MSE:

def Estimate1(n=7, m=1000):

mu = 0

sigma = 1

means = []

medians = []

for _ in range(m):

xs = [random.gauss(mu, sigma) for i in range(n)]

xbar = np.mean(xs)

median = np.median(xs)

means.append(xbar)

medians.append(median)

print('rmse xbar', RMSE(means, mu))

print('rmse median', RMSE(medians, mu))
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Again, n is the size of the sample, and m is the number of times we play
the game. means is the list of estimates based on x̄. medians is the list of
medians.

Here’s the function that computes RMSE:

def RMSE(estimates, actual):

e2 = [(estimate-actual)**2 for estimate in estimates]

mse = np.mean(e2)

return math.sqrt(mse)

estimates is a list of estimates; actual is the actual value being estimated.
In practice, of course, we don’t know actual; if we did, we wouldn’t have to
estimate it. The purpose of this experiment is to compare the performance
of the two estimators.

When I ran this code, the RMSE of the sample mean was 0.41, which means
that if we use x̄ to estimate the mean of this distribution, based on a sample
with n = 7, we should expect to be off by 0.41 on average. Using the median
to estimate the mean yields RMSE 0.53, which confirms that x̄ yields lower
RMSE, at least for this example.

Minimizing MSE is a nice property, but it’s not always the best strategy.
For example, suppose we are estimating the distribution of wind speeds at a
building site. If the estimate is too high, we might overbuild the structure,
increasing its cost. But if it’s too low, the building might collapse. Because
cost as a function of error is not symmetric, minimizing MSE is not the best
strategy.

As another example, suppose I roll three six-sided dice and ask you to predict
the total. If you get it exactly right, you get a prize; otherwise you get
nothing. In this case the value that minimizes MSE is 10.5, but that would
be a bad guess, because the total of three dice is never 10.5. For this game,
you want an estimator that has the highest chance of being right, which is a
maximum likelihood estimator (MLE). If you pick 10 or 11, your chance
of winning is 1 in 8, and that’s the best you can do.

8.2 Guess the variance

I’m thinking of a distribution. It’s a normal distribution, and here’s a (fa-
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miliar) sample:

[-0.441, 1.774, -0.101, -1.138, 2.975, -2.138]

What do you think is the variance, σ2, of my distribution? Again, the obvious
choice is to use the sample variance, S2, as an estimator.

S2 =
1

n

∑
(xi − x̄)2

For large samples, S2 is an adequate estimator, but for small samples it tends
to be too low. Because of this unfortunate property, it is called a biased
estimator. An estimator is unbiased if the expected total (or mean) error,
after many iterations of the estimation game, is 0.

Fortunately, there is another simple statistic that is an unbiased estimator
of σ2:

S2
n−1 =

1

n− 1

∑
(xi − x̄)2

For an explanation of why S2 is biased, and a proof that S2
n−1 is unbiased,

see http://wikipedia.org/wiki/Bias_of_an_estimator.

The biggest problem with this estimator is that its name and symbol are
used inconsistently. The name “sample variance” can refer to either S2 or
S2
n−1, and the symbol S2 is used for either or both.

Here is a function that simulates the estimation game and tests the perfor-
mance of S2 and S2

n−1:

def Estimate2(n=7, m=1000):

mu = 0

sigma = 1

estimates1 = []

estimates2 = []

for _ in range(m):

xs = [random.gauss(mu, sigma) for i in range(n)]

biased = np.var(xs)

unbiased = np.var(xs, ddof=1)

estimates1.append(biased)

estimates2.append(unbiased)

http://wikipedia.org/wiki/Bias_of_an_estimator
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print('mean error biased', MeanError(estimates1, sigma**2))

print('mean error unbiased', MeanError(estimates2, sigma**2))

Again, n is the sample size and m is the number of times we play the game.
np.var computes S2 by default and S2

n−1 if you provide the argument ddof=1,
which stands for “delta degrees of freedom.” I won’t explain that term,
but you can read about it at http://en.wikipedia.org/wiki/Degrees_

of_freedom_(statistics).

MeanError computes the mean difference between the estimates and the
actual value:

def MeanError(estimates, actual):

errors = [estimate-actual for estimate in estimates]

return np.mean(errors)

When I ran this code, the mean error for S2 was -0.13. As expected, this
biased estimator tends to be too low. For S2

n−1, the mean error was 0.014,
about 10 times smaller. As m increases, we expect the mean error for S2

n−1
to approach 0.

Properties like MSE and bias are long-term expectations based on many
iterations of the estimation game. By running simulations like the ones in
this chapter, we can compare estimators and check whether they have desired
properties.

But when you apply an estimator to real data, you just get one estimate. It
would not be meaningful to say that the estimate is unbiased; being unbiased
is a property of the estimator, not the estimate.

After you choose an estimator with appropriate properties, and use it to
generate an estimate, the next step is to characterize the uncertainty of the
estimate, which is the topic of the next section.

8.3 Sampling distributions

Suppose you are a scientist studying gorillas in a wildlife preserve. You want
to know the average weight of the adult female gorillas in the preserve. To
weigh them, you have to tranquilize them, which is dangerous, expensive,

http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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and possibly harmful to the gorillas. But if it is important to obtain this
information, it might be acceptable to weigh a sample of 9 gorillas. Let’s
assume that the population of the preserve is well known, so we can choose
a representative sample of adult females. We could use the sample mean, x̄,
to estimate the unknown population mean, µ.

Having weighed 9 female gorillas, you might find x̄ = 90 kg and sample
standard deviation, S = 7.5 kg. The sample mean is an unbiased estimator
of µ, and in the long run it minimizes MSE. So if you report a single estimate
that summarizes the results, you would report 90 kg.

But how confident should you be in this estimate? If you only weigh n = 9
gorillas out of a much larger population, you might be unlucky and choose
the 9 heaviest gorillas (or the 9 lightest ones) just by chance. Variation in
the estimate caused by random selection is called sampling error.

To quantify sampling error, we can simulate the sampling process with hy-
pothetical values of µ and σ, and see how much x̄ varies.

Since we don’t know the actual values of µ and σ in the population, we’ll use
the estimates x̄ and S. So the question we answer is: “If the actual values
of µ and σ were 90 kg and 7.5 kg, and we ran the same experiment many
times, how much would the estimated mean, x̄, vary?”

The following function answers that question:

def SimulateSample(mu=90, sigma=7.5, n=9, m=1000):

means = []

for j in range(m):

xs = np.random.normal(mu, sigma, n)

xbar = np.mean(xs)

means.append(xbar)

cdf = thinkstats2.Cdf(means)

ci = cdf.Percentile(5), cdf.Percentile(95)

stderr = RMSE(means, mu)

mu and sigma are the hypothetical values of the parameters. n is the sample
size, the number of gorillas we measured. m is the number of times we run
the simulation.
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Figure 8.1: Sampling distribution of x̄, with confidence interval.

In each iteration, we choose n values from a normal distribution with the
given parameters, and compute the sample mean, xbar. We run 1000 simu-
lations and then compute the distribution, cdf, of the estimates. The result
is shown in Figure 8.1. This distribution is called the sampling distribu-
tion of the estimator. It shows how much the estimates would vary if we ran
the experiment over and over.

The mean of the sampling distribution is pretty close to the hypothetical
value of µ, which means that the experiment yields the right answer, on
average. After 1000 tries, the lowest result is 82 kg, and the highest is 98 kg.
This range suggests that the estimate might be off by as much as 8 kg.

There are two common ways to summarize the sampling distribution:

• Standard error (SE) is a measure of how far we expect the estimate
to be off, on average. For each simulated experiment, we compute the
error, x̄− µ, and then compute the root mean squared error (RMSE).
In this example, it is roughly 2.5 kg.

• A confidence interval (CI) is a range that includes a given fraction
of the sampling distribution. For example, the 90% confidence interval
is the range from the 5th to the 95th percentile. In this example, the
90% CI is (86, 94) kg.
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Standard errors and confidence intervals are the source of much confusion:

• People often confuse standard error and standard deviation. Remember
that standard deviation describes variability in a measured quantity;
in this example, the standard deviation of gorilla weight is 7.5 kg.
Standard error describes variability in an estimate. In this example,
the standard error of the mean, based on a sample of 9 measurements,
is 2.5 kg.

One way to remember the difference is that, as sample size increases,
standard error gets smaller; standard deviation does not.

• People often think that there is a 90% probability that the actual pa-
rameter, µ, falls in the 90% confidence interval. Sadly, that is not true.
If you want to make a claim like that, you have to use Bayesian methods
(see my book, Think Bayes).

The sampling distribution answers a different question: it gives you a
sense of how reliable an estimate is by telling you how much it would
vary if you ran the experiment again.

It is important to remember that confidence intervals and standard errors
only quantify sampling error; that is, error due to measuring only part of the
population. The sampling distribution does not account for other sources of
error, notably sampling bias and measurement error, which are the topics of
the next section.

8.4 Sampling bias

Suppose that instead of the weight of gorillas in a nature preserve, you want
to know the average weight of women in the city where you live. It is unlikely
that you would be allowed to choose a representative sample of women and
weigh them.

A simple alternative would be “telephone sampling;” that is, you could choose
random numbers from the phone book, call and ask to speak to an adult
woman, and ask how much she weighs.
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Telephone sampling has obvious limitations. For example, the sample is
limited to people whose telephone numbers are listed, so it eliminates people
without phones (who might be poorer than average) and people with unlisted
numbers (who might be richer). Also, if you call home telephones during the
day, you are less likely to sample people with jobs. And if you only sample
the person who answers the phone, you are less likely to sample people who
share a phone line.

If factors like income, employment, and household size are related to weight—
and it is plausible that they are—the results of your survey would be affected
one way or another. This problem is called sampling bias because it is a
property of the sampling process.

This sampling process is also vulnerable to self-selection, which is a kind of
sampling bias. Some people will refuse to answer the question, and if the
tendency to refuse is related to weight, that would affect the results.

Finally, if you ask people how much they weigh, rather than weighing them,
the results might not be accurate. Even helpful respondents might round
up or down if they are uncomfortable with their actual weight. And not all
respondents are helpful. These inaccuracies are examples of measurement
error.

When you report an estimated quantity, it is useful to report standard error,
or a confidence interval, or both, in order to quantify sampling error. But
it is also important to remember that sampling error is only one source of
error, and often it is not the biggest.

8.5 Exponential distributions

Let’s play one more round of the estimation game. I’m thinking of a distri-
bution. It’s an exponential distribution, and here’s a sample:

[5.384, 4.493, 19.198, 2.790, 6.122, 12.844]

What do you think is the parameter, λ, of this distribution?

In general, the mean of an exponential distribution is 1/λ, so working back-
wards, we might choose

L = 1/x̄
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L is an estimator of λ. And not just any estimator; it is also the maxi-
mum likelihood estimator (see http://wikipedia.org/wiki/Exponential_
distribution#Maximum_likelihood). So if you want to maximize your
chance of guessing λ exactly, L is the way to go.

But we know that x̄ is not robust in the presence of outliers, so we expect L
to have the same problem.

We can choose an alternative based on the sample median. The median of
an exponential distribution is ln(2)/λ, so working backwards again, we can
define an estimator

Lm = ln(2)/m

where m is the sample median.

To test the performance of these estimators, we can simulate the sampling
process:

def Estimate3(n=7, m=1000):

lam = 2

means = []

medians = []

for _ in range(m):

xs = np.random.exponential(1.0/lam, n)

L = 1 / np.mean(xs)

Lm = math.log(2) / thinkstats2.Median(xs)

means.append(L)

medians.append(Lm)

print('rmse L', RMSE(means, lam))

print('rmse Lm', RMSE(medians, lam))

print('mean error L', MeanError(means, lam))

print('mean error Lm', MeanError(medians, lam))

When I run this experiment with λ = 2, the RMSE of L is 1.1. For the
median-based estimator Lm, RMSE is 1.8. We can’t tell from this experiment
whether L minimizes MSE, but at least it seems better than Lm.

Sadly, it seems that both estimators are biased. For L the mean error is 0.33;
for Lm it is 0.45. And neither converges to 0 as m increases.

http://wikipedia.org/wiki/Exponential_distribution#Maximum_likelihood
http://wikipedia.org/wiki/Exponential_distribution#Maximum_likelihood
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It turns out that x̄ is an unbiased estimator of the mean of the distribution,
1/λ, but L is not an unbiased estimator of λ.

8.6 Exercises

For the following exercises, you might want to start with a copy of
estimation.py. Solutions are in chap08soln.py

Exercise 8.1 In this chapter we used x̄ and median to estimate µ, and found
that x̄ yields lower MSE. Also, we used S2 and S2

n−1 to estimate σ, and found
that S2 is biased and S2

n−1 unbiased.

Run similar experiments to see if x̄ and median are biased estimates of µ.
Also check whether S2 or S2

n−1 yields a lower MSE.

Exercise 8.2 Suppose you draw a sample with size n = 10 from an exponen-
tial distribution with λ = 2. Simulate this experiment 1000 times and plot
the sampling distribution of the estimate L. Compute the standard error of
the estimate and the 90% confidence interval.

Repeat the experiment with a few different values of n and make a plot of
standard error versus n.

Exercise 8.3 In games like hockey and soccer, the time between goals is
roughly exponential. So you could estimate a team’s goal-scoring rate by
observing the number of goals they score in a game. This estimation process
is a little different from sampling the time between goals, so let’s see how it
works.

Write a function that takes a goal-scoring rate, lam, in goals per game, and
simulates a game by generating the time between goals until the total time
exceeds 1 game, then returns the number of goals scored.

Write another function that simulates many games, stores the estimates of
lam, then computes their mean error and RMSE.

Is this way of making an estimate biased? Plot the sampling distribution of
the estimates and the 90% confidence interval. What is the standard error?
What happens to sampling error for increasing values of lam?
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8.7 Glossary

• estimation: The process of inferring the parameters of a distribution
from a sample.

• estimator: A statistic used to estimate a parameter.

• mean squared error (MSE): A measure of estimation error.

• root mean squared error (RMSE): The square root of MSE, a more
meaningful representation of typical error magnitude.

• maximum likelihood estimator (MLE): An estimator that computes the
point estimate most likely to be correct.

• bias (of an estimator): The tendency of an estimator to be above or
below the actual value of the parameter, when averaged over repeated
experiments.

• sampling error: Error in an estimate due to the limited size of the
sample and variation due to chance.

• sampling bias: Error in an estimate due to a sampling process that is
not representative of the population.

• measurement error: Error in an estimate due to inaccuracy collecting
or recording data.

• sampling distribution: The distribution of a statistic if an experiment
is repeated many times.

• standard error: The RMSE of an estimate, which quantifies variability
due to sampling error (but not other sources of error).

• confidence interval: An interval that represents the expected range of
an estimator if an experiment is repeated many times.



Chapter 9

Hypothesis testing

The code for this chapter is in hypothesis.py. For information about down-
loading and working with this code, see Section 0.2.

9.1 Classical hypothesis testing

Exploring the data from the NSFG, we saw several “apparent effects,” in-
cluding differences between first babies and others. So far we have taken
these effects at face value; in this chapter, we put them to the test.

The fundamental question we want to address is whether the effects we see
in a sample are likely to appear in the larger population. For example, in the
NSFG sample we see a difference in mean pregnancy length for first babies
and others. We would like to know if that effect reflects a real difference for
women in the U.S., or if it might appear in the sample by chance.

There are several ways we could formulate this question, including Fisher
null hypothesis testing, Neyman-Pearson decision theory, and Bayesian in-
ference1. What I present here is a subset of all three that makes up most of
what people use in practice, which I will call classical hypothesis testing.

1For more about Bayesian inference, see the sequel to this book, Think Bayes.
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The goal of classical hypothesis testing is to answer the question, “Given a
sample and an apparent effect, what is the probability of seeing such an effect
by chance?” Here’s how we answer that question:

• The first step is to quantify the size of the apparent effect by choosing a
test statistic. In the NSFG example, the apparent effect is a difference
in pregnancy length between first babies and others, so a natural choice
for the test statistic is the difference in means between the two groups.

• The second step is to define a null hypothesis, which is a model of the
system based on the assumption that the apparent effect is not real.
In the NSFG example the null hypothesis is that there is no difference
between first babies and others; that is, that pregnancy lengths for
both groups have the same distribution.

• The third step is to compute a p-value, which is the probability of
seeing the apparent effect if the null hypothesis is true. In the NSFG
example, we would compute the actual difference in means, then com-
pute the probability of seeing a difference as big, or bigger, under the
null hypothesis.

• The last step is to interpret the result. If the p-value is low, the effect
is said to be statistically significant, which means that it is unlikely
to have occurred by chance. In that case we infer that the effect is
more likely to appear in the larger population.

The logic of this process is similar to a proof by contradiction. To prove a
mathematical statement, A, you assume temporarily that A is false. If that
assumption leads to a contradiction, you conclude that A must actually be
true.

Similarly, to test a hypothesis like, “This effect is real,” we assume, temporar-
ily, that it is not. That’s the null hypothesis. Based on that assumption, we
compute the probability of the apparent effect. That’s the p-value. If the
p-value is low, we conclude that the null hypothesis is unlikely to be true.
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9.2 HypothesisTest

thinkstats2 provides HypothesisTest, a class that represents the structure
of a classical hypothesis test. Here is the definition:

class HypothesisTest(object):

def __init__(self, data):

self.data = data

self.MakeModel()

self.actual = self.TestStatistic(data)

def PValue(self, iters=1000):

self.test_stats = [self.TestStatistic(self.RunModel())

for _ in range(iters)]

count = sum(1 for x in self.test_stats if x >= self.actual)

return count / iters

def TestStatistic(self, data):

raise UnimplementedMethodException()

def MakeModel(self):

pass

def RunModel(self):

raise UnimplementedMethodException()

HypothesisTest is an abstract parent class that provides complete defini-
tions for some methods and place-keepers for others. Child classes based on
HypothesisTest inherit __init__ and PValue and provide TestStatistic,
RunModel, and optionally MakeModel.

__init__ takes the data in whatever form is appropriate. It calls MakeModel,
which builds a representation of the null hypothesis, then passes the data to
TestStatistic, which computes the size of the effect in the sample.

PValue computes the probability of the apparent effect under the null hy-
pothesis. It takes as a parameter iters, which is the number of simulations
to run. The first line generates simulated data, computes test statistics,
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and stores them in test_stats. The result is the fraction of elements in
test_stats that exceed or equal the observed test statistic, self.actual.

As a simple example2, suppose we toss a coin 250 times and see 140 heads
and 110 tails. Based on this result, we might suspect that the coin is biased;
that is, more likely to land heads. To test this hypothesis, we compute the
probability of seeing such a difference if the coin is actually fair:

class CoinTest(thinkstats2.HypothesisTest):

def TestStatistic(self, data):

heads, tails = data

test_stat = abs(heads - tails)

return test_stat

def RunModel(self):

heads, tails = self.data

n = heads + tails

sample = [random.choice('HT') for _ in range(n)]

hist = thinkstats2.Hist(sample)

data = hist['H'], hist['T']

return data

The parameter, data, is a pair of integers: the number of heads and tails.
The test statistic is the absolute difference between them, so self.actual

is 30.

RunModel simulates coin tosses assuming that the coin is actually fair. It
generates a sample of 250 tosses, uses Hist to count the number of heads and
tails, and returns a pair of integers.

Now all we have to do is instantiate CoinTest and call PValue:

ct = CoinTest((140, 110))

pvalue = ct.PValue()

The result is about 0.07, which means that if the coin is fair, we expect to
see a difference as big as 30 about 7% of the time.

2Adapted from MacKay, Information Theory, Inference, and Learning Algorithms,
2003.
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How should we interpret this result? By convention, 5% is the threshold of
statistical significance. If the p-value is less than 5%, the effect is considered
significant; otherwise it is not.

But the choice of 5% is arbitrary, and (as we will see later) the p-value de-
pends on the choice of the test statistics and the model of the null hypothesis.
So p-values should not be considered precise measurements.

I recommend interpreting p-values according to their order of magnitude: if
the p-value is less than 1%, the effect is unlikely to be due to chance; if it is
greater than 10%, the effect can plausibly be explained by chance. P-values
between 1% and 10% should be considered borderline. So in this example I
conclude that the data do not provide strong evidence that the coin is biased
or not.

9.3 Testing a difference in means

One of the most common effects to test is a difference in mean between two
groups. In the NSFG data, we saw that the mean pregnancy length for first
babies is slightly longer, and the mean birth weight is slightly smaller. Now
we will see if those effects are statistically significant.

For these examples, the null hypothesis is that the distributions for the two
groups are the same. One way to model the null hypothesis is by permuta-
tion; that is, we can take values for first babies and others and shuffle them,
treating the two groups as one big group:

class DiffMeansPermute(thinkstats2.HypothesisTest):

def TestStatistic(self, data):

group1, group2 = data

test_stat = abs(group1.mean() - group2.mean())

return test_stat

def MakeModel(self):

group1, group2 = self.data

self.n, self.m = len(group1), len(group2)

self.pool = np.hstack((group1, group2))
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def RunModel(self):

np.random.shuffle(self.pool)

data = self.pool[:self.n], self.pool[self.n:]

return data

data is a pair of sequences, one for each group. The test statistic is the
absolute difference in the means.

MakeModel records the sizes of the groups, n and m, and combines the groups
into one NumPy array, self.pool.

RunModel simulates the null hypothesis by shuffling the pooled values and
splitting them into two groups with sizes n and m. As always, the return
value from RunModel has the same format as the observed data.

To test the difference in pregnancy length, we run:

live, firsts, others = first.MakeFrames()

data = firsts.prglngth.values, others.prglngth.values

ht = DiffMeansPermute(data)

pvalue = ht.PValue()

MakeFrames reads the NSFG data and returns DataFrames representing all
live births, first babies, and others. We extract pregnancy lengths as NumPy
arrays, pass them as data to DiffMeansPermute, and compute the p-value.
The result is about 0.17, which means that we expect to see a difference
as big as the observed effect about 17% of the time. So this effect is not
statistically significant.

HypothesisTest provides PlotCdf, which plots the distribution of the test
statistic and a gray line indicating the observed effect size:

ht.PlotCdf()

thinkplot.Show(xlabel='test statistic',

ylabel='CDF')

Figure 9.1 shows the result. The CDF intersects the observed difference at
0.83, which is the complement of the p-value, 0.17.

If we run the same analysis with birth weight, the computed p-value is 0; after
1000 attempts, the simulation never yields an effect as big as the observed
difference, 0.12 lbs. So we would report p < 0.001, and conclude that the
difference in birth weight is statistically significant.
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Figure 9.1: CDF of difference in mean pregnancy length under the null hy-
pothesis.

9.4 Other test statistics

Choosing the best test statistic depends on what question you are trying to
address. For example, if the relevant question is whether pregnancy lengths
are different for first babies, then it makes sense to test the absolute difference
in means, as we did in the previous section.

If we had some reason to think that first babies are likely to be late, then
we would not take the absolute value of the difference; instead we would use
this test statistic:

class DiffMeansOneSided(DiffMeansPermute):

def TestStatistic(self, data):

group1, group2 = data

test_stat = group1.mean() - group2.mean()

return test_stat

DiffMeansOneSided inherits MakeModel and RunModel from
DiffMeansPermute; the only difference is that TestStatistic does
not take the absolute value of the difference. This kind of test is called
one-sided because it only counts one side of the distribution of differences.
The previous test, using both sides, is two-sided.
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For this version of the test, the p-value is 0.09. In general the p-value for
a one-sided test is about half the p-value for a two-sided test, depending on
the shape of the distribution.

The one-sided hypothesis, that first babies are born late, is more specific
than the two-sided hypothesis, so the p-value is smaller. But even for the
stronger hypothesis, the difference is not statistically significant.

We can use the same framework to test for a difference in standard deviation.
In Section 3.3, we saw some evidence that first babies are more likely to be
early or late, and less likely to be on time. So we might hypothesize that the
standard deviation is higher. Here’s how we can test that:

class DiffStdPermute(DiffMeansPermute):

def TestStatistic(self, data):

group1, group2 = data

test_stat = group1.std() - group2.std()

return test_stat

This is a one-sided test because the hypothesis is that the standard deviation
for first babies is higher, not just different. The p-value is 0.09, which is not
statistically significant.

9.5 Testing a correlation

This framework can also test correlations. For example, in the NSFG data
set, the correlation between birth weight and mother’s age is about 0.07. It
seems like older mothers have heavier babies. But could this effect be due to
chance?

For the test statistic, I use Pearson’s correlation, but Spearman’s would work
as well. If we had reason to expect positive correlation, we would do a one-
sided test. But since we have no such reason, I’ll do a two-sided test using
the absolute value of correlation.

The null hypothesis is that there is no correlation between mother’s age and
birth weight. By shuffling the observed values, we can simulate a world
where the distributions of age and birth weight are the same, but where the
variables are unrelated:
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class CorrelationPermute(thinkstats2.HypothesisTest):

def TestStatistic(self, data):

xs, ys = data

test_stat = abs(thinkstats2.Corr(xs, ys))

return test_stat

def RunModel(self):

xs, ys = self.data

xs = np.random.permutation(xs)

return xs, ys

data is a pair of sequences. TestStatistic computes the absolute value of
Pearson’s correlation. RunModel shuffles the xs and returns simulated data.

Here’s the code that reads the data and runs the test:

live, firsts, others = first.MakeFrames()

live = live.dropna(subset=['agepreg', 'totalwgt_lb'])

data = live.agepreg.values, live.totalwgt_lb.values

ht = CorrelationPermute(data)

pvalue = ht.PValue()

I use dropna with the subset argument to drop rows that are missing either
of the variables we need.

The actual correlation is 0.07. The computed p-value is 0; after 1000 iter-
ations the largest simulated correlation is 0.04. So although the observed
correlation is small, it is statistically significant.

This example is a reminder that “statistically significant” does not always
mean that an effect is important, or significant in practice. It only means
that it is unlikely to have occurred by chance.

9.6 Testing proportions

Suppose you run a casino and you suspect that a customer is using a crooked
die; that is, one that has been modified to make one of the faces more likely
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than the others. You apprehend the alleged cheater and confiscate the die,
but now you have to prove that it is crooked. You roll the die 60 times and
get the following results:

Value 1 2 3 4 5 6

Frequency 8 9 19 5 8 11

On average you expect each value to appear 10 times. In this dataset, the
value 3 appears more often than expected, and the value 4 appears less often.
But are these differences statistically significant?

To test this hypothesis, we can compute the expected frequency for each
value, the difference between the expected and observed frequencies, and the
total absolute difference. In this example, we expect each side to come up
10 times out of 60; the deviations from this expectation are -2, -1, 9, -5, -2,
and 1; so the total absolute difference is 20. How often would we see such a
difference by chance?

Here’s a version of HypothesisTest that answers that question:

class DiceTest(thinkstats2.HypothesisTest):

def TestStatistic(self, data):

observed = data

n = sum(observed)

expected = np.ones(6) * n / 6

test_stat = sum(abs(observed - expected))

return test_stat

def RunModel(self):

n = sum(self.data)

values = [1, 2, 3, 4, 5, 6]

rolls = np.random.choice(values, n, replace=True)

hist = thinkstats2.Hist(rolls)

freqs = hist.Freqs(values)

return freqs

The data are represented as a list of frequencies: the observed values are [8,

9, 19, 5, 8, 11]; the expected frequencies are all 10. The test statistic is
the sum of the absolute differences.
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The null hypothesis is that the die is fair, so we simulate that by drawing
random samples from values. RunModel uses Hist to compute and return
the list of frequencies.

The p-value for this data is 0.13, which means that if the die is fair we expect
to see the observed total deviation, or more, about 13% of the time. So the
apparent effect is not statistically significant.

9.7 Chi-squared tests

In the previous section we used total deviation as the test statistic. But for
testing proportions it is more common to use the chi-squared statistic:

χ2 =
∑
i

(Oi − Ei)2

Ei

Where Oi are the observed frequencies and Ei are the expected frequencies.
Here’s the Python code:

class DiceChiTest(DiceTest):

def TestStatistic(self, data):

observed = data

n = sum(observed)

expected = np.ones(6) * n / 6

test_stat = sum((observed - expected)**2 / expected)

return test_stat

Squaring the deviations (rather than taking absolute values) gives more
weight to large deviations. Dividing through by expected standardizes the
deviations, although in this case it has no effect because the expected fre-
quencies are all equal.

The p-value using the chi-squared statistic is 0.04, substantially smaller than
what we got using total deviation, 0.13. If we take the 5% threshold seriously,
we would consider this effect statistically significant. But considering the two
tests togther, I would say that the results are borderline. I would not rule out
the possibility that the die is crooked, but I would not convict the accused
cheater.
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This example demonstrates an important point: the p-value depends on the
choice of test statistic and the model of the null hypothesis, and sometimes
these choices determine whether an effect is statistically significant or not.

9.8 First babies again

Earlier in this chapter we looked at pregnancy lengths for first babies and
others, and concluded that the apparent differences in mean and standard
deviation are not statistically significant. But in Section 3.3, we saw several
apparent differences in the distribution of pregnancy length, especially in the
range from 35 to 43 weeks. To see whether those differences are statistically
significant, we can use a test based on a chi-squared statistic.

The code combines elements from previous examples:

class PregLengthTest(thinkstats2.HypothesisTest):

def MakeModel(self):

firsts, others = self.data

self.n = len(firsts)

self.pool = np.hstack((firsts, others))

pmf = thinkstats2.Pmf(self.pool)

self.values = range(35, 44)

self.expected_probs = np.array(pmf.Probs(self.values))

def RunModel(self):

np.random.shuffle(self.pool)

data = self.pool[:self.n], self.pool[self.n:]

return data

The data are represented as two lists of pregnancy lengths. The null hypoth-
esis is that both samples are drawn from the same distribution. MakeModel

models that distribution by pooling the two samples using hstack. Then
RunModel generates simulated data by shuffling the pooled sample and split-
ting it into two parts.

MakeModel also defines values, which is the range of weeks we’ll use, and
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expected_probs, which is the probability of each value in the pooled distri-
bution.

Here’s the code that computes the test statistic:

# class PregLengthTest:

def TestStatistic(self, data):

firsts, others = data

stat = self.ChiSquared(firsts) + self.ChiSquared(others)

return stat

def ChiSquared(self, lengths):

hist = thinkstats2.Hist(lengths)

observed = np.array(hist.Freqs(self.values))

expected = self.expected_probs * len(lengths)

stat = sum((observed - expected)**2 / expected)

return stat

TestStatistic computes the chi-squared statistic for first babies and others,
and adds them.

ChiSquared takes a sequence of pregnancy lengths, computes its histogram,
and computes observed, which is a list of frequencies corresponding to
self.values. To compute the list of expected frequencies, it multiplies the
pre-computed probabilities, expected_probs, by the sample size. It returns
the chi-squared statistic, stat.

For the NSFG data the total chi-squared statistic is 102, which doesn’t mean
much by itself. But after 1000 iterations, the largest test statistic generated
under the null hypothesis is 32. We conclude that the observed chi-squared
statistic is unlikely under the null hypothesis, so the apparent effect is sta-
tistically significant.

This example demonstrates a limitation of chi-squared tests: they indicate
that there is a difference between the two groups, but they don’t say anything
specific about what the difference is.
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9.9 Errors

In classical hypothesis testing, an effect is considered statistically significant
if the p-value is below some threshold, commonly 5%. This procedure raises
two questions:

• If the effect is actually due to chance, what is the probability that
we will wrongly consider it significant? This probability is the false
positive rate.

• If the effect is real, what is the chance that the hypothesis test will fail?
This probability is the false negative rate.

The false positive rate is relatively easy to compute: if the threshold is 5%,
the false positive rate is 5%. Here’s why:

• If there is no real effect, the null hypothesis is true, so we can compute
the distribution of the test statistic by simulating the null hypothesis.
Call this distribution CDFT .

• Each time we run an experiment, we get a test statistic, t, which is
drawn from CDFT . Then we compute a p-value, which is the probabil-
ity that a random value from CDFT exceeds t, so that’s 1−CDFT (t).

• The p-value is less than 5% if CDFT (t) is greater than 95%; that is, if
t exceeds the 95th percentile. And how often does a value chosen from
CDFT exceed the 95th percentile? 5% of the time.

So if you perform one hypothesis test with a 5% threshold, you expect a false
positive 1 time in 20.

9.10 Power

The false negative rate is harder to compute because it depends on the actual
effect size, and normally we don’t know that. One option is to compute a
rate conditioned on a hypothetical effect size.

For example, if we assume that the observed difference between groups is
accurate, we can use the observed samples as a model of the population and
run hypothesis tests with simulated data:
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def FalseNegRate(data, num_runs=100):

group1, group2 = data

count = 0

for i in range(num_runs):

sample1 = thinkstats2.Resample(group1)

sample2 = thinkstats2.Resample(group2)

ht = DiffMeansPermute((sample1, sample2))

pvalue = ht.PValue(iters=101)

if pvalue > 0.05:

count += 1

return count / num_runs

FalseNegRate takes data in the form of two sequences, one for each group.
Each time through the loop, it simulates an experiment by drawing a random
sample from each group and running a hypothesis test. Then it checks the
result and counts the number of false negatives.

Resample takes a sequence and draws a sample with the same length, with
replacement:

def Resample(xs):

return np.random.choice(xs, len(xs), replace=True)

Here’s the code that tests pregnancy lengths:

live, firsts, others = first.MakeFrames()

data = firsts.prglngth.values, others.prglngth.values

neg_rate = FalseNegRate(data)

The result is about 70%, which means that if the actual difference in mean
pregnancy length is 0.078 weeks, we expect an experiment with this sample
size to yield a negative test 70% of the time.

This result is often presented the other way around: if the actual difference
is 0.078 weeks, we should expect a positive test only 30% of the time. This
“correct positive rate” is called the power of the test, or sometimes “sensi-
tivity”. It reflects the ability of the test to detect an effect of a given size.



132 Chapter 9. Hypothesis testing

In this example, the test had only a 30% chance of yielding a positive result
(again, assuming that the difference is 0.078 weeks). As a rule of thumb, a
power of 80% is considered acceptable, so we would say that this test was
“underpowered.”

In general a negative hypothesis test does not imply that there is no difference
between the groups; instead it suggests that if there is a difference, it is too
small to detect with this sample size.

9.11 Replication

The hypothesis testing process I demonstrated in this chapter is not, strictly
speaking, good practice.

First, I performed multiple tests. If you run one hypothesis test, the chance
of a false positive is about 1 in 20, which might be acceptable. But if you
run 20 tests, you should expect at least one false positive, most of the time.

Second, I used the same dataset for exploration and testing. If you explore a
large dataset, find a surprising effect, and then test whether it is significant,
you have a good chance of generating a false positive.

To compensate for multiple tests, you can adjust the p-value threshold (see
https://en.wikipedia.org/wiki/Holm-Bonferroni_method). Or you can
address both problems by partitioning the data, using one set for exploration
and the other for testing.

In some fields these practices are required or at least encouraged. But it is
also common to address these problems implicitly by replicating published
results. Typically the first paper to report a new result is considered ex-
ploratory. Subsequent papers that replicate the result with new data are
considered confirmatory.

As it happens, we have an opportunity to replicate the results in this chapter.
The first edition of this book is based on Cycle 6 of the NSFG, which was
released in 2002. In October 2011, the CDC released additional data based
on interviews conducted from 2006–2010. nsfg2.py contains code to read
and clean this data. In the new dataset:

https://en.wikipedia.org/wiki/Holm-Bonferroni_method
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• The difference in mean pregnancy length is 0.16 weeks and statistically
significant with p < 0.001 (compared to 0.078 weeks in the original
dataset).

• The difference in birth weight is 0.17 pounds with p < 0.001 (compared
to 0.12 lbs in the original dataset).

• The correlation between birth weight and mother’s age is 0.08 with
p < 0.001 (compared to 0.07).

• The chi-squared test is statistically significant with p < 0.001 (as it was
in the original).

In summary, all of the effects that were statistically significant in the original
dataset were replicated in the new dataset, and the difference in pregnancy
length, which was not significant in the original, is bigger in the new dataset
and significant.

9.12 Exercises

A solution to these exercises is in chap09soln.py.

Exercise 9.1 As sample size increases, the power of a hypothesis test in-
creases, which means it is more likely to be positive if the effect is real.
Conversely, as sample size decreases, the test is less likely to be positive even
if the effect is real.

To investigate this behavior, run the tests in this chapter with different sub-
sets of the NSFG data. You can use thinkstats2.SampleRows to select a
random subset of the rows in a DataFrame.

What happens to the p-values of these tests as sample size decreases? What
is the smallest sample size that yields a positive test?

Exercise 9.2 In Section 9.3, we simulated the null hypothesis by permuta-
tion; that is, we treated the observed values as if they represented the entire
population, and randomly assigned the members of the population to the
two groups.
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An alternative is to use the sample to estimate the distribution for the pop-
ulation, then draw a random sample from that distribution. This process is
called resampling. There are several ways to implement resampling, but
one of the simplest is to draw a sample with replacement from the observed
values, as in Section 9.10.

Write a class named DiffMeansResample that inherits from
DiffMeansPermute and overrides RunModel to implement resampling,
rather than permutation.

Use this model to test the differences in pregnancy length and birth weight.
How much does the model affect the results?

9.13 Glossary

• hypothesis testing: The process of determining whether an apparent
effect is statistically significant.

• test statistic: A statistic used to quantify an effect size.

• null hypothesis: A model of a system based on the assumption that an
apparent effect is due to chance.

• p-value: The probability that an effect could occur by chance.

• statistically significant: An effect is statistically significant if it is un-
likely to occur by chance.

• permutation test: A way to compute p-values by generating permuta-
tions of an observed dataset.

• resampling test: A way to compute p-values by generating samples,
with replacement, from an observed dataset.

• two-sided test: A test that asks, “What is the chance of an effect as
big as the observed effect, positive or negative?”

• one-sided test: A test that asks, “What is the chance of an effect as
big as the observed effect, and with the same sign?”
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• chi-squared test: A test that uses the chi-squared statistic as the test
statistic.

• false positive: The conclusion that an effect is real when it is not.

• false negative: The conclusion that an effect is due to chance when it
is not.

• power: The probability of a positive test if the null hypothesis is false.
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Chapter 10

Linear least squares

The code for this chapter is in linear.py. For information about download-
ing and working with this code, see Section 0.2.

10.1 Least squares fit

Correlation coefficients measure the strength and sign of a relationship, but
not the slope. There are several ways to estimate the slope; the most common
is a linear least squares fit. A “linear fit” is a line intended to model the
relationship between variables. A “least squares” fit is one that minimizes
the mean squared error (MSE) between the line and the data.

Suppose we have a sequence of points, ys, that we want to express as a
function of another sequence xs. If there is a linear relationship between xs

and ys with intercept inter and slope slope, we expect each y[i] to be
inter + slope * x[i].

But unless the correlation is perfect, this prediction is only approximate. The
vertical deviation from the line, or residual, is

res = ys - (inter + slope * xs)

The residuals might be due to random factors like measurement error, or non-
random factors that are unknown. For example, if we are trying to predict



138 Chapter 10. Linear least squares

weight as a function of height, unknown factors might include diet, exercise,
and body type.

If we get the parameters inter and slope wrong, the residuals get bigger,
so it makes intuitive sense that the parameters we want are the ones that
minimize the residuals.

We might try to minimize the absolute value of the residuals, or their squares,
or their cubes; but the most common choice is to minimize the sum of squared
residuals, sum(res**2)).

Why? There are three good reasons and one less important one:

• Squaring has the feature of treating positive and negative residuals the
same, which is usually what we want.

• Squaring gives more weight to large residuals, but not so much weight
that the largest residual always dominates.

• If the residuals are uncorrelated and normally distributed with mean 0
and constant (but unknown) variance, then the least squares fit is also
the maximum likelihood estimator of inter and slope. See https:

//en.wikipedia.org/wiki/Linear_regression.

• The values of inter and slope that minimize the squared residuals
can be computed efficiently.

The last reason made sense when computational efficiency was more impor-
tant than choosing the method most appropriate to the problem at hand.
That’s no longer the case, so it is worth considering whether squared resid-
uals are the right thing to minimize.

For example, if you are using xs to predict values of ys, guessing too high
might be better (or worse) than guessing too low. In that case you might
want to compute some cost function for each residual, and minimize total
cost, sum(cost(res)). However, computing a least squares fit is quick, easy
and often good enough.

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
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10.2 Implementation

thinkstats2 provides simple functions that demonstrate linear least squares:

def LeastSquares(xs, ys):

meanx, varx = MeanVar(xs)

meany = Mean(ys)

slope = Cov(xs, ys, meanx, meany) / varx

inter = meany - slope * meanx

return inter, slope

LeastSquares takes sequences xs and ys and returns the estimated parame-
ters inter and slope. For details on how it works, see http://wikipedia.

org/wiki/Numerical_methods_for_linear_least_squares.

thinkstats2 also provides FitLine, which takes inter and slope and re-
turns the fitted line for a sequence of xs.

def FitLine(xs, inter, slope):

fit_xs = np.sort(xs)

fit_ys = inter + slope * fit_xs

return fit_xs, fit_ys

We can use these functions to compute the least squares fit for birth weight
as a function of mother’s age.

live, firsts, others = first.MakeFrames()

live = live.dropna(subset=['agepreg', 'totalwgt_lb'])

ages = live.agepreg

weights = live.totalwgt_lb

inter, slope = thinkstats2.LeastSquares(ages, weights)

fit_xs, fit_ys = thinkstats2.FitLine(ages, inter, slope)

The estimated intercept and slope are 6.8 lbs and 0.017 lbs per year. These
values are hard to interpret in this form: the intercept is the expected weight
of a baby whose mother is 0 years old, which doesn’t make sense in context,
and the slope is too small to grasp easily.

http://wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
http://wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
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Figure 10.1: Scatter plot of birth weight and mother’s age with a linear fit.

Instead of presenting the intercept at x = 0, it is often helpful to present the
intercept at the mean of x. In this case the mean age is about 25 years and
the mean baby weight for a 25 year old mother is 7.3 pounds. The slope is
0.27 ounces per year, or 0.17 pounds per decade.

Figure 10.1 shows a scatter plot of birth weight and age along with the fitted
line. It’s a good idea to look at a figure like this to assess whether the
relationship is linear and whether the fitted line seems like a good model of
the relationship.

10.3 Residuals

Another useful test is to plot the residuals. thinkstats2 provides a function
that computes residuals:

def Residuals(xs, ys, inter, slope):

xs = np.asarray(xs)

ys = np.asarray(ys)

res = ys - (inter + slope * xs)

return res

Residuals takes sequences xs and ys and estimated parameters inter and
slope. It returns the differences between the actual values and the fitted
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Figure 10.2: Residuals of the linear fit.

line.

To visualize the residuals, I group respondents by age and compute per-
centiles in each group, as we saw in Section 7.2. Figure 10.2 shows the 25th,
50th and 75th percentiles of the residuals for each age group. The median is
near zero, as expected, and the interquartile range is about 2 pounds. So if
we know the mother’s age, we can guess the baby’s weight within a pound,
about 50% of the time.

Ideally these lines should be flat, indicating that the residuals are random,
and parallel, indicating that the variance of the residuals is the same for all
age groups. In fact, the lines are close to parallel, so that’s good; but they
have some curvature, indicating that the relationship is nonlinear. Neverthe-
less, the linear fit is a simple model that is probably good enough for some
purposes.

10.4 Estimation

The parameters slope and inter are estimates based on a sample; like
other estimates, they are vulnerable to sampling bias, measurement error,
and sampling error. As discussed in Chapter 8, sampling bias is caused
by non-representative sampling, measurement error is caused by errors in
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collecting and recording data, and sampling error is the result of measuring
a sample rather than the entire population.

To assess sampling error, we ask, “If we run this experiment again, how much
variability do we expect in the estimates?” We can answer this question by
running simulated experiments and computing sampling distributions of the
estimates.

I simulate the experiments by resampling the data; that is, I treat the ob-
served pregnancies as if they were the entire population and draw samples,
with replacement, from the observed sample.

def SamplingDistributions(live, iters=101):

t = []

for _ in range(iters):

sample = thinkstats2.ResampleRows(live)

ages = sample.agepreg

weights = sample.totalwgt_lb

estimates = thinkstats2.LeastSquares(ages, weights)

t.append(estimates)

inters, slopes = zip(*t)

return inters, slopes

SamplingDistributions takes a DataFrame with one row per live birth,
and iters, the number of experiments to simulate. It uses ResampleRows

to resample the observed pregnancies. We’ve already seen SampleRows,
which chooses random rows from a DataFrame. thinkstats2 also provides
ResampleRows, which returns a sample the same size as the original:

def ResampleRows(df):

return SampleRows(df, len(df), replace=True)

After resampling, we use the simulated sample to estimate parameters. The
result is two sequences: the estimated intercepts and estimated slopes.

I summarize the sampling distributions by printing the standard error and
confidence interval:

def Summarize(estimates, actual=None):

mean = thinkstats2.Mean(estimates)

stderr = thinkstats2.Std(estimates, mu=actual)
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cdf = thinkstats2.Cdf(estimates)

ci = cdf.ConfidenceInterval(90)

print('mean, SE, CI', mean, stderr, ci)

Summarize takes a sequence of estimates and the actual value. It prints the
mean of the estimates, the standard error and a 90% confidence interval.

For the intercept, the mean estimate is 6.83, with standard error 0.07 and
90% confidence interval (6.71, 6.94). The estimated slope, in more compact
form, is 0.0174, SE 0.0028, CI (0.0126, 0.0220). There is almost a factor of
two between the low and high ends of this CI, so it should be considered a
rough estimate.

To visualize the sampling error of the estimate, we could plot all of the fitted
lines, or for a less cluttered representation, plot a 90% confidence interval for
each age. Here’s the code:

def PlotConfidenceIntervals(xs, inters, slopes,

percent=90, **options):

fys_seq = []

for inter, slope in zip(inters, slopes):

fxs, fys = thinkstats2.FitLine(xs, inter, slope)

fys_seq.append(fys)

p = (100 - percent) / 2

percents = p, 100 - p

low, high = thinkstats2.PercentileRows(fys_seq, percents)

thinkplot.FillBetween(fxs, low, high, **options)

xs is the sequence of mother’s age. inters and slopes are the estimated
parameters generated by SamplingDistributions. percent indicates which
confidence interval to plot.

PlotConfidenceIntervals generates a fitted line for each pair of inter

and slope and stores the results in a sequence, fys_seq. Then it uses
PercentileRows to select the upper and lower percentiles of y for each value
of x. For a 90% confidence interval, it selects the 5th and 95th percentiles.
FillBetween draws a polygon that fills the space between two lines.

Figure 10.3 shows the 50% and 90% confidence intervals for curves fitted to
birth weight as a function of mother’s age. The vertical width of the region



144 Chapter 10. Linear least squares

10 15 20 25 30 35 40 45
age (years)

6.9

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

bi
rt

h 
w

ei
gh

t (
lb

s)

90%

50%

Figure 10.3: 50% and 90% confidence intervals showing variability in the
fitted line due to sampling error of inter and slope.

represents the effect of sampling error; the effect is smaller for values near
the mean and larger for the extremes.

10.5 Goodness of fit

There are several ways to measure the quality of a linear model, or goodness
of fit. One of the simplest is the standard deviation of the residuals.

If you use a linear model to make predictions, Std(res) is the root mean
squared error (RMSE) of your predictions. For example, if you use mother’s
age to guess birth weight, the RMSE of your guess would be 1.40 lbs.

If you guess birth weight without knowing the mother’s age, the RMSE of
your guess is Std(ys), which is 1.41 lbs. So in this example, knowing a
mother’s age does not improve the predictions substantially.

Another way to measure goodness of fit is the coefficient of determina-
tion, usually denoted R2 and called “R-squared”:

def CoefDetermination(ys, res):

return 1 - Var(res) / Var(ys)
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Var(res) is the MSE of your guesses using the model, Var(ys) is the MSE
without it. So their ratio is the fraction of MSE that remains if you use the
model, and R2 is the fraction of MSE the model eliminates.

For birth weight and mother’s age, R2 is 0.0047, which means that mother’s
age predicts about half of 1% of variance in birth weight.

There is a simple relationship between the coefficient of determination and
Pearson’s coefficient of correlation: R2 = ρ2. For example, if ρ is 0.8 or -0.8,
R2 = 0.64.

Although ρ and R2 are often used to quantify the strength of a relationship,
they are not easy to interpret in terms of predictive power. In my opinion,
Std(res) is the best representation of the quality of prediction, especially if
it is presented in relation to Std(ys).

For example, when people talk about the validity of the SAT (a standardized
test used for college admission in the U.S.) they often talk about correlations
between SAT scores and other measures of intelligence.

According to one study, there is a Pearson correlation of ρ = 0.72 between
total SAT scores and IQ scores, which sounds like a strong correlation. But
R2 = ρ2 = 0.52, so SAT scores account for only 52% of variance in IQ.

IQ scores are normalized with Std(ys) = 15, so

>>> var_ys = 15**2

>>> rho = 0.72

>>> r2 = rho**2

>>> var_res = (1 - r2) * var_ys

>>> std_res = math.sqrt(var_res)

10.4096

So using SAT score to predict IQ reduces RMSE from 15 points to 10.4
points. A correlation of 0.72 yields a reduction in RMSE of only 31%.

If you see a correlation that looks impressive, remember that R2 is a better
indicator of reduction in MSE, and reduction in RMSE is a better indicator
of predictive power.
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10.6 Testing a linear model

The effect of mother’s age on birth weight is small, and has little predictive
power. So is it possible that the apparent relationship is due to chance?
There are several ways we might test the results of a linear fit.

One option is to test whether the apparent reduction in MSE is due to chance.
In that case, the test statistic is R2 and the null hypothesis is that there is
no relationship between the variables. We can simulate the null hypothesis
by permutation, as in Section 9.5, when we tested the correlation between
mother’s age and birth weight. In fact, because R2 = ρ2, a one-sided test
of R2 is equivalent to a two-sided test of ρ. We’ve already done that test,
and found p < 0.001, so we conclude that the apparent relationship between
mother’s age and birth weight is statistically significant.

Another approach is to test whether the apparent slope is due to chance.
The null hypothesis is that the slope is actually zero; in that case we can
model the birth weights as random variations around their mean. Here’s a
HypothesisTest for this model:

class SlopeTest(thinkstats2.HypothesisTest):

def TestStatistic(self, data):

ages, weights = data

_, slope = thinkstats2.LeastSquares(ages, weights)

return slope

def MakeModel(self):

_, weights = self.data

self.ybar = weights.mean()

self.res = weights - self.ybar

def RunModel(self):

ages, _ = self.data

weights = self.ybar + np.random.permutation(self.res)

return ages, weights

The data are represented as sequences of ages and weights. The test statistic
is the slope estimated by LeastSquares. The model of the null hypothesis
is represented by the mean weight of all babies and the deviations from the
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mean. To generate simulated data, we permute the deviations and add them
to the mean.

Here’s the code that runs the hypothesis test:

live, firsts, others = first.MakeFrames()

live = live.dropna(subset=['agepreg', 'totalwgt_lb'])

ht = SlopeTest((live.agepreg, live.totalwgt_lb))

pvalue = ht.PValue()

The p-value is less than 0.001, so although the estimated slope is small, it is
unlikely to be due to chance.

Estimating the p-value by simulating the null hypothesis is strictly correct,
but there is a simpler alternative. Remember that we already computed the
sampling distribution of the slope, in Section 10.4. To do that, we assumed
that the observed slope was correct and simulated experiments by resampling.

Figure 10.4 shows the sampling distribution of the slope, from Section 10.4,
and the distribution of slopes generated under the null hypothesis. The sam-
pling distribution is centered about the estimated slope, 0.017 lbs/year, and
the slopes under the null hypothesis are centered around 0; but other than
that, the distributions are identical. The distributions are also symmetric,
for reasons we will see in Section 14.4.

So we could estimate the p-value two ways:

• Compute the probability that the slope under the null hypothesis ex-
ceeds the observed slope.

• Compute the probability that the slope in the sampling distribution
falls below 0. (If the estimated slope were negative, we would compute
the probability that the slope in the sampling distribution exceeds 0.)

The second option is easier because we normally want to compute the sam-
pling distribution of the parameters anyway. And it is a good approximation
unless the sample size is small and the distribution of residuals is skewed.
Even then, it is usually good enough, because p-values don’t have to be
precise.

Here’s the code that estimates the p-value of the slope using the sampling
distribution:
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Figure 10.4: The sampling distribution of the estimated slope and the distri-
bution of slopes generated under the null hypothesis. The vertical lines are
at 0 and the observed slope, 0.017 lbs/year.

inters, slopes = SamplingDistributions(live, iters=1001)

slope_cdf = thinkstats2.Cdf(slopes)

pvalue = slope_cdf[0]

Again, we find p < 0.001.

10.7 Weighted resampling

So far we have treated the NSFG data as if it were a representative sample,
but as I mentioned in Section 1.2, it is not. The survey deliberately over-
samples several groups in order to improve the chance of getting statistically
significant results; that is, in order to improve the power of tests involving
these groups.

This survey design is useful for many purposes, but it means that we can-
not use the sample to estimate values for the general population without
accounting for the sampling process.

For each respondent, the NSFG data includes a variable called finalwgt,
which is the number of people in the general population the respondent
represents. This value is called a sampling weight, or just “weight.”
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As an example, if you survey 100,000 people in a country of 300 million, each
respondent represents 3,000 people. If you oversample one group by a factor
of 2, each person in the oversampled group would have a lower weight, about
1500.

To correct for oversampling, we can use resampling; that is, we can draw
samples from the survey using probabilities proportional to sampling weights.
Then, for any quantity we want to estimate, we can generate sampling dis-
tributions, standard errors, and confidence intervals. As an example, I will
estimate mean birth weight with and without sampling weights.

In Section 10.4, we saw ResampleRows, which chooses rows from a
DataFrame, giving each row the same probability. Now we need to
do the same thing using probabilities proportional to sampling weights.
ResampleRowsWeighted takes a DataFrame, resamples rows according to
the weights in finalwgt, and returns a DataFrame containing the resampled
rows:

def ResampleRowsWeighted(df, column='finalwgt'):

weights = df[column]

cdf = Cdf(dict(weights))

indices = cdf.Sample(len(weights))

sample = df.loc[indices]

return sample

weights is a Series; converting it to a dictionary makes a map from the
indices to the weights. In cdf the values are indices and the probabilities are
proportional to the weights.

indices is a sequence of row indices; sample is a DataFrame that contains
the selected rows. Since we sample with replacement, the same row might
appear more than once.

Now we can compare the effect of resampling with and without weights.
Without weights, we generate the sampling distribution like this:

estimates = [ResampleRows(live).totalwgt_lb.mean()

for _ in range(iters)]

With weights, it looks like this:

estimates = [ResampleRowsWeighted(live).totalwgt_lb.mean()

for _ in range(iters)]
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The following table summarizes the results:

mean birth standard 90% CI
weight (lbs) error

Unweighted 7.27 0.014 (7.24, 7.29)
Weighted 7.35 0.014 (7.32, 7.37)

In this example, the effect of weighting is small but non-negligible. The differ-
ence in estimated means, with and without weighting, is about 0.08 pounds,
or 1.3 ounces. This difference is substantially larger than the standard error
of the estimate, 0.014 pounds, which implies that the difference is not due to
chance.

10.8 Exercises

A solution to this exercise is in chap10soln.ipynb

Exercise 10.1 Using the data from the BRFSS, compute the linear least
squares fit for log(weight) versus height. How would you best present the
estimated parameters for a model like this where one of the variables is log-
transformed? If you were trying to guess someone’s weight, how much would
it help to know their height?

Like the NSFG, the BRFSS oversamples some groups and provides a sampling
weight for each respondent. In the BRFSS data, the variable name for these
weights is finalwt. Use resampling, with and without weights, to estimate
the mean height of respondents in the BRFSS, the standard error of the
mean, and a 90% confidence interval. How much does correct weighting
affect the estimates?

10.9 Glossary

• linear fit: a line intended to model the relationship between variables.

• least squares fit: A model of a dataset that minimizes the sum of
squares of the residuals.

• residual: The deviation of an actual value from a model.
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• goodness of fit: A measure of how well a model fits data.

• coefficient of determination: A statistic intended to quantify goodness
of fit.

• sampling weight: A value associated with an observation in a sample
that indicates what part of the population it represents.
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Chapter 11

Regression

The linear least squares fit in the previous chapter is an example of regres-
sion, which is the more general problem of fitting any kind of model to any
kind of data. This use of the term “regression” is a historical accident; it is
only indirectly related to the original meaning of the word.

The goal of regression analysis is to describe the relationship between one set
of variables, called the dependent variables, and another set of variables,
called independent or explanatory variables.

In the previous chapter we used mother’s age as an explanatory variable to
predict birth weight as a dependent variable. When there is only one depen-
dent and one explanatory variable, that’s simple regression. In this chap-
ter, we move on to multiple regression, with more than one explanatory
variable. If there is more than one dependent variable, that’s multivariate
regression.

If the relationship between the dependent and explanatory variable is linear,
that’s linear regression. For example, if the dependent variable is y and
the explanatory variables are x1 and x2, we would write the following linear
regression model:

y = β0 + β1x1 + β2x2 + ε

where β0 is the intercept, β1 is the parameter associated with x1, β2 is the
parameter associated with x2, and ε is the residual due to random variation
or other unknown factors.
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Given a sequence of values for y and sequences for x1 and x2, we can find
the parameters, β0, β1, and β2, that minimize the sum of ε2. This pro-
cess is called ordinary least squares. The computation is similar to
thinkstats2.LeastSquare, but generalized to deal with more than one ex-
planatory variable. You can find the details at https://en.wikipedia.org/
wiki/Ordinary_least_squares

The code for this chapter is in regression.py. For information about down-
loading and working with this code, see Section 0.2.

11.1 StatsModels

In the previous chapter I presented thinkstats2.LeastSquares, an imple-
mentation of simple linear regression intended to be easy to read. For mul-
tiple regression we’ll switch to StatsModels, a Python package that provides
several forms of regression and other analyses. If you are using Anaconda,
you already have StatsModels; otherwise you might have to install it.

As an example, I’ll run the model from the previous chapter with StatsMod-
els:

import statsmodels.formula.api as smf

live, firsts, others = first.MakeFrames()

formula = 'totalwgt_lb ~ agepreg'

model = smf.ols(formula, data=live)

results = model.fit()

statsmodels provides two interfaces (APIs); the “formula” API uses strings
to identify the dependent and explanatory variables. It uses a syntax called
patsy; in this example, the ~ operator separates the dependent variable on
the left from the explanatory variables on the right.

smf.ols takes the formula string and the DataFrame, live, and returns an
OLS object that represents the model. The name ols stands for “ordinary
least squares.”

The fit method fits the model to the data and returns a RegressionResults
object that contains the results.

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
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The results are also available as attributes. params is a Series that maps
from variable names to their parameters, so we can get the intercept and
slope like this:

inter = results.params['Intercept']

slope = results.params['agepreg']

The estimated parameters are 6.83 and 0.0175, the same as from
LeastSquares.

pvalues is a Series that maps from variable names to the associated p-values,
so we can check whether the estimated slope is statistically significant:

slope_pvalue = results.pvalues['agepreg']

The p-value associated with agepreg is 5.7e-11, which is less than 0.001, as
expected.

results.rsquared contains R2, which is 0.0047. results also provides
f_pvalue, which is the p-value associated with the model as a whole, similar
to testing whether R2 is statistically significant.

And results provides resid, a sequence of residuals, and fittedvalues, a
sequence of fitted values corresponding to agepreg.

The results object provides summary(), which represents the results in a
readable format.

print(results.summary())

But it prints a lot of information that is not relevant (yet), so I use a simpler
function called SummarizeResults. Here are the results of this model:

Intercept 6.83 (0)

agepreg 0.0175 (5.72e-11)

R^2 0.004738

Std(ys) 1.408

Std(res) 1.405

Std(ys) is the standard deviation of the dependent variable, which is the
RMSE if you have to guess birth weights without the benefit of any explana-
tory variables. Std(res) is the standard deviation of the residuals, which
is the RMSE if your guesses are informed by the mother’s age. As we have
already seen, knowing the mother’s age provides no substantial improvement
to the predictions.
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11.2 Multiple regression

In Section 4.5 we saw that first babies tend to be lighter than others, and
this effect is statistically significant. But it is a strange result because there
is no obvious mechanism that would cause first babies to be lighter. So we
might wonder whether this relationship is spurious.

In fact, there is a possible explanation for this effect. We have seen that
birth weight depends on mother’s age, and we might expect that mothers of
first babies are younger than others.

With a few calculations we can check whether this explanation is plausible.
Then we’ll use multiple regression to investigate more carefully. First, let’s
see how big the difference in weight is:

diff_weight = firsts.totalwgt_lb.mean() - others.totalwgt_lb.mean()

First babies are 0.125 lbs lighter, or 2 ounces. And the difference in ages:

diff_age = firsts.agepreg.mean() - others.agepreg.mean()

The mothers of first babies are 3.59 years younger. Running the linear model
again, we get the change in birth weight as a function of age:

results = smf.ols('totalwgt_lb ~ agepreg', data=live).fit()

slope = results.params['agepreg']

The slope is 0.0175 pounds per year. If we multiply the slope by the difference
in ages, we get the expected difference in birth weight for first babies and
others, due to mother’s age:

slope * diff_age

The result is 0.063, just about half of the observed difference. So we con-
clude, tentatively, that the observed difference in birth weight can be partly
explained by the difference in mother’s age.

Using multiple regression, we can explore these relationships more systemat-
ically.

live['isfirst'] = live.birthord == 1

formula = 'totalwgt_lb ~ isfirst'

results = smf.ols(formula, data=live).fit()
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The first line creates a new column named isfirst that is True for first
babies and false otherwise. Then we fit a model using isfirst as an ex-
planatory variable.

Here are the results:

Intercept 7.33 (0)

isfirst[T.True] -0.125 (2.55e-05)

R^2 0.00196

Because isfirst is a boolean, ols treats it as a categorical variable, which
means that the values fall into categories, like True and False, and should
not be treated as numbers. The estimated parameter is the effect on birth
weight when isfirst is true, so the result, -0.125 lbs, is the difference in
birth weight between first babies and others.

The slope and the intercept are statistically significant, which means that
they were unlikely to occur by chance, but the the R2 value for this model
is small, which means that isfirst doesn’t account for a substantial part of
the variation in birth weight.

The results are similar with agepreg:

Intercept 6.83 (0)

agepreg 0.0175 (5.72e-11)

R^2 0.004738

Again, the parameters are statistically significant, but R2 is low.

These models confirm results we have already seen. But now we can
fit a single model that includes both variables. With the formula
totalwgt_lb ~ isfirst + agepreg, we get:

Intercept 6.91 (0)

isfirst[T.True] -0.0698 (0.0253)

agepreg 0.0154 (3.93e-08)

R^2 0.005289

In the combined model, the parameter for isfirst is smaller by about half,
which means that part of the apparent effect of isfirst is actually accounted
for by agepreg. And the p-value for isfirst is about 2.5%, which is on the
border of statistical significance.



158 Chapter 11. Regression

R2 for this model is a little higher, which indicates that the two variables
together account for more variation in birth weight than either alone (but
not by much).

11.3 Nonlinear relationships

Remembering that the contribution of agepreg might be nonlinear, we might
consider adding a variable to capture more of this relationship. One option
is to create a column, agepreg2, that contains the squares of the ages:

live['agepreg2'] = live.agepreg**2

formula = 'totalwgt_lb ~ isfirst + agepreg + agepreg2'

Now by estimating parameters for agepreg and agepreg2, we are effectively
fitting a parabola:

Intercept 5.69 (1.38e-86)

isfirst[T.True] -0.0504 (0.109)

agepreg 0.112 (3.23e-07)

agepreg2 -0.00185 (8.8e-06)

R^2 0.007462

The parameter of agepreg2 is negative, so the parabola curves downward,
which is consistent with the shape of the lines in Figure 10.2.

The quadratic model of agepreg accounts for more of the variability in birth
weight; the parameter for isfirst is smaller in this model, and no longer
statistically significant.

Using computed variables like agepreg2 is a common way to fit polynomials
and other functions to data. This process is still considered linear regression,
because the dependent variable is a linear function of the explanatory vari-
ables, regardless of whether some variables are nonlinear functions of others.

The following table summarizes the results of these regressions:

isfirst agepreg agepreg2 R2

Model 1 -0.125 * – – 0.002
Model 2 – 0.0175 * – 0.0047
Model 3 -0.0698 (0.025) 0.0154 * – 0.0053
Model 4 -0.0504 (0.11) 0.112 * -0.00185 * 0.0075
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The columns in this table are the explanatory variables and the coefficient
of determination, R2. Each entry is an estimated parameter and either a
p-value in parentheses or an asterisk to indicate a p-value less that 0.001.

We conclude that the apparent difference in birth weight is explained, at
least in part, by the difference in mother’s age. When we include mother’s
age in the model, the effect of isfirst gets smaller, and the remaining effect
might be due to chance.

In this example, mother’s age acts as a control variable; including agepreg

in the model “controls for” the difference in age between first-time mothers
and others, making it possible to isolate the effect (if any) of isfirst.

11.4 Data mining

So far we have used regression models for explanation; for example, in the
previous section we discovered that an apparent difference in birth weight
is actually due to a difference in mother’s age. But the R2 values of those
models is very low, which means that they have little predictive power. In
this section we’ll try to do better.

Suppose one of your co-workers is expecting a baby and there is an office
pool to guess the baby’s birth weight (if you are not familiar with betting
pools, see https://en.wikipedia.org/wiki/Betting_pool).

Now suppose that you really want to win the pool. What could you do to
improve your chances? Well, the NSFG dataset includes 244 variables about
each pregnancy and another 3087 variables about each respondent. Maybe
some of those variables have predictive power. To find out which ones are
most useful, why not try them all?

Testing the variables in the pregnancy table is easy, but in order to use the
variables in the respondent table, we have to match up each pregnancy with
a respondent. In theory we could iterate through the rows of the pregnancy
table, use the caseid to find the corresponding respondent, and copy the
values from the correspondent table into the pregnancy table. But that
would be slow.

https://en.wikipedia.org/wiki/Betting_pool


160 Chapter 11. Regression

A better option is to recognize this process as a join operation as defined in
SQL and other relational database languages (see https://en.wikipedia.

org/wiki/Join_(SQL)). Join is implemented as a DataFrame method, so
we can perform the operation like this:

live = live[live.prglngth>30]

resp = chap01soln.ReadFemResp()

resp.index = resp.caseid

join = live.join(resp, on='caseid', rsuffix='_r')

The first line selects records for pregnancies longer than 30 weeks, assuming
that the office pool is formed several weeks before the due date.

The next line reads the respondent file. The result is a DataFrame with inte-
ger indices; in order to look up respondents efficiently, I replace resp.index

with resp.caseid.

The join method is invoked on live, which is considered the “left” table,
and passed resp, which is the “right” table. The keyword argument on

indicates the variable used to match up rows from the two tables.

In this example some column names appear in both tables, so we have to
provide rsuffix, which is a string that will be appended to the names of
overlapping columns from the right table. For example, both tables have a
column named race that encodes the race of the respondent. The result of
the join contains two columns named race and race_r.

The pandas implementation is fast. Joining the NSFG tables takes less than a
second on an ordinary desktop computer. Now we can start testing variables.

t = []

for name in join.columns:

try:

if join[name].var() < 1e-7:

continue

formula = 'totalwgt_lb ~ agepreg + ' + name

model = smf.ols(formula, data=join)

if model.nobs < len(join)/2:

continue

https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Join_(SQL)
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results = model.fit()

except (ValueError, TypeError):

continue

t.append((results.rsquared, name))

For each variable we construct a model, compute R2, and append the results
to a list. The models all include agepreg, since we already know that it has
some predictive power.

I check that each explanatory variable has some variability; otherwise the re-
sults of the regression are unreliable. I also check the number of observations
for each model. Variables that contain a large number of nans are not good
candidates for prediction.

For most of these variables, we haven’t done any cleaning. Some of them are
encoded in ways that don’t work very well for linear regression. As a result,
we might overlook some variables that would be useful if they were cleaned
properly. But maybe we will find some good candidates.

11.5 Prediction

The next step is to sort the results and select the variables that yield the
highest values of R2.

t.sort(reverse=True)

for mse, name in t[:30]:

print(name, mse)

The first variable on the list is totalwgt_lb, followed by birthwgt_lb. Ob-
viously, we can’t use birth weight to predict birth weight.

Similarly prglngth has useful predictive power, but for the office pool we
assume pregnancy length (and the related variables) are not known yet.

The first useful predictive variable is babysex which indicates whether the
baby is male or female. In the NSFG dataset, boys are about 0.3 lbs heavier.
So, assuming that the sex of the baby is known, we can use it for prediction.
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Next is race, which indicates whether the respondent is white, black, or
other. As an explanatory variable, race can be problematic. In datasets like
the NSFG, race is correlated with many other variables, including income
and other socioeconomic factors. In a regression model, race acts as a proxy
variable, so apparent correlations with race are often caused, at least in
part, by other factors.

The next variable on the list is nbrnaliv, which indicates whether the preg-
nancy yielded multiple births. Twins and triplets tend to be smaller than
other babies, so if we know whether our hypothetical co-worker is expecting
twins, that would help.

Next on the list is paydu, which indicates whether the respondent owns
her home. It is one of several income-related variables that turn out to
be predictive. In datasets like the NSFG, income and wealth are correlated
with just about everything. In this example, income is related to diet, health,
health care, and other factors likely to affect birth weight.

Some of the other variables on the list are things that would not be known
until later, like bfeedwks, the number of weeks the baby was breast fed. We
can’t use these variables for prediction, but you might want to speculate on
reasons bfeedwks might be correlated with birth weight.

Sometimes you start with a theory and use data to test it. Other times you
start with data and go looking for possible theories. The second approach,
which this section demonstrates, is called data mining. An advantage of
data mining is that it can discover unexpected patterns. A hazard is that
many of the patterns it discovers are either random or spurious.

Having identified potential explanatory variables, I tested a few models and
settled on this one:

formula = ('totalwgt_lb ~ agepreg + C(race) + babysex==1 + '

'nbrnaliv>1 + paydu==1 + totincr')

results = smf.ols(formula, data=join).fit()

This formula uses some syntax we have not seen yet: C(race) tells the
formula parser (Patsy) to treat race as a categorical variable, even though it
is encoded numerically.

The encoding for babysex is 1 for male, 2 for female; writing babysex==1

converts it to boolean, True for male and false for female.
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Similarly nbrnaliv>1 is True for multiple births and paydu==1 is True for
respondents who own their houses.

totincr is encoded numerically from 1-14, with each increment representing
about $5000 in annual income. So we can treat these values as numerical,
expressed in units of $5000.

Here are the results of the model:

Intercept 6.63 (0)

C(race)[T.2] 0.357 (5.43e-29)

C(race)[T.3] 0.266 (2.33e-07)

babysex == 1[T.True] 0.295 (5.39e-29)

nbrnaliv > 1[T.True] -1.38 (5.1e-37)

paydu == 1[T.True] 0.12 (0.000114)

agepreg 0.00741 (0.0035)

totincr 0.0122 (0.00188)

The estimated parameters for race are larger than I expected, especially since
we control for income. The encoding is 1 for black, 2 for white, and 3 for
other. Babies of black mothers are lighter than babies of other races by
0.27–0.36 lbs.

As we’ve already seen, boys are heavier by about 0.3 lbs; twins and other
multiplets are lighter by 1.4 lbs.

People who own their homes have heavier babies by about 0.12 lbs, even
when we control for income. The parameter for mother’s age is smaller than
what we saw in Section 11.2, which suggests that some of the other variables
are correlated with age, probably including paydu and totincr.

All of these variables are statistically significant, some with very low p-values,
but R2 is only 0.06, still quite small. RMSE without using the model is 1.27
lbs; with the model it drops to 1.23. So your chance of winning the pool is
not substantially improved. Sorry!

11.6 Logistic regression

In the previous examples, some of the explanatory variables were numerical
and some categorical (including boolean). But the dependent variable was
always numerical.
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Linear regression can be generalized to handle other kinds of dependent vari-
ables. If the dependent variable is boolean, the generalized model is called
logistic regression. If the dependent variable is an integer count, it’s called
Poisson regression.

As an example of logistic regression, let’s consider a variation on the office
pool scenario. Suppose a friend of yours is pregnant and you want to predict
whether the baby is a boy or a girl. You could use data from the NSFG to
find factors that affect the “sex ratio”, which is conventionally defined to be
the probability of having a boy.

If you encode the dependent variable numerically, for example 0 for a girl
and 1 for a boy, you could apply ordinary least squares, but there would be
problems. The linear model might be something like this:

y = β0 + β1x1 + β2x2 + ε

Where y is the dependent variable, and x1 and x2 are explanatory variables.
Then we could find the parameters that minimize the residuals.

The problem with this approach is that it produces predictions that are hard
to interpret. Given estimated parameters and values for x1 and x2, the model
might predict y = 0.5, but the only meaningful values of y are 0 and 1.

It is tempting to interpret a result like that as a probability; for example,
we might say that a respondent with particular values of x1 and x2 has a
50% chance of having a boy. But it is also possible for this model to predict
y = 1.1 or y = −0.1, and those are not valid probabilities.

Logistic regression avoids this problem by expressing predictions in terms of
odds rather than probabilities. If you are not familiar with odds, “odds in
favor” of an event is the ratio of the probability it will occur to the probability
that it will not.

So if I think my team has a 75% chance of winning, I would say that the
odds in their favor are three to one, because the chance of winning is three
times the chance of losing.

Odds and probabilities are different representations of the same information.
Given a probability, you can compute the odds like this:
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o = p / (1-p)

Given odds in favor, you can convert to probability like this:

p = o / (o+1)

Logistic regression is based on the following model:

log o = β0 + β1x1 + β2x2 + ε

Where o is the odds in favor of a particular outcome; in the example, o would
be the odds of having a boy.

Suppose we have estimated the parameters β0, β1, and β2 (I’ll explain how in
a minute). And suppose we are given values for x1 and x2. We can compute
the predicted value of log o, and then convert to a probability:

o = np.exp(log_o)

p = o / (o+1)

So in the office pool scenario we could compute the predictive probability of
having a boy. But how do we estimate the parameters?

11.7 Estimating parameters

Unlike linear regression, logistic regression does not have a closed form solu-
tion, so it is solved by guessing an initial solution and improving it iteratively.

The usual goal is to find the maximum-likelihood estimate (MLE), which is
the set of parameters that maximizes the likelihood of the data. For example,
suppose we have the following data:

>>> y = np.array([0, 1, 0, 1])

>>> x1 = np.array([0, 0, 0, 1])

>>> x2 = np.array([0, 1, 1, 1])

And we start with the initial guesses β0 = −1.5, β1 = 2.8, and β2 = 1.1:

>>> beta = [-1.5, 2.8, 1.1]

Then for each row we can compute log_o:

>>> log_o = beta[0] + beta[1] * x1 + beta[2] * x2

[-1.5 -0.4 -0.4 2.4]
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And convert from log odds to probabilities:

>>> o = np.exp(log_o)

[ 0.223 0.670 0.670 11.02 ]

>>> p = o / (o+1)

[ 0.182 0.401 0.401 0.916 ]

Notice that when log_o is greater than 0, o is greater than 1 and p is greater
than 0.5.

The likelihood of an outcome is p when y==1 and 1-p when y==0. For
example, if we think the probability of a boy is 0.8 and the outcome is a boy,
the likelihood is 0.8; if the outcome is a girl, the likelihood is 0.2. We can
compute that like this:

>>> likes = y * p + (1-y) * (1-p)

[ 0.817 0.401 0.598 0.916 ]

The overall likelihood of the data is the product of likes:

>>> like = np.prod(likes)

0.18

For these values of beta, the likelihood of the data is 0.18. The
goal of logistic regression is to find parameters that maximize this like-
lihood. To do that, most statistics packages use an iterative solver
like Newton’s method (see https://en.wikipedia.org/wiki/Logistic_

regression#Model_fitting).

11.8 Implementation

StatsModels provides an implementation of logistic regression called logit,
named for the function that converts from probability to log odds. To demon-
strate its use, I’ll look for variables that affect the sex ratio.

Again, I load the NSFG data and select pregnancies longer than 30 weeks:

live, firsts, others = first.MakeFrames()

df = live[live.prglngth>30]

logit requires the dependent variable to be binary (rather than boolean), so
I create a new column named boy, using astype(int) to convert to binary
integers:

https://en.wikipedia.org/wiki/Logistic_regression#Model_fitting
https://en.wikipedia.org/wiki/Logistic_regression#Model_fitting
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df['boy'] = (df.babysex==1).astype(int)

Factors that have been found to affect sex ratio include parents’ age, birth
order, race, and social status. We can use logistic regression to see if these
effects appear in the NSFG data. I’ll start with the mother’s age:

import statsmodels.formula.api as smf

model = smf.logit('boy ~ agepreg', data=df)

results = model.fit()

SummarizeResults(results)

logit takes the same arguments as ols, a formula in Patsy syntax and a
DataFrame. The result is a Logit object that represents the model. It con-
tains attributes called endog and exog that contain the endogenous vari-
able, another name for the dependent variable, and the exogenous vari-
ables, another name for the explanatory variables. Since they are NumPy
arrays, it is sometimes convenient to convert them to DataFrames:

endog = pandas.DataFrame(model.endog, columns=[model.endog_names])

exog = pandas.DataFrame(model.exog, columns=model.exog_names)

The result of model.fit is a BinaryResults object, which is similar to the
RegressionResults object we got from ols. Here is a summary of the results:

Intercept 0.00579 (0.953)

agepreg 0.00105 (0.783)

R^2 6.144e-06

The parameter of agepreg is positive, which suggests that older mothers are
more likely to have boys, but the p-value is 0.783, which means that the
apparent effect could easily be due to chance.

The coefficient of determination, R2, does not apply to logistic regression,
but there are several alternatives that are used as “pseudo R2 values.” These
values can be useful for comparing models. For example, here’s a model that
includes several factors believed to be associated with sex ratio:

formula = 'boy ~ agepreg + hpagelb + birthord + C(race)'

model = smf.logit(formula, data=df)

results = model.fit()

Along with mother’s age, this model includes father’s age at birth (hpagelb),
birth order (birthord), and race as a categorical variable. Here are the
results:
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Intercept -0.0301 (0.772)

C(race)[T.2] -0.0224 (0.66)

C(race)[T.3] -0.000457 (0.996)

agepreg -0.00267 (0.629)

hpagelb 0.0047 (0.266)

birthord 0.00501 (0.821)

R^2 0.000144

None of the estimated parameters are statistically significant. The pseudo-R2

value is a little higher, but that could be due to chance.

11.9 Accuracy

In the office pool scenario, we are most interested in the accuracy of the
model: the number of successful predictions, compared with what we would
expect by chance.

In the NSFG data, there are more boys than girls, so the baseline strategy is
to guess “boy” every time. The accuracy of this strategy is just the fraction
of boys:

actual = endog['boy']

baseline = actual.mean()

Since actual is encoded in binary integers, the mean is the fraction of boys,
which is 0.507.

Here’s how we compute the accuracy of the model:

predict = (results.predict() >= 0.5)

true_pos = predict * actual

true_neg = (1 - predict) * (1 - actual)

results.predict returns a NumPy array of probabilities, which we round
off to 0 or 1. Multiplying by actual yields 1 if we predict a boy and get it
right, 0 otherwise. So, true_pos indicates “true positives”.

Similarly, true_neg indicates the cases where we guess “girl” and get it right.
Accuracy is the fraction of correct guesses:

acc = (sum(true_pos) + sum(true_neg)) / len(actual)
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The result is 0.512, slightly better than the baseline, 0.507. But, you should
not take this result too seriously. We used the same data to build and test
the model, so the model may not have predictive power on new data.

Nevertheless, let’s use the model to make a prediction for the office pool.
Suppose your friend is 35 years old and white, her husband is 39, and they
are expecting their third child:

columns = ['agepreg', 'hpagelb', 'birthord', 'race']

new = pandas.DataFrame([[35, 39, 3, 2]], columns=columns)

y = results.predict(new)

To invoke results.predict for a new case, you have to construct a
DataFrame with a column for each variable in the model. The result in
this case is 0.52, so you should guess “boy.” But if the model improves your
chances of winning, the difference is very small.

11.10 Exercises

My solution to these exercises is in chap11soln.ipynb.

Exercise 11.1 Suppose one of your co-workers is expecting a baby and you
are participating in an office pool to predict the date of birth. Assuming that
bets are placed during the 30th week of pregnancy, what variables could you
use to make the best prediction? You should limit yourself to variables that
are known before the birth, and likely to be available to the people in the
pool.

Exercise 11.2 The Trivers-Willard hypothesis suggests that for many mam-
mals the sex ratio depends on “maternal condition”; that is, factors like the
mother’s age, size, health, and social status. See https://en.wikipedia.

org/wiki/Trivers-Willard_hypothesis

Some studies have shown this effect among humans, but results are mixed.
In this chapter we tested some variables related to these factors, but didn’t
find any with a statistically significant effect on sex ratio.

As an exercise, use a data mining approach to test the other variables in the
pregnancy and respondent files. Can you find any factors with a substantial
effect?

https://en.wikipedia.org/wiki/Trivers-Willard_hypothesis
https://en.wikipedia.org/wiki/Trivers-Willard_hypothesis


170 Chapter 11. Regression

Exercise 11.3 If the quantity you want to predict is a count, you can use
Poisson regression, which is implemented in StatsModels with a function
called poisson. It works the same way as ols and logit. As an exercise,
let’s use it to predict how many children a woman has born; in the NSFG
dataset, this variable is called numbabes.

Suppose you meet a woman who is 35 years old, black, and a college graduate
whose annual household income exceeds $75,000. How many children would
you predict she has born?

Exercise 11.4 If the quantity you want to predict is categorical, you can use
multinomial logistic regression, which is implemented in StatsModels with a
function called mnlogit. As an exercise, let’s use it to guess whether a woman
is married, cohabitating, widowed, divorced, separated, or never married; in
the NSFG dataset, marital status is encoded in a variable called rmarital.

Suppose you meet a woman who is 25 years old, white, and a high school
graduate whose annual household income is about $45,000. What is the
probability that she is married, cohabitating, etc?

11.11 Glossary

• regression: One of several related processes for estimating parameters
that fit a model to data.

• dependent variables: The variables in a regression model we would like
to predict. Also known as endogenous variables.

• explanatory variables: The variables used to predict or explain the de-
pendent variables. Also known as independent, or exogenous, variables.

• simple regression: A regression with only one dependent and one ex-
planatory variable.

• multiple regression: A regression with multiple explanatory variables,
but only one dependent variable.

• linear regression: A regression based on a linear model.
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• ordinary least squares: A linear regression that estimates parameters
by minimizing the squared error of the residuals.

• spurious relationship: A relationship between two variables that is
caused by a statistical artifact or a factor, not included in the model,
that is related to both variables.

• control variable: A variable included in a regression to eliminate or
“control for” a spurious relationship.

• proxy variable: A variable that contributes information to a regression
model indirectly because of a relationship with another factor, so it
acts as a proxy for that factor.

• categorical variable: A variable that can have one of a discrete set of
unordered values.

• join: An operation that combines data from two DataFrames using a
key to match up rows in the two frames.

• data mining: An approach to finding relationships between variables
by testing a large number of models.

• logistic regression: A form of regression used when the dependent vari-
able is boolean.

• Poisson regression: A form of regression used when the dependent vari-
able is a non-negative integer, usually a count.

• odds: An alternative way of representing a probability, p, as the ratio
of the probability and its complement, p/(1− p).
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Chapter 12

Time series analysis

A time series is a sequence of measurements from a system that varies in
time. One famous example is the “hockey stick graph” that shows global aver-
age temperature over time (see https://en.wikipedia.org/wiki/Hockey_

stick_graph).

The example I work with in this chapter comes from Zachary M. Jones, a
researcher in political science who studies the black market for cannabis in
the U.S. (http://zmjones.com/marijuana). He collected data from a web
site called “Price of Weed” that crowdsources market information by asking
participants to report the price, quantity, quality, and location of cannabis
transactions (http://www.priceofweed.com/). The goal of his project is to
investigate the effect of policy decisions, like legalization, on markets. I find
this project appealing because it is an example that uses data to address
important political questions, like drug policy.

I hope you will find this chapter interesting, but I’ll take this opportunity
to reiterate the importance of maintaining a professional attitude to data
analysis. Whether and which drugs should be illegal are important and
difficult public policy questions; our decisions should be informed by accurate
data reported honestly.

The code for this chapter is in timeseries.py. For information about down-
loading and working with this code, see Section 0.2.

https://en.wikipedia.org/wiki/Hockey_stick_graph
https://en.wikipedia.org/wiki/Hockey_stick_graph
http://zmjones.com/marijuana
http://www.priceofweed.com/
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12.1 Importing and cleaning

The data I downloaded from Mr. Jones’s site is in the repository for this
book. The following code reads it into a pandas DataFrame:

transactions = pandas.read_csv('mj-clean.csv', parse_dates=[5])

parse_dates tells read_csv to interpret values in column 5 as dates and
convert them to NumPy datetime64 objects.

The DataFrame has a row for each reported transaction and the following
columns:

• city: string city name.

• state: two-letter state abbreviation.

• price: price paid in dollars.

• amount: quantity purchased in grams.

• quality: high, medium, or low quality, as reported by the purchaser.

• date: date of report, presumed to be shortly after date of purchase.

• ppg: price per gram, in dollars.

• state.name: string state name.

• lat: approximate latitude of the transaction, based on city name.

• lon: approximate longitude of the transaction.

Each transaction is an event in time, so we could treat this dataset as a
time series. But the events are not equally spaced in time; the number
of transactions reported each day varies from 0 to several hundred. Many
methods used to analyze time series require the measurements to be equally
spaced, or at least things are simpler if they are.

In order to demonstrate these methods, I divide the dataset into groups by
reported quality, and then transform each group into an equally spaced series
by computing the mean daily price per gram.
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def GroupByQualityAndDay(transactions):

groups = transactions.groupby('quality')

dailies = {}

for name, group in groups:

dailies[name] = GroupByDay(group)

return dailies

groupby is a DataFrame method that returns a GroupBy object, groups;
used in a for loop, it iterates the names of the groups and the DataFrames
that represent them. Since the values of quality are low, medium, and high,
we get three groups with those names.

The loop iterates through the groups and calls GroupByDay, which computes
the daily average price and returns a new DataFrame:

def GroupByDay(transactions, func=np.mean):

grouped = transactions[['date', 'ppg']].groupby('date')

daily = grouped.aggregate(func)

daily['date'] = daily.index

start = daily.date[0]

one_year = np.timedelta64(1, 'Y')

daily['years'] = (daily.date - start) / one_year

return daily

The parameter, transactions, is a DataFrame that contains columns date

and ppg. We select these two columns, then group by date.

The result, grouped, is a map from each date to a DataFrame that contains
prices reported on that date. aggregate is a GroupBy method that iterates
through the groups and applies a function to each column of the group; in
this case there is only one column, ppg. So the result of aggregate is a
DataFrame with one row for each date and one column, ppg.

Dates in these DataFrames are stored as NumPy datetime64 objects, which
are represented as 64-bit integers in nanoseconds. For some of the analyses
coming up, it will be convenient to work with time in more human-friendly
units, like years. So GroupByDay adds a column named date by copying the
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index, then adds years, which contains the number of years since the first
transaction as a floating-point number.

The resulting DataFrame has columns ppg, date, and years.

12.2 Plotting

The result from GroupByQualityAndDay is a map from each quality to a
DataFrame of daily prices. Here’s the code I use to plot the three time
series:

thinkplot.PrePlot(rows=3)

for i, (name, daily) in enumerate(dailies.items()):

thinkplot.SubPlot(i+1)

title = 'price per gram ($)' if i==0 else ''

thinkplot.Config(ylim=[0, 20], title=title)

thinkplot.Scatter(daily.index, daily.ppg, s=10, label=name)

if i == 2:

pyplot.xticks(rotation=30)

else:

thinkplot.Config(xticks=[])

PrePlot with rows=3 means that we are planning to make three subplots laid
out in three rows. The loop iterates through the DataFrames and creates a
scatter plot for each. It is common to plot time series with line segments
between the points, but in this case there are many data points and prices
are highly variable, so adding lines would not help.

Since the labels on the x-axis are dates, I use pyplot.xticks to rotate the
“ticks” 30 degrees, making them more readable.

Figure 12.1 shows the result. One apparent feature in these plots is a gap
around November 2013. It’s possible that data collection was not active
during this time, or the data might not be available. We will consider ways
to deal with this missing data later.

Visually, it looks like the price of high quality cannabis is declining during
this period, and the price of medium quality is increasing. The price of low
quality might also be increasing, but it is harder to tell, since it seems to be
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Figure 12.1: Time series of daily price per gram for high, medium, and low
quality cannabis.
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more volatile. Keep in mind that quality data is reported by volunteers, so
trends over time might reflect changes in how participants apply these labels.

12.3 Linear regression

Although there are methods specific to time series analysis, for many prob-
lems a simple way to get started is by applying general-purpose tools like
linear regression. The following function takes a DataFrame of daily prices
and computes a least squares fit, returning the model and results objects
from StatsModels:

def RunLinearModel(daily):

model = smf.ols('ppg ~ years', data=daily)

results = model.fit()

return model, results

Then we can iterate through the qualities and fit a model to each:

for name, daily in dailies.items():

model, results = RunLinearModel(daily)

print(name)

regression.SummarizeResults(results)

Here are the results:

quality intercept slope R2

high 13.450 -0.708 0.444
medium 8.879 0.283 0.050
low 5.362 0.568 0.030

The estimated slopes indicate that the price of high quality cannabis dropped
by about 71 cents per year during the observed interval; for medium quality
it increased by 28 cents per year, and for low quality it increased by 57 cents
per year. These estimates are all statistically significant with very small
p-values.

The R2 value for high quality cannabis is 0.44, which means that time as
an explanatory variable accounts for 44% of the observed variability in price.
For the other qualities, the change in price is smaller, and variability in prices
is higher, so the values of R2 are smaller (but still statistically significant).
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Figure 12.2: Time series of daily price per gram for high quality cannabis,
and a linear least squares fit.

The following code plots the observed prices and the fitted values:

def PlotFittedValues(model, results, label=''):

years = model.exog[:,1]

values = model.endog

thinkplot.Scatter(years, values, s=15, label=label)

thinkplot.Plot(years, results.fittedvalues, label='model')

As we saw in Section 11.8, model contains exog and endog, NumPy arrays
with the exogenous (explanatory) and endogenous (dependent) variables.

PlotFittedValues makes a scatter plot of the data points and a line plot of
the fitted values. Figure 12.2 shows the results for high quality cannabis. The
model seems like a good linear fit for the data; nevertheless, linear regression
is not the most appropriate choice for this data:

• First, there is no reason to expect the long-term trend to be a line or
any other simple function. In general, prices are determined by supply
and demand, both of which vary over time in unpredictable ways.

• Second, the linear regression model gives equal weight to all data, recent
and past. For purposes of prediction, we should probably give more
weight to recent data.
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• Finally, one of the assumptions of linear regression is that the residuals
are uncorrelated noise. With time series data, this assumption is often
false because successive values are correlated.

The next section presents an alternative that is more appropriate for time
series data.

12.4 Moving averages

Most time series analysis is based on the modeling assumption that the ob-
served series is the sum of three components:

• Trend: A smooth function that captures persistent changes.

• Seasonality: Periodic variation, possibly including daily, weekly,
monthly, or yearly cycles.

• Noise: Random variation around the long-term trend.

Regression is one way to extract the trend from a series, as we saw in the
previous section. But if the trend is not a simple function, a good alternative
is a moving average. A moving average divides the series into overlapping
regions, called windows, and computes the average of the values in each
window.

One of the simplest moving averages is the rolling mean, which computes
the mean of the values in each window. For example, if the window size is
3, the rolling mean computes the mean of values 0 through 2, 1 through 3, 2
through 4, etc.

pandas provides rolling_mean, which takes a Series and a window size and
returns a new Series.

>>> series = np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> pandas.rolling_mean(series, 3)

array([ nan, nan, 1, 2, 3, 4, 5, 6, 7, 8])
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The first two values are nan; the next value is the mean of the first three
elements, 0, 1, and 2. The next value is the mean of 1, 2, and 3. And so on.

Before we can apply rolling_mean to the cannabis data, we have to deal
with missing values. There are a few days in the observed interval with no
reported transactions for one or more quality categories, and a period in 2013
when data collection was not active.

In the DataFrames we have used so far, these dates are absent; the index
skips days with no data. For the analysis that follows, we need to represent
this missing data explicitly. We can do that by “reindexing” the DataFrame:

dates = pandas.date_range(daily.index.min(), daily.index.max())

reindexed = daily.reindex(dates)

The first line computes a date range that includes every day from the be-
ginning to the end of the observed interval. The second line creates a new
DataFrame with all of the data from daily, but including rows for all dates,
filled with nan.

Now we can plot the rolling mean like this:

roll_mean = pandas.rolling_mean(reindexed.ppg, 30)

thinkplot.Plot(roll_mean.index, roll_mean)

The window size is 30, so each value in roll_mean is the mean of 30 values
from reindexed.ppg.

Figure 12.3 (left) shows the result. The rolling mean seems to do a good job
of smoothing out the noise and extracting the trend. The first 29 values are
nan, and wherever there’s a missing value, it’s followed by another 29 nans.
There are ways to fill in these gaps, but they are a minor nuisance.

An alternative is the exponentially-weighted moving average (EWMA),
which has two advantages. First, as the name suggests, it computes a
weighted average where the most recent value has the highest weight and
the weights for previous values drop off exponentially. Second, the pandas
implementation of EWMA handles missing values better.

ewma = pandas.ewma(reindexed.ppg, span=30)

thinkplot.Plot(ewma.index, ewma)
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Figure 12.3: Daily price and a rolling mean (left) and exponentially-weighted
moving average (right).

The span parameter corresponds roughly to the window size of a moving
average; it controls how fast the weights drop off, so it determines the number
of points that make a non-negligible contribution to each average.

Figure 12.3 (right) shows the EWMA for the same data. It is similar to
the rolling mean, where they are both defined, but it has no missing values,
which makes it easier to work with. The values are noisy at the beginning of
the time series, because they are based on fewer data points.

12.5 Missing values

Now that we have characterized the trend of the time series, the next step is
to investigate seasonality, which is periodic behavior. Time series data based
on human behavior often exhibits daily, weekly, monthly, or yearly cycles.
In the next section I present methods to test for seasonality, but they don’t
work well with missing data, so we have to solve that problem first.

A simple and common way to fill missing data is to use a moving average.
The Series method fillna does just what we want:

reindexed.ppg.fillna(ewma, inplace=True)
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Figure 12.4: Daily price with filled data.

Wherever reindexed.ppg is nan, fillna replaces it with the corresponding
value from ewma. The inplace flag tells fillna to modify the existing Series
rather than create a new one.

A drawback of this method is that it understates the noise in the series. We
can solve that problem by adding in resampled residuals:

resid = (reindexed.ppg - ewma).dropna()

fake_data = ewma + thinkstats2.Resample(resid, len(reindexed))

reindexed.ppg.fillna(fake_data, inplace=True)

resid contains the residual values, not including days when ppg is nan.
fake_data contains the sum of the moving average and a random sample of
residuals. Finally, fillna replaces nan with values from fake_data.

Figure 12.4 shows the result. The filled data is visually similar to the actual
values. Since the resampled residuals are random, the results are different
every time; later we’ll see how to characterize the error created by missing
values.

12.6 Serial correlation

As prices vary from day to day, you might expect to see patterns. If the price
is high on Monday, you might expect it to be high for a few more days; and
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if it’s low, you might expect it to stay low. A pattern like this is called serial
correlation, because each value is correlated with the next one in the series.

To compute serial correlation, we can shift the time series by an interval
called a lag, and then compute the correlation of the shifted series with the
original:

def SerialCorr(series, lag=1):

xs = series[lag:]

ys = series.shift(lag)[lag:]

corr = thinkstats2.Corr(xs, ys)

return corr

After the shift, the first lag values are nan, so I use a slice to remove them
before computing Corr.

If we apply SerialCorr to the raw price data with lag 1, we find serial
correlation 0.48 for the high quality category, 0.16 for medium and 0.10 for
low. In any time series with a long-term trend, we expect to see strong serial
correlations; for example, if prices are falling, we expect to see values above
the mean in the first half of the series and values below the mean in the
second half.

It is more interesting to see if the correlation persists if you subtract away
the trend. For example, we can compute the residual of the EWMA and
then compute its serial correlation:

ewma = pandas.ewma(reindexed.ppg, span=30)

resid = reindexed.ppg - ewma

corr = SerialCorr(resid, 1)

With lag=1, the serial correlations for the de-trended data are -0.022 for
high quality, -0.015 for medium, and 0.036 for low. These values are small,
indicating that there is little or no one-day serial correlation in this series.

To check for weekly, monthly, and yearly seasonality, I ran the analysis again
with different lags. Here are the results:

lag high medium low

1 -0.029 -0.014 0.034
7 0.02 -0.042 -0.0097
30 0.014 -0.0064 -0.013
365 0.045 0.015 0.033
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In the next section we’ll test whether these correlations are statistically sig-
nificant (they are not), but at this point we can tentatively conclude that
there are no substantial seasonal patterns in these series, at least not with
these lags.

12.7 Autocorrelation

If you think a series might have some serial correlation, but you don’t know
which lags to test, you can test them all! The autocorrelation function
is a function that maps from lag to the serial correlation with the given lag.
“Autocorrelation” is another name for serial correlation, used more often
when the lag is not 1.

StatsModels, which we used for linear regression in Section 11.1, also pro-
vides functions for time series analysis, including acf, which computes the
autocorrelation function:

import statsmodels.tsa.stattools as smtsa

acf = smtsa.acf(filled.resid, nlags=365, unbiased=True)

acf computes serial correlations with lags from 0 through nlags. The
unbiased flag tells acf to correct the estimates for the sample size. The
result is an array of correlations. If we select daily prices for high quality,
and extract correlations for lags 1, 7, 30, and 365, we can confirm that acf

and SerialCorr yield approximately the same results:

>>> acf[0], acf[1], acf[7], acf[30], acf[365]

1.000, -0.029, 0.020, 0.014, 0.044

With lag=0, acf computes the correlation of the series with itself, which is
always 1.

Figure 12.5 (left) shows autocorrelation functions for the three quality cat-
egories, with nlags=40. The gray region shows the normal variability we
would expect if there is no actual autocorrelation; anything that falls outside
this range is statistically significant, with a p-value less than 5%. Since the
false positive rate is 5%, and we are computing 120 correlations (40 lags for
each of 3 times series), we expect to see about 6 points outside this region.
In fact, there are 7. We conclude that there are no autocorrelations in these
series that could not be explained by chance.
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Figure 12.5: Autocorrelation function for daily prices (left), and daily prices
with a simulated weekly seasonality (right).

I computed the gray regions by resampling the residuals. You can see my
code in timeseries.py; the function is called SimulateAutocorrelation.

To see what the autocorrelation function looks like when there is a seasonal
component, I generated simulated data by adding a weekly cycle. Assuming
that demand for cannabis is higher on weekends, we might expect the price
to be higher. To simulate this effect, I select dates that fall on Friday or
Saturday and add a random amount to the price, chosen from a uniform
distribution from $0 to $2.

def AddWeeklySeasonality(daily):

frisat = (daily.index.dayofweek==4) | (daily.index.dayofweek==5)

fake = daily.copy()

fake.ppg[frisat] += np.random.uniform(0, 2, frisat.sum())

return fake

frisat is a boolean Series, True if the day of the week is Friday or Saturday.
fake is a new DataFrame, initially a copy of daily, which we modify by
adding random values to ppg. frisat.sum() is the total number of Fridays
and Saturdays, which is the number of random values we have to generate.

Figure 12.5 (right) shows autocorrelation functions for prices with this sim-
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ulated seasonality. As expected, the correlations are highest when the lag is
a multiple of 7. For high and medium quality, the new correlations are sta-
tistically significant. For low quality they are not, because residuals in this
category are large; the effect would have to be bigger to be visible through
the noise.

12.8 Prediction

Time series analysis can be used to investigate, and sometimes explain, the
behavior of systems that vary in time. It can also make predictions.

The linear regressions we used in Section 12.3 can be used for prediction.
The RegressionResults class provides predict, which takes a DataFrame
containing the explanatory variables and returns a sequence of predictions.
Here’s the code:

def GenerateSimplePrediction(results, years):

n = len(years)

inter = np.ones(n)

d = dict(Intercept=inter, years=years)

predict_df = pandas.DataFrame(d)

predict = results.predict(predict_df)

return predict

results is a RegressionResults object; years is the sequence of time values
we want predictions for. The function constructs a DataFrame, passes it to
predict, and returns the result.

If all we want is a single, best-guess prediction, we’re done. But for most
purposes it is important to quantify error. In other words, we want to know
how accurate the prediction is likely to be.

There are three sources of error we should take into account:

• Sampling error: The prediction is based on estimated parameters,
which depend on random variation in the sample. If we run the exper-
iment again, we expect the estimates to vary.
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• Random variation: Even if the estimated parameters are perfect, the
observed data varies randomly around the long-term trend, and we
expect this variation to continue in the future.

• Modeling error: We have already seen evidence that the long-term
trend is not linear, so predictions based on a linear model will eventually
fail.

Another source of error to consider is unexpected future events. Agricultural
prices are affected by weather, and all prices are affected by politics and law.
As I write this, cannabis is legal in two states and legal for medical purposes
in 20 more. If more states legalize it, the price is likely to go down. But if
the federal government cracks down, the price might go up.

Modeling errors and unexpected future events are hard to quantify. Sampling
error and random variation are easier to deal with, so we’ll do that first.

To quantify sampling error, I use resampling, as we did in Section 10.4. As
always, the goal is to use the actual observations to simulate what would
happen if we ran the experiment again. The simulations are based on the
assumption that the estimated parameters are correct, but the random resid-
uals could have been different. Here is a function that runs the simulations:

def SimulateResults(daily, iters=101):

model, results = RunLinearModel(daily)

fake = daily.copy()

result_seq = []

for i in range(iters):

fake.ppg = results.fittedvalues + Resample(results.resid)

_, fake_results = RunLinearModel(fake)

result_seq.append(fake_results)

return result_seq

daily is a DataFrame containing the observed prices; iters is the number
of simulations to run.

SimulateResults uses RunLinearModel, from Section 12.3, to estimate the
slope and intercept of the observed values.
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Each time through the loop, it generates a “fake” dataset by resampling the
residuals and adding them to the fitted values. Then it runs a linear model
on the fake data and stores the RegressionResults object.

The next step is to use the simulated results to generate predictions:

def GeneratePredictions(result_seq, years, add_resid=False):

n = len(years)

d = dict(Intercept=np.ones(n), years=years, years2=years**2)

predict_df = pandas.DataFrame(d)

predict_seq = []

for fake_results in result_seq:

predict = fake_results.predict(predict_df)

if add_resid:

predict += thinkstats2.Resample(fake_results.resid, n)

predict_seq.append(predict)

return predict_seq

GeneratePredictions takes the sequence of results from the previous step,
as well as years, which is a sequence of floats that specifies the interval to gen-
erate predictions for, and add_resid, which indicates whether it should add
resampled residuals to the straight-line prediction. GeneratePredictions

iterates through the sequence of RegressionResults and generates a sequence
of predictions.

Finally, here’s the code that plots a 90% confidence interval for the predic-
tions:

def PlotPredictions(daily, years, iters=101, percent=90):

result_seq = SimulateResults(daily, iters=iters)

p = (100 - percent) / 2

percents = p, 100-p

predict_seq = GeneratePredictions(result_seq, years, True)

low, high = thinkstats2.PercentileRows(predict_seq, percents)

thinkplot.FillBetween(years, low, high, alpha=0.3, color='gray')

predict_seq = GeneratePredictions(result_seq, years, False)
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Figure 12.6: Predictions based on linear fits, showing variation due to sam-
pling error and prediction error.

low, high = thinkstats2.PercentileRows(predict_seq, percents)

thinkplot.FillBetween(years, low, high, alpha=0.5, color='gray')

PlotPredictions calls GeneratePredictions twice: once with
add_resid=True and again with add_resid=False. It uses PercentileRows
to select the 5th and 95th percentiles for each year, then plots a gray region
between these bounds.

Figure 12.6 shows the result. The dark gray region represents a 90% confi-
dence interval for the sampling error; that is, uncertainty about the estimated
slope and intercept due to sampling.

The lighter region shows a 90% confidence interval for prediction error, which
is the sum of sampling error and random variation.

These regions quantify sampling error and random variation, but not mod-
eling error. In general modeling error is hard to quantify, but in this case we
can address at least one source of error, unpredictable external events.

The regression model is based on the assumption that the system is sta-
tionary; that is, that the parameters of the model don’t change over time.
Specifically, it assumes that the slope and intercept are constant, as well as
the distribution of residuals.
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Figure 12.7: Predictions based on linear fits, showing variation due to the
interval of observation.

But looking at the moving averages in Figure 12.3, it seems like the slope
changes at least once during the observed interval, and the variance of the
residuals seems bigger in the first half than the second.

As a result, the parameters we get depend on the interval we observe. To see
how much effect this has on the predictions, we can extend SimulateResults

to use intervals of observation with different start and end dates. My imple-
mentation is in timeseries.py.

Figure 12.7 shows the result for the medium quality category. The lightest
gray area shows a confidence interval that includes uncertainty due to sam-
pling error, random variation, and variation in the interval of observation.

The model based on the entire interval has positive slope, indicating that
prices were increasing. But the most recent interval shows signs of decreasing
prices, so models based on the most recent data have negative slope. As a
result, the widest predictive interval includes the possibility of decreasing
prices over the next year.



192 Chapter 12. Time series analysis

12.9 Further reading

Time series analysis is a big topic; this chapter has only scratched the surface.
An important tool for working with time series data is autoregression, which
I did not cover here, mostly because it turns out not to be useful for the
example data I worked with.

But once you have learned the material in this chapter, you are well prepared
to learn about autoregression. One resource I recommend is Philipp Janert’s
book, Data Analysis with Open Source Tools, O’Reilly Media, 2011. His
chapter on time series analysis picks up where this one leaves off.

12.10 Exercises

My solution to these exercises is in chap12soln.py.

Exercise 12.1 The linear model I used in this chapter has the obvious draw-
back that it is linear, and there is no reason to expect prices to change linearly
over time. We can add flexibility to the model by adding a quadratic term,
as we did in Section 11.3.

Use a quadratic model to fit the time series of daily prices, and use the model
to generate predictions. You will have to write a version of RunLinearModel
that runs that quadratic model, but after that you should be able to reuse
code in timeseries.py to generate predictions.

Exercise 12.2 Write a definition for a class named SerialCorrelationTest

that extends HypothesisTest from Section 9.2. It should take a series and
a lag as data, compute the serial correlation of the series with the given lag,
and then compute the p-value of the observed correlation.

Use this class to test whether the serial correlation in raw price data is
statistically significant. Also test the residuals of the linear model and (if
you did the previous exercise), the quadratic model.

Exercise 12.3 There are several ways to extend the EWMA model to gen-
erate predictions. One of the simplest is something like this:

1. Compute the EWMA of the time series and use the last point as an
intercept, inter.
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2. Compute the EWMA of differences between successive elements in the
time series and use the last point as a slope, slope.

3. To predict values at future times, compute inter + slope * dt,
where dt is the difference between the time of the prediction and the
time of the last observation.

Use this method to generate predictions for a year after the last observation.
A few hints:

• Use timeseries.FillMissing to fill in missing values before running
this analysis. That way the time between consecutive elements is con-
sistent.

• Use Series.diff to compute differences between successive elements.

• Use reindex to extend the DataFrame index into the future.

• Use fillna to put your predicted values into the DataFrame.

12.11 Glossary

• time series: A dataset where each value is associated with a timestamp,
often a series of measurements and the times they were collected.

• window: A sequence of consecutive values in a time series, often used
to compute a moving average.

• moving average: One of several statistics intended to estimate the un-
derlying trend in a time series by computing averages (of some kind)
for a series of overlapping windows.

• rolling mean: A moving average based on the mean value in each win-
dow.

• exponentially-weighted moving average (EWMA): A moving average
based on a weighted mean that gives the highest weight to the most
recent values, and exponentially decreasing weights to earlier values.
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• span: A parameter of EWMA that determines how quickly the weights
decrease.

• serial correlation: Correlation between a time series and a shifted or
lagged version of itself.

• lag: The size of the shift in a serial correlation or autocorrelation.

• autocorrelation: A more general term for a serial correlation with any
amount of lag.

• autocorrelation function: A function that maps from lag to serial cor-
relation.

• stationary: A model is stationary if the parameters and the distribution
of residuals does not change over time.



Chapter 13

Survival analysis

Survival analysis is a way to describe how long things last. It is often used
to study human lifetimes, but it also applies to “survival” of mechanical and
electronic components, or more generally to intervals in time before an event.

If someone you know has been diagnosed with a life-threatening disease, you
might have seen a “5-year survival rate,” which is the probability of surviving
five years after diagnosis. That estimate and related statistics are the result
of survival analysis.

The code in this chapter is in survival.py. For information about down-
loading and working with this code, see Section 0.2.

13.1 Survival curves

The fundamental concept in survival analysis is the survival curve, S(t),
which is a function that maps from a duration, t, to the probability of surviv-
ing longer than t. If you know the distribution of durations, or “lifetimes”,
finding the survival curve is easy; it’s just the complement of the CDF:

S(t) = 1− CDF(t)

where CDF (t) is the probability of a lifetime less than or equal to t.
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Figure 13.1: Cdf and survival curve for pregnancy length (top), hazard curve
(bottom).

For example, in the NSFG dataset, we know the duration of 11189 complete
pregnancies. We can read this data and compute the CDF:

preg = nsfg.ReadFemPreg()

complete = preg.query('outcome in [1, 3, 4]').prglngth

cdf = thinkstats2.Cdf(complete, label='cdf')

The outcome codes 1, 3, 4 indicate live birth, stillbirth, and miscarriage.
For this analysis I am excluding induced abortions, ectopic pregnancies, and
pregnancies that were in progress when the respondent was interviewed.

The DataFrame method query takes a boolean expression and evaluates it
for each row, selecting the rows that yield True.

Figure 13.1 (top) shows the CDF of pregnancy length and its complement,
the survival curve. To represent the survival curve, I define an object that
wraps a Cdf and adapts the interface:

class SurvivalFunction(object):

def __init__(self, cdf, label=''):

self.cdf = cdf

self.label = label or cdf.label
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@property

def ts(self):

return self.cdf.xs

@property

def ss(self):

return 1 - self.cdf.ps

SurvivalFunction provides two properties: ts, which is the sequence of
lifetimes, and ss, which is the survival curve. In Python, a “property” is a
method that can be invoked as if it were a variable.

We can instantiate a SurvivalFunction by passing the CDF of lifetimes:

sf = SurvivalFunction(cdf)

SurvivalFunction also provides __getitem__ and Prob, which evaluates
the survival curve:

# class SurvivalFunction

def __getitem__(self, t):

return self.Prob(t)

def Prob(self, t):

return 1 - self.cdf.Prob(t)

For example, sf[13] is the fraction of pregnancies that proceed past the first
trimester:

>>> sf[13]

0.86022

>>> cdf[13]

0.13978

About 86% of pregnancies proceed past the first trimester; about 14% do
not.

SurvivalFunction provides Render, so we can plot sf using the functions
in thinkplot:

thinkplot.Plot(sf)
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Figure 13.1 (top) shows the result. The curve is nearly flat between 13 and 26
weeks, which shows that few pregnancies end in the second trimester. And
the curve is steepest around 39 weeks, which is the most common pregnancy
length.

13.2 Hazard function

From the survival curve we can derive the hazard function; for pregnancy
lengths, the hazard function maps from a time, t, to the fraction of pregnan-
cies that continue until t and then end at t. To be more precise:

λ(t) =
S(t)− S(t+ 1)

S(t)

The numerator is the fraction of lifetimes that end at t, which is also PMF(t).

SurvivalFunction provides MakeHazard, which calculates the hazard func-
tion:

# class SurvivalFunction

def MakeHazard(self, label=''):

ss = self.ss

lams = {}

for i, t in enumerate(self.ts[:-1]):

hazard = (ss[i] - ss[i+1]) / ss[i]

lams[t] = hazard

return HazardFunction(lams, label=label)

The HazardFunction object is a wrapper for a pandas Series:

class HazardFunction(object):

def __init__(self, d, label=''):

self.series = pandas.Series(d)

self.label = label
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d can be a dictionary or any other type that can initialize a Series, including
another Series. label is a string used to identify the HazardFunction when
plotted.

HazardFunction provides __getitem__, so we can evaluate it like this:

>>> hf = sf.MakeHazard()

>>> hf[39]

0.49689

So of all pregnancies that proceed until week 39, about 50% end in week 39.

Figure 13.1 (bottom) shows the hazard function for pregnancy lengths. For
times after week 42, the hazard function is erratic because it is based on a
small number of cases. Other than that the shape of the curve is as expected:
it is highest around 39 weeks, and a little higher in the first trimester than
in the second.

The hazard function is useful in its own right, but it is also an important
tool for estimating survival curves, as we’ll see in the next section.

13.3 Inferring survival curves

If someone gives you the CDF of lifetimes, it is easy to compute the survival
and hazard functions. But in many real-world scenarios, we can’t measure
the distribution of lifetimes directly. We have to infer it.

For example, suppose you are following a group of patients to see how long
they survive after diagnosis. Not all patients are diagnosed on the same day,
so at any point in time, some patients have survived longer than others. If
some patients have died, we know their survival times. For patients who are
still alive, we don’t know survival times, but we have a lower bound.

If we wait until all patients are dead, we can compute the survival curve, but
if we are evaluating the effectiveness of a new treatment, we can’t wait that
long! We need a way to estimate survival curves using incomplete informa-
tion.

As a more cheerful example, I will use NSFG data to quantify how long
respondents “survive” until they get married for the first time. The range
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of respondents’ ages is 14 to 44 years, so the dataset provides a snapshot of
women at different stages in their lives.

For women who have been married, the dataset includes the date of their first
marriage and their age at the time. For women who have not been married,
we know their age when interviewed, but have no way of knowing when or if
they will get married.

Since we know the age at first marriage for some women, it might be tempt-
ing to exclude the rest and compute the CDF of the known data. That
is a bad idea. The result would be doubly misleading: (1) older women
would be overrepresented, because they are more likely to be married when
interviewed, and (2) married women would be overrepresented! In fact, this
analysis would lead to the conclusion that all women get married, which is
obviously incorrect.

13.4 Kaplan-Meier estimation

In this example it is not only desirable but necessary to include observations
of unmarried women, which brings us to one of the central algorithms in
survival analysis, Kaplan-Meier estimation.

The general idea is that we can use the data to estimate the hazard function,
then convert the hazard function to a survival curve. To estimate the hazard
function, we consider, for each age, (1) the number of women who got married
at that age and (2) the number of women “at risk” of getting married, which
includes all women who were not married at an earlier age.

Here’s the code:

def EstimateHazardFunction(complete, ongoing, label=''):

hist_complete = Counter(complete)

hist_ongoing = Counter(ongoing)

ts = list(hist_complete | hist_ongoing)

ts.sort()
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at_risk = len(complete) + len(ongoing)

lams = pandas.Series(index=ts)

for t in ts:

ended = hist_complete[t]

censored = hist_ongoing[t]

lams[t] = ended / at_risk

at_risk -= ended + censored

return HazardFunction(lams, label=label)

complete is the set of complete observations; in this case, the ages when
respondents got married. ongoing is the set of incomplete observations; that
is, the ages of unmarried women when they were interviewed.

First, we precompute hist_complete, which is a Counter that maps from
each age to the number of women married at that age, and hist_ongoing

which maps from each age to the number of unmarried women interviewed
at that age.

ts is the union of ages when respondents got married and ages when unmar-
ried women were interviewed, sorted in increasing order.

at_risk keeps track of the number of respondents considered “at risk” at
each age; initially, it is the total number of respondents.

The result is stored in a Pandas Series that maps from each age to the
estimated hazard function at that age.

Each time through the loop, we consider one age, t, and compute the number
of events that end at t (that is, the number of respondents married at that
age) and the number of events censored at t (that is, the number of women
interviewed at t whose future marriage dates are censored). In this context,
“censored” means that the data are unavailable because of the data collection
process.

The estimated hazard function is the fraction of the cases at risk that end at
.

At the end of the loop, we subtract from at_risk the number of cases that
ended or were censored at t.
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Finally, we pass lams to the HazardFunction constructor and return the
result.

13.5 The marriage curve

To test this function, we have to do some data cleaning and transformation.
The NSFG variables we need are:

• cmbirth: The respondent’s date of birth, known for all respondents.

• cmintvw: The date the respondent was interviewed, known for all re-
spondents.

• cmmarrhx: The date the respondent was first married, if applicable and
known.

• evrmarry: 1 if the respondent had been married prior to the date of
interview, 0 otherwise.

The first three variables are encoded in “century-months”; that is, the integer
number of months since December 1899. So century-month 1 is January 1900.

First, we read the respondent file and replace invalid values of cmmarrhx:

resp = chap01soln.ReadFemResp()

resp.cmmarrhx.replace([9997, 9998, 9999], np.nan, inplace=True)

Then we compute each respondent’s age when married and age when inter-
viewed:

resp['agemarry'] = (resp.cmmarrhx - resp.cmbirth) / 12.0

resp['age'] = (resp.cmintvw - resp.cmbirth) / 12.0

Next we extract complete, which is the age at marriage for women who have
been married, and ongoing, which is the age at interview for women who
have not:

complete = resp[resp.evrmarry==1].agemarry

ongoing = resp[resp.evrmarry==0].age

Finally we compute the hazard function.
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hf = EstimateHazardFunction(complete, ongoing)

Figure 13.2 (top) shows the estimated hazard function; it is low in the teens,
higher in the 20s, and declining in the 30s. It increases again in the 40s, but
that is an artifact of the estimation process; as the number of respondents
“at risk” decreases, a small number of women getting married yields a large
estimated hazard. The survival curve will smooth out this noise.

13.6 Estimating the survival curve

Once we have the hazard function, we can estimate the survival curve. The
chance of surviving past time t is the chance of surviving all times up through
t, which is the cumulative product of the complementary hazard function:

[1− λ(0)][1− λ(1)]...[1− λ(t)]

The HazardFunction class provides MakeSurvival, which computes this
product:

# class HazardFunction:

def MakeSurvival(self):

ts = self.series.index

ss = (1 - self.series).cumprod()

cdf = thinkstats2.Cdf(ts, 1-ss)

sf = SurvivalFunction(cdf)

return sf

ts is the sequence of times where the hazard function is estimated. ss is
the cumulative product of the complementary hazard function, so it is the
survival curve.

Because of the way SurvivalFunction is implemented, we have to compute
the complement of ss, make a Cdf, and then instantiate a SurvivalFunction
object.

Figure 13.2 (bottom) shows the result. The survival curve is steepest between
25 and 35, when most women get married. Between 35 and 45, the curve
is nearly flat, indicating that women who do not marry before age 35 are
unlikely to get married.
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Figure 13.2: Hazard function for age at first marriage (top) and survival
curve (bottom).

A curve like this was the basis of a famous magazine article in 1986; Newsweek
reported that a 40-year old unmarried woman was “more likely to be killed
by a terrorist” than get married. These statistics were widely reported and
became part of popular culture, but they were wrong then (because they were
based on faulty analysis) and turned out to be even more wrong (because
of cultural changes that were already in progress and continued). In 2006,
Newsweek ran an another article admitting that they were wrong.

I encourage you to read more about this article, the statistics it was based on,
and the reaction. It should remind you of the ethical obligation to perform
statistical analysis with care, interpret the results with appropriate skepti-
cism, and present them to the public accurately and honestly.

13.7 Confidence intervals

Kaplan-Meier analysis yields a single estimate of the survival curve, but it is
also important to quantify the uncertainty of the estimate. As usual, there
are three possible sources of error: measurement error, sampling error, and
modeling error.

In this example, measurement error is probably small. People generally know
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when they were born, whether they’ve been married, and when. And they
can be expected to report this information accurately.

We can quantify sampling error by resampling. Here’s the code:

def ResampleSurvival(resp, iters=101):

low, high = resp.agemarry.min(), resp.agemarry.max()

ts = np.arange(low, high, 1/12.0)

ss_seq = []

for i in range(iters):

sample = thinkstats2.ResampleRowsWeighted(resp)

hf, sf = EstimateSurvival(sample)

ss_seq.append(sf.Probs(ts))

low, high = thinkstats2.PercentileRows(ss_seq, [5, 95])

thinkplot.FillBetween(ts, low, high)

ResampleSurvival takes resp, a DataFrame of respondents, and iters, the
number of times to resample. It computes ts, which is the sequence of ages
where we will evaluate the survival curves.

Inside the loop, ResampleSurvival:

• Resamples the respondents using ResampleRowsWeighted, which we
saw in Section 10.7.

• Calls EstimateSurvival, which uses the process in the previous sec-
tions to estimate the hazard and survival curves, and

• Evaluates the survival curve at each age in ts.

ss_seq is a sequence of evaluated survival curves. PercentileRows takes
this sequence and computes the 5th and 95th percentiles, returning a 90%
confidence interval for the survival curve.

Figure 13.3 shows the result along with the survival curve we estimated in
the previous section. The confidence interval takes into account the sampling
weights, unlike the estimated curve. The discrepancy between them indicates
that the sampling weights have a substantial effect on the estimate—we will
have to keep that in mind.
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Figure 13.3: Survival curve for age at first marriage (dark line) and a 90%
confidence interval based on weighted resampling (gray line).

13.8 Cohort effects

One of the challenges of survival analysis is that different parts of the esti-
mated curve are based on different groups of respondents. The part of the
curve at time t is based on respondents whose age was at least t when they
were interviewed. So the leftmost part of the curve includes data from all
respondents, but the rightmost part includes only the oldest respondents.

If the relevant characteristics of the respondents are not changing over time,
that’s fine, but in this case it seems likely that marriage patterns are different
for women born in different generations. We can investigate this effect by
grouping respondents according to their decade of birth. Groups like this,
defined by date of birth or similar events, are called cohorts, and differences
between the groups are called cohort effects.

To investigate cohort effects in the NSFG marriage data, I gathered the Cycle
6 data from 2002 used throughout this book; the Cycle 7 data from 2006–
2010 used in Section 9.11; and the Cycle 5 data from 1995. In total these
datasets include 30,769 respondents.

resp5 = ReadFemResp1995()

resp6 = ReadFemResp2002()

resp7 = ReadFemResp2010()
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resps = [resp5, resp6, resp7]

For each DataFrame, resp, I use cmbirth to compute the decade of birth for
each respondent:

month0 = pandas.to_datetime('1899-12-15')

dates = [month0 + pandas.DateOffset(months=cm)

for cm in resp.cmbirth]

resp['decade'] = (pandas.DatetimeIndex(dates).year - 1900) // 10

cmbirth is encoded as the integer number of months since December 1899;
month0 represents that date as a Timestamp object. For each birth date,
we instantiate a DateOffset that contains the century-month and add it
to month0; the result is a sequence of Timestamps, which is converted to a
DateTimeIndex. Finally, we extract year and compute decades.

To take into account the sampling weights, and also to show variability due
to sampling error, I resample the data, group respondents by decade, and
plot survival curves:

for i in range(iters):

samples = [thinkstats2.ResampleRowsWeighted(resp)

for resp in resps]

sample = pandas.concat(samples, ignore_index=True)

groups = sample.groupby('decade')

EstimateSurvivalByDecade(groups, alpha=0.2)

Data from the three NSFG cycles use different sampling weights, so I re-
sample them separately and then use concat to merge them into a single
DataFrame. The parameter ignore_index tells concat not to match up
respondents by index; instead it creates a new index from 0 to 30768.

EstimateSurvivalByDecade plots survival curves for each cohort:

def EstimateSurvivalByDecade(resp):

for name, group in groups:

hf, sf = EstimateSurvival(group)

thinkplot.Plot(sf)

Figure 13.4 shows the results. Several patterns are visible:

• Women born in the 50s married earliest, with successive cohorts mar-
rying later and later, at least until age 30 or so.
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Figure 13.4: Survival curves for respondents born during different decades.

• Women born in the 60s follow a surprising pattern. Prior to age 25,
they were marrying at slower rates than their predecessors. After age
25, they were marrying faster. By age 32 they had overtaken the 50s
cohort, and at age 44 they are substantially more likely to have married.

Women born in the 60s turned 25 between 1985 and 1995. Remember-
ing that the Newsweek article I mentioned was published in 1986, it is
tempting to imagine that the article triggered a marriage boom. That
explanation would be too pat, but it is possible that the article and the
reaction to it were indicative of a mood that affected the behavior of
this cohort.

• The pattern of the 70s cohort is similar. They are less likely than
their predecessors to be married before age 25, but at age 35 they have
caught up with both of the previous cohorts.

• Women born in the 80s are even less likely to marry before age 25.
What happens after that is not clear; for more data, we have to wait
for the next cycle of the NSFG.

In the meantime we can make some predictions.
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13.9 Extrapolation

The survival curve for the 70s cohort ends at about age 38; for the 80s cohort
it ends at age 28, and for the 90s cohort we hardly have any data at all.

We can extrapolate these curves by “borrowing” data from the previous
cohort. HazardFunction provides a method, Extend, that copies the tail
from another longer HazardFunction:

# class HazardFunction

def Extend(self, other):

last = self.series.index[-1]

more = other.series[other.series.index > last]

self.series = pandas.concat([self.series, more])

As we saw in Section 13.2, the HazardFunction contains a Series that maps
from t to λ(t). Extend finds last, which is the last index in self.series,
selects values from other that come later than last, and appends them onto
self.series.

Now we can extend the HazardFunction for each cohort, using values from
the predecessor:

def PlotPredictionsByDecade(groups):

hfs = []

for name, group in groups:

hf, sf = EstimateSurvival(group)

hfs.append(hf)

thinkplot.PrePlot(len(hfs))

for i, hf in enumerate(hfs):

if i > 0:

hf.Extend(hfs[i-1])

sf = hf.MakeSurvival()

thinkplot.Plot(sf)

groups is a GroupBy object with respondents grouped by decade of birth.
The first loop computes the HazardFunction for each group.

The second loop extends each HazardFunction with values from its predeces-
sor, which might contain values from the previous group, and so on. Then it
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Figure 13.5: Survival curves for respondents born during different decades,
with predictions for the later cohorts.

converts each HazardFunction to a SurvivalFunction and plots it.

Figure 13.5 shows the results; I’ve removed the 50s cohort to make the pre-
dictions more visible. These results suggest that by age 40, the most recent
cohorts will converge with the 60s cohort, with fewer than 20% never married.

13.10 Expected remaining lifetime

Given a survival curve, we can compute the expected remaining lifetime as a
function of current age. For example, given the survival curve of pregnancy
length from Section 13.1, we can compute the expected time until delivery.

The first step is to extract the PMF of lifetimes. SurvivalFunction provides
a method that does that:

# class SurvivalFunction

def MakePmf(self, filler=None):

pmf = thinkstats2.Pmf()

for val, prob in self.cdf.Items():
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pmf.Set(val, prob)

cutoff = self.cdf.ps[-1]

if filler is not None:

pmf[filler] = 1-cutoff

return pmf

Remember that the SurvivalFunction contains the Cdf of lifetimes. The loop
copies the values and probabilities from the Cdf into a Pmf.

cutoff is the highest probability in the Cdf, which is 1 if the Cdf is complete,
and otherwise less than 1. If the Cdf is incomplete, we plug in the provided
value, filler, to cap it off.

The Cdf of pregnancy lengths is complete, so we don’t have to worry about
this detail yet.

The next step is to compute the expected remaining lifetime, where “ex-
pected” means average. SurvivalFunction provides a method that does
that, too:

# class SurvivalFunction

def RemainingLifetime(self, filler=None, func=thinkstats2.Pmf.Mean):

pmf = self.MakePmf(filler=filler)

d = {}

for t in sorted(pmf.Values())[:-1]:

pmf[t] = 0

pmf.Normalize()

d[t] = func(pmf) - t

return pandas.Series(d)

RemainingLifetime takes filler, which is passed along to MakePmf, and
func which is the function used to summarize the distribution of remaining
lifetimes.

pmf is the Pmf of lifetimes extracted from the SurvivalFunction. d is a
dictionary that contains the results, a map from current age, t, to expected
remaining lifetime.
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Figure 13.6: Expected remaining pregnancy length (left) and years until first
marriage (right).

The loop iterates through the values in the Pmf. For each value of t it
computes the conditional distribution of lifetimes, given that the lifetime
exceeds t. It does that by removing values from the Pmf one at a time and
renormalizing the remaining values.

Then it uses func to summarize the conditional distribution. In this example
the result is the mean pregnancy length, given that the length exceeds t. By
subtracting t we get the mean remaining pregnancy length.

Figure 13.6 (left) shows the expected remaining pregnancy length as a func-
tion of the current duration. For example, during Week 0, the expected
remaining duration is about 34 weeks. That’s less than full term (39 weeks)
because terminations of pregnancy in the first trimester bring the average
down.

The curve drops slowly during the first trimester. After 13 weeks, the ex-
pected remaining lifetime has dropped by only 9 weeks, to 25. After that the
curve drops faster, by about a week per week.

Between Week 37 and 42, the curve levels off between 1 and 2 weeks. At any
time during this period, the expected remaining lifetime is the same; with
each week that passes, the destination gets no closer. Processes with this
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property are called memoryless because the past has no effect on the pre-
dictions. This behavior is the mathematical basis of the infuriating mantra
of obstetrics nurses: “any day now.”

Figure 13.6 (right) shows the median remaining time until first marriage, as a
function of age. For an 11 year-old girl, the median time until first marriage is
about 14 years. The curve decreases until age 22 when the median remaining
time is about 7 years. After that it increases again: by age 30 it is back where
it started, at 14 years.

Based on this data, young women have decreasing remaining ”lifetimes”.
Mechanical components with this property are called NBUE for ”new better
than used in expectation,” meaning that a new part is expected to last longer.

Women older than 22 have increasing remaining time until first marriage.
Components with this property are called UBNE for ”used better than new
in expectation.” That is, the older the part, the longer it is expected to last.
Newborns and cancer patients are also UBNE; their life expectancy increases
the longer they live.

For this example I computed median, rather than mean, because the Cdf
is incomplete; the survival curve projects that about 20% of respondents
will not marry before age 44. The age of first marriage for these women is
unknown, and might be non-existent, so we can’t compute a mean.

I deal with these unknown values by replacing them with np.inf, a special
value that represents infinity. That makes the mean infinity for all ages,
but the median is well-defined as long as more than 50% of the remaining
lifetimes are finite, which is true until age 30. After that it is hard to define
a meaningful expected remaining lifetime.

Here’s the code that computes and plots these functions:

rem_life1 = sf1.RemainingLifetime()

thinkplot.Plot(rem_life1)

func = lambda pmf: pmf.Percentile(50)

rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func)

thinkplot.Plot(rem_life2)
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sf1 is the survival curve for pregnancy length; in this case we can use the
default values for RemainingLifetime.

sf2 is the survival curve for age at first marriage; func is a function that
takes a Pmf and computes its median (50th percentile).

13.11 Exercises

My solution to this exercise is in chap13soln.py.

Exercise 13.1 In NSFG Cycles 6 and 7, the variable cmdivorcx contains
the date of divorce for the respondent’s first marriage, if applicable, encoded
in century-months.

Compute the duration of marriages that have ended in divorce, and the
duration, so far, of marriages that are ongoing. Estimate the hazard and
survival curve for the duration of marriage.

Use resampling to take into account sampling weights, and plot data from
several resamples to visualize sampling error.

Consider dividing the respondents into groups by decade of birth, and pos-
sibly by age at first marriage.

13.12 Glossary

• survival analysis: A set of methods for describing and predicting life-
times, or more generally time until an event occurs.

• survival curve: A function that maps from a time, t, to the probability
of surviving past t.

• hazard function: A function that maps from t to the fraction of people
alive until t who die at t.

• Kaplan-Meier estimation: An algorithm for estimating hazard and sur-
vival functions.
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• cohort: a group of subjects defined by an event, like date of birth, in a
particular interval of time.

• cohort effect: a difference between cohorts.

• NBUE: A property of expected remaining lifetime, “New better than
used in expectation.”

• UBNE: A property of expected remaining lifetime, “Used better than
new in expectation.”
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Chapter 14

Analytic methods

This book has focused on computational methods like simulation and resam-
pling, but some of the problems we solved have analytic solutions that can
be much faster.

I present some of these methods in this chapter, and explain how they work.
At the end of the chapter, I make suggestions for integrating computational
and analytic methods for exploratory data analysis.

The code in this chapter is in normal.py. For information about downloading
and working with this code, see Section 0.2.

14.1 Normal distributions

As a motivating example, let’s review the problem from Section 8.3:

Suppose you are a scientist studying gorillas in a wildlife preserve.
Having weighed 9 gorillas, you find sample mean x̄ = 90 kg and
sample standard deviation, S = 7.5 kg. If you use x̄ to estimate
the population mean, what is the standard error of the estimate?

To answer that question, we need the sampling distribution of x̄. In Sec-
tion 8.3 we approximated this distribution by simulating the experiment
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(weighing 9 gorillas), computing x̄ for each simulated experiment, and accu-
mulating the distribution of estimates.

The result is an approximation of the sampling distribution. Then we use the
sampling distribution to compute standard errors and confidence intervals:

1. The standard deviation of the sampling distribution is the standard
error of the estimate; in the example, it is about 2.5 kg.

2. The interval between the 5th and 95th percentile of the sampling dis-
tribution is a 90% confidence interval. If we run the experiment many
times, we expect the estimate to fall in this interval 90% of the time.
In the example, the 90% CI is (86, 94) kg.

Now we’ll do the same calculation analytically. We take advantage of the
fact that the weights of adult female gorillas are roughly normally distributed.
Normal distributions have two properties that make them amenable for anal-
ysis: they are “closed” under linear transformation and addition. To explain
what that means, I need some notation.

If the distribution of a quantity, X, is normal with parameters µ and σ, you
can write

X ∼ N (µ, σ2)

where the symbol ∼ means “is distributed” and the script letter N stands
for “normal.”

A linear transformation of X is something like X ′ = aX+b, where a and b are
real numbers. A family of distributions is closed under linear transformation
if X ′ is in the same family as X. The normal distribution has this property;
if X ∼ N (µ, σ2),

X ′ ∼ N (aµ+ b, a2σ2) (1)

Normal distributions are also closed under addition. If Z = X + Y and
X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y ) then

Z ∼ N (µX + µY , σ
2
X + σ2

Y ) (2)

In the special case Z = X +X, we have

Z ∼ N (2µX , 2σ
2
X)
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and in general if we draw n values of X and add them up, we have

Z ∼ N (nµX , nσ
2
X) (3)

14.2 Sampling distributions

Now we have everything we need to compute the sampling distribution of x̄.
Remember that we compute x̄ by weighing n gorillas, adding up the total
weight, and dividing by n.

Assume that the distribution of gorilla weights, X, is approximately normal:

X ∼ N (µ, σ2)

If we weigh n gorillas, the total weight, Y , is distributed

Y ∼ N (nµ, nσ2)

using Equation 3. And if we divide by n, the sample mean, Z, is distributed

Z ∼ N (µ, σ2/n)

using Equation 1 with a = 1/n.

The distribution of Z is the sampling distribution of x̄. The mean of Z is
µ, which shows that x̄ is an unbiased estimate of µ. The variance of the
sampling distribution is σ2/n.

So the standard deviation of the sampling distribution, which is the standard
error of the estimate, is σ/

√
n. In the example, σ is 7.5 kg and n is 9, so the

standard error is 2.5 kg. That result is consistent with what we estimated
by simulation, but much faster to compute!

We can also use the sampling distribution to compute confidence intervals.
A 90% confidence interval for x̄ is the interval between the 5th and 95th
percentiles of Z. Since Z is normally distributed, we can compute percentiles
by evaluating the inverse CDF.

There is no closed form for the CDF of the normal distribution or its inverse,
but there are fast numerical methods and they are implemented in SciPy, as
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we saw in Section 5.2. thinkstats2 provides a wrapper function that makes
the SciPy function a little easier to use:

def EvalNormalCdfInverse(p, mu=0, sigma=1):

return scipy.stats.norm.ppf(p, loc=mu, scale=sigma)

Given a probability, p, it returns the corresponding percentile from a normal
distribution with parameters mu and sigma. For the 90% confidence interval
of x̄, we compute the 5th and 95th percentiles like this:

>>> thinkstats2.EvalNormalCdfInverse(0.05, mu=90, sigma=2.5)

85.888

>>> thinkstats2.EvalNormalCdfInverse(0.95, mu=90, sigma=2.5)

94.112

So if we run the experiment many times, we expect the estimate, x̄, to fall in
the range (85.9, 94.1) about 90% of the time. Again, this is consistent with
the result we got by simulation.

14.3 Representing normal distributions

To make these calculations easier, I have defined a class called Normal that
represents a normal distribution and encodes the equations in the previous
sections. Here’s what it looks like:

class Normal(object):

def __init__(self, mu, sigma2):

self.mu = mu

self.sigma2 = sigma2

def __str__(self):

return 'N(%g, %g)' % (self.mu, self.sigma2)

So we can instantiate a Normal that represents the distribution of gorilla
weights:

>>> dist = Normal(90, 7.5**2)

>>> dist

N(90, 56.25)



14.4. Central limit theorem 221

Normal provides Sum, which takes a sample size, n, and returns the distribu-
tion of the sum of n values, using Equation 3:

def Sum(self, n):

return Normal(n * self.mu, n * self.sigma2)

Normal also knows how to multiply and divide using Equation 1:

def __mul__(self, factor):

return Normal(factor * self.mu, factor**2 * self.sigma2)

def __div__(self, divisor):

return 1 / divisor * self

So we can compute the sampling distribution of the mean with sample size
9:

>>> dist_xbar = dist.Sum(9) / 9

>>> dist_xbar.sigma

2.5

The standard deviation of the sampling distribution is 2.5 kg, as we saw in
the previous section. Finally, Normal provides Percentile, which we can
use to compute a confidence interval:

>>> dist_xbar.Percentile(5), dist_xbar.Percentile(95)

85.888 94.113

And that’s the same answer we got before. We’ll use the Normal class again
later, but before we go on, we need one more bit of analysis.

14.4 Central limit theorem

As we saw in the previous sections, if we add values drawn from normal
distributions, the distribution of the sum is normal. Most other distributions
don’t have this property; if we add values drawn from other distributions,
the sum does not generally have an analytic distribution.

But if we add up n values from almost any distribution, the distribution of
the sum converges to normal as n increases.

More specifically, if the distribution of the values has mean and standard
deviation µ and σ, the distribution of the sum is approximately N (nµ, nσ2).
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This result is the Central Limit Theorem (CLT). It is one of the most useful
tools for statistical analysis, but it comes with caveats:

• The values have to be drawn independently. If they are correlated, the
CLT doesn’t apply (although this is seldom a problem in practice).

• The values have to come from the same distribution (although this
requirement can be relaxed).

• The values have to be drawn from a distribution with finite mean and
variance. So most Pareto distributions are out.

• The rate of convergence depends on the skewness of the distribution.
Sums from an exponential distribution converge for small n. Sums from
a lognormal distribution require larger sizes.

The Central Limit Theorem explains the prevalence of normal distributions
in the natural world. Many characteristics of living things are affected by
genetic and environmental factors whose effect is additive. The character-
istics we measure are the sum of a large number of small effects, so their
distribution tends to be normal.

14.5 Testing the CLT

To see how the Central Limit Theorem works, and when it doesn’t, let’s try
some experiments. First, we’ll try an exponential distribution:

def MakeExpoSamples(beta=2.0, iters=1000):

samples = []

for n in [1, 10, 100]:

sample = [np.sum(np.random.exponential(beta, n))

for _ in range(iters)]

samples.append((n, sample))

return samples

MakeExpoSamples generates samples of sums of exponential values (I use
“exponential values” as shorthand for “values from an exponential distribu-
tion”). beta is the parameter of the distribution; iters is the number of
sums to generate.
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To explain this function, I’ll start from the inside and work my way out. Each
time we call np.random.exponential, we get a sequence of n exponential
values and compute its sum. sample is a list of these sums, with length
iters.

It is easy to get n and iters confused: n is the number of terms in each
sum; iters is the number of sums we compute in order to characterize the
distribution of sums.

The return value is a list of (n, sample) pairs. For each pair, we make a
normal probability plot:

def NormalPlotSamples(samples, plot=1, ylabel=''):

for n, sample in samples:

thinkplot.SubPlot(plot)

thinkstats2.NormalProbabilityPlot(sample)

thinkplot.Config(title='n=%d' % n, ylabel=ylabel)

plot += 1

NormalPlotSamples takes the list of pairs from MakeExpoSamples and gen-
erates a row of normal probability plots.

Figure 14.1 (top row) shows the results. With n=1, the distribution of the
sum is still exponential, so the normal probability plot is not a straight line.
But with n=10 the distribution of the sum is approximately normal, and with
n=100 it is all but indistinguishable from normal.

Figure 14.1 (bottom row) shows similar results for a lognormal distribution.
Lognormal distributions are generally more skewed than exponential distri-
butions, so the distribution of sums takes longer to converge. With n=10

the normal probability plot is nowhere near straight, but with n=100 it is
approximately normal.

Pareto distributions are even more skewed than lognormal. Depending on the
parameters, many Pareto distributions do not have finite mean and variance.
As a result, the Central Limit Theorem does not apply. Figure 14.2 (top row)
shows distributions of sums of Pareto values. Even with n=100 the normal
probability plot is far from straight.

I also mentioned that CLT does not apply if the values are correlated. To
test that, I generate correlated values from an exponential distribution. The
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Figure 14.1: Distributions of sums of exponential values (top row) and log-
normal values (bottom row).
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Figure 14.2: Distributions of sums of Pareto values (top row) and correlated
exponential values (bottom row).
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algorithm for generating correlated values is (1) generate correlated normal
values, (2) use the normal CDF to transform the values to uniform, and
(3) use the inverse exponential CDF to transform the uniform values to
exponential.

GenerateCorrelated returns an iterator of n normal values with serial cor-
relation rho:

def GenerateCorrelated(rho, n):

x = random.gauss(0, 1)

yield x

sigma = math.sqrt(1 - rho**2)

for _ in range(n-1):

x = random.gauss(x*rho, sigma)

yield x

The first value is a standard normal value. Each subsequent value depends
on its predecessor: if the previous value is x, the mean of the next value is
x*rho, with variance 1-rho**2. Note that random.gauss takes the standard
deviation as the second argument, not variance.

GenerateExpoCorrelated takes the resulting sequence and transforms it to
exponential:

def GenerateExpoCorrelated(rho, n):

normal = list(GenerateCorrelated(rho, n))

uniform = scipy.stats.norm.cdf(normal)

expo = scipy.stats.expon.ppf(uniform)

return expo

normal is a list of correlated normal values. uniform is a sequence of uniform
values between 0 and 1. expo is a correlated sequence of exponential values.
ppf stands for “percent point function,” which is another name for the inverse
CDF.

Figure 14.2 (bottom row) shows distributions of sums of correlated expo-
nential values with rho=0.9. The correlation slows the rate of convergence;
nevertheless, with n=100 the normal probability plot is nearly straight. So
even though CLT does not strictly apply when the values are correlated,
moderate correlations are seldom a problem in practice.
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These experiments are meant to show how the Central Limit Theorem works,
and what happens when it doesn’t. Now let’s see how we can use it.

14.6 Applying the CLT

To see why the Central Limit Theorem is useful, let’s get back to the example
in Section 9.3: testing the apparent difference in mean pregnancy length for
first babies and others. As we’ve seen, the apparent difference is about 0.078
weeks:

>>> live, firsts, others = first.MakeFrames()

>>> delta = firsts.prglngth.mean() - others.prglngth.mean()

0.078

Remember the logic of hypothesis testing: we compute a p-value, which is the
probability of the observed difference under the null hypothesis; if it is small,
we conclude that the observed difference is unlikely to be due to chance.

In this example, the null hypothesis is that the distribution of pregnancy
lengths is the same for first babies and others. So we can compute the
sampling distribution of the mean like this:

dist1 = SamplingDistMean(live.prglngth, len(firsts))

dist2 = SamplingDistMean(live.prglngth, len(others))

Both sampling distributions are based on the same population, which is the
pool of all live births. SamplingDistMean takes this sequence of values and
the sample size, and returns a Normal object representing the sampling dis-
tribution:

def SamplingDistMean(data, n):

mean, var = data.mean(), data.var()

dist = Normal(mean, var)

return dist.Sum(n) / n

mean and var are the mean and variance of data. We approximate the
distribution of the data with a normal distribution, dist.

In this example, the data are not normally distributed, so this approximation
is not very good. But then we compute dist.Sum(n) / n, which is the
sampling distribution of the mean of n values. Even if the data are not



228 Chapter 14. Analytic methods

normally distributed, the sampling distribution of the mean is, by the Central
Limit Theorem.

Next, we compute the sampling distribution of the difference in the means.
The Normal class knows how to perform subtraction using Equation 2:

def __sub__(self, other):

return Normal(self.mu - other.mu,

self.sigma2 + other.sigma2)

So we can compute the sampling distribution of the difference like this:

>>> dist = dist1 - dist2

N(0, 0.0032)

The mean is 0, which makes sense because we expect two samples from the
same distribution to have the same mean, on average. The variance of the
sampling distribution is 0.0032.

Normal provides Prob, which evaluates the normal CDF. We can use Prob

to compute the probability of a difference as large as delta under the null
hypothesis:

>>> 1 - dist.Prob(delta)

0.084

Which means that the p-value for a one-sided test is 0.84. For a two-sided
test we would also compute

>>> dist.Prob(-delta)

0.084

Which is the same because the normal distribution is symmetric. The sum of
the tails is 0.168, which is consistent with the estimate in Section 9.3, which
was 0.17.

14.7 Correlation test

In Section 9.5 we used a permutation test for the correlation between birth
weight and mother’s age, and found that it is statistically significant, with
p-value less than 0.001.

Now we can do the same thing analytically. The method is based on this
mathematical result: given two variables that are normally distributed and
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uncorrelated, if we generate a sample with size n, compute Pearson’s corre-
lation, r, and then compute the transformed correlation

t = r

√
n− 2

1− r2

the distribution of t is Student’s t-distribution with parameter n− 2. The t-
distribution is an analytic distribution; the CDF can be computed efficiently
using gamma functions.

We can use this result to compute the sampling distribution of correlation
under the null hypothesis; that is, if we generate uncorrelated sequences
of normal values, what is the distribution of their correlation? StudentCdf

takes the sample size, n, and returns the sampling distribution of correlation:

def StudentCdf(n):

ts = np.linspace(-3, 3, 101)

ps = scipy.stats.t.cdf(ts, df=n-2)

rs = ts / np.sqrt(n - 2 + ts**2)

return thinkstats2.Cdf(rs, ps)

ts is a NumPy array of values for t, the transformed correlation. ps contains
the corresponding probabilities, computed using the CDF of the Student’s
t-distribution implemented in SciPy. The parameter of the t-distribution,
df, stands for “degrees of freedom.” I won’t explain that term, but you can
read about it at http://en.wikipedia.org/wiki/Degrees_of_freedom_

(statistics).

To get from ts to the correlation coefficients, rs, we apply the inverse trans-
form,

r = t/
√
n− 2 + t2

The result is the sampling distribution of r under the null hypothesis. Fig-
ure 14.3 shows this distribution along with the distribution we generated in
Section 9.5 by resampling. They are nearly identical. Although the actual
distributions are not normal, Pearson’s coefficient of correlation is based on
sample means and variances. By the Central Limit Theorem, these moment-
based statistics are normally distributed even if the data are not.

From Figure 14.3, we can see that the observed correlation, 0.07, is unlikely

http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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Figure 14.3: Sampling distribution of correlations for uncorrelated normal
variables.

to occur if the variables are actually uncorrelated. Using the analytic distri-
bution, we can compute just how unlikely:

t = r * math.sqrt((n-2) / (1-r**2))

p_value = 1 - scipy.stats.t.cdf(t, df=n-2)

We compute the value of t that corresponds to r=0.07, and then evaluate
the t-distribution at t. The result is 2.9e-11. This example demonstrates
an advantage of the analytic method: we can compute very small p-values.
But in practice it usually doesn’t matter.

14.8 Chi-squared test

In Section 9.7 we used the chi-squared statistic to test whether a die is
crooked. The chi-squared statistic measures the total normalized deviation
from the expected values in a table:

χ2 =
∑
i

(Oi − Ei)2

Ei
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Figure 14.4: Sampling distribution of chi-squared statistics for a fair six-sided
die.

One reason the chi-squared statistic is widely used is that its sampling distri-
bution under the null hypothesis is analytic; by a remarkable coincidence1, it
is called the chi-squared distribution. Like the t-distribution, the chi-squared
CDF can be computed efficiently using gamma functions.

SciPy provides an implementation of the chi-squared distribution, which we
use to compute the sampling distribution of the chi-squared statistic:

def ChiSquaredCdf(n):

xs = np.linspace(0, 25, 101)

ps = scipy.stats.chi2.cdf(xs, df=n-1)

return thinkstats2.Cdf(xs, ps)

Figure 14.4 shows the analytic result along with the distribution we got by
resampling. They are very similar, especially in the tail, which is the part
we usually care most about.

We can use this distribution to compute the p-value of the observed test
statistic, chi2:

p_value = 1 - scipy.stats.chi2.cdf(chi2, df=n-1)

The result is 0.041, which is consistent with the result from Section 9.7.

1Not really.
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The parameter of the chi-squared distribution is “degrees of freedom” again.
In this case the correct parameter is n-1, where n is the size of the table, 6.
Choosing this parameter can be tricky; to be honest, I am never confident
that I have it right until I generate something like Figure 14.4 to compare
the analytic results to the resampling results.

14.9 Discussion

This book focuses on computational methods like resampling and permuta-
tion. These methods have several advantages over analysis:

• They are easier to explain and understand. For example, one of the
most difficult topics in an introductory statistics class is hypothesis
testing. Many students don’t really understand what p-values are.
I think the approach I presented in Chapter 9—simulating the null
hypothesis and computing test statistics—makes the fundamental idea
clearer.

• They are robust and versatile. Analytic methods are often based on
assumptions that might not hold in practice. Computational methods
require fewer assumptions, and can be adapted and extended more
easily.

• They are debuggable. Analytic methods are often like a black box: you
plug in numbers and they spit out results. But it’s easy to make subtle
errors, hard to be confident that the results are right, and hard to find
the problem if they are not. Computational methods lend themselves
to incremental development and testing, which fosters confidence in the
results.

But there is one drawback: computational methods can be slow. Taking into
account these pros and cons, I recommend the following process:

1. Use computational methods during exploration. If you find a satisfac-
tory answer and the run time is acceptable, you can stop.

2. If run time is not acceptable, look for opportunities to optimize. Using
analytic methods is one of several methods of optimization.
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3. If replacing a computational method with an analytic method is ap-
propriate, use the computational method as a basis of comparison,
providing mutual validation between the computational and analytic
results.

For the vast majority of problems I have worked on, I didn’t have to go past
Step 1.

14.10 Exercises

A solution to these exercises is in chap14soln.py

Exercise 14.1 In Section 5.4, we saw that the distribution of adult weights
is approximately lognormal. One possible explanation is that the weight a
person gains each year is proportional to their current weight. In that case,
adult weight is the product of a large number of multiplicative factors:

w = w0f1f2...fn

where w is adult weight, w0 is birth weight, and fi is the weight gain factor
for year i.

The log of a product is the sum of the logs of the factors:

logw = logw0 + log f1 + log f2 + ...+ log fn

So by the Central Limit Theorem, the distribution of logw is approximately
normal for large n, which implies that the distribution of w is lognormal.

To model this phenomenon, choose a distribution for f that seems reasonable,
then generate a sample of adult weights by choosing a random value from
the distribution of birth weights, choosing a sequence of factors from the
distribution of f , and computing the product. What value of n is needed to
converge to a lognormal distribution?

Exercise 14.2 In Section 14.6 we used the Central Limit Theorem to find the
sampling distribution of the difference in means, δ, under the null hypothesis
that both samples are drawn from the same population.
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We can also use this distribution to find the standard error of the estimate
and confidence intervals, but that would only be approximately correct. To
be more precise, we should compute the sampling distribution of δ under the
alternate hypothesis that the samples are drawn from different populations.

Compute this distribution and use it to calculate the standard error and a
90% confidence interval for the difference in means.

Exercise 14.3 In a recent paper2, Stein et al. investigate the effects of an
intervention intended to mitigate gender-stereotypical task allocation within
student engineering teams.

Before and after the intervention, students responded to a survey that asked
them to rate their contribution to each aspect of class projects on a 7-point
scale.

Before the intervention, male students reported higher scores for the pro-
gramming aspect of the project than female students; on average men re-
ported a score of 3.57 with standard error 0.28. Women reported 1.91, on
average, with standard error 0.32.

Compute the sampling distribution of the gender gap (the difference in
means), and test whether it is statistically significant. Because you are given
standard errors for the estimated means, you don’t need to know the sample
size to figure out the sampling distributions.

After the intervention, the gender gap was smaller: the average score for men
was 3.44 (SE 0.16); the average score for women was 3.18 (SE 0.16). Again,
compute the sampling distribution of the gender gap and test it.

Finally, estimate the change in gender gap; what is the sampling distribution
of this change, and is it statistically significant?

2“Evidence for the persistent effects of an intervention to mitigate gender-sterotypical
task allocation within student engineering teams,” Proceedings of the IEEE Frontiers in
Education Conference, 2014.
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