
 

 

 

 

 

Samarjit Das 

Economic Research Unit 

 Indian Statistical Institute 

 Kolkata-700108 

 

Time
Series
Analysis



Time Series Analysis 

 

 

 

 

Samarjit Das 

Economic Research Unit 

 Indian Statistical Institute 

 Kolkata-700108 

 



2 
 

What is Time Series? 

 A Time series is a set of observations, each one being 

recorded at a specific time.  (Annual GDP of a country, Sales 

figure, etc) 

 A discrete time series is one in which the set of time points at 

which observations are made is a discrete set. (All above 

including irregularly spaced data)  

 Continuous time series are obtained when observations are 

made continuously over some time intervals.  It is a 

theoretical Concept.      (Roughly, ECG graph). 

 A discrete valued time series is one which takes discrete 

values. (No of accidents, No of transaction etc.).    
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Few Time series Plots 

Annual GDP of USA 
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A discrete time series is one in which the setof time points at which 

observations are made is a discrete set. (All above including 

irregularly spaced data)   
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Continuous time series are obtained when observations are made 

continuously over some time intervals. (ECG graph).  
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A discrete valued time series is one which takes discrete values.   

(No of accidents, No of transaction etc.).   

Time series plot on car accident in U.K. 
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Continuous time series data (Stock returns): 
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Time series data (Number of sunspots) showing cycles:  
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Quarterly Sales of Ice-cream 

Q1-Dec-Jan 
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Objective of Time Series Analysis 

 

• Forecasting (Knowing future is our innate wish).  

• Control (whether anything is going wrong, think of ECG, 

production process etc) 

• Understanding feature of the data including seasonality, cycle, 

trend and its nature. Degree of seasonality in agricultural price 

may indicate degree of development. Trend and cycle may 

mislead each other (Global temperature  may be an interesting 

case)  
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Objective 

 

• Description: Plot the data. Try to feel the data. 

Some descriptive statistics may be calculated to 

get some ideas about the data. 

• Explanation: Deeper understanding of the 

mechanism that generated the time series. 
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Stochastic processes Approach 

 

• Time series are an example of a stochastic or random 

process 

• A stochastic process is a statistical phenomenon that 

evolves in time according to probabilistic laws. 

• Mathematically, a stochastic process is an indexed 

collection of random variables 
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Stochastic processes 

• We are concerned only with processes 

indexed by time, either discrete time or 

continuous time processes such as 

                          

Or 
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Stochastic Process 

• A stochastic process        
  is a collection 

of random variables or a process that 

develops in time according to probabilistic 

laws.  

• The theory of stochastic processes gives us a 

formal way to look at time series variables. 
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DEFINITION 

                          

 

Sample Space                           Index Set 

 

• For a fixed  ,        is a random variable. 

• For a given           is called a sample function or a 

realization as a function of     
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Stochastic Process 

• Time series is a realization or sample function from a certain 

stochastic process. 

• A time series is a set of observations generated sequentially in 

time. Therefore, they are dependent to each other. This means 

that we do NOT have random sample. 

• We assume that observations are equally spaced in time. 

• We also assume that closer observations might have stronger 

dependency.  
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JOINT PDF OF A TIME SERIES 

• Remember that  
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JOINT PDF OF A TIME SERIES 

• For the observed time series, say we have two 

points,   and  . 

• The marginal pdfs:                     

 

• The joint pdf:                                   
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JOINT PDF OF A TIME SERIES 

• Since we have only one observation for each r.v. 

  , inference is too complicated if distributions 

(or moments) change for all   (i.e. change over 

time). So, we need a simplification.  
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JOINT PDF OF A TIME SERIES 

• To be able to identify the structure of the series, 

we need the joint pdf of             However, 

we have only one sample (realization). That is, 

one observation from each random variable. 

• This is in complete contrast to that of a cross-

section/survey data. For cross section data, for a 

given population, we have a random sample. 

Based on the sample we try to infer about the 

population.  
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JOINT PDF OF A TIME SERIES 

 In Time series, each random variable has one 

distribution/population. And from each 

population we have just one observation. So 

inference is not feasible unless we have some 

strong restrictive assumptions. 

• Therefore, it is very difficult to identify the joint 

distribution. Hence, we need an assumption to 

simplify our problem. This simplifying 

assumption is known as STATIONARITY.  
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STATIONARITY 

• The most vital and common assumption in time 

series analysis. 

• The basic idea of stationarity is that the 

probability laws governing the process do not 

change with time. 

• The process is in statistical equilibrium. 
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Why does Stationarity Assumption work? 

• Now, suppose each distribution has same mean. In that 

case the common mean could be estimated based on 

the realization of size ‘n’.  

• We can visualize the fact in the following way--- 

Suppose we have 10 identical machines producing some 

item, say, bulb. Suppose each machine is run for one hour. 

Now it is easy to visualize that total (average) output by 10 

machines is same as that of total (average) output by a 

single machine running for 10 hours. 
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TYPES OF STATIONARITY 

• STRICT (STRONG OR COMPLETE) STATIONARY 

PROCESS: Consider a finite set of r.v.s.  

               from a stochastic process           

          . 

 

• The n-dimensional distribution function is defined by 

                                                    

     where                    are any real  numbers. 
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STRONG STATIONARITY 

• A process is said to be first order stationary in distribution, 

if its one dimensional distribution function is time-invariant, 

i.e.,     
           

     for any    and  . 

• Second order stationary in distribution if         
        

            
        for any       and  . 

• n
th

 order stationary in distribution if 

              
                                 

             

for any         and  . 
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STRONG STATIONARITY 

     order stationarity in distribution = strong 

stationarity  

 Shifting the time origin by an amount “ ” has 

no effect on the joint distribution, which must 

therefore depend only on time intervals between 

          not on absolute time,  .  
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STRONG STATIONARITY 

• So, for a strong stationary process 

i.               
                                 

             

ii.                                                                                                                        

  Expected value of a series is constant over time, not a function of time  

iii.                     
      

           

The variance of a series is constant over time, homoscedastic 

iv.                                                

                     

Not constant, not depend on time, depends on time interval, which we 

call “lag”,  . 
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STRONG STATIONARITY 

 

 

                  

                  

                                  Affected from time lag,  . 
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STRONG STATIONARITY 

v.                                                 

  
     

  
         

  
 
 

Let       and    , 

                         

Remark: We have assumed the existence of 2
nd

 order moments.  

 It is usually impossible to verify a distribution particularly a 

joint distribution function from an observed time series. So, 

we use weaker sense of stationarity. 
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WEAK STATIONARITY 

• WEAK (COVARIANCE) STATIONARITY OR 

STATIONARITY IN WIDE SENSE: A time series is 

said to be covariance stationary if its first and second 

order moments are unaffected by a change of time 

origin. 

• That is, we have constant mean and variance with 

covariance and correlation beings functions of the time 

difference only.  
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WEAK STATIONARITY 

 

               

                    

                       

                        

From, now on, when we say “stationary”, we imply weak 

stationarity.  
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EXAMPLE 

 

• Consider a time series {Yt} where 

       

and             
  . Is the process stationary?  
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EXAMPLE 

 

• MOVING AVERAGE: Suppose that      is 

constructed as 

   
       

 
 

And             
  . Is the process      stationary? 
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EXAMPLE 

• RANDOM WALK 

 

              

 

where           
  .. Is the process       stationary? 
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EXAMPLE 

• Suppose that time series has the form 

           

    where   and   are constants and    is a weakly stationary 

process with mean   and autocovariance function   . Is      

stationary?  
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EXAMPLE 

 

           

where           
  .. Is the process       stationary? 
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STRONG VERSUS WEAK STATIONARITY 

• Strict stationarity means that the joint distribution only depends on the 

‘difference’ h, not the time (t1, . . . , tk). 

• Finite variance is not assumed in the definition of strong stationarity, 

therefore, strict stationarity does not necessarily imply weak 

stationarity. For example, processes like i.i.d. Cauchy is strictly 

stationary but not weak stationary.  

• A nonlinear function of a strict stationary variable is still strictly 

stationary, but this is not true for weak stationary. For example, the 

square of a covariance stationary process may not have finite variance.  

• Weak stationarity usually does not imply strict stationarity as higher 

moments of the process may depend on time t.  
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STRONG VERSUS WEAK STATIONARITY 

 

• If process      is a Gaussian time series, which means 

that the distribution functions of      are all 

multivariate Normal, weak stationary also implies 

strict stationary. This is because a multivariate Normal 

distribution is fully characterized by its first two 

moments.  
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STRONG VERSUS WEAK STATIONARITY 

• For example, a white noise is stationary but may not be 

strict stationary, but a Gaussian white noise is strict 

stationary. Also, general white noise only implies 

uncorrelation while Gaussian white noise also implies 

independence. Because if a process is Gaussian, 

uncorrelation implies independence. Therefore, a 

Gaussian white noise is just              . 
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Measure of Dependence--Autocovariance 

• Because the random variables comprising the process 

are not independent, we must also specify their 

covariance  
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Autocorrelation 

• It is useful to standardize the autocovariance 

function (acvf) 

• Consider stationary case only 

• Use the autocorrelation function (acf) 
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Autocorrelation 

• More than one process can have the same acf  

• Properties are: 

      

                     for stationary series 
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Autocorrelation 

Autocorrelation refers to the correlation of a time series with its 

own past and future values.  

Autocorrelation is also sometimes called “lagged correlation” or 

“serial correlation”, which refers to the correlation between 

members of a series of numbers arranged in time.  

Positive autocorrelation might be considered a specific form of 

“persistence”, a tendency for a system to remain in the same state 

from one observation to the next.  

For example, the likelihood of tomorrow being rainy is greater if 

today is rainy than if today is dry.  



44 
 

Autocorrelations (contd.) 

• A graph of the correlation values is called a 

“correlogram” 

• Ideally, to obtain a useful estimate of the 

autocorrelation function, at least 50 observations 

are needed  

• Generally, The estimated autocorrelations would 

be calculated up to lag no larger than N/4  
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Partial Autocorrelation(PAC) 

As a complementary to ACF  tool, we introduce the partial autocorrelation 

function,       which denotes the partial correlation between     and     after 

adjusting for           . Let                                             

where      denotes linear regression of     on               . The quantity 

    are the residuals, i.e. what’s left, after linear regression using the lagged 

observations. 

•                    . 

•                         

•                                     

•                                           

•                                                      
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PACF  

• PACF is the correlation between    and      after their 

mutual linear dependency on the intervening 

variables                      has been removed. 

• The conditional correlation  

                                     

is usually referred as the partial autocorrelation in time series. 

e.g.,                                              
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CALCULATION OF PACF 

1. REGRESSION APPROACH: Consider a model 

                                      

from a zero mean stationary process where    denotes the 

coefficients of         and        is the zero mean error term which 

is uncorrelated with                    

• Multiply both sides by          
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CALCULATION OF PACF 

and taking the expectations 

                             

diving both sides by    

                             

 

            Pacf 
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CALCULATION OF PACF 

• For j=1,2,…,k, we have the following system of 

equations 

                       

                       

…. 
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CALCULATION OF PACF 

• Using Cramer’s rule successively for         
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CALCULATION OF PACF 

 

 

 

 

 

 

 1

1

1

1

1

1321

2311

1221

1321

2311

1221













































kkk

kk

kk

kkkk

k

k

kk



52 
 

CALCULATION OF PACF 

2. Levinson and Durbin’s Recursive Formula: 

    
               

   
   

              
   
   

 

 

Where 
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Some Popular Stochastic 

Processes 
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1. White Noise: 
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White noise 

• This is a purely random process, a sequence 

of uncorrelated  random variables 

• Has constant mean and variance 

• Also 
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An Illustrative plot of a white noise series 
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2. Random Walk -- A Non-stationary 

Process 
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Random walk 

• Start with      being white noise or 

purely random 

•      is a random walk if 
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Random walk 

• The random walk is not stationary 

                    

• First differences are stationary 
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An Illustrative plot of a Random Walk 
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Some Other nonstationary series 
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Some nonstationary series (cont.) 
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Some nonstationary series (cont.) 
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3. Moving Average  

Processes 
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MOVING AVERAGE PROCESSES 
• Suppose you win 1 Dollar if a fair coin shows a head 

and lose 1 Dollar if it shows tail. Denote the outcome 

on toss t by at. 

    
                   
                

  

• The average     winning from the  4 tosses: 

   
 

 
   

 

 
     

 

 
     

 

 
        Moving 

average process 
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MOVING AVERAGE PROCESSES 
• Notice that the observed series      is autocorrelated 

even though the generating series    is uncorrelated.  

• The series     is the weighted aggregation of some 

uncorrelated random variables. 

• In Economics, the generating series,   , is called the 

random shock. 

• Random shocks are generally unobserved and are 

thought to be some unobserved economic activity. 

 

 



67 
 

MOVING AVERAGE PROCESSES 

 

Consider a simple example:                         

    

Let    be the return in  stock market. Assume theta     is 

positive. So a good news from yesterday or a positive 

activity in yesterday has a positive impact on today’s return.   
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Moving average processes 
• Start with being      white noise or purely random, 

mean zero, s.d.    

 

•       is a moving average process of order   (written 

MA( ) if for some constants           we have 

 

                        

Usually       
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Moving average processes 

• The mean and variance are given by 

                      
    

 

 

   

 

 

 

 

 



70 
 

Moving average processes 

• If the    ‘s are normal then so is the process, and it is then 

strictly stationary. 

• The autocorrelation is 

   

 
 
 

 
          

       
   
      

  
                  

         
           

                   

The process is weakly stationary because the mean is 

constant and the covariance does not depend on  . 
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Moving average processes 

 

• Note the autocorrelation cuts off at lag   

• For the MA(1) process with       
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Moving average processes 

• In order to ensure there is a unique MA process 

for a given acf, we impose the condition of 

invertibility  

 

• This ensures that when the process is written in 

series form, the series converges 

 

• For the MA(1) process            , the 

condition is       
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Check that 

       
 

 
     and          

             

Both have the same autocorrelation function 

The value of        
      is same for 

        
  

 
   The 1

st
 one is invertible but 

2
nd

 one is NOT. 
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Moving average processes 

• For general processes introduce the backward 

shift operator  . 

   
 
  

   
 

• Then the MA( ) process is given by 
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Moving average processes 

• The general condition for invertibility is that 

all the roots of the equation        lie 

outside the unit circle (have modulus less 

than one) 
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MA: Stationarity 

• Consider an MA(1) process without drift: 

            

• It can be shown, regardless of the value of, that   
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MA: Stationarity 

• For an MA(2) process  
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MA: Stationarity 

• In general, MA processes are stationarity regardless of the 

values of the parameters, but not necessarily “invertible”. 

• An MA process is said to be invertible if it can be converted 

into a stationary AR process of infinite order.  

• In order to ensure there is a unique MA process for a given  

acf, we impose the condition of invertibility. 

• Therefore, invertibility condition for MA process servers two 

purposes: (a) it is useful to represent an MA process as an 

(infinite order) AR process; and (b) it ensures that for a given 

ACF, there is an unique MA process. 



79 
 

 

 

4. Autoregressive Process 
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Autoregressive processes 

• Assume       is purely random with mean zero 

and s.d.    

• Then the autoregressive process of order    or 

AR( ) process is 
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Autoregressive processes 

• The first order autoregression is 

          

• Provided       it may be written as an infinite 

order MA process 

• Using the backshift operator we have 
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Autoregressive processes 

• From the previous equation we have 
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Autoregressive processes 

• Then        , and if       
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Autoregressive processes 

• The AR(p) process can be written as 
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Autoregressive processes 

• This is for 

               
       

  
  

 

               
       

   

 
for some          

This gives    as an infinite MA process, so it has mean 

zero 
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Autoregressive processes 

• Conditions are needed to ensure that various 

series converge, and hence that the variance 

exists, and the autocovariance can be defined 

 

• Essentially these are requirements that the    

become small quickly enough, for large    
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Autoregressive processes 

• The    may not be able to be found 

however. 

• The alternative is to work with the     

• The acf is expressible in terms of the 

roots             of the auxiliary 

equation 
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Autoregressive processes 

• Then a necessary and sufficient condition for 

stationarity is that for every          

• An equivalent way of expressing this is that the roots 

of the equation 

               
       

   

 must lie outside the unit circle. 
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AR: Stationarity 

• Suppose    follows an AR(1) process without drift.   

• Is    stationarity? 

• Note that  
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Stationarity 

• Without loss of generality, assume that        .  Then 

       . 

• Assuming that t is large, i.e., the process started a long 

time ago, then  

.1|| that provided ,
)1(

)var( 12

1

2




 



ty  It can 

also be shown that provided that the same condition is 

satisfied, )var(
)1(
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Stationarity 

• Suppose the model is an AR(2) without drift, 

i.e.,  

• It can be shown that for yt to be stationary,  

• The key point is that AR processes are not  

stationary unless appropriate prior conditions 

are imposed on the parameters. 

 

 

tttt yyy    2211

1 || and 1 ,1 21221  
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5. Autoregressive and Moving 

Average  (ARMA) Processes 
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ARMA processes 

 
• Combine AR and MA processes 

• An ARMA process of order (p,q) is given by 
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ARMA processes 
• Alternative expressions are possible using the 

backshift operator 

              

Where 
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ARMA processes 
• An ARMA process can be written in pure MA or 

pure AR forms, the operators being possibly of 

infinite order 

          

          

• Usually the mixed form requires fewer 

parameters 
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6. ARIMA—Integrated ARMA 
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ARIMA  processes 
• General autoregressive integrated moving 

average processes are called ARIMA processes 

• When differenced say d times, the process is an 

ARMA process 

• Call the differenced process   . Then Wt is an 

ARMA process and 
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ARIMA processes 

 
• Alternatively specify the process as 

              

Or 

                    

 

• This is an ARIMA process of order (p,d,q) 
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ARIMA processes 

 
• The model for    is non-stationary because the 

AR operator on the left hand side has d roots on 

the unit circle 

•   is often   

• Random walk is ARIMA        

• Can include seasonal terms  
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Non-zero mean 
• We have assumed that the mean is zero in the 

ARIMA models 

• There are two alternatives 

— mean correct all the    terms in the 

model 

— incorporate a constant term in the model   
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ACF and PACF for some 

useful Models 
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Summary of the Behavior of autocorrelation and partial 

autocorrelation functions 

Behavior of autocorrelation and partial autocorrelation functions  

Model AC PAC 
Autoregressive of order p 

                                        
Dies down Cuts off 

after lag p 

Moving Average of order q 

                                       

Cuts off after 

lag q 

Dies down 

Mixed Autoregressive-Moving Average of order (p,q) 

                               

                               

Dies down Dies down 
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Summary of the Behavior of autocorrelation and partial 

autocorrelation functions 

Behavior of AC and PAC for specific non-seasonal models 

Model AC PAC 
First-order autoregressive 

               
Dies down in a damped exponential 

fashion; specifically: 

     
           

Cuts off 

after lag 1 

Second-order autoregressive 

                      
Dies down according to a mixture of 

damped exponential and /or damped 

sine waves; specifically: 

   
  

    
   

                           
  

 

    
 ; 

                         

Cuts off 

after lag 2 
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Summary of the Behavior of autocorrelation and partial 

autocorrelation functions 

Behavior of AC and PAC for specific non-seasonal models 

Model AC PAC 
First-order moving average 

                    

Cuts off after lag 1; specifically: 

   
   

     
 

                 

Dies down in a 

fashion dominated 

by damped 

exponential decay 

Second-order moving average 

                         

Cuts off after lag 2; specifically: 

   
         

           
   

   
   

           
   

 

                     
 

Dies down 

according to a 

mixture of  damped 

exponentials and 

/or damped sine 

waves 
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Summary of the Behavior of autocorrelation and partial 

autocorrelation functions 

Behavior of AC and PAC for specific non-seasonal models 

Model AC PAC 
Mixed autoregressive-moving 

average of order (1,1) 

                           

Dies down in a damped 

exponential fashion; 

specifically: 

   
                

           
   

 

                      

Dies down in a 

fashion dominated 

by damped 

exponential decay 
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Theoretical ACs and PACs (cont.) 
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AR(1) PROCESS 
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AR(2) PROCESS 
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MA(1) PROCESS 
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MA(2) PROCESS 
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ARMA(1,1) PROCESS 
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ARMA(1,1) PROCESS (contd.) 
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THE SAMPLE AUTOCORRELATION FUNCTION 
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I. A plot         versus k a sample correlogram. 

 

II. For large sample sizes,      is normally distributed with mean 

   and variance is approximated by Bartlett’s approximation 

for processes in which   = 0 for k>m.   
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THE SAMPLE AUTOCORRELATION FUNCTION 

 

   22
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I. In practice, i’s are unknown and replaced by their sample 

estimates,     . Hence, we have the following large-lag 

standard error of     :  
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THE SAMPLE AUTOCORRELATION FUNCTION 

 

I.   For a WN process, we have 

n
s

k

1
ˆ   

II.  The ~95% confidence interval for   :  

n
k

1
2ˆ   

For a WN process, it must be close to zero.  

III. Hence, to test the process is WN or not, draw a 2/n
1/2

 lines 

on the sample correlogram. If all     are inside the limits, 

the process could be WN (we need to check the sample 

PACF, too).  
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THE SAMPLE PARTIAL AUTOCORRELATION 

FUNCTION 
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I. For a WN process,         
n

Var kk

1ˆ   

II. 2/n
1/2 

can be used as critical limits on     to test the 

hypothesis of a WN process. 
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Sample Partial Autocorrelation Function (SPAC) 

 

I.     may intuitively be thought of as the sample 

autocorrelation of time series observations separated by a 

lag k time units with the effects of the intervening 

observations eliminated. 

 

II. The standard error of    is        
 

 
 . 

 

 

 

III. The      statistic is         
   

    
 . 
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Box-Jenkins Methodology  

(ARIMA Models) 
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Box-Jenkins Methodology (ARIMA Models) 

 

I. The Box-Jenkins methodology refers to a set of procedures 

for identifying and estimating time series models within 

the class of autoregressive integrated moving average 

(ARIMA) models.   

II. ARIMA models are regression models that use lagged 

values of the dependent variable and/or random 

disturbance term as explanatory variables. 

III. ARIMA models rely heavily on the autocorrelation pattern 

in the data 

IV. This method applies to both non-seasonal and seasonal 

data.   
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Box-Jenkins Methods--A five-step iterative 

procedure 

 

 

 

I. Stationarity Checking and Differencing 

II. Model Identification 

III. Parameter Estimation 

IV. Diagnostic Checking 

V. Forecasting 
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Step One:  Stationarity checking 
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Non-Stationary 

 

 

 Not-stationary = Non-stationary, when 

distribution (parameters) changes over time. 

Various important examples are: 

Deterministic trend and Stochastic trend. 
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Deterministic Trend (TSP) 

 

             

            

 

See that mean changes over time. 

 

One can apply OLS to estimate the model 

parameters. 

 



125 
 

 

Stochastic Trend (DSP)—Unit Root Process 

              

                           

                               

 

   
                                               

                                                  

          
    

      
  

           
  

 

This process is known as random walk. 
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Stochastic Trend 

 
             

 

                         

 

            

 

                                           
      

  

 

This process is known as random walk with drift. 
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Deterministic Trend 
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Stochastic Trend 
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Figure 1: Pure Random Walk 
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Stochastic Trend 
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Fig 3: Random Walk with Drift 
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Non Stationary Process 
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TSP VS DSP 
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Distribution (under the null of unit root) is non-standard, NOT t-

distribution or normal 

This test is known as Augmented Dickey-Fuller Test (ADF). 
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Decision 

 

I.        and     implies series is purely stationary. 

 

 

II.       and     implies series is purely non-stationary, 

non-stationary is due to deterministic trend. 

 

 

III.      and     implies series is non-stationary, and 

non-stationary is due to stochastic trend. 
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Differencing 

 
I. Often non-stationary series can be made stationary through 

differencing. 

Examples: 

 

stationary is7.0       

but ,stationarynot  is  7.07.1    )2

stationary is         

but ,stationarynot  is        )1

  11

21

1

1

ttttt

tttt

tttt

ttt

ewyyw
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Differencing 
I. Differencing continues until stationarity is achieved. 

            

                                       

The differenced series has n-1 values after taking the first-

difference, n-2 values after taking the second difference, 

and so on. 

II. The number of times that the original series must be 

differenced in order to achieve stationarity is called the 

order of integration, denoted by d. 

III. In practice, it is almost never necessary to go beyond 

second difference, because real data generally involve only 

first or second level non-stationarity. 
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Differencing 

 
I. Backward shift operator, B 

          

II. B, operating on     has the effect of shifting the data back 

one period.  

III. Two applications of B on    shifts the data back two 

periods.  

         
          

IV. m applications of B on    shifts the data back m periods. 
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Differencing 
 

I. The backward shift operator is convenient for describing 

the process of differencing.                                                 

                            

                                        

II. In general, a dth-order difference can be written as 

               

 

III. The backward shift notation is convenient because the 

terms can be multiplied together to see the combined 

effect. 
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I. If the process is non-stationary then first differences of the 

series are computed to determine if that operation results 

in a stationary series.  

 

II. The process is continued until a stationary time series is 

found.  

 

 

III. This then determines the value of d. 

 

IV. Sometimes, transformations, like log or some variance 

stabilizing transformations are made before ‘Differencing. 
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Step Two:  Model 

Identification 
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Identification 

 
Determination of the values of p and q. 
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To determine the value of p and q we use the graphical 

properties of the autocorrelation function and the partial 

autocorrelation function. 

Again recall the following. 

 

Auto-correlation 
function

Partial 
Autocorrelation 
function

Cuts off

Cuts off

Infinite. Tails off.

Dam ped Expone ntia ls 

and/or Cosine wave s

Infinite. Tails off.

Infinite. Tails off.Infinite. Tails off.

Dom inated by  dam ped 

Exponentials & Cosine 

waves.

Dom inated by  dam ped 

Exponentials & Cosine wave s

Dam ped Expone ntia ls 

and/or Cosine wave s
after q-p.

after p-q.

Process MA(q) AR(p) ARMA(p,q)

Properties  of the ACF and PACF of MA, AR and ARMA Series
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Summary:   To determine p and q.  

Use the following table. 

 

 MA(q) AR(p) ARMA(p,q) 

ACF Cuts after q Tails off Tails off 

PACF Tails off Cuts after p Tails off 

 

Note: Usually p + q ≤ 4. There is no harm in over identifying the 

time series. (Allowing more parameters in the model than 

necessary. We can always test to determine if the extra parameters 

are zero.)  
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Examples 
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2001000

16

17

18

Example A:  "Uncontrolled" Concentration, Two-Hourly Readings:

                Chemical Process
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The data: 

 

 

 

 

 

 

 

 

 

 

 
 1 17.0 41 17.6 81 16.8 121 16.9 161 17.1 
 2 16.6 42 17.5 82 16.7 122 17.1 162 17.1 
 3 16.3 43 16.5 83 16.4 123 16.8 163 17.1 
 4 16.1 44 17.8 84 16.5 124 17.0 164 17.4 
 5 17.1 45 17.3 85 16.4 125 17.2 165 17.2 
 6 16.9 46 17.3 86 16.6 126 17.3 166 16.9 
 7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 
 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 
 9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 
 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 
 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 
 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 
 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 
 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 
 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 
 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 
 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 
 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 
 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 
 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 
 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 
 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 
 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 
 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 
 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 
 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 
 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 
 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 
 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 
 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 
 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 
 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 
 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 
 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 
 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 
 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 
 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 
 38 17.7 78 17.0 118 16.3 158 17.4   
 39 17.4 79 16.6 119 16.6 159 17.2   
 40 17.8 80 16.7 120 16.8 160 17.2   
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18 9018 6018 3018 0017 70
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20 0

Example B: Annual Sunspot Numbers 

                  (179 0-186 9)
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The  

Data: 

 

 

 

 

 

 

 

 

  

Example B: Sunspot Numbers: Yearly 

 
 1770 101 1795 21 1820 16 1845 40 
 1771 82 1796 16 1821 7 1846 64 
 1772 66 1797 6 1822 4 1847 98 
 1773 35 1798 4 1823 2 1848 124 
 1774 31 1799 7 1824 8 1849 96 
 1775 7 1800 14 1825 17 1850 66 
 1776 20 1801 34 1826 36 1851 64 
 1777 92 1802 45 1827 50 1852 54 
 1778 154 1803 43 1828 62 1853 39 
 1779 125 1804 48 1829 67 1854 21 
 1780 85 1805 42 1830 71 1855 7 
 1781 68 1806 28 1831 48 1856 4 
 1782 38 1807 10 1832 28 1857 23 
 1783 23 1808 8 1833 8 1858 55 
 1784 10 1809 2 1834 13 1859 94 
 1785 24 1810 0 1835 57 1860 96 
 1786 83 1811 1 1836 122 1861 77 
 1787 132 1812 5 1837 138 1862 59 
 1788 131 1813 12 1838 103 1863 44 
 1789 118 1814 14 1839 86 1864 47 
 1790 90 1815 35 1840 63 1865 30 
 1791 67 1816 46 1841 37 1866 16 
 1792 60 1817 41 1842 24 1867 7 
 1793 47 1818 30 1843 11 1868 37 
 1794 41 1819 24 1844 15 1869 74 
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Example C: IBM Common Stock Closing Prices: Daily (May 17 1961- Nov 2 1962) 

 
 460 471 527 580 551 523 333 394 330 
 457 467 540 579 551 516 330 393 340 
 452 473 542 584 552 511 336 409 339 
 459 481 538 581 553 518 328 411 331 
 462 488 541 581 557 517 316 409 345 
 459 490 541 577 557 520 320 408 352 
 463 489 547 577 548 519 332 393 346 
 479 489 553 578 547 519 320 391 352 
 493 485 559 580 545 519 333 388 357 
 490 491 557 586 545 518 344 396  
 492 492 557 583 539 513 339 387  
 498 494 560 581 539 499 350 383  
 499 499 571 576 535 485 351 388  
 497 498 571 571 537 454 350 382  
 496 500 569 575 535 462 345 384  
 490 497 575 575 536 473 350 382  
 489 494 580 573 537 482 359 383  
 478 495 584 577 543 486 375 383  
 487 500 585 582 548 475 379 388  
 491 504 590 584 546 459 376 395  
 487 513 599 579 547 451 382 392  
 482 511 603 572 548 453 370 386  
 487 514 599 577 549 446 365 383  
 482 510 596 571 553 455 367 377  
 479 509 585 560 553 452 372 364  
 478 515 587 549 552 457 373 369  
 479 519 585 556 551 449 363 355  
 477 523 581 557 550 450 371 350  
 479 519 583 563 553 435 369 353  
 475 523 592 564 554 415 376 340  
 479 531 592 567 551 398 387 350  
 476 547 596 561 551 399 387 349  
 478 551 596 559 545 361 376 358  
 479 547 595 553 547 383 385 360  
 477 541 598 553 547 393 385 360  
 476 545 598 553 537 385 380 366  
 475 549 595 547 539 360 373 359  
 473 545 595 550 538 364 382 356  
 474 549 592 544 533 365 377 355  
 474 547 588 541 525 370 376 367  
 474 543 582 532 513 374 379 357  
 465 540 576 525 510 359 386 361  
 466 539 578 542 521 335 387 355  
 467 532 589 555 521 323 386 348  
 471 517 585 558 521 306 389 343  
 Read downwards 



149 
 

 

 

 

 

 

 

 

 
 

Chemical Concentration data: 

20 010 00

16

17

18

Example A:  "Uncontro lled" Concentratio n, Two-Ho urly Rea dings:

                Chemica l Pro cess

 
par  Summary Statistics 

 

d N Me an Std. Dev.

0 197 17.062 0.398

1 196 0.002 0.369

2 195 0.003 0.622 
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ACF and PACF for             
    Chemical 

concentration DATA 
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ACF and PACF for             
    Chemical 

concentration DATA 
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ACF and PACF for             
    Chemical 

concentration DATA
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Possible Identifications 

 

 

1. d = 0, p = 1, q= 1 

2. d = 1, p = 0, q= 1 
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 Sunspot Data: 

18 9018 6018 3018 0017 70

0

10 0

20 0

Example B: Annual Sunspot Numbers 

                  (179 0-186 9)

 
 

Summary Statistics for the Sunspot Data 
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ACF and PACF for             
    Sunspot Data 
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ACF and PACF for             
    Sunspot Data 
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ACF and PACF for             
    Sunspot Data 
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Possible Identification 

 

 

1. d = 0, p = 2, q= 0 
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 IBM stock data: 

  

 

 Summary Statistics 

 

30 020 010 00

30 0

40 0

50 0

60 0

70 0 Daily  IBM Commo n Stock Clo sing Prices

Ma y 17 19 61-November 2 196 2

Day

Price($)



160 
 

ACF and PACF for             
    (IBM Stock Price 

Data)
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Possible Identification 

 

 

1. d = 1, p =0, q= 0 
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Step Three:  Parameter 

Estimation 
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Preliminary Estimation 

 

Using the Method of moments 

Equate sample statistics to  

population parameters 
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Estimation of parameters of an MA( ) series 

 The theoretical autocorrelation function in terms the 

parameters of an MA( ) process is given by.  

    

                  

    
    

      
           

                                               

        

To estimate           , we solve the system of equations:  
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This set of equations is non-linear and generally very 

difficult to solve For       the equation becomes:  

   
   

     
  

Thus        
           Or                   

This equation has the two solutions  

    
 

   
  

 

   
    

One solution will result in the MA(1) time series being invertible  
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For       the equations become:  
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Estimation of parameters of an ARMA      

series 

We use a similar technique.  

Namely Obtain an expression for    in terms  

              ;             of and set up       

equations for  the estimates of                ;  

             by replacing    by   .  
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Estimation of parameters of an ARMA(p,q) 

series 

Example: The ARMA(1,1) process 

 The expression for    and    in terms of     

and      are:         
               

    
       

 

        

Further            
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Thus the expression for the estimates of         

and   are :    
                   

     
         

 

         

And              
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Hence     
  

  
      and 

        
                               

Or  

        
      

  
  
        

  
  
      

  
  
  

    
  
  
    

         
  
 

  
         

  
  
    

This is a quadratic equation which can be solved  
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Example (Chemical Concentration Data)  

the time series was identified as either an 

ARIMA        time series or an ARIMA        

series.  

If we use the first identification then series    is 

an ARMA      series.  
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Identifying the series   is an ARMA      series. 

The autocorrelation at lag   is           and the 

autocorrelation at lag   is            .  Thus the estimate 

of    is                       Also the quadratic equation  

    
  
  
    

         
  
 

  
         

  
  
    

         
                     

which has the two solutions  -0.48 and -2.08. Again we 

select as our estimate of    to be the solution -0.48, 

resulting in an invertible estimated series.  
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Since               the estimate of   can be 

computed as follows:  

                                     

Thus the identified model in this case is 
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If we use the second identification then series        

     –       is an MA    series. Thus the estimate of    is:  

    
 

   
  

 

   
    

The value of            .  

Thus the estimate of     

    
 

         
  

 

          
    

     
     

  is:  

 

The estimate of           ,  corresponds to an invertible 

time series. This is the solution that we will choose.  
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The estimate of the parameter   is the sample mean. 

Thus the identified model in this case is: 

                          Or 

                          

(An ARIMA        model). 

This compares with the other identification: 

                                     

(An ARIMA        model) 
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Preliminary Estimation 

of the Parameters of an AR(p) Process 
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The regression coefficients           and the auto 

correlation function    satisfy the Yule-Walker 

equations: 

                

                 

  

                

And                                    
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The Yule-Walker equations can be used to estimate 

the regression coefficients            using the 

sample auto correlation function    by replacing     

with     . 

                  

                  

  

                  

And                                                  
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Example 

Considering the data in example 1 (Sunspot Data) the time series 

was identified as an       time series.  

The autocorrelation at       is           and the autocorrelation 

at       is           . 

The equations for the estimators of the parameters of this series are  

                       

                       

which has solution                          

           

Since                  then it can be estimated as follows: 
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Thus the identified model in this case is  
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Maximum Likelihood Estimation 

 

of the parameters of an  

ARMA(p,q) Series 
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The method of Maximum Likelihood Estimation 

selects as estimators of a set of parameters 

              , the values that maximize  

                  

                               

where                             is the joint 

density function of the observations             .   

                 is called the Likelihood function.   

 



185 
 

It is important to note that:  

 finding the values -            - to maximize  

                 is equivalent to finding the 

values to maximize 

                                     

                is called the log-Likelihood 

function. 
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Again let            be identically distributed 

and uncorrelated with mean zero. In addition 

assume that each is normally distributed. 

Consider the time series            defined by 

the equation: 
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Assume that             are observations on 

the time series up to time      .  

To estimate the           parameters  

                     ;  ,    by the method 

of Maximum Likelihood estimation we need to 

find the joint density function of            
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We know that            are independent  

normal with mean zero and variance   .  

Thus the joint density function  of            is 

                
                is given by. 
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It is difficult to determine the exact density function of 

           from this information however if we assume 

that   starting values  on the   process 

                     and   starting values on the 

  process                      have been 

observed then the conditional distribution of   

                   given                      

and                     can easily be determined. 
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The system of equations : 
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can be solved for: 

              
             

             
             

    

             
             

(The jacobian of the transformation is 1)  
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Then the joint density of x given     and    is given by:  
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Let:  

                
   

  
 

    
 
 

     
 

   
   

             

 

   

  

  
 

    
 
 

     
 

   
           

= “conditional likelihood function” 
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“conditional log likelihood function” = 
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The values that maximize 

                
   and                   

   

                

         

That minimize 

             
             

 

   

 

With      
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Comment: 

The  minimization of: 

             
             

 

   

 

Requires  a iterative numerical minimization procedure 

to find: 

         

 

• Steepest descent 

• Simulated annealing 

• etc 
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Comment: 

The computation of:  

             
             

 

   

 

for specific values of  

      

can be achieved by using the forecast equations 
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Comment: 

The minimization of : 

             
             

 

   

 

assumes we know the value of starting values of the 

time series            and             

Namely    and   . 
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Approaches: 

1. Use estimated values 

 

                            

                          

 

2. Use forecasting and backcasting equations to estimate 

the values: 
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Backcasting: 

If the time series             satisfies the equation: 
                                               

                      

It can also be shown to satisfy the equation: 
                                               

                      

Both equations result in a time series with the same mean, variance 

and autocorrelation function: 
In the same way that the first equation can be used to forecast into 

the future the second equation can be used to backcast into the past: 
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Approaches to handling starting values of the series        

     and            

1. Initially start with the values: 

                            

                          

 

2. Estimate the parameters of the model using Maximum 

Likelihood estimation and the conditional Likelihood 

function. 

3. Use the estimated parameters to backcast the components 

of x*. The backcasted components of u* will still be zero. 
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4. Repeat steps 2 and 3 until the estimates stablize. 

This algorithm is an application of the E-M algorithm 

This general algorithm is frequently used when there are missing 

values. 

The E stands for Expectation (using a model to estimate the missing 

values) 

The M stands for Maximum Likelihood Estimation, the process 

used to estimate the parameters of the model. 
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Some Examples using: 

• Minitab 

• Statistica  

• S-Plus 

• SAS 
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Step Four:  Diagnostic Checking 
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Diagnostic Checking 
• Often it is not straightforward to determine a single 

model that most adequately represents the data 

generating process, and it is not uncommon to estimate 

several models at the initial stage.  The model that is 

finally chosen is the one considered best based on a set 

of diagnostic checking criteria.  These criteria include 

(1)  t-tests for coefficient significance 

(2) residual analysis 

(3) model selection criteria  

 



206 
 

Diagnostic checking (t-tests) 

 

 

 

• Note that for any AR model, the estimated mean value 

and the drift term are related through the formula 
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Portmanteau test 

• Box and Peirce proposed a statistic which 

tests the magnitudes of the residual 

autocorrelations as a group 

• Their test was to compare   below with the 

Chi-Square with   –    –         when fitting 

an ARMA      model 
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Portmanteau test 

• Box & Ljung discovered that the test was 

not good unless n was very large 

• Instead use modified Box-Pierce or 

Ljung-Box-Pierce statistic—reject model 

if    is too large 
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Residual Analysis 

• If an ARMA(p,q) model is an adequate 

representation of the data generating process, 

then the residuals should be uncorrelated. 

• Portmanteau test statistic: 
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Model Selection Criteria 
• Akaike Information Criterion (AIC) 

                      

• Schwartz Bayesian Criterion (SBC) 

                           

 where    likelihood function 

          number of parameters to be 

estimated, 

           number of observations. 

• Ideally, the     and     should be as small as 

possible 
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AIC 

• The Akaike Information Criterion is a 

function of the maximum likelihood plus 

twice the number of parameters 

• The number of parameters in the formula 

penalizes models with too many 

parameters 
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Parsimony 

• Once principal generally accepted is that models 

should be parsimonious—having as few 

parameters as possible 

• Note that any ARMA model can be represented 

as a pure AR or pure MA model, but the number 

of parameters may be infinite 
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Parsimony 

• AR models are easier to fit so there is a 

temptation to fit a less parsimonious AR model 

when a mixed ARMA model is appropriate 

• Ledolter & Abraham (1981) Technometrics  

show that fitting unnecessary extra parameters, or 

an AR model when a MA model is appropriate, 

results in loss of forecast accuracy 
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REASONS FOR USING A PARSIMONIOUS 

MODEL 

• Fewer numerical problems in estimation. 

• Easier to understand the model. 

• With fewer parameters, forecasts less sensitive to 

deviations between parameters and estimates. 

• Model may applied more generally to similar 

processes. 

• Rapid real-time computations for control or other 

action. 

• Having a parsimonious model is less important if the 

realization is large. 
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REASONS NEEDING A LONG 

REALIZATION 
• Estimate correlation structure (i.e., the ACF and PACF) 

functions and get accurate standard errors. 

• Estimate seasonal pattern (need at least 4 or 5 seasonal 

periods).  

•  Approximate prediction intervals assume that parameters are 

known (good approximation if realization is large). 

• Fewer estimation problems (likelihood function better 

behaved). 

• Possible to check forecasts by withholding recent data . 

• Can check model stability by dividing data and analyzing 

both sides.  
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Step Four:  Forecasting 

 

 

 



217 
 

FORECASTING 
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FORECASTING FROM AN ARMA MODEL 

THE MINIMUM MEAN SQUARED ERROR FORECASTS 

Observed time series,           . n: the forecast origin  
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FORECASTING FROM AN ARMA 

MODEL 
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FORECASTING FROM AN ARMA MODEL 

• The stationary ARMA model for   is 

                Or  

                                     

                                   

• Assume that we have data           and we want to 

forecast      (i.e.,    steps ahead from forecast origin 

 ). Then the actual value is  
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FORECASTING FROM AN ARMA MODEL 

• Considering the Random Shock Form of the 

series 

                     
     

     
    , 
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FORECASTING FROM AN ARMA MODEL 

• Taking the expectation of     , we have 

                           

               

 Where 
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FORECASTING FROM AN ARMA MODEL 

 The forecast error:  

                  
                          

          

   

   

 

The expectation of the forecast error:           

So, the forecast in unbiased. 

The variance of the forecast error:  
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FORECASTING FROM AN ARMA MODEL 

One step-ahead        
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FORECASTING FROM AN ARMA MODEL 

Two step-ahead        
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FORECASTING FROM AN ARMA MODEL 

Note that, 

   
   

           

   
   

                

 

 

That’s why ARMA (or ARIMA) forecasting is useful 

only for short-term forecasting.  
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PREDICTION INTERVAL FOR      
A 95% prediction interval for                       
is  

                       

 

                       

For one step-ahead this simplifies to 

              

For one step-ahead this simplifies to 
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UPDATING THE FORECASTS 

• Let’s say we have   observations at time 

    and find a good model for this 

series and obtain the forecast for     , 

     and so on. At      , we observe 

the value of       Now, we want to 

update our forecasts using the original 

value of       and the forecasted value of 

it.  
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UPDATING THE FORECASTS 
 
The forecast error is 

                           

   

   

 

We can also write this as  
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UPDATING THE FORECASTS 
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Forecast of an AR(1) process 

 

 

 

 

 

 

The forecast decays geometrically as l increases 
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Forecast of an AR(p) process 

 

 

 

 

 

You need to calculate the previous forecasts l-1,l-2,….  
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Forecast of a MA(1) 

 

 

  

 

 

 

That is the mean of the process 
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                   Forecast of a MA(q)    
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Forecast of an ARMA(1,1) 
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Forecast of an ARMA(p,q) 
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Example: ARMA(2,2) 
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Updating forecasts 

Suppose you have information up to time n, such that 

 

When new information comes, can we update the previous 

forecasts? 
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                 Problems 

P1: For each of the following models: 

 

 
 

(a) Find the l-step ahead forecast of Zn+l  

(b) Find the variance of the l-step ahead forecast error for 
l=1, 2, and 3. 

 

P2: Consider the IMA(1,1) model : 
 

(a) Write down the forecast equation that generates the forecasts  

(b) Find the 95% forecast limits produced by this model  
      (c)Express the forecast as a weighted average of previous 

observations. 
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FORECASTS OF THE TRANSFORMED SERIES 

 

• If you use variance stabilizing transformation, after the 

forecasting, you have to convert the forecasts for the 

original series. 

• If you use log-transformation, you have to consider the 

fact that  

 

 
         nnnn yyyEyyyE ln,,lnlnexp,, 11    
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FORECASTS OF THE TRANSFORMED 

SERIES 

 If X has a normal distribution with mean  and variance 


2, 

 

 Hence, the minimum mean square error forecast for the 

original series is given by 
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MEASURING THE FORECAST ACCURACY 
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MEASURING THE FORECAST ACCURACY 
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MEASURING THE FORECAST ACCURACY 
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Softwares 

 

 

1. SAS 

2. SPSS 

3. STATA 

4. Eviews 

5. TSP 

6. R 
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