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A B S T R A C T   

The advent of reliable and inexpensive sensors and advancements in general computing have made data-heavy 
algorithms feasible for operational, real-time decision-making applications in the geothermal energy industry. 
This systematic review aims to provide a starting point for researchers interested in developing data-driven 
systems, tools, and frameworks to enhance the performance and reliability of above-ground geothermal en-
ergy operations. 

The approach and results of the review are presented to answer the following research questions: how has data 
analytics been applied in above-ground geothermal operations, what data sets have been used in such studies, 
which types of machine learning or artificial intelligence algorithms have been used in geothermal studies, and at 
which stages of geothermal development have studies been applied. Published research articles were retrieved 
from four literature databases: the International Geothermal Association (IGA) online library, ScienceDirect, 
SpringerLink, and IEEE Xplore. A total of 830 publications were retrieved using the same search query across the 
selected databases, from which 63 research papers were selected based on a set of inclusion and exclusion 
criteria. A full-text evaluation of the selected research papers revealed that machine learning has been used in 
geothermal for design optimisation, performance monitoring, performance optimisation, fault detection, and 
other applications. Most of the trained models (95 %) were of the artificial neural network family with other 
model types generally used as performance benchmarks. The systematic review revealed significant potential for 
further research and applications in the areas of feature selection, systematic time-series feature engineering, and 
model evaluation.   

1. Introduction 

Geothermal energy has been a reliable source of natural heat and has 
been utilised for bathing, washing, cooking, and space heating in many 
cultures worldwide since ancient times [1–3]. The 20th century saw 
geothermal energy grow into one of the most reliable and renewable 
sources of electricity, backed by a global push for clean energy devel-
opment. This growth in electricity production using geothermal energy 
peaked in the late 1980s until the early 1990s, after a combined effort 
from the public and private sectors to develop liquid-dominated 
geothermal resources worldwide [4]. Further increase in the installed 
capacities of existing steam-dominated fields in the USA, Italy, and 
Indonesia after the Second World War combined with new installations 
in the “wet steam” fields of New Zealand, the Philippines, Mexico, 
Turkey, and other parts of Asia and Europe resulted in the fastest growth 
of geothermal energy production for electricity [1,5]. Interest in 

geothermal energy continued to rise due to the public’s increasing 
awareness regarding the adverse effects of burning fossil fuels on the 
population’s quality of life and several economic crises driven by the 
demand and supply of oil in the world markets [6–11]. 

From the mid-1990s until the present, the annual growth rate of 
geothermal energy installed capacity has slowed to an average of 4 % 
per year, significantly lower than in the mid-80s, wherein yearly growth 
rates of more than 10 % were common (Fig. 1). Known economic, po-
litical, and technical challenges have continued to hound geothermal 
energy development throughout the decades. The more extensive and 
easily accessible geothermal resources have already been explored and 
exploited. Many other potential sites are in remote areas, needing sig-
nificant civil work to access and conduct more detailed surveillance 
studies to prove economic viability [12]. Any developer intending to 
kickstart a geothermal power plant project must navigate 
pre-development requirements such as securing land rights, regulatory 
compliance, fund sourcing, and other factors that vary across different 
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countries. 
The effects of long-term geothermal energy extraction in many of the 

larger and older geothermal projects built during the peak of geothermal 
energy growth have started to surface in recent years. The Geysers 
geothermal site in California, USA, decommissioned several turbine 
units during the 1990s due to significant pressure drawdown in the 
reservoir caused by over-extraction [17]. Aside from reservoir pressure 
decline, the Mahanagdong field in the Philippines experienced reservoir 
cooling caused by reinjected fluid flooding the main production areas, 
resulting from “stressed” production levels [18]. There have been re-
ports of geysers and other natural surface features that disappeared in 
parts of New Zealand as a side-effect of geothermal energy extraction 
[19,20]. In all these resource management challenges, geothermal field 
operators worldwide have continued to build upon existing knowledge 
and technology to approach a more sustainable electricity production 
from geothermal energy. 

Data and data-processing technologies have been essential to the 

growth of geothermal resource management strategies over the years 
[21–27]. The different stages of problem identification, solution devel-
opment, and performance monitoring require good-quality data to in-
crease the likelihood of a successful geothermal project. The role of data 
has only grown as new data capture and storage technologies have been 
deployed across geothermal sites. A significant number of reports have 
already been made on successful applications of artificial intelligence 
(AI), machine learning (ML), and other data analytics approaches, which 
usually require large volumes of data [28]. Understandably, such studies 
have focused on characterising the subsurface geothermal reservoir. 
Still, there is significant merit in pursuing applications of these 
data-driven approaches to solving problems that arise within surface 
facility operations due to the unique conditions posed by geothermal 
energy production. 

Therefore, this systematic review paper investigates the different 
applications of data science and analytics in the context of above-ground 
geothermal operations. This work will highlight the type of data used 
and the primary use cases or problems being solved in such studies. Any 
reported performance, reliability, or efficiency enhancement from such 
work will also be presented. This systematic review can be treated as an 
introduction for new researchers, particularly geothermal scientists and 
engineers, to artificial intelligence and data analytics in above-ground 
geothermal operations. Other review papers relating to machine 
learning applications in geothermal are present, such as the works of 
Okoroafor et al. [28] and Muther et al. [29]. These review papers, 
however, primarily focused on AI or ML applications related to the 
subsurface aspects of geothermal energy production. 

2. Research methodology 

A systematic review is a structured approach to conducting literature 
surveys that follow a relatively strict methodological framework that 
promotes the reproducibility of such studies [30]. This method allows 
for the extraction and synthesis of information that can aid researchers 

Nomenclature 

b Linear regression coefficient 
L Number of hidden layers 
n Number of samples 
p Pressure 
R2 Coefficient of determination 
T Temperature 
t Time 
u System control parameter 
w Model weights 
X Model input matrix 
x Model input vector 
y Model output 

Abbreviations 
AGDHS Afyon geothermal district heating system 
AI Artificial intelligence 
ANN Artificial neural network 
BPNN Backpropagation neural network 
CNN Convolutional neural network 
CVRMSE Coefficient of the variation of the root mean square error 
EC Exclusion criteria 
DT Decision Tree 
FFNN Feed-forward neural network 
GRNN General regressor neural network 
IC Inclusion criteria 
IEEE Institute of Electrical and Electronics Engineers 

IGA International Geothermal Association 
LDA Latent Dirichlet allocation 
LR Linear regression 
MAPE Mean absolute percentage error 
MEI Minimum equivalence interval 
ML Machine learning 
MLR Multivariate linear regression 
MSE Mean squared error 
NN Neural network 
ORC Organic Rankine cycle 
PCA Principal component analysis 
PID Proportional integral derivative 
PRISMA Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses 
PWF Present worth factor 
RMSE Root mean square error 
RNN Recurrent neural network 
ROCAUC Area under the receiver operating characteristic curve 
RQ Research question 
SSC Steam consumption coefficient 
STRidge Sequential threshold ridge regression 
SVM Support vector machines 

Greek letters 
φ Activation function 
δ Delta rule or error term 
η Learning rate or efficiency  

Fig. 1. Global growth of electricity produced from geothermal energy sources. 
Adapted from Bertani [13,14] and Huttrer [15,16]. 
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in identifying gaps in knowledge of a specific discipline concerning a set 
of defined research questions and protocols. The method used in this 
work follows the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) checklist, which is an “evidence-based mini-
mum set of items for reporting in systematic reviews and meta-analyses” 
[31]. Since the PRISMA checklist was constructed mainly for the field of 
medicine, some of the checklist items related to the meta-analyses 
criteria are not considered in this review. 

The systematic review process used in this paper is comprised of 
several steps. The process started with formulating the research ques-
tions this review aims to answer. The search process and strategy are 
then described, including the keywords and search strings used to find 
relevant and available publications from the literature databases. The 
metadata of the retrieved publications then went through topic model-
ling, which was carried out to help refine the inclusion and exclusion 
criteria. These criteria are then explicitly defined to assist with filtering 
relevant literature. Publication data such as the title, abstract, year of 
publication, and full text are extracted for the papers that reach this 
stage. Information from the selected publications relevant to the pre- 
defined research questions is then synthesised and presented in the 
latter sections of this paper. The steps taken for this systematic review 
and the identified risks for bias are described in detail in the following 
subsections. 

2.1. Research questions 

This systematic review was motivated to provide new researchers 
with an introduction to the field of data science and its existing appli-
cations in geothermal energy operations. Thus, the following research 
questions (RQs) are formulated, which this paper aims to answer.  

• RQ1: What methods, techniques, algorithms, or approaches from 
data science and analytics have been applied in the geothermal 
setting?  

• RQ2: What domains did the data used in the reported applications 
originate from?  

• RQ3: What was the primary task (e.g., forecasting, classification, 
anomaly detection) in the existing applications?  

• RQ4: Which stage of geothermal development and surface facility 
components were targeted by such applications? 

RQ1 investigates the prevalent algorithms and approaches used in 
the geothermal industry’s existing data science or analytics applications 
worldwide. This question further looks into the model design decisions 
that researchers made considering the type of data being used and target 
applications in geothermal. RQ2 allows us to identify the equally 
important information of which domain the datasets used in such 
application were sourced. RQ3 takes it one step further by recording 
what type of problem and solution approach researchers used in the 
studies. At the same time, RQ4 gives an insight into the common areas or 
stages of geothermal development that have been studied using data- 
heavy approaches. 

2.2. Publication search 

Four databases that researchers in the industry commonly access are 
used to search for relevant articles about data analytics applications in 
geothermal. These databases are.  

• International Geothermal Association (IGA) conference paper 
database  

• ScienceDirect  
• SpringerLink  
• IEEE (Institute of Electrical and Electronics Engineers) Xplore 

The search process begins by defining the search string used to search 

the publication databases. Since many keywords related to the topic at 
hand, a boolean query was formulated to cover most, if not all, of the 
desired studies: 

(“artificial intelligence” OR “machine learning” OR “neural network” 
OR “data science”) AND “geothermal". 

The “geothermal” keyword at the end of the search string above was 
not necessary when searching the IGA database but was essential when 
querying the other three literature sources. The initial search results 
using the above query string returned 830 publications from the four 
publication databases. 

2.3. Filtering and selection 

An intermediate step of topic modelling was conducted based on the 
initial results of the search query to ensure that the retrieved publica-
tions were within the scope of this review. By uncovering patterns of 
word use and linking documents with similar themes, topic models can 
discover the underlying structure of a group of documents [32]. In this 
review, Latent Dirichlet Allocation (LDA) is used to identify and group 
keywords that frequently occur together, which may describe the gen-
eral content of each publication returned by the initial query. The title 
and abstract of each publication returned by the initial search query 
were modelled using LDA implemented in scikit-learn [33]. 

The results of the LDA model with four topics based on the initial 
publication search query results are visualised in Fig. 2 using the pyL-
DAvis library [34,35], with the intertopical distance showing the mar-
ginal topic distribution. The topic modelling results shown in Fig. 2c–f 
presents the top 30 most relevant terms for each topic and can be used to 
interpret prevailing themes. It can be observed that Topics 1 and 2 have 
top words related to geothermal and data use. Topic 1 is interpreted to 
be applications of ML/AI that relate to the overall performance of a 
geothermal field with relevant words such as “field”, “performance”, 
“temperature”, and “flow” appearing in the top terms. However, Topic 2 
can be interpreted to be more focused on the ML/AI studies for man-
aging geothermal energy systems. Specific studies focus on the economic 
aspect of electricity generation, including forecasting overall power 
demand and other similar themes. Looking at the top 30 keywords of 
Topic 3, one might classify that topic as “classification of volcanic 
events” since words such as “volcano”, “classification”, “event”, and 
“eruption” occur in that cluster. Topic 4 may contain many of the studies 
fit for inclusion in this review since the top terms for this topic relate to 
the application of AI/ML in the control and optimisation of power plant 
systems. This topic modelling step has shown that a handful of papers 
may not fall under the purview of this review, such as studies more 
focused on the economic aspect of energy production and theoretical 
studies related to hybrid electricity production. However, interested 
readers can look at review papers [36–39] which investigate some of the 
representative studies of the excluded articles. Publications under Topic 
3 were excluded from this review, while further screening of studies 
under Topics 1, 2, and 4 was conducted to select the relevant papers for 
this study. 

The following inclusion and exclusion criteria were formulated based 
on the objectives of this review and the results of the topic modelling.  

Inclusion criteria (IC): 
IC1 Papers that are related to geothermal energy production 
IC2 Papers that utilise artificial intelligence, machine learning, or data science/ 

analytics approaches 
IC3 Papers that look at above-ground components or systems of geothermal 

energy operations 
Exclusion criteria (EC): 

EC1 Papers whose full texts are not available 
EC2 Papers that are not original research articles (e.g., reviews) 
EC3 Papers that are not related to geothermal energy production 
EC4 Papers that involve theoretical optimisation of geothermal hybrid systems  

After duplicate removal and identification of relevant and irrelevant 
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Fig. 2. Topic modelling results using LDA showing (a–b) intertopical distance and marginal topic distribution of each topic and (c–f) the top 30 most relevant terms 
for Topics 1–4, respectively, along with the estimated term frequencies. Topics 1, 2, and 4 may cover publications relevant to this systematic review, while papers 
under topic 3 can be excluded. 
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papers based on the inclusion and exclusion criteria, an initial selection 
of 344 documents was made from the original 830 search query results. 
A final count of 63 research articles was selected for inclusion in this 
systematic review after a full-text assessment was done to determine 
their ability and contribution to answering the research questions. A 
PRISMA flow diagram [31] presenting the number of papers retrieved at 
each stage of the review process is shown in Fig. 3. 

3. Results 

The data extracted from the publications selected for this review are 
analysed to answer the research questions. The publications were 
further classified based on their actual or potential application in 
operating geothermal power plants, whether for improving the overall 
efficiency, performance, or reliability of individual components or 
larger systems. It was observed that more than 90 % of the publications 
are based on applying varying forms of neural networks as surrogate 
models for nonlinear, dynamic, complex systems. These surrogate or 
proxy models are then used for further studies, such as monitoring the 
condition of a system or individual components, optimising operations 
for improved economic benefit, detecting faulty operations, or other 
fundamental studies. Table 1 summarises the main themes of the 
retrieved articles after a full-text evaluation was done on each one. 

The information synthesised from the selected publications is pre-
sented in the following sections to answer the formulated research 
questions. The first subsection deals with RQ1 and RQ2, wherein data 
analytics approaches used in the geothermal space are discussed, and 
the data used for such studies are highlighted. The latter subsections 
attempt to answer RQ3 and RQ4 to identify the primary type of prob-
lems the applications have been used on and at which stage of the 
geothermal energy production life cycle it was utilised. 

The earliest publication in the list of articles included for data syn-
thesis was published in 2010. Still, it was not until 2020 that significant 
growth in research articles that dealt with data science or analytics in 
above-ground geothermal was observed. This succeeding subsections 
discuss the different design decisions made by various researchers to 
apply data science and analytics methods in the above-ground 
geothermal setting, including data types and sources, model types, 
and feature selection methods. 

3.1. Data types and sources 

There were 39 (62 %) of the selected studies that developed data 
models based on experimental or numerically simulated input data. The 
remaining papers relied on operational data measured during the 
operation of machinery or energy systems. 

Fig. 3. Extended PRISMA flow diagram visualising the publication selection process used in this systematic review. Sixty-three (63) publications were selected for a 
full-text review and synthesis from the 830 studies retrieved from four (4) research databases. 
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On the other hand, eleven (11) studies relied on experimental data to 
construct data models and had sourced their model inputs from data 
publications, e.g., as seen in Chang et al. [46] (Table 2) and Huster et al. 
[40]. Design and performance data for ground-sourced heat pumps 
previously reported in several publications were utilised by Xu et al. 
[45] to train a neural network model. Six (6) of the studies that used 
published data utilised libraries such as REFPROP [103] and CoolProp 
[104] to generate working fluid properties for Organic Rankine cycle 
(ORC) systems, which were then used as inputs for thermodynamic and 
machine learning models [40–43,46,54]. The remaining articles in this 
group of studies looked at alternative methods to study and predict 
two-phase flow behaviour based on published look-up tables of experi-
mental data [44,57,58], as well as strategies for handling missing data in 
a global geochemical database [60]. 

The publication search yielded twelve (12) research articles that 
used experimental data measured from test rigs and laboratory setups, 
which were then used as inputs into the training and evaluation of data 
models. These studies used data extracted from sensors installed along 
critical points of a system, such as ground source heat pumps [45,47,48] 
and ORC systems [51–53,55] (Fig. 4), as well as sensors on individual 
components such as turbines [49,56], pumps [50,61], and pipelines 
[59]. 

Synthetic data from numerical simulations have similarly been used 
in the literature to train surrogate machine learning models. In such 
cases, the objective of the research was to develop an alternative model 
that is as accurate as the physics-based models but requires a fraction of 
the computational cost to run (Table 3). Models developed in this 
manner were beneficial for sensitivity and optimisation studies that 
would have been less feasible with the computationally expensive 
physics-based models [66,68,75,93]. 

The selected literature showcased twenty-six (26) research studies 
that utilised data from sensors installed within operational energy 

systems [66,70,79–102]. Time-series data are downloaded from the 
sensors and used to model individual components, e.g., as seen in a study 
by Siratovich et al. [98]. More commonly, the measured data are 
sourced from multiple components critical to estimating and monitoring 
a system’s performance (Table 4). It is important to note that data from 
these studies have not been made available by the authors to other re-
searchers, mainly due to the confidential nature of the source datasets. 

Data downloaded from installed sensors generally provide informa-
tion on the state of the system or component being monitored. This data 
type is prevalent in industrial applications such as power plants and is 

Table 1 
Main research themes observed in the articles retrieved from the publication databases are tabulated against the data types used in the papers and the type of ML 
models that were trained on the input data. Note that there are articles that fall under multiple research themes, have used more than one data type, and utilised more 
than one ML algorithm in the studies.  

Data Type AI/ML Algorithm Design optimisation Performance monitoring Performance optimisation Fault detection Others Total No. Of Refs. 

Experimental NN [40–45] [46–53] [52,54,55] [56] [57–59] 22 
SVM  [51,53]   [60] 
LR & non-LR [45] [51]   [60] 
DT & ensembles    [61] [60] 

Simulated NN [40–44,62–65] [66–70] [54,70–75] [76] [77] 23 
SVM  [69]    
LR & non-LR  [69]   [78] 
DT & ensembles  [69]    

Operational NN [79] [66,70,80–100] [70,98–101] [97,102]  27 
SVM  [94,96,97]  [97] 
LR & non-LR  [78,95,96,98] [98]  
DT & ensembles  [94,97]  [97]  

Table 2 
Subset of the look-up table used as the primary source of ANN model inputs in a study by Chang et al. [46]. The original dataset was published by Loewenberg et al. 
[105] in an earlier study.  

Mass flux Heat flux Pressure Tube 
Diameter 

Bulk Enthalpy (kJ /kg)

kg/ m2s kW/m2 MPa mm 1200 1400 1600 1800 … 2700     

Wall Temperature ◦C 

1000 300 24 8 299 337 366 384 … 433 
1000 300 24 10 299 337 366 384 … 433 
1000 300 24 15 299 337 366 384 … 433 
1000 300 24 20 299 337 366 384 … 433 
1000 300 25 8 299 337 366 384 … 433 
1000 300 25 10 299 337 366 384 … 433 
1000 300 25 15 299 337 366 384 … 433 
1000 300 25 20 299 337 366 384 … 433  

Fig. 4. Schematic diagram of the experimental ORC setup used by and adapted 
from Yan et al. [51]. Data from critical components along the three fluid cir-
cuits consisting of the conductive oil heat source (red), motive fluid (green), 
and cooling water (blue) are used to develop machine learning models. 
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often logged with timestamps (e.g., Table 5). Information stored in these 
time-series data can be used to evaluate the condition of a system or 
phenomena over time and are thus valuable inputs in data models that 
make predictions of future performance or occurrence of certain events 
[106]. However, more than 65 % of the studies that used data logged by 
sensors in the selected literature did not use the time component of the 
data as part of their models. More often, the raw time-series values are 
aggregated to obtain a set of parameters measured within a specific time 
frame and frequency, which are then used to define the state of a system 
[106]. These regularly spaced temporal values are then passed as inputs 
into a neural network model to estimate one or more performance 
metrics of the system for that point in time (e.g. Refs. [75,82–84,99, 
100]). 

The literature has shown that the most common application of time- 
series data is in the creation of forecasting models. These are models 
developed to use past values of one or more monitored parameters to 
predict some future value [66,68,74,76,93,98,102]. In such studies, a 
subset taken from the past values of the input time series is used as the 
input vector into a neural network model to predict one- or 
multiple-time steps into the future. For example, in the dynamic neural 
network model developed by Liu et al. [102], the past 11 values of a time 
series were used to make predictions 1-step and 48-steps ahead (Fig. 5). 

3.2. Model types and algorithms 

Approximately 95 % of the selected articles utilised variations of 
artificial neural networks for their studies, followed by support vector 
machines, which appeared in 11 % of the papers (Table 6). Support 
vector machines, principal component analysis, and several forms of 
decision trees and ensembles, such as random forest models and 
gradient-boosted decision trees, were also seen in the rest of the publi-
cations. Nine (9) studies in the selected literature trained multiple ma-
chine learning models of different types and compared their 
performance when trained to do the same task. Table 7 lists a compar-
ison of model performance observed in the selected literature that 
employed multiple model types or algorithms. The succeeding sections 
describe the different model types in the selected literature and how 
such models were applied in geothermal operations. 

3.2.1. Artificial neural networks 
As described by McCulloch & Pitss in 1943 [99], an artificial neuron 

is a mathematical representation of how a biological neuron processes 
various excitatory and inhibitory inputs (Fig. 6). The flow of information 
in an artificial neuron begins with an input vector X = {x1, x2,…, xm}

being presented to the neuron. Each input is then multiplied by a set of 
weights wm and the products are linearly combined before being passed 
into an activation function φ which produces the output y. An Artificial 
Neural Network (ANN) is a network of interconnected single artificial 
neurons that model experiential knowledge to resemble the learning 
process of the human brain (Fig. 6b). This artificial neural network can 
be trained by iteratively adjusting the weights at various points of the 
network to minimise the difference between network-computed outputs 

and the target values. Commonly used as a “black box” [107] modelling 
technique, ANNs can numerically represent various individual compo-
nents or whole systems without fully knowing the underlying relation-
ships between model inputs and outputs. 

In general, the literature has shown that the following steps are 
necessary to develop a good-performing ANN model.  

• Pre-processing input data to remove outliers such as those measured 
during power plant shutdown [102].  

• Selection of an ANN architecture and learning algorithm  
• Partitioning of input data into training, validation, and testing 

datasets  
• Model selection based on validation performance  
• Model evaluation based on testing on the unseen dataset for testing  
• Sensitivity analysis or parametric studies to determine how model 

inputs contribute to learning the desired outputs 

The feed-forward backpropagation neural network (BPNN) was the 
most common ANN architecture used in the literature. In this approach, 
the output of a neuron in the lth hidden layer after being presented with 
the input vector xl = {x0, x1, x2,…, xm} is: 

xl
j = φ

(
∑Nl− 1

i=1
wl

jix
l
i

)

,where l = 0, 1, 2… (1)  

where the superscript l refers to the current layer, with l = 0 being the 
input layer and l = L referring to the output layer. The subscript index i 
refers to the output of the neuron from the previous layer (l − 1), while 
the subscript j refers to the index of the neuron in the lth hidden layer, 
and Nl− 1 is the number of neurons in the previous layer. After computing 
the output of the network xL

j = yj, the error term or delta-rule at the last 
hidden layer is computed as: 

δL
j = φ′

(
∑NL

i=1
wL

jix
L
i

)
(
dj − yj

)
(2)  

Where dj is the desired output for the jth neuron in the output layer and φ′ 

is the derivative of the activation function φ evaluated for the neurons at 
the Lth or output layer. Moving backwards in the network, the delta 
terms for a neuron in the hidden layers are calculated as: 

δl
j = φ′

(
∑Nl

i=1
wl

jix
l
i

)(
∑Nl+1

k=1
δl+1

k wl+1
jk

)

(3)  

Finally, the value of the neural weights is adjusted based on the current 
weight values and the pre-selected learning factor η: 

wl,new
ij = wl,old

ij + ηδl
jx

l
j (4) 

Studies exploring different learning algorithms in combination with 
the BPNN structure were present in the selected publications. 
Levenberg-Marquardt, Scaled Conjugate Gradient, Pola-Ribiere Conju-
gate Gradient, and Genetic algorithms have been observed in the liter-
ature [47,52,55,71,74,79,83,85,101]. However, variations to the 
standard BPNN were also used in the literature, such as the dynamic 
neural network utilised by Liu et al. [102] to train a model using 
time-series data from a geothermal power plant. A multi-stage BPNN 
was successfully developed in Ref. [65] to determine optimal designs for 
a geothermal Kalina cycle power plant based on model-estimated system 
performance and economic metrics. In conjunction with back-
propagation, fuzzy logic was incorporated by Şencan Şahin et al. [84] 
and Sun et al. [86], resulting in neural networks that performed well 
when used for exergy and energy analyses of power plant systems. 

A recurrent neural network (RNN) is another variation of ANNs that 
takes advantage of contextual information from past inputs to map 
sequential inputs to sequential outputs [109]. This type of neural 

Table 3 
Representative runtimes for the recurrent neural network proxy model versus a 
full-size reservoir model used by Jiang et al. [93]. Each row represents the time it 
takes for the model to complete one Newtonian iteration as part of the optimi-
sation process to maximise the future performance of a geothermal field by 
varying well controls.  

Number of Control 
Parameters 

Runtime for Neural 
Network 
Proxy Model (s) 

Runtime for Reservoir 
Model (s) 

14 0.806 15 
42 0.864 43 
84 0.862 85 
168 0.865 169  
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Table 4 
A subset of references from the selected literature using time-series data logged by sensors installed across critical points and components of geothermal energy systems.  

Ref Coefficient of 
performance 

Electric 
current 

Energy 
efficiency 

Energy 
rate 

Enthalpy Exergy 
efficiency 

Exergy 
rate 

Flow 
rate 

Heating 
capacity 

Operation 
mode 

Power Pressure Pump 
speed 

Relative 
humidity 

Specific steam 
consumption 

Temperature Thermal 
efficiency 

Torque Valve 
opening 

Sampling 
Rate 

[66] – – – – – – – ✓ – – – ✓ ✓ – – ✓ – – – – 
[70] – – – – – – – ✓ – – ✓ ✓ ✓ – – ✓ – – – 1 h 
[79] – – – – – – – – – – ✓ ✓ – – – ✓ – – – – 
[80] – – – – – – – ✓ – ✓ ✓ ✓ – – – ✓ – – ✓ 5 min 
[81] – – – – – – – – – – – – – – – ✓ – – – 13 s 
[82] – – – – – ✓ – ✓ – – – ✓ – – – ✓ – – – 1 day 
[83] – – ✓ – – ✓ – ✓ – – ✓ ✓ – – – ✓ – – – 1 week 
[84] – – – ✓ – – ✓ ✓ – – – – – – – ✓ – – – – 
[85] – – – – – – – – ✓ – ✓ ✓ – – – ✓ – – – – 
[86] ✓ – – – – – – – – – – – – – – ✓ – – – 15 min 
[87] – – – – – – – – – – ✓ ✓ – – ✓ ✓ – – – 5 min 
[88] – – – – – – – – – – – – – – – ✓ ✓ – – – 
[89] – – – – – – – – – – ✓ ✓ – – ✓ ✓ – – – – 
[90] – – – – – ✓ – ✓ – – ✓ ✓ – – – ✓ – – – 1 h 
[91] – – – – – – – ✓ – – – ✓ – – – ✓ – – – – 
[92] – – – – – – – – – – – ✓ – – – ✓ ✓ ✓ – – 
[93] – – – – ✓ – – – – – – ✓ – – – – – – – 1 week 
[94] – – – – – – – ✓ – – ✓ ✓ – ✓ – ✓ – – – 1 h 
[95] – – – – – – – ✓ – – ✓ – – ✓ – ✓ – – – 1 min 
[96] – – – – – – – – – – ✓ ✓ – – – ✓ – – – 1 h 
[97] – ✓ – – – – – – – – – ✓ – – – ✓ – – – – 
[98] – – – – ✓ – – ✓ – – ✓ ✓ – – – ✓ – – – – 
[99] – – – – – ✓ – ✓ – – – ✓ – – – ✓ – – – 1 h 
[100] – – ✓ ✓ – – – ✓ – – – ✓ – – – ✓ – – – 1 week 
[101] – – – – – ✓ – – – – – – – – – ✓ – – – 1 week 
[102] – – – – – – – ✓ – – – ✓ ✓ – – ✓ – – – –  

P.M
.B. A

brasaldo et al.                                                                                                                                                                                                                        



Renewable and Sustainable Energy Reviews 189 (2024) 113998

9

network is beneficial for time-series data, as presented in the studies by 
Jiang et al. [66,68,93] (Fig. 5). Similarly, a Convolution neural network 
(CNN) is a more complex architecture of ANN that was applied by Jiang 
et al. [66,93] to train models that can reliably estimate the short- and 
long-term performance of a geothermal resource. 

The selected literature has shown that ANNs have been used to 
develop data-driven models to represent individual parts of the 
geothermal surface facility, such as heat exchangers [46,76], pipe net-
works [62], pumps [50], turbines [49,56], separators [44], and indi-
vidual or group of wells [66–69,73,93]. However, most published work 
in this field used ANN to model whole systems to condense the 
complexity of modelling individual highly nonlinear, interconnected 
components. ANNs have been used to model conventional geothermal 
power plants [80,87,89,90,97], binary cycle power plants [51–55,63, 
65,70,71,79,88,91,92,96,102] (Fig. 7), and geothermal-powered heat-
ing or cooling systems [45,47,48,58,62,75,81–84,86,94,95,99–101]. 
Such models of complex systems are then used for condition monitoring, 
design optimisation, performance optimisation, and fault detection. 

3.2.2. Support vector machines 
In 1992, Boser et al. [110] proposed a new pattern classification 

method that aims to maximise the margin between the hyperplane 
separating data classes and the training data. The margin is defined as 
the smallest distance of an observation to the proposed separating hy-
perplane from each data class. Support vector machines (SVMs) apply 
the kernel trick to transform the features into higher dimensions and 
project the decision boundary to the original dimension. SVMs can be 
used for classification and regression tasks. Recent advances in 

computing technology and new application interfaces provided by 
open-source software such as scikit-learn [33] have made SVM more 
accessible to researchers. 

In the selected list of publications, SVMs are typically included in a 
list of machine learning algorithms when investigating which method 
results in better predictive performance. Zulkarnain et al. [97] 
compared the performance of SVM models for fault detection in 
geothermal power plants against ANNs and tree-based models. Simi-
larly, Dong et al. [53] benchmarked the performance of SVMs against 
ANNs in predicting the performance of an ORC system based on 
measured system parameters. Santamaría-Bonfil et al. [60] compared 
the performance of SVMs, decision trees, and other machine learning 
algorithms in imputing missing values for a global geochemical data-
base. Yan et al. [51] showed that SVMs performed better in estimating 
the thermal efficiency and net power output of an ORC system compared 
to neural networks and linear regression models (Fig. 8). 

3.2.3. Linear and nonlinear regression 
In linear regression, a model is used to fit the data while varying the 

coefficients of a linear model to minimise the residual sum of squares 
between the actual data and the values predicted by the model [111, 
112]. This model approximates the relationship between a dependent 
variable y, one or more independent variables x1, .., xj, and the bias w0. A 
geometric representation of simple linear regression is shown in Fig. 9, 
while the general multiple linear regression equation is given as: 

ŷ = w0 + w1x1 + w2x2 + … + wjxj (5) 

Table 5 
Exemplary time-series data used by Şencan Şahin & Yazici [84] to train neural 
network models to estimate the energy rates of a geothermal heating system.  

Year Month Day Mass 
Flow 
rate, 
kg/s 

Temperature, 
◦C 

Energy, 
kW 

ANN- 
predicted 
Energy, kW 

2006 12 17 124.7 93.7 48,968.06 48,966.45 
2006 12 18 127.0 93.7 49,873.27 49,872.55 
2007 1 22 138.6 93 54,012.59 54,010.45 
2007 1 23 138.5 93 53,969.30 53,968.20 
2007 2 22 136.3 93.4 53,343.72 53,342.25  

Fig. 5. RNN structure showing naïve feature engineering wherein model inputs x are the past eleven (11) time-series values from the input feature vector to make 
predictions ŷ at n time steps ahead (modified after [102]). The model also accounts for control variables u that may operationally affect the values of the model 
inputs and outputs. 

Table 6 
Main machine learning model types and algorithms used in the selected above- 
ground geothermal publications.  

Subsection Model types and 
algorithms 

References Publication 
Count 

3.2.1 Artificial Neural 
Networks 

[40–59,62–77,79–102] 60 

3.2.2 Support Vector 
Machines 

[51,53,60,69,94,96,97] 7 

3.2.3 Linear and Nonlinear 
Regression 

[45,51,60,69,78,95,96, 
98] 

8 

3.2.4 Decision Trees and 
Ensembles 

[60,61,69,94,97] 5  
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Table 7 
Summary of model performance comparison between different model types in the selected literature. Values presented in the table are relative to the best-performing 
model with a value of 0 % means no difference with the best model.  

Reference Evaluation metric Neural Networks Support Vector Machines Linear Regression Decision Trees Random Forest 

Dong et al. [53] RMSE 0 % 21 % – – – 
Muchamad et al. [69] MSE 0 % 463 % 13 % 80 % 19 % 
Park et al. [95] CVRMSE (%) 0 % – 103 % – – 
Santamaria-Bonfil et al. [60] MEI – 9 % 36 % 0 % 17 % 
Wibowo et al. [96] RMSE 0 % 48 % 145 % – – 
Xu et al. [45][ MAPE (%) 0 % – 275 % – – 
Yan et al. [51] RMSE 75 % 0 % 165 % – – 
Yan et al. [94] MAPE (%) 0 % 14 % – 31 % – 
Zulkarnain et al. [97] ROCAUCa 0 % − 1% – − 25 % – 

MAPE: Mean Absolute Percentage Error; CVRMSE: Coefficient of the Variation of the Root Mean Square Error; RMSE: Root Mean Square Error; ROCAUC: Area Under 
the Receiver Operating Characteristic Curve; MSE: Mean Squared Error; MEI: Minimum Equivalence Interval. 

a Best performance corresponds to the model with the highest ROCAUC. 

Fig. 6. (A) A high-level diagram of a single artificial neuron after Kalogirou [108] and (b) an example of a neural network with two hidden layers.  

Fig. 7. Multi-layer backpropagation neural network developed by Wibowo et al. to predict the power output of a geothermal-powered ORC power plant based on measured 
system parameters (adapted from Ref. [96]). 

Fig. 8. Comparison of (a) coefficients of determination and (b) root mean squared errors for the models trained by Yan et al. [51].  
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where ŷ is the estimated value of the dependent variable and the con-
stants w0,w1,…wp can be estimated using information from observed 
values of y and x1,…,xj. 

Multivariate linear regression (MLR) has been used in the selected 
literature to predict the performance of whole power plant systems and 
compare its predictive performance against other algorithms. Park et al. 
[95] compared the predictive performance of MLR and ANN in model-
ling the performance of a geothermal-powered heating system using 
parameters measured by sensors deployed at critical points of the sys-
tem. Xu et al. [45] trained linear (Eq. (6)) (Table 8) and nonlinear 
regression models to represent another geothermal-powered heating 
system using measured pressures and temperatures. The authors then 
compared its performance to an ANN representation of the system 
(Fig. 10). 

Q = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 (6) 

Other studies in the selected literature fall outside the previous group 
of publications that used the standard linear and nonlinear models for 
regression. In a novel approach, Jin et al. [78] used a special form of 
regression analysis called STRidge or sequential threshold ridge 
regression to learn the governing equations of heat conduction and 
conductive-convective heat transfer. Siratovich et al. [98] have used 
linear regression models to represent some of the simpler components in 
a geothermal power plant as part of their proposed framework for 
constructing digital twins of whole power plant systems. 

3.2.4. Decision trees and ensembles 
Tree-based models learn from the data using a set of if-then-else 

decision rules to predict the value of a target and can be used for 
regression and classification tasks [113]. Decision or classification trees 
consist of nodes acting as “roots” or “leaves.” A root node tests the 
incoming data based on a discrete function of input attribute values and 
partitions the input space based on a criterion. A leaf node, on the other 
hand, does not have outgoing edges but stands as terminal points of the 
tree and assigns the partitioned input space to the appropriate target 

value or assigns a likelihood of that target attribute having a particular 
value. Most tree-based models are easy to interpret and can be visualised 
to better represent the rules learned by the algorithm [114]. Hyper-
parameters such as the depth of the tree or the minimum number of 
samples for each node can be tuned to avoid the potential pitfalls of this 
method (e.g., overfitting). An example decision tree utilised in the 
selected literature is presented in Fig. 11. Although decision trees are 
easier to understand relative to the black-box neural network models 
and the mathematical equations of linear regression models, the main 
drawback is the tendency of overfitting, especially when using very deep 
decision trees [113]. 

An ensemble of decision tree models can be used to reduce the risk of 
overfitting by training more generalizable models that cope better with 
unseen data. Random forest involves the use of several shallow decision 
trees trained on random subsets of the training data, making each tree 
slightly different from one another [113]. The final prediction of the 
whole random forest model is then an aggregation of the individual 
predictions of each decision tree. Another ensemble algorithm using 
decision trees is the gradient boosting machine wherein training data 
that are harder to “learn” are given a higher weight or importance. An 
iterative process of creating shallow decision trees to match the training 
data with different importances assigned to each input lead to robust 
predictions by gradient-boosted decision trees but can also be highly 
influenced by outliers in the training data [113]. 

In 2019, Zulkarnain et al. [97] used gradient-boosted decision trees 
to develop a fault detection system for a geothermal power plant based 
on the measured parameters from its water-cooling system. The classi-
fication performance of the model to detect whether the system is in a 
normal or an abnormal state was compared with other algorithms. 
Although the gradient-boosted decision tree model performed well 
during the training phase, it showed apparent overfitting after per-
forming poorly during the validation stage compared with the other 
models. Similarly, Castellanos et al. [61] constructed a fault identifica-
tion framework for an electrical submersible pump (ESP) system based 
on a chain of simple decision trees. The model was trained on data 
gathered from experiments using a ten-stage ESP to simulate, monitor, 
and label the expected failure modes. The authors concluded that this 
decision tree structure is suitable for practical fault detection and 
diagnosis applications based on its excellent performance in detecting 
and classifying the faults in the pump system (Fig. 11). 

An innovative method to fill in missing values in a global composi-
tional geochemical database was successfully applied by Santamaria- 
Bonfil et al. [60] using decision trees and random forest models, 
among other machine learning algorithms. 

3.3. Feature selection and interpretability 

The feature selection task is essential in creating parsimonious, 
equally accurate and understandable models. Primarily, feature selec-
tion aims to reduce the number of model parameters to the variables that 
have the most influence on model performance [115]. The value of this 
step is seen not only in dimensionality reduction, thereby lowering 
computation costs, but also in improving the interpretability of the 
resulting models [94]. 

Of the 63 studies included in this review, only eight (8) applied 

Fig. 9. Geometric representation of the simple linear regression equation 
showing the samples (dots) and the regression line. This is a special case of Eq. 
(5) when j = 1. 

Table 8 
Example regression coefficients for the best linear regression model (Eq. (6)) to predict the ground source heat pump energy rates based on the system design pa-
rameters from various experiments (after Xu et al. [45]).  

Feature variable  x1 x2 x3 x4 x5 x6 

Feature 
description 

Intercept 
(Constant) 

Soil thermal conductivity 
[W/m◦C] 

Vertical well 
depth [m] 

Well diameter 
[mm] 

U-tube thickness 
[mm] 

Water flow rate 
[mm3/h] 

Water temperature 
difference [◦C] 

Coefficient 
variable 

w0 w1 w2 w3 w4 w5 w6 

Coefficient 
value 

35.245 − 0.463 − 0.219 0.016 − 4.613 20.550 6.960  
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feature selection methodologies in their approaches. The rest of the 
publications relied on domain expert knowledge to select the input pa-
rameters for their models. Studies by Yan et al. [94] and Park et al. [95] 

utilised the relationship of the input parameters with the target vari-
ables, as expressed by their Pearson correlation coefficients, to deter-
mine the parameter subset with the most impact on the target variable 

Fig. 10. Comparison of model performance in predicting heat transfer rate from a geothermal heating system (after Xu et al. [45]).  

Fig. 11. Resulting decision tree for classifying the fault type of a submersible pump (after Castellanos et al. [61]). The decision tree was designed to detect the 
following premature failure faults in the pump: choke valve closure (CV), decreasing input pressure (DIP), gas content increase (GI), and fluid viscosity increase (VI). 

Fig. 12. (a) Correlation coefficients between system parameters used as model inputs for predicting net power output and thermal efficiency of an ORC system. (b) 
Contribution percentages of the principal component factors show that the first two principal components cover 95.21 % of the variance in the data. A key parameter 
subset was identified among the correlated system parameters based on the best-performing models built using the principal components [51]. 
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(Fig. 12a). It was seen in works by Park et al. [95], Yan et al. [51], and 
Ping et al. [92] that principal component analysis (PCA) can be effec-
tively applied to reduce the feature space and improve model inter-
pretability (Fig. 12b). Taking it a step further, PCA was augmented by 
including partial mutual information to determine the degree of inter-
dependence between input parameters in the studies by Ping et al. [91, 
92]. Sensitivity and parametric studies were used in the literature to 
determine how input parameters affected the model outcomes and, 
consequently, determine which had the most influence on performance 
[44,63,81]. 

3.4. Primary modelling tasks and selected use cases 

As part of adopting a relatively new type of technology in the 
geothermal energy industry, it is of great interest to note at which stage 
of the geothermal project development life cycle [9] the applications are 
used and what type of challenges are being tackled using such methods. 
The selected literature has shown that data science techniques have been 
applied in the pre-development and operational phase of geothermal 
above-ground facilities for the purpose of design optimisation (Sec 
3.2.1), condition monitoring (Sec 3.2.2), performance optimisation (Sec 
3.2.3), and fault detection (Sec 3.2.4). There are existing works in the 
other stages of geothermal project development, but these are mostly 
related to characterising and evaluating the subsurface resource [28]. 
Fig. 13 shows a Venn diagram depicting the distribution of published 
work among the main categories of use cases of data science or analytics 
observed in the selected literature. 

3.4.1. Design optimisation 
There were eleven (11) publications included in this review that 

trained neural networks and other machine learning models to create 
surrogate models used for design optimisation [40–45,62–65,79]. The 
first group of papers focused on using the developed models to identify 
the optimal set of system design parameters that would yield the highest 
system outputs and efficiencies. Another group of publications took it 
further by including economic metrics such as payback period, levelized 
cost of electricity, and investment cost in the design evaluation and 
optimisation process. 

Using design and performance data from existing publications, ANNs 
can be trained to estimate the energy and exergy efficiency [63], net 
power output [41], and other performance metrics [44,45] of an indi-
vidual component or a whole power plant system design. These models 
are further used to evaluate variations in plant design decisions, such as 
using recuperators in an ORC plant [63]. Several studies have been 
devoted to identifying the optimal working fluid [41,42,64] for a binary 
plant. Some notable research in this group of publications includes 
works by Huster et al. [41] showing that by using surrogate ANNs, a 
working fluid mixture of isobutane and isopentane was identified that 
can allow a geothermal-powered ORC to generate 17 % more power 
compared to purely using isobutane. Similarly, Peng et al. [42,64] 
conducted a study that included the use of group contribution methods 
to extend the application of their ANN to working fluids that have 

known molecular structures but whose thermodynamic properties are 
unknown (Fig. 14). 

The selected literature has shown that data models are effective 
surrogates for thermodynamic process models when evaluating the 
economics of a particular system design. For example, Kayfeci et al. [62] 
performed a life cycle cost analysis using ANN proxy models to deter-
mine the financially optimal pipe insulation specifications for district 
heating systems anywhere in the world. Arslan and Yetik [79] applied a 
similar economic evaluation process using ANNs to arrive at an optimal 
design for a 64 MW ORC plant with a potential economic benefit of USD 
$125 M for the existing wells in the Simav geothermal system in western 
Anatolia. For the same Simav geothermal system, Senturk Acar [65] 
developed and applied ANNs in multiple stages to determine an optimal 
25 MW Kalina cycle power plant with a net present value of $113 M 
(Fig. 15). In two studies by Huster et al. [40,43], it was shown that a 
structured framework to apply ANNs as thermodynamic surrogate 
models in conjunction with an optimisation tool to determine the 
optimal working fluid of an ORC plant to maximise the plant output, 
levelized cost of electricity, investment cost, and break-even period. 

3.4.2. Condition monitoring 
The bulk of the publications included in this review, which is 34 out 

of 63 papers, relates to the training and application of ANNs and other 
machine learning models to estimate the current performance of an 
energy system based on sensor-measured data. The models have been 
used in a range of geothermal-powered energy systems, such as district 
heating systems, binary cycle plants, and conventional steam turbines. 
This particular use of data models can be a valuable tool for operators to 
flag potential degradation of the system, which could allow a more 
proactive approach when conducting maintenance activities. 

One of the energy systems that had early applications of ANNs are 
geothermal heating systems. These are complex, non-linear systems with 
seasonal variations that have been studied using analytical and nu-
merical approaches [82]. The Afyon geothermal district heating system 
(AGDHS) in Turkey is one of the most studied systems within the 
selected literature, with five (5) publications related to it. Average 
weekly data from the 2006–2010 heating season was used by Keçebaş 
and Yabanova [83] and Keçebaş et al. [82] to train ANNs to predict the 
exergy and energy efficiency of the system based on the ambient tem-
perature and the pressures, temperatures, and flow rates of the working 
fluid at pre-defined locations within the system. An attempt to improve 
these models by applying fuzzy logic together with neural networks was 
conducted by Şencan Şahin and Yazici [84] but resulted in the standard 
ANN model outperforming the model with fuzzy logic. A financial model 
was then developed by Keçebaş et al. [100] using the ANNs to show that 
the current AGDHS had a present worth factor (PWF) of 1.43, signifi-
cantly below the 7.9 PWF value required for the system to be profitable. 
The trained ANN models were then utilised by Keçebaş and Yabanova 
[99] to show that the implementation of an automated control strategy 
using proportional integral derivative (PID) controllers could allow the 
AGDHS to increase the overall heat production by 13 % without the need 
for further investments (Fig. 16). Other studies that applied similar 

Fig. 13. Venn diagram showing the distribution of the publications according to the primary use case of data science or analytics mentioned in the research papers.  

P.M.B. Abrasaldo et al.                                                                                                                                                                                                                        



Renewable and Sustainable Energy Reviews 189 (2024) 113998

14

Fig. 14. Schematic diagram of the process developed by Peng et al. [42] to combine ANNs with group contribution methods to estimate the performance of an ORC 
design with working fluids of unknown thermodynamic properties. 

Fig. 15. (a) Development and testing of multi-stage ANN for optimising a generic geothermal energy powered Kalina cycle (GEP-KC) after Senturk Acar [65] and (b) 
comparison of economic metrics between existing and optimised design for the Afyon geothermal binary power plant in Turkey [75]. 

Fig. 16. Comparison of geothermal district heating system exergy efficiency estimates by ANN model based on different control strategies (modified after Keçebaş 
et al. [99]). 
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methods with data from different geothermal heating systems across the 
world can be seen in Refs. [48,85,86,94,95]. 

Organic Rankine Cycle binary power plants generate electricity from 
the excess heat stored in separated brine or geothermal fluid extracted 
from low-to medium-temperature reservoirs [116]. In this review, nine 
(9) looked at the application of ANNs and other ML models to assess the 
performance of ORC systems and the selection of optimal working fluids 
for such systems. A study by Wibowo et al. [96] showed positive results 
in using ANNs, support vector machines, and ridge regression to predict 
the output of a geothermal ORC plant in Indonesia based on measured 
system temperatures and pressures (Fig. 7). The ANNs developed by 
Wibowo et al. [96] achieved less than 10 % root mean square and mean 
absolute errors on the validation dataset, indicating that the models 
were not overfitted and were robust enough to be applied on unseen 
data. A similar approach was taken by Ling et al. [70] to develop an ANN 
model as a proxy for an ORC plant operated by Cyrq Energy Inc. The 
ANN performed well when first trained and tested using data generated 
from a process model but displayed subpar performance when using real 
data from the field, as seen by the doubling of the errors from 0.03 using 
the synthetic dataset to 0.069 using the field data. Yilmaz et al. [88] 
developed an accurate ANN model for ORC plants with an internal heat 
exchanger or recuperator. The conducted research showed that such 
models are accurate enough for operational use and forecasting of plant 
performance (Fig. 17). The rest of the studies in this group used data 
from experimental test rigs to identify critical system parameters that 
can be used to develop ANNs that can accurately predict the perfor-
mance metrics of ORC systems [46,49,51–53,91]. 

Compared to geothermal heating and ORC systems, fewer publica-
tions looked at machine learning applications for conventional 
geothermal power plants, as only six (6) publications were found in the 
search process. Ruliandi [87] and Ruliandi & Priyangga [89] developed 
ANN models to estimate the steam consumption coefficient (SSC) of the 
Unit 4 Kamojang geothermal power plant in Indonesia using tempera-
ture and pressure measurements from sensors scattered across the fa-
cility. The studies showed that excluding data gathered during plant 
commissioning improved the performance of the models, which is most 
likely due to the drastically different operating conditions required 
during commissioning tests versus regular operation. The models were 
able to replicate the expected increasing trend of the SSC over time due 
to natural wear and tear of the plant components and can be used to 
indicate when the plant should be taken out for preventive maintenance 
[87]. In another paper, Ruliandi et al. [89] trained several ANNs on the 
same input data but having different outputs representing the exergy 
efficiency of individual components and that of the overall power plant. 
The models showed good performance when predicting the overall plant 
exergy efficiency, with MAPE of 0.87 %, but exhibited systematic un-
derestimation in the prediction of the exergy efficiency of the plant 

(Fig. 18). The models could have performed better when predicting the 
individual efficiencies of critical plant components, with average errors 
of 12.5 %. This concept of training component-specific models was 
applied by Siratovich et al. [98] to develop a framework that would 
allow the creation of a digital twin for any geothermal power plant by 
connecting the individual component models using first principal ther-
modynamics. In this framework, each component will be represented by 
a different machine learning model with the type of model depending on 
the complexity of the expected input and output parameters. Looking at 
component-specific models, Zulkarnain et al. [97] were able to use 
K-means clustering to label monitoring data for the cooling system of a 
geothermal power plant and train several machine learning models to 
predict whether the component is working in normal or abnormal 
conditions (see Fig. 19). 

The rest of the studies on condition monitoring focused on the overall 
performance of the geothermal wells producing and injecting the 
geothermal fluids. In multiple works, Jiang et al. [66,68,93] explored 
the development and application of RNNs to estimate the short- and 
long-term performance of geothermal wells. The authors of the said 
studies highlighted the challenge of making predictions outside the 
bounds of the training data, which is expected in geothermal operations 
where the resource may be degrading over time and will eventually 
operate outside of known initial conditions. Still, the studies showed 
that using multi-scale recurrent neural networks makes it possible to 
make reliable short- and long-term predictions, provided that the time 
series is relatively stationary. Although geothermal wells are mostly 
considered part of the subsurface portion of geothermal operations, their 
performance can greatly affect surface operations and are vital to 

Fig. 17. (a) ANN structure showing model inputs to predict the output of an ORC plant with an internal heat exchanger and (b) modelling results showing good 
validation accuracy (modified after Yilmaz et al. [88]). 

Fig. 18. Model-predicted turbine efficiencies during the training phase 
showing systematic underestimation by the ANN (modified after Ruliandi 
et al. [90]). 
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ensuring the safe and efficient operations of surface facilities. This was 
the primary motivation in the works by Harry et al. [67,69] where an 
investigation was conducted to use machine learning algorithms to 
study the decline rates in geothermal wells operating under different 
scenarios. The authors were able to develop accurate feed-forward 
(FFNN) and general regressor neural network (GRNN) models with er-
rors of less than 5 % for the best model while highlighting the potential 
bias posed by overfitted models (Table 9). 

3.4.3. Performance optimisation 
Aside from monitoring the condition and performance of individual 

components and whole geothermal systems, surrogate machine-learning 
models have been developed to optimise or enhance existing operations. 
Previously, Siratovich et al. [98] showcased their proposed framework 
for modelling above-ground geothermal systems. Moreover, the authors 
in that work took this a step further by applying their framework in a 
case study to show how reinforcement learning algorithms can be used 
to increase generation in a geothermal power plant. The autonomous 
agent was allowed to change the operating conditions of the production 
wells and pipeline pressures, and a corresponding reward or penalty was 
given to the agent depending on the model-predicted performance of the 
plant. The model-controlled operation resulted in a hypothetical in-
crease in generation by 1.8 MW when compared against a baseline 
forecast using existing operating conditions (see Fig. 19). 

The data-driven models were trained for parametric optimisation to 
find potential operational adjustments that can be implemented to 
improve the performance metrics of existing ORC systems [52,54,55, 
70]. The same process of using proxy models has been applied to 
geothermal-powered heating systems [75,99–101]. The operational 
enhancement of individual components has been shown to work using 
trained proxy models, such as for turbines [72] and geothermal wells 
[73]. 

3.4.4. Fault detection 
The following subset of published works tackled challenges in 

detecting faulty operations in various parts of geothermal systems. The 
ANNs developed by Lalot and Pálsson [76] were primarily used to detect 
fouling in heat exchangers based on forecasted temperature difference 
values across the heat exchanger wall. The models performed the task 
successfully, and the authors recommended transitioning to a predictive 
maintenance scheme for the heat exchangers instead of the existing 
periodic, fixed maintenance intervals. Liu et al. [102] similarly used 
ANN trained on past values of various operational parameters monitored 
by sensors to make single- and multiple-step forecasts and anticipate 
abnormal behaviour across system. A different approach was taken by 
Rodriguez et al. [56] in a regression task to estimate the useful life of 
turbine blades by training ANNs on data obtained from finite element 
simulations of the component. Zulkarnain et al. [97] compared the 
performance of several machine learning models in processing multiple 
input streams to detect faulty operations in the water-cooling system of a 
geothermal power plant in Indonesia (Fig. 20a). The automatic detec-
tion of abnormal conditions improves the existing manual fault detec-
tion process, which proved challenging when simultaneously looking at 
multiple operating parameters. Castellanos et al. [61] used a chain of 
decision trees to detect and classify faulty operations in a submersible 

pump system operated in a two-phase fluid environment. The decision to 
use multiple decision trees instead of a single one decreased the overall 
accuracy of the model but improved performance in classifying the fault 
types when abnormal operation is detected (Fig. 20b). 

3.5. Modelling best practices 

The publications included in this review has clearly shown the po-
tential benefits of developing accurate and reliable data-driven models 
for above-ground geothermal operations. Still, the existing models and 
machine learning pipelines could greatly benefit from a renewed focus 
in systematic time-series feature engineering and selection, cross vali-
dation, and data rebalancing. 

3.5.1. Systematic time-series feature engineering and selection 
Only a few studies included in the review (e.g. Refs. [66,68,76,81,82, 

84,93]) applied algorithms and methods specifically tailored for 
time-series data. Although it is possible to accurately perform tasks such 
as time-series regression or classification based on the raw data values 
(naïve time-series feature engineering), there are instances where a 
feature-based representation of a time series can better display the 
unique characteristics of the dynamics contained in the data [117]. 
Thus, pursuing further research in applying a feature-based approach to 
time-series analysis of above-ground geothermal facility data is of sig-
nificant merit. 

Rigorous feature engineering and selection is another aspect that can 
be a focus of further research using operational geothermal data. Most of 
the selected literature took advantage of the ability of ANNs to glean 
intrinsic relationships in large datasets, with the majority (55 out of 63) 
of the studies relying on domain expertise to select input parameters for 
the models. A systematic and replicable feature selection methodology 
can greatly improve model performance and address model interpret-
ability even while using “black-box” type models such as ANNs and 
complex tree-based models [112]. 

3.5.2. Cross-validation 
Only six (6) publications included in this review indicated the use of 

cross-validation techniques as part of the model development and 
evaluation process [60,61,73,80,83,95]. The process of cross-validation 
is essential to ensuring that the trained models are not overfitted and 

Table 9 
Performance metrics of neural network models developed by Harry et al. [69] showing training and prediction errors for the best models relative to values taken from 
wellbore model simulations.  

Scenario Training MAPE (%) Decline Rate Predictions (%) Prediction MAPE (%) 

FFNN GRNN Wellbore Model FFNN GRNN FFNN GRNN 

Normal operation, no issues 1.6 1.6 0 0 0 – – 
Increasing reservoir pressure 1.2 1.4 13.9 13.9 4.3 0.1 69.4 
Near-wellbore scaling 1.0 1.2 17.7 17.5 3.8 1.4 78.8 
Wellbore and near-wellbore scaling 1.1 1.1 14.8 14.1 6.8 4.4 53.8  

Fig. 19. Comparison of the baseline forecast model and the reinforcement 
learning (RL) agent optimisation results (after Siratovich et al. [98]. 
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perform robustly on unseen data. In essence, cross-validation is done by 
grouping the input data into several groups, with one group set aside to 
evaluate the model performance while the model is trained on the other 
groups. This process is repeated a certain number of times, with a 
different data group acting as the testing data for each iteration [113]. 

Aside from the standard k-fold cross-validation technique described 
previously, there are also other approaches to cross-validation that can 
be useful in models developed for geothermal applications. Stratified k- 
fold cross-validation is a technique that ensures the distribution of 
different classes is close to equal among the different folds. This method 
was successfully applied by Castellanos et al. [61] in their 
fault-detection study. When working with time series, a rolling 
cross-validation technique can be applied to assess the performance of 
the models accurately while honouring the potential temporal correla-
tions in the dataset [118]. 

3.5.3. Rebalancing of the input data 
Applications such as fault detection and condition monitoring in 

industrial operations rely on datasets that are inherently imbalanced, 
with one class representing normal operations and a minority class 
referring to an anomalous state of the system [119]. In such cases, 
standard classifier algorithms tend to be biased toward predicting the 
occurrence of the majority class since many performance metrics are 
designed to favour models that make the most number of correct pre-
dictions. The minority class tend to be ignored by the models and are 
often misclassified. 

Data resampling can be applied to ensure a close to equal distribution 
of classes in the input data. This process will ensure that standard 
classifier algorithms and performance metrics can be applied while 
minimising bias on the original majority class. For example, Dempsey 
et al. [120] applied random undersampling on seismic monitoring data 
when developing the models used to forecast eruptive activity at Wha-
kaari in New Zealand. Undersampling aims to arrive at a more balanced 
input dataset by eliminating samples from the majority class, while 
oversampling achieves the same objective by replicating samples from 
the minority class [119]. 

4. Conclusions and scope of future research 

This systematic review has shown that significant research has been 
done on applying data science and analytics to tackle and solve problems 
related to the operation of geothermal surface facilities. An in-depth 
review has been conducted to show the primary model design de-
cisions researchers have made to develop AI and ML models and the use 
cases for such models in above-ground geothermal operations. 

The review has shown that the approach used in most applications of 
the selected literature is the development of surrogate or proxy models 
to represent the operation of an individual component of a plant (e.g., 

turbines [49,56,72,98], wells [67–69,73,93], flash plants [44,98], heat 
exchangers [46,76]) or whole geothermal systems [47,48,52,53,70, 
81–84,86–89,91,92,94,95,98–100]). Furthermore, most published data 
analytics applications used the standard backpropagation architecture 
of artificial neural networks in their models with one or more hidden 
layers. At the same time, usage of more advanced forms of ANN is found 
in the literature (e.g., ANN with fuzzy logic [47,84,86], recurrent neural 
networks [66,68,93], as well as convolutional neural networks [66,93]). 

In terms of the source or model input data, only 24 out of the 63 
papers included in this review used operational data to train and eval-
uate the AI/ML models. The remaining 39 papers used published 
experimental and synthetic data from numerical simulations. The 
models developed from these datasets were used as proxies for more 
complex thermodynamic numerical models. The proxy models were 
utilised in the design stage to inform design decisions, such as selecting 
the working fluid in binary power plants. Meanwhile, the same proxy 
models were used in operational plants to detect faulty conditions and 
optimise system performance and overall project economics. 

Although considerable research has been done in applying AI and ML 
methods in above-ground geothermal applications, this review has 
shown knowledge areas that can be expanded to further growth in this 
field. The improved accessibility of large commercial and education 
computing resources can be harnessed to efficiently handle the terabytes 
of data gathered from geothermal operations and the algorithms needed 
to process them. Emphasis on a feature-based approach to time-series 
feature engineering and automated feature selection is another prom-
ising avenue for research that can aid modellers in developing accurate 
and understandable data models. 
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