
Expert Systems With Applications 238 (2024) 121949

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A visual-based toolkit to support mobility data analytics
Sergio Di Martino a, Enrico Landolfi b, Nicola Mazzocca a, Franca Rocco di Torrepadula a,
Luigi Libero Lucio Starace a,∗

a Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy
b NetCom Engineering S.p.A., Via Nuova Poggioreale, 80143, Naples, Italy

A R T I C L E I N F O

Keywords:
Knowledge discovery from data
Intelligent transportation systems
Data analytics
Intelligent systems development

A B S T R A C T

The Knowledge Discovery from Data (KDD) process is widely used across various domains to get valuable
insights from data. Many platforms, like KNIME or RapidMiner, offer effective tools for KDD analysts, allowing
them to perform data analytics tasks in a visual fashion, without writing code. In recent years, the increasing
availability of mobility data has led to a surge in KDD-based initiatives from both industry and academia in
the Intelligent Transportation Systems (ITS) domain. Still, KDD platforms lack comprehensive support for some
typical mobility data manipulation tasks. As a result, mobility data analysis still requires a significant coding
phase, with reduced productivity and hindered replicability of results.

To address this gap, this paper presents a novel solution aimed at supporting ITS data analysts in defining
KDD processes more efficiently. More in detail, we extended the KNIME platform by introducing a collection of
new components explicitly tailored to facilitate some peculiar KDD tasks from mobility data. These components
encompass critical functionalities such as map coverage analysis, trajectory partitioning and map-matching.

To showcase the effectiveness of the proposed solution, we used it to replicate a study published in the
ITS data analytics domain. Thanks to our proposal, such replication can be accomplished in a few minutes
and with just a few clicks, without any manual coding, resulting in a pipeline that is easier to understand,
distribute and re-execute, also for domain experts with no programming experience.

Our solution is open-source and freely downloadable from the Knime Hub. In this way, we aim to foster
data-driven research and practice in the ITS field, by providing researchers and practitioners with more
effective analytics tools to handle mobility data.
1. Introduction

In the last years, the wide availability of real-world mobility datasets
has triggered a paradigm shift in the Intelligent Transportation Systems
(ITS) domain, with data-driven approaches gaining more and more
relevance, and being often used to complement or even replace tra-
ditional model-driven solutions (Veres & Moussa, 2019; Zhang et al.,
2011). Typically, these data-driven ITS solutions leverage Data Analysis
and Artificial Intelligence (AI) techniques for discovering patterns and
trends from data, enabling a number of use cases, such as better
characterizations of transportation demand or of mobility dynamics
predictions (Bock, Di Martino, & Origlia, 2020; Lee, Eo, Jung, Yoon, &
Rhee, 2021), better surveillance of urban scenarios (Lee et al., 2006),
public transport crowding estimation (Jenelius, 2019; Zhang et al.,
2017), and so on.

∗ Correspondence to: Università degli Studi di Napoli Federico II, Via Claudio, 80125, Naples, Italy.
E-mail addresses: sergio.dimartino@unina.it (S. Di Martino), e.landolfi@netcomgroup.eu (E. Landolfi), nicola.mazzocca@unina.it (N. Mazzocca),

franca.roccoditorrepadula@unina.it (F. Rocco di Torrepadula), luigiliberolucio.starace@unina.it (L.L.L. Starace).
1 https://www.knime.com/
2 https://rapidminer.com/

The implementation of such data-driven ITS solutions requires
the definition of appropriate data analysis/processing pipelines, often
conceptually based on the process of Knowledge Discovery from Data
(KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). KDD consists of
a pipeline of five key phases, namely Data Selection, Preprocessing,
Transformation, Data Mining and Interpretation/Evaluation. Each of these
phases includes one or more tasks, intended as distinct functional
blocks. To set up a KDD pipeline, data analysts need to implement said
functional blocks and properly orchestrate them towards the analysis
goals.

In scenarios that do not need to deal with spatio-temporal mobility
data, several general-purpose data analytics platforms, e.g.: KNIME1

or RapidMiner,2 have been proposed and are largely used. Thanks to
their visual programming paradigm (see Fig. 4), these platforms allow
vailable online 9 October 2023
957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2023.121949
Received 24 November 2022; Received in revised form 29 September 2023; Accept
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 29 September 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:sergio.dimartino@unina.it
mailto:e.landolfi@netcomgroup.eu
mailto:nicola.mazzocca@unina.it
mailto:franca.roccoditorrepadula@unina.it
mailto:luigiliberolucio.starace@unina.it
https://www.knime.com/
https://rapidminer.com/
https://doi.org/10.1016/j.eswa.2023.121949
https://doi.org/10.1016/j.eswa.2023.121949
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.121949&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.

j
a
h
a
c
b
p
b

e
s
s
d
p
a
i
i
D
a
S

(

data analysts to set up KDD pipelines without writing a single line
of code, but rather by simply connecting the appropriate functional
blocks that implement the tasks needed for the specific problem at
hand. Indeed, these platforms feature a number of built-in functional
blocks implementing common KDD tasks, such as reading data from
files or databases, filtering data based on conditions, visualizing data,
applying AI techniques, and so on. This has the key advantage of
empowering domain experts and/or decision makers to set up their
own data analytics solution at a high abstraction level, focusing more
on the specific problem at hand and less on implementation details.
Unfortunately, in our industrial and academic experience, we found
that these general-purpose visual platforms present some limitations in
supporting analyses of mobility data, as they lack functional blocks to
carry out some peculiar tasks required by the spatio-temporal nature of
this kind of data.

As a first step to overcome these challenges and allow ITS re-
searchers/ practitioners to fully exploit the power of general-purpose
analytics tools, in this work, we introduce a visual-based toolkit we de-
veloped, intended as an extension of the well-known KNIME Analytics
Platform. Our toolkit enriches KNIME with a set of novel spatio-
temporal data processing components designed to carry out common
mobility data tasks such as map matching, map coverage analysis, tra-
ectory partitioning and restoration. These components we developed
re designed to be potentially further extended, for example with ad-
oc heuristics, and tailored to different needs. The extension is freely
vailable on the official KNIME Hub3 repository, and the source code
an be found on GitHub (Di Martino, Principe, & Starace, 2021). We
elieve that the free availability of the extension can streamline the
rocess of implementing KDD pipelines for conducting investigations
ased on mobility data within the ITS community.

Moreover, since KNIME pipelines can be easily exported and re-
xecuted on any platform on which the KNIME platform can be in-
talled, without the need to deal with dependencies and environment
ettings, our extension could also foster ITS research by facilitating the
istribution of replicable research results. Lastly, we show how the pro-
osed extension can empower ITS researchers by replicating, with just
few clicks and no need to write any code at all, a recently published

nvestigation (Cruz, Couto, Costa, Fladenmuller, & de Amorim, 2020)
n the ITS field about involving Bus Service Coverage Analysis in Rio
e Janeiro (Brazil). A replication package with detailed instructions is
vailable at Di Martino, Landolfi, Mazzocca, Rocco di Torrepadula, and
tarace (2022).

Summarizing, this work makes the following contributions:

• We discuss and formalize, from a Software Engineering perspec-
tive, the development process of KDD pipelines. We thoroughly
examine the peculiar challenges that ITS professionals encounter
during the development process, aiming to provide a structured
framework for effectively overcoming these obstacles.

• We present and describe in detail the visual-based toolkit we
propose to support the definition of replicable KDD pipelines
in the ITS domain, covering the key steps of data-driven ITS
analytics.

• We demonstrate how the proposed toolkit can empower ITS
researchers, showcasing how it enables the replication of a pub-
lished investigation in the field, with just a few clicks and no need
to write any code at all.

• We make our solution, as well as all means necessary to further
extend it, freely available to any interested researcher and practi-
tioner, to foster collaboration and promote further advancements
in the field.

3 https://hub.knime.com/, currently in the KNIME Community Extensions
Experimental) branch
2

The paper is structured as follows. In Section 2, we give an overview
of the standard KDD process, the peculiar challenges arising from its
application in the ITS domain, and some existing related solutions.
Then, in Section 3, we start by providing a detailed overview of the
KNIME tool and subsequently present the visual toolkit we devised,
focusing on each of its components. Further details on the components
we developed, including a formalization of their inputs and outputs
and a detailed description of the available configuration options, are
reported in Appendix A. In Section 4, we show how the proposed solu-
tion can be easily integrated within the KNIME ecosystem and used to
design effective KDD pipelines on mobility data. We do so by partially
replicating a recently published investigation in the ITS field (Cruz
et al., 2020), performing a Bus Service Coverage Analysis leveraging
a public dataset. Final remarks and future research directions conclude
the paper, in Section 5.

2. Knowledge discovery from mobility data: Preliminaries, related
works and challenges

In the last years, many works in the literature have focused on
extracting knowledge from mobility data, typically with the goal of
gaining new insights on spatio-temporal phenomena of interest, also
enabling more efficient, safer, and profitable ITS solutions (Di Martino
& Starace, 2022a; Khan, Rahman, Apon, & Chowdhury, 2017; Zheng,
Wu, Chen, Qu, & Ni, 2016; Zhu, Yu, Wang, Ning, & Tang, 2018). For
example, Nguyen et al. (2018) analyzed a dataset collected from buses
in Los Angeles, to assess the performance of the public transit system.
In Nuzzolo, Comi, Papa, and Polimeni (2018), data collected from
taxis operating in Rome, Italy, were analyzed to extract knowledge on
existing mobility demand patterns. Also Asprone, Di Martino, Festa,
and Starace (2021) and Di Martino and Starace (2022b) analyzed taxi
trajectories, with the goal of evaluating the practicality of leveraging
a fleet of taxis to crowd-sense knowledge in urban environments, as
an enabler of novel use cases for Smart Cities. It is worth noting
that mobility data are not necessarily collected from vehicles. As an
example, Di Lorenzo et al. (2015) propose a solution to visually analyze
mobility patterns extracted from personal smartphone positioning data,
with the goal of optimizing public transport.

All these cited works had to deal, to different extents depending on
the specific applications, with some common tasks and challenges of
KDD applied to mobility data. In the following, we first describe the
KDD approach. Then, based on our industrial and academic experience
in this field, we introduce some peculiar tasks required by KDD applied
to mobility/FCD data, together with related works and open challenges.

2.1. The process of knowledge discovery from data

Extracting new knowledge from relevant amounts of data is an old
and key multidisciplinary problem, which has been extensively tackled
in the domain of Data Science (Van Der Aalst, 2016). More in detail, the
process of Knowledge Discovery from Data (KDD) was first formalized
in Fayyad et al. (1996) as the application ‘‘of methods and techniques for
making sense of data’’. In that work, the authors identified five key steps
(see Fig. 1) composing the KDD process:

1. Data Selection, consisting in selecting a data set, or a subset
thereof, on which to apply the knowledge discovery process.

2. Preprocessing, dealing with cleansing and preprocessing the se-
lected data, for example by identifying suitable strategies to
handle noisy or missing data, to normalize measurements, to fit
domain requirements, and so on.

3. Transformation, involving data reduction/projection to transform
it into a more useful representation, for feeding the subsequent
Data Mining algorithms, depending on the goal of the task.

4. Data Mining, which is concerned with discovering correlations or
patterns in the investigated data, typically leveraging Machine

Learning techniques.

https://hub.knime.com/


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 1. An overview of the KDD process, based on Fayyad et al. (1996).
5. Interpretation/Evaluation, is the stage where correlations and pat-
terns identified in the previous step are presented to a decision-
maker for interpretation, often with the support of data visual-
ization techniques.

Notice that the process of KDD is not necessarily linear. Indeed, in most
cases, it can involve significant iterations, with potential loops between
any two steps (Fayyad et al., 1996), as highlighted by the dashed lines
in Fig. 1.

2.2. Peculiarities of knowledge discovery from mobility data

Applying a KDD process to mobility data often necessitates specific
preprocessing steps due to the unique nature and characteristics of
collected spatio-temporal information. In the following, based on our
industrial and academic experience in this field, we briefly intro-
duce some peculiar tasks required by KDD applied to mobility data.
Firstly, mobility datasets are typically composed of massive sets of
spatio-temporal structured data, typically including a GPS position, a
timestamp, and possibly additional information of interest (e.g.: speed,
direction, recorded temperature, etc.). Such data is often, but not
necessarily, collected from vehicles, in which case it is given the name
of Floating Car Data (FCD) (Zhang et al., 2011; Zhu et al., 2018). In
the following, for the sake of simplicity, we refer to all spatio-temporal
mobility data consisting of timestamped GPS positions enriched with
additional information as FCD, but all the considerations also stand
for similar data collected from other entities (e.g.: pedestrians with
smartphones).

Typically, these Floating Car Data (FCD) datasets contain a stream
of data collected from numerous vehicles over extended time peri-
ods. Examples of such datasets include those presented by Bracciale
et al. (2014) or by Piorkowski, Sarafijanovic-Djukic, and Grossglauser
(2009). In these cases, to enable analysis steps in the KDD data mining
phase, it is necessary to split the data stream according to some filtering
criteria (e.g. by vehicle, by trip, etc.). Thus, Trajectory Partitioning is
usually the first task to be performed in the preprocessing phase, aimed
at splitting such data stream into a set of independent trajectories,
each representing a vehicle route from a given origin to a destination.
To better understand these concepts, let us consider the example in
Fig. 2. Fig. 2(a) depicts raw FCD from a real-world dataset of taxi
trajectories (Piorkowski et al., 2009) collected in the City of San
Francisco, USA. The dark dots correspond to the GPS positions of 10
taxis over a three-week timespan. In this scenario, the goal of Trajectory
Partitioning is to divide the raw positioning data stream into several
subsets, each containing only data for a specific trip. A possible output
of Trajectory Partitioning on these data is reported in Fig. 2(b), where
points are colored based on their belonging to the same trip. However,
as highlighted in Fig. 2(b), simply connecting subsequent GPS positions
is typically not sufficient to accurately reconstruct the actual trajectory
of a vehicle, which is usually the basic information for the KDD pro-
cess. Thus, a subsequent task, typically performed in the preprocessing
phase, and crucial when there is a need to contextualize raw mobility
data on real-world maps, is Map Matching. The aim is to align possibly
inaccurate positioning data to an underlying logical representation of
3

Fig. 2. Example of challenges for KDD on FCD. From left to right: (a) Raw GPS
positions collected from taxis; (b) Positions after partitioning; (c) Map-matched
trajectories.

the road network (Kubicka, Cela, Mounier, & Niculescu, 2018). The
effort to perform map-matching heavily depends on the quality of the
spatio-temporal data: the lower the sampling rates and the position
accuracy, the harder the task is. To give an insight into the variability
of the data quality of publicly available vehicular trajectory datasets,
e.g. Bracciale et al. (2014), Piorkowski et al. (2009) and Yuan et al.
(2010), the sampling rates in FCD datasets can vary from a few seconds
(e.g.; 7 s on average in the Rome, Italy taxi dataset (Bracciale et al.,
2014)), to a few minutes (e.g.: 177 s on average in the widely-used
Beijing taxi dataset (Yuan et al., 2010)). In Fig. 2(c) we report the
outcome of a Map Matching process on the trajectories identified after
Trajectory Partitioning and depicted in 2 (b).

In cases where there are considerable positioning errors and/or
insufficient sampling rates on dense road networks, like urban areas, re-
constructing the original trajectory of a vehicle can become quite chal-
lenging. In these cases, further Trajectory Restoration/Interpolation
tasks may be required, to reconstruct plausible trajectories from the
sparsely recorded positions (Li et al., 2020), according to properly
defined heuristics.

After reconstructing these trajectories, the subsequent processing
steps of the KDD mostly depend on the analysis goals. For example,
many applications, such as the assessment of public transit perfor-
mance or the feasibility of vehicular crowd-sensing solutions, require
to evaluate the spatio-temporal road-network coverage of a fleet of
vehicles (Asprone et al., 2021; Nguyen et al., 2018). To this end, spe-
cific coverage metrics need to be computed at the desired granularity
level, such as the raw number of visits or the median timegap between
subsequent visits of one of the considered vehicles (Masutani, 2015).

2.3. Implementing KDD pipelines

From a software development viewpoint, KDD pipelines can be
designed and implemented as modular software systems, in which
each step/task of the process is carried out by a specialized module,
or functional block, with a clear separation of concerns among these



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 3. Development lifecycle of a KDD pipeline.
blocks (Mikut & Reischl, 2011). Thanks to this modular design, it
is possible to increase understandability, since functional blocks are
a first conceptual abstraction of the pipeline, and make it easier to
focus on what needs to be done rather than on how to actually do it.
Moreover, a modular approach also fosters reusability, as a functional
block carrying out a specific task can be easily reused in other KDD
pipelines, in which the same task is needed.

The development lifecycle of a KDD pipeline as a modular system
can be summarized as depicted in Fig. 3. The first phases are Analysis,
in which the objectives of the pipeline are defined, and Design, in which
high-level steps (e.g. the KDD phases) for the pipeline are defined.
Subsequently, each high-level step is further detailed by defining one or
more specific tasks (or functional blocks) that are necessary to carry out
the step. Once the Design phase is completed, the Implementation phase
begins, during which the functional blocks are developed (if not already
available) and then properly orchestrated to compose the intended
pipeline. As a result of this phase, the KDD pipeline is complete and
ready to be executed. Indeed, the subsequent phase is the Execution,
during which KDD steps are performed.

As highlighted in Section 1, general-purpose analytics platforms,
based on a visual programming paradigm, can provide significant sup-
port to data analysts in the Design and Implementation phases. Indeed,
the visual platforms force the analysts to design their pipelines in terms
of interconnected functional blocks and typically offer out-of-the-box
a comprehensive library of built-in components that can be used to
carry out common tasks in KDD. In this way, the Implementation phase
can be simplified too: if all identified blocks are already available as
built-in components, then it is possible to proceed directly to their
orchestration. Conversely, if one or more of the required functional
blocks are not already available, they must be first implemented and
then connected.

In this study, we leverage KNIME, an open-source analytics plat-
form featuring a visual workbench that facilitates the composition and
interactive execution of KDD pipelines. The user interface of the tool is
displayed in Fig. 4. The main component of the graphical interface is
the Workflow Editor, whose purpose is to allow users to visually build
a KDD pipeline. The functional blocks that form these pipelines are
depicted as Nodes, which can be chosen among the ones available from
the Node Repository frame, and drag-and-dropped into the Workflow
Editor. The KNIME platform encompasses an extensive array of built-in
nodes, which can be employed to carry out various standard KDD tasks.
These tasks include reading and writing files, data transformation,
training and evaluating models using diverse machine/deep learning
techniques, generating interactive visualization reports, and more. In
the workbench, each node is visualized as a colored box featuring
external interfaces, referred to as input and output ports, which are
positioned on the left and right sides of the node, respectively, and
depicted as black triangles. Moreover, the behavior of a node can
be typically customized by accessing its graphical Node Configuration
Dialog, in which relevant parameters (e.g.: the path of the file to read
in a reader node, or the color to use in a plot in a visualization node)
can be defined. To construct a pipeline, users graphically connect the
4

output of one node to one or more inputs of the next node(s), effectively
representing the successive tasks of the pipeline. To provide an example
of how this type of tool works, in Fig. 4 we show a pipeline aimed
at visualizing, by means of a scatter plot, some data loaded from a
file. In detail, data is loaded from a Comma Separated Value (CSV) file
by means of the CSV Reader node. Then, a Row Filter node is used to
filter data, retaining only those matching the given criteria, specified
in its configuration dialog. Finally, the Color Manager and the Scatter
Plot nodes are used, respectively, to assign a color to each of the labels
in the input data, and to visualize it in an interactive scatter plot (see
Interactive Visualization). This pipeline can be executed by pressing the
play icon on the top bar of the window.

Alongside its substantial collection of built-in nodes, KNIME is
designed to be highly extensible, allowing the seamless integration of
new, custom nodes to fulfill novel and/or specialized tasks. This has led
to the creation of a massive ecosystem of third-party developed nodes,
that can be downloaded, mostly from the Knime Hub,4 and seamlessly
combined with each other, as well as with built-in nodes.

2.4. Challenges of implementing KDD pipelines on mobility data

To the best of our knowledge, functional blocks implementing
spatio-temporal data analysis/processing tasks like those described in
Section 2.2 are typically not available in visual-based general-purpose
platforms, like KNIME. Hence, scholars/practitioners willing to define
KDD pipelines involving mobility data need to manually implement
at least these mobility-specific tasks and functional blocks, or resort
to not using visual platforms at all, giving up on the many benefits
they provide. As a consequence, most of the works based on mobility
data analytics presented in the literature dealt with these mobility-
specific challenges using very specialized data processing pipelines,
tailored to the specific tasks and datasets at hand. Consequently, even
when available, the source code of these pipelines can prove to be
quite difficult to re-execute or adapt to different datasets/scenarios,
mostly due to the heterogeneity of the underlying tools. Therefore, re-
searchers/practitioners willing to apply proposals from the literature to
their own scenarios are often forced to re-implement analytic pipelines
from scratch, which is time-consuming, error-prone and requires highly
specialized skills.

In our industrial and academic experience, we found that scientists
and practitioners working on mobility data are in practice either forced
to buy highly specialized and costly commercial analytics platforms,
such as DB4IoT,5 Urban SDK6 or IoKi,7 or to create, often completely
from scratch, complex and hard-to-reproduce scripts to orchestrate
individual software fragments implementing the key KDD steps above
described. Both these alternatives severely limit productivity and the
replicability of the experiments within the ITS community.

4 https://hub.knime.com/
5 http://db4iot.com/
6 https://www.urbansdk.com/platform/overview
7 https://ioki.com/en/mobility-analytics/

https://hub.knime.com/
http://db4iot.com/
https://www.urbansdk.com/platform/overview
https://ioki.com/en/mobility-analytics/


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 4. The KNIME user interface.
Some attempts to address these problems have been proposed in the
literature. For example, towards more general-purpose mobility data
analytics approaches, Ruan, Li, Bao, He, and Zheng (2018) presented
CloudTP, a cloud-based big data architecture (leveraging Apache Spark)
designed to pre-process vehicular trajectories. CloudTP is a production-
level solution to efficiently analyze vehicular trajectories in corporate
IT environments, but its querying capabilities are quite basic and
almost hard-coded, and its customizability, in general, is limited, as
recognized by Fourati and Friedrich (2018), hindering its effectiveness
in a research & development environment.

More recently, Fourati and Friedrich (2018) proposed FANSI-tool, an
integrated, web-based solution to simplify FCD analytics, with query-
ing and pre-processing capabilities. This solution, however, being a
web-based application, might be difficult to integrate within larger
workflows, requiring advanced programming skills to be extended and
customized.

In summary, to date, there is a lack of effective solutions support-
ing KDD on spatio-temporal data, even within general-purpose visual
analytics platforms. This motivated us to develop and distribute to
the community a set of six software modules, intended as a KNIME
extension, to support some common mobility-related tasks. In the fol-
lowing Section, we describe in detail each of the new components we
developed.

3. The proposed solution

To provide an open and unified platform on which KDD processes
involving mobility data can be easily implemented, we developed a
modular solution to analyze heterogeneous spatio-temporal datasets,
intended as an open-source plugin of the well-known KNIME Analytics
Platform. In the following, we present the extension we developed,
involving six new nodes explicitly meant for mobility data processing
(depicted in Fig. 5). In the following, we broadly present each node,
while technical details are reported in Appendix A.

3.1. The trajectory partitioner node

The first node we developed is meant to partition a massive FCD
dataset composed of streams of positioning data collected from one or
more vehicles, according to some pre-defined strategies. It produces
two different outputs, namely the set of identified distinct trajectories
and an augmentation of the input dataset, extended with trajectory
data. Similarly to many other nodes we developed, the Trajectory
Partitioner is designed to be easily extendable. Indeed, the partitioning
strategy we devised can be easily replaced, by implementing a new,
custom algorithm, compliant with a specific Java interface.
5

3.2. The Map Matcher node

The second node we developed is meant to perform the map match-
ing of a sequence of positioning points, namely a trajectory, encoded as
a WKT linestring, to an Open Street Map (OSM) road network (Haklay
& Weber, 2008). This is a typical prerequisite for many location-based
applications and use cases.

In our implementation, map-matching is realized through a well-
known external routing solution, i.e. the Open Source Routing Machine
(OSRM) (Luxen & Vetter, 2011), widely employed in several scientific
studies (e.g.:Kaurav, Rout, & Vemireddy, 2021; Singh, Wu, Xiang, &
Krishnaswamy, 2015). Also in this case, the node is easily extendable,
as interested users can incorporate their own matching algorithms
and/or road network representations.

3.3. The route calculator node

In many analytical/research scenarios, raw trajectories collected
from vehicles might need to be properly pre-processed to make them
suitable for analysis. For instance, when dealing with substantial po-
sitioning errors and/or extremely low sampling rates, more advanced
trajectory restoration techniques (Li et al., 2020) can be employed to
handle errors and fill gaps in the original raw trajectories. In other sce-
narios, an analyst might be interested in considering different routing
alternatives for a given trajectory between an origin and a destination,
for example, to evaluate the impact of different routing algorithms on
mobility/ITS phenomena, as done in studies such as Asprone et al.
(2021). To provide support in these contexts, we devised the Route
Calculator node, processes a set of input trajectories and produces in
output a set of new different trajectories, computed according to a
customizable strategy.

3.4. The segment coverage analyzer node

In a number of analytical situations, it is essential to calculate the
frequency with which each road segment in the considered map is
traversed by the designated vehicles. For example, there is a wide
literature related to this kind of analysis, within the Vehicular Crowd-
Sensing (VCS) domain (e.g. Asprone et al., 2021; Masutani, 2015;
Xu et al., 2019). To support this type of analysis at a road segment
granularity level, we implemented the ‘‘Segment Coverage Analyzer ’’
node. This node processes a sequence of map-matched trajectories,
potentially computed by the Map Matcher node, and calculates two
metrics: (I) the number of times each segment of the underlying road
network was traversed, and (II) the average time gap between two
subsequent traversals.



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 5. The developed nodes.
3.5. The grid coverage analyzer node

The Grid Coverage Analyzer is designed to calculate spatio-temporal
coverage metrics at a larger scale, encompassing entire urban areas
rather than individual road segments. This kind of analysis is also
common in the VCS domain, for tasks such as air quality or weather
monitoring, that do not require a fine-grained, segment-level coverage
analysis. The node enables users to graphically specify a grid over
a given geographical area, using a bounding box and selecting the
desired number of rows and columns for partitioning. Subsequently, it
computes spatio-temporal coverage metrics for each grid cell at various
temporal granularity levels.

3.6. The bounding-box filter node

In many analytical scenarios, researchers and practitioners dealing
with spatial data may require their analyses to be limited to specific
subsets of data, guided by spatial restrictions. This could be done, for
example, to focus on a given region of interest. The Bounding-Box Filter
takes as input a dataset containing at least one spatial feature, encoded
in the standard WKT format, and enables users to perform data filtering
depending on whether a certain spatial characteristic is fully contained
within a customizable bounding box.

3.7. Comparison with other visual-based solutions

In this section, we compare, in terms of functionality, the proposed
KNIME extension and a number of alternative, visual-based data ana-
lytics tools that are currently available on the market, including both
open-source and commercial solutions.

Among those that are free-to-use and open-source, Weka is one of
the most popular among researchers, data scientists, and practitioners.
Weka (Holmes, Donkin, & Witten, 1994), short for Waikato Environment
for Knowledge Analysis, is a comprehensive suite of machine learning
algorithms and data preprocessing tools. Weka has been actively main-
tained since the 1990s (Holmes et al., 1994) and features a graphical
workbench that allows users to visually define workflows (knowledge
flows, in the Weka terminology), similarly to KNIME. Despite being
mostly oriented towards training and evaluating machine learning
models, some efforts have been directed towards extending the Weka
platform for mobility data analytics. For example, Bogorny, Avancini,
de Paula, Kuplich, and Alvares (2011) have developed an extension
to include support for the annotation of vehicular trajectories with
semantic data, while Sharma, Alam, and Rani (2012) have developed
an extension to support clustering based on spatial features.

As for commercial solutions, RapidMiner (Hofmann & Klinken-
berg, 2016) and FME (Feature Manipulation Engine)8 are among the

8 https://fme.safe.com
6

most widely adopted. Unlike open-source solutions, these tools are
licensed products that require costly payments for their full feature
set and support, and this can limit their accessibility, adaptability, and
affordability for certain user groups.

RapidMiner, which features an educational program allowing free
use for academics working in certain institutions, offers an integrated
environment for general-purpose data mining, machine learning, and
analytics. With its visual interface, users can intuitively design and
execute complex data workflows, leveraging a vast library of built-in
operators and algorithms. Thanks to third-party extensions, it is possi-
ble to include some limited spatial analytics capabilities in RapidMiner.
For example, the GeoProcessing extension9 implements dedicated com-
ponents to manipulate Geometry objects (e.g.: compute intersections,
unions, obtain coordinates from geometries, etc.). FME, on the other
hand, focuses on the seamless exchange, transformation, and integra-
tion of data across diverse formats and systems, especially when dealing
with spatial data. FME is mostly tailored towards automating data
workflows, supporting connections with numerous and heterogeneous
data sources, and simplifying complex data normalization and transfor-
mation tasks. Nonetheless, it offers limited support for more advanced
manipulation and computation tasks.

To the best of our knowledge, all these above-mentioned visual data
analytics platforms, even when considering also third-party extensions,
lack the specialized functionalities that our solution brings to the table,
being specifically tailored to address the challenges posed by spatio-
temporal mobility data in the domain of ITS. Indeed, while there
exist some overlaps in functionality (e.g.: the features offered by our
Bounding-Box Filter node are also available in most of the other plat-
forms through third-party extensions), no other visual solution allows
users to easily integrate the key steps of map-matching, custom routing,
and spatio-temporal coverage computation in their visual data analytics
workflows.

4. Using the proposed toolkit in a real-world data-driven ITS anal-
ysis scenario

In this section, we show how the proposed extension can be used to
realize data-driven analyses for ITS from massive mobility datasets. In
particular, we replicate part of the work presented by Cruz Caminha,
de Souza Couto, Maciel Kosmalski Costa, Fladenmuller, and Dias de
Amorim (2018), on using public buses to crowd-sense information in
an urban area. Acquiring contextual data is a key factor in building a
smart city (Zanella, Bui, Castellani, Vangelista, & Zorzi, 2014). Thus,
different works studied the suitability of sensor networks based on
public vehicles (e.g. Cruz et al., 2020; Wang et al., 2021). However,
analyzing the level of road network coverage achievable by these

9 https://marketplace.rapidminer.com/UpdateServer/faces/product_details.
xhtml?productId=rmx_geoprocessing

https://fme.safe.com
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_geoprocessing
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_geoprocessing


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 6. The spatio-temporal coverage analysis workflow we developed, leveraging the proposed custom components in the Mobility Data Analysis phase.
vehicles is crucial to understanding whether using them for sensing is
enough to perform given use cases (Asprone et al., 2021). To this aim,
the first part of the paper by Cruz Caminha et al. (2018) analyzed the
spatial coverage of a bus-based mobile wireless sensor network, using a
large-scale, real-world mobility dataset collected from buses in the city
of Rio de Janeiro, Brazil, over about two months.10 The dataset contains
basically millions of records, intended as FCD data plus vehicle_id and
line of the bus.

As depicted in Fig. 3, to set up a KDD pipeline, we first need
to define the objective of the analysis, namely analyzing the level
of road network coverage achievable by the public buses of Rio de
Janeiro. Then, we need to identify the required processing tasks and the
corresponding functional blocks, i.e. the nodes of the KNIME tool. The
KNIME workflow we realized to obtain information about bus coverage
is shown in Fig. 6 and described in detail in the following. First of all, a
built-in KNIME component (CSV Reader) is used to read the file in CSV
format that contains the dataset. As done in Cruz Caminha et al. (2018),
a filter is used (through the Row Filter KNIME node), retrieving only
data collected on January 25th, 2019.

Then, our Trajectory Partitioner node is employed to split the
trips of the buses, according to the implemented heuristic where a
stream is divided whether there is a time gap higher than a threshold
between two subsequent points. In the scenario we investigated, we
set a threshold of 15 min. Furthermore, we discarded routes with
less than 5 points, as done in many similar works (e.g.: Bock et al.,
2020). At the end of this step, the node extracts 17,785 different
trajectories, intended as linestrings obtained by connecting each couple
of subsequent (noisy) GPS points belonging to the same trip. We save
this output through a CSV Writer node. The Bounding-Box Filter node
is used to discard trajectories falling outside the urban area of Rio de
Janeiro. Then, to align raw and noisy GPS positions with the underlying
representation of the road network provided by OpenStreetMap, we
employ our Map Matcher. This concludes the pre-processing phase of
our pipeline. Now it is possible to start the analytics tasks.

Leveraging the Segment Coverage Analyzer node, it is possible to
calculate visit frequency achieved by the considered vehicles on the
map, at a detailed level of individual road segments. Additionally, since
the output represents road segments in a standard WKT format, it can
be readily visualized, leveraging existing KNIME nodes such as View
Geometries as Map, or saved in a CSV file for rendering in other
GIS tools. Fig. 7 illustrates an example of such visualization, where

10 The dataset is freely available at https://www.kaggle.com/igorbalteiro/
gps-data-from-rio-de-janeiro-buses
7

road segments are highlighted on the map and color-coded according
to how many times each of them was visited by a bus during the
considered period. Segments in deep blue indicate less frequent visits,
while segments in red represent the most heavily traversed ones.

Furthermore, we also conduct a broader map coverage analysis
leveraging our Grid Coverage Analyzer component. We set up the
node to cover an area of approximately 40 km2 over the City of Rio de
Janeiro, dividing it into a 10 by 10 grid of blocks, each encompassing
an area of about 0.4 km2 (see Fig. 8).

Moreover, as this analysis operates at a wider scale of entire city
blocks, we have configured the component to register a new visit of
a grid cell when 10 min or more have elapsed since the last sensing.
The rationale behind this choice is that, in many scenarios requiring
a coarse-grained analysis, such as for example real-time air quality
monitoring, many temporally close vehicle passages in the same area
are not necessarily useful, since they are likely to contain very similar
information. We displayed the coverage information on an interactive
map, depicted in Fig. 8, in which each block is colored according to a
ramp of colors, proportional to the number of visits during the day.

Advantages of the proposed solution. When leveraging the proposed
extension, we emphasize that the processing pipelines described above
can be implemented within the KNIME Workbench with just a few
clicks, without writing a single line of code. To highlight the potential
benefits, in terms of productivity, of the proposed solution for ITS
practitioners, we remark that one of the authors of the present work
has previously faced a comparable ITS analytics scenario in the study
outlined in Bock et al. (2020). That study aimed to assess the feasi-
bility of utilizing high-mileage vehicles, such as taxis, to monitor the
availability of on-street parking spaces in San Francisco. In that study,
creating a KDD pipeline from scratch to compute the spatio-temporal
coverage achieved by a fleet of taxis, similar to the ITS analysis scenario
proposed above, demanded approximately two months of coding by
two experienced research fellows.

It is worth pointing out that the proposed solution delivers a number
of additional benefits that extend beyond the improvements in pro-
ductivity. First, it empowers ITS domain experts with the capability to
set up complex, data-driven ITS pipelines, without requiring advanced
programming skills or costly commercial solutions.

Moreover, the proposed solution also helps mitigate another pain
point in data-driven ITS research, i.e., the replicability and extendabil-
ity of experimental artifacts. Indeed, in our industrial and academic
experience, we found that the data processing pipelines implemented
from scratch in many ITS studies, using programming languages such
as Python, Java or R, are often hard to reproduce due to dependencies

https://www.kaggle.com/igorbalteiro/gps-data-from-rio-de-janeiro-buses
https://www.kaggle.com/igorbalteiro/gps-data-from-rio-de-janeiro-buses


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. 7. Graphical visualization of road segment coverage achieved by all the buses in Rio de Janeiro in one day, as computed by the described KDD pipeline.
Fig. 8. Area coverage, intended as a 10 × 10 grid over the urban area, achieved by all the buses in Rio de Janeiro in one day, as computed by the described KDD pipeline.
on particular libraries, operating systems, and other execution envi-
ronment settings. Moreover, the source code is generally difficult to
comprehend and poorly documented, hindering the re-usability and
extendability of the artifacts. On the other hand, pipelines defined
using the KNIME platform and the proposed toolkit, thanks to the
visual-based approach and the clear separation of concerns between the
different processing nodes, are straightforward to comprehend, can be
easily fine-tuned using a GUI, and can be distributed and re-executed
on any machine capable of running KNIME. This significantly simplifies
the distribution of research artifacts and improves replicability, which
is essential to foster data-driven research in the ITS domain.

Lastly, our solution is designed to be straightforwardly used in com-
bination with the vast ecosystem of KNIME components, which includes
thousands of built-in and third-party nodes for managing different data
sources, training and validating machine learning models, visualizing
results, and more. This integration further empowers ITS practitioners
to implement comprehensive workflows to extract knowledge from
mobility data within a single platform, maximizing efficiency and
convenience in their data-driven analyses.

5. Conclusions

Continuous advancements in mobile sensor networks have resulted
in the availability of vast quantities of mobility data, which has sig-
nificantly boosted data-driven proposals within the ITS community.
However, extracting knowledge from these mobility datasets requires
8

ITS practitioners to develop, often from scratch, intricate and difficult-
to-reproduce scripts. This limits productivity and hinders the ability to
replicate results and further extend research artifacts, to tailor them to
different contexts.

This is also due to the fact that current general-purpose visual
analytical platforms, such as KNIME, RapidMiner, or Weka, do not
feature some necessary primitives to handle certain specialized steps
of mobility dataset analysis, such as map-matching, road network
coverage analysis, or trajectory partitioning.

To overcome such limitations and empower ITS researchers and
practitioners to perform KDD tasks more effectively, we introduced an
extension of the well-known KNIME Analytics Platform, introducing
advanced preprocessing, transformation and analysis capabilities on
mobility data. Specifically, we have introduced a set of new com-
ponents that provide support for various tasks that are common in
mobility data analysis. These tasks include map-matching, trajectory
processing, spatio-temporal coverage analysis, and filtering based on
geographical data.

We assessed the practicality and effectiveness of our proposal by us-
ing it to replicate a study published in 2018 in the ITS domain Cruz Cam-
inha et al. (2018). More in detail, using the KNIME Analytics Platform
in combination with our extension, we analyzed the spatio-temporal
coverage achieved by public transit vehicles in Rio de Janeiro, leverag-
ing a massive real-world mobility dataset. Notably, this replication was
accomplished with remarkable ease, in a full visual fashion, without

any manual coding or specialized scripts. Furthermore, the resulting



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
pipeline is easy to understand and fine-tune, using the Configuration
GUIs associated with each component, and can also be readily dis-
tributed and re-executed on any system capable of running the KNIME
platform.

To promote collaboration and facilitate the adoption of our solution,
which we envision could bring significant improvements to productiv-
ity and experiment replicability in the ITS community, we made both
the tool and its source code openly accessible on a dedicated GitHub
repository (Di Martino et al., 2021).

Future works could be directed towards further expanding our pro-
posal with new functionalities. For example, we are currently working
on a novel component designed to infer trajectories of public transit
vehicles starting from widely available General Transit Feed Specifi-
cation (GTFS) files, commonly used in ITS analyses. Additionally, we
are also currently exploring the feasibility of incorporating dedicated
mobility simulators, like SUMO, into novel components, which could
prove useful in investigating what-if mobility scenarios.

CRediT authorship contribution statement

Sergio Di Martino: Conceptualization, Methodology, Supervision,
Writing – review & editing. Enrico Landolfi: Conceptualization, Writ-
ing – original draft. Nicola Mazzocca: Conceptualization, Supervision,
Writing – review & editing. Franca Rocco di Torrepadula: Software,
Investigation, Writing – original draft, Visualization, Resources, Data
curation. Luigi Libero Lucio Starace: Conceptualization, Software,
Investigation, Writing – original draft, Writing – review & editing,
Visualization, Validation, Resources, Data Curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data and code availability

All the custom KNIME nodes we developed, along with their source
code and detailed documentation and installation instructions, are
freely available at the repository (Di Martino et al., 2021). The dataset
we employed and the complete KNIME workflow we described in Sec-
tion 4 are available as well at (Di Martino et al., 2022) for replication
purposes.

Acknowledgments

This work was partially funded by the PNRR MUR project PE0000-
013-FAIR.

Appendix A. Detailed description of the implemented components

In this Appendix, further details about the implementation and the
configuration options of the developed components are provided.

A.1. The trajectory partitioner node

The Trajectory Partitioner Node aims at partitioning an extensive
FCD dataset, comprising streams of positioning data gathered from
one or multiple vehicles, into different trajectories, according to some
heuristics. This node, along with its configuration dialog, is represented
in Fig. A.9.
9

Fig. A.9. The Trajectory Partitioner node with its configuration dialog.

A.1.1. Inputs and outputs
The node takes as input a dataset representing the data stream

of collected positions. The generic element of such dataset is a tuple
of the form (𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑔𝑒𝑜𝑚𝑝𝑜𝑖𝑛𝑡, 𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛), where 𝑖𝑑 is the iden-
tifier of the vehicle, 𝑡𝑖𝑚𝑒 is the timestamp of the recording, and
𝑔𝑒𝑜𝑚𝑝𝑜𝑖𝑛𝑡 is the GPS position in the Well-Known Text (WKT) format (e.g.:
‘‘POINT(coord_x coord_y)’’), which is a ISO standard format to
represent geometry objects defined by the Open Geospatial Consor-
tium (Lott, 2015). Moreover, each record in the dataset might con-
tain additional attributes (𝑎𝑡𝑡𝑟𝑖) representing supplementary recorded
information (e.g.: speed, air quality level, etc.).

The node produces two different outputs: a set of trajectories
and an augmentation of the input dataset with trajectory data. More
in detail, the first output consists of records representing each dis-
tinct vehicular trajectory. In particular, each record is of the form
(𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒), where 𝑖𝑑 is the vehicle id, 𝑡𝑖𝑚𝑒 is the timestamp
representing the start time of the trajectory, and 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒 is a geom-
etry object representing the trajectory, encoded as a WKT linestring
(e.g.: ‘‘LINESTRING(coord_x1 coord_y1, . . . , coord_xn
coord_yn)’’). The second output is an augmentation of the input
dataset with an additional trajectory ID attribute, associating each data
point with the trajectory it belongs to.

A.1.2. Configuration options
As shown in Fig. A.9, the Trajectory Partitioner works according

to a partitioning strategy, which can be customized through the dialog
panel. By default, the node uses a heuristic we implemented (default
partitioning strategy), based on the one presented in Bock et al. (2020),
and working as follows. The FCD input stream is firstly grouped by
vehicle ID and then sorted chronologically by timestamp. For each
vehicle, the heuristic splits the stream in separate trajectories every
time the vehicle remains stationary for more time than a customizable
threshold. For example, a time gap of one hour between two subsequent
data points might be due to the end of a trip/trajectory and the
beginning of a new one. In that case, the previous trajectory is closed,
and a new one is created, with the current FCD point being its first
position. As depicted in Fig. A.9, the threshold is customizable through
the node configuration dialog, using the Minimum amount of minutes on
hold to split trajectories field. Furthermore, it is possible to specify: the
Coordinate input format (lon, lat or lat, lon); whether a trajectory can
span over multiple days (through the Allow trajectories spanning over
multiple days checkbox); the minimum number of observations that a
route must have to not be discarded (on the Discard trajectories having
less points than field).

As most of the nodes we developed, the Trajectory Partitioner can
be further extended by an interested user, by implementing a specific
Java API we defined. In this way, it is possible to define customized



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. A.10. The Map Matcher node and its configuration dialog.

partitioning heuristics, also leveraging additional information in the
considered dataset, such as, for example, the current occupancy status
of a taxi.

A.2. The Map Matcher node

The Map Matcher Node, depicted in Fig. A.10, performs the map
matching of a sequence of positioning points, namely a trajectory, to
an Open Street Map (OSM) road network.

A.2.1. Inputs and outputs
This node, whose icon and configuration dialog are shown in

Fig. A.10, takes as input a set of trajectories to match, represented
as linestrings in the WKT format, potentially from a Trajectory Par-
titioner node. More in detail, input data consists of tuples of the
form (𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒, 𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛), where 𝑖𝑑 is the vehicle ID, 𝑡𝑖𝑚𝑒
is the starting time of the trajectory, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒 is the WKT linestring
representing the trajectory, and 𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛 are additional optional
attributes that are not considered in the map-matching process. The
node computes, for each of the given input trajectories, the set of
corresponding OSM road segments that are traversed. The output of
the node is a set of matched segments consisting of tuples of the form
(𝑖𝑑, 𝑡𝑟𝑎𝑗_𝑖𝑑, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡, 𝑡𝑎𝑔𝑠, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒). In particular, 𝑖𝑑 is
the vehicle ID, 𝑡𝑟𝑎𝑗_𝑖𝑑 is the ID of the trajectory that traversed the road
segment, 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 are, respectively, the start and end timestamp
of the visit to the road segment, 𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑑𝑒𝑠𝑡 are, respectively, the
OSM identifiers of the node from which the visited road segment starts
and ends, 𝑡𝑎𝑔𝑠 are the OSM tags associated with the road segment
(containing information that might be useful in subsequent analyses),
and 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒 is a WKT representation of the visited OSM road segment.

A.2.2. Configuration options
In our implementation, map-matching is performed by means of a

well-known external routing solution, namely the Open Source Routing
Machine (OSRM) (Luxen & Vetter, 2011), widely used in many scientific
studies (e.g.:Kaurav et al., 2021; Singh et al., 2015). Nevertheless, since
the map-matching problem is still a very active research field (Chao,
Xu, Hua, & Zhou, 2020), we designed this node to be easily extend-
able, allowing the interested user to potentially supply his/her own
matching algorithms and/or road network representations by simply
implementing a Java interface we defined. Indeed, the Map Matching
Strategy can be specified in the node configuration dialog (depicted
in Fig. A.10), along with the route decoder server and the path of the
map data. Additional metadata to populate the tags field is fetched from
OpenStreetMap data of the considered area, that the user can supply in
the standard .osm format.
10
Fig. A.11. The Route Calculator node and its configuration dialog.

Fig. A.12. The Segment Coverage Analysis nodes and its configuration dialog.

A.3. The route calculator node

The aim of the Route Calculator Node (represented in Fig. A.11) is
to calculate different routing alternatives for a given trajectory between
an origin and a destination.

A.3.1. Inputs and outputs
The Route Calculator node takes as input a set of vehicular trajec-

tories, containing the GPS positions associated with each trajectory.
More in detail, a generic input record is a tuple of the form (𝑖𝑑, 𝑡𝑟𝑎𝑗_𝑖𝑑,
𝑡𝑖𝑚𝑒, 𝑔𝑒𝑜𝑚𝑝𝑜𝑖𝑛𝑡, 𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛), where 𝑖𝑑 is the vehicle ID, 𝑡𝑟𝑎𝑗_𝑖𝑑 is
the trajectory ID, 𝑡𝑖𝑚𝑒 is a timestamp, 𝑔𝑒𝑜𝑚𝑝𝑜𝑖𝑛𝑡 is a GPS position, and
𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛 are, as usual, optional attributes that are not considered
by the Route Calculator node. Let us note that such input has the
same structure as the second output (augmented GPS points) of the
Trajectory Partitioner node, which can indeed be seamlessly fed to the
Route Calculator node.

The Route Calculator node processes each input trajectory according
to a customizable strategy, producing, as a result, a set of new tra-
jectories, each being represented as a tuple of the form (𝑖𝑑, 𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡,
𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡, 𝑡𝑖𝑚𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑏𝑒𝑔𝑖𝑛_𝑎𝑡, 𝑒𝑛𝑑_𝑎𝑡, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒). In particular, 𝑖𝑑 is the
vehicle ID, 𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 and 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 are, respectively, the GPS points from
which the trajectory starts and ends, 𝑡𝑖𝑚𝑒 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are the duration
in seconds and the distance in meters of the trajectory, and 𝑏𝑒𝑔𝑖𝑛_𝑎𝑡
and 𝑒𝑛𝑑_𝑎𝑡 are, respectively, the departure and arrival timestamps of
the trajectory. Lastly, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒 is a WKT representation of the new
trajectory.



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. A.13. The Grid Coverage Analysis node and its configuration dialog.
A.3.2. Configuration options
As depicted in Fig. A.11, the current implementation of the Route

Calculator node features a single routing strategy, which we called
‘‘shortest path’’, realized using the OSRM routing service. As the name
suggests, this strategy creates new trajectories by computing the short-
est path between the first and the last vehicular positions in the original
trajectory, ignoring all the points in between. This strategy could help
investigate what-if scenarios in which all vehicles followed the shortest
possible path to their destination. Nonetheless, the node is designed to
be highly extensible, allowing interested users to incorporate additional
routing/restoration strategies to process the input trajectories. Further-
more, it is also possible to specify the Coordinate input format, and the
minimum distance and duration of a trajectory (through the Discard
routes shorter than (meters/minutes) fields).

A.4. The segment coverage analyzer node

The Segment Coverage Analyzer allows users to calculate spatio-
temporal coverage metrics at the fine-grained level of individual road
segments.

A.4.1. Inputs and outputs
This node, depicted in A.12, takes as input a set of map-matched

trajectories, similar to the output produced by the Map Matching node
(see Section 3.2), whose generic element is a tuple of the form (𝑖𝑑,
𝑡𝑟𝑎𝑗_𝑖𝑑, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡, 𝑡𝑎𝑔𝑠, 𝑔𝑒𝑜𝑚𝑙𝑖𝑛𝑒). From this data, the
Segment Coverage Analyzer produces two outputs: the first one reports
road segment coverage metrics aggregated over the entire timespan of
the input data, while the second one reports them on a finer-grained
temporal scale of a single day and different selected time slots in
each day (i.e.: 00.00 - 08.00; 08.00 - 14.00; 14.00 - 20.00; 20.00 -
24.00). In greater detail, the first output provides information for each
road segment in the analyzed road network, including the number of
times that segment is visited by one of the vehicles, along with the
average and median time gaps between consecutive visits. Moreover,
OpenStreetMap metadata for each road segment, which could be useful
in subsequent analyses, are retained. The second output, on the other
hand, reports the same information for each day and for each selected
time slot.

A.4.2. Configuration options
As shown in Fig. A.12, the node configuration panel allows users

to specify a number 𝑛 of seconds, in order to ignore all visits that are
less than 𝑛 seconds away from the last one. The rationale behind this
configuration option is to adapt to scenarios requiring different sensing
frequencies. For example, in a scenario in which probe vehicles are
used to monitor road pavement status, a subsequent visit on a given
road segment being only 5 s apart from the previous one is likely not
11
providing new information, since road pavement status is not expected
to change so rapidly. This parameter allows analysts to discard visits
that are likely to be not useful since they are too temporally close to a
previous one.

A.5. The grid coverage analyzer node

Similar to the previously described Segment Coverage Analyzer
node, the Grid Coverage Analyzer is designed to calculate spatio-
temporal coverage metrics. However, it functions at a coarser-grained
scale, encompassing entire urban areas instead of individual road seg-
ments.

A.5.1. Inputs and outputs
The Grid Coverage Analyzer, depicted in Fig. A.13, uses the same

input as the Segment Coverage Analyzer (see Section 3.4), and the
outputs are also similar to the ones provided by that node. Indeed,
the Grid Coverage Analyzer node features two outputs. The first output
reports, for each cell in the defined geographical grid and considering
the entire timespan of the input data, the number of times that cell
is visited by one of the vehicles, as well as the average and median
timegaps between subsequent visits. The second output, on the other
hand, reports the coverage metrics on a finer-grained temporal scale of
a single day and different selected time slots in each day (i.e.: 00.00 -
08.00; 08.00 - 14.00; 14.00 - 20.00; 20.00 - 24.00). The availability of
reports at different temporal granularity levels could prove to be useful
in many Vehicular Crowd-Sensing scenarios, to understand the spatio-
temporal distribution of the trajectories over a given area. For example,
let us assume that a decision maker is willing to assess whether a
given fleet of vehicles is suitable to crowd-sense air quality in a given
area, corresponding to a certain grid cell (Devarakonda et al., 2013).
If 10 vehicles were to visit that grid cell with an even distribution
throughout the day, this would probably be adequate for monitoring
the air quality in that area. If, on the other hand, the same visits were all
concentrated between 8.00 AM and 8.15 AM, they would not provide
enough information.

A.5.2. Configuration options
As shown in Fig. A.13, through the dialog panel of the Grid Cov-

erage Analyzer it is possible to select a custom grid over a given
geographical area, either by manually specifying the minimum and the
maximum latitude/longitude of the grid or by straightforwardly draw-
ing the bounding box on an interactive map. Moreover, it is possible
to indicate the coordinates pair type, the number of columns/rows of
the grid, and the minimum number of minutes passing between distinct
recordings.



Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Fig. A.14. The Geometry Filter node and its configuration dialog.
A.6. The bounding-box filter node

The Bounding-Box Filter node, depicted in Fig. A.14, enables users
to filter data by determining whether a given spatial feature is entirely
contained within a customizable bounding box.

A.6.1. Inputs and outputs
The Bounding-Box Filter node takes as input any dataset contain-

ing at least one column representing spatial objects, encoded in the
standard WKT format, and allows users to define their own desired
bounding box. As a result, the node produces the subset of the input
data such that the spatial objects in the selected geometry column are
fully contained in the given bounding box.

A.6.2. Configuration options
Similarly to the Grid Coverage Analyzer node, users can select

a Bounding Box by either specifying the minimum and maximum
latitude/longitude or by straightforwardly drawing it on an interactive
map, as shown in Fig. A.14, on the right. The node supports all standard
WKT objects, including points, linestrings and polygons, making it
directly applicable for refining the output of the other nodes we have
developed.

References

Asprone, D., Di Martino, S., Festa, P., & Starace, L. L. L. (2021). Vehicular crowd-
sensing: A parametric routing algorithm to increase spatio-temporal road network
coverage. International Journal of Geographical Information Science, http://dx.doi.org/
10.1080/13658816.2021.1893737.

Bock, F., Di Martino, S., & Origlia, A. (2020). Smart parking: Using a crowd of
taxis to sense on-street parking space availability. IEEE Transactions on Intelli-
gent Transportation Systems, 21(02), 496–508. http://dx.doi.org/10.1109/TITS.2019.
2899149.

Bogorny, V., Avancini, H., de Paula, B. C., Kuplich, C. R., & Alvares, L. O. (2011).
Weka-STPM: A software architecture and prototype for semantic trajectory data
mining and visualization. Transactions in GIS, 15(2), 227–248.

Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., & Rabuffi, A. (2014). CRAW-
DAD dataset roma/taxi (v. 2014–07–17). http://dx.doi.org/10.15783/C7QC7M,
Downloaded from https://crawdad.org/roma/taxi/20140717.

Chao, P., Xu, Y., Hua, W., & Zhou, X. (2020). A survey on map-matching algorithms.
In Australasian database conference (pp. 121–133). Springer.

Cruz, P., Couto, R. S., Costa, L. H. M., Fladenmuller, A., & de Amorim, M. D. (2020).
Per-vehicle coverage in a bus-based general-purpose sensor network. IEEE Wireless
Communications Letters, 9(7), 1019–1022.

Cruz Caminha, P. H., de Souza Couto, R., Maciel Kosmalski Costa, L. H., Fladen-
muller, A., & Dias de Amorim, M. (2018). On the coverage of bus-based mobile
sensing. Sensors, 18(6), 1976.

Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., & Nath, B. (2013). Real-time
air quality monitoring through mobile sensing in metropolitan areas. In Proceedings
of the 2nd ACM SIGKDD international workshop on urban computing (p. 15). ACM.

Di Lorenzo, G., Sbodio, M., Calabrese, F., Berlingerio, M., Pinelli, F., & Nair, R.
(2015). Allaboard: Visual exploration of cellphone mobility data to optimise
public transport. IEEE Transactions on Visualization and Computer Graphics, 22(2),
1036–1050.
12
Di Martino, S., Landolfi, E., Mazzocca, N., Rocco di Torrepadula, F., & Starace, L. L.
L. (2022). Replication package: A visual-based toolkit to support data-driven intel-
ligent transportation systems analysis. http://dx.doi.org/10.5281/zenodo.7120432,
Dataset and materials for replicability on Zenodo.

Di Martino, S., Principe, S. M., & Starace, L. L. L. (2021). KNOT - GitHub repository.
URL: https://github.com/luistar/knot.

Di Martino, S., & Starace, L. L. L. (2022a). Towards uniform urban map coverage in
vehicular crowd-sensing: A decentralized incentivization solution. IEEE Open Journal
of Intelligent Transportation Systems, 3, 695–708. http://dx.doi.org/10.1109/OJITS.
2022.3211540.

Di Martino, S., & Starace, L. L. L. (2022b). Vehicular crowd-sensing on complex urban
road networks: A case study in the City of Porto. Transportation Research Procedia,
62, 350–357.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI Magazine, 17(3), 37.

Fourati, W., & Friedrich, B. (2018). FANSI-tool: An integrated software for floating data
analytics. In 25th ITS world congress, Copenhagen, Denmark.

Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, 7(4), 12–18.

Hofmann, M., & Klinkenberg, R. (2016). RapidMiner: data mining use cases and business
analytics applications. CRC Press.

Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench.
In Proceedings of ANZIIS’94-Australian New Zealand intelligent information systems
conference (pp. 357–361). IEEE.

Jenelius, E. (2019). Data-driven bus crowding prediction based on real-time passen-
ger counts and vehicle locations. In 6th international conference on models and
technologies for intelligent transportation systems.

Kaurav, R. S., Rout, R. R., & Vemireddy, S. (2021). Blockchain for emergency vehicle
routing in healthcare services: An integrated secure and trustworthy system. In
2021 international conference on communication systems networks (pp. 623–628).
http://dx.doi.org/10.1109/COMSNETS51098.2021.9352903.

Khan, S. M., Rahman, M., Apon, A., & Chowdhury, M. (2017). Chapter 1 - char-
acteristics of intelligent transportation systems and its relationship with data
analytics. In M. Chowdhury, A. Apon, & K. Dey (Eds.), Data analytics for intel-
ligent transportation systems (pp. 1–29). Elsevier, http://dx.doi.org/10.1016/B978-
0-12-809715-1.00001-8, URL: https://www.sciencedirect.com/science/article/pii/
B9780128097151000018.

Kubicka, M., Cela, A., Mounier, H., & Niculescu, S.-I. (2018). Comparative study
and application-oriented classification of vehicular map-matching methods. IEEE
Intelligent Transportation Systems Magazine, 10(2), 150–166.

Lee, K., Eo, M., Jung, E., Yoon, Y., & Rhee, W. (2021). Short-term traffic prediction
with deep neural networks: A survey. IEEE Access, 9, 54739–54756.

Lee, U., Zhou, B., Gerla, M., Magistretti, E., Bellavista, P., & Corradi, A. (2006).
Mobeyes: Smart mobs for urban monitoring with a vehicular sensor network. IEEE
Wireless Communications, 13(5), 52–57.

Li, B., Cai, Z., Kang, M., Su, S., Zhang, S., Jiang, L., et al. (2020). A trajectory restoration
algorithm for low-sampling-rate floating car data and complex urban road networks.
International Journal of Geographical Information Science, 1–24.

Lott, R. (2015). Geographic information-Well-known text representation of coordinate
reference systems. Open Geospatial Consortium.

Luxen, D., & Vetter, C. (2011). Real-time routing with OpenStreetMap data. In Proceed-
ings of the 19th ACM SIGSPATIAL international conference on advances in geographic
information systems (pp. 513–516). New York, NY, USA: ACM, http://dx.doi.org/
10.1145/2093973.2094062, URL: http://doi.acm.org/10.1145/2093973.2094062.

Masutani, O. (2015). A sensing coverage analysis of a route control method for
vehicular crowd sensing. In Pervasive computing and communication workshops
(PerCom Workshops), 2015 IEEE international conference on (pp. 396–401). IEEE.

Mikut, R., & Reischl, M. (2011). Data mining tools. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(5), 431–443.

http://dx.doi.org/10.1080/13658816.2021.1893737
http://dx.doi.org/10.1080/13658816.2021.1893737
http://dx.doi.org/10.1080/13658816.2021.1893737
http://dx.doi.org/10.1109/TITS.2019.2899149
http://dx.doi.org/10.1109/TITS.2019.2899149
http://dx.doi.org/10.1109/TITS.2019.2899149
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb3
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb3
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb3
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb3
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb3
http://dx.doi.org/10.15783/C7QC7M
https://crawdad.org/roma/taxi/20140717
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb5
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb5
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb5
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb6
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb6
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb6
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb6
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb6
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb7
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb7
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb7
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb7
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb7
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb8
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb8
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb8
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb8
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb8
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb9
http://dx.doi.org/10.5281/zenodo.7120432
https://github.com/luistar/knot
http://dx.doi.org/10.1109/OJITS.2022.3211540
http://dx.doi.org/10.1109/OJITS.2022.3211540
http://dx.doi.org/10.1109/OJITS.2022.3211540
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb13
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb13
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb13
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb13
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb13
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb14
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb14
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb14
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb15
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb15
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb15
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb16
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb16
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb16
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb17
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb17
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb17
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb18
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb18
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb18
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb18
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb18
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb19
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb19
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb19
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb19
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb19
http://dx.doi.org/10.1109/COMSNETS51098.2021.9352903
http://dx.doi.org/10.1016/B978-0-12-809715-1.00001-8
http://dx.doi.org/10.1016/B978-0-12-809715-1.00001-8
http://dx.doi.org/10.1016/B978-0-12-809715-1.00001-8
https://www.sciencedirect.com/science/article/pii/B9780128097151000018
https://www.sciencedirect.com/science/article/pii/B9780128097151000018
https://www.sciencedirect.com/science/article/pii/B9780128097151000018
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb22
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb22
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb22
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb22
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb22
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb23
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb23
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb23
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb24
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb24
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb24
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb24
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb24
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb25
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb25
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb25
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb25
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb25
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb26
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb26
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb26
http://dx.doi.org/10.1145/2093973.2094062
http://dx.doi.org/10.1145/2093973.2094062
http://dx.doi.org/10.1145/2093973.2094062
http://doi.acm.org/10.1145/2093973.2094062
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb28
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb28
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb28
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb28
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb28
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb29
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb29
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb29


Expert Systems With Applications 238 (2024) 121949S. Di Martino et al.
Nguyen, K., Yang, J., Lin, Y., Lin, J., Chiang, Y.-Y., Shahabi, C., et al. (2018). Los
angeles metro bus data analysis using GPS trajectory and schedule data. Technical
Report, California. Department of Transportation.

Nuzzolo, A., Comi, A., Papa, E., & Polimeni, A. (2018). Understanding taxi travel
demand patterns through floating car data. In The 4th conference on sustainable
urban mobility (pp. 445–452). Springer.

Piorkowski, M., Sarafijanovic-Djukic, N., & Grossglauser, M. (2009). CRAWDAD dataset
epfl/mobility (v. 2009-02-24). http://dx.doi.org/10.15783/C7J010, Downloaded
from http://crawdad.org/epfl/mobility/20090224.

Ruan, S., Li, R., Bao, J., He, T., & Zheng, Y. (2018). Cloudtp: A cloud-based flexible
trajectory preprocessing framework. In 2018 IEEE 34th international conference on
data engineering (pp. 1601–1604). IEEE.

Sharma, R., Alam, M. A., & Rani, A. (2012). K-means clustering in spatial data mining
using weka interface. In International conference on advances in communication and
computing technologies, vol. 26 (p. 30).

Singh, A. D., Wu, W., Xiang, S., & Krishnaswamy, S. (2015). Taxi trip time prediction
using similar trips and road network data. In 2015 IEEE international conference on
big data (pp. 2892–2894). IEEE.

Van Der Aalst, W. (2016). Data science in action. In Process mining (pp. 3–23). Springer.
Veres, M., & Moussa, M. (2019). Deep learning for intelligent transportation systems:

A survey of emerging trends. IEEE Transactions on Intelligent Transportation Systems,
21(8), 3152–3168.
13
Wang, P., Huang, Z., Lai, J., Zheng, Z., Liu, Y., & Lin, T. (2021). Traffic speed estimation
based on multi-source GPS data and mixture model. IEEE Transactions on Intelligent
Transportation Systems.

Xu, S., Chen, X., Pi, X., Joe-Wong, C., Zhang, P., & Noh, H. Y. (2019). iLOCuS:
Incentivizing vehicle mobility to optimize sensing distribution in crowd sensing.
IEEE Transactions on Mobile Computing.

Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., et al. (2010). T-drive:
driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL
international conference on advances in geographic information systems (pp. 99–108).

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things
for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

Zhang, J., Shen, D., Tu, L., Zhang, F., Xu, C., Wang, Y., et al. (2017). A real-time
passenger flow estimation and prediction method for urban bus transit systems.
IEEE Transactions on Intelligent Transportation Systems, 18(11), 3168–3178.

Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-
driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 12(4), 1624–1639.

Zheng, Y., Wu, W., Chen, Y., Qu, H., & Ni, L. M. (2016). Visual analytics in urban
computing: An overview. IEEE Transactions on Big Data, 2(3), 276–296.

Zhu, L., Yu, F. R., Wang, Y., Ning, B., & Tang, T. (2018). Big data analytics in intelligent
transportation systems: A survey. IEEE Transactions on Intelligent Transportation
Systems, 20(1), 383–398.

http://refhub.elsevier.com/S0957-4174(23)02451-X/sb30
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb30
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb30
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb30
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb30
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb31
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb31
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb31
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb31
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb31
http://dx.doi.org/10.15783/C7J010
http://crawdad.org/epfl/mobility/20090224
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb33
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb33
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb33
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb33
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb33
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb34
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb34
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb34
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb34
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb34
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb35
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb35
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb35
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb35
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb35
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb36
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb37
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb37
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb37
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb37
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb37
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb38
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb38
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb38
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb38
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb38
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb39
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb39
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb39
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb39
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb39
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb40
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb40
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb40
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb40
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb40
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb41
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb41
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb41
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb42
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb42
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb42
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb42
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb42
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb43
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb43
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb43
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb43
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb43
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb44
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb44
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb44
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb45
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb45
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb45
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb45
http://refhub.elsevier.com/S0957-4174(23)02451-X/sb45

	A visual-based toolkit to support mobility data analytics
	Introduction
	Knowledge Discovery from Mobility Data: Preliminaries, Related Works and Challenges
	The Process of Knowledge Discovery from Data
	 Peculiarities of Knowledge Discovery from Mobility Data
	Implementing KDD Pipelines
	Challenges of Implementing KDD Pipelines on Mobility Data

	The Proposed Solution
	The Trajectory Partitioner Node
	The Map Matcher Node
	The Route Calculator Node
	The Segment Coverage Analyzer Node
	The Grid Coverage Analyzer Node
	The Bounding-Box Filter Node
	Comparison with other Visual-based Solutions

	Using the Proposed Toolkit in a Real-world Data-driven ITS Analysis Scenario
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and Code Availability
	Acknowledgments
	Appendix A. Detailed Description of the Implemented Components
	The Trajectory Partitioner Node
	Inputs and Outputs
	Configuration Options

	The Map Matcher Node
	Inputs and Outputs
	Configuration Options

	The Route Calculator Node
	Inputs and Outputs
	Configuration Options

	The Segment Coverage Analyzer Node
	Inputs and Outputs
	Configuration Options

	The Grid Coverage Analyzer Node
	Inputs and Outputs
	Configuration Options

	The Bounding-Box Filter Node
	Inputs and Outputs
	Configuration Options


	References


