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A B S T R A C T   

The adoption of Internet of Things (IoT) sensing devices is growing rapidly due to their ability to provide real- 
time services. However, it is constrained by limited data storage and processing power. It offloads its massive 
data stream to edge devices and the cloud for adequate storage and processing. This further leads to the chal
lenges of data outliers, data redundancies, and cloud resource load balancing that would affect the execution and 
outcome of data streams. This paper presents a review of existing analytics algorithms deployed on IoT-enabled 
edge cloud infrastructure that resolved the challenges of data outliers, data redundancies, and cloud resource 
load balancing. The review highlights the problems solved, the results, the weaknesses of the existing algorithms, 
and the physical and virtual cloud storage servers for resource load balancing. In addition, it discusses the 
adoption of network protocols that govern the interaction between the three-layer architecture of IoT sensing 
devices enabled edge cloud and its prevailing challenges. A total of 72 algorithms covering the categories of 
classification, regression, clustering, deep learning, and optimization have been reviewed. The classification 
approach has been widely adopted to solve the problem of redundant data, while clustering and optimization 
approaches are more used for outlier detection and cloud resource allocation.   

1. Introduction 

The Internet of Things (IoT)-enabled edge cloud is an emerging 
ubiquitous network infrastructure that provides various distributed 
services in every aspect of human life. Smart devices such as sensors, 
microcontrollers, mobile phones, local servers, and the cloud can 
interact with each other to perform tasks and share information. As the 
popularity and extensive use of IoT-enabled edge cloud increases over 
the years, more sensor data will be generated, and various IoT-enabled 
edge cloud applications will be implemented to provide quality services 
to end-users regardless of their geographical location. 

IoT sensor devices are typically used to capture events that are sents 
to other connected devices and systems over Internet and other 
communication networks. IoT sensors are characterized by the genera
tion of dynamic, heterogeneous, inaccurate, and weakly semantic data 
streams over time. However, the massive data streams cannot be pro
cessed due to limited storage and computational resources. Therefore, 
the generated data streams are offloaded to the edge device(s) or cloud 
data center for further processing and analysis. The cloud data center 
provides massive storage and processing power to handle large amount 

of data. However, it is challenged by issues such as latency distance and 
bandwidth, which are highly required to process real-time data streams 
retrieved from IoT sensing devices. Consequently, the edge device(s) are 
designed to address these challenges, which are made up of clusters of 
interconnected physical servers located in close proximity to the IoT 
sensor devices. 

Cloud resource allocation for the processing of IoT sensory data 
streams tends to improve the efficiency and data quality through the use 
of various algorithms (e.g., supervised and unsupervised machine 
learning, optimization, and deep learning). This has further simulated 
the rapid adoption of data-driven analytics and cloud resource alloca
tion algorithms to solve problems of data outliers, redundancies, and 
resource load balancing in IoT-enabled edge cloud infrastructure [1]. An 
anomaly or outlier is a data instance that is significantly different from 
the rest of the instances, as if it was retrieved from a different source. On 
the other hand, redundancy refers to duplicate or repeated sensed data 
or events captured over time. Such data is not considered useful and can 
negatively impact an application’ performance and consume massive 
resources (such as storage, memory, and compute). Load balancing en
sures that the workload of IoT application requests (e.g., data analysis or 
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filtering processes) is evenly distributed across available cloud resources 
to achieve efficient execution, with minimum resource utilization, and 
completion time. 

Conversely, to the best of our knowledge, most of the existing liter
ature ’reviews in this field, are yet to fully explore the use of data-driven 
analytic-enabled cloud resource allocation algorithms for the execution 
of sensory data streams on IoT-enabled edge cloud Infrastructure. 
Therefore, it is crucial to investigate the existing data-driven analytic- 
enabled cloud resource allocation algorithms that are used to address 
the challenges of data outliers, data redundancy, and cloud resource 
load balancing on IoT-enabled edge cloud infrastructure. The contri
bution of this work is as follows. 

1) A detailed analysis of the algorithms to resolve outlier and redun
dancy issues in sensory data, highlighting the strengths and weak
nesses of each algorithm in tabular form.  

2) A detailed analysis of cloud resource allocation algorithms to address 
resource load balancing challenges, for optimal execution of outlier 
and redundant sensory data.  

3) The identification and discussion of the various algorithms to 
perform their respective functions. Also, to compare their level of 
usage in the IoT-edge cloud infrastructure.  

4) We also highlight and discuss the various network communication 
protocols that govern the interaction between the three-tiered IoT- 
enabled edged cloud architecture described in previous research.  

5) Detailed current and potential challenges that pave the way for 
future research directions in this field are discussed in this paper. 

The remainder of this paper is structured as follows. Section 2 in
troduces the background information about IoT-enabled edge cloud 
computing and the characteristics of IoT sensing data. Section 3 dis
cusses the research methodology used to update the current research 
survey understudy. Section 4 discusses the existing literature surveys in 
this field. Section 5 presents the analysis of existing algorithms deployed 
for resolving data outliers, data redundancy, and load balancing-related 
issues in IoT-enabled edge cloud infrastructure. Section 6 discusses the 
processes adopted by existing algorithms and network communication 
protocols that govern the interaction between the three-layer architec
ture of the IoT-enabled edge cloud infrastructure. Section 7 presents the 
current challenges that pave the way for future research directions. 
Finally, Section 8 presents a general discussion based on result of the 
research survey and ends with concluding remarks. 

2. Background 

IoT technology has come a long way in recent years. The concept of 
IoT was introduced by Kevin Ashton in 1999 and has been widely Auto- 
ID Center. IoT is a worldwide network of interconnected devices 
addressable with standard communication protocols, with the Internet 
as the convergence point [2,3]. Radio Frequency Identification (RFID) 
and Wireless Sensor Networks (WSNs) are the most widely used IoT 
sensing devices since their inception. RFID is composed tag and reader 
used to identify and track an object anywhere and anytime. It is used in 
the courier and logistic transportation industry to track goods in transit. 
The WSNs consist of multiple sensor nodes deployed for environmental 
monitoring. WSNs communicate cooperatively and forward aggregated 
data to the network sink node or control system for further processing 
[4]. Both sensing devices can be integrated for better sensing and 
tracking of objects by collecting information such as object locations, 
movement, and temperature. 

Over the past decade, IoT sensor devices have experienced tremen
dous advances in development. Currently, IoT sensor devices pre- 
process, store, and transmit sensed data directly to the internet 
without any human intervention. Unlike WSN, IoT sensor devices do not 
communicate with each other or inter-networked to transmit their 
sensed data to a connected sink node. This emerging IoT sensing device 

is called a smart sensor, which is with electronics that can perform 
multiple logic functions, two-way communication, make decisions, store 
sensed information for future analysis, or offload it directly to the 
Internet [5]. Therefore, the limitations of WSNs which include input 
offset and span variation, cross sensitivity, and nonlinearity are auto
matically corrected by the smart sensor processor. IoT sensing devices 
generate massive data that is dynamic and heterogeneous. In addition, 
the rapid rate at which unstructured and semi-structured data is being 
generated is a common problem. There are four main characteristics of 
IoT sensed data namely multi-source high heterogeneity, sensing data 
inaccuracy, and weak semantic data with low-level and enormous data 
dynamicity. Sensing data inaccuracy refers to the information collected 
from IoT sensing devices, due to several limitations such as unreliable 
reading, which leads to data outliers. This brings about the complexity of 
using the sensed data directly for its purpose. Therefore, appropriate 
multi-dimensional and data processing techniques need to be adopted 
for accurate retrieval of sensed data. 

Enormous data dynamics arise from interconnected multi-sensors, 
embedded in a large-scale environment. Communications between the 
various sensors always results in a large volume of data generated in real 
time, resulting in duplicate (redundant) data. Weak semantic data with a 
low level is attributed to the sensed data obtained from IoT sensing 
devices. This is due to the spatial-temporal correlation relationships of 
the sensed data. Therefore, the extraction of useful information from the 
massive data generated is needs to be performed in an event-driven 
perspective. The acquisition of sensed data from distributed sensor 
nodes varies from character to integer, video and audio streaming. 

The provision of computational resources to store process sensed 
data, filtering or analysis cannot be handled by IoT sensor devices. This 
is due to the characteristics of sensed data, and the limited storage and 
computation resources of IoT sensor devices. However, the cloud plat
form has been used in recent years to address these limitations. Its large 
pool of data storage resources and high computation power on complex 
tasks leverages the limitations of the IoT sensor devices. The idea of 
cloud computing was initiated in 1951 when John Macarthy envisioned 
the importance of time-shared computers, to share hardware and soft
ware resources among multiple end-users with real time multi-tasking 
and programming. 

Madhavaiah and Irfan [6], defined cloud computing as a 
technology-based business model, delivered as a service over the 
Internet, where software and hardware computing services are accessed 
virtually by end-users, based on-demand in a self-service perspective 
irrespective of their geographical location. There are three services 
offered by cloud platforms namely, Software as a Service (SaaS), Plat
form as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS is a 
web-based interface that allows end-users to access to cloud software 
applications; PaaS enables developers to have access to various devel
opment tools for the implementation of software applications on its 
platform. On the other hand, IaaS provides storage and computation 
processing power. These services can be accessed from Cloud Service 
Providers (CSPs) such as Google, IBM Salesforce, Amazon, and 
Microsoft. 

Currently, the Google cloud platform provides intelligent IoT ser
vices that enable end-users to connect their physical IoT sensing devices 
to the platform and process, analyze and store the sensed data. The 
platform consists of fully managed cloud services and scalability, an 
integrated software stack for on-premises computing, and machine 
learning approaches for all IoT needs. Additionally, IBM launched its 
IBM IoT Connection Service in 2016 to formalize the use of IBM IoT for 
connected offerings on the cloud, which ingests and transforms sensory 
data obtained from sensors into meaningful insights. It also integrates 
the existing functionalities of IoT for electronic solutions available on its 
IBM Bluemix (an open standard for developing, managing, and running 
multiple applications) cloud platform with additional data storage, se
curity, and monitoring functions. Microsoft introduces IoT services on 
its Cloud Azure platform namely, Azure IoT Hub and Azure IoT central. 
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IoT Hub is an open cloud platform that enables end-users to securely 
connect, monitor, and manage numerous devices to implement IoT ap
plications. Azure IoT Central is an IoT SaaS solution that makes it 
explicit for end-users to connect, monitor, and manage the physical 
features of the IoT sensing devices. Even though the cloud may offer 
virtually unlimited resource storage and computational processing 
power to leverage the limitations of IoT devices, the long-distance 
network communication between them is a problem that needs a solu
tion. In other words, the long-distance communication between both 
technologies due to bandwidth availability may hinder the prospect of 
their integration if not curtailed. 

The Long-distance communication between them leads to latency 
and delay which can hinder timely responses in critical situations. For 
example, healthcare workers needs to constantly monitor patients in 
critical condition by equipping them with IoT sensing devices in their 
respective homes through the Internet provided by the cloud application 
layer. Another challenge is in the area of privacy and security. Owners of 
IoT sensing devices tend not to send their data to the cloud data storage 
center because of the unknown storage location. Recently, edge/ 
gateway computing has been introduced lately to address these chal
lenges. This distance is also responsible for the long delays that some
times exits between the clients’ IoT sensing devices and the traditional 
cloud [7,8]. 

Edge computing consists of clusters of servers that located close to 
the IoT sensing devices for timely response to service requests while 
conserving bandwidth consumption rate and latency delay. On the other 
hand, IoT sensing devices can offload their sensed data to the edge 
servers when the load exceed their capabilities. The proximity between 
edge and the IoT devices, provides an opportunity to control the latency 
delay between the IoT devices and the traditional cloud. In addition, the 
sensed data collected from IoT devices is stored and immediately pro
cessed by the edge servers, with only a fraction of the data being sent to a 
cloud data center for long-term processing. This results in reduced 

network load by conserving bandwidth transmission rate. Table 1 shows 
the characteristics of the IoT sensing devices, edge, and the conventional 
cloud data center, while 

Fig. 1 shows the three-layer physical architecture of the investigated 
IoT-edge cloud infrastructure. 

3. Research methodology 

The research survey understudy was conducted with the support of 
the methodology utilized by Kitchenham and Charters [9]. The explo
ration of the literature contributions, covering the years 2011–2019 was 
obtained from the academic research databases, which were considered 
the most relevant to achieve the objectives of the current study. These 
databases include IEEE Xplore, Google Scholar, Springer, Scopus, and 
ScienceDirect. The search phrase (“internet of things data” OR “mining 
algorithm” OR “edge” and “storage resource provisioning” OR “IoT 
data” OR “cloud data center”) was used to retrieve articles relevant to 
the current study. However, the results of the search query returned 
numerous research articles that were not relevant to the study. 

The relevant articles not retrieved after the initial search were ex
pected to be present in the referenced list of these results and were 
included in the analysis iteration. Research articles published only in 
English and contained in journals and conference proceedings were 
considered. The initial result yielded a total of 502 retrieved articles. 
Each article undergoes a series of quality assessment phases until it was 
finally selected. These phases are composed of four sequences which are 
highlighted as follows;  

• Evaluate the title and exclude it if it does not conform to algorithms 
used in the IoT-enabled edge-cloud platform (current study).  

• Read the abstract and discard it if it is not relevant to the current 
study  

• Read and evaluate the introduction and conclusion, reject if the 
contribution is the same as other relevant articles.  

• Analytically assess the research contribution quality and disqualify 
articles with low quality. 

The considerations of articles accepted were considered based their 
degree of relevance to the current study. In addition, the writing quality, 
soundness, clarity, and credibility of the contributions made by each of 
the articles were considered. 

A total of 85 articles scale through the quality assessment, which are 
highly relevant to the current research question. These 84 articles 
further subjected to the process of extraction to retrieve the desired 
information required to accomplish the objectives of the research study. 
The required information is highlighted below. 

Table 1 
Comparative features of IoT sensing device(s), edge and cloud platform.  

S/ 
N 

Features IoT sensing 
devices 

Edge computing Cloud computing 

1 Components Physical 
devices 

Clusters of 
servers 

Virtual resources 

2 Storage 
capability 

Minimum Limited Massive 

3 Data availability Source Process Process 
4 Utilization of 

Network 
communication 
bandwidth rate 

High, due to 
continuous 
event 
sensing 

Minimum, due 
to the fact that 
sensed data is 
processed 
locally and 
stored in edge 
servers close to 
the IoT sensing 
devices 

High bandwidth 
consumption due 
to the long 
distance between 
the cloud and IoT 
devices 

5 Computational 
resource power 

Limited Limited Unlimited 

6 Deployment Distributed Decentralized Centralized 
7 Quality of service 

delivery in terms 
of timeliness 

Continuous 
sensing 

Faster, due to 
location 
proximity to IoT 
devices 

Slower, due to the 
long distances 
between IoTs and 
cloud data-centers 

8 Level of safety in 
data transmission 
operations 

Minimal risk 
of data 
attack while 
in transits. 

Minimal risk on 
data attack 
while in transits. 

Long-distance 
communication 
between IoT and 
cloud pre-empts 
attacks on data 
while in transits 

9 Resource and 
service location 
proximity for task 
execution 

Not 
applicable 

Edge servers 
usually close to 
IoT sensing 
devices 

Remote 
datacenters are 
usually far away 
from IoT sensing 
devices  Fig. 1. IoT-enabled edge cloud architectural design.  
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• The algorithms used for outlier and redundant data detection.  
• Allocation of resources to execute IoT application requests, problem 

resolution, and outcome.  
• Performance evaluation processes adopted by each algorithm.  
• Strengths and weaknesses of each algorithm.  
• The network communication protocols govern the transmission of 

sensed data from IoT sensing devices to the edge and to the cloud 
storage server.  

• The number of physical and virtual machines used to process 
application requests for IoT-sensed data (based on detection of 
outlier and redundant data) on the edge enabled cloud Infrastructure 
as a Service (IaaS) platform. 

A total of 72 desired candidate articles emerged from the extraction 
process to be used in the current research under study. Fig. 2 presents a 
summary of the bibliometric data that includes 5 conferences and 67 
Journal articles, for a total of 72 studies of the selected articles. It also 
shows that the number of studies increased over the years. Therefore, it 
shows the novelty and increasing interest in using algorithms for IoT 
data filtering/analysis based on the detection of outliers and redundant 
sensor data. In addition, the resource allocation algorithm is used to 
provide optimal computation and storage resources for the execution of 
sensory data filtering/analytic application requests on IoT-enabled edge 
cloud computing infrastructure. The remaining 13 articles are consid
ered suitable for use as related research works in this field, which is 
discussed in the next section of this paper. Finally, 72 articles are 
qualitatively analyzed to synthesize the findings. 

4. Related work 

This section presents a brief description of previous literature review 
in this research field which motivated the current research study. The 
research survey conducted by Qiu et al. [10] is based on conventional 
and the latest machine learning algorithms for the processing and 
managing IoT big data. It discusses relevant machine learning algo
rithms in recent research such as the representation of learning, deep 
learning, distributed and parallel learning as well as active learning, and 
kernel learning. The challenges and possible solutions to machine 
learning algorithms for the processing of IoT data are also analyzed. 
Subsequently, the relationship between machine learning techniques 
and signal processing techniques used in the processing of IoT big data is 
highlighted and various open issues and research trends are outlined. 
Farahzadi et al. [11] studied the middleware technologies that are 

utilized in the Cloud of Things (CoT) platform. Firstly, the relevant 
features of middleware are discussed followed by the presentation of 
various architecture and service domains. It also explores the types of 
middleware that are appropriate for CoT-based platforms and outlines 
future challenges and issues in the design of CoT middleware. Cui et al. 
[12] present an overview of the application of machine learning tech
niques in the IoT domain. It discusses the current advances in applying 
machine learning techniques to IoT-related processes such as IoT device 
(s) identification, security, IoT edge computing infrastructure, traffic 
profiling, and network management. Also, research challenges and open 
issues of machine learning for IoT were extensively discussed. 

An overview of several machine learning algorithms that tend to 
solve the challenges of IoT sensor data is presented in the research work 
of Mahdavinejad et al. [13]. It focused on the taxonomy of machine 
learning algorithms, describing how they have been used on IoT datasets 
to retrieve some relevant level of information. It also discussed the 
prospects and challenges of the algorithms for IoT data analysis, paving 
the way for the application of a Support Vector Machine (SVM) to 
Aarhus smart city traffic data as a use case for a more detailed investi
gation. Cai et al. [14] presented the recent achievements in the man
agement, processing, and extraction of IoT big data by utilizing several 
existing algorithms. Thus, the algorithms are defined and described in 
terms of their significant features and capabilities, and the current 
challenges and opportunities associated with IoT big data are analyzed. 
Also, some typical examples and open issues in the application of al
gorithms for data acquisition are discussed. A thorough investigation of 
the use of mining algorithms in the management of IoT big data by 
Shadroo et al. [15]. It further identifies and discusses the architecture, 
framework, and applications of IoT big data. It also briefly discusses the 
algorithms used for the processing of IoT data in three categories which 
include descriptive, predictive, and classification. 

In [16], a Novel Concentric Computing Model (CCM) is investigated 
for the use of IoT big data analytics applications. It discusses the sensing 
systems, and outer/inner gateway processors that make up CCM. In 
addition, it highlights current research work related to the IoT model for 
big data analytic techniques. It also describes the current challenges that 
need to be addressed for the deployment of CMM in the Internet of 
Things environments. Thus, various future research directions are pre
sented such as dispatching of significant data, real-time fusion of 
streaming data, and data integration. Sharma and Wang [1] investigated 
the enablers for live data analytics in wireless IoT networks and storage 
provisioning by edge-enabled cloud computing environments. The 
framework for systematic processing between the cloud and the edge 
device(s) is discussed. It also highlights the networks and the available 
information in the cloud data center to support the edge computing units 
to meet various performance requirements of the wireless IoT networks. 
The key enablers in data analytics, such as NoSQL database and 
distributed file systems, to handle the unstructured IoT big data in the 
edge cloud are also discussed. In addition, machine learning techniques 
are used to extract relevant data. Related challenges and selected future 
research directions for researchers are also highlighted. 

Recent advances in massive data analytics for IoT systems and the 
potential requirements for managing big data, as well as enabling ana
lytic techniques enablers in IoT platforms [17]. Requirements such as 
IoT connectivity, storage capabilities, quality of service, and real-time 
services, and real-time analytics are discussed in detail. It explains the 
role of data analytics in IoT applications such as smart health, smart 
grid, and smart transportation as well as presents various open chal
lenges as future research directions. Ge et al. [18] investigated big data 
technologies in several IoT domains to improve knowledge sharing 
across the IoT domains. It explained the similarities and differences 
between big data technologies and the analytics techniques (e.g., clas
sification, filtering, compression, extraction, indexing, prediction, and 
storage) used in different IoT domains such as health, agriculture, and 
transportation to retrieve knowledge information. It further suggested 
how some big data technology deployed in a specific domain, can be 

Fig. 2. Survey of previous researches on data analytics algorithms for IoT- 
based edge cloud. 
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re-used in different IoT domains. Also, a conceptual framework was 
formulated to identify the critical big data technologies across all the IoT 
domains reviewed. 

The review of the task offloading scheme proposed for cloud 
computing, fog, and the IoT is discussed in Ref. [19]. It describes the 
middleware technologies (e.g., cloudlet, mobile edge, Micro datacenter, 
and Nano datacenter) that facilitate the offloading in edge-IoT infra
structure. It also presents research opportunities in offloading data 
streams in the fog and edge computing paradigm. Mohammadi et al. 
[20] presented a comprehensive overview of using a class of ground
breaking machine learning algorithms that can perform analytics and 
learning in the IoT domain. Detailed background information on various 
Deep Learning (DL) algorithms is presented, and specific research efforts 
that have used DL in the IoT domain are highlighted. The implementa
tion approaches of DL on fog and cloud centers for the provisioning of 
IoT applications are also discussed. Fei et al. [21] studied several ma
chine learning algorithms and how they are deployed on fog and cloud 
architectures for optimal processing and timely retrieval of data. In 
addition, the time complexity of the machine learning techniques used 
for IoT data stream analysis is highlighted. The challenges of deploying 
machine learning algorithms in the fog and cloud are also discussed, 
paving the way for future research directions. 

Alam et al. [22] conducted a review on data fusion for IoT. It de
scribes various mathematical techniques (e.g., probabilistic, artificial 
intelligence, and theory belief) use of IoT data analysis. It also detailed 
the prospects and challenges of each mathematical technique adopted in 
specific IoT environments (e.g. heterogeneous, distributed, object 
tracking, and nonlinear environments). In addition, future advances are 
discussed, including emerging area (autonomous vehicles, futuristic 
applications, and infotainment systems and smart cities) that would 
benefit immensely from data fusion and IoT. 

The related research survey conducted by previous researchers 
summarized in Table 2, motivated the current research survey in this 
paper. Thus, we investigate the various algorithms used for IoT data 
filtering/analytics based on outlier detection, redundant sensed data 
elimination, and optimal load balancing of cloud resources allocated to 
execute the filtering/analytics-based IoT applications on edge-enabled 
cloud infrastructure. This is because the previous reviews have yet to 
provide substantial contributions to the aforementioned research prob
lems in this research field. Also, the network communication protocols 
that govern the interaction and data transmission within the IoT, edge, 
and cloud layers are considered in this paper. These are discussed in 
detail in the following sections. 

5. Analysis of algorithms on IoT-edge cloud 

This section analyses the various analytic algorithms used for outlier 
and redundancy detection/elimination, as well as the allocation of re
sources to fulfill application requests in the cloud. Application symbol
izes outlier detection, redundancy elimination, etc. We start with that of 
outliers, followed by redundancy and resources provisioning as follows; 

5.1. Outlier detection algorithms 

An outlier is a piece of data that does not conform to the rest of the 
data or follow the expected trend [23]. It is an essential feature of data 
mining, where the goal is to identify outliers or unusual data from a 
given data set. Outlier detection has been extensively studied in machine 
learning and statistics, and it is also known as anomaly detection, nov
elty detection, and deviation detection [24]. In particular, outlier 
detection in IoT-enabled edge cloud computing has been an aspect of 
great importance, as it becomes even more of interest due to the het
erogeneity and dynamism of IoT sensor data. However, it has not been 
given the necessary attention and consideration, in the existing litera
ture. The detection of outliers in sensory datasets is used for the removal 
of error data, the detection of faulty IoT sensing device(s), and detection 

Table 2 
Comparison of previous research surveys.  

Author Article Title Contributions 

Qiu et al. [10] A survey of machine 
learning for big data 
processing  

• Review of conventional and 
advanced machine learning 
methods for solving big data 
problems  

• Logical analysis of the 
challenges and potential 
solutions for leaning big 
data, based on the 
characteristics of big data  

• Open questions and research 
trends 

Farahzadi et al. 
[11] 

Middleware technologies 
for cloud of things: a survey  

• Identification and 
explanation of IoT-Cloud 
middleware characteristics  

• Comparison of middleware 
architectures.  

• Middleware service domain 
e.g. information sharing and 
storage and communication  

• Comparison of sample 
middleware e.g. C-MOSDEN, 
ThingsWorx and Carriots  

• Challenges and issues in the 
Cloud of Things 

Cui et al. [12] A survey on application of 
machine learning for 
Internet of Things  

• Description of possible 
supervised and unsupervised 
machine learning for traffic 
profiling  

• Identification of IoT devices 
(mobile phones and general 
IoT devices) using machine 
learning  

• Review on machine learning 
approaches for IoT system 
security based device and 
network security  

• Summary of IoT applications 
(e.g. health and industries) 
developed using machine 
learning  

• The use of machine learning 
approach for IoT network 
management and edge 
computing design  

• Challenges and open 
questions of the above 
reviewed areas 

Mahdavinejad 
et al. [13] 

Machine learning for 
Internet of things data 
analysis: a survey  

• Describes the machine 
learning algorithms used to 
process data collected from 
IoT devices  

• Review of eight types of 
machine learning techniques 
used for IoT data analytics  

• Brief discussion of research 
trends and open questions 

Cai et al. [14] IoT-based big data storage 
systems in cloud 
computing: perspectives 
and challenges  

• Analysis of cloud-based IoT 
application utility frame
work based on this data 
acquisition and processing  

• Discussion on the challenges 
of IoT data acquisition and 
methods used for data 
processing  

• Brief discussion on 
application module 
optimization based on 
architecture optimization, 
data storage optimization 
and data operation 
optimization 

Shadroo et al. 
[15] 

Systematic survey of big 
data and data mining in 
Internet of Things  

• Review of tools used for IoT 
and big data processing 

(continued on next page) 
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of an event of interest [25]. These can only be achieved through the use 
of analytic algorithms which are discussed in detail, highlighting the 
processes employed by the algorithms to solve the prevailing problems, 
performances, and weaknesses of the algorithms, edge devices, and 
cloud IaaS resource(s) used to store and execute the algorithms, as 
indicated in Table 3. It also shows where the algorithms are deployed. 
For example, part of an algorithm may be implemented at the edge while 
the other part is located in the cloud. On the other hand, the entire part 
of the algorithm can be stationed either in the edge or cloud. 

An adaptive Compressive Sensing-based (CS) autoregressive recon
struction algorithm is proposed for the sparsity of sensory data which 
varies in the temporal and spatial domain [26]. The autoregressive 
method is responsible for reconstructing false data retrieved from faulty 
sensor nodes. This is realized by exploiting the varying local spatial 
similarity in the sensed data set with an estimated parameter. If the 
sensed data exceeds the estimated parameter, it is classified as an 
anomaly or false data that needs to be reconstructed, otherwise the 
sensed data is classified as consistent data. The recovered data is then 
evaluated to determine whether additional measurements are needed to 
improve the reconstruction quality and whether the recovery process 
meets the expected accuracy. Furthermore, a combinational method is 
introduced to predict and identify the sparsity, which is incorporated 
into the CS to recover anomalous sensed data. Then, the recovered 
abnormal data are classified into two groups namely, error and external 
event by their identified patterns. The external event data is considered 
to reflect the actual activities in the environment and is preserved for 
further processing. On the other hand, the error data represent the 
physically sensed data which are discarded and replaced with their 
original normal readings. 

However, the CS-based autoregressive reconstruction algorithm is 
not able to predict and identify an event that occurs a real-time event. It 
has been solved with the support of a model-based Multilayer Percep
tron Classifier (MLPC) proposed by Stocker et al. [27]. The MLPC model 
is capable of obtaining knowledge that is represented in a semantic 
database by abstracting sensed data from the physical sensor layer on a 
real-time basis. At the initial stage, a band-pass filter is applied to 
pre-process the raw sensor data sample, after which the Multilayer 
Perceptron (MLP) neural network classifier is used to predict and classify 
various abstractions and events. The result of the classification process is 
transferred to the semantic database. However, the MLPC model is prone 
to a long non-automated learning process that requires domain experts 
to provide the model with sample data for the supervised learning 
process. This issue has been addressed in the research work of Ganz et al. 
[28], which introduces an approach that infers abstractions based on 
pattern representations. The approach is called the Sensor Symbolic 
Aggregation Approximation (SAX) algorithm, which is implemented to 
convert continuous sensor data into a compressed pattern representa
tion. Firstly, the sensed data is normalized to have a standard deviation 
of 1 and a mean of 0, to facilitate the comparison of data points from 
different sources and to limit the volume of the sensed data sample. The 
sampled data is divided into two equal-sized windows by calculating the 
mean value of each window, resulting in the data sample being reduced 

Table 2 (continued ) 

Author Article Title Contributions  

• Analysis of various 
techniques used for IoT 
device management/data 
mining  

• Brief discussion on open 
issues of IoT big data and 
mining methods 

Rehman et al. 
[16] 

Big data analytics in 
industrial IoT using a 
concentric computing 
model  

• Review of the applicability of 
concentric computing model 
for big data analytics in IoT  

• Brief summary of 
communication and 
performance goals that can 
be achieved by adopting the 
concentric computing model 
in IoT  

• Highlighting some potential 
challenges and open issues 
that may lead to future 
research directions 

Ahmed et al. 
[17] 

The role of big data 
analytics in Internet of 
Things  

• Review on the processing 
and key requirements of big 
data in IoT environment  

• Big data processing and 
analytics opportunities and 
the applicability of data 
analytics in IoT applications  

• Highlighting open research 
challenges of big data 
processing in IoT that leads 
to future research directions 

Ge et al. [18] Big data for Internet of 
Things: a survey  

• Analyze the comparison of 
big data technologies in 
different IoT domains  

• Recommend the type of big 
data technology that can be 
used in other IoT domains  

• To shed more light on big 
data for each IoT domain  

• Framework to assist 
practitioner and researchers 
to adopt big data 
technologies that are 
commonly used in specific 
IoT domain 

Aazam et al. [19] Offloading in fog 
computing for IoT: review, 
enabling technologies, and 
research opportunities 

Current technologies used for 
offloading in fog computing  
• Different requirements 

adopted by existing 
middleware technologies for 
offloading tasks in fog 
computing  

• Challenges that still need to 
be addressed for optimal 
performance of task 
offloading 

Mohammadi 
et al. [20] 

Deep learning for IoT big 
data and streaming 
analytics: a survey  

• Leveraging deep learning in 
various IoT application 
domains 

Current methods for applying 
deep learning in a wide range 
of devices, from constrained to 
the fog and the cloud  
• Challenges and future 

research directions for the 
integration of deep learning 
and IoT applications 

Fei et al. [21] CPS data streams analytics 
based on machine learning 
for cloud and fog 
computing: a survey  

• Machine learning methods 
used for IoT data processing 
in cyber-physical system 
applications  

• Time complexity of 
traditional machine learning 
strategies  

• Requirements for integrating 
machine learning methods  

Table 2 (continued ) 

Author Article Title Contributions 

into fog and cloud 
architecture 

Alam et al. [22] Data fusion and IoT for 
smart ubiquitous 
environments: a survey  

• Mathematical techniques 
used for sensor data fusion  

• Review on special IoT 
environments such as 
heterogeneous and 
distributed environments  

• Challenges of individual 
mathematical techniques 
and IoT environments  
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Table 3 
Comparison of outlier detection techniques.  

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

Data gathering in 
Sensor nodes 
through 
intelligent 
compressive 
sensing [26] 

Adaptive 
compressive 
sensing-based 
autoregressive 
reconstruction 
algorithm 

Classification Abnormal 
sensing data 

Improved 
accuracy and 
reduces Mean 
Squared Error 
and latency 

Unable to predict 
and identify 
events that occur 
on a frequent 
basis 

Remote Server N/A N/A N/A 

Making sense of 
sensor data 
using ontology: 
a discussion for 
residential 
building 
monitoring [27] 

Knowledge- based 
multi neural 
network classifier 

Classification Predict and 
identify events 
that occur on a 
frequent basis 

Accurate 
prediction of 
frequent 
anomaly sensing 
data on a real- 
time basis 

Long non- 
automated 
learning process 
that relies on 
domain experts 
for the 
provisioning of 
sample data 

Remote Server N/A N/A N/A 

Information 
abstraction for 
heterogeneous 
real world 
internet data 
[28] 

Sensor symbolic 
aggregation 
approximation 
algorithm 

Classification Issue of 
minimizing the 
huge volume 
of sensing data 

Improved 
accuracy, 
minimized data 
volume and 
latency 

Abstraction 
accuracy still 
needs further 
improvement 

Remote server Yes N/S N/S 

Smart outlier 
detection of 
wireless sensor 
network [29] 

Fuzzy-based 
spatial-temporal 
approach 

Classification Detection of 
error and event 
outliers in 
local/global 
search space of 
the sampled 
data 

Improved 
accuracy for 
error/event 
outliers with 
minimum false 
positive rate 

Unable to self- 
check the 
prediction process 
using a 
mandatory 
perception data in 
an IoT platform 

Remote Server N/A N/A N/A 

Non-parametric 
sequence-based 
Learning 
approach for 
outlier 
detection in IoT 
[30] 

Non-parametric 
sequence learning 
algorithm 

Classification Problem of 
self-check 
identification 
using 
perception for 
error/event 
outliers 
detection 

Enhanced 
classification 
accuracy with 
optimal 
detection of 
error/event 
outliers with less 
false positive 
rate 

Difficult to detect 
outliers in global 
space data set 
increases is size 

Remote Server Yes N/S N/S 

Cooperative 
sensor anomaly 
detection using 
global 
information 
[31] 

Multivariate 
Gaussian-based 
principal 
component 
analysis 

Classification The inability to 
differentiate 
between 
erroneous and 
event data 
from 
inconsistent 
observations 

Improved the 
Receiver 
Operating 
Characteristic 
(ROC) curves, 
true and false 
positive rates for 
detecting 
erroneously 
sensed data 

Its static 
transformation is 
unable to realize 
optimal 
prediction of 
erroneous data on 
real-time basis 

Remote Server N/A N/A N/A 

Recursive 
principal 
component 
analysis-Based 
data Outlier 
detection and 
sensor Data 
aggregation in 
IoT systems 
[32] 

Recursive principal 
component 
analysis 

Clustering Inability to 
make optimal 
prediction of 
erroneous data 
in global space 
of massive 
sensed data 
sets 

Improved 
aggregation 
with error 
growth and 
event detection 
accuracy 

It is 
computationally 
intensive because 
it tends to adapt 
recursively to the 
changes in 
sensory data 
readings 

Aduino Uno 
Microcontroller 

Yes N/S N/S 

A novel three-tier 
Internet of 
Things 
architecture 
with machine 
learning 
algorithm for 
early detection 
of heart diseases 
[33] 

Logistic regression- 
based prediction 
algorithm 

Regression Ineffective 
classification 
of heart related 
disease 
symptoms 

Enhanced 
classification 
accuracy rate 
based on 
specificity, and 
sensitivity 

Inefficient 
aggregation of 
data 

Mobile Phones 
Personal Server 

Yes N/S N/S 

Non-parametric 
sequence-based 
Learning 
approach for 

Non-parametric 
sequence learning 
algorithm 

Classification Problem of 
self-check 
identification 
using 

Enhanced 
classification 
accuracy with 
optimal 

Difficult to detect 
outliers in global 
space data set 
increases is size 

Remote Server Yes N/S N/S 

(continued on next page) 
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Table 3 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

outlier 
detection in IoT 
[30] 

perception for 
error/event 
outliers 
detection 

detection of 
error/event 
outliers with less 
false positive 
rate 

Cooperative 
sensor anomaly 
detection using 
global 
information 
[31] 

Multivariate 
Gaussian-based 
principal 
component 
analysis 

Classification The inability to 
differentiate 
between 
erroneous and 
event data 
from 
inconsistent 
observations 

Improved the 
Receiver 
Operating 
Characteristic 
(ROC) curves, 
true and false 
positive rates for 
detecting 
erroneously 
sensed data 

Its static 
transformation is 
unable to realize 
optimal 
prediction of 
erroneous data on 
real-time basis 

Remote Server N/A N/A N/A 

Recursive 
principal 
component 
analysis-Based 
data Outlier 
detection and 
sensor Data 
aggregation in 
IoT systems 
[32] 

Recursive principal 
component 
analysis 

Clustering Inability to 
make optimal 
prediction of 
erroneous data 
in global space 
of massive 
sensed data 
sets 

Improved 
aggregation 
with error 
growth and 
event detection 
accuracy 

It is 
computationally 
intensive because 
it tends to adapt 
recursively to the 
changes in 
sensory data 
readings 

Aduino Uno 
Microcontroller 

Yes N/S N/S 

A novel three-tier 
Internet of 
Things 
architecture 
with machine 
learning 
algorithm for 
early detection 
of heart diseases 
[33] 

Logistic regression- 
based prediction 
algorithm 

Regression Ineffective 
classification 
of heart related 
disease 
symptoms 

Enhanced 
classification 
accuracy rate 
based on 
specificity, and 
sensitivity 

Inefficient 
aggregation of 
data 

Mobile Phones 
Personal Server 

Yes N/S N/S 

A real IoT device 
deployment for 
e-health 
applications 
under 
lightweight 
communication 
protocols, 
activity 
classifier and 
edge data 
filtering [34] 

Fuzzy-based 
human activity 
recognition 
classifier algorithm 

Classification The 
complexity of 
data 
overlapping in 
massive sensed 
data 

Improved 
outliers/inliers 
detection 
accuracy with 
less 
computation 
resources 

Unable to deal 
with missing data 
values 

Mobile Phones Yes N/S N/S 

On the effect of 
adaptive and 
non-adaptive 
analysis of time- 
series sensory 
data [35] 

Dynamic symbolic 
aggregation 
approximation 
(DSAX) 

Clustering The 
complexity of 
aggregating 
massive 
sensory data 
retrieved from 
various 
sources 

Achieved 
optimal data 
aggregation 
quality for error 
data prediction 

Unable to give 
insight knowledge 
about the sensing 
data retrieved 
regarding drifts 
and consistent 
data 

Local Server N/A N/A N/A 

Adaptive 
clustering for 
dynamic IoT 
data streams 
[36] 

Adaptive K-means 
clustering 
algorithm 

Clustering Deficiency in 
clustering 
streaming 
sensed data 

Improved 
clustering 
accuracy based 
on Silhouette 
coefficient 

Unable to 
consider the 
spatial dimension 
and correlation of 
the streaming 
data 

Fog Server N/A N/A N/A 

Clustering of data 
streams with 
dynamic 
Gaussian 
mixture Models. 
an IoT 
application in 
industrial 
processes [37] 

Gaussian-based 
dynamic 
probabilistic 
algorithm 

Clustering Inefficiency in 
clustering 
dynamic 
sensing data to 
detect drifts 
sensed data 

Improved drift 
detection 
accuracy to the 
tune to 98.7% 
and sensitivity 
of 96% 
indicating that 
almost all 
detections are 
true positives 

There are about as 
many Instances 
detected as 
turning points for 
concept drift 

Local Server N/A N/A N/A 

(continued on next page) 
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Table 3 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

An automatic 
health 
monitoring 
system for 
patients 
suffering from 
voice 
complications 
in smart cities 
[38] 

Linear prediction 
spectrum 
algorithm 

Regression Ineffective 
detection of 
voice disorder 
of patients 

Efficient 
detection of 
voice disorders 
with sustained 
vowels and 
running speech 
based on 
improved 
accuracy 

Not Specified Local Server N/A N/A N/A 

Edge computing 
with Cloud for 
voice disorder 
assessment and 
treatment [39] 

Convolution neural 
network algorithm 

Deep 
learning 

Inaccurate 
classification 
of voice 
disorder 
symptoms 

Improved the 
classification 
accuracy in the 
detection of 
voice (event) 
disorder 
detection 

High bandwidth 
consumption 
during sense data 
transmission from 
edge to the cloud 

Cloudlet 
Servers 

Yes 1 3 

Fog assisted-IoT 
enabled patient 
health 
monitoring in 
smart homes 
[40] 

Bayesian belief 
network algorithm 

Deep 
learning 

Delay in the 
classification 
of sensed data 
acquisition 

Improved 
accuracy of 
classifying 
dataset with less 
time during 
classification 
process 

Not considering 
the spatio- 
temporal 
correlations 
among sensed 
data set 

Cloudlet 
Servers 
Wireless 
Routers 

Yes 8 N/S 

A new shelf life 
prediction 
method for farm 
products based 
on an 
agricultural IoT 
[41] 

Back propagation 
learning algorithm 

Deep 
learning 

Issue of 
detecting and 
elimination of 
erroneous 
outliers in big 
sensed data 

Effective 
filtering of 
normal sensed 
data from the 
abnormal ones 

Not specified Local Server N/A N/A N/A 

IoT big-data 
centered 
knowledge 
granule analytic 
and cluster 
framework for 
BI applications: 
a Case base 
analysis [42] 

Enhanced 
knowledge granule 
clustering 
algorithm 

Clustering Challenges of 
clustering high 
complex 
knowledge 
granules for 
outlier 
detection 

Improved the 
precision and 
accuracy of 
outlier detection 

Unable to 
minimize the 
inter-cluster 
distances of 
sensed data 

Remote Server N/A N/A N/A 

Fog intelligence 
for real-time IoT 
sensor data 
analytics [43] 

Homoscedasticity 
measurement 
Leven’s test feed- 
forward neural 
networks 
algorithm 

Deep 
learning 

Improper 
selection of 
threshold 
leading to 
partial 
classification 

Enhanced 
classification 
accuracy, 
sensitivity and 
precision 

Duplicate sensed 
data and high 
computationally 
intensive 

Arduino Uno 
Microcontroller 
Local Server 

N/A N/A N/A 

Efficient and 
flexible 
algorithms for 
monitoring 
distance-based 
outliers over 
data streams 
[44] 

Advance micro- 
cluster-based 
continuous outlier 
detection 
algorithm 

Clustering Inefficient 
outlier 
detection on 
frequent data 
stream and 
computation 
complexity 

Improved 
outlier detection 
with minimum 
computational 
resource usage 

Unable to 
addressed 
uncertainty of 
data streams, 
instances assigned 
existential 
probability 

Local Server Yes N/S N/S 

Smartphone- 
based outlier 
detection: a 
complex event 
processing 
approach for 
driving 
behavior 
detection [45] 

Complex event 
processing –based 
Z-score and box 
plot 

Clustering Computation 
resource 
complexity of 
constraints IoT 
devices 

Improved 
accurate 
detection 
outliers from 
online data 
streaming with 
less usage of 
computation 
and memory 
resources 

Weakness in 
identifying 
outliers for 
emergency 
scenarios due to 
lack of historical 
data 

Fog Server Yes N/S N/S 

Fog-empowered 
anomaly 
detection in IoT 
using 
hyperellipsoidal 
clustering [46] 

Hyperellipsoidal 
clustering 
algorithm 

Clustering The Issue of 
high latency 
and energy 
consumption 

Reduced energy 
consumption 
and latency 
while improving 
anomaly 
prediction 
accuracy 

A need for further 
improvement on 
latency due to 
increase usage of 
computation 
resource 

Fog Server Yes N/S N/S 

(continued on next page) 
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to half its original size. As a result, the compressed data is reconstructed, 
allowing the adductive abstraction of the sensed data to discover events 
that occur over time. For example, the changes in temperature over a 
day from cold to warm to cold, which represents a frequent or stable 
temperature pattern. Therefore, newly observed states hidden from the 
pattern are classified as outliers. 

Kamal [29], introduced a fuzzy algorithm that utilizes spatiotem
poral similarity concept to detect outliers. However, could not provide 
the self-check identification using perception data which is highly 
required in an IoT Cloud-IaaS platform. It classifies the abnormal 
observation into error and event outliers. First, a data set generated by 
sensor nodes is computed on the first-order difference |Si2–Si1|. Then, 
the total difference is compared to the threshold value that is reached by 
the tolerance of the temperature sensor. Thus, if the total first-order 
difference does not exceed the threshold, the Si2 data point is consid
ered similar to other data points. Otherwise, an outlier is obtained when 
dissimilarity is observed on a data point. Second, the calculation is done 
based on the distance between neighboring sensor nodes to discover the 
spatial similarity between them. The Euclidean distance method used to 
compute the similarity or correlation measure between two points (x, y) 
that have identical transmission range and time proximity. Then, the 
spatial similarity threshold is obtained by computing the mean distance 
of all data points in the proximity time. If the Euclidean distance d(x, y) 
does not exceed the indicated threshold value, the data values at point X 
are identified as similar to that of the data values at point Y. Otherwise, 
an error outlier is detected as a faulty sensor reading. 

Conversely, a Non-Parametric Sequence-based Learning (N-PSL) al
gorithm is proposed by Nesa et al. [30], predicting the outliers based on 
error event types. It considers the use of data perception for self-check 
detection both error and event outliers. The N-PSL algorithm is based 
on a gray relational analysis. In the initial stage, the sample data is 
normalized by calculating the average image of each sampled data. 

Then, the difference between each instance of the sequence image of the 
sensed data is computed. Also, the Influential Relative Grade (IRG) co
efficients for each sequence (class) sensed data are calculated to retrieve 
the relative mass function in each respective class. Therefore, outliers 
are predicted as the classes with lower values while the inliers are classes 
with higher values. Furthermore, event outliers are detected by running 
the algorithm on the fused parameter (attribute) dataset, while the error 
type of outliers is obtained by running the algorithm on each parameter. 

A Multivariate Gaussian-based Principal Component Analysis (MG- 
PCA) is designed in the research to predict erroneous sensing data 
among irregular observations, based on the characteristic pattern of 
different dimensional sequence data [31]. The MG is first applied to the 
retrieved sensed data set to determine the similarity among the data 
points. It identifies the time point when the error occurred and further 
retrieves the particular sensor node that is observed to be erroneous at a 
particular time. Consequently, the PCA utilizes the principal vectors to 
determine the differences between data patterns for detecting the sensor 
error readings that violate the inherent pattern extracted. However, the 
MG-PCA approach is limited by the inability to track variations in dy
namic and heterogeneous sensing data due to its static transformation. 
This has been addressed by the Clustered-based Recursive Principal 
Component Analysis (CR-PCA) algorithm proposed in Ref. [32]. It 
initially aggregates the redundant sensed data while detecting the out
liers. The spatially correlated sensed data retrieved from the cluster head 
sensor members are aggregated by extracting the principal components 
and identifying the possible data outliers with the support of an 
abnormal squared prediction error score, called the residual square. It 
recursively updates its parameters to adapt to the dynamics of the sen
sory data retrieved from the sensor devices. 

A Logistic Regression-based prediction (LRP) algorithm is developed 
to detect patients with heart diseases by classifying clinical sensory data 
collected from IoT wearable devices [33]. Sensed data collected from 

Table 3 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

Entropy outlier 
detection using 
semi-supervised 
approach with 
few positive 
examples [47] 

Entropy Outlier 
Detection Semi- 
supervised 
(EODSP) algorithm 

Clustering Insufficient 
labeled data 
for training 
and limited 
positive 
labeled 
samples 

Improved 
outlier detection 
accuracy 
compared to 
other existing 
approaches 

Cannot be 
deployed in real 
time big sensing 
data due to its 
computational 
complexity 

Laptop Pc (1.6 
GHz and 1 GB 
RAM) 

N/A N/A N/A 

IPCA for network 
anomaly 
detection [49] 

Iterative Principal 
Component 
Analysis (IPCA) 
algorithm 

Clustering Variability of 
feature scales 
and the issue of 
multiple 
number of 
dimension 
data set 

Improved 
outlier detection 
efficiently 
mitigating the 
limitations of 
PCA 

Computation 
complexity in 
iteratively 
updating 
distances of 
neighborhood 

Remote Server N/A N/A N/A 

Real-time 
multiple event 
detection and 
classification 
using moving 
window PCA 
[50] 

Moving Window 
Principal 
Component 
Analysis (MW- 
PCA) algorithm 

Clustering Issue of time 
variance in 
sensing data 
frequency 

Improves the 
prediction and 
classification of 
outlier accuracy 

Unable to 
disaggregate 
multiple loss of 
load and 
generation of 
events 

Remote Server Yes N/S N/S 

Research on real 
time feature 
extraction 
method for 
complex 
manufacturing 
big data [51] 

Robust 
Incremental 
Principle 
Component 
Analysis (RIPCA) 
algorithm 

Clustering Disaggregate 
multiple loss of 
load and 
generating of 
events 

Improved 
outlier detection 
in real-time by 
reducing the 
dimension of big 
IoT dataset and 
usage of 
computation 
resource 

Unable to 
determine the 
causes for the 
abnormal patterns 

Remote Server Yes N/S N/S 

Footnote: N/A = Not Applicable, N/S=Not Specified. 
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wearable sensing devices are constantly monitored. If the data values 
exceed the reliable predicted value, it’s considered abnormal, otherwise 
it becomes normal. Consequently, Santamaria et al. [34] proposed a 
fuzzy-based Human Activity Recognition (HAR) classifier algorithm to 
classify the sensed data into normal and abnormal activities of patients. 
The algorithm updates the classification process by initiating some 
constant values that are used to specify the number of clusters. It then 
selects a weighted component (fuzzier) and an initial membership ma
trix with some threshold values are selected. The weighted components 
regulate the class overlapping of the classes while assigning a data point 
to its cluster member. Furthermore, the threshold value is used to 
evaluate the convergence in the iterations of the classification process. 

A Dynamic Symbolic Aggregation Approximation (SAX) is proposed 
for the adaptive and non-adaptive window size, in the segmentation of 
time sequence data stream with variation in real-time processing [35]. It 
divides the time sequence data set into equivalent segments and gen
erates a string representation for each segment. First, the time sequence 
data is normalized to achieve a standard deviation and mean (average) 
of one, before being converted it to a Piecewise Aggregation approxi
mation (PAA). Next, the data is divided into the desired number of 
windows and the average mean of the data falling in each window is 
calculated by the PAA so that the size can be reduced. Then, a dis
cretization process is performed on the PAA coefficients (each window 
size) by mapping the PAA coefficients to breakpoints which are gener
ated by the alphabet size (e.g. c), to determine the area of equal-size for 
retrieving the symbolic data representation. Puschmann et al. [36] 
developed an Adaptive K-means Clustering (AKC) for outlier detection. 
This is done by evaluating the dynamic sensor data and updating the 
cluster centroids according to the changes in the data stream at a given 
time. Clusters are formulated based on the similar features of the sensory 
data stream retrieved over time. New cluster(s) are formed based on 
changes in data features. For example, if an incoming streaming data has 
the feature types “Temp, Temp, Temp, Hum, and Hum ….n”, obviously 
the Temp features will be allocated to the initial cluster. The appearance 
of the ‘Hum” will trigger the creation of another new cluster which will 
contain the Hum feature data records. 

Both the SAX and AKC approaches provide substantial assignment of 
sensory data instances to clusters but are unable to provide knowledge 
information (i.e. inconsistency or consistent manner) about the data and 
how it is assigned to each cluster. These problems have been addressed 
by a Gaussian-based Dynamic Probabilistic Clustering (GDPC) algo
rithm, proposed by Ref. [37]. It estimates the model parameters and any 
drifts in the data points. It further provides the membership likelihood of 
each data point to each cluster by utilizing the brier score. Brier score is 
used to determine the abnormality of subsequent probabilities from 
those objects or data points that are expected. Drifts or changes are 
detected when the parameter of sensed data value is above the pre
defined threshold value of the brier score. Such drifts are known as 
outliers. After drifts are detected, the brier score changes its behavior 
and stabilizes for incoming sensor data. 

A Linear Prediction Spectrum algorithm is introduced in Ref. [38] for 
voice detection disorder, based on sensed data retrieved. It analyzes the 
energy variation in the spectrum to distinguish between disordered and 
normal voices. This is done by dividing the vocal track into various tubes 
from the glottis to the lips. It then performs an estimated analysis on the 
source signal using inverse filtering that triggers the computation of the 
spectrum. Furthermore, the estimated signal is utilized to determine the 
energy distribution in vowel and running speech for the detection of 
voice disorder. Muhammad et al. [39] develop a Deep Convolution 
Neural Network (CNN) algorithm for classifying the sensed data into two 
segments namely voice disorder and normal voice. It uses its input image 
consisting of blue, green, and red colors to classify the voice sampled 
data obtained from the IoT sensing devices. Therefore, the use of transfer 
learning and a fine-tuned approach is used to train the CNN for optimal 
detection of voice disorder and to speed up the classification process, 
due to the limited voice sampled data obtained from the IoT devices. 

Two output neurons were used to represent voice disorder detection, 
eight neurons were used for the voice disorder classification before 
being trained by fine-tuning the parameters for optimal detection of 
voice disorder from normal ones. 

A Bayesian Belief Network (BBN) algorithm is proposed in Ref. [40] 
for the classification of sensory data. It classifies sensory data retrieved 
from patients into two classes namely, abnormal and normal. The 
retrieved data in the abnormal class indicates the severe or critical 
health status of the patients. On the other hand, the sampled data in the 
normal event class indicates the normality of patient’s health status. A 
naïve Bayesian classification procedure known as conditional proba
bility is used to achieve the classification process. Thus, a predefined 
value is set as the normal value, which indicates that the probability of 
all sampled data within the range of the predefined normal value will be 
classified as a normal class. Also, an abnormal class is obtained when the 
probability of having the sampled data value exceeds that of the normal 
event class. To improve the prediction process, an important set of at
tributes, namely the environment and the patient’s history, were used. 
Thus, the abnormal class is transmitted to the cloud for further pro
cessing and analysis. Wu et al. [41], implemented a Back Propagation 
Learning (BP) algorithm for the classification of sensed data retrieved 
from sensing devices attached to agricultural crops. The sensed data are 
classified into abnormal and normal batches. The abnormal value or 
attributes are discarded while the normal values are further processed 
on the cloud platform. The normal values are further divided into low, 
normal, and high values based on predefined values consisting of − 1 
(low), 0 (normal), and 1 (high). The BP algorithm is then applied to 
accurately predict the crop yield. It multiplies the output and input data 
to obtain the gradient of the weight and places the weight in the opposite 
direction of the gradient by subtracting the ratio of it from the weight. 

An Enhanced Knowledge Granule Clustering algorithm that is based 
on neuro-fuzzy analytic architecture is designed in Ref. [42]. It is used to 
extract complex knowledge granules from IoT sensory big data. First, the 
facts are arranged in an array based on the multiple rule system to obtain 
the knowledge granules for clustering. Each knowledge granule must be 
associated with a fitness tag, where the estimated value is present. This 
is done through the attributes of the knowledge granule where the initial 
mapping for a cluster is performed by the fitness value, followed by the 
next level mapping for sub-clusters under the previous cluster. In simple 
words, based on the fitness rule, two clusters are said to be similar if both 
have knowledge granules with homogenous attributes. The knowledge 
granules are mapped to individual clusters based on the attributes. Thus, 
the sub-cluster within a cluster is maintained for the fitness of the 
explicitly identified knowledge granules. For example, in cluster, let X1 
be a knowledge granule such that X1 is mapped to sub-cluster (G < 0.5) 
if and only if G (X1) < 0.5; otherwise, X1 is mapped to sub-cluster (G >=

0.5). Thus, the G values of clusters and sub-cluster are strongly estimated 
by quantifying the outliers that are present. In addition, outliers that are 
present in the clusters and sub-clusters degrade the G values. 

Furthermore, Raafat et al. [43] proposed a Homoscedasticity 
Measurement-based Leven’s Test (HMLT)-based Feed-forward Neural 
Networks (FFNN) algorithm, for accurate classification of desired fea
tures of sensed data in the cloud. Sensed data retrieved from sensing 
devices is filtered. Then, the HTMLT is applied to extract dissimilarity 
features from the denoised signal, by observing the signal for sudden 
changes. Then, the extracted features are inputted into the FFNN to 
proceed with the classification process. The FFNN classifies the sensed 
data into abnormal and normal data. This is updated by sending the data 
from its input layer to the hidden layers. The neurons in the hidden 
layers are responsible for computing an activation function over the sum 
of input features, which are multiplied by a set of weight parameters. 
The, results are output as either normal or abnormal sensed data. Data is 
abnormal when there is a sudden change in the sensed data due to an 
external event. 

An Advanced Micro-cluster-based Continuous Outlier Detection 
(AMCOD) algorithm is proposed in Ref. [44] for frequent monitoring of 
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outliers in sensory data streams to improve efficiency and reduce storage 
resource utilization. An outlier ‘A’ is identified if the distance of ‘B’ 
instance (s) is greater than that of ‘A’. Also, if the number of data in
stances or objects in the distant neighborhood of ‘A’ objects exceeds that 
of B, then ‘A’ is referred to an inlier. Efficiency is improved by using 
microclusters to minimize the number of distance calculations, memory 
size determination, and the number of data objects for the time window 
size. In addition, the arrival and departure of the data object is moni
tored to determine the degree of an outlier and safe inlier. At this stage, 
if the number of neighbors of a given data object of ‘A’ is higher than 
that of ‘B’, then ‘A’ becomes a safe inlier and not an outlier. Therefore, 
the use of computational and memory resources is reduced by discarding 
the outliers. 

Conversely, the distance-based algorithm cannot run on devices that 
are challenged with low memory and computation resource. Vascon
celos et al. [45] solved the problem by introducing a Complex Event 
Processing Z-score and Box Plot approach to predict the outliers. The 
sensor data collected from the on-board vehicle and embedded mobile 
sensors are sent to the Complex Event Processing engine for pre
processing. It generates or extracts features (e.g. speed, acceleration, 
deceleration, mean deceleration, etc.) from the sensed data retrieved as 
evidence sensed data that best characterize chauffeur behavior. Then, 
patterns that significantly deviate from the evidence data are identified 
by the CEP rules. In addition, the Z-score method is used to assign a score 
to each piece of evidence by splitting the stream into sequence windows. 
Each window consists of a set of evidence sensed data. It then computes 
the standard mean deviation of the evidence in each window after which 
the Z-score distribution is assessed to classify the chauffeur’s behavior. 
Moreover, the box plot method is deployed to avoid the computation 
complexity of pairwise distances for all evidence data by performing the 
computation for each evidence (dimension or feature) individually and 
correlating the outliers. It uses a threshold value to filter out all data 
instances that are inliers and those that are outliers. 

A Hyperellipsoidal clustering algorithm is introduced by Ref. [46], to 
detect anomalies in the multimodal distribution of sensing data 
retrieved from end nodes. It accommodates heterogeneous sensing data 
ranging from linear to hyperspherical, with an automated mechanism to 
select the number of clusters. It also realizes a linear computation 
overhead regarding the number of data vectors processed. At the initial 
stage, a set of hyperellipsoidal clusters is obtained, by using the Ellip
soidal Neighborhood Outlier Factor (ENOF) to identify the ellipsoids 
that are drifting relative to their neighborhood to densities. Conse
quently, the ratio between the average neighborhood range density of 
neighbors and ellipsoids’ neighborhood range determines the level of 
outlier score. Therefore, a threshold is calculated using the standard 
deviation of the ENOF scores and a parameter to determine the anom
alous clusters. Thus, clusters with an ENOF score that is higher than the 
threshold are considered as anomalous clusters. The process of ENOF 
outlier detection is further illustrated in Fig. 3. Where the blue line 
represents the threshold value. 

An Entropy Outlier Detection Semi-supervised (EODSP) algorithm is 
introduced in Ref. [47] for detecting the outliers in an unlabeled data 
set. Entropy is the degree of information and uncertainty of a random 
variable [48]. For instance, let y be a random variable, the entropy E(y) 
of the probability distribution g(y) on y = {y1 ….yn}; thus is given as a 
dataset of h instances with f-number of features, the entropy E(y) of a 
multivariable vector Yi is a random variable which is considered to be a 
member of y dataset. It consists of two strategies that are used to solve 
the problem of outlier prediction when there are limited positive data 
objects for training data. At the initial stage, the reliable negative data 
objects which are considered as inliers are extracted from positive 
samples and unlabeled data. Then, the distances between each point in 
the data set and positive objects are calculated. Therefore, the distance 
points that are higher than the threshold value from each data object are 
predicted as outliers. In addition, Delimargas et al. [49] proposed an 
Iterative Principal Component Analysis (IPCA) algorithm to detect data 

traffic anomalies in the network. The IPCA functions are as follows; the 
matrix of a data set M is obtained from the data trace, then the sub
traction of the mean value of each feature is computed to formulate a 
new matrix of the data set, denoted NM. Then, each feature is divided by 
its standard deviation to obtain a normalized metric dataset Dn. The 
eigenvalues and eigenvectors of Dn are obtained by creating the corre
lation of its matrix (Dn). The eigenvector with the largest eigenvalue is 
considered the normal subspace while others are the anomalies. 
Therefore, it is updated iteratively when a new traffic data stream of 
packets is transmitted. 

Rafferty et al. [50] proposed a Moving Window Principal Component 
Analysis (MW-PCA) algorithm to obtain the threshold value for pre
dicting an event that can adapt to the uncertainty behavior of a power 
system frequency for time variance. It learns on the initial window, 
containing a specific size of data frequency. Each newly normal data 
sample and that of PCA are calculated, updating their confidence limits 
to determine the subsequent new sample point. If the confidence limit of 
the initial normal data sample is less than or equal to the new sample 
and that of the initial data PCA confidence limit is also less than or equal 
to the new one then the system is considered to be operating normally 
and the moving window is updated to capture the new data sample. On 
the other hand, if both or either of the confidence bounds exceed the 
data point, it is automatically excluded, indicating the occurrence of 
(outliers). However, the aforementioned algorithms (EODSP, IPCA, and 
MW-PCA) can detect outliers from dynamic sensing data, but they are 
challenged with the inability of robustness to predict outliers in complex 
big and dynamic sensing data. It was solved using the support of a 
Robust Incremental Principle Component Analysis (RIPCA) algorithm, 
proposed by Kong et al. [51]. It uses the sliding window supported with 
an anti-K nearest neighbor method to compute the principal components 
of the sampled data set in the most current window to identify and 
discard outliers. The anti-K nearest neighbor is applied to the sliding 
window to update the current data and to predict the real-time data 
outliers. The anti-k nearest neighbor is a collection of data instances in a 
data set that considers an instance (a) as a K nearest neighbor. Therefore, 
the instances with at least of three anti-k-nearest neighbors are consid
ered as the query outliers due to the anti-k neighbor in the current 
window. 

5.2. Redundancy discovery 

Data redundancy is the duplication or repetition of data, as shown in 
Fig. 4. It is a common problem in the IoT-enabled edge cloud domain. 
The sensed data generated by IoT sensing devices is massively dynamic, 
with redundancies due to the strong correlation between sensed data 
[52]. For example, certain data may appear multiple times in a dataset 
due to the repeated capture of an event by the sensor(s) within a certain 

Fig. 3. An example of ENOF outlier detection.  
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time period. 
Most sensory data redundancies are considered irrelevant due to 

their negative impact on network and application performance. Just to 
mention a few, unnecessarily increases the size of the IoT device(s), 
limited storage, inconsistency, and data corruption. We present the 
filtering algorithms used to solve the problems related to sensor data 
redundancy on the IoT-enabled edge cloud platform, which are dis
cussed as follows; 

A Support Vector Machine Recursive Function Elimination-based 
Correlation Bias Reduction (SVMRFE+CBR) algorithm is developed in 
Ref. [53] to reduce the biased nature of SVM-RFE when a feature set 
consists of multiple similar features. Li et al. [54] initially implemented 
the SVM-RFE by using the requirement derived from the SVM coefficient 
to evaluate features and recursively discard features with limited re
quirements with the support of two different strategies namely Kernel 
and Wrapper. The Kernel strategy retains the dependencies among 
features, while the wrapper strategy does not use the cross-validation 
testing method on train samples as the requirement selection. It is also 
known to be efficient in terms of processing speed when dealing with 
different candidate features. It also makes maximum use of the training 
samples with minimum over-fitting. 

The SVM-RFE is challenged to evaluate the feature(s) requirements, 
and their importance is underestimated due to excessive correlation 
between candidate features. However, the SVM-RFE is integrated with 
the Correlation Bias Reduction (CBR) strategy to improve the elimina
tion of duplicate sensed processes. Therefore, the SVM-RFE+CBR solves 
the prevailing problems of SVM-RFE, by generating a representative 
feature with the highest demand of classified correlated features back 
into the existing feature class. First, the list of features to be eliminated 
during the first iteration is denoted as Fout, and the list of existing or 
relevant features is denoted as Fin. Two thresholds Tc and Tg are used to 
identify highly correlated feature classes in Fout. If there are more than 
Tg features whose coefficient with the highest demand is greater than Tc, 
they are identified as a group. Otherwise, if none of the group members 
are Fin, the features with the highest requirements are moved to Fin. 
Thus, this process is repeated for each feature in Fout until all the fea
tures have been removed. Szecowka et al. [55], proposed a Neural 
Network Sensitivity (NNS) approach for removing duplicate sensed data 
while maintaining the accuracy of the overall performance. An 
improved function was obtained with the support of the differential 
sequential coefficient of the neural network. However, NNS has some 

limitations consisting of a limited number of correlated features as in
puts and the uncertain (confused) result based on overlapping (depen
dent) input features. These problems have been solved using the Fast 
Correlation-based Filter (FCBF) algorithm, implemented by Ref. [56]. 
It uses the Symmetrical Uncertainty (SU) to obtain the optimal and 
desired features among several features. The SU has threshold values 
ranging from 0 to 1, which used to evaluate the relationship between the 
feature class and the similarity between different features. Therefore, 
the variable can estimate the value of other variables if it’s equal to 1. 
Otherwise, the two variables are independent if the value is equal to or 
less than the 0 mark. At the initial stage, it determines the association 
between feature and class subset with the support of C-Correlation while 
it performs the pairwise similarity among the features for the F-Corre
lation. Thus, feature redundancy is avoided during feature selection 
when the similarity between features and classes that satisfy the con
ditions of SU while searching for the relevant features, starting from the 
features with the highest SU values. 

A Fractional-order Embedding Multi-set Canonical Correlations 
(FEMCCs) algorithm is introduced in Ref. [57] to resolve the eliminated 
data drifts from the consistently sampled data. In the initial stage, the 
covariance metrics are re-estimated using the fractional order to correct 
non-zero values and single values. Then, a fractional order is defined 
within-set and between-set scatter matrices to minimize the deviation or 
drift of the data sample matrices. It then extracts similar features from 
multiple sets of feature vectors obtained from the same objects. It then 
fuses the extracted similarity features together with the support of a 
fusion strategy, to form a discriminative feature vector for classification 
function. Haghighat et al. [58], proposed a Discriminant Correlation 
Analysis (DCA) approach to determine the class associations in the 
similarity data feature sets. It reduces the pairwise similarities of the 
corresponding feature sets simultaneously, discarding the feature simi
larities between classes and limiting the features belonging to different 
classes within each feature set. Then, the extracted features of interest 
from multiple classes are merged into a single class. 

However, FEMCCs and DCA have some challenges. The minimized 
feature sets generated by FEMCCs seem to neglect certain correlation 
information among various feature sets which degrade its classification 
performance. On the other hand, DCA is deemed not to be effective as 
redundancies are still detected in the fused features because of the 
similarity requirement. 

Both issues were resolved by utilizing Intra-class and Extra-class 
Discriminative Correlation Analysis (IEDCA-IRE) technique, proposed 
in Ref. [60]. It uses its Kernelize strategy to the intra-class similarity 
(pairswise correlation) and the similarity across various data features in 
the same class, to retain the relevant data in the fused data feature. After 
that, the irrelevant or duplicate data is eliminated. In simple words, it 
retains adequate dimensions of data features for class separation in each 
set of features and learned similarity features obtained by the discrim
inative structure. First, it generates a between-class scatter matrix via 
the nearest neighbor from both the extra-class and the intra-class. Then, 
the non-zero vectors of the corresponding nonzero values in the 
between-class matrix are identified. In addition, the maximization of 
feature correlation between-classes is maximized by computing the 
non-zero vectors with their corresponding values, which transforms the 
entire matrices. The Kernelized intra-class correlation is used to 
concatenate the transformed features into a fused feature vector as 
shown in Fig. 5(a and b), which leads to the elimination of irrelevant 
redundant features present in the fused feature vector. 

However, FEMCCs and DCA do have some challenges. The mini
mized feature sets generated by FEMCCs seem to neglect certain corre
lation information among different feature sets, which degrades its 
classification performance. On the other hand, DCA is weak due to the 
discovery of redundant data in the fused features because of the simi
larity requirement. 

Both problems were solved by using the Intra-class and Extra-class 
Discriminative Correlation Analysis (IEDCA-IRE) technique, proposed 

Fig. 4. Example of redundant data in dataset.  
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in Ref. [60]. It uses its Kernelize strategy to search the intra-class simi
larity (pairswise correlation) and the similarity across different data 
features in the same class to retain the relevant data in the fused data 
feature. Then, the irrelevant or duplicate data is eliminated. In simple 
words, it retains adequate dimensions of data features for class separa
tion in each set of features and learned similarity features obtained by 
the discriminative structure. Firstly, it generates a between-class scatter 
matrix via the neighbor in proximity to the extra-class and intra-class. 
Then, it identifies the non-zero vectors of the corresponding non-zero 
values in the between-class. Furthermore, the maximization of feature 
correlation between classes is obtained by computing the nonzero vec
tors with their corresponding values that transform the entire matrices. 
Therefore, the Kernelized intra-class correlation is used to concatenate 
the transformed features into a fused feature vector, as shown in Fig. 5(a 
and b). This results in the elimination of irrelevant redundant features 
present in the fused feature vector. 

Jeffry-divergence (JD) and Inter-frame Correlation of Color Channels 
on Boolean Series–based Ensemble-based Support Vector Classification 
Algorithm is proposed in Ref. [59]. Thus, to minimize the massive 
amount of sensed data retrieved from camera sensing devices. 

The obtained video frames (sensed data) are compared based on their 
color and structures. If similarities are detected between two or more 
frames, their divergence is computed using the color histogram to obtain 
the actual corresponding frame. Frames with high similarity measure 
are discarded. Then, a multi-fractal technique is used to discover the 
frames, based on different texture structures at different scales with local 
densities, to provide rich descriptors to categorize the structures of the 
frames. Then, an SVM is used to train each category of the frame the 

structure so that optimal informative frames (image) are extracted from 
the non-informative frames (image/data). 

A Correlation Feature Selection-based Heuristic algorithm is intro
duced to address the problem of duplicate sensed data on edge-based 
cloud IaaS [61]. It uses the feature predictive performance and 
inter-correlation to guide its search for an optimal feature subset of 
sensed data. It also, considers the benefit of each feature of sensed data 
for predicting the class label, based on the level of inter-correlation 
among them. At the initial stage, it computes a matrix of 
feature-feature correlations and feature-class from the training data set. 
Then, an optimal search is performed to determine the feature subset 
space, by using the best first search technique to obtain the relevant 
features. Furthermore, Scale Invariant Feature Transform (SIFT) algo
rithm is developed by Yuan et al. [62], to manage the influx of sensing 
data retrieved from multimedia sensor nodes. The retrieved data are first 
fused by using the Laplace Pyramid Transform (LPT) method. Then, the 
different sizes of Gaussian Kernels (known to have more accurate scale 
transform) are selected to perform the scale transform of the fused data, 
to obtain the accurate candidate feature points. Therefore, the edge 
response points of low contrast and instability of the sensed data are 
discarded. Each feature point is allocated a direction by the gradient 
information of neighboring pixels to improve the accuracy of the feature 
point matching. Li et al. [63] propose a Center-symmetric Local Gabor 
Binary Pattern (CSLGBP) feature extraction algorithm to obtain the 
actual face image captured by camera sensor devices. The input face 
image is convolved with the Gabor kernels to retrieve the magnitude 
information of well-defined specific orientations and scales. The speci
fied orientations at the same scale are accumulated to formulate a new 

Fig. 5a. Original dataset.  

Fig. 5b. Fused features via intra-class/extra-class discriminative correlation.  
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scale feature. The features of each scale are computed using the CS-LBP 
descriptor from the retrieved Gabor scale images to extract and obtain 
the relevant image. 

Linear Discriminate Analysis-based enhanced Support Vector algo
rithm is proposed in Ref. [64], to address the uncertainty with sensed 
image signal or data retrieved from camera sensor devices. It computes 
various characteristic features of the data sets and classifies the features 
present in the pre-processed sensed image signal. It also detects the Q 
wave, R wave, and S wave in the pre-processed input image signal to 
determine the various heartbeat levels (e.g., Left Bundle Branch Block, 
Right Bundle Branch Block, Premature Ventricular Contraction, and 
Premature Atrial Contractions) and classify them accordingly. The 
weighted kernel function computes the weight which is used to identify 
the R, Q, and S waves for optimal classification of the heartbeat levels. 
Consequently, the Incremental Fast Searching Clustering-based 
K-Mediods (ICFSKM) algorithm is introduced in Ref. [65], to discover 
the underlying patterns of the dynamic sensing data, by integrating the 
initial data patterns into the previous ones by using its combination 
operations. The cluster centers are continuously updated by the kme
doids upon the arrival of new sensing data. In simplicity, it maintains a 
set of clustered data with similar feature patterns, so it either creates 
new sets of clusters or assign them to the previous cluster upon new 
sensing data arrival. 

A Blocks of Eigenvalues Algorithm for Time Series Segmentation 
(BEATS) is proposed to remove the duplicate sensed data from large 
datasets [66]. It divides the streams of time series data into 64 blocks, 
clustered the streams in square matrices and transforms them into fre
quency domain with the support of the Discrete Cosine Transform (DCT) 
technique. It is then quantized to obtain a finite data set. Then, the 
duplicate data is removed from the finite data set with the support of 
Eigen-values computation as shown in Fig. 6. 

Consequently, Bu [67], develop an Efficient High-order Tensor Fuzzy 
C-means (EHOFCM) algorithm, based on the Canonical Polyadic 
Decomposition scheme for the clustering of IoT streaming data. The 
traditional fuzzy c-means (FCM) technique allocates each object or data 
record to two or more groups by computing a membership matrix. 
However, IoT-sensed big data is characterized by heterogeneous fea
tures, which is a notable drawback to the conventional FCM for the 
clustering of real-time IoT big data. The EHOFCM could solve the 
problems as follows. Each data point or object is convert from the vector 

space to its tensor format by a bijection function. Then they are aggre
gated into clustered groups based on their similarity features. In addi
tion, the attributes of each object or data record are greatly reduced 
using the canonical polyadic decomposition scheme. Thus, to obtain an 
optimal compression rate as it reduces the huge volume of raw sensing 
data to some significant extent. Therefore, enabling the traditional 
fuzzy-c means to cluster the huge sensed data with low-end devices such 
as controllers and mobile phones. 

Banag-Pseudo-cluster-based aggregation algorithm is developed in 
Ref. [68], to determine the exigency or criticality of various data 
collected from multiple sensor nodes. Data is aggregated into groups 
based on the level of their exigency at the edge (gateway) platform. 
Therefore, the data with the highest exigency value is aggregated first 
before the others. This is done repeatedly and systematically until all the 
sensed data are fused into their respective groups and sent to the cloud 
data center for further processing. Abawajy et al. [69] designed a 
Cobweb Expectation Maximization and K-means, which is also called 
the Rank Correlation Coefficient (RCC) algorithm for the clustering of 
ECG sensed data. First, it uses the fuzzy-based data fusion technique to 
aggregate only the relevant values of the sensed data and discard the 
others. Thus, the relevant data sets are grouped into different indepen
dent clusters. Then, a consensus function is used to combine the clusters 
to generate the final consensus cluster by partitioning all the elements or 
values of the dataset. Furthermore, Liu et al. [70] proposed a Two-step 
K-means Clustering (TKC) algorithm to cluster the image sensed data 
into two categories namely, Blurry and Clear Images. The Blurry images 
are discarded while the Clear Images are further processed at the edge 
platform. Clear image sensed data are segmented into two categories 
namely foreground (which contains the actual image data) and back
ground (which contains useless image data) by utilizing the watershed 
segmentation function at the edge. This is done by using the Clear image 
and removing the background image, resulting in the updating of the 
foreground image. 

Adaptive Moving Window Regression (AMWR) algorithm was 
developed by Akbar et al. [71], to determine the optimal training win
dow size of streamed data, by using a Lomb-Scale time series analysis. 
For example, the temperature data retrieved over 24 h tend to contain 
repeated patterns or values. If the training window size of data used is 
equivalent to the optimal periodicity of the data, it will learn all the local 
patterns, resulting in more accurate prediction. In addition, the window 
sizes of data are predicted using the prediction horizon to ensure a 
certain level of prediction accuracy. This allows the window size pre
diction to be increased when the accuracy of the model is high and 
decreased when the performance of the prediction model decreases. 
Then, the output of the predicted block of data is transmitted to the 
Complex Event Processing engine in the form of an event tuple. Thus, 
applying predefined rules on the predicted block of data to detect or 
predict the complex event. 

An Elephant Herd Optimization-based Linear Kernel Support Vector 
(EHO-LKSV) algorithm is proposed in Ref. [72], selecting the desired 
subset features from a dimensionally sensed data set. It greedily searches 
for the element space and determines a feasible feature subset to 
continuously improve the given input data, as it speeds up the compu
tation time of the entire process. Furthermore, the retrieved feature 
subsets are classified into two different labels using a linear kernel 
support vector technique to train the different data sets for optimal 
prediction and accuracy results. Consequently, Wong et al. [73] pro
posed a novel Perceptually Important Points (PIP) algorithm, for the 
reduction of IoT time series sensing big data. It divides the sensed data 
into segments by identifying a set of important points either a set of local 
minima or local maxima out of the sensed data pools. At the initial stage, 
the time series feature alongside sensed data features is segmented into 
odd and even values, after which the similarity between features was 
determined by using the Jaccard similarity distance method. Similar 
instances with the same time retrieval value are eliminated across fea
tures, resulting in the reduction of the sensed data. Fig. 6. Example of BEATS workflow [66].  
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Hadoop Artificial Bee Colony (HABC) algorithm is developed in 
Ahmad et al. [74], for redundancy of sensed data. In the initial stage, the 
classified sensed data are placed into a subset according to their simi
larity characteristics by using the accuracy fitness values. In addition, 
the parameter of Medication Rate (MR) is used to extract features from 
neighboring subset data. Therefore, a random and uniform number 
(from 0 to 1) is generated for each data in each sensed data subset. If it is 
observed that the value is less than the MR, then the feature is inserted 
into a new subset. Otherwise, if the new subset happens to be better than 
the initial exploratory subset, it is considered as the last new subset. 
Thus, this process is repeated until the best feature subset is reached. A 
Deep Learning Long-short Term Memory (LSTM) algorithm is also pro
posed in Ref. [75], to predict the ground speed of aircraft landing, based 
on sensor data retrieved from the aircraft. It consists of six layers that are 
segmented into input, hidden, and output layers. A random forest al
gorithm is first used to classify the sensed data into twenty features. The 
input consists of one layer, the hidden consists of four layers and the 
output has only one layer. Consequently, the four hidden layers consist 
of 128, 64, 32, and 8 neurons while the output layer consists of one 
neuron, which is used to obtain the predictive value of ground speed. 

Mohammadi et al. [76] proposed a Deep Reinforcement Learning 
(DRL) algorithm to aggregate sensed data with the same distance posi
tion, labeled and imputed in the same cluster. Sensed data are clustered 
based on their proximity level. It uses the variance auto-encoder func
tion to identify the optimal data representing the closest distance in
formation for locating the target object. Also, Yan et al. [77] proposed an 
Integrated Deep Auto-Encoder algorithm for the management of sensed 
data obtained from sensor devices. Data such as the state data recorded 
within a period at each sub-processes before the failure is retrieved from 
the DECG which is known as the historical information. The historical 
information is cleansed (e.g., filling missing data features) and divided 
into two categories, namely, distant records and recent records achieve 
an optimal prediction. The distant records symbolize the records that are 
far away from the current time moment, while the recent records indi
cate records that are close to the current time moment. Thus, the distant 
records are used to simulate the damaging trend, while the recent re
cords are used to simulate the smoothing process of the recent change. 
Then, two outputs are fused and linear regression is performed to 
convert hidden or discrete records to predict the Remaining Useful Life 
(RUL) of production machines. 

A deep learning based regression algorithm is proposed in Ref. [78]. 
It consists of eight layers which are further grouped into three sections 
namely lower layer, intermediate layers, and higher layers. The lower 
and intermediate layers are implemented in the edge servers while the 
higher layers are implemented in the cloud. The input sensed data 
(image of dog and cat) from the camera sensor devices are transferred to 
the lower layer in the edge servers for processing. The data are processed 
at the intermediate layer where a filter or feature detector is utilized to 
extract features to obtain the relevant data. This reduces the size of the 
input data to a significant size known as the relevant data. In addition, 
the reduced relevant data is transferred from the edge server to the cloud 
for further processing. The reduced data is passed to the higher layers 
(consisting of neurons) residing in the cloud server, where it is filtered 
(feature detector) to retrieve optimal data. 

Hybrid Multilayer Perceptron Convolution Neural Network (MLP- 
CNN) algorithm is developed in Ref. [79], for the fusion and classifica
tion of sensed image data. Generally, it uses its fusion decision rule to 
fuse the output sensed data based on the CNN confidence value. The 
CNN confidence value is obtained by subtracting the maximum value of 
a vector from its mean value, resulting in the optimal membership 
classification. However, if the CNN confidence value is higher than an 
initial predefined threshold, it indicates that the CNN confidence is 
lower than another threshold. Thus, if the confidence of the CNN de
pends on the initial and the other threshold, then the fusion output se
lection with the higher confidence value is regarded as the actual 
classification result. Consequently, Liu et al. [80], develop a 

Convolutional Neural Network (CNN) algorithm to retrieve the desired 
sensed data on the cloud platform. It fine-tunes the sensed image dataset 
(image of various foods) to generate a fine-grained model that is used for 
the classification. Then, the fine-grained model is trained by Caffe. At 
the initial stage, the model is loaded into the memory, as the data (food 
image) is fed into the convolutional neural network as the input. Thus, 
the CNN features can be extracted by using the max-pooling and 
Rectified Linear-Unit (ReLU) layers, to reduce the data feature di
mensions and speed up the convergence of the computing process. 

Li et al. [81] proposed a Deep Convolutional Computation model 
(DCCM) algorithm to learn hierarchical features of sensed data by uti
lizing the tensor method, to extend the convolutional neural network 
from the vector space to the tensor space. Thus, the local features in the 
sensory data are optimally exploited and overfitting is avoided. Also, a 
tensor convolutional layer is introduced to reach the deeper layers. The 
initial layers are embedded on mobile devices, the intermediate layers 
are presented in cloudlet and the deeper layers are embedded in the 
cloud server. The classification of the input sensed data (image) is 
computed in the initial layers residing on the mobile device. Thus, the 
back-propagation technique is used to train the layers by evaluating all 
the layers until a desired confident classification result is obtained. 
Therefore, if it cannot classify the sample sensed data with sufficient 
confidence, it is then transferred to the intermediate layers in the 
cloudlet for the classification process. The deeper layers are only 
invoked when both the initial and intermediate layers are unable to 
classify the input data set to meet the desired confidence candidate. In 
addition, the CDCNN can decide whether to reject or accept classifica
tions based on the threshold value passed as an argument at runtime. 
This improves the accuracy and speed of the entire classification process. 
Table 4 identifies the problems solved, performance results, and weak
nesses of the existing algorithms used for predicting data redundancy. It 
also indicates the processes adopted by the algorithms, edge devices, 
and cloud IaaS resource components as indicated in previous literature. 

5.3. Cloud resource provisioning for user requests 

Providing of efficient resource allocation ensures satisfactory cloud 
service for end-user requests. In IoT-enabled edge cloud computing, 
resources are allocated as Physical Machines and Virtual Machines in the 
cloud IaaS platform, as shown in Fig. 7. 

How to integrate virtual machines into servers to support the 
requested task determines the ability to minimize the resource alloca
tion problem [83]. This research focuses on the problem of load 
balancing when migrating virtual machine(s) from the source server to 
the destination server for executing data filtering or analytical applica
tion requests. Load balancing refers to the pattern in which resources are 
distributed to avoid overloading any Machine (Servers and VMs) as re
sources are optimally utilized [84]. Also, it determines the migration of 
tasks to underutilized VMs and Servers for effective resource sharing 
[85]. In this article, we analyze the existing algorithms used for 
resolving the related issues of load balancing while allocating resources 
to execute the filtering data or analytic application requests on the cloud 
IaaS platform. 

Jing et al. [86] proposed a Dynamic Priority and Load Balancing 
(DPLB) algorithm for VMs resource(s) load balancing carrying the 
scheduling of IoT application request tasks execution on IaaS. The dy
namic priority function is composed of task value density and task 
computation urgency. In addition, the priority is subsequently increased 
over a period of time to ensure timely execution of each task on the 
queue. The scheduling function consists of Earliest Completion Time 
(ECT) and retrieving the load status information of each VM with the 
support of publish/subscribe method. The task are ordered according to 
their priority level, and the tasks with highest priority are scheduled first 
to the optimal VMs among heterogeneous VMs that meet the QoS re
quirements with the support of the task migration manager. The Brier 
Score method is used to predict an overloaded VM, whereby if a VM 
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Table 4 
Comparison of redundant data elimination techniques.  

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

SVM–T-RFE: A 
novel gene 
selection 
algorithm for 
identifying 
metastasis- 
related genes in 
colorectal 
cancer using 
gene expression 
profiles [53] 

Support Vector 
Machine (SVM) 
Recursive 
Function 
Elimination 

Clustering Inefficient 
elimination of 
feature 
redundancy 

Efficiently 
eliminated 
redundant data 
with minimum 
computation time 

Candidate feature 
set consists of 
highly correlated 
features 

PC N/A N/A N/A 

Feature selection 
and analysis on 
correlated gas 
sensor data 
with recursive 
feature 
elimination 
[54] 

SVM Recursive 
Function 
Elimination- 
based 
Correlation Bias 
Reduction 
(SVM- 
RFE+CBR) 

Clustering Candidate feature 
set consists of 
highly correlated 
features 

Improved 
elimination of 
feature 
redundancy while 
retrieving actual 
sensed data 

N/S PC Yes N/S N/S 

On reliability of 
neural network 
sensitivity 
analysis applied 
for sensor array 
optimization 
[55] 

Neural Network 
Sensitivity 
(NNS) 

Deep learning Inappropriate 
selection of 
desired features 
among various 
features 

Effectively and 
efficiently 
retrieved the best 
features with 
improved 
accuracy 

Unclear result due 
to limited number 
of input features for 
training features 

PC N/A N/A N/A 

Sensor array 
optimization 
for mobile 
electronic nose: 
wavelet 
transform and 
filter based 
feature 
selection 
approach [56] 

Fast Correlation- 
based Filter 
(FCBF) 
algorithm 

Classification Unclear result 
due to limited 
number of input 
features and 
overlapping of 
features 
selectivity 

Obtained best 
combination of 
features while 
discarding 
redundant ones 

Computation time 
complexity 

Remote 
Server 

Yes N/S N/S 

Fractional-order 
embedding 
multi-set 
canonical 
correlations 
with 
applications to 
multi-feature 
fusion and 
recognition 
[57] 

Fractional-order 
Embedding 
Multiset 
Canonical 
Correlations 
(FEMCCs) 

Classification Deviation of 
relevant sensing 
data due to noise 
and limited 
training samples 

Effectiveness and 
robustness in 
eliminating noisy 
data 

Not considering 
vital correlation 
among different 
feature sets 

Server N/A N/A N/A 

Discriminant 
correlation 
analysis: real- 
time feature 
level fusion for 
multimodal 
biometric 
recognition 
[58] 

Discriminant 
Correlation 
Analysis (DCA) 

Classification The identification 
and elimination 
of redundant 
feature between- 
class feature 
similarities 

Improved 
accuracy for 
detecting and 
elimination of 
redundant 
features 

Still pose with 
feature redundancy 
within the intra 
and extra class in 
multiple classes or 
a single class 

Laptop PC N/A N/A N/A 

Enhanced feature 
fusion through 
irrelevant 
redundancy 
elimination in 
intra-class and 
extra-class 
discriminative 
correlation 
analysis [59] 

Intra-class and 
Extra-class 
Discriminative 
Correlation 
Analysis 
(IEDCA-IRE) 

Classification The neglecting of 
some correlation 
information 
among various 
feature sets due to 
over-fitting 
between data 
points 

Improved 
accuracy of 
detection and 
elimination of 
feature 
redundancy 

Computation time 
complexity 

Remote 
Server 

Yes N/S N/S 

Mobile-cloud 
assisted video 
summarization 
framework for 

Jeffry- 
divergence 
Boolean Series- 

Classification Issue of duplicate 
sensed images 

Improved 
accuracy of 
relevant sensed 
image retrieval 

Constrained with 
computation time 
complexity and 
cannot be applied 

Mobile 
Phones 

N/A N/A N/A 

(continued on next page) 

A.E. Edje et al.                                                                                                                                                                                                                                  



Digital Communications and Networks xxx (xxxx) xxx

18

Table 4 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

efficient 
Management of 
remote sensing 
data [60] 

based on 
Ensemble SVM 

while discarding 
irrelevant ones 

for sequence sensed 
dataset 

IoT as a 
applications: 
cloud-based 
building 
management 
system for the 
internet of 
things [61] 

Correlation 
Feature 
Selection-based 
heuristic 
algorithm 

Classification Computation 
time complexity 
for optimal 
feature selection 

Minimized 
dimensionality of 
sensed data sets 
with less 
execution time 

Cannot be used for 
time-series sensing 
data 

Local 
Server 

Yes 1 N/S 

Research on the 
fusion method 
of spatial data 
and multimedia 
information of 
multimedia 
sensor 
networks in 
cloud 
computing 
environment 
[62] 

Scale Invariant 
Feature 
Transform 
algorithm 

Classification Problem of 
extracting actual 
sensed data from 
massive sensed 
data sets 

Minimized 
computation 
resource usage 
while enhancing 
accuracy of 
extracting actual 
sensed data 

Unable to consider 
the spatial 
correlations among 
sensed data set 

Controller 
Raspberry 
Pi 

Yes N/S N/S 

A cloud-based 
monitoring 
system via face 
recognition 
using Gabor 
and CS-LBP 
features [63] 

Center- 
symmetric Local 
Gabor Binary 
Pattern 
algorithm 

Classification Problem of poor 
facial images and 
the complexity of 
Gabor filter 

Reduced the 
Gabor filter 
complexity and 
improved 
rotational 
invariance 

Consumes 
computation 
resources 

Desktop 
computer 

Yes N/S N/S 

A big data 
classification 
approach using 
LDA with an 
enhanced SVM 
method for ECG 
signals in cloud 
computing [64] 

Linear 
Discriminant 
Analysis-based 
Enhanced 
Support Vector 
algorithm 

Classification Error during 
classification of 
sensed data for 
the retrieval of 
relevant ones 

Improved the 
sensitivity and 
specificity and 
reduced the error 
during 
classification 

Highly 
computational 
intensive 

Mobile 
phones 

Yes N/S N/S 

An incremental 
CFS algorithm 
for clustering 
large data in 
industrial 
internet of 
things [65] 

Incremental Fast 
Searching 
Clustering based 
K-Mediods 

Clustering Problem of 
clustering dense 
peaks of dynamic 
sensory data 

Improved the 
effectiveness of 
clustering 
accuracy with 
minimum 
computation 
time, compared to 
other methods 

Computation time 
consuming when 
all the clusters are 
to be merged. 

N/S Yes 10 N/S 

BEATS: Block of 
Eigen-values 
Algorithm for 
Time Series 
Segmentation 
[66] 

Block of Eigen- 
values algorithm 

Clustering Unexpected drift 
data points in big 
data set 

Efficient 
detection of drifts 
with an improved 
classification and 
clustering 
accuracy 

Unable to estimate 
the block size 
before data arrival 
and involves 
computation time 
complexity 

Local 
Server 

Yes N/S N/S 

An efficient fuzzy 
c-means 
approach based 
on canonical 
polyadic 
decomposition 
for clustering 
big data in IoT 
[67] 

Efficient High- 
order Tensor 
Fuzzy C-means 
algorithm 

Clustering The inability of 
fuzzy c-means 
algorithm to 
cluster big 
sensing data 
stream in low end 
IoT devices such 
as controllers and 
mobile phones. 

Improved 
computation 
efficiency in 
terms of fo r 
timeliness and 
significant level 
of clustering 
accuracy as 
compared to the 
conventional 
method 

There is still 
limitation in the 
aspect of clustering 
accuracy as it 
mainly focuses on 
the minimum usage 
of computation 
resources 

Remote 
Server 

N/A N/A N/A 

Social choice 
considerations 
in cloud- 
assisted WBAN 
architecture for 
post-disaster 
healthcare: 

Banag Pseudo- 
cluster based 
aggregation 

Clustering Problem of 
sensed data 
filtering from a 
data set 

Improved 
reliability 
probability based 
on aggregation of 
sensor data in 
terms of their 
level of need 

Weakness in 
aggregation sensed 
data from 
heterogeneous (big 
data) sources 

Broker 
server 

Yes N/S N/S 

(continued on next page) 
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Table 4 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

data 
aggregation 
and 
channelization 
[68] 

Federated 
internet of 
things and 
cloud 
computing 
pervasive 
patient health 
monitoring 
system [69] 

Cobweb 
Expectation 
Maximization- 
based K-Means 

Clustering Highly 
dimensionality of 
sensed data set 
and its noisy 
nature 

Improved the 
quality of sensed 
data by reducing 
its dimensionality 
based on 
aggregation 
strategy 

Computationally 
intensive and 
consumes a large 
amount of 
computer memory 

Mobile 
Phone 

Yes N/S N/S 

A new deep 
learning-based 
food 
recognition 
system for 
dietary 
assessment on 
an edge 
computing 
service 
infrastructure 
[70] 

Two-step K- 
means 
Clustering 
Algorithm 

Clustering Numerous blurry, 
background 
images (useless) 
data that limits 
classification 
accuracy and 
delayed 
transmission of 
the data to the 
cloud 

Eliminated 
unusable sensor 
data resulting in 
improved 
clustering 
accuracy 

Unable to discover 
the actual 
correlation among 
the discovered 
patterns in the 
sensed dataset 

Mobile 
Phone 

Yes N/S N/S 

Predictive 
analytics for 
complex IoT 
data streams 
[71] 

Adaptive 
Moving Window 
Regression 
algorithm 

Regression Challenge of 
complex event 
streaming data 
without 
leveraging 
historical data for 
prediction 

Improved 
prediction 
accuracy in near 
real-time and 
minimized the 
computation 
complexity 

Utilizes huge 
amount of 
computation 
resource (memory 
space) 

N/A Yes N/S N/S 

Effective features 
to classify big 
data using 
social internet 
of things [72] 

Elephant Herd 
Optimization- 
based Linear 
Kernel Support 
Vector (EHO- 
LKSV) algorithm 

Optimization/ 
Classification 

Delay in the 
computation 
processing of 
sensed data 
feature selection 

Enhanced feature 
selection 
accuracy with 
minimum 
computation time 
and memory 
usage 

N/S Fog Sever N/A N/A N/A 

A novel data 
reduction 
technique with 
fault-tolerance 
for internet-of- 
things [73] 

Perceptually 
Important Points 
(PIP) 

Classification Problem of both 
local and global 
optima in sensed 
data reduction. 

Effective and 
efficient 
elimination of 
duplicate sensed 
data with same 
time retrieval 

Eliminate relevant 
sensed data 
alongside with 
duplicates ones due 
to missing data 

Primary 
and 
Secondary 
Server 

Yes N/S N/S 

Toward modeling 
and 
optimization of 
features 
selection in big 
data-based 
social internet 
of things [74] 

Hadoop 
Artificial Bee 
Colony 
algorithm 

Optimization Computational 
complexity 
involves 
extracting of 
features in real- 
time IoT 
streaming data 

Improved feature 
selection 
accuracy with 
response to 
timeliness 

Not Specified Multi- 
cluster 
Hadoop 
with i5 3.4 
GHz and 8 
GB RAM 

Yes N/S N/S 

A novel deep 
learning 
method for 
aircraft landing 
speed 
prediction 
based on cloud- 
based sensor 
data [75] 

Deep Learning 
Long-short term 
memory (LSTM) 
algorithm 

Deep learning Inaccurate 
classification of 
sensed data 
retrieved from 
aircraft to 
determine the 
safety of its 
landing speed 

Improved 
classification 
accuracy to some 
extent in a timely 
manner 

Weakness in the 
selection of optimal 
parameters to 
determine relevant 
sensed data from 
irrelevant ones. 

N/A Yes N/S N/S 

Deep 
reinforcement 
learning in 
support of IoT 
and smart city 
services [76] 

Deep 
Reinforcement 
Learning 
algorithm 

Deep learning Problem of close 
estimation of the 
target locations in 
an indoor 
environment 

Improved 
classification 
accuracy and 
performance of 
locating target 
objects 

Highly 
computationally 
complex 

Fog server N/A N/A N/A 

(continued on next page) 
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workload exceeds the Brier Score it is considered as overloaded, but if it 
falls below the Brier score it is considered as underloaded. The Task 
Migration Manager (TMM) then assigns or facilitates the migration of 
tasks to the underload VMs to balance the loads on the available VMs. 

Quasi-real-time Optimization-based Adaptive SERAC3 resource 
allocation algorithm is introduced in Ref. [87], for selecting appropriate 
configuration of virtual machines to process IoT sensory big data 
filtering application requests on the cloud IaaS upon arrival. It solved the 
prevailing problem of the CP-BO algorithm, by extracting representative 
workloads for incoming sensing data, analyzing the data, and intelli
gently determining an optimal configuration (type of virtual machines, 
size of the virtual machine, and the number of virtual machines) for the 
clustering of each job in real time without considering the load 
balancing in PHs and VMs. However, problem of load balancing is solved 
in Ref. [88] by using a Virtual Machine and Selection algorithm for the 
processing of sensory data filtering or analytic application requests 
(jobs) in the cloud IaaS platform. It uses parameters such as CPU utili
zation, memory utilization, and job arrival rate to cluster servers into 

eight groups. Servers with optimal computation resources that is based 
on the parameters are selected from the resource pool to host VMs. As a 
result, the virtual machines from overloaded servers are moved to the 
optimal server to process new jobs as they arrive. 

In [89], a Fuzzy Markov Normal (FMN) algorithm is proposed 
selecting VMs to be transferred from congested servers (hosts) to avoid 
oversubscribed hosts and minimize energy consumption. It categorizes 
the attributes of VMs based on their current utilization level and the 
workload status of the host in which they reside with the support of 
fuzzy logic method. It then uses the Markov Normal technique is 
deployed to determine which category of VMs should be migrated from 
the overloaded host to the less load target host. However, FMN only 
performs migration of VMs based on host utilization without considering 
the “memory utilization of VMs selection process which is the basic 
requirement to be established before VMs migration” [90]. Therefore, an 
approximation Algorithm is proposed in Ref. [91], to solve the 
content-based memory problems of VM selection from source to desti
nation, with a single overloaded host and a destination host when the 

Table 4 (continued ) 

Article Title Algorithm Process Problem 
Resolve 

Outcome Weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

Big data analytics 
for prediction 
of remaining 
useful life based 
on deep 
learning [77] 

Integrated Deep 
Auto-Encoder 
algorithm 

Deep learning Ineffective 
retrieval of 
desired sensed 
data from 
massive data set 
for prediction 
purpose 

Effective 
extraction of 
desired sensed 
data which 
enhances 
prediction 
accuracy 

Computationally 
intensive 

Fog server Yes N/A N/A 

Learning IoT in 
edge: deep 
learning for the 
internet of 
things with 
edge computing 
[78] 

Deep learning 
algorithm 

Deep learning Complications in 
obtaining optimal 
sensed data at 
reduced sizes. 

Improved 
accuracy of 
desired sensed 
data retrieval at 
minimum size 

Highly 
computationally 
complex 

Edge 
Servers 

Yes N/S N/S 

A hybrid MLP- 
CNN classifier 
for very fine 
resolution 
remotely 
sensed image 
classification 
[79] 

Hybrid 
Multilayer 
Perceptron 
Convolution 
Neural Network 
algorithm 

Deep learning Problem of 
inaccurate 
classification of 
different fine 
spatial resolution 
remotely sensed 
images 

Improved 
classification 
accuracy 

Computation 
intensive and huge 
memory space 
usage during 
processing 

Local 
Server 

Yes N/A N/A 

A new deep 
learning-based 
food 
recognition 
system for 
dietary 
assessment on 
an edge 
computing 
service 
infrastructure 
[80] 

Convolutional 
Neural Network 
algorithm 

Deep learning Inaccurate 
classification of 
sensed data and 
delayed 
transmission of 
the data to the 
cloud 

Improved 
classification 
accuracy by 
eliminating 
redundant data 

Classification 
accuracy still needs 
to be enhanced 

Mobile 
Phones 

Yes N/S N/S 

Deep 
convolutional 
computation 
model for 
feature learning 
on big data in 
the internet of 
things [81] 

Deep 
Convolutional 
Computation 
model algorithm 

Deep learning Inefficient 
detection of the 
correlations 
between 
heterogonous 
sensed data 
feature space 

Improved 
classification 
accuracy 

Highly 
computationally 
intensive 

Local Sever N/A N/A N/A 

The cascading 
neural network: 
building the 
internet of 
smart things 
[82] 

Cascading Deep 
Convolution 
Neural Network 
algorithm 

Deep learning Limited 
computational 
processing 
resources on 
embedded mobile 
devices 

Reduced 
computation cost 
at reasonable 
classification 
accuracy in a 
timely manner 

Classification 
accuracy still needs 
to be enhanced 
with an 
optimization 
algorithm 

Raspberry 
Pi 
Mobile 
phone 
Cloudlet 
server 

Yes N/S N/S  
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overloaded threshold is fixed. It uses the memory sharing-aware place
ment system to exploit the content similarity of the VMs. This is done by 
sharing the same pages or sub-pages to simultaneously dispatch a batch 
of VMs at the same time from the overloaded source host and determine 
the appropriate destination host from various hosts that can accommo
date the migrated VM. 

Genetic and Particle Swarm Optimization (PSO) algorithms are 
proposed in Ref. [92] to optimize the selection of virtual machines, 
which leads to optimal utilization computational resources on the cloud 
IaaS platform. The GA updates the optimal selection of VMs for 
executing the IoT application requests, by assuming that there are a 
given number of VMs (chromosomes) as the possible capacity to be 
allocated for executing the jobs. It then calculates their fitness by using 
the parameters namely, CPU utilization, Turnaround, and Waiting time 
to determine the optimal VMs with less execution time. Otherwise, the 
selection operation (crossover and mutation) is repeated to generate 
new VMs. The selection operation is used to select and obtain a matching 
pair of two VMs. It also compares the two VMs and randomly generates 
the best one. It then implements the two-point crossover operation be
tween two VMs to obtain two different offspring. Changes in the VMs are 
maintained by using the flip bit mutation, which in turn provides up
dates to one or more gene values in the VMs (chromosomes) from their 
initial state. The PSO algorithm assumes that there are numerous par
ticles that represent VMs and in the given time of iterations. Therefore, 
each VM in the cloud (s) is considered as a possible solution that can be 
assigned to execute the incoming filtering application requests or jobs. It 
then computes the fitness of each VM with its g-best. If the current value 
is better than the p-best, it places the current location as the p-best 
location. On the other hand, if the current value is better than the g-best, 
the g-best is reformulated to the current index in the array. Thus, the 
optimal VM is assigned as the g-best and update the entire process for 
incoming job requests is updated. Experiment have been conducted to 
determine the performance of both algorithms, and the result shows that 
PSO performs better than GA. 

Narman et al. [93] introduced a Dynamic Dedicated Server Sched
uling (DDSS) algorithm, based on homogenous and heterogeneous 
servers for the processing of IoT application requests. It continuously 
updates the number of dedicated PMs with VMs based on requests 
arrival rates and their priority levels. Dedicated PMs are dynamically 
assigned to application requests by considering four important param
eters: task arrival rate, task priority levels, total service rate of servers in 
the systems, and total service rate of servers capable of executing a 
single type of request. At the initial stage, IoT application request tasks 
are classified based on their arrival rate and priority levels. Then, PMs of 

different groups are assigned to different request classes, and the 
formulation of VMs into dedicated PMs for request processing is 
required. The number of assigned PMs is frequently updated for each 
class of request tasks until all tasks are fully executed. 

A sub-optimal resource-based Support Vector Regression-Genetic 
(SVR-GA) algorithm is developed for the provisioning of cloud re
sources for executing application requests [94]. The SVR is responsible 
for predicting the resource specifications for jobs and creating the VMs 
to resolve the uncertainty of job arrival on real-time basis. It also eval
uates the number of resources with the support of two lookup tables that 
keeps records of all related resource utilization rates for each VMs. It 
also determines whether the VM should be increased or decreased based 
on the number of application request tasks. The genetic algorithm is then 
used to assign VMs to PHs for job execution. It adjusts itself optimally to 
allocate VMs for the new arrivals. Jeyarani et al. [95], developed an 
Adaptive Power-aware Virtual Machine Provisionary (APA-VMP) that 
efficiently allocates VMs to a group of servers by satisfying the specifi
cations of an optimal number of workloads. At the initial stage, the 
workload of application service requests is estimated after which it al
locates the desired number of VMs to active servers that can perform the 
job. Also, Hieu et al. [96] proposed a Max-BRU algorithm to maximize 
resource utilization and balance the resource across different di
mensions, to reduce the total number of servers in the active state. First, 
a group of servers is instantiated as empty, while the initial value of 
servers under the running state is set to zero. Therefore, VMs are 
assigned to servers until all VM requests are fully assigned. Then, the 
average resource usage and the resource balance of all the active servers 
are calculated. In this way, the most suitable server is selected from the 
group of the existing active servers and a possible VM request is selected. 

The SVR-GA, APA-VMP, and Max-BRU algorithms are prone to some 
limitations, which include the inability to preserve the unbalanced re
sources when a server reaches to its maximum computation limit, its 
disk and memory resources are wasted due to insufficient resources 
resulting in high energy consumption, the inability to achieve quality of 
service delivery due to real-time VM migrations and none of them are 
yet to be applied to IoT application requests services. However, Mekala 
and Viswanathan [97] address most of the above limitations, by devel
oping an anergy-efficient resource ranking and utilization factor-based 
virtual machine selection (ERVS) algorithm. The algorithm is used to 
solve the problem of energy utilization of server and virtual machine 
resources for job execution. It evaluates the resource utilization rate of 
the jobs and properly categorizes the jobs. Then, they are assigned to the 
appropriate VMs that can execute each class of jobs (IoT sensed data 
analytics) by considering their resource utilization rate. This is realized 
by sorting out the highly loaded servers with the support of the 
Compressive Resource Ranking (CRB) scheme, which places more 
emphasis on resource utilization and energy consumption of servers. 
Then, VMs are assigned to execute the jobs (IoT sensory data filtering or 
analytic application requests), by considering a limited type of job with 
deadlines and the resource requirements for executing the specified job. 

A hybrid-based Combinatorial Ordering First-Fit Genetic (COFFGA) 
and Combinatorial Ordering Next Fit Genetic (CONFGA) algorithms are 
developed in Ref. [98], to reduce the resource waste per server and the 
total number of servers in an active state. It determines the optimal VMs 
that are capable of executing the requested workloads to be migrated to 
the desired servers that are in an active state. While the First and Next Fit 
heuristic techniques are responsible for making migration decisions to 
reduce the total resource waste in each of the physical servers that are in 
an active state, and the number of non-ideal physical servers. However, 
the hybrid-based algorithms are designed to solve the local optima 
problems without considering the global optima problems. Therefore, in 
their research, Mohiuddin and Almogren [99] solve the global optima 
problem by introducing a Workload Aware Virtual Machine Consoli
dation (WAVMCM) algorithm to switch the idle physical servers into 
hibernation mode. The resources of the server are classified into four 
classes with different resource capacities to execute different VM 

Fig. 7. An Example of servers and virtual machine(s) architecture.  
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requests. At the initial stage, new VM requests for executing jobs are 
classified according the amount of resource demand after which they are 
assigned to the VM class that is capable of executing each job. Thus, VMs 
are migrated from low-load servers to intermediate-load servers within 
the same class. It also determines which physical servers that are inac
tive mode and put them into hibernation mode to minimize power 
consumption. 

Abed and Younis [100] developed an Adaptive Firefly-enabled 
Weighted Round Robin (AFF-WRR) algorithm for dynamic and static 
load balancing on VMs to process IoT application requests. The WRR is 
responsible for estimating the weights of each VM based on three pa
rameters namely CPU, memory, and latency. VMs with higher weights 
are considered the most viable for executing large jobs followed by the 
least weighted VMs. The Adaptive Firefly (AF) tracks the status of VMs 
and sorts them according to their weighted level. VMs with optimal 
resources are selected to execute incoming jobs on a real-time basis. The 
status of VMs is regularly monitored in milliseconds by the AF, while 
WRR frequently rebalances the status of VMs based on the Firefly results. 

Chen and Chen [101] addressed the issue of load balancing on VMs 
and servers in the cloud by developing a service-oriented Virtual Ma
chine (VM) placement algorithm. It uses the genetic algorithm to opti
mize the configuration of different VMs in order to achieve minimum 
communication overhead and total power consumption. In the initial 
stage, the population chromosome is generated, which represents the 
VMs. 

It then assigns the required VMs that are capable of executing the 
jobs to the servers, ensuring that the VM load does not exceed the server 
limit. This is done through the fitness function where the communica
tion cost between the VMs is computed and summed up to obtain the 
fitness value of one server. Therefore, the server with the highest fitness 
is randomly selected from multiple servers to execute the job. Table 5 
shows the solved problems, performances, and weaknesses of the algo
rithms used for Cloud IaaS resource allocation for the execution of 
sensory data filtering or analytic application requests on IoT-based edge 
cloud infrastructure. It also shows the processes used by the algorithms, 
edge devices, and cloud data center resource components as depicted in 
previous research. 

Basu et al. [102] introduced a hybrid Genetic-Ant Colony Optimi
zation (GAACO) algorithm for scheduling the task requests of multi
processor IoT applications on the Cloud IaaS. Each task is scheduled to a 
single processor at a time in a heterogonous processor system. A task can 
only be executed when its predecessors have finished execution. Simply 
put, once a task starts processing on a specific processor, the next task 
request scheduled on the same processor must wait for the previous task 
to finish executing. At the initial stage, the task and processor with the 
best fitness solution are determined among multiple processors and 
incoming task requests with the support of GAACO. After which the 
heuristic function is used to estimate the makespan (maximum execu
tion time) taken for each task it traverses all the levels in the graph 
structure. Therefore, a task with a larger makespan is scheduled first in 
GAACO to avoid starvation processing resources. The capability of the 
processors is computed by the heuristic function, where the processors 
with the highest probabilistic ratio of resources are selected to execute 
the task with the highest makespan. This process is repeated for several 
iterations until all tasks in the graph structure are fully executed. 

6. Processes and network protocols for IoT-edge cloud 
computing 

Processes are a set of instructions that are currently being executed. 
These sets of instructions that are processed logically to solve specific 
problems which scientists call algorithms. In simple terms, processes are 
a set of instructions that are systematically applied by an algorithm to 
solve a particular problem. On the other hand, network communication 
protocols govern the interaction between IoT sensing devices and edge- 
cloud platforms. Therefore, it is important for IoT low-power devices to 

use appropriate communication protocols to effectively communicate 
with other devices and networks on the IoT-based edge cloud 
infrastructure. 

6.1. Processes adopted in existing research 

In this subsection, we discuss and analyze the processes adopted by 
the existing algorithms (discussed in the previous section) to solve the 
problems (as highlighted in the tables of section 5) on IoT-enabled edge- 
cloud computing. 

The classification process is a supervised machine learning technique 
that assumes some prior knowledge to guide the partitioning operation, 
formulating a set of classifiers for the representation of the best distri
bution of patterns [103]. Furthermore, classification processes are 
designed to use both labeled and unlabeled data during the classification 
process. The set of labeled data is mainly used to train the classifier, such 
as the prediction function, while the unlabeled data is classified by the 
classifier. The classification output is a finite set of predefined discrete 
classes or values, depending on the number of classes the classification 
problems belong to either binary or multi-class categories [104]. The 
binary category or classification consists of two labels e.g. 0/1, good/
bad, and white/black, while the multi-class category consists of multiple 
labels. Consequently, the quality of the classification results is verified 
by determining the number of test patterns that are allocated to the 
corresponding collections, which is called the accuracy rate. 

The regression process is used to design the correlation between 
input and output variables to achieve a predictive solution. The result of 
regression processes is determine in the continuous domain. For 
example, in a diabetic monitoring application, a regression can predict 
the symptoms of diabetes based on previous information. In general, the 
regression allows the prediction of the outcome of a specific event. It is 
widely used in the updating of IoT health and agriculture application 
domains. 

The clustering process is an unsupervised learning process that ex
tracts hidden patterns and structures from a given data set. Unlike 
classification which has some prior knowledge to strategize the parti
tioning operation, clustering has no pre-knowledge of the strategy to be 
used for the extraction process. It aggregates the data into groups, based 
on their similar features and common structure as well as the data points 
in different dissimilar clusters. Clustering is mainly used in recom
mender systems and outlier detection. The verification and evaluation of 
clustering results is based on the amount or number of dimensions of the 
data set to which the clustering algorithm is applied. For example, the 
sum of squared errors is mainly used for data clustering while the peak- 
signal-to-noise ratio is mainly used for image clustering [105]. 

Deep learning is a machine learning technique that consists of deep 
and complex architectures [106,107]. These architectures consist of 
many layers that convert input (e.g. images) into output data (e.g. an 
actual image) while learning progressively on higher-level features 
[108]. Deep leering, also known as Deep Neural Networks (DNN), was 
considered complex to train data effectively and efficiently, it performs 
both classification and clustering processes during operation. It began to 
gain popularity in 2010 when it was discovered that training and 
analysis of large, high-dimension IoT big data could be realized with 
optimal results [109]. The stacked auto-encoders (SAEs) and DNN layers 
sequentially in an unsupervised manner (pre-training), and fine-tuning 
the stacked network with a supervised approach, could provide better 
performance. However, they are known to be inflexible and require a 
reasonable amount of work to generate acceptable results. 

Optimization is the process of modifying some features of a system to 
improve its performance or use limited resources more efficiently. For 
example, an algorithm can be optimized to speed up its process execu
tion faster or to use minimum memory resources during process 
execution. Optimization techniques are mainly based on a bio-inspired 
model whose algorithms are mainly used to solve optimization prob
lems. The optimization-based process is adopted by the algorithms in 
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Table 5 
Comparison of resource allocation techniques for executing IoT applications.  

Article Title Algorithm Process Problem Resolve Outcome weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

An open 
scheduling 
framework for 
QoS resource 
management in 
the internet of 
things [86] 

Dynamic Priority 
and Load 
Balancing (DPLB) 
algorithm 

Optimization Inability to 
execute dependent 
tasks and violation 
of SLA 

Reduced 
makespan and 
improved load 
balance on VMs 

Local and global 
optimum issue 

N/A Yes 12 124 

SERAC3: Smart 
and economical 
resource 
allocation for 
big data clusters 
in community 
clouds [87] 

Quasi-real-time 
Optimization 
based Adaptive 
SERAC3 resource 
allocation 
algorithm 

Optimization Exhaustive search 
cost for optimal 
resource selection. 

Improved the 
selection of 
optimal 
configurations 
with lower 
exhaustive search 
cost 

High resource 
utilization due to 
inefficient load 
balancing 

N/S Yes 16 N/S 

Resource-aware 
virtual machine 
migration in IoT 
cloud [88] 

Resource-aware 
Virtual Machine 
and Selection 
algorithm 

Optimization Issue of 
unbalanced load 
due to unforeseen 
changes upon job 
arrival 

Reduced the 
dispatch time for 
the provisioning 
of PHs and VMs in 
the cloud data 
center 

Unable to 
consider the 
bandwidth 
communication 
between VMs 

Raspberry 
Pi B+

Yes 3 12 

Improvement of 
energy 
efficiency at 
cloud data 
center based on 
fuzzy Markov 
normal 
algorithm VM 
selection in 
dynamic VM 
consolidation 
[89] 

Fuzzy Markov 
Normal 
Algorithm 

Clustering Inefficient 
selection of VMs 
migration from 
overloaded host 

Improved Load 
balancing with 
optimal placement 
of VMs on target 
servers and 
minimal energy 
consumption 

Unable to 
consider the VMs 
memory contents 
before migration 

N/S Yes 16 640 

An optimization of 
virtual machine 
selection and 
placement by 
using memory 
content 
similarity for 
server 
consolidation in 
cloud [91] 

Approximation 
Algorithm 

Optimization Latency delay of 
VMs dispatched 
from overloaded 
to destination 
server 

Reduced the 
migrated VMs 
memory data with 
minimum energy 
consumption 

Energy 
consumption is 
still on the high 
side 

N/A Yes 100 4000 

A hybrid model of 
Internet of 
Things and 
cloud 
computing to 
manage big data 
in health 
services 
applications 
[92] 

Particle Swarm 
Optimizer 
algorithm 
Genetic 
Algorithm 

Optimization Global optima 
entrapment and 
tasks computation 
time complexity 

Reduced 
computation time 
and optimal 
provisioning of 
storage 

Weakness in local 
space entrapment 

Router Yes 100 1000 

Scheduling 
internet of 
things 
applications in 
cloud 
computing [93] 

Dynamic 
Dedicated server 
scheduling 
algorithm 

Optimization Inefficient 
provisioning of 
servers for 
homogenous and 
heterogeneous IoT 
data 

Minimized 
computation 
delay and 
improved 
utilization of 
servers 

Weakness in load 
balancing among 
servers 

Not 
Specified 

Yes 8 N/S 

An adaptive 
resource 
management 
scheme in cloud 
computing [94] 

Support Vector 
Regression- 
Genetic (SVR-GA) 
algorithm 

Regression/ 
Optimization 

SLA variation for 
resource 
utilization 

Improved 
resource 
utilization 
configurations 
with SLA between 
VMs and cloud 
service Providers 

Not considering 
computation cost 

N/A Yes 6 100 

An adaptive 
Resource 
management 
scheme in cloud 
computing [95] 

Adaptive Power- 
aware Virtual 
Machine 
Provisioner 

Optimization Unexpected 
overload and high 
energy 
consumption 

Improved load 
balancing with 
less energy 
utilization 

Still challenged 
with high energy 
consumption 

N/A Yes 100 N/S 

(continued on next page) 

A.E. Edje et al.                                                                                                                                                                                                                                  



Digital Communications and Networks xxx (xxxx) xxx

24

previous research, to solve optimization problems for the allocation of 
resources required for the execution of IoT data filtering (outliers and 
redundancy elimination) on analytic applications have been extensively 
analyzed in this paper. 

6.2. Network communication protocols deployed in IoT-Edge Cloud 
computing 

Communication protocols such as message Query Telemetry Transfer 
(MQTT), Wireless Fidelity (WiFi), Bluetooth, General Packet Radio 

Table 5 (continued ) 

Article Title Algorithm Process Problem Resolve Outcome weakness Edge 
Device 

Cloud Data Center 

Cloud 
Storage 
Server 

No. of 
Physical 
Machine 
(PMs) 

No. of 
Virtual 
Machine 
(Vms) 

(APA-VMP) 
algorithm 

A virtual machine 
placement 
algorithm for 
balanced 
resource 
utilization in 
cloud data 
centers [96] 

Max-BRU 
algorithm 

Optimization Unbalanced load 
due to inefficient 
activation of 
desired servers 

Improved and 
balanced use of 
resources of 
multiple types of 
servers deployed 

Unable to 
estimate 
overloaded PMs 
upon arrival of 
new jobs. 

N/A Yes 150 N/S 

Energy-efficient 
virtual machine 
selection based 
on resource 
ranking and 
utilization factor 
approach in 
cloud 
computing for 
IoT [97] 

Energy-efficient 
resource ranking 
and utilization 
factor-based 
virtual machine 
selection 
algorithm 

Optimization Unbalanced 
resource 
utilization and 
high energy 
consumption 

Improved the 
utilization rate 
and minimize the 
number of live VM 
migrations with 
less energy 
consumption 

Weakness in local 
search 
entrapment and 
computation time 
complexity 

Laptop Pc Yes 100 500 

Multi-capacity 
combinatorial 
ordering GA in 
application to 
Cloud resources 
allocation and 
efficient virtual 
machines 
consolidation 
[98] 

Combinatorial 
Ordering First-Fit 
Genetic and 
Combinatorial 
Ordering Next Fit 
Genetic 
algorithms 

Optimization High number of 
running servers 
and resource 
waste per server in 
local search space 

Minimized the 
total number of 
running servers 
with less resource 
waste 

Unable to 
consider the issue 
of global optima 
while determining 
the best VMs 
among various 
ones  

Yes 128 340 

Workload aware 
VM 
consolidation 
method in edge/ 
cloud 
computing for 
IoT applications 
[99] 

Workload Aware 
Virtual Machine 
Consolidation 
algorithm 

Optimization Inability for edge 
cloud data centers 
to process tasks in 
a power-saving 
mode and the 
issue of global 
entrapment 

Improved 
convergence rate 
with minimum 
active server 
usage and less 
energy 
consumption 

Not considering 
the 
communication 
overhead between 
servers and VMs 

Laptop Pc Yes 500 1500 

Developing load 
balancing for 
IoT-cloud 
computing 
based on 
Advanced 
Firefly and 
weighted round 
Robin 
algorithms 
[100] 

Firefly and 
Weighted Round 
Robin algorithms 

Optimization Overloaded PMs 
due to unbalanced 
load on every 
resource 

Improved 
resource 
utilization with 
minimum 
response time 

Inefficient 
searching of 
candidate 
resources for job 
execution  

Yes 1000 5000 

Service oriented 
cloud VM 
placement 
strategy for 
internet of 
things [101] 

Service-oriented 
virtual machine 
placement 
algorithm 

Optimization Challenges of high 
communication 
overhead between 
VMs under the 
same service 

Minimized 
communication 
cost between VMs, 
energy usage and 
the total PM utility 

Unable to 
schedule the VMs 
for task execution 
which disrupt 
load balancing in 
the PMs  

Yes 250 N/S 

An intelligent 
/cognitive 
model of task 
scheduling for 
IoT applications 
In cloud 
computing 
environment 
[102] 

Hybrid Genetic- 
Ant Colony 
Optimization 
(GAACO) 
algorithm 

Optimization Scheduling task 
dependency 

Efficient load 
balancing with 
reduced makespan 

Not considering 
local search 
entrapment  

Yes 1000 2000  
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Service (GPRS), and Advanced Message Queue (AMQP) were used in 
previous research which is briefly discussed as follows: 

Message Query Telemetry Transfer (MQTT) was invented by IBM in 
the year 1999 as a standardized publish/subscribe push protocol. It is 
specifically designed to facilitate the transmission of data under long 
network delays and low-bandwidth network conditions [110,111]. It 
mainly runs on both TCP/IP and other network protocol that is designed 
to provide lossless and bidirectional connection. Consequently, MQTT is 
suitable for resource-constrained IoT sensing devices that uses unreli
able or limited bandwidth channels [112]. It was standardized at Oasis 
in 2013 with a channel bandwidth of 5–20 MHz, Downlink rate of 256 
MB and an uplink rate of 127 MB over the TCP/IP port of 8883. 

Bluetooth is a wireless communication protocol designed to provide 
short-range connectivity for small devices such as smartphones, laptops, 
and hand-held devices. It was standardized by the 802.15.3 in 1999, and 
operates in the 2.4 GHz frequency band at a low rate of 200 kb/s. Its 
main function is to allow audio and data streaming between devices. 
However, it consumes power energy during data transmission between 
devices. This led to the introduction of Bluetooth Low Energy (BLE) in 
the year 2010 to address this high power consumption. BLE is designed 
to extend the application of Bluetooth for use in low-power devices such 
as wireless sensors and wireless controllers [113]. Currently, the IETF 
6LoWPAN Working Group (WG) has already recognized the importance 
of BLE for the Internet of Things and is beginning to develop a specifi
cation for the transmission of IPv6 packets over BLE [114,115]. It is most 
commonly used by IoT sensing devices to transmit data to other devices. 

Fourth/Fifth Generation (4G/5G)-LTE Fourth Generation- Long- 
Term Evolution (4G LTE) are wireless network protocols designed and 
deployed for the Internet Protocol (IP)-based services, such as the 
combination of multimedia capabilities and applications that with high- 
speed mobile broadband [116]. It is considered to be ten times faster 
than 3G in terms of transmission speed and covers a wider range. As a 
result, its Packet Core (EPC) and IP-based network framework, enable 
the smooth delivery of voice and data packets as compared to the older 
models of cell towers using GSM and UMTS. However, it is fast reaching 
its limits due to the increasing demand for wireless data transfer as the 
use of mobile phone usage grows and the reduction of latency in 
end-to-end connections due to the physical imposition of the Internet. 
Therefore, the Fifth Generation (5G) mobile protocol has been intro
duced to solve the aforementioned issues of the 4G. 5G is specifically 
designed to support efficiently support massive machine-to-machine 
and critical communications. Thus, a large number of actors and sen
sors/meters that are deployed anywhere in the landscape will be able to 
transmit their sensed data to other devices with a very low response time 
and high reliability [117]. It also has the potential to provide mobile 
broadband services such as high-speed multimedia streaming, video
conferencing, Internet browsing, Voice-over-IP (VoIP), and efficient 
downloading and uploading of large files. 

Advanced Message Queue (AMQP) is a protocol that originated in the 
financial sector. It has been standardized by Oasis as a ubiquitous, secure 
reliable, and open Internet protocol for handling messages [118]. It is 
regarded as a messaging middleware that uses different transport pro
tocols. AMQP provides asynchronous publish/subscribe communication 
with messaging, in addition to its store-and-forward feature that ensures 
reliability during and after network disruptions [119,120]. This means 
that AMQP has the potential to be used in hazardous or hostile envi
ronments, as long as the overhead is not very high. 

Wireless Infidelity (Wi-Fi) is used to connect wireless devices such as 
laptops, smartphones, and PDAs. It is a brand of wireless communication 
technology that is held by the Wi-Fi alliance to improve the interoper
ability between wireless networking products based on the IEEE802.11 
standard [121]. It has a coverage range of 46 m (indoor) and 100 m 
(outdoor) with a bandwidth channel of 20–40 MHz, followed by a 
downlink rate of 600Mbps and an uplink of 248Mbps at a frequency 
band of 2.4 GHz. 

7. Potential challenges of IoT-enabled cloud computing 
infrastructure 

Whiel IoT-enabled cloud systems tend to solve many problems, there 
are a reasonable number of challenges that have yet to be addressed. 
This is because the potential solutions needed to solve these challenges 
have not been unravelled by the algorithms in previous research. Also, 
some of these remaining challenges require a handful of consistent ef
forts from IoT-Cloud researchers and development communities, gov
ernments, policy makers, and platform/hardware providers. Some of 
these challenges are discussed as follows; 

Unstructured IoT sensing data. In real-world sensing events, the 
sensed data generated by sensor devices is unstructured due to their 
dynamic and heterogeneous nature. While NoSQL and Ubuntu servers 
are designed to store the unstructured data, they have yet to make a 
significant impact on real-world IoT sensory enabled cloud infrastruc
ture, as most researchers use structured data sources to experiment. 
However, the emergence of data lakes has proven to handle large vol
umes of IoT sensor data. It is able to store both unstructured and 
structured data without any predetermined idea of how data will be 
used. It also does not use query languages or scheme mapping and can 
store any type of data without limitations. Lake is challenged with two 
major issues. First, loss of agility may occur when it is utilized to store a 
huge pool of data that urgently needs analysis and decision making. 
Because they have to go through several processes before any mean
ingful data can be extracted from the data sample. Secondly, data 
interchange may happen in the future since any data can be stored or 
inserted [122]. This problem can be avoided by attaching metadata to 
the stored data and ensuring the attribute or source of the data. There
fore, it is necessary to further investigate on how algorithms can be used 
to manage these unstructured sensory data both in the simulation 
environment and in a real-world scenario. 

Protocol diversity and Standardization. The IoT-enabled edge cloud 
platform is challenged with a universal protocol and standard, as 
different protocols are used to communicate and interact between de
vices of different development standards. While the platform has been 
designed to enable multiple protocols to work together due to different 
requirements and their intended uses, but may lack the potential to 
support multiple protocols extensively. Therefore, it is worth further 
exploring the development of an intelligent gateway as a possible so
lution that can provide seamless interoperability and integration be
tween different protocols and algorithms that can intelligently select the 
optimal transmission channels for efficient data delivery. On the other 
hand, various organizations, such as 3GPP, IEEE, ETSI, and M2M made 
some significant efforts to enforce standards for the development of IoT 
devices. They assume that interoperability will be provided by the 
aforementioned standardization activities, but they may lead to higher 
uncertainty as they all provide specific and isolated solutions that can 
only cover their domains [123]. 

Integration of contextual information. IoT data must be integrated 
with other data sources, such as context information that complement 
the understanding of the environment [124]. This is because IoT-sensed 
data cannot understand the environment on its own. The emergence of 
algorithms tends to speed up data filtering, analysis, and efficient 
reasoning due to the limited search space for the reasoning engine. For 
example, a sensor camera with the facial recognition cability can 
perform surveillance in different contexts such as in government 
buildings and residential areas [125]. Therefore, the sensed image data 
collected from different contexts can assist the system to determine the 
optimal action to be taken based on the retrieved face of an individual. 

Overloading communication networks. With a large number of IoT- 
enabled edge cloud components, maintenance and configuration of their 
underlying physical Machine-To-Machine (M2M) interactions and net
works becomes more complex. The dynamicity and heterogeneity of IoT 
big sensing data rapidly overwhelms the communication networks of the 
IoT-enabled Edge Cloud platform. Therefore, the volume and speed of 
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the data must be taken into account in order to provide optimal Quality 
of Service (QoS). One way to address this issue is to provide for the 
storage and management of IoT sensor data across tiers of the IoT-based 
edge cloud (ITC). This will compel application designers to deploy 
complete data contextualization algorithms and techniques to obtain 
optimal QoS delivery across the ITC platform. The contextual techniques 
must consider the storage capabilities of the essential processing devices 
such as the sensing devices, microcontrollers, and edge servers and the 
cloud data centers. 

Security challenge in collaborative edge-cloud processing. Further 
research is needed on how to perform cloud-side computations to 
encrypt IoT sensor data, without revealing secrets or privacy to cloud 
service providers. In addition, how the edge can send the sensing data to 
the cloud in a secure manner, ensuring that the sensing data is not 
corrupted in the edge processing units, and cannot be intercepted by 
unauthorized persons (intruders) while in transit to the cloud platform, 
needs to be addressed. 

Real-time Filtering/Analytic data. Achieving useful and intelligent 
information in real time from a huge volume of sensed data collected 
from several multiple IoT sensing devices has become a major challenge. 
This is due to the unavailability real-time stream mining approaches. 
One way to overcome this challenge is the use of edge devices, which has 
already been proposed. Nevertheless, there are other solutions (such as 
algorithmic techniques) that are in the early stages of implementation 
and need to be optimized to extract meaningful and intelligent data on a 
real-time basis, which needs to be addressed in the future. 

8. General discussion and conclusion 

As expected, the algorithms were able to resolve issues related to 
sensed data filtering based on outlier detection and redundancy elimi
nation in a given data set. In addition, issues related to load balancing 
for resource allocation, such as migrating VMs from source to target 
server(s) to perform the execution of sensed data filtering or analytic 
application requests, were significantly resolved. Outliers were pri
marily detected by considering the data type, spatio-temporal, attributes 
correlations, user specification threshold, outlier score, and identifying 
the type of outlier (error and event). There are two main types of data, 
namely linear and non-linear. The linear data type is known as static and 
is structured sequentially either in a list(s) or frame(s) format. Non- 
linear is dynamic data and is also known as time series or streaming 
data. Spatio-temporal simply means the distances between sensing data 
and time upon arrival from a particular source (sensor). In other words, 
sensing data within a specific close range are considered normal data 
while others are classified as outliers or anomalies. The similarity 
(correlation) between several data in a given dataset is also determined, 
as those with the same values are either clustered or aggregated into 
several groups or subsets according to their similarity level. Outliers 
within the subsets are then identified based on threshold(s) or score. 

We also observed that outliers are of two types as detected by some of 
the existing algorithms, namely error and event. Error outliers are 
generated by defect sensors which are often classified as irrelevant or 
un-wanted data and are therefore eliminated from the dataset. Event 
outliers, on the other hand, are useful data, most often used to report or 
predict unforeseen circumstances. For example, the detection of a gas 
leak from a cylinder is called an event outlier. In terms of redundancy, 
feature selection and pattern recognition have been strongly. Features or 
attributes of a given data set are subjected to a similarity check to 
identify data with similar attributes or features. Thus, similar features 
are selected to be merged into a single data feature or better still one out 
of the similar data features is retained while others are eliminated. 
Similarly, similar data patterns are classified or clustered together while 
the irrelevant ones are identified and discarded. 

Load balancing issues have mainly been solved by considering the 
number of incoming requests prior to arrival while searching for optimal 
or under-loaded VMs to migrate from source (overloaded) to target 

(under-loaded) server(s) to execute jobs. This, avoid execution time 
complexity and overloading of available recourses (VMs and Servers). 
There are various servers (physical machines) in the cloud IaaS platform 
dedicated to specific tasks leading to the effective management of 
computation and storage resource provisioning. According to Ref. [14], 
there are three main types of sensed data servers in the cloud IaaS 
namely NoSQL, Relational Database (MySQL), and Hadoop servers. The 
NoSQL server is mainly designed to store and manage IoT sensed data 
due to their unstructured pattern. It has some features such as distrib
uted storage, dynamic schema, and horizontal scalability. However, it is 
limited in its ability to maintain consistency, isolation, atomicity, and 
durability of sensed data. In addition, it partially supports distributed 
queries. On the other hand, Hadoop servers are unique distributed file 
repositories that store and efficiently manage massive unstructured 
data. It enables IoT sensed data to be generated in XML format. 

According to Shvachko et al. [103], the combination of both NoSQL 
and Hadoop servers enables unified management and access to sensed 
data. Relational database (MySQL) server stores massive structured 
data. However, different data are generated rapidly and the relationship 
between these data is of importance for a multitenant data storage 
system [104]. Therefore, virtual relational data is merged with various 
conventional relational data in a single schema. Despite the potential 
features of the cloud servers, they are still prone to the massively het
erogeneous and dynamic nature of IoT big data. One way to solve this 
problem is to use a virtual machine for effective and reliable data pro
cessing and storage management on servers. Virtual machines subsets of 
a server that can be used to perform highly intensive computational 
tasks. This enables a server to perform two or more tasks simulanously, 
such as providing storage space for incoming sensed data and at the 
same time performing data filtering or analytic operations on the sensed 
data using algorithms (e.g. algorithms used for both data outlier and 
redundancy detection) based on user application requests. 

The Observation in Fig. 8(a) shows that redundancy problems were 
mainly handled by the classification process, followed by deep learning 
and clustering, with limited use of optimization and less use of regres
sion processes. On the other hand, the clustering process was mainly 
used to detect outlier-related problems, followed by classification and 
deep learning, with limited use of regression and with no use of opti
mization. The optimization process happens to be the most deplorable 
process for resource allocation in the Cloud IaaS, to execute sensory data 
filtering and analytic application requests (jobs), followed by clustering 
with limited usage of regression and without the use of classification 
process. In addition, clustering seems to outperform other processes in 
terms of its usage by the existing algorithms studied in this research, as 
shown in Fig. 8(b). Followed by classification, optimization, deep 
learning, and regression processes respectively. This shows that the 
utilization of machine learning algorithms is also gaining more mo
mentum in IoT big data filtering and analytics on IoT-enabled edge cloud 
computing. 

Observations from the tabulated information indicated that a 
reasonable amount of sensed data filtering algorithms used, to solve 

Fig. 8a. Utilization frequency of processes.  
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outlier and redundancy related problems were implemented at the edge 
and edge/cloud respectively. The processes at the edge/cloud are mainly 
based on retrieving relevant sensed data while discarding the irrelevant 
ones. In addition, the algorithms executed only at the edge platform are 
mainly accessed immediately by the end-user applications. Fig. 9 shows 
that most of the algorithms are implemented in the edge/cloud respec
tively. This shows that the use of cloud to exploit the limitations of IoT 
sensing device(s) and that of edge devices to process of IoT big data are 
gaining more momentum in this research area. 

In the aspect of processes adopted by the existing algorithms, the 
clustering process outperforms other processes in terms of usability 
level. It can extract useful information from large sensed data as 
compared to others, due to its sensitive nature to outliers and redundant 
(noisy) sensed data. Clustering is done by partitioning based on the 
distance between instances, where each instance is identified as a cluster 
and merges the instances that are closer to one another until all instances 
are fused into a single cluster. Observation also shows that most of the 
clustering process was implemented on static sensed data retrieved from 
various sensor devices. However, clustering such as Moving Window 
Principal Component Analysis [50] and Robust Incremental Principal 
Component Analysis [51] algorithms were implemented on dynamic or 
real-time sensing data. Clustering methods are also known to be rela
tively scalable and enable the number of clusters to be specified in 
advance, such as the Recursive Principal Component Analysis [32], 
Adaptive K-means [35] and Distance-based Algorithm [44]. On the 
other hand, hierarchical clustering such as Enhanced Knowledge 
Granule [42], Hyperellipsoidal [46], and Incremental Fast Searching 
Clustering-based K-Mediods [65], specifies the number of clusters itself 
as it performs operation on any given dataset. 

Classification methods are mainly used in health-related sensory 
data collection to predict redundant data, as can be seen from the 
existing research. They are known for their efficiency in terms of time 

and space complexity and are suitable for real-time sensing data. 
Furthermore, the classification process is easy to develop and maintain 
in parallel hardware such as the cloud data center. However, it requires 
lengthy training and testing procedures on sensed data with poor 
interpretability. Deep learning mainly combines the services of clus
tering and classification to perform its operations on sensed data. They 
are most suitable for large sensory data as observed from previous 
research and tend to achieve high accuracy in terms of performance 
compared to other methods. However, they require a large amount of 
storage space and are more time-consuming to run than the other 
methods. The optimization process has been mainly used at the cloud 
data center to improve efficiency in terms of computation time 
completion (makespan), minimum resource utilization and energy 
consumption as observed from previous algorithms. Their main objec
tive is to prioritize available resources with optimal ability to execute 
the required task. 

In conclusion, data filtering or analytic algorithms are the main tools 
used to extract knowledge from massive data generated from various IoT 
sensing devices. On the other hand resource allocation algorithms are 
used to provide optimal computation and storage resources for 
executing data filtering/analytic application requests in IoT-enabled 
cloud IaaS platform. Therefore, to achieve the desired knowledge in
formation, appropriate filtering algorithms that are effective and effi
cient need to be deployed due to the characteristic nature of IoT-sensed 
big data. In this paper, we identify and discuss some related literature 
surveys on the IoT-based edge cloud domain, which motivated the 
current research under study. Extensive background information about 
IoT devices, sensing data characteristics and factors that motivating the 
integration of IoT, edge/cloud. A detailed description of the adopted 
research methodology used to update the current research under 
consideration. Filtering/analytic algorithms from previous researches 
were analyzed based on issues related to outlier detection, redundant 
data discovery and elimination. The provisioning of optimal resources 
(PHs and VMs) for the execution of IoT application requests, taking into 
account load balancing issues is also presented. The problem solved, the 
successes and the weaknesses of algorithms are highlighted in tabular 
form. In addition, the processes employed by the algorithms were dis
cussed as well as the network communication protocols used for the 
transmission of sensor data on the IoT-enabled edge cloud domain. 
Subsequently, the prevailing challenges that are yet to be resolved in the 
IoTenabled edge cloud infrastructure are presented to help characterize 
the research directions in this area. The significance of this research is to 
provide new insight into the discovery of event and error outliers with 
the use of machine and deep learning techniques. This have been 
ignored for long by computing research communities. The existing al
gorithms were applied in the healthcare sector to detect prevailing 
diseases and symptoms in patients and minimize cybercrimes and 
internet fraud. Also, in manufacturing company such as automobile 
production plants for detection of faulty equipment. Detection of do
mestic and industrial gas leak. Researchers in this area may capitalize on 
the weaknesses of the existing algorithms to improve their performances 
in future research. For example, managing IoT and cloud components to 
minimize energy usage and emission of carbon-dioxide. Furthermore, to 
improve the performance of resource allocation techniques to minimize 
hazardous material use and resource waste during assigned task in the 
cloud. Also, to apply outlier detection techniques to detect unauthorized 
access to data repositories and assigning resources, to protect sensitive 
information of cloud users’ request tasks. Subsequently, optimizing the 
existing techniques for the retrieval of useful and intelligent data in real 
time will be considered in future research. The authors are currently 
implementing outlier techniques for detecting cancer in human brain. 
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[96] N.T. Hieu, M. Di Francesco, A.Y. Jääski, A virtual machine placement algorithm 
for balanced resource utilization in cloud data centers, in: Paper Presented at the 
2014 IEEE 7th International Conference on Cloud Computing, 2014. 

[97] M.S. Mekala, P. Viswanathan, Energy-efficient virtual machine selection based on 
resource ranking and utilization factor approach in cloud computing for IoT, 
Comput. Electr. Eng. 73 (2019) 227–244. 

[98] H. Hallawi, J. Mehnen, H. He, Multi-Capacity Combinatorial Ordering GA in 
Application to Cloud resources allocation and efficient virtual machines 
consolidation, Future Generat. Comput. Syst. 69 (2017) 1–10. 

[99] I. Mohiuddin, A. Almogren, Workload aware VM consolidation method in edge/ 
cloud computing for IoT applications, J. Parallel Distr. Comput. 123 (2019) 
204–214. 

[100] M.M. Abed, M.F. Younis, Developing load balancing for IoT-cloud computing 
based on advanced firefly and weighted round robin algorithms, Baghdad Science 
Journal 16 (1) (2019) 130–139. 

[101] Y.-H. Chen, C.-Y. Chen, Service oriented cloud VM placement strategy for Internet 
of Things, IEEE Access 5 (2017) 25396–25407. 

[102] S. Basu, M. Karuppiah, K. Selvakumar, K.-C. Li, S. Islam, H. K, M.M. Hassan, 
Md Bhuiyan, A. Z, An intelligent/cognitive model of task scheduling for IoT 
applications in cloud computing environment, Future Generat. Comput. Syst. 88 
(2018) (2018) 254–261. 

[103] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, 
in: Proceedings of 2010 IEEE 26th Symposium on Mass Storage Systems and 
Technologies, MSST), 2010, pp. 21–27. 

[104] H. Yaish, M. Goyal, G. Feuerlicht, Multi-tenant elastic extension tables data 
management, Procedia Comput. Sci. 29 (2014) (2014) 2168–2181. 

[105] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, L.T. Yang, Data mining for internet of things: a 
survey, IEEE communications surveys & tutorials 16 (1) (2014) 77–97. 

[106] F. Samie, L. Bauer, J. Henkel, From cloud down to things: an overview of machine 
learning in internet of things, IEEE Internet Things J. 12 (2019). 

[107] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Network. 
61 (2015) 85–117. 

[108] A. Ali, J. Qadir, R. ur Rasool, A. Sathiaseelan, A. Zwitter, J. Crowcroft, Big data 
for development: applications and techniques, Big Data Analytics 1 (1) (2016) 
2–24. 

[109] G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, C. 
I. Sánchez, A survey on deep learning in medical image analysis, Med. Image 
Anal. 42 (2017) 60–88. 

[110] M.H. Rehman, V. Chang, A. Batool, T.Y. Wah, Big data reduction framework for 
value creation in sustainable enterprises, Int. J. Inf. Manag. 36 (6) (2016) 
917–928. 

[111] S. Kraijak, P. Tuwanut, A survey on internet of things architecture, protocols, 
possible applications, security, privacy, real-world implementation and future 
trends, in: Proceedings IEEE 16th International Conference on Communication 
Technology, ICCT), 2015, pp. 23–30. 

[112] D. Soni, A. Makwana, A survey on MQTT: a protocol of internet of things (IoT), in: 
Proceedings of the International Conference on Telecommunication, Power 
Analysis and Computing Techniques, ICTPACT), 2017, pp. 1–6. 

[113] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of 
things: a survey on enabling technologies, protocols, and applications, IEEE 
communications surveys and tutorials 17 (4) (2015) 2347–2376. 

[114] C. Gomez, J. Oller, J. Paradells, Overview and evaluation of bluetooth low 
energy: an emerging low-power wireless technology, Sensors 12 (9) (2012) 
11734–11753. 

[115] J.W. Hui, D.E. Culler, Extending IP to low-power, wireless personal area 
networks, IEEE Internet Computing (4) (2008) 37–45. 

[116] J. Nieminen, B. Patil, T. Savolainen, M. Isomaki, Z. Shelby, C. Gomez, 
Transmission of IPV6 Packets over Bluetooth Low Energy Draft-Ietf-6lowpan-Btle- 

A.E. Edje et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2352-8648(23)00153-0/sref59
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref59
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref59
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref60
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref60
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref60
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref61
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref61
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref61
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref62
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref62
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref62
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref63
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref63
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref63
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref64
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref64
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref64
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref65
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref65
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref65
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref66
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref66
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref66
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref67
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref67
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref67
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref68
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref68
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref68
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref69
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref69
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref69
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref70
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref70
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref70
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref70
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref72
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref72
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref72
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref73
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref73
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref73
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref74
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref74
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref74
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref75
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref75
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref75
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref76
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref76
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref76
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref77
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref77
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref77
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref78
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref78
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref79
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref79
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref79
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref80
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref80
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref80
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref80
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref81
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref81
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref81
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref82
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref82
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref82
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref83
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref83
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref84
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref84
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref85
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref85
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref85
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref86
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref86
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref86
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref87
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref87
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref87
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref88
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref88
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref88
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref89
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref89
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref89
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref89
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref90
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref90
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref90
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref90
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref91
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref91
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref91
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref92
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref92
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref92
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref92
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref93
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref93
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref93
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref94
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref94
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref94
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref95
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref95
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref95
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref96
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref96
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref96
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref97
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref97
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref97
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref98
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref98
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref98
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref99
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref99
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref99
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref100
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref100
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref100
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref101
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref101
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref102
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref102
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref102
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref102
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref103
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref103
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref103
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref104
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref104
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref105
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref105
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref106
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref106
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref107
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref107
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref108
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref108
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref108
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref109
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref109
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref109
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref110
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref110
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref110
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref111
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref111
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref111
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref111
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref112
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref112
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref112
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref113
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref113
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref113
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref114
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref114
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref114
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref115
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref115


Digital Communications and Networks xxx (xxxx) xxx

30

12, 2012. https://datatracker.ietf.org/doc/html/draftietf-6lowpan-btle-06. 
(Accessed 17 June 2019). 

[117] E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/LTE-advanced for Mobile Broadband, 
second ed.), second ed., Academic press United Kingdom and United State of 
America, 2013. 

[118] F. Schaich, B. Sayrac, M. Schubert, H. Lin, K. Pedersen, M. Shaat, 
A. Georgakopoulos, FANTASTIC-5G: 5G-PPP Project on 5G air interface below 6 
GHz, in: Proceedings at the European Conference on Network and 
Communications, 2015, pp. 1–7. 

[119] OASIS, Advanced Message Queuing Protocol (AMQP) Cliams-Based Security 
Version, 1.0, 2017. https://www.oasis-open.org/committees/.../amqp-cbs-v1.0 
-wd04.doc. (Accessed 12 May 2019). 

[120] F.T. Johnsen, T.H. Bloebaum, M. Avlesen, S. Spjelkavik, B. Vik, Evaluation of 
transport protocols for web services, in: Proceedings of 2013 Military 
Communications and Information Systems Conference, 2013, pp. 54–62. 

[121] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, J. Alonso-Zarate, A survey on 
application layer protocols for the internet of things, Transaction on IoT and 
Cloud computing 3 (1) (2015) 11–17. 

[122] S. Song, B. Issac, Analysis of wifi and wimax and wireless network coexistence, 
Journal of Computer Networks and Communications (IJCNC). 6 (6) (2014) 
63–78. 

[123] R. Hai, S. Geisler, C. Quix, Constance: an intelligent data lake system, in: 
Proceedings of the International Conference on Management of Data, 2016, 
pp. 11–18. 

[124] A. Meddeb, Internet of things standards: who stands out from the crowd? IEEE 
Commun. Mag. 54 (7) (2016) 40–47. 

[125] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware 
computing for the internet of things: a survey, IEEE communications surveys & 
tutorials 16 (1) (2014) 414–454. 

A.E. Edje et al.                                                                                                                                                                                                                                  

https://datatracker.ietf.org/doc/html/draftietf-6lowpan-btle-06
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref117
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref117
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref117
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref118
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref118
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref118
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref118
https://www.oasis-open.org/committees/.../amqp-cbs-v1.0-wd04.doc
https://www.oasis-open.org/committees/.../amqp-cbs-v1.0-wd04.doc
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref120
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref120
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref120
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref121
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref121
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref121
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref122
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref122
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref122
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref123
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref123
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref123
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref124
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref124
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref125
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref125
http://refhub.elsevier.com/S2352-8648(23)00153-0/sref125

	IoT data analytic algorithms on edge-cloud infrastructure: A review
	1 Introduction
	2 Background
	3 Research methodology
	4 Related work
	5 Analysis of algorithms on IoT-edge cloud
	5.1 Outlier detection algorithms
	5.2 Redundancy discovery
	5.3 Cloud resource provisioning for user requests

	6 Processes and network protocols for IoT-edge cloud computing
	6.1 Processes adopted in existing research
	6.2 Network communication protocols deployed in IoT-Edge Cloud computing

	7 Potential challenges of IoT-enabled cloud computing infrastructure
	8 General discussion and conclusion
	Declaration of competing interest
	References


