
Data & Knowledge Engineering 146 (2023) 102185

a

b

c

d
r
s
m
a

d
t
s
d
d

M
F

h
R
A
0
(

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak

Logical big data integration and near real-time data analytics
Bruno Silva a, José Moreira a,b, Rogério Luís de C. Costa c,∗

Institute of Electronics and Informatics Engineering (IEETA), LASI, University of Aveiro, Aveiro, 3810-193, Portugal
Department of Electronics, Telecommunications and Informatics (DETI), University of Aveiro, Aveiro, 3810-193, Portugal
Computer Science and Communication Research Centre (CIIC), Polytechnic of Leiria, Leiria, 2411-901, Portugal

A R T I C L E I N F O

Keywords:
Big data integration
Distributed databases
Near real-time OLAP

A B S T R A C T

In the context of decision-making, there is a growing demand for near real-time data that
traditional solutions, like data warehousing based on long-running ETL processes, cannot fully
meet. On the other hand, existing logical data integration solutions are challenging because
users must focus on data location and distribution details rather than on data analytics and
decision-making.

EasyBDI is an open-source system that provides logical integration of data and high-level
business-oriented abstractions. It uses schema matching, integration, and mapping techniques,
to automatically identify partitioned data and propose a global schema. Users can then specify
star schemas based on global entities and submit analytical queries to retrieve data from
distributed data sources without knowing the organization and other technical details of the
underlying systems.

This work presents the algorithms and methods for global schema creation and query
execution. Experimental results show that the overhead imposed by logical integration layers
is relatively small compared to the execution times of distributed queries.

1. Introduction

Traditionally, data analytics have been executed on large data warehouses whose data is periodically extracted from OLTP
atabases and loaded as part of a long-running ETL (extract, transform, and load) process. However, the landscape is changing
apidly. Near real-time data analytics is becoming a requirement in many of today’s IT contexts [1]. For instance, in many IoT-based
ystems, multiple sensors generate data streams that need to be processed and analyzed on the fly to support decisions based on the
ost recent data. Applications of near real-time analytics also include anomaly detection and cybersecurity [2], Industry 4.0 [3],

nd urban planning [4].
However, storing and processing large volumes of data from heterogeneous sources in near real-time is challenging for traditional

ata management systems [5]. Over the years, several different data management systems appeared and the trend became to choose
he most suitable platform for each use case. It means that current IT environments tend to have distinct platforms being used
imultaneously, such as relational databases, NoSQL databases or distributed event streaming platforms [6]. Indeed, the use of
istributed storage tools (including NoSQL databases) reduces the time needed for data retrieval of large datasets from heterogeneous
ata sources [5].

Many systems have been developed to enable the execution of distributed queries over heterogeneous data sources (e.g., Cloud-
dsQL [7], Presto [8], Apache Drill [9]). However, they are complex and need lots of work to configure and create queries.

requently, the users must know the details regarding the data distribution and the internal organization of the data in their sources.
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Moreover, they were not designed for data analytics and decision-making. There is a lot of work on solving specific problems related
to data integration, but creating solutions that go all the way in the data-to-insights pipeline, i.e., from raw data to the desired
outcome, remains an open issue [10].

EasyBDI [11] is an open-source system for logical data integration that hides the complexity of data distribution and the
particularities of organization of the data in the local sources from the domain experts. Users may just plug data sources into
the system and EasyBDI automatically extracts their local data organization and proposes a Global Schema by applying well-known
algorithms for schema mapping and integration. The result is a logical and integrated representation of the underlying data sources.
Then, the system automatically identifies data partitioning and maps global entities to the corresponding data snippets in the
distributed sources. Users may fine-tune the proposed schema and create complex mappings to represent high-level abstractions.
Finally, data scientists and analysts may define star schemas over the global abstraction layer and submit queries without writing
code. Hence, users may submit analytical queries on fresh data based on high-level subject-oriented entities without worrying about
data location and partitioning, or the technologies used in each data source.

In this work, we define the main concepts related to the multi-layered logical integration used in EasyBDI. We present the
algorithms for automatic global schema creation (including schema matching, mapping, and integration) and distributed query
generation. These are based on the current state of the art, and demonstrate how those concepts are used to add new functionality
within EasyBDI. To the best of our knowledge, this is the first solution for logical data integration, guaranteeing location and
fragmentation transparency, dealing with different database models, and providing high-level star-schema abstractions at the same
time. We also detail two case studies, one based on benchmark data and queries and the other based on real-world data, and present
performance evaluation results.

The following section reviews background and related works. Section 3 defines concepts as used by EasyBDI. Section 4 presents
the main algorithms used for global schema creation and analytic query execution. Section 5 presents use cases and experimental
results. Section 6 concludes the paper.

2. Background and related work

In traditional data warehouses, data is commonly materialized using an ETL process to extract data from each data source,
transform those data into a consolidated schema and load it into a centralized database. However, this process may be incompatible
with some use cases that require fresh data, such as IoT. The logical data integration approach is an alternative that may be more
suitable for such needs. Queries are made directly to each data source, and only the necessary data is retrieved [12], eliminating
the need for time-consuming data extraction and loading processes before data analysis can occur. Moreover, querying the data it
resides guarantees that the information is up-to-date.

This section begins with a theoretical presentation on concepts and methods for creating global schemas in distributed databases.
Next, the latest approaches to logical data integration and near real-time data analytics in modern data management systems are
presented. It ends with a selection of research gaps considering the objectives and recommendations of the literature and the
characteristics of the most recent frameworks for logical data integration.

2.1. Global schema generation

In the logical integration architecture, a global schema is created to consolidate data from various sources. This schema provides
an integrated view of semantically similar data, allowing for logical relationships between data from different sources. To create a
global schema, similarities between schema elements (e.g., tables and attributes) must be identified (schema matching), and multiple
local schema elements must be combined into a single global schema element (schema integration). It is also required to create a
mapping between global and local schema elements to enable the translation of global queries into local queries and assemble the
answers into a single result (schema mapping).

2.1.1. Schema matching
The main goal of schema matching is to detect objects stored in different data sources that contain data belonging to the same

conceptual domain. Usually, the algorithms compute a measure that estimates the similarity between two schema elements. If the
similarity is higher than a certain threshold, it is considered that there is a match. Schema matching techniques include looking at
data structures (schema-based matching) and looking at the format or content of instances of data (instanced-based matching).

Schema-based matching techniques use metadata, such as names, data types, inter-table relationships, and overall schema
tructure, to compare objects [13]. Similarity assessment can occur at the element level, considering names and data types, or at the
structure level, considering the relationships between schema elements [14,15]. Linguistic techniques use the name of the schema
elements to find how similar they are using measures such as n-grams, Jaccard index or Levenshtein distance. Thesaurus with
synonyms and hypernyms can also be used to deal with semantically related concepts, such as ‘car’ and ‘automobile’ [13,14]. On
the other hand, constraint-based techniques use information such as data type, primary keys, foreign keys and unique constraints
to identify the relationships between schema elements.

Instance-based matching is a technique that analyzes data instances to identify matches between schema elements. This technique
is suitable for semi-structured data sources where schema metadata is limited [13,15]. Instance-based matching can use either
linguistic or constraint-based techniques. In linguistic techniques, the most common keywords or word combinations in instances
are identified to determine the similarity between schema objects. On the other hand, constraint-based techniques analyze the ranges
of values or try to identify patterns in the data to identify matches. The instance-based and constraint-based matching techniques

can be combined to achieve better performance.
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2.1.2. Schema integration and mapping
To build a global schema, it is necessary to merge all local schema elements identified as semantically identical in the

schema-matching process into a global one with the same semantics.
The mappings between global and local schema elements enable the automatic translation of global queries into local queries.

Schema mappings can be created from the local schemas to the global schema, known as Local-as-View (LAV), or from the global
schema to the local ones, known as Global-as-View (GAV) [16]. GAV allows easier creation of mappings, but adding a new data
source forces the redefinition of some mappings. On the other hand, LAV makes adding new data sources easier but makes the
update of the mappings and query generation more difficult [16,17].

Typically, users create schema mappings manually, but ideally, they would only provide high-level information and the system
would generate mappings automatically [18]. For instance, a user interface is used to create connections between schema elements
and the system generates additional details for each mapping accordingly [19]. There are also solutions to create schema mappings
through examples, meaning that the users must provide an incomplete set of schema mappings and the system creates the remaining
ones [20,21]. In other systems, such as MusQ [22], the mappings between local and global schemas are established using a language
to set the semantic correspondences between tables.

2.2. Logical data integration approaches

The logical approach uses an architecture known as mediator/wrapper in the literature. In this approach, a mediator creates and
maintains a Global Conceptual Schema (GCS), also called a global schema or mediated schema. This schema provides an integrated
view of each data source’s schema, known as Local Conceptual Schema (LCS) or local schema. The mediator can receive a query
defined on the global schema entities and break it down according to the data sources’ schemas. The decomposed queries are then
sent to wrappers that communicate and send the queries to the data sources [12]. The queries are executed in the data sources and
the results are returned to the mediator. The mediator combines the results returned by each data source and prepares the final
result according to the global schema. This approach is followed in systems like BigDAWG [23] and MusQ [22].

BigDAWG [23] is an open-source polystore system that allows users to configure islands for each type of data model they want
to query. Users can connect data sources of the same DBMS on the same island. However, when combining data from different
islands, users must use special operators to deal with each island’s different data models and query languages. MusQ [22] is a A
multi-Store Query System for IoT Data that uses schema-matching techniques to detect semantically similar schema elements and
generate a global schema semi-automatically. It uses a Datalog-Like Language query language called MQL.

Query engines like CloudMdsQL, Apache Drill, and Trino (formerly Presto), can perform distributed querying across a wide range
of data sources and DBMS. These systems use an SQL-like language to specify queries that are subsequently decomposed and sent
to relational and NoSQL data sources. The communication and translation of queries into the native language of each data source
are managed by wrappers [7,8,24]. They provide a simplified way to access raw data across different data sources, as users do not
have to configure a global schema. However, users need to know the details of the schemas and how to combine data from each
data source.

2.3. Near real-time data analytics

Traditional data warehousing involves periodically running data extraction, transformation, and loading (ETL) tasks. However,
this approach is inadequate in applications that demand near real-time data, including IoT, e-commerce, health systems, and stock
brokering [25]. Besides, ETL operations can interrupt analytical operations, posing a challenge for systems that operate 24 h a
day [26]. Near real-time warehouses offer a solution by ensuring that fresh data is accessible without system downtime through
lightweight and frequent ETL processes [27].

[25] proposed an architecture aimed at enabling the concurrent execution of analytical queries and continuous data integration
with minimal performance degradation. To achieve this, they employed temporary tables without constraints or indexes, allowing
for rapid insertion of data updates from ETL processes. These temporary tables contain only recent data and must be relatively small
in size. Analytical queries must explicitly specify the tables to be queried, which could be the original tables with historical data,
the temporary tables with recent data, or both. A similar approach is used in [27] where the data is split into partitions for easier
separation of recent data from older data. Likewise, [28] present an architecture featuring a dynamic module that holds a limited
amount of the most recent data and a static module that stores the remaining historical data. The star schema tables in both modules
are identical, enabling seamless integration between the two. Analytical queries are automatically subdivided into subqueries sent
to both modules by a merger component without user intervention.

2.4. Requirements and evaluation

Table 1 places side by side the latest proposals for logical data integration and real-time data analytics, considering a selection
of desirable features identified in the literature [2,5,11,14,28,29].

This table and the presentation in the previous subsections highlight that existing proposals do not fully and transparently support
logical integration in modern Big Data systems. Namely, platforms like Big DAWG and MusQ are not able to deal with different data
models and query languages, while distributed query engines like Trino, Apache Drill or CloudMDSQL, do not use a global schema,
requiring users to know about the location of the data sources, partitioning and semantic relationships. In addition, near real-time
data analytics platforms implement continuous data integration processes through data partitioning or temporary tables but pose
restrictions on the size of the tables and partitions holding the most recent data. Furthermore, the separation between historical and

current data is non-transparent to the users.
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Table 1
Evaluation of existing tools.

BigDAWG Presto Drill CloudMdsQL MusQ Santos & Cuzzocrea
Bernardino(2008) et al. (2009)

Distributed
Data Querying yes yes yes yes yes n/a n/a
Heterogeneous
Data Querying yes yes yes yes yes noa noa

Provides Location
Transparency yes no no yes yes yes yes
Automatic Global
Schema Creation n/a n/a n/a yes n/a n/a n/a
Tools Enabling
Analytical Queries no no no no partial yes yes
Provides a Guided
Star Schema Creation n/a n/a n/a n/a no no no
Autonomously Deals
with Partitioning no no no no no yes yes
Specification of
Global Constraints no n/a n/a n/a no yes yes
No mandatory ETL/
view materialization yes yes yes yes yes no no

aRequires ETL processes to query heterogeneous data.

Fig. 1. Layered architecture: overview.

. Concepts and definitions

This section presents the theoretical foundations for logical data integration in EasyBDI. The aim is to design a system with
everal levels of transparency, namely, data requests should not need to specify where data is located, semantically related data can
e fragmented in various sources but can be seen as a single entity, and data requests should be agnostic regarding the data models
nd query languages of the underlying data sources. Thus, EasyBDI is logically organized into four layers, as represented in Fig. 1.

The first layer represents the data sources. Each data source stores a part of the data in a distributed system. The second layer, the
ocal Schemas View, provides location mapping transparency and high-level relational abstractions for the underlying data sources,
ut it is still necessary to know how to deal with data fragments and their locations. The third layer is the Global Schema, which
ffers a unified and logical view of the underlying data sources. It enables users to write queries using global concepts without
aving to worry about data location and fragmentation. The fourth layer, the Star Schema, supports data analytics so that users can
se concepts like facts, measures and dimensions to create star schemas based on global entities. This enables querying data based
n high-level abstractions, such as global star schema entities.

EasyBDI can create a global schema using data integration techniques to detect entities representing semantically similar concepts
nd integrate them into a single entity. However, users can also manually edit the global schema. The system can also create and run
he required commands to retrieve the requested data automatically, enabling a seamless and transparent data integration process
or data analytics. For this, we need to define the concepts to represent the data in each abstraction layer, as well as the semantic
appings and the data transformation processes between layers.

ata source. A data source (DS) can be a relational database, a NoSQL database, or even a raw file. Data sources may offer composite
data structures with several organization levels. Thus, to access specific data, we may use composition, e.g., DS = Source.Schema.

Considering the example in Fig. 2, the data sources are a MongoDB collection (MongoDS = myDocumentDB) with data about
movies produced in the United States or the United Kingdom, a PostgreSQL database schema (PostgresDS = myRelationalDB.movies)
with data about movies produced in other countries and a Cassandra database (CassandraDS = myColumnarDB) with movie ratings.
4
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Fig. 2. Example with three data sources in MongoDB, PostgreSQL and Cassandra.

Local schema view. A Local Schema View (LSV ) provides an abstraction regarding the internal data model, formats and specific
querying capabilities of a data source. For that purpose, non-relational data sources are abstracted as relational databases with the
help of a mediator, as detailed in Section 4.2. This means that data fragments in a DS are mapped to entities (𝐸) in an LSV. Each
DS has a corresponding LSV composed of several entities.

𝐿𝑆𝑉 = {𝐸1, 𝐸2,… , 𝐸𝑚} (1)

Recalling the example in Fig. 2, each local schema view is mapped to a data source as follows:

• MongoDS ↤ MongoLSV = {MoviesCollection},
• PostgresDS ↤ PostgresLSV = {Movies, Directors},
• CassandraDS ↤ CassandraLSV = {Ratings}.

Hereafter, each entity in a local schema view is seen as a relation. Thus, an entity 𝐸(𝐴1, 𝐴2...𝐴𝑛) has 1 or more attributes (A),
and each attribute has a data type denoted type(A). There may be attributes in a data source that do not match directly with an
attribute in a local schema view. These are known as virtual attributes and can be created using different methods. For example,
virtual attribute values can be set to a constant or null, computed using built-in formulas, or defined as a query to the data source,
as explained in Section 5. To refer to a particular entity or attribute in a local schema view, we use the notation LSV.E for entities
and LSV.E.A for attributes.

The local schema views from all data sources is called local schema (L).

𝐿 = {𝐿𝑆𝑉1, 𝐿𝑆𝑉2,… , 𝐿𝑆𝑉𝑝} (2)

To make the notation and the formulation easier, we will denote an entity from a local schema view (LSV.E) as 𝐸𝐿 and the set
of all entities of all local schema views as LE.

𝐿𝐸 =
⋃

𝑖

⋃

𝑗
𝐿𝑆𝑉𝑖.𝐸𝑗 (3)

In the example, the set of local schema views is L = { mongoLSV, PostgresLSV and CassandraLSV}, and the set of all local entities
is LE = {mongoLSV.MoviesCollection, PostgresLSV.Movies, PostgresLSV.Directors, CassandraLSV.Ratings}.

Global schema. A global schema (𝐺) provides a conceptual view of the data that ensures location, mapping and fragmentation
transparency. It is defined as:

𝐺 = {𝐸𝐺
1 , 𝐸

𝐺
2 ,… , 𝐸𝐺

𝑟 } (4)

such that a global entity, denoted as 𝐸𝐺(𝐴1, 𝐴2...𝐴𝑞), can integrate data fragments from multiple local data sources.
The goal is to enable users to use global entities without needing to know the physical location of the data or how to map

and integrate data from multiple sources. To achieve this, we need to define the semantic mappings between the global and local
schemas. The mappings are defined at two levels of granularity. The first level is the mapping between global and local entities,
5
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defined as follows:

𝐸𝐺 ↤ {𝐸𝐿
1 , 𝐸

𝐿
2 ,… , 𝐸𝐿

𝑠 } ∣ 𝐸𝐿
𝑖 ∈ 𝐿𝐸 (5)

In the example, we can define two global entities as follows:

• Movies𝐺 ↤ {MoviesMNG𝐿, MoviesPG𝐿, DirectorsPG𝐿},
• Ratings𝐺 ↤ {RatingsCSD𝐿},

such that,

• MoviesMNG𝐿 = MongoLSV.MoviesCollection,
• MoviesPG𝐿 = PostgresLSV.Movies,
• DirectorsPG𝐿 = PostgresLSV.Directors,
• RatingsCSD𝐿 = CassandraLSV.Ratings.

Second, at the attribute level, the mappings are achieved through queries on entities from one or more local schema views. There
are four types of mappings, which depend on how the data of interest are partitioned across the data sources:

1. In a Simple Mapping (or 1-to −1 Mapping), the data are not partitioned, so a global entity is mapped to a single entity in a
local schema view. Each attribute of a global entity corresponds to a single attribute of a local entity. It is not required for
all attributes in the local entity to appear in the global entity. Hence, a simple mapping is defined as:

𝐸𝐺(𝐴1, 𝐴2,… , 𝐴𝑞) ⊆ 𝐸𝐿(𝐴𝑥1 , 𝐴𝑥2 ,… , 𝐴𝑥𝑞 ) ∣ 𝐸𝐿 ∈ 𝐿𝐸 (6)

For instance, the entity Ratings in the Cassandra database can be mapped to a global relation as follows:

• Ratings𝐺(dateTime, userID, movieID, rating) ⊆ Ratings𝐿(date, user, movie, score)

and the resulting instance is depicted in Fig. 3.
2. A Vertical Mapping is defined as a join between local entities:

𝐸𝐺(𝐴1, 𝐴2,… , 𝐴𝑞) ≡ 𝐸𝐿
1 ⋈𝑐𝑜𝑛𝑑1 𝐸𝐿

2 ⋈𝑐𝑜𝑛𝑑2 …𝐸𝐿
𝑠 ∣ 𝐸𝐿

𝑖 ∈ 𝐿𝐸 (7)

such that, 𝑐𝑜𝑛𝑑𝑥 is a join condition. This operation is often followed by a projection to select the attributes of interest.
For instance, to create a single relation representing the movies and their directors in the PostgreSQL database, a vertical
mapping between the local entities MoviesPG𝐿 and DirectorsPG𝐿 is established as follows:

• MovieDirectors ≡ MoviesPG𝐿 ⋈ 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝐼𝐷=𝑐𝑜𝑑𝑒 DirectorsPG𝐿

and the result is depicted in Fig. 4.
3. An Horizontal Mapping is defined as the union of two or more local entities:

𝐸𝐺(𝐴1, 𝐴2,… , 𝐴𝑞) ≡
⋃

𝑖
𝐸𝐿
𝑖 (𝐴𝑥1 , 𝐴𝑥2 ,… , 𝐴𝑥𝑞 ) ∣ 𝐸𝐿

𝑖 ∈ 𝐿𝐸 (8)

For instance, to create a global entity with all movies it is necessary to perform the union of two local entities as follows:

• Movies𝐺(id, title, released, director) ≡ 𝜋 _𝑖𝑑, 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟 MoviesMNG𝐿 ∪ 𝜋 _𝑖𝑑, 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝑛𝑎𝑚𝑒 MoviesDirectors

The resulting instance is depicted in Fig. 5.
4. In a Transformation Mapping, a global entity is defined as the result of user-defined transformations denoted as follows:

𝐸𝐺 ↤ 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚({𝐸𝐿
1 , 𝐸

𝐿
2 ,… , 𝐸𝐿

𝑟 }) ∣ 𝐸𝐿
𝑖 ∈ 𝐿𝐸 (9)

such that, transform is a query that cannot be represented as any of the three previous definitions.
For instance, it is possible to create simple transformations to decompose dates into their simplest parts, as follows:

• DatesD𝐺(date, yyyy, mm)𝐺 ≡ 𝜋 𝑡𝑖𝑚𝑒, 𝑦𝑒𝑎𝑟(𝑡𝑖𝑚𝑒), 𝑚𝑜𝑛𝑡ℎ(𝑡𝑖𝑚𝑒) RatingsCSD𝐺

where year and month are functions returning parts of a timestamp. The resulting instance is depicted in Fig. 6. More complex
transformations, such as unpivot operations, are exemplified in Section 5.1.

In Eqs. (6) – (9) it is implicit that there is a mapping between each attribute of a global entity with attributes of one or more
local entities:

𝐸𝐺 .𝐴 ↤ {𝐸𝐿
1 .𝐴𝑥1 , 𝐸

𝐿
2 .𝐴𝑥2 ,… , 𝐸𝐿

𝑠 .𝐴𝑥𝑠} (10)

hereafter denoted as map(𝐸𝐺 .𝐴). For instance, map(Movies𝐺.director) ↤ {MoviesMNG𝐿.director, DirectorsPG𝐿.name} We will also
denote the set of mappings for all attributes of a global entity as map(𝐸𝐺). The function corr(X) returns the right-hand part of
a mapping, e.g., corr(map(𝐸𝐺)) returns {𝐸𝐿

1 , 𝐸
𝐿
2 ,… , 𝐸𝐿

𝑟 } and corr(map(𝐸𝐺 .𝐴)) returns {𝐸𝐿
1 .𝐴𝑥1 , 𝐸

𝐿
2 .𝐴𝑥2 ,… , 𝐸𝐿

𝑠 .𝐴𝑥𝑠}, or, in the
𝐺 𝐿 𝐿
example, corr(map(𝑀𝑜𝑣𝑖𝑒𝑠 .𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟)) returns {MoviesMNG .director, DirectorsPG .name}.

6
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Fig. 3. The result of a simple mapping to create a global relation with the ratings in the Cassandra Database.

Fig. 4. The result of a vertical mapping to create a global relation joining the movies and directors data in the PostgreSQL database.

Fig. 5. The result of an horizontal mapping to create global entity with all the movies in the MongoDB and PostgreSQL databases.

Fig. 6. The result of an horizontal mapping to create global entity with all the movies in the MongoDB and PostgreSQL databases.

At this level of abstraction, users can write queries on global relations. For instance, Movies𝐺 is a global entity representing all
movies in MongoDB and PostgreSQL and the users, e.g., programmers, do not need to know that these data come from different
data sources.

Star schema. A star schema (𝑆) is composed by a set of global entities, however some restrictions apply, namely, one of the global
entities must represent the facts, denoted (𝐸𝐹 ), and one or more global entities are denoted as dimensions (𝐸𝐷). Thus, a star schema
is defined as:

𝑆 = 𝐸𝐹 ∪ {𝐸𝐷
𝑖 }, 𝑖 ≥ 1. (11)

such that 𝐸𝐹 ∈ 𝐺, {𝐸𝐷
𝑖 } ⊂ 𝐺 and 𝐸𝐹 ∩ {𝐸𝐷

𝑖 } = ∅. A global entity cannot represent the facts and a dimension at the same time.
The attributes of a fact relation can represent measures (𝐴𝑀 ), or participate in the definition of foreign keys to dimension

relations. The attributes of a dimension can represent the primary key or regular attributes. Hierarchies are not defined explicitly
in this model. The definitions of primary keys and foreign keys are equivalent to those used in the relational model.

For instance, in the example above, it is possible to define a star schema where Ratings𝐹 is the fact table and {DatesD𝐷, Movies𝐷}
are the dimensions. There is a single measure in the fact table (A𝑀= {Ratings𝐹 .rating}). The relationships between the fact and the
dimension tables are Ratings𝐹 .movieID references Movies𝐷.id and Ratings𝐹 .date references Dates𝐷.date. Note that the user dimension
has been omitted to keep the example in Fig. 2 short.

Query. A user query (𝑄) is defined over a star schema 𝑆 (or a global schema 𝐺) and is not necessarily based on any language (e.g., it
may be submitted via a GUI or an API). The user query is defined as a set of selected attributes (𝑄𝐴) and operations, which may
include aggregations (𝐴𝐺), grouping functions (𝐺𝐹 ), individual (𝐹 ) and aggregate filters (𝐴𝐹 ), pivoting (𝑃 ) and ordering clauses
7
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(𝑂𝐵), such that:

𝑄𝐴 = {𝐸𝑆
1 .𝐴𝑥1 , 𝐸

𝑆
2 .𝐴𝑥2 ,… , 𝐸𝑆

𝑠 .𝐴𝑥𝑠} ∣ 𝐸𝑆
𝑖 ∈ 𝑆

𝑄 = (𝑄𝐴, 𝐴𝐺,𝐺𝐹 ,𝐴𝐹 , 𝐹 , 𝑃 , 𝑂𝐵)
(12)

The set of star schema entities referenced in 𝑄𝐴 is defined as 𝑄𝐸 :

𝑄𝐸 = {𝐸𝑆
1 , 𝐸

𝑆
2 ,… , 𝐸𝑆

𝑛 } ∣ 𝐸𝑆
𝑖 ∈ 𝑆 (13)

In the Query 𝑄 definition, aggregations (𝐴𝐺) and grouping functions (𝐺𝐹 ) are used to specify how to group multiple tuples into
a single one. Aggregations (𝐴𝐺) must contain a set of attributes whose values should not be grouped, and grouping functions (𝐺𝐹 )
represent the functions (e.g., Sum, Count, and Average) and the attribute on which they are applied.

Filters may contain a set of logical clauses that are used to filter the data in the resulting set. They may be specified over attribute
values (𝐹 ), as in a WHERE clause in a relational database, or over aggregation results (𝐴𝐹 ), as in a HAVING clause in a relational
database. The Pivot operation (𝑃 ) contains a set of attributes whose values should be viewed as columns instead of rows. Finally,
Ordering clauses (𝑂𝐵) are also based on a set of attributes and how their values should be ordered (i.e., ascending or descending)
in the query execution results. Each attribute 𝐴𝑖 referenced in 𝐴𝐺, 𝐺𝐹 , 𝐴𝐹 , 𝐹 , 𝑃 and 𝑂𝐵 must be an attribute in 𝑆.

4. Methods and algorithms

EasyBDI is composed by several modules, including a Query Execution Manager to translate the user input into a valid SQL code,
a Multidimensional Schema Manager to manage the mapping between global schema entities and star schema entities, a Configuration
Manager to manage the configuration files needed to connect to the data sources, and a Schema/Metadata Storage to store the
metadata about the schemas (global schema, local schema views, and star schemas) and the mapping between schemas. It also
includes a GUI through which users interact with the system to configure data sources, generate and refine global schemas, and
create star schemas and global queries over such schemas. This section focuses on the Multidimensional Schema Manager and Query
Execution Manager, and presents the algorithms implemented to help in the automatic creation of a global model (schema matching,
integration and mapping) in a distributed data management system, and the methods used to translate the global queries into queries
on the local data sources.

4.1. Creating a global schema

Creating a mapping between a global schema and several local schemas is a time-consuming task, particularly when there are
many entities and attributes involved. Thus, EasyBDI implements several methods to automate these tasks, which users can later edit
using a GUI to obtain the final design of a global schema. The procedures implemented to perform the schema matching, schema
integration and schema mapping steps are as follows.

4.1.1. Schema matching
The first step consists of computing the similarity between the names of entities in the local schema view using the Levenshtein

distance. The pairs of entities with name similarity above a predefined threshold are considered as matching. The correspondence
between local entities is transitive, i.e., two entities that do not have a direct match can still be part of the same group of matching
entities.

Consider a local schema view 𝐿𝑆𝑉1, which contains three entities 𝐿𝑆𝑉1 = {𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠_𝑖𝑛𝑓𝑜, 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦}. Fig. 7
exemplifies using the proposed schema-matching algorithm on 𝐿𝑆𝑉1. The first step is to compare the names of pairs of entities
based on the Levenshtein distance. In the example described in Step 2 of Fig. 7, entities employees and employees_info form a possible
match, as their name similarity is above the threshold value of 0.6. Entity inventory has no matches. The threshold value was found
by experimentation.

After computing the similarity between the names of entities, the proposed method aims to determine the correspondences
between the attributes of matching entities.

The attribute similarity (𝐴𝑇𝑆𝑖𝑚) between two attributes 𝐸𝐿
𝑖 .𝐴𝑝 and 𝐸𝐿

𝑗 .𝐴𝑞 is calculated as the weighted sum of the data type
similarity (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚), the attribute name similarity (𝑛𝑎𝑚𝑒_𝑠𝑖𝑚), and the primary key similarity (𝑝𝑘_𝑠𝑖𝑚), as defined in Eq. (14).

𝐴𝑇𝑆𝑖𝑚(𝐸𝐿
𝑖 .𝐴𝑝, 𝐸

𝐿
𝑗 .𝐴𝑞) = 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸
𝐿
𝑗 .𝐴𝑞) ×𝑤1

+𝑛𝑎𝑚𝑒_𝑠𝑖𝑚(𝐸𝐿
𝑖 .𝐴𝑝, 𝐸

𝐿
𝑗 .𝐴𝑞) ×𝑤2 + 𝑝𝑘_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸
𝐿
𝑗 .𝐴𝑞) ×𝑤3

(14)

The data type similarity (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚) between two attribute is computed as:

• The data types of both attributes (𝐸𝐿
𝑖 .𝐴𝑝, 𝐸𝐿

𝑗 .𝐴𝑞) are the same:
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸𝐿
𝑗 .𝐴𝑞) = 1.

• Consider data types may be grouped into categories (e.g., numeric, string, boolean, and date and time) depending on their
domains. If attributes have different data types that belong to the same category (e.g., double and integer types are both
numeric) then:

𝐿 𝐿
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚(𝐸𝑖 .𝐴𝑝, 𝐸𝑗 .𝐴𝑞) = 0.8.

8
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Fig. 7. Proposed schema matching method - example.

• If the attributes (𝐸𝐿
𝑖 .𝐴𝑝, 𝐸𝐿

𝑗 .𝐴𝑞) have different data types and such types belong to categories where conversion is sometimes
possible (e.g., string and numeric conversions are sometimes possible):
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸𝐿
𝑗 .𝐴𝑞) = 0.4.

• Otherwise:
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸𝐿
𝑗 .𝐴𝑞) = 0.0 (i.g., attributes do not match)

If the data type similarity is above zero, then the system computes the attribute name similarity (𝑛𝑎𝑚𝑒_𝑠𝑖𝑚) between the attributes
𝐸𝐿
𝑖 .𝐴𝑝 and 𝐸𝐿

𝑗 .𝐴𝑞 considering the Levenshtein distance, as in entity name similarity.
The primary key similarity (𝑝𝑘_𝑠𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸𝐿
𝑗 .𝐴𝑞)) between attributes of two entities is equal to 1 if both the attributes are part

of the primary key, otherwise, 𝑝𝑘_𝑠𝑖𝑚 is zero. Experimentally, we used the same weight for both name and data type similarity
between attributes, but considered that primary key information is slightly less important.

Step 3 of Fig. 7 presents an example of attribute matching between the entities employees and employees_info. The algorithm
calculates the similarity of each attribute of the entity employees with the ones of employees_info. When 𝐴𝑇𝑆𝑖𝑚(𝐸𝐿

𝑖 .𝐴𝑝, 𝐸𝐿
𝑗 .𝐴𝑞) is

above a threshold value, it considers that 𝐸𝐿
𝑖 .𝐴𝑝 and 𝐸𝐿

𝑗 .𝐴𝑞 match.
In the example, similarity evaluation starts with the attributes emp_id and id. The 𝐴𝑇𝑆𝑖𝑚(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠.𝑒𝑚𝑝_𝑖𝑑, 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠_𝑖𝑛𝑓𝑜.𝑖𝑑)

equals 0.73, which is above the defined threshold value (0.7). So these attributes match and there is no need to compare emp_id
with the remaining attributes of employees_info. Then, the next attribute of the entity employees (i.e., name) is compared with the
first attribute of employees_info (i.e., id), which leads to a similarity score (𝐴𝑇𝑆𝑖𝑚(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠.𝑛𝑎𝑚𝑒, 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠_𝑖𝑛𝑓𝑜.𝑖𝑑)) below 0.7.
Next, the similarity of employees.name and employees_info.name_full is evaluated. The system considers them to match. Then, the
system evaluates the next attribute of the first entity (i.e., isactive). This attribute fails to match employees_info.id due to a low
similarity score and also fails to match employees_info.full_name because its data types (boolean and integer) are not convertible.
Finally, employees.isactive corresponds to the attribute with the same name in the second entity. In this example, all attributes of
considered entities (i.e., employees and employees_info) have a match.

4.1.2. Schema integration
A binary integration strategy is used to merge all similar attributes among matching entities into a single global attribute [14].

The procedure starts by merging the first two entries in a list of matching entities (local) created in the schema matching step, and
a new global entity is created. For the example of the matching entities employees and employees_info (Fig. 7), the global entity
employees would be created. The system names the global entity using the name of the first entity in the binary matching, but

users may rename the global entity, if necessary.

9



B. Silva, J. Moreira and R.L.d.C. Costa Data & Knowledge Engineering 146 (2023) 102185

t

t
a

h
o

m
i
t
g

4

g
i

1

b

The pairs of attributes of these two local entities that match are merged into a single attribute in the global entity. The attributes
hat do not match are copied to the global entity. For instance, the attributes of the global entity employees (which results from

the match between local entities employees and employees_info) are emp_id, name and is_active. The system names the attributes in
he global entity using the names of the attributes of the first entity in the binary matching. Users can rename the global entity
ttributes, the same way they can do for global entities.

Then, the global entity is merged with the next entry in the list of matching entities and the procedure repeats until all entries
ave been processed. This procedure is repeated for all lists of matching entities. In addition, each local entity without a match
riginates a global entity with the same name and structure of the local one.

The name of a global entity is equal to the name of the first local entity in a list of matching entities. When two local attributes are
erged, the name of the global attribute is equal to the name of the local attribute that appears first, and the datatype is identical,

f both have the same data type, otherwise the most generic data type is selected. A data type is considered to be more generic than
he other if it allows to represent a wider range of values. For instance, double is more generic than integer, and varchar is more
eneric than integer. For this purpose, we use a data type compatibility matrix.

.1.3. Schema mapping
Finding the type of data partitioning requires running algorithms on the mappings between entities and their attributes. When a

lobal entity matches only one local entity then we have a simple mapping. Otherwise, if a global entity matches multiple entities
n the local schema, then it is necessary to determine which type partitioning exists: vertical or horizontal.

To detect horizontal partitioning, the following criteria is used:

• A global entity matches more than one local schema view entities.
• The number of attributes of the global entity and in the matching local entities must be equal.
• The name and the data type of the matching attributes in the global entity and in the local entities must be the same.

The function isHorizontal() in Algorithm 1 checks if the previous conditions are met for a given global entity (𝐸𝐺). The first
condition is tested in line 2. The second and third conditions are tested for each local entity with a match from the global entity
(the loop in line 5). If all conditions hold, the horizontal mapping is assigned.

Algorithm 1: Detect horizontal mapping
Input : A global entity, including entity and attribute mappings (globalEntity)
Output: True or False

1 Function isHorizontal(globalEntity):
2 if map(globalEntity).size() ≤ 1 then return false;
3 for localEntity in corr(globalEntity) do
4 if localEntity.getNbAttributes() != globalEntity.getNbAttributes() then return false;
5 for globalAttribute in globalEntity.getAttributes() do
6 if ! localEntity.attributeExists(globalattribute.getName(), globalattribute.getdata type(), globalattribute.isPrimaryKey())

then return false;
7 end
8 return true;
9 end
0 return false;

For vertical mapping, one or several entities must have a foreign key referencing a primary key of another entity, which should
e the original entity that was partitioned into other entity. The function isVertical() in Algorithm 2 tries to identify foreign key

references in order to determine if there is or not vertical partitioning. First, line 2 obtains the list of local entities containing
attributes corresponding to the primary key attribute in global entity, and line 3 obtains the local entities containing attributes that
are foreign keys and primary keys. If there are no entities, than vertical mapping is not possible. Line 7 gets the attribute that is
primary key but not foreign key(s). Finally, lines 8–18 verify that each of the primary key attributes that are foreign keys references
the primary key of the original entity. If such a check fails for any of the foreign keys, then the function returns false.

If neither simple, vertical or horizontal mapping is detected, then undefined mapping is assigned. After the automatic generation
of the global schema, the user is requested to edit the global schema generated automatically, using a GUI to interact with the
system. This interface allows to fix the incorrect mappings or to create user defined mappings.

To create a star schema it is required to create constraints on the global entities, namely primary keys and foreign keys in order
to create a valid star schema.

It is possible to create several star schemas over a single global schema. To do so, it is needed to select which global entities
are the dimensions and which is the facts entity. In the latter, the attributes that will be used as measures (if any) should also be
selected. Note, however, that only addictive or semi-additive measures are supported, meaning that it only makes sense to perform
aggregations across all or some of the dimensions in the star schema. The user uses the interface to perform the mapping of entities
to a star schema. It is important that foreign key constraints are correctly defined between the facts entity and the dimensions, a

step that is performed on the global schema creation via the user interface.
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Algorithm 2: Detect vertical mapping
Input : A global entity, including entity and attribute mappings (globalEntity)
Output: True or False

1 Function isVertical(globalEntity):
2 𝑙𝑜𝑐𝑎𝑙𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝑒𝑛𝑡𝑖𝑡𝑦.𝑔𝑒𝑡𝑃 𝑟𝑖𝑚𝐾𝑒𝑦𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒().𝑔𝑒𝑡𝐿𝑜𝑐𝑎𝑙𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠();
3 𝑓𝑘𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑔𝑒𝑡𝑂𝑛𝑙𝑦𝑃𝐾𝐴𝑛𝑑𝐹𝐾𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠(𝑙𝑜𝑐𝑎𝑙𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠);
4 if fkCols.size() == 0 then return false;
5 𝑝𝑟𝑖𝑚𝐾𝑒𝑦𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑙𝑜𝑐𝑎𝑙𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠.𝑔𝑒𝑡𝑃 𝑟𝑖𝑚𝐾𝑒𝑦𝑁𝑜𝐹𝐾();
6 for localentity in fkentities do
7 for attribute in localentity.getattributes() do
8 if attribute.isPrimaryKey() and attribute.isForeignKey() then
9 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒.𝑔𝑒𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒();

10 if referencedattribute.equals(primKeyOriginalattribute) then continue;
11 else return false;
12 end
13 end
14 end
15 return true

4.2. Distributed query definition

EasyBDI transforms each star schema-based user query 𝑄 into one or more SQL commands, that are sent for execution by Trino.
More than one SQL command may be executed for a single user query to run analytic operators that the distributed query engine
does not support. EasyBDI uses nested queries on which the outer query contains the operators requested by the user within the star
schema entities. Inner queries retrieve data from the distributed sources associated with the global entities. Hence, inner queries
are written considering local schema view entities, thus creating temporary views of the local schema data. The query generation
process is as follows:

• Identify global entities and joins - User queries are defined over a set of star schema attributes (𝑄𝐴). The first step is to use
metadata to identify if each star entity in 𝑄𝐸 represents dimensions or facts and what global entity represents each star entity
(as defined in (11)). The system retrieves the relations between each referenced entity, and uses this information to create join
operations. The result is composed by a set of global entities and attributes, and a set of system-generated join clauses (𝐽 ).

• Create a base query with global operators - Considering the global attributes (𝑄𝐴) and entities (𝑄𝐸), and the set of system-
generated join clauses (𝐽 ), write a base query defined over global entities.

SELECT <a t t r i b u t e s _ l i s t >
FROM <t a b l e s _ l i s t >
WHERE <c o n d i t i o n s _ l i s t >

Listing 1: Base query for query generation.

In Listing 1:
– <attributes_list>= 𝑄𝐴 = 𝐸𝐺

1 .𝐴𝑥1 , 𝐸
𝐺
2 .𝐴𝑥2 ,… , 𝐸𝐺

𝑔 .𝐴𝑥𝑔
– <tables_list>= 𝑄𝐸 = 𝐸𝑆

1 , 𝐸
𝑆
2 ,… , 𝐸𝑆

𝑛
– <conditions_list>= 𝐽 = system generated join conditions for tables in 𝑄𝐸

For instance, let us consider the global relations Ratings and Movies defined in Section 3 and whose instances are exemplified
in Fig. 3 and Fig. 5, respectively. Consider a user wants to query the average rating for each movie. A sample base query with
global operators on these relations is:

SELECT Movies . id , Movies . name , Rat ings . r a t i ng
FROM Movies , Rat ings
WHERE Movies . id = Rat ings . movieID

Listing 2: Sample base query.

Note that the query in Listing 2 does not contain the Average function and the Group By clause required to compute the average
rating per movie. These will be added to the base query in a later step.

• Map global attributes and local attributes - For each entity 𝐸𝑆
𝑖 in the star schema 𝑄𝐸 , the system extracts the local schema

correspondences. Each star schema entity maps to a transformation function to the global schema, and global schema entities
map to a transformation function over the local schema:

∀𝐸𝑆 ∈ 𝑄𝐸 ;𝑄𝐿 ← 𝑐𝑜𝑟𝑟(𝑚𝑎𝑝(𝐸𝐺)) (15)
𝑖 𝑖

11
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• Create local queries for local mappings - For each mapping in 𝑄𝐿
𝑖 , write a base query 𝐵𝐿

𝑖 defined over local entities. The query
writing process must consider the mapping type between global and local entities (e.g., Union and join operations must be
used for horizontal and vertical partitioning), as in the following:

– Simple mapping (defined in Eq. (10)):

(SELECT <a t t r i b u t e s _ l i s t >
FROM <Loca l _ t ab l e >) as <g loba l _ t ab l e >

Listing 3: Simple mapping query.

In Listing 1:
– <attributes_list>= 𝐸𝐿.𝐴𝑥1 as 𝐴1, 𝐸𝐿.𝐴𝑥2 as 𝐴2,… , 𝐸𝐿.𝐴𝑥𝑞 as 𝐴𝑞
– <local_table>= 𝐸𝐿

– <global_table>= 𝐸𝐺

– 𝐴1, 𝐴2,… , 𝐴𝑞 are attributes from 𝐸𝐺.
For instance, global entity Ratings (Fig. 3) would be mapped to a local table CassandraDS.Ratings using the following
query:

(SELECT CassandraDS . Rat ings . user as userID ,
CassandraDS . Rat ings . date as dateTime ,
CassandraDS . Rat ings . movie as movieID ,
CassandraDS . Rat ings . score as r a t i ng

FROM CassandraDS . Rat ings ) as Ratings

Listing 4: Simple mapping query example.

– Vertical mapping (defined in (7)):

(SELECT <a t t r i b u t e s _ l i s t >
FROM <Loca l _ t ab l e s >
WHERE <c o n d i t i o n s _ l i s t >) as <g loba l _ t ab l e >

Listing 5: Vertical mapping query.

In Listing 5:
– <attributes_list>= 𝐸𝐿

1 .𝐴𝑥1 as 𝐴1, 𝐸𝐿
1 .𝐴𝑥2 as 𝐴2,… ,

𝐸𝐿
2 .𝐴𝑥1 as 𝐴𝑝+1, 𝐸𝐿

2 .𝐴𝑥2 as 𝐴𝑝+2,… , 𝐸𝐿
𝑛 .𝐴𝑥𝑙 as 𝐴𝑞

– <local_table>= 𝐸𝐿
1 , 𝐸

𝐿
2 ,… , 𝐸𝐿

𝑛
– <conditions_list>= 𝐸𝐿

1 ⋈𝑐𝑜𝑛𝑑1 𝐸𝐿
2 ⋈𝑐𝑜𝑛𝑑2 …𝐸𝐿

𝑟 = system generated join conditions
– <global_table>= 𝐸𝐺

– 𝐴1, 𝐴2,… , 𝐴𝑞 are attributes from 𝐸𝐺.
For instance, the global entity MovieDirectors 4 would be mapped by the following query:

(SELECT PostgresDS . Movies . id as id ,
PostgresDS . Movies . t i t l e as t i t l e ,
PostgresDS . Movies . r e l ea sed as re leased ,
PostgresDS . D i r e c to r s . d i r ec to r ID as direc tor ID ,
PostgresDS . D i r e c to r s . code as code ,
PostgresDS . D i r e c to r s . name as name

FROM PostgresDS . Movies , PostgresDS . D i r e c to r s
WHERE PostgresDS . Movies . d i r ec to r ID =

PostgresDS . D i r e c to r s . code
) as MovieDirectors

Listing 6: Vertical mapping query example.

– Horizontal mapping (as defined in Eq. (8)):

(SELECT <a t t r i b u t e s _ l i s t 1 >
FROM <l o c a l _ t a b l e _ 1 >
UNION
SELECT <a t t r i b u t e s _ l i s t 2 >
FROM <l o c a l _ t a b l e _ 1 >) as <g loba l _ t ab l e >

Listing 7: Base query for horizontal mapping.
12
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In Listing 7:
– <attributes_list1>= 𝐸𝐿

1 .𝐴𝑥1 as 𝐴1, 𝐸𝐿
1 .𝐴𝑥2 as 𝐴2,… ,

𝐸𝐿
1 .𝐴𝑥𝑙 as 𝐴𝑙

– <local_table_1>= 𝐸𝐿
1

– <attributes_list2>= 𝐸𝐿
2 .𝐴𝑥1 , 𝐸

𝐿
2 .𝐴𝑥2 ,… , 𝐸𝐿

2 .𝐴𝑥𝑙
– <local_table_2>= 𝐸𝐿

2
– <global_table>= 𝐸𝐺

- 𝐴1, 𝐴2,… , 𝐴𝑞 are attributes from 𝐸𝐺.
Listing 8 presents the mapping for the global entity Movies (Fig. 5), which comprises using horizontal and vertical
mapping together.

(SELECT MongoDS . MoviesCol lect ion . id as id ,
MongoDS . MoviesCol lect ion . t i t l e as t i t l e ,
MongoDS . MoviesCol lect ion . re l eased as re leased ,
MongoDS . MoviesCol lect ion . name as d i r e c t o r

FROM MongoDS . MoviesCol lect ion
UNION
(SELECT PostgresDS . movies . id as id ,

PostgresDS . movies . t i t l e as t i t l e ,
PostgresDS . movies . r e l ea sed as re leased ,
PostgresDS . D i r e c to r s . name as d i r e c t o r
FROM PostgresDS . movies , PostgresDS . D i r e c to r s
WHERE PostgresDS . movies . d i r ec to r ID =

PostgresDS . D i r e c to r s . code
) as MovieDirectors

) as Movies

Listing 8: Horizontal mapping query example.

– Transformation mapping:
𝐵𝐿
𝑖 = Transformation command

• Add inner queries for local mappings - Add queries defined over local entities as inner queries over the base query.
• Add user-defined operations - User-defined operations are included in the global query level. This include complementary

operations that are part of the definition of 𝑄 in Eq. (12) (i.e., aggregations - 𝐴𝐺, grouping functions - 𝐺𝐹 , individual –
𝐹 - and aggregate filters - 𝐴𝐹 , and pivoting - 𝑃 - and ordering clauses - 𝑂𝐵).
Group functions include functions such as sum, count and average. Aggregation definitions 𝐴𝐺 leads to placing columns in a
Group By clause. User-defined filters may be defined over individual tuples (𝐹 ) or over aggregation results (𝐴𝐹 ). Filters on
tuple values are added to a Where clause (which may contain system-defined join conditions - 𝐽 ). Aggregation filters (𝐴𝐹 ) are
defined in a Having clause. An Order By clause would contain any ordering clauses defined by users (𝑂𝐵).

Let us consider again the example of a user who wants to query the average rating for each movie (base query in Lsting 2. The
apping queries would be added as inner tables in the base query with global operators. Then, the grouping clause and average

unction would be added for the outer query. Finally, the query to get the average rating per movie is in Listing 9.
SELECT Movies . id , Movies . name , avg ( Rat ings . r a t i ng )
FROM (

(SELECT MongoDS . MoviesCol lect ion . id as id ,
MongoDS . MoviesCol lect ion . t i t l e as t i t l e ,
MongoDS . MoviesCol lect ion . re l eased as re leased ,
MongoDS . MoviesCol lect ion . name as d i r e c t o r

FROM MongoDS . MoviesCol lect ion )
UNION
(SELECT PostgresDS . movies . id ,

PostgresDS . movies . t i t l e ,
PostgresDS . movies . re leased ,
PostgresDS . D i r e c to r s . name

FROM PostgresDS . movies , PostgresDS . D i r e c to r s
WHERE PostgresDS . movies . d i r ec to r ID =
PostgresDS . D i r e c to r s . code ) as MovieDirectors
) as Movies ,

(SELECT CassandraDS . Rat ings . user as userID ,
CassandraDS . Rat ings . date as dateTime ,
CassandraDS . Rat ings . movie as movieID ,
CassandraDS . Rat ings . score as r a t i ng

FROM CassandraDS . Rat ings ) Rat ings
WHERE Movies . id = Rat ings . movieID
GROUP BY Movies . id , Movies . name

Listing 9: Local query - complete example.
13
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Fig. 8. Schema mapping and star schema definition.

5. Application examples

This section describes usage scenarios and demonstrates how to organize and use data in a star schema using EasyBDI. It presents
the query generation process, from the user-defined star schema in EasyBDI to an SQL command executed by Trino to query the
local schemas.

The configuration used for the tests include Trino, version 330, configured to behave as both a coordinator and a worker on a
single node configuration. The server runs Linux Mint 19.1 Cinnamon and has 8 GB of RAM, an Intel Core i7-8550U at 1.80 GHz
with 4 cores processor, and a solid-state drive. Our source-code is currently available at EasyBDI [30].

5.1. Case study 1: Batch and streaming OLAP

This case study uses the SSB+ benchmark [31], which includes a dataset and a set of queries to evaluate the performance of
decision support systems. SSB+ is an extension of the SSB benchmark proposed by O’Neil et al. [32], which in turn is a star schema
adaptation of the TPC-H benchmark. The SSB+ data model contains star schemas for batch and streaming OLAP. The batch OLAP
star schema contains facts and dimension tables used in the context of retail data. The schema for streaming OLAP contains social
media data, representing the retail store’s popularity on social media. In this section, we use the batch OLAP star schema of SSB+.

We instantiated the SSB+ data model using the code available in SSB+ Github repository [33] and used Cassandra and Hive
3.1.2 to store the database. Cassandra stores the social media tables, while Hive stores retail data in a database called minhodb.

We used EasyBDI to access both sources and propose a global schema. Fig. 8(a) presents a partial screenshot of the local schema
views (on the left) and the global schema (on the right) proposed by EasyBDI. In the left panel, the Cassandra data source is labeled
as the Social Media Database, and the Hive data source is labeled as the Retail Database. In this step, the global schema generated by
EasyBDI was almost accordingly to what was expected, having correctly identified nearly all mappings. Two local tables (‘‘date_dim’’
and ‘‘time_dim’’) were incorrectly merged in the global schema, therefore it was necessary to delete the global table ‘‘time_dim’’ and
create two global tables, ‘‘date_dim’’ and ‘‘time_dim’’, with a one-on-one mapping to the corresponding local tables. This mistake
happened because both tables have similar column types and names, thus schema matching assumed there was a matching. Foreign
keys and Primary keys also needed to be added to the global schema. The whole process of global schema correction via EasyBDI
is depicted in Fig. 8(a). Afterwards, with the global schema correctly configured, it was necessary to create a star schema, in which
the user has to choose a facts table, dimensions, and measures, as exemplified in Fig. 8(b).

In this work, we use queries 2 and 4 of the benchmark. Query 2 computes the revenue for a certain month, for products that
were sold in certain quantities and with specified discounts. Query 4 computes the revenue for the year and brand, for sales of
products of certain categories and of suppliers in a specified region. The SQL listing of these queries is available in [33].

Fig. 9 presents the specification of query 4 in EasyBDI’s GUI. This query contains several operations, namely joins, filters,
aggregations, ordering, and grouping operations. EasyBDI’s SQL generation algorithm detects an aggregate function and places
adequate columns in the group by clause. EasyBDI automatically specifies the join clauses between the facts and the dimensions
tables by checking metadata for the relationships between global tables. Filters and ordering clauses are also specified.

Fig. 10 illustrates the query generation process. Initially, EasyBDI generates the base SQL query on global entities. Listing 10
shows the global schema generated query by EasyBDI using the configuration made in EasyBDI’s query GUI depicted in Fig. 9. It
corresponds to a) in the flow depicted in Fig. 9. This global schema query must then be further developed to query the local schema,
as it has no notion of local schema entities at this stage. To this end, the mapping between each query’s table and local tables is
fetched from the Metadata Storage. After obtaining the information, a local schema query is created for each different local schema
14
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Fig. 9. SSB+ Query 4 in EasyBDI.

Fig. 10. Example of the query generation process in EasyBDI.

table, as seen in listing 11, and it is generated in (b) in the flow of Fig. 9. Finally, the global query in listing 10 and the local queries
in listing 11 are combined into one query that contains local schema entities and the corresponding mapping to global schema
entities, depicted in listing 12, which will also be executed by the distributed query execution engine to query the datasources. This
final query corresponds to (c) in Fig. 9.

SELECT supp l i e r . c i ty , par t . brand1 , date_dim . year ,sum( revenue ) as " sum of revenue "
FROM supp l i e r . part , date_dim , l i neo rde r
WHERE ( supp l i e r . suppkey = l ineo rde r . suppkey AND par t . partkey = l ineo rde r . partkey AND date_dim . datekey = l ineo rde r .

orderdate ) AND ( par t . category = ’MFGR#12 ’ AND supp l i e r . region = ’AMERICA ’ )
GROUP BY ( supp l i e r . c i ty , par t . brand1 , date_dim . year )
ORDER BY ( par t . brand1 , date_dim . year )

Listing 10: EasyBDI generated global schema query resulting from user input.
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Fig. 11. SSB+ Query 2 in EasyBDI.

SELECT hive . minhodb . par t . brand1 , hive . minhodb . par t . partkey , hive . minhodb . par t . category
FROM hive . minhodb . par t

SELECT hive . minhodb . date_dim . year , hive . minhodb . date_dim . datekey
FROM hive . minhodb . date_dim

SELECT hive . minhodb . supp l i e r . c i ty , hive . minhodb . supp l i e r . suppkey , hive . minhodb . supp l i e r . region
FROM hive . minhodb . supp l i e r

SELECT hive . minhodb . l i neo rde r . orderdate , hive . minhodb . l i neo rde r . revenue , hive . minhodb . l i neo rde r . partkey , hive . minhodb .
l i neo rde r . suppkey

FROM hive . minhodb . l i neo rde r

Listing 11: EasyBDI queries for each local schema.

SELECT supp l i e r . c i ty , par t . brand1 , date_dim , year , SUM( revenue ) AS " sum of revenue "
FROM

(SELECT hive . minhodb . supp l i e r . c i ty , hive . minhodb . supp l i e r . suppkey , hive . minhodb . supp l i e r . region
FROM hive . minhodb . supp l i e r ) AS suppl ie r ,
(SELECT hive . minhodb . par t . brand1 , hive . minhodb . par t . partkey , hive . minhodb . par t . category
FROM hive . minhodb . par t ) AS part ,
(SELECT hive . minhodb . l i neo rde r . orderdate , hive . minhodb . l i neo rde r . revenue , hive . minhodb . l i neo rde r . partkey , hive .

minhodb . l i neo rde r . suppkey
FROM hive . minhodb . l i neo rde r ) AS l ineorder ,

WHERE ( supp l i e r . suppkey = l ineo rde r . suppkey
AND par t . partkey = l ineo rde r . suppkey
AND date_dim . datekey = l ineo rde r . orderdate )
AND ( par t . category = ’MFGR#12 ’ AND supp l i e r . region = ’AMERICA ’ )
GROUPBY ( supp l i e r . c i ty , par t . brand1 , date_dim . year )
ORDER BY ( par t . brand1 , date_dim , year ) ;

Listing 12: Example of the SQL executed by the query engine, capable of querying the local schema but also correlating to the
global schema.

Query number 2 is composed of an aggregation operation that multiplies two different attributes, a join operation between the
acts and dimension tables, and a filter. Fig. 11 presents the query specification through EasyBDI’s interface. The generated query
y EasyBDI is fairly similar to the original query except that inner queries are added and that joins are made using where conditions.

To verify the overhead EasyBDI introduces on distributed query execution time, we compared the execution time of queries
ubmitted through the EasyBDI GUI interface with the ones of SQL commands executed by Trino. We executed several queries with
ncreased complexity over SSB+ tables while also varying the number of records in the facts table.

Fig. 12(a) presents that query execution times in EasyBDI are close to that of Trino. The highest difference is on queries with
IVOT operations. Indeed, Trino does not support the PIVOT SQL operator. To perform the corresponding operation in Trino, it was
ecessary to manually specify in the SQL code each distinct value of the column that is being pivoted. EasyBDI, on the other hand,
btains such values through a database query. Hence, Trino requires the specification, in the SQL command, of data location and
ransformations from original models to the high-level star schema objects based in global entities. EasyBDI hides such complexity
ith a little overhead. Also, as database size increases, EasyBDI’s execution time overhead becomes less relevant (Fig. 12(b)).
16



B. Silva, J. Moreira and R.L.d.C. Costa Data & Knowledge Engineering 146 (2023) 102185
Fig. 12. EasyBDI and Trino query execution time - multiple query types and table sizes.

Fig. 13. PV data source.

5.2. Case study 2: Ausgrid dataset

The second case study presents how to execute OLAP queries on flat files with real-world data on photovoltaic panel electricity
production and consumption in Sydney, Australia. The photovoltaic data (PV) is available in [34] and contains data of 300 randomly
selected customers from 1 July 2010 to 30 June 2013. Fig. 13 presents a sample of the comma-separated files (CSV) recording the
gross generation (GG), general consumption (GC), and controllable load (CL), for each customer and every half-hour.

The other data sources are a MySQL database to store customer data (e.g., the id and the customers’ generator capacity) and a
time table, and a PostgreSQL database to store location data (e.g., postal codes).

EasyBDI accesses each data source (CSV, MySQL and PostgreSQL), retrieves their logical data organization and creates an
abstraction through Local Schema Views, and proposes a Global Schema for the distributed database. The three CSV files are mapped
to a single logical entity with horizontally partitioned data (based on time). But in the CSV files, each client’s PV panel generation
data is set as a column per each half hour. In the facts table, such values would be represented in rows. Hence, the mapping of the
half-hour columns into rows is like an unpivoting operation. The different types of electricity generation data categories (GG, GC,
and CL) are set as rows in the CSV files. These fields are of interest for group operations, and these 3 categories need to be pivoted
in the global schema mapping. Hence, in the global schema definition, there is a transformation mapping that does the unpivoting
of time columns and the pivoting of data categories columns.

Once the global schema is tuned and the star schema is specified with the identification of facts and dimensions, it is possible
to create OLAP queries to access data of the three CSV files and the two DBMS on the fly. Fig. 14 presents the specification of
two sample queries using EasyBDI. In Fig. 14(a), the query computes the average consumption per year. The query in Fig. 14(b)
computes the total energy production per client between 2010 and 2012, presenting each year as column (a PIVOT operation on
17
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Fig. 14. Sample queries on energy consumption and production.

CSV data specified by the user at query level). EasyBDI displays the query results to users accordingly the high-level abstractions of
the star schema. Query execution uses fresh data obtained directly from the data sources.

The above examples show that EasyBDI provides abstractions which subject experts may use to execute OLAP operations over
distributed data. EasyBDI enables query formulation over high-level objects, hides the complexity of SQL commands, and provides
data location and partitioning transparency.

6. Conclusion

A wide range of distributed sources and devices is currently generating large amounts of data. In current scenarios, e.g., IoT, the
decision-making processes depend largely on analyzing fresh data. This requirement is incompatible with traditional data warehouses
requiring time-consuming ETL processes. Therefore, novel methods and tools are needed to conceptually integrate distributed data
sources and enable the execution of advanced analytical near real-time queries over fresh data.

EasyBDI is a platform that implements methods and tools to extract the schema representation of several data sources, applies
schema matching, integration, and mapping techniques, and automatically proposes a global schema of the distributed sources. Users
may fine-tune the proposed global schema and use it to define star schemas representing the data in distributed sources. Finally,
users may submit queries over the high-level star schema objects. The system provides fragmentation and location transparency.
Thus, it executes queries over distributed sources using global concepts and the users do not need to know about the data location
or fragmentation during query formulation. Also, it does not instantiate intermediary data like in a warehouse, thus providing direct
access to fresh data.

In this paper, we present the concepts and the methods used by EasyBDI to execute schema matching, integration, and mapping,
and how to transform high-level user queries (based on star schema and global entities) into SQL statements executed by Trino. We
18
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define how the mappings between the star, global and local schemas generate valid queries that retrieve data from local schemas and
present results accordingly with the user-defined star schema entities, all while abstracting the local schema and its heterogeneity.
As future work, we plan to add methods of provenance information management to know where the data comes from and how the
results of analytical queries on distributed and heterogeneous data sources were produced.
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