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1. Introduction

The maturity index of Industry 4.0 [1] leads to 
implementing cyber-physical systems [2] where datasets 
collected from embedded systems and geographically 
distributed sources play a vital role. These vast array of 
datasets result in an information silo called big data [3-4]. This 
silo evolves with time and consists of unstructured, semi-
structured, and structured datasets. While making decisions 
using this silo, computational arrangements are required. 
These arrangements are called big data analytics. In most 
cases, big data analytics offers a wide range of data 
visualization facilities. Users thus rely on the visualized 
information to make decisions. In addition to visualization 
facilities, machine learning and computational intelligence-
driven arrangements are often added to big data analytics. This 
makes the decision-making process more formal. However, 
adding these computational arrangements makes the analytics 
computationally heavy and highly resource-depended. As a 
result, only large organizations can sustain big data analytics, 
and medium and small organizations fall behind [5]. Thus, big 

data analytics results in an inequality referred to as big data 
inequality [5]. Measures are needed to mitigate big data 
inequality.

Let us focus on issue called process planning. Process 
planning is a micro-level decision-making activity associated 
with manufacturing processes. In process planning, 
computerized systems are used to determine the optimal 
conditions ensuring desired safety, economy, and quality of 
the relevant manufacturing process. In most cases, stand-along 
computerized systems equipped with the necessary knowledge 
have been used to facilitate the decision-making process 
during process planning. From the viewpoint of the maturity 
index of Industry 4.0 [1], these systems must be redesigned. 
One of the concerns of redesign is whether the process 
planning systems are compatible with big data, and, thereby,
big data analytics.

Many authors have studied big data or big data analytics 
from the context of real-life manufacturing. For example, 
Ismail et al. [6] found that data ingestion is a problem in 
manufacturing when big data is a concern. They identified that 
new tools to bring the datasets into the decision making 

15th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Gulf of Naples, Italy

Optimization of Dry Electrical Discharge Machining of Stainless Steel 
using Big Data Analytics

Saman Fattahia, AMM Sharif Ullahb*

aGraduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
bDivision of Mechanical and Electrical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan

* Corresponding author. Tel./Fax: + 81-157-26-9207. E-mail address: ullah@mail.kitami-it.ac.jp

Abstract

Big data (datasets accessible through the Internet) coupled with machine learning arrangements constitute big data analytics, which is heavily 
resource-depended and creates inequality-only large organizations can sustain or utilize big data analytics, and medium and small organizations 
fall behind. This article presents a novel inequality-free big data analytics for process planning in medium and small enterprises. Big data, 
search mechanism, control and evaluation variables relevant datasets, uncertainty quantification using possibility distributions, and decision 
rules are the components of the proposed analytics. This article reports the characteristics of the analytics applied to optimizing dry electrical 
discharge machining conditions of stainless steel.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Saman Fattahi  et al. / Procedia CIRP 112 (2022) 316–321 317

process. Effective visualization of relevant datasets must be 
addressed, enabling engineers to use them in decision making. 
O’Donovan et al. [7] found that the requirements and 
management of big data analytics from the context of smart 
manufacturing are significantly different from traditional 
information systems. They have proposed the big data pipeline 
facilitating transparent data integration without committing to 
extensive technology replacement. Oleghe [8] developed a 
methodology to deal with missing and invalid value correction 
in process datasets. This is a big data-induced problem in 
manufacturing. LaCasse et al. [9] developed big data analytics 
based on a fuzzy inference approach that performs data 
filtration and feature prioritization in the connected 
manufacturing enterprise. Ji et al. [10] presented a framework 
of process planning where big data analytics is incorporated. 
The analytics is designed in such a way so that it runs using 
machine learning and computational intelligence-based 
arrangements. Nevertheless, the big data analytics proposed so
far [6-10] may cause big data inequality [5], as described 
above. Therefore, further research is needed to introduce big 
data analytics that serves its purpose (makes necessary 
decisions to optimize a process) without causing big data 
inequality. This article contributes in this direction.

This article presents big data analytics, which is free from 
big data inequality. It consists of five components: big data, 
search mechanism, control and performance variables relevant 
datasets, uncertainty quantification using possibility 
distributions, and decision rules. This article also reports this 
framework’s characteristics when applied to optimizing dry 
electrical discharge machining conditions of stainless steel.

2. Proposed Big Data Analytics

This section presents the proposed big data analytics and its 
general characteristics.

The proposed big data analytics is schematically illustrated 
in Fig. 1. As shown in Fig. 1, the analytics consists of four 
modules: 1) Initiation module, 2) CV-EV datasets module, 3) 
uncertainty quantification module, and 4) decision rule 
module. The initiation module consists of two submodules 
denoted as big data of scholarly outcomes and process-driven 
search. CV-EV datasets mean datasets consist of Control 
Variables (CVs) and Evaluation Variables (EVs). CVs are 
those variables that can be controlled during a manufacturing 
process. EVs are those variables that are used to evaluate the 
process performances. The uncertainty quantification module 
quantifies uncertainty using probability-distribution-neutral 
distributions (e.g., possibility distributions). The decision rule 
module extracts and represents rules by which one can decide 
which CVs must be used to ensure the optimal level of the 
respective EVs.

The general description of the initiation module is as 
follows. The open-access scholarly articles can be used as big 
data of scholarly outcomes. Otherwise, issues related to big 
data inequality cannot be mitigated. Nowadays, search engines 
offered by Google can be used to search the open access 
scholarly articles (i.e., the big data of scholarly outcomes). For 
the search, keywords derived from manufacturing processes 
must be used. In this case, the names of the manufacturing 

processes (turning, milling, electric discharge machining, 
additive manufacturing) can be used. The quantifies limiting 
the scope of the manufacturing process can be added if needed. 
For example, “dry” can be used along with “electrical
discharge machining” to limit the search. Besides, materials 
can be used as keywords to make the search more meaningful. 
The reason is that when a researcher studies a manufacturing 
process, s/he conducts the study for a specific material (e.g., 
electric discharge machining for stainless steel). Therefore, 
keywords can be represented by the following set: keywords =
{manufacturing process, process quantifier, materials}.

Big data of scholarly 
outcomes

No CV1 CV2 … EV1 EV2 …

1 … … … … … …

2 … … … … … …

… … … … … … …

Datasets

Process-driven 
search

CV-EV datasets

0

1

EV1

CV1 CV2



Decision Rules:
Use CV1 to minimize EV1
Use CV2 to maximize EV1
…

Uncertainty quantification

…

Fig. 1. Big data analytics for manufacturing process optimization.

The general description regarding CV-EV datasets module
is as follows. Once the process-driven search is completed, 
different types of contents can be obtained. Contents explicitly 
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showing CV-EV datasets qualify for the analytics. For 
example, since depth of cut, feed rate, cutting speed, and other 
variables can be varied to control a machining operation, they 
become the constituents of CVs.

On the other hand, machining time, surface roughness, 
subsurface damages, environmental burden, tool wear, and 
other relevant variables can be used to evaluate the 
performance of the process; thus, they become the contents of 
EVs. When experimental contents qualify as CV-EV datasets, 
it is highly likely that the contents underlie a design of 
experiments [11,12] scheme. Therefore, the contents where 
the design of experiments related results are presented qualify 
for CV-EV datasets. The digitization level of the CV-EV
datasets matters. If the data points are presented by plotting 
graphs, the plots must be computed to extract numerical data. 
Thus, data points presented in tabular form and downloadable 
XML data is perhaps the easiest to handle.

The general description of the uncertainty quantification 
module is as follows. Only the scholarly outcomes for a 
specific manufacturing process and materials are allowed for 
CV-EV datasets. Therefore, each dataset is somewhat unique. 
As far as decision-making is concerned, the datasets are 
competing datasets. The most trusted dataset can be used to 
make a decision ignoring others. Alternatively, few selected or 
all qualified datasets can be used to make a decision. The total 
number of datasets may vary with time. In this case, additional 
datasets may or may not affect the decision rule. This means 
that a limited number of datasets and data points are available 
for uncertainty quantification. In this case, probability-
distribution-free distributions, e.g., possibility distributions, 
which can be constructed without going through cumbersome 
statistical data processing, can be constructed to quantify 
uncertainty. Since fuzzy numbers [13] are possibility 
distributions, how to contract fuzzy numbers from a selected 
segment of CV-EV datasets is an important issue in this 
module. The construction process must be user-friendly, less 
resource-dependent, and not computationally heavy. 
Otherwise, the analytics suffers big data inequality.

The general description of the last module is as follows. In 
this module, decision rules are established using the 
information of the previous module. For example, consider the 
arbitrary scenario shown in Fig. 1.  In this case, two possibility 
distributions are shown partitioning EV1. CV1 guarantees the 
possibility of securing low values EV1. On the other hand, the 
possibility of securing high values of EV1 is guaranteed by 
CV2. This manifests two decision rules: 1) Use CV1 to 
minimize EV1 and 2) Use CV2 to maximize EV2.

3. Dry Electrical Discharge Machining

This section describes electrical discharge machining 
(EDM) and its environmentally friendly variant called dry 
EDM (DEDM).

EDM is a non-conventional machining process. In EDM, 
an electrode (cathode) is placed near the workpiece (anode), 
maintaining a stipulated gap. A part of the electrode and the 
whole workpiece are submerged into the dielectric liquid. 
When a rapidly recurring current is passed, electrical 
discharges (sparks) occur. This increases the energy 

concentration of the workpiece near the electrode. As a result, 
material removal takes place. The remarkable thing is that 
EDM can machine difficult-to-cut materials [14]. Thus, many 
manufacturers in the mold and die industry have been using 
this process for manufacturing complex structures made of 
difficult-to-cut (e.g., tungsten carbide) [15]. There are some 
limitations of conventional EDM, which are caused by the oil-
based dielectric liquids. This type of dielectric liquids creates
non-recyclable toxic wastes with fire hazards [16]. I In 
addition, the oil-based dielectric liquid may deposit carbon, 
causing damage to the workpiece surface. Instead of an oil-
based dielectric liquid, deionized water can be used. This is 
more sustainable but could lead to defects in the workpiece 
like surface cracks and corrosion [17]. Therefore, more 
environmentally friendly EDM has been developed, referred 
to as DEDM. DEDM uses dielectric gas, not liquid. In its 
initiation, it could machine small cavities only. Research has 
been carried out to make DEDM suitable for larger objects
[17].

Nevertheless, the first generation DEDM supplies oxygen 
in the gaseous form into the discharge gap in the presence of 
water-based dielectric substance [18]. Kunieda et al. [5] found 
that using this type of DEDM can increase the material 
removal rate (MRR) and discharge frequency compared to the 
conventional EDM. Later, oxygen gas is used as the dielectric 
substance DEDM to increase the MRR [19].

Figure 2 schematically illustrates the setup of DEDM [19]. 
As seen in Fig. 2, high-velocity gas (mainly air, oxygen, argon 
and/or their mixture) works as the dielectric jet, passing 
through a thin-walled tubular electrode. The electrode rotates 
while machining. This arrangement stabilizes the plasma 
channel of electric dischage. At the same time, the low 
viscosity of gas dielectric enhances the flushing conditions
[19]. This is not the case in conventional EDM. However, how 
to achieve a better surface finish, high dimensional accuracy, 
less subsurface damage, low residual stress, thin white-layer, 
and small heat-affected zone have been the challenges of 
DEDM, along with MRR [20]. 

Fig. 2. Setup of DEDM. [16]

In this regard, innovative ideas have been applied. For 
example, a DEDM setup is developed by adding a 
piezoelectric actuator for achieving better performance [21]. 
Air/argon mixture is used as the dielectric substance better to 
optimize the process performance of DEDM [16]. A pulsating 
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magnetic field applied tangential to the electric field, which 
increases the movement of electrons and degree of ionization 
in the plasma, is used to enhance the process performances of 
DEDM [22]. The cryogenic arrangement is added to cool the 
workpiece surface, which results in better MRR [23]. 
Furthermore, it is shown that ultrasonic vibrations applied to 
the workpiece can improve the performance [24, 25]. The list 
continues. As far as the optimization of process performance 
is concerned, some parameters become Control Variables 
(CVs). These variables are fine-tuned to achieve better 
performance. On the other hand, the process performance is 
evaluated by the variables denoted as Evaluation Variables 
(EVs). Thus, in an optimization process, EVs are brought to 
their optimal levels by adjusting CVs to certain levels. For, 
DEDM, the variables listed in Table 1 are considered CVs and 
EVs, repectively. The CVs are as follows: Current (I), Voltage 
(V), Pulse Off-time (Toff), Pulse On-time (Ton), Duty Factor (D),
Gas Pressure (P), and Spindle Speed (N). On the other hand, 
EVs are as follows: Material Removal Rate (MRR), Surface 
Roughness (SR), Radial Overcut (ROC), and Tool Wear Rate 
(TWR).

In the literature, many articles can be found where authors 
report experimental or theoretical results showing the 
interplay of the abovementioned CVs and EVs. These articles 
become the source of knowledge regading DEDM. The 
knowledge extraction process can be assisted by the big data 
analytics presented in the previous section.

Table 1. CVs and EVs of DEDM

Control Variables (CVs) Evaluation Variables (EVs)

Current (I)

Voltage (V)

Pulse Off-time (Toff)

Pulse On-time (Ton)

Duty Factor (D)

Gas Pressure (P)

Spindle Speed (N)

Material Removal Rate (MRR)

Surface Roughness (SR)

Radial Overcut (ROC)

Tool Wear Rate (TWR)

4. Results and Discussions

In the literature of DEDM, many articles can be found 
where the authors report their experimental or theoretical 
studies showing the interplay of the abovementioned CVs 
and EVs. These articles become the source of knowledge 
regarding DEDM. The knowledge extraction process can be 
assisted by the big data analytics presented in the previous 
section. This section presents some of the remarkable results 
found when big data analytics (Section 2) is applied to 
optimize DEDM. The results regarding the initiation 
module, CV-EV datasets module, uncertainty quantification 
module, and decision rule module are presented separately. 
The implications of the results are also described whenever 
necessary.

4.1. Initiation module

This module consists of two submodules denoted as big 
data of scholarly outcomes and process-driven search.

First, consider the submodule defined as big data of 
scholarly outcomes. Nowadays, many sources of big data of 
scholarly outcomes exist. The big data sources of scholarly 
outcomes can be divided into primary big data and secondary 
big data. The primary big data is single publisher-managed 
big data. The secondary big data aggregates datasets from 
multiple primary big data sources. ScienceDirect, 
SpringerLink, MDPI, and Wiley Online Library are four 
examples of primary big data offered by Elsevier, Springer 
Nature, Multidisciplinary Digital Publishing Institute, and 
John Wiley & Sons, respectively. Among these, MDPI offers 
fully open access contents, and others offer partially open 
access contents. Google Scholar, J-STAGE, ResearchGate, 
and repository of different academic institutes worldwide are 
examples of secondary big data sources. These sources 
provide content collected from different publishers and 
authors. Some of the contents are open access, and some 
others are not. In most cases, the contents are provided in 
Portable Document Format (PDF). In some cases, numerical 
datasets are provided in XML format, making it suitable for 
big data analytics to handle—for example, the contents 
provided by MDPI. However, in this study, the secondary big 
data called Google Scholar is considered.

Consider the other submodule—process-driven search. The 
process-driven search is defined in Section 2. In this type of 
search, the keywords set consists of “manufacturing process,” 
“process quantifier,” and “materials.” When the keywords 
“Dry EDM,” which is consists of a manufacturing process 
(EDM) and a quantifier (Dry), is used to search the secondary 
big data called Google Scholar. This search results in 242 
articles with PDF documents. Out of these articles, only 21 
articles are relevant to the “design of experiment” (DoE). 
These articles are useful for the proposed big data analytics 
because when DoE is used to collect numerical data regarding 
a manufacturing process, the datasets relevant to CV-EV can 
be identified easily. Otherwise, a great deal of effort must be 
given to identify the datasets relevant to CV-EV, which is not 
desirable. Finally, the keyword relevant to “materials” is used. 
This time, the materials called “Stainless Steel (300 Series)” 
is considered. This results in only four articles [26-29] out of 
the 21 articles.

4.2. CV-EV datasets module

In the four articles [26-29], the authors considered five CVs
(Current (I), Voltage (V), Pulse Off-time (Toff), Gas Pressure 
(P), and Spindle Speed (N)) and two EVs (Material Removal 
Rate (MRR) and Tool Wear Rate (TWR)). The DoE related 
information regarding these four articles is summarized in 
Table 2. As listed in Table 2, the first article [26] shows 15 
experimental results where four levels of V, I, Toff, P, and N
are considered. The second article [27] shows 27 experimental 
results where three levels of V, I, Toff, P, and N are considered. 
The third article shows 31 experimental results where five
levels of V, I, Toff, P, and N are considered. The last article
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shows 31 experimental results where two levels of V, I, Toff, P, 
and N are considered. Thus, heterogeneous datasets are 
available to extract knowledge.

Table 2. CV-EV states in the selected four articles.

Article 
Number

Number of 
Experiments Control Variables (Number of Levels)

1 [26] 15 V (4), I (4), Toff (4), P (4), N (4)

2 [27] 27 V (3), I (3), Toff (3), P (3), N (3)

3 [28] 31 V (5), I (5), Toff (5), P (5), N (5)

4 [29] 8 V (2), I (2), Toff (2), P (2), N (2)

4.3. Uncertainty quantification module

The uncertainty quantification module represents the 
uncertainty associated with the datasets using the possibility 
distributions (fuzzy number). Figure 3 shows the computing 
tool developed to induce possibility distribution from a given 
dataset. This tool imports the relevant dataset and converts it 
to a possibility distribution and triangular fuzzy number, 
according to the procedure defined in [13].

Fig. 3. Possibility distribution generator.

The datasets in [27] are used to quantify the uncertainty. 
Figure 4 shows one of the examples. In Fig. 4, three triangular 
fuzzy numbers shown by three different colors quantify the 
uncertainty associated with CV = Current (I) while relating it 
with EV = MRR. Since there are three states of Current, I = 
12A, 15A, and 18A, three triangular fuzzy numbers are 
constructed, respectively, using the computing tool shown in 
Fig. 3.
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Fig. 4. Relationship between Current and MRR based on datasets in [27].

As seen in Fig. 4, a change in I causes a shift in the 
corresponding triangular fuzzy in the universe of discourse 
of MRR. The shift follows an order¾the more the Current, the 
more the MRR. Other datasets are also referred to the similar 
relationship. For example, consider the datasets shown in [28]. 
The datasets of MRR corresponding to five different levels 
of I = 9A, 12A, 15A, and 18A, as shown in Fig. 5. This time, 
instead of constructing fuzzy numbers, the datasets are 
visualized using a scatter plot. The reason for doing this is 
that the number of data points is inadequate to the induce 
fuzzy number as required by the method [13]. This plot 
underlies a trend in MRR with respect to I, which is similar to 
that of the previous case. Therefore, the uncertainty
quantification module results in a consistent conclusion 
regarding the relationship between I and MRR in DEDM of 
Stainless Steel materials.
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4.4. Decision rule module

This is the last module of the proposed big data analytics. 
In this module, decision rules are constructed using the results 
of the previous module. For constructing the decision rules, 
both informal and formal induction [30] can be used. In this 
study, informal induction is used. This means that the results 
shown in Figs. 3-4 becomes the justifications of the decision 
rules expressed by some simple sentences. As such, the 
following sentences can be constructed.

Rule 1: Maximize Current to Maximize MRR
Rule 2: Minimize Current to Minimize MRR
The above rules can be used to control the DEDM. Similar 

rule can be constructed for other CVs, if needed.
Thus, the presented big data analytics effectively makes 

decisions even though a great deal of uncertainty persists in 
the big data. This experience can be utilized to develop a 
more formal computing tool to implement the presented big 
data analytics.

5. Concluding Remarks 

Big data analytics offers a wide range of data visualization 
facilities. It is also equipped with machine learning and 
computational intelligence-driven arrangements. This makes 
the decision-making process more formal. However, adding 
these computational arrangements makes the analytics 
computationally heavy and highly resource-depended. As a 
result, only large organizations can sustain big data analytics, 
and medium and small organizations fall behind. Thus, big 
data analytics results in an inequality referred to as big data 
inequality. Measures are needed to mitigate big data inequality. 
This study offers a novel big data analytics that helps manifest 
decision rules using a simple but effective machine learning 
technique. The technique is neither computationally heavy nor 
highly resource-depended. Thus, it can be sustained by 
medium and small organizations that need big data inequality-
free analytics to support process planning activities within the 
framework of smart manufacturing.

This study considers process planning of DEDM only. The 
same big data analytics can be extended to other 
manufacturing processes. This issue remains open for further 
investigation.
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