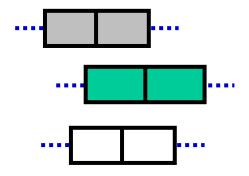
Continuous Improvement Toolkit

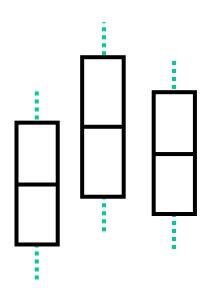
ANOVA



Managing **Deciding & Selecting Planning & Project Management* Pros and Cons PDPC** Risk Importance-Urgency Mapping RACI Matrix Stakeholders Analysis Break-even Analysis **RAID Logs FMEA** Cost -Benefit Analysis **PEST** PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting Project Charter Roadmaps **Pugh Matrix Gantt Chart** Risk Assessment* Decision Tree **TPN Analysis PDCA Control Planning** Matrix Diagram Gap Analysis **OFD** Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram** Critical-to Tree Standard work **Identifying &** Capability Indices **OEE** Cause & Effect Matrix Pareto Analysis Simulation TPM**Implementing** RTY Descriptive Statistics **MSA** Mistake Proofing Solutions*** Confidence Intervals Understanding Cost of Quality Cause & Effect Probability Distributions ANOVA Pull Systems JIT **Ergonomics Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation **Understanding Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis Relations Mapping* Benchmarking Fishbone Diagram **SMED** Wastes Analysis Sampling **TRIZ***** Time Value Map Process Redesign Brainstorming Focus groups **Interviews** Analogy SCAMPER*** IDEF0 Nominal Group Technique SIPOC Mind Mapping* Photography Value Stream Mapping **Check Sheets** Attribute Analysis Flow Process Chart Process Mapping Affinity Diagram **Measles Charts** Surveys Visioning **Flowcharting** Service Blueprints Lateral Thinking **Data** Critical Incident Technique Collection **Creating Ideas** Designing & Analyzing Processes Observations**

Continuous Improvement Toolkit . www.citoolkit.com

- Analysis of Variance.
- Used to determine whether the mean responses for two or more groups differ.
- We can use ANOVA to compare the means of three or more population.
- ☐ If we are only comparing two means, then ANOVA will give the same results as the 2-samples t-test.
- □ The Math is different, but the approach and interpretation of p-values is the same.



- We must be clear of the hypotheses before applying the technique.
- □ A hypothesis test used to determine whether **two or more** sample means are significantly different by comparing the variances between groups.

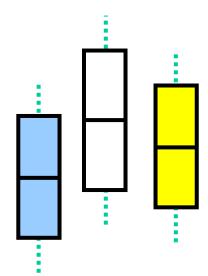
The Null Hypothesis → The sample means are all the same.

The Alternative Hypothesis → They are not all the same (at least one of them differs significantly from the others).

■ Be careful how you phrase: "There is a difference" not "They are all different".

Some important terms used in ANOVA:

- □ Factor:
 - □ The explanatory variable in the study.
 - □ The factor is categorical (the data classify people, objects or events).
- □ Levels:
 - □ The groups or categories that comprise a factor.
- **□** Response:
 - □ A variable (continuous) being measured in the study.

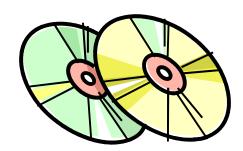


Example:

- ☐ If we select the supplier to be the **factor**, each supplier represent a **level** (the group within a factor).
- □ In **one-way ANOVA**, there is only one factor.
- ANOVA is used to compare the means of the factor levels to determine whether the levels differ.
- □ Where is the **response**?

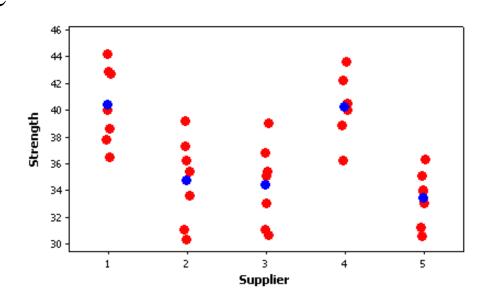
Example:

☐ If a company wants to purchase one of three expensive software packages:

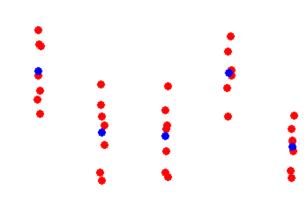


- ☐ The software would be the **factor** because it is our explanatory variable.
- □ The three software packages are the **levels** that comprise the factor.
- □ The amount of time it takes to fill out a report would be the response (because it is the particular variable being measured).

- □ In ANOVA, it is useful to graph the data.
- We can examine the factor level means and look at the variation **within** each group and **between** all groups.
- □ However, the graph will give no idea if the differences between the means are statistically significant.



- □ Within-group variation is the variability in measurements within individual groups.
- **Between-group variation** is the variability in measurements between all groups.
- We compare between-group variation to within-group variation to determine whether real differences between groups exist.
- □ If the between-group variation is large relative to the within-group variation, evidence suggests that the population means are not the same, and vice versa.



- □ A **test** to be conducted to decide whether differences between group means are real or simply random error.
- We can compare between and within group variations using
 F-statistic ratio.

F-statistic = Between-group variation
Within-group variation

- When F is large → between-group variation is larger than within group variation, which indicates a real difference between group means.
- When F is small → little or no evidence of a significant difference between group means.

□ When comparing the means of two population, we can use either the 2-sample t-test or **one-way ANOVA**.

Null

Hypothesis

Hο

The population means

are the same

Alternative

Hypothesis

Hι

At least one of the

population means differs

- We must first define the null and alternative hypotheses.
- We need to use the **p-value** from the ANOVA output to determine whether we should reject or fail to reject the null hypothesis.

Example:

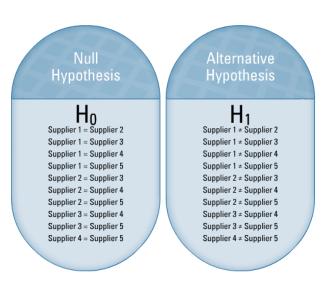
- An automobile company uses nylon from five different suppliers to manufacture automobile safety belts.
- □ Suppose after establishing the hypothesis & collecting random samples, the results are:

One-way ANOVA: Strength versus Supplier											
Source	DF	SS	MS	F	P						
Supplier	4	322.63	80.66	10.50	0.000						
Error	30	230.44	7.68								
Total	34	553.06									

- \Box As **p-value** < **0.05**, we will reject the null hypotheses.
- □ The fiber strength for at least one supplier is different from the others.

- □ In the previous example, we need to know which suppliers produce the strongest fiber.
- □ For this purpose, we can use multiple comparisons.

- Each individual comparison is like a **2-sample t-test**.
- □ For each comparison, we will examine the **confidence interval** to determine whether there is a significant difference between the groups.

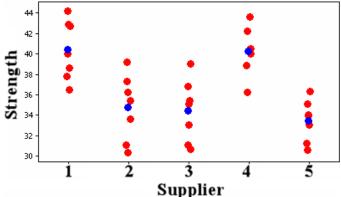


- Each confidence interval provides a range of likely values for the difference between the two population means.
- □ If the confidence interval does not contain the value **zero**, then we reject the null hypothesis and conclude that the two group are different.

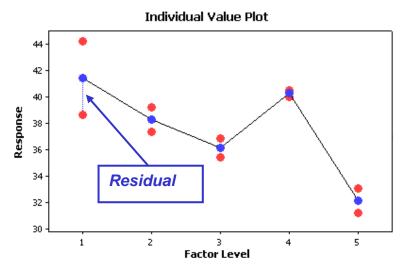
- ☐ Here are the results of all the comparisons.
- □ For example, we will reject the null hypothesis for supplier 2 and 4.
- □ Therefore, there strength are different.

```
Supplier = 1 subtracted from:
Supplier
          -9.966 -5.671 -1.377
         -10.266 -5.971 -1.677
          -4.423 -0.129
         -11.252 -6.957 -2.662 (-----*----)
                                                 0.0
                                                                    12.0
Supplier = 2 subtracted from:
         -4.595 -0.300 3.995
          1.248 5.543 9.838
         -5.581 -1.286 3.009
                                     -6.0
                                                         6.0
                                                                  12.0
Supplier = 3 subtracted from:
                 5.843 10.138
         -5.281 -0.986
                         3.309
                                                                   12.0
Supplier = 4 subtracted from:
         -11.123 -6.829 -2.534 (-----*----)
                                                 0.0
                                                           6.0
                                                                    12.0
```

- **Question:** Which two suppliers have the higher mean strength measurements than the others?
- **□ Answer:** 1 and 4.
- **Question:** Is there a statistical difference between suppliers 1 and 4? Or which one is the absolute strongest?
- **Answer:** No, supplier 4 contains the value zero when comparing to supplier 1.



- □ The **residuals** estimates the error in ANOVA.
- □ They are calculated by subtracting the observed value from the fitted value (the group mean if the sample size is the same for each group).
- We can examine the plots of the residuals to check the ANOVA assumptions.



■ Errors in ANOVA (residuals) should be random independent, normally distributed and have constant variance across all factor levels.

- When we have two factors, we can use two-way ANOVA to investigate differences among group means.
- ☐ In two-way ANOVA, we use the one-way ANOVA terms (factor, levels and response).
- □ New terms:
 - □ Main effect: The influence of a single factor on a response.
 - □ **Interaction:** An interaction between factors is present when the mean response for the levels of one factor depends on the level of the second factor.

Example:

- □ An IT Consultancy employs a variety of software developers to provide custom software solutions.
- □ It has programmers, testers and system administrators.
- □ Company's training programs are classroom teaching, instructional videotapes, and one-on-one training.
- □ The manager wants to determine **how to best leverage the company's training programs.**
- ☐ It can save the company money in the long run if the right employees are trained in the best possible.

Example:

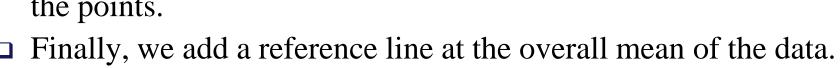
- **□** Factors:
 - □ Job type & method of instruction.
- □ Levels:
 - □ **Job type:** programmers, testers & system administrators.
 - **Method of instruction:** classroom teaching, instructional videotapes, and one-on-one training.
- **□** Response:
 - □ Impact on employees (effectiveness of training via test).
- **■** Main effect and Interaction:
 - □ If a particular job type achieves higher scores from using a given method of instruction, is this an **interaction** or a **main effect**?

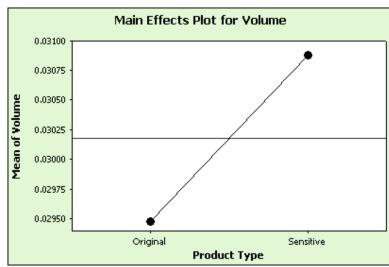
□ How can we get a better idea of how factors might be

affecting the response?

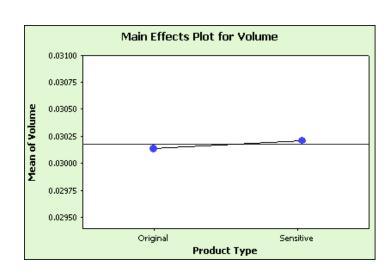
☐ The main effects plot can show whether each factor **individually** influences the response.

- ☐ First we'll calculate the mean for each level of the two factors.
- ☐ Then we plot these values on the graph and draw a line to connect the points.

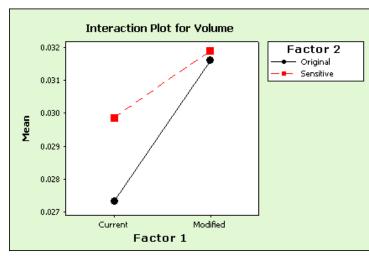




- □ If the line connecting the points is horizontal, this indicates that no main effect is present.
- □ If the output line is not horizontal, the main effect is present.
- □ The greater the slope of the line, the stronger the effect.
- Remember to include measurements of all factor levels for the other factor.



- □ To show how the effect of one factor interacts with the effect of another, we'll use the interaction plot.
- We need to calculate the mean of each combination of levels for the two factors.
- ☐ Then we'll connect each pair of points with a line (in different color).
- When an interaction exists, the connecting lines on the interaction plot are not parallel. They intersect or almost intersect (as shown here).



2 Ways ANOVA Approach:

- Establish the hypothesis.
 - □ For each factor.
 - □ For the interaction between the factors.

The Null Hypothesis → Either no main effect is present or no interaction effect is present.

The Alternative Hypothesis → Either a main effect is present or an interaction effect is present.

- Collect random samples.
- □ Graph the data (main effects and interaction plots).
- □ Conduct the 2 Ways ANOVA and interpret the results.

Example:

- □ Let's get back to the IT consultancy study.
- The null and the alternative hypothesis:

H0: Mean scores on the test are the same of each training method.

H1: Mean scores on the test are different for at least one of the training methods.

H0: Mean scores on the test are the same of all job types.

H1: Mean scores on the test are different for at least 1 of the job types.

H0: The Change in the mean response across levels of training methods does not depend on job type.

H1: The Change in the mean response across levels of training methods does depend on job type.

Example:

- □ In two-way ANOVA, we first need to test whether a significant interaction effect is present.
- We will need to consider the **F-statistic** and the **p-value** to determine whether the interaction statistically significant.
- ☐ If the interaction is significant, it does not make sense to look at the main effect for each factor individually.
- □ Like in one-way ANOVA, we can examine the plots of the residuals to check the ANOVA assumptions.

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Factor 1	1	0.0000795	0.0000795	0.0000795	6.36	0.013
Factor 2	1	0.0004007	0.0004007	0.0004007	32.07	0.000
Factor 1 * Factor 2	1	0.0000504	0.0000504	0.0000504	4.03	0.046
Error	156	0.0019492	0.0019492	0.0000125		
Total	159	0.0024798				