Continuous Improvement Toolkit

Confidence Intervals

Managing Deciding & Selecting **Planning & Project Management*** Pros and Cons **PDPC** Risk Importance-Urgency Mapping **RACI** Matrix **Stakeholders Analysis Break-even Analysis RAID** Logs FMEA **Cost** -Benefit Analysis PEST PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting Project Charter Roadmaps Pugh Matrix Gantt Chart Risk Assessment* Decision Tree **TPN** Analysis **PDCA Control Planning** Matrix Diagram Gap Analysis OFD Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram** Critical-to Tree Standard work **Identifying &** Capability Indices OEE Cause & Effect Matrix Pareto Analysis Simulation TPM Implementing RTY MSA Descriptive Statistics Confidence Intervals Understanding Mistake Proofing Solutions*** Cost of Quality Cause & Effect Probability **Distributions** ANOVA Pull Systems JIT Ergonomics **Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation Understanding **Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis **Relations Mapping*** Benchmarking Fishbone Diagram SMED Wastes Analysis Sampling TRIZ*** Time Value Map Process Redesign Brainstorming Focus groups Interviews Analogy SCAMPER*** IDEF0 Nominal Group Technique SIPOC Photography Mind Mapping* Value Stream Mapping **Check Sheets** Attribute Analysis Flow Process Chart Process Mapping Affinity Diagram **Measles Charts** Surveys Visioning Flowcharting Service Blueprints Lateral Thinking **Data** Critical Incident Technique Collection Creating Ideas** **Designing & Analyzing Processes** Observations

 A point estimate is a simple value that approximates the true value of a population parameter.

- **Examples:** Sample mean and standard deviation.
- □ The sample mean is a point estimate for the population mean.
- □ The sample standard deviation is a point estimate for the true population standard deviation.
- □ It is highly unlikely that the sample mean and standard deviation are exactly the same as the true population parameters.

- To get a better sense of the true population values, we can use
 Confidence Intervals.
- **Example:**
 - We have a magnet trap to avoid fallen cans during the process.
 - How confident are we that no fallen cans will cross the trap?

Can we be 100 % confident about our results?

- In our processes we need to know how confident we are with the results coming from our samples.
- □ A confidence interval is a range of likely values for a population parameter.
- □ Using confidence intervals, we can say that it is likely that the population parameter is somewhere within the range.
- It is how sure we are that the confidence interval contains the actual population parameter value.

Likely values for population parameter

 Confidence Intervals will help us to know whether our sample is a good representation of the whole population.

- □ The most common confidence level is 95%.
- □ Other common confidence levels: 90% & 99%.
- □ The high the confidence level, the wider the confidence interval.
- The higher the process variation the bigger the Confidence Interval.
- As sample size decreases the Confidence Interval gets bigger to cope with the fact that less data has been collected.

Example:

- Suppose we calculate confidence intervals based on 20 different samples.
- On average, the population mean will be contained within 19 out of 20 intervals if we use 95% confidence level.

 Confidence intervals could be used also to examine differences between the population mean and a target value.

- □ If the target value is not contained in the interval, the population mean is significantly different from the target value.
- It could be used also to investigate if the product/process is as good as other products/processes in the market (a standard value).

Question:

Do we have evidence that the population mean is different from the industry standard?

□ Answer:

Yes, the confidence interval shows that the range of likely values for the population mean does not include the industry standard of 3.10.

Mathematical Equation for a Confidence Interval:

- The sample average and the sample Sigma are the best estimate at this point.
- The value of **'t'** is taken from a statistical table similar to the Z-table.

df	0.95	0.99
2	4.303	9.925
3	3.182	5.841
4	2.776	4.604
5	2.571	4.032
8	2.306	3.355
10	2.228	3.169
20	2.086	2.845
50	2.009	2.678
100	1.984	2.626

• n is the sample size.

Further Information:

- Confidence Intervals are used to provide a range within which the true process statistic is likely to be.
- **They allow us to answer questions like:**
 - How confident that the collected sample is a good representation of the population.
 - Is there is a chance that the process is producing an average thickness of 43.5mm.
 - Do the random selected 2000 surveyed voters provide a precise prediction of the actual result of the election (Confidence intervals for proportions).