Continuous Improvement Toolkit

Control Planning

Managing **Deciding & Selecting Planning & Project Management*** Pros and Cons **PDPC** Risk Importance-Urgency Mapping **RACI** Matrix **Stakeholders Analysis Break-even Analysis RAID** Logs FMEA **Cost** -Benefit Analysis PEST PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting **Project Charter** Roadmaps Pugh Matrix Gantt Chart Risk Assessment* Decision Tree **TPN** Analysis PDCA **Control Planning** Matrix Diagram **Gap** Analysis OFD Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram** Critical-to Tree Standard work **Identifying &** Capability Indices OEE Pareto Analysis Cause & Effect Matrix Simulation TPM Implementing RTY Descriptive Statistics MSA Confidence Intervals Understanding Mistake Proofing Solutions*** Cost of Quality Cause & Effect Probability **Distributions** ANOVA Pull Systems JIT Ergonomics **Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation Understanding **Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis **Relations Mapping*** Benchmarking Fishbone Diagram SMED Wastes Analysis Sampling TRIZ*** Process Redesign Brainstorming Focus groups Time Value Map **Interviews** Analogy SCAMPER*** IDEF0 Nominal Group Technique SIPOC Photography Mind Mapping* Value Stream Mapping **Check Sheets** Attribute Analysis Flow Process Chart Process Mapping Affinity Diagram Measles Charts Surveys Visioning Flowcharting Service Blueprints Lateral Thinking **Data** Critical Incident Technique Collection Creating Ideas** **Designing & Analyzing Processes Observations**

- A single document that includes the actions, schedules and responsibilities that are needed to control the variables at their optimal settings.
- Assures that the improvements established will not deteriorate once the improved process is returned to the process owners.
- Provides monitoring and control methods to control process or product characteristics.
- Helps to ensure capability and stability over time.

It summarizes the measurement details such as:

- □ The **inputs** to be controlled
- □ The **outputs** to be monitored.
- □ Actions, schedules and responsibilities.
- □ The **controls** to be implemented such as:
 - Reaction / response plan.
 - What, where , when, how, etc.
 - Audits.
 - Mistake proofing.

It could also summarize other tools measures such as:

- □ Voice of the customer and the specifications.
- □ Process mapping variables.
- □ Cause and effect variables.
- □ Process capability measures (Cpk, etc.).
- □ R&R measures.
- □ Sampling information.

The Control Plan is Updated As:

- On a regular basis.
- □ The design changes.
- □ The process changes.
- □ The measurement systems changes.
- □ The control methodologies are improved.

 $Continuous\ Improvement\ Toolkit\ .\ \underline{www.citoolkit.com}$

Control Plan																
Project (Number/Name):													Prepared by:			
Process/Product:													Revision:			
Leader: Date:																
	Measures		Specifications			Capability			Measurement			Reaction plan				
Process Step	KPIV Inputs	KPOV Output	Target	LSL	USL	Cpk	Sample Size	Date	Method / Freq.	R&R	Value recorded	Who	When	Where	Reaction	

Reaction Plan:

- □ An action plan specified by a control plan, FMEA, etc.
- It provides details of actions to be taken when a process no longer be in control.
- Initiated when nonconforming product or process instability is identified.
- Having a reaction plan will help maintaining performance levels and prevent backsliding.
- It could be within the control plan or can be in another document.

Further Information:

- Control plans may apply to an individual part or product or to a family of similar items produced using the same process.
- They provide a mechanisms to minimize product and process variations.
- The quality of the controls is critical. If the controls fail, all the work put into the project may be wasted.
- When an out of specification result is recorded, the reaction plan may detail how to ensure:
 - No defects will reach the customer (containment).
 - How to fix the process (adjustment).