Continuous Improvement Toolkit

Design of Experiment

(Introduction)

Managing **Deciding & Selecting Planning & Project Management* Pros and Cons PDPC** Risk Importance-Urgency Mapping RACI Matrix Stakeholders Analysis Break-even Analysis **RAID Logs FMEA** Cost -Benefit Analysis **PEST** PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting Project Charter Roadmaps **Pugh Matrix Gantt Chart** Risk Assessment* Decision Tree **TPN Analysis PDCA Control Planning** Matrix Diagram Gap Analysis **OFD** Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram** Critical-to Tree Standard work **Identifying &** Capability Indices **OEE** Cause & Effect Matrix Pareto Analysis Simulation TPM**Implementing** RTY Descriptive Statistics **MSA** Mistake Proofing Solutions*** Confidence Intervals **Understanding** Cost of Quality Cause & Effect Probability Distributions ANOVA Pull Systems JIT **Ergonomics Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation **Understanding Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis Relations Mapping* Benchmarking Fishbone Diagram **SMED** Wastes Analysis Sampling **TRIZ***** Process Redesign Brainstorming Focus groups Time Value Map **Interviews** Analogy SCAMPER*** IDEF0 Photography Nominal Group Technique SIPOC Mind Mapping* Value Stream Mapping **Check Sheets** Attribute Analysis Flow Process Chart Process Mapping Affinity Diagram **Measles Charts** Surveys Visioning **Flowcharting** Service Blueprints Lateral Thinking **Data** Critical Incident Technique Collection Creating Ideas** **Designing & Analyzing Processes Observations**

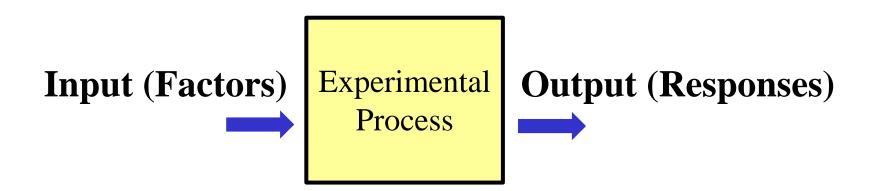
Continuous Improvement Toolkit . www.citoolkit.com

Experimentation:

An **experiment** is an act carried out under conditions determined by the experimenter in order to discover an unknown effect, to test or establish a hypothesis, or to illustrate a known effect.

- Designed Experiment A formal practice for effectively exploring the causal relationship between input factors and output variables.
- □ It provides a range of efficient structured experiments which enable all the factors to be investigated at the same time, with minimum of trials.

- **■** When analyzing a process, experiments are often used to:
 - Evaluate which process inputs have a significant impact on the process output.
 - Decide what the target level of those inputs should be to achieve a desired output.



Input (Factors) People Material Equipment

Policies Procedures Methods

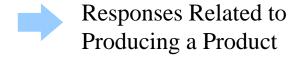
Environment

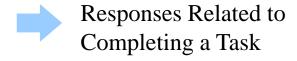
Environment

Experimental Process

A Controlled
Blending of
Inputs Which
Generates
Corresponding
Measurable
Outputs

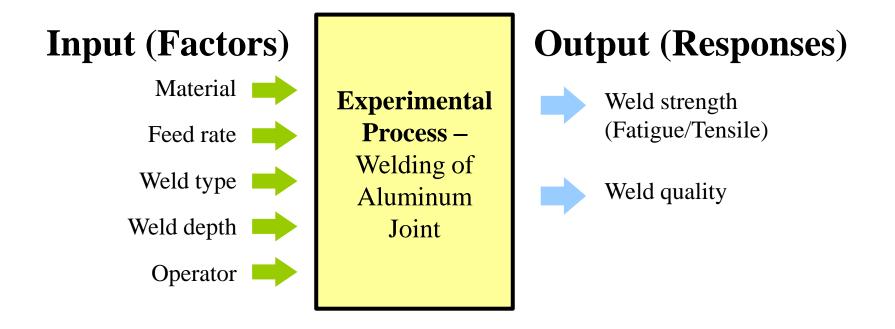
Output (Responses)





Responses Related to Performing a Service

Example - Welding of Aluminum Joint:



Regression vs. DOE:

- □ Regression are used to analyze historical data that is taken from the process in its normal mode.
- □ Designed experiments are used to create and analyze real time data that is taken in an experimental mode.
- □ The math behind DOE is similar to that for Regression.

$$Y=f(x)$$

Benefits:

- □ It identifies the significant inputs affecting an output to reduce the variability of the process and to achieve an optimal process output.
- Allows to make an informed decision that evaluates both quality, cost and delivery.
- Achieves manufacturing cost savings.
- □ Reduces rework, scrap, and the need for inspection.
- □ Improve process or product "**Robustness**" or fitness for use under varying conditions.
- Compares alternatives.

Where is DOE Used:

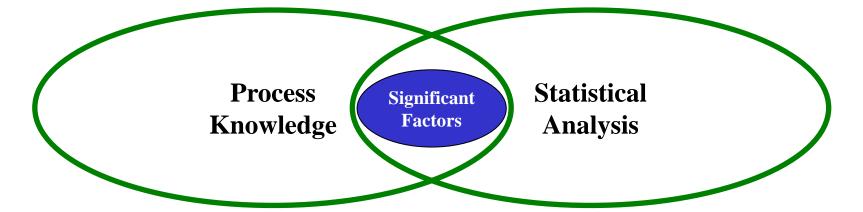
- □ DOE are more widespread in projects that are technically oriented such as manufacturing projects.
- □ The principles are relevant to transactional projects but the ability to control an experiment in an office environment tend to be limited.

Why DOE is Not More Widely Used?

- It is generally seen as heavy statistical technique, regarded as time consuming and expensive.
- □ Its value is often not well understood.

Methods of Experimentation:

- Trial and Error.
- One Factor at a Time (OFAT).
- Designed Experiments (DOE).



Neither OTAF nor Trial and Error models can provide prediction equations

Trial and Error:

- A method of reaching a correct solution or satisfactory result by trying experimentations until error is sufficiently reduced or eliminated.
- □ Perhaps the most widely used type of experimentation.
- ☐ Provides a "Quick Fix" to a specific problem.
- Random changes to process parameters.
- □ One selects a possible solution, applies it to the problem and, if it is not successful, selects another possible solution is subsequently tried until the right solution is found.

Trial and Error:

- Attempt to find a solution, not all solutions, and not the best solution.
- □ This approach is most successful with simple problems when no apparent rule applies.
- Often used by people who have little knowledge about the problem.
- Symptoms may disappear but root cause of problem would still be undetected.
- Knowledge would not be expanded.

One Factor at a Time (OFAT):

- □ One factor is tested while holding everything else constant, then another factor is tested, etc.
- Done in order to estimate the effect of a single variable on selected fixed conditions of other variables.
- □ This can be time consuming (very costly).
- What about interactions?
- □ Can we find the optimum process?
- \Box Can we establish a Y=f (X) equation?

Designed Experiments:

- □ Planned experiments that allow for the statistical analysis of several X's to determine their effects on any output (Y's).
- □ A more proactive way to learn about the process is to change it in a structured way.

	Α	В	С
1	1	1	1
2	1	2	2
3	2	1	2

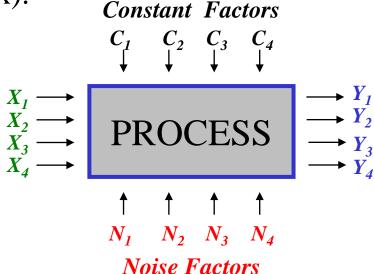
- ☐ It provides the most efficient method for screening the vital few X's from the trivial many.
- □ It allows varying several factors "simultaneously".
- More efficient when studying two or more factors.

Why Designed Experiments?

- □ Normally we have many Inputs, Outputs and possible settings.
- □ DOE explores the effects of different process inputs and combination of inputs on the output(s).
- \square DOE Enables us to establish: Y = f(x).

A well-performed DoE provide answers to:

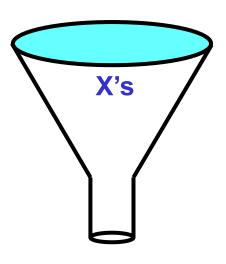
- What are the key factors in a process?
- What are the best settings for our process?



Designed Experiments:

- □ In DOE, input variables are called **factors** and output variables are called **responses**.
- Each experimental condition is called a **run** and the response measurement is called an **observation**.
- □ The entire set of runs is called a **design**.
- **□** A well-performed DOE provide answers to:
 - What are the key factors in a process?
 - At what settings would the process deliver acceptable performance or less variation in the output?

- We need to determine which factors to evaluate in an experiment
- □ The critical variables or the "Vital Few".
- **□** This requires:
 - Process knowledge.
 - Statistical results.
- □ Next, we need to determine at which levels we want to set the factors in the experiment.
- □ Proper planning is the most critical step in conducting a successful DOE.

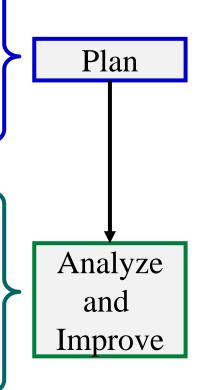


Three Aspects Analyzed by a DOE:

- **□** Factors:
 - Controlled independent variables.
 - Potential factors can be obtained by the Fishbone diagram.
 - Ideally 2 to 4 factors
- **□** Response (Output):
 - The output of the experiment (Single or Multiple).
- **Levels:**
 - Settings of a factor that are tested in an experiment.
 - The values here should be chosen with care and within the normal operating range.
 - Example: Oven temperature (high or low).

Approach:

- Determine objectives and the key responses.
- □ Identify potential causes and factors.
- ☐ Identify potential levels and interactions.
- □ Choose appropriate design & the sequence of trials.
- □ Run the experiment and collect the data.
- Analyze data to determine interactions and best factor levels to optimize the process (evaluate the data).
- □ Verify the results and make recommendations.
- ☐ Implement the optimum factors.



DOE Structure and Layout:

- □ The order in which the trials of an experiment are performed.
- **□** Randomization:
 - Helps eliminate effects of unknown or uncontrolled variables.
 - Allows controlling the unknown source of variation that may affect the result.
 - Minimizes the possibility that other environmental factors will affect the test results.

DOE Structure and Layout:

□ Blocking:

- An experimental technique that groups runs into logical collections of experimental units with a blocking variable to account for unavoidable process variation.
- Used to reduce the unwanted variation in an experiment and increase the precision of the experiment.
- In an experiment that contains a blocking variable, the runs are not completely randomized.
- They are assigned to a logical collection (block) and then randomized within the block.

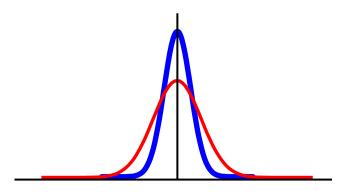
DOE Structure and Layout:

□ Replication:

- Uncontrollable factors (Noise factors) cause variation under normal conditions and could lead to measurement error.
- By replicating the runs, the team will be able to estimate pure replication error which provides the best estimate of experimental variability (to gain statistical confidence).

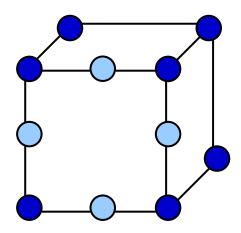
Sources of variability:

- Setting up equipment.
- Resetting factors.
- Natural variation in the process.



Factorial Design:

- Allows to simultaneously evaluate the effect of several factors on a process.
- Varying the levels of the factors simultaneously rather than individually:
 - Saves time and expense.
 - Reveals the interaction between the factors.
- Helps identifying the optimal settings for factors.



□ Full Factorial Experiment:

- Responses are measured at all combinations of the experimental factor levels.
- With 2 factors at two levels, the full factorial design requires four runs.

□ Fractional Factorial Experiment:

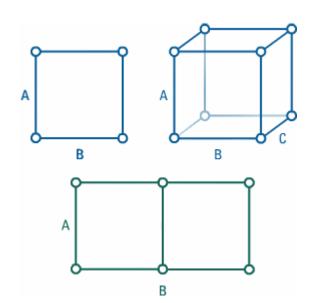
 Are a good choice when resources are limited or the number of factors in the design is large.

No. of Factors	No. of Runs
2	4
3	8
4	16
5	32
6	64

- \Box 2-level factorial designs (2^K design).
 - Each experimental factor has only 2 levels.

Number of Factors

Number of Levels



- General factorial designs:
 - Used when experimental factor has more than 2 levels.

Example:

- Miss Marple wants to get her tea to the right sweetness.
- She has a teaspoon and sugar and wants you to explain how to do it.

	Low	High
Stirring	None	20 seconds
Sugar	None	2 teaspoons

Run Order	Stirring	Sugar
1	Low	Low
2	Low	High
3	High	Low
4	High	High

- Does just Stirring satisfy Miss Marple?
- □ Does just Sugar produce the desired effect?
- □ Is the interaction of stirring and adding sugar significant?

2-Level Full Factorial Design:

- It is the basic building block of designed experiments.
- □ **Factorial** → The input factors are changed simultaneously during the experiment.
- □ 2-level → Every input factor is set at 2 different levels.
- □ Full → Every possible combination of the input factors is used during the experiment.

Run Order	Pressure	Type
1	310	One
2	380	One
3	310	Two
4	380	Two

□ The random order provides a random sequence in which the experiment should be completed.

	Std. Order	Run Order	Pressure	Type	Thickness
	1	1	310	One	4.25
	2	5	380	One	4.41
	3	7	310	Two	4.16
	4	3	380	Two	4.63
	5	4	310	One	5.15
	6	6	380	One	4.80
Replication	7	2	310	Two	4.89
Re	8	8	380	Two	4.29

Fractional Factorial Designs:

- Having fewer trials will lead to reduce the resolution of the experiment.
- □ This means that some of the interactions will not be visible because they will be confounded with other effects.
- □ Fractional factorial experiment can be and effective tool if this reduced resolution is understood and managed.

Available Factorial Designs (with Resolution)														
Factors														
Run	2	2 3 4 5 6 7 8 9 10 11 12 13 14 15												
4	Full	III												
8		Full	I۷	III	III	III								
16			Full	V	I۷	I۷	I۷	III						
32				Full	VI	I۷	I۷	I۷	I۷	I۷	I۷	I۷	I۷	I۷
64					Full	VII	V	I۷						
128						Full	VIII	VI	V	V	I۷	I۷	I۷	I۷

3	Factors
	I UCCOID

Fractiona| Factorial

Std. Order	Run Order	Pressure	Temperature	Type	Thickness
1	1	310	63	One	4.25
2	5	380	63	Two	4.41
3	7	310	68	Two	4.16
4	3	380	68	One	4.63
5	4	310	63	One	5.15
6	6	380	63	Two	4.80
7	2	310	68	Two	4.89
8	8	380	68	One	4.29
9	9	Mid	Mid	Mid	4.19

Center Points can be used to detect non-linear effects.

To evaluate the data (Process Optimization):

- □ Determine whether the effects are significant.
- □ Determine the most contribution to the response variability.
- □ Fit the experimental data to a model.
- □ Check the model assumptions using residual plot.
- □ Determine process settings that optimize the response (using Response Surface Design).

Determine Whether the Effects are Significant:

□ In a designed experiment, we evaluate the p-value to determine if the effects are significant (ANOVA).

☐ The null hypothesis for each term in the model is that the effect

is equal to zero.

```
Estimated Effects and Coefficients for Adhesion (coded units)
Term
                       Effect
                                  Coef SE Coef
                                                      Т
Constant
                                4.64313 0.02739 169.53 0.000
Pressure
                     -0.19375 -0.09687 0.02739
                                                  -3.54 0.004
                      0.41375
                               0.20687
                                        0.02739
                                                   7.55
                                                         0.000
Primer Type
Pressure*Primer Type -0.12125 -0.06062 0.02739
                                                  -2.21 0.047
```

```
Analysis of Variance for Adhesion (coded units)

Estimated Coefficients for Adhesion using data in uncoded units

Term Coef
Constant 5.59804

Pressure -0.00276786

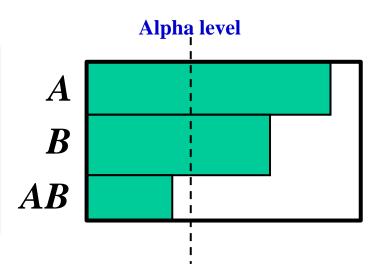
Primer Type 0.804464

Pressure*Primer Type -0.00173214
```

Y = 5.5980 - 0.0028*A + 0.8045*B - 0.0017*A*B + Error

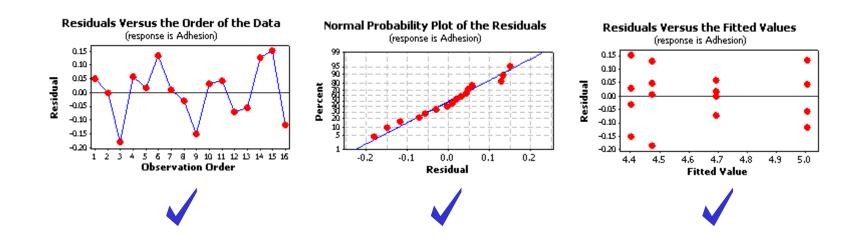
Determine the Most Contribution to the Response Variability:

- □ Which terms contribute the most to the variability of the response (use the Pareto chart).
- □ Any bar extending beyond the significance level reference line indicates that the effect is significant.
 - The Pareto chart shows that both factors significantly affect the response.
 - The interaction between the factors is not significant.



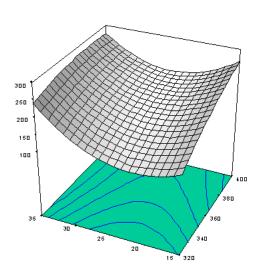
Fit the experimental data to a model:

- □ It is a good practice to check the model assumptions before use the model to determine the optimal factor:
 - The errors are random and independent.
 - The errors are normally distributed.
 - Errors have constant variance across all factor levels.



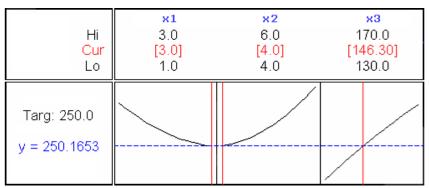
Determine Process Settings that Optimize the Response:

- □ We will use the Response Surface Design to determine the optimum settings of the X's that will optimize the response.
- □ The goal is to find the settings of the factors where the results are consistently close to the optimum.
- ☐ It investigates curvature of the response surface.
- □ Used usually following the factorial design because there will then be a higher level of knowledge about the key X's and their interactions needed to optimize the response.



Response Surface Designs are Used to:

- □ Find the optimal process settings that will influence the response.
- □ Troubleshoot process problems and weak points.
- Make a product or process more robust against external and non-controllable influences.
- □ Find the settings of the variables that will yield a maximum (or minimum) response.

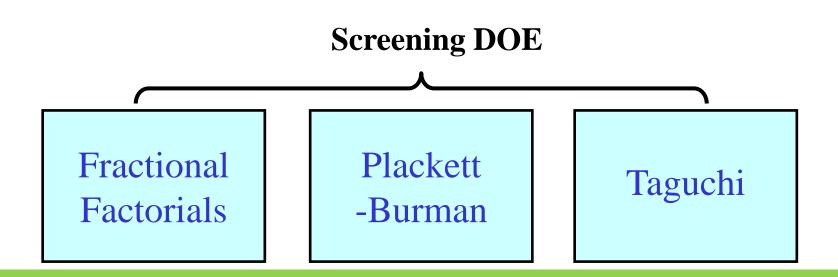


Screening Designs:

- □ An experimental design which allows us to evaluate the effects of a large number of potential factors on the response in the fewest possible runs.
- □ Helps to screen out the trivial many factors and identify the significant few affecting the response.
- Used when there is a low level of knowledge about the X's that are critical to optimizing the Y's.
- □ Screening designs reduce the number of trials and hence the cost of an experiment. They tend to be highly fractionated.

We Use Screening Designs When:

- When process knowledge is low.
- We have too many factors.
- ☐ It is difficult to run the experiments.
- ☐ It is expensive to run the experiments.



Taguchi Methods:

- □ A special variant of Design of Experiments (DOE).
- □ It's based on the principle that processes can be made insensitive (robust) to random variation from uncontrollable (noise) factors by including these factors in the experimental design.

