#### Continuous Improvement Toolkit

#### **Graphical Analysis**



#### The Continuous Improvement Map

| Managing                     | Decidi                       | ng & Selecting                     | Plann           | ing & Project    | Management*       |
|------------------------------|------------------------------|------------------------------------|-----------------|------------------|-------------------|
| Risk PDPC                    | Decision Balance Shee        | et Importance-Urgency              | Mapping D       | aily Planning    | PERT/CPM          |
| FMEA RAID Log*               | Force Field Analysis         | Cost Benefit Analy <mark>si</mark> | MOST            | RACI Matrix      | Activity Networks |
| Risk Assessment*             | Break-even Analysis          | Voting TPN Analysis                | SWOT A          | Analysis Stake   | eholder Analysis  |
| Fault Tree Analysis          | ecision Tree Pick Char       | rt Four Field Matri <mark>x</mark> | Project Ch      | arter Improv     | ement Roadmaps    |
| Traffic Light Assessment     | Critical-to Tree QFD         | Portfolio Matrix                   | PDCA            | A Policy Deployn | nent Gantt Charts |
| Lean Measures Kar            | no Analysis Matrix Diagrar   | m Paired Comparison                | DMAIC<br>Kaiz   | en Events Con    | trol Planning     |
| Bottleneck Analysis**        | Cost of Quality* Pugh Matrix | Prioritization Matrix              | A3 Thinking     | Standard work    | Document control  |
| OE<br>Bragges Vield          | E <u>KPIs</u> Pareto Ana     | lysis C&E Matrix                   | retending       | Cross Training   |                   |
| De De De De                  | scriptive Statistics ANOVA   | A Chi-Square Caus                  | e & Effect      | Value Analysis   | Solutions**       |
| Capability indices           | robability Distributions Hy  | oothesis Testing Design            | of Experiment   | Mistake Proofin  | g Ergonomics      |
| Gap Analysis*<br>Histo       | ograms & Boxplots Multi v    | vari Studies Confidence            | ce Intervals Si | mulation TPM     | Automation        |
| Reliability Analysis Gr      | aphical Analysis Scatter F   | Plots Correlation R                | egression       | Pull Flow        | Just in Time      |
| Understanding<br>Performance | A Run Charts 5 Whys          | Root Cause Analysis                | Data Snooping   | Visual Managen   | nent 5S           |
| Benchmarking** C             | ontrol Charts Fishbon        | e Diagram Tree Diagrar             | n* SIPOC*       | Waste Analysis   | Quick Changeover  |
| Data collection planner*     | Sampling Morphological       | Analysis How-How Dia               | agram** Proc    | cess Redesign    | Time Value Map    |
| Check Sheets Interview       | WS Brainstorming SCAN        | MPER** Attribute Analy             | vsis Spaghetti  | Diagram Value    | e Stream Mapping  |
| Questionnaires               | Affinity Diagram             | Relationship Mappin                | ng* Flow Pro    | ocess Charts S   | ervice Blueprints |
| Data                         | Mind Mapping                 | * Lateral Thinking                 | Flowcharting    | IDEF0 Pr         | ocess Mapping     |
| Collection Observ            | Suggestion system            | $_{\rm S}$ Creating Ideas          | Desigr          | ning & Analyzi   | ng Processes      |

- Statistic is the science of describing, interpreting and analyzing data.
- Statistics may be:
  - Graphical:

Makes the numbers visible.

• Inferential:

Makes inferences about populations from sample data.

Analytical:

Uses math to model and predict variation.

• Descriptive:

Describes characteristics of the data (location and spread).



- Graphs truly show that a picture is worth a thousand of words.
- A long list of data is usually not practical for conveying information about a process.
- One of the best ways to analyze any process is to **plot the data**.
- Many graphical tools are available which can generate graphs quickly and easily.



#### **Benefits:**

- Allows to learn about the nature of the process.
- Enables clarity of communication.
- Helps understanding sources of variation in the data.
- Provides focus for further analysis.



- Different graphs can reveal different characteristics of your data:
  - Central tendency.
  - Dispersion.
  - The general shape for the distribution.



 Conclusions drawn from graphs may require verification through advanced statistical techniques such as significance testing and experimentation.

- Graphing the data can be utilized for both historical data and live data collection activities.
- You need to pick the right graphical tool as there are a lot of different ways to plot your data.
- If one graph fails to reveal anything useful, try another one.

| Month | Machine 1 | Machine 2 | Machine 3 |
|-------|-----------|-----------|-----------|
| Jan   | 4,932     | 6,475     | 2,932     |
| Feb   | 3,132     | 3,757     | 3,832     |
| Mar   | 4,828     | 5,477     | 2,828     |
| Apr   | 5,752     | 4,858     | 5,252     |
| May   | 4,322     | 3,864     | 3,322     |
| Jun   | 3,757     | 10,854    | 4,757     |
| Jul   | 5,477     | 6,628     | 3,477     |
| Aug   | 4,858     | 9,752     | 2,858     |
| Sep   | 3,864     | 4,932     | 1,864     |
| Oct   | 7,454     | 5,832     | 2,454     |
| Nov   | 4,754     | 4,428     | 2,754     |
| Dec   | 3,358     | 4,322     | 2,622     |

#### Line Charts:

- One of the simplest form of charts.
- Useful for showing trends in quality, cost or other process performance measures.
- They represent the data by connecting the data points by straight lines to highlight trends in the data.
- A standard or a goal line may also be drawn to verify actual performance against identified targets.
- Time series plots, run charts, SPC charts and radar charts are all line charts.



#### **Time Series Plots:**

- Line charts used to evaluate behavior in data over a time interval.
- They can be used to determine if a process is stable by visually spotting trends, patterns or shift in the data.
- If any of these are observed, then we can say that the process is probably unstable.
- □ It requires the data to be in the order which actually happened.
- More advanced charts for assessing the stability of a process over time are run charts and SPC charts.

#### **Time Series Plots:**

- Time Series Analysis is the analysis of the plotted data in order to get meaningful information.
- Different behaviors of the data can be observed such as:
  - Upward and downward trends.
  - Shifts in the mean.
  - Changes in the amount of variation.
  - Patterns and cycles
  - Anything not random.
- Time Series Forecasting is the use of a model to predict future values based on observed values.



**Example –** The average time it needed to change a label:



A time series plot for evaluating continuous data

**Example –** The number of unanswered calls in a call center:



A time series plot for evaluating count data

**Example –** The number of scrapped products generated from three machines:



#### Pie Charts:

- Circular charts that make it easy to compare proportions.
- Widely used in the business and media worlds for their simplicity and ease of interpretation.
- They represent each category as a slice of the pie.
- They display the proportion of each category relative to the whole data set.



#### **Pie Charts:**

- A Doughnut Chart is a variation of the pie chart with a blank center.
- It allows for additional information to be included about the data.
- □ Pie and doughnut charts work well with few categories.
- They are suitable for presenting data for around seven groups or fewer.



#### **Bar Charts:**

- □ Used to display frequencies of attribute data.
- □ They focus on the absolute value of the data.
- □ The bars on the chart are presented horizontally or vertically.
- When a bar chart presents the categories in descending order of frequency, this is called a Pareto Chart.



#### **Bar Charts:**

- Grouped Bar Charts display bars clustered in groups.
- Staked Bar Charts stack bars of each group on top of each other to show the cumulative effect.
- A 100% Staked Bar Chart is used for demonstrating the difference in proportion between categories.



**Example –** A grouped bar chart displaying the number of occupied beds in a hospital in two consecutive years.



**Example –** A stacked bar chart displaying the number of occupied beds in a hospital in two consecutive years.



#### **Dotplots:**

- A Dotplot is a graphical representation of data using dots plotted on a simple scale.
- □ A form of frequency distribution.
- It is suitable for displaying small to moderate data sets.



- □ The X-axis is divided into many small intervals called bins.
- The data values falling within each bin are represented by dots (one or more dots per data point).
- □ The end result is a set of vertical lines of dots.

#### **Dotplots:**

- □ It is generally used when the data is discrete.
- It can also be used to present continuous data.
- It shows where the data are clustered, where the gaps are located and can help identify outliers.
- Dotplots are also useful for comparing distributions in terms of their shape, location and spread.



**Example –** A dotplot that displays the number of complaints made by customers in a given period of time.



#### A dotplot for evaluating count data

**Example** – A dotplot showing the GPA scores of all students in a business college.



Each symbol represents up to 4 observations.

#### A dotplot for evaluating continuous data

**Example –** A dotplot is created to compare the teachers who had been on sick leave between two types of schools.



**Example –** An analysis that was conducted for diagnosing the presence of diabetes at a workplace.



**Example –** An analysis that was conducted for diagnosing the presence of diabetes at a workplace.



#### Individual Value Plots:

- Graphs that are useful to give an overall picture of the individual values that make up a data set.
- Often used for comparing distributions that have small number of data.
- They enable to see all the values of a data set even if there are similar data points.
- They give an idea of the distribution shapes and whether outliers are present.



**Example** – An individual value plot showing the responses of a particular marketing campaign that uses multiple advertising methods.



#### **Individual Value Plots:**

□ What can you conclude from this Individual Value Plot?



Individual Value Plot of Line 1, Line 2

#### **Radar Charts:**

- Used to display and compare multiple data sets over a range of characteristics or over a specific period of time.
- □ It comes in the form of a **two-dimensional chart**.
- It has a radial axis and an angular axis.
- After plotting the data, a point close to the center indicates a low value and a point near the edge indicates a high value.
- A line is normally drawn connecting the data values for each data set.



**Example** – A radar chart that displays the daily mean temperatures in four different cities over the year.



#### Multi-Vari Charts:

- Variation in the data may come from multiple sources.
- A Multi-Vari Chart is a graphical tool that allows to visually show where the major variation is coming from.
- □ Multiple variables are plotted together on a **single chart**.
- Often used when studying the variation within:
  - A subgroup.
  - Between subgroups.
  - Over time.



**Example –** A multi-vari chart showing how the type and composition affect the durability of a carpet.



#### **Scatter Plots:**

- Many problems require the estimation of the relationship between two or more variables.
- Scatter plots are used to study the relationship between two variables.
- They are used to determine what happens to one variable when another variable changes value.



#### **Probability Plots:**

- Graphical techniques that provide a more decisive approach for determining if your data follows a particular distribution.
- Constructed in a way that the points will fall in a straight line if they fit the distribution in question.
- They are an improvement from just assessing visually.



#### **Graph Selection:**

- The graphs you choose depends on:
  - The type of data you have.
  - The objective you are trying to achieve.
- There are graphs for continuous data and graphs for count and attribute data.
- Remember that you need to perform additional statistical analysis before drawing any conclusion.



#### Graph Selection:



\* Larger amount of data