Continuous Improvement Toolkit

Kano Analysis

The Continuous Improvement Map

Managing	Deciding & Selecting			g	Planning & Project Management*		
Risk PDPC	Decision B	alance Sheet	Importance	e-Urgency	Mapping	Daily Planning	PERT/CPM
FMEA RAID Lo	RAID Log* Force Field Analys		Cost Benef	fit Analy <mark>sis</mark>	MOST	RACI Matrix	Activity Networks
Risk Assessment*	Break-even A	nalysis Vo	oting TPN	N Analy <mark>sis</mark>	<u>SWOT</u>	Analysis <u>St</u>	akeholder Analysis
Fault Tree Analysis	Decision Tree	Pick Chart	Four Fie	ld Matri <mark>x</mark>	Project C	harter Impr	ovement Roadmaps
Traffic Light Assessm	nent Critical-to Tree	e QFD	Portfolio N	/latrix	PDO	CA Policy Deplo	oyment Gantt Charts
Lean Measures	Kano Analysis Ma	atrix Diagram	Paired Com	parison	DMAIC Ka	izen Events C	control Planning
Bottleneck Analysis**	Cost of Quality*	Pugh Matrix	Prioritization	Matrix	A3 Thinking	Standard work	Document control
Process Yield	OEE <u>KPIs</u>	Pareto Analysi	is C&E Ma	atrix	rstanding	Cross Training	Implementing
Canability Indices	Descriptive Statistic	s ANOVA	Chi-Square	Cause	e & Effect	Value Analysi	Solutions**
	Probability Distribu	utions Hypot	hesis Testing	Design	of Experimen	t Mistake Proc	ofing Ergonomics
Gap Analysis I	Histograms & Boxplo	ts Multi vari	Studies	Confidenc	e Intervals	Simulation TF	M Automation
	Graphical Analysis	Scatter Plot	s Correlat	tion Re	egression	Pull Flov	v Just in Time
Performance	MSA Run Charts	5 Whys R	oot Cause Ar	nalysis _D	ata Snooping	Visual Manag	ement 5S
Benchmarking**	Control Charts	Fishbone [Diagram Tre	e Diagram	^{1*} SIPOC*	Waste Analysis	; Quick Changeover
Data collection planne	er* Sampling M	orphological Ar	nalysis Hov	w-How Dia	gram** Pro	o <mark>cess Re</mark> design	Time Value Map
Check Sheets Inte	rviews Brainstormi	ing SCAMP	ER** Attrik	oute Anal <mark>y</mark>	sis Spaghe	tti Diagram Va	Ilue Stream Mapping
Questionnaires Fo	ocus Groups Affinit	ty Diagram	Relationsh	ip Mappi <mark>n</mark>	g* Flow P	rocess Charts	Service Blueprints
Data	Mi	nd Mapping*	Lateral Thi	nking	Flowcharting	IDEF0	Process Mapping
Collection Ob	servations Sugges	stion systems	Creating l	deas	Desig	gning & Analy	zing Processes

- □ A framework to analyze **customer needs**.
- Helps understanding how a product or service fits customer needs.
- Helps categorizing and prioritizing the different features of a product or service:
 - Based on their impact to customer satisfaction.
- Those categories are then considered when analyzing potential opportunities for improvement.

The types of features that influence customer satisfaction:

- The must be features.
- The performance features.
- The excitement features.
- The indifferent features.
- The reverse features.

Must Be Attributes:

- □ The basic criteria and the reasonable level of quality.
- Customers take them for granted.
- □ If these requirements are not present or are insufficient:
 - Customers will be extremely dissatisfied.
- □ If they are present or are sufficient:
 - They will not bring satisfaction.

Examples:

- The timely & responsive customer service.
- The defect-free product.
- The brakes and the windshield of the car.

Must Be

Performance Attributes:

- □ They are not absolutely necessary.
- They result in satisfaction when fulfilled and dissatisfaction when not fulfilled.
- The more you provide, the more the customer is satisfied.
- Organizations use them to prioritize their efforts.

Satisfiers

Examples:

- The speed of answering a phone in a call center.
- The reduced amount of spoilage in a production line.
- The warranty period and the fuel consumption of the car.

Delighters:

- Organizations should aim for giving customers more than what they expect.
- The fulfillment of them will lead to high customer satisfaction.
- They distinguish your product or service.
- They are often:
 - Unexpected and Unspoken.
 - Provided to the customers for no extra money.

An example:

• A basket of fruit after having booked a room in a hotel.

- The indifferent attributes are those whose presence and absence do not bring satisfaction.
- Examples are those product features that are never or rarely used by the customer.

- The reverse attributes are those whose presence brings dissatisfaction.
- Some customers prefer high-tech products, while others prefer the basic model of a product and will be dissatisfied if a product has too many extra features.

Using the Kano Model:

- □ With your team, brainstorm all of the possible features.
- Brainstorm everything you can do to excite your customers.
- Classify all features as basic, satisfier, delighter, indifferent, reverse, or not relevant.
- Cut out all the indifferent and the non-relevant attributes.
- Make sure your product has all appropriate basic features.
- Select the right performance features so that the product can be delivered at a price which the customer is ready to pay.
- Think how you can build some delighters into your product.

Tips:

- The Kano Model highlights how the customer requirements are constantly changing.
- Today's delighters becomes tomorrow's must be's, requiring us to constantly come up with new delighters.
- It does not present methods to be applied to carry out improvement activities.
- Results of applying the Kano Model can be used in the Quality Function Deployment (QFD) matrix to clarify relationship between customer needs and technical requirements.