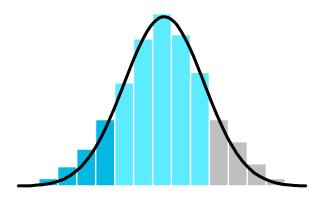
Continuous Improvement Toolkit

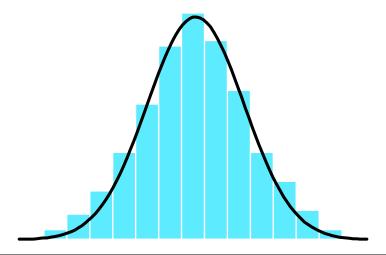
Normal Distribution



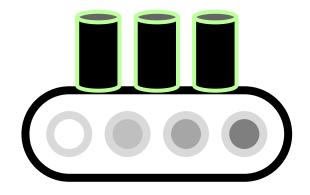
The Continuous Improvement Map

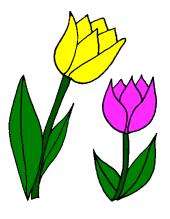
Managing **Selecting & Decision Making** Planning & Project Management* Risk **PDPC Break-even Analysis** Importance-Urgency Mapping Daily Planning PERT/CPM Quality Function Deployment Cost Benefit Analysis RAID Log* **FMEA MOST** RACI Matrix **Activity Networks** Payoff Matrix Delphi Method **TPN Analysis** Risk Analysis* **SWOT Analysis** Stakeholder Analysis Decision Tree Pick Chart Voting Four Field Matrix Fault Tree Analysis **Project Charter** Improvement Roadmaps Critical-to Tree Force Field Analysis Portfolio Matrix Traffic Light Assessment **PDCA** Policy Deployment Gantt Charts Decision Balance Sheet Paired Comparison Kano **DMAIC** Lean Measures Kaizen Events Control Planning OEE Cost of Quality* Pugh Matrix **Prioritization Matrix** Standard work Document control A3 Thinking Process Yield **Matrix Diagram** Pareto Analysis Earned Value KPIs **Cross Training Implementing Understanding** Capability Indices Chi-Square ANOVA **Descriptive Statistics** TPM Automation Solutions*** Cause & Effect Gap Analysis* Probability Distributions Hypothesis Testing Mistake Proofing Ergonomics Design of Experiment **Bottleneck Analysis** Multi vari Studies Histograms Just in Time 5S Simulation **Confidence Intervals** Reliability Analysis Scatter Plots Correlation **Graphical Analysis** Quick Changeover Visual Management Regression **Understanding** MSA 5 Whys Root Cause Analysis Data Mining Product Family Matrix Pull Flow Run Charts Performance** Spaghetti ** Process Redesign **Control Charts** Fishbone Diagram **Relations Mapping** SIPOC* Benchmarking*** Waste Analysis** Value Stream Mapping** Data collection planner* Sampling How-How Diagram*** Tree Diagram* Time Value Map** Value Analysis** **Brainstorming Check Sheets** SCAMPER*** Attribute Analysis Interviews Flow Process Charts** Service Blueprints Affinity Diagram Morphological Analysis Questionnaires **Focus Groups** IDEF0 **Process Mapping** Flowcharting Data Mind Mapping* **Lateral Thinking Observations** Collection **Group Creativity Designing & Analyzing Processes** Suggestion systems Five Ws

- The commonest and the most useful continuous distribution.
- A symmetrical probability distribution where most results are located in the middle and few are spread on both sides.
- It has the shape of a bell.
- Can entirely be described by its mean and standard deviation.



- □ Can be found practically everywhere:
 - In nature.
 - In engineering and industrial processes.
 - In social and human sciences.
- Many everyday data sets follow approximately the normal distribution.





Examples:

- The body temperature for healthy humans.
- The heights and weights of adults.
- □ The thickness and dimensions of a product.
- IQ and standardized test scores.
- Quality control test results.
- Errors in measurements.

Why?

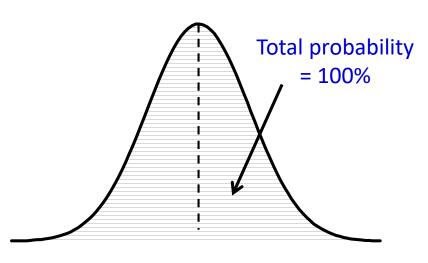
- Used to illustrate the shape and variability of the data.
- Used to estimate future process performance.
- Normality is an important assumption when conducting statistical analysis.
 - Certain SPC charts and many statistical inference tests require the data to be normally distributed.

Normal Curve:

- A graphical representation of the normal distribution.
- □ It is determined by the mean and the standard deviation.
- It a symmetric unimodal bell-shaped curve.
- Its tails extending infinitely in both directions.
- The wider the curve, the larger the standard deviation and the more variation exists in the process.
- □ The spread of the curve is equivalent to six times the standard deviation of the process.

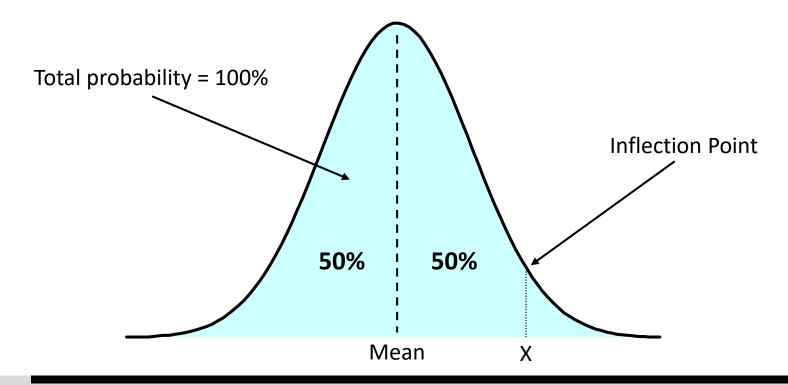
Normal Curve:

- Helps calculating the probabilities for normally distributed populations.
- □ The probabilities are represented by the area under the normal curve.
- □ The total area under the curve is equal to 100% (or 1.00).
- This represents the population of the observations.
- We can get a rough estimate of the probability above a value, below a value, or between any two values.



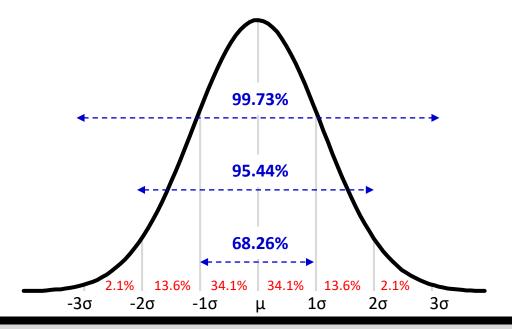
Normal Curve:

□ Since the normal curve is symmetrical, **50 percent** of the data lie on each side of the curve.



Empirical Rule:

- □ For any normally distributed data:
 - 68% of the data fall within 1 standard deviation of the mean.
 - 95% of the data fall within 2 standard deviations of the mean.
 - 99.7% of the data fall within 3 standard deviations of the mean.

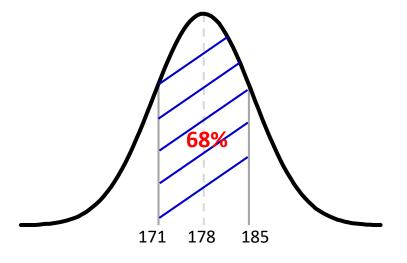


Empirical Rule:

- Suppose that the heights of a sample men are normally distributed.
- The mean height is 178 cm and a standard deviation is 7 cm.

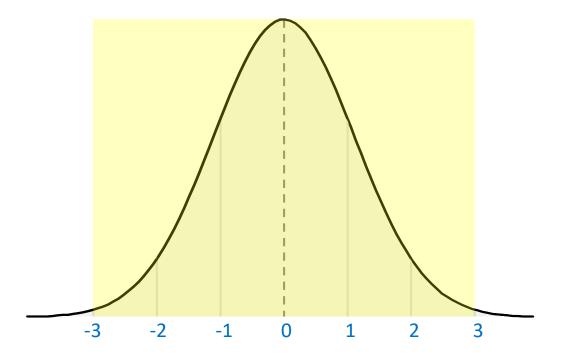
■ We can generalize that:

- 68% of population are between
 171 cm and 185 cm.
- This might be a generalization, but it's true if the data is normally distributed.



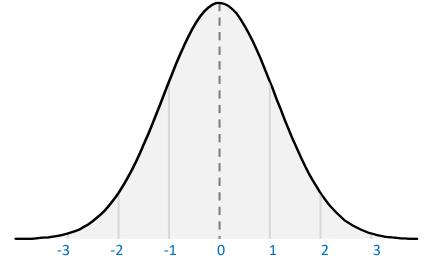
Empirical Rule:

□ For a stable normally distributed process, 99.73% of the values lie within +/-3 standard deviation of the mean.



Standard Normal Distribution:

- A common practice to convert any normal distribution to the standardized form and then use the standard normal table to find probabilities.
- □ The **Standard Normal Distribution** (Z distribution) is a way of standardizing the normal distribution.
- □ It always has a mean of 0and a standard deviation of 1.

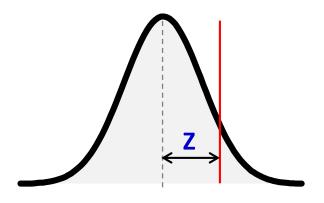


Standard Normal Distribution:

Any normally distributed data can be converted to the standardized form using the formula:

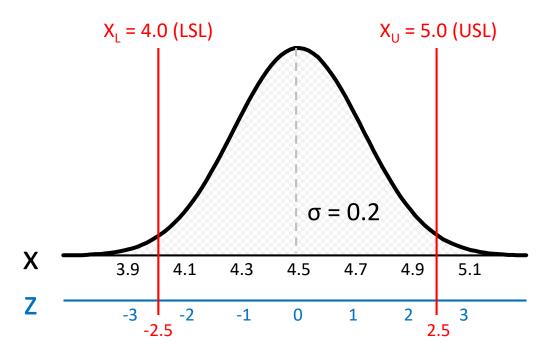
$$Z = (X - \mu) / \sigma$$

- where:
 - 'X' is the data point in question.
 - 'Z' (or **Z-score**) is a measure of the number of standard deviations of that data point from the mean.



Standard Normal Distribution:

Converting from 'X' to 'Z':

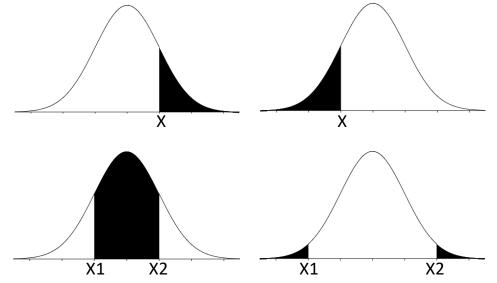


The specification limits at 4.0 and 5.0mm respectively, and the corresponding z values

The X-scale is for the actual values and the Z-scale is for the standardized values

Standard Normal Distribution:

- You can then use this information to determine the area under the normal distribution curve that is:
 - To the right of your data point.
 - To the left of the data point.
 - Between two data points.
 - Outside of two data points.



Z-Table:

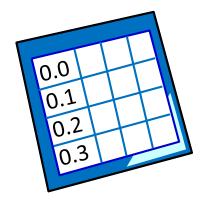
- Used to find probabilities associated with the standard normal curve.
- You may also use the Z-table calculator instead of looking into the Z-table manually.

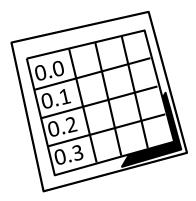
Z	+0.00	+0.01	+0.02	+0.03	
0.0	0.50000	0.50399	0.50798	0.51197	
0.1	0.53983	0.54380	0.54776	0.55172	
0.2	0.57926	0.58317	0.58706	0.59095	
0.3	0.61791	0.62172	0.62552	0.62930	
•••					

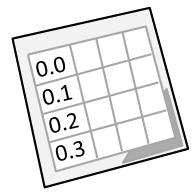
Cumulative Z-Table

Z-Table:

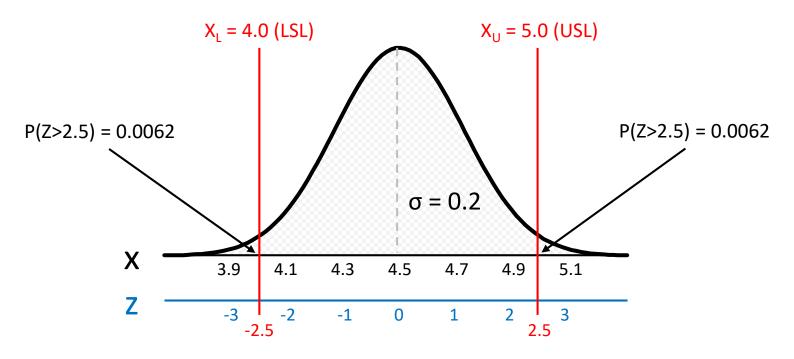
- There are different forms of the Z-table:
 - **Cumulative**, gives the proportion of the population that is to the left or below the Z-score.
 - Complementary cumulative, gives the proportion of the population that is to the right or above the Z-score.
 - Cumulative from mean, gives the proportion of the population to the left of that z-score to the mean only.







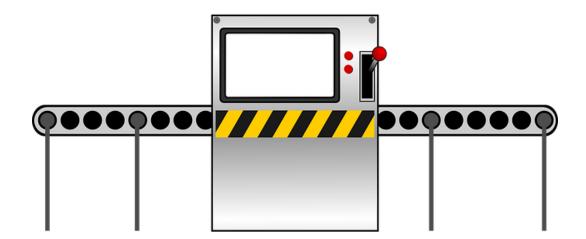
Z-Table:



The area between Z = -2.5 & Z = +2.5 cannot be looked up directly in the Z-Table However, since the area below the total curve is 1, it can be found by subtracting the known areas from 1.

Exercise:

Question: For a process with a mean of 100, a standard deviation of 10 and an upper specification of 120, what is the probability that a randomly selected item is defective (or beyond the upper specification limit)?

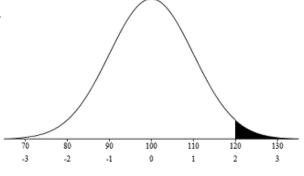


Time allowed: 10 minutes

Exercise:

Answer:

- The Z-score is equal to = (120 100) / 10 = 2.
- This means that the upper specification limit is 2 standard deviations above the mean.
- Now that we have the Z-score, we can use the Z-table to find the probability.

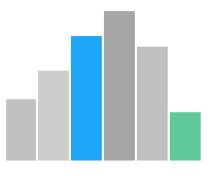


- From the Z-table (the complementary cumulative table), the area under the curve for a Z-value of **2** = **0.02275** or **2.275**%.
- This means that there is a chance of 2.275% for any randomly selected item to be defective.

- Many statistical tests require that the distribution is normal.
- Several tools are available to assess the normality of data:
 - Using a histogram to visually explore the data.
 - Producing a normal probability plot.
 - Carrying out an Anderson-Darling normality test.
- All these tools are easy to use in Minitab statistical software.

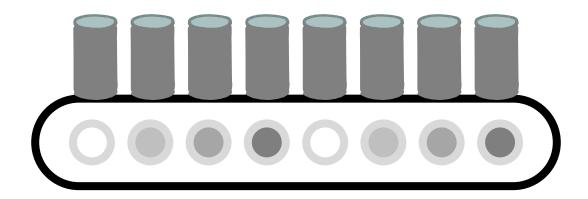
Histograms:

- Efficient graphical methods for describing the distribution of data.
- It is always a good practice to plot your data in a histogram after collecting the data.
- This will give you an insight about the shape of the distribution.
- If the data is symmetrically distributed and most results are located in the middle, we can assume that the data is normally distributed.



Histograms:

- Suppose that a line manager is seeking to assess how consistently a production line is producing.
- He is interested in the weight of a food products with a target of 50 grams per item.
- He takes a random sample of 40 products and measures their weights.

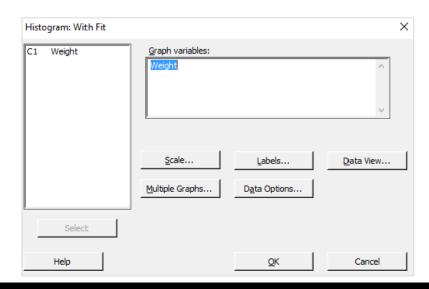


Histograms:

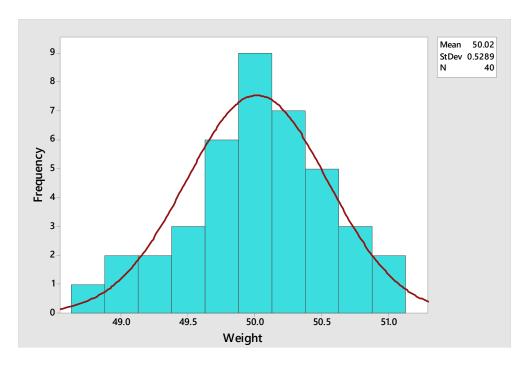
Remember to copy the data from the Excel worksheet and paste it into the Minitab worksheet.

- Select Graph > Histogram > With Fit.
- Specify the column of data to analyze
- Click OK.

50.9	49.3	49.6	51.1	49.8	49.6	49.9	49.9
49.7	50.8	48.8	49.8	50.4	48.9	50.6	50.3
50.4	50.7	50.2	50.0	50.8	50.3	50.4	49.9
49.4	50.0	50.5	50.3	50.1	49.9	49.8	50.2
49.3	50.0	49.7	50.3	49.7	50.2	50.0	49.1



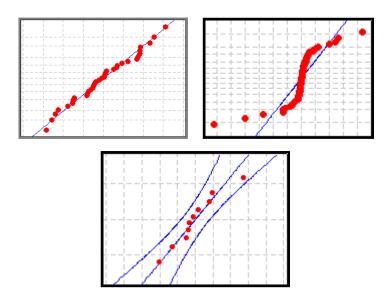
The histogram below suggests that the data is normally distribution.



Notice how the data is symmetrically distributed and concentrated in the center of the histogram

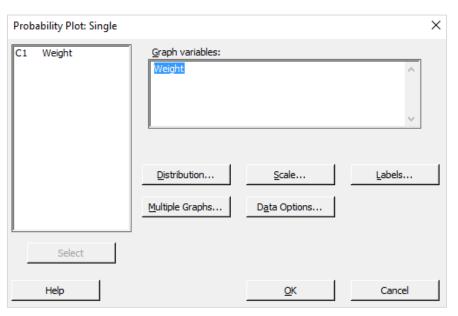
Normal Probability Plots:

- Used to test the assumption of normality.
- Provides a more decisive approach.
- All points for a normal distribution should approximately form a straight line that falls between 95% confidence interval limits.



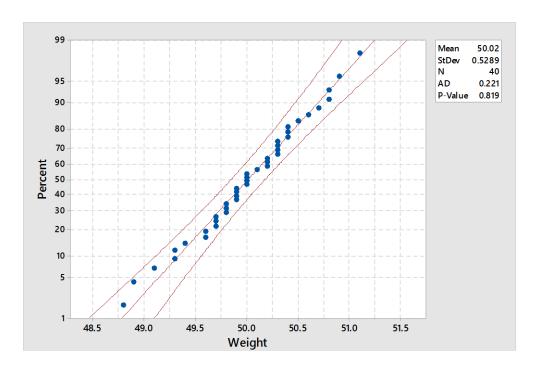
Normal Probability Plots:

- □ To create a normal probability plot:
 - Select Graph > Probability Plot > Single.
 - Specify the column of data to analyze.
 - Leave the distribution option to be normal.
 - · Click OK.



Normal Probability Plots:

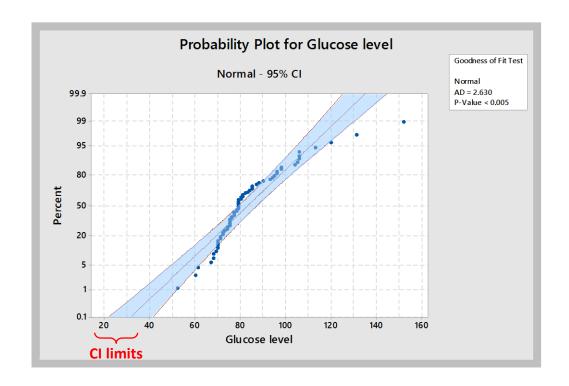
Here is a screenshot of the example result for our previous example:



The data points approximately follow a straight line that falls mainly between CI limits

It can be concluded that the data is normally distributed

■ What about the data in the following probability plot?



Anderson-Darling Normality Test:

 A statistical test that compares the actual distribution with the theoretical distribution.

Goodness of Fit Test

Normal

AD = 2.630

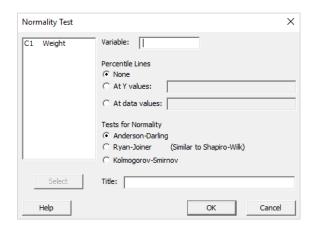
P-Value < 0.005

Mean 50.02 St Dev 0.5289 N 40 AD 0.221 P-Value 0.819

- Measures how well the data follow the normal distribution (or any particular distribution).
- A lower p-value than the significance level (normally 0.05) indicates a lack of normality in the data.
- Remember to keep your eyes on the histogram and the normal probability plot in conjunction with the Anderson-Darling test before making any decision.

Anderson-Darling Normality Test:

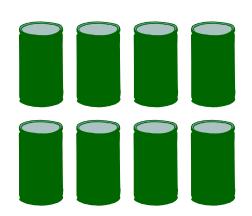
- □ To conduct an Anderson-Darling normality test:
 - Select Stat > Basic Statistics > Normality Test.
 - Specify the column of data to analyze.
 - Specify the test method to be Anderson-Darling.
 - · Click OK.



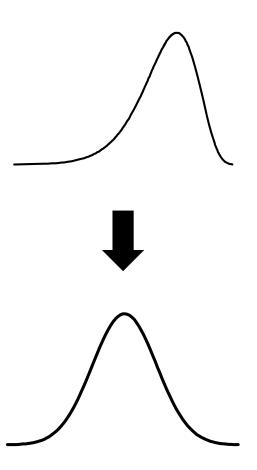
- The p-value in our product weight example was 0.819.
- This suggests that the data follow the normal distribution.

```
Mean 50.02
St Dev 0.5289
N 40
AD 0.221
P-Value 0.819
```

- The normal distribution is also known as the Gaussian Distribution after Carl Gauss who created the mathematical formula of the curve.
- Sometimes the process itself produces an approximately normal distribution.
- Other times the normal distribution can be obtained by performing a mathematical transformation on the data or by using means of subgroups.



- The Central Limit Theorem is a useful statistical concept.
- It states that the distribution of the means of random samples will always approach a normal distribution regardless of the shape or underlying distribution.
- Even if the population is skewed, the subgroup means will always be normal if the sample size is large enough (n >= 30).

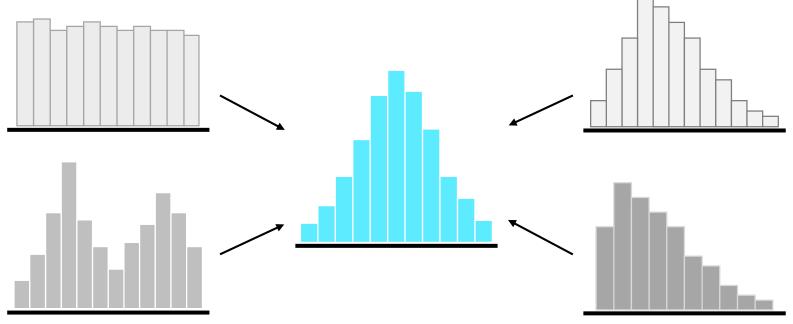


Further Information:

This means that statistical methods that work for normal distributions can also be applicable to other distributions.

■ For example, certain SPC charts (such as XBar-R charts) can be used

with non-normal data.



Further Information:

In Excel, you may calculate the normal probabilities using the NORM.DIST function. Simply write:

=NORM.DIST(x, mean, standard deviation, FALSE)

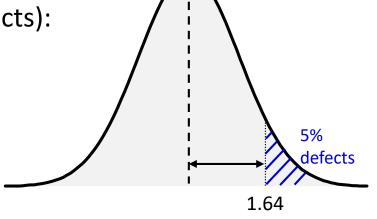
 \Box where 'x' is the data point in question.

Further Information:

- In Excel, NORM.INV is the inverse of the NORM.DIST function.
- □ It calculates the **X** variable given a probability.
- You can generate random numbers that follow the normal distribution by using the NORM.INV function. Use the formula:

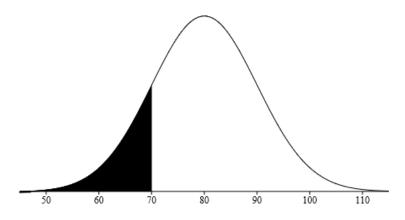
=NORM.INV(RAND(), mean, standard deviation)

- □ For **non-continuous data**, we can estimate the Z-value by calculating the area under the curves (DPU) and finding the equivalent Z-value for that area.
- Because discrete data is one-sided; the computed area is the total area.
- □ A process that yields **95%** (or has **5%** defects):
 - The DPU for this process is **0.05**.
 - In the Z-table, an area of 0.05 has a Z-value of 1.64.



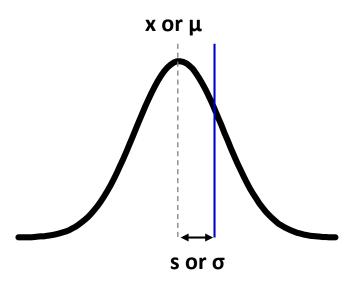
Further Information - Exercise:

- An engineer collected 30 measurements. He calculated the average to be 80 and the standard deviation to be 10. The lower specification limit is 70.
- What is the Z-value?
- What percentage of the product is expected to be out of specification?



- More examples using the Z-distribution and the Z-table:
 - The Z-value corresponding to a proportion defective of 0.05 (in one tail).
 - The proportion of output greater than the process average.
 - The yield of a stable process whose specification limits are set at
 +/- 3 standard deviations from the process average.
 - The average weight of a certain product is 4.4 g with a standard deviation of 1.3 g.
 - Question: What is the probability that a randomly selected product would weigh at least **3.1** g but not more than **7.0** g.

- More examples using the Z-distribution and the Z-table:
 - The life of a fully-charged cell phone battery is normally distributed with a mean of 14 hours with a standard deviation of 1 hour. What is the probability that a battery lasts at least 13 hours?



- More examples using the Z-distribution and the Z-table:
 - The maximum weight for a certain product should not exceed 52 gm. After sampling 40 products from the line, none of the weights exceeded the upper specification limit.
 - It may look that there will be no overweighed products, however, the normal curve suggests that there might be some over the long term.
 - The normal distribution can be used to make better prediction of the number of failures that will occur in the long term.
 - In our case, the Z-table predicts the area under the curve to be
 0.6% for a Z-value of 2.5.
 - This is a better prediction than the 0% assumed earlier.